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Abstract—The class of hydrogen-containing salts in which the phases with dynamically disordered hydrogen-
bond nets are formed has been considered. Unlike other hydrogen-bonded crystals, the crystals of this class are
characterized by delocalized hydrogen bonds producing considerable influence on their physical and physical–
chemical properties. The structural transitions between the phases with ordered and disordered hydrogen-bond
networks are described with the emphasis being made on the structural mechanisms of anomalously high
(superprotonic) conductivity associated with delocalization of hydrogen bonds. The perspectives of the use of
crystals with delocalized hydrogen bonds in fuel cells and other electrochemical devices are discussed. © 2003
MAIK “Nauka/Interperiodica”.
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INTRODUCTION

It is well known that hydrogen in crystals has spe-
cific crystallochemical parameters and interacts with
the surrounding atoms forming specific hydrogen
bonds [1]. The formation of hydrogen bonds consider-
ably influences the structure of crystals, their physical
and physicochemical properties, and also the thermo-
dynamic stability of the crystalline state. Since hydro-
gen bonds (H bonds) are directional, their arrangement
in crystals is usually characterized by networks of dif-
ferent geometries, which depend on the structural and
chemical characteristics of each compound. The
dimension and orientation of networks of hydrogen
bonds and also the characteristics of the proton dynam-
ics on an H bond determine the physical properties of
crystals such as piezoelectric effect, spontaneous polar-
ization, dielectric nonlinearity, and protonic conductiv-
ity [2, 3].

Most of the known crystals have localized hydrogen
bonds; i.e., the positions and directions of hydrogen
bonds are fixed by the crystal symmetry. However,
comparatively recently, crystals with delocalized H
bonds have also been found [4–14]. The characteristic
feature of these crystals is a disordered sublattice of
hydrogen atoms; i.e., the number of structurally and,
therefore, energetically equivalent positions of hydro-
gen atoms forming H bonds exceeds the number of
hydrogen atoms in the unit cell. The most important
characteristics of crystals with delocalized bonds or
crystals with disordered hydrogen-bond networks
003 MAIK “Nauka/Interperiodica”
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Table 1.  Phase-transition temperatures Tsp, activation enthalpies in phases with DHBNs, and lengths of hydrogen bonds in
superprotonic crystals

Crystal , K Change of symmetry
in superionic transition

Length of H bond, 
Å Ha, eV

RbHSO4 466**) [111] B21/a  tetragonal [111] 2.530
2.620 0.32

(NH)4HSO4 496***) [112] B21/a  tetragonal [112] 2.514
2.620 0.32

CsHSO4 414 [4] P21/c  I41/amd [ 21] 2.57 0.26

CsDSO4 409 [5] P21/c  I41/amd [ 21] 2.638 0.27

RbHSeO4 470 [6, 8] I2  tetragonal [6, 8] 2.53
2.55 0.25

(NH)4HSeO4 428 [6, 8] I2  tetragonal [6, 8] 2.52
2.56 0.25

CsHSeO4 384 [4, 94] P21/c  I41/amd [21, 81] 2.57 0.25

K3H(SO4)2 463 [134] A2/a  ? [134] 2.49

Rb3H(SO4)2 475 [121, 128] C2/c  cubic [128] 2.486

(NH4)3H(SO4)2 413 [80] A2/a   [121] 2.540 0.23

[(NH4)0.3Rb0.7]3H(SO4)2 463 [128]
495 [128]

A2/a   [121]

  cubic [128]

K3H(SeO4)2 393 [135] A2/a   [135] 2.524

Rb3H(SeO4)2 455 [9] A2/a   [9] 2.541 0.26

(NH4)3H(SeO4)2 305 [10, 11] A2/a   [122] 2.486 0.27

Cs3H(SeO4)2 451 [10, 11, 136] A2/a   [136] 2.71 0.37

Cs3D(SeO4)2 448 [136] A2/a   [136] 0.39

(NH4)4H3(SeO4)3 378 [10.11] A2/a   [11] 0.11 

Cs5H3(SO4)4 · xH2O P63/mmc [23] 0.66

Cs5(H,D)3(SO4)4 · x(H,D)2O P63/mmc [23] 0.66

Cs5H3(SeO4)4 · H2O 346 [35, 94] Pbcn  P63/mmc [24] 0.63

K9H7(SO4)8 · H2O 393 [95] P2/c  ? [95]

CsH2PO4 503 [12, 120] P21/c  Pm3m [133] 2.48 0.32

β-Cs3H(SO4)2[Hx(P,S)O4] 398 [127] C2/c  ? [127]

α-Cs3H(SO4)2[H2(PO4] 390 [126] P21/n  ? [126]

CsH2AsO4 435 [12] P4/  cubic [12] 0.3

Cs1.5Li1.5H3(SeO4)2 [125] 1.0
    * For first-order phase transitions the temperature Tsp correspond to heating.
  ** Hydrostatic-pressure-induced phase transition, p = 0.6 GPa.
*** Hydrostatic-pressure-induced phase transition, p = 0.28 GPa.
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(DHBNs) are fast proton diffusion, Dp ~ 10–7 cm2 s–1,
and high protonic conductivity, σ ~ 10–2 Ω–1 cm–1 [4–8].

The present review is dedicated to the structural
characteristics of crystals with dynamically disordered
networks of H bonds and their effect on the physical
and physicochemical properties of these crystals. At
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present, a rather large number of groups of crystals pos-
sessing phases with DHBNs are known (Table 1).
These are the crystals described by the general formu-
las MeHAO4, Me3H(AO4)2, Me4H2(AO4)3,
Me5H3(AO4)4 · xH2O, Me9H7(AO4)8 · H2O (Me = K, Rb,
NH4, Cs; A = S, Se), and CsH2BO4 (B = P, As) and the
3
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solid solutions on their basis. At present, we have vast
experimental and theoretical material waiting for gen-
eralization. In addition to the fundamental aspect—
deepening of our knowledge on the nature of H bonds
and their effect on the properties of the crystalline sub-
stances—crystals with DHBNs are also of great interest
as promising materials for practical applications.
Because of high protonic conductivity, these crystals
are actively studied as possible protonic solid electro-
lytes for the membranes of fuel cells (electrochemical
generators of current) [15–17].

1. GEOMETRY OF HYDROGEN-BOND 
NETWORKS AND PROTON DISORDER

In a majority of crystals, hydrogen atoms forming H
bonds completely occupy one or several crystallo-
graphic positions in the crystal structure. In other
words, the number of structurally equivalent lattice
sites corresponding to the total multiplicity of the crys-
tallographic positions gp energetically most favorable
for the formation of H bonds is equal to the number of
hydrogen atoms per unit cell, np. This signifies that the
centers of hydrogen bonds in these crystal structures
are ordered and the hydrogen bonds, being directional,
form an ordered hydrogen-bond network (OHBN). The
notion of a hydrogen-bond center is introduced because
the proton position usually does not coincide with the
hydrogen-bond center. As a rule, the latter is character-
ized by a potential with two minima and two proton
positions (not necessarily structurally equivalent).
Therefore, it is important to distinguish between proton
disorder in a two-minimum potential of an H bond and
disorder in the positions of H bonds.

Networks of H bonds in crystals are usually charac-
terized by their dimension. One-, two-, or three-dimen-
sional networks unite structural elements into chains,
layers, and three-dimensional structures, respectively.
The zero-dimensional networks unite two structural
elements into dimers. This classification is rather use-
ful, in particular, in the study of anisotropy of the phys-
ical properties of crystals.

Upon the discovery of anomalously high protonic
(superprotonic) conductivity in hydrogen-containing
crystals of some salts [4], the structural mechanism of
this phenomenon was explained based on the concept
of dynamically disordered network of hydrogen bonds
[5, 6]. According to this mechanism, both the positions
of the H-bond centers and orientations of these bonds
are dynamically disordered. Further studies confirmed
the relation between the superprotonic conductivity and
DHBNs in various classes of H-bonded salts (Table 1).
According to the structural data, DHBNs can be formed
only in the crystal structures where the number of
hydrogen atoms per unit cell, np, is less than the total
multiplicity of gp positions energetically favorable for
hydrogen bonding. In other words, DHBNs are formed
in structures with disordered sublattices of hydrogen
C

                    

atoms. Therefore, the H bonds in these structures are
positionally and orientationally disordered. If this dis-
order is dynamical, then protons and, therefore, hydro-
gen bonds are delocalized. It should be indicated that,
in principle, this characteristic of hydrogen bonds dif-
fers from the well-known bifurcated three-center
hydrogen bonds whose formation is associated with
deficit of protons [1, 18]. This type of hydrogen bonds
is beyond the scope of the present review.

The difference between ordered and disordered
hydrogen-bond networks is illustrated by Fig. 1, which
shows the structures of monoclinic (zero-dimensional
ordered network with localized hydrogen bonds) and
trigonal (two-dimensional disordered network with dis-
ordered hydrogen bonds) phases of the crystals
described by the general formula 
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2. PROTONIC CONDUCTIVITY AND PROTON 
DEFECTS IN CRYSTALS WITH ORDERED 

HYDROGEN-BOND NETWORKS 

The experimental data show [13, 14, 19] that the
dimension and geometry of H-bond networks produce
no effect on anisotropy of protonic conductivity in crys-
tals with OHBNs. Thus, protonic conductivity in the
monoclinic phase of a CsH
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 crystal with the one-
dimensional network of hydrogen bonds is almost iso-
tropic (Fig. 2). The protonic conductivity in the mono-
clinic phases of the 
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 crystals with the zero-
dimensional network of H bonds is also three-dimen-
sional but strongly anisotropic (Fig. 3). These facts
indicate that proton migration (diffusion) proceeds not
only over conventional proton sites but also over inter-
stitials. Taking into account the insignificant difference
between the activation energies of conductivity along
the chains of hydrogen bonds and in the perpendicular
direction (Table 2), one can also state that proton migra-
tion over interstitials should be accompanied by the for-
mation and breaking of interstitial “defect H bonds.”
Unlike an ordered hydrogen-bond network formed by
hydrogen atoms located in conventional sites, which,
for definiteness, can be called the basic or primary
OHBN, the interstitial hydrogen bonds form the sec-
ondary network of hydrogen bonds. Obviously, the lat-
ter can exist only in crystals with proton defects. The
primary and secondary networks of H bonds in the tet-
ragonal phase of a KH

 

2

 

PO

 

4

 

 crystal are schematically
shown in Fig. 4. Thus, in real crystals, the appearance
of proton defects and their migration are associated
with delocalization of H bonds and formation of a sec-
ondary network of H bonds.

In order to relate the protonic-conductivity tensor
with the spectrum of thermally activated proton hop-
pings, we assume that a proton can occupy 
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 types of
proton positions (conventional or interstitial) with the
multiplicity 

 

g

 

q

 

, where 

 

q

 

 = 1, …, 

 

s

 

. Then, according to
Flynn [20], the density of the proton flux from the sites
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of the position q to the sites of the position k can be
written as

(1)

where e is the electron charge, np is the atomic density
of mobile protons (the number of protons per formula
unit), cq is the probability of finding a proton in one of

Jqk enpcq 1 ck–( )νqklqk,=

AO4

O-H...O

ah

AO4

O-H...O

O-H...O

ah

bh

(a)

(b)

bh

(c)

ah

bh

intra

inter

Fig. 1. Schematic projection of the Me3H(AO4)2 structure
onto the (001) plane. (a) Monoclinic phase, (b) trigonal
phase, (c) transport pathways of protons in the trigonal
phase. Free structure-equivalent positions of H bonds in
Fig. 1b are indicated by dashed lines.
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the sites of the position 

 

q

 

, 

 

c

 

k

 

 is the probability of finding
the site 

 

k 

 

closest to the occupied site 

 

q empty, and lqk is
the vector between the closest sites of the positions q
and k. The frequency of a thermally activated proton
hopping between these positions is determined as

(2)

where  is the frequency of proton vibrations in the

potential well and  is the change of the thermody-
namic potential of a crystal caused by proton hopping
to the saddle point of the potential between the nearest
sites of the positions q and k.

Each site of the position q has Nq lqk-vectors with the
frequency νqk of hoppings between the q and k posi-
tions, where k = 1, 2, …, Nq. The density of the proton
current in an external electric field E is obtained by
summation over all Nq sites and s crystallographic posi-
tions

(3)

where the change in frequency of proton hoppings,
∆νqk, between the closest proton sites in the field E is

qk ν0
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Fig. 2. Temperature dependences of protonic conductivity
measured along different crystallographic directions of a
CsH2PO4 crystal: (1) a*, (2) b, and (3) c* [12]. In the inset:
temperature dependences obtained during cooling and heat-
ing in the vicinity of the superprotonic transition.
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given by the following expression [19]:

(4)

Then, the components of the conductivity tensor  are
determined by the expression

(5)

In ideal structures with OHBNs, we have cq = 1 for
conventional sites and cq = 0 for interstitials, so that, in
accordance with Eq. (5), σ = 0. In real crystals contain-
ing intrinsic or extrinsic defects, the probabilities of fill-
ing conventional and interstitial positions are different:
cq < 1 for conventional positions and 0 < cq ! 1 for
interstitial ones. As a result, the multipliers in Eqs. (1),
(3), and (5) obey the relationship cq(1 – cp) ~ cq ≠ 0 and,
therefore, σ ≠ 0. The introduction into a crystal of impu-
rities with different valences gives rise to the appear-
ance of proton defects which provide the fulfillment of
the electroneutrality condition. In this case, the condi-
tion cq(1 – ck) ~ cq ! 1 is fulfilled, with cq being inde-
pendent of the temperature. Depending on the valence
ratio of an impurity and the replaced ion, either vacant
proton sites or interstitial protons can be formed.
Therefore, proton migration (diffusion) proceeds only

∆νqk ν0
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Fig. 3. Temperature dependences of the protonic conductiv-
ity of an (NH4)3H(SO4)2 crystal measured along different
crystallographic directions: (s) a*, (×) b, and (.) c* [80].
C

over the conventional sites or the interstitial positions.

In both cases, the thermodynamic potential  in
Eqs. (4) and (5) corresponds to the thermodynamic

potential of proton migration, .

Intrinsic proton defects, which represent a proton
vacancy at the site, and an interstitial proton (a pair of
Frenkel defects) are formed as a result of a transition of
a thermally activated proton from the site q to the inter-
stitial site k. The probability of formation of such a pair
of defects depends on the temperature according to the
Arrhenius law

(6)

where  is the thermodynamic potential of formation
of these defects. Therefore, the activation energy of
intrinsic protonic conductivity is determined not only

by  but also by the thermodynamic potential of

defect formation, . Thus, in crystals with ordered
network of H bonds, proton migration and, therefore,
protonic conductivity are possible only in the presence
of proton defects. It should be noted that, even in the
vicinity of the melting point, the concentration of ther-
mally activated defects does not exceed 10–19 cm–3.

It follows from Eq. (5) that, in the general case, the
temperature dependences of the conductivity-tensor

Φa
qk

Φm
qk

cq

Φd
q

2kBT
------------– 
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Φd
q
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O3'

O4'
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P

Fig. 4. Primary (solid lines) and secondary (dashed lines)
networks of H bonds in the tetragonal KH2PO4 phase pro-
jected onto the (001) plane. Arrows indicate possible path-
ways of proton transport [14].
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components are the sums of the exponents

(7)

and, therefore, are not exponential. However, the exper-
imental dependences of conductivity are well approxi-
mated by one exponent of type (7) within a rather wide
temperature range, i.e., by the Arrhenius law. This sig-
nifies that, in real crystals, proton migration proceeds
mainly over the sites or interstitials of only one crystal-

cq 1 ck–( )li
qkl j

qk Φa
q

2kBT
------------– 

 exp

–20

2.82.4 103/T, K–1

ln(σiiT) [Ω–1 cm–1 K]

3.2

–16

–12

–8

1

2

3

1

2

3

Fig. 5. Temperature dependences of the main components
of the proton-conductivity tensor in phases II (solid lines)
and III (dashed lines) of a CsHSO4 crystal: (1) σ11, (2) σ22,
and (3) σ33 [19].
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lographic position. Figure 5 shows the temperature
curves of the main components of the electrical con-
ductivity σii in phases III and II of a ësHSO4 crystal
characterized by a one-dimensional OHBN. It is seen
that the chain of H bonds, which, in these phases, coin-
cides with the twofold axes (component σ22), is not a
preferred direction, which confirms the above conclu-
sion about the existence in the crystals with OHBNs of
a secondary system of H bonds formed by protons
located in interstitials.

Taking into account the geometric properties of the
characteristic surface of a second-rank tensor, we can
represent Eq. (5), which describes the temperature
dependence of conductivity (with due regard for anisot-
ropy), in the form

(8)

where n is the unit vector of an external field E and
A0(n) is the prefactor defined as

(9)

Taking into account the thermodynamic relationships

(10)

we can represent Eq. (8) in the form

(11)

σ n T,( )
A0 n( )

T
--------------

Φa n( )
kBT
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  ,exp=

A0 n( ) 1
2
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----------ν0 n( ) l n( )( )2.=

Φa n( ) Ha n( ) TSa–=

=  Ea n( ) TSa n( )– pVa n( ),+

σ n T,( ) A n( )
T

------------
Ha n( )
kBT

---------------– 
 exp=

=  
A n( )

T
------------

Ea n( ) pVa n( )+
kBT

---------------------------------------– 
  ,exp
Table 2.  Activation enthalpy and prefactors in Eq. (11) for phases with ordered and disordered hydrogen-bond networks

Crystal Tsp, K Crystallographic 
axis

Phase with OHBN Phase with DHBN

sp. gr Ha, eV A, Ω–1 cm–1 K sp. gr Ha, eV A, Ω–1 cm–1 K

CsHSO4 [19] 414 a* P21/c 0.96 3.6 × 108 I41/amd 0.25 4.3 × 103

b 0.73 2.0 × 1011 0.25 4.3 × 103

c 0.97 2.1 × 108 0.28 7.3 × 103

CsDSO4 [19] 411 a* P21/c 1.19 3.0 × 1010 I41/amd 0.26 3.3 × 103

b 1.12 1.8 × 1011 0.26 3.3 × 103

c 1.42 1.2 × 1015 0.29 5.7 × 103

Rb3H(SeO4)2 [13] 456 a* A2/a 1.13 3.1 × 1011 0.26 1.9 × 103

b 1.12 3.1 × 1011 0.26 1.9 × 103

c 1.42 1.5 × 109 0.49 2.4 × 104

Rb3H(SeO4)2 [13] 504 a* A2/a 1.13 3.1 × 1011 Pm3m 0.29 2.7 × 103

b 1.12 3.1 × 1011 0.29 3.0 × 103

c 1.42 1.5 × 109 0.31 3.5 × 103

R3 m⁄
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Table 3.  Components of Hii and Aii tensors in phases with OHBNs (II and III) and DHBN (I) of CsHSO4 and CsDSO4 crys-
tals [19]

Crystal Phase Sp. gr. Tensor component Hii,  eV Aii, Ω–1 cm–1 K

CsHSO4 III P21/c 11 0.95 ± 0.05 3.75 × 108

22 0.74 ± 0.05 1.99 × 106

33 1.05 ± 0.05 2.19 × 109

CsDSO4 II P21/c 11 1.18 ± 0.05 1.09 × 109

22 1.15 ± 0.05 5.14 × 109

33 1.55 ± 0.08 5.44 × 1014

CsHSO4 I I41/amd 11 0.26 ± 0.02 4.36 × 103

22 0.26 ± 0.02 4.36 × 103

33 0.28 ± 0.02 7.34 × 103

CsDSO4 I I41/amd 11 0.27 ± 0.02 3.5 × 103

22 0.27 ± 0.02 3.5 × 103

33 0.29 ± 0.02 5.7 × 103
where Ea(n) is the activation energy, Sa(n) is the activa-
tion entropy, p is the external pressure, and Va(n) is the
activation volume. The parameters of Eq. (11) that can
be determined experimentally are the enthalpy of con-
ductivity activation, Ha, and the prefactor, A. The latter
is related to the parameter A0 in Eqs. (8) and (9) by the
formula 

(12)

It should be noted that, under atmospheric pressure,
Ha . Ea. Therefore, in this case, one can state that the
parameter to be determined experimentally is the acti-
vation energy Ea. If conductivity is provided by intrin-
sic proton defects, we have

(13)

where Hm(n) and Sm(n) bare the enthalpy and entropy of
migration of proton defects and Hd(n) and Sd(n) are the
enthalpy and entropy of their formation, respectively. If
the protonic conductivity is caused by impurities hav-
ing different valences, then

(14)

The analysis of the Ha(n) and A(n) parameters shows
that, in the majority of hydrogen-bonded crystals with
OHBNs, the conductivity at the temperatures T > 300 K
depends on the intrinsic proton defects. Depending on
the structural characteristics of the crystal, the enthalpy
of defect formation, Hd, varies within 1.1–1.4 eV,
which is considerably higher than the enthalpy of their
migration (0.25 ≤ Hm(n) ≤ 0.45 eV). It should also be
indicated that, within the measurement error, the Hd

value is independent of n. Therefore, the anisotropy of

A n( ) A0 n( ) Sa n( )–( ).exp=

Ha n( ) Hm n( ) 1/2Hd n( ),+=

Sa Sm n( ) 1/2Sd n( ),+=

Ha n( ) Hm n( ),=

Sa n( ) Sm n( ).=
C

the parameters of proton migration Ha(n) and A(n)
(Table 3) is determined by anisotropy of the parameters
of proton migration Hm(n) and Sm(n), which reflects the
difference in the migration pathways of protons along
different crystallographic directions.

3. PROTONIC CONDUCTIVITY AND PROTON 
DYNAMICS IN CRYSTALS 

WITH DYNAMICALLY DISORDERED 
HYDROGEN-BOND NETWORKS

It has already been indicated that dynamical disor-
dering of a hydrogen-bond network arises as a result of
the dynamical disordering in the sublattice of hydrogen
atoms. In accordance with the symmetry of these disor-
dered structures, the multiplicity gq of the conventional
proton position exceeds the number of protons per unit
cell, so that the probability of filling conventional pro-
ton sites in an ideal structure is

(15)

For the known crystal structures with disordered H-
bond networks, cq takes the values 1/3, 1/4, 1/6, and
1/12 [9, 21–24]. Therefore, in these structures, the
mobile protons are those which occupy the conven-
tional sites, and the translational hoppings occur
between conventional proton sites. It should be empha-
sized that the translation vectors l between the sites of
one crystallographic position form continuous trans-
port pathways (Fig. 1c) with equal energy barriers
between the proton sites both inside the unit cell and
between the neighboring unit cells. Thus, the protonic
conductivity in crystals with DHBNs is a symmetry
property of their structures, which does not depend on
defects.

Similar to impurity conductivity in the structures
with OHBNs, the enthalpy and entropy of conductivity

cq gq
1– 1.<=
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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activation in the structures with DHBNs is determined
only by the thermodynamic potential of proton migra-
tion [Eq. (14)]. It should be emphasized that the char-
acteristic feature of crystals with DHBNs is a high con-
centration of mobile protons equal to the stoichiometric
hydrogen concentration in the crystal (Np ~ 1022 cm–3).
Obviously, this concentration exceeds, by several
orders of magnitude, the concentration of mobile pro-
ton defects in crystals with OHBNs. This is clearly seen
in the considerable (by three to five orders of magni-
tude) difference in the protonic conductivities of phases
with DHBNs in comparison with the protonic conduc-
tivities of phases with OHBNs (Figs. 2, 3, 6). Analyzing
the differences in the transport characteristics of pro-
tons in the phases with OHBNs and DHBNs (Tables 2
and 3), one has to note that large values of Φa, Ha, and
Sa in the phases with OHBNs are explained by the con-
tribution of the energy of defect formation. The consid-
erable differences in the prefactors A are associated
mainly with an additional multiplier exp(0.5Sd/kB) in
Eq. (12), which appears only in the case of impurity
conductivity. In this case, the entropy of formation of
proton defects, Sd, considerably exceeds the entropy of
their migration, Sm [20].

Thus, a high protonic conductivity and a low activa-
tion energy in phases with DHBNs are the consequence
of characteristic symmetry of their ideal structures,
which manifest themselves in delocalization of H
bonds. On the other hand, hydrogen bonds in crystals
with OHBNs are localized, and the protonic conductiv-
ity in these phases is caused by the deviation of the
structure from the ideal one caused by the formation of
proton defects. Therefore, ideal structures with OHBNs
should be protonic insulators. In this connection, one
should pay attention to the formal analogy between the

–16

2.0
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Fig. 6. Temperature dependences of conductivity of (1, 2)
(NH4)HSO4 and (3, 4) RbHSO4 crystals in the Arrhenius
coordinates. (1, 3) Atmospheric pressure, (2) 1.77 GPa, (4)
0.32 GPa [111].
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crystals with hydrogen and electron bonds [25]. If elec-
tron and hydrogen bonds are localized, the crystals are
electronic or protonic insulators. On the other hand,
crystals with delocalized electron or hydrogen bonds
are electronic or protonic conductors, respectively. In
this sense, the well-known metal–dielectric transitions
[25] are formal analogs of the structural transitions
between the phases with delocalized and localized H
bonds considered in this review and can be character-
ized as the protonic conductor—protonic dielectric
transitions.

The dimensions of networks of disordered hydrogen
bonds are always higher than the dimensions of disor-
dered ones, and, while the anisotropy of protonic con-
ductivity in the phases with OHBNs shows no correla-
tion with the geometry and dimension of the networks
of hydrogen bonds, the dimension and orientation of
the disordered networks in the phases with DHBNs
necessarily reflects the anisotropy of protonic conduc-
tivity. Thus, in the tetragonal MeHAO4 and trigonal
Me3H(AO4)2 phases with two-dimensional DHBNs, the
isosurfaces of constant deuteron (Fig. 7) [26] or hydro-
gen electron density (Fig. 8) [27] indicate the existence
of two-dimensional transport pathways of protons in
the (001) planes, which manifests themselves in
strongly anisotropic proton (deuteron) conductivity
σ(001) @ σ[001] (Figs. 3 and 9). Two-dimensional trans-
port pathways of protons in the phases with DHBNs in
the Me3H(AO4)2 crystals are schematically shown in
Fig. 1c.

4. PROTON TRANSFER AND ENERGY 
OF HYDROGEN-BOND FORMATION

It is seen from Tables 1 and 2 that the activation
enthalpy, Ha, and the prefactor, A, for the crystallo-
graphic directions of the maximum protonic conductiv-
ity in the Arrhenius law (11) are almost independent of
the structural characteristics and chemical composition
of crystals. This indicates the common proton-conduc-
tivity mechanisms in crystals with DHBNs, which, in
turn, reflects the universal nature of hydrogen bonds
and proton transport in crystals with hydrogen bonds
[1, 28–30]. Hydrogen atoms differ from all the other
atoms by their specific interaction with the environ-
ment—formation of hydrogen bonds. Therefore, the
characteristics of the proton transport can be deter-
mined from the known formulas relating the thermody-
namic and geometrical parameters of H bonds. These
formulas are rather universal and are independent of
crystal structure [28–31].

It is known from the theory of hydrogen bond that,
if the bond length R(O···O) ≥ 2.40 Å, then its potential
is characterized by two minima [28–31]. Therefore, the
process of proton diffusion should consist of two stages
(Figs. 1b and 1c):

—Proton transfer between two potential minima of
the hydrogen bond O···H–O  O–H···O separated by
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the barrier Eintra. Depending on the distance between
the minima and the Eintra value, the proton transport can
be either thermally activated or can be caused by proton
tunneling [2, 3, 28, 29];

—Breaking of the hydrogen O–H···O bond accom-
panied by the reorientation of its short shoulder O–H.
As a result, a proton moves from one site to a neighbor-
ing vacant site, where it forms a new hydrogen bond.
This process is thermally activated and is characterized
by the energy Einter [29–31].

The two-stage mechanism of protonic conductivity
is illustrated by Figs. 1b and 1c for a two-dimensional
ordered network of H bonds in the trigonal phases of
Me3H(AO4)2 crystals.

In the first approximation, the energy of proton
migration is determined by the value of a higher poten-
tial barrier, Eintra or Einter. The dependences of Einter and
Eintra on R(O···O) are shown in Fig. 10. It is seen that the
optimum conditions for fast proton migration are ful-
filled for hydrogen bonds with the lengths R(O···O) ~
2.65 ± 0.5 Å. In this case, Einter ~ Eintra ~ 0.26 ± 0.3 eV.
It should also be indicated that these dependences are
obtained in the approximation of an isolated linear
hydrogen bond [29, 30]. In actual fact, both breaking
and formation of H bonds are accompanied by relax-
ation of atoms surrounding hydrogen and, first of all, by
deformation of Aé4 octahedra and the change of their
orientations [21, 22, 32–34]. These factors should
affect the energies of the breaking and formation of H
bonds. Nevertheless, simple model calculations
[29, 30] illustrated by Fig. 10 show the good accord
with the experimental values of the activation enthalpy
and the lengths of hydrogen bonds in the phases with
DHBNs (Tables 1–3).

It is seen from Table 1 that, in some hydrate forms
of crystals, the activation enthalpy in the phases with
DHBNs exceeds 0.3 eV. This can be associated with a
more complex network of hydrogen bonds, which
includes several crystallographic positions. Thus, in the
hexagonal Cs5H3(SO4)4 · xH2O and
Cs5H3(SÂO4)4 · xH2O phases, the acid hydrogen bonds
are formed in three crystallographic positions, 6(h),
12(k), and 24(l), with the occupancies by protons equal
to 1/3, 1/6, and 1/12, respectively [33–35]. The lengths
of H bonds for these positions are considerably differ-
ent: the H bond in the position 6(h) is symmetric,
whereas the H bonds in the other two positions are
asymmetric [23, 24]. Therefore, the transport pathways
of protons in these crystals are characterized by a more
complicated potential relief than in crystals with only
one system of H bonds. It should also be indicated that,
in the hydrate forms of superionic crystals, the contri-
bution of protons from water of crystallization to pro-
tonic conductivity is negligible in comparison with the
contribution of acid protons [35, 36, 37].
CR
Fig. 7. Surfaces of constant density for deuterons in the
superprotonic tetragonal CsDSO4 phase [26].
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Fig. 8. Map of hydrogen electron density in the plane of
dynamically disordered hydrogen bonds in a
[Rb0.57(NH4)0.43]3H(SeO4)2 crystal. The symbols H and
H* correspond to two proton positions on an H bond [27],
Z = 0.330.
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Fig. 10. Energy of formation of an H bond, Eintra [29] (solid
line), and energy of proton transfer between two potential
minima on an H bond, Einter [30] (dashed line) as functions
of the length of an H bond, R(O···O).
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5. EFFECT OF HYDROSTATIC PRESSURE 
ON PROTONIC CONDUCTIVITY. ACTIVATION 

VOLUME OF PROTONS

The effect of pressure on ionic conductivity is char-
acterized by the activation volume Va in Eq. (11). In the
general case, the activation volume is related to the
thermodynamic potential of activation as [38]

(16)

where Vd and Vm are the activation volumes of forma-
tion of a proton defect and its migration, respectively.
For a majority of metal and ionic crystals, Va is rather
well described by the model of rigid spheres, whose
radii correspond to the crystallochemical radii of point
defects [38]. However, because of the specific nature of
hydrogen bonds formed by protons in a crystal and its
zero radius, the validity of such a model is not obvious.
Indeed, it is seen from Figs. 11–13 that hydrostatic
pressure can produce different effects on the protonic
conductivity of various crystals. Thus, for the
Me3H(AO4)2 phases with OHBNs (Figs. 11a and 11b)
and DHBNs (Fig. 11c), protonic conductivity decreases
with an increase in pressure. However, the phase with a
DHBN of another crystal, CsHSO4 (phase I), shows
different behavior (Fig. 12). On the other hand, in
ordered phase II of this crystal, protonic conductivity
does not depend on pressure within the experimental
error (Fig. 13).

In order to interpret this unusual effect of hydro-
static pressure on protonic conductivity, consider
Eq. (11) relating the activation volume to the conduc-

Va

dΦa

dp
---------- 

 
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dp
---------- 
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Fig. 11. Baric dependences of proton conductivity σ33 of
(a) ordered phases III and IV of a Rb3HSeO4 crystal at T =
314 K, (b) ordered phases II and VIII of a (NH4)3HSeO4
crystal at (1) T = 291 K, (2) T = 333 K; (c) disordered phases
of (1) Rb3HSeO4 crystals at 423 K and of (NH4)3HSeO4
crystals at (2) 402 K [39].
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tivity parameters

(17)

It follows from this formula that the calculation of
Va(n) requires the knowledge of both isothermal (σ(p)
at T = const) and isobaric (σ(T) at p = const) depen-
dences of conductivity. The analysis of the experimen-
tal isobaric dependences shows that the change in the
prefactor A in the Arrhenius law in Eqs. (9), (11), (12)
under pressures lower than 2 GPa is quite insignificant,
whereas the value of the derivative ∂lnA/∂p does not
exceed ±3 × 10–12 cm2/dyn. Similar values are also
obtained for ∂ln A/∂p based on the continuum model of
diffusion [19, 38]. The corresponding correction in the
activation volume associated with the second term in
Eq. (17) amounts to 0.22–0.26 cm3/mol. It follows
from Table 4 for the activation volumes of the phases
with disordered and ordered H-bond networks that the
activation volume of protonic conductivity varies over
wide ranges depending on the chemical composition
and the structure and can have both positive and nega-
tive values [19, 39, 40]. Moreover, similar to other ther-
modynamic parameters of conductivity, the activation
volume is anisotropic and can have considerably differ-
ent values along different crystallographic directions.
Thus, in phase III of a CsHSO4 crystal, the σ11 compo-
nent of the conductivity tensor decreases (Va > 0),
whereas the σ22 component increases (Va < 0) with
pressure (Fig. 12).

It is important to note that, unlike other characteris-
tics of proton conductivity, the activation volumes of
the phases with ordered and disordered H-bond net-
works show no substantial differences. On the other
hand, compared with the other transport characteristics
of protons, parameter Va proves to be the most sensitive
to the structural and energy characteristics of transport
pathways of protons. This fact can be explained pro-
ceeding from the two-stage proton transport considered
above [19, 39, 40]. In this case, the activation volume
can be represented in the form

(18)

where Einter and Eintra are the heights of the potential
barriers for the proton transfer between two minima on
the hydrogen bond and its reorientation determined
above (Section 4). Since Einter is a decreasing and Eintra

is an increasing function of R (Fig. 10), their derivatives

 and , have different signs. Therefore,

depending on the potential relief in which a proton
moves, the contributions of these derivatives to the acti-

Va n( ) T
∂ σ n( )ln
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vation volume can be different and the signs of Va

should also be different.

A negative activation volume signifies that the crys-
tal compression giving rise to a decrease in the inter-
atomic distances reduces the thermodynamic potentials
of defect formation, Φd, and their migration, Φm. As a
result, the concentration of proton defects, their mobil-
ity, and conductivity increase. This fact can hardly be
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Fig. 12. Baric dependences of protonic conductivity σii
(a, b) in ordered phase III of a CsHSO4 crystal and (c) phase I
with disordered H-bond network of a CsDSO4 crystal along
different crystallographic directions: (s) σ (010), (d) σ
(100).
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Fig. 13. Temperature dependences of protonic conductivity
σ (100) in ordered phase II of a CsHSO4 crystal at different
hydrostatic pressures: (d) 0.3, (n) 0.6, and (s) 0.9 GPa.
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Table 4.  Activation volumes Va for phases with disordered and ordered H-bond networks of some crystals

Crystal Phase Phase characteristic Crystallographic axis Va, cm3/mol

CsHSO4 [19] III OHBN a* 2.0 ± 0.03

b –1.6 ± 0.03

III' OHBN b 1.4 ± 0.03

I DHBN a* 0.9 ± 0.03

c 1.2 ± 0.03

CsDSO4 [19] II OHBN a* ±0.03

c* ±0.03

(Rb)3H(SeO4)2 [39] III OHBN c –5.5 ± 0.3

IV OHBN c –0.7 ± 0.3

II DHBN c –1.2 ± 0.3

(NH4)3H(SO4)2 [40] II OHBN c –2.2 ± 0.3

VII OHBN c 1.5 ± 0.3

I DHBN c –0.7 ± 0.3

CsH2PO4 [120] I DHBN a* 2.0
explained for large cations and anions, where the steric
factors play the decisive role. However, protons, having
the zero ionic radius and a high density of the positive
charge, are localized at the sites with the maximum
negative density. Therefore, a reduction of interatomic
distances with pressure can increase the negative
charge density along the transport pathways of protons,
thus facilitating their migration.

6. PROTON DYNAMICS IN PHASES 
WITH DISORDERED HYDROGEN-BOND 

NETWORKS

The effective method of studying lattice dynamics
in phases with DHBNs is nuclear magnetic resonance
(NMR) [7, 8, 41–45]. It is advantageous for studying
proton diffusion and conductivity because it allows one
to directly determine the frequency of proton hoppings.
Moreover, NMR also allows one to separate the dynam-
ics of proton motion on an H bond (proton hoppings
between two minima on a hydrogen bond) and their dif-
fusion dynamics. It is seen from Fig. 14 that, in the
phases with OHBNs of CsHSO4 crystals (phases II and
III), where proton diffusion is rather slow, the times of
spin-lattice relaxation T1 and T2 (characterizing the

dynamics of reorientation of HS  groups) consider-
ably differ from the parameter T1ρ (characterizing the
translational diffusion of protons). However, in the
phase with a DHBN (phase I), rather fast proton diffu-
sion results in averaging of the dipole–dipole interac-
tions, so that T1 = T2 = T1ρ [7, 45].

Fast proton diffusion in phases with DHBNs is con-
firmed by the direct measurements of the diffusion
coefficient of protons by the method of spin pulse echo
[7]. The activation enthalpies measured by this method

O4
–
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in phases I of the CsHSO4 and CsHSeO4 crystals are
equal to 0.29 and 0.23 eV, respectively, and agree quite
well with the Ha values calculated from the conductiv-
ity data (Table 1). However, the energy of diffusion
activation in phase I of a CsHSO4 crystal calculated
from the quasi-elastic neutron scattering turned out to
be much lower (~0.1 eV) [46–48]. The diffusion coeffi-
cients Dp in CsHSO4 and CsHSeO4 determined from
the NMR data depend on temperature; they vary within
the range 5 × 10–8–10–6 cm2/s and agree quite well with
the Dp values in the disordered CsHSO4, Rb3H(SeO4)2,
and Cs3H(SeO4)2 phases determined by inelastic neu-
tron scattering [48–50]. For the majority of crystals
listed in Table 1, the diffusion coefficients in the phases
with DHBNs calculated using the experimentaal data
on conductivity by the Nernst–Einstein relationship 

(19)

where Np . 1022 cm–3, also have values ranging within
10–7–10−6 cm2/s.

Using the diffusion coefficient in the form

(20)

one can evaluate the time τ of the proton hopping
between the closest proton sites. In phase I of a CsHSO4
crystal, where the effective length of the proton hop-
pings is lef ~ 2.3 Å [48], the τ values vary with the tem-
perature from 5 × 10–8 to 10–10 s. It should be noted that,
in the general case, the relaxation time τ thus deter-
mined is the sum of the lifetime of a hydrogen bond at
the proton site, τlf, and the time necessary for breaking
(formation) of this bond, τbr. Taking into account that τlf

σ
N pe2Dp

kT
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Dp
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@ τbr ~ 10–13 s, the above estimates of τ correspond to
τlf. Then, proceeding from the structural mechanism of
protonic conductivity considered above, one can draw
the conclusion that it is τlf that limits diffusion and con-
ductivity of phases with DHBNs.

For water and some organic liquids with qualita-
tively similar dynamics of formation and breaking of H
bonds, the τlf values are less (by two orders of magni-
tude [51]) than in the known crystals with DHBNs.
Therefore, for substances with hydrogen bonds, the
coefficient of proton diffusion in water, DP ~ 10–5 cm2 s1,
can be taken as the limiting value. Lower values, Dp <
10–6 cm2 s–1, attained in the crystals of acid salts with
DHBNs can be explained by steric factors—reorienta-

tion of large complex HS , HSe , and HP
anions in diffusion of protons over crystals somewhat
hindered in comparison with the reorientation of H2O
molecules in water.

Numerous studies of proton dynamics by NMR
[7, 42–44], infrared and Raman spectroscopy [52–59],
and inelastic neutron scattering [32, 46, 48, 50] confirm
the two-stage mechanism of proton transport in the
phases with DHBNs, namely, the proton transport
between two proton sites on an H bond and reorienta-
tion of its short shoulder O–H. However, the results of
these experiments show that reorientation of O–H is
accompanied by rotations of Aé4 groups. Therefore, it
is more correct to consider reorientation of an çAé4
complex as a whole. It is seen from Fig. 15 that the
spectra of incoherent inelastic neutron scattering in
CsHSO4 have a peak at ~25 meV attributed to librations
of HSO4 groups. This peak is considerably spread in
phase I with a DHBN in comparison with this peak in
ordered phase II. This indicates not only the positional
disorder of H bonds but also the positional disorder of
oxygen atoms. Anomalously high anharmonism of
internal vibrations of HSO4 groups in phases with
DHBNs results in considerable spread of high-fre-
quency peaks at 53, 73, 100, and 165 meV caused by
these vibrations [46]. Considerably different lattice
modes in the phases with ordered and disordered H-
bond networks are also seen in the Raman spectra. In
particular, the low-frequency Raman spectrum of disor-
dered phase I of a CsHSO4 crystal has a characteristic
intense structureless wing of the Rayleigh line (Fig. 16)
and diffuse bands in the vicinity of 100 cm–1, which
correspond to librations of sulfate ions.

Specific characteristics of lattice dynamics of
phases with DHBNs caused by structural disorder, pro-
nounced anharmonism of atomic vibrations, and fast
proton diffusion manifest themselves in high plasticity,
low sound velocity, and strong absorption of sonic
waves in the megahertz frequency range [60–63]. Thus,
the elasticity moduli in the phases with DHBNs of
MeHAO4 crystals are lower (by a factor ranging from
1.5 to 2.0) than in phases with OHBNs, whereas sound

O4
– O4

– O4
2–
C

absorption attains values ranging within 10–30 Np cm–1.
The study of Rb3H(SeO4) crystals by the method of
Brillouin scattering showed that the phases with
DHBNs demonstrate pronounced dispersion of the
velocity of acoustic phonons with the frequency rang-
ing from 20 GHz to 20 mHz, whereas the relative sound
velocity is changed by almost a factor of three [64, 65].
This dispersion and, in particular, anomalously low
velocity of low-frequency phonons are the consequence
of strong interactions between mobile protons and
phonons (proton–phonon interactions) [61, 62, 64]. In
order to explain the observed dispersion, the interaction
of an acoustic wave with mobile charge carriers in non-
polar crystals was considered with an invocation of a
deformation potential [61]. In this case, the total defor-
mation of a crystal is determined by the elastic part
(depending on the external mechanical stress X) and the
deviation of the mobile-carrier concentration nP from a
certain mean value 

(21)

where c is the modulus of the instantaneous elasticity of
the crystal and a is the phenomenological constant.
However, the estimates showed that absorption of
sound by this mechanism, α ~ 10–3 Np/m, is less by sev-
eral orders of magnitude than absorption observed
experimentally, α ~ 103 Np/m.

Another mechanism of interaction of an elastic
wave with mobile protons is based on the well-known
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Fig. 14. Temperature dependences of protonic-relaxation
time in CsHSO4 [43]: (s) T1, (h) T2, and (n) T1p.
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Snoek effect [66]—the appearance of instantaneous
deformation under the action of uniform mechanical
stress [the first term in Eq. (21)], which lowers the crys-
tal symmetry. As a result, the multiplicity gq of structur-
ally equivalent proton positions is changed and, there-
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Fig. 15. Weighted density of phonon states G(ω) for phases I
and II of a CsHSO4 crystal at various temperatures [46]:
(a) low- and (b) high-frequency spectrum ranges.
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Fig. 16. Low-frequency Raman spectra of the type (a) Ag
and (b) Bg of a CsHSO4 crystal. Scattering geometry (a)
Y(XX)Z and (b) Y(ZX)Z.
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fore, their occupancies are also changed. The redistri-
bution of protons gives rise to some additional time-
delayed (inelastic) deformation, 

(22)

where λ is the phenomenological parameter character-
izing the interaction of the mobile-proton subsystem
with the crystal lattice. The time necessary for the
attainment of a new equilibrium proton distribution
and, thus, inelastic deformation is of the order of the
characteristic time of proton hoppings between neigh-
boring positions, τ. As was indicated above (Section 6),
phases with DHBNs have τ ranging within τ ~10–9–
10−7 s, so that the corresponding relaxation frequencies
lie in the megahertz frequency range, where one
observes the maximum sound absorption. It was shown
in [61] that this mechanism leads to good agreement
with the experimental data and allows one to describe
both temperature and frequency dependences of the
sound velocity and absorption in phases with DHBNs.

7. SUPERPROTONIC PHASE TRANSITIONS

The thermodynamic range of the stability of phases
with DHBNs is limited from the high- and low-temper-
ature sides by crystal melting and the transition to
phases with OHBNs, respectively. As has already been
indicated, in the vicinity of the temperature of transi-
tion between the phases with disordered and ordered
H-bond networks, Tsp, conductivity changes from three
to five orders of magnitude (Figs. 2 and 3). On the other
hand, in the vicinity of the melting point, Tm, the con-
ductivities of the melt and the phases with DHBNs are
of the same order of magnitude (Fig. 6), whereas the
anomalies in conductivity during crystal melting and
transitions between the phases with disordered and
ordered H-bond networks are practically the same.
With due regard for these facts and different structural
mechanisms of conductivities in these phases, the
phases with DHBNs are usually called superprotonic
phases. The corresponding term superprotonic phase
transition underlies the specific features of the struc-
tural transition between the phases with disordered and
ordered H-bond networks.

Superprotonic transitions are characterized by con-
siderable changes in the configurational entropy
(Table 5) associated with the positional disorder of
hydrogen bonds and orientational disorder of Aé4 tet-
rahedra in the phases with DHBNs. This manifests
itself in pronounced anomalies of specific heat in phase
transitions and their high heat values [67–71]. It is seen
from Table 5 that the experimental entropy in MeHAO4
and Me3H(AO4)2 crystals agrees with the configura-
tional entropy calculated by the formula

(23)

λnpX
c

-------------,

∆S R w,ln=
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Table 5.  Experimental values of heat ∆Qobs and entropy of transition ∆Qobs · ∆Qcalcd is entropy calculated by Eq. (23)

Crystal Tsp, K ∆Qexp, J mol–1 ∆Sexp, J mol–1 deg–1 ∆Sobs, J mol–1 deg–1

CsHSO4 414 4.51 × 103 11 [67] 11.52

CsHSeO4 384 4.3 × 103 16.1 [68] 11.52

Rb3H(SeO4)2 446 4.51 × 103 10.11 [71] 9.13

(NH4)3H(SO4)2 410 4.28 × 103 10.4 [69] 9.13

Cs3H(SeO4)2 446 4.32 × 103 9.4 [70] 9.13

Cs5H3 (SeO4)4 · H2O 343 1.51 × 104 44.1 [94] 49
where w is the number of possible positions of an H
bond in the unit cell of the superprotonic phase.
According to the structural data [9, 21, 22, 27], w = 4
for MeHAO4 crystals and w = 3 for Me3H(AO4)2 crys-
tals. It is characteristic that the transition entropy for
superprotonic phase transitions is comparable to the
melting entropy of these salts.

In the vicinity of the superprotonic phase transition,
the anomalies of thermal expansion [68, 72] and high-
frequency permittivity [60] show no characteristics
associated with disordering in the proton subsystem
and are similar to the anomalies observed in conven-
tional phase transitions. On the other hand, the anoma-
lies of the sound velocity and absorption in both mega-
hertz (Fig. 17) [60–62] and gigahertz [63, 64] ranges
are unusually pronounced, which is associated with the
acoustoprotonic interactions considered in Section 6.

In terms of symmetry, superprotonic transitions are
improper ferroelastic transitions (Table 1) described by
the Landau phenomenological theory of phase transi-
tions. The ferroelastic phase is that with an OHBN and
the paraelectric one is the superprotonic phase with a
DHBN. Improper ferroelastic transitions with the sym-

metry changes I41/amd  P21/c and R m  C2/c
are initiated by the irreducible representations of the
wave vectors  (X is a point of the Brillouin zone)

[73] and  (L is the point of the Brillouin zone),
respectively [74, 75]. This phenomenological theory
with the multicomponent order parameter fully
describes all the specific features of ferroelastic transi-
tions—anomalies of the physical properties, domain
structure, and orientation of domain walls [73–75].
However, in MeHAO4 and Me3H(AO4)2 crystals, where
ferroelastic transitions are simultaneously superpro-
tonic transitions accompanied by ordering or disorder-
ing of hydrogen atoms, the theory with one order
parameter cannot completely describe the structural
changes.

As analysis shows [76–79], the basic functions of
the wave-vector representations considered above
describe the change in the average occupancy of the
proton position in a superprotonic phase transitions

I41/amd  P21/c and R m  C2/c in MeHAO4 and
Me3H(AO4)2 crystals incorrectly. The functions of the

3

Gk13

Gk4

3

C

wave vectors  and  describe the filling of only
some proton sites of the position 16(f) in the tetragonal
MeHAO4 phase and the position 9(e) in the trigonal
Me3H(AO4)2 phase, because the symmetry elements of
these vectors do not act on the remaining proton sites
(the so-called gray sites). This is inessential for the
Pb3(PO4)2 ferroelectric, where the position 9(e) of the

paraelectric phase R m is not occupied [74, 75] but is
essential, in particular, for Me3H(AO4)2 crystals stuctur-
ally (but not chemically) isomorphous to Pb3(PO4)2

crystals, where the position 9(e) is occcupied by hydro-
gen atoms with the occupancy c = 1/3 [9, 27, 49].

In order to describe the change in the occupancies of
the proton positions in superprotonic phase transitions
with the change in the symmetry, I41/amd  P21/c

and R m  C2/c, a special theory was developed in
which these transitions are considered as being initiated
by irreducible representations of the symmetry groups

Gk13
Gk4

3

3
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Fig. 17. Temperature dependences of (1) velocity v l and
(2) the decay coefficient αl of a quasilongitudinal acoustic
wave with the frequency 25 MHz propagating along the z
axis in phase II of a ësDSO4 crystal.
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of two wave vectors k13 = b3/2 and k14 = 0 for MeHAO4
crystals and k4 = b3/2 and k7 = 0 for Me3H(AO4)2 crys-
tals [78, 79]. Within the framework of this theory, the
free energy can be represented in the approximation of
a molecular field as

(24)

where γ and γ1 are the parameters of the molecular field,
η and ξ are the order parameters corresponding to the
wave vectors k13 and k14 (for MeHAO4 crystals), or k4
and k7 (for Me3H(AO4)2 crystals), and Z is the statistical
sum. It is important to note that the parameter η
describes mainly the displacements of heavy atoms,
whereas the parameter ξ, the changes in the order of the
proton subsystem. Analyzing the equation of free
energy, Eq. (24), we see that, in general, the tempera-
ture dependences of the parameters η and ξ are differ-
ent. Moreover, it follows from the theory that these
parameters influence the anomalies in various proper-
ties differently. Indeed, it is seen from Fig. 18 that the
temperature dependences of the order parameter of a
(NH4)3H(SO4)2 crystal calculated from the anomalies
in permittivity and birefringence differ from the analo-
gous dependences calculated from the anomaly in pro-
tonic conductivity and integral intensity of the
120 reflection measured by the method of neutron scat-
tering [80]. In accordance with the theory, the anoma-
lies in high-frequency permittivity and birefringence
are determined by the displacements of heavy atoms
and, therefore, by the parameter ξ. On the other hand,
the temperature anomalies in the protonic conductivity
and the intensity of the 120 reflection are determined by
the temperature dependence of occupancy of the proton

F T Z γη2 γ1ξ
2,+ +ln–=

–40
0

0.2

–30 –20 –10 0 10
T – T0, K

0.4

0.6
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1.0
Ψ

1
2
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4

Fig. 18. Temperature dependences of the order parameter of
the superprotonic transition in a (NH4)3H(SO4)2 crystal cal-
culated from the data of several experiments: (1) protonic
conductivity, (2) intensity of the (120) reflection, (3) high-
frequency permittivity, (4) optical birefringence. The lines
correspond to the approximations by the power law
described by Eq. (26): the solid line corresponds to β = 0.04,
and the dashed line, to β = 0.132 [80].
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position and, as was shown in [78, 79], by two parame-
ters—η and ξ.

In some crystals, the transition to the superprotonic
paraelectric phase is preceded by the formation of an
intermediate phase existing in a narrow temperature
range. Thus, in an Rb3H(SeO4)2 crystal, the temperature
range of this phase equals ∆T ~ 2°C [71, 81, 82]. X-ray
diffraction analysis showed [82] that the symmetry of
the intermediate phase is C2/m and that its structural
characteristics differ from those of the ferroelastic
phase (symmetry C2/c) because of the arrangement of
H bonds and orientations of SeO4 groups. The existence
of such an intermediate phase in a narrow temperature
range (∆T ~ 3°C) in a CsDSO4 crystal was established
from the Raman spectroscopy data and the specific fea-
tures of the domain structure at T > Tsp – 3 ä [83]. The
theory of phase transitions with two interacting param-
eters considered above allows one to explain the exist-
ence of two successive genetically related transitions.
With an increase in temperature, the ferroelastic transi-
tion with respect to the parameter η takes place, and
then, at a higher temperature, the superprotonic transi-
tion with respect to the parameter ξ takes place. It
should be emphasized that the existence of an interme-
diate phase in MeHAO4 crystals is also predicted by the
phenomenological theory of the I41/amd  P21/c
transition based on the assumption of the existence of a
hypothetical parent cubic phase with the symmetry
Fd3m [84, 85].

In accordance with the theory developed in [78, 79],
the occupancy c of the proton positions, which is a
function of the order parameters η and ξ, varies with
temperature, so that, upon cooling a crystal below Tsp,
some conventional proton sites become interstitials.
Therefore, in terms of physics, thermally activated hop-
pings of protons from the remaining proton sites to the
positions that became interstitial positions below the
temperature Tsp indicate the formation of a proton
defect with the thermodynamic activation potential Φd

(see Eq. (6)). Therefore, Φd is also a function of the
parameters η and ξ and goes to zero at T ≥ Tsp. Thus, the
parameters A, Φd, and Hd in the expression for conduc-
tivity, Eq. (11), are functions of the order parameters,
whereas the temperature dependences of conductivity,
both above and below Tsp, can be described by one
equation,

(25)

Taking into account that the dependence of σ on A0 is
weaker than on Φd, the difference in the parameter A0
above and below Tsp can be ignored. Equation (25) can
be rewritten in the form convenient for the analysis of

σ f n T,( )
A0 n γ ξ, ,( )

T
--------------------------=

×
Φm n( ) 1/2Φd n η ξ, ,( )+

kBT
----------------------------------------------------------– 

  .exp
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the experimental curves of conductivity 

(26)

where σsp(n, T) is the conductivity of the paraelastic
superprotonic phase.

The general behavior of the anomalies in protonic
conductivity in the vicinity of phase transitions
described by Eq. (26) are confirmed experimentally
[9, 80, 86]. In particular, for second-order phase transi-
tions, the temperature curves of the thermodynamic
potential of activation of proton defects calculated by
Eq. (26) are rather universal and can be approximated
by the power law

(27)

where β is the critical index of the order parameter. The
fulfillment of this law is illustrated by the superprotonic
transition in (NH4)3H(SO4)2 (Fig. 19). It is seen that the
Φd values calculated from the conductivity data along
two crystallographic directions coincide and that the
Φd(T) curves are approximated well by law (27) over a
broad temperature range. It should also be noted that
the value β = 0.13 obtained from the conductivity data
agrees with the value of the critical index calculated
from the intensity of the 120 reflection (Fig. 18).

It is well known that the specific heat measured
experimentally consists of the specific heat of an ideal
ordered crystal and the “excessive” specific heat asso-
ciated with its disordering. Therefore, in the vicinity of
the superprotonic phase transition, the anomalies in
conductivity and excessive specific heat ∆Cp should be
related. It was shown experimentally that this relation
for the superprotonic transition in a Cs3H(SeO4)2 crys-
tal can be written in the form

(28)

This formula was confirmed theoretically in
[87, 88]. The phenomenological constant γ in Eq. (28)
does not depend on temperature.

The study of ferroelastic properties of superprotonic
MeHAO4 [83, 87, 89, 90] and Me3H(AO4)2 [91] crystals
show that their symmetry-dependent properties, such as
domain structure and tensor of spontaneous deforma-
tion, are the same as for conventional ferroelastic crys-
tals symmetrically isomorphous to the crystals under
consideration. However, as was shown in the previous
sections, the properties of paraelastic superprotonic
phases, such as protonic conductivity, specific heat,
sound velocity, and plasticity, which are determined by
the disordered proton subsystem, are substantially dif-
ferent from the analogous properties of conventional
ferroelastics. The characteristic feature of superpro-
tonic ferroelastic crystals is also the slow kinetics of
transition and the long-term relaxation. In conventional

σ n T,( ) σsp n T,( )
Φd n η T( ) ξ T( ), ,( )

2kBT
---------------------------------------------– 

  ,exp≅

Φd Tsp T–( )2β,∝

∂ σln
∂T

------------ γ
∆Cp

kBTsp

------------- const.+=
C

ferroelastic crystals, thermodynamic equilibrium is
attained in a time comparable with the decay time of
phonons (10–13 s), whereas in superprotonic crystals,
the time of the attainment of the thermodynamic equi-
librium is determined by the time of the attainment of
the equilibrium proton distribution,

(29)

where τ0 is the quantity having the order of the period
of proton vibrations in a potential well, τ0 ~ 10–13–
10−14 s. For typical Φm values ranging within 0.23–
0.3 eV (Table 1), the characteristic relaxation time τ of
the proton system estimated using Eq. (29) is of the
order of 10–9–10–10 s.

One more specific feature of crystals with DHBNs
is the occurrence of the phase transitions in the surface
layers revealed in MeHSO4 crystals [92, 93] at the tem-
peratures Ts1 which are lower (by about 20°C) than the
temperature Tsp of volume superprotonic transitions in
CsHSO4 and CsDSO4 or the melting point, Tm, in
RbHSO4 and NH4HSO4. These transitions manifest
themselves in an anomalous increase in surface con-
ductivity (Fig. 20) [92] and the change in the structure
of the surface layer [93]. The known experimental data

τ τ 0

Φm

kT
------- 

  ,exp=
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Fig. 19. Temperature dependences of the thermodynamic
potential of activation of proton defects (dots) calculated
from the experimental temperature dependences of (°) σa
and (×) σb of a (NH4)3H(SO4)2 crystal shown in Fig. 3. The
solid line indicates the approximation by the power law
described by Eq. (26) at β = 0.132 [80].
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003



CRYSTALS WITH DISORDERED HYDROGEN-BOND NETWORKS 1029
1

2

3

2.5 2.6 2.7
103/T, K–1

–14

–13

–12

–11

–10

–9

–8

ln(GsT) [Ω–1 K]
ln(σvT) [Ω–1 cm–1 K]

1
2
3

Fig. 20. Temperature dependences of (1, 2) surface, Gs, and
(3) volume, σv, conductivities in the vicinity of the temper-
ature of surface phase transition in a CsDSO4 crystal. Mea-
surements were made on the samples x-cut in an atmosphere
of dry argon at a frequency of 0.1 Hz: (1) for a sample kept
in an atmosphere of dry air before measurements and (2) for
the same sample kept for 24 h in an atmosphere of humid
air [92].
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Fig. 21. Temperature dependences of conductivity of
Cs5H3(SeO4)4 · xH2O crystals in (1) the first and (2) sixth
heating–cooling cycles [94].
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indicate that these transitions are reversible and are not
related to the moisture adsorbed on the sample surface.
The triple-crystal X-ray diffractometry data for
CsDSO4 crystals at T > Ts1 show the appearance of an
additional diffraction maximum coinciding with the
112 Bragg reflection of the superprotonic tetragonal
phase [93]. The thickness of the effective layer in which
the surface transition takes place was estimated to range
within 10 to 20 nm.

8. CHARACTERISTICS OF SUPERPROTONIC 
PHASE TRANSITIONS IN HYDRATE PHASES 

OF CRYSTALS WITH DISORDERED 
HYDROGEN-BOND NETWORKS

We have already indicated that, in the hydrate
phases of superprotonic crystals, proton conductivity is
provided by acid protons. However, the water of crys-
tallization produces a strong effect on superprotonic
phase transitions [35, 37, 94–98]. Figure 21 illustrates
the evolution of a superprotonic phase transition in a
Cs5H3(SeO4)4 · xH2O crystal during successive heat-
ing–cooling cycles. The crystals grown have ordered
phases with the stoichiometric water content (x = 1).
During first heating, one observes an anomaly in con-
ductivity characteristic of superprotonic transitions;
however, during cooling, this anomaly considerably
decreases and, after several successive cooling–heating
cycles, is almost completely suppressed. In another
crystal, K9H7(SO4)8 · xH2O, no anomalies in the super-
protonic transition are observed after the first cooling
from the superprotonic phase (Fig. 22a). A similar tem-
perature behavior is also observed for the anomalies in
permittivity and specific heat (Figs. 22b and 22c),
which allows one to draw the conclusion about the sup-
pression of the superprotonic transition during thermal
cycles [37, 94, 95, 97]. The thermogravimetric [37, 94]
and IR spectroscopy [37] data indicate that the super-
protonic transitions in these crystals are accompanied
by the partial or complete loss of water of crystalliza-
tion. Thus, stabilization of the superprotonic phases
with DHBNs in Cs5H3(SeO4)4 · xH2O and K9H7(SO4)8 ·
xH2O crystals is associated with their dehydration [37,
94–97].

At temperatures below Tsp, the supercooled dehy-
drated superprotonic phases of these crystals become
metastable. In humid atmosphere, the hydration pro-
cess takes place. This is accompanied by the structural
transition to the ordered phase. During hydration, the
crystal is in the mixed state, in which the dehydrated
phase with a DHBN and the ordered hydrated phase
coexist [95, 97]. It is important that the dehydration and
hydration processes do not change the state of the sam-
ples—they remain single crystals. Visually, the occur-
ring processes are revealed from sample turbidity
(dehydration) and clearing (hydration) [37, 95, 97].

Unlike Cs5H3(SeO4)4 · xH2O and K9H7(SO4)8 · xH2O,
the Cs5H3(SO4)4 · xH2O crystals are crystallized with
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the nonstoichiometric amount of water of crystalliza-
tion (x ~ 0.5). One can assume that, because of this, the
Cs5H3(SO4)4 · xH2O crystals at room and lower temper-
atures are in the phase with a DHBN [36]. According to
X-ray diffraction data [23], this phase is hexagonal
(P63/mmc) and is structurally isomorphous to the
superprotonic hexagonal phase Cs5H3(SeO4)4 · xH2O
partly dehydrated at temperatures above Tsp [23, 24, 35,
36]. The X-ray and neutron diffraction data [99, 100]
show that the symmetry of Cs5H3(SO4)4 · xH2O crystals
remains unchanged in the temperature range from 414
to 4 K. It should be noted that, according to [100], the
diffraction patterns of partially deuterated crystals at
í ~ 20 K show some additional weak maxima that vio-
late the above symmetry. Thus, from a rather long list
of superprotonic crystals (Table 1), only Cs5H3(SO4)4 ·
xH2O crystals crystallize in disordered superprotonic
phases preserved up to the liquid-helium temperature.
It should also be noted that protonic conductivity of
thermally activated Cs5H3(SO4)4 · xH2O phase at low
temperatures is rather low. Therefore, in this case, the
term “superprotonic” reflects only the specific feature
of proton disordering and the structural mechanism of
protonic conductivity but not the absolute value of this
conductivity.

Upon cooling of Cs5H3(SO4)4 · xH2O crystals below
Tg  = 260 K, the dynamics of hydrogen bonds and ori-
entations of SO4 groups is considerably changed, which
is characteristic of the transition to the phase of pro-
tonic (orientational) glass [36, 101–108]. Thus, the
Raman spectra at T < Tg, indicate the occurrence of pro-
nounced Rayleigh scattering, which is characteristic of
molecular scattering associated with the orientational
fluctuations of molecular groups [103]. The evolution
of the parameters of the spectral lines of Raman scatter-
ing [103] and EPR lines [105] with temperature indi-
cates the changes in the orientational disorder of SO4
groups and water molecules (from dynamical to static)
upon cooling below Tg. Another bright example is the
transition to the glass phase, which manifests itself in
the dielectric dispersion in the range from very low to
gigahertz frequencies [36, 65, 101]. The pronounced
anisotropy of this dispersion reflects the two-dimen-
sional disorder in the H-bond network. It is seen from
Fig. 23 that, like in polymer materials, one can single
out two relaxation processes, α and β, in Cs5H3(SO4)4 ·
xH2O crystals with considerably different relaxation
characteristics. The low-frequency α relaxation is
determined by the frequency-dependent complex con-
ductivity σ*(ω),

(29)

where B is the temperature-independent parameter. The
exponent δ shows the temperature behavior character-

εα* ω( ) εα' ω( ) iεα'' ω( )+=

=  
4πσ* ω( )

ω
----------------------- B iω( ) δ T( )– ,=
C

istic of the transition from the ergodic to nonergodic
state and decreases from 1 to 0 with a decrease in tem-
perature from T ~ Tg + 10 to T ~ Tg – 30 K [101, 107].
The high-temperature β relaxation is described as

(30)

where  and  are the low- and high-frequency lim-
its of dielectric constant, respectively. The function of
the activation-energy distribution f(E) is described by
the Gauss law with the most probable relaxation time

, whose temperature dependence is described by the
Arrhenius law with the most probable activation energy

 = 0.20 eV [101].

The transition to the glass phase can also be estab-
lished from the pronounced anomalies of the velocity
and absorption of longitudinal sonic waves in the range
of megahertz frequencies (Fig. 24) [65, 105, 107].
However, the temperature anomalies of hypersonic lon-
gitudinal phonons in the vicinity of Tg are insignificant

σβ* εβ∞
= εβ0
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Fig. 22. Temperature dependences of (a) conductivity and
(b) permittivity measured at a frequency of 1 MHz and (c)
specific heat for a K9H7(SO4)4 · xH2O crystals in the first
heating–cooling cycle [37, 95, 96].
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003



CRYSTALS WITH DISORDERED HYDROGEN-BOND NETWORKS 1031
[102, 108]. This is the consequence of the strong fre-
quency dispersion of acoustic phonons in the transition
to the glass phase. The study of the dispersion of trans-
verse acoustic phonons along the [001] direction by the
method of inelastic neutron scattering [109] also indi-
cates the change in the phonon frequency in the glass
region. The anomalies characteristic of the glass pro-
cess were also observed in measurements of the spe-
cific heat by the method of dynamic calorimetry
[104, 105].

It should be noted that the parameters of the β relax-
ation, , , and f(E), for Cs5H3(SO4)4 · xH2O crystalsτβ Eβ
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Fig. 23. Frequency dependences of the imaginary part of the
dielectric constant ε'' in a Cs5H3(SeO4)4 · xH2O crystal
measured at different temperatures in the vicinity of Tg.
Dashed and solid lines correspond to the approximation of
the experimental points by Eqs. (29) and (30), respectively
[101].
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Fig. 24. Temperature dependences of absorption of longitu-
dinal sonic waves (at the frequency 10 MHz) in a
Cs5H3(SO4)4 · xH2O crystal along (1) [001] and (2) [100]
directions [107].
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determined from the dielectric and acoustic measure-
ments agree quite well quantitatively [105, 107]. This
indicates the common nature of the dipole and elastic
relaxation in the transition from the ergodic to
nonergodic state. It may be assumed that the structural
relaxation is associated with the structural “arrest” of
the correlations of the ordered phase. Similar to
Cs5H3(SeO4)4 · xH2O crystals, the latter phase can have
the orthorhombic symmetry. In this connection, we
would like to note an unusual size effect observed in the
transition of Cs5H3(SeO4)4 · xH2O to the phase of pro-
tonic glass. According to the X-ray diffraction data, the
structural changes in macrocrystals and powders
observed during the vitrification process are consider-
ably different [99]. After the first cycle of cooling of the
Cs5H3(SO4)4 · xH2O powder at T ~ 220 K < Tg, a mixed
phase (consisting of the initial hexagonal phase and a
new orthorhombic one) is formed. The following cool-
ing–heating cycles in the temperature range 20–300 K
result in an increase in the volume of the orthorhombic
phase and a decrease in the volume of the hexagonal
one. After approximately the seventh cycle, instead of
the transition to the glass phase, a well developed struc-
tural transition from the hexagonal to orthorhombic
phase is observed at the temperature T ≈ Tg. Obviously,
the different temperature behavior of the powder and
the single crystal confirms the hypothesis about the
structural arrest of the correlations of the orthorhombic
phase in the vicinity of the glass temperature Tg. If the
characteristic dimensions of the correlations of the
ordered phase become comparable with the grain sizes
~10–4 cm prior to their structural arrest with a decrease
in temperature, then the diffraction patterns should
have reflections from the ordered phase. The formation
of such ordered macroregions allows one to explain the
strong Rayleigh scattering in a Cs5H3(SO4)4 · xH2O sin-
gle crystal arising at T < Tg [103]. However, the esti-
mates of the dimensions of optically inhomogeneous
regions based on the Rayleigh scattering data yield val-
ues (10–7–10–5 cm) lower than the values that could be
expected from the data of powder X-ray diffraction
[99].

It should be emphasized that freezing of the posi-
tional proton disorder and orientational disorder of SO4
groups in the transition to the glass phase do not lead to
infinitely high enthalpy of conductivity activation Ha or
a decrease in the protonic conductivity to zero values.
In the glass phase, Ha has a certain intermediate value
between the Ha values in the disordered and hypotheti-
cal ordered phases.

9. EFFECT OF HYDROSTATIC PRESSURE 
ON SUPERPROTONIC PHASE TRANSITIONS 

AND THERMODYNAMIC STABILITY 
OF SUPERPROTONIC PHASES

We have already noted that the phases with DHBNs
are characterized by high configurational and vibra-
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tional entropies and, therefore, their formation always
precedes crystal melting. It is characteristic that the
heat and entropy of superprotonic phase transitions for
many crystals are comparable with the values of these
parameters during melting. The stability range of the
phases with DHBNs is limited by the temperature Tsp of
the superprotonic transition to the ferroelastic phase
with an OHBN. The study of the pT phase diagrams of
superprotonic crystals [110–120] allows one to draw
the conclusion that the hydrostatic pressure increases
the temperature range of stability of the phase with a
DHBN. This is associated mainly with a sharper
increase in melting point Tm (in comparison with Tsp)
with an increase in pressure (∂Tm/∂p ~ 150 K/GPa).
Depending on the structural characteristics of the crys-
tal, the temperatures of superprotonic phase transitions
can either increase or decrease with an increase in pres-
sure. In particular, for MeHAO4 crystals, the ∂Tsp/∂p
values vary over a wide range from –40 to 70 K/GPa
[110–113]. At higher pressures, new superprotonic
phases are formed in these crystals (Fig. 25). In [114],
the unit-cell parameters of high-pressure CsHSO4
phases were determined by the neutron diffraction
method and their possible symmetry groups were ana-
lyzed.

For Me3H(AO4)2 crystals at p ≤ 1 GPa, the ∂Tsp/∂p
values are negative and range within –40 to –60 K/GPa
for different compositions [115–118]. However, at
pressures p ≥ 1 GPa, a new ordered phase is formed and
the ∂Tsp/∂p value becomes positive. It should be noted
that it is at pressures close to 1 GPa that new ordered
high-density phases are formed also in MeHAO4
(phase IV in Fig. 25) [110–113] and CsH2PO4 [119]
crystals. Therefore, an increase in ∂Tsp/∂p at p ≥ 1 GPa
is characteristic of all these crystals. The study of the
lattice dynamics of high-pressure phases of CsHSO4 by
the method of inelastic neutron scattering showed that,
with an increase in pressure, the anharmonicity of
vibrations in these phases decreases and, in phase V
existing at the pressure p > 1.7 GPa (Fig. 25), the lattice
becomes harmonic [114].

It is also necessary to pay attention to the topologi-
cal similarity of the pT phase diagrams for each group
of crystals. Thus, MeHAO4 crystals obey the so-called
principle of chemical pressure: a decrease in the radius
of a metal cation or an increase in the size of a complex
Aé4 anion are equivalent to an increase in hydrostatic
pressure. This manifests itself in the possibility of
inducing superprotonic phases by applying hydrostatic
pressure to crystals having no such phases under atmo-
spheric pressure (Fig. 6) [111, 112]. In particular, it is
seen from Fig. 6 that the anomalies in conductivity
observed during melting and superprotonic phase tran-
sitions are similar both qualitatively and quantitatively.
This fact is an additional argument for singling out
superprotonic transitions into an individual class of
phase transitions.
C

10. EFFECT OF CATIONIC AND ANIONIC 
SUBSTITUTION ON SUPERPROTONIC PHASE 

TRANSITIONS AND PROTONIC CONDUCTIVITY

Substitution of cations having close ionic radii, K+–
Rb+ and Rb+–(NH4)+, results in the change of both the
number of phases formed and their symmetry [121–
125]. Thus, the symmetries of the superprotonic phases
(initial compositions) in the mixed
[(NH4)1 − xRbx]H(SO4)2 crystals are different: phase I in
[(NH)4]3H(SO4)2 is trigonal and phase I' in Rb3H(SO4)2

is cubic (Fig. 26). The replacement of a spherical Rb+

cation by a steric complex  ion results in a
decrease in the temperature of transition to phase I and
an increase in the temperature of transition to phase I'.
For the compositions where 0.6 ≤ x ≤ 0.95, both super-
protonic phases, I and I', coexist. In
[(NH4)1 − xRbx]3H(SeO4)2 crystals, where the superpro-
tonic phases with the initial compositions are structur-
ally isomorphous, an increase in the ammonium con-
centration also decreases the temperature of transition
to the superprotonic phase [81].

If the radii of the substituted cations are consider-
ably different, the mixed crystals form phases with the
structures considerably different from the structures
with the initial compositions. Thus, the chemical com-
position of a Cs1.5Li1.5H(SO4)2 crystal [125] allows one
to relate it to Me3H(AO4)2 solid solutions with the trig-
onal superprotonic phase and a two-dimensional
DHBN, whereas a Cs1.5Li1.5H(SO4)2 crystal (similar to
its deuterated analog) in the phase having the cubic

symmetry (sp. gr. I 3d) undergoes no phase transitions
up to the temperature of its decomposition at about

NH4
+

4

120

160

200

80

40

0 0.4 0.8 1.2 1.4 p, GPa

T, °C

I

VII

VI

IV

V
IIIIII

II

Fig. 25. Phase pT diagram for a CsHSO4 crystal. Disordered
(superprotonic) phases I, VI, and VII. Ordered phases II, III,
IV, and V with low conductivity [110].
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470 K. In this structure, hydrogen atoms occupy the
position 48(e) with the occupancy 1/6 [125], so that the
H bonds formed in this position are disordered. How-
ever, a high enthalpy of conductivity activation, Ha =
1.01 eV, is characteristic not of the superprotonic but of
the ordered phases with intrinsic protonic conductivity
(Table 2.) This experimental fact can be explained by
weak H bonds (R(O···O) ~ 3.3 Å) formed in the position
48(e) in Cs1.5Li1.5H(SO4)2 and, therefore, also by a high
potential barrier Eintra between the two proton positions
on this bond. In this case, Eintra ≥ 1 eV, in accordance
with the model of proton transport (Fig. 10) discussed
in Section 4. Another explanation of the high enthalpy
of activation is the existence of one-dimensional –H–
SO4–H chains oriented along the body diagonals of the
cube and also the absence of three-dimensional path-
ways of proton migration. In the CsHSO4–CsH2PO4

system, new mixed crystals were synthesized, α-
Cs3(HSO4)2H2(PO)4 [126] and β-Cs3(HSO4)2(Hx(P,S)O4

[127], which possess the phases with superprotonic
conductivity. The thermodynamic parameters of the
superprotonic transitions in these crystals only slightly
differ from the corresponding parameters of the transi-
tions in the crystals with the initial compositions. How-
ever, conductivity in the ordered phase
β-Cs3(HSO4)2Hx(P,S)O4 is much higher than in the
CsHSO4 and CsH2PO4 crystals.

The effect of cationic substitution on the transport
characteristics of protons was studied in

0 0.2

450

400

0.4 0.6 0.8 1.0
x

500

550
T, K

melt

I

II

I'

Fig. 26. Phase xT diagram of mixed
[(NH4)1 − xRbx]3H(SO4)4 crystals [127]. I and I' are super-
protonic phases with DHBNs; II is a low-conductive phase
with OHBN.
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[(NH4)1 − xRbx]3H(SO4)2 mixed crystals [128]. The
measurements were made along the [001] direction
normal to the plane of the disordered H-bond network
of the trigonal phase. With an increase in x from 0 to
0.6, the activation enthalpy Ha increases nonlinearly
from 0.43 to 0.6 eV. Taking into account that, in this
case, the ionic radii are practically equal, the consider-
able change in Ha after the (NH4)+  Rb+ substitution
can be explained by the steric characteristics of ammo-
nium ions and the formation of weak N–H···O bonds.
Obviously, in this case, the libration vibrations of
(NH4)+ ions affect the dynamics of (HSO4)− groups and,
thus, the transport characteristics of acid protons.

11. ISOTOPIC EFFECTS IN H–D 
SUBSTITUTIONS

As is well known [2, 3], the isotopic H  D sub-
stitution in the phase transitions induced by proton
ordering–disordering in a two-minimum potential of a
hydrogen bond results in an increase of the tempera-
tures of these transitions by more than 100°C. However,
for transitions between the phases with disordered and
ordered H bonds, this effect has the negative value; i.e.,
the temperature Tsp decreases during deuteration
[13, 14, 19, 125]. Quantitatively, this decrease is much
less than in the first case and does not exceed 3 to 4°C
irrespectively of the structural characteristics and
chemical compositions of the crystals. Thus, different
mechanisms of phase transitions occurring with the
ordering–disordering processes in a two-minimum
potential of a hydrogen bond and the transitions with
ordering–disordering of an H-bond network manifest
themselves in quite different isotopic effects with
respect to the phase-transition temperatures. At present,
there is no reliable theoretical interpretation of the neg-
ative isotopic effect with respect to the temperatures of
superprotonic phase transitions. One can only assume
that this effect is associated with the change of the inter-
action constants responsible for the superprotonic transi-
tions because of an increase in the hydrogen-bond length
during deuteration (geometric isotopic effect) [28].

An increase in the bond length in the H  D sub-
stitution correlates with the isotopic effect with respect to
conductivity (Fig. 9). The results obtained in [13, 14, 19,
125] indicate that in such a substitution, the parameter A in
Eq. (11) decreases and the parameter Ha increases in
both phases with OHBNs and those with DHBNs. It is
characteristic that, in all the crystals studied, the AH/AD

ratio ranges from 1.3 to 1.5. The same result was also
observed with the use of the structural model of protonic
conductivity considered in Sections 2 and 3. It follows
from Eqs. (9) and (12), relating the parameter A to the
microscopic parameters of the crystal, that

(31)
AH

AD

-------
ν0

H

ν0
D

------
mD

mH

------- 1.44,≈ ≈ ≈
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where mD and mH are the proton and deuteron masses,
respectively. Thus, the change of the prefactor A during
deuteration is associated mainly with the change of the
mobile-ion mass. A slight increase in Ha (from 0.01
to 0.05 eV) in the H  D substitution can be
explained by the geometric isotopic effect mentioned
above, which results in an increase of the potential bar-
rier Eintra.

12. PRACTICAL APPLICATIONS 
OF SUPERPROTONIC CRYSTALS 

AND SYNTHESIS OF NEW PROTONIC SOLID 
ELECTROLYTES

Superprotonic crystals are not only important for
fundamental science, they are also of interest for vari-
ous practical applications. Because of a high purely
protonic conductivity (the transport number of proton is
tp ≅  10.0) in the temperature range from 100 to 220°C,
they are also promising solid electrolytes for proton-
exchange membranes [15–17]. In particular, this tem-
perature range is the most advantageous, both econom-
ically and energetically, for fuel cells. The first experi-
ence in the use of CsHSO4 crystals as membranes of a
fuel cell showed that, along with very high electro-
chemical parameters (open-circuit voltage 1.1 V and
short-circuit current density 44 mA/cm2), these ele-
ments are also stable to the action of atmospheric mois-
ture [15]. However, a more detailed study of their ther-
mal stability during long-term exploitation in various
electrochemical devices is still an important problem.

The synthesis of new protonic solid electrolytes
based on known superprotonic crystals is another prac-
tically important task. In particular, it is expedient to
create nanocomposites based on superprotonic salts
which would possess high protonic conductivity [129–
131]. This would allow one not only to improve the
technological characteristics of protonic electrolytes
but also to modify the transport characteristics of pro-
tons [131].

Another interesting aspect is creation of new oxide-
based protonic electrolytes with crystal structures sym-
metrically isomorphous to the structures of superpro-
tonic salts. Under certain crystallochemical conditions,
incorporation of hydrogen into these oxides would
result in filling of the crystallochemical positions char-
acteristic of stoichiometric hydrogen in the structure of
a symmetrically isomorphous salt. Thus, one can also
expect that the transport characteristics of protons in
these chemically different materials would be similar.
Thus, lead orthophosphate Pb3(PO4)2 undergoes the fer-

roelastic phase transition (C2/c  R m), which is
symmetry-isomorphous to the superprotonic transi-
tions observed in the Me3H(AO4)2 crystals. However,
the position 9(e) of the trigonal phase with the occu-
pancy 1/3 in the Me3H(AO4)2 crystals is not occupied in
Pb3(PO4)2 crystals [74, 75].

3

C

The crystallochemical analysis shows that, in a
hydrogen-doped Pb3(PO4)2 crystal, the 9(e) position is
energetically favorable for the formation of an H bond.
Indeed, the first studies of a hydrogen-doped Pb3(PO4)2

crystal showed that protonic conductivity of its pro-
tonic phase is as anisotropic as protonic conductivity in
the trigonal phases with DHBNs of Me3H(AO4)2 crys-
tals [132]. Moreover, the activation enthalpies in the
disordered (001) planes of H bonds in lead orthophos-
phate and Me3H(AO4)2 crystals have the same values
ranging within Ha = 0.24 ± 0.1 eV (Table 1). These facts
confirm the common nature of the structural mecha-
nisms of proton conductivity in lead orthophosphate
and the structurally isomorphous superprotonic salts.
At temperatures below 200°C, the lower conductivity
of lead orthophosphate in comparison with the conduc-
tivity of the isostructural salts is explained by a lower
proton concentration in lead orthophosphate. However,
this fact favors various practical applications of lead
orthophosphate because of its high chemical and ther-
mal stability up to temperatures of about 500°C, at
which its conductivity in the (001) plane is as high as
10–3 Ω–1 cm–1.

CONCLUSIONS

The reviewed material shows the obvious progress
in understanding the nature and structural mechanisms
of protonic conductivity. It should be emphasized that
some of the above results are also applicable to a larger
class of crystalline and amorphous objects. The study
of crystals with DHBNs allows one to better understand
the nature of hydrogen bonding and to deepen the
knowledge of proton diffusion in hydrogen-containing
materials. One can expect that, under certain condi-
tions, e.g., under high hydrostatic pressures, protons in
phases with DHBNs would also manifest some quan-
tum mechanical properties and, in particular, tunnel dif-
fusion.

It is also important to emphasize that delocalization
of hydrogen bonds and superprotonic conductivity in
acid salts cannot be explained by the presence of
defects in these crystals, because these are the proper-
ties inherent in ideal crystal structures. Moreover, the
structural phase transitions between the phases with
disordered and ordered hydrogen-bond networks obey
the symmetry relationships. Therefore, these crystals
can be considered as model objects for the study of ele-
mentary processes of proton transfer and the main char-
acteristics of proton conductivity in hydrogen-contain-
ing materials. As was shown above, the results of such
studies would help in the search for new protonic elec-
trolytes with desirable characteristics.
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Abstract—It is shown that “switching-on” of absorption in a continuum of the directions of propagation of
ordinary electromagnetic waves in transparent triclinic crystals results in the “survival” of only a discrete num-
ber of these directions. The relationships for the angular coordinates of these directions are obtained in terms
of the components of a complex permittivity tensor. © 2003 MAIK “Nauka/Interperiodica”.
It is well known that, in general, the directions of the
phase and group velocities of an electromagnetic or
acoustic wave in anisotropic media do not coincide.
However, for some particular directions of wave propa-
gation, these directions coincide. According to the def-
inition given in [1, 2], these waves should be ordinary
waves. The optical properties of a crystal are deter-
mined by permittivity tensor e, whereas its acoustic
properties, by the tensor of elastic moduli, c. In the
absence of energy dissipation, both tensors are real. In
the general case of a triclinic crystal, tensor c is invari-
ant only with respect to the center of inversion, and
ordinary acoustic waves propagate only along some
particular discrete directions. As follows from [3], there
are at least three such directions. In optics, the situation
is different in principle: tensor e for transparent triclinic
crystals is characterized by orthorhombic symmetry
1063-7745/03/4806- $24.00 © 21038
and is invariant with respect to reflection in three mutu-
ally orthogonal planes. As was proven in [4], ordinary
electromagnetic waves in these crystals can propagate
only in the symmetry planes of tensor e. These waves
exist only in those planes of the continuum of propaga-
tion directions which correspond to circular sections of
the refractive-index surface (Fig. 1a). Then, a question
may arise as to what can happen to the continuum of
ordinary waves during “switching-on” of absorption
when the tensor e acquires a small imaginary part ie'.
We consider here the general case, where all the three
eigenvalues of tensor e are different and a crystal is tri-
clinic and optically biaxial. Hereafter, we use the crys-
tallophysical coordinate system in which tensor e is
diagonal. Then, the three planes in which the coordi-
nate axes lie turn out to be symmetry planes of the ten-
sor e but not of the tensor e'. In the general case, all the
z

x

y
y

x

z

ϕ1
ϕ2 – ϕ1

∆θ1

∆θ2

ϕ0

(a) (b)

ε2

ε1

ε1 ε3

ε3
ε2

ε3

ε3

Fig. 1. Directions of propagation of ordinary waves in triclinic crystals. (a) Transparent crystals. Fragments of the sections of the
refractive-index surface by symmetry planes. Solid lines indicate the circular sections corresponding to the continuum of directions
of ordinary-wave propagation. An arrow indicates the direction of the optic axis at ε1 < ε2 < ε3. (b) Absorptive crystals. Two isolated
directions of propagation of ordinary waves in the vicinity of the xy plane at nonzero value of ε13 and ε23 ≠ 0.
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components of the tensor e' in the chosen coordinate
system have nonzero values. As a result, the complex
permittivity tensor e + ie' becomes invariant only with
respect to the center of inversion. The continuum of the
directions of propagation ordinary wave of in a triclinic
crystal breaks, and only discrete directions “survive.”
Our goal is to reveal and describe these discrete direc-
tions.

In transparent crystals, the dependence of the refrac-
tive index n of electromagnetic waves on the direction
of their propagation m (m2 = 1) can be described by the
following equation [1]:

(1)

Here,  and e are interdependent tensors. The phase
velocity of an electromagnetic wave is parallel to the
vector m, whereas the direction of the group velocity is
parallel to the surface normal, n(m). At the extremum
points of this surface, the group velocity is parallel to
the phase velocity, which determines ordinary waves.
Using the spherical angular coordinates θ and ϕ, which
set the direction of m, one can readily show that, irre-
spectively of the propagation direction in the xy plane
(θ = π/2 and 0 ≤ ϕ < 2π), we obtain for ordinary waves
(Fig. 1a)

(2)

n
4m εm n

2
Sp e m– em⋅( )– det e+⋅ 0.=

e

n ε3, ∂n/∂θ ∂n/∂ϕ 0.= = =
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Now, consider how this continuum of propagation
directions of ordinary waves changes under the action
of a certain perturbation, i.e., upon the substitution
ε  ε + iε' and n  n + in' in Eq. (1) (here, n' is the
absorption coefficient). Perturbation changes the n
value. This change in the vicinity of the xy plane is a
function of angles θ = π/2 + ∆θ and ϕ, i.e., ∆n(θ, ϕ).
A rather cumbersome procedure of the search for
extrema of this function allows one to express the angu-
lar coordinates of the extreme directions in terms of the
components of the complex permittivity tensor. In the
vicinity of the xy plane, there exist two extreme direc-
tions with the angular coordinates (∆θ1, ϕ1) and (∆θ2,
ϕ2) (Fig. 1b). The coordinates ϕ1, 2 are given by the fol-
lowing expressions

(3)

Here, the following notation was used:

(4)

(5)

Then, we obtain for the coordinates

ϕ1
1
2
--- ϕ+ ϕ––( ), ϕ2

π
2
---

1
2
--- ϕ+ ϕ–+( ),+= =

ϕ+
b
a+
-----, ϕ–arctan

c
a–
-----.arctan= =

a± ε13'( )
2
A1 ε23'( )

2
A2,±=

b ε13' ε23' B, c ε13' ε23' C;= =

A1 ε2d23, A2 ε1d31, B ε1d23 ε2d13,+= = =

C ε3d12, dij εi ε j.–= =
(6)∆θ1 2,
ε1ε2

ε3
--------- 

  a12 ϕ1 2,cos b12 ϕ1 2,sin+( ) ϕ1 2,cos
2

a21 ϕ1 2,sin b21 ϕ1 2,cos+( ) ϕ1 2,sin
2

+
A1A2 B C 2ϕ1 2,cos–( )

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
Above, we used the notation

(7)

(8)

Upon the subscript change 1  2 in the components
, εi , and dij , the following correspondence of the

coefficients in Eq. (6) exists: a12  a21 and b12 
b21. It follows from Eqs. (3)– (8) that the transformation
of the continuum described here takes place if at least

one of the two perturbation parameters,  or , has
a nonzero value. The angle between the extreme direc-
tions considered above, ϕ2 – ϕ1 = ϕ– + π/2, is right if

 = 0 or  = 0 (where ϕ– = ϕ+ = 0). In the particular
case ϕ– = −π/2 (where c/a–  –∞), degeneracy takes
place, ϕ+ = ϕ–. One can readily see that, in this case, the
circumference under the action of perturbation simply

a12 ε13' 2ε11' ε3 ε33' ε1–( )d23
2

2ε12' ε23' d23ε1ε3,+=

b12 ε23' 2 ε11' d32ε3 ε22' d13ε1+( )ε3[=

+ ε33' 2d21ε2 d13d32+( )ε1 ] 2ε12' ε13' d32ε3 2ε3 ε1–( ).+

     
εij'

ε13' ε23'

ε13' ε23'
3

changes its radius, whereas the continuum of particular
directions remains unchanged.

Consider specific instability of the positions of the
above extrema. The coordinates ϕ1, 2 in Eq. (3) are
determined by the ratio of small quantities. In this case,
even slight changes in small parameters lead to consid-
erable changes in their ratios (in the limit, we have
indeterminacy of the 0/0 type). As a result, the coordi-
nates ϕ1, 2 considerably change despite the smallness of
perturbations. Pairs of extreme directions also exist in
the vicinity of the two other coordinate planes—yz and
zx. The above relationships also describe these cases.
Thus, in order to describe the extreme directions in the
vicinity of the yz plane, angle θ should be measured
from the x axis, whereas angle ϕ, from the y axis in the
yz plane. All the above relationships remain valid if one
makes the cyclic permutation of subscripts 1 
2  3  1 in the parameters , εi , dij , aij, and bij.
In order to describe the extreme directions in the vicin-
ity of the zx plane, angle θ is measured from the y axis,
and angle ϕ, from the z axis in the zx plane. Then, the

εij'
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cyclic permutation 1  3  2  1 should be
made.

Thus, there are six directions of propagation of ordi-
nary waves in an absorptive triclinic crystal. Only one
exotic case remains to be considered—a random com-
bination of the material constants, which results in the
situation where the constant angle ϕ1 or ϕ2 in Eq. (3)
turns out to be close to the direction of the optic axis of
an initial transparent crystal. These axes usually lie in
one of three symmetry planes of the crystal [1, 2]
(Fig. 1a). In the situation where the optic axes lie in the
zx plane, angle ϕ0, which determines the orientations of
these axes (at e' = 0), satisfies the relationship

(9)

At ϕ1, 2 – ϕ0 = ∆ϕ ! 1, formula (6) has no sense any
more. The range of angles in which our approach based
on the standard perturbation theory is invalid is rather
narrow, ∆ϕ ~ (ε')2.

Considering the analogous characteristics of
absorptive monoclinic crystals, one should remember
that one of their coordinate planes remains a symmetry

plane. Thus, the xy plane is a symmetry plane if  =

 = 0. In this case, the continuum of ordinary waves
in this planes described by Eq. (2) is not changed,
whereas the extreme directions in the vicinity of the yz

2ϕ0cos B/C– 0.=

ε13'

ε23'
  

C

                       
and zx planes are the same as in triclinic crystals. In
orthorhombic crystals, all three coordinate planes are
symmetry planes. The continuum of the directions of
propagation of ordinary waves in all the three planes is
exactly the same as for transparent crystals. Absorption
does not change the existence range of the continuum
of ordinary waves for optically uniaxial crystals, where
these waves exist on the whole sphere of the propaga-
tion directions, m2 = 1.
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Abstract—A continuous-wave lasing at 1 µm was excited by the radiation of semiconductor laser diodes at
room temperature in nanocrystalline ceramics Y2O3 doped with Nd3+ and Yb3+ ions. The refractive indices of
the undoped nanocrystalline Y2O3 ceramics were measured in the wavelength range 0.4–9 µm. © 2003 MAIK
“Nauka/Interperiodica”.
Single crystals of cubic rare-earth oxides RE2O3:
Ln3+ (RE = Y, Sc, and Ln) doped with Ln3+ ions have for
many years attracted the attention of specialists as laser
materials with high thermal conductivity (see, e.g., [1–
3]). Unfortunately, their high melting point (~2400°C)
has hindered the use of the well-known methods of
growing of large crystals of high optical quality. In the
first laser experiments with rare-earth oxides, the crys-
talline elements made of these materials were about a
millimeter in size (Y2O3 doped with Nd3+ ions [4] and
Er2O3 doped with Ho3+ and Tm3+ ions [5, 6]). In recent
years, in view of the development of the technique of
semiconductor laser pumping, interest in RE2O3 : Ln3+

compounds doped with Ln3+ ions (and especially with
Nd3+ and Yb3+ ions) has increased significantly.
Recently, Sc2O3, Y2O3, and Lu2O3 single crystals
doped with Tm3+ and Yb3+ ions have been grown, and
lasing in these crystals was obtained by semiconductor
laser pumping [7, 8]. Although rhenium crucibles were
used to grow RE2O3 single crystals in these studies, no
substantial progress in increasing the crystal size has
been made so far.

The existing nanoceramic vacuum technology of
producing large (tens of centimeters in size) Y3Al5O12

lasing crystals doped with Nd3+ and Yb3+ ions [9, 10]
has been modified recently and used to obtain highly
transparent ceramics based on cubic Y2O3 yttrium
1063-7745/03/4806- $24.00 © 21041
oxide doped with Nd3+ and Yb3+ ions. The results of las-
ing experiments with these ceramic materials were pub-
lished in [11, 12].

In continuation of these studies, we present here
new results on lasing at 1 µm in these materials (the
4F3/2  4I11/2 transition for Nd3+ ions and the 2F5/2 

0.2
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Fig. 1. Output power Plas of CW lasing as a function of
absorbed power Pp for a laser based on the nanocrystalline
Y2O3 : Yb3+ ceramics (CYb ~ 4 at. %, λp ~ 0.926 µm, d =
800 µm).
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2F7/2 transition for Yb3+ ions). Using a conventional
scheme of end pumping by semiconductor laser diodes
at 300 K, we obtained a continuous-wave (CW) lasing
power as high as 0.16 W for the Y2O3 : Nd3+ ceramics
and 1.4 W for the Y2O3 : Yb3+ ceramics with an effi-
ciency of 40 and ~70%, respectively (see Fig. 1). Fur-
ther improvement of the lasing parameters of these
materials will involve the use of new semiconductor
diodes with an emission spectrum exactly correspond-
ing to the strongest absorption bands of the Nd3+ and
Yb3+ ions in the Y2O3 ceramics.

As far as we know, the refractive indices n of Y2O3
ceramics have not been measured so far. The value of n

0.35

(n2–1)–1

λ–2, µm–2
621

0.36

0.37

0.38

0.39

3 4 5

Fig. 2. Dependence of 1/(n2 – 1) on 1/λ2 for Y2O3 ceramics.

Refractive indices n of Y2O3 ceramics

λ, µm n

0.405 1.9590

0.436 1.9467

0.491 1.9310

0.546 1.9205

0.579 1.9158

0.615 1.9104

0.633 1.9093

0.691 1.9042

1.064 1.8903

2 1.8803

3 1.8701

4 1.8568

5 1.8388

6 1.8148

7 1.7827

8 1.7394

8.6 1.7061
C

for single-crystal Y2O3 was reported in [13]; the refrac-
tive indices of crystalline films, in [14].

In our experiments, the refractive indices of
undoped Y2O3 ceramics were measured by the mini-
mum deviation method with a GS-5 goniometer [15] in
the wavelength range from 0.405 to 1.064 µm at room
temperature. The prism fabricated had refracting angle
α = 40.02854° and a 1-cm2 aperture. The light sources
were a PRK-4 mercury lamp, a He–Ne laser (λ =
0.633 µm), and an Y3Al5O12 : Nd3+ laser (λ = 1.064 µm).
The measured refractive indices are listed in the table.
In the range 0.436–0.633 µm, the refractive indices
were measured with an accuracy of ±0.0002. At λ =
0.405 and 1.064 µm, the accuracy was lower (±0.0008).

In the noted spectral region, the refractive indices n
of the Y2O3 ceramics were approximated by the one-
term Sellmeier dispersion formula

n2 – 1 = Kλ2/(λ2 – ), (1)

where K = 2.529212 is the coefficient, λ0 = 0.133058 µm
is the corresponding characteristic wavelength, and λ is
the wavelength of the incident light in µm. Figure 2

shows the dependence of 1/(  – 1) on f(1/λ2) . It is
clearly seen that this dependence is linear and, thus, can
be well approximated by a straight line in this spectral
region.

In the IR spectral region, the refractive indices were
measured by the interference method, which was
described by us earlier [16]. Samples were cut from the
Y2O3 ceramics in the form of polished plane-parallel
plates with thickness d = 103 µm. The plane parallelism
was no worse than 10′′ . The transmission spectra were
measured with a resolution of 1 cm–1 with a Brooker
(IFS-25) spectrometer in the range 9000–500 cm–1. The
entire transmission spectrum of the ceramics is shown
in Fig. 3. The order of interference for the oscillating
curve was determined at λ = 1.669 µm, and the disper-

λ0
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20
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100
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Fig. 3. Transmission spectrum of Y2O3 ceramics in the IR
range (d = 103 µm).
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sion dependence n(λ) was finally calculated by the for-
mula

2dn = mλ, (2)

where n is the refractive index, d is the thickness of the
sample studied, λ is the wavelength of the incident
light, and m is the order of interference [17]. The mea-
surement accuracy in this spectral region was ±0.001.

The refractive indices of Y2O3 ceramics in the entire
range studied are shown in Fig. 4. The entire dispersion
dependence n(λ) can be approximated by the function
(curve 1)

n2 – 1 = Aλ2/(λ2 – B) + Cλ2/(λ2 – D), (3)

where A = 2.5503, B = (0.12626)2, C = 1.5839, D =
(16.031)2, and λ is measured in µm.

The value of the refractive index of single-crystal
Y2O3 reported in [1] (n = 1.915 at λ = 0.57 µm) is
almost the same as the value we obtained. Figure 4 also
shows the refractive indices of single-crystal Y2O3
taken from [13] (curve 2). Comparison shows that, in
the visible range, the refractive indices of ceramics are
noticeably lower than those reported in [13], whereas
the relevant data are almost the same for the IR region.
Since the values of the refractive indices of the ceram-
ics obtained by us are much (by ~0.01) higher than
those for thin crystalline Y2O3 films [14], we can
assume that the structure and optical properties of the
ceramics, single crystals, and crystalline films depend
on the preparation procedure.

Thus, efficient lasing at 1 µm of the Nd3+ (the
4F3/2  4I11/2 transition) and Yb3+ (the 2F5/2  2F7/2
transition) ions in Y2O3 ceramics was obtained, and the
refractive indices of Y2O3 ceramics were measured over
a wide spectral range.
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10521

2.00

1.95

1.90

1.85

1.80

1.75

1

2

Fig. 4. Dispersion dependence of the refractive indices of
Y2O3: (m) experimental data for ceramics, (1) calculation
for ceramics by formula (3), and the data for single crystals
from (2) [13] and (h) [1].
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Abstract—Crystals of NaBaBO3 were grown by spontaneous crystallization on a platinum loop from the BaO–
B2O3–Na2O system using the flux technique. The crystals have a highly disordered block structure. X-ray dif-
fraction study (λåÓKα, 518 independent reflections, R = 0.0272) demonstrated that the structure of these crys-
tals is identical with that established previously by other researchers for a sample prepared by cooling a stoichi-
ometric melt. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Crystals of a low-temperature modification of bar-
ium metaborate β-BaB2O4 (BBO) are of paramount
importance in nonlinear optics and are used for convert-
ing the laser frequency in the UV–Vis spectral region.
BBO single crystals are most often grown from a flux
in the BaO–B2O3–Na2O system [1]. When studying
phase equilibria in this system [2], we isolated and
characterized the NaBaBO3 compound with a melting
point of 1271°C. The formation of this compound at the
crystallization front stops the crystal growth of BBO.
The crystal structure of this compound was established
previously [3]. However, the method for the synthesis
of single crystals by cooling a stoichiometric melt from
1053 to 803 K, which was described in [3], disagrees
with the data on the thermal stability of NaBaBO3 [2].
Since the difference in the melting points is typical of
different polymorphs, it could not be excluded that dif-
ferent modifications of NaBaBO3 were studied in [2, 3],
despite the fact that the specimens studied had similar
X-ray-diffraction characteristics. Hence, the aim of the
present study was to grow single crystals of NaBaBO3
and establish their structure.

SYNTHESIS OF NaBaBO3

The reagents BaCO3, Na2CO3, and H3BO3 of high-
purity grade were used as starting compounds. A pow-
der-like sample of NaBaBO3 was prepared by two-step
solid-phase synthesis from a mixture of starting
1063-7745/03/4806- $24.00 © 21044
reagents in a platinum crucible 40 mm in diameter. The
ratio between the components and their amounts were
calculated to prepare 5 g of the final product. In the first
stage of the synthesis performed at 180°C for 16–20 h,
the initial blend was dehydrated. In the second stage
performed at 700°C for five days, sodium and barium
carbonates completely decomposed to release CO2. In
the first stage, the time of exposure was monitored
gravimetrically by observing the weight loss of H2O
corresponding to the calculated value. The second stage
of the process was carried out until phase equilibrium
was reached, which was determined by powder X-ray
diffraction analysis. The X-ray diffraction data were
measured on a DRON-3 diffractometer using CuKα
radiation. Generally, X-ray diffraction patterns of non-
equilibrium samples have reflections not only from the
main phase but also from BaCO3 impurity as the initial
component of the blend. To achieve the equilibrium, the

Table 1.  Compositions of the fluxes of the BaO–B2O3–Na2O
system (mole fractions), from which spontaneous single
crystals were grown, and the temperatures t (°C) at which
spontaneous crystallization started

Run no. BaO B2O3 Na2O t

1 0.485 0.34 0.175 970

2 0.475 0.35 0.175 930

3 0.45 0.36 0.19 940

4 0.38 0.38 0.25 880
003 MAIK “Nauka/Interperiodica”
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synthesis must be accompanied by repeated grinding of
intermediate products. The absence of even very weak
reflections corresponding to BaCO3 in X-ray patterns
serves as a criterion for the completeness of the solid-
phase reaction. It should be noted that, at t > 700°C, the
components began to have a corrosive effect on the
platinum crucible.

The samples synthesized rapidly degrade in air, and
they must be stored in a dessicator. The X-ray diffrac-
tion patterns of NaBaBO3 powders measured after their
prolonged storage in air had reflections corresponding
to impurity Ba(OH)2 · H2O.

SINGLE-CRYSTAL GROWTH

Crystals of NaBaBO3 were grown by spontaneous
crystallization from the BaO–B2O3–Na2O system using
the flux technique. The compositions listed in Table 1
correspond to the region of primary crystallization of
NaBaBO3, which we found previously [2]. The table
also lists the temperatures at which spontaneous crys-
tallization started.

Single crystals were grown in a platinum crucible
after performing the two-step solid-phase synthesis
described above. The synthesis product (40 g) was
heated to 950–1000°C and kept for 16 h to achieve
homogenization. Since the chemical reactions, which
were completed in the solid phase, did not occur in the
melt, the melting process was not accompanied by melt
foaming. After homogenization, a platinum rod with a
loop was placed in the central region of the melt sur-
face, and the temperature was lowered at a rate of
10 K/h. Once the onset of crystallization was visually
observed, the melt was cooled at a rate of 1–2 K/day for
15–20 days. After completion of the process, the out-
growth on the platinum loop was withdrawn from the
melt and cooled. Then, a high-quality material without
inclusions was selected. This procedure made it possi-
ble to prepare single-crystal samples as rounded lenses
with a weight of 1.5–2 g, up to 18 mm in diameter, and
up to 1.5 mm thick. In runs 1–3, intergrowths of well-
faceted isometric crystals ~1 mm in size (Fig. 1)
appeared on the surface of crystal boules. In run 4, the
lens formed showed no pronounced faceting. Note that
spontaneous crystals become coated with a white layer
in air; hence, they must be stored in a dessicator.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
Chemical analysis of the crystals was carried out by
flame atomic absorption spectroscopy and atomic emis-
sion spectroscopy. The results of analysis were as fol-
lows (wt %): Na2O, 14.3; BaO, 71.0. The standard devi-
ation ST = 0.02–0.03. For NaBaBO3, the calculated data
are as follows (wt %): Na2O, 14.3; BaO, 70.0.

X-RAY DIFFRACTION STUDY

Several crystalline samples were chosen for X-ray
diffraction study (a CAD-4 Enraf-Nonius diffractome-
ter, λMoKα). However, it appeared that all these crys-
tals had a block structure. The X-ray data were col-
lected from an irregularly shaped sample of ~0.40 ×
0.30 × 0.22 mm3 in size. This sample contained at least
three pronounced blocks. For these blocks, the intensity
ratio of diffraction reflections with the same indices
was ~10 : 1 : 1. The experimental data (θ/2θ scanning
technique in the scan-angle range θ ≤ 30°, 518 indepen-
dent reflections with I > 2σ(I)) were collected from the
block that gave maximum intensities of diffraction
reflections.

The unit-cell parameters were determined and
refined using 16 reflections: a = 9.562(2) Å, b =
5.561(1) Å, c = 6.173(1) Å, and β = 98.95(2)°. The
sp. gr. C2/m was established in the course of structure
solution: dcalcd = 4.487 g/cm3, µ = 125.22 cm–1, Z = 4.

Fig. 1. Photograph of the grown single crystal of NaBaBO3.
Table 2.  Atomic coordinates and equivalent isotropic thermal parameters

Atom Position x y z Ueq, Å2

Ba 4i 0.16655(4) 0 0.24335(7) 0.0129(1)

Na(1) 2b 0 0.5 0 0.020(1)

Na(2) 2d 0 0.5 0.5 0.019(1)

B 4i 0.8321(9) 0 0.2426(12) 0.014(2)

O(1) 4i 0.7022(6) 0 0.3205(10) 0.017(1)

O(2) 8j 0.8978(4) 0.7876(8) 0.2096(7) 0.019(1)



 

1046

        

KONONOVA 

 

et al

 

.

 

The structure was solved by the heavy-atom method
and refined anisotropically by the least-squares method
to R1 = 0.0272 and wR2 = 0.0708, 36 parameters to be
refined, and S = 1.163. All calculations were carried out
using the AREN [4] and SHELXL93 [5] software pack-
ages. The absorption correction was applied using the
DIFABS program [6]. The atomic coordinates and
equivalent isotropic thermal parameters are listed in
Table 2.

The crystal structure established in the present study
appeared to be identical to that described in [3]. The
main characteristic feature of this crystal structure is
the presence of columns linked by shared faces of the

a

c

(a)

(b)

b

asinβ

Fig. 2. Structure of NaBaBO3 projected along the (a) [010]
and (b) [001] directions. Large filled and small empty cir-
cles represent Ba and B atoms, respectively.
C

NaO6 octahedra. The octahedra are linked through the
planar BO3 triangles to form a framework, whose cavi-
ties are occupied by large Ba2+ cations (Fig. 2). The
powder X-ray diffraction pattern calculated from the
structural data is in agreement with the experimental
pattern and the data reported previously [2]. Therefore,
the same modification of NaBaBO3 was examined in
this study and in [2, 3]. However, the thermal stability
of the compound under consideration is much higher
than that reported in [3]. Judging from the unit-cell
parameters, this compound is, apparently, isostructural
with monoclinic potassium–sodium carbonate
KNaCO3 [7]. The presence of isolated planar BO3
groups in the NaBaBO3 structure is consistent with the
Raman scattering data [2].

The results of this study and of [3] cast doubt upon
the existence of the Na2BaB2O5 compound, which was
first mentioned in [8] and then in [9]. In the latter study,
this compound was prepared by the solid-phase synthe-
sis; the parameters of the monoclinic unit cell calcu-
lated on the basis of the powder X-ray diffraction data
coincide with the parameters determined by us for the
NaBaBO3 compound accurate to 0.2%.
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Abstract—The phase equilibria in the KF–ZrO2 (nanocrystals)–SiO2–H2O system are studied for the
ZrO2 : SiO2 molar ratio ranging from 2 : 1 to 1 : 6 and the KF concentration CKF ranging from 3 to 36 wt %
under 0.1 GPa at 400°C. We established crystallization of three silicates—ZrSiO4 (zircon), K2ZrSi6O15 (dele-
ite), K2ZrSi3O9 (wadeite)—and K3ZrF7 fluoride and ZrO2 and SiO2 oxides. The structures of K- and Zr-based
silicates obtained can be represented as an open framework formed by M octahedra (ZrO6) that share vertices
with T tetrahedra (SiO4). With the increase of KF concentration, silicates “substitute” each other in the follow-
ing sequence: ZrSiO4 ⇒  K2ZrSi6O15 ⇒  K2ZrSi3O9. Depending on the ZrO2 : SiO2 ratio and CKF concentration,
K3ZrF7 fluoride is formed simultaneously with K2ZrSi3O9 and K2ZrSi3O9 + K2ZrSi6O15. The characteristic fea-
tures of formation of Zr-containing phases are discussed in the framework of the model of the matrix assembly
of crystal structures from subpolyhedral structural units—clusters of cyclic type. The features of the phase for-
mation in the system are compared with the characteristics determined earlier for the KOH–ZrO2 (nanocrys-
tals)–SiO2–H2O system at 400°C. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier, the correlation between the chemical com-
position, structure, and the number of formed com-
pounds was established for KOH–ZrO2 (nanocrystals)–
SiO2–H2O, KOH–ZrO2 (crystals)–SiO2–H2O and
KOH–ZrSiO4 (zircon)–H2O systems at 400°C [1].

It was shown [2] that the hydrothermal treatment of
ZrO2 + 3SiO2 under 0.07 GPa at 600°C leads to crystal-
lization of K2ZrSi3O9 in the solutions containing the
KOH, K2CO3, or KMnO4 components. The use of other
components (KCl, K2Cr2O7, KAl(SO4)2 · 12H2O , and
KAlSi3O8) resulted in formation of only zircon ZrSiO4.

In the KOH–ZrO2–SiO2–H2O system, five K,Zr-
based silicates are formed [3, 4]—three anhydrous

phases, K2ZrSi6O15 (deleite, sp. gr.  [5], DEL-type
framework [4]), K2ZrSi3O9 (wadeite, sp. gr. P63/m [6],
BAD-type framework [4]), K2ZrSi2O7 (khibinskite,
sp. gr. P21/b [7], KHI-type framework [4]), and two
hydrates with the same chemical composition,
K2ZrSi3O9 · H2O (umbite, sp. gr. P212121 [8], UMB-
type framework [4]) and K4Zr2Si6O18 · 2H2O (kostylev-
ite, sp. gr. P21/b [9], KOS-type framework [4]). All
these silicates have MT frameworks of different topol-

P1
1063-7745/03/4806- $24.00 © 21047
ogy formed by M octahedra (ZrO6) and T tetrahedra
(SiO4) sharing their vertices.

The structures of anhydrous K,Zr-based silicates
(DEL, BAD, and KHI) containing invariant subpolyhe-
dral structural units (SSU precursors) were revealed.
These units are membered six-polyhedron cyclic M2T4
clusters. Hydrated K,Zr-based silicates (UMB and
KOS), crystallizing only at low temperatures, are built
by four-polyhedron chains of M2T2 clusters [3].

The synthesis and the study of zirconosilicates and
germanates [10–13] with open frameworks [10–13] is
of great interest because of their possible application as
solid electrolytes, selective adsorbents, and molecular
sieves.

The present paper was aimed at studying the effect
of KF solvent on the phase composition of the products
of the hydrothermal reactions and comparing the phase
formation with the corresponding characteristics in the
KOH–ZrO2 (nanocrystals)–SiO2–H2O system studied
earlier at 400°C [1].

This work is a continuation of studies [1, 3, 4, 10,
14–16] and analysis of the geometry and topology char-
acterizing the structure of crystalline phases and the
simulation of self-organization processes in the AOH–
003 MAIK “Nauka/Interperiodica”
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MeO2–TO2–H2O systems, where A = Li, Na, and K;
Me = Zr, Ti, Hf, Si[6], Ge[6], and Sn; T = Si[4] and Ge[4].

EXPERIMENTAL

The phase equilibria in the KF–ZrO2 (nanocrys-
tals)–SiO2–H2O system were studied under conditions
of direct temperature gradient under 0.1 GPa at 400°C
[1]. The experiment duration was 240 h. The tempera-
ture was automatically maintained within an accuracy
of ±2 K at the outer wall of the autoclave. The vertical
temperature gradient was 1.5 K/cm. The experiments
were performed in 15-cm3 copper ampules mounted
inside 130-cm3 lined steel autoclaves.

The initial charge consisted of SiO2 (silica gel) and
ZrO2 (nanocrystals) produced by the technology
reported in [17] in the form of nanocrystalline three-
dimensional associate formed by 30-Å-particles with
the fluorite (CaF2) structure. The surface area of parti-
cles was about 100 m2/cm3. The ZrO2 : SiO2 molar
ratio ranged from 2 : 1 to 1 : 6. The concentration of KF
solvent varied from 3 to 36 wt %. The solid insoluble
products of the reaction were rinsed with hot water and
dried at room temperature.

The structural identification of the phases was per-
formed by the X-ray phase analysis (DRON-2 and
Rigaku D-Max 1500 diffractometers, ëuäα radiation)
using the ICDD (International Center for Diffraction
Data) [18] and ICSD (Inorganic Crystal Structure Data-
base) databases [19].

RESULTS

Depending on the synthesis conditions, the products
of crystallization in the KF–ZrO2 (nanocrystals)–SiO2–
H2O system were either single crystals (0.1–1 mm in
size) or fine-grained crystalline powders. X-ray phase
analysis (see table) showed that, according to crystal
chemistry, the compounds crystallizing in this system
can be divided into five groups. These groups are distin-
guished by the types of the simplest structural units:

—SiO2 dioxide (quartz-type structure, structural
units are SiO4 tetrahedra);

—ZrO2 dioxide (fluorite-type structure, structural
units are ZrO8 cubes [14, 20]);

—K,Zr-based fluoride K3ZrF7 (randomly disor-
dered structure described in [21]);

—Zr-based silicate ZrSiO4 (zircon, structural units
are ZrO8 dodecahedra and SiO4 tetrahedra);

—K,Zr-based silicates K2ZrSi6O15 (DEL)
K2ZrSi3O9 (BAD) (structural units are ZrO6 octahedra
and SiO4 tetrahedra).

The ZrSiO4 silicate (zircon) belongs to orthotetrahe-
dral structures. The K,Zr-based silicates have the fol-
lowing T-condensed structures: K2ZrSi6O15 contains
C

infinite [Si6O15] ribbons and K2ZrSi3O9 has three-mem-
bered [Si3O9] rings. The K3ZrF7 fluoride has statisti-
cally disordered Zr, K, and F sublattices ([21], the data
obtained in 1938). The structural model of the analo-
gous Hf-based compound K3HfF7 ([22], the data
obtained in 1988) is statistically disordered only in the
F sublattice.

It was found that, at a ZrO2 : SiO2 ratio of 2 : 1
(experiments 1–5 in table), the main phase in the whole
range of KF concentrations studied is ZrSiO4 silicate.
With an increase the solvent concentration, along with
ZrSiO4, the following phases are formed:

K2ZrSi6O15 ⇒  K2ZrSi3O9 + K3ZrF7. 

At ëKF = 3%, along with zircon ZrSiO4, ZrO2 was
also crystallized. The broadening of the X-ray reflec-
tion profiles indicated the existence of 120-Å-large
crystallites (the calculation technique was discussed
in [17]).

It is seen from the table that a decrease in ZrO2 con-
tent in the mixture (ZrO2 : SiO2 = 1 : 1–1:6) results in
the formation of the following crystallization fields:

—ZrSiO4 + K2ZrSi6O15 (in the form of isometric
single crystals of the spherical shape) + K2ZrSi3O9 in
15% solutions of KF at ZrO2 : SiO2 = 1 : 1 and 1 : 2;

—ZrSiO4 + ZrO2 + SiO2 (quartz in the form of
needlelike single crystals) in 3–7% solutions of KF, at
ZrO2 : SiO2 = 1 : 2;

—SiO2 + ZrSiO4 + K2ZrSi6O15 in 3–10% solutions
of KF at ZrO2 : SiO2 = 1 : 3;

—K3ZrF7 + K2ZrSi6O15 + K2ZrSi3O9 in 15–36%
solutions of KF at ZrO2 : SiO2 = 1 : 3.

Thus, in the KF system, the formation of ZrSiO4,
K2ZrSi6O15, K2ZrSi3O9 silicates and K3ZrF7 fluoride
was established. With an increase of the solvent con-
centration, the phases are formed according to the fol-
lowing scheme:

ZrSiO4 ⇒  K2ZrSi6O15 ⇒  K2ZrSi3O9 + K3ZrF7 

⇒  (at ZrO2 : SiO2 = 1 : 1 – 1 : 2), 

ZrSiO4 ⇒  K2ZrSi6O15 ⇒  K2ZrSi6O15 + K2ZrSi3O9 

+ K3ZrF7 (at ZrO2 : SiO2 = 1 : 3 – 1 : 6). 

Now, compare the phase compositions of silicates
formed in the KF system with the phase compositions
of silicates synthesized earlier in the KOH systems with
different Zr-containing components—ZrO2 (nanocrys-
tals) and ZrSiO4 (zircon) [1].

In the KOH–ZrO2 (nanocrystals)–SiO2–H2O system
at the given ratio ZrO2 : SiO2 = 1 : 1, crystallization of
ZrSiO4 and of two alkaline K,Zr-based silicates is
observed: K2ZrSi3O9 and K2ZrSi2O7. With an increase
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Experimental data on crystallization fields in the KF–ZrO2–SiO2–H2O system at 400°C

Exper-
iment

Composition of the 
initial charge, g KF,

wt %
ZrO2 : SiO2, 
(molar ratio)

Phase composition of crystallization products

ZrO2 SiO2 SiO2 ZrO2 ZrSiO4 K2ZrSi6O15 K2ZrSi3O9 K3ZrF7

1 2.11 0.51 3 2 : 1 – +* + (max) – – –

2 2.11 0.51 7 2 : 1 – +* + (max) + – –

3 2.11 0.51 10 2 : 1 – – + + – –

4 2.11 0.51 15 2 : 1 – – + + – –

5 2.11 0.51 36 2 : 1 – – + + + +

6 1.61 0.80 3 1 : 1 – +* + (max) – – –

7 1.61 0.80 7 1 : 1 – +* + – – –

8 1.61 0.80 10 1 : 1 – – + + – –

9 1.61 0.80 15 1 : 1 – – + + + –

10 1.61 0.80 36 1 : 1 – – – – + +

11 1.11 1.09 3 1 : 2 + +* + – – –

12 1.11 1.09 7 1 : 2 + +* + + – –

13 1.11 1.09 10 1 : 2 – – + + – –

14 1.11 1.09 15 1 : 2 – – + + + –

15 1.11 1.09 36 1 : 2 – – – – + +

16 0.84 1.23 3 1 : 3 + – + + – –

17 0.84 1.23 7 1 : 3 + – + + – –

18 0.84 1.23 10 1 : 3 + – + + – –

19 0.84 1.23 15 1 : 3 – – – + + +

20 0.84 1.23 36 1 : 3 – – – + + +

21 0.50 1.44 3 1 : 6 + – + – – –

22 0.50 1.44 7 1 : 6 + – + + – –

23 0.50 1.44 10 1 : 6 + – + + – –

24 0.50 1.44 15 1 : 6 – – – + + +

25 0.50 1.44 36 1 : 6 – – – + + +

* Microcrystalline powder with 120-Å-large crystallites.
in the KOH concentration, the following changes of the
phase composition are observed:

ZrSiO4 + ZrO2 ⇒ ZrSiO4 + K2ZrSi3O9 + ZrO2 

⇒  K2ZrSi3O9 + ZrO2 ⇒ K2ZrSi2O7 + ZrO2. 

In the KOH–ZrSiO4 (zircon)–H2O system, crystalli-
zation of both ZrSiO4 and K2ZrSi2O7 was observed.
The following crystallization fields are formed with an
increase in the KOH concentration:

ZrSiO4 ⇒ ZrSiO4 + K2ZrSi2O7 + ZrO2 

⇒  K2ZrSi2O7 + ZrO2.

Therefore, in the KF system studied, we did not
observe K2ZrSi2O7 crystallization characteristic of the
most concentrated KOH solutions. In fluoride solu-
tions, instead of the expected crystallization field
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
K2ZrSi2O7 + ZrO2 (typical of KOH systems), we
observed the formation of a new phase, K3ZrF7 fluo-
ride, never formed in KOH solutions.

The results obtained indicate that the phase compo-
sition in the systems under discussion is determined by
the ZrO2 : SiO2 molar ratio and chemical nature of
either the KOH or KF solvent. Fluorine atoms together
with K and Zr atoms form a new type of SSU precursor,
whose evolution results in the formation of the K,Zr-
based fluoride. This is accompanied by the suppression
of the channel of evolution of the K2ZrSi2O7 phase in
the KF system.

The crystallochemical interpretation of the results
obtained based on the simulation of crystallization pro-
cesses occurring according to the mechanism of the
matrix (complementary) assembly is given below.
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THEORETICAL ANALYSIS

The KF system studied can be regarded as a system
of very high rank of chemical complexity, Rchem = 6,
which is determined by the number of chemically dif-
ferent components in the system [4], namely, K, Zr, Si,
O, F, and H.

In this system, K,Zr-based silicates with a very com-
plex topology of bonds between M and T polyhedra in
the three-dimensional MT frameworks are formed.
However, among numerous representatives of the fam-
ily of K,Zr-based fluorides and oxyfluorides [18, 19],
we observed only the formation of a phase with the
structure of cubic K3ZrF7.

Nucleation and growth of crystals in any system
with such a level of chemical complexity occurs at the
suprapolyhedral level. In multicomponent systems, the
processes of spontaneous self-organization of chemi-
cally different polyhedral structural units (suprapolyhe-
dral clusters) take place. The structures are assembled
from these ready structural fragments—SSU precur-
sors [10, 14–17].

Based on the developed methods of crystallochemi-
cal analysis [10, 14–16] such as the method of local
crystallostructural intersection of symmetry groups,
two-color decomposition of structural graphs into pri-
mary and secondary contours, and the method of deter-
mining equivalent coordination sequences, we can
identify the type of geometric and topologic character-
istic of the SSU–precursors.

The algorithm of self-assembly of a three-dimen-
sional structure from SSU–precursors according to the
principle of their maximum boundedness at the transi-
tion to a higher level of structural self-organization was
discussed in [10, 14–17].
C

Now compare the programs of structure assembly of
K3ZrF7, ZrO2, and K2ZrSi2O7 in order to understand
what characteristic features of the structure of the SSU–
precursor of K3ZrF7 fluoride are the most probable
cause of the suppression of the channel of evolution of
the K2ZrSi2O7 silicate. It should be noted that, among
all K,Zr-based silicates, the K2ZrSi2O7 phase is charac-
terized by the highest formation rate and the simplest
program of the matrix assembly [14–16]. The
K2ZrSi2O7 structure (with Si/Zr = 2) is represented in
[16] as a packing of the SSU–precursors whose chemi-
cal composition K2M2T4 (with Si/Zr = 2) determines the
lower limit of silicon content in the three-dimensional
framework structures of the K,Zr-based silicates.

The crystal structures of the K3ZrF7 and ZrO2
phases discussed below are characterized by the cubic
symmetry and the same space group. First, we consider
the model of assembly of the ZrO2 phase (fluorite
CaF2 type), then the model of K3ZrF7 fluoride, and,
finally, compare all the types of the SSU–precursors for
the K–Zr–Si–O–F–H system.

ASSEMBLY OF THE ZRO2 STRUCTURE
General features of the structure. The structure of

ZrO2 dioxide is characterized by the cubic sp. gr. Fm m
(no. 225). The lattice constant a = 5.129 Å [20], Z = 4;
Zr atoms occupy the 4a position (Wyckoff notation)

with the local symmetry m m; O atoms occupy the 8c

position with the local symmetry .
We describe the structure of ZrO2 dioxide (Fig. 1a)

as a set of two-dimensional layers which form topolog-
ically equivalent layers–networks of type 44 both for Zr
and O atoms

3

3
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The Schloefly symbol 44 indicates the existence of
four squares forming each node of the network.

The first S1 and the fifth S5 layers in the structure are
related by a translation vector (Fig. 1a). The layers from
S1 to S4 and from S5 to S8 in Eq. (1) are combined into
repeating blocks; the layers S1, S4, S5, and S8 are the
block boundaries. The density of nodes of the O net-
work (with O–O distances equal to 2.565 Å) is twice as
high as the density of nodes in the Zr network (with Zr–
Zr distances equal to 3.627 Å). The sides of the squares
forming different networks are rotated with respect to
each other by an angle of 45°.
The “shear packing” of Zr networks determines the
type of cubic Bravais F lattice and the magnitudes of
the translation vectors a = 5.129 Å [20]. The networks
of O atoms form a primitive cubic lattice with the lattice
constant a' = a/2 = 2.565 Å.

In ZrO2, the polyhedral structural unit is a ZrO8
cube.

Cluster substructure (SSU Identification). For the
planar networks, the existence of a cluster substructure
can be revealed by the two-color decomposition into
elementary cycles [14]. Within the framework of this
method, planar networks consisting of SU nodes are
considered as packings of equivalent N-link cyclic SSU
clusters (N is the number of structural units). The struc-
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Fig. 1. Structural fragments of Zr-based phases: (a) ZrO2, (b) Zr sublattice in ZrO2, (c) K3ZrF7, (d) K,Zr sublattice in K3ZrF7.
ture of a planar network can be represented as a packing
of cyclic clusters if any node of the network can belong
to one and only one SSU.

If a network (chemical graph) can be completely
decomposed into equivalent elementary cycles (main
contours of the network), these cycles marked by dif-
ferent colors can be regarded as isolated islands.

The use of the two-color decomposition technique
of planar Zr networks singled out in the ZrO2 structure
(Fig. 1b) allowed us to establish the following features
of their geometry (Fig. 2a):

—Network 44, which is one of the three regular
Shubnikov networks, is obtained as a result of conden-
sation of four atomic cyclic square clusters, with each
of them being a primary contour of the network [14]. In
Fig. 2a, these clusters (in the form of islands) are shown
by gray color.

—The topology of bonds in the secondary contour
of the network, which reflects the specific features of
the condensation mechanism of primary contours, is
also a square. Such a type of secondary contour formed
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
during condensation of the square four-atom cyclic
clusters is not the only possible one. Other types of the
secondary contours in two-dimensional half-regular
Shubnikov networks built by square clusters are dis-
cussed in [14].

—The distances between the centers of primary
square contours correspond to the face diagonal of the
unit cell (Fig. 2a).

Thus, we singled out the cluster substructure in the
Zr network—a ring of four Zr atoms—and determined
the mechanism of their binding by a translation along
the face diagonal of the cubic unit cell.

Polyhedral structure of SSU. The allowance for O
atoms transforms a four-atom square cluster into a
polyhedral one consisting of four ZrO8 cubes. The
neighboring cubes in the cluster share edges (Fig. 3a).
The cluster center (black sphere in Fig. 3a) is located at
the vacant 4b position having, similar to the 4a posi-
tion, the local symmetry . The cluster centers are
the centers of the Delaunay domains of the 44 Zr net-
work.

m3m
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Structural mechanism of assembly. The mechanism
of reconstruction of the three-dimensional topology of
bonds from the local structural fragment in accordance
with the principle of the maximum boundedness of
SSU–precursors is characterized by the following.

—Formation of one-dimensional periodic structures
(primary chains) occurs via bonding of SSUs along the
face diagonal in the cubic cell (in the XY plane in
Fig. 4a). Any two neighboring SSU–precursors share
two edges.

—The condensation of parallel chains into the plane
results in the formation of a layer shown in Fig. 5a. The
chains share the maximum possible number of edges.

—Bonding of layers is accompanied by their dis-
placement by a half of the body diagonal of the cubic

Zr

Zr

Zr

ZrZrZrZr

Zr

Zr

Zr Zr Zr

Zr

Zr
Zr

Zr
Y X

Zr K1 Zr

Zr

ZrZr

Zr

Zr

Zr

K1

K1

K1 K1

K1

K1

K1

X

Y

(a)

(b)

Fig. 2. Substructure of clusters (differently shaded) in the
44 layers: (a) four-atom clusters in square lattices formed by
Zr atoms in ZrO2, (b) four-atom clusters in square lattices
formed by K1 and Zr atoms in K3ZrF7.
C

unit cell. The local coordination number of each ZrO8

polyhedron in the multilayer block with respect to sim-
ilar structural units is equal to 12. One such polyhedron
is shown by gray color in Fig. 6a. Four polyhedral units
are the neighboring ZrO8 polyhedra of a two-dimen-
sional basal layer (Fig. 5a). Four other polyhedra are
located in the upper and lower adjacent layers. The first
and third Zr layers (Fig. 6a) are translationally equiva-
lent, see scheme (1).

ASSEMBLY OF K3ZrF7 STRUCTURE

General features of the structure. Similar to ZrO2,

K3ZrF7 fluoride is crystallized in sp. gr. . In a
more complex chemical compound K,Zr-based K3ZrF7

fluoride, the lattice constant a of the cubic unit cell is
equal to 8.951 Å [21]. It exceeds the lattice constant of
ZrO2 (5.129 Å) by a factor of 1.74 [20].

The number of crystallographically independent
positions in the K3ZrF7 structure is six [21] (in contrast
to two in ZrO2). All the atoms (Zr, K1, K2, or F1)
occupy the 32 f positions with the local symmetry 3m;
the F2 and F3 atoms occupy the general 192l crystallo-
graphic positions. All the atoms are statistically distrib-
uted over their positions with the occupancies 0.25
(K1 atom), 0.125 (Zr, K2, and F1 atoms), and 0.063 (F2
and F3 atoms). The center of each split position (except
for that of fluorine atoms) is close to the special posi-
tion within the unit cell. In the later identification of the
isostructural Hf-based phase [22], these particular posi-
tions were taken to be the positions of the correspond-
ing unsplit atoms.

In simulating the assembly of the K3ZrF7 crystal
structure, we used refined data [22]. The number of
crystallographically independent atoms is five. All the
atoms occupy special positions (Fig 1c). The Zr, K1,
and K2 atoms fully occupy the 4a, 4b, and 8c positions

with the local symmetry , , and ,
respectively. Note that, in the cubic ZrO2 structure dis-
cussed above, Zr atoms also occupy the 4a position
(Fig. 1b).

The F1 and F2 atoms are statistically distributed
over the crystallographic 96j positions with the local
symmetry m. The occupancies of these positions are
0.187 (F1 atoms) and 0.104 (F2 atoms).

In the description of K3ZrF7 as a set of two-dimen-
sional layers built by framework-forming Zr and K1 (in
the 4a and 4b positions) and K2 (in the 8c positions)
atoms, the crystal structure can be considered as pack-

Fm3m

m3m m3m 43m
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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ing of layers with the following atomic composition (Fig. 1d):
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Fig. 3. Polyhedral precursors consisting of (a) four Zr-based polyhedra in ZrO2 and (b) two Zr-based and two K-based polyhedra
in K3ZrF7. Hereinafter, small black circles indicate crystallographic centers of clusters.
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Fig. 4. Assembly of a chain from two SSU–precursors in (a) ZrO2 and (b) K3ZrF7.
The first S1 and fifth S5 layers in the structure are
related by the translation vector (Fig. 1d). The layers
from S1 to S4 and from S5 to S8 in Eq. (2) and in Eq. (1)
are combined into repeating blocks; the layers S1, S4,
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
S5, and S8 are the block boundaries. The density of
nodes in the K1 + Zr and K2 networks are the same.

The “shear packing” of K1 + Zr networks deter-
mines the type of cubic Bravais lattice and the magni-
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Fig. 5. Assembly of a layer from four SSU–precursors in (a) ZrO2 and (b) K3ZrF7.
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Fig. 6. Three-dimensional structural fragments: (a) three-layer packing of polyhedra in ZrO2 and (b) two-layer packing of polyhedra
in K3ZrF7.
tudes of the translation vector a = 8.951 Å [21]. The
networks of K2 (Fig. 1d), as well as O networks in ZrO2

(Fig. 1a) form a primitive cubic lattice with the lattice
constant a' = a/2 = 4.472 Å.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      200
Cluster substructure (SSU identification). For
planar networks formed by K1 + Zr atoms, the
existence of the cluster substructure can be revealed
by the two-color decomposition into elementary
3
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cycles in a way similar to that used for the ZrO2
structure.

For the K,Zr networks (Fig. 1b), we established the
following.

—After removal of superstructural chemical order
of Zr and K atoms over the nodes of the network, this
network becomes square one of the 44 type in a way
similar to the Zr network in the ZrO2 structure.

—The network 44 is formed as a result of condensa-
tion of four square atomic cyclic clusters of the compo-
sition 2K + 2Zr, which are primary contours. In Fig. 2b,
these clusters (in the form of islands) are shown by gray
color.

—The distances between the centers of primary
square contours determine the magnitude of the trans-
lation vector (Fig. 2b).

Thus, we singled out the cluster substructure in the
K,Zr-based network—a cycle of four alternating Zr and
K atoms (Fig. 2b).

Polyhedral structure of SSU. The allowance for sta-
tistically disordered F atoms transforms a cyclic four-
atom cluster into a four-polyhedron cluster (Fig. 3b).
The center of the cluster (black sphere with the coordi-
nates 0, 0.25, 0.25 in Fig. 3b) is located at the vacant
24d position with the local symmetry mmm. The cluster
centers are the centers of the Delaunay domains in the
44 K1 + Zr network.

Extending the local fragment of the unit cell of the
K3ZrF7 fluoride (with the center of this fragment in the
24d position) containing four-polyhedron SSU–precur-
sors built by Zr- and K1-based polyhedra, we see that
the K2 atoms are located above and under the SSU cen-
ter (Fig. 7b).

Structural mechanism of assembly. The reconstruc-
tion mechanism of the three-dimensional topology of
bonds from the given local fragment of the structure
based on the principle of the maximum boundedness of
SSU–precursors in the of K3ZrF7 structure is character-
ized by the following:

—the formation of one-dimensional periodic struc-
tures (primary chains) via bonding of SSUs along the
edge of the cubic unit cell (Fig. 4b);

—the condensation of parallel chains into a plane
results in the formation of a layer shown in Fig. 5b; all
the polyhedra from different chains participate in the
condensation during layer formation;

—bonding of layers is accompanied by the displace-
ment of the layers by a half of the body diagonal of the
cubic unit cell. The first and the third K1 + Zr layers are
translationally equivalent (see scheme (2)). The voids
thus formed in the KZrF7 framework incorporate K2
atoms (Figs. 1c, 1d, and 7b), and the structure as a
whole acquires the composition K3ZrF7.
C

THE TYPES OF GEOMETRY AND TOPOLOGY 
CHARACTERISTIC OF SSU–PRECURSORS 
IN ZrO2, K3ZrF7, ZrSiO4 , AND K,Zr-BASED 

SILICATES

Structures with Rchem = 2 and 3. The models of for-
mation of ZrO2 and K3ZrF7 phases (these phases are
formed in the systems with Rchem = 2 and 3) discussed
above are described by simple assembling algorithms:
successive packing of the cyclic-type four-polyhedron
SSU into chains, layers, and framework.

Such a type of cyclic SSU–precursor consisting of
two Zr-based polyhedra connected by two SiO4 tetrahe-
dra was determined in the course of simulation of
assembly of the ZrSiO4 (zircon) crystal structure
(Fig. 7c). For scheelite ZrGeO4, the SSU–precursor is a
cluster consisting of two Zr-based polyhedra connected
by two Ge-based tetrahedra (Fig. 7d). The difference in
their structures reduces to the edge contacts of Zr-based
polyhedra with “small” SiO4 tetrahedra and the absence
of such contacts after condensation of Zr-based polyhe-
dra with larger GeO4 tetrahedra.

In the ZrSiO4 and ZrGeO4 phases discussed above,
the formation of SSUs (in contrast to K3ZrF7 with two
additional atoms lying above and under the plane of a
cyclic cluster) proceeds without participation of other
atoms (Figs. 7c and 7d). Therefore, in the KF system
containing two phases, ZrSiO4 and K3ZrF7, with the
same chemical complexity R = 3, the simplest (and
shortest) program of formation of a crystal structure is
characteristic of SSU–precursors of zircon, the main
phase in the system at ZrO2:SiO2 = 2:1 to 1:2.

Structures with Rchem = 4. In contrast to ZrO2,
K3ZrF7, ZrSiO4, and ZrGeO4 phases (with Rchem = 2
and 3), all anhydrous K,Zr-based silicates (Rchem = 4)
are formed from six-polyhedron precursors (Fig. 7a).
Such invariant SSU–precursors of the K,Zr-based sili-
cates (Rchem = 4) contain two K atoms lying above and
under the plane of a cyclic cluster (Figs. 7a and 7b), like
SSUs in K3ZrF7. The difference between the structures
of obtained K,Zr-based silicates, K2ZrSi3O9 and
K2ZrSi6O15, reduces to different numbers of binding
SiO4 tetrahedra drawn in by the SSU–precursors at
higher levels of the self-organization of the system [16].

It is evident that cyclic SSUs with a smaller number
of structural units (four in the phases with Rchem = 2 and
3) have some advantages—a higher formation rate in
comparison with the formation rate of other SSU–pre-
cursors, are formed from a larger number of structural
units in the same crystal-forming medium, namely, six
in the K,Zr-based silicates.

Thus, the structures of the first group (ZrO2,
K3ZrF7, ZrSiO4, and ZrGeO4) differ from those of the
second group (three K,Zr-based silicates), first and
foremost, by the number of polyhedral links in cyclic
SSU–precursors, four and six links, respectively. As a
consequence, the program of formation of an SSU–pre-
cursor in K2ZrSi2O7 becomes more complicated in
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Fig. 7. SSU precursors of crystalline structures: (‡) K2ZrSi2O7, (b) K3HfF7(K3ZrF7), (c) ZrSiO4, (d) ZrGeO4, (e) [Zr4(éç)8 ·
16H2O] (for [Zr4(éç)8Cl4 · 16H2O] · 4ël · 12H2é, (f) [Zr4F8 · 16F] (for (CN4H8)ZrF6 · H2O).
comparison with the programs of any phase with
Rchem = 2 and 3. A new phase, K3ZrF7 (with Rchem = 3),
formed in the KF system results in suppression of the
evolution channel of K2ZrSi2O7.

Chemical factor. Note that, with an increase in con-
centration ëKF in the KF solution, the simplest polyhe-
dral structural units in the SSU–precursors are chemi-
cally modified; that is, the OH groups in the Zr-based
polyhedra are partially substituted by F atoms. This
rules out the participation of these SSU–precursors in
the structure formation in oxygen-containing silicates.

In the same way, precursors of K,Zr-based fluoride
cannot participate in the assembly of the K3ZrF7 struc-
ture with the modified coordination sphere of Zr-based
polyhedra (some F atoms are replaced by oxygen from
OH groups).
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
The K3ZrF7 structure can form only in a medium
with an elevated concentration of K and F atoms. In this
case, the invariant six-polyhedron precursors of K,Zr-
based silicates and their structural derivatives in such
media cannot complete with a rapidly forming four-
polyhedron SSU in K3ZrF7. The cocrystallization of
K3ZrF7 in the crystallization fields of K2ZrSi3O9 and
K2ZrSi3O9 + K2ZrSi6O15 (in the solutions with reduced
ZrO2 content in the mixture) is consistent with the con-
cept of behavior of K3ZrF7 precursors 7 in the solutions.

Two factors (structural and chemical) discussed
above provide the suppression of the evolution channel
of SSU–precursors of the K2ZrSi2O7 phase occurring
with the replacement of the KOH solvent in the system
by KF. Note also that, in the sequence of the crystalliz-
ing phases K2ZrSi6O15  K2ZrSi3O9  K2ZrSi2O7,
the crystallization field of K2ZrSi2O7 corresponds to the
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most concentrated KOH solutions for the Zr-based sys-
tems under discussion. Hence, this phase will be the
first to be replaced by K3ZrF7 in concentrated KF solu-
tions.

In conclusion, we should like to note that the SSU–
precursor established for ZrO2 is an island-like four-
polyhedron precursor [Zr4(OH)8 · 16H2O] of the salt of
aqueous zirconium oxychloride [Zr4(OH)8Cl4 · 16H2O] ·
4Cl · 12H2O [23] incorporated into the three-dimen-
sional structure of the dioxide (according to the maxi-
mum boundedness mechanism) (Fig. 7e). The zirco-
nium salt was crystallized from a solution with the
addition of concentrated HCl.

In terms of topology, the structure of the SSU–pre-
cursor of aqueous zirconium oxychloride is fully repro-
duced in the form of island-like four-polyhedron cluster
[Zr4F8 · 16F] (Fig. 7f) of the (CN4H8)ZrF6 · H2O crystal
structure obtained in fluoride solutions [24]. The study
of the (NH4)3Zr2F9SO4 · 2H2O crystal structure and its
isostructural K-based analogue K3Zr2F9SO4 · 2H2O
[25] showed that such Zr–F-based clusters in the bound
state form isolated two-dimensional layers.
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Abstract—The regularities of periodic processes of local crystallization of enantiomers and the kinetics of
nucleation and growth of crystals are considered. The criteria for optimization of technological processes of
preparing chiral drugs with the aim of attaining the maximum yield of final products with a required optical
purity are formulated on the basis of experimental data. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Almost half the drugs manufactured throughout the
world belong to the class of chiral compounds. One of
the promising processes of their preparation is the so-
called preferential or local crystallization of enanti-
omers. This process involves local crystallization of
individual enantiomers (L or D forms) on seed crystals
in a supersaturated racemic solution, which provides
direct separation of racemates into enantiomers [1, 2].1

The mechanisms of local crystallization of enanti-
omers are similar to those of bulk crystallization of
solutions with the participation of seed crystals [3]. In
both cases, the crystalline product is formed by parti-
cles of two types: crystals grown on seeds preliminarily
introduced into the solution and crystals grown from
nuclei spontaneously formed in the solution. At the
same time, there is a significant difference between
these processes. The traditional crystallization results
in the formation of crystals with identical physico-
chemical properties, and, hence, their ratio in the final
crystalline product does not affect its properties. The
properties of the crystals formed upon local crystalliza-
tion of enantiomers differ radically. Seed crystals and
crystals growing on them represent an enantiomer with
the best functional characteristics (for example, the
highest pharmacological activity in the case of chiral
drugs), whereas spontaneously growing crystals of

1 A racemate is the compound formed by enantiomers taken in
equal proportions. A racemic solution is a solution of a racemate.
1063-7745/03/4806- $24.00 © 21059
racemates are side (inactive or harmful) components of
the final product. In the case of chiral drugs, these com-
ponents either have no noticeable medicinal effect or
have a damaging effect on one’s health [1, 2]. The end
aim of local crystallization of enantiomers is to ensure
a high yield of the final product with a maximum con-
tent of the required enantiomer.

Experience in manufacturing chiral drugs through
local crystallization of enantiomers shows that an
increase in the yield of the crystalline product is neces-
sarily accompanied by a decline in enantiomeric purity
(i.e., by a decrease in the content of the required enan-
tiomer). This can be explained by the fact that the crys-
tallization conditions providing an increase in the con-
tent of crystals of the required enantiomer (most fre-
quently, an increase in the supersaturation or the
duration of the process) are also favorable for an
increase in the amount of racemic crystals contaminat-
ing the final product. In this respect, the optimization of
local crystallization of enantiomers with the aim of
achieving the maximum yield of the product with the
observance of medical requirements for enantiomeric
purity is a very important problem. However, at present,
this problem is far from resolved. This is associated
with both technical and fundamental difficulties,
because systematic investigations into the processes of
synthesizing chiral drugs have been performed only in
the last 15–20 years [1].

The local crystallization of enantiomers can proceed
in periodic or continuous regimes. The continuous
003 MAIK “Nauka/Interperiodica”
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crystallization ensures a higher enantiomeric purity of
the product. This process can be conducted, for exam-
ple, in a crystallizer in the form of an open flow-type
system. A racemic solution is fed from below into the
crystallizer and passes through a crystallization cham-
ber. Seed crystals of the required enantiomer are intro-
duced into the chamber in which they are in a sus-
pended state in a rising stream of the solution. The
growth of crystals is attended by an increase in their
weight. As a result, the crystals tend to settle to the bot-
tom of the crystallizer and are then discharged from it.
Concurrently, small-sized racemate crystals formed in
the solution accumulate at the top of the crystallizer and
are removed from it together with the solution. Conse-
quently, crystals of different types are continuously
separated in the crystallizer. There exist other variants
of continuous crystallization. However, these processes
have a serious disadvantage associated with the neces-
sity of strictly controlling the flow rate of the solution.
Moreover, the implementation of these variants
requires the use of rather complex crystallization equip-
ment.

The periodic crystallization occurs within a limited
period of time in a crystallizer being a closed system.
Initially, seed crystals of the required enantiomer are
introduced in the racemic solution in the crystallizer.
Once the crystals have grown to a specified size, they
are removed from the crystallizer. However, racemate
crystals are also removed from the crystallizer, pro-
vided the spontaneous crystallization takes place simul-
taneously with the crystal growth on seeds. Then, the
solution is saturated with the racemate and the crystal-
lization on seed crystals of the opposite enantiomer is
performed. These procedures are repeated many times,
which makes it possible to prepare the required enanti-
omer in considerable amounts. A serious disadvantage
of the periodic crystallization is the necessity of strictly
controlling the supersaturation of the solution in order
to minimize or completely suppress spontaneous pre-
cipitation of racemic crystals and to ensure the high
optical purity of the final product. The sizes of enanti-
omer crystals grown on seeds can be larger than those
of spontaneously formed racemic crystals. In this case,
they can be mechanically separated from the final prod-
uct. However, most frequently, crystals of different
types are sufficiently close in size to each other. As a
consequence, their separation becomes extremely diffi-
cult or even impossible.

The local crystallization of enantiomers is charac-
terized by a complex dependence of the yield and the
enantiomeric purity of the final product on the parame-
ters of the process (the induction period of nucleation,
the number and sizes of introduced seed crystals, etc.).

In this work, we considered the regularities of peri-
odic local crystallization of enantiomers and possible
methods of optimizing this process with the aim of
increasing the yield of the crystalline product with a
high enantiomeric purity.
C

ANALYSIS OF LOCAL CRYSTALLIZATION 
OF ENANTIOMERS

The equation of material balance for periodic local
crystallization of enantiomers can be written in the
compact form

MS + = MGS + MR + MGN. (1)

Here, MS is the initial mass (kg) of seed crystals of the
required enantiomer in the solution,  is the initial
mass (kg) of the dissolved racemate, MGS is the mass
(kg) of the required enantiomer crystals grown on seeds
at the instant of time τ, MR is the mass (kg) of the dis-
solved racemate at the instant of time τ, MGN is the mass
(kg) of the racemate crystals grown on nuclei in the
solution at the instant of time τ, and τ is the crystalliza-
tion time (min).

The enantiomeric (or optical) purity P and the yield
Y (kg) of the crystalline product can be determined
from the following formulas (under the assumption that
the contents of L and D enantiomers in the spontane-
ously crystallized racemate with mass MGN are equal to
each other):

P = (MGS – MGN)/(MGS + MGN), Y = MGS + MGN. (2)

According to relationships (2), the enantiomeric purity
P increases with an increase in MGS and a decrease in
MGN. In turn, the yield of the crystalline product Y
increases with an increase in MGS and MGN. Therefore,
in order to obtain the maximum yield Y at a high enan-
tiomeric purity P, it is necessary to determine the opti-
mum ratio between MGS and MGN.

Let us consider a simplified model of the crystalliza-
tion process. We assume that the solution contains a
fixed number nS of seed crystals with identical initial
sizes  (m) and a fixed number nN of spontaneous

nuclei with identical initial sizes  (m). The seed
crystals were introduced into the solution at the instant
of time τ = 0, and the spontaneous nuclei arose at the
instant of time τN (min). Here, τN is the induction period
of nucleation, i.e., the time elapsed from the onset of
crystallization to the crystal nucleation. In this case, the
process of forming the crystalline product can be
treated as consisting of two concurrent processes,
namely, the crystal growth on seeds and the crystal
growth from nuclei. It is also assumed that crystals of
both types do not undergo multiplication and agglom-
eration in the course of growth; i.e., the numbers of
crystals of both types remain unchanged during the
growth. Then, the masses MGS and MGN can be approx-
imately determined from the expressions

MGS = nSFρc (τ); MGN = nNFρc (τ), (3)

where F is the form factor; ρc is the density (kg/m3) of
the crystalline material; and rS(τ) and rN(τ) are the cur-
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rent sizes (m) of crystals growing on seeds and from
nuclei, respectively.

In the framework of the model proposed, the growth
rate GS of crystals on seeds and the growth rate GN of
crystals from nuclei are the most important kinetic
parameters of crystallization. As a rule, the sizes of
crystals grown on seeds do not exceed tenths of a milli-
meter [4]. In turn, crystals grown from nuclei have even
smaller sizes. For such small crystals, the growth rate
depends on the crystal size: the larger the crystal size,
the higher the growth rate of crystals [5, 6]. The exper-
imentally determined dependence of the crystal size on
the time [6] is plotted in Fig. 1. With due regard for this
dependence and by assuming that the supersaturation
(directly affecting the crystallization rate) remains con-
stant, the growth of crystals on seeds and from nuclei
can be described, to a first approximation, by the equa-
tions

rS(τ) = ä(τ + ( /K)1/2)α, rN(τ) = ä(τ – τN)α, (4)

where K = 2.5 × 10–12 m/s2 and α = 2 (the chosen
parameters give the best fit to the experimental data on
the time dependence of the crystal size [6]).

In the equation for the growth of crystals from
nuclei, the initial sizes of nuclei (at ) can be ignored
because of their smallness. With allowance made for
Eqs. (4), the values of MGS and MGN can be determined
from the relationships

(5)

The dependences rS(τ) and rN(τ) described by Eqs. (4)
and the dependences MGS(τ) and MGN(τ) described by
relationships (5) are shown in Fig. 2. The variant with
the initial size of seed crystals  = 0.05 mm, the
induction period of nucleation τN = 30 min, the number
of introduced seeds nS = 3 × 104, and the number of
formed nuclei nN = 8 × 104 is used as the starting model.
The induction period of nucleation τN = 30 min is cho-
sen with due regard for the experimental data on the
local crystallization of glutamic acid on seeds of the D
enantiomer [7]. In all cases, the crystallization duration
is taken to be equal to 180 min, because the rate of
growth of crystals from spontaneously formed nuclei
depends on the crystal size [6] over this period of time.
For simplicity, the numerical values of F and ρc are
taken to be equal to unity. The nucleation parameters
are chosen so that the optical purity P after the comple-
tion of the process falls in the range 80–95%.

It can be seen from Fig. 2 that, under the chosen con-
ditions, the size of spontaneously grown crystals
toward the end of the process remains approximately
three times smaller than the size of crystals grown on
seeds and the mass of the former crystals does not

rS0

τN0

MGS nSFρc K τ rS0
/K( )1/2

+( )
α

[ ]
3
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MGN nNFρc K τ τ N–( )α[ ] 3
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exceed ~5% of the total mass of the crystallized prod-
uct. For the first 30 min (induction period of nucle-
ation), crystals grow only on introduced seeds of the
required enantiomer in the solution, which leads to the
formation of the product with an optical purity of
100%. It seems likely that an increase in the induction
period of nucleation should make it possible to obtain
the pure product for longer time intervals. The influ-
ence of the induction period of nucleation on the prod-
uct yield Y and the enantiomeric purity P of the product
is illustrated in Fig. 3. As can be seen from this figure,
a twofold increase in the induction period of nucleation
τN (from 30 to 60 min) leads to an increase in the optical
purity P of the crystallized product from 80 to 95%. At
the same time, the total yield of the product almost does
not depend on the induction period of nucleation τN

(Fig. 3a). This is explained by the aforementioned
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Fig. 1. Experimental dependence of the crystal size on the
time [6] (open squares) and its interpolation (solid line).
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small contribution of spontaneously nucleated crystals
to the total mass of the crystalline product (Fig. 2).

For the same reason, an increase in the number nN of
spontaneous nuclei (by a factor of four in our calcula-
tions) virtually does not affect the total yield of the final
product (Fig. 4a). On the other hand, the effect of the
number nN of spontaneous nuclei on the optical purity
of the final product is significant and opposite to that of
the induction period of nucleation τN: an increase in nN

is attended by a drastic decrease in the optical purity
(Fig. 4b) (an increase in nN by 1% results in a decrease
in P by ~2%). This effect is associated with the nonlin-
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Fig. 3. Time dependences of (a) the yield and (b) the optical
purity of the crystalline product at different induction peri-
ods of nucleation τN = (1) 30, (2) 45, and (3) 60 min.
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purity of the crystalline product at different numbers of
spontaneously formed nuclei nN = (1) 2 × 104, (2) 4 × 104,
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C

ear dependence of the optical purity P on MGN at con-
stant MGS.

Thus, the analysis of the results obtained demon-
strates that an increase in the induction period of nucle-
ation τN is an efficient way to increase the yield and the
enantiomeric purity of the product. It is well known that
the induction period of nucleation τN strongly depends
on the crystallization temperature and decreases as this
temperature increases. For example, according to our
data, the induction period of nucleation τN increases
from 10–15 min to 2–20 h with a decrease in the crys-
tallization temperature from 40–42 to 25–20°C upon
crystallization of drugs such as levomycetin, syntho-
mycin, and camphor in water–alcohol solutions. Con-
sequently, a decrease in the temperature of the local
crystallization of enantiomers is an efficient way of
increasing the enantiomeric impurity of the prepared
products.

Another way to increase the optical purity of prod-
ucts is to decrease the supersaturation of solutions,
because the induction period of nucleation τN is
inversely related to the supersaturation. However, this
approach necessarily leads to a substantial decrease in
the product yield.

The third way to increase the optical purity is to
introduce special additives suppressing spontaneous
nucleation in solutions. This process can also be
accompanied by an appreciable retardation of the
growth on seed crystals.

The parameters  and nS can affect the yield Y and
the optical purity P of the final product as follows. An
increase in the initial sizes of seed crystals  and their
number results in a proportional increase in the yield Y
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Fig. 5. Time dependences of (a) the yield and (b) the optical
purity of the crystalline product at different initial sizes of
seed crystals  = (1) 0.05, (2) 0.10, and (3) 0.15 mm.rS0
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(Fig. 5). The parameters  and nS have an almost iden-
tical effect. This indicates once again that seed crystals
make a decisive contribution to the total mass of the
product. On the other hand, the optical purity P
increases in a nonlinear manner. Indeed, a twofold
increase in the number nS of seed crystals with respect
to the initial value (3 × 104) leads to an increase in the
optical purity from 80 to ~90%, and a further twofold
increase in nS to 1.2 × 105 is attended by an increase in
P by only 5%. This can be explained by the nonlinear
dependence of the optical purity on MGS at constant
MGN.

CONCLUSIONS

Thus, in this work, we analyzed the influence of the
main variable parameters on the yield and the enantio-
meric purity of the products formed upon local crystal-
lization of enantiomers. It was demonstrated that an
increase in the induction period of nucleation τN is the
most efficient way to increase the purity of crystalliza-
tion products. This can be achieved both by a decrease
in the crystallization temperature or supersaturation
and by the introduction of special additives (for exam-
ple, nucleation inhibitors) into solutions. However, this
leads to a decrease in the product yield. Among the
above approaches, the first approach seems to be more
efficient in practical applications, because even a small
decrease in the crystallization temperature (within a
few degrees) can result in a considerable increase in the
induction period of nucleation τN with an insignificant
decrease in the yield Y. In this case, the decrease in the
yield Y can be compensated for by an increase in the
crystallization time.

An increase in both the number of seed crystals
introduced into solutions and their sizes leads to an
increase in the yield of crystallization products and
their enantiomeric purity. However, if the induction

rS0
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period of nucleation τN remains relatively short, the
crystallization time should be reduced as much as pos-
sible in order to retain the high purity P (more than
~95%).

By applying the proposed investigation technique
and using the results of preliminary experiments, the
conditions of conducting the technological process of
crystallization in each specific case can be chosen in
such a way as to provide the maximum yield of drugs at
a specified optical purity satisfying pharmacological
requirements.
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Abstract—The results of the complex study of the morphology and defect state of the crystals of the isomor-
phous potassium acid phthalate–rubidium acid phthalate (KAP–RbAP) series formed in aqueous solutions are
presented. The crystals are characterized by heteroepitaxial porous and solid textures formed as a result of the
exchange reaction between the crystals and solution. The interaction of the KAP and RbAP crystals with
saturated RbAP and KAP aqueous solutions is studied both in situ and in vitro under optical and atomic force
microscopes. The results obtained are used to create a theoretical model of formation of characteristic morpho-
logical textures in liquid phase epitaxy, including their formation from the aqueous solutions of the respective
salts. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The formation of isomorphously mixed crystals in
solutions is an individual important problem which is
being solved within the framework of the studies of the
crystallization processes of complex (multiphase and
multicomponent) systems. Its solution is necessary for
controlled growth of these crystals and interpretation of
the genesis of minerals, most of which are character-
ized by varying compositions.

For the first time, the unusual phenomena during the
isothermal contact of a multicomponent liquid phase
with a crystal having the composition nonequilibrium
with respect to this phase (substrate dissolution, growth
of a new phase with the simultaneous dissolution of the
substrate, metastable equilibrium of two phases under
certain supercooling) were observed in liquid phase
heteroepitaxy of solid solutions of the A3B5 com-
pounds. These unusual phenomena were interpreted
based on the suggested model of the formation of a
stressed diffusion layer (skin layer) on the substrate
surface [1–3]. Almost simultaneously with these stud-
ies, similar effects have also been observed since 1983
in growth of mixed crystals from aqueous solutions at
St. Petersburg University [4–14]. Despite the similarity
of the phenomena occurring in solutions and in liquid
phase epitaxy in melts, the morphological effects in
crystallization from solutions are usually more pro-
nounced than in liquid phase epitaxy (LPE) in melts.
1063-7745/03/4806- $24.00 © 21064
The model of a stressed skin layer describes the
experimentally observed metastable equilibrium
between the supercooled melt and the substrate rather
satisfactorily. Moreover, Bolkhovityanov [1–3] indi-
cated the relation between the lattice parameters of the
substrate and the epitaxial layer grown on it and the char-
acter of the surface morphology. At the same time, this
model fails to reliably explain the formation of morpho-
logical textures during interaction of a growing crystal
with the liquid phase whose composition is not in equi-
librium with respect to the composition of the crystal.

Based on numerous observations of the processes
occurring in aqueous solutions, it is shown that there
exists a relation between the forming surface morphol-
ogy and the solubility ratio of the system components.
A model of isomorphous replacement based on the
physicochemical analysis of the phase interaction was
suggested and developed in a number of studies [4–11].
The model allowed one to relate the mechanism and
kinetics of the process to the type of a formed morpho-
logical structure.

The most important characteristic of this model is
the allowance for the changes in the compositions of
the solid and liquid phases caused by their exchange
interaction during the process (reaction of isomorphous
replacement). During the isothermal interaction of a
crystal and a saturated solution with the composition
nonequilibrium with respect to the composition of the
crystal, the whole process reduces to this reaction.
Supercooling or overheating of the solution can give
003 MAIK “Nauka/Interperiodica”
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rise to the appearance of a driving force (solution super-
or undersaturation) of growth of a new crystalline phase or
the dissolution of the initial crystal. At sufficiently high
values of supercooling or overheating, either free growth
or dissolution is observed, with the exchange reaction
being practically fully suppressed. These important char-
acteristics of formation of mixed crystals were established
in aqueous systems with the (Mg,Ni)SO4 · 7H2O,
(Fe,Ni)SO4 · 7H2O, (Co,Ni)(NH4)2(SO4)2 · 6H2O,
(Cr,Al)K(SO4)2 · 12H2O, K2(SO4,CrO4), etc., salts.

The concept developed in [4–11] allows one to
interpret and predict many characteristic features of the
interaction of a crystal and a liquid phase with the com-
position nonequilibrium with respect to the crystal
composition. Nevertheless, to date, there is no detailed
model of the mechanism of this process that can describe
its main stages and determine its unique relation to the sys-
tem parameters. Experiments show that the general char-
acteristics of the above effects are the same in different
systems, but the process details can be different. Below,
we discuss the general characteristics of liquid phase
epitaxy of the salts of the potassium acid phthalate–
rubidium acid phthalate (PAP–RbAP) series, consider
some of their characteristic features, and suggest the
general model of formation of an interface between the
initial crystal (substrate) and the epitaxial layer.

EXPERIMENTAL

The dynamics of the long-term development of mor-
phological textures was studied on flat samples. The
7 × 5 × 0.25-mm-large (010) cleavage of a plate of a
KAP or RbAP crystal was placed between the object
carrier and the cover glass glued along their perimeters
with a vacuum lubricant (Fig. 1a). The volume of the
solution was determined using the sample thickness
(0.25–0.30 mm) and the dimensions of the cover glass
(15 × 15 mm). The observations were made under an
optical microscope.

The experiments made on a microcrystallization
setup (Fig. 1b) under controllable conditions [15] were
undertaken to study the dynamics of the initial stages of
the interaction between KAP and RbAP crystals and the
solutions of a component–partner (another salt of the ter-
nary system). The constancy of the solution composition
during the experiment was ensured by the use of a large
volume of the solution (50 ml), small dimensions of a seed
(not exceeding 2 × 2 × 2 mm), and the absence of sponta-
neous nucleation in the crystallizer volume. The in situ
studies of the solution of a set composition in reflected or
transmitted light at temperatures in the vicinity of the sat-
uration point showed the signs either of growth or dissolu-
tion on the crystal surface (sharp or rounded edges,
motion of macrosteps, directions of convective flows,
etc.). We also studied different stages of the evolution
of a seed surface and determined their duration.

In situ studies on a Nanoscope 3 atomic force micro-
scope (AFM) showed the changes of the surface mor-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
phology of RbAP crystals interacting with the KAP
solution. A 3 × 3 × 2.6-mm-large RbAP crystal was
placed into an AFM cell filled with a KAP solution sat-
urated at a temperature of 28°C. The (010) surface of
the crystal was studied. The experiments were per-
formed in the constant-force mode; the visual field had
the dimension L = 10 µm. Scanning frequency was H =
10.1725 Hz at the number of scans per frame S = 512.

RESULTS

Exchange of Isomorphous Components between 
Crystals and Solutions

The observation of the dynamics of the processes of
isomorphous replacement occurring between the initial
KAP and RbAP crystals and the solution of the compo-
nent–partner showed that they were similar. Figure 2
shows the photographs of the Y cuts of KAP and RbAP
crystals at various moments of their interaction with the
RbAP and KAP solutions, respectively. In all the cases,
the process begins with crystal dissolution. Five min-
utes after the beginning of the interaction, the periph-
eral region of both samples acquired clearly seen defect
zones formed due to the processes taking place at the
end faces of the crystal. Such a defect zone consists of
a network of thin channels penetrating to a considerable
depth of the crystal and contains inclusions of the solu-
tion. One can also see the formation of islands on the
(010) faces of both crystals, although the face of the
KAP crystal is covered with the layer almost com-
pletely, whereas a considerable part of the surface of
the RbAP crystal remains uncovered.

The differences in the processes occurring on the
surface of KAP and RbAP crystals gradually disappear.
After 1.5 h, the surface of the KAP crystal is com-
pletely covered with a inhomogeneous solid layer of a
new formation, whereas the surface area of the RbAP
crystal covered with the islands of the new phase con-
siderably increases despite the fact that there still exist
some small island-free regions of the substrate. At the
same time, the formation of a porous structure at the
end surfaces of the RbAP crystal continues, whereas
the analogous process on the KAP crystal almost
ceases. After 170 h, the surfaces of both crystals
become practically indistinguishable; all their faces are
covered with similar overgrown epitaxial formations,
whose shape depends on the type of the sample face.

We would like to draw attention to the fact that, in
the C8H5O4K–C8H5O4Rb–H2O system considered here,
porous and island textures are substantially different
from those observed in other systems [4, 5]. In the sys-
tems described earlier, porous structures are formed
only if the crystal substance has the solubility exceed-
ing the solubility of the dissolved component–partner.
In this case, the porous texture rapidly propagates over
the whole volume of the crystal (several days or even
hours) and uniformly, and this is the final stage of the
process. On the contrary, autoepitaxial island textures
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Fig. 1. Schematic illustrating in situ observations. (a) Flat samples: 1, solution, 2, sample, 3, cover glass, 4, varnish layer, 5, vacuum
lubricant, 6, object carrier; (b) microcrystallization setup: 1, quartz vessel connected with a thermostat, 2, optical microscope,
3, device for mounting a videocamera, 4, internal volume of the vessel with the solution, 5, mixer, 6, seed, and 7, crystal holder.
are formed only if the substance of the crystal has a
lower solubility than the solubility of the dissolved
component–partner. In this case, the island texture is
limited by a thin subsurface zone of the crystal and the
substitution proceeds in the crystal very slowly (about
0.5 mm/month). In our case, despite the fact that the
solubility of rubidium acid phthalate exceeds the solu-
bility of potassium acid phthalate, porous textures at the
initial stage were formed on both RbAP and KAP sub-
strates. Then, no pore formation was observed, and the
main part was played by growth of a crystalline layer.

In situ Atomic Force Microscopy

At the first stage (first three to four minutes), we
observed very intense layer-by-layer dissolution of the
C

sample because of fast motion of echelons of mac-
rosteps. Since for the time of the frame development
(50 s) the sample thickness decreased by a value
exceeding the cantilever path along the surface normal
(3 µm), it was impossible to measure the normal disso-
lution rate. According to our estimates, the rate of the
sample dissolution at the initial stage was about
5 µm/min. After the next five minutes, the dissolution
rate considerably decreased, which allowed us to deter-
mine the velocity of the macrostep motion from a pair
of successive frames (Fig. 3) taken along the opposite
scanning directions. In this case, the velocity of the step
motion is calculated from the change of the tilt angle of
the images obtained during upward and downward
motion of the cantilever.
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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(c) (f)

(b) (e)

(d)(a)
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x

z

Fig. 2. Illustrating the changes in the surface morphology during interaction of flat samples with the solution of the component–
partner: (a–c) Y cut of a KAP crystal in the RbAP solution; (d–f) Y cut of a RbAP crystal in the KAP solution; (a, d) five minutes,
(b, e) 1 h 20 min, and (c, f) 170 h after the introduction of the solution.
Figure 3a shows two types of macrosteps—rela-
tively low macrosteps 1 and high macrosteps 2 and 3
moving in the opposite directions. Their velocities and
orientations are indicated in the table.

Knowing the mean tilt of the surface to the singular
face, p, and the tangential velocity of step motion, V,
one can calculate the normal dissolution rate as

R = pV. (1)

The p value measured along the aa (Fig. 3a) and bb
(Fig. 3b) segments on relatively smooth regions of the
surface is ~0.7° (Figs. 3c, 3d). Thus, the normal disso-
lution rate is R ~ 0.5 µm/min; i.e., within 10 min, it
decreases by an order of magnitude.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
Figure 4 shows the initial AFM images obtained in
the constant-force mode and the corresponding recon-
structed three-dimensional images of the surface inside
the channels between the primary islands shown in
Fig. 5. It follows from Figs. 4a–4c that, at the first stage,
the channels are formed due to fluctuations. As a result,
ledge 1 is formed at the left-hand side of the channel,
and pit 2, at its bottom (Fig. 4d). Then, the channel
gradually deepens because of the continuing dissolu-
tion of the substrate between the islands and simulta-
neous narrowing of the channels because of island
growth (Figs. 4e, 4f). Growth of the layer on the right-
hand side of the channel (3) slowly proceeds upward
along the [010] direction. The left-hand side of the
channel remains rather smooth for the whole time of
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Fig. 3. AFM images of the (010) surface of the RbAP crystal interacting with the KAP solution: (a) 2 min and (b) 2 min 50 s after
the introduction of the solution and the surface profiles along the (c) aa and (d) bb lines; 1–3 are macrosteps of different kinds.
observation, with the thickness of a grown layer on the
right-hand side considerably exceeding the layer thick-
ness on the left-hand side. This difference can probably
be explained by the specific characteristics of the distri-
bution of convective flows in the channel.

Crystallization under Controllable Conditions

A RbAP seed introduced into the KAP solution
starts immediately dissolving, which is seen from
rounding-off of the vertices and edges and appearance
of etch pits. One to two minutes later, the first signs of
growth are observed—the formation of flat regions on
the surface, layer polygonization, and appearance of
ascending convective flows. This stage is followed by
autoepitaxial growth of islands. Some time later, the
islands cover almost the whole surface except for chan-
nels between the islands preserved intact during the
whole experiment (Fig. 5).

Parameters of macrosteps shown in Fig. 3

Macrostep Velocity,
µm/s

Angle formed with the 
vertical axis measured in 
the clockwise direction

1 0.790 –29.5°

2 0.008 48.5°

3 0.035 48.5°
CR
DISCUSSION

Reaction of Isomorphous Replacement

All the interpretations of the reaction of isomor-
phous replacement [1–14] are based on the fact that the
contact between the liquid phase and the crystal, whose
compositions are not in equilibrium, results in crystal
dissolution, solution supersaturation, and crystalliza-
tion of a new phase. This phenomenon was theoreti-
cally interpreted in [2, 3], where growth of epitaxial
semiconductor films in the AIIIBV systems was studied
and it was shown that the interaction between the liquid
and solid phases with mutually nonequilibrium compo-
sitions results in an increase (in comparison with the
equilibrium state) of the thermodynamic potential of
the system and, as a result, in crystal dissolution. Iso-
morphous replacement in water–salt systems was stud-
ied in [4–14], where the process was interpreted quali-
tatively as a particular case of the salting-out reaction.

The change of the solution composition because of
the substrate dissolution and its supersaturation in a
thin diffusion subsurface layer results in crystallization
of a new phase—a solid solution of the salt components
of the system with a composition different from the
composition of the initial crystal. In essence, the reac-
tion of isomorphous replacement reduces to crystal dis-
solution and crystallization of new layers with the
phase compositions being gradually shifted toward the
equilibrium. In other words, the reaction proceeds until
the compositions of the crystal and solution would
attain equilibrium at the given temperature. Further
YSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Fig. 4. (a–c) AFM images and (d–f) three-dimensional reconstruction of the (010) surface of an RbAP crystal interacting with the
KAP solution: (a, d) 14, (b, e) 24, and (c, f) 28 min after the introduction of the solution.
growth of the crystal is possible only after the attain-
ment of the solution supersaturation because of the
lowering of the temperature, evaporation of water, or
feeding of the solution.

The initial dissolution of the substrate giving rise to
further crystallization of the isomorphous substance on
it is the key moment of the whole process, which is con-
firmed by the AFM data. The intense layer-by-layer dis-
solution of the substrate at the initial moments of its
contact with the solution of the component–partner
(from several seconds to several minutes) was observed
on both optical and atomic force microscopes. Thus,
the results of the present study can be considered as the
first direct experimental confirmation of the models of
the process suggested in [1–5].

The specific characteristic of the reaction of isomor-
phous replacement is its occurrence under the action of
constant external factors (temperature and pressure).
Therefore, the necessary condition for the reaction
occurrence is the ability of the system to reach equilib-
rium because of the changes in the compositions of the
contacting phases, i.e., the existence of at least one
degree of freedom. In accordance with the Gibbs phase
rule, in this case, the two-phase system should consists
of at least three components. The simplest example of
such systems is solutions. As will be shown later, in this
case, it is possible to develop an analytical model of
morphological changes and formulate a comparatively
simple criterion of the volume effect of the reaction.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
Morphological Effect of the Reaction 
of Isomorphous Replacement

In accordance with the models of substrate transfor-
mation during its interaction with the liquid phase with
the composition nonequilibrium with respect to the
substrate composition discussed in [1–5], the whole
process can be divided into three stages (Fig. 6). These
are the primary dissolution of the substrate and forma-

20 µm

Fig. 5. A part of the (010) surface of an RbAP crystal
12 min after its interaction with the RbAP solution (optical
microscope).
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Fig. 7. Schematic illustrating tangential growth of islands during dissolution of the substrate between these islands: (a) section,
(b) view from above.
tion of the layer of the supersaturated solution at the
interface; deposition and fast growth of islands; and
further slow growth of the islands already formed due
to dissolution of the substrate between these islands.
The first two stages are common for all the types of the
contact between the crystal and the liquids with non-
equilibrium compositions with respect to the composi-
tion of the crystal. The third stage is the most important
one for the formation of a characteristic morphological
texture, because it is at this stage that the channels
(pores) are formed in the substrate or islands coalesce
into a solid epitaxial layer.

Island deposition begins after the attainment of the
supersaturation in the subsurface layer of the substrate
because of the primary dissolution of the substrate. This
supersaturation should be sufficient for heterogeneous
nucleation of a new phase on the substrate surface. At
this stage, the process is associated with fluctuations
because of the great importance of the local variations
in the supersaturation caused by concentration convec-
tion and of the defects present on the crystal surface and
facilitating nucleation.

Supersaturation in the vicinity of the nucleated
islands decreases, and growth of islands proceeds by
the spiral mechanism. New islands are formed up to the
moment when the diffusion fields of neighboring
islands start overlapping, because then the supersatura-
tion at all the points above the surface becomes insuffi-
cient for heterogeneous nucleation. At the same time,
the substrate dissolution between the islands continues
(this is confirmed by the AFM data). However, now the
process proceeds in the steady-state mode and can be
characterized by a certain space–time dependence
C

relating the processes of substrate dissolution, crystal-
lization of a new phase, and diffusion of the dissolved
substance in the solution.

Consider the model of this process in more detail.
The main assumption consists in the following. Upon
cessation of the deposition of new islands, growth of
the already existing islands proceeds solely because of
the dissolution of the substrate between these islands,
and all the excessive substance is deposited on the end
surfaces of the islands. In other words, the transport of
the substance outside the channels between the islands
and growth of islands along the surface normal of the
substrate are ignored. We also assume that the process
occurs at the constant temperature and that the crystal-
line components of the system form a continuous series
of solid solutions.

Let the specific area of the surface free of islands
(per unit area of the interface) at a certain moment of
time be S and the mean depth of channels formed by
this moment be h (Fig. 7). Consider the material bal-
ance in the process (the further analysis is also per-
formed per unit area of the interface). Let a layer of
thickness dh be dissolved in the channels between
islands within a certain time interval. Then, the volume
of the crystalline phase equal to Sdh goes to the solu-
tion, thus giving rise to an additional supersaturation of
the solution and crystallization of a layer with the thick-
ness dr at the channel walls (end surface of the islands)
(Fig. 7b). Then, the area of the free surface of the sub-
strate changes by –dS and the volume of the layer crys-
tallized because of the dissolution of the volume Sdh of
the substrate becomes equal to hdS. However, the com-
positions of the substrate and the crystallized layer
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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would be different because of the mutual nonequilib-
rium of the compositions of the initial crystal and the
solution. This requires the introduction into the mate-
rial balance equation of a certain coefficient ω taking
into account the change in the volume and solubility of
the crystalline phase with the change of its composi-
tion. Finally, the material equation balance takes the
form

(2)

where S0 is the area of the free surface and h0 is the
mean height of islands at the initial moment. Solving
problem (2), we obtain

(3)

In this case, S  0 at h  ∞, because 0 < ω < ∞.
This signifies that, according to this strongly idealized
model, the process would continue infinitely, because
the formation of a solid layer (S = 0) requires the for-
mation of infinitely deep channels. Then, the channel
width would tend to zero, which is physically impos-
sible.

Nevertheless, one can evaluate the substrate volume,
V, which should be dissolved to provide island coales-
cence and formation of a solid epitaxial layer. Within
the duration of the process (the time necessary for the
development of channels, i.e., an increase of h0 to ∞),
this volume is

(4)

In other words, at ω > 1, growth of an epitaxial layer
proceeds faster than the substrate dissolution. In this
case, a continuous layer can be formed only if a certain
finite volume of the substrate is dissolved. If ω ≤ 1, one
has to dissolve an infinite volume of the substrate,
which may be interpreted as impossibility of the forma-
tion of a solid epitaxial layer.

Thus, the above analysis shows that the morpholog-
ical textures characteristic of the reaction of isomor-
phous replacement are formed because of multiple
nucleation of islands of a new phase and continuous
dissolution of the substrate (either growth or dissolu-
tion proceeds at a higher rate). Then, the value of the
parameter ω can serve as a criterion of impossibility of
the formation of a solid epitaxial layer.

Now, estimate the geometry of the layer–substrate
interface. We assume that the islands have the cylindri-
cal shape, their mean radius equals r, and the number of
islands per unit surface equals ρ. Then, S = 1 – ρπr2, and

ωSdh hdS,–=

S S0 h h0=
,=

S S0
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h
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Eq. (3) yields

(5)

Figure 8a shows the shape of the channels calcu-
lated at ω = 1/2 and 2 (in our calculations, we assumed
that πρ = 10000 mm–2, h0 = 3 µm, and r0 = 3 µm). Using
the same parameters and the value ω = 4, we find that
the layer–substrate interface has the shape shown in
Fig. 8b. For comparison, Fig. 8c shows the photograph
of the transverse cut of the epitaxial structure borrowed
from [1]. The similarity of the profiles of the layer–sub-
strate interfaces in these figures gives ground to believe
that the above mechanism also works in epitaxy from
melt.

Volume Effect of Reaction 
of Isomorphous Replacement

Analyzing the structure of Eq. (1), one can see that,
in fact, the parameter ω is the ratio of the volume ∆Vl of
the epitaxial layer (grown during the dissolution during
the reaction) to the substrate volume ∆Vc, i.e., describes
the change in the volume of the crystalline phase during
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Fig. 8. Layer–substrate interface: (a) shape of channels
formed between islands calculated at the volume factors
ω = 2 and 1/2; (b) layer–substrate interface calculated at
ω = 4; (c) region of the transverse section of the In–As/GaP
(111)B structure formed during the contact of the saturated
melt with the binary substrate (see [1], Fig. 7).

(a)

(b)

(c)



1072 VOLOSHIN et al.
isomorphous replacement and, thus, characterizes the
volume effect of the reaction,

(6)

At ω < 1, the reaction occurs with a decrease in the
volume of the crystalline phase (replacement with def-
icit in volume), and at ω > 1, with an increase in the vol-
ume (replacement with excess in volume). Obviously,
this parameter depends on the specific features of the
phase diagram of the system and also on the ratio of
specific (or molar) volumes of the crystalline phases. It
was shown [4–8] that such interactions can be conve-
niently considered in the modified Schreinmakers con-
centration coordinates, where the ordinate indicates the
volume of the crystalline phase dissolved in a fixed
amount (e.g., in 100 cm3) of the solvent.

Prior to further statement of the problem, consider
some properties of the Schreinmakers diagrams. Each
point corresponding to the solution of a certain compo-
sition on this diagram can be considered as a vector of

the two-dimensional normalized space  with a norm
(vector length a = (x, y)) |a | = |x | + |y | and the metrics
(distance between the points (x1, y1) and (x2, y2)) equal
to ρ = |x1 – x2| + |y1 – y2|. Then, the length of the vector
outgoing from the coordinate origin on the diagram
shows the total volume content of the salts in the solu-
tion calculated per 100 cm3 of the solvent and the dis-
tance between any two points shows the total change in
the solution composition (also calculated per 100 cm3

of the solvent) in the transition from one figurative
point to another. The compositions of the crystalline
phases are depicted by straight lines. The angle of the
straight-line inclination to the abscissa for the phase
containing x volume fractions of the A component is

ω
∆Vl

∆Vc
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Fig. 9. Solubility isotherm for a hypothetic ternary A–B–
solvent system: compositions of the s initial, s1 supersatu-
rated, and s2 final solutions, c is the composition of the ini-
tial crystal, and l is the composition of the crystalline phase
in equilibrium with the solution of the composition s2.

s1
C

equal to  – x)/x). Such a straight line passing
though the figurative point showing the solution com-
position indicates the composition of the solid phase
crystallizing from this solution.

Consider a hypothetical binary system of water-sol-
uble isomorphous compounds A and B. Figure 9 shows
the solubility isotherm of this system at a certain tem-
perature T in the modified Schreinmakers coordinates.
The straight lines Oc and Ol correspond to the compo-
sitions of the crystalline phases with the volume frac-
tions of the A component equal to c (initial crystal) and
l (crystalline phase with the composition in the equilib-
rium with respect to the composition of a certain com-
position s).

We assume that a crystal of the composition c is
placed into the solution of the composition s. As was
shown above, the crystal is dissolved in the solution at
a certain rate. We assume that isomorphous replace-
ment is a continuous process, and the character of this
process is close to equilibrium. Let a crystal volume
∆Vc be dissolved during an elementary event of the pro-
cess, so that the solution composition is displaced from
the point s to the point s1 in such a way that the segment
[s s1] would be parallel to the straight line Oc and |s s1| =
∆Vc. In accordance with the phase diagram of solubil-
ity, in the supersaturated solution s1, the volume of the
solid phase crystallized is ∆Vl and the composition of
this phase is in equilibrium with the composition of the
solution s1. As a result, the solution composition
becomes equal to s2. We assume that the value of ∆Vc is
sufficiently small, so that we can assume that the com-
position of the phase crystallized from the solution of
the composition s1 is constant and only slightly differ-
ent from l. Then, in the vicinity of the point s, the com-
position of the supersaturated solution varies along the
segment [s1 s2] parallel to the straight line Ol.

Thus, as a result of dissolution, the volume of the
initial crystal is changed by –∆Vc, and, as a result of the
crystallization of a new layer, by ∆Vl. The vector ss2

represents the effect resulting from the occurrence of
the replacement reaction in the solution, and the vector
s2s having the opposite direction represents this effect
in the crystalline phase, which loses ∆νA cm3 of the
component A during crystal dissolution and acquires
∆νB cm3 of the B component during layer crystalliza-
tion. In this case, ∆a cm3 of the A component and ∆b
cm3 of the B component, first, are transferred to the
solution during dissolution and, then, are crystallized
into a new layer.

With due regard for the above remarks on the prop-
erties of the Schreinmakers diagram, one can write a
number of obvious equations that follow from the

((1arctan
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scheme shown in Fig. 9:

(7)

Using the above equations, one can transform Eq. (6) to
the form

(8)

If the volume of the dissolved crystal, ∆Vc, tends to
zero, the direction of the vector s2s tends to the direc-
tion of the tangent to the solubility isotherm at the point
s. Then, with due regard of the fact that the derivative at
each point of the curve t is negative, Eq. (8) acquires the
following final form:

(9)

In the case of the interaction between pure compo-
nents of the system (c = 1, l = 0), Eq. (9) is transformed
into

(10)

Thus, the volume effect of the reaction of isomor-
phous replacement depends on the difference in the
compositions of the crystalline phases and the ratio of
the component solubilities at the solution point. Thus,
the tangent to the curve t at the point s in Fig. 9a is
inclined to the abscissa at an angle less than 45°. There-
fore, in the interaction between a crystal enriched with
the A component and the solution enriched with the B
component, the volume factor is less than unity, ω < 1,
i.e., replacement proceeds with a deficit in volume.

It should be noted that the use of the Schreinmakers
coordinates requires the fulfillment of the additivity
condition for the molar volumes of the crystalline
phases. In this case, the dependence of the lattice
parameters of the crystal on its composition should
obey the Retgers rule (the parabolic dependence of the
third degree on the molar composition of the solid solu-
tion). However, in practice, this dependence is observed
rather seldom. Therefore, estimating the volume effect
of the reaction, one should necessarily take into account
the deviation of the volume of the crystalline phase
from the additivity property. This can be done by intro-
ducing into Eq. (6) the following coefficients: pc =

 and pl = , where Ωi

(i = c, l, A, B) are the experimentally measured values
of the unit-cell volumes of the crystalline phases with
the respective compositions

(11)

∆Vc ∆νA ∆a ∆b; ∆Vl+ + ∆νB ∆b ∆a;+ += =

∆a l∆Vl; ∆b 1 c–( )∆Vc;= =

∆νA ∆a+ c∆Vc; ∆ νB ∆b+( ) 1 l–( )∆Vl.= =

ω
1 c ∆νB/∆νA 1–( )+
1 l ∆νB/∆νA 1–( )+
------------------------------------------------.=

ω
1 c dνB/dνA 1+( )–
1 l dνB/dνA 1+( )–
-----------------------------------------------.=

ω dνB/dνA.–=

Ωc

cΩA 1 c–( )ΩB+
----------------------------------------

Ωl

lΩA 1 l–( )ΩB+
--------------------------------------

ω
∆Vl

∆Vc

---------KV , KV

pl

pc

-----.= =
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It should be noted that the latter correction only slightly
affects the final value of ω, because, usually, the devia-
tion of the dependence of the lattice parameters from
the Retgers rule does not exceed 1%, whereas the solu-
bilities of the salt components of the system can differ
from one another up to a factor of about ten.

Thus, the above consideration shows that, in the first
approximation, there exist the direct correlation
between the morphological effect of the reaction of iso-
morphous replacement and the ratio of the volume sol-
ubilities of the system components. The difference in
the lattice parameters (or molar volumes) is usually
much less pronounced than the difference in the solu-
bilities of the components and, therefore, the lattice
mismatch should manifest itself in the case, where the
molar solubilities of the components are either close or
equal.

At the same time, one should remember that crite-
rion (8) is only approximate since, in its derivation,
some factors were ignored, e.g., the relationship of the
dissolution rates, growth, and diffusion in the liquid
phase, the anisotropy of the growth rates of different
faces, the effect of stresses caused by lattice mismatch,
etc. When estimating the reaction kinetics and its total
morphological effect, one should take into account that
these quantities are determined by the ratio of the
amounts of the crystal and solution, which, in turn,
determines the magnitude and velocity of the displace-
ment of the solution and crystal compositions in the
course of the reaction.

Specific Characteristics of the KAP–RbAP System

All the cases of isomorphous replacement in the
aqueous solution of binary salt systems studied and
described in [4–14] demonstrate a certain dependence
of the surface morphology on the volume effect of the
reaction: the formation of porous textures at ω < 1 and
the formation of island textures or a solid crystalline
layer at ω > 1. The system studied here demonstrates a
more complicated behavior associated, first of all, with
the alternation of the mechanisms characteristic of the
substitution with deficit or the excess in the volume.

The KAP–RbAP system possesses a number of
important characteristics in comparison with the sys-
tems studied earlier. First of all, it is characterized by a
convex solubility isotherm (Fig. 10) [11]. Second, the
system components have close values of the volume
solubility in water (about 10% difference). Third, the
differences in the lattice parameters of KAP and RbAP
along different unit-cell axes have different signs.

In the (K,Rb)AP series, with an increase in the con-
tent of both K and Rb in the solution, the modulus of the
derivative of the solubility function varies from values
less than unity to values higher than unity. This is
observed in the range of mean compositions, where the
angles between the tangents to the solubility curve and
the coordinate axes vary from values exceeding 45° to
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values less than 45° (Fig. 10). Therefore, at the initial
stage of the interaction of KAP and RbAP crystals with
the solutions of the components–partners, the replace-
ment with a deficit in volume is observed in both cases.
It manifests itself in the formation of the aforemen-
tioned characteristic defect zones on the end faces of
the samples and growth of islands on the (010) faces
with the preservation of the regions without islands of
the initial crystal. In the course of the long-term inter-
action of KAP and RbAP crystals with the solutions of
the component–partner, the continuous dissolution of
the substrate and feeding of the solution with the crystal
substance lead to the change of the mechanism with
deficit in volume to the mechanism with an excess in
volume. This is seen from healing of the gaps between
islands and continuous overgrown formations on the
end faces. The change of the mechanisms on the KAP
samples proceeds within a shorter time, because the
point on the solubility curve where its slope to the coor-
dinate axes is equal to 45° is shifted toward the RbAP-
enriched solutions.

Note one more important feature of the system stud-
ied. The differences in the lattice parameters of KAP
and RbAP crystals along different axes have different
signs: the lattice parameters a and b of KAP crystals are
less than those of RbAP crystals, whereas the parame-
ter c of KAP crystals is larger than that of RbAP crys-
tals.

Lattice parameters of KAP crystals are a = 6.47 Å,
b = 9.61 Å, c = 13.26 Å; lattice parameters of RbAP
crystals, a = 6.58 Å, b = 10.81 Å, c = 12.84 Å [16].

Considering the conclusions made in [2], one may
think that, in principle, the formation of epitaxial layers
on the (100) and (010) faces should differ from the pro-

2 4 6 8 10 12
KAP, cm3/100 g H2O

2

4
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0

RbAP, cm3/100 g H2O
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40%

60%

80%

1
2

Fig. 10. Solubility isotherms for the C8H5O4K–
C8H5O4Rb–H2O system measured at (1) 29 and (2) 39°C
[13]. Straight lines connect the compositions of the solu-
tions in which the solid phase with the same KAP/RbAP
ratio (percent) is crystallized.
C

cess occurring on the (001) face (e.g., if a porous tex-
ture is formed on the (100) and (010) faces, one should
expect the formation of a solid layer on the (001) face,
and vice versa). However, the experiments showed no
obvious differences in the mechanisms of formation of
the morphological textures on different faces (Fig. 2).
This confirms the conclusion drawn above about the
secondary role of the lattice mismatch in the formation
of an epitaxial layer.

CONCLUSIONS

The mechanisms of formation of epitaxial layers in
the C8H5O4K–C8H5O4Rb–H2O system have been stud-
ied by the methods of optical and in situ atomic force
microscopy. It is shown that the formation of the char-
acteristic morphological structures on the surface of
crystals interacting with the solutions of the compo-
nent–partner is associated with the intensity ratio of the
processes of growth of the islands of a new phase and
dissolution of the substrate between the islands. The
decisive role in the process is played by dissolution of
the substrate associated with the nonequilibrium com-
positions of the initial crystal and the solution. For the
first time, an analytical model of the process of layer
formation in the case of the liquid phase heteroepitaxy
is suggested. It is shown that, in the first approximation,
the possibility of formation of a continuous layer in the
isothermal process is determined by the solubility ratio
of the system components. These conclusions are of a
general character and, thus, are also applicable to the
epitaxial processes occurring not only in aqueous solu-
tions but also in solutions–melts in the case where layer
deposition proceeds via two-dimensional nucleation on
the substrate.
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Abstract—Optical methods and local X-ray spectroscopic analysis were used to study the correlation between
the morphological structures and the composition inhomogeneity for Ca0.9Ho0.1F2.1 crystals. It is found that, at
two nearby points, the characteristics of uniformity of the Ca and Ho distribution (the homogeneity criterion
Sc/2σ, the coefficient of variation Sc/ , and the level of homogeneity W95/C) may differ by more than
two orders of magnitude if these points belong to morphologically different regions with different prehistory.
© 2003 MAIK “Nauka/Interperiodica”.

N

The composition, phase, and structural disturbances
which accompany the loss of stability by the growth
front in crystals of La1 − xSrxF3 – x solid solutions were
investigated in [1] for the case when the average melt
composition, being close to eutectic, controls the front
stability. It is of interest to find out how the local com-
position of a crystal changes when the growth front
loses its stability under the conditions of crystallization
near the dystectic point, where, according to the equi-
librium phase diagram, the ratio of distribution k ≈ 1.

In this study, the variations in the composition were
investigated by an example of ionic Ca1 − xHoxF2 + x
crystals with the fluorite structure. The dystectic point
of these solid solutions is in the vicinity of the
Ca0.9Ho0.1F2.1 composition [2]. The latter served as the
initial mixture composition for growing crystals by the
Bridgman–Stockbarger method [3].

The features of the Ca–Ho substitution, i.e., the vari-
ations in the contents of these elements, were studied
by local X-ray spectral microanalysis using continuous
recording modes and step-by-step scanning by point
and linear probes. The samples were prepared for inves-
tigation using conventional techniques: grinding, pol-
ishing, vacuum deposition of a thin conducting layer
(gold), and coating the faces of an entire crystal with a
silver paste. The final correlation between the regions
under study and the internal morphology of the samples
was established using traces of an electron probe (spots
of hydrocarbon deposit). To increase the reliability of
the data collected, we investigated either two or three
1063-7745/03/4806- $24.00 © 21076
parallel lines (JXA-50A, MS-46, and Camebax
microanalysers were used).

Special consideration was given to the variations in
the composition that accompanied the sequence of tran-
sitions of the growth front when it lost stability and
transformed from the planar isothermal into the cellular
(Fig. 1a) and then cellular–globular form (Fig. 1b).
Such transitions were revealed in the end crystal
regions after constant (on the average) composition of
the crystal was established by the end of crystallization
(Fig. 2). As will be shown below, the local composition
changed noticeably in a rather regular way at these tran-
sitions.

The uniformity of the Ca and Ho distribution was
evaluated according to the schemes accepted in [4]. The
data obtained on the homogeneity criterion Sc/2σ and

coefficient of variation Sc/ , as well as the calculated
and experimental levels of homogeneity W95/C for the
95% confidence level, are listed in the table. The
parameters noted are given by the expressions

N

Sc Ni N–( )2∑ / n 1–( )[ ]
1/2

,=

σ N
1/2

,=

W95/C 2tn 1–
95 / n1/2N

1/2( ) calculated level( ),±=

W95/C tn 1–
95 Sc/ n1/2N( ) experimental level( ),±=
003 MAIK “Nauka/Interperiodica”
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where Ni is the number of pulses of characteristic X-ray

radiation in the ith measurement,  is the average
number of pulses in a given series of measurements, n
is the number of regions analyzed by the point probe, C
is the actual weight concentration of the element ana-

lyzed, and  is Student’s coefficient for the 95% con-
fidence level and n – 1 degrees of freedom.

N

tn 1–
95

200 µm

(a)

(b)

Fig. 1. Morphologically different regions corresponding to
the loss of stability and the transition from (a) the isother-
mal to cellular and (b) the cellular to cellular–globular crys-
tallization front. The transitions (a) and (b) were observed
at g ~ 0.8 (see Fig. 2).
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Both elements show highest inhomogeneity when
the path passing through the boundary between the
regions of isothermal and cellular growth is studied (see
table). The morphological picture of the transition
region and the scan paths for different microanalyzers
are shown in Fig. 3. Figure 4 shows the results of these
independent measurements by probes with different
cross-section shapes. As can be seen from Fig. 4, when
the isothermal-growth front loses its stability, an abrupt
decrease in the concentration of the host cation (Ca) is
observed in both independent measurements with scan-
ning along paths I and II.

As noted in [5], weak modulations of the Ca content
at the boundaries of cells to be formed are observed in

6
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3
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Fig. 2. Distribution of Ca and Ho along the crystal length.
Step-by-step scanning in the plane of central cross section
(step 1–2 mm, probe diameter 5 µm).
Morphological structures and characteristics of boundaries between them

Morphological structures
and boundaries between them

Characteristic-
emission line

Homogeneity 
criterion

Sc/2σ

Coefficient
of variation

Sc/ , %

Level of homogeneity
W95/C, wt %

calculated experimental

Cellular structure (along the normal
to the cell boundaries)

CaKα
HoLα

7.6
0.3

19.5
2.1

±0.35
±0.32

±2.7
±0.34

Along the normal to the boundary separating 
the isothermal and cellular growth stages

CaKα
HoLα

18.1
23.6

8.2
34.8

±0.10
±0.42

±2.4
±9.9

In the plane of the growth layer
in the initial crystallization region

CaKα
HoLα

1.1
1.4

0.5
1.6

±0.33
±0.82

±0.36
±1.12

In the plane of the growth layer
in the intermediate crystallization region

CaKα
HoLα

2.2
1.2

1.0
3.1

±0.34
±0.90

±0.74
±1.12

In the plane of the growth layer
in the end crystallization region

CaKα
HoLα

1.2
1.2

0.6
1.6

±0.32
±0.96

±0.39
±1.15

N
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the continuous-recording mode in the stage of isother-
mal growth up to the instant when optically discernible
cells appear. When the cellular structure becomes opti-
cally discernible, the content of Ca becomes noticeably

250 µmI

II

III

B

Fig. 3. Region of transition from the isothermal to the cel-
lular growth. B is the boundary separating the regions with
visually revealed cellular structure and without it; I is the
path of step-by-step scanning by a linear probe (band 50 ×
10 µm2 in size, step 20 µm, 64 portions); II is the path of
step-by-step scanning by a point probe (probe diameter
5 µm, step 10–20 µm); III is the path of additional step-by-
step scanning by a point probe.

~~~~
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Fig. 4. Distribution of Ca and Ho along the growth direction
in the region of transition from the isothermal to cellular
growth: Ca I and Ho I are obtained by a linear probe, and
Ca II and Ho II are obtained by the point probe. The Ca con-
tent is minimum at the boundary separating the regions of
different growth. The scan paths are shown in Fig. 3.
C

modulated with Sc/2σ ~ 7.6. This modulation is bound
to the cell boundaries [5].

Thus, starting with weak modulations, the Ca con-
tent responses to the perturbations of the growth-sur-
face relief, which precede the partition of the growth-
front into cells [5]. At the instant when discernible cells
are formed, a significant deficit of Ca before the front is
observed (Fig. 4). At the same time, the content of Ho
is almost insensitive to the cell formation: both in the
initial stage and after the visual appearance of cells,
oscillations of the Ho content are periodic, but they are
not bound to the cell boundaries. Scanning across cells
reveals almost uniform Ho distribution with Sc/2σ ~ 0.3.
At the transition from the isothermal to the cellular
growth (Fig. 3), the Ho content does not suffer abrupt
changes at the boundary of the transition region, never-
theless demonstrating significant oscillations along the
growth direction both before and after the boundary
(Fig. 4).

When scanning along the normal to the growth axis
(in the plane of the growth layer), it was established that
the value of Sc/N for Ho is about three times larger than
for Ca (see table). This circumstance, along with the
aforementioned behavior of the Ho content near the cell
boundaries, suggests that the heavier dopant Ho con-
tributes to the composition inhomogeneity mainly
through the microlayer substructure along the tangen-
tial direction with respect to the growth layers. Along
the normal direction, the Ho content may remain sur-
prisingly constant within sections up to ~350 µm long,
whereas the Ca content suffers periodic oscillations
close to sinusoidal.

It is possible that the difference in the behavior of Ca
and Ho revealed in this study is related to the different
buoyancies of the Ca and Ho complexes (which have
different specific weights) in the melt [6] and physico-
chemical melt exfoliation before the crystallization
front [7].

It is also possible that these effects manifest them-
selves successively; i.e., the layers formed near the
growth front after the melt exfoliation, which are
enriched with the lighter element Ca, rise, depleting the
region directly before the crystallization front with this
element (Fig. 4).
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Petr Grigor’evich Pozdnyakov 
(On the Occasion of His Ninetieth Birthday)
Petr Grigor’evich Pozdnyakov, Doctor of Technical
Sciences, Professor, winner of the Lenin Prize of the
USSR, Honored Inventor of the RSFSR, a full member
of the International Academy of Information Science,
the follower of academic A.V. Shubnikov, is one of the
founders and organizers of domestic piezoelectronics.
Being a real innovator and creator, Pozdnyakov made a
great contribution to its development. He is the author
of more than one hundred publications and about one
hundred inventions, most of which were realized in
practice. Most results of his studies are implemented in
real devices, which were used, in particular, in control
systems of space vehicles in the 1950s–1970s.

Petr Grigor’evich Pozdnyakov was born on Decem-
ber 4, 1912 (November 20 under the old calendar), in
Orel. Pozdnyakov’s grandfather was a great organizer
and an enterprising man. Born a peasant, he made his
1063-7745/03/4806- $24.00 © 21080
way in the world and became a first-guild merchant.
The father of P.G. Pozdnyakov was a art teacher; his
mother, the daughter of a lady of the manor (of peasant
origin), finished gymnasium with a medal. Pozdnyakov
left school in Orel in 1929 (the period of “great break”).
Then, he worked as electrician to gain a three-year
seniority (required to enter high school) and studied at
the rabfak (faculty for the working youth). In 1932,
Pozdnyakov entered the Moscow Energy Institute and
in 1939 graduated from the Electrophysical Depart-
ment with the qualification of an electrical engineer in
the field of radio equipment production. The subject of
his diploma thesis was the design of a frequency stan-
dard on the basis of a quartz crystal, using a frequency
standard produced by a US company as a prototype. At
that tragic period of our history, it was practically
impossible for a man of merchant origin, whose parents
were subjected to repression in 1937, to get a job as an
engineer. Only by lucky chance, he managed to get a
job at the Central Scientific Research Laboratory
(CSRL) of Applied Crystallography of Trust 13 (orga-
nized by Shubnikov) in 1939. Under the supervision of
Alekseœ Vasil’evich Shubnikov, Pozdnyakov studied all
stages of processing various crystals, including quartz.
Shubnikov thought it necessary that all research assis-
tants could carry out any operations in the processing,
preparation, and measurement of crystals with their
own hands. G.G. Lemmleœn, a well-known crystallog-
rapher (who also worked under supervision of Shubni-
kov), helped Pozdnyakov to master the fundamentals of
practical crystallography, in particular, the specific fea-
tures of orienting of natural quartz crystals. Shubni-
kov’s school was an excellent basis for further practi-
cal, creative, and organizational activity of Pozdnya-
kov.

At the beginning of 1941, Shubnikov recommended
Pozdnyakov to be appointed the head of the CSRL to
organize production of crystals of Rochelle salt, which
was used as basic material in hydroacoustic devices
abroad.

When the Great Patriotic War began, it became nec-
essary to organize a plant on the basis of the CSRL. The
aim was to produce Rochelle salt crystals and devices
based on this material. Pozdnyakov, who was appointed
an acting director, and the main engineer A.S. Shein
managed it successfully.

In December 1941, Pozdnyakov and a small group
of experts, together with a part of equipment, were
evacuated to Tashkent to organize an alternate plant.
003 MAIK “Nauka/Interperiodica”
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This plant, at which Pozdnyakov was appointed a main
engineer and worked successfully throughout the
whole war, produced Rochelle salt crystals and devices
on their basis. Shein, staying at the Moscow plant, dili-
gently produced new devices based on Rochelle salt.
Rochelle salt piezoelectric elements were used in pick-
ups, loudspeakers, and hydroacoustic devices for the
Navy. During the Great Patriotic War, soviet subma-
rines were equipped with Mars hydrophones based on
hydrophone piezoelectric stacks (PB-20 piezoelectric
batteries). There were no sonars then. It was noted in a
report from the North Fleet, published in the newspaper
Krasnaya Zvezda, that, due to the high sensitivity of
PB-20 piezoelectric batteries, a sound technician in a
soviet submarine could hear the sound of a enemy Ger-
man submarine much earlier than the enemy could,
which made it possible to attack the enemy submarine
before it could detect the danger.

The largest scale product based on Rochelle salt
crystals was a PK-1 microphone with a bimorph piezo-
electric element, which was used in military field tele-
phones. Among commercial products, there were
piezoelectric stethoscopes, systems for communication
between a sound technician on a submarine and the
submarine captain and for controlling the sound techni-
cian operation, two-agent airplane communication sys-
tems without batteries, systems for communication
between a diver and the boat board, Neva telephone sta-
tions for divers, telephones without batteries for com-
munication in railway transport, telephones without
batteries for communication in regions liberated from
the temporary occupation (which provided communi-
cation at distances as large as 30–50 km in air and 10–
15 km by cable communication lines).

When the war was over, Pozdnyakov came back to
work at the Moscow plant as a main engineer. There he
organized the research work on analysis and growth of
new piezoelectric crystals. The practical result of these
studies was the development of commercial technology
of growing water-soluble crystals of ammonium and
potassium phosphates, potassium tartrates, and ethyl-
enediamine. For example, successful application of
potassium tartrate crystals as resonators in multi-chan-
nel communication systems made it possible to reduce
consumption of high-quality quartz raw material. This
was of importance, because the production of artificial
quartz crystals was not developed at that time.

In 1949, P.G. Pozdnyakov and A.A. Shternberg
started research work on the growth of quartz crystals
and fabrication of piezoceramic. The small plant was
not appropriate for this important work. Under Pozdn-
yakov’s initiative, the plant was reorganized into the
Central Scientific Research Laboratory of Piezoelec-
trics, where Pozdnyakov became the Deputy Chief of
Research.

In 1952, Pozdnyakov was appointed the Main Engi-
neer of the Central Administrative Board at the Minis-
try of Industry of Communication Means (MICM). One
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of the most important results of his activity in the Cen-
tral Administrative Board and its scientific and techni-
cal section of piezoelectrics was the decision about
merging quartz workshops that belonged to different
administrative boards and creation of the All-Union
Scientific Research Institute of Piezoelectrics (in
future, VNIISIMS in Aleksandrov).

In May 1953, P.G. Pozdnyakov, who was anxious
for creative work, moved to NII-885 of MICM, in
which systems and complex equipment for radio con-
trol of ballistic rockets were developed. N.A. Pilyugin
and M.S. Ryazanskiœ were the main designers. On the
basis of a laboratory, which looked rather like a work-
shop, Pozdnyakov organized the well-equipped Com-
plex Quartz Laboratory, in which many original scien-
tific and applied studies were carried out.

The Quartz Laboratory was reinforced with engi-
neering and technical staff. An experienced expert in
quartz problems, I.G. Vasin, and a young specialist,
who graduated from Moscow State University,
M.I. Yaroslavskiœ, were recruited to work there.

In 1954, the technical specifications on the resona-
tors developed in NII-885 were supplemented for the
first time with requirements for frequency changes due
to the action of various climatic and mechanical factors
and storage and operation conditions, including
requirements for frequency changes during long opera-
tion time, i.e., aging. In addition, hermetically sealed
resonators in metal cases and vacuum resonators in
glass bulbs (which were used in electron tubes) were
designed and fabricated in 1954. Such studies were per-
formed for the first time in the domestic industry, and
the results obtained were widely implemented in series
production at all the plants in our country in which
there were quartz workshops.

To produce these reliable resonators, a quartz work-
shop was organized at the pilot plant of NII-885. Since
the production capacity of the workshop was limited,
series production of the quartz resonators developed in
the Laboratory was started at the Kozitskiœ factory in
Leningrad (now St. Petersburg), the workshops of
NII-20 in Moscow, plant 210 in Omsk, and the NII in
Sverdlovsk (now Yekaterinburg).

Since 1955, the Quartz Laboratory of NII-885 under
the direction of Pozdnyakov has become the leading
laboratory in the country in constructing and fabricat-
ing quartz resonators. The rate of development of sys-
tems and devices in the NII was very high, and the
requirements for reliability and frequency stability of
the resonators designed, as well as their frequency
range, were constantly increasing.

In 1956, not only resonators comparable in quality
with the best foreign analogous devices were developed
and fabricated in the Laboratory but also resonators
with no foreign equivalent were designed (resonators
operating as torsional vibration absorbers at different
frequencies, a class of slotted resonators, combined and
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hybrid piezoelectric elements and integrated piezoelec-
tric devices, and so on).

The technical documentation developed in the
Quartz Laboratory of NII-885 was transferred in 1959
to the NII of Piezoelectronics, and, on the basis of this
documentation, production of standard resonators of
conventional types was started. Many specialists from
the Quartz Laboratory of NII-885 passed to the NII of
Piezoelectronics and became main specialists there.

Pozdnyakov also organized the development of inte-
grated piezoelectric devices—monolithic quartz filters,
integrated and hybrid oscillators and filters, thermally
stable resonators, precise quartz oscillators with inte-
grated thermally stable resonators, semiconductor and
hybrid integrated circuits.

In 1964, Pozdnyakov and his coworkers were
awarded the Lenin Prize for the results obtained in the
design and scale-up of quartz resonators intended for
special devices.

Pozdnyakov always paid much attention to rational-
ization and, especially, invention. He is the holder of
more than 100 inventor’s certificates and he has the title
of Honored Inventor of the RSFSR.

In 1967, Pozdnyakov brilliantly defended his Candi-
date thesis in the form of a complex report on his stud-
ies and immediately after that, the Scientific Council
C

awarded him a degree of Doctor of Technical Sciences
by repeated voting. He is a full professor.

On January 5, 2001, at the meeting on the occasion
of the 30th anniversary of the Morion plant in
St. Petersburg, in the presence of domestic civil and
military representatives and foreign experts, Pozdnya-
kov was awarded the title of Honorary Veteran of Piezo-
electronics for his prominent contribution to the devel-
opment of domestic piezoelectronics, his real innova-
tion, doubtless and long-term leadership in this field of
science and technique.

Pozdnyakov edited Handbook on Quartz Resonators
(Moscow: Svyaz’, 1978, 288 pp.) and Piezoelectric
Resonators (Moscow: Radio i Svyaz’, 1992, 392 pp.).

Presently, Pozdnyakov is a unique expert who
remembers well all the stages in the development of
domestic piezoelectronics, pays much interest to its
modern status, and is in correspondence with veterans
of piezoelectronics in various towns of Russia.

Specialists in piezoelectronics and the Editorial
Board of Kristallografiya (Crystallography Reports)
congratulate Petr Grigor’evich Pozdnyakov—the eldest
domestic expert in quartz—on his ninetieth birthday
and wish him good health and new success in his work.

Translated by Yu. Sin’kov
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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There are two world-class geometers in our country—
Lobachevskii and Fedorov.

B.N. Delaunay

All will be regular, regularity underlies the world.

Woland2
12 Mankind has been guided by the notion of regularity
since ancient times. Platonic and Archimedean bodies,
Mauritanian ornaments, parquets, Kepler snowflakes,
Hauy mineralogy, Galois’ theory, Lobachevskii geom-

1 Fedorov Prize winner, 1997.
2 From Bulgakov’s Master and Margarita.

E.S. Fedorov
1063-7745/03/4806- $24.00 © 20899
etry, and the Mendeleev Table are examples of the
exhaustive interpretation of the particular manifesta-
tions of regularity. However, the general meaning of
regularity as a universal and natural law, even in human
thought, was first realized by the prominent thinker,
humanist, and Russian patriot Evgraf Stepanovich
Fedorov (December 10, 1853–May 21, 1919). In its
essence, science is unified, and, therefore, Fedorov’s
theory of regularity covers all knowledge accumulated
by mankind throughout its entire existence. The 21st
century began with the triumph of Fedorov’s ideas in
both the world of quarks and the global structure of the
Universe and in the new school handbooks on geome-
try.

Fedorov’s life was far from easy. He became inter-
ested in geometry in his childhood and, being only six-
teen years old, started writing a book which, to a large
extent, anticipated the development of geometry. He
failed to enter the Medical–Surgical Academy (1874),
and entered the Technological Institute, where he care-
fully studied Foundations of Chemistry by
D.I. Mendeleev (1834–1907), one of the most impor-
tant scientific books written in the 19th century.
Fedorov combined these studies with revolutionary
activity—he was a member of the organization Land
and Freedom. It is believed that it was Italian
(Fedorov’s conspiratorial name) who was the excellent
violinist who helped famous revolutionary P.A. Kropot-
kin to escape from the Peter and Paul Fortress in 1876.
In 1880, Fedorov, who intuitively realized the funda-
mental importance of crystallography in the develop-
ment of geometry, started his studies at the Mining
Institute. Since then, all Fedorov’s weekdays, joys, and
troubles were associated with this institute. Fedorov, a
Member of the Academy, died of starvation in 1919.
003 MAIK “Nauka/Interperiodica”
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His coffin was carried high in people’s hands for the
whole way from the Mining Institute (Gorny) to the
Smolensk cemetery [1].

FEDOROV’S ELEMENTS

Fedorov recollected [2] that in 1863 he came across
his elder brother’s handbook on elementary geometry
written by Shul’gin for military schools. He looked
through its first pages and the contents gave rise to such
an emotion that he was carried away. A ten year old boy
had got through Shulgin’s planimetry in two days. Six
years later, being a cadet of the St. Nicholas Military
Engineering School, Fedorov started writing his first
book, The Elements of the Study of Configurations [3].

The St. Nikolas Military Engineering School was
located at the Mikhailovsky (Engineering) Castle. It
seems that the spirit of the former owner of the castle,
Emperor Paul I, brought him to the concepts of regular-
ity and order, which Paul I tried to establish in Russia.
The book was completed in 1879 but was published
only in 1885 with the help of general of artillery and
Professor of physics A.V. Gadolin (1828–1892), the
author of the most progressive method of derivation of
32 crystal classes [4].

Fedorov’s book was preceded by two famous trea-
tises—Euclid’s Elements and Newton’s Principia.
Here, the question may arise as to how a young scientist
could dare to choose such a title for his first book. How-
ever, by this time (1878), Fedorov was already an orga-
nizer of an illegal socialist newspaper Nachala (ele-
ments, principles), which criticized the existing social
system and had the aim to unite all kinds of socialists
for writing a revolutionary program. In this newspaper,
Fedorov supervised the column Chronicles of the
Socialist Motion in the West. The police made all possi-
ble efforts to find its anonymous publishers. After the
successful self-liquidation of the newspaper office
located at Kirochnaya ulitsa (in the house of
A.A. Panyutina, a landowner from the Perm district and
the mother of Fedorov’s future wife), Fedorov directed
all his revolutionary ardor to The Elements of the Study
of Configurations. He wrote that this extremely elegant
section of elementary geometry was still almost
unstudied despite the fact that the need in this theory
was so urgent that many representatives of other natural
sciences, and first of all mineralogists, made numerous
attempts to create such a theory. However, all these
attempts failed, because the authors considered only
those aspects of the problem which were necessary for
solving their own specific problems. As a result, their
spontaneously developed theories lacked satisfactory
nomenclature and integrity, whereas mathematicians,
usually unaware of the results obtained in other
branches of science, formulated the problem quite dif-
ferently.

The distinctive feature of Fedorov’s geometry,
which distinguishes it from all the other geometries, is
C

the use of the concept of regularity—a configuration
composed by equivalent parts, with each of these parts
being surrounded in the same way with other equivalent
parts. Only such systems can possess the minimum
energy [5]. Thus, the finite state of any varying system
is the crystalline state, because it is only in an ideal
crystal that the particles are absolutely equivalent, i.e.,
cannot be distinguished from one another [6]. Similar
speculations brought Fedorov to the Mining Institute,
from which he graduated in 1883 at the top of his class.
According to the rules, he had to be sent on probation
work to Germany, but he never went there, because he
considered it to be humiliating to plead for something
that should be granted according to the rules.

Today, Fedorov’s Elements is considered to be one
of the deepest monographs on elementary geometry
(elementary in the sense fundamental and not simplest).
More exactly, the largest part of Elements is dedicated
to planimetry and not only to Euclidean but also spher-
ical planimetry. Stereometry is considered only in the
sections dealing with division of space (parallelohedra
and stereohedra).

Now, consider the different sections of Elements.
Such a consideration can also be included into all mod-
ern handbooks on geometry, including school hand-
books.

Euclidean planimetry is planimetry on a Euclidean
plane, i.e., conventional planimetry. The unusual aspect
of the Fedorov planimetry is that it is based on regular-
ity. It is regular division that reveals the fundamental
properties of space. Fedorov called a planigon any
polygon that could divide a plane in a regular way.
Already the first studies of planigons gave very interest-
ing results. Thus, it turned out that only triangles, tetra-,
penta-, and hexagons can be planigons (dashed poly-
gons in Fig. 1), that any tetragon (including nonconvex
one) is a planigon, etc. Today, these results are included
even in school handbooks on geometry [7]. The exhaus-
tive theory of planigons was developed by outstanding
geometer B.N. Delaunay (Delauné) (1890–1980) [8].

A division dual to the division of a plane into plan-
igons (the apices of this division form a regular system,
Fig. 1) were considered in 1916 by outstanding crystal-
lographer A.V. Shubnikov (1887–1970) in the solution
of the following problem [9]. Let each atom in the plane
possess the same number of bonds with other atoms.
Then, how many atomic networks are formed? Since
the problem was solved by topological methods using
the generalized Euler formula, it followed that two-
dimensional crystallography was a purely topological
science. In other words, growth of a two-dimensional
crystal did not necessarily require that the bond lengths
and the bond angles formed by these bonds be fixed. At
the first stages of growth, they can be arbitrary. The
main requirement is that these patterns could be trans-
formed into regular patterns forming new bonds and
breaking old ones. These results were generalized by
Delaunay [8], who showed that all such networks can
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Fig. 1. 11 Kepler–Shubnikov–Delaunay networks and the corresponding Dirichlet planigons. Each infinite regular network is rep-
resented by a star of regular polygons converging at the network point. The corresponding Dirichlet planigon (composed of the
points of the plane that are closer to the given lattice point than to any other point) is represented by the etched polygon. For each
network, the symbol of its two-dimensional Fedorov group is indicated as well as the corresponding Wyckoff position in this group,
and the ratio of the discreteness radius in this network, r, to the radius of its coverage, R.
be constructed only from regular polygons (Fig. 1) and
that two-dimensional crystallography has a purely
topological basis. Thus, Delaunay related the theory of
planigons with the Kepler parquetry from his World’s
Harmony.

The most outstanding recent achievement of the the-
ory of planigons is the Shtogrin theorem (the idea of
this theorem was suggested by the author of the present
article), according to which each regular system on a
Euclidean plane is defined locally, i.e., by the same
environment of any point of the system with other
points of this system lying within a sphere of a fixed
radius [10]. It follows from Shtogrin’s theorem that
long-range order is the consequence of the short-range
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
order. The long-range order can exist only in crystal
structures.

Fedorov’s planigons have not been considered as yet
in traditional handbooks on crystallography. In this
respect, the school handbooks of geometry turned out
to be more progressive [7, 11, 12].

Spherical planimetry deals with regular division of
a two-dimensional sphere, i.e., a sphere’s surface. All
topologically nonequivalent divisions are exhausted by
Platonic and Catalani bodies and two infinite series of
bipyramids and deltahedra (Fig. 2). These polyhedra
are called isohedra. Polyhedra dual to isohedra are
called isogons. All the topologically nonequivalent
polyhedra are exhausted by Platonic and Archimedean
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Fig. 2. Regular and semiregular convex polygons. Regular polygons: 5 Platonic bodies. Semiregular isogons: 13 Archimedean bod-
ies and two infinite series of prisms and antiprisms. Semiregular isohedra: 13 Catalani bodies and two infinite series of bipyramids
and deltahedra. For each polygon, its symmetry is indicated.
bodies and two infinite series of prisms and antiprisms
(Fig. 2). In fact, isogons and isohedra form the basis of
the theory of polyhedra. Therefore, the latter theory
should be related not to stereometry but rather to
planimetry on a sphere.
C

Proceeding from the consideration above, school
geometry [7] should rather be called planimetry and
should be complemented with the elementary data on a
Lobachevskii plane (sum of the angles of a triangle is
less than 180°, each regular polygon can regularly
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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(a) (b) (c) (d) (e)

Fig. 3. Fedorov bodies: 5 combinatorially different parallelohedra for the points of three-dimensional lattices. (a) General 14-face
polygon, (b) Fedorov dodecahedron, (c) parallelogrammatical dodecahedron, (d) hexagonal prism, (e) parallelepiped.
divide the Lobachevskii plane). This is already used in
practice when nesting blanks in the shoe industry [13]:
soles are sewn from regular hexagons, heels, from pen-
tagons, and shin, from heptagons.

STEREOMETRY

Delaunay was the first to compare Fedorov with
Plato and Archimedes [14], because it was Fedorov
who composed the complete list of all the combinatori-
ally different polyhedra that can fill the space being in
parallel positions, the so-called Fedorov parallelohe-
dra. Delaunay called these five polyhedra the Fedorov
bodies (Fig. 3). Four of these bodies (the first, third,
fourth and fifth ones) have been known since ancient
times. The second parallelohedron can be justly called
the Fedorov dodecahedron.

The division of the Euclidean space into parallelo-
hedra (in the case of a plane, into Fedorov parallel-
ogons) is one of its basic properties. This property is
inherent only in spaces with the zero curvature. Other
spaces of a constant curvature (it is only in these spaces
that matter can be crystallized, i.e., form absolutely
equivalent and indistinguishable particles) cannot be
divided into parallelohedra. A Euclidean observer can-
not move rectilinearly in these spaces. It should also be
indicated that many other mathematicians arrived at
parallelohedra, but their derivation gave rise to serious
difficulties even for advanced mathematicians [15, 16].
Despite this, Delaunay included parallelohedra in his
school book on geometrical problems [17].

The fifth chapter of Elements, dedicated to noncon-
vex polyhedra, has still not received due attention
despite the fact that Russian mathematicians recently
reported important results obtained in the theory of
nonconvex polyhedra [18].

Elements is a versatile work, the best handbook on
regularity necessary not only for mathematicians and
natural scientists but also for any educated person. I
was surprised to see Newton’s “Principia” and
Fedorov’s Elements side by side at the honorary place
in the personal library of Marutaev, a well-known musi-
cian. It shows that people with humanitarian education
also realize the necessity of a mathematical picture of
the world.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
REGULARITY OF ATOMIC AND NUCLEAR 
ORBITALS

After completion of Elements (1869–1879),
Fedorov presented to D.I. Mendeleev (1834–1907) his
new manuscript (1880) in which he first stated his new
idea—to consider the Periodic Law in terms of the the-
ory of regularity. At that time, he published only the
abstract of this work [19]. The manuscript of the com-
plete work was found in Mendeleev’s Archives many
years later [20] and was published only in 1955 [21].

Fedorov writes [21] that the human brain always
seeks regularity in everything, which is quite under-
standable, because a man can be oriented in his search
for an appropriate work only considering regularly
grouped materials and only if this regularity does not
give rise to any doubt, so that he can be satisfied and
become a master of this new field.

To explain the sequence of atomic weights of ele-
ments in the Mendeleev Table, Fedorov put forward the
hypothesis of a planetary structure of an atom. Fedorov
writes [21] that the atomic surface is the most important
factor providing the occurrence of a chemical reaction.
This signifies that small bodies forming an atom are not
arranged continuously but, similar to planets, are
spaced from one another by sufficiently large distances.
Thus, at the very beginning of his scientific carrier
(1880), Fedorov came to the concept of divisibility of
an atom. Fedorov had an inclination for physics. He
wrote a large manuscript on the theory of electricity but
refused to publish it without its experimental verifica-
tion. However, fate seemed to be against it—Fedorov
had no chance to use equipment of any physical labora-
tory and, gradually, he left physics. Only at the begin-
ning of the new 19th century did he realized that the
theory he developed a quarter of century before was, in
essence, the theory of an electron.

The theory of atomic orbitals fully confirmed his
conjecture—the structure of an atom is regular! The
equivalent charges on a sphere could be stable only if
they form a regular system. All the possible configura-
tions (within an accuracy of the combinatorial equiva-
lence) are exhausted by the Platonic and Archimedean
bodies and two infinite series of prisms and antiprisms
(Fig. 2) [22]. With due regard for quantum constraints,
each electronic level (s, p, d, and f) can be represented
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by two centrosymmetric simplexes of the four-dimen-
sional space—the s level, by a segment; the p level, by
a regular octahedron; the d level, by a pentagonal anti-
prism; and the f level, by a regular heptagonal anti-
prism.

It should be indicated that the atoms at the d and f
levels have the symmetry forbidden for crystal struc-
tures in the Euclidean space. This results in partial
destruction of the regularity of these levels in atoms that
form a crystal structure with the Euclidean metrics
[23]. The crystals consisting of such atoms have no
defects only in the spherical, Lobachevskii, and Euclid-
ean spaces with the dimension not exceeding three [24].
Therefore, the crystals with d and f elements in the
Euclidean three-dimensional space should always con-
tain defects (e.g., quasicrystals).

Only regular systems can be stable. Fersman, who
dreamed of an institute of crystallography still in 1932
[25], wrote that everything which is not crystalline can-
not be stable and should gradually be transformed into
crystals. A crystal is such an ideal state of matter, a deep
internal order to which nature strives… [26]. It should
also be noted that any defect in a crystal is influenced
by the gradient of the crystalline field and, therefore,
such a defect would either be pushed out from the crys-
tal or form a regular system with other similar defects
[27]. In this way, the crystal “cures” itself.

The representation of the orbitals of chemical ele-
ments in the Mendeleev Table corresponds to their low-
est energy level. The concrete physical conditions give
rise to the corresponding displacements of electrons to
other admissible levels [28]. Possibly, under certain
extreme conditions, all the electrons of a carbon atom
can fill the 2p level. Then, an extremely strong carbon
modification is formed with multiple bonds [29]
(Fig. 4). Possibly, the solid part of the earth’s core con-

Fig. 4. Bravais parallelepiped of the hypothetical carbon
structure described by the Fedorov group I4r/amd.
C

sists of this carbon modification and is a fractal pene-
trating the iron–nickel melt [30].

It should also be indicated that all the regular fea-
tures of the atomic shell are regularly reflected into the
atomic nucleus, which should also have a regular struc-
ture. This is confirmed by the empirically determined
magic numbers of protons and neutrons in the most sta-
ble nuclei—2, 8, 20, 50, 82, and 126. However, the
nuclei are characterized not by spherical but by the
hyperbolic regularity, and the heavier the nucleus, the
more pronounced the absolute curvature of the corre-
sponding Lobachevskii space. For example, the nuclei
of the most stable isotopes of the inert gases can pos-
sess a diamond-like structure (because of the regular
arrangement of the α particles constituting these nuclei
[29]). The nuclei in which the regularity in the arrange-
ment of α particles is violated are less stable. It is the
solution of the problem of the atomic-nucleus structure
which is based on the three theories developed by three
Russian scientists—Lobachevskii (1792–1859), Men-
deleev, and Fedorov—whose works predetermined the
development of the world’s science in the 21st century.
It is most probable that the problem of low-temperature
nuclear synthesis would also be solved via dissymme-
trization of atomic nuclei.

FEDOROV GROUPS

It was fated that, instead of working with Men-
deleev, Fedorov worked for ten years in the Geological
Committee, where he composed geological maps of
northwest Russia. As usual, Fedorov found brilliant
solutions to routine geological problems, e.g., he devel-
oped a universal theodolite method in mineralogy and
petrography (1893). He also designed a special device,
the so-called Fedorov’s stage, which allowed him to
study by the latter method the optical properties at any
point along any direction of a thin section of a rock. 

The most famous Fedorov’s work is associated with
regularity in crystal structures. Fedorov was the first to
derive 230 discrete groups of motion of the Euclidean
space with a finite independent domain (1890) [31]. In
Russia, these groups are justly called Fedorov groups.
The story of their derivation was initiated by outstand-
ing French mathematician Jordan (1838–1922) and
German physicist Sohncke (1842–1897), a follower of
Neumann (1798–1859), a prominent expert in crystal
physics from Köenigsberg. Jordan in his memories
entitled On Groups of Motion first stated that the dis-
covery made by Galois (1811–1832) can also be inter-
preted as the discovery of groups of motion. At that
time, Jordan had two students, Lie (1842–1899) and
Klein (1849–1925), who “divided” the theory of groups
into two parts—continuous groups were studied by Lie,
and discrete groups, by Klein. These two theories were
developed along different lines, so that today they can
hardly be unified.
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Jordan described in his memoirs [32] 174 groups of
motion. Zohncke singled out from these groups the dis-
crete groups directly related to the arrangement of
atoms in crystal structures and found that the list of
these groups was not complete. In 1874, Zohncke
derived infinite regular systems of points on a Euclid-
ean plane [33]. In 1869, he published the list of discrete
groups of motion with the finite independent domain in
the Euclidean space which consisted only of the first-
order symmetry transformations [34]. However, he
mistakenly included into this list one group twice. This
mistake was revealed by his post graduate student
Arthur Schönflies (1853–1928), who established that
the groups can also be derived by using second-order
transformations. Schönflies started their derivation and
published intermediate results obtained. Fedorov paid
attention to these publications and decided to complete
the derivation of such groups started still in Elements.
He sent his results to Schönflies and indicated some
inaccuracies in Schönflies’ derivation. In turn, Schön-
flies made the same. From this moment on, they entered
into a lively correspondence, which concluded with the
derivation of 230 groups by both scientists. Fedorov
completed his derivation somewhat earlier [31]. This
derivation had become a landmark in the development
of natural sciences. Thus, finally, Mankind rigorously
established that crystals are regular atomic formations
which, by definition, should be described by the
Fedorov groups.

The Schönflies monograph [35] received wide rec-
ognition in Europe and since then the Schönflies nota-
tion has been widely used. Even Russian crystallogra-
phers use this notation although it is important only for
crystal classes. Germans did not forget Fedorov either.
In 1896, Fedorov, an unknown laboratory assistant
from the Geological Committee, was elected a Corre-
sponding Member of the Bavarian Academy of Sci-
ences. Klein was going to address the Russian Tzar and
to ask him to make Fedorov also a member of the Rus-
sian Academy. Only Fedorov’s resolute protest pre-
vented Klein from doing so. Fedorov’s colleagues
working with him in Krasnotyr’insk (where Fedorov
rather successfully prospected new copper deposits)
could not believe the fact that they worked with a mem-
ber of a German academy.

Neither Fedorov nor Schönflies made use of the lat-
tice classification suggested by Bravais, who had made
the first steps in group–theoretical crystallography. The
results obtained by Bravais can be considered as the
derivation of all the Fedorov groups possessed by lat-
tices [36]. Altogether, there are 14 such groups.
Another interpretation of the Bravais results is the der-
ivation of all the different groups of the integral auto-
morphisms of positive quadratic forms (arithmetic
holohedry [36]), which seems to be the deepest mean-
ing of the above classification. The best lattice classifi-
cation should be based on the Fedorov theory of paral-
lelohedra [37]. Delaunay completed this classification
and made it extremely elegant by dividing all the lat-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
tices into 24 kinds [38]. This classification is the most
appropriate for solving a number of applied problems
(the unique choice of the main frame of reference in the
lattice, the rigorous description of ideal habits of crys-
tals according to Wulff, combinatorial–symmetric clas-
sification of the first Brillouin zones [39], etc.). It
should be noted that modern handbooks on crystallog-
raphy consider the types of the Bravais lattices insuffi-
ciently rigorously [40].

Fedorov’s classification of all the space groups is
much deeper than Schönflies’ classification. Fedorov
divided all the groups into symmorphic (whose crystal
class is the stabilizer of the Fedorov group), hemisym-
morhic (in which the axial hemihedry is the maximum
stabilizer of the Fedorov group), and asymmorphic (all
the remaining groups). This classification of groups
considerably facilitated their derivation. Also, it turned
out that this classification has a rather deep mathemati-
cal sense: there is a one-to-one correspondence
between the symmorphic and finite groups of integral
matrices. It is not accidental that D.K. Faddeev, a well-
known expert in algebra, used Fedorov’s classification
as the basis for the table of representations of the
Fedorov groups [41]. Faddeev’s classification is more
natural for crystallography than the classification sug-
gested in [42], which is confirmed by [43]. We believe
that it is necessary to publish a new edition of Fad-
deev’s tables which would be based on the modern
crystallographic nomenclature of the Fedorov groups
[44]. The innovations introduced into the nomenclature
in [45] seem to be excessive. The nomenclature of the
Fedorov groups convenient for computer work is given
in [46]; it is also useful for making compact tables of
these groups (Table 1) [47].

Fedorov also derived regular systems purely alge-
braically. This derivation was then repeated by the
mathematician Bogomolov [48]. The most widespread
purely algebraic method of derivation of the Fedorov
groups was suggested by Zassenhaus [49]. The method
was used to derive all the four-dimensional Fedorov
groups [50]. Geometrization of this algorithm made in
[51] resulted in the compact analytical representation
of the vector systems–the complete set of vectors in any
crystal structure (Galiulin–Delone formula [52]).

However, not all of Fedorov’s contemporaries real-
ized the meaning of the Fedorov groups, the convenient
classification of regular point systems following from
these groups, and the crystal structures composed of
such systems. Thus, Vernadsky (1843–1945) in his lec-
tures on physical crystallography delivered at the Phys-
ics Faculty of Moscow State University in 1908 stated
that crystallography can confine itself only to 32 crystal
classes [53]. Fedorov was also criticized by Wulff
(1863–1925) [54]. As a result, the Department of Crys-
tallography of the Physics Faculty of Moscow State
University made a much more modest contribution to
the development of crystallography than the Depart-
ment of Crystallography of the Mining Institute
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Table 1.  219 abstractly different Fedorov groups

Pi P1+.
P2/m P2s/m P2. Pm.
P2/b P2s/b P2s+. Pb+. 219sym = 73sym + 54hemisym + 2asym
I2/m I2. Im. (230     = 73      + 54            + 103)
I2/b Ib+. * – enantiomorphic (11)
Pmmm'' Pmma P222 Pmm2. Pmc2s. + – uniform (10)
Pccm Pmna P222s Pcc2. Pmn2s. . – degenerate (53)
Pban Pbam P2s2s2 Pma2. Pca2s+. " – caleidoscopic (7)
Pnnn Pmmn P2s2s2s+ Pnc2. Pna2s+. ' – Molnar (22)

Pnnm Pnn2.
Pcca Pba2.
Pnna 32 CRYSTAL CLASSES OF MEROHEDRY
Pbcm
Pbcn
Pccn i 1
Pnma 2/m 2 m
Pbca mmm 222 mm2

Cmmm' Cmcm C222 Cmm2. Cmc2s. 4/mm 422 4mm 4i2m 4/m 4 4i
Cccm Cmca C222s Ccc2. 6/mmm 622 6mm 6i2m 6/m 6 6i
Cmma C2mm. 3im 32 3m 3i 3
Ccca C2mb. m3m 432 4i3m m3 23

C2cm.
C2cb.

Immm' Imma I222 Imm2.
Ibam Ibca I2s2s2s Ima2.

Iba2.
Fmmm' F222 Fmm2.
Fddd Fdd2
P4/mmm'' P4/mbm' P422 P4mm. P4smc. P4i2m P4i2sm P4/m P4s/m P4. P4i
P4/mcc P4/nmm P422s P4cc. P4snm. P4i2c P4i2sc P4/n P4s/n P4s.
P4/nbm P4/mnc P4s22 P4bm. P4scm. P4r+*
P4/nnc P4s/mmc' P4s22s P4nc. P4sbc. P4im2

P4s/mcm' P4r22* P4ic2
P4s/nnm P4r22s* P4ib2
P4s/mnm' P4in2
P4s/nmc
P4/ncc
P4s/nbc
P4s/ncm
P4s/mbc

I4/mmm' P4r/amd I422 I4mm. I4rmd I4i2m I4i2d I4/m I4r/a I4. I4i
I4/mcm' I4r/acd I4r22 I4cm. I4rcd I4im2 I4r

I4ic2
P6/mmm'' P6s/mcm' P622 P6mm. P6smc. P6i2m' P6/m P6s/m P6. P6i
P6/mcc P6s/mmc' P6s22 P6cc. P6scm. P6i2c P6s.

P6rr22* P6im2'' P6rr*
P6r22* P6ic2 P6r*+

P3im1 P321 P3m1. P3i P3.
P3ic1 P3r21* P3c1. P3r*+
P3i1m P312 P31m.
P3i1c P3r12* P31c.
R3im R32 R3m R3i R3
R3ic R3c

Pm3m'' Pm3n' P432 P4i3m' Pm3' Pa3 P23
Pn3n Pn3m' P4s32 P4i3n' Pn3 P2s3

P4r32*
Im3m' Ia3d I432 I4i3m' I4i3d Im3 Ia3 I23

I4r32 I2s3
Fm3m'' Fd3m' F432 F4i3m'' Fm3' F23
Fm3c' Fd3c F4r32 F4i3c Fd3

Note: s is a twofold screw axis, r is a right-handed screw axis, and i is an inversion axis.
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founded by Fedorov. The outstanding results of the
Physics Faculty of Moscow State University were
obtained by noncrystallographers. Thus, Vlasov (1908–
1975) predicted the existence of long-range order in
plasma [55] and bending of space by a growing crystal
[56]. Ivanenko (1904–1994), together with Heisenberg,
predicted the proton–neutron model of a nucleus
(1932) and, together with Pomeranchuk, the synchro-
tron radiation (1945), formulated the problem of regu-
larity of the global structure of the Universe (1994)
[57]. A high level of crystallography at the Geology and
Chemistry Faculties of Moscow State University was
achieved by Fedorov’s followers Bokii (1909–2001)
[58], Belov (1891–1992) [59], Popov (1905–1963)
[60], and Livinskaya (1920–1994) [61]. High level of
crystallographic studies at the Moscow Institute of
Steel and Alloys is also associated with the Leningrad
school and its representative Shaskol’skaya (1913–
1983) [62]. An important role in the development of
Russian crystallography was also played by Crystallo-
graphic University created by Shubnikov, Bokii, and
Shaskol’skaya [58].

The situation with the 17 two-dimensional Fedorov
groups was quite different. They were derived by
Fedorov in 1891 [63], although, in fact, all these groups
can be found in Medieval Mauritanian ornaments [64].
Arabs decorated their mosques with such ornaments;
they symbolized for Moslems infinite regular paths to
Allah [65]. Unfortunately, there is still no handbook on
two-dimensional crystallography, which seems to be a
considerable gap in education, because many crystallo-
graphic problems can readily be understood in the two-
dimensional case. As a result, two-dimensional crystal-
lography is less used in practice than three-dimensional
crystallography.

Table 2 lists the Bravais parallelograms for the
17 two-dimensional Fedorov groups. The independent
domain of the group is hatched. Latin letters indicate
the Wyckoff positions corresponding to this group. The
symbol of the general Wyckoff position is given along
with the symbols of the special positions, which are
indicated at the corresponding symmetry elements
(mirror planes and rotation axes). Table 2 has six col-
umns. The first two columns correspond to holohedry
and contain both symmorphic and nonsymmorphic
groups in the order of a decrease in holohedry (along
the vertical); the third, fourth, and fifth columns corre-
spond to hemihedry (axial, symmorphic, and nonsym-
morphic (pb) groups); the sixth column corresponds to
tetartohedry (p, the sixth row).

To the merit of school teaching [7], which, in some
instances, is better than teaching in modern higher
schools, the elements of two-dimensional crystallogra-
phy are considered in modern school handbooks. The
level of understanding of crystallography and its rela-
tion to other sciences, and, first of all, to mathematics,
physics, chemistry, and biology, is determined by real-
ization of the meaning of the Fedorov groups.
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PERFECTIONISM

Fedorov started his philosophical work on perfec-
tionism in 1872 and continued writing it for many years
[66]. His wife, Ludmila Vasil’evna Fedorova, recollects
the time before her marriage [1]: “… He told us his the-
ory of perfectionism, which I then rewrote for him.
Unfortunately, it was published with considerable cen-
sure gaps in those places where he mentioned Germans
as perfectionists and predicted their future failure.” The
term perfectionism was coined by Fedorov and signi-
fies the strive for perfection. Fedorov shows the univer-
sal nature of the main laws of evolution, which describe
the development of the most diverse phenomena. Using
the laws established in natural sciences (physics, in the
broad sense), he considered the specific features of
biology, psychology, and sociology. Fedorov believes
that evolution can never be ended with the attainment of
perfection, it can only strive for perfection. The most
elegant and perfect elements, which are formed in the
process of evolution, unavoidably disappear and make
space for new even more perfect and harmonic ele-
ments. Perfection and harmony are attained only at the
moments of their disappearance. When life is in full
swing, only its unstable forms can develop. Life deals
only with unstable forms.

Now, we draw your attention to the fact that double
helix of DNA is associated with the action of a tenfold
axis [67]. It is this axis that “protects” DNA from crys-
tallization in the Euclidean space in a way similar to the
d shell of an atom having the shape of a pentagonal
antiprism (Fig. 5), which prevents the growth of an
ideal crystal [23]. The crystal structure is uniquely
reconstructed from its nucleus. It can have no muta-
tions, so necessary for life. Thus, crystals signify death.
I heard about this Fedorov concept from Alan MacKay,
an English crystallographer, the founder of the theory
of quasicrystals [68], who in turn referred to his teacher
John Bernal (1901–1971). Bernal, the founder of pro-
tein crystallography planned to state his original posi-
tion in understanding symmetry (the addition of a five-
fold axis [69]) at the 7th International Congress of
Crystallographers in Moscow in 1966, but he could not
do it because of his illness. Instead, the Congress was
addressed by Shubnikov, who, in Fedorov’s spirit,
called the crystallographers to keep the banner of pure
crystallography [70].

The Fedorov groups form the main criterion sepa-
rating crystal structures from all the other atomic for-
mations, cannot be generalized. In the mathematical
sense, Shubnikov’s black and white groups and Belov’s
color groups are the subgroups of the Fedorov groups
and, in fact, are the mathematical interpretations of
these groups.

The latter studies of global crystal formation [71]
allow one to emphasize the above thought of Fedorov
and to state that only crystals signify depth. Other sys-
tems, e.g., quasicrystals, cannot be uniquely recon-
structed and they have no long-range order. Therefore,
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Table 2. Two-dimensional Fedorov groups

h
f

they possess the ability (although only limited) to
accommodate. One can reveal some primitive elements
of life in these systems. A crystal with defects also has
some primitive elements of life, because defects are
always subjected to the action of a force—an electric
field gradient [27, 72]. Formation of twins (considered
in one of the first of Fedorov’s articles [73]), OD struc-
tures [74] (whose theory is consistent with the theory of
twinning (Fig. 6) and unique local continuation [75]),
and the Penrose-like model of a quasicrystal [76] are
some examples of the attempts of matter to avoid the
attainment of any stable state. In all the occasions, these
attempts are stopped by Pauling’s approximants, ideal
C

crystal structures which, within the experimental accu-
racy, can be assigned noncrystallographic symmetry.

The simplest way of introducing mutations into a
crystal is twinning, formation of a set of crystal struc-
tures related by symmetry transformations (twinning
operations) not contained in the Fedorov group that
describes the crystal structure. The atomic structure at
the contact surface is another polymorphic modifica-
tion of the structure (diamond–lonsdaleite, sphalerite–
wurtzite, calcite–aragonite, pyrite–marcasite, etc.).
Therefore, the study of the twinning laws is the most
promising way of searching for new phases of a sub-
stance. Any plane of a crystal structure can play the part
of a twinning plane. The axial polysynthetic twins are
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formed due to multiple reflection in such planes. The
surface separating individuals in a twin is called a twin
boundary (contact surface). If the intergrowth surface is
a plane dividing the twin structure into two parts, the
twinned structures formed are called contact twins; oth-
erwise, they are called penetration twins. The contact
surface can have fractal indices.

Composition (contact) plane in twins may either
coincide with the twinning plane (mirror twin) or not
coincide with it. If a twinning axis lies in the composi-
tion plane, the twins are called parallel. If the twinning
axis is perpendicular to the composition plane, the
twins are called normal. If the composition planes are
parallel to one another, the twins are called polysyn-
thetic; otherwise, they are called cyclic. A twin is ratio-
nal if the twinning operation in the Bravais reference
system is written by rational numerals. These twins are
ideal crystals, because they are described by the
Fedorov group, which is a subgroup of the initial group.

The most widespread type of twins are merohedral
twins in which the twinning operations are the symme-
try operations of the holohedry of the individual that are
not contained in its crystal class. In this case the corre-
sponding groups of parallel translations of individuals
are the same. Sometimes, the twin symmetry can be
higher than the symmetry of an individual. These are
the mimetic twins. The processes of twinning in crys-
tals can be considered as elementary events of life.

What is life? Fedorov wrote [66]: “Thorough
consideration of the conditions of development
always shows that evolution is not a continuous
upward band, it is similar to branching observed
in crystallization from solutions. Not all the
branches of the crystalline substance propagate
uniformly, the situation is quite different. Almost
all the branches disappear one after another, i.e.,
stop growing immediately after the formation of
more favorable conditions for crystallization.
The vital branches are those which, because of
the conditions of the solution drying, would con-
tinuously maintain the highest growth rate, and
these are always the most miserable shapeless
crystallizing (but not crystallized) masses. To
some extent, everybody can observe this phe-
nomenon in water freezing on a window. Of
course, as soon as a delicate flakelike mass of
growth figures is brought into contact with a sat-
urated solution with an introduced well-shaped
little crystal, the whole flakelike mass disappears
at an amazing rate, and, instead, the introduced
crystal starts growing. This fact is even more
emblematic of the general law of development:
delicate unstable growth figures are emblematic
of motion, life, and eternal and continuous
changes, whereas a crystal is emblematic of
death, equilibrium, and immobility. No doubt,
death is stronger than life, and the attainment of
the constant conditions of mobility indicates the
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
moment of death and beginning of perfect crys-
tallization.”
Living matter cannot be stable. It seems that Nature

created Man in the search for new ways of its own fur-
ther development. Man differs from animals because of
his strive for intellectual activity as necessary for him as
food. Therefore, he must pay for being able to perform
such an activity [77] in the way he pays for bread and
meat. This is exactly what Fedorov himself did.
Fedorov organized the Department of Crystallography
at the Mining Institute with his own money despite the
fact that at that time he was a Director, and a progres-
sive one. “…Progress cannot be based on binding or
unbinding hands of individual citizens, providing the
most favorable conditions for an individual and the
removal of all the obstacles in the development of the
already accumulated forces” [66]. Fedorov was not
appointed a Director by the order of the administration,
he was selected by students. From 1895 to 1905,
Fedorov was a Professor of geology at the St. Peter
Academy at Petrovskoe–Razumovskoe (Now
Timiryazev Agricultural Academy in Moscow). For ten
years of his professorship, he was never invited to
deliver a lecture on crystallography at Moscow Univer-
sity. Instead, once a week, the Moscow–St. Petersburg
train stopped at the Petrovsko-Razumovskoe station to
take a sole passenger, Professor Fedorov, who went to
St. Petersburg to deliver one of his regular lectures on
crystallography at the Mining Institute.

Up to the very end of his life, Fedorov was a Russian
patriot. Because of the war with Germany, he refused to
publish in German his work “The Realm of Crystals”
[78], where he stated that goniometric data allows one
to characterize crystals and draw some conclusions on
their atomic structure. This work is still disputed by
crystallographers throughout the world. English crys-
tallographer Thomas Barker visited Fedorov to master
this method. However, without Fedorov, this work had
not been concluded.

UNITY OF SCIENCE BASED ON REGULARITY

Fedorov always stated that science is unified. This
thought is also shared by modern scientists [79, 80].
And science can be unified only based on regularity.
The most successful step in understanding the impor-
tance of such a science was made by Fedorov. The
future of science lies in its unity. As an example of the

Fig. 5. Semiregular pentagonal antiprism.
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fruitful influence of such unity, we mention here the
proof of the famous Fermat theorem by the mathemati-
cian Faddeev, who invoked for this almost all the
branches of modern mathematics [81]. The solution
was found by considering two theories—those of ellip-
tic functions and modulated forms [82]. Both these the-
ories are associated with the finite groups of integral
matrices, i.e., lead to crystallography. Attempts of find-
ing purely crystallographic (i.e., regularity-based)
proof of this theorem were also undertaken by crystal-
lographers [83].
C

It should also be noted that the Fedorov groups (dis-
crete groups with finite independent domains) exist in
all the spaces of constant curvatures [84–88], in partic-
ular, in Lobachevskii spaces. Fedorov deeply respected
Lobachevskii. He wrote that Lobachevskii destroyed
the artificial obstacle between mathematics and natural
sciences by proving that geometry is based not on the
indisputable truth but on the truth, which requires its
experimental verification and confirmation [89].

This attitude to mathematics formulated still in the
19th century turned out to be extremely important not
only for modern mathematics but even for teaching of
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Fig. 6. Crystal twinning. Type of twins most often encountered and the symbols of twinning operations and composition planes.

No. Twin Twinning operation
and composition plane

1 Manebach twin of orthoclase KAlSi3O8 m(001)/(001)

2 Baveno twin of orthoclase m(021)/(021)

3 Right Carlsbad twin of orthoclase 2[001]/(010)

4 Left Carlsbad twin of orthoclase –

5 Swallow tail (gypsum CaSO4 · 2H2O) m(100)/(100)

6 Polysynthetic plagioclase twin (001)/(001)

7 Kalomine twin Zn4(Si2O7)(OH)2 · H2O m(001)/(001)

8 Pseudohexagonal antigrowth twins of chrysoberyl BeAl2O4 –

9 Staurolite Fe[OH]2 · 2Al2SiO5 m(032)/(032)

10 Staurolit m(232)/(232)

11 Cassiterite type (rutile TiO2) m(101)/(101)

12 Aragonite law (agaronite CaCO3) m(110)/(110)

13 ZnO twin m(001)/(001)

14 Dophin'e twin of quartz SiO2 6[001]/(101)

15 Brazilian twin of quartz m(110)/(110)

16 Twin along pinacoid (Iceland spar) 6[001]/(001)

17 Diamond twin –

18 Diamond twin along octahedron m(111)/(111)

19 Spinel twins with respect to octahedron m(111)/(111)

20 Iron cross (pyrite FeS2) m(110)/(100)

21 Maltese cross (pyrite FeS2) m(110)/(100)
mathematics in school. According to Arnol’d [90],
mathematics is a part of physics and, similar to physics,
is an experimental science. In the well-known article
Mathematics and Natural Sciences (1930), Gilbert
wrote that geometry is a part of physics. However, there
is also an opinion that mathematics and physics have
nothing in common. This brought the conclusion that
geometry may be excluded from all the mathematical
courses. And indeed, such an attempt has already been
made in Russia [90, p. 11]. It is timely to compare the
negative attitude of Chebyshev (1821–1894), one of the
most prominent mathematicians of the 19th century, to
Fedorov’s Elements, who wrote that the modern sci-
ence has no interest in such a geometry, with the first
epigraph to the present article and Delaunay’s words
that “Geometry is a difficult science in which one has to
think at every step.” As follows from Fedorov’s and
Delaunay’s works, one cannot state modern geometry
and mathematics, in general, without invocation of reg-
ularity, i.e., crystallography.

CONCLUSIONS
To E.S. Fedorov

Deep in beautiful vials,
Similar to a sculptor–magician,
Colorless dense solutions
Create for us beautiful crystals.
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Based on the vague entangling
Of thoughts, expectations, and dreams,
The human brain endlessly sculptures
Visions of fantastic creations.

The World of ethereal ideas
Is close to the mineral realm,
Shining like crystal faces
The dreams are instilled in our hearts.

January 2, 1919
N.A. Morozov “Crystals. Star Songs”

Books 1, 2. Moscow 1920–1921
These verses addressed to Fedorov, written on Janu-

ary 2, 1919, by N.A. Morozov (1854–1946), impris-
oned for 23 years (1881–1905) in the Schliesselburg
Fortress, provoke deep thinking. What is the crystal civ-
ilization? What contribution did crystallography make
to World’s history? What is Future in the light of the
opposition of Life and Crystal? How deeply is Fedorov
understood by our contemporaries? Mankind should
always be grateful to Fedorova (1851–1936) for the
memoirs about her husband [1], which, in fact, should
be regarded as a literary masterpiece. Probably,
Fedorov would have never become the Fedorov we
know without the understanding and constant support
of his wife. We are lacking Bokii, who brought us as
closer to Fedorov. Just imagine that, being a child,
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Bokii sat on Fedorov’s knee! We should also be grateful
to Nina Georgievna Furmanova, Bokii’s daughter, who
made a precious gift to us all— the reprints of the
majority of Fedorov’s articles collected by her grandfa-
ther and father and two volumes of the “Fundamentals
of Differential and Integral Calculus” written by
Fedorov [91, 92] still never mentioned in any of his bib-
liographies. The penetration into the crystallographic
meaning of Fedorov’s ideas was also facilitated by
Shafranovskiœ (1907–1994) and Frank-Kamenetskiœ
(1912–1994) [93].

The modern tendency of integration of various sci-
ences made the restoration of the Fedorov Institute
(created by Fedorov’s brightest student, Boldyrev
(1883–1946)) quite timely [94]. This Institute should
be an international organization performing the studies
in all the natural and humanitarian sciences under the
UNESCO supervision.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research, project no. 02-01-00101.

REFERENCES
1. L. V. Fedorova, Our Workdays, Sorrows, and Joys. Mem-

oirs Scientific Heritage (Nauka, Moscow, 1992), Vol. 20.
2. E. S. Fedorov, The Symmetry of Real Systems of Confi-

gurations. Imperial Petersburg Academy of Sciences.
Scientific Heritage (Nauka, Moscow, 1991), Vol. 16,
p. 168.

3. E. S. Fedorov, The Elements of the Study of Configura-
tions. Transactions of the St. Petersburg Mineralogical
Society (1885), Part 21.

4. A. V. Gadolin, Derivation of All Crystallographic Sys-
tems and Their Subsystems from One Common Origin
(Akad. Nauk SSSR, Moscow, 1954).

5. R. P. Feynman, R. B. Leighton, and M. Sands, The Fey-
nman Lectures on Physics (Addison-Wesley, Reading,
Mass., 1966; Mir, Moscow, 1977), Vol. 7.

6. R. V. Galiulin, Priroda (Moscow), No. 12, 20 (1991).
7. I. M. Smirnova and V. A. Smirnov, Geometry. Handbook

for the 7–9 Grades of Primary Schools (Prosveshchenie,
Moscow, 2001).

8. B. N. Delone, Izv. Akad. Nauk SSSR, Ser. Mat., No. 23,
365 (1959).

9. A. V. Shubnikov, Izv. Imp. Akad. Nauk, Ser. 6 10 (9), 757
(1916).

10. R. V. Galiulin, Kvant, No. 11, 10 (1983).
11. I. M. Smirnova, In the World of Polyhedra (Prosveshche-

nie, Moscow, 1995).
12. I. M. Smirnova, Geometry (Prosveshchenie, Moscow,

1997).
13. A. N. Golovanova and R. V. Galiulin, in Proceedings of

International Conference on Mineralogy and Life (Syk-
tyvkar, 2000), p. 172.

14. B. N. Delone, Tr. Inst. Istor. Estestvozn. Tekh. Akad.
Nauk SSSR 10, 5 (1956).
C

15. P. N. Antonyuk, in Proceedings of VII All-Russian
School on Modern Problems of Gas Dynamics (Moscow,
1991), p. 87.

16. M. Sh. Yakupov, in Proceedings of International Confer-
ence on Geometrization of Physics (Kazan, 1992), p. 1.

17. B. Delone and O. Zhitomirskiœ, Book on Geometrical
Problems (GITTL, Moscow, 1952).

18. I. Kh. Sabitov, Priroda (Moscow), No. 4, 19 (2000).
19. E. S. Fedorov, Zh. Russ. Fiz.–Khim. O–va 13 (4), 244

(1881).
20. S. A. Shchukarev and R. B. Dobrotin, Crystallography

(Leningr. Gorn. Inst., Leningrad, 1955), No. 3, p. 81.
21. E. S. Fedorov, Crystallography (Leningr. Gorn. Inst.,

Leningrad, 1955), No. 3, p. 85.
22. R. V. Galiulin, Zh. Vychisl. Mat. Mat. Fiz. 43 (6), 791

(2003).
23. T. F. Veremeœchik and R. V. Galiulin, in Proceedings of

International Conference on Crystal Genesis and Miner-
alogy (St. Petersburg, 2001), p. 409.

24. R. V. Galiulin, in Proceedings of International Confer-
ence on Carbon, Syktyvkar, 2003 (in press).

25. A. E. Fersman, Nauka Rabot. (Petersburg), No. 1, 13
(1920).

26. A. E. Fersman, Tr. Inst. im. M.V. Lomonosova, Ser.
Obshch., No. 1, 39 (1932).

27. T. F. Veremeœchik and R. V. Galiulin, Neorg. Mater. 38
(9), 1110 (2002).

28. A. A. Marakushev, Periodic System of Extremum States
of Chemical Elements (Nauka, Moscow, 1987).

29. R. V. Galiulin, in Proceedings of 2nd International Con-
ference on Carbon: Fundamental Problems of Science,
Materials Science, Technology (Mosk. Gos. Univ., Mos-
cow, 2003).

30. R. V. Galiulin, Vestn. Nizhegorod. Univ. im. N.I. Lo-
bachevskogo, Fiz. Tverd. Tela, No. 1 (4), 152 (2001).

31. E. S. Fedorov, Zap. Imp. S.-Peterb. Mineral. O–va,
No. 28 (2), 1 (1891).

32. C. Jordan, Ann. Math. Ser. 2 2, 167 (1868/1869); Ann.
Math. Ser. 2 2, 322 (1868/1869).

33. L. Sohncke, J. Reine Angew. Math. 77, 48 (1874).
34. L. Sohncke, Entwickelung Einer Theorie der Kristall-

struktur (Tuebner, Leipzig, 1869).
35. A. Schönflies, Kristallsystem und Kristallstruktur

(Teubner, Leipzig, 1891).
36. R. V. Galiulin and S. S. Ryshkov, Problems in Crystallo-

logy (Mosk. Gos. Univ., Moscow, 1971), p. 290.
37. E. S. Fedorov, Abh. K. Bauer Akad. Wiss. 11, 465

(1899).
38. B. N. Delone, Science and Mankind (Znanie, Moscow,

1981), p. 160.
39. R. V. Galiulin, Kristallografiya 29 (4), 638 (1984) [Sov.

Phys. Crystallogr. 29, 378 (1984)].
40. B. K. Vaœnshteœn and R. V. Galiulin, in Physical Encyclo-

pedia (1988), Vol. 1, p. 226.
41. D. K. Faddeev, Tables of the Main Unitary Representa-

tions of the Fedorov Groups (Akad. Nauk SSSR, Mos-
cow, 1961; Pergamon Press, Oxford, 1964).

42. O. V. Kovalev, Irreducible Representations of Space
Groups (Akad. Nauk Ukr. SSR, Kiev, 1961).
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003



 TO THE 150th ANNIVERSARY OF THE BIRTH OF EVGRAF STEPANOVICH FEDOROV 913
43. M. I. Aroyo and H. Wondratschek, Z. Kristallogr. 210,
243 (1995).

44. International Tables for X-ray Crystallography
(Kynoch, Birmingham, 1952), Vol. 1.

45. International Tables for Crystallography, Vol. A: Space-
Group Symmetry, Ed. by T. Hahn (Reidel, Dordrecht,
1983).

46. R. V. Galiulin, Kristallografiya 40 (3), 461 (1995) [Crys-
tallogr. Rep. 40, 421 (1995)].

47. S. A. Bogomolov, Derivation of Regular Systems by the
Fedorov Method (KUBUCh, Leningrad, 1932), Part 1;
(ONTI, Leningrad, 1934), Part 2.

48. R. V. Galiulin, Kristallografiya 32 (3), 769 (1987) [Sov.
Phys. Crystallogr. 32, 452 (1987)].

49. H. Zassenhaus, Commun. Math. Helv. 21, 117 (1948).
50. H. Brown, R. Bulow, J. Neubusser, H. Wondratschek,

and H. Zassenhaus, Crystallographic Groups of Four-
Dimensional Space (Wiley, New York, 1978).

51. R. V. Galiulin, Matrix–Vector Method of Deviation of the
Fedorov Group, Available from VINITI, Moscow,
No. 1094-69.

52. R. V. Galiulin and B. N. Delone, Dokl. Akad. Nauk
SSSR 210 (1), 85 (1973) [Sov. Phys. Dokl. 18, 285
(1973)].

53. V. I. Vernadsky, Selected Works. Crystallography
(Nauka, Moscow, 1988), p. 66.

54. Y. V. Wulff, Z. Kristallogr. 45, 433 (1908).
55. A. A. Vlasov, Vestn. Mosk. Univ., Nos. 3–4, 63 (1946).
56. L. S. Kuz’menkov, Prosesses of Real Crystal Formation

(Nauka, Moscow, 1977), p. 221.
57. D. D. Ivanenko and R. V. Galiulin, in Proceedings of

17th Workshop Dedicated to the 140th Birth Anniversary
of Henri Poincare, Protvino, 1995, p. 180.

58. G. B. Bokiœ, Problems of Crystallology (GEOS, Mos-
cow, 1999), p. 31.

59. N. V. Belov, Structural Crystallography (Akad. Nauk
SSSR, Moscow, 1951).

60. G. M. Popov and I. I. Shafranovskiœ, Crystallography
(Vysshaya Shkola, Moscow, 1972).

61. Yu. G. Zagal’skaya, G. P. Litvinskaya, R. V. Galiulin,
and V. S. Kovalenko, Problems of Crystallology (Mosk.
Gos. Univ., Moscow, 1971), p. 284.

62. M. P. Shaskol’skaya, Crystallography (Vysshaya
Shkola, Moscow, 1984).

63. E. S. Fedorov, Zap. Imper. S.-Peterb. Mineral. O–va,
No. 28 (2), 345 (1891).

64. N. V. Belov, Kristallografiya 1 (5), 612 (1956) [Sov.
Phys. Crystallogr. 1, 482 (1956)].

65. Kh. S. Mamedov, Comput. Math. Appl. 128, 511 (1986).
66. E. S. Fedorov, Izv. S.-Peterb. Biol. Lab. 8 (1), 25 (1906);

Izv. S.-Peterb. Biol. Lab. 8 (2), 9 (1906).
67. M. D. Frank-Kamenetskiœ, The Most Important Mole-

cule (Nauka, Moscow, 1983).
68. A. L. Mackay, Kristallografiya 26 (5), 910 (1981) [Sov.

Phys. Crystallogr. 26, 517 (1981)].
69. J. D. Bernal and S. H. Carlise, Kristallografiya 13 (5),

927 (1968) [Sov. Phys. Crystallogr. 13, 811 (1968)].
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
70. R. V. Galiulin, Usp. Fiz. Nauk 172, 229 (2002).
71. R. V. Galiulin, in Proceedings of Scientific Seminar on

Nontraditional Problems of Geology (Moscow, 2002),
p. 52.

72. O. V. Konovalov and R. V. Galiulin, Kristallografiya 34
(3), 731 (1989) [Sov. Phys. Crystallogr. 34, 435 (1989)].

73. E. S. Fedorov, Zap. S.-Peterb. Mineral. O–va, Ser. 2,
No. 17, 381 (1882).

74. K. Dornberger-Schiff, Lehrgang über OD-Strukturen
(Akademie, Berlin, 1966; Mosk. Gos. Univ., Moscow,
1966).

75. R. V. Galiulin, Kristallografiya 43 (2), 366 (1998) [Crys-
tallogr. Rep. 43, 332 (1998)].

76. D. Gratia, Usp. Fiz. Nauk 156 (2), 347 (1988).
77. V. M. Vil’chek, Algorithms of History (Prometeœ, Mos-

cow, 1989).
78. E. S. Fedorov, The Realm of Crystals. Tables for Crystal-

lochemical Analysis (Zap. Akad. Nauk Fiz.–Mat. Otd.,
1920), Vol. 36.

79. V. I. Arnol’d, Izv. Ross. Akad. Nauk, Ser. Yaz. Lit. 56 (2),
63 (1997).

80. V. I. Arnol’d, Usp. Fiz. Nauk 169 (12), 1311 (1999)
[Phys. Usp. 42, 1205 (1999)].

81. L. D. Faddeev, Chto Novogo Nauke Tekh., No. 2 (4), 112
(2003).

82. S. Singh, Fermat’s Enigma: the Epic Quest to Solve the
World’s Greatest Mathematical Problem (Anchor
Books, New York, 1998; Mosk. Tsentr Neprer. Mat.
Obraz., Moscow, 2000).

83. I. A. Sheremet’ev, Kristallografiya 46 (2), 199 (2001)
[Crystallogr. Rep. 46, 161 (2001)].

84. V. V. Nikulin and I. R. Shafarevich, Geometries and
Groups (Nauka, Moscow, 1983).

85. S. V. Rudnev, Comput. Math. Appl. 16 (5–8), 597
(1988).

86. R. V. Galiulin, Sci. Spectra 14, 54 (1998).
87. R. V. Galiulin, Usp. Fiz. Nauk 172 (2), 229 (2002).
88. R. V. Galiulin and T. F. Veremeœchik, in Proceedings of

International Conference Dedicated to M.P. Shaskol’-
skaya, Moscow, 2003 (in press).

89. E. S. Fedorov, Zap. S.-Peterb. Mineral. O–va, Ser. 2,
No. 30, 455 (1893).

90. V. I. Arnol’d, What is Mathematics? (Mosk. Tsentr
Neprer. Mat. Obraz., Moscow, 2002).

91. E. S. Fedorov, Fundamentals of Differential and Integral
Calculus (Imper. Akad. Nauk, St. Petersburg, 1903).

92. E. S. Fedorov, Fundamentals of Differential and Integral
Calculus, Drawings (Imper. Akad. Nauk, St. Petersburg,
1903).

93. E. S. Fedorov, Scientific Heritage (Nauka, Leningrad,
1991), Vol. 16.

94. I. I. Shafranovskiœ, Crystallography in the USSR, 1917–
1991 (Nauka, St. Petersburg, 1996).

Translated by L. Man



  

Crystallography Reports, Vol. 48, No. 6, 2003, pp. 914–918. Translated from Kristallografiya, Vol. 48, No. 6, 2003, pp. 981–985.
Original Russian Text Copyright © 2003 by Bolotina, Rastsvetaeva, Sapozhnikov, Kashaev.

                                                                                        

STRUCTURE
OF INORGANIC COMPOUNDS

                    
Dedicated to the 60th Anniversary
of the Shubnikov Institute of Crystallography

of the Russian Academy of Sciences

Twin Orthorhombic Structure of Haüyne from Sakrofano (Italy)
N. B. Bolotina*, R. K. Rastsvetaeva*, A. N. Sapozhnikov**, and A. A. Kashaev***

* Shubnikov Institute of Crystallography, Russian Academy of Sciences, 
Leninskiœ pr. 59, Moscow, 119333 Russia

e-mail: rast@ns.crys.ras.ru
** Vinogradov Institute of Geochemistry and Analytical Chemistry, Siberian Division, 

Russian Academy of Sciences, ul. Favorskogo 1a, Irkutsk, 664033 Russia
*** Irkutsk State University of Transport Communications, Irkutsk, Russia

Received April 8, 2003

Abstract—The structure of haüyne from Sakrofano (Italy) is solved using the superstructure reflections, which
double the unit cell parameters in three directions. The cubic symmetry of the diffraction pattern of haüyne
results from the twinning of the equidimensional orthorhombic components by the [111] threefold axis. The
structure is refined in the orthorhombic space group Pba2 with the unit cell parameters a = b = 12.872(7) Å and
c = 9.102(3) Å in the anisotropic approximation to R = 0.043 for 1737 reflections. Compared to high-potassium
haüyne from Arissia (Italy), the mineral studied contains potassium in smaller amounts and the distribution of
K, Na, and Ca atoms over four body diagonals of the cell is ordered, which apparently causes the lowering of
symmetry from cubic to orthorhombic. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Haüyne belongs to the sodalite group of aluminosil-
icate minerals. The ideal sodalite framework has cubic
symmetry. The (Al6Si6O24)6– rings formed by six tetra-
hedra alternate parallel to each other along the 〈111〉
axis of the unit cell with a parameter of ~9 Å. The cen-
ters of the rings lie on the body diagonals of the cube,
and the large cavities of the framework are occupied by
large cations (Na, K, Ca) and anions or anionic groups

( , S2–, Cl–). The shape and size of the cavities can
vary through rotations of the framework tetrahedra for
better fitting to ions or ionic groups of different sizes.
Sodalite Na8(Al6Si6O24)Cl2 has a stoichiometric com-
position, and the symmetry of its structure is described

by the cubic space group  [1]. A more complex
situation occurs with sulfate derivatives of sodalite
minerals (such as haüyne, nosean, and lazurite) with the
general formula (Na,Ca,K)8(Al6Si6O24)(SO4,S,Cl)2,
because almost all these minerals are nonstoichiometric
and have vacancies at the sites of the framework ions.
The same mineral often has several varieties that differ
in physical properties (for example, isotropic and
anisotropic lazurites), visual appearance (color and
shape of the specimens), and, what is more important in
this context, in the type of diffraction pattern: almost all
the patterns contain superstructure or satellite reflec-

SO4
2–

P43n
1063-7745/03/4806- $24.00 © 20914
tions, or their combination, in addition to the main
reflections of the cubic sodalite structure.

Interest in the structure of sulfur-containing
sodalites is largely associated with the diversity of
structural modifications of a particular mineral from
different deposits. Haüyne of the general formula
(Na,Ca,K)8(Al6Si6O24)(SO4,Cl)2 is not an exception to
this rule. The present work continues a series of our
investigations [2–8] aimed at systematizing available
structural data for sulfur-containing sodalites and
establishing correlations between the composition and
structure of these minerals. We studied the structure of
haüyne from the Cavalluccio deposit (Sakrofano, Italy).
The specimens were kindly placed at our disposal by
Prof. A. Maras (Rome University).

EXPERIMENTAL

The mineral is represented by colorless transparent
isotropic crystals with the refractive index n = 1.507.
The chemical composition was determined by micro-
probe analysis. The formula calculated for Z = 2 is
(Na4.44K1.09Ca2.36)(Si5.82Al6.18)O24(SO4)1.96Cl0.01.1 Weak
superstructure reflections are observed in rotating-crys-
tal and reciprocal-lattice X-ray photographs indicating
the doubling of the lattice period a = 9.118 × 2 = 18.236 Å

1 A minor excess of positive charge (+0.14) is most likely associ-
ated with the experimental error.
003 MAIK “Nauka/Interperiodica”
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and fitting the space groups I23, I213, and I432. The
most intense superstructure reflections observed in
reciprocal-lattice and powder X-ray photographs were
431 and 433 with interplanar distances d = 3.58 and
3.13 Å, respectively.

The diffraction pattern and the set of systematic
absences indicate that the crystal is cubic (Laue class
m3), its symmetry is Ia3, and the unit cell parameter is
twice as large as that of the sodalite cell. However, our
earlier attempts to determine the structure of the min-
eral were unsuccessful, since they resulted in an R fac-
tor larger than 20%. We recommenced the studies after
our recent determination of the structure of lazurite
from the Baœkal region [7, 8], which is known as isotro-
pic cubic lazurite. The diffraction pattern of this min-
eral with due regard for numerous satellites, which are
incommensurate to the period of the sodalite lattice,
also corresponds to the m3 point symmetry. It was
found that the real symmetry of the modulated lazurite
is lower than the cubic symmetry. The cubic symmetry
of the diffraction pattern was explained by the twinning
of three equidimensional orthorhombic components by
the [111] axis of the cubic lattice. We assumed that the
observed cubic symmetry of the diffraction pattern of
haüyne also stems from the twinning of equidimen-
sional orthorhombic components by the [111] axis.

First, a set of 1747 measured reflections with inten-
sities I > 3σ(I), which was obtained on an Enraf–Non-
ius diffractometer (Mo radiation), was indexed in the
cubic I-centered cell with the parameter a = 18.204(1) Å.
The unit cells of the first, second, and third components
of the twin are related to the cubic cell as follows:

a1 = (acub – bcub)/2; b1 = (acub + bcub)/2; c1 = ccub/2;

a2 = (acub – ccub)/2; b2 = bcub/2; c2 = (acub + ccub)/2;

a3 = acub/2; b3 = (bcub – ccub)/2; c3 = (bcub + ccub)/2,

where acub, bcub, ccub is the cubic cell basis and ai , bi , ci

(i = 1, 2, 3) is the basis of the corresponding twin com-
ponent. The parameters of the new unit cell are a = b =
12.872(7) Å, c = 9.102(3) Å, and α = β = γ = 90°. The
transformation of the reflection indices follows the
same rule as the transformation of the basis vectors of
the cubic cell; that is,

h1 = (hcub – kcub)/2; k1 = (hcub + kcub)/2; l1 = lcub/2;

h2 = (hcub – lcub)/2; k2 = kcub/2; l2 = (hcub + lcub)/2;

h3 = hcub/2; k3 = (kcub – lcub)/2; l3 = (kcub + lcub)/2.

All the (hcub, kcub, lcub) reflections with three even
indices are indexed in the basis of each component, and
their intensities are equal to the sums of intensities of
the corresponding overlapped reflections. All the
remaining reflections have one even and two odd indi-
ces in the I-centered cubic lattice. The reflections with
an even lcub, kcub, or hcub index are indexed only in the
basis of the first, second, or third lattice and generated
by the corresponding twin component. According to the
requirements of the JANA program [9], which was used
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
for the structural calculations, each reflection was pre-
liminarily reindexed in its own lattice and provided
with the component number. The reflections that are
common for all components can be indexed in the lat-
tice of any component (for example, the first compo-
nent), and the component number is of no significance
for them. Since we can average in this case only the
nonoverlapping symmetry-equivalent reflections sepa-
rately for each component, the symmetry group is cho-
sen based on the results of the refinement of the struc-
tural parameters in different groups.

The atomic coordinates of the lazurite structure [8]
were transformed from the cubic cell with the a param-

eter into the orthorhombic cell with the a , a , and
a parameters and used as starting atomic coordinates
for haüyne. Among the orthorhombic space groups sat-
isfying the systematic absences, Pba2 was the only
space group in which a small R factor was obtained.
Although some weak reflections in the data set violated
the systematic absence h0l: h = 2N, the refinement in
the Pmm2 and P222 orthorhombic groups without sys-
tematic absences resulted in a large R factor. The R fac-
tor close to that obtained in the Pba2 group was also
attained in the P2 group, but, in this case, the number of
atoms was twice as large because of lower symmetry.

Note that, in the  group, the Fcalcd values of the
reflections h0l: h = 2N + 1, which should be absent in
the Pba2 group, coincide rather closely with the Fobs
values. However, the R factors in the tetragonal group

 are larger than those in the Pba2 group. We assume
that, similar to lazurite [8], this mineral is inhomoge-
neous in structure and part of its domains is described
by the tetragonal group of symmetry better than by the
orthorhombic group. Nonetheless, we finally decided in
favor of the Pba2 group.

The ten worst reflections, for which |Fobs – Fcalcd | >
20σ(Fobs), were rejected from the data set with I >
3σ(I). The remaining 1737 reflections were included in
the least-squares procedure. The structural parameters
were refined in the anisotropic approximation of ther-
mal vibrations on the F criterion using the weighting
scheme w(Fobs) = 1/σ2(Fobs) to the weighted factor
wR = 0.043. The refined atomic coordinates and equiv-
alent thermal parameters are listed in Table 1. The inter-
atomic distances are given in Tables 2 and 3.

RESULTS AND DISCUSSION
The structure of haüyne in the projections onto the

(001) and (100) planes is shown in Figs. 1 and 2,
respectively. The T positions are located at the centers
of the oxygen tetrahedra of the framework. Their popu-
lation with silicon and aluminum is only in part ordered
in distinction to haüynes from Arissia [2], which have a
close composition, and lazurites with an ordered frame-
work [3, 4]. As follows from the interatomic distances
(Table 2), the T(1) and T(2) positions are occupied

2 2

P4

P4
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Table 1.  Atomic coordinates, thermal parameters Ueq, and site occupancies q

Position x y z Ueq, Å2 q

T(1) 0.2568(4) 0.2513(5) 0.250(1) 0.007(2) 1

T(2) 0.7497(5) 0.7410(6) 0.751(1) 0.017(2) 1

T(3) 0.1193(5) 0.8793(7) 0.498(1) 0.005(2) 1

T(4) 0.6308(6) 0.3718(9) 0.505(1) 0.021(3) 1

T(5) 0.3718(6) 0.8864(8) –0.006(1) 0.017(2) 1

T(6) 0.8760(6) 0.3720(8) 0.009(1) 0.013(2) 1

O(1) 0.198(1) 0.144(2) 0.348(2) 0.049(9) 1

O(2) 0.647(1) 0.701(2) 0.642(2) 0.039(8) 1

O(3) 0.187(1) 0.830(2) 0.366(2) 0.021(6) 1

O(4) 0.661(1) 0.315(1) 0.661(2) 0.009(5) 1

O(5) 0.351(2) 0.003(1) 0.032(3) 0.032(8) 1

O(6) 0.008(1) 0.350(2) –0.039(2) 0.010(6) 1

O(7) 0.150(1) –0.001(1) 0.540(2) 0.012(6) 1

O(8) –0.001(1) 0.149(2) 0.474(2) 0.020(7) 1

O(9) 0.344(1) 0.815(2) 0.156(3) 0.039(8) 1

O(10) 0.814(2) 0.330(2) 0.867(3) 0.064(10) 1

O(11) 0.837(1) 0.305(2) 0.125(2) 0.014(5) 1

O(12) 0.315(1) 0.850(2) 0.840(2) 0.018(6) 1

Ca(1) 0.327(1) 0.010(2) 0.318(2) 0.044(8) 0.35

Ca(2) 0.5004(7) 0.786(2) 0.711(2) 0.260(13) 1

Na(1) 0.262(1) –0.011(2) 0.264(2) 0.026(6) 0.65

Na(2) –0.001(1) 0.232(1) 0.230(2) 0.006(3) 0.6

Na(3) 0.715(1) 0.497(1) 0.786(2) 0.100(1) 1

K –0.002(1) 0.171(2) 0.173(2) 0.028(6) 0.4

S(1) 0 0 –0.045(3) 0.39(5) 1

O(13) 0.018(3) –0.059(6) 0.077(6) 0.22(4) 1

O(14) –0.044(4) 0.075(7) –0.136(9) 0.32(5) 1

S(2) 0.5 0 0.494(8) 0.37(7) 1

O(15) 0.516(4) 0.112(7) 0.384(7) 0.10(3) 0.5

O(16) 0.413(3) 0.022(3) 0.389(5) 0.04(1) 0.5

O(17) 0.406(10) –0.068(13) 0.566(11) 0.7(2) 1

Note: The T positions are populated as follows: T(1) and T(2) contain Al; T(3) and T(6), Si; T(4), (0.75Al + 0.25Si); T(5), (0.75Si + 0.25Al).
The Ca(1) position contains 0.2Ca + 0.15K.
Table 2.  Interatomic T–O distances in the framework tetrahedra

T(1)–O(1) 1.81(2) T(2)–O(2) 1.73(2) T(3)–O(2) 1.70(2)

O(3) 1.63(2) O(4) 1.70(2) O(3) 1.62(2)

O(9) 1.76(2) O(10) 1.76(3) O(7) 1.63(2)

O(11) 1.70(2) O(12) 1.64(2) O(8) 1.58(2)

〈1.72〉 〈1.71〉 〈1.63〉
T(4)–O(1) 1.69(2) T(5)–O(5) 1.56(2) T(6)–O(5) 1.66(2)

O(4) 1.65(2) O(6) 1.65(2) O(6) 1.77(2)

O(7) 1.72(2) O(9) 1.77(3) O(10) 1.61(3)

O(8) 1.74(2) O(12) 1.64(2) O(11) 1.46(2)

〈1.70〉 〈1.65〉 〈1.62〉
C

mainly by Al, the T(3) and T(6) tetrahedra are occupied
by Si, and the T(4) and T(5) tetrahedra accommodate Al
and Si in comparable amounts with the prevalence of Al in
the former tetrahedron and Si in the latter tetrahedron.

The origin of structural modifications in sodalite
minerals is not entirely clear. However, it was found
[10] that, in these minerals, the high potassium content
prevents the formation of modulated structures. In
haüynes from Sakrofano [11], Monte Somma [12], and
Arissia [2], whose structures were studied earlier, the
potassium content lies in the range from 0.9 to
1.4 atoms per formula unit (the maximum amount of
potassium was found in the specimen from Arissia).
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003



TWIN ORTHORHOMBIC STRUCTURE 917
Table 3.  Interatomic distances for intraframework cations

Ca(1)–O(1) 2.41(3) Ca(2)–O(2) 2.28(2) Na(1)–O(1) 2.29(3) Na(2)–O(1) 3.00(2)

O(3) 2.98(3) O(4) 2.50(2) O(3) 2.44(3) O(3) 2.81(2)

O(5) 2.62(2) O(6) 2.43(3) O(5) 2.41(3) O(6) 2.88(3)

O(9) 2.93(3) O(8) 2.79(3) O(7) 2.90(3) O(8) 2.46(3)

O(11) 2.96(3) O(10) 2.83(3) O(9) 2.67(3) O(9) 2.39(2)

O(15) 2.82(6) O(12) 2.78(2) O(16) 2.30(4) O(11) 2.47(2)

O(15) 2.63(7) O(17) 2.6(2) O(13) 2.64(8)

O(17) 2.67(12) O(15) 2.46(9)

Na(3)–O(4) 2.69(3) K–O(3) 2.95(2) S(1)–O(13) 1.4(1) × 2 S(2)–O(15) 1.8(1) × 2
O(5) 2.84(3) O(8) 2.75(3) O(14) 1.4(1) × 2 O(16) 1.5(1) × 2 

O(7) 2.39(3) O(9) 2.76(3) O(17) 1.6(1) × 2
O(10) 2.61(3) O(11) 2.72(3)

O(12) 2.40(3)

O(14) 2.53(6)

Note: For S(2), the statistical environment is given at the 50% probability level.
Their structures differ mainly in the number of orienta-
tions adopted by sulfate groups and in the distribution
of intraframework cations. For example, in haüyne
studied in [11], all the S tetrahedra show the same ori-
entation, whereas high-potassium haüyne [2] and the
haüyne described in [12] are characterized by two ori-
entations. Large K, Ca, and Na cations are uniformly
distributed over all the body diagonals of the cube; thus,
the cubic symmetry is retained in all three specimens.

The structure of the specimen from the Cavalluccio
deposit differs substantially from the structures of the
haüynes described earlier. For simplicity of the refine-
ment, we located both independent sulfur atoms in spe-
cial positions. In reality, these positions split into sev-
eral subpositions, which are related by the twofold axis.
The difference Fourier synthesis calculated for the set
of atomic coordinates not including the sulfur atoms
and the oxygens of the sulfur environment revealed the
following features. At the S(1) site, three pairs of split
subpositions are observed, namely, (±0.035, 0, 0.04),
(0, ±0.05, 0.04), and (0, ±0.04, −0.04). At the S(2) site,
there exist two pairs of subpositions, (0.5, ±0.037,
0.475) and (±0.53, 0, 0.525). The positions of the oxy-
gen atoms in the sulfur environment are even less defi-
nite, as indicated by large values of their thermal
parameters. The oxygen maxima are hardly distin-
guished in the electron-density clouds around the sulfur
positions. Therefore, the positions of the oxygen atoms
of the sulfur environment given in Table 1 are conven-
tional and allow us to estimate the situation around the
sulfur atoms qualitatively rather than quantitatively.
The tetrahedra around the S(1) atoms degenerate into
distorted squares, and the ellipsoids of thermal vibra-
tions of both the S(1) atom and the oxygen atoms in its
environment are large and flatten: they actually degen-
erate into ellipses perpendicular to the plane of the
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
square. For the oxygen atoms surrounding S(2), Table 1
presents the positions of two equally probable orienta-
tions of tetrahedra, which are contracted along direc-
tions perpendicular to the c axis of the unit cell. 

The (Na4.5K1.1Ca2.4)Σ8 composition of the
intraframework cations obtained in the refinement
agrees with the empirical formula. The large cations are
distributed over four independent structural positions,
two of which are split into two positions each [Na(1)–
Ca(1) and Na(2)–K]. The K atoms are located in large
polyhedra formed by four oxygen atoms of the frame-
work. The K–O distances are equal to 2.72–2.95 Å. A
number of potassium atoms are also located at the
Ca(1) position in the eight-vertex polyhedron, which

a

b
0

Fig. 1. Haüyne structure in the projection onto the (001)
plane. The K, Na, and Ca positions are indicated by large
open circles, medium-size shaded circles, and small closed
circles, respectively. The positions of sulfur atoms are indi-
cated by the smallest closed circles.
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includes the O atoms of the S(2) environment. The cat-
ion-to-anion distances are 2.41–2.98 Å. Four body
diagonals in the structure studied are inequivalent
because of the positional displacements of the
intraframework atoms and different occupancies of
their positions. Most of the potassium and calcium
atoms lie on two diagonals and occupy positions simi-
lar to those in the structure of haüyne from Arissia. The
two other diagonals are populated mainly with sodium
atoms and contain also small amounts of Ca and K, so
that potassium completely substitutes for sodium at the
position found in the structure of haüyne from Arissia.
Thus, the ordering of the Na and K (Ca) intraframework
cations is apparently responsible for the lowering of
symmetry of haüyne from cubic to orthorhombic.
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Abstract—Iron-containing potassium feldspar crystals are prepared using the hydrothermal synthesis in an
alkaline medium at temperatures ranging from 500 to 526°C. The crystal structure of the synthetic potassium
feldspar is refined [Ital Structures diffractometer, MoKα radiation, 1327 unique reflections with |F | > 4σ(F),
anisotropic approximation, R(F) = 0.044]. It is established that, under the given preparation conditions, the syn-
thesis leads to the formation of the monoclinic modification with the following unit-cell parameters: a =
8.655(7) Å, b = 13.101(9) Å, c = 7.250(8) Å, β = 116.02(2)°, space group C2/m, and Z = 4. The cation distri-
bution over crystallographically inequivalent tetrahedral positions T(1) and T(2) is determined and justified
using X-ray diffraction data. According to this distribution, the iron-containing potassium feldspar is assigned
to the low ferrialuminosilicate sanidine. The proposed structural formula
KÄ = 0.99(Si1.2Fe0.5Al0.3)Σí(1) = 2(Si1.81Al0.19)Σí(2) = 2é8 agrees well with the data of the electron microprobe
analysis. It is revealed that iron occupies the T(1) position and manifests itself as a majority rather than minority
impurity element with respect to aluminum. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Feldspars belong to the group of the most important
rock-forming minerals. These are framework silicates
of the general formula AT4O8 , where A stands for alkali

and alkaline-earth cations (Na+, K+, Rb+, Ca2+, )
located in large-sized holes in the structure and T repre-
sents small-sized tetrahedrally coordinated cations
(Si4+, B3+, Al3+, Fe3+, Ga3+, Ge4+, P5+).

As early as 1933, Taylor [1] used sanidine as an
example and was the first to determine the main fea-
tures of the crystal structure of minerals in this group.
At present, a large number of structural studies have
dealt with feldspars. The majority of these works are
concerned primarily with the investigation into the spe-
cific features of the distribution of silicon and alumi-

NH4
+

1063-7745/03/4806- $24.00 © 20919
num cations over tetrahedral positions, i.e., with the
analysis of the structural state of the crystals.

It is known that the lowering of symmetry of feld-
spars is due to ordering of tetrahedrally coordinated
cations. A completely disordered modification with a
uniform distribution of aluminum and silicon between
two eightfold positions T(1) and T(2), namely, the end-
member high sanidine, is characterized by monoclinic
symmetry. A completely disordered high sanidine of
this type at an equal aluminum content in both tetrahe-
dral positions was first described by Ferguson et al. [2].
When going over to more ordered feldspars (such as
orthoclase and microcline), the symmetry changes
from monoclinic to triclinic and aluminum at different
contents is disordered over four cation positions [T(1Ó),
003 MAIK “Nauka/Interperiodica”
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T(1m), T(2Ó), T(2m)] in such a way that the maximum
aluminum content is observed at the T(1o) position [3].

However, the specific features in the distribution
over the aforementioned tetrahedral positions of other
atoms contained in smaller amounts (as compared to
aluminum and silicon atoms) are not as well under-
stood. Among the trivalent cations involved in natural
feldspars, second in importance to aluminum is Fe3+.
The mean Fe3+ content, as a rule, does not exceed
0.5 wt % [4] and, only in some samples, reaches several
percent. It is worth noting that the maximum Fe2O3
content in potassium feldspars is higher than that in pla-
gioclases and amounts to 4 and 1–2 wt %, respectively
[5]. An example of natural iron-containing feldspars is
provided by iron orthoclases (Madagascar) with an
Fe2O3 content of ~3 wt % [6].

At present, more reliable data on the distribution of
cations over the tetrahedral positions T(1) and T(2) in
iron-containing feldspars have been obtained using fine
investigative techniques, such as X-ray diffraction anal-
ysis, electron paramagnetic resonance (EPR) spectros-
copy, and Mössbauer spectroscopy.

In particular, Mössbauer investigations of synthetic
feldspars of the composition KFeSi3O8 were carried out
by Annersten [7] and Vylegzhanin et al. [8]. It was
demonstrated that iron involved in the KFeSi3O8 struc-
ture resides in a trivalent state. Moreover, it was noted
that tetrahedral Fe3+ is redistributed over the T(1) and
T(2) positions upon the transition from a monoclinic
modification (sanidine) to a triclinic modification
(microcline).

In a number of works [9–12], the impurity distribu-
tion over tetrahedral positions was determined from the
results of the interpretation of the EPR spectra. Accord-
ing to these data, Fe3+ impurity cations in low albite—
an ordered triclinic modification of NaAlSi3O8—
occupy only the T(1o) position, which is typical of Al3+

cations; furthermore, the Fe3+ impurity cations are
retained in this position even upon subsequent disorder-
ing of aluminum and silicon cations [9]. In natural sani-
dine of the composition KAlSi3O8, impurity iron cat-
ions also tend to occupy just the T(1) [T(1o) + T(1m)]
tetrahedral position [10, 11]. For the KFeSi3O8 struc-
ture, Wones and Appleman [12] noted the limiting case
of the complete isomorphic replacement Al3+  Fe3+

in the T(1) position.

However, in disordered feldspar modifications, Fe3+

cations can be isomorphically incorporated into other
tetrahedra [T(1m), T(2o), or T(2m)] by replacing not
only Al3+ but also, in part, Si4+ cations [5, 13]. Accord-
ing to the results of EPR measurement performed in
[14, 15], Fe3+ cations in the sanidines studied are
located at two inequivalent positions, T(1) and T(2),
simultaneously.

Unfortunately, reliable information on the mecha-
nism and kinetics of replacements such as Al3+            
C

Fe3+ and Fe3+  Si4+

 

 in the structure is lacking. This
is especially true in regard to intermediate stages of par-
tial distribution of three types of cations simultaneously
over tetrahedral positions in silicates generally and
feldspars in particular.

In the present work, we carried out a structural
investigation of iron-rich potassium feldspar crystals
synthesized under hydrothermal conditions. The main
objective of this study was to elucidate the character of
the distribution of iron and aluminum cations over posi-
tions of the tetrahedral framework.

EXPERIMENTAL

 

Synthesis Conditions

 

In two series of experiments, we prepared crystals of
ferrialuminosilicate feldspars through hydrothermal
synthesis. The crystals synthesized appeared to be sta-
ble at temperatures of 500–526 and 600

 

°

 

C (

 

 

 

=
100 MPa in KOH solutions). Crystals of K(Al,Fe)Si

 

3

 

O

 

8

 

solid solutions were prepared according to the proce-
dure worked out earlier in [16].

The initial batch was composed of the following
oxides: SiO

 

2

 

, Fe

 

2

 

O

 

3

 

, and Al

 

2

 

O

 

3

 

. Aqueous solutions
containing up to 15.25 wt % KOH were used as miner-
alizers. The concentration ratio of Fe

 

2

 

O

 

3

 

 and Al

 

2

 

O

 

3

 

 was
varied in different experiments. The synthesis was per-
formed in autoclaves with a volume of 200 cm

 

3

 

, which
were fabricated from a 1Kh18N10T stainless steel and
fitted out copper swimming reaction vessels. The use of
the copper vessels made it possible to maintain the oxy-
gen potential of the system at a constant level corre-
sponding to a copper–cuprite (Cu–Cu

 

2

 

O) buffer, which
is particularly important for the experiments with iron
as an element characterized by a variable valence. For
this purpose, copper oxide CuO, which is capable of
transforming into cuprite Cu

 

2

 

O under the conditions of
our experiment, was added to the copper vessels. The
precipitation of CuFeO

 

2

 

 delafossite crystals occurred
with an increase in the iron content in the initial batch
under conditions of the Cu–Cu

 

2

 

O buffer association.
Delafossite was observed in the form of scaly platelike
precipitates up to 0.1 mm in diameter. Neither delafos-
site nor cuprite could introduce an uncertainty into the
results of X-ray microanalysis, because the sizes of
these inclusions were not very small and the interfaces
with feldspar crystals were clearly defined.

 

Chemical Composition 
(Electron Microprobe Analysis)

 

The chemical analysis of the crystals synthesized
was carried out on Jeol JCXA-733 and Camebax SX-50
(Cameca) microanalyzers (accelerating voltage, 20 kV;
microprobe current, 20 nA). The detection limit for iron
was 0.1 wt %. The copper content in the crystals under
investigation, as a rule, was less than the detection limit

     

PH2O
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for copper (<0.08 wt %). The reference samples (Jeol,
Japan) used in these measurements were as follows:
albite (Al), orthoclase (Si and K), and pyrope (Fe).

The averaged chemical composition of the crystals
studied in this work (experiment G-78/500) includes
the following components (wt %): K2O, 15.80; Fe2O3,
13.80; Al2O3, 8.30; SiO2, 62.10; Σ = 100.0. According
to these data, we calculated the formula coefficients (in
the anion basis [32(O)]) and obtained the empirical for-
mula 

K0.98Si3.03(Fe0.51Al0.48)O8.00.

In parallel with the determination of the chemical
composition, we revealed that the crystals synthesized
are characterized by a uniform distribution of iron with
a strictly constant concentration.

X-ray Diffraction Analysis

The crystallographic characteristics, data collection,
and refinement parameters for the studied structure are
presented in Table 1. It is established that, under the
given preparation conditions, the synthesis leads to the
formation of the monoclinic modification of iron-con-
taining potassium feldspar. The parameters of the mon-
oclinic unit cell were determined in the course of the
least-squares refinement with the use of the angular
parameters for 12 reflections in the range 30° ≤ 2θ ≤
37°. Correction for absorption was introduced using the
ψ scan mode.

The crystal structure was refined with the use of the
atomic coordinates taken from [3]. The refinement was
performed in the space group C2/m within the anisotro-
pic approximation to R(F) = 0.044 for 1327 unique
reflections with Io > 2σ(Io). The calculations were car-
ried out with the SHELX97 software package [17]. At
the next stage, we refined the electron content of three
inequivalent cation positions, namely, A, T(1), and T(2).

The distribution of the isomorphic cations over
these inequivalent positions were determined on the
basis of the refinement of the electron content, the cor-
respondence between the structural formula and the
results of the electron microprobe analysis, and the
electroneutrality of the chemical formula.

However, in the case under consideration, there
were a number of constraints in the refinement of the
joint occupancy of the tetrahedral positions in the struc-
ture. Since aluminum and silicon are virtually indistin-
guishable in scattering power, the replacement of one
cation by the other has little if any effect on the reflec-
tion intensities. On this basis, it was expedient to refine
the distribution of Al3+ and Si4+ cations over inequiva-
lent positions under the condition that the mean inter-
atomic distances are approximately equal to the sum of
ionic radii of the cation and the anion in the correspond-
ing tetrahedra.

The final coordinates of the atoms and the parame-
ters of atomic displacements are listed in Table 2. The
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
                                                                   

distribution of the cations over positions and the mean
interatomic distances in the T(1) and T(2) tetrahedra
and the A nine-vertex polyhedra are presented in
Table 3.

Figure 1 shows the projection of the structure of low
ferrialuminosilicate sanidine, which was drawn using
the ATOMS program [18].

DESCRIPTION OF THE STRUCTURE 
AND DISCUSSION

According to Smith and Brown [5], the unit cell
parameters of feldspars depend not only on the thermo-
dynamic conditions of crystallogeny (T and P) but also
on the composition of the crystals and their structural
state. A similar analysis based on the construction of
different-type diagrams in which the unit cell parame-
ters are plotted along the axes of coordinates makes it
possible to determine the crystalline modification of the
studied sample and, moreover, to elucidate how the unit
cell size is affected by the isomorphic impurities
involved in the composition of the feldspars under
investigation. For example, as was shown in [5], an

Table 1.  Crystal data, data collection, and refinement pa-
rameters for the studied structure

Unit cell parameters, Å a = 8.655(7), b = 13.101(9), 

c = 7.250(8), β = 116.02(2)°
Space group, Z C2/m; 4

Unit cell volume V, Å3 738.7(1)

Calculated density ρcalcd, g/cm3 2.632

Absorption coefficient µ, mm–1 2.22

Molecular weight 1170.44 

Crystal size, mm 0.14 × 0.16 × 0.20

F000 578.0

Diffractometer Ital Structures

Wavelength, Å 0.71069

Maximum 2θ angle, deg 69.96

Total number of reflections 
measured

1498

Number of unique reflections 1407

Number of unique reflections 
with |Io| > |2σ(Io)|

1327

Rav, % 0.0189

Refinement method Least-squares, on F2

Number of parameters refined 94

Final R(F) factor 0.044

R(F) for all unique reflections 0.048 

wR (F2) 0.117

S = GOF 1.084

∆ρmax, e/Å3 0.92

∆ρmin, e/Å3 –0.76
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increase in the size of the tetrahedral cation in potas-
sium feldspars upon substitution of gallium and iron for
aluminum brings about an increase in the unit cell
parameters b and c.

For monoclinic potassium feldspars, the angle of
monoclinity β varies in the range 115.58°–116.07° [5]
and slightly increases upon replacement of potassium
by a cation with a larger radius and (or) due to ordering
of tetrahedral cations.

Judging from the b–c diagrams constructed for iron-
containing feldspars, it is possible to assign the studied
sample to a particular series of ordered solid solutions.
In the b–c diagram (Fig. 2), the point corresponding to
the refined parameters of the monoclinic unit cell of the
studied sample lies in the region between the alumino-
silicate and ferrisilicate series and appears to be closer
(as compared to the samples studied earlier in [4]) to
the parameters of ferrialuminosilicate sanidine. As is
shown by arrows in the diagram, the unit cell parame-
ters b and c increase regularly in the series KAlSi3O8–
KGaSi3O8–KFeSi3O8 (which corresponds to the alumi-
nosilicate, gallosilicate, and ferrisilicate modifications
of potassium feldspars) due to an increase in the radius
of the trivalent tetrahedral cation: r[4]Al3+ = 0.39 <
r[4]Ga3+ = 0.47 < r[4]Fe3+ = 0.49 Å [19]. Furthermore,
we obtained similar results in the study of the large
variety of mixed K(Al,Fe)Si3O8 crystals synthesized in
the temperature range 400–600°C according to the pro-
cedure described in [16]. It was found that both the lat-

Table 2.  Final coordinates of the atoms and the parameters
of atomic displacements

Position x/a y/b z/c Ueq × 102, 
Å2

A 0.2857(1) 0.0 0.1387(1) 3.4(1)

T(1) 0.0082(1) 0.1855(1) 0.2226(1) 1.74(2)

T(2) 0.7092(1) 0.1177(1) 0.3441(1) 1.79(1)

O(1) 0.0 0.1459(2) 0.0 3.64(6)

O(2) 0.6396(4) 0.0 0.2853(5) 3.8(1)

O(3) 0.8266(3) 0.1473(2) 0.2257(5) 4.1(1)

O(4) 0.0354(3) 0.3118(2) 0.2587(3) 3.25(4)

O(5) 0.1799(3) 0.1261(2) 0.4058(3) 3.22(4)
C

tice parameters and the unit cell volume of the potas-
sium feldspar under investigation increase linearly with
an increase in the mole fraction of the iron minal [20].

Tetrahedral Positions T(1) and T(2)

It should be noted that, in nature, Fe3+ substitutes for
Al3+ in aluminum-rich silicates and oxides and mani-
fests itself as an impurity ion. In feldspars, the possibil-
ity of Fe3+ and Al3+ cations simultaneously locating in
common tetrahedra is determined by their large sizes as
compared to pure silicon tetrahedra [r[4]Si4+ = 0.26 Å].
A comparison of the mean interatomic distances in the
structure of the studied crystals shows that the T(1) tet-
rahedron is larger than the T(2) tetrahedron: 〈T(1)–é〉  =
1.67 Å and 〈T(2)–é〉  = 1.64 Å. At the final stage of the
structural investigation, the main problem was to deter-
mine the distribution of Si, Al, and Fe atoms over these
positions.

Among the variants of the occupation of the tetrahe-
dral positions T(1) and T(2), which were simulated with
mixed atomic scattering functions (Fe and Si), the low-
est value R(F) = 4.4% (Table 3) corresponds to a cation
distribution such that iron completely occupies the T(1)
position. This distribution of cations agrees well with
the results of Mössbauer investigations of similar syn-
thetic iron-containing feldspars [8] in which all iron
resides in a trivalent state and in a tetrahedral coordina-
tion.

The ratio Si/Al in the tetrahedral positions T(1) and
T(2) (3.01Si and 0.49Al afe without regard for iron) is
in agreement with the data of electron microprobe anal-
ysis. The mean distance 〈T(2)–é〉 = 1.64 Å is somewhat
larger than the sum of ionic radii of the cation and the
anion at this position (Si–O = 1.61 Å) but, nonetheless,
falls in the range of mean bond lengths for the feldspars
studied earlier in [3, 13] and does not exceed the bond
length equal to 1.66 Å, which, according to the data
reported in [5], corresponds to a transformation from the
monoclinic modification into the triclinic modification.

Bychkov et al. [21] established that, in feldspars
crystallizing in alkaline solutions, the maximum rates
of ordering of silicon and aluminum in albite are
approximately ten times higher than those in potassium
feldspars and, moreover, the rates of structural transfor-
mations in ferrisilicate samples exceed those in alumi-
Table 3.  Distribution of the cations over positions in the studied structure

Position Electron content Site occupancy*  〈M–O〉exp

T(1) 33.70 1.2Si + 0.5Fe3+ + 0.3Al 1.69 1.67

T(2) 27.82 1.81Si + 0.19Al 1.62 1.64

A 18.81 0.99K 2.90 3.00

  * The number of atoms per formula unit.
** M is a cation, and O is a ligand (in our case, oxygen). The calculation is performed by summing the relevant ionic radii according to the
data taken from [19].

M–O〈 〉 calcd**
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nosilicate samples by a factor of 1000. These results
indicate that the rate of ordering of tetrahedral cations
substantially depends on the composition of the studied
feldspar. In the ferrisanidine under investigation, the
iron content in the tetrahedral position T(1) is consider-
ably higher than the aluminum content. Consequently,
in the course of the synthesis, iron atoms undergo a
more rapid ordering than aluminum atoms against the
background of the general tendency for these atoms to
occupy the T(1) position. Therefore, we can conclude
that the rate of the Fe3+  Si4+ replacement exceeds
the rate of the Al3+  Si4+ replacement during crys-
tallization of ferrialuminosilicate feldspars, even
though both processes proceed simultaneously.

Structural Position A

The aluminum–silicon–oxygen framework of the
structure under consideration involves large-sized holes
that are occupied by the A-type cations lying in the mir-
ror-reflection planes. The results obtained using X-ray
diffraction in combination with an electron microprobe
analysis demonstrated that, in the ferrialuminosilicate
sanidine sample, the structural position A is almost
entirely occupied by K cations [r[9]ä+ = 1.55 Å]. The
Äé9 polyhedra are characterized by different A–O dis-
tances. However, the mean distance 〈Ä–O〉  = 3.00 Å is
in agreement with the relevant distances in the struc-
tures of the sanidine samples studied earlier: 〈Ä–O〉 =
3.00 Å [22] and 〈Ä–O〉 = 3.05 Å [4].

It was found that the change in the degree of order-
ing of silicon and aluminum affects the shape of the

     
                                                                 

A a

c

T(1)

T(2)

Fig. 1. Structure of low ferrialuminosilicate sanidine.
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holes occupied by large-sized cations [3]. An increase
in the size of the T(1) tetrahedra in sanidine due to the
incorporation of larger sized cations (in our case, Fe3+)
is accompanied by a change in the shape of the A poly-
hedra. This manifests itself in a decrease in the longest
A–O distances and an increase in the shortest A–O dis-
tances: (Ä–O)max = 3.14 Å and (Ä−O)min = 2.77 Å. In
our previous work [4], we showed that, in the ferrisani-
dine characterized by a lower iron content in the T(1)
position (0.20Fe afe), the A polyhedra are distorted
more significantly: (Ä–O)max = 3.39 Å and (Ä–O)min =
2.69 Å.

The refined crystal chemical formula of the syn-
thetic low ferrisanidine accounts for the composition of
the cation positions in the structure:

KÄ = 0.99(Si1.2Fe0.5Al0.3)ΣT(1) = 2(Si1.81Al0.19)ΣT(2) = 2é8

 

.

 

CONCLUSIONS

Thus, the results of the present work and the data
obtained earlier in [4] allowed us to conclude that there
exists a continuous monoclinic series of KAlSi

 

3

 

O

 

8

 

–
K(Fe,Al)Si

 

3

 

O

 

8

 

 solid solutions in which iron manifests
itself as a majority rather than minority impurity ele-
ment with respect to aluminum and exhibits a tendency
to occupy predominantly the 

 

T

 

(1) position.
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Abstract—Single crystals with the compositions KTi0.47Sn0.53OPO4 and KTi0.25Sn0.75OPO4 were grown by
spontaneous crystallization from flux in the K2O–TiO2–SnO2–P2O5 quaternary system, and their structures
were established from precision X-ray diffraction data. The incorporation of tin into the crystals lowers the
asymmetry of cation positions in the (Ti,Sn)O6 octahedra. The addition of even a small amount (x < 0.4) of tin
to the K(Ti1 – xSnx)OPO4 crystals causes fast symmetrization of the octahedra. The process slows down with an
increase in the tin content until the attainment of the composition KSnOPO4 and localization of tin in the centers
of octahedra. It is these structural features that are responsible for a decrease in the optical nonlinearity of the
crystals and in the intensity of second harmonic generation by laser radiation in these crystals. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION
In recent years, physical properties and atomic

structures of potassium titanyl phosphate KTiOPO4
(KTP), where titanium is either partially or completely
replaced by tin, were repeatedly studied [1–7]. Potas-
sium stannyl phosphate KSnOPO4 (KSP) is isostruc-
tural to KTP [8, 9], and these two compounds form a
continuous series of solid solutions, KTi1 – xSnxOPO4
(KTSP). The properties of KSP crystals and their solid
solutions were reported in [1, 2, 4, 6, 7]. The data on the
ferroelectric properties and conductivity of KTSP crys-
tals were published in [6, 7]. According to the results of
these studies, the temperature of the ferroelectric phase
transition for pure KSP is 387°C, which is somewhat
lower than the temperature determined earlier [4]. With
an increase of the tin content in the crystal, íc decreases
1063-7745/03/4806- $24.00 © 20925
monotonically. Like the intensity of second harmonic
generation (SHG), íc decreases most rapidly with the
attainment of a tin concentration in the crystal up to x =
0.40. At x > 0.40, both the SHG intensity in the KTSP
crystals and íc continue decreasing and approach zero,
if a large amount of titanium is replaced by tin. It should
be noted that the ferroelectric properties (determined,
primarily, by the potassium positions) are retained.

Precision X-ray diffraction studies allow one to
reveal correlations between the structure and physical
properties of crystals at the atomic level. The atomic
structure of KTi1 – xSnxOPO4 single crystals with a low
Sn content (x ≈ 0.06–0.07) was established by X-ray
diffraction analysis in [5]. It was noted that Ti4+ cations
(ionic radius 0.68 Å) are irregularly replaced by slightly
Table 1.  Compositions of the melts and characteristics of the KTi1 – xSnxOPO4 crystals

Experi-
ment

Compositions of melts, mol % Sn/(Ti + Sn)
Compositions of crystals de-
termined by microanalysis

Crystal
dimensions, 

mm3K2O TiO2 SnO2 P2O5 in melt in crystal

1 45 10 5 35 0.5 0.4 K0.93Ti0.6Sn0.4P0.97O4.9 4 × 3 × 2

2 50 10 10 35 0.67 0.5 K0.9Ti0.5Sn0.5P0.97O4.9 2 × 3 × 2
003 MAIK “Nauka/Interperiodica”
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Table 2.  Characteristics of X-ray data collection and details of refinement

Chemical composition KTi0.47Sn0.53OPO4 KTi0.25Sn0.75OPO4

Radius of the sample, mm 0.13(1) 0.14(1)

µ, cm–1 46.32 48.78

Diffractometer Enraf-Nonius CAD-4F

Radiation MoKα

Monochromator Graphite

Scanning technique ω/2θ

Sp. gr. Pna21

Ranges of h, k, l –25 ≤ h ≤ 25 –21 ≤ h ≤ 21

0 ≤ k ≤ 12 0 ≤ k ≤ 10

0 ≤ l ≤ 21 0 ≤ l ≤ 17

θmax, deg 45 35

Total number of measured reflections, |F |hkl 7277 4314

Number of independent reflections, |F |hkl > 3σ|F |hkl 3742 1979

Rint(|F |hkl), % 1.88 2.0

Structure type KTiOPO4

Program for calculations JANA98

Weighting scheme 1/σ2

Number of parameters in the refinement 272 262

Reliability factors R/Rw 0.027/0.029 0.016/0.020
larger Sn4+ cations (ionic radius 0.71 Å), with the latter
being located predominantly in the Ti(2) positions.

The present study is a continuation of the research
of atomic structures of crystals of the KTSP series
grown by crystallization from flux. The results of the
study of structures and properties of tin-doped KTP
crystals are generalized.

Table 3.  Unit-cell parameters and unit-cell volumes of KTP
crystals with different Sn contents

a, Å b, Å c, Å V, Å3

KTP [5] 12.819(1) 6.399(1) 10.584(1) 868.2(1)

KTP–6%Sn 12.831(1) 6.410(1) 10.584(1) 870.5(1)

KTP–53%Sn 12.993(1) 6.471(1) 10.661(1) 896.4(1)

KTP–75%Sn 13.076(1) 6.504(1) 10.690(1) 909.6(1)

KSP [5] 13.145(1) 6.526(1) 10.738(1) 921.2(1)
C

EXPERIMENTAL

Single crystals of KTi1 – xSnxOPO4 with two differ-
ent compositions were grown by spontaneous crystalli-
zation from flux [6] in the K2O–TiO2–SnO2–P2O5 sys-
tem. The chemical compositions of the compounds
were determined on a Cameca SX-50 X-ray microana-
lyzer. The compositions of the staring melts and crys-
tals grown are given in Table 1.

Optically homogeneous crystals chosen for X-ray
diffraction study were ground to spheres. The samples
of the shape closest to spherical were used in the subse-
quent investigation and gave the best X-ray diffraction
patterns. Spherical single crystals with radii of 0.13 and
0.14 mm were studied in experiments 1 and 2, respec-
tively. The conditions of X-ray data collection and
details of the structure refinement are given in Table 2.
The parameters of the orthorhombic unit cell were
refined by the least-squares method based on 25 reflec-
tions. The complete sets of reflection intensities were
collected on a CAD-4F Enraf-Nonius diffractometer
equipped with a graphite monochromator.
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Table 4.  Atomic coordinates, occupancies of positions q, and equivalent thermal parameters Beq (Å2) in the
KTi0.94Sn0.06OPO4 structure

Atom x/a y/b z/c q Beq

Ti(1) 0.37252(9) 0.5001(2) 0.00000 0.983(4) 0.439(7)

Sn(1) 0.37252 0.5001 0.00000 0.017 0.439(7)

Ti(2) 0.24632(9) 0.2653(2) 0.2513(2) 0.897(5) 0.441(6)

Sn(2) 0.24632 0.2653 0.2513 0.103 0.441(6)

K(1) 0.1055(2) 0.6989(4) 0.0649(3) 1.000 1.54(2)

K(2) 0.3788(2) 0.7807(3) 0.3108(3) 1.000 1.45(2)

P(1) 0.4983(2) 0.3369(3) 0.2580(3) 1.000 0.39(1)

P(2) 0.1805(2) 0.5021(3) 0.5099(3) 1.000 0.41(1)

O(1) 0.4855(2) 0.4871(5) 0.1471(4) 1.000 0.78(4)

O(2) 0.5103(2) 0.4659(5) 0.3799(4) 1.000 0.76(4)

O(3) 0.4006(4) 0.1989(9) 0.2766(7) 1.000 0.63(4)

O(4) 0.5932(2) 0.1938(4) 0.2365(4) 1.000 0.73(4)

O(5) 0.1121(5) 0.3123(9) 0.5376(6) 1.000 0.66(4)

O(6) 0.1117(2) 0.6924(4) 0.4839(4) 1.000 0.82(4)

O(7) 0.2527(2) 0.5381(6) 0.6241(4) 1.000 0.78(4)

O(8) 0.2523(2) 0.4627(5) 0.3959(4) 1.000 0.81(4)

O(9) 0.2238(5) 0.0430(10) 0.3867(6) 1.000 0.73(4)

O(10) 0.2252(2) –0.0316(5) 0.6388(3) 1.000 0.70(4)

Table 5.  Atomic coordinates, occupancies of positions q, and equivalent thermal parameters Beq (Å2) in the
KTi0.47Sn0.53OPO4 structure

Atom x/a y/b z/c q Beq

Ti(1) 0.37208(6) 0.4998(1) 0.00000 0.645(3) 0.444(4)

Sn(1) 0.37208 0.4998 0.00000 0.355 0.444

Ti(2) 0.24624(5) 0.2565(1) 0.2480(2) 0.304(4) 0.425(3)

Sn(2) 0.24624 0.2565 0.2480 0.696 0.425

K(1) 0.1059(2) 0.6982(4) 0.0602(3) 1.000 1.81(2)

K(2) 0.3791(2) 0.7806(4) 0.3063(3) 1.000 1.69(2)

P(1) 0.49907(7) 0.3403(1) 0.2536(2) 1.000 0.41(1)

P(2) 0.17842(5) 0.5030(1) 0.5038(2) 1.000 0.48(1)

O(1) 0.4841(3) 0.4881(5) 0.1425(4) 1.000 0.78(5)

O(2) 0.5117(3) 0.4704(6) 0.3733(4) 1.000 0.81(5)

O(3) 0.4035(2) 0.2017(5) 0.2732(4) 1.000 0.73(4)

O(4) 0.5914(2) 0.1968(5) 0.2307(3) 1.000 0.78(5)

O(5) 0.1095(2) 0.3144(5) 0.5288(4) 1.000 0.70(4)

O(6) 0.1103(3) 0.6926(5) 0.4822(4) 1.000 0.99(5)

O(7) 0.2501(3) 0.5302(7) 0.6178(5) 1.000 0.95(6)

O(8) 0.2508(3) 0.4683(7) 0.3922(4) 1.000 0.87(6)

O(9) 0.2287(3) 0.0405(6) 0.3790(4) 1.000 0.94(5)

O(10) 0.2265(3) –0.0241(6) 0.6326(4) 1.000 0.97(5)
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Table 6.  Atomic coordinates, occupancies of positions q, and equivalent thermal parameters Beq (Å2) in the
KTi0.25Sn0.75OPO4 structure

Atom x/a y/b z/c q Beq

Ti(1) 0.37306(5) 0.4983(1) 0.00000 0.262(7) 0.328(4)

Sn(1) 0.37306 0.4983 0.00000 0.738 0.328(4)

Ti(2) 0.24758(7) 0.2549(1) 0.2494(2) 0.244(7) 0.340(4)

Sn(2) 0.24758 0.2549 0.2494 0.756 0.340(4)

K(1) 0.1080(2) 0.6944(5) 0.0611(4) 1.000 1.86(3)

K(2) 0.3769(2) 0.7789(4) 0.3038(4) 1.000 1.56(3)

P(1) 0.5003(3) 0.3412(4) 0.2499(6) 1.000 0.35(2)

P(2) 0.1770(2) 0.5026(5) 0.5028(5) 1.000 0.39(2)

O(1) 0.4859(5) 0.4876(8) 0.1376(7) 1.000 0.88(9)

O(2) 0.5124(4) 0.4759(9) 0.3671(6) 1.000 0.79(9)

O(3) 0.4058(3) 0.2032(6) 0.2694(5) 1.000 0.87(8)

O(4) 0.5922(3) 0.2000(7) 0.2270(5) 1.000 0.69(7)

O(5) 0.1074(3) 0.3155(6) 0.5253(5) 1.000 0.78(7)

O(6) 0.1077(4) 0.6884(6) 0.4772(5) 1.000 0.92(8)

O(7) 0.2475(5) 0.5297(9) 0.6145(7) 1.000 1.01(9)

O(8) 0.2488(8) 0.469(2) 0.390(1) 1.000 0.80(9)

O(9) 0.2334(5) 0.0370(9) 0.3737(6) 1.000 0.84(8)

O(10) 0.2255(7) –0.020(2) 0.6350(9) 1.000 0.88(9)
Both crystal structures were refined by the least-
squares method using the JANA98 program [10]. The
atomic coordinates determined in the refinement of the
KTi0.93Sn0.07OPO4 structure [5] using the
PROMETHEUS program package were taken as the
starting model for the refinement. We also re-refined
the structure of KTi0.93Sn0.07OPO4 single crystals using
the experimental data published earlier [5] and the
JANA98 program package. In the refinement of the
three structures, all extinction models included into the
JANA98 program were tested. The best results were
obtained with the use of the Becker–Coppens extinc-
tion correction taking into consideration the Lorentz
distribution of disoriented mosaic blocks in the crystal.
The structural parameters were refined on the assump-
tion that Ti and Sn atoms simultaneously occupy one
position in all the crystallographically nonequivalent
octahedra, and the total occupancies of these positions
were taken to be equal to 100%. The strongly correlated
structural parameters were refined by step-by-step
scanning [11].

RESULTS AND DISCUSSION

The unit-cell parameters of KTP, KSP, and three sin-
gle crystals of KTSP solid solutions studied are given in
C

Table 3. The a, b, and c parameters and unit-cell vol-
umes correlate with the ionic radii of the Sn4+ and Ti4+

cations. The coordinates of the basis atoms in the struc-
tures of KTSP single crystals with three different com-
positions, occupancies of crystallographic positions q,
and equivalent atomic thermal displacements Beq are
listed in Tables 4–6. As can be seen from these tables,
the Sn atoms isomorphically replace Ti atoms in both
nonequivalent positions. At low tin concentrations, tin
atoms largely occupy the second octahedral position. In
the crystal containing 75% Sn, the occupancies of both
positions are the same and the compositions of these
positions are described by the formulas Ti0.262Sn0.738
and Ti0.244Sn0.756 (see Table 6). According to the results
of microanalysis (Table 1), there is some deficit in K, P,
and O atoms in the structures under study. This phe-
nomenon has not been observed in KTiOPO4-type solid
solutions investigated earlier. We attempted to refine
the occupancies of these atomic positions. Difference
electron density syntheses calculated based on models
with partial occupancies of the K(1), K(2), P(1), and
P(2) positions revealed residual density peaks in the
vicinity of these atomic positions (Figs. 1 and 2). These
sections of the electron density maps are indicative of
possible splitting of the K and P positions. However, all
attempts to take into account this splitting in the KTSP
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Fig. 1. Crystals structure of KTi0.47Sn0.53OPO4 . Difference electron-density maps in the vicinity of the atomic positions: (a) K(1),
(b) K(2), (c) P(1), and (d) P(2). Isolines on maps (a) and (b) are spaced by 0.15 e/Å3; those on maps (c) and (d), by 0.09 e/Å3.
structures failed. This may be attributed either to the
fact that the residual-density peaks are located in the
vicinity of the main atomic positions or to the influence
of twinning typical of ferroelectrics. The accuracy of
our X-ray diffraction data did not allow us to give an
unambiguous answer to this question. Based on the X-
ray diffraction data, the following chemical formula of
the crystals can be written: KTi0.47Sn0.53OPO4 (experi-
ment 1) and KTi0.25Sn0.75OPO4 (experiment 2). It
should be noted that the tin content in the crystals
(Table 1) determined by electron probe analysis was
substantially underestimated compared to the structure-
refinement data. Apparently, the probable deficit of K,
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      200
P, and O in the KTPS single crystals is associated with
the fact that these crystals were grown at very high tem-
peratures (1200–800°C). However, this assumption
calls for further investigation.

The KTSP crystal structure can be described as a
three-dimensional framework consisting of the
(Ti,Sn)O6 octahedra and [PO4] tetrahedral sharing their
vertices. The framework contains wide helical channels
along the c axis. The channels are occupied by potas-
sium cations. The principal interatomic distances in the
structures of the three KTSP single crystals studied
here and those in the known KTP and KSP crystals are
listed in Table 7. Analysis of the interatomic distances
3
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Table 7.  Interatomic distances (Å) in the KTiOPO4 (1), KTi0.94Sn0.06OPO4 (2), KTi0.47Sn0.53OPO4 (3), KTi0.25Sn0.75OPO4 (4),
and KSnOPO4 (5) structures

Distances 1 2 3 4 5

Ti(1)–O(1) 2.154(1) 2.135(3) 2.106(4) 2.085(7) 2.091(7)
O(2) 1.955(1) 1.976(3) 2.035(4) 2.070(6) 2.093(7)
O(5) 2.046(1) 2.047(3) 2.072(3) 2.096(4) 2.111(6)
O(6) 1.987(1) 1.990(3) 2.011(3) 2.046(4) 2.064(5)
O(9) 1.716(1) 1.744(3) 1.857(4) 1.955(6) 1.978(6)
O(10) 1.985(1) 1.948(3) 1.915(4) 1.940(10) 1.975(7)

Average 1.974 1.973 1.999 2.032 2.052
∆|O(10)–O(9)| 0.269 0.194 0.058 0.015 0.003
Ti(2)–O(3) 2.042(1) 2.045(3) 2.092(3) 2.107(4) 2.134(5)

O(4) 1.980(1) 1.988(3) 2.043(3) 2.067(4) 2.102(5)
O(7) 1.964(1) 1.977(3) 2.018(5) 2.057(7) 2.051(6)
O(8) 1.998(1) 1.995(3) 2.061(5) 2.050(10) 2.076(7)
O(9) 2.099(1) 2.046(3) 1.989(5) 1.952(6) 1.957(5)
O(10) 1.736(1) 1.792(3) 1.911(4) 1.940(10) 1.961(5)

Average 1.970 2.004 2.019 2.029 2.047
∆|O(9)–O(10)| 0.363 0.254 0.078 0.012 0.004
P(1)–O(1) 1.518(1) 1.520(3) 1.534(4) 1.544(8) 1.562(6)

O(2) 1.551(1) 1.547(3) 1.538(4) 1.538(8) 1.535(7)
O(3) 1.546(1) 1.542(3) 1.546(3) 1.541(5) 1.530(5)
O(4) 1.541(1) 1.541(3) 1.537(3) 1.532(5) 1.506(6)

Average 1.539 1.538 1.539 1.539 1.533
P(2)–O(5) 1.538(1) 1.535(3) 1.537(3) 1.539(5) 1.535(5)

O(6) 1.529(1) 1.527(3) 1.530(4) 1.536(5) 1.529(6)
O(7) 1.550(1) 1.546(3) 1.541(5) 1.518(5) 1.527(8)
O(8) 1.535(1) 1.534(3) 1.533(5) 1.543(1) 1.545(7)

Average 1.538 1.536 1.535 1.534(10) 1.534
K(1)–O(1) 2.675(1) 2.682(3) 2.719(4) 2.737(7) 2.995(7)

O(2) 2.983(1) 2.982(3) 3.067(5) 3.183(7) 2.753(4)
O(3) 3.044(1) 3.047(1) 3.062(5) 3.124(7) 2.845(5)
O(4) 3.117(1) 3.125(1) 3.143(4) 3.126(6) 3.148(1)
O(5) 2.804(1) 2.802(3) 2.820(4) 2.842(5) 3.005(4)
O(7) 2.919(1) 2.905(3) 2.915(5) 2.942(7) 3.042(4)
O(8) 3.047(1) 3.050(1) 3.119(5) 3.169(10) 2.770(7)
O(9) 3.058(1) 3.062(1) 3.064(5) 3.060(7) 2.955(5)
O(10) 2.763(1) 2.750(3) 2.722(5) 2.703(10) 2.611(6)

Average 2.934 2.934 2.959 2.987 2.903
K(2)–O(1) 2.891(1) 2.894(3) 2.914(5) 2.962(7) 2.736(6)

O(2) 2.763(1) 2.740(3) 2.740(5) 2.735(7) 3.256(8)
O(3) 2.711(1) 2.725(3) 2.766(4) 2.810(5) 3.123(7)
O(5) 2.869(1) 2.891(3) 2.970(5) 2.993(6) 2.856(6)
O(7) 3.055(1) 3.056(1) 3.076(5) 3.067(8) 2.987(6)
O(8) 2.756(1) 2.755(3) 2.776(5) 2.779(10) 3.182(7)
O(9) 2.723(1) 2.719(3) 2.692(5) 2.627(7) 2.664(5)
O(10) 2.994(1) 2.997(1) 3.033(5) 2.970(10) 3.059(7)

Average 2.845 2.847 2.871 2.868 2.983
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Fig. 2. Crystals structure of KTi0.25Sn0.75OPO4. Difference electron-density maps in the vicinity of the atomic positions: (a) K(1);
(b) K(2); (c) P(1); and (d) P(2). Isolines on maps (a) and (b) are spaced by 0.15 e/Å3; those on maps (c) and (d), by 0.09 e/Å3.
shows that the (Ti,Sn)O6 octahedra, whose configura-
tion is responsible for the nonlinear optical properties
of crystals, become more symmetric with an increase of
tin content in crystals. It should be noted that less dis-
torted (Ti,Sn)O6 octahedra (∆|é(10)–é(9)|) are observed in
crystals containing up to 50% Sn. This fact is consistent
with a dramatic decrease in the intensity of second har-
monic generation by laser radiation in the crystals of
KTSP solid solutions, where the atomic coefficients of
Sn vary from 0 to 0.4 [6]. A further increase in the tin
content leads to a decrease in the SGH intensity almost
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
to zero. The P–O distances in the [PO4] tetrahedra and
the K–O distances in the [KO8] and [KO9] polyhedra
only slightly depend on the Sn content.
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Abstract—The structural models of cerium- and thulium-doped (Sr0.61Ba0.39)Nb2O6 solid solutions were
established and refined on the basis of single-crystal X-ray diffraction data. The dopants were located, and their
concentrations in the specimens were refined. The effect of the Sr/Ba ratio and doping with rare earth elements
on the structural characteristics of (SrxBa1 – x)Nb2O6 crystals was analyzed. © 2003 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

(SrxBa1 – x)Nb2O6 (0.25 < x < 0.75) crystals [1] are of
interest because of their physical characteristics and
opportunities for targeted control of their optical prop-
erties by varying the Sr/Ba ratio and doping solid solu-
tions with rare earth elements. The crystals belong to
oxygen-octahedral ferroelectrics with the general for-
mula AB2O6 and the structure of tetragonal tungsten
bronzes.

The physical properties of crystals of this type can
be changed as desired due to variations in the arrange-
ment of Sr and Ba atoms in the channels of the structure
[1–4]. A specified ratio between the concentrations of
strontium and barium in the structure leads to a partic-
ular distribution of structural defects (vacancies),
which represent an essential feature of such structures
[5–7]. In addition, the physical properties of
(Sr,Ba)Nb2O6 solid solutions can be changed by doping
them with small amounts of rare earth cations [8, 9].
The aim of the present study was to carry out a high-
precision X-ray diffraction study of (Sr0.61Ba0.39)Nb2O6 :
Ce and (Sr0.61Ba0.39)Nb2O6 : Tm single crystals and to
reveal the influence of Ce and Tm on the crystal struc-
ture. Finally, we analyzed the structural characteristics
of the (Sr,Ba)Nb2O6 solid solutions, depending on the
Sr/Ba ratio. This analysis was performed using the pre-
vious high-precision X-ray data on single-crystal solid
solutions with the following compositions:
1063-7745/03/4806- $24.00 © 20933
(Sr0.75Ba0.25)Nb2O6 [6], (Sr0.61Ba0.39)Nb2O6 [5],
(Sr0.50Ba0.50)Nb2O6 [7], and (Sr0.33Ba0.67)Nb2O6 [10].

X-RAY DIFFRACTION STUDY 
AND STRUCTURE REFINEMENT

(Sr0.61Ba0.39)Nb2O6 : Ce and (Sr0.61Ba0.39)Nb2O6 : Tm
single crystals were grown by the Czochralski method.
The presence of Ce and Tm in the crystals was con-
firmed by electron-probe analysis on a Camebax
microanalyzer. For a spherical cerium-doped sample
(0.15 mm in diameter), the integrated intensities were
measured on an Enraf-Nonius X-ray diffractometer by
the ω-scan technique using MoKα radiation (λ =
0.7106 Å, graphite monochromator) within a full
sphere of reciprocal space up to sinθ/λ ≤ 1.2 Å–1. The
intensities of a total of 14 350 diffraction reflections
were measured, and 1987 independent reflections with
I > 3δ(I) were obtained by merging symmetry-equiva-
lent reflections (Rint = 2%).

For a thulium-doped sample (0.26 mm in diameter),
the integrated intensities were measured on a four-cir-
cle HUBER 5042 diffractometer (MoKα radiation,
graphite monochromator) by the Ω/2θ-scan technique
within two octants of reciprocal space (±h, k, l; sinθ/λ ≤
1.00 Å–1). A total of 4188 reflections were measured,
and 1655 independent reflections with I > 3δ(I) were
obtained by merging equivalent reflections (Rint =
1.9%).
003 MAIK “Nauka/Interperiodica”
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The intensities of diffraction reflections were con-
verted to structure-factor amplitudes with regard to the
kinematic and polarization factors and X-ray absorp-
tion in the samples. For the cerium- and thulium-doped
crystals, the linear absorption coefficients for MoKα

radiation are 139.7 and 142.8 cm–1, respectively. The
structures were refined using the coordinates of basis
atoms in a (Sr0.61Ba0.39)Nb2O6 crystal [5] as a starting
model. The diffraction symmetry 4/mmmP–/–b–, which
was found by analyzing the experimental structure-fac-
tor amplitudes for cerium- and thulium-doped crystals,
corresponds to the following three space groups:

P4/mbm, P b2, and P4bm. Further analysis confirmed
that the structures of doped crystals, as well as the
structures of (Sr,Ba)Nb2O6 solid solutions established
previously, belong to the noncentrosymmetric group
P4bm. The parameters of the tetragonal unit cell are as
follows: a = 12.454(1) Å, c = 3.932(2) Å and a =
12.458(1) Å, c = 3.935(2) Å for the cerium- and thu-
lium-doped crystals, respectively. The structures were
refined by the full-matrix least-squares method taking
into account the experimental weighting factors with
the use of the PROMETHEUS software package [11]
(which was also used in all the other calculations) to the
reliability factors R = 2.1%, Rw = 2.4% and R = 1.8%,
Rw = 2.0% for the cerium- and thulium-doped crystals,
respectively. The atomic scattering curves and the cor-
rections for anomalous scattering ∆f ' and ∆f '' were
taken from [12]. The correction for the secondary
extinction was applied with the use of the Becker–Cop-
pens formalism.

The reliable location of the dopants in the structure
and the refinement of their concentrations in the sam-
ples under investigation were the central problems of
this study. A comparison of the ionic radii (both classi-
cal and physical [13]) shows that the radii of cerium and
thulium are smaller than the radius of strontium and are
substantially smaller than the radius of barium. Hence,
it is reasonable to assume that, in the structures under
consideration, the rare earth elements isomorphously
replace strontium in its positions. The verification of
this hypothesis based on the X-ray diffraction data not
only confirmed this assumption but also indicated that
cerium and thulium replace strontium atoms in the
Sr(1) positions rather than in the Sr(2) positions. The
occupancies of the Sr(1) positions by strontium and,
correspondingly, cerium or thulium were refined by the
step-by-step scanning method [14]. In the cerium-
doped sample, strontium and cerium atoms statistically
occupy one Sr(1) position on the fourfold symmetry
axis with probabilities of 69.7(3) and 2.8(3)%, respec-
tively. In the thulium-doped sample, the occupancies of
this position are 69.0(3) and 3.5(3)%, respectively.

4

C

(Sr0.61Ba0.39)Nb2O6 : Ce 
AND (Sr0.61Ba0.39)Nb2O6 : Tm STRUCTURES

The model of the structures under consideration is
shown in the figure. This model represents a three-
dimensional framework, which consists of Nb octahe-
dra sharing oxygen vertices. The structure of the
[NbO6] octahedra is decisive for the optical properties
of these crystals. The specific structural feature of these
octahedra is that the trans-oxygen atoms, which form
the –O–Nb–O–Nb–O– chains parallel to the fourfold
symmetry axis of the crystal, are split and occupy two
nearby positions with probabilities of 50%. In Nb(1)
octahedra located at the intersection of the symmetry
planes m, the split positions are related by the mirror
plane. In Nb(2) octahedra located in a general position,
the two similar positions are independent. In both
chains, the shortened and elongated Nb–O bonds alter-
nate with each other. The four equatorial Nb–O bonds
located in the planes parallel to the (001) plane of the
crystal structure have intermediate values. According to
[6], the optical characteristics correlate with the dis-
placements of Nb atoms in octahedra. The degree of
deviation of NbO6 octahedra from the central symmetry
is associated with the optical nonlinearity of
(Sr,Ba)Nb2O6 solid solutions. This asymmetry can be
characterized by the differences between the short and
long Nb–O distances in these octahedra. The frame-
work contains channels of three types parallel to the
fourfold axis. Narrow channels with a triangular cross
section are empty. Medium-sized channels with a tet-
ragonal cross section are occupied by Sr(1) atoms
(which statistically occupy their positions with a prob-
ability of ~72.0% in all the known structures with dif-
ferent Sr/Ba ratios). The wide channels with a pentago-
nal cross section are statistically occupied by Ba and Sr
atoms. In these channels, barium atoms are located in
positions with a multiplicity of four in the mirror planes
m. The split strontium position is displaced from the
plane m to a general position and is located at a distance
of about 0.3 Å from the Ba position.

The arrangement of barium and strontium atoms in
the structure of a Sr0.61Ba0.39Nb2O6 crystal that had the
same barium-to-strontium ratio but contained no impu-
rities of rare earth elements was determined in [5]. In
this compound, strontium atoms are located in tetrago-
nal channels with a probability of 72.5%. It should be
noted that the occupancies of the tetragonal channels in
all the structures of (Sr,Ba)Nb2O6 solid solutions stud-
ied previously were no higher than the above value. The
total occupancy of pentagonal channels by barium and
strontium atoms varied from 88.1 to 89.1%. The doped
structures were initially refined without considering the
rare earth elements. This refinement revealed enhanced
X-ray scattering from atoms located in Sr(1) positions.
As was mentioned above, the subsequent refinement of
the models in which cerium and thulium atoms, respec-
tively, were placed in this position gave better agree-
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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b

c

Three-dimensional presentation of the structure of (SrxBa1 – x)Nb2O6 along the c axis. The dark and light polyhedra represent the
(Nb(1)–O) and (Nb(2)–O) octahedra, respectively.
ment between the experimental and calculated structure
factors.

The results of the final structure refinement of
Sr0.61Ba0.39Nb2O6 : Ce and Sr0.61Ba0.39Nb2O6 : Tm are
listed in Table 1. For convenience, this table presents
not only the position occupancies, coordinates, and
effective thermal vibrations of the basis atoms of the
structures but also the symmetries and multiplicities of
all the atomic positions. The main interatomic distances
for the structures are listed in Table 2. In addition, this
table includes the corresponding distances for the struc-
ture of Sr0.61Ba0.39Nb2O6 crystals containing no rare
earth dopants [5]. When analyzing the coordination
polyhedra of cations in the structures, one should take
into account the splitting of the atomic positions O(4),
O(4') and O(5), O(6).

The polyhedra of Sr(1) atoms, which incorporate
rare earth cations, are of most interest. Each Sr(1) atom
is located on the fourfold rotation axis. The coordina-
tion environment of this atom is a twelve-vertex poly-
hedron. As viewed along the c axis, the strontium poly-
hedron is bounded at the top and bottom by regular
squares formed by translationally identical O(2) atoms.
The equatorial plane of the polyhedron is formed by
four atoms located in split positions. Each of these four
split positions may be occupied by either O(5) or O(6)
atoms with equal probability. The Sr(1)–O(5) distance
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      200
is 2.692 and 2.684 Å in the cerium- and thulium-doped
structures, respectively. If O(6) atoms are located in the
equatorial plane, the corresponding distances are 2.766
and 2.768 Å. It should not be excluded that atoms in
these structures obey the fourfold symmetry only statis-
tically. It is well known that the solid solutions under
consideration always contain structural defects in the
form of vacancies in the positions of Ba and Sr atoms.
In this case, five polyhedra are possible for Sr(1) atoms.
In these polyhedra, the average Sr(1)–O distances are
2.737, 2.743, 2.749, 2.755, and 2.761 Å. The probabil-
ities of occurrence of these polyhedra in the structures
are 1/16, 4/16, 6/16, 4/16, and 1/16, respectively. These
estimates indicate that Ce and Tm ions may choose
polyhedra of suitable size to occupy them. Unfortu-
nately, X-ray diffraction analysis always deals with unit
cells averaged over the whole crystal and, thus, cannot
be used to solve local structural problems.

CRYSTAL STRUCTURE OF (Sr,Ba)Nb2O6 SOLID 
SOLUTIONS

It is of interest to compare the occupancies of the
strontium and barium positions by corresponding
atoms in (Sr,Ba)Nb2O6 crystals with different Sr/Ba
ratios, which were refined in the studies cited above.
These data are summarized in Table 3. Their analysis
3
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b2O6 : Ce and Sr0.61Ba0.39Nb2O6 : Tm

Sr0.61Ba0.39Nb2O6 : Tm

x/a y/b z/c Beq, Å2

.0 0.5 0.0 0.79

.0746(1) 0.2114(1) –0.0051(13) 0.70

.0 0.0 0.4879(18) 0.58

.0 0.0 0.4879(18)

.1532(3) 0.6844(6) 0.4974(25) 1.34

.1733(1) 0.6733(1) 0.4898(15) 1.25

.3434(1) 0.0064(1) –0.0472(20) 2.15

.1387(2) 0.0685(1) –0.0473(22) 1.90

.2814(1) 0.7814(1) –0.0173(42) 1.47

.0124(8) 0.5124(8) 0.4740(47) 3.30

.3070(3) 0.4048(4) 0.4777(39) 1.23

.2845(4) 0.4438(5) 0.4710(39) 1.56
Table 1.  Coordinates and effective parameters of thermal vibrations of the basis atoms in the structures of Sr0.61Ba0.39N

Atom
Symmetry 
of the posi-

tion

Multiplicity
of the posi-

tion

Sr0.61Ba0.39Nb2O6 : Ce

occupancy of 
the position, % x/a y/b z/c Beq, Å2 occupancy of 

the position, %

Nb(1) mm  2 100 0.0 0.5 0.0 0.92 100 0

Nb(2)  1  8 100 0.0744(1) 0.2114(1) –0.0094(7) 0.87 100 0

Sr(1) 4 2 69.7(3) 0.0 0.0 0.4868(8) 0.68 69.0(3) 0

Ce or 
Tm

4 2 2.8(3) 0.0 0.0 0.4868(8) 3.5(3) 0

Sr(2)  1  8 19.9(1) 0.1532(5) 0.6852(9) 0.4967(19) 1.47 20.1(3) 0

Ba  m  4 48.6(1) 0.1733(1) 0.6733(1) 0.4886(7) 1.35 48.5(3) 0

O(1)  1  8 100 0.3436(1) 0.0060(1) –0.0441(24) 2.52 100 0

O(2)  1  8 100 0.1394(2) 0.0686(2) –0.04237(22) 2.20 100 0

O(3)  m  4 100 0.2814(2) 0.7814(2) –0.0202(22) 1.76 100 0

O(4)  m  4  50 0.0128(8) 0.5128(8) 0.4849(24) 2.81 50 0

O(5)  1  8  50 0.3058(5) 0.4052(6) 0.4700(22) 1.17 50 0

O(6)  1  8  50 0.2848(6) 0.4449(7) 0.4689(18) 1.73 50 0
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showed that the occupancy of the square channels var-
ies from 70 to 72.5%. Taking into account that the
strontium position in square channels has a multiplicity
of two and that the unit cell contains five (Sr,Ba)Nb2O6

formula units, we can estimate the limits of existence of
solid solutions with this structure. Let us assume that
0.7 is the minimum amount of strontium in the position
with a multiplicity of two. Hence, the unit cell contains

Table 2.  Main interatomic distances (Å) in the structures of Sr0.61Ba0.39Nb2O6 (I), Sr0.61Ba0.39Nb2O6 : Ce (II), and
Sr0.61Ba0.39Nb2O6 : Tm (III)

I II III
Nb(1) octahedron

Nb(1)–O(4) 2.127(1) 2.037(1) 2.081(1)

–O(1) × 4 1.958(1) 1.956(1) 1.960(1)

–O(4') 1.833(1) 1.920(1) 1.878(1)

Nb(2) octahedron

Nb(2)–O(2) 1.956(1) 1.958(1) 1.958(1)

–O(2) 2.001(1) 1.998(1) 2.006(1)

–O(5) × 1/2 1.900(1) 1.914(1) 1.930(1)

–O(6) × 1/2 1.891(1) 1.896(1) 1.888(1)

–O(1) 1.927(1) 1.931(1) 1.936(1)

–O(3) 1.994(1) 1.996(1) 1.995(1)

–O(5) × 1/2 2.089(1) 2.073(1) 2.063(1)

–O(6) × 1/2 2.076(1) 2.065(1) 2.074(1)

Sr(1) polyhedron

–O(4) × 4 2.679(1) 2.676(1) 2.673(1)

–O(2) × 4 2.839(1) 2.842(1) 2.843(1)

–O(5) × 2 2.692(1) 2.692(1) 2.684(1)

–O(6) × 2 2.764(1) 2.766(1) 2.768(1)

Table 3.  Occupancies of atomic positions and the Sr–Ba distances in the crystals of (Sr,Ba)Nb2O6 solid solutions with dif-
ferent Sr/Ba ratios

Sr/Ba ratio Atom

Pentagonal channels Tetragonal channels

multiplicity of 
the position

occupancy, 
%

vacancies,
%

multiplicity of 
the position

occupancy, 
%

vacancies,
%

Sr0.75/Ba0.25 Sr 8 × 1/2 28.6 + 28.6 11.9 2 71.5 28.5

Ba 4 30.9

Sr0.61/Ba0.39 Sr 8 × 1/2 20.2 + 20.2 10.9 2 72.5 27.5

Ba 4 48.7

Sr0.61/Ba0.39 : Ce Sr 8 × 1/2 19.9 + 19.9 11.6 2 69.7 27.5

Ba 4 48.6

Ce 2 2.8

Sr0.61/Ba0.39 : Tm Sr 8 × 1/2 20.1 + 20.1 11.3 2 69.0 27.5

Ba 4 48.5

Tm 2 3.5

Sr0.50/Ba0.50 Sr 8 × 1/2 13.1 + 13.1 11.7 2 72.0 28.0

Ba 4 62.2

Sr0.33/Ba0.67 Sr 4 16.0 2 70.5 29.5

Ba 4 84.0



938 CHERNAYA et al.
Table 4.  Dependence of the structural parameters on the composition of (SrxBa1 –x)Nb2O6 solid solutions

Composition 
(values of x are 

listed)

∆[Nb(1)–O], 
Å

∆[Nb(2)–O], 
Å

Distances, Å Unit-cell
volume V, Å3

O(4)–O(4) O(5)–O(6) Sr–Ba Sr–Sr

Sr/Ba–0.33 0.35 0.28 0.388 0.510 616.75(4)

Sr/Ba–0.50 0.34 0.25 0.407 0.521 0.335 0.605 613.28(11)

Sr/Ba–0.61 0.29 0.19 0.458 0.567 0.300 0.584 609.38(11)

Sr/Ba–0.61(Ce) 0.10 0.16 0.448 0.558 0.293 0.564 609.47(15)

Sr/Ba–0.61(Tm) 0.20 0.16 0.437 0.562 0.288 0.549 610.14(12)

Sr/Ba–0.75 0.13 0.10 0.561 0.635 0.262 0.510 604.16(12)
1.4 Sr atoms. Then, the number of Sr atoms per formula
unit is 1.4 : 5 = 0.28; i.e., x ≈ 0.28. The data from Table 3
allow one to estimate the numbers of vacancies in the
square and pentagonal channels, which are necessary
for the existence of structures of this type.

The differences in the distances ∆[Nb(1)–O] and
∆[Nb(2)–O] and the interatomic distances for all the
pairs of split atomic positions in the structures under
consideration are listed in Table 4. Each value in this
table characterizes the imperfection of the
(SrıBa1 − x)Nb2O6 solid solutions studied. All these val-
ues depend on the amounts of strontium and barium in
the crystals.

CONCLUSIONS

Crystals with a minimum strontium content exhibit
the strongest nonlinearity of optical properties [1–3].
All structural characteristics listed in Table 4 change
monotonically as the strontium content increases. In
other words, the structural parameters and optical prop-
erties of (Sr,Ba)Nb2O6 solid solutions can be changed
as desired by specifying a particular ratio of strontium
to barium in crystals of these compounds. Our study
demonstrated that, in the case of fixed concentrations of
strontium and barium in (Sr,Ba)Nb2O6 crystals, their
doping with early or late rare earth elements is equiva-
lent to an effective increase in the amount of strontium
in a sample, which manifests itself in symmetrization
of Nb octahedra and changes in the other structural
parameters.
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Abstract—The crystal structure of the mineral zdenekite NaPbCu5(AsO4)4Cl · 5H2O was established (Bruker
SMART CCD diffractometer, synchrotron radiation, λ = 0.6843 Å, R = 0.096 for 1356 reflections). Single-crys-
tal X-ray diffraction study demonstrated that zdenekite belongs to the monoclinic system with the unit-cell
parameters a = 10.023(7) Å, b = 19.55(1) Å, c = 10.023(6) Å, β = 90.02(1)°, sp. gr. ê21/n, Z = 4. The structure
consists of polyhedral layers parallel to the (010) plane. These layers are formed by Cuϕ5 polyhedra (φ = O, Cl,
H2O) and AsO4 tetrahedra. Distorted Na octahedra and Pb 7-vertex polyhedra and H2O molecules coordinated
to these metal atoms are located between the layers. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The mineral zdenekite NaPbCu5(AsO4)4Cl · 5H2O
was discovered in the northern region of the Cap Gar-
rone copper-lead mine (France). Two-thirds of this
mineral consists of secondary minerals (generally, cop-
per arsenates) [1]. More than a hundred new mineral
species were first discovered in this mine. The prelimi-
nary single-crystal X-ray diffraction study of zdenekite
on a precession X-ray camera (Burger method)
revealed that this mineral belongs to the tetragonal sys-
tem with the unit-cell parameters a = 10.066(1) Å, c =
39.39(4) Å, V = 3991.41(4) Å3, Z = 8 and indicated the
possible space groups ê4122 or ê4322. It was suggested
that zdenekite is a tetragonal Pb-containing analogue of
orthorhombic lavendulan NaCaCu5(AsO4)4Cl · 5H2O dis-
covered in 1837 [2]. Until recently, the structure of lav-
endulan remained unknown. Although eight years
elapsed after the discovery of zdenekite, all attempts to
establish its structure failed, because X-ray diffraction
patterns from its thin platelike single crystals, which are
easily cleaved, were of poor quality. New possibilities
of X-ray diffraction experiments associated with the
use of synchrotron radiation stimulated the X-ray dif-
fraction study of the structure of zdenekite. Here, we
present the results of this investigation.
1063-7745/03/4806- $24.00 © 20939
EXPERIMENTAL

X-ray diffraction data were collected from a zdene-
kite single crystal 0.06 × 0.04 × 0.01 mm3 in size. Since
it was impossible to use a standard X-ray diffractometer
for collecting experimental data for zdenekite because
of the small sizes and flattened shape of its crystals, the
experimental set of intensities was obtained on an auto-
mated Bruker AXS SMART CCD diffractometer using
synchrotron radiation (λ = 0.6883 Å) at the Daresbury
Synchrotron Radiation Source Station 9.8 (UK) [3]. A
total of 3068 reflections were collected in a hemisphere
of reciprocal space using the ω-scan technique [4].
Based on the results of processing X-ray diffraction
data, it was concluded that the crystals most likely
belong to the monoclinic system (averaging of equiva-
lent reflections yielded Rint ~ 0.05, whereas averaging
within the tetragonal system gave Rint ~ 0.20), in which
the unit-cell parameter b is halved. The main character-
istics of the crystal and the details of X-ray-diffraction
experiment are listed in Table 1. The systematic
absences in the three-dimensional X-ray-diffraction
data set indicate the sp. gr. P21/n. The structure was
solved directly using the SHELX97 software package
[5]. Simultaneously, several possible space groups were
tested. The most adequate model was obtained within
the sp. gr. P21/n, which confirms the validity of its
choice based on systematic absences of corresponding
reflections. Analysis of the model obtained and the
residual electron-density map, which contained a large
003 MAIK “Nauka/Interperiodica”
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Table 1.  Main crystallographic characteristics and experimental data

Formula NaPbCu5(AsO4)4Cl · 5H2O

Unit-cell parameters, Å a = 10.023(7), b = 19.55(1), c = 10.023(6), β = 90.02(1)°
Space group; Z P21/n; 4

Unit-cell volume V, Å3 1964.6

Calculated density ρ, g/cm3 4.16

Measured density ρ, g/cm3* 4.08

Absorption coefficient µ, mm–1 20.80

Molecular weight 1229.1

F000 2260

Diffractometer Bruker AXS SMART CCD

Radiation; wavelength, Å Synchroton radiation; 0.6843

Total number of reflections 3068

Number of reflections used in the final stage
of the least-squares procedure

1356

Software package for structure solution by direct methods SHELX97

Software package for structure refinement JANA2000

Number of parameters in refinement 130

Rhkl 0.096

∆ρmax, e/Å3 3.18

∆ρmin, e/Å3 –2.63

* The measured density is given according to [1].
number of peaks in the vicinity of atomic positions,
provided evidence for crystal twinning. The crystal
structure of zdenekite was further refined using the
JANA2000 program [6]. The weight coefficients of
individual components, which were refined using the

twin matrices [0 0 1 / 0 1 0 / 1 0 0], [0 0 1 / 0 1 0 /  0 0],

and [1 0 0 / 0 1 0 / 0 0 ], are 0.30(1), 0.166(6),
0.172(6), and 0.365(7). The positions of water mole-
cules were revealed from the difference electron-den-
sity map. The model was refined with isotropic thermal
parameters, except for the lead atoms, which were
refined with anisotropic thermal parameters. The thin
platelike shape of the crystal hindered the application
of the absorption correction. This fact, together with the
poor quality of X-ray diffraction data (all reflections
had diffusion tails) and a complex system of twinning,
led to negative isotropic atomic thermal displacements
for a number of oxygen atoms and water molecules.
The coordinates of two oxygen atoms (O(15) and
O(16)) and three water molecules (W(1), W(3), and
W(5)), which were revealed from the residual electron-
density map, were fixed in the course of refinement.
The noted reasons also led to deviations of a number of
As–O distances from standard values, with the result
that the positions of five oxygen atoms (O(2), O(7),
O(9), O(11), and O(12)) were somewhat shifted relative
to their positions in the difference electron-density
map, and these positions were also fixed in the final
stage of structure refinement. The average As–O dis-

1

1

C

tances in four nonequivalent AsO4 tetrahedra (1.77,
1.65, 1.78, and 1.69 Å) are close to the standard values.

The coordinates and atomic thermal displacements
for the cations and Cl atoms are given in Table 2. The
figures were drawn with the use of the ATOMS pro-
gram [7].

DESCRIPTION AND DISCUSSION 
OF THE STRUCTURE

The structure of zdenekite is shown in Figs. 1 and 2.
It consists of heteropolyhedral layers parallel to the
(010) plane. These layers are formed by Cuϕ5 5-vertex
polyhedra (ϕ = O, Cl, H2O) and AsO4 tetrahedra
(Fig. 1). In these layers, one can distinguish clusters
consisting of four edge-sharing Cuϕ5 5-vertex polyhe-
dra linked by AsO4 tetrahedra. In the clusters, four
Cuϕ5 5-vertex polyhedra (distorted tetragonal pyra-
mids) share a vertex occupied by the Cl atom. In all
Cuϕ5 5-vertex polyhedra, the Cu–Cl distance exceeds
the Cu–O distances (the average Cu–O distance and the
Cu–Cl distance for four Cuϕ5 5-vertex polyhedra are
1.96 and 2.76 Å, respectively). The AsO4 tetrahedra are
linked to each cluster of four Cuϕ5 5-vertex polyhedra
(four tetrahedra below and four tetrahedra above). Each
tetrahedron shares two vertices with two Cuϕ5 5-vertex
polyhedra of one cluster and one vertex with a Cuϕ5
5-vertex polyhedron from the adjacent cluster. The
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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fourth vertex of each AsO4 tetrahedron is linked to the
fifth Cuϕ5 5-vertex polyhedron, which does not belong
to clusters. Like the four 5-vertex polyhedra considered
above, the latter copper polyhedron is also a 5-vertex
polyhedron and also represents a distorted tetragonal
pyramid. However, the latter copper atom is coordi-
nated (along with four oxygen atoms) by the water mol-
ecule rather than Cl atom. The water molecule is ori-
ented toward the interlayer space. The average Cu–O
distance in this 5-vertex polyhedron is 1.93 Å. The
Cu−H2O distance is elongated to 2.26(5) Å. All the
oxygen atoms in this tetragonal pyramid are located in
its base and simultaneously serve as vertices of the
AsO4 tetrahedra.

According to [8], the Cu2+ϕ5 tetragonal pyramids
differ in the displacement of the copper atom with
respect to the square base. This displacement can be
characterized by the O–Cu–O angles formed by the O
atoms located in the bases of the pyramids. With regard
to these values, the fifth CuO4H2O 5-vertex polyhedron
is somewhat different from the other four CuO4Cl
5-vertex polyhedra, because the O–Cu–O angles in the
former 5-vertex polyhedron are closer to 180°. This cir-
cumstance allows us to consider the copper atom in this
5-vertex polyhedron as located virtually in the plane of
the square base.

Potassium atoms are located in distorted octahedra
and lead atoms are located in 7-vertex polyhedra (the
average Na–O and Pb–O distances are 2.35 and 2.52 Å,
respectively). These polyhedra and the water molecules
coordinated to these metal atoms are located in the
interlayer space (Fig. 2). It should be noted that each
layer in the zdenekite structure can be described within
the tetragonal symmetry with the sp. gr. P4, which is
consistent with the preliminary data on this mineral
obtained by the photographic method [1]. However, the
adjacent polyhedral layers are shifted upon their rota-
tion about the twofold screw axis relative to each other,
which leads to lowering of the zdenekite symmetry to
monoclinic. The structural formula of zdenekite is in
complete agreement with its idealized composition
reported previously [1].

The correctness of the proposed structural model is
additionally supported by the calculations of the
valence balance for anions (Table 3). The deviations of
the interatomic distances from standard values did not
allow us to calculate the local valence balance. How-
ever, the formal valence balance for the é2– anions
seems to be quite reasonable. The exception is the Cl–

anion, which forms elongated bonds with four sur-
rounding copper atoms. The latter circumstance must
be taken into account to correctly estimate the valence
balance. This is why the formal valence balance for the
chloride anion is overestimated, and this value is not
given in Table 3.

The formation of mixed layers consisting of [Cuϕ5]
tetragonal pyramids and [AsO4] tetrahedra in the struc-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
ture of zdenekite corresponds to a Cu/As ratio of 1.25
[9]. Mixed layers consisting of Cu polyhedra and As
tetrahedra were found in a large group of minerals,
among which are pushcharovskite
CuAsO3(OH) · 1.5H2O [10], geminite
Cu(AsO3OH) · H2O [11], yvonite Cu(AsO3OH) · 2H2O
[12], and fluckite CaMn(AsO3OH)2 · 2H2O [13]. The
largest distance between the adjacent mixed layers

Table 2.  Coordinates of the basis atoms and thermal dis-
placements for the cations and Cl– anion in the crystal struc-
ture of zdenekite

Atom x y z Uiso

Pb 0.362(1) 0.5891(4) 0.2160(9) 0.050(2)*

As(1) 0.152(2) 0.8361(6) 0.919(1) 0.007(3)

As(2) 0.148(3) 0.8473(9) 0.503(2) 0.050(5)

As(3) 0.066(1) 0.6598(7) 0.424(1) 0.006(3)

As(4) 0.060(1) 0.6641(7) 0.010(1) 0.009(4)

Cu(1) 0.128(1) 0.7151(5) 0.714(1) 0.001(3)

Cu(2) –0.138(2) 0.7838(7) 0.989(1) 0.010(4)

Cu(3) 0.081(2) 0.794(1) 0.207(2) 0.035(6)

Cu(4) 0.364(2) 0.7094(8) 0.946(1) 0.017(4)

Cu(5) –0.143(3) 0.5931(5) 0.215(2) 0.027(3)

Na –0.135(7) 0.604(2) 0.707(6) 0.027(9)

Cl 0.634(5) 0.367(1) 0.289(4) 0.026(5)

O(1) 0.235(4) 0.671(2) 0.372(5) 0.001

O(2) 0.271 0.164 0.460 0.001

O(3) 0.541(3) 0.854(2) 0.096(3) 0.001

O(4) –0.013(5) 0.739(3) 0.375(5) 0.001

O(5) –0.022(3) 0.826(2) 0.901(4) 0.001

O(6) 0.014(4) 0.657(2) 0.834(4) 0.001

O(7) 0.820 0.160 0.918 0.001

O(8) 0.211(4) 0.770(2) 0.580(5) 0.001

O(9) 0.780 0.241 0.148 0.001

O(10) 0.235(5) 0.909(2) 0.563(5) 0.001

O(11) 0.820 0.157 0.660 0.001

O(12) 0.502 0.090 0.430 0.001

O(13) 0.002(4) 0.863(3) 0.537(5) 0.001

O(14) 0.204(6) 0.916(3) 0.828(6) 0.001

O(15) –0.008 0.723 0.081 0.001

O(16) –0.044 0.597 0.364 0.001

W(1) 0.206 0.504 0.148 0.001

W(2) –0.172(5) 0.479(3) 0.233(8) 0.001

W(3) –0.142 0.538 0.558 0.001

W(4) 0.035(8) 0.994(4) 0.657(7) 0.001

W(5) 0.390 0.522 0.412 0.001

* The parameter Uiso for the Pb atom was calculated based on
anisotropic thermal displacements.
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Z

X

Fig. 1. Polyhedral layer in the structure of zdenekite projected onto the (010) plane [7]. The copper polyhedra and AsO4 tetrahedra
are dark-gray and light-gray, respectively. The Pb and Na atoms are represented by large gray and black circles, respectively. The
water molecules are indicated by small gray circles.

Y

X

Fig. 2. Crystal structure of zdenekite projected along the [001] direction. For notations, see Fig. 1.
(10.90 Å) was found in pushcharovskite, whereas these
distances in the other aforementioned minerals are in
the range 7.613–7.822 Å. Like in pushcharovskite, the
polyhedral layers and interlayer spaces are rather bulky
in the structure of zdenekite. Hence, the distances
between these layers are rather large (~9.78 Å).
C

Until recently, none of the representatives of the lav-
endulan group have been structurally studied. In addi-
tion to the parent mineral lavendulan, this group
includes zdenekite and sampleite NaCaCu5(PO4)4Cl ·
5H2O. As in the case of lavendulan, the orthorhombic
symmetry has been suggested initially for sampleite.
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Table 3.  Formal valence balance for the anions in the structure of zdenekite

Na Pb As(1) As(2) As(3) As(4) Cu(1) Cu(2) Cu(3) Cu(4) Cu(5) Σ

O(1) 0.29 1.25 0.40 1.94

O(2) 0.29 1.25 0.40 1.94

O(3) 0.17 1.25 0.40 1.82

O(4) 1.25 0.40 0.40 2.05

O(5) 0.29 1.25 0.40 1.94

O(6) 0.17 1.25 0.40 1.82

O(7) 0.17 1.25 0.40 1.82

O(8) 1.25 0.40 0.40 2.05

O(9) 1.25 0.40 0.40 2.05

O(10) 1.25 0.40 1.65

O(11) 0.17 1.25 0.40 1.82

O(12) 1.25 0.40 1.65

O(13) 0.29 1.25 0.40 1.94

O(14) 1.25 0.40 1.65

O(15) 1.25 0.40 0.40 2.05

O(16) 1.25 0.40 1.65

W(1) 0.17 0.29 0.46

W(2) 0.40 0.40

W(3) 0.17 0.17

W(4) 0.29 0.29

W(5) 0.29 0.29
However, in the course of studying zdenekite, it was
discovered that the crystal structures of lavendulan and
one of the forms of sampleite also belong to the mono-
clinic system with the sp. gr. P21/n and have structures
similar to that of zdenekite (unpublished data by
G. Giester, P. Williams, and U. Kolitsch). In addition,
according to the data of these researchers, another poly-
morph of sampleite exists, whose structure was estab-
lished within the sp. gr. P21/c. Correspondingly, the lat-
ter structure is characterized by another alternation of
the polyhedral layers. The “tails” of diffraction reflec-
tions of zdenekite extended along the [010] direction
are indicative of possible violation of the alternation of
the polyhedral layers in the zdenekite structure, which
suggests that this mineral is characterized by a more
complex polytypism.
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Abstract—The structure of Ba0.75Lu0.25F2.25 crystals grown from melt has been studied by X-ray diffraction
analysis (4729 measured reflections, 269 independent reflections with I > 3σ(I), R = 1.1%, Rw = 0.7%). The

crystals are crystallized in the cubic system, sp. gr. Pm m, with the lattice parameter a = 5.9870(9) Å. A new
complex of defects is singled out—a supercluster of the composition {R8[Ba6F71]}. This supercluster differs
from the well-known rare earth octahedral supercluster of the composition {Ba8[R6F68–69]} because its nucleus
is formed not by RE cations but by an alkali earth cation, Ba. The {R8[Ba6F71]} supercluster has a configuration
close to that of the [B14F64] fragment of the fluorite structure and can replace the latter isomorphously. The
model of the Ba0.75Lu0.25F2.25 crystals consisting of coherently intergrown isostructural microphases having
different chemical compositions is characterized by the good agreement of the calculated and experimentally
determined occupancies of the F1– positions. The comparison of the Ba0.8Yb0.2F2.2 (phase studied earlier) and
Ba0.75Lu0.25F2.25 structures demonstrates the evolution of the defect structure along the series of rare earths with

the corresponding change of the sp. gr. Fm m by the sp. gr. Pm m. © 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Numerous studies of various single crystals show
that, similar to fluorite, the nonstoichiometric
M1 − xRxF2 + x phases (M = Ca, Sr, Ba, Cd, Pb; R = RE)

are crystallized in the sp. gr. Fm m. Their structures
are characterized by the formation of associates of ions
at which structural defects are concentrated. These
associates are called clusters and superclusters. The dif-
ference between the two consists in the following: clus-
ters always consist of one type of defects, whereas
superclusters sometimes consist of several types of
defects. According to the structural studies of
Ba1 − xRxF2 + x crystals, they have [R6F36] groups of
highly charged rare earth cations [1]. Hereafter, we call
the R3+ ions in the positions of Ba2+ ions the “substitu-
tion defects.” They are surrounded by anionic vacancies
and interstitial fluoride ions. The R3+ ions occupy the

3
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vertices of an octahedron and, therefore, this group is
called a rare earth octahedral cluster. In addition to the
above defects, the Ba1 – xRxF2 + x structure also has Ba2+

ions in the anionic environment not characteristic of the
fluorite structure type. These ions should also be con-
sidered as structural defects. The attachment of these
eight cations to an [R6F36] cluster results in the forma-
tion of a rare earth octahedral {Ba8[R6F68–69]} super-
cluster.

The methods of X-ray and neutron diffraction anal-
ysis applied to the crystals with partly disordered
(defect) structures give averaged diffraction patterns.
The dimensions of some octahedral RE superclusters
may exceed the unit-cell dimensions of the
Ba1 − xRxF2 + x phase. Therefore, in the structural studies,
several superclusters can be simultaneously projected
onto one unit cell of this structure. As a result, the cat-
ionic positions in the structure turn out to be statistically
003 MAIK “Nauka/Interperiodica”
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filled with Ba2+ and R3+ cations. In the anionic motif,
defects are represented by vacancies and interstitial F
ions. The vacancies are formed in the main anionic

position 8c (1/4, 1/4, 1/4) of the sp. gr. Fm m. Intersti-
tial fluoride ions occupy two additional positions. Thus,
F1– ions occupy the positions 48i(1/2, y, y) and form
{F12} cuboctahedra in the centers of RE superclusters.
The remaining F–1 anions occupy the 4b (1/2, 1/2, 1/2)
position and are located either inside {F12} cuboctahe-
dra or in the centers of {F8} cubes of the fluorite matrix.
The 4b position is often called the Goldschmidt posi-
tion, because it was the only position suggested by
Goldschmidt for interstitial F1– ions in the model of
yttrofluorite Ca1 – xYxF2 + x [2]. The anions located
inside {F12} cuboctahedra and {F8} cubes can be dis-
placed from the 4b position toward the 32f(x, x, x) posi-
tion. The F1– anions in the latter position are called
relaxed anions. The presence of defects in the main
anionic position and the existence of two (or three)
additional (interstitial) anionic positions is considered
as evidence of the formation of {Ba8[R6F68–69]} super-
clusters in the structure of disordered Ba1 – xRxF2 + x
phases.

Earlier (part II of this series of articles [3]), it was
established that two phases are simultaneously formed
during crystallization of Ba1 – xYbxF2 + x (x ~ 0.2) from
the melt, the so-called P and F phases. The P phase of
Ba1 – xYbxF2 + x became the first representative of the
family of nonstoichiometric M1 – xRxF2 + x phases crys-

tallized in the sp. gr. Pm m. The F phase of

Ba1 − xYbxF2 + x (sp. gr. Fm m) is somewhat different
from the phases studied earlier, namely, all the Yb3+

cations are displaced along the [111] direction, whereas
some F1– anions are displaced along the threefold axis
toward the unit-cell vertex. The formation of a new
phase M1 – xRxF2 + x with M = Ba and R = Yb can be asso-
ciated with almost limiting difference between the ionic
radii of these cations having different valences, which
gives rise to structural rearrangement. If this assump-
tion is true, the transition from Ba1 – xLuxF2 + x, to Lu
would lead to crystallization from the melt of the phase
described by the sp. gr. Pm m.

The present article describes the study of the evolu-
tion of the defect Ba1 − xRxF2 + x structure at the short end
of the RE series (from Yb to Lu). With this aim, we
determined the defect structure of the phase crystal-
lized from the melt of the composition Ba0.75Lu0.25F2.25
and compared this structure with the Ba0.8Yb0.2F2.2
structure studied earlier [3].

EXPERIMENTAL

The crystals were grown by the Bridgman technique
in a setup with a graphite heater. The growth condi-
tions, the characteristics of the initial reagents, and their

3
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3
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purification from the oxygen impurity were described
earlier [4]. Like in the preceding articles of this series,
the term “as grown crystal” is applied to crystals grown
from melt and not subjected to any additional thermal
treatment. As was indicated earlier [4], the
Ba0.75Lu0.25F2.25 boule (having only the Ba0.75R0.25F2.25
composition with R = Gd–Lu), when being cooled and
taken away from the crucible, disintegrates into trans-
parent blocks with a diameter ranging from 1 to 3 mm,
which resembles the effect of a phase transformation
during cooling. The blocks do not scatter laser beams,
i.e., do not contain any finely dispersed second phase.
Unlike all the other crystals of the composition
Ba0.75R0.25F2.25 (R = Gd–Yb) [4], the small dimensions
of these blocks did not allow us to study the inhomoge-
neity in their composition either in polarized or in trans-
mitted light.

Phase composition of the crystals grown was stud-
ied on a powder Siemens D-500 diffractometer
(CuKα1, 2 radiation), an INEL diffractometer (CuKα1
radiation), and an HZG-4 diffractometer (CuKα1, 2 radi-
ation). The details of the experiments were described
earlier [4]. The X-ray diffraction pattern of an as grown
Ba0.75Lu0.249Er0.001F2.25 crystal was also considered in
[4]. The sample studied was a mixture of small blocks
of the boule. The X-ray diffraction pattern had the 110

reflection forbidden in the sp. gr. Fm m; the other
reflections were considerably distorted. A year after the
synthesis, the sample gave a somewhat different dif-
fraction pattern. The refinement of the cubic unit cell
over 13 most intense reflections (powder method) gave
the lattice parameter a = 5.987(1) Å, coinciding with
the lattice parameter a = 5.9870 Å of single crystals. It
should be indicated that, unlike neutron diffraction
analysis, X-ray diffraction analysis of single crystals
can be performed on a relatively small amount of the
material and, thus, is more preferable for studying mul-
tiphase systems with finely dispersed phases similar to
as grown Ba1 − xRxF2 + 2 (R = Gd–Lu) boules.

The homogeneity of the composition of a
Ba1 − xLuxF2 + x boule was evaluated only indirectly—
from the coefficient of Lu distribution in the directed
crystallization of the Ba0.75Lu0.25F2.25 melt calculated
from the phase diagram [5]. This coefficient turned out
to be close to unity, 0.95. For all the RE elements in
Ba0.75R0.25F2.25, except for Ce, Pr, and Nd, this coeffi-
cient considerably differs from unity. One can expect
that the variation of the composition over the boule dur-
ing crystallization of the Ba0.75R0.25F2.25 melt would be
minimal. This is confirmed by the crystal composition
obtained based on the lattice parameter determined
from the powder and single-crystal data.

Chemical composition of the crystals was set by the
charge composition, because the coefficient of the RE
distribution in this system is close to unity. The compo-
sition determined from the dependence of the lattice
parameter on the content of the RE fluoride (powder

3
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data) only slightly differed from the charge composi-
tion. This difference can be explained by the fact that
the crystal structure of single crystals grown from melts
under nonequilibrium conditions differs from the struc-
ture of polycrystal samples obtained by prolonged
annealing of the powder mixture of the components
below the melting point. In the structural computations,
we ignored the presence of 0.1 mol % ErF3 in the crys-
tals.

Selection of samples and determination of lattice
parameters. Since the boule disintegrated into frag-
ments, when being extracted from the crucible, any
fragment from any part of the boule could be chosen as
a sample for further study. The blocks chosen were
rolled into spheres with a diameter ranging from 0.1 to
0.2 mm. Their appropriateness for further study was
checked on a diffractometer. The crystal studied
showed the extinctions forbidden for the F cell. There-
fore, when determining the unit cell parameter of a
Ba0.75Lu0.25F2.55 crystal, we paid special attention to the
search for any deviations from the crystal metrics. The

500

6.2

25

3.2

6.4 6.6 6.8 7.0 7.2 7.4

1000

1500

2000

2500

3000

I, pulse/s

hkl
(002)

(a)

2.8 3.0 3.4 3.6 4.03.8

50

75

100

125

150

θ, deg

hkl
(001)

(b)

Fig. 1. Typical profiles of diffraction reflections from a
Ba0.75Lu0.25F2.25 single crystal (a) with and (b) without F
centering.
C

lattice parameters were determined from the angular
position of 24 reflections from the range of θ angles
from 26.8° to 29.1°. The α, β, and γ angles turned out to
be equal to 90°, and the lattice parameters a, b, and c
were equal to one another within the standard devia-
tions (±0.01° and ±0.0009 Å). Thus, the lattice metrics
is cubic. The lattice parameters were refined over the
groups of high-angle reflections of two types. The first
group consisting of 24 equivalent {337} reflections
with θ = 29.01° did not violate F centering. The second
group of 24 equivalent {037} reflections with θ =
26.87° violated F centering. The lattice parameter
determined from these two groups of reflections coin-
cided within 3σ.

EXPERIMENTAL RESULTS

Analysis of the complete set of reflections indicates
the absence of general systematic extinctions and,
therefore, the unit cell can only be primitive, P. The test
for centrosymmetricity and the absence of special sys-

tematic extinctions indicates the sp. gr. Pm m. Thus,
the symmetry of an as grown Ba0.75Lu0.25F2.25 crystal

cannot be described by the sp. gr. Fm m. The reflec-
tions corresponding to the F cell have clearly shaped
profiles. The reflections violating F centering have
approximately 100 times lower intensities and are con-
siderably broadened. The FWHM (full width on half-
height of the maximum) value for the reflections of the
first group is constant at angles θ < 20° and only
slightly increases with an increase in θ. Figure 1 shows
the typical diffraction–reflection profiles for these two
types of reflections. The FWHM value for the reflec-
tions of the second group exceeds the value for the
reflections of the first group more than twofold. The
dependence of FWHM on θ is anomalous: with an
increase in the reflection angle, the reflection width
decreases and approaches the width of the first-group
reflections. This is most clearly seen on the 00l reflec-
tions violating F centering (Fig. 2) and 11l reflections
(Fig. 3). The origin of this anomaly requires an addi-
tional study. One of the possible explanations can be
X-ray diffuse scattering associated with crystal micro-
inhomogeneity, which allows one to consider these
crystals as nanostructured materials [4].

When recalculating the intensities into the structure-
factor moduli, we took into account the polarization
and the Lorentz factors and the corrections for absorp-
tion by spherical samples and performed averaging

within the sp. gr. Pm m. The main crystallographic
characteristics and the conditions for performing X-ray
diffraction experiments on Ba0.75Lu0.25F2.25 crystals are
indicated in Table 1. The unit-cell parameters were
refined using the most intense 337 reflection.
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REFINEMENT OF Ba0.75Lu0.25F2.25 ATOMIC 
STRUCTURE

The full matrix LS refinement was performed using
the PROMETHEUS program [6]. The initial model for
the refinement of the structure parameters was that of
the fluorite structure containing only cations. With low-

ering of the symmetry down to Pm m, the cationic
position 4a (000) of the fluorite structure is split into
two positions—1a (0 0 0) and 3c (0 1/2 1/2). Since the
composition of the crystal studied is close to Ba3LuF9
(Ba : Lu = 3 : 1), the Lu cations were placed into the 1a
position, and the Ba cations, into the 3c position. The R
factor at this stage of the refinement was 8.4%. The
electron-density maps also indicated splitting of the
cationic 3c position. The refinement of the position of
the Ba cation in the anisotropic approximation reduced
the R factor to 7.2%.

To localize F1– anions, the difference electron-den-
sity maps were calculated. These maps had a more
intense peak in the 8g (x, x, x) position at x ~ 0.22 (<1/4)
and a less intense peak in the 1b (1/2 1/2 1/2) position
(Fig. 4). The allowance for F1– anions in these positions
reduced the R factor to 2.9%. The difference electron-
density maps constructed at this stage of the refinement
revealed one more anionic position—8g with x ~ 0.28
(>1/4). The allowance for this position reduced the R
factor even more, to 2.1%.

The cations in the 3c position were refined in the
anisotropic approximation. The parameters of atomic
displacements toward the 6f (x, 1/2, 1/2) position
exceeded the analogous parameters along the perpen-
dicular direction by a factor of 2.6. Therefore, we
refined the cations in the 6f and not the 3c position. This
procedure reduced the R factor from 2.1 to 1.9%. At the
following stage of the refinement, the cationic positions
were considered as mixed ones and their composition
was refined. This procedure resulted in R = 1. 1% and
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RW = 0.7%. The concluding stage of the refinement was
performed in the isotropic approximation of atomic
thermal vibrations with due regard for the extinction
correction (Becker–Coppens type 1, E = 5.7(2) ×
10−6 cm). None of the attempts to take into account the
anisotropy and ahnarmonism of thermal vibrations
reduced the R factor.

The refined data are listed in Table 2. The sum of the
occupancies of the anionic positions per formula unit is
2.198. The remaining fraction of F anion (0.052) seems
to be localized in the vicinity of the 3d (1/2 0 0) or 6e
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Fig. 3. Width of 11l reflections as a function of scanning
angle θ.

Table 1.  Main crystallographic characteristics and parameters
of diffraction experiments for an as grown Ba0.75Lu0.25F2.25
crystal

Sp. gr. Pm m

a, Å 5.9870 (90)

V, Å3 214.58 (6)

Z 4

ρcalcd, g/cm3 5.836

Sample Sphere, d = 0.156 mm

Diffractometer Enraf-Nonius CAD-4F

Radiation MoKα; 50 kV; 20 mA

m (MoKα), cm–1 262, 12

Monochromator Graphite

h, k, l ranges ±h, ±k, +l

(sinθ/λ)max, Å–1 1.15

Scanning ω/2θ
Number of measured reflections 4729

Number of independent reflections 269, I > 3σ(I)

Rav(F) 0.0153

Temperature of experiment 295 K
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Fig. 4. Difference (after subtraction of cations) electron-density map for a Ba0.75Lu0.25F2.25 structure. Isolines are spaced by
0.05 e/Å3.
(x, 0, 0) position. The difference electron-density maps
show weak peaks in the vicinity of these positions. The
refinement of F anions in these positions did not reduce
the R factor any more and gave no admissible occupan-
cies of these positions and parameters of atomic ther-
mal vibrations.

DISCUSSION

A new {Lu8[Ba6F71]} supercluster of structural
defects in Ba0.75Lu0.25F2.25 crystals. The data obtained in
this study on the defect Ba0.75Lu0.25F2.25 structure indi-
cate a new mechanism of the incorporation of addi-
tional F1– anions into the structure in comparison with
the mechanisms known for the Ba1 − xRxF2 + x phases
(R = La–Yb) studied earlier (Fig. 5a). The anion posi-
tions determined (Fig. 5b) do not correspond to cuboc-
tahedra of anions, whereas the filling of the cationic
positions indicate the formation of the octahedra of Ba
ions and not of rare earth ions. The displacements of
anions to the 1a position correlate with the prevalent
C

filling of this position with Lu cations. The arrangement
of six Ba cations in the face centers of the cubic unit cell
and eight Lu cations at its vertices, with seven F cations
located at the centers of the octahedral cavities of the
cationic packing, can be interpreted as the formation of
a new configuration of structural defects—a
{R8[Ba6F71]} supercluster (Fig. 6a). The cation ratio
Ba : R in isolated superclusters is equal to 3 : 4. Upon
agglomeration of such superclusters, this ratio
increases, attaining a value of 3 : 1 (Ba3RF9 composi-
tion) in the close packing. This corresponds to the
Ba0.75Lu0.25F2.25 composition of the phase studied. The
Ba : R ratio increases with a decrease in the concentra-
tion of isolated superclusters in the BaF2 matrix tend-
ing, in the limit, to BaF2.

Considering the configurations of highly charged
cations (RE R3+), we managed to single out two types
of rare earth superclusters—octahedral and tetrahedral
ones [1]. These superclusters have cationic “cores” of
octahedral and tetrahedral configurations, with the ver-
tices occupied (in the limit, completely) by RE ions.
Table 2.  Results of structure refinement of an as grown Ba0.75Lu0.25F2.25 crystal

Ion Position g x/a y/b z/c B

Lu, Ba (0.85, 0.15) 1a 1 0 0 0 0.25(1)

Ba, Lu (0.475, 0.025) 6f 6 0.0138(5) 1/2 1/2 0.45(2)

F(1) 8g 6.72(4) 0.220(2) x x 0.85(5)

F(2) 1b 0.79(3) 1/2 1/2 1/2 1.6(2)

F(3) 8g 1.28(4) 0.26(3) x x 3.8(1.0)
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Pm m. The subscripts indicate the type of the crystallographic position, e.g., Ff  indicates fluoride ions in the 32f position, etc. Sym-
bol V indicates the vacancies in the positions of fluoride ions. The arrows indicate the direction of the displacements of fluoride ions
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Fig. 6. (a) Octahedral alkali earth {R8[Ba6F71]} (R = Yb, Lu) supercluster as a combination of [BaF10] and [RF8] polyhedra and (b)
rare earth {Ba8[R6F69]} (R = Y, La–Yb) supercluster.

Fb
The configuration of structural {R8[Ba6F71]} defects in
Ba1 − xRxF2 + x crystals with R = Lu represents the third
type of superclusters of cationic defects in nonstoichio-
metric M1 − xRxF2 + x phases discovered since 1969. The
configuration of cations in the cores allows one to relate
this cluster to the octahedral type. The characteristic
feature of the cluster is that the octahedral core is
formed by alkali earth cations—barium. Therefore,
we suggest calling the configuration of {R8[Ba6F71]}
defects (Fig. 6a) an octahedral alkali earth super-
cluster.

When studying the structure of disordered
Ba1 − xRxF2 + x phases with fluorite-like structure and
searching for {R8[Ba6F71]} superclusters in the cases of

the sp. gr. Pm m, we established the existence of two
anionic positions—8g (with x <1/4) and 1b (Figs. 4 and

5b). The equivalent positions in the sp. gr. Fm m are

3

3
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the 32f (with x < 1/4) and 4b. In all the Ba1 − xRxF2 + x

phases studied earlier, the additional F1– ions in the 32f
position were characterized by the parameter x > 1/4,
which corresponds to their displacement toward the
center of an empty {F8} cube—the Goldschmidt posi-
tion 4b. In the formation of {R8[Ba6F71]} superclusters,
the anions are displaced toward the R3+ cation
(Fig. 5b). This differs the structure of the studied
Ba0.75Lu0.25F2.25 crystals from the structures of
Ba1 − xRxF2 + x crystals studied earlier despite the formal
coincidence of the crystallographic positions of inter-
stitial F1– ions.

The analysis of the Ba4R3F17 (R = Yb, Y) structures
described in our earlier publication [7] showed that it is
possible to single out in these structures a fragment
consisting of six Ba2+ ions grouped around a fluorine-
centered {F9} cube. Thus, we proved structurally the
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formation not only of the octahedral rare earth
{Ba8[R6F68–69]} supercluster (Fig. 6b) but also of a frag-
ment of its inverted analogue—alkali earth (with
respect to the cationic core) {R8[Ba6F71]} supercluster
(Fig. 6a).

A {Lu8[Ba6F71]} supercluster includes anions in the
8g F(1) and 1b F(2) positions (Table 2). Coordination
polyhedra of Lu cations are cubes and those of Ba cat-
ions, two-capped tetragonal prisms. The Lu–F dis-
tances are equal to 2.276 Å and practically coincide
with the sum of ionic radii of Lu3+ and F1– (2.287 Å)
calculated at the coordination numbers 8 (Lu) and 4 (F)
using the Shannon system of effective ionic radii [8].
The displacement of Ba2+ from the special position in
the center of the face leads to four groups of Ba–F dis-
tances. For two of these groups, four distances to the
vertices of the tetragonal prism are equal to 2.675 and
2.756 Å. For two more F1– ions of the cap, these dis-
tances are equal to 2.910 and 3.077 Å. The average Ba–
F distance in the coordination polyhedron is 2.771 Å,
which is close to the sum of the effective ionic radii of
Ba2+ and F1– (2.850 Å) at coordination numbers 10 and
6, respectively [8]. Similar to the octahedral rare earth
{Ba8[R6F68–69]} supercluster, the octahedral “alkali
earth”{R8[Ba6F71]} supercluster has a configuration
close to that of the [Ba14F64] fragment of the fluorite
structure, which includes 14 coordination polyhedra
having the shapes of [BaF8] cubes.

The introduction into the composition of this struc-
tural fragment of triply charged cations instead of dou-
bly charged ones requires the introduction of eight
additional F anions to compensate the excessive posi-
tive charge. A new {R8[Ba6F71]} supercluster has seven
additional F1– ions. However, in the combination of
these superclusters, the number of R3+ ions per super-
cluster decreases. Thus, the electroneutrality of the
structure is preserved. Similar to the case of
{R8[Ba6F71]} superclusters, the charges of {Ba8[R6F68–69]}
superclusters can be compensated by the incorporation
into the structure of one additional F1– ion in the vicin-
ity of the supercluster into the octahedral cavity of the
cationic packing. This mechanism of charge compensa-
tion was established experimentally in the structure of
the ordered Ba4Yb3F17 phase [7].

On the model of Ba1 − xRxF2 + x solid solutions as
coherent intergrowth of the superclusters and the crys-
talline fluorite matrix. Recently [9], we suggested to
consider the nonstoichiometric fluorite M1 − xRxF2 + x
phases as a heterogeneous nanophase system. A crystal
consists of at least two isostructural microphases with
considerably different chemical compositions that can
intergrow coherently. Compared to pure fluorite, MF2,
the microphases having RE-enriched compositions
contain all the types of structural defects: RE cations
(substitution defects), anionic vacancies in the main
position, and interstitial fluoride ions. An isolated com-
plex of these defects forms an octahedral rare earth
C

supercluster. Isolated {M8[R6F68–69]} superclusters
have nanometer dimensions and are dispersed in the
MF2 matrix. It seems that these superclusters can be
combined into larger formations. The M1 − xRxF2 + x
phases are unique because, even in the case of large
associates, they have the form of single crystals and,
because of the coherent intergrowth of isostructural
microphases, behave as single crystals in X-ray, neu-
tron, and electron diffraction experiments [9]. Such a
representation opens new possibilities—fluorite
M1 − xRxF2 + x phases can be treated as a set of various
microphases having different chemical compositions,
whose cationic motif remains the same over the whole
crystal volume. We use this model to interpret the occu-
pancies of the cationic and anionic positions deter-
mined.

A large part of the structure of the Ba0.75Lu0.25F2.25
phase (about 85% of the total volume) is a close pack-
ing of {Lu8[Ba6F71]} superclusters and corresponds to
the composition Ba3LuF9 (microphase I). In accor-
dance with the occupancy of the cationic positions
determined, the remaining part (microphase II) consists
of Ba cations in the 1a position and Lu and Ba cations
(in the ratio 1 : 2) in the 6f position. The composition of
this microphase is also Ba3LuF9. The anions in
microphase II occupy the 8g F(3) position (with x > 1/4)
(Table 2) and, probably, the 3d or 6e positions (Figs. 4,
5b). The arrangement of F1– anions in the 1b position
would have led to an inadmissibly short distance to the
position occupied by F(3) (2.276 Å). The calculated
interatomic distances confirm this assumption. The
Ba(1a)–F(8g) distances are equal to 2.748 Å, which is
close to the sum of ionic radii, 2.730 Å [8]. Eight dis-
tances of the second cationic position, 3c, to the anionic
position 8g occupied by F(3) form two groups of dis-
tances, 2.493 and 2.598 Å (average distance 2.545 Å).
Theoretically, the average Ba–F and Lu–F distances are
equal to 2.509 Å.

Thus, the structure of the disordered Ba0.75Lu0.25F2.25
phase can be represented as a coherent intergrowth of
two microphases with the same compositions. The dif-
ferences in the crystal structures of these phases are
associated with different filling of the analogous cat-
ionic positions and the existence of different anionic
positions. The theoretically calculated occupancies of
the anionic positions for this model are practically
equal to the their experimental values (Table 3).

We believe that the interpretation of the structural
data for Ba0.75Lu0.25F2.25 can also be applied to the P
phase of Ba0.80Yb0.20F2.20 [3, 10]. The latter phase also

crystallizes in the sp. gr. Pm m. The anionic positions
indicated in Table 3 allow one to interpret (with due
regard for the cationic composition) the latter phase as
the structure based on the model consisting of two types
of superclusters, {Yb8[Ba6F71]} and {Ba8[Yb6F69]},
and the fluorite BaF2 matrix. The Ba0.8Yb0.2F2.2 compo-
sition can be represented as Ba3YbF9 + BaF2 =

3
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Table 3.  Observed and calculated occupancies of the positions filled with F anions in the structures of the Ba1 – xRxF2 + x phases
with R = Lu and Yb

Composition of crystals Ba0.75Lu0.25F2.25 Ba0.80Yb0.20F2.20

Sp. gr. Pm m Pm m

Position
Position occupancy

Obs/calc Obs/calc

8g (x < 1/4) 6.72/6.8 5.636/5.600

8g (x > 1/4) 1.28/1.2 0.204/0.226

6e + 1b 0.84/0.728

1b 0.79/0.85

3d + 6e 0.0/0.15

12j 0.28/0.20

3 3
Ba4YbF11 = 5(Ba0.8Yb0.2F2.2). The ordered phase with
the composition closest to Ba0.8Yb0.2F2.2 and containing
{Ba8[Yb6F69]} superclusters is the hypothetic
Ba7Yb3F23 phase [11]. The composition of the
Ba0.8Yb0.2F2.2 solid solution containing the Ba7Yb3F23
phase can be written as 15(Ba0.8Yb0.2F2.2) =
Ba12Yb3F33 = 3(Ba4YbF11) = Ba7Yb3F23 + 5BaF2. The
representation of the solid solution as a set of structures
with two types of superclusters leads one to the formula
[Ba3YbF9 + BaF2]0.175[Ba7Yb3F23 + 5BaF2]0.0083. The
occupancies of the anionic positions calculated on this
assumption demonstrate the satisfactory agreement
between the experimental and calculated values
(Table 3). The use of the sum of the 6e and 1b positions
in the calculations is explained by the fact that they both
correspond to the anions located in the centers of the
{F8} cubes or the {F12} octahedra.

The comparison of the above models of two phases
with close concentrations of RE cations (Yb and Lu)
shows that their structures are different. In the
Ba0.8Yb0.2F2.2 phase, the Yb3+ ions are distributed over
the superclusters of both {Ba8[Yb6F59]} and
{Yb8[Ba6F71]} types. In the Ba0.75Lu0.25F2.25 phase, there
are no octahedral RE superclusters and all the Lu3+ ions
are concentrated mainly in the superclusters of the new
type—octahedral alkali earth {Lu8[Ba6F71]} superclus-
ters.

Evolution of the defect structure of as grown
Ba1 − xRxF2 + x phases along the RE series. As was shown
in this study, the replacement of disordered
Ba1 − xRxF2 + x phases in the defect structure revealed in
[3, 10] with the change of large RE ions of the Ce sub-
group (beginning and middle of the La–Nd–Tm series)
by small RE ions of the Y subgroup (Yb, Lu) is seen
from the transformation of a defect {Ba8[R6F69]} super-
cluster into a {R8[Ba6F71]} supercluster. There are three
very important differences between these superclusters:

—The core of the first supercluster consists of six
RE cations concentrated around the {F13} cuboctahe-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
dron, whereas the core of the second supercluster con-
sists of six Ba2+ cations located around the centered
{F9} cube.

—The coordination RE polyhedra in the first cluster
are one-capped square antiprisms (c.n. = 9), whereas in
the second cluster, these are cubes (c.n. = 8). Thus,
there is an obvious tendency to a decrease in the coor-
dination number of an RE cation.

—The coordination polyhedra of a Ba2+ ion in both
first and second superclusters are 10-vertex polyhedra.
But in the first supercluster, they are sphenocrowns,
whereas in the second one, they are two-capped tetrag-
onal prisms.

The differences in the relative sizes of the Ba2+ and
R3+ ions in the RE series increase in the direction from
La to Lu because of the lanthanide contraction. At the
same time, the coordination numbers of R3+ also
decrease along the same direction. In the series of RE
trifluorides, this is seen from a decrease in the coordi-
nation number from 12 (11) for La3+ in the tysonite
LaF3 structure [12] to 9 (possibly to 6) in the β-YF3
structure [13]. A similar decrease in the coordination
number of RE ions at the end of the series with a simul-
taneous increase in the coordination number of Ba2+

was observed in our earlier studies [5, 14, 15] in the
morphotropic transition of the monoclinic BaR2F8 with
the structure of the β-BaTm2F8 (R = Dy–Tm) type to
the orthorhombic phase with the structure of the α-
BaLu2F8 (R = Yb, Lu) type. A decrease in the coordina-
tion number of R3+ in the BaR2F8 phases occurs in the
same part of the RE series (Yb, Lu) as for the
Ba1 − xRxF2 + x phases. It seems that the “driving force”
of the morphotropic transitions in both series of phases
is the effect of lanthanide contraction of RE ions.

It has already been noted that the relation between

two forms of the Ba1 − xYbxF2 + x phases (sp. gr. Fm m

and Pm m) has not been established in [3, 10]. In the
present study, we showed that the Ba0.75Lu0.25F2.25

3

3
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phase described by the sp. gr. Pm m is formed from
the melt, i.e., is a high-temperature phase. Being
annealed, it changes the space group to Fm m (powder
X-ray data [4]). The crystallochemical transformations
of the BaR2F8 structure with an RE ion from the end
portion of the RE series (Yb, Lu) can also be extended
to the relation between the two forms (P and F) of the
Ba1 − xRxF2 + x phases (R = Yb, Lu). If this analogy is cor-
rect, then there should exist polymorphous relation-
ships between the P and F forms of the Ba1 − xRxF2 + x
phase with the fixed RE cations, i.e., the forms

described by the sp. gr. Pm m and Fm m. The change
of RE element along the series and a decrease in the R3+

radius after Lu3+ should result in the morphotropic tran-
sitions to the P form stable at all the temperatures. In
our next article, we shall show that, in fact, this is not
the case, and the P-Ba0.75Lu0.25F2.25 after annealing is
transformed into the F form. The morphotropic transi-
tion is not completed because of the termination of the
RE series at lutecium and because there is no RE cation
having a smaller radius. It seems that, in Ba1 − xRxF2 + x
phases with R = Yb, Lu, one deals with the morphotro-
pic change of the defect (cluster) structure “extended”
by the temperature factor for two elements (Yb, Lu)
and not completed because of the termination of the RE
series.
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Abstract—Crystals of Saccharomyces cerevisiae inorganic pyrophosphatase suitable for X-ray diffraction
study were grown by cocrystallization of the enzyme with cobalt chloride and imidodiphosphate. Saccharomy-
ces cerevisiae is a metal-dependent enzyme which catalyzes hydrolysis of inorganic pyrophosphate to ortho-
phosphate. The three-dimensional structure of this enzyme was solved by the molecular-replacement method
and refined at 1.8 Å resolution to an R factor of 19.5%. Cobalt and phosphate ions were revealed in the active
centers of both identical subunits (A and B) of the pyrophosphatase molecule. In subunit B, a water molecule
was found between two cobalt ions. It is believed that this water molecule acts as an attacking nucleophile in the
enzymatic cleavage of the pyrophosphate bond. It was demonstrated that cobalt ions and a phosphate
group occupy only part of the potential binding sites (two chemically identical and crystallographically inde-
pendent subunits have different binding sites). The arrangement of ligands and the structure of the nucleophile-
binding site are discussed in relation to the mechanism of action of the enzyme and the nature of the metal acti-
vator. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Inorganic pyrophosphatases belong to metal-acti-
vated enzymes catalyzing hydrolysis of inorganic pyro-
phosphate to orthophosphate. These enzymes are
involved in processes providing important stages of cel-
lular metabolism, including biosynthesis of proteins
and nucleic acids and the energy conversion in living
organisms [1]. Soluble inorganic pyrophosphatases are
assigned to family I or II, depending on the type of the
three-dimensional structure and the nature of the most
efficient metal activator [2]. Saccharomyces cerevisiae
(SC) inorganic pyrophosphatase, which exists as a
dimer of two chemically identical subunits, is the most
studied representative of soluble pyrophosphatases of
family I and serves as a convenient model for detailed
elucidation of the mechanism of enzymatic transfer of
phosphate groups.
1063-7745/03/4806- $24.00 © 20953
Divalent metal ions necessary for catalysis by
pyrophosphatase differ noticeably in their ability to
activate the enzyme. The efficiency of metal ions as
activators of pyrophosphatase decreases in the series
Mg2+ > Zn2+ > Co2+ > Mn2+ > Cd2+. Ca2+ ions inhibit the
enzyme [3].

The modern concepts of the mechanism of action of
pyrophosphatase are to a large extent based on the
results of kinetic and X-ray diffraction studies of this
enzyme. The three-dimensional structures of the apoen-
zyme, the complex of pyrophosphatase with activating
manganese ions, the complex with phosphate and man-
ganese ions (the enzyme–product complex), and the
enzyme complex with pyrophosphate, manganese ions,
and inhibiting fluoride ions were established [4–8].
Based on the results of X-ray diffraction studies, the
003 MAIK “Nauka/Interperiodica”
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proposed schemes of enzymatic catalysis have been
considered at the atomic level.

It was demonstrated that the active center of the
enzyme, along with the region in which pyrophosphate
or phosphate groups formed upon hydrolysis of pyro-
phosphate are bound, contains four binding sites for the
metal ions involved in catalysis. The metal ions are
bound by coordination with the carboxyl groups of res-
idues of dicarboxylic amino acids, which are located in
the cavity of the active center. Two activating metal ions
are bound by the enzyme in both the presence and
absence of the substrate, whereas the third and fourth
metal ions are bound only together with the substrate
(pyrophosphate) or phosphate groups. It was hypothe-
sized that hydrolysis of pyrophosphate occurs by the
associative SN2 mechanism, and the water molecule
located between the metal ions serves as a nucleophile
that cleaves the pyrophosphate bond [7].

In spite of the fact that the rate of the reaction cata-
lyzed by pyrophosphatase depends substantially on the
nature of the metal ion, the high-resolution three-
dimensional structure of the enzyme was established
only for enzyme complexes with manganese ions serv-
ing as activators. It is still unclear how sensitive the
three-dimensional structure of pyrophosphatase is to
the nature of the bound metal ion, whether the nature of
the metal ion influences the conformations of the amino
acid residues in the active center, and whether metals of
different nature occupy the same positions.

In this study, we report the three-dimensional struc-
ture of Saccharomyces cerevisiae inorganic pyrophos-
phatase complexed with cobalt and phosphate ions. The

Characteristics of the X-ray diffraction data set, details of re-
finement, and parameters of the cobalt–phosphate pyrophos-
phatase complex

Number of crystals 1

Synchrotron outstation, EMBL, Hamburg XII

Wavelength, Å 0.91

Resolution, Å 17.59–1.77

Number of independent reflections 63474

Number of measured reflections 318512

Redundancy 4.65

Completeness of the set, % 99.9

R(I)merge, % 3.7

R, % 19.53

Rfree, % 24.40

Number of protein atoms 4552

Number of phosphate groups 2

Number of cobalt ions 6

Number of solvent molecules 667

Rms deviation from ideal bond angles, deg 2.5

Rms deviation from ideal bond lengths, Å 0.017
C

three-dimensional structure of this complex is com-
pared with the known three-dimensional structures of
the enzyme complexed with manganese ions and the
enzyme complexed with manganese and phosphate
ions using the model described in [7].

EXPERIMENTAL

The protein was prepared according to the proce-
dure described previously [9]. The enzymatic activity,
determined by the known procedure [10], was 600–
640 U/mg at 25°C.

Crystals of pyrophosphatase were grown by vapor
diffusion. The enzyme with a concentration of
16 mg/ml and specific activity of 640 U/mg, dissolved
in 30 mM MES buffer (pH 6.5), was crystallized in the
presence of 1 mM imidodiphosphate and 1 mM cobalt
chloride at 4°C using a 25% 2-methyl-2,4-pentanediol
solution as a precipitating agent. The crystals up to
0.3 × 0.25 × 0.20 mm in size, with the unit-cell param-
eters a = 51.69 Å, b = 93.23 Å, c = 69.84 Å, β = 99.74°,
belong to the sp. gr. P21.

The three-dimensional set of diffraction reflections
was collected at 1.77 Å resolution from one crystal
using synchrotron radiation at 100 K in the European
Molecular Biology Laboratory (EMBL, Hamburg, Ger-
many) on the DESY synchrotron equipped with an
MAR-345 two-dimensional detector. The X-ray dif-
fraction data were processed using the DENZO and
SCALEPACK programs.

The three-dimensional structure of the enzyme was
solved by the molecular-replacement method using the
atomic model of pyrophosphatase complexed with
manganese and phosphate ions [6] and refined at 1.8 Å
resolution using the REFMAC program. Both subunits
were refined independently. The atomic model was
improved using the FRODO program. The statistics of
data collection and details of refinement are listed in the
table.

The electron-density maps revealed 283 of 3286
amino acid residues in each subunit of the enzyme mol-
ecule. For the three C-terminal residues, the electron
density was absent. Six amino acid residues in subunit
A (Lys21, Ser106, Gln136, Lys167, Asp217, Lys227)
and ten amino acid residues in subunit B (Lys10, Thr60,
Lys76, Arg78, Val80, Asp147, Asn161, Leu168,
Lys198, Asn211) adopt two conformations each. The
rms deviation between the Cα atoms of both subunits is
0.31 Å. The maximum deviations were observed for the
regions 238–240 and 147–148 (2.38 and 1.75 Å,
respectively). The refined model was compared with
other three-dimensional structures of pyrophosphatase
using the LSQKAB program.

RESULTS AND DISCUSSION

As described above, enzyme crystals were prepared
by cocrystallization of pyrophosphatase with cobalt
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Fig. 1. Comparison of subunits A (black) and B (gray) of a cobalt–phosphate pyrophosphatase complex. Fragments of the active
center with cobalt ions and phosphate and the amino acid residues involved in the coordination sphere of the metal ions and phos-
phate groups are shown. The positions of the cobalt ions are denoted by 1–4. The black and gray tetrahedra represent the phosphate
groups in the P2A and P1B sites, respectively. The amino acid residues are represented by one-letter codes.
chloride and imidodiphosphate (a substrate analogue).
Compared to magnesium, which is the best activator,
cobalt is an order of magnitude less efficient and in this
respect is similar to manganese [3]. At the same time,
cobalt and magnesium carboxylate complexes have vir-
tually identical geometric parameters, which are some-
what different from the parameters of manganese car-
boxylates [11]. Imidodiphosphate is cleaved by pyro-
phosphatase rather slowly, especially when cobalt ions
serve as the activator instead of magnesium ions
[12, 13].

Initially, we attempted to prepare crystals of the
enzyme complexed with imidodiphosphate. For this
purpose, we added imidodiphosphate to the mother
liquor immediately before freezing crystals. However,
this procedure led to cracking of the crystals. Because
of this, the sets of X-ray diffraction data were collected
from the enzyme crystals incubated with imidodiphos-
phate during crystal growth. Analysis of the structure
demonstrated that the imidodiphosphate molecule was
absent in the active center of the enzyme. Apparently,
imidodiphosphate was hydrolyzed during crystal
growth to phosphate and phosphamide. It is impossible
to distinguish the latter two compounds in the electron-
density maps at a 1.8 Å resolution. Hence, we described
the groups located in the phosphate-binding sites of the
enzyme as phosphates.

Previously, it was demonstrated that either of the
two active centers of the dimeric pyrophosphatase mol-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      200
ecule can bind four metal ions [4–7] and a maximum of
two phosphate groups: one group in the high-affinity
site and the other in the low-affinity site (denoted by P1
and P2, respectively). Unlike the pyrophosphatase
complex with manganese ions and phosphate, in which
ligands occupy all binding sites, the potential binding
sites in the enzyme complexed with cobalt are occupied
only partially, different sites being occupied in two
chemically identical and crystallographically indepen-
dent subunits of the enzyme.

The fragments of the active centers of subunits A
and B, which were superimposed by least-squares fit-
ting of Cα atoms, are shown in Fig. 1 together with the
bound ligands. It can be seen that certain amino acid
residues of the active center, which play an important
role in catalysis, adopt somewhat different conforma-
tions in the two subunits. For example, Lys56 in subunit
A forms a hydrogen bond with phosphate in the P2 site,
whereas this residue in subunit B forms a hydrogen
bond with phosphate in the P1 site. The residue Arg78
also has different conformations in the two subunits. In
subunit B, its side chain occupies two positions, one of
which is rotated toward the enzyme surface. Appar-
ently, this conformational mobility plays a significant
role in the catalysis by pyrophosphatase.

In subunit A, cobalt ions are located in all four bind-
ing sites (denoted by Co1A–Co4A). The Co1A and
Co2A sites, which belong to the metal cofactors, are
occupied completely (Z = 1), whereas the Co3A and
3
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Co4A sites are only half-occupied. The only phosphate
group is located in the P2A site, whereas the P1 site
does not contain phosphate at all. The coordination
sphere of the P2A phosphate group contains all four
metal ions and the amino group Lys56. One of the oxy-
gen atoms of the phosphate group, namely, O4, is
located between the cobalt atoms in the Co1A and
Co2A positions at equal distances from them. This oxy-
gen atom forms a hydrogen bond with the carboxyl
group of Asp117.

A different situation is observed for subunit B
(Fig. 1, gray color). Of four metal-binding sites, only
sites 1 and 2, which belong to metal cofactors, are occu-
pied by cobalt ions. A water molecule is located
between the Co1B and Co2B ions. After superposition
of subunits A and B, the position of this water molecule
almost coincides with that of the O4 atom of the P2A
phosphate group. The phosphate group with an occu-
pancy Z = 0.7 was found only in the P1B site. In the P2
site, the phosphate group is absent. The coordination
sphere of the P(1) phosphate group is formed by two
nitrogen atoms of the guanidine group of Arg78 and the
ε-amino groups of the residues Lys56 and Lys193. The
fact that basic groups prevail in this coordination sphere
indicates that the P1 site most likely binds phosphate
rather than phosphamide. The negative charge of phos-
phamide is one unit less than that of phosphate, and,
consequently, phosphamide has lower affinity for basic
groups.

Analysis of the binding of phosphate by pyrophos-
phatase in the presence of manganese ions demon-
strated that the P1 and P2 sites differ in the affinity for
phosphate. The P1 site was indicated as the site charac-
terized by the highest affinity [14]. The absence of
phosphate in the P1 site of subunit A of the cobalt com-
plex is inconsistent with the assumption that this site
has a higher affinity for phosphate. Apparently, the rel-
ative affinities of the P1 and P2 sites for phosphate vary
depending on the degree of occupancy of the metal-
binding sites. If all four sites are occupied by metal
ions, phosphate is more strongly bound in the P2 site.
In the presence of only two metal cofactors, the phos-
phate P1, which forms hydrogen bonds with the guani-
dine group of arginine and the amino groups of two
lysine residues, is bound more strongly than the phos-
phate P2. Contrary to the assumption made in [7], the
coordination of phosphate to four metal ions is stronger
than its binding through hydrogen bonds. Experiments
with isotopic exchange of oxygen between the phos-
phate group and water molecule confirmed the assump-
tion of stronger binding of phosphate in the P2 site [15].

The active centers of subunits A and B were com-
pared with those in the subunits of the manganese–
phosphate pyrophosphatase complex by superimposing
their Cα atoms. For this purpose, we used the coordi-
nates of the enzyme complexed with the reaction prod-
ucts [7], in which all metal- and phosphate-binding
sites are occupied. Three of four metal ions occupy vir-
C

tually identical positions in subunit A of the cobalt com-
plex and in the manganese–phosphate enzyme com-
plex. The largest distance (0.8 Å) was observed
between the metal ions occupying site 4, with the Co4A
atom displaced toward the P2A phosphate group. This
displacement occurs, most likely, due to the absence of
phosphate in the P1A site. In addition, it should be
noted that the metal–oxygen distances in the complexes
under consideration have different values. The Co–O
distances vary from 2.01 to 2.42 Å, and the correspond-
ing Mn–O distances vary from 2.37 to 3.46 Å.

The complexes under consideration differ most sig-
nificantly in the orientation of the phosphate group in
the P2 site (Fig. 2). In both complexes, three oxygen
atoms of the P2 phosphate groups lie nearly in the same
plane, whereas the fourth oxygen atoms are in apical
positions with respect to each other. In other words, the
P2 phosphate groups in the A subunits of the cobalt and
manganese–phosphate enzyme complexes have oppo-
site configurations, thus forming a mirror pair. The dis-
tance between the central phosphorus atoms in these
two structures is 0.65 Å. The difference in the configu-
rations of the phosphate groups and the absence of
phosphate in the P1 site of subunit A suggest that the
pyrophosphatase complexes under comparison reflect
the state of the enzyme, in which it may exist in differ-
ent stages of the enzymatic reaction. It is generally
agreed that the pyrophosphatase-catalyzed cleavage of
the pyrophosphate bond occurs by the associative SN2
mechanism through the attack of a nucleophile (in the
case under consideration, of a water molecule or a
hydroxy anion) at the electrophilic phosphorus atom.
The P2 phosphate group containing the electrophilic
phosphorus atom is subjected to the attack, whereas the
P1 phosphate group is a leaving group [7, 16]. Subunit
A simulates the state of the enzyme after binding of the
nucleophile and removal of the P1 phosphate group,
whereas the manganese–phosphate complex prepared
by cocrystallization of the enzyme with phosphate and
manganese (the enzyme–product complex) reflects the
state of the enzyme after the free and enzyme-bound
phosphates come to equilibrium.

The stability of the conformation of the P2A phos-
phate group, which corresponds to an intermediate state
during the catalysis, can be attributed to the absence of
phosphate in the P1A site. As a result, all four metal
ions are involved in binding of only one phosphate
group. The arrangement of the oxygen atoms of the
phosphate in the anion-binding site between the metal
ions becomes favorable. In the manganese–phosphate
complex, the change in the configuration of the P2
phosphate group gives rise to an eight-membered ring,
which involves metal ions in sites 3 and 4 and both
phosphates. This configuration is stabilized by coordi-
nation bonds between the phosphate groups and metal
ions as described in [17]. The energy gain upon the ring
formation facilitates a change in the configuration of
the P2 phosphate group. It is remarkable that both con-
formations of the P2 phosphate group were simulta-
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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D117
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K56

Fig. 2. Comparison of subunit A of the cobalt–phosphate pyrophosphatase complex (black) and subunit 1 of the manganese–phos-
phate pyrophosphatase (gray). The position of the water molecule, which presumably acts as a nucleophile, is denoted by W1. The
amino acid residues involved in binding of the metal ions and phosphate are shown. In the comparison, the coordinates of the model
described in [7] are used.
neously observed in the manganese–phosphate com-
plex established at 1.15 Å resolution [8]. In this com-
plex, the P1 phosphate group occupies two positions. It
is partially involved in the ring and partially located at
the exit from the active center, thus being removed from
the P2 phosphate group.

In subunit B, in which two metal ions (Co1 and Co2)
are located, the structure of the nucleophile-binding site
is of interest (Fig. 3). As noted above, one water mole-
cule is located between the Co1B and Co2B metal
cofactors. It was suggested in [7, 18] that the water mol-
ecule (Wat1) located between the metal activators
serves as a nucleophile attacking the pyrophosphate
bond. The nucleophilic properties of the water mole-
cule in this position are enhanced due to the coordina-
tion to two metal ions and donor hydrogen bonding
with the carboxyl group of Asp117 [8]. Subunit B of the
cobalt complex, in which phosphate is absent in the P2
site, is functionally similar to the pyrophosphatase
complex containing two manganese ions [7]. The dif-
ference is that two water molecules are located between
the manganese ions. Based on this fact, it was assumed
that the final formation of the nucleophile-binding site
accompanied by the removal of the excessive water
molecule occurs after the substrate is added [8]. Appar-
ently, in the case of activation of the enzyme with cobalt
ions, the nucleophilic center is formed prior to the addi-
tion of the substrate, and the above step of the reaction
does not occur. Such differences in the structure of the
nucleophilic center can influence the efficiency of
metal activators and be responsible for the differences
in the reaction rate observed in the presence of metals
of different nature. In the cobalt complex, the shorter
M–O distances in the coordination sphere around the
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      200
P2 phosphate group may also affect the catalysis effi-
ciency.

The superposition of subunits A and B of the cobalt
complex demonstrated that the position of the water
molecule (a nucleophile in subunit B) almost coincides
with the position of the O4 atom of the P2A phosphate
group (Fig. 1). Taking into account the SN2 mechanism

D120

D152

D115

Co2

Co2''

Co1'
Mn1

Mn2

W(CoPPase)

W

W

Fig. 3. Comparison of subunit B of the cobalt pyrophos-
phatase complex (black) and subunit 1 of the enzyme com-
plex containing two manganese ions (gray). The fragments
of the active centers involving the metal activators (Co and
Mn, respectively) coordinating their amino acid residues,
the water molecule located between the cobalt ions (W
CoPPi), and two water molecules between the manganese
ions (W) are presented. The coordinates of the model
described in [7] are used.
3
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of the reaction, we conclude that it is the O(4) atom that
previously belonged to the attacking nucleophile and
was bound to the P(2) phosphate group as the entering
group upon cleavage of the pyrophosphate bond. Since
the position of the oxygen atom remains unchanged
after its addition to phosphate, it should be assumed
that the new P–O bond is formed due to the motion of
the central phosphorus atom of the P(2A) phosphate
group in the direction of the attack, as was suggested in
[5].

Analysis of the structure of the cobalt pyrophos-
phatase complex showed that the functional ligands are
asymmetrically bound in the chemically identical and
crystallographically independent subunits A and B of
the enzyme. As a result, each subunit reflects the state
of the enzyme in different stages of catalysis. Analo-
gous asymmetry was observed upon binding of ligands
in the manganese–phosphate complex of the D115N
mutant of pyrophosphatase [18]. The asymmetric bind-
ing in the wild-type enzyme indicates that this behavior
is not caused by mutation. The manganese–phosphate
and cobalt enzyme complexes are crystallized in differ-
ent space groups (P212121 and P21, respectively), in
which subunits have different environments. The asym-
metric behavior of the subunits was also found previ-
ously in a solution in the presence of some reagents
[19]. Hence, the asymmetric binding can hardly be
attributed only to the influence of the crystallographic
environment. This fact is more likely to be the charac-
teristic feature of the functioning of the enzyme itself.

Certain differences in the structures of the manga-
nese and cobalt pyrophosphatase complexes (different
distances in the coordination spheres around the metal
ions and the difference in the structure of the nucleo-
philic center) may influence the efficiency of catalysis
in the presence of different metal ions.
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Abstract—A method was developed for rapid protein classification based on comparison of the experimental
small-angle X-ray scattering data with scattering curves calculated for proteins with known structures. For this
purpose, a database was compiled from about 1500 theoretical scattering curves for proteins with known struc-
tures. The potential of this method was illustrated by its application to analysis of the experimental scattering
data from sperm whale myoglobin. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Studies of structure–function relationships for bio-
logical macromolecules is a fundamental problem of
modern molecular biology. It is more probable that pro-
teins with similar three-dimensional structures fulfill
similar functions rather than proteins, which are similar
only in the primary sequence. Hence, databases devel-
oped in the last decade for the analysis of the structure–
function relationships, such as SCOP [1] and CATH
[2], employ algorithms that search for homologies in
the spatial distribution of polypeptide chains in high-
resolution structures. This approach allows one to
obtain more information on the possible protein func-
tions compared to the analysis of the similarity of only
primary sequences. However, this approach cannot,
evidently, be used for molecules with unknown atomic
structures. In the present paper, we describe a method
for the classification of proteins with unknown atomic
structures based on small-angle X-ray scattering
(SAXS) from their solutions.

The SAXS intensity I(s) from dilute monodisperse
particle solutions is a smooth decreasing function of the
momentum transfer s = 4πsinθ/λ, where 2θ is the scat-
tering angle and λ is the X-ray radiation wavelength.
The spatial resolution D is determined by the angle
range of experimental data and is related to the momen-
tum transfer s by the equation s = 2π/D. In the range of
the momentum transfer up to 9 nm–1, the intensity cor-
responds to a resolution of 0.7 nm. Due to the random
1063-7745/03/4806- $24.00 © 20959
orientations of particles in solution, the functions I(s)
are isotropic. At higher resolution, the scattering curves
from for different proteins are virtually indistinguish-
able [3]. Information on the quaternary structure of a
molecule (resolution up to approximately 4 nm) is pro-
vided by the values of s ranging from 0 to 1.5 nm–1.
Information on the internal, i.e., secondary and tertiary
structure (resolution from 1.5 to 0.7 nm), can be
extracted in a range of the momentum transfer from 4
to 9 nm–1 (Fig. 1). To classify proteins on the basis of
SAXS data, two portions of the curves, which are called
the internal (0 < s < 1.5 nm–1) and medium (4 < s <
9 nm–1) parts, were analyzed. This approach to the con-
struction of a database enables one to independently
analyze information on the shape and internal structure
of a particle.

EXPERIMENTAL

Atomic Models and Comparison Criteria 
for Scattering Curves

Presently, the database of structures for which we
calculated the small-angle scattering curves includes
about 1500 atomic-resolution models of biologically
active oligomers taken from the Brookhaven Protein
Data Bank (PDB) [4]. We chose the protein models
with the sequence lengths varying from 50 to
3000 amino acid residues, whose structures were estab-
lished by X-ray crystallography. Since the standard
003 MAIK “Nauka/Interperiodica”
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PDB files often contain only atomic coordinates of the
asymmetric unit and transformation matrices necessary
for the generation of the structure of the entire biologi-
cally active molecule, we developed computer pro-
grams to analyze and apply symmetry operations
described in PDB files. Therefore, our database con-
tains models of biologically active oligomers, i.e., of
proteins actually expected to exist in solution. When
choosing protein models from the PDB, structural
homologues (according to the criteria of the PDB) were
excluded to minimize the percentage of models with a
high degree of homology in the database.

The behavior of SAXS curves depends heavily on
the molecular weight of a protein. To exclude this effect
on the results of analysis and calculations, all structures
were divided into 26 sets. In each set, proteins differ in
molecular weight by no more than 50 kDa. All model
calculations were carried out with the use of scattering
curves calculated from atomic-resolution structures
using the CRYSOL program [5].

As mentioned above, SAXS curves are rapidly
decreasing functions of the momentum transfer, and a
comparison of such curves is a complex problem. In the
general form, the mathematical criterion (R factor) for
the comparison of two one-dimensional scattering

4
0 2

logI, rel. units

s, nm–1

7

104 6 8

6

5

2.00 1.00 0.67
Resolution, nm

Fig. 1. Eight scattering curves from for proteins, whose
molecular weights vary from 100 to 300 kDa. The internal
and medium parts of the scattering curves are dashed and
dotted, respectively.
C

curves I1(s) and I2(s) can be written as follows:

where F is the scale factor providing the best fit of two
curves to each other by the least-squares method,

and W(si) is the weighting function, choice of which
depends on the problem solved. We analyzed several
functional relationships, namely, W(s) = s, W(s) = s2 ,
and a comparison on the logarithmic scale. The R factor
appeared to be most sensitive to changes in I(s), when
the weighting function was equal to s (this value is used
in the Kotel’nikov theorem on the information content
of SAXS data [6]). It was shown that, in this case, the R
factor can be used for analyzing both the internal and
medium parts of SAXS curves. Herein, the R factors for
these ranges are denoted by RfI and RfM, respectively.

Internal Part of SAXS Data Defines 
the Protein Shape

In the analysis of the internal part of SAXS data, the
first questions to be answered were whether there are
molecules with different shapes, which give identical
scattering curves, and what is the maximum value of
RfI corresponding to molecules with virtually identical
shapes.

In the first step, we calculated RfI for each pair of
scattering curves within each of the 26 sets. Simulta-
neously, the quantitative measure of shape similarity
for each pair of molecules was calculated using the SUP-
COMB program [7]. Two arbitrary three-dimensional
structures represented as point sets were arranged in a
space with the use of the SUPCOMB program by min-
imizing the parameter called the normalized spatial dis-
crepancy (NSD). The latter is calculated as follows. For
each point from the first model, the distances to each
point in the second model are calculated and their min-
imum value is found. Then the same procedure is car-
ried out for each point in the second model. All values
thus determined are summed and normalized to the
average distances between the adjacent points in each
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model. Therefore, NSD yields a quantitative measure
of dissimilarity between tree-dimensional objects. For
similar structures, NSD should be close to or smaller
than unity.

To reduce the computer time, NSD were calculated
for models consisting of densely packed spheres
(dummy atoms) 0.3–0.4 nm in diameter rather than for
atomic-resolution structures. This operation retains the
general shape of particles and gives NSD values that
adequately represent the discrepancy between low-res-
olution shapes.

The correlation between RfI and NSD shown in
Fig. 2 leads to the following conclusions:

(1) the maximum value of RfI corresponding to the
definitely similar low-resolution structures (NSD < 0.8)
is 0.02;

(2) values of RfI higher than 0.05 correspond to sub-
stantially different external shapes of protein mole-
cules.

Figure 3 shows two pairs of proteins with similar
(NSD = 0.96, RfI = 0.02) and substantially different
(NSD = 1.8, RfI = 0.149) quaternary structures and the
corresponding calculated SAXS curves.

Interestingly, we found no examples where two
scattering curves for substantially different particles
(NSD > 1.4) were characterized by low RfI (lower than
0.02). In other words, SAXS data containing informa-
tion on low-resolution structures nearly unambiguously
determine the particle shape. This result is nontrivial,
because a large portion of structural information is lost
due to a random orientation of particles in a solution,
and I(s) is a one-dimensional function of the momen-
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Fig. 2. Values of RfI (solid curve) and NSD (dots) for
1378 pairs of SAXS curves for 53 proteins with molecular
weights varying from 35 to 40 kDa. The data are arranged
in order of increasing RfI. In the inset, the initial region of
the plot is shown on an enlarged scale.
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tum transfer due to averaging. The fact that there is a
one-to-one correspondence between the particle shape
and the initial region of the scattering curve is in good
agreement with the possibility of the shape reconstruc-
tion by direct methods of analysis of SAXS data [8, 9].
At the same time, no clear correlation with RfI was
observed for some overall structure parameters, e.g.,
for the maximum diameter of particles.
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Fig. 3. (a) Proteins having similar shapes, 1B4V.pdb (at the
left) and 1FOI.pdb (at the right), and the corresponding the-
oretical scattering curves (1B4V.pdb and 1FOI.pdb are
shown by solid and dashed curves, respectively); (b) pro-
teins having different shapes, 1LOP.pdb (left) and 1JJV.pdb
(right), and the corresponding theoretical scattering curves
(1LOP.pdb and 1JJV.pdb are shown by dash-and-dot and
dotted curves, respectively).
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Medium Part of SAXS Data: Analogues 
in Domain Structure

In the analysis of the medium part of SAXS data, the
first question to be answered was on the range of RfM
corresponding to the scattering curves of proteins with
similar internal structures. By analogy with the proce-
dure described in the previous section, RfM values were
calculated for all pairs of structures. It was found that
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Fig. 4. (a) Proteins belonging to different classes
(2BBK.pdb, class α, and 2HAD.pdb, class β, are shown at
the left and right, respectively) and the corresponding scat-
tering curves (RfM = 0.038); 2BBK.pdb and 2HAD.pdb are
indicated by triangles and a dash-and-dot curve, respec-
tively; (b) homologous proteins according to the DALI clas-
sification (1J9Y.pdb is shown at the left, and 1PUD.pdb is
shown at the right, Z = 10.5) and the corresponding theoret-
ical scattering curves (RfM = 0.046); 1J9Y.pdb and
1PUD.pdb are shown by dashed and solid curves, respec-
tively.
C

the scattering curves of proteins having substantially
different internal structures are characterized by the
value of RfM larger than 0.15. Hence, we excluded such
pairs from the subsequent consideration.

Generally, the proteins characterized by similar
medium parts of scattering curves (RfM < 0.15) actually
appear to be similar at low resolution. Nevertheless,
either quantitative or statistical criteria are required to
describe this similarity. We attempted to find a correla-
tion between RfM and the secondary structures of pro-
tein molecules using the Class, Architecture, Topology,
and Homologous (CATH) superfamily database, which
represents a hierarchical classification of 18 577 biom-
acromolecules and their domains according to their
correspondence to evolutionary families and structural
groups. The class is the upper (first), roughest, level of
the classification, which is determined only by the per-
centage of α helices and β strands. According to the
CATH database, there are the following three main
structural classes: structures formed only by α helices
(α class), only by β strands (β class), and by combina-
tions of these two elements (α + β class). Using this
classification, all 1500 of the SAXS curves in our data-
base were divided into three groups. For each group, we
calculated the average curves Iα(s), Iβ(s), and Iα + β(s),
which should reflect the characteristic features of the
behavior of the scattering curves for proteins belonging
to a particular structural class. With the use of the OLI-
GOMER program, each scattering curve I(s) was repre-
sented as a linear combination of the Iα(s), Iβ(s), and
Iα + β(s) functions:

where wα, wβ, and wα + β are the weighting coefficients
for Iα(s), Iβ(s), and Iα + β(s), respectively, in the expan-
sion of the curve I(s). The values of these coefficients
vary from 0 to 1.

In most cases, a particular protein can be unambig-
uously assigned to a structural class; i.e., the corre-
sponding weighting coefficient of the expansion wi is
equal to unity. However, this observation is not valid for
some structures (the medium part of the scattering
curve of a protein from the α class may coincide with
that of a protein from the β class, as shown in Fig. 4a).
Evidently, the reliable analysis of higher classification
levels of CATH cannot be performed based on SAXS
data.

For several arbitrarily chosen pairs of proteins char-
acterized by similar medium-angle regions of scatter-
ing curves (RfM < 0.15), the level of homology was
estimated using the DALI structural comparison
method [10]. In particular, the DALI algorithm deter-
mines a quantitative statistical criterion denoted by Z
for two atomic-resolution macromolecular structures.
Values of Z smaller than 2 correspond to definitely dif-
ferent structures, the range 2 ≤ Z < 10 corresponds to
structures with low homology, and Z ≥ 10 correspond
to definitely similar structures. There is a certain corre-

I s( ) wα I s( )α wβI s( )β wα β+ I s( )α β+ ,+ +=
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003



DATABASE FOR RAPID PROTEIN CLASSIFICATION 963
5

10 2 3 4 5 6 7 8 9 10 11
s, nm–1

4

6

logI [rel. units]

1

2
3

Fig. 5. (1) Experimental (scattered circles) and (2) theoretical (solid line) scattering curves for myoglobin. Curve 3 is a least-squares
superposition of the experimental data and the theoretical curve after multiplication by the scale factor and subtraction of the con-
stant in the s range from 4 to 9 nm–1.
lation between RfM and Z. Thus, RfM = 0.06 ± 0.03 for
similar structures (Z > 2), and RfM = 0.12 ± 0.06 for dif-
ferent structures (Z < 2). In most cases, the medium
parts of SAXS data corresponding to homologous
structures (Z ≥ 10) are similar (RfM < 0.06) (Fig. 4).
However, there are structural homologues with Z > 4
characterized by RfM larger than 0.1.

Therefore, an unambiguous correlation between
RfM and the degree of homology in databases of high-
resolution protein structures could not be established.
Nevertheless, the fact that the medium regions of the
scattering curves coincide indicates that proteins are
structurally similar at low resolution. Visually, proteins
with low RfM are actually similar in appearance, but
this similarity manifests itself at the level of domain
structures rather than at the levels of the tertiary or sec-
ondary structures.

Example of the Use of the Database

We used the experimental scattering curve of sperm
whale myoglobin, which was measured in the range of
the momentum transfer s up to 12 nm–1 on a small-
angle D24 camera at the LURE synchrotron facility in
Orsay (France), as a test experimental example of
searching for similar structures with the use of our data-
base. The experimental scattering data deviate from the
theoretical curve calculated for the crystal structure of
myoglobin (1DUO.pdb) at large angles (Fig. 5) by the
CRYSOL program. This difference is possibly due to
the uncertainty of subtraction of the background from
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
the experimental data and also to the fact that the pre-
dicted scattering curves in the database were calculated
using the CRYSOL program for standard values of the
excluded volume of the particle and the density of its
hydration shell. For real proteins, these values may
vary, resulting in systematic deviations. At large scat-
tering angles, these deviations can be accurately taken
into account by adding a constant to the scattering
intensity. Hence, all subsequent calculations of the R
factors were performed with the automatic addition of
the constant term to one of the data sets that were com-
pared. As can be seen from Fig. 5, this procedure
enables one to fit the theoretical scattering curve to the
experimental data for myoglobin in the angle range
used for calculating RfM.

To choose the structural analogues of myoglobin,
we calculated the factors RfI and RfM in the region
between the experimental scattering curve, which was
preprocessed using the GNOM program [11] to elim-
inate random errors of measurements, and the theoret-
ical curves calculated for 638 proteins with molecular
weights varying from 15 to 18 kDa. We found 182
proteins, including 12 homologues of myoglobin,
which are characterized by RfI < 0.02 and have a
shape similar to that of myoglobin (NSD < 1). Out of
24 proteins with RfM < 0.1, eight proteins appeared to
be sequence homologues of myoglobin. The typical
structures of the remaining proteins analogous in the
medium-angle region of the scattering curve are shown
in Fig. 6.
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Fig. 6. Typical structures of analogues: (a) 1DUO.pdb;
(b) 1K6K.pdb; (c) 1SRA.pdb; (d) 1JWF.pdb; and
(e) 1BYR.pdb (structures at the right of the figure are
rotated by 90° about the horizontal axis) and the corre-
sponding scattering curves. In the additional plot, the
medium-angle curves are scaled by a factor of 5.
C

This comparison clearly demonstrates that the struc-
tural similarity determined from the medium regions of
SAXS curves depends largely on the regularities in the
overall organization of proteins rather than on the sec-
ondary-structure elements (although most of the ana-
logues found, like myoglobin itself, also belong to the
α class).

Interestingly, all structures characterized by similar
medium parts of the scattering curves (RfM < 0.1) also
have similar low-resolution shapes (RfI < 0.03). Hence,
the similarity of low-resolution structures is a necessary
prerequisite for the similarity of the scattering curves in
the range of the momentum transfer from 4 to 9 nm–1,
which suggests that a medium-angle scattering pattern
may provide important information (in addition to the
low-angle data) on low-resolution structures for pro-
teins with similar molecular weights.

CONCLUSIONS

In this study, we propose a new approach to analyz-
ing SAXS data for solutions of proteins with the use of
a database of theoretical scattering curves for known
structural models. This database allows one to rapidly
find proteins with similar shapes (based on the internal
parts of scattering curves) and analogues in domain
structures (based on the medium-angle parts of scatter-
ing curves). Presently, the database includes
1500 structures. We plan to extend this database and
design a Web portal intended for its use via the Internet.
The developed approach may be useful in classifying
proteins based on SAXS data. This is particularly
important in the context of the progress in structural
genomics, primarily for proteins, whose structures can-
not be solved at high resolution.
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Abstract—The theory for description of the stress peak (yield drop) on the stress–strain curves of covalent
crystals with low and zero dislocation densities has been developed. The kinetics of the variation of the dislo-
cation density and the shape of the stress peak in the vicinity of the upper yield stress is described analytically
within the framework of the generalized Alexander–Haasen model. The character of the elastoplastic transition
is analyzed in detail and the model is compared with the experimental data for silicon. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Extremely pure covalent crystals play an important
role as model materials for studying dislocation
dynamics. There are numerous experimental data on
the mobility of individual dislocations in these crystals
[1–6]. In recent years, the needs of semiconductor
microelectronics considerably increased the interest in
the study of the processes of dislocation multiplication.
New experimental possibilities for studying dislocation
sources are provided by the use of synchrotron radia-
tion [7].

The present study is aimed at the theoretical descrip-
tion of deformation of covalent crystals which, in the
initial state, are characterized by low or even zero dis-
location densities. As is known, the stress–strain curves
of these crystals possess an interesting characteristic—
the stress peak in the vicinity of the transition from
elastic deformation to plastic flow or the so-called yield
drop. This peak can be quite high, so that the difference
between the upper and the lower yield stresses observed
in the experiments can attain hundreds of percent [1].
Today, the yield drop is extensively studied [1–3, 8–12]
because of the importance of the boundary of intense
dislocation generation and beginning of the plastic flow
of materials for the technology of production and
exploitation of semiconductor chips.

Below, we describe the deformation processes using
the well-known Alexander–Haasen model [1, 3] devel-
oped along two lines. First, the generalized model
allows one to describe the practically important case of
deformation of dislocation-free silicon crystals [2, 6,
13] with due regard for the presence of dislocation
1063-7745/03/4806- $24.00 © 20966
sources, without which the Alexander–Haasen model
cannot be used to describe the deformation of initially
dislocation-free crystals because, in this case, it would
predict an unrealistic infinitely large value of the upper
yield stress. Second, it allows one to describe the shape
of the stress peak on the stress–strain curve (i.e., the
yield drop) analytically, which, in turn, provides a more
detailed comparison of the theory and the experiment.
The study of the yield drop is especially interesting in
light of the fact that, as is shown below, despite the fact
that the problem has a large number of parameters char-
acterizing the properties of the material and the condi-
tions of its deformation, the shape of the yield drop
depends only on one combined parameter. This univer-
sal character of the peak shape makes it a characteristic
sign of the concrete model of dislocation multiplication
that can be verified experimentally.

DESCRIPTION OF THE MODEL

The variation in stress with time along the stress–
strain curve obeys the so-called “machine equation,”

(1)

Here, ε is the total deformation, which is the sum of the
plastic, εp, and elastic, τ/S, deformations; τ is the
applied stress; S is the combination of the elastic mod-
uli of the sample and the testing machine; and the dot
indicates differentiation with respect to time. The rate
of plastic deformation in Eq. (1) is set by the Orovan
equation  = NbV, where N is the dislocation density,
b is the magnitude of the Burgers vector of dislocations,

ε̇ ε̇p τ̇ /S.+=

ε̇p
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and V is the velocity of their motion. In pure covalent
crystals, the dislocation velocity is described by the
empiric equation

V = Bτm, (2)

where B includes the temperature dependence (usually
of the Arrhenius type), B = V0exp(–E/kT), E is the acti-
vation energy, k is the Boltzmann constant, and T is the
temperature [1–6]. The kinetic equation that describes
the evolution of an ensemble of dislocations in this
model has the form

(3)

where τe are the effective stresses obtained from τ by
subtraction of the internal stresses τi, I is the stress-
dependent rate of dislocation generation by sources,
and w is the coefficient of dislocation self-multiplica-
tion. The presence of sources in Eq. (3) generalizes the
original Alexander–Haasen model [1], which takes into
account only the dislocation self-multiplication. As is
shown below, the modification of this equation is
important only at the initial stage of deformation,
because, at the later stages, the self-multiplication of
the already existing dislocations prevails over their gen-
eration by the sources. This allows us to reduce the
problem described by Eq. (3) to the original Alexander–
Haasen model under the renormalized initial condi-
tions, which allows one to obtain physically reasonable
values of the upper yield stress also for initially dislo-
cation-free crystals.

To simplify the formulas, we introduce into consid-
eration scaling multipliers for stress τ∗ , time t∗ , and
dislocation density N∗ :

(4)

Now, consider the initial stage of deformation,
where the total density of the initial and newly formed
dislocations is still rather low, so that their contribution
to the internal stress τi can be ignored. The elastic
deformation prevails over the plastic deformation, so
that τ ≈ S t. Then, the linear equation, which follows
from Eq. (3), can readily be solved to yield the follow-
ing growth law for the dislocation population

(5)

dN
dt
------- wτeNV I ,+=

τ*
Sε̇
wB
-------- 

 
1/ m 2+( )

,=

t* wB( ) 1/ m 2+( )– Sε̇( ) m 1+( )/ m 2+( )– ,=

N*
1
b
--- ε̇

B
--- 

 
2/ m 2+( ) w

S
---- 

 
m/ m 2+( )

.=

ε̇

N
1
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---- 
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exp=

× N0 t 'I Sε̇t '( ) 1
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  m 2+
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t
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.
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It is natural to consider I as an increasing function of
stress, I(τ); however, we assume that this function
grows more slowly than exp[(τ/τ∗ )m + 2/(m + 2)]. If this
condition is fulfilled, the integral in Eq. (5) converges
and, upon a certain initial period of time tin, the upper
limit of this integral can be taken to be infinity, so that
the dislocation density would vary according to the law

(6)

where N01 ≡ N0 + exp .

Equation (6) is valid at t @ tin. In this time interval,
the exponential self-multiplication of the already exist-
ing dislocations prevails over their generation by the
sources. At this stage, we can ignore the term I in the
right-hand side of Eq. (3) and, thus, return back to the
original Alexander–Haasen model [1]. The only differ-
ence associated with the existence of the dislocation
sources consists in the modification of the initial condi-
tion by making the change N0  N01. This allows us
to preserve all the results obtained earlier and to
describe the case of initially dislocation-free crystals.

It is timely to make a remark on the source distribu-
tions both in space and in the spectrum of the critical
stresses. Since the presence of sources in Eq. (3) is
important only at the initial stage of the process, where
the equation is reduced to linear one, it is also possible
to perform averaging over the source distribution (and,
thus, distribution of the initial dislocations) and to con-
sider N01 as such an averaged quantity.

SHAPE OF THE YIELD DROP

As experiments show, with a decrease in the initial
dislocation density, the yield-drop height increases.
Rather perfect initially dislocation-free or almost dislo-
cation-free crystals allow one to compare the model
computations of the yield-drop shape with the experi-
mental data. Therefore, it is expedient to describe the
deformation in the vicinity of the yield drop of covalent
crystals in more theoretical detail, which would provide
better understanding of the mechanism of elastoplastic
transitions in these materials.

The perfection condition for the initial crystal can be
written quantitatively by the inequality N01/N∗  ! 1,
whose fulfillment provides the low value of the disloca-
tion density up to the upper yield stress, so that, in a cer-
tain vicinity of this stress, the strain strengthening can
still be ignored. Although this range is rather narrow,
the phenomena occurring in it are rather interesting. A
rapid growth of the dislocation population predicted by
Eq. (6) initiates the transition from prevalent elastic
deformation of the sample to prevalent plastic deforma-
tion. This decelerates an increase in the deforming
stress or leads to its drop, depending on the character of

N N01
1

m 2+
------------- t

t*
---- 

  m 2+
,exp≈

tId
0

∞∫ 1
m 2+
------------- t

t*
---- 

  m 2+
–
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the influence of the stress variation on a further increase
in the dislocation density. The approach that allows one
to describe the evolution of the dislocation population
with due regard for this feedback was developed else-
where [14]. The solution that refines Eq. (6) obtained in
[14] shows the nontrivial behavior in the vicinity of the
upper yield stress. This segment of the stress–strain
curve (including the yield drop) was described analyti-
cally [14]. We use this description in the present article
C

after its simple generalization based on the change
N0  N01, increasing its applicability range.

The description reduces to two relationships. The
first one gives the correlation between the deforming
stress and the dislocation density,

τ(N) = τ∗ {[(m + 2)ln(N/N01)]2/(m + 2) – 2N/N∗ ]1/2. (7)

The second relationship describes the kinetics of
dislocation multiplication
(8)t t*
ϕd

m 2+( )ϕ[ ] 2/ m 2+( ) 2N0 ϕ( )/N*exp–{ } m 1+( )/2
-------------------------------------------------------------------------------------------------------------.

0

N /N0( )ln

∫=
We use Eqs. (7) and (8) to obtain some additional
results and comparing the theory with the experimental
data for silicon.

Equation (7) illustrated by Fig. 1 is represented by a
curve with the maximum corresponding to the upper
yield stress. The position, Nm, and the height, τu, of this
maximum can readily be found numerically with any
degree of accuracy from the equation dτ/dN = 0, which
can be reduced to

(9)

At low values of N01/N∗ , this equation can readily be
solved using the iteration procedure by replacing Nm

under the logarithm sign by its approximate values,
beginning, e.g., with Nm  N∗ . Within an accuracy

Nm

N*
------- m 2+( )

Nm

N01
-------- 
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Fig. 1. Correlation between the applied stress τ and the dis-
location density N (m = 1, ln(N∗ /N01) = 5). For the sake of
comparison, the inset shows the experimental data for sili-
con [9] at t = 800°C and  = 6 × 10–4 s–1.ε̇
sufficient for our consideration, we can stress ourselves
to the results obtained in the first iteration

(10)

This expression confirms and, in particular, specifies
the above statement on a low dislocation density in the
vicinity of the upper yield stress, because the denomi-
nator in Eq. (10) is rather large. The substitution of Nm

into Eq. (7) yields τu. In applications, it is more conve-
nient to use a simplified numerical approximation of τu,

τu ≈ τ∗ [(m + 2)ln(CmN∗ /N01)]1/(m + 2), (11)

where Cm ≈ 0.1375/m0.7.

To illustrate the effect of the work of dislocation
sources, consider the model dependence I(τ) having the
threshold form: I(τ) = 0 at τ < τ0, I(τ) = I1 = const at τ >
τ0, where τ0 > τ∗ . In this case, we have

(12)

The latter equation describes the competition between
the role of the initial dislocations and the role of the dis-
location sources. In the initially dislocation-free crys-
tals (N0 = 0), the parameter (m + 2)ln(N∗ /N01) determin-
ing the upper yield stress takes the form (m +
2)ln[(τ0/τ∗ )m + 1N∗ /It∗ ] + (τ0/τ∗ )m + 2. If a threshold
stress is not too high and the rate of dislocation genera-
tion I1 is low, the dependence of the upper yield stress
on all the parameters is close (within the logarithmic
corrections) to the dependence that takes place in the
situation where the initial dislocations play the most
important role; otherwise (at a high threshold stress),
the upper yield stress is close to the threshold stress τ0

and the dependence on the other parameters (T, , etc.)
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becomes weaker. Figure 2 illustrates the dependence of
τu on the initial dislocation density, N0. In the absence
of dislocations, with a decrease in N0, τu infinitely
decreases (dashed line), whereas in the presence of dis-
location sources, τu attains a certain finite value (solid
line).

Equations (7) and (8) become inapplicable if the dis-
location density exceeds a certain limiting value NM at
which τ(N) in Eq. (7) goes to zero. In the approximation
used in the derivation of Eq. (10) for Nm, we can also
find the approximate equation for NM,

NM ≈ 0.5N∗ [(m + 2)ln(N∗ /N01)]2/(m + 2). (13)

The dislocation density given by (13) is rather high and
considerably exceeds the value at the point of the upper
yield stress, NM/Nm ≈ 0.5(m + 2)ln(N∗ /N01). It should be
noted that this increase is observed only in a narrow
range of deformations in the vicinity of the yield drop.

Of special interest is the case where m = 1, which
corresponds, e.g., to silicon. Here, the integral in
Eq. (8) is calculated approximately with the use of the
expansion in small parameter N01/N∗ . As a result, we
obtain

(14)

Here, z0 ≈ [3ln(N∗ /N01) + 2ln(ln(N∗ /N01)) + 0.5855]–2/3.
The dependence described by Eq. (14) is illustrated by
Fig. 3. A rapid increase in the dislocation population
gives rise to a dramatic decrease in the deforming stress

t t* 3
N
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z0 1 2z0
N

N*
-------– 
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 
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Fig. 2. Dependence of the upper yield stress on the initial
density of dislocations calculated at m = 1. Solid line corre-
sponds to the source density I1 = 10–7N∗ /t∗  at τ0/τ∗  = 3;
dashed line corresponds to pure crystals in the absence of
any sources.
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after the point of the upper yield stress. This, in turn,
results in a dramatic deceleration of dislocation gener-
ation in comparison with the initial generation
described by the law given by Eq. (6) (Fig. 3). The max-
imum increase in the dislocation density corresponding
to the applicability boundary of (14) is NM = 0.5N∗ /z0 ≈
0.5N∗ [3ln(N∗ /N01)]2/3. In actual fact, this value can
never be attained, because an increase in the dislocation
density intensifies the role of the strain strengthening
and changes the character of the above characteristics.
The description of the subsequent stages of deforma-
tion is beyond the scope of the present article.

Over quite a long time, the Alexander–Haasen
model has been verified mainly by measuring the upper
yield stress and its dependence on temperature and
deformation rate [1–3, 9–12]. Recently, attempts have
been made to determine the appropriate law of disloca-
tion multiplication and depletion in covalent crystals
with the aim to describe the stress–strain curve of ger-
manium over a wide deformation range [15, 16]. Equa-
tions (7) and (8) describe the shape of the peak of the
stress–strain curve, which is determined only by the
law of dislocation multiplication. Therefore, in princi-
ple, these equations can allow one to verify the Alex-
ander–Haasen model of dislocation multiplication
without considering the models of strain strengthening
and dislocation depletion. To be able to make it inde-
pendent of measurement of the upper yield stress, one
has to normalize, τ(ε) by τu and ε by εu, the values cor-
responding to the point of the upper yield stress. Such a
normalization reduces the number of problem parame-
ters and retains the dependence on only one combined

10

8

6

4

2

0 0.5 1.0 1.5 t/tu

ln(N/N01)

Fig. 3. Increase in dislocation population (ln(N∗ /N01) = 5).
Dashed line corresponds to the approximate law given by
Eq. (6). The vertical dashed line corresponds to the point of
the upper yield stress; the horizontal dashed line shows the
maximum possible growth in dislocation density in the
vicinity of the yield drop.
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parameter, N01/N∗ . This allows one to consider the peak
shape as a universal characteristic of the model. The
renormalized theoretical dependence described by
Eqs. (7)–(14) and the experimental dependence for ini-
tially dislocation-free silicon [13] are compared in
Fig. 4. The circles on the experimental curve are drawn
arbitrarily in order to be able to distinguish this curve
from the calculated one. The agreement observed at
ln(N∗ /N01) = 5 for the considerable portion of the peak
in the vicinity of the upper yield stress, where the strain
strengthening is rather low, seems to be quite satisfac-
tory. Thus, one may draw the conclusion that the Alex-
ander–Haasen model is quite efficient. The detailed
experimental data on the shapes of rather pronounced
stress peaks on the stress–strain curves of covalent
materials would make this conclusion more reliable
and, in particular, would allow the unique choice from
the competing models [15, 17, 18].

CONCLUSIONS

Because of a certain interest in the specific nature of
the transition from elastic to plastic deformation in
covalent crystals, attempts are made to explain qualita-
tively the phenomenon of the yield drop. This could
hardly be made in a simple form. Therefore, we made
an attempt to describe the qualitative aspect of this phe-
nomenon and find the prerequisites of its practical
observation based on the analytical solution of the
problem obtained.

At a low value of the initial density of dislocations,
their generation in the quantities necessary for the
occurrence of developed plastic deformation takes

1.0

0.8

0.6

0.4

0.2

τ/τu

0 0.5 1.0 1.5 2.0 2.5
ε/εu

Fig. 4. Stress–strain curve in the reduced coordinates. Solid
curve indicates the theoretical dependence described by
Eqs. (7)–(14) at m = 1, ln(N∗ /N01) = 5. The line with circles
indicates the experimental data for initially dislocation-free
silicon at t = 800°C and  = 6.6 × 10–5 s–1 [13].ε̇
C

longer and shifts the elastoplastic transition toward
higher stresses. The law of dislocation multiplication
described by Eq. (3) results in an exponential increase
in the dislocation population. The existence of addi-
tional multipliers V and τ in the right-hand side of
Eq. (3) results in the fact that, in the range of higher
stresses, the rate of variation of the dislocation density
dN/dt is higher than the N value (in dimensionless vari-
ables obtained with the use of Eq. (4)). In a similar way,
the rate of an increase in plastic deformation would
become higher than the rate of increase of elastic defor-
mation  within a shorter time than the time necessary
for the value of εp to exceed εel. As a result, the unload-
ing stress τre = Sεp turns out to be relatively low, so that
it cannot considerably reduce the deforming stress.
Since the dislocation motion is controlled by the stress
value, the rate of dislocation multiplication is approxi-
mately constant. At the same time, the velocity of the τre

variation becomes comparable with S , so that  goes
to zero. This specific inertia of dislocation multiplica-
tion associated with the delayed feedback via stress
results in “overgeneration” of dislocations, which, in
turn, leads to a dramatic decrease in the deforming
stress (the yield drop on the stress–strain curves).

Thus, the prerequisites for the formation of the yield
drop are a low value of the initial dislocation density
(and the density of dislocation sources) and an increase
in the total coefficient of dislocation multiplication,
wVτe, with an increase in the stress. These qualitative
speculations show that, to make the plastic deformation
(corresponding to the unloading stress) low, so that it
would not lead to noticeable strain strengthening and
suppress of the yield drop, the initial dislocation den-
sity should also be low (with a corresponding reserve).
The quantitative criterion of the yield-drop formation,
obtained in [14] based on the Taylor model of strain
strengthening τi = αN1/2, agrees with this conclusion
and confirms it.

Thus, the main results of this study can be formu-
lated as follows:

—The Alexander–Haasen model for the description
of the deformation of covalent crystals having initially
low dislocation densities is extended to the case of dis-
location-free crystals.

—It is shown that the shape of the yield drop on the
stress–strain curves is rather universal because it
depends only on one combined parameter. Numerous
other parameters characterizing the properties of the
material and the conditions of its deformation can be
eliminated using the scaling transformation.

—The kinetics of the dislocation population and the
yield-drop shape is described analytically. This allows
one to compare the calculated and experimental data
and, thus, to verify the applicability of the model of dis-
location multiplication.

ε̇el

ε̇ τ̇
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Abstract—The influence of preliminary annealing (3 h, 1000 K), subsequent quenching in liquid nitrogen, and
short magnetization in a constant magnetic field (0.5 h, 0.48 T) prior to deformation on the yield point of
NaCl : Ni crystals is discovered. The effect depends on the time of sample storage between quenching and mag-
netization and is maximal 40 h after quenching. © 2003 MAIK “Nauka/Interperiodica”.
The macroscopic magnetoplastic effect in nonmag-
netic crystals consisting in plasticization of the samples
under the action of a constant magnetic field (up to 0.48 T)
under active loading was studied in detail in [1–6]. The
influence of magnetization on the yield point and kinet-
ics of microplasticity of NaCl [1, 2], LiF [3, 4], and PbS
[5] crystals and the effect of preliminary magnetization
on the plasticity of NaCl : Ni crystals [6] were studied.
It was established that magnetic field promotes depend-
ing of dislocations from paramagnetic stoppers. This
fact determines the important role of the state of point
defects in a crystal, which can be changed by prelimi-
nary thermal treatment creating the nonequilibrium
state necessary for manifestation of sensitivity of the
plastic properties of material to a magnetic field. In par-
ticular, the magnetic field affects the state of impurities
(magnetosensitive complexes of point defects). The
kinetics of nucleation and disappearance of magneto-
sensitive complexes was studied by example of NaCl :
Eu crystals [7]. In this case, microhardness of the sam-
ples was considered as an indicator of the impurity state
that depends on the thermal treatment and the magnetic
field. It was shown that, after 2-h-annealing at 920 K
and quenching, the microhardness changes nonmono-
tonically with the storage time of samples between
quenching and switching on of a magnetic field (7 T,
10 µs) before indentation. The maximum effect was
observed at t = 30 h.

Below, we present the results of the study of the
influence of preliminary thermal and magnetic treat-
ment on the yield point of NaCl : Ni crystals.
1063-7745/03/4806- $24.00 © 20972
We studied NaCl crystals grown by the Kyropoulos
method with an addition into the charge of 0.05 wt %
nickel chloride. The total concentration of foreign
inclusions did not exceed 10–3 wt %. The cleaved 2 ×
3 × 8-mm samples were subjected to a preliminary ther-
mal activation. According to the experimental condi-
tions, the samples were annealed for 3 h at T = 1000 K
without the application of a magnetic field, quenched in
liquid nitrogen, and then stored for different times—
from 0 to 240 h. After that, each group of samples was
treated in a constant magnetic field applied immedi-
ately for 0.5 h prior to loading. Thus, thermoactivated
and magnetized crystals were deformed at a rate of
1.4 × 10–5 s–1 on a testing machine by the method
described in [1]. The presence of magnetoplasticity was
detected by measuring the yield point.

The experimental data are listed in the table. Each
point is averaged over four measurements.

During the experiments, it was found that the depen-
dence of the yield point of NaCl : Ni crystals subjected
to preliminary quenching on the storage time before
short magnetization and deformation is nonmonotoni-
cal. The yield point does not change during the first

Dependence of the yield point ε of preliminarily quenched
NaCl : Ni crystals on the time t of sample storage between
quenching and magnetization preceding deformation

t, h 0 24 40 48 72 240

ε, Pa 2.30 2.35 1.60 2.30 3.15 3.10
003 MAIK “Nauka/Interperiodica”
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24 h of the sample storage, at t = 40 h, it drops, and
then, with an increase in the storage time, increases
again. Thus, the maximum plastification effect is
observed at the storage time t = 40 h. This correlates
with the data in [7] and, apparently, indicates that the
preliminary thermal and magnetic treatment allows one
to obtain the magnetosensitive state fixed in time.

The experiments on the influence of preliminary
quenching, storage time, and magnetization of the sam-
ples on the yield point allowed us to draw the following
conclusion. Without preliminary treatment, the impu-
rity structure of the crystal is not magnetosensitive.
Annealing leads to the first transformation of the initial
structure—decomposition of impurity complexes
(paramagnetic centers) responsible for deceleration of
dislocation. The next technological stage (quenching)
leads to a “freezing” of the decomposed impurity cen-
ters. A further multihour storage of samples changes
the “frozen” impurity structure because of diffusion—
the formed small paramagnetic centers (dislocation
stoppers) grow in size, which is accompanied by the
formation of a number of varying states. The “first” and
“last” states are still magnetically insensitive like the
initial state. Therefore, too fast or too slow application
of a magnetic field would result in the magnetically
insensitive state. Only if the storage between quenching
and magnetization is optimal (t = 40 h, in our case), the
impurity structure formed by that moment and unstable
relative to spin-dependent electron transitions can
respond to magnetic excitation and the spin transition
can take place, which, in turn, makes the electron tran-
sition possible. As a result, the complex configuration
and its every interaction with dislocation dramatically
change; the energy barrier of the complex (impurity
center) which is a a dislocation stopper decreases, the
activation energy drops, the dislocation is liberated
from the lock, and the structure is plasticized. Experi-
mentally, this process is accompanied by a decrease in
the yield point.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
As was mentioned above, a similar approach to the
formation of the magnetosensitive states was also used
in [7]; the objects were NaCl crystals doped with
europium. The detector of varying states of the impu-
rity structure was the microhardness value.
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Abstract—Ions of d elements in complex oxides with olivine and phenakite structures exhibit diverse structural
localization and may incorporate into crystals in various oxidation states. The complexity of the structure of
these materials requires a complex approach in investigation of their spectroscopic characteristics with regard
to the type of optical center and the growth conditions. The method of estimation of the distribution of an acti-
vator ion over crystallographically non-equivalent cationic positions on the basis of the symmetry analysis of
the structure of these positions with regard to the spatial distribution of the activator-ion electron density is
described. The results of experimental studies of the spectroscopic characteristics of vanadium and chromium
ions in the crystals with the olivine (Mg2SiO4, Ca2GeO4, and CaMgSiO4) and phenakite (LiGaSiO4,
LiAlGeO4, and Zn2SiO4) structures performed by us (some experimental data are reported for the first time)
are analyzed with regard to the growth conditions. Data in the literature are also analyzed. In order to estimate
the structural and valence states of the d ions, a number of other experimental techniques were used, and the
experimental data were compared with the calculated energy-level diagrams for activator ions in centers of
various types. This approach made it possible to adequately describe the possibilities of complex oxides
Mg2SiO4, Ca2GeO4, CaMgSiO4, LiGaSiO4, LiAlGeO4, and Zn2SiO4 doped with d ions, regarded as new laser
media. © 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Single crystals of complex oxides doped with ions
of transition 3d elements in various oxidation states,
including unconventional ones, are of much interest as
potential laser media. Single crystals emitting in a wide
spectral range are widely used as active media in tun-
able solid-state [1, 2] and femtosecond [3, 4] lasers.
Large oscillator strengths of the transitions and short
1063-7745/03/4806- $24.00 © 20974
relaxation times of excitation also make it possible to
use these crystals as laser saturable absorbers [5].

Generally, these crystals are characterized by strong
broad absorption bands, which makes efficient the opti-
cal pumping of active media based on such crystals by
sources of almost any type (including conventional
commercially available flash lamps and laser diodes).

Generally, the local symmetry of cationic positions
in complex oxides corresponds to the lowest symmetry
point groups. This circumstance leads to extension of
the range of laser-frequency tuning and to interaction
with a large number of vibrational modes. As a result,
these crystals have a rich phonon spectrum, which also
extends the luminescence frequency range. However,
the nonradiative multiphonon relaxation may be so effi-
cient in these crystals that it often becomes the domi-
nant mechanism of relaxation of excited states. In this
case, the luminescence quantum yield significantly
decreases. Development of crystals with a sufficiently
003 MAIK “Nauka/Interperiodica”
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high luminescence lifetime and rich phonon spectrum
is a problem that can be solved by searching complex
oxides that would be optimal crystalline hosts for acti-
vator ions of the iron group.

A characteristic feature of the crystal chemistry of
complex oxides is the variety of possible valence states
and structural locations of activator ions. In most crys-
tals of this type, the activator ions of d elements may be
simultaneously in two, three, or more oxidation states
and can be located in cationic positions with different
coordination numbers and different degrees and types
of distortion of corresponding coordination polyhedra.
The examples illustrating the variety of optical centers
in such crystals are alexandrite Cr : BeAl2O4, in which
the Cr3+ ion is located in two structurally nonequivalent
octahedrically coordinated positions; forsterite
Mg2SiO4, which contains chromium in the form of Cr4+

ions in tetrahedral positions and Cr3+ ions in two struc-
turally nonequivalent octahedral positions; and beryl-
lium hexaaluminate BeAl6O10, in which the Cr4+ ion is
located in six different tetrahedrally coordinated posi-
tions.

The ratio of concentrations of the dopant in different
valence states and structural locations in the crystal
may be significantly varied, depending on the growth
method used and various parameters of the growth pro-
cess. Among the latter parameters are the atmosphere
of growth and subsequent annealing of crystals; the sol-
vent composition (when the flux or hydrothermal tech-
niques are used); the introduction of additional opti-
cally inactive dopants, which play the role of a charge
compensator or a buffer, into the blend composition;
and so on [6]. The variety of valence states and struc-
tural locations may lead both to improvement of lasing
characteristics (in particular, to broadening of the fre-
quency-tuning range or to the appearance of new lasing
ranges) and to undesirable phenomena, such as optical
absorption (from the ground and excited states) of one
of optical centers in the range of possible lasing of
another center. Thus, identification of all types of
valence states and structural locations of activator ions
typical of each specific crystal and determination of the
ratio of concentrations of centers of each of these types
and their dependencies on the process parameters of the
growth are of key importance in characterization of
laser crystals based on complex oxides. However, this
problem does not always receive proper attention. It is
necessary to have such data and understand the pro-
cesses occurring upon doping laser materials by ions of
d elements to be able to control these processes and cre-
ate materials with good operating characteristics.

The problem of structural and valence identification
of an activator ion in correlation with the spectroscopic
and lasing characteristics and the growth conditions
arises in investigation of a variety of doped hosts of
such structural classes as, for example, olivine
(Mg2SiO4, CaMgSiO4, Ca2GeO4, BeAl2O4; sp. gr.
Pnma); phenakite (LiGaSiO4, LiAlGeO4, LiGaGeO4,
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
Zn2GeO4; sp. gr. R3 or , depending on the degree of
order of distribution of cations over structurally non-
equivalent positions); BeAl6O10 crystals (sp. gr. Pcam);

Sr3Ga2Ge4O14 and Ca3Ga2Ge4O14 crystals (sp. gr. );
and other crystals doped with d ions. Many studies
were devoted to alexandrite [7–11] and germanates
Sr3Ga2Ge4O14 and Ca3Ga2Ge4O14 [12–17], which have
been well known for a long time. In this review, we con-
sider the valence states and structural location of 3d
ions, as well as their spectroscopic properties in some
new crystals of complex oxides with the olivine (for-
sterite Mg2SiO4, monticellite CaMgSiO4, Ca2GeO4)
and phenakite (Zn2SiO4, LiGaSiO4, LiAlGeO4) struc-
tures. Some data on these materials are reported for the
first time.

1. DISTRIBUTION OF ACTIVATOR IONS 
OVER STRUCTURAL POSITIONS 

WITH IDENTICAL COORDINATION NUMBERS

The most widespread and well-known to date
approach to describing and predicting the character of
distribution of activator ions both between a crystal and
a melt and over different structurally nonequivalent cat-
ionic positions in the crystal is based on taking into
account mainly crystallochemical factors, such as the
relationship between the geometrical size of the activa-
tor ion and the corresponding positions and the type of
substitution (either isovalent or heterovalent). In this
context, we should mention [18], where the character of
distribution of a large number of divalent and trivalent
ions between the forsterite crystal and the forsterite
melt was analyzed and classified on the basis of such an
approach. At the same time, as applied to d ions, in
which the electron cloud of the d orbital directly inter-
acts with the crystal field of the anionic environment,
such an approach is often too rough and cannot be used
to describe experimental results with sufficient accu-
racy, as was shown in [19, 20] by the example of the
Cr3+ ion in rare earth–scandium–gallium garnets. In
such cases, it is necessary to take into account a number
of other factors, which are considered below.

The effect of crystal structure on the distribution of
an activator ion over structurally nonequivalent posi-
tions with lowest symmetry, which are characterized by
identical coordination numbers but different sets of
interatomic distances and valence angles, was esti-
mated for the first time in [21] with the use of space-
group theory and the gradient of the intracrystalline-
field potential. Notably, the trend of preferred incorpo-
ration of an activator ion into one or another position is
governed by the fact that, all other factors being the
same, the system of regular points of the preferred posi-
tion has higher spatial symmetry. In the structure, this
trend is realized by the crystal-field gradient, i.e., by the
force acting on the activator ion. This gradient is radi-
cally different in the positions of different point sym-
metry of the lowest order.
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Fig. 1. Olivine structure (the view plane is perpendicular to the a axis): (a) tetrahedral cationic positions and (b) octahedral cationic
positions.
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The essence of the method is that, first of all, the
structures forming when the activator ion occupies only
one position among all possible nonequivalent cationic
positions should be determined. The structures
obtained correspond to different subgroups with small
indices of the initial Fedorov group. Then, Brown’s
principle of maximum symmetry should be applied: “A
structure will adopt the highest symmetry consistent
with the constraints acting upon it” [22, 23].

Let us consider this technique as applied to crystals
with the olivine structure (Fig. 1). This structure con-
tains two structurally nonequivalent octahedrically
coordinated cationic positions, which are distorted in
comparison with the correct octahedron in such a man-
ner that, in one of them, the only symmetry element is
the inversion center (the symmetry ëi) and, in the other
position, the only symmetry element is the symmetry
plane (Cs) [24]. These positions are conventionally
denoted as octahedra M1 and M2, respectively. Nota-
bly, M2 is somewhat larger. The olivine structure also
contains distorted tetrahedral cationic positions of the
same type with the local symmetry Cs and belongs to

the Fedorov group Pnma ( ). The oxygen octahedra
share edges. In the case of Mg2SiO4 and Ca2GeO4, Mg
and Ca ions, respectively, occupy the octahedral posi-
tions of both types [25], whereas, in monticellite
CaMgSiO4, smaller Mg ions occupy the M1 positions
and larger Ca ions occupy the M2 positions [26].

Upon doping forsterite, the dopant ions incorporate
into the M1 and M2 octahedra mainly in the low oxida-
tion states (up to +3). The 3d ions in the oxidation states
higher than +3, incorporating into the olivine structure,
prefer the tetrahedral positions isolated from each other
and sharing vertices with neighboring octahedra. Such
an incorporation is related mainly to the size and charge
factors.

If the dopant ion occupies either the M2 octahedron
(Cs) or the M1 octahedron (Ci), the system of regular
points it forms belongs to the sp. gr. Pnma or to the
sp. gr. Cmmm, respectively [27]. In this case, the unit-
cell volume being the same, the Cmmm group corre-
sponds to higher symmetry than the Pnma group [25].
Thus, from the viewpoint of space-group theory and

D2h
16
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Brown’s principle, the M1 octahedron turns out to be
more preferable for location of the impurity d ion.

Let us consider how this selectivity is realized
directly in a crystal. At the inversion center, the poten-
tial gradient f = –gradU is zero; in the case of symmetry
plane, the gradient vector lies in this plane [28]. For
oxygen ions O2– in the M1 octahedron (Ci), there are
more opportunities to change their configuration when
they tend to attain the minimum of the crystal-field
potential, which, with the presence of edges shared
with the M2 octahedron (Cs), decreases the volume of
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Fig. 2. Experimental dependences of the ratio of distribu-
tion of impurity divalent d ions between the octahedral cat-
ionic positions K = C(M1)/C(M2) in Mg2SiO4 and
Mg2Si2O6 crystals on the efficient ionic radius r. The fine
lines show the theoretical dependences for the (1) F, (2) D,
and (3) S terms.
Table 1.  Distribution of several ions of the iron group between the M1 and M2 octahedra in forsterite Mg2SiO4 (∆Est =
Est(M1) – Est(M2))

Ion Dq, cm–1 Est , cm–1 ∆Est , cm–1 Ktheor Kexper Reference

Ni2+ 820 9840 680 2.92 [16]

4.8 [17]

Cr3+ 2.7 [17]

Co2+ 840 5040 348 1.5 1.97 [16]

Fe2+ 1030 4120 284 1.22 1.06 [16]

0.83 [17]

Mn2+ 0.16 [17]
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Table 2.  Ground-state terms of free d ions in a weak and strong crystal fields and experimental data [29–34] on the distribu-
tion of ions between the M1 and M2 octahedra in forsterite and pyroxene

Ion 2s + 1L(dn)

Weak field Strong field

Γ( ) Est
position of preferred localization 

(experimental data) Γ( ) Est

Ti3+ 2D(d1) 2T2(t2) 2/5 2T2(t2) 2/5

V3+ 3F(d2) 3T1( ) 4/5 Ci
3T1( ) 4/5

V2+, Cr3+ 4F(d3) 4A2( ) 6/5 Ci
4A2( ) 6/5

Cr2+ 5D(d4) 5E( e) 3/5 3T1( ) 8/5

Mn2+ 6S(d5) 6A1( e2) 0 Cs
2T2( ) 10/5

Fe2+ 5D(d6) 5T2( e2) 2/5 Ci,  Cs
1A1( ) 12/5

Co2+ 4F(d7) 4T1( e2) 4/5 Ci
2E( e) 9/5

Ni2+ 3F(d8) 3A2( e2) 6/5 Ci
3A2( e2) 6/5

Cu2+ 2D(d9) 2E( e3) 3/5 2E( e3) 3/5

Zn2+ 1S(d10) 1A1( e4) 0 Cs
1A1( e4) 0

Note: The stabilization energy Est is given in Dq units.
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the M1 octahedron. In the M2 octahedron, a pair of O2–

ions may shift only in the plane of symmetry. The
deeper minimum of the crystal-field potential in the M1
octahedron should, all other factors being equal, lead to
its preferred occupation by the activator ion in compar-
ison with the M2 octahedron.

These conclusions are consistent with the experi-
mental data on the location of a divalent impurity in the
M1 and M2 octahedra with respect to both the ratio of
the volumes of these cationic positions [29–34] and the
force parameters of the crystal field Dq (see, for exam-
ple, [35, 36]) for forsterite Mg2SiO4 crystals and for
pyroxene Mg2Si2O6, whose structure also contains two
types of structurally nonequivalent distorted octahedral
positions (Fig. 2).

Spatial distribution of the electron density of the d
shell of an activator ion also affects its preferred loca-
tion in one of several structurally nonequivalent cat-
ionic positions with the same coordination numbers.
The effect of the radial component was discussed
above. Concerning the angular component, its contribu-
tion was first noted in [21], where it was believed that it
is the angular part of the spatial distribution of a dopant
ion that is responsible for significant nonlinearity and
presence of extrema in the experimental dependences
of the coefficient of dopant distribution over the M1 and
M2 octahedra on the dopant-ion radius in forsterite and
C

pyroxene (Fig. 2) (ä = ë(å1)/ë(å2), where ë(ån) is
the concentration of dopant ions in the corresponding
octahedral site).

According to the experimental data [31, 33, 34], in
the cases of forsterite and pyroxene, which are charac-
terized by a weak crystal field acting on an activator
ion, the value of K decreases in the following row of
divalent ions: Ni2+(d8), Co2+(d7), Fe2+(d6), Zn2+(d10),
and Mn2+(d5) (Tables 1, 2; Fig. 2). We should note that,
in the crystal-field theory, the following relations corre-
spond to the cases of weak and strong fields: Vcoul > Vcr
and Vcoul < Vcr, respectively, where Vcoul is the energy of
electrostatic interaction of the ion’s electrons with each
other and Vcr is the energy of each electron in the crystal
field. In experimental practice, the following relation is
used for weak and strong fields, respectively: 2.6 >
Dq/B and Dq/B > 2.6. The shape of the luminescence
spectrum at 300 K (a broad band or a narrow line) also
serves in practice as a criterion of a weak or strong field,
respectively.

According to Tables 1 and 2 and Fig. 2, the activator
ions whose ground states originate from the S, D, and F
terms of free ions are located in the M2 octahedron,
equiprobably in the M2 and M1 octahedra, and in the
M1 octahedron, respectively.

As is well known, the spherical symmetry of the
electron cloud is typical of the S term. The F term, in
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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contrast, is characterized by significant localization of
the angular component of the electron density and,
therefore, by a stronger chemical bond [37]. The D term
is characterized by an intermediate strength of the
chemical bond and localization of the angular compo-
nent of the electron density with respect to the S and F
terms. The maximum values of the crystal-field stabili-
zation energy Est correspond to the term F (Table 2),
whereas the minimum and intermediate values of Est
correspond to ions with the ground terms S and D,
respectively.

The correlation between the type of the ground term
and the preferable position, noted in [21], is explained
as follows. In the case of weak field, the symmetry of
the electron cloud of a free ion is retained near the elec-
tron core. In the case of an ion with the S term, the
weaker chemical bond allows such an ion to shift in the
symmetry plane of the structure. At the same time, an
activator ion with a strong bond (the F term) is located
in the positions with the inversion center. The reason is
that the field gradient is zero at the inversion center;
therefore, the shift of the ion should also be zero. Ions
with the intermediate bond strength (the D term) are
equiprobably located in the octahedra of both types.

Thus, the relations between the values of äL, where
L is the ground-state term of a free ion, have the form
äF > äD > äS. In addition, since in the case of localized
electron density the chemical-bond strength depends on
the distance between ions and on the ionic radius of the
activator r stronger than in the case of extended density,
the relationship däF/dr > däD/dr > däS/dr is valid.
Since the ionic radius (the oxidation state being the
same) decreases with increasing number of d electrons

(Fig. 1), KL( ) > KL( ) at n1 > n2, if L are identical.

Thus, the dependences of K on particular factors
should be separated into the dependences for äF, äD,
and äS, according to the relations obtained (Fig. 2).

Let us consider the case of strong field. In a strong
crystal field, the electron density of an ion is approxi-
mated within the zero-order approximation by a sum of
densities of noninteracting t2 electrons, the angular
component of each density being identically equal to
the angular distribution for the D term. Therefore, if we
find in the zero-order approximation that the d ions tend
to be equiprobably distributed over the M1 and M2
octahedra in a strong field, the account of the interac-
tion between electrons should result in a stronger
dependence of K on the number of d electrons of the ion
than in the case of weak field (Table 2). Apparently, in
the case of sufficiently small values of Est, it is mainly
the crystal–chemical factors that affect the distribution
of an activator ion over the nonequivalent positions.
Among these factors are the relationship between the
size of the cationic position and the efficient radius of
the impurity ion, the dopant concentration, the type and
concentration of the charge compensator, and others.
Thus, for the distribution of Cr3+ ions over the octahe-

d
n1 d

n2
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
dral positions of forsterite (the case of weak field and
maximum value of Est), the values of K obtained exper-
imentally in different studies, although being somewhat
different, indicate the preferred trend for the activator
ion to be located in the M1 octahedron [29–36, 38, 39].
At the same time, for widely studied alexandrite
Cr : BeAl2O4 (the case of sufficiently strong field and
small value of Est), rather contradictory results are
reported: specifically, the values of K range from 3.6 to
0.2 [7, 40, 41].

The conclusions made in [21] suggest that, in the
case of positions with similar crystallographic charac-
teristics, when predicting the character of distribution
of an activator ion, one can compare the degree of devi-
ation of the structure of polyhedra in which the ion can
be located from the structure of the corresponding reg-
ular polyhedron to estimate the trend in the distribution
of the activator ion over these positions. Apparently, for
crystals with the phenakite structure, where cationic
polyhedra have no symmetry elements, the preferred
position is characterized by smaller deviations from a
regular tetrahedron, all other factors being equal. This
suggestion is being verified presently.
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Fig. 3. (a) Experimental polarized absorption spectra of
V-doped forsterite at 300 K for the polarization directions
(1) E || a, (2) E || b, and (3) E || c); (b) allowed transitions
for V4+ ions in distorted tetrahedra of the forsterite struc-
ture.
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2. SPECTROSCOPIC 
AND STRUCTURAL CHARACTERISTICS OF d 

IONS IN CRYSTALS WITH THE OLIVINE 
STRUCTURE

Vanadium ions in forsterite Mg2SiO4 are, apparently,
studied experimentally most widely in view of the
valence states and structural locations. The large values
of absorptivity and continuous and fairly smooth shape
of the absorption spectrum in the range of 600–
1200 nm gives grounds to consider this crystal as a
promising candidate for laser saturable absorbers in
this spectral range [35, 36].

The strongest bands in the absorption spectra of
V : Mg2SiO4 in the range of 600–1200 nm are attrib-

0.47 0.480.46
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– 10

– 5

0

5

V (metallic)

V2O3

VO

V2O4

V2O5

1000/T, K – 1
0.49

Range of oxygen fugacities in the
growth atmosphere used in [45]

log [f(O2)]

Fig. 4. Regions of thermodynamic stability of vanadium
ions in different valence states (restricted by solid lines),
depending on the oxygen fugacity log(fO2) and the inverse
temperature 1000/T, K–1, in the range of operating temper-
atures and oxygen fugacities used for growing forsterite sin-
gle crystals from melt by the Czochralski method. The ver-
tical dashed line indicates the melting point of forsterite
(1890°C).

Table 3.  Experimental and calculated frequencies of the max-
ima of the absorption bands of V3+ ions in the octahedral posi-
tions of a forsterite crystal (Dq = 1550, B = 500, C = 3150 cm–1

for M1 and Dq = 1400, B = 800, C = 3000 cm–1 for M2)

Transition νexper, cm–1
νcalcd, cm–1

M1 M2

3T1   1T2
10280

9540

3T1   1E 10560

9640

3T1   3T2(t2e) 12640

14430

3T1   3T1(t2e) 20800 20880

23300 23260

3T1   3A2(e2) 26300 26320

30800 29940

t2
2( ) t2

2( )

t2
2( ) t2

2( )

t2
2( )

t2
2( )

t2
2( )
C

uted to V2+ and V3+ ions in [42] and to V4+ ions in [43].
On the basis of the ESR data, it was concluded in [44]
that vanadium is present in forsterite mainly in the form
of the V5+ ions. The inconsistency of the results of [42–
44] may be, in particular, due to differences in the redox
conditions of the crystal synthesis.

The complete picture of the structural states of vana-
dium ions V5+, V4+, V3+, and V2+ in forsterite crystals
grown by the Czochralski method is given in [35, 36,
45]. The conclusions were made on the basis of the
comprehensive analysis of the absorption spectra at 300
and 77 K in a wide wavelength range (250–1600 nm)
for crystals grown in various atmospheres—from
slightly reducing to slightly oxidizing. Calculations of
the energy-level diagrams were carried out for ions
with different coordinations and valences with due
regard for the spectral data. Analysis of the most ther-
modynamically stable charge state of the activator ion
under real synthesis conditions (temperature–oxygen
fugacity in the growth atmosphere) was performed. The
measured dependence of the crystal density on the acti-
vator concentration was compared with the results of
calculations for various combinations of the valence
states and structural locations of vanadium in forsterite.

The band in the range of 300–1600 nm, which is
dominant in the absorption spectra (Fig. 3) [35, 36],
was assigned to the V4+ ion in the tetrahedral coordina-
tion. Such an assignment was based on the polarization
dependences of the absorption intensities and on the
high intensity of the spectrum, which correlated with
the features of the electron–vibrational interaction. The
assertion that this impurity center is of the main type
follows from the coincidence of the regions of thermo-
dynamic stability of the vanadium ion in the tetravalent
state and the thermodynamic conditions of the crystal
growth by the Czochralski method [45] (Fig. 4). The

8000 7000 6000
ν, cm–1

0

1

2

3

I, arb. units

Fig. 5. Luminescence spectrum of V : Mg2SiO4 single crys-
tals at 77 (the solid line) and 300 K (the dotted line) [42].
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best agreement between the calculated and experimen-
tal dependences of the precisely measured crystal den-
sity on the concentration of impurity vanadium ions
was also noted when the calculation was based on the
assumption that vanadium incorporates into the tetrahe-
dral silicon positions in the form of the V4+ ion [36, 45].

V3+ ions are located mainly in the M1 and M2 octa-
hedra and are present in the crystals studied in rela-
tively small amounts. The absorption of these centers
manifests itself in the wavelength range below ~500 nm
(Fig. 3, Table 3). The ratio of the intensities of the
absorption bands of V3+ ions in the M1 and M2 octahe-
dra corresponded to the distribution of the activator ion
over structural positions, which follows from the con-
siderations of the previous section. Indeed, as is well
known, due to the parity forbiddenness of the d–d tran-
sitions for ions in the crystal field with the inversion
center, the oscillator strengths of the electronic–vibra-
tional transitions for the d ion in the å1(Ci) position
should be considerably smaller than for such transitions
in the same ion located in the å2(Cs) position. Thus,
for equal concentrations of V3+ ions in the M1 and M2
positions, the absorption band corresponding to the
former case should be significantly weaker. However,
the observed intensities of the absorption bands of these
optical centers are of the same order of magnitude
(Fig. 3). This fact suggests that the concentration of
trivalent vanadium in the M1 position considerably
exceeds that in the M2 position.

The weak absorption at 1200 nm and the lumines-
cence observed in the range of 1100–1700 nm (9091–
5882 cm–1) in [42] (Fig. 5) were assigned to the V3+ ion
in the tetrahedral coordination with a fair degree of
validity.

When the crystals were grown in the range of
growth atmospheres, V2+ and V5+ ions, as well as tetra-
hedrally coordinated V3+ ions, did not arise in signifi-
cant amounts [35, 36, 45]. Apparently, these states of
vanadium ions may be realized when crystals are either
grown or annealed after growth in more severe reducing
or oxidizing conditions, respectively. Nevertheless, we
failed to obtain tetrahedrally coordinated V3+ ions in
large amounts using long reducing annealing of
V : Mg2SiO4 crystals (some hundreds of hours in
hydrogen atmosphere).

Chromium ions in forsterite Mg2SiO4 may be either
in divalent, trivalent, or tetravalent states, depending on
the synthesis conditions. They can be located in octahe-
drically coordinated positions M1 and M2, as well as in
the tetrahedral position [46].

Efficient lasing tunable in the range of 1130–
1370 nm, which is important from a practical point of
view (for example, in fiber optics communication and
ophthalmology), was obtained for Cr4+ ions in forsterite
[47, 48]. However, the presence of chromium ions in
other oxidation states (first of all, Cr2+ ions) in the crys-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
tals may lead to undesirable optical absorption in the
frequency range of lasing of tetravalent chromium.

Cr3+ ions in Cr : Mg2SiO4 crystals also exhibit lumi-
nescence, in particular, the R line at 692 nm, which is
attributed to the Cr3+ ion in the M1 octahedron [49], as
well as broadband luminescence with a maximum in
the range of 860–890 nm (depending on the polariza-
tion, Fig. 6), corresponding to the Cr3+ ion in the M2
octahedron [50]. However, the absorption by Cr4+ ions
at the lasing frequencies impedes efficient lasing of the
Cr3+ ions in forsterite. Therefore, determination of con-
ditions promoting or, vice versa, suppressing formation
of particular optical centers (chromium ions in a speci-
fied state) in these crystals is of practical interest.

The absorption spectra of Cr : Mg2SiO4 crystals
were also studied for various concentrations of chro-
mium in the starting melt and different redox condi-

800
λ, nm
16001200

Cr4+

Cr : Ca2GeO4

Cr4+

Cr : CaMgSiO4

Cr3+

Cr4+

Cr : Mg2SiO4

Cr3+

I, arb. units

Fig. 6. Luminescence spectra of Cr : Mg2SiO4 [50],
Cr : CaMgSiO4 (our unpublished results), and Cr : Ca2GeO4
[66] single crystals.
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tions of growth and subsequent annealing [46, 51]. All
the bands revealed were identified and assigned to the
correspondingly located chromium ions in the corre-
sponding oxidation states.

The concentration of Cr2+ and Cr3+ ions in the octa-
hedral coordination decreases, and the concentration of
tetrahedral Cr4+ ions increases as the growth atmo-
sphere becomes more oxidizing. This phenomenon is
consistent with the results of [46]. However, even when
crystals are grown in air, the fraction of Cr4+ ions in the
general amount of chromium incorporated into a crys-
tal remains rather small (no more than a few percent).
Moreover, beginning with the level of 0.6 at. %, further
increase in the chromium concentration does not lead to
a proportional increase in the Cr4+ concentration in a
crystal. The intensity of the absorption bands of the
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Fig. 7. Polarized absorption spectra of Cr:Mg2SiO4 [51],
Cr:CaMgSiO4 (our unpublished results), and Cr:Ca2GeO4
[56] single crystals recorded at 300 K for the polarization
directions (1) E || a, (2) E || b, and (3) E || c.
C

Cr4+ ion saturates with the maximally attainable
absorption coefficient at a wavelength of 1064 nm (the
3Ä2  3í2 transition) equal to 3.2 cm–1 [51].

Most chromium (up to 98%) incorporates into the
crystal in the form of the Cr3+ ion [39]. Notably, the
coefficient of distribution of the trivalent chromium
between the M1 and M2 positions ranges from 1.5 to
4.5 according to [34, 38, 39, 52].

The Cr2+ and Cr3+ ions in the M1 and M2 octahedra
rather easily transform into each other upon oxidizing
and reducing annealing of crystals [46]. At the same
time, even long reducing annealing fails to transform
the tetrahedrally coordinated Cr4+ ion into a more
reduced form since such a transition makes it necessary
to change the structural location (from the tetrahedral to
octahedral); i.e., the chromium ion should be displaced
in the crystal. Apparently, the diffusivity of chromium
in forsterite at the annealing temperature used in [46] is
too small to initiate this process.

The chromium ions in monticellite CaMgSiO4, like
in forsterite, may be located in the form of octahedri-
cally coordinated Cr3+ ion, although in significantly
smaller amounts. This is evident from comparison of
the luminescence spectra of Cr : Mg2SiO4,
Cr : CaMgSiO4 crystals in the near-infrared region
(Fig. 6): the broadband luminescence in the range of
900–950 nm with relatively low intensity, which is
characteristic of Cr3+ ions, was observed in both our
experiments with single crystals grown in air and the
previous experiments with polycrystalline samples pre-
pared by melt cooling [53].

Chromium ions in calcium germanate Ca2GeO4

grown in air, according to the ESR data [54, 55], are not
located in the form of Cr3+ ions or in lower oxidation
states, despite the presence of octahedral cationic posi-
tions in the structure of this crystal (as well as in all the
crystals with the olivine structure). The luminescence
of Cr3+ ions was not observed in these crystals (Fig. 6).
There are no data on the Cr:Ca2GeO4 crystals grown in
less oxidizing conditions.

Cr4+ ions in forsterite Mg2SiO4, calcium germanate
Ca2GeO4, and monticellite CaMgSiO4, according to
our calculations based on the spectral data [51, 56] and
to our experimental results (unpublished, Fig. 7), are
described by the energy-level diagrams listed in
Table 4. The decrease in the crystal-field parameter Dq
and, consequently, the long-wavelength shift of the
maxima of luminescence and absorption of tetrahe-
drally coordinated Cr4+ ions in the row Cr:Mg2SiO4 
Cr:CaMgSiO4  Cr:Ca2GeO4 occur due to the
increase in the radius of the coordination sphere around
the Cr4+ ion. Notably, when we pass to Cr:Ca2GeO4,
this change is more abrupt because, in this case, a
smaller cation is substituted by a larger one (Si4+ 
Ge4+) in the tetrahedral site, whereas both forsterite and
monticellite are silicates. Therefore, when we pass
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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Table 4.  Experimental and calculated frequencies of the maxima of the absorption bands of Cr4+ ions with tetrahedral coor-
dination in forsterite Mg2SiO4, monticellite CaMgSiO4, and calcium germanate Ca2GeO4 crystals 

Transition
Mg2SiO4 CaMgSiO4 Ca2GeO4

νexper, cm–1 νcalcd, cm–1 νexper, cm–1 νcalcd, cm–1 νexper, cm–1 νcalcd, cm–1

3A2(e2)  1E(e2) 9100 8977 9574 9100 9092
3A2(e2)  3T2(et2) 10160 10150 9500 10000 9090 9100
3A2(e2)  3T1(et2) 15390 14854 14900 14886 13890 13420
3A2(e2)  1A1(e2) 15393 16272 15218
3A2(e2)  1T2(t2e) 18995 20200 19424 18066
3A2(e2)  1T1(t2e) 21270 21880 20190

3A2(e2)  3T1( ) 22700 23096 23000 23139 20500 20856

3A2(e2)  1E( ) 30063 31200 30441 28033

3A2(e2)  1T2( ) 30195 31200 30592 28159

3A2(e2)  1A1( ) 44947 46488 43000 43588

Parameters, cm–1

Dq 1015 1000 910

B 500 535 465

C 2560 2730 2755

B/C 5.1 5.1 5.9

t2
2

t2
2

t2
2

t2
2

from one of them to the other, only the composition of
the octahedrically coordinated cations changes.

3. SPECTROSCOPIC 
AND STRUCTURAL CHARACTERISTICS 

OF d IONS IN CRYSTALS 
WITH THE PHENAKITE STRUCTURE

In this section, we will consider Zn2SiO4,
LiAlGeO4, and LiGaSiO4 crystals. The spectroscopic
properties of powdered samples of Cr:Zn2SiO4 were
studied in [57]. Cr:LiAlGeO4 and Cr:LiGaSiO4 were
studied in the form of single crystals. The results of
these studies are reported in [58–60], and the growth
technique for Cr:LiGaSiO4 single crystals is described
in [61].

The phenakite structure is the derivative from the
β-Si3N4 structure [62]. In this structure (Fig. 8), all the
ions are in the tetrahedrally coordinated positions. The
cation–oxygen tetrahedra, sharing vertices, form col-
umns parallel to the c axis. In this framework, channels
of two types, parallel to the c axis, exist: large channels
formed by six TO4 tetrahedra combined into a ring and
smaller channels formed by four TO4 tetrahedra. All the
tetrahedral cationic positions in the phenakite structure
are divided into three structurally nonequivalent types
(T1, T2, T3). In the case of LiGaSiO4 crystals, each of
these types is divided into two more structurally non-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
equivalent subtypes (í11 and í12, í21 and í22, í31
and í32).

The division of tetrahedra into subtypes in the case
of LiGaSiO4 and the absence of such division in the
case of LiAlGeO4 is reasoned as follows [63]. In the
LiAlGeO4 crystal, the cationic positions of the T1 type
are occupied by relatively large Li ions, whereas
smaller Al3+ and Ge4+ ions, due to close values of their
ionic radii, are randomly distributed between the T2
and T3 positions, which makes the crystal disordered.
In this case, the LiAlGeO4 crystal belongs to the space

group with the inversion center .

Another situation is observed in LiGaSiO4 crystals,
apparently due to significant differences in the sizes of
all three ions. In this case, the tetrahedral positions T1
are occupied by gallium ions, whereas lithium and sili-
con ions are distributed between the T2 and T3 posi-
tions. This distribution, being now strictly regular,
results in a layered structure, with the layers perpendic-
ular to the c axis. In the first layer, Li and Si ions are
located in the T2 and T3 positions, and vice versa in the
next layer. Specifically this circumstance leads to divi-
sion of the tetrahedral positions T2 and T3 in LiGaSiO4
crystals into the subtypes í21 and í22, í31 and í32
with different sets of interatomic distances and valence
angles. Gallium–oxygen tetrahedra T1, which have dif-
ferent sets of conjugate tetrahedra in different layers,
are, in turn, also divided into the subtypes í11 and í12

R3
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a1

a2

T1 tetrahedron

T2 tetrahedron

T3 tetrahedron

Fig. 8. Phenakite structure in the view plane perpendicular to the optical axis (cation–oxygen tetrahedra are shown entirely).
with somewhat different average values of the Ga–O
distances and different character of distortion with
respect to a regular tetrahedron. As a result, the inver-
sion center in the structure of the LiGaSiO4 crystal van-
ishes and, thus, the structure now corresponds to the sp.
gr. R3 [64, 65].

The tetrahedral cationic positions of all structurally
nonequivalent types and subtypes in LiAlGeO4 and
LiGaSiO4 crystals are distorted so much that they have
no symmetry elements at all, although the T3 tetrahe-
dron in LiAlGeO4 can be characterized, with some
degree of approximation, by the CS symmetry.

Cr4+ ions in LiAlGeO4 and LiGaSiO4 crystals, from
the viewpoint of crystal chemistry, should obviously be
incorporated primarily into the sublattices formed by
tetravalent matrix ions. Thus, Cr4+ ions should be
strictly randomly distributed between the T2 and T3
positions in LiAlGeO4 crystals, and they should occupy
the í22 and í31 positions in LiGaSiO4 crystals. In addi-
tion, we cannot exclude from consideration the location
of some (although, apparently, rather small) amount of
Cr4+ ions in the sublattice formed by trivalent ions, i.e.,
also in both subtypes of the T1 position in LiGaSiO4
crystals.
C

As was mentioned, the ground state 3A2 of the tetra-
hedrally coordinated Cr4+ ion originates from the 3F
term, which is characterized by a high degree of local-
ization of the angular component of the electron cloud
and, therefore, by a relatively strong chemical bond.
Thus, taking into account the conclusions of [21], one
may expect selective incorporation of Cr4+ ions prefer-
entially into more symmetric cationic positions.
Indeed, the spectroscopic measurements showed that
only one type of optical center formed by Cr4+ ions
dominates in either type of the crystals. Primarily, this
is evidenced by the presence of one distinct lumines-
cence maximum even at liquid nitrogen temperatures
(Fig. 9) and by the monoexponential character of the
luminescence-decay kinetics in the range of 1300–
1500 nm [58–60].

The absorption spectra of LiGaSiO4 and LiAlGeO4
single crystals (Fig. 10) also confirm the suggestion
that Cr4+ ions form optical centers of only one type in
these crystals. For example, the strongest spectral bands
at a justified value of the crystal-field parameter B (from
the viewpoint of bond covalence in a tetrahedrally coor-
dinated polyhedron) can be assigned with good accu-
racy to the transitions in optical centers of one type
formed by Cr4+ ions in these crystals (Table 5). We
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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should note that the experimental frequencies of the
maxima correspond to the centroids of the frequency
maxima, corresponding to the spin–orbit-split compo-
nents of the 3A2  3T1 transition.

Cr4+ ions in Zn2SiO4 crystals, according to [57],
apparently incorporate mainly into the positions of the
Zn2+ ion rather than the positions of the Si4+ ion (which
one would expect since the substituent and substituted
ions have the same valence). This suggestion is corrob-

1200 λ, nm1400 1600

Cr : Zn2SiO4

Cr : LiGaSiO4

Cr : LiAlGeO4

I, arb. units

Fig. 9. Luminescence spectra of Cr4+ ions in LiAlGeO4 [58,
59], LiGaSiO4 [73], and Zn2SiO4 [57] single crystals
recorded at 77 K.
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orated by the significant long-wavelength shift of the
maximum of luminescence (~1480 nm) of Cr4+ ions in
Zn2SiO4 crystals with respect to the maximum of lumi-
nescence of Cr4+ ions in Mg2SiO4 (1140 nm [66, 67]),
CaMgSiO4 (1190 nm [53, 68]), and Y2SiO5 (1220 nm
[69, 70]) crystals and in other silicon-containing sys-
tems, in which the location of Cr4+ ions specifically in
the silicon positions is beyond question. This shift may
be caused only by a significant increase in the cation–
oxygen distance in comparison with its typical value
for silicon–oxygen tetrahedra.

In this context, we suppose that the preferred loca-
tion of Cr4+ ions in silicon positions in LiGaSiO4 crys-
tals looks rather doubtful (the maxima in the absorption
and luminescence spectra of LiGaSiO4 (see Fig. 9,
Table 5) are also significantly shifted relative to the
positions of maxima typical of Cr4+ ions in silicate crys-
tals.

Cr3+ ions in LiGaSiO4 and LiAlGeO4 crystals were
revealed upon their pumping by the second harmonic of

2

4

6

0

k, cm–1

Cr : LiAlGeO4

400 600 800 1000
λ, nm

2

4

0

Cr : LiGaSiO4

Fig. 10. Absorption spectra of Cr:LiAlGeO4 [58, 59] and
Cr:LiGaSiO4 [60] single crystals recorded at 300 K.
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the neodymium-laser emission (532 nm). Narrow-band
luminescence of both crystals was detected: at 702 nm
with a decay time of about 3 ms for Cr:LiAlGeO4 and
at 720 nm with a decay time of about 2 ms for
Cr:LiGaSiO4. Luminescence of this kind is typical of
the spin-forbidden transition 2Ö  4Ä2 in Cr3+ ions.
Since the broadband luminescence in the red and near-
IR regions due to the electronic–vibrational transition
4í2  4Ä2 in Cr3+ ions was not observed, we may
conclude that the 4í2 level of the octahedrically coordi-
nated Cr3+ ion lies much higher than the 2Ö level
(∆E >> kT at 300 K). Such a situation is typical of
strong crystal fields, which excludes the tetrahedral
coordination.

The question of the location of Cr3+ ions in these
crystals also remains open to date. As was noted above,
the phenakite structure contains no regular octahedral
positions, and trivalent chromium ions may be either
located in the channels formed by the oxygen tetrahe-
dra (Fig. 8) or incorporated into the structure. The latter
process is accompanied by the local rearrangement of

Table 5.  Experimental (at 300°C) and calculated frequencies
of the maxima of the absorption bands of Cr4+ ions with tet-
rahedral coordination in LiAlGeO4 and LiGaSiO4 crystals

Transition

LiAlGeO4 LiGaSiO4

νexper, 
cm–1

νcalcd,
cm–1

νexper, 
cm–1

νcalcd,
cm–1

3A2(e2)  1E(e2) 9197 9316
3A2(e2)  3T2(et2) 9500

10200 9400 9500 9300

10600
3A2(e2)  3T1(et2) 13300 13500

14800 14061 15000 14098

16000 16300
3A2(e2)  1A1(e2) 15595 15838
3A2(e2)  1T2(t2e) 18100 18449 18450

19000
3A2(e2)  1T1(t2e) 20900 20820 20980

3A2(e2)  3T1( ) 21000 21864 21600 21977

3A2(e2)  1E( ) 28838 28829

3A2(e2)  1T2( ) 28986 28995

3A2(e2)  1A1( ) 44296 44422

Parameters, cm–1

Dq 940 930

B 515 545

C 2620 2570

B/C 5.1 4.7

t2
2

t2
2

t2
2

t2
2

C

regular tetrahedral cationic positions into octahedral
positions. The possibility of such a rearrangement was
shown previously by the example of crystals with the
melilite structure [71] and LiGaO2 crystals [72].

CONCLUSIONS

In this study, new laser crystals with the forsterite
and phenakite structures containing ions of d elements
are considered. The structural complexity of these
materials required a complex approach to investigation
of their spectroscopic characteristics and identification
of active optical centers.

Complex oxides are characterized by two or three
sublattice structures and often demonstrate complex
isomorphism, in particular, as applied to d ions with
variable valence. These ions exhibit diverse and some-
times unconventional structural location in complex
oxides.

Ions of d elements may be incorporated into differ-
ent sublattices in the structures of complex oxides. In
this case, all other factors being the same, they occupy
the most symmetric crystallographic positions, corre-
sponding to a regular point system with higher symme-
try. Such a selective trend can be considered as a mani-
festation of Brown’s principle as applied to doping of
crystals. In this case, the activator ion is located selec-
tively in larger amounts in those positions that belong
to a higher space-symmetry group (in the row of posi-
tions with similar crystallographic characteristics).

The electronic configuration of the d shell of the
activator ion significantly affects the character of its
incorporation into the structure and distribution among
different structurally nonequivalent crystallographic
positions (including similarly coordinated ones) by the
character of distribution of the electron density in the
ground state of the activator ion. The knowledge of the
ground term of the ion (the S, D, F terms) and account
of the local symmetry of positions made it possible to
predict the features of this distribution with a sufficient
degree of reliability. In some cases, these two factors
play even more important roles than the ionic radius
and formal charge, which is confirmed by the theoreti-
cal and experimental results obtained both here and in
previous studies.

Finding out the laws describing the incorporation of
an activator ion into a structure and its distribution over
the crystallographic positions makes it possible to con-
trol the characteristics of laser crystals, in particular, to
search optimal ion–matrix combinations and condi-
tions of crystal growth, contributing to the activator
localization in required positions in the specified
valence state.

On the basis of the developed concepts on incorpo-
ration of an activator ion into a structure, with the use
of our own experimental results and with due regard for
the data in the literature, the spectroscopic characteris-
tic of new laser crystals based on complex oxides and
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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doped with d ions, having olivine (Mg2SiO4,
CaMgSiO4, Ca2GeO4) and phenakite (LiGaSiO4,
LiAlGeO4, Zn2SiO4) structures, were investigated and
compared with certain optical centers formed by d ions.
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Abstract—Basic results of the investigations of the absorption and luminescence spectra of strongly pumped
crystals doped with Cr3+, Ti3+, and Nd3+ ions are considered. These investigations have been systematically car-
ried out since 1968 in the Laboratory of Physics of Optical Crystals and the Laboratory of Spectroscopy of
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obtained are compared with the data in the literature. © 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The ESA spectroscopy of impurity crystals is, in
fact, nonlinear spectroscopy using strong light fields.
This technique not only supplements and expands the
fundamental ground-state absorption (GSA) spectros-
copy but also opens up new lines of investigation in the
spectroscopy of crystals. As is well known [1, 2], the
principle of ESA spectroscopy of impurity ions in crys-
tals is to populate, with the use of optical pumping,
some (generally metastable) levels of impurity ions
with the energy E @ kT, which are not populated under
normal conditions. Then, the spectrum of absorption
from these levels is analyzed. The absorption from
excited levels is often referred to as induced absorption.

Typical examples of electronic transitions consid-
ered in this review which determine the ESA spectra of
Cr3+ and Nd3+ ions are shown in Fig. 1. Actually, GSA
spectroscopy does not describe the structure of the
energy spectrum of impurity ions in crystals quite ade-
quately, since a large number of transitions from the
ground state are forbidden by either spin or parity selec-
tion rules. If some other states with other spin or parity
are populated, the forbidenness of the transitions from
these states may be partially or completely lifted.
Therefore, ESA spectra are more informative than GSA
spectra because they contain more absorption bands or
lines. Speaking of the fundamental scientific impor-
tance of ESA spectroscopy, this technique primarily
yields a great amount of experimental data for the crys-
tal-field (CF) theory and the ligand-field (LF) theory, as
well as for the theory of deep impurity levels in wide-
gap insulators. When the entire energy spectrum of
impurity ions in a crystal is constructed, the CF theory
003 MAIK “Nauka/Interperiodica”
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needs experimental data—positions of the maxima of
absorption bands and lines, their intensities, oscillator
strengths, polarization dependences, kinetics, and so on
[3, 4]. ESA spectroscopy provides such information.

ESA spectroscopy makes it possible to observe the
high-energy states of impurity ions within the funda-
mental absorption band of a crystal matrix. Finally, this
technique allows us to observe the absorption bands
due to the charge transfer between a metal impurity ion
and the nearest ligands. This circumstance is very
important since it becomes possible to combine the
energy spectrum of metal-impurity ions with that of the
crystal matrix. The application of ESA spectroscopy to
search new laser materials turns out to be quite fruitful
because it allows one to determine the induced absorp-
tion in the vicinity of the laser transition, the kinetics of
the population of excited states, and some other charac-
teristics.

Vavilov and Levshin, who investigated crystal phos-
phors in 1926, were the first to observe nonlinear
absorption [5]. In 1944, Lewis et al. [6] revealed non-
linear absorption in fluorescein solutions. However, it
really became possible to study ESA spectra only after
the laser was discovered independently by Basov and
Prokhorov and by Townes. This discovery made avail-
able strong light fields. Laser experiments with ruby
crystals performed by Meiman [7] revealed nonlinear
absorption of light in these crystals. Gires and Mayer
[8–10] carried out a series of experiments to study the
ESA spectra of ruby. They suggested an experimental
technique and a theoretical approach to explain the
results obtained. In fact, after these studies, systematic
investigation of ESA spectra of crystals began.

1. BASIC PRINCIPLES OF MEASURING ESA 
SPECTRA (BROAD ABSORPTION BANDS)

There are two radically different approaches to mea-
surement of ESA spectra. One of them is used when an
ESA spectrum is beyond the luminescence band, and
the other is used when an ESA spectrum overlaps the
luminescence band. In this section, we will consider the
methods of calculating and measuring ESA spectra
beyond the luminescence band.

1.1. Technique of measuring ESA spectra. The sche-
matic of a setup for measuring GSA, ESA, and lumi-
nescence spectra of crystals is shown in Fig. 2. The
measuring technique was developed at the Shubnikov
Institute of Crystallography, Russian Academy of Sci-
ences (RAS) (1970). The probe light from high-pres-
sure arc lamp 1, modulated with a frequency of 15 kHz
by mechanical modulator 4 and shaped as a slightly
converging beam, passes through sample 7. Then, the
probe light enters the slit of one of spectrographs 11–
13. A sample is installed on copper cold finger 17,
which is in thermal contact with liquid-helium bath 16.
The whole system is placed in a vacuum chamber with
a residual pressure of ~10–6 torr. Quartz windows 21 are
C

mounted on bellows adjusting appliances, which makes
it possible to adjust windows without seal failure. Opti-
cal pumping of samples is performed by pulsed lamps
20 through glass tube 19, which is a part of the vacuum
chamber. Units 23–25 synchronize the measuring
scheme, amplify, filter, and record signals. The same
setup is used to measure GSA and luminescence spec-
tra; i.e., the measurements are performed under the
same conditions. Probe light of intensity I0(λ) with
wavelength λ is incident on a unpumped sample and is
absorbed in accordance with Bouguer’s law:

Iu(λ) = I0(λ) exp{(–n0σ13(λ) – Kl(λ))l}. (1)

Here, Iu(λ) is the intensity of probe light with wave-
length λ transmitted through an unpumped sample; l is
the optical-path length in a sample; n0 is the concentra-
tion of dopant ions in a sample (cm–3); σ13 is the cross
section of absorption from the ground state; and äl(λ)
is the loss factor (cm–1), which accounts for scattering,
nonresonant absorption, and so on. When a sample is
pumped, level 2 becomes populated (Fig. 1a). In this
case, the intensity of probe light transmitted through a
sample can be written as

Ip(λ) = I0(λ)exp{(–n1σ13(λ) – n2σ24(λ) – Kl(λ))l}, (2)
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Fig. 1. (a) Simplified diagram of electronic transitions in

Cr3+ ions in crystals. 1 and 2 stand for the 4A2( ) and

2E( ) levels, respectively; band 3 includes the 4T2( , e),

4T1( , e), and 4T1( , e2) states; and band 4 includes all the

doublet terms and the levels of the CT band. (b) Simplified

diagram of the electronic transitions 4A2( )  2T2( )

(B lines) and 2E( )  2T2( ) (I lines) in Cr3+ ions in

crystals. (c) Simplified diagram of the electronic transitions
in Nd3+ ions in crystals: 4F3/2  4I13/2 is an emission

transition (1300 nm), 4F3/2  4G7/2 is an ESA transition,

and 4I9/2  4F5/2 is a pumping transition at 800 nm.
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Fig. 2. Schematic of the setup for measuring ESA spectra of doped crystals. (1) DKSSh 500 arc lamp; (2) condenser lens; (3) orifice
plate; (4) mechanical modulator; (5) objective with f = 500 mm; (6) orifice plate; (7) sample; (8) orifice plate limiting pumping light
scattered in a sample; (9, 10) prisms; (11) UM-1 monochromator; (12) ISP-30 spectrograph; (13) DFS-8 spectrograph; (14) camera;
(15) liquid-nitrogen bath; (16) liquid-helium bath; (17) copper cold finger; (18) copper screen; (19) glass tube; (20) flash lamps;
(21) quartz windows; (22) liquid-nitrogen trap; (23) filter amplifier; (24) unit for applying high voltage to the photomultiplier cath-
ode; (25) synchronizer; (26) oscilloscope; and (27) mirror.
where σ24(λ) is the cross section of absorption from
level 2 to upper excited states, n1 is the population of
level 1, and n2 is the population of level 2. Obviously,
in the course of pumping, a variation in the absorption

coefficient of an unpumped sample Ku = ln  can

be written as

(3)

or

(4)

Note that the loss factor does not enter (4), which is
an undoubted advantage of ESA spectroscopy.

If the absorption bands due to the transitions from
the ground and excited states do not overlap, it is not
difficult to determine n2 and σ24(λ). To do this, it is suf-
ficient to measure ∆ä at some wavelength so as to sat-
isfy the conditions σ13(λ0) ≠ 0, σ24(λ0) = 0 or σ13(λ0) =
0, σ24(λ0) ≠ 0, and, thus, to derive n2 , σ13(λ), and σ24(λ).
Nevertheless, in the most commonly encountered case,
the absorption bands due to transitions from the ground
and metastable states overlap in a wide spectral range.
In this case, it follows from (4) that

(5)

The first and second cases correspond to a decrease and
increase in the absorption of a crystal, respectively; in
the third case, the absorption remains the same.

Determination of σ24(λ) in the case of overlapping
absorption bands due to the transitions from the ground

1
l
---

Iu λ( )
I0 λ( )
------------

∆K λ( ) 1
l
---

Iu λ( )
I0 λ( )
------------ln Ku λ( ) Kp λ( )–= =

∆K λ( ) n2 σ24 λ( ) σ13 λ( )–( ).=

∆K 0 σ24 σ13<( ),<
∆K 0 σ24 σ13>( ),>

∆K 0 σ24 σ13=( ).=
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and metastable states is a complex experimental prob-
lem. Indeed, formula (4) contains two unknowns to be
found, σ24(λ) and n2. Therefore, another equation is
necessary, which would contain either n2 or σ24(λ).
Attempts to derive another equation from the same
measurements of ∆K were unsuccessful [8, 10]. Gre-
chushnikov and coworkers [11, 12] used the model of
additive mixing of spectra of two absorbing solutions
(under the assumption that the spectrum of one solution
is known) to solve the problem of mixing the absorp-
tion spectra σ13(λ) and σ24(λ). It was proved rigorously
that no analysis of the entire spectrum may yield simul-
taneously the absorption spectrum of the other solution
and the relative amounts of the solutions. In other
words, it was shown that one must have another equa-
tion derived from independent experiments to deter-
mine σ24(λ) and n2 . For ESA spectra, such an equation
follows from the dependence of ∆ä(λ) and n2 in for-
mula (4) on the pumping energy.

1.2. The problem of determining the population of
an excited metastable level is the central problem of
ESA spectroscopy [13]. Various methods of determin-
ing the population n2 have been suggested. In [8–10,
14–17], the ruby crystal under investigation was placed
in a high-Q cavity and the relative population n2/n0 was
determined from the value of the lasing threshold. In
[18–20], amplification of emission at the R1 line by a
ruby sample was used to determine the ratio n2/n0 .
Rubinov et al. [21, 22] determined the ratio n2/n0 from
the dependence of the luminescence intensity on pump-
ing. Moos [23, 24] suggested to use the region limited
by the vibrational structure of the U band in the spec-
trum of ruby [25] to determine n2/n0 . Finally, in
[26, 27], light of a He–Ne laser with a wavelength of
6328 Å was passed through a ruby sample and the
transmittance of the sample was measured with increas-
ing pumping power. Each of the noted methods of
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determining n2/n0 has certain drawbacks and limita-
tions.1 A common drawback of all these methods is that
they are strictly related to ruby. In this context, the tech-
nique suggested in [26, 27] seems to be most promis-
ing. However, this technique is based on the assumption
that, at infinitely high pumping, the population of the
2E( ) level becomes equal to n0 (n2 = n0). This assump-
tion is valid only for an ideal three-level energy dia-
gram and, naturally, does not hold true under real con-
ditions. One of the reasons for this is in the escape of

electrons from the 2E( ) level through upper excited

levels mainly to the ground state 4A2( ).

The question of escape of electrons from the 2E( )
level, which is of fundamental importance, was studied
in [8–10, 16, 17, 28]. It was shown experimentally in
[16] that escape of electrons through the channel 2E
(upper excited states)  4A2 may even exceed the
value of 0.3n2 found in [8–10]. However, this result was
revised in [28]: the escape was found to be close to
zero. According to the data of [17], the escape is also
zero. In [17], a technique based on the variation in the
pumping spectrum was used. The sample was exposed
to light with an ultraviolet (UV) component in the spec-
tral range of 120–240 nm. Then, the UV radiation was
cut off by placing a sample in a thick-walled glass tube.
Since it is the UV range where the transitions
2E( )  [2T2( , e), 2A2( , e), 2E( , e)] with very
large cross sections are observed, it is reasonable to
expect a noticeable difference in the populations of the
2E( ) level for the cases of pumping radiation either
with or without a UV component.

Unfortunately, the requirement of the optical thin-
ness of samples in the UV range (i.e., the condition
n2σ24l ! 1) was disregarded in these experiments. The
point is that standard laser ruby rods ~0.5 cm in diame-
ter and several centimeters long with a chromium con-
centration of ~1019 cm–3 were used as samples in
[16, 17, 28]. Under conditions of giant absorption,
especially in the charge-transfer (CT) band, which
should mainly control the escape from a metastable
level, the UV pumping radiation is absorbed in a thin (a
few micrometers) surface layer of the sample. Thus,
almost the total sample volume turns out to be screened
by the thin surface layer. The probe beam propagates
along the cylindrical axis of the sample, i.e., in the
screened region. Therefore, the difference in the values
of n2/n0 caused by a variation in the pumping-light
spectrum can hardly be detected and the conclusion

1 Detailed analysis of different methods of determining the popula-
tion of metastable levels can be found in [1, 2, 29].
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about zero escape derived from such experiments can-
not be considered convincing.

The conditions for optical thinness of samples were
satisfied a fortiori in [29], where the pumping-light
parameters were varied: the pumping intensity ranged
from zero to maximum possible values. The measure-
ments were carried out with two types of samples:
shaped as a parallelepiped 0.2 × 0.5 × 0.65 cm3 in size
with a chromium concentration of ~1018 cm–3 and as a
cylinder 0.5 cm in diameter and 5.0 cm long with a
chromium concentration no higher than 1017 cm–3. In
the case of parallelepiped sample, the pumping was
performed through its entire surface and the probe light
was passed through the sample along the direction cor-
responding to its largest size (0.65 cm). In the case of
cylindrical sample, the probe light was passed along its
geometric axis, while the pumping was carried out
through its lateral surface. In both cases, the pumping
intensity at a wavelength of 240 nm in the bulk of a
sample was close to the intensity at its surface and,
therefore, the condition for optical thinness was satis-
fied. The dependence ∆K(λ0, Ep) on the pumping
energy Ep was measured (Fig. 3). In this experiment,
the width of the pumping pulse was shorter than the
characteristic time of luminescence (τ = 3 ms); hence,
the dependence of the population n2 on pumping energy
can be expressed by the exponential dependence in the
form [26]

(6)

where the coefficient d has the dimension of inverse
energy. If we assume that n0 = n1 + n2 , exponential (6)

has the asymptote  = n0 . According to formula (4)
and with due regard for the fact that σ24(λ) – σ13(λ0) =
const, the quantity ∆K is the pumping function
∆K(λ0, Ep), which represents the dependence of the
population n2(Ep) on pumping energy. For either of two
sets of experimental points ∆K1(λ0, Ep) and ∆K2(λ0, Ep),
which correspond to either presence or absence of an
ultraviolet component in the pumping radiation, the
least-squares method was applied to construct the func-

tion in the form (6). The asymptotic values ∆ (λ) and

∆ (λ) differ by less than 2%. The error of the asymp-
totic value for each curve ∆K(λ0, Ep), which is deter-
mined by the total set of experimental points, is no
larger than some tenths of a percent. Thus, it was shown

in [29] that the escape of electrons from the 2E( ) level

to the ground state 4A2( ) through upper excited states
is close to zero in ruby. This result suggests that
∆K(Ep)/∆K∞ . n2/n0.

Equation (6) can be applied to find the asymptote
∆K(Ep)/∆K∞ if the pumping-pulse width is much
shorter than the characteristic time of spontaneous radi-
ation τ21(∆t ! τ21). The most complex situation is when

n2 n0 1 dEp–( )exp–( ),=

n2
∞
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∞
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∞
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∆t = τ21 . In this case, the dependence n2/n0 on the pump-
ing energy is not exponential. It is described by the
solution to the equation [29]

(7)

Here, α = ; β = ; γ = , and A21 =

1/τ21 is the probability of the spontaneous transition

2  1; notably,  = U(λ, t )dλ and

 = U(λ, t)dλ. If ∆t ! τ21 , the solution

to Eq. (7) is the exponential in the form (6):

(8)

If the pumping is continuous [22, 30], we have

(9)

In intermediate cases, when ∆t ≈ τ21 , the value of
∆K(Ep)/∆K∞ = n2/n0 is found by numerical integration
of Eq. (7) and the time dependence of the pumping-
pulse power is set numerically. The maximum popula-
tion (n2/n0)max is attained when the instantaneous pump-
ing power drops by an order of magnitude after passing
through the maximum. This circumstance is convenient

dn2

dt
-------- n2 A21 αβ γ+( )B13 λ( )U λ t,( )+( )+

=  n0γB13 λ( )U λ t,( ).

p41
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λ2∫

n2

n0
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γ
αβ γ+
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Fig. 3. Dependence of ∆K on pumping energy Ep. Solid line
represents the solution to Eq. (7). Data for samples (·) in the
glass tube and (×) in the quartz tube (transparent for ultravi-
olet light). Dashed line shows the asymptotic value of ∆K(λ)
at infinitely high pumping level: ∆K∞(λ) = 0.37 cm–1.
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for measurements since the fraction of pumping light
scattered in a sample decreases.

Let us now consider how the accuracy in determin-
ing the population n2 affects the ESA spectrum.
According to formula (4),

(10)

Obviously, at a small deviation δn2 from the specified
value of n2, the error in determining σ24(λ) is expressed
by the formula

(11)

Upon changing n2, the intensity varies and the spec-
trum shifts in the wavelength scale. As follows from
formula (10), variation in the spectral intensity can be
written as

(12)

Thus, for each wavelength, δσ24(λ)/δλ is determined by
the signs and magnitudes of δσ13(λ)/δλ and
δ[∆K(λ)] /δλ, as well as by the value of n2. For example,
at 453 nm, [δσ13(453 nm)/δλ] ~ 0 [31] and
δ[∆K(453 nm)/δλ] ~ 0 for ruby. Therefore, at 453 nm,
the peak in the ESA spectrum does not shift in the
wavelength scale, but, with an increase in n2/n0 , its
intensity decreases. For the band at 382 nm, these con-
ditions are not satisfied, and, with an increase in n2/n0 ,
we observe not only a decrease in the band intensity
σ24(λ) but also a shift of the band maximum to longer
waves. For example, with an increase in the population
n2/n0 by 10%, the intensity of the band at 453 nm
decreases by more than 50%, but no shift of this band is
observed. The intensity of the band at 382 nm decreases
by about 12%, and the band shifts to longer waves by
about 30 nm [1].

1.3. Ruby Al2O3 : Cr3+. Intensive studies of the ESA
spectra of ruby began with the investigations of Gires
and Mayer [8–10] in 1961. By the end of the 1960s, the
number of publications devoted to this problem
exceeded 30; i.e., ruby was investigated fairly well.
Correspondingly, we consider ruby as a quite appropri-
ate model material, in particular, for approbation of the
method for determining the population n2/n0 developed
by us [1, 2]. In this review, we do not present the
detailed spectra of ruby (they are reported in [1, 2]).
Some spectroscopic parameters of ruby are listed in
Tables 1 and 2.

1.4. Magnesium spinel MgAl2O4 : Cr3+ has red color
and exhibits bright red luminescence at a wavelength of
~685 nm. Crystals of magnesium spinel have cubic
symmetry. Its unit cell consist of eight formula units

and belongs to the space group -Fd3m [32, 33].
Oxygen ions form an octahedron and two tetrahedra

σ24 λ( ) σ13 λ( ) ∆K λ( )
n2

----------------.+=

δσ24 λ( ) ∆K λ( )/n2
2δn2 .=

δσ24 λ( )
δλ

-------------------
δσ13 λ( )

δλ
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δλ
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Oh
7
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Table 1.  Crystal-field constants for ruby, yttrium–aluminum garnet, and magnesium spinel doped with Cr3+ ions

Dq, cm–1 B, cm–1 C, cm–1 v , cm–1 v ', cm–1 Reference

Ruby 1800 650 3220 800 680 [46]

1800 720 3030 756 378 [35]

1800 740 2960 [100]

1667 700 2800 [43]

Garnet 1725 640 3200 495 259 [57]

Spinel 1825 700 3200 –200 –1700 [33]
sharing vertices with it [34]. Aluminum (Al3+) and
magnesium (Mg2+) ions are located in octahedra and
tetrahedra, respectively. Chromium (Cr3+) ions isomor-
phously substitute Al3+ ions in octahedra. The presence
of tetrahedra reduces the point symmetry of the posi-
tions of Al3+ ions to D3d [32, 33]. The symmetry group
D3d is isomorphic to the C3v group, which is typical of
the positions of Cr3+ ions in ruby. Hence, the entire
spectrum of Cr3+ ions in spinel was calculated in [3, 35–
38] in the approximation of the C3v symmetry with the
use of the energy matrix for the d3 configuration in a
trigonal field. The consideration of the second coordi-
nation shell of Cr3+ ions [39, 40] showed that the trigo-
nal field in spinel may be stronger than in ruby. How-
ever, the calculation of the intensities of the U and Y
absorption bands in the spinel spectra [39, 40] yielded
the ratio I(U) : I(Y) = 1 : 4, which, as can be seen from
Fig. 4, disagrees with the experiment.

The spectral properties of spinels were studied
experimentally in [41–46]. Two broad absorption bands
were observed in the GSA spectrum of MgAl2O4 : Cr3+

spinel: the U band (18350 cm–1) and the double Y band
(23200 and 25200 cm–1). These bands are attributed to
the 4A2  4T2 and 4A2  4T1 transitions. The meta-

stable luminescence level 2E( ) is located at
14660 cm–1. Its decay time is 13 and 24 ms at room
temperature and at 77 K, respectively [41, 42]. When
the chromium content in spinel ranges from 0.3 to
0.5%, there arises an additional luminescence transition
with the characteristic time τN = 5 ms at room tempera-
ture and 8 ms at 77 K. This transition occurs from the
level lying below the 2Ö level by 80 cm–1. It is referred
to as the N-line level. It was suggested in [33] that this
level is due to the exchange interaction between Cr3+

ions. At the same time, we may also attribute the
appearance of this level to distortion of octahedra
where Cr3+ ions are located, which is caused by local
nonstoichiometry of spinel [44]. Such a nonstoichiom-
etry is possible since the magnesium spinel crystals we
studied were grown by the Verneuil method. As is well
known, this technique may yield significant stresses

t2
3

C

and nonstoichiometric regions in grown crystals
[44, 45].

The first investigation of the ESA spectra of magne-
sium spinel (MgAl2O4 : Cr3+) crystals was performed in
[41, 42]. The ESA spectrum of magnesium spinel (see
Fig. 4) consists of five broad intense bands: (U1 + U2)

(32900 cm–1),  (37500 cm–1),  (40300 cm–1), Y2

(45500 cm–1), and UV (54700 cm–1) (the last is the
strongest). The solid line in Fig. 4 represents the exper-
imentally observed spectrum, and the dotted lines show
the expansion of the spectrum in Gaussian components.
The calculated terms, with which the electronic transi-
tions responsible for the absorption bands are identi-
fied, are also shown in Fig. 4. The parameters of the
crystal field in spinel are listed in Table 1. It can be seen
that spinel and ruby have similar values of the cubic-
field strength Dq and the parameters of electrostatic
interaction B and C. Therefore, the positions of all the
identical terms in the spectra of these materials are
close to each other. The splitting of the 4í2 term is
mainly determined by the parameter v, which is four
times smaller for spinel than for ruby. Hence, the split-

ting of the 4í2( , e) term is only 20 cm–1, and the shape
of the U band is nearly homogeneous. The smallness of
the parameter v  accounts for the fact that the absorption
cross sections for the absorption bands in the spinel
spectrum are smaller than those for the absorption
bands in the ruby spectrum by approximately a factor of
ten. The parameter v  for spinel is negative; therefore, in
comparison with ruby, the components E and A of the
terms shift in opposite directions in a trigonal field. The
parameter v ' for spinel is larger than that for ruby by a

factor of 2.5. Hence, the splitting of the terms 4T1( , e)

and 2T1( , e) for spinel is equal to 2100 and 850 cm–1

in magnitude, respectively. At the same time, the corre-
sponding values for ruby are 1200 and 200 cm–1,
respectively. The absorption bands were identified in
[46]. The ultraviolet UV band at 54700 cm–1 in the spec-
trum of spinel (Fig. 4) is 70–80 times stronger than the
other absorption bands. It is suggested that the term
2E( , e), which is responsible for this band, lies in the
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Table 2.  Calculated and experimental energies of the terms of the Cr3+(3d3) ion in ruby, magnesium spinel, and yttrium–
aluminum garnet (E, cm–1) [46, 57]

Term
Ruby Spinel Garnet

theory experiment theory experiment theory experiment

( )4A2 0 0 0 0 0 0

( )2E 13900
14400 R1 14700

14653.5 R1 14200
14516 R1

14429 R2 14660.0 R2 14536 R2

( 2T1)4A2

2A2 14650 14939 15800 15069 16140 15162

15050
15150 

15400
14812 

15100
15213

2E 15172 14790 15420

(3T1), e : 4T2

4E 17850 18000 U⊥ 18450
18350 U

17250
16700 U4A1 18300 18400 U|| 18430 17450

( 2T2)

2E
21500

20993 B1 22850
22100 B*

21600
21068 B2

2A1 21900 21357 B3 21415 21850

(3T1), e : 4T2

4E 24300 24400 Y⊥ 26200 25200
Y

23600
23200 Y4A2 25500 25500 Y|| 24100 23200 24100

(1E), e : 2A1 29950 30850 29400

(3T1), e : 2T2

2E 31850 30100 [15700] 32900

32900 [18200]
U1 + U2

31400

31200 [16700]
U1 + U2

2A1 32100 30000 [15600] 33300 31500

(1T2), e : 2T1

2E 32350 32500 [18100] 33600 31700

2A2 32500 32800 [18400] 33200 31900

(1E), e : 2E 34200 35250 33500

(2T2), e : 2T1

2A2 37200 36700 [22300] 37850 37500 [22800] 36400 37800 [23300] 
Y12E 37400 36400 [22000] 38700 40300 [25600] 36500

t2, e2(3A2), 4T1

4E 39150 39200 V⊥ 39700
38500 V

37600
36300 V4A2 39200 39000 V|| 41700 37900

(1T2), e : 2T2

2A1 41600 40700 [26300] 43700
45500 [30800] Y2

40850 43100 [28600] 
Y22E 41700 40800 [26400] 42900 40800

(1E), e : 2A2 43100 42100 [27700] 44750 42200

t2, e2(3A2), 2T1

2E 49800 50700 48700
2A2 50300 51900 48800

t2, e2(1E), 2T2

2E 51500 53500 50200
2A2 51600 52700 50300

(1A1), e : 2E 52000 55400 [41000] UV 53900 54700 [40000] UV 51000 55000 [40500] 
UV

t2, e2(1E), 2T1

2A2 56300 58600 54900
2E 56500 59300 55000

t2, e2(1A1), 2T2

2E 70700 72700 69300
2A1 70800 74200 69500

2E(e3 2E) 74400 77100 72700
Note: The values in square brackets are the experimentally found positions of the excitation bands of ruby, spinel, and garnet, counted from

the 2E( ) level.

* According to [45].
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Fig. 4. Spectra of absorption from the ground (4Ä2) and metastable (2Ö) states of Cr3+ ions in magnesium spinel MgAl2O4 : Cr3+.
The lower scales show the energies of transitions from the ground (4Ä2) and metastable (2E) states. The calculated positions of the
terms are indicated in the upper part.
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CT band, due to which the 2E( , e)  2E( , e) tran-
sition becomes allowed. This fact accounts for the high
intensity of the UV band. With a decrease in tempera-
ture, the behavior of the UV band drastically differs
from the behavior of the other bands. When the temper-
ature decreases from room to liquid-nitrogen, the UV
band becomes narrower and its intensity decreases so
that the oscillator strength decreases by more than a
factor of two [1, 46].

In fact, the entire ESA spectrum of spinel
MgAl2O4 : Cr3+ is a superposition of two spectra due to

the transitions from the 2E( ) level with the character-
istic lifetime 13 ms and from the N level, which is
located below the 2Ö level by 80 cm–1 and has a charac-
teristic lifetime of 5 ms. All the bands, except for the
UV band, are completely overlapped; therefore, the
spectrum kinetics is controlled by the longest lifetime,
specifically, 13 ms. If the absorption kinetics is mea-
sured at the edges of the UV band, τ = 13 and 5 ms at
230 and 280 nm, respectively. Oscillograms of these
processes serve as good evidence [41, 42]. Finally,
speaking of the possibility of lasing in MgAl2O4 : Cr3+

spinel, our experiments do not suggest it. First, the pos-
sible lasing wavelength 682 nm (14660 cm–1) is over-
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C

lapped by long-wavelength wings of the U and (U1 +
U2) bands. Second, the absorption and amplification
cross sections of spinel are smaller by an order of mag-
nitude than those of ruby. Therefore, both the pumping
of the 2Ö level and the amplification turn out to be
insufficient to obtain lasing. The parameters of the crys-
tal field and the positions of the terms in the energy-
band diagram of magnesium spinel MgAl2O4 : Cr3+ are
listed in Tables 1 and 2.

1.5. Yttrium–aluminum garnet Y3Al5O12 : Cr3+

became the second (after ruby) Cr3+-doped material in
which lasing was obtained [47, 48]. This material has
green color and exhibits bright red luminescence in the
vicinity of ~690 nm. Garnet has cubic symmetry and

belongs to the space group –Ia3d. In the garnet

structure, Al3+ ions, which occupy octahedral and tetra-
hedral positions, are in oxygen environment. The sym-
metry of the environment of Cr3+ ions is not strictly
cubic; it is characterized by weak trigonal distortion,
which reduces the symmetry to C3i [49–51]. The
absorption and luminescence spectra of Cr-doped gar-
nets were studied in [52–56].

Oh
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Table 3.  Transition frequencies, transverse cross sections, and half-widths of lines and bands in the spectra of Y3Al5O12 : Cr3+

crystals at 300 and 77 K

Band Transition
4A2 

Transition frequency
ν, cm–1

Absorption cross section
σ, 10–21 cm2

Half-width of absorption 
line ∆ν, cm–1

Factor
µ, cm–1

300 K 77 K 300 K 77 K 300 K 77 K 300 K

Y 4T1 23050 23200 37 30 3550 3070 19.4

U 4T2 16610 16780 19.6 15.4 2290 1850 10.3

R1 2A(2E) 14520 14549 1.2 9.2 14 1.3 0.64

R2 (2E) 14540 14569 0.94 8.4 12 1.2 0.56E
We were the first to investigate the ESA [57, 58] and
GSA [59] spectra of Y3Al5O12 : Cr3+ crystals. The com-
plete energy-level diagram of the Cr3+ ion in
Y3Al5O12 : Cr3+ was calculated in [57] in terms of
strong cubic field of the C3v symmetry expanded in the
energy matrices of the 3d3 configuration with the use of
the crystal-field parameters listed in Table 1. As one
should expect for Cr3+ ions in the octahedron environ-
ment, their absorption spectrum due to the transitions

from the ground state 4A2( ) in Y3Al5O12 : Cr3+ con-
tains two broad bands (U and Y) and three narrow lines
(R1, R2, and B).

The complete characteristic of the absorption bands
and lines in the spectra of Y3Al5O12 : Cr3+ at room and
liquid-nitrogen temperatures is given in Table 3. At
room temperature, B and R lines overlap with the long-
wavelength edges of the Y and U bands. Hence, it is
quite a problem to find the positions of these lines. With
a decrease in temperature to 77 K, the vibrational struc-
ture at long-wavelength edges of the broad bands U and
U1 freezes out, due to which these bands become nar-
rower and shift to longer waves. At room temperature,
the absorption cross section for the long-wavelength
edge of the U band at the R1 line is σGSA (300 K) = 0.5 ×
10–21 cm2. The absorption cross section for the long-
wavelength edge of the U1 band in the ESA spectrum at
the same wavelength (the R1 line) is σESA (300 K) =
1.78 × 10–21 cm2. At liquid-nitrogen temperatures,
σGSA(77 K) ~ 0 and σESA (77 K) = 0.33 × 10–21 cm2. The
luminescence of Y3Al5O12 : Cr3+ occurs at the wave-
length of the R1 line (687.4 nm). The luminescence-
decay time constant  = 1.5 ± 0.1 ms at 300 K. At
77 K, this parameter increases to 9.0 ± 0.57 ms [57].
These values are close to those reported in [53, 56].

The value of the lasing threshold can be expressed
by the formula [58]

(13)

t2
3

τR1

n2

n0
-----

1
2
--- 1

1 σ13/2σ12( ) σ24/2σ12( )–+
------------------------------------------------------------------×=

× 1 σ13/σ12( ) σ24/σ12( )+ +( ).
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Here, σ12 is the cross section of amplification at the R1
line and σ13 and σ24 are the cross sections of absorption
at the R1 line for the 1–3 and 2–4 transitions, respec-
tively. Using the above values of absorption cross sec-
tions σESA and σGSA, we find that the threshold value
(n2/n0)thd > 1 at room temperature. Hence, lasing is
impossible. At 77 K, (n2/n0)thd = 0.51, and lasing is quite
possible. Thus, at temperatures about 100 K and below,
one might expect lasing at the wavelength of the R1 line
(687.4 nm). Indeed, lasing under these conditions was
obtained in [47, 48].

Yttrium–aluminum garnet (YAG) doped with Cr3+

ions became the second (after ruby) crystal in which we
obtained lasing in 1972. It is worth noting that lasing
was first predicted on the basis of the ESA-spectros-
copy measurements and then obtained purposefully.
This fact is significant evidence of the importance of
ESA spectroscopy in predicting new laser materials.

In view of the fact that lasing had been obtained in
Y3Al5O12 : Cr3+ crystals, the dependences of the GSA
and luminescence spectra of garnet crystals on chro-
mium concentration were studied in detail [59]. It was
shown that the intensities of the absorption bands Y1
and U1 and the R1 and R2 lines increase linearly with
increasing chromium concentration. The dependence
of the absorption coefficient K for the absorption bands
and lines on the chromium concentration C (in wt %) in
garnet is described well by the linear function K = µC
(Table 3).

An interesting observation was made by Pasternak
[59]: when Y3Al5O12 : Cr3+ crystals are grown by the
Stockbarger method, simultaneously with the motion
of the molten zone, a new phase enriched with chro-
mium arises to move. In the luminescence spectrum of
a garnet containing this phase, R1 and R2 lines of ruby
can be clearly seen. The X-ray phase analysis corrobo-
rated the suggestion that the new phase represents ruby.
It is noteworthy that, when Y3Al5O12 : Nd3+ crystals are
grown, the melt is enriched with yttrium oxide [60].
However, the situation changes when chromium oxide
(Cr2O3) is present in the garnet melt. Cr3+ ions isomor-
phously substitute Al3+ ions [59, 60], and this process
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leads to an excess of aluminum in the melt. As a result,
Al2O3 phase is formed.

It is of great interest to investigate the color centers
appearing in YAG : Cr3+ crystals during their growth, as
well as the color centers appearing due to the effect of
optical pumping on Y3Al5O12 : Cr3+ crystals. Special
studies [61–63] were devoted to these aspects. How-
ever, since the interpretation of the results obtained is
very complex, we cannot even outline them here.
Therefore, we refer those who are interested in these
data to [61–63]. Tables 1–3 contain the spectroscopic
parameters of Y3Al5O12 : Cr3+.

1.6. Alexandrite (BeAl2O4) has played a decisive
role in the development of crystal lasers. It became the
first crystal in which lasing at the R1 line [64, 65] and
tunable lasing in range from 700 to 815 nm at room
temperature [66] were obtained.

Alexandrite has orthorhombic symmetry, which is

characterized by the space group -Pnma [34]. Farrel
et al. [67] studied the crystal structure of alexandrite
and determined the unit-cell parameters: a = 9.404 Å,
b = 5.476 Å, and c = 4.427 Å. Later [68], the atomic
structure of alexandrite was refined by X-ray analysis
with the use of an RÉD-4 automatic four-circle diffrac-
tometer developed at the Institute of Crystallography,
RAS [69]. The following values of the unit-cell param-
eters were obtained: a = 9.407(4) Å, b = 5.4781(5) Å,
and c = 4.4285(3) Å. The geometric parameters of octa-
hedra with mirror and inversion symmetry, refined in
[68], confirm the conclusions drawn in [70, 71]: Cr3+

ions incorporate into octahedra with mirror symmetry
with higher probability than into octahedra with inver-
sion symmetry. Note that the ionic radius of the Cr3+ ion
(0.65 Å) exceeds that of the Al3+ ion (0.57 Å) (the Gold-
schmidt ionic radii [70]). The Cr3+ ions incorporated
into mirror- and inversion-symmetric octahedra are

denoted as  and , respectively.

It is  ions that are responsible for lasing since
they are characterized by high-probability electric
dipole transitions. The magnetic dipole transitions in

 ions do not contribute significantly to the optical
absorption and luminescence spectra. They are not only
excluded from the lasing process but even serve as

“sinks” for the excitation energy of  ions. There-

fore, the ratio of the concentrations of  and 
ions is of importance. In natural deposits of chryso-

beryl, the ratio of the  concentration to the 
concentration ranges from 80 : 20 to 57 : 43 [72].

Forbes [70] found the concentration of  ions in the
samples of alexandrite studied by Walling et al. [66] to
be 78 ± 3%. Vazhenin [73] used the fact that the linear
pseudo-Stark effect is allowed for inversionless para-
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magnetic centers. In the cavity of an ESR spectrometer,
an electric field as strong as 300 kV/cm was applied to
an alexandrite sample. Such a field did not lead to any
changes in the ESR spectra of four magnetic nonequiv-

alent centers, which are related to the  positions.
ESR signals from the two other centers either split into
two components of equal intensities or broadened at all
orientations of the electric and magnetic fields. Accord-
ing to the measurements [73], the concentration of

 ions in Czochralski grown samples studied by us
[74] is 81 ± 2.5%, which is in good agreement with the
results of [70]. The absorption and luminescence spec-
tra of natural minerals (in particular, alexandrite) were
investigated in [75]. Grown alexandrite crystals were
studied by GSA spectroscopy in [64, 66]. The absorp-
tion spectra, which are typical of the Cr3+ ion in the
octahedral environment [3, 4], consist of two broad
bands U and Y peaked at 18182–16667 cm–1 (550–
600 nm) and 23697 cm–1 (422 nm), respectively; two
narrow lines R1 and R2 at 14700 cm–1 (680.27 nm) and
14739 cm–1 (678.46 nm), respectively; and three lines
B1, B2, and B3 at 21224.1 cm–1 (471.2 nm), 21367.5 cm–1

(468.0 nm), and 21413.3 cm–1 (467 nm), respectively
[76, 77]. At 77 K, the intensities of the R1 and R2 lines
are higher by more than a factor of five; notably, these
lines shift to shorter waves by 8 Å [76, 77]. A distinct
vibrational structure can be seen at the long-wavelength
edge of the U band.

In the case of light polarization Ö || b, a strong nar-
row line at 15540 cm–1 (643.5 nm) arises in the absorp-
tion spectrum at temperatures of 230–240 K and lower
[76–78]. This line, being observed in the excitation
spectrum of the R1 line as distinctly as in the absorption
spectrum, is absent in the luminescence spectrum. The
integrated intensity of this line in the absorption spec-
trum decreases with increasing temperature, and, at
room temperature, this line vanishes. We attributed this
line to the zero-phonon electronic transition
4A2( )  4T2( , e) [76–78]. Indeed, the spectral
position of the zero-phonon line corresponding to the
4A2  4T2 transition can be determined as a sum of the

position of the averaged R line, i.e., (R) =  =

14686 cm–1, and the energy gap ∆ between the 2E( )

and 4T2( , e) states. On the basis of the measurements
of the temperature dependence of luminescence, the
value of ∆ was found to be 800 cm–1 [66]. Thus, the line
due to the zero-phonon transition to the 4í2 state is
located at 15486 cm–1 (645.7 nm), which is in good
agreement with the corresponding experimental value
(15540 cm–1 (643.5 nm)). There is some other, more
profound, evidence which corroborates the interpreta-
tion of this line as caused by the zero-phonon electronic
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transition 4A2  4T2 [78]. A narrow line at 643.4 nm
observed later was also attributed to the zero-phonon
electronic transition 4A2  4T2 [79].

The ESA spectra of alexandrite were studied in [76–
78, 80–82]. The most complete investigation was per-
formed in [83]. Figure 5 shows the absorption spectra
due to the transitions from the ground (4A2) and meta-
stable (2E) states of the Cr3+ ion for three polarizations
of light. Calculated terms are also shown. The dotted
line represents the expansion of the absorption bands of
alexandrite in Gaussian components. The ESA spec-
trum of alexandrite affects its lasing characteristics.
Thus, the luminescence spectrum of alexandrite, which
ranges from 0.6 to about 1 µm, overlaps in the short-
wavelength region (starting with 710 nm) with the

induced-absorption band due to the 2E( )  2T1( ,
e) transition. The well-known wavelength dependence
of the lasing threshold of alexandrite [76–78] has a dis-
tinct peak at 715 nm. It is reasonable to attribute this

peak to absorption via the 2E( )  2A1( , e) channel
(see Table 4). Alexandrite, as well as other chromium-
doped crystals, exhibits a strong absorption band in the
UV part of the ESA spectrum (at 56500 cm–1). The
intensity of this band exceeds the intensities of all other
absorption bands in the alexandrite spectra by a factor
of 30–40. As in the cases of ruby, spinel, and garnet,
this absorption band may be attributed to the 2E  2Γ
transition, where 2Γ is the level at 56500 cm–1 in the CT
band.

The ESA spectrum of alexandrite differs from the
spectra of other chromium-containing crystals. Specif-
ically, the 4T2( , e) state in the energy-band structure
of alexandrite is significantly populated, and the transi-
tion 4T2( , e)  Γ (the CT band) is possible in prin-
ciple. Therefore, the band at 40400 cm–1, which mani-
fests itself in the case of light polarization E || b and is
attributed to the 4A2  b4T1 transition in Fig. 5, may

be even more likely due to the 4T2( , 3T1, e)  CT
band transition. This problem could be solved using
low-temperature measurements.

Farrel and Fang were the first to suggest a funda-
mental possibility of obtaining lasing in alexandrite
crystals in 1964 [84]; however, they failed to obtain it
in practice.

Lasing in alexandrite was first reported by Bukin
et al. in 1978 [64]. These researchers observed lasing at
the R1 line in an alexandrite sample 6.4(‡) × 0.46(b) ×
0.3(c) cm3 in size (a, b, and c signify the crystallo-
graphic axes) at liquid-nitrogen temperature without a
dispersive element in a cavity. In addition, along with
the luminescence at the R1 and R2 lines, strong broad-
band luminescence due to the 2E  4T2  4A2 tran-
sition was observed in [64]. Unfortunately, as can be
seen from the above parameters, the sample was incor-
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rectly oriented. However, lasing at the R1 line was
observed at liquid-nitrogen temperature. At the same
time, Bukin et al. could continue their experiments
aimed at obtaining lasing at the 2E  4T2  4A2 tran-
sition only after appropriate crystals were grown. The
results of spectroscopic and lasing investigations of
these crystals were reported in [76–78].

In 1980, Walling et al. [66] reported on tunable las-
ing at the 2E  4T2  4A2 transition. At the same
time as Walling’s publication, we became aware of US
patent 3 997 853 by Morris et al. [65], in which the las-
ing at the R1 line in alexandrite at room temperature
obtained in a cavity without a selective element was
described. A cylindrical sample of alexandrite 0.5 cm in
diameter and 5.8 cm long oriented along the crystallo-
graphic c axis was used in [65]. The concentration of
Cr3+ ions was 0.03 at. %. As was noted in [65], lasing at
the R1 line (6804 Å) was observed in this sample in a
cavity without a dispersive element at room tempera-
ture.

We should note that our attempts to obtain lasing at
the R1 line in alexandrite at room temperature in a cav-
ity without a selective element were unsuccessful [76,
77, 85]. In these experiments, cylindrical samples 0.5–
0.6 cm in diameter and ~7 cm long oriented along the c
axis, with a chromium concentration of 0.03–0.09 wt %,
were investigated. Spectrophotographs of broadband
lasing in alexandrite at various temperatures (from 70
to 180°C) and pumping levels were reported in [85]. In
a nonselective cavity, lasing may arise simultaneously
in several spectral regions; notably, the emission bands
do not shift with increasing the pumping power and
only their intensity increases. The R1 line is absent in
the lasing spectrum in the case of nonselective cavity at
room temperature.2 With an increase in temperature
from 70 to 180°C, the lasing spectrum shifts to longer
waves.

To finish the brief description of the spectral and las-
ing properties of alexandrite, we should note the fol-
lowing. Alexandrite contains beryllium and, thus, is
toxic during its growth and treatment. Presently, it is
replaced by other crystals, for example, Al2O3 : Ti3+.
Nevertheless, alexandrite is a unique material, combin-
ing most interesting optical, spectroscopic, magnetic,
and lasing properties. It is believed that alexandrite will
open many new possibilities for setting up interesting
experiments.

1.7. Lithium germanate Li2Ge7O12 : Cr3+ has
attracted considerable interest due to its very intense
luminescence in a wide spectral range (from 650 to
800 nm). With regard to the high toxicity of alexan-
drite, it would be tempting to replace it with some other

2 The reference in [85] to [77], where lasing at the R line was
seemingly obtained in alexandrite at room temperature without
using a selective element in a cavity, is incorrect. The lasing at the
R line in alexandrite at room temperature could be obtained in
[77] only with a selective element in a cavity.



1000 SEVAST’YANOV
material. At first glance, Li2Ge7O12 : Cr3+ seems to be
such a material. Hence, chromium-doped lithium ger-
manate has been a subject of study since the 1960s [86–
88]. Crystalline lithium germanate undergoes the ferro-
electric phase transition D2h  C2v  at 10°C.

Li2Ge7O12 : Cr3+ crystals are characterized by a
strong cubic field. Cr3+ ions occupy positions in the
field of octahedral symmetry. The absorption spectrum
of Li2Ge7O12 : Cr3+ contains two broad bands caused by
the absorption from the ground state: the U band at

600 nm (16 700 cm–1) due to the 4A2( )  4T2( , e)
transition and the Y band at 420 nm (23810 cm–1) due

to the 4A2( )  4T2( , e) and 4A2( )  4T1( , e)
transitions (Fig. 6). There are also two narrow lines: the
R1 line at 696.4 nm (14360 cm–1) and the R2 line at
693.3 nm (14423 cm–1) due to the electronic transitions
4A2  2E( , 2 ). The fundamental-absorption edge of
pure Li2Ge7O12 : Cr3+ is located at 250 nm (40000 cm–1).
If Li2Ge7O12 is doped with Cr3+ ions, a strong absorp-
tion band arises in the GSA spectrum, which begins at
350 nm (28570 cm–1) and overlaps with the fundamen-
tal-absorption band in the short-wavelength region.

The dependence ∆K(λ) for Li2Ge7O12 : Cr3+ differs
from the corresponding dependences for other crystals
considered above. This dependence is observed against
a strong background, which increases with decreasing
wavelength. The background noted can in no way be
attributed to passive nonresonant losses (see formula (4)
and the note to it); its nature has not been ultimately
established. A possible explanation is that the CT band
is observed in a broad energy interval; specifically, this
band extends, decaying, to 30 000 cm–1. The spectrum
∆K(λ) is superposed on this background. Three max-
ima at 615, 480, and 390 nm and two minima at 550 and
430 nm of the function ∆K(λ) can be seen in the expo-
nential falloff of the curve in Fig. 6. The ESA spectrum
derived from formula (4) consists of three bands: U1

(600 nm (32090 cm–1)), Y1 (480 nm (35230 cm–1)), and
Y2 (410 nm (38780 cm–1)). These bands are due to the

transitions from the 2Ö level to the b2T2( , Â); c2T1( ,

e), and c2T2( , e) states, respectively.

In view of the observed background, the results of [87],
where two-step photoionization of Li2Ge7O12 : Cr3+

crystals was realized, are of interest. A sample was irra-
diated simultaneously by a He–Ne and Ar laser. In this
case, two-step photoionization occurred as follows:
4A2  2E  CT band. Electrodes were deposited on
the sample in such a way as to record the photocurrent,
which depended quadratically on the input-radiation
power (I ∝  P2). Such a dependence corroborates the
two-photon mechanism of photoionization. Powell [86]
attempted to obtain lasing in Li2Ge7O12 : Cr3+ crystals
but failed. Having studied the ESA spectrum, we con-
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cluded that, under the conditions of such an intense
background caused by the induced absorption (which
overlaps the entire spectrum), lasing in Li2Ge7O12 : Cr3+

crystals is hardly possible.

1.8. Sapphire–titanium (S–T) Al2O3 : Ti3+. The
detection of lasing in Al2O3 : Ti3+ crystals was an out-
standing discovery made by Moulton [89]. Indeed,
Al2O3 : Ti3+ is a unique material which combines high
hardness, high thermal conductivity, wide-range trans-
mittance, and so on. The Ti3+ ion only has the term 2D,
which is split by the crystal field into the components
2Eg and 2T2g, and no other terms, which could cause
induced absorption. The only transition from the
excited state 2Eg is the transition to the CT band.
Finally, the frequency of lasing in S–T crystals can be
tuned in an unprecedently wide range: from 650 to
1200 nm. Naturally, such a favorable combination of
properties of Al2O3 : Ti3+ crystals could not be left aside
by researchers.
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Fig. 5. Spectra of absorption from the ground (4A2) and
metastable (2E) states for Cr3+ ions in alexandrite
BeAl2O4 : Cr3+.
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Table 4.  Calculated and experimental energies of the terms
of the Cr3+(3d3) ion in alexandrite (E, cm–1)

Term Calculation
(E, cm–1)

Experiment
(E, cm–1)

2E( ) 14662 14701

14747

2T1( ) 15291 15264

15394 15405

15448 15503

4T2(  3T1, e) 16888 16900 E || b

17279 17500 E || a

17617 17700 E || a

2T2( ) 21288 21184

21347 21368

21720 21692

4T1(  3T1, e) 23954 23900 E || b

23984 23900 E || a

24201 24100 E || c

2A1(  1E, e) 29642 28700

2T2(  T1, e) 32053 31400 E || b

32130

2T1(  1T2, e) 32672 32400 E || c

31457

32212 32600 E || a

32926

2E(  1E, e) 33803

34088

2T1(  3T1, e) 36967 37000 E || c

37128 37000 E || b

37342 37400 E || a
4T1(t2, e2, 3A2) 36800 37500 E || c

38310 38000 E || a

38490 38000 E || b

4T2(  3T1, e)  band 40400 E || b

2T2(  1T2, e) 42025 39700 E || b

41745 39700 E || a

42025 42100 E || c
2A2(t2

 1E, e) 43458

Note: Dq = 1726, B = 717, C = 2997, v  = –1000, v ' = 510, y = 47,
z = 119, α = 70, β = –328 cm–1.
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After Moulton’s report (December 1982), investiga-
tions of Al2O3 : Ti3+ crystals began at the Institute of
Crystallography, RAS. The results of these studies, spe-
cifically, the attainment of tunable lasing in the range of
720–780 nm in Al2O3 : Ti3+ crystals grown by the Ver-
neuil method, by horizontal directed crystallization,
and by the Czochralski method, were reported at the IV
All-Union Conference on Tunable Lasers in the begin-
ning of December 1983 [90]. The lasing in Al2O3 : Ti3+

crystals with the use of lamp pumping was obtained for
the first time. A standard coaxial INK-22/250 lamp was
used. A dye solution, which was used not only to cool
samples but also to convert light, was pumped through
the system. These investigations were developed in
[91–94].

We were especially interested in quasi-continuous
lasing, i.e., laser pulses with a width up to several hun-
dred microseconds having a smooth envelope. In order
to realize such a lasing, special flash lamps were
designed [93] which make it possible to pass through
them current pulses as wide as 600 µs with a very steep
leading edge. The quartz glass of lamp bulbs contains
cerium. As a result, pulses 600 µs wide with a smooth
envelope were obtained [94], which can be used in a
number of applications.

The ESA spectrum of Ti3+ ions, although not as rich
as that of Cr3+ ions, nevertheless exhibits features
related to the electronic transitions from the lower sub-
level of the excited 2E level (16700 cm–1) to the CT
band. Figure 7 shows the band due to the absorption
from the ground state at 220 nm (45 460 cm–1), which
overlaps with the fundamental-absorption edge, and the
∆K(λ) spectrum in the wavelength range from 330 nm
(47000 cm–1) to ~280 nm (52420 cm–1). It can be seen
that ∆K(λ) steadily increases with decreasing wave-
length, which indicates the absorption from the 2Eg

level to the CT band. This result is consistent with the
ESA measurements [95]. The method of two-step pho-
toionization suggested by Kaplyanskiœ [96, 97] showed
that, upon simultaneous illumination of a Al2O3 : Ti3+

sample by a N2 laser (λ = 510.2 and 578.2 nm) and a Cu
laser (510.2 and 578.2 nm), a photocurrent flows
through the sample, which is caused by photoionization
of Ti3+ ions via the intermediate level 2Eg. The radiation
of a Cu laser rapidly populates the 2Eg level, while the
N2-laser radiation photoionizes Ti3+ ions from the 2Eg

state. Thus, the data of ESA spectroscopy and two-step
photoionization yield similar energy-band diagrams of
Al2O3 : Ti3+ crystals.

2. NARROW LINES IN THE IR ESA SPECTRA 
OF Cr3+-DOPED CRYSTALS

The ESA spectra of Cr3+-doped crystals considered
above consist of broad bands. At the same time, the

spectra consisting of narrow lines due to the (2E( ),t2
3
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2T1( ))  2T2( ) transitions, which occur without
changing the electronic configuration of Cr3+ ions, are
no less informative.

2.1. In ruby, the forbiddenness of the 4A2( ) 
2T2( ) transition is lifted partially due to the action of
a strong trigonal field. Hence, B lines can be observed
in the absorption spectrum of ruby [98]. In crystals with
higher symmetry of the Cr3+ positions, such as yttrium–
aluminum garnet Y3Al5O12 : Cr3+ and, especially, mag-
nesium spinel MgAl2O4 : Cr3+, it is very difficult (if at
all possible) to observe B lines. ESA spectroscopy

makes it possible to study the 2T2( ) state by observing
the narrow lines corresponding to the spin- and parity-
allowed transitions (2E, 2T1)  2T2 . The B lines in the
spectra of ruby were studied in [99–101]. According to
the terminology used in [101], we will refer to them as
I lines (infrared lines). We studied in detail the I lines in
the spectra of ruby and, for the first time, in the spectra
of garnet Y3Al5O12 : Cr3+ and spinel MgAl2O4 : Cr3+

[102]. The measurements were performed at 300 and
77 K. Obviously, samples are heated due to pumping.
The actual temperature of samples at the instant of mea-
surements, determined from the temperature shift of the
R lines [58], was equal to 100–120 K.

A schematic diagram of the (2E, 2T1)  2T2 transi-
tions for chromium-doped crystals is shown in Fig. 1b.
In the range of 1300–1700 nm, two narrow intense
lines, I12 and I21 (6551 and 6657 cm–1, respectively), are
observed in the ESA spectrum of ruby at 100 K for the
light polarization E || c. In the case of Ö ⊥ c polariza-
tion, four narrow distinct absorption lines can be seen:
I11, I22, I13, and I23 (6580, 6623, 6907, and 6936 cm–1,
respectively). We failed to resolve the I13 and I23 lines as
distinctly as in [100], although our measuring tech-
nique allowed us to do this. A similar result was
obtained in [101]. In addition to the strong narrow I
lines, which are due to the zero-phonon transitions, the
near IR spectrum of ruby contains a great number of
electronic–vibrational replicas of the I lines. The I lines
and their electronic–vibrational replicas for ruby are
identified in Table 5, which also lists the positions of
the zero-phonon narrow lines and their electronic–
vibrational replicas.

2.2. Garnet Y3Al5O12 : Cr3+. The local symmetry of
the positions of Cr3+ ions in garnet crystals is higher
than that in ruby. Therefore, the lift of the forbidden-

ness of the 4A2( )  2T2( ) transitions manifests
itself in garnets to a lesser extent than in ruby. B lines
cannot be observed in the spectra of garnet samples
with a low chromium concentration. Only when the
chromium concentration is as high as ~1% do barely
distinguishable B lines appear. Nevertheless, Pasternak
managed to measure in detail the GSA spectra of garnet
in the vicinity of the B lines (460–480 nm) using a
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method he developed [102]. At the same time, the lines

due to the 2E( )  2T2( ) transitions can be easily
observed even in the ESA spectra of garnet samples
with a low chromium concentration; notably, the
absorption cross sections σ(2E  2T2) exceed the
absorption cross sections σ(4A2  2T2) by an order of
magnitude. Table 6 contains the frequencies of the elec-
tronic transitions 4A2  2T2 and 2E  2T2 in garnet
and the frequencies of corresponding electronic–vibra-
tional replicas. It can be seen from Table 6 that the
phonon frequencies we found from the ESA spectra are
in good agreement with the corresponding values
reported in [103, 104]. It is noteworthy that the elec-
tron–phonon spectra (2E, 2T1)  2T2 do not contain
lines due to the pair and higher order interactions
between chromium ions, whereas such lines manifest
themselves in the luminescence spectra. This fact indi-
cates that ESA spectroscopy can be used to determine
the phonon spectra of impurity crystals. The results
obtained in [102] made it possible to determine the

positions of the 2T2( ) levels of the Cr3+ ion in ruby and
garnet (Table 7).

2.3. Magnesium spinel MgAl2O4 : Cr3+. The ener-

gies of the 2T1( ) and 2T2( ) levels were calculated for
magnesium spinel in [36, 37, 46]. The positions of the
2T1( ) and 2T2( ) levels were studied experimentally
in [102]. Since the symmetry of the Cr3+ environment in
spinel is higher than that in ruby or garnet [105], the
absorption due to the 4A2  2T2 transition was not
observed, although the chromium concentration was
sufficiently high (~1.5 × 1020 cm–3). In [33], where sam-
ples of natural Ceylon spinel were investigated, a slow
rise in the absorption curve in the vicinity of 22100 cm–1

t2
3 t2

3

t2
3

t2
3 t2

3

t2
3 t2

3

300 400 500 600 700
λ, nm

0

10

∆K, cm–1

200
0

50

100
K, cm–1

E || a

E || b

E || c×101

2

3

Fig. 6. Spectra of absorption from the ground state 4A2 of
Cr3+ ions in lithium germanate Li2Ge7O12 : Cr3+. (1) The
fundamental-absorption edge of the crystal, (2) the absorp-
tion spectrum of the crystal, (3) the spectrum of ∆K(λ).
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(452.4 nm) was observed. This rise was attributed to the
4A2  2T2 transition. Apparently, this transition is
possible in natural spinel, which is corroborated by the
fact that the narrow R1, 2 lines in the luminescence spec-
tra of natural spinel are resolved well [106], even

though the splitting of the 2E( ) level is only ~6 cm–1.
In this case, one should expect the B lines to be fairly
narrow and intense. In the spectra of artificial spinel,
the R1, 2 and B lines are strongly broadened due to the
stresses in the material and its nonstoichiometry [44].
The lines in the spectra of such crystals are weaker, and
B lines cannot be observed in the absorption spectra
[106].

In contrast to the GSA spectrum in the vicinity of
the 4A2  2T2 transition, the ESA spectrum of magne-
sium spinel in the vicinity of the 2E  2T2 transition
(1200–1700 nm) can be observed fairly easily. Unfortu-
nately, we have no samples of natural spinel at our dis-
posal to detect narrow R and B lines. The I lines we
observed were strongly broadened and overlapped
[102]. As was noted above, the ESA spectra of spinel
exhibit the absorption by centers of R and N types
simultaneously. Therefore, both decay times of the
metastable state (20 and 5 ms) manifest themselves in
the maxima of the I lines at 7690 cm–1 (1300 nm) and
7240 cm–1 (1380 nm). In the side bands at 8440 cm–1

(1180 nm) and 6330 cm–1 (1600 nm), only the contribu-
tion of the longer time (20 ms) is observed. Thus, we

may conclude that the frequency of the 2E( ) 
2T2( ) transition is about 7470 cm–1 (1340 nm) [100].

Notably, the sum of the frequencies of the 4A2( ) 
2E( ) and 2E( )  2T2( ) transitions is equal to
22070 cm–1 (453 nm), which is in good agreement with
the value 22100 cm–1, obtained in [33] for the fre-

t2
3

t2
3

t2
3

t2
3

t2
3 t2

3 t2
3

250150 350 450
λ, nm

0.04

0.08

00

10

20

30
K, cm–1 ∆K, cm–1

1

2

3

Fig. 7. Absorption spectra of Al2O3 : Ti3+ crystals in the UV
range. (1) The fundamental-absorption edge, (2) the absorp-
tion band at 220 nm, (3) the spectrum of ∆K(λ).
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quency of the 4A2( )  2T2( ) transition. The
detailed ESA spectra of ruby, garnet, and spinel in the
wavelength range 1300–1800 nm were reported in
[102].

3. GENERAL FEATURES OF THE ESA SPECTRA 
OF CRYSTALS DOPED WITH CR3+ IONS

3.1. CT Bands. All the ESA spectra of crystals
doped with Cr3+ ions contain a strong absorption band
in the UV region at 40000–55000 cm–1. The oscillator
strengths of this band generally exceed those of other
absorption bands by a factor of 50–150. This strong
band is generally attributed to the electronic transitions
between the states of metal-impurity ions and the orbit-
als of nearest oxygen ligands (the metal-to-ligand
charge transfer).

The theoretical consideration of the CT bands in the
spectra of impurity crystals was performed by McClure
[107]. Tippins was the first to study them experimen-
tally [108]. He observed the CT bands in the absorption
spectra due to the transitions from the ground state of
Fe3+, Ti3+, Cr3+, Mn3+, and Ni3+ ions in Al2O3 crystals.
These bands are located at the fundamental-absorption
edge of Al2O3. Hence, they manifest themselves as
barely noticeable humps at the fundamental-absorption
edge. For this reason, Tippins could not observe fea-
tures of these bands but determine only their positions
in the spectrum. On the basis of his measurements, he
suggested an acceptor model of the charge transfer.
According to this model, electrons pass from the orbit-
als of the oxygen ligands to the levels of the impurity-
metal ion. However, Sabatini et al. [109], having mea-
sured the temperature dependence of the intensities of
CT bands, revealed that the oscillator strength of the CT
band decreases with decreasing temperature and its
maximum shifts to shorter waves. As was believed in
[109], these two phenomena indicate that electrons pass
from the metal-ion levels to the ligand orbitals; i.e., the
donor model is realized.

Note that CT spectra have not been investigated sys-
tematically because of the difficulties caused by over-
lapping of CT bands with the fundamental-absorption
edge. In this context, the ESA technique may ensure
significant progress. Indeed, in contrast to the GSA
spectroscopy when the CT band manifested itself as
very weak features against the intense fundamental
absorption band, the CT band in ESA spectra is much
stronger than the fundamental absorption. Moreover,
the nature of the ESA technique itself [see Eqs. (1)–(3)]
makes it possible to get rid of the background at the
fundamental-absorption edge.

With a decrease in temperature, the oscillator
strengths of CT bands decrease. For example, when the
temperature decreases from 300 to 77 K, the oscillator
strengths of the UV bands in ESA spectra of ruby, gar-
net, and magnesium spinel decrease by a factor of 1.67,
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Table 5.  Frequencies (cm–1) of electronic (2E  2T2) and electronic–vibrational transitions in the absorption spectrum of
ruby [102]

E || c E ⊥  c

line
position,

cm–1

possible combinations of
electronic-transition frequencies 

with phonon frequencies
line

position,
cm–1

possible combinations of electronic-transition
frequencies with phonon frequencies

, cm–1 (ν21 + νphon), cm–1 , cm–1 , cm–1 , cm–1 , cm–1

6551 I12 6623 I11

6657 I12 6579 I22

6824 I21 + 273(268)* 6837 I11 + 214(266) I22 + 258(268)

6866 I21 + 315 6910 I23

6911 I21 + 360(378) 6936 I13

6959 I21 + 408(415) 7033 I11 + 410(415) I22 + 454(457)

7006 I21 + 455(457) 7115 I11 + 492(487)

7065 I12 + 408(415) I21 + 514(522) 7145 I11 + 522(522) I23 + 235(236)

7143 I12 + 486(487) I21 + 592(593) 7208 I11 + 585(593) I13 + 272(268)

7212 I12 + 555(552) 7330 I23 + 420(415)

7313 I12 + 656 7390 I13 + 454(457) I22 + 811(815) I23 + 480(487)

7463 I12 + 806(815)

* The values in parentheses are the frequencies obtained by us from the luminescence spectra of ruby.

ν I12
νphon+ ν I11

νphon+ ν I13
νphon+ ν I22

νphon+ ν I23
νphon+

Table 6.  Frequencies (cm–1) of electronic (4A2  2T2 , 
2E  2T2) and electronic–vibrational transitions in the absorption

spectrum of garnet [102]

4A2  2T2, cm–1 νi = , cm–1 Transition frequency
2E  2T2, cm–1

Possible combinations of electronic-transition
frequencies with phonon frequencies

( ), cm–1 ( ), cm–1 ( ), cm–1

20807 20809 6250 B1 – 263(255)[259] B2 – 326(320)

20890 20888 6329 B2 – 243[243]

20928 6369

20982 20977 6418 B2 – 151(148)[144]

21070 21073 6514 B1

21133 B2

21249 21226 6667 B2 + 116(123) B3 – 391(397)

21358 21362 6803 B1 + 288(293)[296] B2 + 255(223)[218] B3 – 282(293)[296]

21418 21427 6868 B1 + 348(346)[340] B2 + 285(293) B3 – 222(223)[218]

21640 21640 7081 B3

21973 21944 7385 B3 + 333(333)[340]

Note: The values in parentheses and square brackets are the phonon frequencies from [103] and [104], respectively.

νR

νB01
νphon± νB02

νphon± νB03
νphon±
1.3, and 2, respectively. We detected no shift of the CT-
band maximum to shorter waves for the crystals under
investigation. Nevertheless, the decrease in the oscilla-
tor strengths of CT bands with decreasing temperature
counts convincingly in favor of the donor mechanism of
the CT process. Finally, one more important fact related
to the CT band should be noted. The electronic transi-
tions responsible for this band relate (at least, approxi-
C

mately) the energy level diagram of an impurity ion to
the edge of the conduction band of a host crystal. This
circumstance reveals new possibilities, for example, of
developing the theory of deep impurity levels in wide-
gap insulators [110–112].

3.2. Similarity of GSA and ESA spectra. Measure-
ments of the spectra of magnesium spinel
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 6      2003
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MgAl2O4 : Cr3+ revealed that, in the wavelength scale,
the maxima of the U and Y bands in the GSA spectrum
coincide with the maxima of the U1 and Y1 bands in the
ESA spectrum [42]. The intensities of the correspond-
ing bands coincide as well. The Y band at 400 nm is
complex: visually, it is a superposition of at least two
bands. The Y1 band is also complex and consists of two
bands located similarly to the two Y bands. This is
clearly demonstrated in Fig. 4, where the absorption
bands are expanded in Gaussian components. This phe-
nomenon was explained by Veremeœchik [113], who
also showed [114] that the similarity of GSA and ESA
spectra is characteristic of a wide class of impurity
crystals. The similarity of GSA and ESA spectra has a
number of specific features:

(i) the frequencies corresponding to the maxima of
the absorption bands U (4A2  4T2) and U1 (2E 
2T2( , e)) coincide;

(ii) the frequencies corresponding to the maxima of

the Y (4A2  4T1) and Y1[2E  2T2( , e)] bands dif-
fer by ~Dq;

(iii) the shapes of the bands under comparison are
described by similar Gaussian functions;

(iv) the bands under comparison are characterized
by similar polarization dependences; i.e., the ratio of
the intensities of the bands due to the 4A2  Γ and
2Ö  Γ transitions in different polarizations is such
that IE || c(4A2  4Γ) : IE ⊥ c(4A2  4Γ) ≈ IE || c(2E 
2Γ) : IE ⊥ c(2E  2Γ).

In the approximation of a strong crystal field, the
similarity of the GSA and ESA spectra is explained by
the special symmetry of the wave functions of the ini-
tial terms of electronic transitions and by the similar
symmetry of the orbital parts of the finite-term wave
functions.
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Table 7.  Experimental energies of the 2T1( ) and 2T2( )
terms for ruby and garnet [102]

Term Level*
Ruby Garnet

E, cm–1 E, cm–1

2E( ) 1 14400 14559 

2 14429

2T1( ) 3 14939 15162

4 15150 15213 

5 15172 15420 

2T2( ) 1 21002 21070

2 21032 21133 

3 21338 21640 

* The numeration of levels corresponds to Fig. 1b.
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4. ESA SPECTROSCOPY 
IN THE LUMINESCENCE REGION 

OF THE MATERIAL

4.1. Theoretical grounds. We discussed above the
ESA measurements in the spectral range that does not
overlap with the range of luminescence of impurity
crystals. However, the problem of measuring ESA
spectra in the range of luminescence is no less impor-
tant. Obviously, the methods developed for measuring
ESA spectra beyond the luminescence range are inap-
propriate in this case. Generally, the luminescence
intensity considerably exceeds the intensity of probe
light passed through an absorbing crystal. This circum-
stance leads to distortion of the results of measurements
or makes the measurements completely impossible.
Therefore, measuring ESA spectra in the luminescence
range is a separate problem of ESA spectroscopy.

If a luminescence spectrum represents a narrow line,
it is not very difficult to measure the coefficients of
absorption from the ground or excited states (aGSA(λ)
and aESA(λ), respectively). One can measure these
quantities in the vicinity of a luminescence line either
from the short-wavelength side or from the long-wave-
length side and then, extrapolating the values of mea-
sured aGSA(λ) and aESA(λ) across the range of lumines-
cence, to obtain the corresponding values for the lumi-
nescence band itself [58].

In more common situations (when the luminescence
band is broad), such an approach is, naturally, invalid.
For this case, a method based on the McCumber theory
was developed [115, 116]. This theory allows one to
use the Einstein coefficients Aij(ν) and Bij(ν) [117] for
broad absorption and luminescence bands. According
to the McCumber theory, the spectrum of effective
emission cross sections σe(ν) can be derived from the
luminescence spectrum in the form

(15)

where f(ν) is determined by the formula

(16)

Hereinafter, f(ν) is a dimensionless function, nλ is the
refractive index for polarization λ, c is the speed of
light, ν is the emission frequency, τ is the characteristic
lifetime of spontaneous emission, and Ω is the solid
angle of emission.

The most convenient form of the equation for deter-
mining σe(ν) in practice is as follows (see, for example,
[118]):

(17)

σe ν( ) f ν( ) 2π
νnλ ν( )
-----------------

2

,=

1/τ Ω f ν( ) ν .d∫d∫=

σe λ( ) λ5

8πcn2
--------------- I λ( )

λ I λ( ) λd∫
------------------------1

τ
---.=
3
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Here, I(λ) is the luminescence-power density
(erg/(cm2 s)). The integral in the denominator has the
dimension of power (erg/s). A pictorial description of
the application of the McCumber theory for experimen-
tal determining the cross section of stimulated emission
is given in [119].

A problem of amplification of radiation in the range
of 1280–1320 nm using optical amplifiers arose in the
1990s. This problem is associated with the need for
transmitting light signals through fiber optic cables
used in telecommunication systems. One solution was
to use crystals and glasses doped with Nd3+ ions [118].
It is well known that the electronic transition 4F3/2 
4I13/2 in the vicinity of 1300 nm is typical of the Nd3+

ion. However, the difficulty is in the presence of the
induced-absorption transition 4F3/2  4G7/2 at a wave-
length close to 1300 nm, which hinders the amplifica-
tion (Fig. 1c). In order to increase the amplification
coefficient, one can space these transitions from each
other by choosing an appropriate crystal matrix. The
direct way to determine the limiting possibilities of an
amplifying medium is to measure its ESA spectrum in
the range of 1280–1320 nm. Preliminary experiments
[118] showed that the promising candidates for ampli-
fication are SrF2 : Nd3+ and CaSrF2 : Nd3+ crystals. It
was necessary to determine the spectral region in which
induced absorption would not hinder the amplification
of signals.

Such investigations were performed in [120, 121].
Using Bouguer’s law, one can write

(18)

where n2 is the population of the 4F3/2 level, σe(λ) is the
amplification cross section for emission in the vicinity
of 1300 nm, aESA(λ) is the induced-absorption coeffi-
cient for this spectral range, l is the optical path length
for a sample, and I0(λ) and I(λ) are the power densities
of the probe laser beams incident on a sample and
emerging from it, respectively. Equation (18) deter-
mines the amplification spectrum for a single passage
of radiation through a sample:

(19)

The amplification spectrum is measured directly in the
experiment. The first term on the right-hand side of
Eq. (18) is found from the luminescence spectra by for-
mula (17). Obviously, we can write

(20)

then,

(21)

I λ( )
I0 λ( )
------------ln σe λ( ) aESA λ( )–( )n2l,=

g λ( ) I λ( )
I0 λ( )
------------.ln=

e λ( ) σe λ( )n2 Aλ5L λ( ),= =

aESA λ( ) Aλ5L λ( ) g λ( ).–=
C

Here, L(λ) is the luminescence-power density for cen-
ters of the same type in a unit solid angle and a unit
wavelength range.

In the case of pulse excitation, the intensity of the
emerging light I(λ, t) after the pumping pulse is
expressed by the formula

I(λ, t) = I0(λ)exp([g(λ, 0)]exp(–t/τ)). (22)

The experimentally measured dependence I(λ, t) is
extrapolated to t = 0. In the general case, the constant A
can be found as in [119]. However, it turned out that,
when the ESA spectra of the SrF2 : Nd3+ [120] and
CaSrF2 : Nd3+ [121] crystals are measured, it is possible
to use the specific spectroscopic properties of these
materials. The amplification and luminescence bands of
SrF2 : Nd3+ have identical shapes in the range of 1302–
1308 nm. This circumstance means that ESA is absent
in the noted range; therefore, the theoretical and exper-
imental amplification spectra can be superposed. In the
case of CaSrF2 : Nd3+ crystals, it is also reasonable to
superpose the luminescence and amplification spectra
in the vicinity of 1302 nm [121]. Thus, in the noted
spectral regions, the following condition is satisfied:

(23)

At other wavelengths, this equality is violated due to
the ESA effect.

4.2. Measuring technique. The schematic of the
spectrometer for studying the excited states of Nd3+

ions in crystals and glasses, which was developed at the
Institute of Crystallography, RAS, is shown in Fig. 8.
Sample 1 (an Nd3+-doped crystal), shaped as a plate 2–
8 mm thick, is pumped by pulsed tunable laser 2 based
on Al2O3 : Ti3+ crystal 3. The tuning is performed by a

g λ( ) Aλ5L λ( ).=

17
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86654
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16
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Fig. 8. Schematic of the spectrometer for measuring ESA
spectra in the range of luminescence. (1) Sample; (2) tun-
able laser; (3) active sapphire–titanium element; (4,
8) objectives; (5) modulator; (6) lenses; (7) MDR-1 double
monochromator; (9, 14, 15) photodetectors; (10) filter
amplifier; (11) C9-8 oscilloscope; (12) semitransparent mir-
ror; (17) personal computer; (18) synchronous detector;
(L) Lyot filter.
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Lyot filter (L). In this case, the width of the lasing spec-
trum (at half-maximum) for an energy of an output
laser pulse of 20–620 mJ is about 1.5 nm. The width of
the free-lasing pulse is ~80 µs. Such a width of pump-
ing pulse is significantly shorter than the lifetime of
active centers formed by Nd3+ ions. Therefore, the
investigation of the depletion kinetics for metastable
states is simplified [29]. The pumping radiation is
focused on a sample to a spot ~1 mm in diameter. Under
these conditions, the energy density in an incident pulse
reaches 50–60 J/cm2. A sample with a neodymium con-
centration of 0.8 wt % absorbs about 80% of the pump-
ing energy. Note that the use of laser pumping with a
tunable frequency makes it possible to excite active
centers of different types in a sample. A halogen incan-
descent lamp with a power of 70 W was used as the
probe-light source. Objective 4 focuses the image of the
lamp filament on the plane of mechanical modulator 5,
which has an aperture of 6 mm and chops the probe
light with a frequency of ~100 kHz.3 Lenses 6 transmit
the image of the modulator aperture to the sample plane
(diminishing the image) and, thus, form the caustic of
the probe light less than 1 mm in diameter. The probe

3 The mechanical modulator with a maximum chopping frequency
of 120 kHz was designed in the Laboratory of Physics of Optical
Crystals (POC Laboratory) and fabricated in the Special Design
Office of the Institute of Crystallography, RAS (SDO IC RAS).
In order to increase the stability, the modulator was tuned to a fre-
quency of 100 kHz. Al2O3 : Ti3+ crystals were grown in the POC
Laboratory; the laser was also fabricated there. The Lyot filter
was calculated in the POC Laboratory and fabricated in the SDO
IC RAS.
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Fig. 9. Spectra of SrF2 : Nd3+(0.8%) crystals pumped at a
wavelength of 800.5 nm. (1) Amplification calculated by
formula (20), (2) direct measurement of amplification (for-
mula (19)), and (3) the ESA spectrum (formula (21)).
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beam is collinear with the excitation laser beam and is
directed oppositely to it. The region of a crystal
exposed to the probe light is overlaps the region of exci-
tation. Objective 8 focuses the probe light beam trans-
mitted through a sample on the entrance slit of an
MDR-1 double monochromator. The radiation emerg-
ing from the monochromator is recorded by photode-
tector 9 placed behind the exit slit of the monochroma-
tor. The photodetector consists of a germanium photo-
diode and a preamplifier. An electric signal from the
output of the photodetector, which is proportional to the
intensity of probe light transmitted through the sample
and the monochromator, arrives at filter amplifier 10
and then at the entrance of C9-8 digital storage oscillo-
scope 11.

The frequency corresponding to the center of the fil-
ter-amplifier band coincides with the chopping fre-
quency of modulator 5 (~100 kHz). The bandwidth of
amplifier 10 lies in the range of 43–230 kHz (at half-
maximum). The modulation frequency of the probe
beam significantly exceeds the frequencies forming the
spectrum of a pulsed luminescence signal and pumping
light scattered in a sample, which lie below 10 kHz. The
filter amplifier suppresses these signals, as well as the
high-frequency noise in the region above 200 kHz, and,
thus, selects only the signal component with a modula-
tion frequency of 100 kHz.

In order to improve the signal-to-noise ratio, lock-in
detection and storage of measurable signals were used.
The reference signal is formed by the probe light itself,
part of which is fed to photodetector 14 by mirrors 12
and 13. The reference and measurable signals are fed to
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Fig. 10. Spectra of Ca0.6Sr0.4F2 : Nd3+(0.3%) crystals
pumped at a wavelength of 802.5 nm. (1) Amplification cal-
culated by formula (20), (2) direct measurement of
amplification (formula (19)), and (3) the ESA spectrum
(formula (21)).
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different entrances of a C9-8 two-channel storage oscil-
loscope. The storage oscilloscope is triggered by a sig-
nal formed at the output of photodetector 15, which
responds to a small fraction of pumping radiation
passed through optical fiber 16.

Digital signals from oscilloscope 11 arrive at per-
sonal computer 17 through a GPIB interface. Storage
and processing of a signal in the computer is performed
by a special program. One point in a spectrum is
obtained by storage of signals from several excitation
laser pulses.

When the luminescence kinetics is recorded, the
probe light is switched off and a signal from the output
of photodetector 9 is fed directly to the entrance of
oscilloscope 11, by-passing filter amplifier 10. The
spectral sensitivity of the measuring unit of the ESA
spectrometer was calibrated against the black-body
radiation.

4.3. ESA spectra of the SrF2 : Nd3+ and CaSrF2 : Nd3+

crystals. Several types of Nd3+ centers with signifi-
cantly different spectral luminescence characteristics
were revealed in SrF2 : Nd3+ crystals [118]. The ampli-
fying properties of SrF2 : Nd3+ in the range of 1280–
1320 nm are attributed to the so-called L center, which
consists of an Nd3+ ion and an interstitial F– ion located
in the first coordination sphere. It was shown in [118]
that L centers in SrF2 : Nd3+ are selectively excited at a
wavelength of 743 nm. In order to find out if SrF2 : Nd3+

is a promising candidate for an amplifying medium in
the wavelength range 1280–1320 nm, the ESA spectra
of L centers were studied. The following values of the
pumping wavelength were used: 743, 800.5, and
802 nm. Figure 9 shows the spectra of the amplification
g(λ) and induced-absorption (aESA(λ)) cross sections
for the 4F3/2  4G7/2 transitions in SrF2 : Nd3+ crystals
at a pumping wavelength of 800.5 nm. It can be seen
that the induced absorption is weak in this case. The
obtained ratios aESA(λ)/g(λ) in the range of 1280–
1320 nm are 0.12, 0.06, and 0.27 at λpump = 743, 800.5,
and 802 nm, respectively. The width of the pumping
spectrum is equal to 1.5 nm. The maximum amplifica-
tion is obtained upon excitation of L centers at
800.5 nm.

The results of similar measurements of the ESA
spectrum of a Ca0.6Sr0.4F2 : Nd3+ (0.3%) crystal [121]
are shown in Fig. 10. The ratio of the ESA cross section
to the amplification cross section is smallest at a wave-
length of 1302 nm, which is typical of L centers. How-
ever, the situation with CaSrF2 : Nd3+ crystals is much
more complicated than with SrF2 : Nd3+ crystals. Along
with long-lived L centers (0.8–1.7 µs), there also exist
short-lived centers with a lifetime of 0.3 µs in
CaSrF2 : Nd3+. The short-lived centers contribute sig-
nificantly to the spectrum of CaSrF2 : Nd3+, making it
more complex. Figure 10 shows the net spectrum of the
long-lived and short-lived centers. The ESA spectrum
C

becomes zero at 1301–1302 nm [121]. Comparison of
the ESA spectra of SrF2 : Nd3+ and CaSrF2 : Nd3+ crys-
tals shows that the amplification properties of the
former are significantly better.

CONCLUSIONS

In spite of the fact that ESA spectroscopy has been
intensively developed for more than forty years, it
should be admitted that this technique, in essence, only
begins to reveal its possibilities. Generally, ESA spec-
troscopy is used to solve a very particular problem of
predicting lasing or amplification properties of various
materials. However, in our opinion, the main line in
developing this method is to use it as an experimental
basis for developing the theory of impurity wide-gap
insulators. Indeed, the theory of the energy spectrum of
impurity wide-gap insulators is far from a unified phys-
ical picture to date [122].

The CF theory is semiempirical. It adequately
describes the spectra of impurity transition-metal ions
in wide-gap insulators but fails to predict the positions
of the energy levels of impurity ions with respect to the
edges of the band gap of the host crystal. The CF theory
also fails to explain CT spectra [123] due to the transi-
tions of electrons between impurity ions and their near-
est ligands.

In contrast to the CF theory, the ligand-field theory
[124, 125] is based on a cluster model; i.e., this theory
considers a cell composed of an impurity ion and its
nearest ligands in the lattice field beyond the cell. Such
a cluster model allows one to describe the transfer of
electrons between an impurity ion and neighboring
ligands. Nevertheless, this theory fails to predict the
positions of the energy levels of impurity ions with
respect to the edges of the band gap.

Apparently, the most adequate approaches to solv-
ing this fundamental problem for wide-gap insulators
are provided by the theory of deep levels, which was
developed for impurity ions in covalent semiconductors
[110–112].

Obviously, in this complex period of development
of the theory of impurity wide-gap insulators, ESA
spectroscopy may be considered as an effective experi-
mental tool which may yield a large amount of useful
data for developing physics of impurity wide-gap insu-
lating crystals.
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