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As a rule, the melts inclined to amorphization are
characterized by an intense interparticle interaction. It
is precisely the melts in which the association of their
components occurs and which is accompanied by the
formation of molecule-like complexes or clusters.
However, the relationship of these two phenomena has
not been analyzed until now. This work deals with such
an analysis.

In the systems that can easily pass into amorphous
state, the heat capacity for supercooled liquid, Cp(liq),
is much higher than that for equilibrium crystals,
Cp(cr). Hence, the entropy of supercooled liquid
decreases with temperature much more quickly than
the crystal entropy, and, at a temperature TK, the entro-
pies of these two phases would become equal. In fact,
the vitrification occurs at the temperature Tg > TK [1].
Thus, the temperature TK is a lower bound of the vitri-
fication temperature Tg, and the glass entropy at Tg is
larger than the crystal entropy. To consider the relative
stability of liquid and crystals, we use the Gibbs melt-
ing energy at arbitrary temperature:

(1)

Here, ∆mS is the entropy of melting at the temperature
Tm, and ∆Cp = Cp(liq) – Cp(cr). To simplify our analy-
sis, we assume that ∆Cp is independent of temperature.
This assumption does not change the essence of our
conclusions and allows equation (1) to be rewritten in
the form

(2)

The difference T(1 + ln(Tm/T)) – Tm is negative for
T < Tm, and the two terms in equation (2) are of differ-
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ent sign: The first is positive, and the second is negative.
Thus, decreasing ∆mS and increasing ∆Cp result both in
approaching the vitrification temperature Tg to the
melting temperature Tm and increasing the thermody-
namic stability against crystallization of supercooled
liquid and, consequently, glass.

Keeping in mind that functions ∆mS and ∆Cp are
vital to the vitrification thermodynamics, we will con-
sider the effect of association processes in liquid on
these characteristics. Our analysis is performed within
the framework of the model of ideal associated solu-
tions for a binary melt A–B because the essence of our
results is unaffected by either the introduction of an
additional term, allowing for the interaction between
the components of the associated solution, or the
increase in the number of these components. The
entropy of formation for an associated solution takes
the form of two terms with different signs:

(3)

Here, n(AiBj) and ∆f S(AiBj) are the number of moles
and the entropy of formation, respectively, for the asso-
ciated complexes AiBj; x(AiBj), x(A1), and x(B1) are the
molar fractions of the complexes and two monomer
particles, respectively, in the associated solution. The
first (negative) term in (3) is due to the arising com-
plexes, while the second (positive) term is related to the
mixing of components in the associated solution. By
lowering the temperature of the melt, the absolute value
of first term increases and second term decreases. As a
result, the entropy of formation for the solution
decreases. At temperatures close to the liquidus, the
first contribution dominates. In this case, the more com-
plicated the empirical formula for a complex, the
greater the decrease in entropy, because the decrease in
the number of particles in the solution becomes much
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more pronounced [2]. As a consequence, the value of
∆mS also decreases.

In the case of a single association reaction, with its
enthalpy being independent of temperature, the excess
(with respect to the additive sum of the heat capacities
for pure liquid components) in the heat capacity for the
associated solution is given by the expression

(4)

In the case of a large number of association reactions,
similar expressions take a cumbersome form, but the
essence of the analysis is not changed. It follows

from (4) that  is always positive. In other words, the
occurrence of association processes results in increas-
ing both the heat capacity of liquid and, consequently,
the difference between the heat capacities of liquid and
crystals. This increase is directly proportional to the
enthalpy squared of formation for the associative com-
plex and inversely proportional to the absolute temper-
ature squared. When analyzing the temperature depen-

dence of , we have to take into account that the mole
fractions of the complexes and monomer particles also
depend on temperature. Our numerical analysis of
equation (4) indicated that, for arbitrary thermody-
namic parameters of an association reaction, the con-

centration dependence of  exhibits a peak when the
macroscopic composition of the solution corresponds
to the composition of an associative complex. In melts
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Fig. 1. Entropy of melting and ∆Cp for the Fe–P melt at
1321 K as versus concentration.
with several association reactions, the extremum corre-
sponds to the association composition characterized by
the minimum enthalpy of formation. The effect of other
association reactions is less significant and increases
with temperature. Thus, association processes in a liq-
uid result in decreasing the entropy and in increasing
the excessive heat capacity; i.e., they are favorable to
the transition of the liquid to a glassy state.

We now consider the effect of association processes
on the melt viscosity, that is, the most important prop-
erty determining the kinetics of liquid–glass transition.
To do this, we use the equation relating the viscosity to
the configurational entropy Sconf [3]:

(5)

Here, Ae and Be are constants. The temperature depen-
dence of the configurational entropy can be presented
in the following form:

(6)

Here,  is the configurational heat capacity; and
Sconf(Tg) is the configurational entropy of the liquid at
the glass transition temperature Tg, which remains fixed
when the liquid transforms into a glassy state. Accord-
ing to [3], Sconf(Tg) can be presented as the difference
between the entropies of supercooled liquid and crys-
tals at the temperature Tg. Similarly, the configurational
heat capacity is close to a difference between the heat
capacities of liquid and crystals, i.e., to ∆Cp.

The greater the liquid viscosity and the steeper its
increase in the course of the supercooling of a melt, the
more favorable, from the standpoint of kinematics, is
the transition of the liquid into a glassy state [3].
According to (5) and (6), this transition occurs at high
values of the configurational heat capacity and at low
values of the configurational entropy at temperature Tg.
In essence, these conditions coincide with the require-
ment that ∆Cp should be large and that ∆Sm should be
small. Thus, from the viewpoint of both kinetics and
thermodynamics, the association processes in a liquid
are favorable to its amorphization.

We use the formulas obtained to quantitatively
describe the amorphization of the iron–phosphorus
melt. This melt is an ideal associated solution in which
the aggregates such as FeP, Fe2P, and Fe3P are formed.
The thermodynamic functions of their formation are as
follows (with ∆f H in J/mol and ∆f S in J/(mol K)) [4]:
∆f H(FeP) = –81025, ∆fS(FeP) = –1.4, ∆f H(Fe2P) =
−14599, ∆f S(Fe2P) = –15.6, ∆f H(Fe3P) = –207390,
and ∆f S(Fe3P) = –53.5. These parameters and thermo-
dynamic functions for crystal phases allow us to evalu-
ate the concentration dependences of both the entropy
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of melting and ∆Cp at the eutectic temperature of 1321 K
(Fig. 1) [4]. If we take into account that the entropy of
melting decreases with temperature and that only the
eutectic alloy with x(Fe) = 0.826 melts at the tempera-
ture of 1321 K, the results presented in Fig. 1 allow us
to find the concentration range, 0.77 < x(Fe) < 0.86, in
which the melt is most inclined to amorphization. This
conclusion is very consistent with the available data
[5–7]. It is precisely the concentration range in which
the biggest complexes Fe3P are intensively formed.

Typical features of the thermodynamic functions for
the transition of crystal compounds into a supercooled
liquid or glassy state are shown in Fig. 2 for an eutectic
alloy. To evaluate these functions, we used the data of
[8, 9] for pure components. It is clear that both the
enthalpy and entropy of the transition vary irregularly
with temperature. This is due to the magnetic contribu-
tions to the thermodynamic functions of the solid solu-
tions (with body-centered cubic lattices) of phosphorus
in Fe and Fe3P. The separated nonmagnetic components
of ∆trH and ∆trS monotonically decrease with tempera-
ture. According to the data available in literature [5–7],
the temperatures of vitrification and crystallization for
amorphous iron–phosphorus alloys almost coincide
and are close to 650 K. At this temperature, we have
∆trS = 4.48 J/(mol K), ∆trH = 6054 J/mol, and ∆trG =
3141 J/mol. The crystallization enthalpy for the amor-
phous alloy Fe–P with an eutectic composition was
found by the authors of [5] to be equal to −6.3 kJ/mol.
This value nearly coincides with the result of present
calculations.

To approximate the temperature dependence of vis-
cosity for the melts Fe–P, we assumed that the configu-
rational entropy at the vitrification temperature was
equal to the difference between the entropy of super-
cooled liquid (glass) and the nonmagnetic part of
entropy of equilibrium crystalline composition. The
configurational heat capacity was evaluated as the dif-
ference between the heat capacity of melt and the non-
magnetic part of the heat capacity of crystals. These
assumptions allowed us to describe, within the accu-
racy of experimental data, the temperature dependence
of viscosity for iron–phosphorus melts [5, 10–12] in a
wide range (more than 1200 K) from the vitrification
temperature of 650 K to metallurgy temperatures of
1823–1873 K. The accuracy of the description for a
melt with an eutectic composition is illustrated in
Fig. 3. In this case, we found the following values of
the constants in equation (5): Ae = 44 078 ± 540 and
Be = –6.17 ± 0.17.

In conclusion, it is worth emphasizing that our
results give unambiguous evidence of a direct relation-
ship between the phenomena of association and amor-
phization. Moreover, the concept of association makes
it possible to quantitatively treat thermal and transport
properties of melts in the course of their transition into
the glassy state.
DOKLADY PHYSICS      Vol. 45      No. 8      2000
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Fig. 3. Temperature dependences of the viscosity for the
melt Fe–P with an eutectic composition. Solid line is the
result of our calculations based on Eqs. (5) and (6); the
points are the experimental data of [5] (circles), [10] (trian-
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A special packing of atoms in quasicrystals, which
is characterized by the absence of translational period-
icity and the predominantly covalent type of inter-
atomic bonds [1], causes a specific character of their
mechanical properties. Quasicrystals are brittle materi-
als with a nearly vanishing macroscopic plasticity [2].
At the same time, in measuring the hardness, distinct
indentations are formed, and scratching causes stria-
tions and cuttings [3, 4]; i.e., the microplasticity is
revealed under high-pressure local deformation. The
brittle state of quasicrystals is retained up to relatively
high temperatures (600°C for Al–Cu–Fe, 700°C for
Al−Pd–Mn), and with a further increase of deformation
temperature, the compression testing reveals rather
high microplasticity—the deformation prior to fracture
can exceed 70–80% [2, 5, 6]. The deformation of qua-
sicrystals at elevated temperatures is characterized by a
pronounced work softening, which is observed neither
in crystalline nor in amorphous materials.

At least, in Al–Pd–Mn (icosahedral quasicrystal),
the phenomenon of work softening at elevated temper-
atures was explained based on the dislocation mecha-
nism of deformation [6]. The Bürgers vector in quasic-
rystals has two components, the phonon and phason
ones. When the dislocations move, the phason compo-
nent induces a structural and chemical disorder in con-
trast to the case of the phonon component, which is
similar to the Bürgers vector of dislocations in crystals.
It was argued in [6] that the deformation of Al–Pd–Mn
quasicrystals is controlled by the obstacles in the form
of Mackay’s pseudoclusters consisting of 51 atoms.
The moving dislocations disturb the ordered atomic
arrangement in clusters, giving rise to the correspond-
ing increase in the entropy. As a result, the activation
energy decreases, and the deformation is facilitated.
A significant enhancement of the phason components
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in the Bürgers vectors of dislocations with the growth
of strains was observed in experiments [5].

The quasicrystalline icosahedral Al–Cu–Fe phase
(an approximate composition Al63Cu25Fe12) is very
interesting to researchers, since it has high values of
hardness (HV ≤ 10 GPa), elastic modulus (E ≈
100 GPa), and wear resistance [3]. In addition, this
phase is thermodynamically stable [3]. Recently, it has
been established [7] that the deformation of the poly-
crystalline Al–Cu–Fe phase occurs within the charac-
teristic bands, where a high density of dislocations is
observed; the dislocations are grouped in networks or
walls. The analysis of the obtained results and the avail-
able published data allowed the authors of [7] to con-
clude that under plastic deformation there occurs the
phase transformation of a quasicrystalline phase into an
approximant phase characterized by atomic packing
with a translational periodicity along one of the fivefold
axes.

There is still no consensus concerning the nature of
low-temperature microplasticity of quasicrystals. It
was argued that it can be caused by a phase transition
into a more plastic phase under the indenter [3], but
there is no proof confirming the existence of such a
transition.

Recently, a new method based on the indentation
technique was proposed to determine mechanical prop-
erties of low-plasticity materials [8, 9]. The calcula-
tions of a mean deformation at the indenter–sample
contact area allow us to plot the deformation curve sim-
ilar to the stress–strain curve, which is obtained under
uniaxial loading. This can be done with the help of a set
of indenters with different angles at the top. A new
characteristic of the material plasticity δH is repre-
sented, which is defined as a contribution of plastic
strain to the total elastoplastic strain under the
indenter [8].

In this paper, the results of the first implementation
of this method to the studies of mechanical properties
of compact Al–Cu–Fe quasicrystalline material are pre-
sented. The set of the used methods also includes the
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Regions in X-ray diffraction patterns of the pressed samples: (a) sample 1 (annealing of the powder prior to pressing;
(b) sample 2 (annealing of the pressed sample).
analysis of the temperature dependence of hardness and
the estimates of the elastic modulus based on the results
of indentation with the recording of the loading diagram.

The powder with a quasicrystalline Al–Cu–Fe phase
was obtained by sputtering the melt in the air flow.
Compact samples having cylindrical shape with the
diameter and height equal to 5 mm were prepared by
pressing the powder with the particle size 50–100 µm
in the high-pressure chamber at 700°C under quasihy-
drostatic compression. The measurement of the hard-
ness was performed at the end surfaces of the samples
subjected to the mechanical grinding and polishing.
The powders and sintered samples were annealed for
2 h in the vacuum furnace at 700°C in order to obtain a
single-phase quasicrystalline state. Both the powder
prior to pressing (sample 1) and the pressed cylinder
(sample 2) were annealed.

The hardness at the elevated temperatures was mea-
sured in vacuum, and the low-temperature hardness,
under the layer of the cooling liquid. For studies of the

Mechanical properties and density of the pressed samples

Sample Treatment HV, GPa E, GPa δH ρ, g/cm3

1 Annealing prior 
to pressing

4.37 113 0.612 4.709

2 Annealing
after pressing

7.53 0.419 4.693
temperature dependence of hardness, the Vickers
indenter was used, and for the plotting of the deforma-
tion curve, the set of trihedral pyramidal indenters with
the angles at the top γ = 45°, 55°, 60°, 65°, 70°, 75°, and
80°. The X-ray diffraction studies were carried out
using the filtered CuKα radiation. The density was
determined by hydrostatic weighing.

The metallographic studies of polished surfaces of
the samples revealed the regions of homogeneous
material with the size by the order of magnitude larger
than the sizes of the powder particles. There were also
large pores (30–50 µm in diameter) at the distance of
about 1 mm from each other.

The X-ray diffraction study (Fig. 1) revealed a pro-
nounced difference in the linewidths for samples 1 and
2, i.e., the pressing in the range of the high-temperature
plasticity led to a significant increase of the defect den-
sity in the material, and the subsequent annealing elim-
inated these defects. The hardness and plasticity char-
acteristics of these samples at room temperature turned
out to be also quite different (see the table). This differ-
ence cannot be attributed to the different porosity, since
the densities of the samples are very close, the density
of a hard sample being somewhat lower. The elastic
modulus determined by us (see, table) corresponds to
the upper limit reported in the literature for Al–Cu–Fe
quasicrystals [6].

The deformation curves obtained by the indentation
method are presented in Fig. 2 for samples 1 and 2. The
deformation curves plotted in the coordinates which are
the mean contact pressure (hardness according to
Meyer HM) and the total strain at the contact area εt
DOKLADY PHYSICS      Vol. 45      No. 8      2000
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exhibit a pronounced softening, which is especially
high for sample 2. Thus, it is shown that the deforma-
tion curves at room temperature have the same charac-
ter as that at elevated temperatures [2, 5, 6].

Following [9], we calculated the values of δH using
expression

(1)

where E and ν are the elastic modulus and the Poisson
coefficient for the material deformed by the diamond
indenter. In the literature, we were unable to find the
value of ν needed to estimate E [10] for Al–Cu–Fe. In
calculations, we put ν = 0.28 in agreement with the mea-
sured elastic constants of Al–Pd–Mn quasicrystal [11].

We pay attention to two regions in the temperature
dependence of hardness (Fig. 3): the 78–673 K range,
where the hardness changes only slightly and the range
above 673 K characterized by an abrupt decrease in the
hardness. In the secondary electron image of the hard-
ness indentation for sample 2, “tongues” are seen at
room temperature (a thin layer pressing out around the
indentation) (Fig. 4). The increase in δH corresponds to
the decrease in hardness with the growth of tempera-
ture. Both tetrahedral and trihedral indenters give rise
to radial cracks appearing sometimes at the top of
indentation. However, it was impossible to find any reg-
ularities relating the arising cracks to the load magni-
tude and the shape of indenter. The surface of the inden-
tations was smooth, without indications of fracture and
slip of the material.

The athermal region on the HV(T) curve in Fig. 3 is
similar to that observed earlier by Gridneva, Mil’man,
and Trefilov [12] for single crystals of Si and Ge semi-
conductors and then by Suzuki and Ohmura [13] at
nanoindentation of Si. It was shown in [12] that under
effect of the indenter, such a region can be caused by
the pressure-induced transition to the more plastic
metallic phase. Near the low-temperature indentations
in silicon, the “tongues” of the plasitified material were
found [13].

In recent experiments, it was found that the icosahe-
dral Al–Cu–Fe phase remains stable under the quasi-
hydrostatic pressure up to 35 GPa [14]. A different sit-
uation takes place upon deviation from the quasi-
hydrostatic conditions. It was shown in the case of
Al−Pd–Mn that, under the uniaxial load applied to the
sample placed in the high-pressure cell, we have the
transformation of quasicrystalline phase to the crystal-
line bcc phase at 20 GPa with the grain size about
3−6 nm. The grains are surrounded by amorphous
interlayers [15]. It is obvious that under intrusion of the
indenter, the stressed state is close to the latter case.

The mean stress at the contact area is σ = P/S, where
P is the load on the indenter and S is the contact area.
For P = const, at the first stages of loading, when S is
small, the pressure-induced phase transformation
occurs under the indenter. The arising plastic phase is

δH 1 14.3 1 ν– 2ν2–( )HV
E

--------,–=
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pressed out in the shape of thin interlayers, area S is
increases, and stress σ decreases. The indenter stops
when σ = σcr, where σcr is the threshold pressure of the
phase transition. Thus, we have HV = σcr in the ather-
mal region.

These results (the work softening at room tempera-
ture, the athermal region on the HV(T) curve, the
“tongues” around the indentation) and the literature
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Fig. 2. Hardness according to Meyer versus total strain
under the indenter. The designation of samples corresponds
to Fig. 1.
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Fig. 3. Temperature dependence of the hardness HV and
plasticity characteristic δH for sample 2 (load P = 2.34 N).



 

366

        

TREFILOV 

 

et al

 

.

                                         
data [2, 5] suggest that the phase transition in quasic-
rystals is related to the process of plastic deformation,
in the course of which the accumulation of phason dis-
tortions results in the violation of the order in the
atomic packing. It is clear that with the temperature
decrease, the dislocation density in the layer under the
indenter increases, despite the reduction in the magni-
tude of plastic strain under the indenter characterized
by δH . This occurs owing both to the decrease in the
dislocation mobility and the slowing in the process of
polygonization and recovery. One can suggest that the
observed indications of the phase transition are related
to the attainment of a certain critical value for the den-
sity of dislocations.

Together with the decrease in hardness, the charac-
teristic of plasticity δH increases with temperature
reaching the value of 0.95 at 1073 K (Fig. 3). According
to [8], the macroscopic plasticity manifests itself at
δH ≈ 0.9 in the crystalline (mainly, metallic) materials.
The comparison of the temperature dependence of δH
and the results of compression tests [2] demonstrates
that in Al–Cu–Fe quasicrystals it arises at much lower
δH values, δH ≈ 0.7. Note that the estimate of δH in
Fig. 3 was performed without taking into consideration
the temperature dependence of the elastic modulus. The
account taken of this dependence results in a certain
decrease in the magnitude of δH at elevated tempera-
tures. Such an early manifestation of the microscopic
plasticity can be related both to the features of the
deformation mechanism of quasicrystals and to the dif-
ferent conditions of testing under compression and
tension.

10 µm

Fig. 4. Secondary electron image of the Vickers indentation
at room temperature for sample 2 (P = 5 N).
It is of interest to note that, in contrast to the crystal-
line materials, the accumulation of distortions in the
Al–Cu–Fe quasicrystal in the course of high-tempera-
ture deformation (at pressing) drastically reduced the
hardness under these conditions (see table). The elimi-
nation of these distortions by annealing enhanced the
hardness.
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The parabolic approximation [1; 2; 3, Section 7.6] is
widely used in the mathematical simulation of wave
fields, in particular, in oceanic and atmospheric acous-
tics. In a wide scope of direct and inverse problems for
finding the physically significant results in terms of this
approximation, it is necessary [4–6] for the reciprocity
principle and the energy conservation law expressing
the fundamental symmetries of the true wave field to
remain valid for the solutions to the parabolic equation.
Wide-angle parabolic equations providing the validity
of the reciprocity principle and the energy conservation
in two-dimensional problems related to the propagation
of sound in media with piece-wise continuous variation
of parameters along the trace are proposed in [7, 8]. The
goal of this study is the generalization of these results
to the three-dimensional case. We propose a class of
energy-conserving and reciprocal three-dimensional
parabolic equations and investigate the properties of
their solutions.

In stagnant fluid with the time-independent density
ρ and the velocity of sound c, the acoustic pressure sat-
isfies the equation [see 3, Section 4.1]

(1)

Here, k(x) = ω/c is the wave number; ω is the wave fre-
quency; k0 = const; and Q = iωρa + ρ∇ (ρ–1f), where a
and f are the volume densities for sources of both the
volume velocity and extraneous force. For simplicity,
we assume ρ and c to be smooth functions of coordi-

∂
∂x
------ 1

ρ
---∂p

∂x
------ 

  k0
2 1 Ŝ+( ) p+ Q,=

Ŝ
ρ
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ρ
--- ∂
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  ∂
∂z
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nates and the media to be boundless or to have ideal
(absolutely soft or absolutely rigid) boundaries, which
are invariant with respect to the translations along the

Ox-axis. The differential operator  is self-conjugate
with respect to the scalar product

(2)

where the integration is carried out over the waveguide
cross section. The Ox-axis is chosen along the preferen-
tial direction of the wave propagation. It is assumed
that the medium parameters vary either weakly or
smoothly with x and that the propagation constants ξn

for local modes contributing substantially to the acous-
tic field are concentrated in the neighborhood of k0 , so

that ε ≡ || p||/ ||p|| ! 1.

Similarly to [8], where the two-dimensional case
was investigated, we consider the three-dimensional
parabolic equation in the form

(3)

where ΦN(a) are the analytical functions satisfying the
condition ΦN(a*) = [ΦN(a)]*, which serve for approxi-
mations of the functions (1 + a)1/2N, N = 1, 2. For Q = 0
and ∂/∂y = 0, equations (3) transform into the energy-
conserving two-dimensional parabolic equations pro-
posed and investigated in [8]. Efficient methods for
solving these equations are developed for the cases

when the pseudodifferential operators (1 + )
1/2N

 are

approximated by the rational functions ΦN( ) [9–13].

We determine the function g from the condition that
parabolic equation (3) approximates the solutions to the
wave equation in the case of a stratified fluid, i.e., when
c = c(z), ρ = ρ(z), and the medium is unbounded in y. In
the layered medium, the problem is reduced to the two-
dimensional case by the Fourier transform with respect

Ŝ

p 1( ) p 2( ),〈 〉 dy z p 1( ) p 2( )( )*/ρ x( ),d∫∫=

Ŝ

ρ 1/2– Φ2 Ŝ( )p[ ] x

=  ik0ρ
1/2– Φ1 Ŝ( )pΦ2 Ŝ( )p ρ 1– /2g Ŝ( )Q,+

Ŝ

Ŝ
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to y. For the point source Q = δ(x – x0), the solution to
equation (3) for x ≥ x0 has the form

(4)

where fn(z) and ξn are, respectively, the eigenfunctions
and the propagation constants of normal waves in a lay-
ered waveguide. If the vertical wave operator has a con-
tinuous spectrum, the summation over the discrete mode
subscript n is supplemented in (4) by integration over the
continuous spectrum. Solution to (1) for x ≥ x0 also has
the form of (4) but differs with respect to the replacement

of k0Φ1(αn) by (  – q2)1/2 and of g(αn)/Φ2(αn) by

−0.5i(  – q2)–1/2. Hence, for

, (5)

the solutions to parabolic equation (3) approximate the
solutions to wave equation (1) for the waves propagat-
ing toward increasing x. The degree of proximity for
these solutions is determined by the accuracy of
the  approximating (1 + a)1/2N by the functions ΦN(a).
Expanding the solutions in terms of two-dimensional
modes fn, m(y, z), it is easy to ascertain that parabolic
equation (3), (5) also provides the approximation of the
wave equation in a medium with cylindrical boundaries
and parameters depending on y and z. In the limiting
case when the error of the approximation of (1 + a)1/2N

by the functions ΦN(a) tends to zero and the field
involves only the modes propagating towards increasing
x, the difference between the solutions to equation (1)
and to parabolic equation (3), (5) vanishes for an arbi-
trary Q.

We show that the solutions to parabolic equation (3),
(5) satisfy the reciprocity principle in the three-dimen-
sionally heterogeneous medium. Let the wave p1(x)
propagating towards increasing x and the wave p2(x)
propagating towards decreasing x be generated by the
sources Q1 and Q2 , respectively. The parabolic equation
based on p2 differs from (3), (5) due to the replacement
of k0 by –k0 . Multiplying the parabolic equation for p2

by ρ–1/2Φ2( )p1 and summing up the result obtained

with the product of (3) by ρ–1/2Φ2( )p2 , integrating
with respect to y and z over the waveguide cross section

p x( ) dq iqy ik0Φ1 αn( ) x x0–( )+[ ]exp

∞–

+∞

∫
n

∑=

×
g αn( ) f n z( ) f n z0( )

2πΦ2 αn( )
------------------------------------------,

αn

ξn
2 q2–

k0
2

---------------- 1,–=

ξn
2

ξn
2

g 2ik0Φ2( ) 1–=

Ŝ

Ŝ

and taking into account that the operator  is self-con-
jugate, we obtain

(6)

In the region free of sources, equation (6) is reduced to
the formulation of the reciprocity principle considered
for two-dimensional parabolic equations in [7, 8]. Inte-
grating (6) with respect to x, we find

. (7)

This formulation of the reciprocity principle for the
solutions to parabolic equations exactly repeats the
well-known result (see [3, Section 4.2]) for the solu-
tions to the wave equation. In particular, from (7) and
the above expression for Q, it follows that in the para-
bolic approximation under consideration, as in the case
of true sound fields, the acoustic pressure is invariant
with respect to a rearrangement of the receiver and the
volume-velocity point source. The vibrational-velocity
projection to the force-action direction is invariant with
respect to the rearrangement of the extraneous-force
source.

The validity of the energy conservation law for the
solutions to parabolic equation (3) in the case of
Imk2 = 0 can be found similarly. This conclusion dif-
fers from that mentioned above by using the complex
conjugation p* of the field under consideration instead
of p2 and leads to the following result:

(8)

Here, J represents the energy flux through the
waveguide cross section x = const. In the regular seg-
ment of a three-dimensional waveguide with cylindri-
cal boundaries, the contributions of normal waves into
J are additive by virtue of the orthogonality of modes.
In the case of an isolated propagating mode, J (8) dif-
fers from the true acoustic-energy flux only by the
replacement of the propagation constant ξn, m by

( /  – 1). As in the two-dimensional case [8],
parabolic equation (3) leads to a positive energy flux in
the nonpropagating (supercritical) modes, where

 < 0, for ΦN(a*) = [ΦN(a)]*. The elimination of
this deficiency requires using the approximations ΦN(a)
with complex coefficients for the radicals (1 + a)1/2N.
The consideration of such approximations is beyond
the scope of this study. We note only that, for parabolic
equation (3), (5) with complex coefficients, the above
reciprocity relationships and their derivation remain
valid, including for the case of an absorbing medium.

For estimating the principal phase-error term accu-
mulated with distance and introduced by the parabolic

Ŝ

∂
∂x
------ Φ2 Ŝ( ) p1, Φ2 Ŝ( ) p2*〈 〉

=  
1

2ik0
---------- p1, Q2*〈 〉 p2, Q1*〈 〉–( ).

d3x p1Q2/ρ∫ d3x p2Q1/ρ∫=

∂J
∂x
------ 0, J

k0

2ω
------- dy zρ 1– Φ2 Ŝ( ) p x( ) 2

.d∫∫= =
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2 ξn m,

2 k0
2

ξn m,
2
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approximation, it will suffice to compare the solutions
to the wave equation and parabolic equation in a lay-
ered medium (see [3, Section 7.6]). In the wave zone of
a source, we use the saddle-point method (see [3,
Appendix A]) for calculating the integral in (4). Let

ΦN(a) = (1 + a)1/2N + O( ) and m1 ≥ 2. In this case,
the exponent in (4) has a stationary point

(9)

Here, χn is the glancing angle formed by the wave vec-
tor of a mode with the xy plane; the azimuth angle φ
characterizes the deviation of the direction to the
receiver from the Ox-axis, i.e., from the chosen prefer-
ential direction of the wave propagation. Calculating
the contribution of stationary point (9) into integral (4)
and comparing the result with the true field mode, we
find that the parabolic approximation introduces the

relative error O( ) into the phase and O(  + )
into the amplitude of the mode. For applicability of the
parabolic approximation, φ and χn must be small. How-
ever, quantitative limitations for these angles rapidly
weaken with the growth in the accuracy of the approx-
imations of ΦN used in parabolic equation (3). The dis-
tances to a source and the frequencies for which the
parabolic equation can be used are bounded from above
by the condition of correct reproduction of mode
phases:

(10)

where χ is the characteristic value of χn for the modes
contributing substantially into the field. Note that,
according to (10), in the applicability domain of the
parabolic approximation, the field can undergo strong
variations in the transverse directions y and z including
the mode-phase deviations from its value at y = 0 for x,
z = const, which are large compared to unity.

In contrast to the two-dimensional case [8], the
amplitude error in the three-dimensional problem
depends not only on the accuracy of the approximation
provided by the function Φ2 but also on Φ1 . The above
estimates of the phase error for φ = 0 coincide with ear-
lier estimates for the two-dimensional waveguide [8].
(It is easy to show that the last estimates are also valid
for the three-dimensional waveguide with cylindrical
boundaries.) As applied to the horizontally heteroge-
neous media, the values of φ in criterion (10) are
bounded from below by the angle of horizontal refrac-
tion. In the case when the sound propagates in ocean or
atmosphere, this angle is, as a rule, much smaller than
the grazing angles, and the horizontal refraction does
not practically manifest itself at the frequencies and
distances for which it is rightful to use parabolic equa-
tion (3), (5). Two-dimensional wide-angle parabolic

a
mn

qs ξn ϕ 1 O b
m1( )+[ ] , bsin χn

2 ϕ2,+= =

χn

ξn

k0
-----, ϕarccos

y y0–
x x0–
-------------.arctan= =

b
m1 b

m1 b
m2

k0 x x0–( ) χ2 φ2+( )
m1

!1,
DOKLADY PHYSICS      Vol. 45      No. 8      2000
equations used nowadays provide a high phase accu-
racy for the grazing angles χ ≤ β, where β amounts to
at least one-half of radian [9–12]. The usage of the
same approximations Φ1 in three-dimensional para-
bolic equation (3) guarantees the phase accuracy for the
azimuth angles –β ≤ φ ≤ β. If the field is required to be
calculated within a still wider range of azimuth angles,
then to fulfill (10) and to cover the entire range, it may
be necessary to solve several parabolic equations (3),
(5) differing by the choice of the direction for the
Ox-axis.

In the three-dimensionally heterogeneous medium,
the asymptotic errors in the parabolic approximation
can be estimated by comparing the high-frequency
solutions to the wave equation and to the parabolic
equation. Restricting ourselves to consideration of the
fields far from the caustics, we present the solutions in
the form of the ray (Debye) expansions p =
exp(ik0θ(x))A(x, k0), where k0 serves as a formal large
parameter and A(x, k0) = A0(x) + (ik0)–1A1(x) + …. Using
the method of mathematical induction with respect to
M = 1, 2, …, it is easy to establish the validity of the
identity

(11)

For an arbitrary analytical function Φ, expanding Φ( )

in terms of , we obtain from (11)

(12)

Substituting the Debye expansion into (3) and using
(11) and (12), we obtain in the major order with respect
to k0 that ν1 = Φ1(α), i.e., the eikonal equation in the
parabolic approximation. Introducing the Hamiltonian

(13)

allows reducing the solution of the eikonal equation to
the solution of the Hamiltonian ray equations

(14)

Ŝ
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Ŝ
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Here, the parameter τ describes the position of a point
under consideration at the ray, Ψ(ν1) is the function
inverse to Φ1(a). The equations of true rays (see [3, Sec-
tion 5.1]) differ from (14) in the replacement of h by n.

According to (14) in the parabolic approximation,
the fluid turns out to be an acoustically anisotropic
medium, and the directions of the normal n to the wave
front and of the ray tangent h do not coincide. The
anisotropy and differences between rays and eikonals
corresponding to the wave equation and the parabolic
equation tend to zero with increasing the accuracy of
the approximation of F1. It should be emphasized that
parabolic equation (3) completely describes the three-
dimensional refraction. In the limit, F1(a)  (1 + a)1/2,
H (13) transforms into the known Hamiltonian
H = 0.5(n2 – n2) for solutions to the wave equation
(see [3, Section 5.1]), and, according to (14), h = n.

Similarly to the derivation of the eikonal equation,
substituting the Debye expansion into (3) and equating
the terms not containing k0 with the help of (12) and
(14), we obtain the transport equation

(15)

which allows us to calculate an amplitude of the ray
field. This equation differs from the corresponding
result following from the wave equation only by the
presence under the logarithm of an additional factor

/µ. A physical meaning of the transport equation
consists in the fact (see [3, Section 5.1]) that, in the ray
tube, the energy flux is conserved, its density being
equal to k0 /ωρµ in the case under consideration.

The local energy-conservation law for the high-fre-
quency sound can be also found directly from the para-
bolic equation while ignoring the consideration of the
ray geometry. Indeed, multiplying parabolic equation (3)

by ρ–1/2Φ2( )p* and using (12) for simplifying the real
part of the product, it is easy to obtain

(16)

It is also easy to verify that expression (16) for the den-
sity of the energy-flux in high-frequency waves agrees
with exact integral relationship (6).

We compare the high-frequency solutions to
energy-conserving parabolic equation (3) and to the
traditional parabolic equation

(17)

whose coefficients involve no derivatives of medium
parameters with respect to x. When the same approxi-
mation Φ1 for the square root of the operator is used
in (3) and (17), both parabolic equations lead to the

d
dτ
-----

A0
2

µρ
-------Φ2

2 α( ) 
  ∇ dx

dτ
------ 

 +ln 0,=

Φ2
2

A0
2 Φ2

2

Ŝ

∇ I 0,=

I ωρµ( ) 1– k0 p 2= Φ2
2 α( )η 1 O k0

1–( )+[ ] .

∂p
∂x
------ ik0Φ1 Ŝ( ) p,=
same eikonal equation but to different transport equa-
tions. It follows from (17) that

(18)

If the medium density varies along the propagation
direction, the right-hand side in (18) differs from zero,
and the energy flux in the ray tube is not conserved.
When ρx ≡ 0, equation (18) expresses the conservation
of a certain energy quantity, but its values correspond-
ing to these two parabolic equations differ. This fact
leads to a difference in the amplitude errors. For sim-
plicity, let the error in the approximation of Φ1 be neg-
ligible, so that we can ignore the difference in the
geometry of rays corresponding to the parabolic equa-
tion and the wave equation. In this case, the amplitude
of the solution to parabolic equation (17) differs for
ρx ≡ 0 from the ray amplitude of the solution to the
wave equation by the factor [µ(τ2)/µ(τ1)]–1/2 = 1 + O(b),
where τ1 and τ2 correspond to the point of a position of
the source and receiver, respectively. According to (15),
in the case of an arbitrary ρx, the deviation of the ray
amplitudes for parabolic equation (3) amounts to

Therefore, the amplitude error in parabolic equation (3),
in contrast to (17), tends to zero with an increase in the
accuracy of approximations of Φ1, 2 .

Thus, the usage of parabolic equation (3), (5) pro-
posed in this study instead of traditional parabolic
equation (17) enables us to improve the accuracy in the
calculating amplitude without reducing that of the
phase and to provide the energy conservation and the
exact validity of the reciprocity principle in simulating
the sound fields in three-dimensional heterogeneous
media.
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Usually, equations describing the evolution of the
inverse population in laser theory are valid only for ide-
alized energy levels of an active medium.

Allowing for the actual structure of energy levels in
a laser material necessitates the consideration of a sys-
tem of differential equations describing the evolution of
the population of all levels playing a significant role in
the process of laser generation. Such an approach
requires solving a system of equations of a high order,
which is possible only by numerical computer simu-
lation.

In addition, in this approach, certain difficulties
appear associated with the lack of complete informa-
tion on corresponding spectroscopy constants of a
material, which, as a rule, are known with an acceptable
accuracy only for a rather limited number of energy
states.

Nevertheless, as is shown below, under certain sim-
plifications, allowance for the actual structure of the
energy levels of a laser material can be realized in a
fairly simple manner. In this case, a system of high-
order differential equations can be reduced to only one
equation. It has the meaning of an equation for the
inverse population density and generalizes well-known
equations for three- and four-level active media.

The simplified assumptions mentioned above are
associated with the possibility to isolate separate
groups of energy levels closely related to each other.
The energy exchange processes between these levels
lead to the rapid establishment of thermodynamic equi-
librium.

In this case, it is natural that the admissible rate of
establishing the thermodynamic equilibrium, for which
we consider the energy levels to be closely bound with
each other, is defined by the speed of proceeding pro-
cesses of the laser generation. For example, in different
situations, the same levels may be considered to be
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either strongly bound in the continuous laser-genera-
tion mode or isolated in the energy sense while gener-
ating short pulses.

When considering processes of generation and
amplification of laser radiation, it is reasonable to iso-
late groups of levels to which the upper and lower levels
of the laser transition belong.

The diagram of the energy levels for a certain active
laser medium is presented in Fig. 1. We assume that a
laser transition takes place between the jth level of the
level group 2 and an ith level of the level group 1 (rig-
orously speaking, the subscripts i and j should be
denoted by a combination of two numbers, namely, 1, i
and 2, j, where the former implies belonging to a corre-
sponding group (1 or 2)). Thus, i = 11, 12, 13, …; and j =
21, 22, 23, …). We assume also that the distribution of the
level populations within each group always corre-
sponds to the thermodynamic equilibrium. Then, we
may write out

(1)

where n1 and n2 are the total number of atoms occupy-
ing all energy levels belonging to the groups 1 or 2,
respectively, i.e., the populations of these groups.

ni γin1, n j γ jn2,= =

1

2

3

W13 A31 = 1/τ31 Wij Wji A21 = 1/τ21

W32 = 1/τ32

i

j

Fig. 1.
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The coefficients γi and γj are easily determined from
the Boltzmann distribution for the population:

(2)

Here, Ei and Ej are the energies of the levels i and j,
respectively; E10 and E20 are the energies of lower levels
in the groups 1 and 2, respectively; gi and gj are the
degeneracy multiplicities for the levels i and j, respec-
tively; k is the Boltzmann constant; and T is tempera-
ture of an active medium.

It is worth noting that the energy scheme under con-
sideration generalizes the level schemes for both three-
and four-level active medium under the condition of a
rapid relaxation of the lower laser level. In this case,
this level may be included in the group 1 of levels being
in the thermodynamic equilibrium with the ground
level.

For the scheme under consideration, the system of
equations describing the evolution for the populations
of the level groups 1, 2, and 3 takes the form

(3)

(4)

(5)

where Wij and Wji are the induced-transition probabili-
ties bound with each other by the relation

The lifetimes and excitation probabilities of the
active atoms under the action of pumping, which are
involved into equations (3)–(5), determine the effective
rates of the energy exchange between the isolated level
groups.

As is seen, the entire difference between equa-
tions (3)–(5) and usual ones applied to an ideal active
laser medium (see, e.g., [1]) lies in the fact that the
probabilities W21 and W12 are replaced by the quantities
γjWji and γiWij , respectively, which represent effective
values for the corresponding transition probabilities.
Hence, introducing the notation

(6)

or, which is the same, a similar notation for effective
values of the transition cross sections

(7)

γi

gie

Ei E10–

kT
-------------------–

gie

Ei E10–

kT
-------------------–

i

∑
------------------------------, γ j

g je

E j E20–

kT
-------------------–

g je

E j E20–

kT
-------------------–

j

∑
-------------------------------.= =

dn1

dt
-------- = W jiγ jn2 Wijγin1– W13 n1 n3–( )–

n2

τ21
------

n3

τ31
------,+ +

dn2

dt
-------- –W jiγ jn2 Wijγin1

n3

τ32
------

n2

τ21
------,–+ +=

dn3

dt
-------- W13 n1 n3–( )

n3

τ32
------

n3

τ31
------,––=

giWij g jW ji.=

W21eff g jW ji, W12eff giWij= =

σ21eff g jσ ji, σ12eff giσij,= =
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we formally arrive again at the equations for the ideal-
ized three-level medium including the equation for
inverse population density. There is only one distinc-
tion between them. The parameter g2/g1 involved in this
equation is replaced by a more general parameter

(8)

Indeed, assuming that active atoms are not accumu-
lated on the levels of the group 3, i.e., n3 ! n1 and

 = 0, we have from Eq. (5)

(9)

Substituting this relationship into (3) and (4), we
obtain

(10)

where

(11)

is the generalized inverse population density intro-
duced instead of the generally accepted quantity n2 –

n1;

 (12)

is the effective value of the excitation probability for an
active atom under the action of pumping; and n0 is the
total number of active atoms per unit volume.

At G = 1, equation (10) transforms into that for the
three-level active medium; at G = 0, it transforms into
that for the four-level medium with the vacant low level
of the laser transition.

The gain of the active medium with the generalized
scheme of the energy levels is 

(13)

When the contribution to the gain of several closely
lying laser lines must be taken into account, the effec-
tive cross sections of the induced transition should be
introduced in the form

(14)

In this case, as before, the parameter G in Eq. (10) is
determined by the relation σ12eff/σ21eff .

G
W12eff

W21eff
-------------

σ12eff

σ21eff
------------

γig j

γ jgi

---------.= = =

dn3

dt
--------

n3 W13

τ31

τ31 τ32+
-------------------τ32n1.=

d∆
dt
------- 1 G+( )∆W21eff–=

+ n0 Wp
G
τ21
------– 

  ∆ Wp
1

τ21
------+ 

  ,–

∆ n2 Gn1–=

g2

g1
-----

Wp W13

τ31

τ31 τ32+
-------------------=

α σ jin j σijni– σ jiγ jn2 σijγin1– σ21eff∆.= = =

σ21eff ν( ) σ ji ν( )γ j, σ12eff ν( )
ij

∑ σij ν( )γi.
ij

∑= =
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If the level 3 is situated closely to the upper laser
level (as this takes place for the semiconductor pump-
ing of YAG:Nd-laser), then its equilibrium Boltzmann
population should be taken into account. With this pur-
pose, this level may be included into the level group 2
tightly bound with the upper level of the laser transi-
tion. The energy diagram depicted in Fig. 2 assumes
that the excitation of the active medium is attained
owing to the atom transitions from the level m of the
group 1 to the level n of the group 2, and the laser gen-
eration corresponds to the same transition between lev-
els j and i. In this case, performing calculations similar
to those used while deriving (10), we arrive at the fol-
lowing equation for the generalized density of the
inverse population:

(15)

Here, ∆, G, and W21eff are, as before, expressed by the
same formulas (11), (8), and (6);

(16)

and Wp = γmWmn is the effective probability for excita-
tion of an atom under the action of pumping radiation.
The quantities γn, γm, gn, gm have the same meaning as
the corresponding quantities for the levels i and j.

In a certain sense, we can say that Eq. (15) describes
the evolution of the inverse population in a quasi-two-
level laser. In particular, it follows from this equation
that the inequality GpG < 1 is the necessary condition
for the existence of the inversion (∆ > 0) in the steady-
state mode of such a laser. It is easy to show that this
condition is equivalent to the well-known relation 

En – Em > Ej – Ei;

i.e., the frequency of pumping radiation must exceed
the frequency of the laser radiation.

d∆
dt
------- 1 G+( )∆W21eff–=

+ n0 Wp 1 GpG–( ) G
τ21
------– ∆ Wp 1 Gp+( ) 1

τ21
------+ .–

Gp
σnm eff

σmn eff
-------------

γngm

γmgn

-----------,= =

1

2

WjiWijWnmWmn A21 = 1/τ21

n

m i

j

Fig. 2.
It is worth noting that Eq. (15) is easily generalized
for the case when several lines with a close frequency
lines play the role. The parameters G and Gp represent
the ratios of the corresponding effective cross sections
determined by summation over all lines similarly
to [14].

At Gp = 0, Eq. (15) transforms into (10).
Equations derived enable us to easily perform calcu-

lations of solid-state lasers with an allowance for the
actual structure of energy levels and the active medium
temperature determining the values of the coefficients γ
in accordance with formulas (2). For a more convenient
application of these equations in practice, it would be
desirable to form information tables for the temperature
dependences of the coefficients γ and parameters G and
Gp of the basic spectral lines for laser crystals.

As an example, we demonstrate the advantage of the
approach proposed in calculating the output power of
the solid-state laser operating in the steady-state mode.
Using Eq. (10), it is not difficult to obtain the general-
ized formula for the output power in the form

(17)

Here, 

k = Wpτ21,

hν is the energy of photons for the laser generation; V
and l are the volume and the length of an active sample,
respectively; r is the reflection factor of the output mir-
ror in the optical resonator (the second mirror is
assumed to be ideally reflecting); and β is the nonre-
sonance loss in the crystal. In the particular cases of
G = 1 and G = 0, this formula transforms into well-
known expressions for the output power of three- and
four-level lasers [1].

When the evolution of the inverse population obeys
Eq. (15), the formula for the output power of a contin-
uous-wave laser has the form

(18)

The last term in this formula determines the
decrease of the generation power caused by the finite
population density for the upper level of the transition

PΣ

hνn0V
1
r
---ln

1 G+( )τ21 2βl rln–( )
----------------------------------------------------=

× k G– k 1+( )2βl rln–
2σ21effn0l
-----------------------– .

PΣ

hνn0V
1
r
---ln

1 G+( )τ21 2βl rln–( )
-----------------------------------------------------=

× k G– k 1+( )2βl rln–
2σ21effn0l
-----------------------–

– kGp G
2βl rln–
2σ21effn0l
-----------------------+ 

  .
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used for laser optical pumping as well as by the
presence of several levels in a group to which the
lower level of this transition belongs. For Gp = 0, for-
mula (18) takes the form of (17).

To illustrate, we consider a ruby laser [1]. In a ruby
crystal, two twofold degenerate metastable levels 

and 2  separated by the distance 29 cm–1 should be
related to the level group 2. The laser transition takes

E

A
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place from the lower of these levels  (R1 line) or from

the upper 2  level (R2 line) onto the 4A2 ground level
degenerated fourfold, which is unique in the level
group 1 (as a rule, laser generation takes place for the
stronger R1 line). The values of the parameter G for the
R1 and R2 lines of the laser transition in a ruby crystal,
evaluated by formulas (8) and (2), are given here for the
temperature range between 50 and 450 K.

E

A

T, K 50 100 150 200 250 300 350 400 450

G (R1 line) 0.717 0.829 0.879 0.906 0.923 0.935 0.944 0.950 0.956

G (R2 line) 1.652 1.259 1.160 1.116 1.091 1.075 1.063 1.055 1.049
As is seen, when applied to a ruby laser, the usually
used three-level approximation (G = 1) is fairly accu-
rate at room and higher temperature. However, to inves-
tigate a laser operating at lower temperatures, as well as
in the case when we need comparative analysis of ruby
laser characteristics for the R1 and R2 lines, it is neces-
sary to take into account actual values and temperature
dependences of the parameters G for these lines.

In conclusion, we present a relationship useful for
practice, which concerns continuous–wave four-level
lasers. This relationship interrelates the differential
energy efficiency (i.e., the linear part of the ratio for the
generation power to the increment of the pumping
power) and the threshold pumping power. It is evident
that both characteristics are determined in the same
degree by the efficiency of the pumping system; there-
fore, their values must be interrelated. The relationship
mentioned above is easily derived from formula (17) at
G = 0 and with an allowance for the fact that the product
of the differential energy efficiency of the laser by the
threshold pumping power is numerically equal to the
output generation power at the double excess of the
threshold. This product has the form

(19)

where Pth is the threshold pumping power and ηdiff is
the differential laser efficiency.

In particular, for a YAG laser (assuming hν= 1.87 ×
10–19 J, σ21eff = 3.4 × 10–19 cm2, τ21 = 240 µs, V = 1 cm3,
l = 5 cm, and r = 0.9), we obtain Pthηdiff = 24 W. For
example, in the case of the threshold pumping power of
1000 W, the differential energy laser efficiency is equal
to 2.4%.
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The processes of evolution and self-organization in
nonlinear dissipative physical systems including those
characteristic of magnetic microstructure in solids are
currently attracting a considerable amount of interest.
The self-organization phenomena in garnet ferrite films
with perpendicular anisotropy have received the most
study [1, 2]. The problem of self-organized criticality
arising in polycrystals in the course of their demagneti-
zation is widely debated [3, 4]. The basic factor deter-
mining the transition between two different ordered
states of the domain structure is the long-range magne-
todipole interaction. It is quite difficult to take proper
account of this interaction in real materials, and this
sends us to address the analysis of the simplest mod-
els [5]. The most complicated problem concerns a the-
oretical description of self-organization in a three-
dimensional system of domains.

So far, only the spatial distribution of magnetization
was considered in the analysis of self-organization pro-
cesses. In this paper, we study the evolution of angular
distribution of magnetic moments in polycrystalline
ferrites under the effect of a pulsed magnetic field. We
consider the ferrites with cubic crystal lattice having
the [111] axes of easy magnetization. The analysis is
based on the solution of a nonlinear integro-differential
equation derived here. The equation characterizes the
dynamics of remagnetization processes in polycrystals
and takes into account the interaction between grains,
hysteresis, and saturation.

Following the model concepts put forward in [6], we
assume that magnetic moments of grains are oriented
along the easy magnetization axes closest to the direc-
tion of the applied field and are uniformly distributed
within a cone with a linear opening angle 2αm [αm =

/ )]. Each grain is characterized by a rect-
angular hysteresis loop, its magnetization stems from
the motion of 180° domain walls.

1(arccos 3
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Due to the misorientation of the crystallographic
axes of neighboring grains, the normal magnetization
component has discontinuities at the grain walls. These
discontinuities give rise to the internal stray magnetic
fields. The mean value of the stray field component
along the easy magnetization axis of a grain directed at
angle α with magnetization J of the polycrystal
(parallel to applied field H) is determined by the for-
mula [6]

(1)

where b ~ 1 is the parameter depending on the configu-
ration of the grain surface and M(α) is the magnetiza-
tion of the grain under study. The domain wall velocity
is proportional to the effective field

(2)

if |Hcosα + HM| > Hω and Heff ! Hcrit, where Hω is the
threshold field of the wall displacement, s =

(Hcosα + HM), and Hcrit is the Walker critical field
[7]. Under the above conditions, the variation rate of
relative magnetization m in a spherical grain obeys the
integro-differential equation

(3)

Here, m = M/MS (MS is the saturation magnetization),
j = J/MS, h = H/Hω, x = –2cos((π + )/3) is the
boundary position normalized by the grain radius and
measured with respect to the grain center (–1 ≤ x ≤ 1),
and p = [bMS/(2Hω)]1/2 is the parameter characterizing
the magnetodipole interaction between grains. The sat-
uration and hysteresis are taken into account by param-
eter Λ(α, t):

Λ = 1, if ((Heff < 0) ∧ (–1 < m(α, t) ≤ 1)) ∨

∨  ((Heff > 0) ∧  (–1 ≤ m(α, t) < 1)), (4)

otherwise Λ = 0.

HM b J M α( ) αcos–( ) α ,cos=

Heff H α HM sHω,–+cos=

sgn

dm α t,( )
dt

--------------------- 3Λ α t,( ) 1 x2–( ) h t( ) αcos[=

– s 2 p2 j t( ) m α t,( ) αcos–( ) α ] .cos+
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Fig. 1. Evolution of the angular distribution of grain magnetization m(α, t) under the effect of alternating-sign magnetic field pulses.
The first pulse: amplitude h1 = 2, duration τ1 = 8 × 10–4; subsequent pulses: |h| = 2.5, τ = 3 × 10–5; the interval between pulses is

τp = 10–5.

0

The relative magnetization of the polycrystal is a
functional depending on m(α, t):

(5)

We choose normalization of t in such a way that at h = 2
in the absence of intergrain interaction (p = 0), the time
needed for magnetization of a grain with α = 0 from the
state m(0, 0) = –1 is equal to unity.

The integration of equation of motion (3) taking into
account relationships (4) and (5) was performed by
numerical methods for a discrete set of α values.

The time dependence of the angular distribution of
the grain magnetic moments during magnetization of a
polycrystal by the different series of rectangular field
pulses h(t) from the demagnetized state [m(α, 0) ≡ 0] at
p = 20 are plotted in Figs. 1–3.

Under the effect of short alternating-sign pulses, the
angular distribution of magnetization can be nonmono-
tonic with a peak and an inflection point (Figs. 1 and 2).
Figure 1 demonstrates that, during the first (positive)

j t( ) 1 αmcos–( ) 1– m α t,( ) α αsincos α .d

0

αm

∫=
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pulse, the grains with α = 0 have the maximum magne-
tization, and after the last (51th) pulse, their magnetiza-
tion turns out to be minimal. If the amplitude of the
applied field is close to threshold value Hω, then after a
fairly large number of pulses, the distribution ceases to
respond to them and has a rather exotic form.

Under the effect of rather long and intense field
pulses (see, for example, Fig. 3), the most rapid change
at the initial stage is observed in the magnetization of
grains with the small angles α (at not very high values
of |h|, the domain walls with α ≈ αm can initially be
immobile). Then, magnetization rate for grains with the
large α gradually increases (the larger is α, the faster is
the growth). Finally, the angular distribution of magne-
tization tends to that shown in Fig. 4.

In conclusion, the magnetization of polycrystals is
accompanied by self-organization related to the magne-
todipole interaction of grains. The self-organization
gives rise to the angular distributions of magnetic
moments drastically different from those induced by
the applied field alone. The proposed method for the
analysis of the self-organization processes can be gen-
eralized by taking into account the statistics of forma-
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Fig. 2. m(α, t) curves under effect of the alternating-sign magnetic field pulses. The first pulse: h1 = 2, τ1 = 6 × 10–4; the subsequent

pulses: |h| = 1, τ = 9 × 10–5; τp = 10–5.
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Fig. 3. m(α, t) under effect of the alternating-sign magnetic field pulses with amplitude |h| =10 and durations: τ1 = 0.1, τ = 0.15, and
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Fig. 4. The eventual angular dependence of grain magnetization in the remanent magnetization state of a polycrystal: (1) p = 10;
(2) p = 20; (3) p = 40.
tion and annihilation of the domain walls, as well as the
distribution in size and coercitivity of the grains.
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Lattice phonon spectra for 3d elements with a cubic
structure (V, Cr, Mn, Fe, Co, Ni, and Cu) are calculated
approximately using the Mie–Grüneisen potentials.

Calculations were performed based on the Born–Kar-
man–De Launay–Blackman (BKDB) method [1–4]. The
De Launay force constants αij and βij , as well as the
Born–Karman coupling constants Aij , were determined
using the Mie–Grüneisen potentials

(1)

The De Launay force constants βij correspond to the
first derivative of the binding energy U(r)j in the crystal
lattice of element j. The derivative is represented as a
function of the nearest neighbor interatomic distance r1
normalized by radius rij of the ith coordination sphere:

(2)

The force constants αij are equal to the second deriva-
tive of the binding energy U(r)ij as a function of r [4, 5]:

(3)

The derivatives are taken at points rij , which corre-
spond to the radius of the ith coordination sphere of ele-
ment j (i ≤ 4).

The values of ratio  = k are presented in Table 1.

Here, ri ≡ r0 is the radius of the first coordination sphere
and ri is the radius of the ith sphere. The data in Table 1
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correspond to crystal structures of A1 and A2 types with
face-centered cubic (fcc) and body-centered cubic
(bcc) unit cells, respectively. The values of coordina-
tion numbers zi for each coordination sphere are also
given in Table 1.

For crystal structures of the A1 and A2 types, the
radii of the first coordination spheres are related to lat-

tice constant a by expressions  =  and  =

. Elastic moduli characterizing the rigidity of mon-

atomic crystals belonging to the A1 structural type are
expressed in terms of the De Launay force constants [4]

(4)

Bulk moduli B = −  characterizing the uniform

compression depend on exponents m and n in the Mie–
Grüneisen potential [7]:

(5)

The De Launay force constants αij and βij are expressed
through equilibrium energy U0 of atomization per unit
volume and through distance r0 ≡ r1 between the nearest
neighbor atoms (radius of the first coordination sphere)
by the expressions as follows:

(6)

(7)

Using expressions (6) and (7), we calculated the val-
ues of force constants αij and βij for the transition ele-
ments with Z = 23–29 at fixed values of exponents m
and n specified in Table 2.
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Table 1.  Coordination numbers zi, coefficients ki = r0/ri in four coordination spheres (I–IV) for A1 and A2 structural types

Type of
structure

I II III IV

zi ki zi ki zi ki zi ki

A1 12 1 6 0.7071 24 0.57736 12 0.5

A2 8 1 6 0.8683 12 0.612 24 0.5222

Table 2.  Binding energies Um (kJ/mol), U0 (kJ/cm3), atomic volumes V (cm3), lattice constants a (Å), nearest neighbor
distances r0 ≡ r1 (Å), exponents m, n, force constants αi, βi of four coordination spheres (I–IV)

Z Element a V Um U0 r1 m n

23 V 3.024 8.34 512.96 65.565 2.619 3.5 7

4 7

24 Cr 2.8846 7.23 396.64 58.48 2.5 6 8

6 10

25 Mn 3.863 7.38 279.073 38.0 2.731 5 7

26 Fe 2.8645 7.09 417.689 62.8 2.477 6 8

6 10

27 Co 3.5441 6.62 495.094 68.452 2.506 3 7

3.5 7

28 Ni 3.5238 6.59 423.84 68.56 2.492 3.5 7

29 Cu 3.6147 7.09 339.322 2.556 3.5 7

I II III IV

α1 β1 α2 β2 α3 β3 α4 β4

36318.33 0.0 1812.38 1861.16 –2141.39 573.60 –1070.80 261.27

41506.67 0.0 1404.34 2047.72 –2307.63 562.05 –1083.38 240.66

69576.03 0.0 –2413.87 2765.69 –2492.74 429.95 –874.68 139.95

86970.04 0.0 –5252.43 3031.74 –2344.59 369.49 –743.47 111.32

29180.49 0.0 –2579.29 644.83 –1040.13 208.03 –455.95 85.49

76139.21 0.0 –2641.57 3026.58 –2728.98 470.51 –957.19 153.15

95174.02 0.0 –5747.90 3317.72 –2565.76 404.35 –813.60 121.82

35250.89 0.0 –3115.80 1168.45 –1759.02 502.59 –963.89 258.19

41126.05 0.0 –3705.81 1227.44 –1907.59 489.07 –984.81 236.70

4216.73 0.0 –3795.08 1257.01 –1953.54 500.85 –1008.54 242.40

29773.50 0.0 –2682.85 888.62 –1381.01 354.06 –712.96 171.36
Exponents m and n in potential (1) for a large num-
ber of elements were determined and discussed by
Fürth [8] based on available experimental data.

In our paper, the phonon spectra for crystal lattices
of transition metal elements with Z = 23–29 are deter-
mined using the calculated De Launay force constants
corresponding to four coordination spheres. The calcu-
DOKLADY PHYSICS      Vol. 45      No. 8      2000
lations were performed by the BKDB method based on
the solution of a secular equation

(8)

where M is the atomic mass, L is the unit matrix, and
D(q) is the dynamical matrix depending on vector q.

D q( ) Mw2 L( )– 0,=



382

D
O

K
L

A
D

Y
 PH

Y
SIC

S      V
ol. 45      N

o. 8      2000

SIR
O

T
A

 et al.

C
V
, J

/(
m

ol
 K

)

200 300

1
23

100 200 300

Ni 12

0 100 200 300

Cu 1

2

3
0

T, K

0

0

0

0

g(
ν)

ν, 1012 Hz

6 10

1
2

8 2 6 10

Ni

0 4 8 2 6 10

Cu

0 4 8

Fig. ng values of m and n: (1) m = 3, n = 7; (2) m = 3.5, n = 7; (3) m = 4,
n = 7  m = 6, n = 10 for Fe; (1) m = 3, n = 7; (2) m = 3.5, n = 7 for Co;
m = 

Fig. ) m = 2, n = 7; (2) m = 3.5, n = 7 for V; (3) m = 4, n = 7; (4) m = 5,
n = 7 rimental points); (1) m = 6, n = 8; (2) m = 6, n = 10 for Fe (3 are
expe or Ni (2 are experimental points); (1) m = 3.5, n = 7 for Ni (2 are
expe
100 200

15

25

300

20

10

5

V
12
34

0 100 200 300

Cr
2

3
0 100 200 300

Mn 1

2

0 100 200 300

Fe 1
2

3

0 100

Co

0

1

2 6

.2

.4

10

.3

.1

V 1
2 3 4

0 4 8 2 6 10

Cr

1
2

0 4 8 2 6 10

Mn

0 4 8 2 6 10

Fe

1
2

0 4 8 2

Co

0 4

1. Phonon spectra corresponding to the crystal lattices of elements with Z = 23–29 calculated using the followi
; (4) m = 5, n = 7 for V; (1) m = 6, n = 8; (2) m = 8, n = 10 for Cr; m = 5, n = 7 for Mn; (1) m = 6, n = 8; (2)

3.5, n = 7 for Ni; and m = 3.5, n = 7 for Cu.
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The calculations were carried out for th of the

Brillouin zone at 1618 points. The points were chosen
by the Monte Carlo method [5].

The calculated lattice phonon spectra of elements
with Z = 23–29 are shown in Fig. 1. The figure also
illustrates the effect on the boundary value νm of the
variation in m at n = const and the same for n at m =
const. At fixed exponent n, the increase in m, as well as
the increase of n for m = const, is accompanied by a
nearly linear increase of boundary frequency νm . The
determined values of m and n, which do not differ much
from to those found by Fürth, correspond to boundary
frequency νm close to the Debye frequency νD . Note

that at variation of m, n, and , their large deviation

from the equilibrium values causes an “overshoot” of
the initial point of the spectrum related to “negative”
frequencies arising in the Brillouin zone.

The equilibrium molar values of atomization ener-
gies Um [9] and interatomic distances r0 determined
using the equilibrium values of lattice constant a [10]
and given values of m and n are presented in Table 2.
The values of exponents m and n, for which the calcu-
lated values of CV(T) are in the best agreement with
experimental data, are m = 6, n = 10 for Cr, m = 6,
n = 10 for Fe, m = 5, n = 7 for Mn, and m = 3.5 and n = 7
for Co, Ni, and Cu.

The temperature dependence of specific heat CV(T)
is shown in Fig. 2; it is determined based on the calcu-
lated phonon spectra (see Fig. 1). The experimental
points [11, 12] are also plotted in addition to the calcu-
lated curves. The experimental data CV(T)expt (points)
presented in Fig. 2 include not only the lattice contribu-
tion to the specific heat, but the magnetic and other con-
tributions as well. The deviations of experimental
points from the calculated CV(T) curves observed at
high temperatures are caused predominantly by the
magnetic contribution to CV(T)expt . A good agreement
between calculated and experimental data for CV(T) is

1
48
------

U0

r0
2

------
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observed for copper and, below 100–200 K, also for the
other elements with relatively small magnetic contribu-
tion to CV(T).

In conclusion, we demonstrated for the first time
that the calculations of the phonon spectra for the ele-
ments of cubic structure performed by the BKDB
method using the Mie–Grüneisen potential lead us to
results interesting from the viewpoint both of funda-
mental science and its applications.
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1. The terbium atom is a relatively rare object for
study. Restricting ourselves by considering such fields
of physics as atomic structure, atomic spectroscopy,
and electron-atomic collisions, the latest publication
we have found related to this scope of problems is dated
1991 [1]. In that paper, the high-lying excited and self-
ionization states of TbI were investigated. The study [2]
devoted to determining the oscillator strengths for TbI
and TbII appeared almost a decade before. Studies in
which the single-charged terbium ion was investigated
are almost equally scanty.

It is possible that such a state of research of the ter-
bium atom is one of the principal reasons for extremely
restricted usage of this element until now. As an illus-
tration, we can say that in [3], none of examples for
using terbium was cited. At the same time, at the
moment of publication of the book [3], the laser gener-
ation on the single 5D4  7F5 transition was already
realized for the tricharged Tb3+ ion situated in con-
densed media. We imply the organometallic liquid laser
on the basis of trifluor-acetylacetonate and the laser
based on LiYF4 crystal sensitized by Gd3+ and activated
by Tb3+ [4]. However, in gas lasers, no generation using
terbium-atom transitions was obtained until now [5].

The most complete (unpublished) tables of the ter-
bium spectrum are prepared by Klinkenberg on the
basis of spectrograms for an electrode-free discharge,
which were obtained in the Argonne National Labora-
tory (USA). These tables involve approximately 30000
spectral lines for TbI and TbII within the spectral range
from 233 to 929 nm. A further analysis of these lines
was accomplished in the Zeeman Laboratory (Amster-
dam) [6–11]. The results of [6–11] were subjected to
critical analysis in the compilation [12] into which the
data of [13], published almost simultaneously with
[12], were also included.

In [13], the energy structure of the even low-level
configuration 4f 85d6s2 of the terbium atom was calcu-
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Moscow, 111250 Russia
1028-3358/00/4508- $20.00 © 20384
lated. The energy matrix was parameterized by means
of 11 independent parameters taking into account the
electrostatic interaction, relativistic effects, and config-
uration overlapping. The parameters were found on the
basis of known experimental positions for 45 levels of
TbI by the method of minimization of the mean-square
deviation ∆E, ∆E = 41 cm–1 being attained in this case.
The total number of levels in the configuration under
study is 2725. The dimension of the energy matrix
attains 377 (for J = 9/2). The hyperfine structure of lev-
els was calculated separately. The results of calculation
for 57 levels with the parental term 4f 87F, namely, posi-
tions of levels, weights of three major components, and
the g factor are presented. As was indicated in the
previous item, these results are included in the compi-
lation [12].

Although there are rather extensive (but not always
very reliable) data on the TbI spectrum, information
concerning atomic constants of the terbium atom is
almost completely absent. In the paper [14] devoted to
detailed measurements of radiative constants for atoms
and single-charged ions of 70 elements, from several
tens to several hundreds of numerical values of these
constants were obtained for the majority of the objects.
However, only three values were obtained in this study
for TbI and none for TbII. There are neither experimen-
tal nor theoretical data on the cross sections for the
excitation of a terbium atom by slow electrons.

2. In this study, using the method of extended inter-
secting beams, we investigated inelastic collisions of
low-velocity monoenergetic electrons with terbium
atoms. The instrumentation and experimental methods
were repeatedly described previously; the most detailed
information is given elsewhere [15].

We used metallic terbium of the TbM-1 brand with
a total impurity content of less than 0.1% (the major
impurities were gadolinium, disprosium, and ittrium).
Terbium was evaporated from a tantalum boat in the
course of electron-beam heating. The usage of a cruci-
ble (of the Knudsen-cell type) with a low expense of a
metal was impossible because the available electrically
conducting constructional materials cannot hold long-
term contact with the melted terbium and fail. Temper-
ature of metal at the basic stage of the experiment
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Optical excitation functions for terbium atom.
attained 1800 K. In this case, the atomic concentration
in the region of the intersection of the atomic and elec-
tron beams was 7.0 × 109 cm–3. To minimize the reab-
sorption while investigating the most intense transi-
tions to low-lying levels, the atomic concentration was
reduced almost by an order of magnitude.

The evaporation of terbium atoms is inevitably
accompanied by the occupation of low-lying levels in
TbI as a result of the action of the thermal excitation
mechanism. The existing technique renders it impossi-
ble to carry out either the selection of atoms excited to
one of the low-lying levels or the measurement of their
concentration under conditions of this experiment.
Estimating the population of these levels under the
assumption that the Boltzmann distribution is valid, we
find the following values for the total percent concen-

tration of atoms in the beam: 27.8 for 4f 96s2  (0);
19.4 for 4f 85d6s28G13/2 (285); 19.2 for 4f 85d6s2 8G15/2

(462); 13.9 for 4f 85d6s2 8G11/2 (510); 5.83 for

4f 85d6  (1371); 3.31 for 4f 85d6s2 8D11/2 (2310); 2.03

for 4f 85d6s2 8G7/2 (2419); 2.68 for 4f 96s2  (2772);
and 1.81 for 4f 85d6s2 8G9/2 (2840). The numbers in the
parentheses correspond to the level energies (expressed
in cm–1) counted off from the ground level of the ter-
bium atom. Here, all TbI levels below 3000 cm–1 are
indicated. As follows from these data, the summary
population of odd levels amounts to only 30.5%,
whereas that of even levels is 65.5% (approximately
4% correspond to high-lying levels). Undoubtedly, the

H6 °15/2

s9/2
2

H6 °13/2
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presence of such a distribution must be taken into
account when comparing the results of this study with
data of theoretical calculations (as only such results
will appear).

The width of the electron-beam energy distribution
corresponded to 0.9 eV at an energy of 100 eV and to
1.0 eV at 20 and 200 eV (for 90% of electrons). Within
the entire working energy range, the current density did
not exceed 1.0 mA/cm2. The spectral resolution of the
setup attained approximately 0.1 nm in the short-wave
range (λ ≤ 600 nm) and approximately 0.2 nm in the
yellow–red spectral region. An error in measuring rela-
tive values of cross sections was within 3 to 10%
depending on the line intensity. An error in determining
absolute values of the cross sections was within ±16 to
±23%. Principal error sources and their contribution to
the resulting error are analyzed in [15].

3. In spectrograms detected at an exciting-electron
energies of 30 eV, we find nearly 630 spectral lines of
the terbium atom. Within the electron-energy range 0 to
200 eV, 103 optical excitation functions (OEFs) were
detected. For almost all the transitions, the upper and
lower levels between which these transitions occur
were established. However, for the very majority of the
upper levels from the whole set of quantum character-
istics, only the parity and the value of the quantum
number J are known. That is why transitions with the
participation of these levels are essentially inaccessible
right now for theoretical analysis. Therefore, we dis-
cuss in this study only such transitions for which the
upper levels are completely classified (or, at least, the
configurations are established), and also, the OEFs are
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Excitation cross sections of terbium atom

λ, nm Transition J El, cm–1 Eu, cm–1 Q30,
10–18 cm2

Qmax,
10–18 cm2 Emax, eV OEF

370.311 4f85d6s28G–4f85d26p? 15/2–17/2 462 27458 12.7 13.1 18 16

371.790 4f85d6s28G–4f85d26p? 11/2–13/2 509 27399 2.59 2.70 15–20 15

390.133 4f85d6s28G–4f85d26p? 15/2–17/2 462 26087 117.0 123.0 18 14

431.883 4f96s26H°–4f96s6p (15/2, 1) 15/2–15/2 0 23147 248.0 261.0 16 10

432.643 4f96s26H°–4f96s6p (15/2, 1) 15/2–17/2 0 23107 331.0 348.0 16 9

433.643 4f96s26H°–4f96s6p (13/2, 1) 13/2–15/2 2771 25825 37.0 40.2 17 13

433.841 4f96s26H°–4f96s6p (15/2, 1) 15/2–13/2 0 23043 224.0 251.0 14 8

435.681 4f96s26H°–4f96s6p (13/2, 1) 13/2–13/2 2771 25717 41.4 42.6 20 12

437.202 4f96s26H°–4f96s6p (13/2, 1) 13/2–11/2 2771 25637 25.7 29.2 14 11

438.245 4f85d6s28H–4f85d26p? 17/2–17/2 4646 27458 19.7 20.3 18 16

466.279 4f85d6s28H–4f85d6s6p? 17/2–17/2 4646 26087 12.2 12.8 18 14

489.813 4f85d6s28H–4f85d26p? 11/2–13/2 6988 27399 0.65 0.68 15–20 15

491.523 4f85d6s26G–4f85d26p? 13/2–13/2 7059 27399 1.17 1.22 15–20 15

509.229 4f85d6s26H–4f85d26p? 15/2–13/2 7767 27399 0.81 0.84 15–20 15

518.848 4f85d26s10G–4f85d26p? 15/2–17/2 8190 27458 0.96 0.99 18 16

522.199 4f85d6s28G–4f85d6s6p? 15/2–13/2 462 19606 3.89 6.06 7.5 7

522.812 4f85d26s10G–4f85d26p? 13/2–13/2 8277 27399 3.22 3.35 15–20 15

523.511 4f85d6s28G–4f85d6s6p? 11/2–13/2 509 19606 4.81 7.50 7.5 7

524.871 4f85d6s28G–4f85d6s6p? 13/2–11/2 285 19332 5.85 7.21 9.5 6

531.923 4f85d6s28G–4f85d6s6p? 13/2–15/2 285 19080 12.4 15.5 13 3

533.104 4f85d26s10G–4f85d26p? 11/2–13/2 8646 27399 1.38 1.44 15–20 15

534.604 4f85d6s28G–4f85d6s6p? 15/2–17/2 462 19162 7.45 12.0 9.0 5

535.488 4f85d6s28G–4f85d6s6p? 15/2–17/2 462 19131 12.0 15.8 13 4

536.972 4f85d6s28G–4f85d6s6p? 15/2–15/2 462 19080 13.3 16.6 13 3

550.961 4f85d6s28G–4f85d6s6p? 15/2–13/2 462 18607 2.68 3.26 6.5 2

552.412 4f85d6s28G–4f85d6s6p? 11/2–13/2 509 18607 5.65 6.88 6.5 2

560.058 4f85d6s28G–4f85d6s6p? 13/2–13/2 285 18135 1.15 2.87 10.0 1

567.184 4f85d6s28G–4f85d6s6p? 11/2–13/2 509 18135 9.90 24.7 10.0 1

613.439 4f85d6s28D–4f85d6s6p? 11/2–13/2 2310 18607 2.09 2.55 6.5 2

688.730 4f85d6s28H–4f85d6s6p? 17/2–17/2 4646 19162 6.02 9.70 9.0 5

690.198 4f85d6s28H–4f85d6s6p? 17/2–17/2 4646 19131 6.31 8.30 13 4

831.706 4f85d6s26G–4f85d6s6p? 13/2–15/2 7059 19080 29.9 37.3 13 3

844.397 4f85d6s26H–4f85d6s6p? 15/2–13/2 7767 19606 54.4 84.8 7.5 7

848.359 4f85d6s28H–4f85d6s6p? 13/2–13/2 6351 18135 46.4 116.0 10.0 1
measured. Moreover, we omit several transitions
blended by relatively intense unclassified lines.

The results of the measurements are shown in the
table. Here, we present only the wavelength λ, transi-
tion notation, inner quantum number J, energies El and
Eu of the lower and upper levels, and the cross sections
Q30 and Qmax at an electron energy of 30 eV and in the
OEF maximum, respectively, and the position Emax of
this maximum. The enumeration of the OEFs in the
table and of the curves in Fig. 1 coincide with each
other. Here, we used the logarithmic scale along the
abscissa axis and the linear scale along the ordinate
axis. In this case, each curve is normalized to unity in
its maximum and has an individual zero for counting
off along the ordinate axis.
DOKLADY PHYSICS      Vol. 45      No. 8      2000
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The state diagram for the terbium atom is presented
in Fig. 2, where all known TbI configurations are
shown. The high-lying levels found in [1] are shown in
Fig. 2 by shaded blocks. We have determined positions
for 85 even (I) and 135 odd (II) levels. However, the
measurement accuracy for the level energies in [1] cor-
responds to ±0.3 cm–1, and no quantum numbers are
known for them by now, including J.

It should be taken into account that only the two
lowest terms are established definitely for odd states,
namely, the ground term 4f 96s26H° and the excited
term 4f8(7F6)6s26p1/2(6, 1/2)° nearest to the ground one.
In this case, even within the ground term, the two high-
est levels with J = 7/2 and 5/2 are unknown. Almost all
the terms and configurations for the levels with an
energy higher than that, corresponding to 13 700 cm–1,
are established only hypothetically. The mixing para-
meters are known only for the ground-term levels that
involve 93 to 97% of the main component and, thus,
are  very close to the pure levels in the LS-coupling
symbolism.

None of the odd configurations was completed. In
Fig. 2, this fact is shown by dashed lines closing every
configuration from the side of higher energies. The
degree of incompleteness can be illustrated by an
example contained in Section 1 of this paper: From the
total number 2725 levels in the even configuration
4f85d6s2, only 57 were calculated in [13]. In the odd
configuration 4f 85d26p, only six levels are known; in
the higher lying configuration 4f 96s7s, only two levels
are known. However, they are cited in [12] as definitely
established. According to the data given in [12], the
boundary of the highest odd levels is near 35000 cm–1,
the first ionization limit of TbI being 47295 cm–1. Here,
we imply all the experimental levels independently of
the presence or absence of their classification (the lev-
els from [1] are shown separately).

In the even part of the diagram, the situation is
somewhat more favorable. For the lowest configuration
4f85d6s2, as was noted earlier, we classified 57 levels,
the majority of which are related to nine definitely
established terms. Moreover, the mixing parameters are
known for the levels of these terms. Only four terms
from nine remain partially unfilled (1 to 2 levels are
deficient). In the next configuration 4f 85d26s, we have
definitely established only the lowest term
4f8(7F)5d2(3F)(9G)6s10G for which, however, the high-
est level with J = 1/2 is not found. The decuplet level
4f 8(7F)5d2(3F)(9I)6s10I21/2 is also definitely established.

Finally, in the even configuration 4f 96s6p, 11 levels
are known. For four of them, the terms are hypotheti-
cally established, and an additional six levels belong
definitely to two terms written out in denotations of the

J1J2-coupling: 4f 9(6H°)6s6p( ) (15/2, 1) and

4f9( )6s6p( ) (13/2, 1). The data given in the

P1 °1
H6 °13/2 P1 °1
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table show that the transitions from the levels of the first
of these terms have the largest excitation cross sections
among measured ones. The excitation cross sections for
the levels of the second of the above terms are also large
and attain (3–4) × 10–17 cm2, whereas, for the most fre-
quently appearing level of 27 399 cm–1, the total exci-
tation cross section is only 0.98 × 10–17 cm2 for the
30-eV electron energy. In this case, as can be seen from
Fig. 1, the OEFs for the levels related to the same term
are very similar in their shape (curves 8, 9, 10 and 11,
12, 13, respectively). The most probable reason for the
marked difference between the OEF 12 and two neigh-
boring ones is likely the spectral overlapping of the uni-
dentified line. Some other OEFs have also a significant
similarity in their shape (1 and 5, 3 and 4, 14 and 15, or
14 and 16). However, their belonging to particular
terms remains unknown, so that this similarity can be
caused by random reasons.

Ei = 47295 cm–1

I

4f 96s6p

4f 85d26s

4f 85d6s2
4f 96s2

4f 86s26p

4f 85d6s6p

4f 95d6s

4f 85d 26p

4f 96s7s

II

4

3

2

1

E
, 1

04  c
m

–1

4

3

2

1

0

Fig. 2. Diagram for states of terbium atom with transitions
investigated.
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The group of transitions denoted by arrow 3 in
Fig. 2 should be specially mentioned. The group of
transitions 1, 2, and 4 are quite permissible by the selec-
tion rules in the dipole approximation because all of
them correspond to the configuration change 6p 
6s. To the contrary, the transitions of group 3 arise in
the case of combining the 4f 85d26p and 4f85d6s2 config-
urations, i.e., in the case of a radical reconstruction
5d6p  6s2 of the electron shell. Such a transition
cannot be realized in the single-electron approximation
and is likely realized only due to the presence of a sig-
nificant mixing of configurations. Actually, for low-
lying levels (the 4f85d6s2 configuration), a significant
mixing takes place [12]. For the transitions from high-
lying levels of the group 3, the necessary data are
absent.

4. Thus, for the first time, the terbium-atom excita-
tion by low-velocity monoenergetic electrons was
investigated, and the excitation cross sections were
determined. The results obtained can be used as the ref-
erence data in solving problems of physics and chemis-
try of plasmas, astrophysics, etc. At the same time,
information obtained on the atomic constants of ter-
bium atom can provide for progress in the extremely
complicated theoretical analysis of the TbI structure
and spectrum.
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Analysis of the mechanisms underlying the vortex-
induced intensification of heat transfer accompanying
the fluid flow along surfaces consisting of concave ele-
ments stimulates studies that reveal both the physical
nature of large-scale vortex objects generated in hol-
lows and their relation to the heat transfer from a wall.
Experimental works concerning this problem (see, for
example, [1]) demonstrate, first of all, that there exist
non-steady-state cyclic processes involving the forma-
tion of vortex flows. It is usually assumed that the latter
are responsible for the high level of heat transfer at
comparatively low hydrodynamic losses. However, it is
very difficult to control these processes because their
manifestation depends on the combination of many fac-
tors such as relative values of the hollow depth and a
radius of curvature characterizing its sharp edge, the
arrangement of hollows at the plane (in the case of their
ensemble), the thickness of boundary layer, and the
degree of turbulence in the incident flow.

An alternative concept is presented by the vortex-
induced intensification based on steady-state asymmet-
ric flows around the hollows related to their asymmetric
shapes. Numerical studies of laminar [2, 3] and turbu-
lent [4] flows, which occur around a deep isolated hol-
low at the plane, show that one-sided transverse defor-
mation of the hollow can substantially change the vor-
tex pattern in its vicinity and intensify the fluid motion
in the direction transverse to the incident flow. In addi-
tion, the laminar flow in the asymmetric hollow does
not change the vortex pattern with two large-scale vor-
tex cells observed in spherical hollows [5–7], whereas
in the turbulent regime arising there, the transition to a
single-vortex tornado-shaped flow pattern turns out to
be possible [2]. In the latter case, the flow becomes
much more intense in the direction transverse to the
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hollow. In general, this fact agrees with similar pro-
cesses that occur in the near-wall zone when a jet is
injected at a finite angle with respect to the incident
flow [8]. Then, the transition from a symmetric two-
vortex flow pattern to that with one vortex is accompa-
nied by a considerable increase in the velocity of the
secondary flow.

In this paper, the main emphasis is placed on the
relation between the dynamics of vortex structures in a
hollow, the extent of its deformation ε (spherical and
elliptic parts of the hollow conjoin with each other),
and the relative heat transfer from a surface element
containing the hollow. Particular attention is given to
the bifurcation occurring in the vortex flow around the
spherical hollow, which is accompanied by an abrupt
change of the thermal regime near the wall. Similarly
to [4], spatial jet–vortex structures were revealed by the
computer visualization of the flow based on tracing
tagged particles in the fluid. As a basic geometrical
configuration, we consider a spherical hollow (0.22 in
depth) having rounded edges (of radius 0.1), which
supports a steady-state turbulent flow with the devel-
oped zone of flow separation.

For the numerical simulation of turbulent flow in the
vicinity of curved surface elements, we use an
approach based on implementation of multiblock nets.
This approach was tested in calculations of two-dimen-
sional flows with vortex cells [6]. The constructed fac-
torized algorithm is based on the implicit finite-volume
method of solving the Navier–Stokes equations with
the Reynolds averaging, which are closed according the
Menter zonal two-parameter model of turbulence [9].
The algorithm involves partitioning of the calculation
region and generation of oblique overlapping nets of
the H and O types in selected subdomains having
essentially different scales. The starting set of equa-
tions is written in the divergence form with respect to
increments of dependent variables, where the latter
include the Cartesian components of velocity. In the
source terms appearing in the equations for momen-
tum, the convection-induced flows are approximated
using the Leonard one-dimensional counterflux
scheme with quadratic interpolation. In the transport
equations for turbulent characteristics, these terms are
approximated by the UMIST counterflux scheme [10],
000 MAIK “Nauka/Interperiodica”
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which is a modification of the TVD scheme. In its main
features, our methodology is similar to the one used
in [4].

For a more accurate description of structural ele-
ments corresponding to the different scales in the turbu-
lent flow around a deep hollow, such as, the shear layer
and the backward-flow zone, it is reasonable to separate
out a near-wall domain surrounding the hollow. It is the
cylindrical ring of the outer radius equal to unity, the
inner radius of 0.1, and height 0.175, where all of the
linear dimensions are measured in units of the hollow
diameter. The domain under study is partitioned by an
oblique curved net, which conforms to the surface
interacting with the flow. We place 60 uniformly dis-
tributed cells along the circle, 45 cells in a vertical
direction with higher node concentration near the wall

(b)

(a)
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0.1qΣ/q0

ε

Fig. 1. (a) Computer visualization of jet–vortex objects aris-
ing in the asymmetric hollow and (b) the effect of shape
asymmetry ε on the minimum values of (1) longitudinal
(umin) and (2) transverse (wmin) velocities, (3) on the maxi-
mum value of the transverse velocity wmax, and (4) 1/10 of
the ratio of the total heat load qΣ per circular element con-
taining the hollow and the load q0 per element without the
hollow. Dashed line (5) corresponds to the calculations cor-
responding to the symmetric vortex flow pattern in the
spherical hollow, which is presented in Fig. 2a.
(the minimum near-wall step is equal to 0.0008). In the
radial direction, we specify 40 cells concentrating
toward the boundary of the hollow (the minimum step
is equal to 0.015).

The considered subdomain of the hollow is covered
by a large-scale rectangular domain, where the base of
the latter coincides partly with the flat wall interacting
with the flow. The origin of Cartesian coordinates coin-
cides with the projection of the hollow center onto the
plane. The domain length, height, and width are equal
to 17, 5, and 10, respectively. It is partitioned by the
Cartesian net containing 55 × 40 × 45 cells. Nodes of the
net are concentrated in the vicinity of the hollow (the
minimum step in the longitudinal and transverse direc-
tions is equal to 0.15) and near the wall (the near-wall
step is equal to 0.001).

To better resolve the near-wall flow in a vicinity of
the axis of the cylindrical subdomain, we introduce the
“patch” that passes through this subdomain and has a
shape of a curved parallelepiped. The 19 × 19 net hav-
ing a uniform node distribution in the longitudinal and
transverse directions is constructed inside it. Steps of
this net are consistent with the near-boundary step in
the neighboring cylindrical domain. In the same man-
ner, the arrangement of the net nodes is adjusted in the
vertical direction.

The velocity profile specified at the entrance bound-
ary of the domain corresponds to the 1/7 profile of the
turbulent boundary layer, where the thickness (0.175)
of the latter is close to the hollow depth. We specify soft
boundary conditions (those of continuation of the solu-
tion) at the exit boundaries and the nonslip condition at
the heated isothermal wall. The velocity of the incident
flow outside the boundary layer and the hollow diame-
ter are used as the normalization parameters to reduce
the problem to the dimensionless form. The Reynolds
number is assumed to be equal to 2.35 × 104. While
solving the heat transfer problem, we take the values
0.7 and 0.9 for the laminar and turbulent Prandtl num-
bers, respectively.

Some numerical results obtained using the TECPLOT
computer-based system for visualization of spatial
fields are presented in Figs. 1 and 2.

For the asymmetric hollow under study (ε = 0.2), a
flow pattern is shown in Fig. 1a. It has a pronounced
asymmetric character, where sidewash occurs in the
direction of the deformed part of the hollow and the
pressure maximum is shifted toward the opposite side.
As for the spherical part of this hollow, the pattern is
approximately the same as in the case of the symmetric
hollow in the laminar flow regime [2, 3]. It is character-
ized by a focus-type singularity, which is situated at the
periphery of the hollow, and the swirling jet flow forms
in the vicinity of this singularity. Inside the asymmetric
hollow, the large-scale vortex flow has a snail-like
structure with a single-vortex tornado. This structure
clearly manifests itself at the tracing of tagged particles
introduced at different spatial points. Similar to the
DOKLADY PHYSICS      Vol. 45      No. 8      2000
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laminar flow in the asymmetric hollow [2, 3], the sepa-
ration zone is not closed. As a result, the incident flow
penetrates the hollow through the open lateral window
from the side of its spherical part. This effect substan-
tially intensifies the vortex motion in the fluid.

When parameter ε characterizing the degree of the
hollow deformation varies from 0 to 0.2, both the extre-
mum values of the transverse velocity component and
the minimum value of the longitudinal backward-flow
velocity in the hollow remain nearly unchanged. Nev-
ertheless, the ratio of the total heat load qΣ per a circular
element of unit radius containing the asymmetric hol-
low and load q0 applied to a similar element without a
hollow exhibits a pronounced peak with the height

(b) z
x

(a) z
x

Fig. 2. (a) Symmetric and (b) asymmetric patterns of jet–
vortex structures arising in the spherical hollow at the plane
in the case of turbulent flow around the hollow.
DOKLADY PHYSICS      Vol. 45      No. 8      2000
exceeding the heat transfer from the flat wall by a factor
of 1.7. Relative heat transfer from the element contain-
ing a hollow decreases with an increase in the degree of
the hollow asymmetry, since the fraction of the hollow
area in the area of the chosen element decreases.

The patterns of two steady-state turbulent flows
occurring in the spherical hollow are compared in
Fig. 1. One of them was obtained in the absence of
strong input perturbation caused by initial asymmetry
of the hollow, while the other demonstrates the effect of
such a perturbation. Symmetric vortex structure, char-
acteristic of laminar flows in the spherical hollow [2]
(Fig. 2a), transfers to the single-vortex tornado struc-
ture (Fig. 2b); that is, we have the vortex-flow bifurca-
tion. A similar bifurcation arises in the separation flow
that occurs in the plane-parallel symmetric channel
with an abrupt widening [11]. This bifurcation leads to
a significant decrease in the heat transfer in the case of
the symmetric vortex pattern.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, projects nos. 00-02-81045 and
99-02-16745.

REFERENCES
1. V. V. Alekseev, I. A. Gachechiladze, G. I. Kiknadze,

et al., in Proceedings of the II Russia National Confer-
ence on Heat Transfer, Moscow, 1998, Vol. 6, pp. 33–42.

2. S. A. Isaev, A. I. Leont’ev, A. E. Usachev, et al., in Pro-
ceedings of the II Russia National Conference on Heat
Transfer, Moscow, 1998, Vol. 6, pp. 121–124.

3. S. A. Isaev, A. I. Leont’ev, A. E. Usachev, et al., Izv.
Akad. Nauk, Énerg., No. 2, 126 (1999).

4. S. A. Isaev, A. I. Leont’ev, and P. A. Baranov, Pis’ma Zh.
Tekh. Fiz. 26 (1), 28 (2000) [Tech. Phys. Lett. 26, 15
(2000)].

5. S. A. Isaev, A. I. Leont’ev, D. P. Frolov, et al., Pis’ma Zh.
Tekh. Fiz. 24 (6), 6 (1998) [Tech. Phys. Lett. 24, 209
(1998)].

6. S. A. Isaev, P. A. Baranov, A. E. Usachev, et al., in Pro-
ceedings of the IV ECCOMAS CFD Conference, Athens,
1998, Vol. 1, Part 2, pp. 768–774.

7. S. A. Isaev, in Problems of Gas Dynamics and Heat and
Mass Transfer in Power Engineering: Proceedings of
the XII School-Workshop of Young Scientists and Engi-
neers organized by Academician A. I. Leont’ev, Moscow,
1999, pp. 17–20.

8. F. S. Henry and H. H. Pearcey, AIAA J. 32, 2415 (1994).
9. F. R. Menter, AIAA J. 32, 1598 (1994).

10. F. S. Lien, W. L. Chen, and M. A. Leschziner, Int. J.
Numer. Methods Fluids 23, 567 (1996).

11. F. Battaglia, S. J. Tavener, A. K. Kulkarni, et al., AIAA
J. 35, 99 (1997).

Translated by Yu. Verevochkin



  

Doklady Physics, Vol. 45, No. 8, 2000, pp. 392–394. Translated from Doklady Akademii Nauk, Vol. 373, No. 4, 2000, pp. 474–476.
Original Russian Text Copyright © 2000 by A. Vinogradov, Yu. Vinogradov.

                                                                                                                                                                                      

MECHANICS
A Method of Transferring Boundary Conditions 
by Cauchy–Krylov Functions 

for Rigid Linear Ordinary Differential Equations
A. Yu. Vinogradov and Yu. A. Vinogradov
Presented by Academician G.G. Chernyœ November 12, 1999

Received November 22, 1999
The problem of stable numerical transferring of the
boundary conditions for rigid linear ordinary dif-
ferential equations was first considered in 1961 by
Abramov [1] and Godunov [2]. After separation of vari-
ables, partial differential equations in deformation
mechanics for plates and shells are reduced to these
equations. In numerically integrating differential equa-
tions by step methods, e.g., in the Godunov method, the
orthonormalization procedure is applied for stable cal-
culations.

In this study, we demonstrate a radically new
method for improving the efficiency of transferring the
boundary conditions to a given point x* within the inte-
gration interval [0, 1]. This method is not time consum-
ing, decreases requirements to the computer RAM, and
provides a given error of calculations.

We consider a boundary value problem represented
by the system of first-order differential equations in the
matrix form

(1)

where (*)' = d(*)/dx; Y = {y1(x), …, ym(x)}T is the
unknown vector function with the dimension m, F =
||fij(x)|| is the matrix of variable coefficients fij(x) with
the dimension m × m, and Q = {q1(x), …, qm(x)}T is the
vector function with the dimension m standing on the
right-hand side of equation (1) and describing an exter-
nal load. The boundary conditions at the edges of the
interval [0, 1] are given by the relations

(2)

where HL and HR are the matrices of the boundary con-
ditions having dimensions (m – r) × m and r × m and the
ranks m – r and r, respectively. rL and rR are vectors
with the dimensions m – r and r, respectively.

Y' FY Q,+=

HL 0( )Y 0( ) rL 0( ), HR 1( )Y 1( ) rR 1( ),= =
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We divide the interval [0, 1] into segments of the sta-
ble evaluation by the points

It is well known [3] that the general solution to dif-
ferential equation (1) for an arbitrary stable-evaluation
segment can be written in two forms. When integrating
from the left to the right, it is

(3)

and when integrating from the right to the left, it is

(4)

Here, K(xi – 1, xi) and K(xi + 1, xi) are the matrices of the
numerical values for of fundamental Cauchy–Krylov
functions for homogenous differential equation (1), i.e.,
when Q = 0, and Y0(xi – 1, xi) and Y0(xi + 1, xi) are columns
for the partial solutions to equation (1).

It is worth noting that solutions (3) and (4) to differ-
ential equation (1) are derived without allowing for the
boundary conditions since the Cauchy–Krylov func-
tions satisfy arbitrary initial conditions of the problem.
It is evident that solutions (3) and (4) using matrices K
for the values of the Cauchy–Krylov function and the
partial solutions Y0 derived on their basis link the val-
ues of the unknown quantities of the columns Yi – 1, Yi

and Yi + 1 at edges of an arbitrary chosen stable-evalua-
tion segment. This property is used for successive inde-
pendent transferring the boundary conditions in each of
adjacent segments of the stable evaluation, starting
from the edge ones to a given point x* within the inter-
val [0, 1].

The values of the fundamental Cauchy–Krylov
functions for a homogeneous differential equation with
the constant coefficients F = const, i.e., the matrix K for
the stable-evaluation segment, are determined with the
help of the matrix Taylor series

x0 0,=

x1 x2 … xi 1– xi xi 1+ … xn 2– xn 1– xn, , , , , , , , , 1.=

Yi K xi 1– xi,( )Yi 1– Y0 xi 1– xi,( )+ ,=

Yi K xi 1+ xi,( )Yi 1+ Y0 xi 1+ xi,( ).+=

K xi 1– xi,( ) F∆x( )m/m!
m 0=

m k=

∑=
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(∆x = xi – xi – 1 = const is the length of the stable-evalu-
ation segment), which is derived by the successive
Picard approximation or on the basis of Newton matrix
binomial formula

(∆xm = ∆x/m = const, m is the number of sections, into
which the stable-evaluation interval ∆x is divided, and
E is the identity matrix), which is, by definition, the
solution to the Volterra integral.

For differential equations with variable coefficients,
the values of the fundamental Cauchy–Krylov func-
tions are calculated, with the multiplicativity of the Vol-
terra integral taken into account, provided that the inte-
gration direction coincides with the positive direction
of the x-axis. This is obtained by multiplying the matrix
Taylor series in the stable-evaluation segment ∆x = xi –
xi – 1 by the formula

.

Here, ∆xj = ∆x/e = const is the length of the stable-eval-
uation segment,

where the quantity ∆xj is chosen from the condition for
admission of averaging the variable elements of the
matrix F in equation (1).

In the case of the opposite direction of integrating,
the order of multiplying in the given formulas is
reversed.

The values for partial solutions Y0 of equation (1)
are calculated on the basis of the definition of the so-
called Cauchy matrix [3].

The iteration process of transferring the boundary
conditions to a given point x* of the integration interval
[0, 1] is the following. At each edge, boundary condi-
tions (2) in the form HY = r are transformed to the
equivalent ones written out in the form WY = w in
which the rows wi = {wi1, …, wim} of the rectangular
matrices W are derived by orthonormalizing the rows
hi = {hi1, …, him} of the rectangular matrix H.

The rows hi = {hi1, …, him} are orthonormalized in
the following way [4]:

From the first equation of the system HY = r for the
boundary conditions, we obtain w1 = {w11, …, w1m} and

ω1 , where w1k = h1k/(  + … + )
1/2

, k = 1, … , m

and ω1 = r1/(  + … + )
1/2

, ( , …, ) = 1.

K xi 1– xi,( ) E F∆xm+( )m=

K xi 1– xi,( ) F j∆x j( )m/m!
m 0=

m k=

∑
j e=

j 1=

∏=

x0 x1 x2 … x j 1– x j x j 1+ … xe 2– xe 1– xe ∆x j;∈, , , , ,, , , , ,

K xi 1– xi,( ) E F j∆x j+( ),
j e=

j 1=

∏=

h11
2 h1m

2

h11
2 h1m

2 w11
2

w1m
2
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From the second equation of the same system, we have

W2 = {w21, …, w2m} and ω2, where w2k = /(  + … +

)
1/2

, k = 1, …, m, and ω2 = /(  + … + )
1/2

,

where  = h2k – (h2, w1)w1k and  = r2 – (h2, w1)r1.
Henceforth, (hi , wj) = (hi1wj1 + … + h1mwjm).

From the ith equation, we find Wi = {wi1, …, wim}

and ωi , where wik = /(  + … + )
1/2

, k = 1, …,

m, and ωi = /(  + … + )
1/2

, where  = hik –

(hi, w1)w1k – (hi, w2)w2k – … – (hi, wi – 1)wi – 1, k and  =
ri – (hi, w1)r1 – (hi , w2)r2 – … – (hi , wi – 1)ri – 1.

We now denote the orthonormalization procedure
by the operator M. Then,

Transferring the boundary conditions from the left
edge over adjacent segments of the stable evaluation to
a given point x* of the interval [0, 1] consists in the fol-
lowing.

The orthonormalized conditions HL(0)Y(0) = rL(0)
at the left edge or those already transferred to the point
xi , positioned to the left of the point x* within the inter-
val [0, 1], are transferred to the point xi + 1. This is per-
formed using the values of the fundamental Cauchy–
Krylov functions by excluding from the conditions

the column Y(xi). In this case, solution (4) is used,
which was obtained by integrating equation (1) in the
direction from the right to the left, i.e., in the direction
not coincident with the positive direction of the x-axis.
As a result, we have the new vector-matrix equation

where

and 

Using the operator M, we transform the latter equa-
tion to the form

By repeating the process described above, the con-
ditions for the left edge are transferred to a given point
x* of the integration interval [0, 1]

(5)

Similarly, the conditions HR(1)Y(1) = rR(1) for the
right edge are transferred to a given point x* within the
interval [0, 1] by using solution (3)

(6)

w2k' w11'
2

w1m'2 ω2' w21'
2

w2m'2

w2k' ω2'

wik' wi1'
2

wim'
2

ωi' wi1'
2

wim'
2

wik'

ωi'

WY w={ } M HY r={ } .=

WL xi( )Y xi( ) wL xi( )=

HL xi 1+( )Y xi 1+( ) rL xi 1+( ),=

HL xi 1+( ) WL xi( )K xi 1+ xi,( ),=

rL xi 1+( ) wL xi( ) WL xi( )Y0 xi 1+ xi,( ).–=

WL xi 1+( )Y xi 1+( ) wL xi 1+( ).=

WL x∗( )Y x∗( ) wL x∗( )= .

WR x∗( )Y x∗( ) wR x∗( ).=



394 A. YU. VINOGRADOV, YU. A. VINOGRADOV
Taking into account the fact that expressions (5) and
(6) contain the same column Y(x*) and introducing the
notation

we obtain the system of algebraic equations

,

where W* and w* are the square matrix and the column
with the dimension m, respectively.

Finally, we find the solution to the boundary value
problem at an arbitrary point in the form

The significant features of principal novelty for the
method described are

(i) transferring the boundary conditions to a given
point within the integration interval with their succes-
sive orthogonalization at the ends of each stable evalu-
ation segment with preservation of the vector-column
of the unknown quantities;

(ii) independent transferring of the boundary condi-
tions from each edge of the stable-evaluation segments
to a given point of the integration interval, which is
based on using the fundamental Cauchy–Krylov func-
tions of differential equations;

(iii) a possibility to provide a given error in calcula-
tion results.

The method proposed is characterized by a simple
algorithm. After orthogonalization by the operator M at
the edge of each section for the stable evaluation,
boundary conditions (2) are transferred to a given point
x* of the interval [0, 1] with the help of solutions (3)
and (4) of differential equation (1). The boundary con-
ditions transformed in the equivalent way with the pre-
served column of the desired quantities are combined at
the given point x* into a system of algebraic equations
for determining unknown values.

Among all known methods of transferring boundary
conditions, the method described above can be consid-
ered as the most adequate since its algorithm using
equivalent transformation transfers given boundary
conditions to a given point of the integration interval.
Such an algorithm has a principal advantage compared,
for example, to the Godunov method, in which the
orthogonalizion is carried out for columns of the

W∗ WL x∗( )

WR x∗( )
----------------- , w∗ wL x∗( )

wR x∗( )
----------------- ,= =

W∗ Y x∗( ) w∗=

Y x∗( ) W∗( ) 1– w∗ .=
desired solution rather than for the rows of the bound-
ary conditions. The advantage is the absence of the
necessity to memorize in calculations the matrices of
the orthogonal transformation of the rows for boundary
conditions. At the same time, in the Godunov method,
we need to conserve the transformation matrices in
order to use them again in determining the desired val-
ues of the problem. It is evident that this property of the
method constructed above makes it possible to signifi-
cantly reduce the requirements to both the volume of
the computer RAM and computer-time expenditures.

Abandoning step methods of integrating differential
equation (1) within segments of the stable evaluation
and finding the integral on the basis of the convergent
matrix Taylor series or according to the Volterra
method additionally and significantly reduce computer
time expenditures compared to other known methods.

The error in evaluating the integral on the basis of
the convergent matrix Taylor series is determined by
comparison of its partial sums. In the case of taking the
integral by the Volterra method, the error is determined
by comparison of products for different divisions into
parts of the stable-evaluation segment.

Also taking into account a possibility of estimating
the round-off errors inherent in calculations [5] clarifies
that the method constructed makes it possible to obtain
the solutions to the boundary value problem with the
given error.

The efficiency of the method constructed is con-
firmed by numerical simulations while solving the
boundary value problems in mechanics of deformation
of shells with various parameters under the action of
concentrated and local loads.
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Amplification of a Shock Wave
in a Saturated Porous Medium
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On the basis of numerical calculations describing a
collapse of a cavitation-bubble layer near a rigid wall [1],
it was found that inertia effects of the collective bubble
collapsing can cause a series of high-amplitude pressure
pulses. Experimental investigations [2–4] have shown
that the shock-wave amplification occurs in a liquid sat-
urated with bubbles of vapors or of an easily soluble gas.
The amplification can occur both for a direct wave and
after its reflection from a rigid boundary.

In this paper, we experimentally investigate the pro-
cess of amplification of shock waves in a porous
medium saturated with a liquid containing bubbles of a
soluble gas, which occurs when the waves are reflected
from a rigid boundary. A mechanism governing the
shock-wave amplification in saturated porous media is
proposed. A setup of the shock-tube type [4] was used
to carry out the experiments. Its working space was
filled with a porous medium saturated with water con-
taining air bubbles that had a characteristic radius of
~50 µm. As a porous medium, we used either chaotic
dumped packing of polyethylene particles having a
characteristic size of 3.5 mm (porosity m0 = 0.37) or
soft foam plastic (m0 = 0.98). Step pressure waves were
generated by breaking off a membrane separating a
high-pressure chamber and the working space. Pres-
sure-wave profiles were recorded by piezoelectric pres-
sure sensors situated along the working space. The sen-
sors were not in contact with the porous-medium skel-
eton and measured pressure in the liquid phase. From
the sensors, the signals were transferred to an analog-
to-digital converter and then processed by a computer.

As a result of our experiments, it was shown that in
the soft foam plastic saturated with water containing air
bubbles, the amplitude and velocity of a shock wave
reflected from a rigid wall are well described in the iso-
thermal approximation [4, 5]. This is caused by the fact
that the thermal-relaxation time of gas in the bubbles is
much shorter than the duration of the wave-front time.
Due to its low rigidity and high porosity, the porous
skeleton does not appreciably affect the reflection of a
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shock wave from a rigid wall. The role of the skeleton
is only technological and consists in retaining gas bub-
bles in liquid.

However, the situation becomes qualitatively differ-
ent when a shock wave in the porous medium com-
posed of closely packed polyethylene particles is
reflected from a rigid wall. For such a shock wave,
experimental values of its amplitude P2 (dots 1 and 2)
and velocity U2 (dots 3) are shown in the figure as a
function of the amplitude P1 of the shock wave imping-
ing a wall (P0 is the initial static pressure in the liquid).
The values of P2 (curves 4 and 5) and U2 (curve 6) are
calculated on the basis of the isothermal model [4, 5].
The values of P2 (curves 7 and 8) are calculated for the
reflection from a rigid wall of a complete-condensation
(gas dissolving) shock wave [4, 5], Cm representing the
low-frequency sonic velocity in a porous medium satu-
rated with a liquid without gas bubbles.

It is seen that an increase in the ratio P1/P0 for the
wave amplitude causes considerable amplification of
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Amplitudes and velocities of a shock wave reflected from a
rigid wall in a porous medium (m0 = 0.37) saturated with
water containing air bubbles with the initial volume gas con-
tent ϕ0 = 0.105 (P0 = 0.103 MPa): (1, 3, 4, 6, 7); and ϕ0 =
0.095 (P0 = 0.203 MPa): (2, 5, 8).
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the reflected shock wave (dots 1 and 2) compared to the
isothermal calculations (curves 4 and 5), which do not
take into account gas dissolving in the liquid behind the
wave. With an increase in the amplitude P1/P0 of the
wave, the experimental data (dots 1 and 2) approach the
corresponding calculated curves (7 and 8) taking into
account complete gas dissolving in the liquid behind
the shock wave that impinges the wall. For higher ini-
tial static pressures P0 in the medium, amplification of
the amplitude of the reflected shock wave occurs at
lower wave amplitudes P1/P0. When amplitudes of the
waves grow, experimental values for the velocity of a
shock wave reflected from the rigid wall (dots 3) devi-
ate from the calculated curve 6. Consequently, gas dis-
solving occurs in the liquid behind the shock wave
impinging the wall. This leads to a decrease in the vol-
ume gas content behind the wave and, therefore, to an
increase in the velocity of the reflected shock wave.
When the shock-wave amplitude is P1/P0 > 10, experi-
mental values for the velocity of the reflected shock wave
deviate considerably from the calculated curve. Thus, the
process of dissolving gas in the liquid essentially deter-
mines the gas behavior behind the shock wave.

Hence, the availability of a dense porous medium
leads to intense dissolving gas behind a shock wave
and, therefore, to the amplification of the reflected
shock wave. The essence of the amplification mecha-
nism is associated with converting the kinetic energy of
the liquid (i.e., the energy of its radial motion arising as
a result of collapsing bubbles) into the potential energy
of its pressure [1–4]. In order to realize this mechanism,
it is necessary that complete dissolving (due to diffu-
sion-caused processes) of gas contained in the bubbles
would occur for a time on the order of the shock-wave
leading-edge time duration. Otherwise, the regime of
accelerating collapse of the bubbles, which leads to the
occurrence of pressure spikes in the liquid and, conse-
quently, to the amplification of the reflected shock
wave, cannot be observed [2]. We note that the process
of amplification of the reflected shock waves is not
associated with splitting the bubbles behind the shock
waves, as was observed when the waves evolved in a
liquid with sufficiently large bubbles [4]. In our exper-
iments, the Weber number, determining the instability
and splitting of bubbles in a shock wave, is substan-
tially smaller than its critical value.

In the experiments under consideration, an intense
mass exchange behind the shock wave is caused, seem-
ingly, by the turbulent liquid motion occurring behind
the shock wave in the dense porous medium. Using
both the experimental values for the amplitude and the
velocity of a reflected shock wave and the model [4, 5],
we have succeeded in calculating the content of the dis-
solved gas behind a shock wave impinging the wall
and, consequently, the mass-transfer coefficient at the
gas–liquid interface. It is shown that, in the soft foam
plastic saturated with water containing air bubbles, dif-
fusion processes do not noticeably vary the volume gas
content behind the shock wave for time intervals under
investigation t ~ 10 ms. At appropriate parameters of
both the dense porous medium and the wave, a consid-
erable increase in the mass exchange is observed
behind the wave front. For example, for the wave
amplitude P1/P0 = 16.5 at the initial stage of bubble col-
lapsing, the mass-transfer coefficient exceeds by two
orders of magnitude that calculated in the boundary-
layer approximation for the diffusion regime of bubble
dissolving [6, 7]. The convective mass transfer associ-
ated with the relative motion of air bubbles with respect
to water is insignificant, because velocities of both
phases equalize in tens of microseconds, i.e., much
more rapidly than the times under investigation. Such a
high increase in the mass exchange can be caused by
turbulent pulsations of the velocity of the liquid, which
arise in porous medium behind the shock wave. Indeed,
being defined by the diameter of solid particles consti-
tuting the porous medium and also by the relative
velocity of the liquid and solid phases behind the shock
wave, the Reynolds number intrinsic to the process Re
is rather high (Re @ 100). Hence, in the porous
medium, the liquid flows in the turbulent regime [8]. It
is noteworthy that the time of equalizing the velocities
of the solid and liquid phases behind the shock wave
due to interphase friction is much longer time than the
shock-wave durations under investigation.

Thus, we may conclude that, for sufficiently high
amplitudes (P1/P0 > 30) that propagate in a dense
porous medium saturated with a liquid containing gas
bubbles, the amplification effect caused by the turbuli-
zation of the motion of the liquid behind the shock-
wave front occurs not only due to the reflection of the
shock wave from a rigid wall but also behind the front
of the direct shock wave.
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The small quantity of papers concerning the behav-
ior of anisotropic materials under impact loads is an
indication of the fact that this problem is far from well
understood. At the same time, the anisotropic materials
are finding ever-widening application, especially in
connection with advanced modern technologies that
make it possible to produce materials with specified
properties. To ensure an optimum fitting of material
properties to various structures, it is necessary to take
into account the conditions (loads) under which this
material operates and, based on that, to choose the nec-
essary parameters of the material and their dependence
on the orientation. Taking into account the directional-
ity of material properties is of special importance for
the structures working under extreme conditions and
subjected to intense dynamic loads. These are the air-
craft and spacecraft equipment, as well as containers
for storage and transportation of explosive and toxic
substances. In this paper, we present the model of
behavior for anisotropic materials undergoing dynamic
loads and study the effect of orientation-dependent prop-
erties on the impact fracture of orthotropic materials.

1. Formulation of the problem. We consider the
interaction between a steel isotropic indenter in the
form of a compact cylinder and an orthotropic plate
made of the organoplastic material. We solve the three-
dimensional problem in the Cartesian XYZ coordinate
system. The OZ-axis coincides with the indenter axis,
and it is opposite to the impact direction. The symmetry
axes of the orthotropic material of the plate coincide
with the coordinate-system axes, while the face surface
of the plate coincides with the XOY plane at the initial
moment of time. The indenter material characterized by
the shear modulus, the dynamic yield strength, and the
state-equation constants is modeled by an elastoplastic
medium [1, 2]. The behavior of the orthotropic plate
material is considered in the framework of the phenom-
enological approach [3–7]. The components of the
stress tensor before the fracture are determined accord-
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ing to the generalized Hook law for the orthotropic
material [6, 8] expressed through the increments and
involving the components of deformation rate tensor
eij . To describe the failure in the orthotropic material of
the plate, we use the fourth-order tensor–polynomial
strength criterion [4, 5]. It is assumed that the fracture
of the anisotropic material under intense dynamic load-
ing occurs as follows [6, 7]:

If the strength criterion [5] is violated under com-
pression (ekk ≤ 0), the material loses its anisotropic
properties, and its behavior can be described by the
hydrodynamic model and the material retains only the
compression strength.

If criterion [5] is violated under tension (ekk > 0), the
material is considered to be destructed, and the stress-
tensor components are assumed to be zero.

2. Discussion of the results. The compact cylinder
of steel with dimensions d0 = l0 = 15 mm (d0 is the
diameter and l0 is the length) runs symmetrically
against the orthotropic organoplastic plate of thickness
h = 15 mm. Cylinder velocity v0 ranges from 700 to
1500 m/s. To find a solution, we used the finite element
method [9]. The mechanical properties of the original
material (material 1) of the plate obey the following
relationships: Ex > Ey > Ez, Ex/Ey = 2.28, Ex/Ez = 6.8,
σbx > σby > σbz, σbx/σby = 2.26, σbx/σbz = 6.8, where Ex,
Ey, and Ez are the elastic modules and σbx, σby, and σbz are
the yield strengths in the corresponding directions [5].

We obtain material 2 from the original material by
rotation about the OY-axis by 90° assuming that there
exists an elastic potential for the anisotropic material
under consideration, and, thus, the relationships Ekνik =
Eiνki , where νki are the Poisson coefficients; i, k = x, y,
z, are met. For material 2, in this case, we obtain the fol-
lowing relationships between the characteristics in the
initial system of coordinates: Ex < Ey < Ez, Ex/Ey = 0.34,
Ex/Ez = 0.15, σbx < σby < σbz , σbx/σby = 0.33, and
σbx/σbz = 0.15.

In Fig. 1, we show the calculated configurations of
the indenter and the plates made of materials 1 and 2 at
various moments of time in the ZOX cross section. The
regions, in which the material of the plate became
000 MAIK “Nauka/Interperiodica”
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t = 10 µs

t = 20 µs
v0 = 700 m/s

t = 20 µs
v0 = 1000 m/s

t = 10 µs

Fig. 1. Configuration of the indentor in the ZOX cross section. Material 1 is to the left, and material 2 is to the right.
destructed at ekk ≤ 0 are completely shaded, while the
regions where the fracture takes place at ekk > 0 are
hatched.

The fracture in the material of the plate starts in the
compression wave initiated at the time moment corre-
sponding to the impact. In material 1, the failure taking
place in the compression wave propagates across the
plate through its whole thickness. In material 2, the fail-
ure in the compression wave occurs only in the upper
half of the plate, but the width of this region in the ZOX
cross section exceeds by a factor of 1.4–1.7 (depending
on the impact rate) the corresponding dimension in
material 1. Such a difference can be related not only to
the different strength parameters, but also by the differ-
ent velocities ci of the wave propagation in materials 1
and 2 along the corresponding directions: i = x, y, z.

In material 1, cx/cz = 2.61; this results in the fact that
the rarefaction waves propagating from the lateral sur-
face of the indenter and the face surface of the plate
reduce the width of the compression-wave front in
material 1 to a greater extent than in material 2, in
which cx < cz . For material 1, the evolution of a narrow
fracture zone (crack) propagating from the face surface
of the plate at an angle of 45° to the OZ-axis is charac-
teristic for the case of increasing impact rate. For the
impact velocities to 1000 m/s, this zone does not
emerge at the rear surface of the plate. With an increase
in the interaction rate, the crack attains the rear surface.
In material 2, owing to the fact that cx < cz , the rarefac-
tion waves have a higher component of velocity along
the z direction and, catching up with the compression
wave, reduce the level of compressing stresses. The fur-
ther propagation of the weakened compression wave
still does not induce any failures in the material.

The analysis of wave processes in these materials
can be performed in more detail using the plots (Fig. 2)
of the σz-stress distribution over the plate thickness
along the OZ-axis at various moments of time. The
cross section z = 0 corresponds to the position of the
plate–indenter contact surface at the moment of time
t = 0. To 1.5 µs, the compression-wave front propagated
along the z direction by 2h/3 in material 2 and by h/3
in material 1. At the same time, in material 2, the rar-
efaction wave formed at the lateral surface of the
indenter and the face surface of the plate begins to catch
up with the compression wave. At 3 µs after the impact,
the rarefaction wave already weakens considerably the
compression wave in material 2; the highest stress in
this material decreases from –3 GPa to –2.2 GPa as
compared with 1.5 µs. Up to this moment in time, the
regions beyond the compression-wave front in materi-
als 1 and 2 are fractured. The further propagation of the
compression wave in material 2 does not cause any
fracture. On the contrary, in material 1, the fracture in
the compression wave occurs across the whole thick-
ness of the plate. Up to 4.5 µs, the compression wave in
DOKLADY PHYSICS      Vol. 45      No. 8      2000
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material 1 only reaches the rear surface, while the rar-
efaction wave formed as a result of reflection of the
compression wave from the rear surface of the plate
already propagates along material 2. The level of com-
pressing stresses in material 2 remaining in the upper
half of the plate after the passage of the compression
wave is already considerably lower (by a factor of 2–3)
than that in material 1. An approximately equal level of
compressing stresses in the materials is retained only
close to the indenter–plate contact surface. The rarefac-
tion wave reflected from the rear surface propagates in
material 1 across the weakened substance fractured by
the compression wave across the whole thickness of the
plate and having only the compression strength that
leads to the complete destruction of the material in
front of the penetrating indenter. In material 2, the
reflected rarefaction wave propagates across the unde-
structed substance inducing the failures of the shear-
fracture type near the rear surface of the plate. The fur-
ther failure in material 2 develops already not owing to
the wave processes, but as a result of developing the
tensile stresses in the course of penetration of the
indenter.

The curves in Fig. 3 make it possible to estimate a
fraction of the completely fractured material in the
plate, which exhibits no resistance to the destruction.
During the process of the indenter–plate interaction, a
fraction of the complete failures in material 1 exceeds
the corresponding value in material 2. A value of resid-
ual velocity of the indenter after piercing the plates also
demonstrates that material 2 as a higher resistance to
the shock fracture and penetration: For all initial impact
velocities under study, a more intense deceleration of
the indenter is observed during its interaction with the
plate of material 2. With a decrease in the interaction
rate, the difference in the indenter velocity after pierc-
ing the plate from material 1 and material 2 increases:
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Fig. 2. Profile of the stress σz. Curves 1, 3, and 5 correspond
to material 1, and curves 2, 4, and 6, to material 2 at the
moments of time 1.5, 3, and 4.5 µs, respectively, for v0 =
700 m/s.
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It is 5% for v0 = 1500 m/s, 12% for v0 = 1000 m/s, and
20% for v0 = 700 m/s.

Thus, the fracture of the plate made of material 1
takes place owing to and during the wave processes; it
starts in the compression wave and terminates in the
reflected rarefaction wave. In the plate of the material
with reoriented properties (material 2), the wave pro-
cesses do not cause any macroscopic fracture. The
compression wave destroys the material in the upper
half of the plate, while the rarefaction wave induces the
shear fractures near the rear surface. The further devel-
opment of the fracture in material 2 is caused by the
penetration of the indenter. The fracture in material 2
demands a higher energy; i.e., only owing to a change
in the orientation of properties is it possible to provide
more efficient protection against the impact.

Our studies show that the anisotropy of properties is
a significant factor that must be taken into account to
describe and adequately predict the evolution of the
shock-wave processes and the fracture in materials sub-
jected to dynamic loadings. It was found that a change
in the orientation of properties results in qualitative
changes in the mechanisms of macroscopic fracture of
anisotropic materials. The proposed model of fracture
using the fourth-order tensor–polynomial criterion pro-
vides an opportunity to model the behavior of a wide
class of anisotropic materials with various degrees of
anisotropy.
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As the hydrodynamic regime is approached, the gas
flow is usually accompanied by the formation of nar-
row highly nonequilibrium zones (Knudsen layers)
with the characteristic size on the order of the mean free
path λ for molecules. The structure of these zones is
determined by fast kinetic processes. In unsteady flows,
an initial layer with the time scale on the order of the
mean free time τ0 = λ/vT (here, vT is the molecular ther-
mal velocity) occurs as well. In the macroscopic scale
l0 @ λ, the flow parameters vary smoothly beyond these
zones [1]. From a computational standpoint, solving
the Boltzmann equation with steps hx < λ and τ < τ0 is
inefficient everywhere over the calculation domain.
Moreover, it can result in the early cessation of the iter-
ative process as soon as the error of the numerical
method becomes equal to the small difference of two
successive approximations. When passing to the mac-
roscopic steps λ ! hx < l0, τ0 ! τ < t0 , where t0 = l0/vT ,
the problem of a large factor standing ahead the colli-
sion integral arises [2]. In terms of the dimensionless
variables t = t*/t0, x = x*/l0, ξ = ξ*/vT (here, the asterisk
denotes dimensional variables), the Boltzmann equa-
tion takes the form

(1)

For the Knudsen numbers K ! 1, the equation
acquires a rigid nature, and specific methods [3–5]
should be used for its numerical solving.

According to the Enskog–Chapman theory, for
K ! 1, the solution to equation (1) takes the form

(2)

where fM is the Maxwell function determined by the gas
density n(x, t), temperature T(x, t), and velocity u(x, t),
while

(3)

The substitution of (3) into (1), with the property
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I(fM, fM) = 0 taken into account, eliminates the term on
the order of K–1 in the right-hand side of equation (2).
The idea of the method proposed is to provide for the
fulfillment of the indicated properties in the discrete
approximation of the Boltzmann equation. In accor-
dance with the general theory developed in [4, 5] for
solving rigid equations of form (1), the solution to the
difference equations obtained is constructed in such a
manner that the asymptotic solution to the difference
problem is of form (3) as τ  ∞.

We write out the Boltzmann collision integral for
monoatomic gas in the form

where the conventional notation of [1] is used. The
velocity arguments ξ and ξ1 of the functions f and f1 are
related to the arguments ξ' and  of the functions f '

and  by the relations

(4)

Here, n is the unit vector aligned with the centerline of
the colliding molecules, and g = ξ – ξ1 is their relative
velocity.

We consider the integral operator

(5)

Taking the three-dimensional δ-function δ(ξ – ξβ) for
φ(ξ), we obtain

(6)

The laws of conservation for mass (density), momen-
tum, and energy Q(ψ) = 0 follow from (5) for the addi-
tive collision invariants ψ = (1, ξ, ξ2).

We bound the space of the ξ-variable by the region
Ω with a volume V and introduce in this region a net

I f f,( ) f ' f 1' f f 1–( )gb bd εd ξ1,d

0

bm

∫
0

2π

∫
∞–

∞

∫=

ξ1'

f 1'

ξ' ξ n ng( ), ξ1'+ ξ1 n ng( ).–= =

Q φ( ) 1
4
--- φ ξ( ) φ ξ1( ) φ ξ'( )– φ ξ1'( )–+( )

0

bm

∫
0

2π

∫
∞–

∞

∫
∞–

∞

∫=

× f ' f 1' f f 1–( )gbdbdεdξdξ1.

Iβ Q δ ξ ξβ–( )( ).=
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consisting of N0 equidistant nodes ξβ with a step h =
(h1, h2, h3). Furthermore, the following notation is used:
fβ ≡ f(ξβ, x, t), Iβ ≡ I(ξβ, x, t). Here, only the node of the
velocity net is indicated at which a given value is calcu-
lated. Equation (1) will be approximated by a system of
N0 equations in terms of the functions fβ. From (6) and
(5), a cubature formula for calculating the integral Iβ is
constructed, which satisfies, as in the method [6, 7], the
conservation laws

(7)

as well as the condition

(8)

at any node ξβ of the velocity net. Here, fM, β is the mag-
nitude of function (3) at the node ξβ.

We employ a uniform cubature net , , bν, εν

with Nν nodes, such that  and  belong to the
velocity net. Then, we exclude those values of the inte-
gration variables b, ε that remove the velocities  and

 after the collision beyond the region Ω × Ω. Since

the arguments  and  of the δ-functions appearing
in (5) with negative sign, in general, do not coincide
with the net nodes, these functions will be approxi-
mated by the sum of δ-functions with arguments taken
at nodes nearest to  and .

We assume that  and  are the nearest nodes to

 and , respectively;  =  –  and  =

 – . From (4), it follows that the points  and

 are situated antisymmetrically in the corresponding

cells:  = – . We denote ∆ = /h = (∆1, ∆2, ∆3),
|∆i| ≤ 1/2, i = 1, 2, 3, and introduce a displacement vec-
tor on the net s = (s1, s2, s3), si = 0, or si = ∆i), i =
1, 2, 3. Then, the vertices of the cells, inside of which
the points  and  fall, can be represented as 

and .

We replace the off-net δ-functions in (5) by the
expansions

Substituting these expansions into (5) and using (6),

ψβIβ

β
∑ 0, ψβ 1 ξβ ξβ

2, ,( ),= =

Iβ f M β, f M α,,( ) 0=

ξαν
ξβν

ξαν
ξβν

ξαν
'

ξβν
'

ξαν
' ξβν

'

ξαν
' ξβν

'

ξλν
ξµν

ξαν
' ξβν

' ∆λν
ξαν

' ξλν
∆µν

ξβν
' ξµν

ξαν
'

ξβν
'

∆λν
∆µν

∆λν

(sgn

ξαν
' ξβν

' ξλν s+

ξµν s–

δ ξβ ξαν
'–( ) psδ ξβ ξλν s+–( ),

s

∑=

δ ξβ ξβν
'–( ) psδ ξβ ξµν s––( ).

s

∑=
we obtain

(9)

where B = Vπbm/4Nβ, Nβ = Nν/N0,  = gνbν,

 = gνbν for αν = β or βν = β, and  =

gνbν,  = gνbν for λν + s = β or
µν − s = β.

We determine the coefficients ps from conservation
laws (7). To this end, we substitute (9) into (7), change
the order of summation, and require each term with the
index ν in the external sum to vanish. Thus, we arrive
at the same system of equations that has been obtained
in [6] when constructing a conservative method for the
collision integral with “inverse collisions” ignored, i.e.,

without the term  in (5), namely,

(10a)

(10b)

(10c)

System (10) of equations has a particular solution
containing only two nonzero coefficients: The first is
1 – pν and corresponds to s = 0. The second is pν and
corresponds to a certain value s ≠ 0, which depends on
a combination of parameters entering into the energy
equation. Thus, we arrive at the approximation

(11)

The value of  entering into , , and

 should be found from interpolation of the nearest

values , . From (10c), it follows that the for-
mula

(12)

is exact for a net function of the type (3), and it makes
each term of sum (11) vanish.

Formulas (11) and (12) specify the method to calcu-
late the collision integral ensuring the rigorous fulfill-
ment of conditions (7) and (8).

Equation (1) is solved on the basis of the decompo-
sition method. In the interval [t j, t j + 1], the following

Iβ B – jν
1( ) jν

2( ) pν s, jν
3( ) jν

4( )+( )
s

∑+ +
 
 
 

,
ν

Nν

∑=

jν
1( ) f αν

f βν

jν
2( ) f αν

' f βν
' jν

3( )

f αν
f βν

jν
4( ) f αν

' f βν
'

f αν
' f βν

'

1 pν s,

s

∑– 0,=

ξαν
ξβν

pν s, ξλν s+ ξµν s–+( )
s

∑–+ 0,=

ξαν

2 ξβν

2 pν s, ξλν s+
2 ξµν s–

2+( )
s

∑–+ 0.=

Iβ B jν
2( )–( jν

1( ) pν jν 0,
3( ) jν 0,

4( )–( )+ +
ν

Nν

∑=

+ 1 pν–( ) jν s,
3( ) jν s,

4( )–( ) ).

f αν
' f βν

' jν
2( ) jν 0,

4( )

jν s,
4( )

f λν s+ f µν s–

f αν
' f βν

'( )ln 1 pν–( ) f λν
f µν

( )ln=

+ pν f λν s+ f µν s–( )ln
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equations are sequentially solved

(13)

(14)

The system of equations (13) is approximated by the
scheme [8] having the second order of accuracy in hx,
which is well adapted to calculating discontinuous flows.
For solving the system of nonlinear equations (14), we
introduce the discrete variable tν = τν/Nν, τ = t j + 1 – t j

and the intermediate values of the solution ;
then, we employ the explicit Euler method

(15)

Here, the values , , … are calculated from the

functions . Method (15) is conservative and
enables the verification of the positive value of the solu-
tion. The solution to system (14) is attained for ν = Nν .
It is correct at arbitrary values of τ and tends to (3) as
τ  ∞. On substituting the net function in form (3),
equation (13) becomes equivalent to the kinetic
approach for solving equations of gas dynamics [5].

The method proposed allows us to solve the Boltz-
mann equation with both the separation of the Knudsen
layers (that must be calculated with steps τ < K–1, hx <
K–1) and without such a separation (with steps τ > K–1,
hx > K–1) over the entire calculation domain. In the lat-
ter case, as for calculating hydrodynamic equations,
highly nonequilibrium zones manifest themselves as

∂ f β*

∂t
--------- ξβ

∂ f β*

∂x
---------+ 0, f β

* j,
f β

j ,= =

∂ f β

∂t
--------- K 1– Iβ, f β

j f β
* j 1+,

.= =

f β
j ν /Nν+

f β
j ν /Nν+

f β
j ν 1–( )/Nν+

τK 1– B jν 1–
1( )–( jν 1–

2( )++=

+ 1 pν 0,–( ) jν 1– 0,
3( ) jν 1– 0,

4( )–( ) pν s, jν 1– s,
3( ) jν 1– s,

4( )–( ) ).+

jν 1–
1( ) jν 1–

2( )

f β
j ν 1–( )/Nν+
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discontinuities of hydrodynamic parameters, which are
spread by the scheme viscosity.

As the first example, the well-known one-dimen-
sional nonstationary problem of propagation of an arbi-
trary initial-data discontinuity was considered, which is
often used as a test for numerical methods of gas
dynamics. The initial data (at t = 0) are the following:
To the left of the discontinuity point x = x0 , gas is char-
acterized by the parameters n1 = 1, T1 = 1, U1 = 0. To
the right of the discontinuity point, it has the parame-
ters n2 = 0.125, T2 = 0.8, U2 = 0. The Boltzmann equa-
tion was solved for the hard-sphere molecule model
with the following values for discretization parameters
in the ξ-variable: N0 = 3604, Nν = 36000, h1 = h2 = h3 =
0.3vT, and with various values of hx and τ.

Figure 1 shows the pressure plots for the cases hx =
5λ1, τ = 0.2τ1 and hx = 100λ1, τ = 3τ1 . Here, λ1 is the
mean free path and τ1 is the mean free time to the left
of the initial discontinuity. The number of nodes for
both cases is equal to kx = 200. The initial discontinuity
is located at x0 . The solution corresponds to t = 200τ1
and t = 4000τ1 for the first and second cases, respec-
tively. Since the solution to the gas-dynamic problem is
invariant with respect to the transformation x ' = cx, t ' =
ct, the plots are rather close. However, in the first case,
a shock-wave structure is visible, whereas it is a discon-
tinuity for the second case. The solutions in the case of
the rarefaction wave are close, and they essentially
coincide in the contact region. Figure 2 shows the den-
sity plots to the right of the rarefaction wave in an
enlarged scale. In the first calculation (solid line), the
contact discontinuity and the shock wave are spread out
by molecular viscosity. The shock-wave thickness is
approximately equal to 5λ2 , where λ2 is the mean free
path to the right of the initial discontinuity; this magni-
tude corresponds to the actual value for the given Mach
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0 100 200 300 400 500
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Fig. 2.
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number M = 1.62. In the second case (shown by cir-
cles), gas-dynamic discontinuities are spread by the
viscosity over a few cells.

As for the second example, we consider a longitudi-
nal flow around a plane-parallel plate of the infinite
swing for M = 2 and K = 0.01 in the case of the surface
temperature equal to that of the approach stream and
diffuse reflection of molecules from the surface at the
condition of total accommodation. For such flow
parameters, the Knudsen layer with the thickness on the
order of λ is known [1] to be formed near the plate sur-
face. At the same time, a region with abrupt longitudi-
nal flow changes at a distance on the order of λ is
formed near the leading edge. Accurate calculation of
the flow requires that the steps of a three-dimensional
net in the regions indicated would be smaller than λ.
These conditions are met in the first calculation, where
the varied net in x and y with the steps hx = 0.6λ and
hy = 0.6λ was used near the leading edge and surface,
respectively. The numbers of nodes in x and y were kx =
54 and ky = 32, respectively; the steps hx and hy attained
20λ at the periphery of the calculation region. The other
discretization parameters are the following: τ = 0.35τ0,
N0 = 3604, Nν = 36000, and h1 = h2 = h3 = 0.32vT. Here,
λ is the mean free path, and τ0 is the mean free time in
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Fig. 4.
an unperturbed flow. In the second calculation, the
Knudsen layers were not separated, and a net with a
constant step hx = hy = 5λ, kx = 43, ky = 22 was
employed, the other parameters being the same as
before. In both cases, the calculations were carried out
up to t = 200τ0 , and the attainment of the steady-state
solution was controlled. Figure 3 shows the plots for
the friction along the plate obtained in the first case
(solid line) and in the second one (dashed line). The
separation of the Knudsen layers is seen to play a sig-
nificant role.

The third example shows the efficiency of the
method for calculating slow flows. A flow similar to
that of the second example is considered but with M =
0.001 and K = 0.1. The parameters of the calculation
are the following: hx = 0.5λ, hy = 0.333λ, kx = 40, ky =
20, τ = 0.1, N0 = 3604, Nν = 36000, and h1 = h2 = h3 =
0.26vT. In this case, the deviation from the equilibrium
is determined by the parameter Keff = M × K = 10–4, and
an especially high accuracy is required. Isolines of the
gas-velocity component normal to the plate (in the
1000-fold scale) are shown in Fig 4. The plate is situ-
ated between x1 = 0.7 and x2 = 1.7. In the case of using
the method of [6, 7], attempts to calculate these small
deviations from the equilibrium even for M = 0.01 and
with a tenfold increase in the parameter Nν turned out
unsuccessful.

The examples given above show that the method
proposed allows the gas flows with the Knudsen num-
bers K ! 1 to be efficiently calculated.
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The isobaric–isothermal ensemble is rarely used in
statistical mechanics and thermodynamics due to diffi-
culties with integration and some other computational
problems [1–4]. Nevertheless, this ensemble provides
certain advantages related to rapid convergence with
respect to the number of particles [5]. The canonical
and grand canonical distributions are the most popular,
since they ensure exact solutions for ideal gas and har-
monic oscillators.

At first glance, it seems that the problem could be
solved by means of the expansion of thermodynamic
potential Ω = –pV in terms of chemical potential µ and
the group integrals for interacting particles [1, 2]. How-
ever, the mathematical formalism of such a type does
not provide an opportunity to explicitly obtain a final
result. First, it is possible to calculate only about ten
first terms in the series expansion without any proofs of
its convergence. Second, this approach is based on
model potentials for two-particle interactions with the
parameters refined by fitting to experimental data.
Third, we also need to derive the inverse function by
expressing µ through measured temperature T and pres-
sure p.

In this paper, we demonstrate that precisely the
ensemble corresponding to constant pressure underly-
ing the Gibbs free-energy distribution turns out to be
free of many disadvantages inherent in other ensem-
bles. Our approach starts from clear basic principles:
The mathematical models considered in statistical
mechanics serve as approximations to real physical
systems [1], and the actual accuracy of the models is
determined by phenomenological thermodynamics in
the broad understanding of the term [6]. The latter
enables us, in particular, to extrapolate the available
experimental data using the theory of similarity.

Here, we suggest a new approach for interpreting
the constant-pressure ensemble based on the quantum-
mechanical concepts. In the one-particle approxima-
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tion, we derive an expression for the Gibbs free energy
depending on the number of particles, temperature,
pressure, and on several typical values of enthalpy. The
limiting cases correspond to the Debye theory for heat
capacity of solids and to the chemical potential of ideal
gas. Note that in the latter case, the mean volume per
particle tends at T  0 to its value in the condensed
state. This equation of state is in good agreement with
the experimental data.

1. The modified constant pressure ensemble can
be obtained directly from the Meyer definition of prob-
ability [1]

(1)

where β = (kT)–1; E and V are the energy and the vol-
ume, respectively; G = G(β, p, N) is the Gibbs free
energy; and _ are the characteristic quantum numbers
of the system.

The conventional approach involving the summa-
tion over possible _ and the integration over volume
leads to the relationship

(2)

where Z is the partition function of the canonical
ensemble. The physical meaning of small volume v* is

not quite clear, and it is possible to eliminate it using
the following expression (see [1]):

(3)

Nevertheless, expressions (2) and (3) imply a phys-
ical paradox: We need to know Z(β, N, V) for the case
of N ~ 1024 particles confined within a small volume of
the order of 10–24 cm3. On the other hand, even for ideal
gas occupying a macroscopic volume, partition func-
tion Z calculated in the usual way is valid under condi-
tions

W _( ) e
β G NpV _( )– E N V _, ,( )–[ ]

,=

βG– Z β N V, ,( )
V
v*
------- 

  ,d

0

∞

∫ln=

βG– Z β N V, ,( ) βpV( ).d

0

∞

∫ln=
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where l is the mean free path and σ is the cross section
for collisions between particles. Note that N ~ 1019 for
ideal gas under normal conditions. However, with
account taken for particle collisions, we obtain quite a
different picture. Let us perform a Gedanken experi-
ment by tracing the motion of a chosen particle in the
gas of hard spheres of the radius σ1/2 during a macro-
scopic time interval. Let n1 be the number of particles
with the free path σ1/2, n2 being that with a free path
twice as large, etc. Similar results could be obtained if
we use the ergodicity postulate to calculate the number
of particles with free paths equal to σ1/2, 2σ1/2, 3σ1/2, ….
This implies that, even in classical mechanics, we can
pass to the statistical description of a system with dis-
crete values of volume treating n1, n2, n3, … as mean
numbers of particles in volumes σ3/2, 2σ3/2, 3σ3/2, ….

The above discussion becomes more evident and
clearer if we start a priori from the quantum-mechani-
cal approach, where the state of a system (subsystem)
is described by a wave function parametrically depen-
dent on the volume. For example, for a free particle
confined within the volume vν, we have

Now, let us consider a set of weakly interacting sub-
systems, with a large number of particles in each of
them. If the long-range forces are absent and the sur-
face effects are negligible, the system as a whole can be

described by wave function Ψ =  and by the cor-

responding relationships N = , V = vν ,

Hν = vν + E(Nν, Vν, _)]. Performing the sum-

mation over _ in (1), we get

.

Then, summing over Nν = 0, 1, 2, etc., and taking into
account that the sum over all probabilities is equal to
unity, we obtain

(4)

It should be emphasized that Nν is the mean number of
particles occupying volume Vν = Nνvν; Z (β, Nν, Vν) is
the partition function of canonical ensemble, whereas
Y(β, p, Nν) is the constant-pressure partition function.
The latter is evidently related to the Gibbs free energy

v
1 3/

! l
1

nσ
------

V
Nσ
--------, N !

V
2 3/

σ
--------- 10

16
,∼= =

%n
π2

"
2
n

2

2mv ν
2 3/

------------------.=

ψν

ν
∏

Nν∑ Nν∑
pNν[∑

W Nν( ) e
β G p Nν v ν– 

 

Z β Nν v ν, ,( )=
ν
∑

e
βG– … e

βp Nνv ν–∑ Z β Nν v ν, ,( )∑=

=  … Y β p Nν, ,( ).∑∑
Nν∑ N=

∑

and enthalpy. Note that H = , and the similar for-

mula relates the Helmholtz free energy and internal
energy.

Relationship (4) refines (1) by eliminating physi-
cally improbable and nonessential states. To simplify
the problem further on, we assume

where zν = zν(β, vν) and yν = yν(β, p). Actually, this
means that we consider only the normal systems [8].
Below, we present a method allowing us to calculate zν
and yν . Here, we use the one-particle approximation to
determine statistical weights for identical particles dis-
tributed over volumes Vν. Let Mν be the maximum
number of particles occupying the νth spatial subset in
such a way that Nν cells contain one particle and the
remaining Mν – Nν cells are empty. As a whole, there
exist Mν! ways to distribute these particles, but the
exchange of particles between the occupied cells and
the rearrangement of empty cells do not affect the value
of energy (enthalpy) determined by the summation
in (4). Hence, the weight factor for the νth layer is Wν =
Mν!(Nν!(Mν – Nν)!). To determine Mν and the common
weight factor, we can imagine the following experi-
ment. Let us assume that all N particles are in the
ground state at T = 0 and each of them occupies a vol-
ume v0 . The system is heated at p = const (under a
movable piston). Then, some of the particles would
leave the ground state and occupy other levels. It is pos-
sible to consider the state where N particles leave the
ground state and occupy a single νth layer. Then, it is
evident that Mν = N. While additional conditions are not
specified, all layers are independent and the total
weight is W = . The special role of the ground

state is taken into account by condition W0 = 1. In the
case of N2 = N3 = … = 0, this corresponds to the well-
known examples of solving similar problems in statis-
tical physics [8]. The physical meaning of this condi-
tion is the absence of additional contribution to entropy
related to N0 particles.

Thus, it is necessary to calculate the sum

(5)

Let us employ the well-known method of statistical
physics that allows us to calculate similar sums based
on the maximum term [1]. We add condition C(N –

) to (5) and find variations δNν using the Stirling
formula for factorials. Then, we find

βG∂
β∂

----------

Z β Nν Vν, ,( ) zν
Nν, Y β p Nν, ,( ) yν

Nν,= =

Wν

ν 1=

∏

e
βG– … e

N0y0∑ Mν!
Nν! Mν Nν–( )
---------------------------------e

Nν yνln
.

ν 1=

∏∑=
Nν∑ N=

Nν∑
y0ln C+ 0,=

yνln Nνln– N Nν–( ) N Nν–( )ln C+ + 0.=
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Unfortunately, in the literature, insufficient attention is
payed to the ground state, i.e., to the first condition. As
a result, parameter C corresponding to the particle
number conservation is not eliminated from the distri-
bution. This makes the problem much more compli-
cated and changes the distribution type. For example, if
we retain C (actually, the chemical potential), we would
deal with the so-called generalized ensemble [2].

Eliminating C, we obtain the desired distribution

(6)

Taking (6) into account, the maximum exponent in (5)
has the form

Thus, the desired expression for the Gibbs potential is

(7)

2. Partial statistical sums in (7). If we take ψν as a
sum of symmetrized products of one-particle wave
functions, then the enthalpy of the system with particles
occupying volumes vν can be written in the form

Then, for bosons, we have [9]

(8)

where  are the one-particle energy levels, numbers

 specify the quantum state of the system, and  is

the number of states at the ith level, with  = Nν . We
estimate the sum based on the maximum term approxi-
mation. Repeating exactly the same procedure as in
Section 1, we obtain

or, in terms of yν (zν),

Nν

Mν
-------

Nν

N
------≡

yν

y0 yν+
----------------, ν 1 2 3 …,, , ,= =

N0

N
------ 1

yν

y0 yν+
----------------.

ν 1=

∑–=

Nν
yν

y0
-----ln N

N
N Nν–
----------------ln Nν

N Nν–
Nν

----------------ln+ + N 1
yν

y0
-----+ 

  .ln=

βG– N y0ln 1
yν

y0
-----+ 

 
ν 1=

∏ln+ .=

Hν pv i %i
ν

+( )ni
ν
, ni

ν

i

∑
i

∑ Nν.= =

Yν …
ni

ν
gi

ν
1–+( )!

ni
ν
! gi

ν
1–( )!

---------------------------------e
β pv ν %i

ν
+( )ni

ν
–

,
i

∏∑∑=
Mi

ν

%i
ν

ni
ν

gi
ν

g0
ν

Yν e
β pv ν %0

ν
+( )Nν–

e
Nν gi

ν
1 e– β%i

ν
–( )ln–

=

=  e
βhν

0
Nν–

Zν β Nν,( ),

i
∑

DOKLADY PHYSICS      Vol. 45      No. 8      2000
(9)

Since each particle moves inside its own volume vν , the
phase volume can be calculated for one particle and

multiplied by Nν:  = Nν . For free particles, we

have by definition [1, 9]

.

Correspondingly, keeping the linear terms in zν , we
obtain

(10)

where Λ is the thermal de Broglie wavelength. In the
general case, when a particle moves in effective poten-

tial field u(r), and P = , we find

(11)

For the harmonic oscillator (u = mω2r2/2,  = ω"i),

simple calculations give  = i2/2. At large i, it coin-
cides with the exact quantum-mechanical result
(i + 1)(i + 2)/2. This example demonstrates that, in the
general case, we should use expression (11) to deter-
mine zν .

Measuring energies  from  and the volume
from v0 , we divide (7) by N and find the expression for
chemical potential taking into account (9),

(12)

Differentiating (12) with respect to p, we obtain the
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mean volume per particle,

(13)

As should be expected, this expression demon-
strates that  = v0(p) at β  ∞. Thus, we get the
equation for a zero isothermal curve, which can be
derived based on the method of differential virial rela-
tionships [10]. In addition, a stepwise change of 
occurs at temperatures corresponding to a zero argu-
ment of exponentials in the denominator of (13) (this
recalls the behavior of the well-known Fermi–Dirac
distribution) [1, 8]. This is an indication of phase tran-
sitions, and the summation in (12) and (13) demands
certain care and calls for further analysis.

Distribution (12) cannot be treated as closed while

 and vν are unspecified. To begin with, we consider
three examples.

The first example is the heat capacity of solids. Let
us assume that Nν/N ! 1, ν = 1, 2, 3, …. Then, according
to (9) and (12), we have

(14)

Differentiating (14) with respect to T, we obtain s. After
subsequent differentiation with respect to lnT and
replacing the summation by integration, we find the fol-

v v 0
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Figure. 
lowing expression for the heat capacity of a solid with
 = v0:

(15)

At n* = (24)1/3 = 2.884, expression (15) coincides
exactly with the well-known Debye formula [1], but not
with the Einstein formula, as one could expect. This can
be simply explained: Einstein considered the vibrations
in the whole N 0 volume, rather than vibrations within
each elementary volume v0 occupied by one particle.
Thus, we take into account the interaction of energy
levels in the framework of statistical analysis.

The second example is an ideal gas with a character-

istic volume vν @ v0 meeting condition β ! 1. In
this case, we can retain only the first-order terms in the
product entering the logarithm argument. Then, assum-
ing that vν + 1 – vν = v∞, vν = νv∞ , we obtain the expres-
sion for µ (zν @ z0):

(16)

At β  0, we find the well-known expression for the

chemical potential of ideal gas: µ –  = kTln(pΛ3/kT).
At the same time, expression (16) provides an opportu-
nity to obtain a more general equation of state by differ-
entiating it with respect to p:

Assuming that v0 ≡ v∞ , we can write the following
expression for compressibility factor z:

(17)

In Fig. 1, the curve calculated according to (17) is com-
pared with the experimental data for argon at T = 300 K
(dots). In the same figure, we present the calculations in
the framework of the Kirkwood method [2], using the
pair interaction function and the model Lennard-Jones
potential (crosses). The dashed line corresponds to the
free volume theory [2]. It is clear that our approach pro-
vides a rather simple way to obtain results that agree
well with experimental data.

The third example is sublimation. Keeping in (12)
the z0 value for the solid phase, we relate zν summed
according to (16) with the gas phase. Then, measuring
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the energy from the lowest level z0 and introducing

notation  = u, we obtain

(18)

Let us define the phase transition point as that where the
contributions from both phases to µ become equal:

(19)

Solving (19) with respect to q, we get

(20)

In the case of v0  0, this expression coincides with
the well-known expression for equilibrium vapor [8]

(21)

In these expressions, z0 is given by the Debye formula (9),
(14). It is clear that more general expression (20)
remains valid up to the triple point. When we use the
Gibbs function, the phase transition turns out to be con-
tinuous, but it manifests itself in the steep volume
change from v0 to V. At the phase transition point itself,
we have  = V/2. This could be demonstrated by dif-
ferentiating (18) with respect to p and using (19).

Note that a number of problems considered in [8]
based on other distributions can be solved rather simply
by means of the Gibbs potential (12).

The last examples demonstrate that we can use rela-
tionship vν = ν  for the gas phase. The clearest
description can be attained if v1 = 2v0 , i.e., when the
particle hopping to neighboring sites (corresponding to
the Shottky defects) is taken into account. In this case,
we can choose two characteristic values of the activa-

tion energy,  and . A more accurate partition can
be performed assuming that vν = v0/2 for both solid
and liquid phases (the Frenkel’ defects).
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However, a direct approach is expected to provide
the most accurate results. Let us specify an appropriate
effective potential for a particle. Then, we can calculate
%n by using, e.g., the Bohr–Sommerfeld quantization
conditions [7]

hence, we can choose vν and .

In any case, the distributions over T, p, and N corre-
sponding to the Gibbs potential (12) provide an oppor-
tunity to construct rather good models for the thermal
and calorific equations of state.
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The theory of parametric resonance has broad appli-
cations in science and technology [1]. The basic issue
of this theory is constructing stability domains in the
space of parameters. The boundary of the stability
domain may possess singularities, whose occurrence
causes computational problems and affects the physical
properties of a system.

In this study, a classification of generic-position sin-
gularities of stability-domain boundaries is performed
for systems of general-form linear differential equa-
tions with coefficients periodic in time and dependent
on two or three parameters. A constructive approach is
proposed allowing the stability domain in the vicinity
of a point of its boundary to be found in the first approx-
imation. This approach is based on information avail-
able at that point, namely, the values of multipliers, the
eigenvectors and adjoint vectors of the monodromy
matrix, and the first derivatives of the system operator
with respect to parameters. It is worth noting that,
unlike some previous studies [1], the closeness of a
periodic system to a stationary one was not assumed in
the present paper. Singularities of stability-domain
boundaries for stationary systems have been studied in
[2–4].

1. We consider a system of linear homogeneous dif-
ferential equations with periodic coefficients

(1)

where x is the real vector of the dimension m, and G =
G(t) is a real-valued matrix function of the dimension
m × m, which is continuous in time t and periodic with
minimum period T, i.e., G(t + T) = G(t).

A matrix-valued function X(t) obeying the equation

 = GX, X(0) = I, where I is the unit matrix, is referred
to as a matriciant, with its value F = X(T) being the
monodromy matrix [1]. The eigenvalues of the mono-
dromy matrix F are said to be multipliers.

The stability of system (1) is determined by the fol-
lowing conditions imposed on the multipliers ρ1, …,
ρm [1]: If all multipliers lie inside the unit circle |ρj| < 1,

ẋ Gx,=

Ẋ
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j = 1, …, m, system (1) is asymptotically stable. If at
least one multiplier lies outside the unit circle |ρj | > 1,
system (1) will be unstable (parametric resonance).

The matrix G in (1) and period T will be considered
to depend smoothly on the vector p = (p1, …, pn) of real
parameters. Then, the monodromy matrix is a smooth
function of parameters F(p), and its first derivatives are
of the form [5]

(2)

where Y(t) is the matriciant of the conjugate system

 = −GTY, Y(0) = I. The matriciants X(t) and Y(t) are
bound by the relation X(t)TY(t) = I.

2. The asymptotic-stability condition divides the
space of parameters Rn into a stability region and insta-
bility one (the region of parametric resonance). The
transition from the stability region to the instability one
is accompanied by the emergence of certain multipliers
from the unit circle. In particular, when real multipliers
go through the points 1 and –1, it is said to be the pri-
mary resonance; the emergence of a complex-conju-
gate pair through the unit circle at the points exp(±iω)
(ω ≠ πk, k ∈ Z) is spoken of as a combinative resonance.
Thus, the stability-domain boundary is determined by
the presence of multipliers in the unit circle, providing
the rest of the multipliers to lie inside the unit circle.
Generally, the stability-domain boundary is a smooth
hypersurface in a parameter space with certain singu-
larities (points where the smoothness is lost). Singular-
ities of the generic position (typical singularities) are of
particular interest. The emergence of such singularities
is always expected in studies of particular systems. As
for the singularities of the nongeneric position, they are
a consequence of a certain degeneracy or a symmetry of
a system and disappear if the system is subjected to a
perturbation as small as is wished [2].

We denote the types of the boundary points using
the product of multipliers located in the unit circle, with
exponents equal to the dimensions of the corresponding
Jordan boxes. For example, 12exp(±iω1)exp(±iω2)
implies that the monodromy matrix F has twofold ρ = 1
with the Jordan box of the second order and two pairs

pk∂
∂F F YT

pk∂
∂G

X t G T( )F
pk∂

∂T
,+d

0

T

∫=

Ẏ
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ON SINGULARITIES OF BOUNDARIES FOR PARAMETRIC RESONANCE 411
of simple multipliers ρ = exp(±iω1), exp(±iω2), such
that ω1, ω2 ∈ (0, π), ω1 ≠ ω2 .

For convenience, we introduce a concise notation
for certain types of boundary points

(3)

(4)

(5)

and for their combinations as well

(6)

(7)

Qualitative analysis of the stability domain in the
vicinity of its boundary point is carried out on the basis
of the theory of versal deformations [2, 6]. The result
obtained is stated in the form of a theorem.

Theorem 1. In the generic-position case, the stabil-
ity-domain boundary for system (1) consists of (a) iso-
lated points of B1-, B2-, and B3-types [see (3)] corre-
sponding to the primary resonance and combinative
one in the case of one parameter; (b) smooth curves of
type (3) intersecting each other transversally (at non-
zero angle) at break points of types (4), (6) in the case
of two parameters; (c) smooth surfaces of type (3),
whose singularities are curves of types (4), (6) (i.e., the
dihedral angle) and separate points of type (5) D1, D2
(i.e., the edge break), D3 (i.e., dead end in the edge),
and (7), (i.e., trihedral angle) in the case of three
parameters.

The stability domains in the vicinity of singular
points of the above-listed types, up to the nondegener-
ate smooth change of parameters (diffeomorphism), are
of the form presented in Figs. 1 and 2 (the stability
domain is denoted by the letter S).

3. Consider a point of the stability-domain boundary
p = p0 .

(a) Let ρ0 be a simple multiplier of the matrix F0 =
F(p0) and u0 , v0 be the right and left eigenvectors,
respectively, corresponding to the multiplier

(8)

B1 1( ), B2 1–( ), B3 iω±( )exp( ),

C1 12( ), C2 1–( )2( ),

D1 13( ), D2 1–( )3( ), D3 iω±( )exp( )2( ),

B12 1 1–( )( ), B13 1 iω±( )exp( ), B23 1–( ) iω±( )exp( ),

B33 iω1±( )exp iω2±( )exp( ),

B123 1 1–( ) iω±( )exp( ),

B133 1 iω1±( ) iω2±( )expexp( ),

B233 1–( ) iω1±( ) iω2±( )expexp( ),

B333 iω1±( ) iω2±( ) iω3±( )expexpexp( ),

C1B2 12 1–( )( ),

C2B1 1–( )21( ), C1B3 12 iω±( )exp( ),

C2B3 1–( )2 iω±( )exp( ).

F0u0 ρ0u0, v0
TF0 ρ0v0

T .= =
DOKLADY PHYSICS      Vol. 45      No. 8      2000
We introduce the real n-dimensional vectors r and k
with the components

(9)

where i is the imaginary unit. If ρ0 is a real number, then
k = 0.

(b) We now consider the case of the twofold multi-
plier ρ0 with the second-order Jordan box. Jordan
chains for right and left eigenvectors and adjoint vec-
tors are of the form

(10)

We consider the vectors u0 and u1 as fixed and intro-

duce the normalization u1 = 1, u1 = 0 unambigu-
ously defining the vectors v0, v1 . We define the real
vectors f1, f2, q1, and q2 with the components

(11)

If ρ0 is a real number, then f2 = q2 = 0.

(c) Next, we consider the case of the threefold real
multiplier ρ0 with the third-order Jordan box. The Jor-

rs iks+
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dan chains for 1 and left eigenvectors and adjoint vec-
tors are of the form

(12)

F0u0 ρ0u0, F0u1 ρ0u1 u0,+= =

F0u2 ρ0u2 u1, v0
TF0+ ρ0v0

T ,= =

r
B1

S
S

B1 B3

C1
f1 q1 – f1

S

q1 – f1
f1

C1

Fig. 3.
Considering the vectors u0, u1, and u2 as fixed, we

impose the normalization conditions u2 = 1, u2 = 0,

and u2 = 0 on v0, v1 , and v2 . Since ρ0 is a real num-
ber, the vectors ui and vi can be chosen to be real. We
introduce the n-dimensional vectors g, h, and t and a
matrix R with the dimension n × n of the form

v1
TF0 ρ0v1

T v0
T , v2

TF0+ ρ0v2
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T .+= =
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T ∂2F
∂pi∂p j

----------------u0– ,=

i j, 1 … n., ,=
Expressions for the second derivatives of the matrix F
are presented in [5].

4. We draw a smooth curve p = p(ε) from the point
of the boundary of a parametric resonance [p0 = p(0),
ε ≥ 0]. In this case, some curves will lie (for small
ε > 0) in the stability domain and others, in the instabil-

ity one. We select a direction e =  of the curves

lying in the stability domain. The set of such directions
forms a cone tangent to the stability domain at the point
of its boundary p = p0. The tangent cone is an approxi-
mation for the stability domain in the vicinity of point
of its boundary.

Theorem 2. Cones tangent to the stability domain
at its boundary points of the type (3)–(5) are deter-
mined by the relations

(14)

εd
dp

ε 0=

KB1
e: r e,( ) 0≤{ } , KB2

e: r e,( ) 0≥{ } ,==

KB3
e: r ω k ωsin+cos e,( ) 0≤{ } ,=

KC1
e: f1 e,( ) 0 q1 f1– e,( ) 0≤,≤{ } ,=

KC2
e: f1 e,( ) 0 q1 f1+ e,( ) 0≥,≤{ } ,=

KD1
e: g e,( ) 0 h e,( ) 0 t h– e,( ) 0≤,≤,={ } ,=

KD2
e: g e,( ) 0 h e,( ) 0 t h+ e,( ) 0≥,≤,={ } ,=

KD3
e{ : f2 2ωcos f1 2ωsin– e,( ) 0,==

f1 2ωcos f2 2ωsin+ e,( ) 0,≤

q1 ωcos q2 ωsin f1 2ωcos– f2 2ωsin–+ e,( ) 0 } ,≤
where vectors are calculated for the multiplier deter-
mining the type of a boundary point. The tangent cones
for the combined types (6), (7) are produced by the
intersection of tangent cones found for each of the sub-
types. For example, in the case C1B2 , we have  =

 ∩ . 

In the cases B1, B2, B3, C1, C2, and D3 , all smooth
curves drawn in e-direction satisfying rigorous inequal-
ities (14) lie in the stability domain for sufficiently
small ε > 0. In the cases D1 and D2 , curves satisfying
additional conditions

and

respectively,  lie in the stabil-

ity domain. It is worth noting that the tangent cones
, , and  are degenerate (are two-dimen-

sional angles in the three-dimensional parameter
space).

Theorem 2 enables us to find, in the first approxima-
tion, the stability domain in the vicinity of a point of the
stability-domain boundary from information at this
point [using first derivatives of the operator G from (1)
with respect to parameters and values of multipliers and
corresponding eigenvectors and adjoint vectors calcu-
lated for p = p0]. Relations (14) provide a clear idea of
the stability domain. For example, in the case of non-

KC1B2

KC1
KB2

Re e,( ) t h– e,( ) h e,( )– g d,( ) Re e,( )< <

Re e,( ) g d,( ) Re e,( ) t h+ e,( ) h e,( )–< <
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Fig. 4.
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singular point B1 , a tangent cone is determined by the
inequality (r, e) ≤ 0. Therefore, a plane tangent to the
stability-domain boundary is specified by the equation
(r, e) = 0, and the vector r is a normal to the boundary
lying in the region of a parametric resonance (see
Fig. 3). For the case of the singular point C1, the tan-
gent cone is the intersection of the half planes (half
spaces) (f1, e) ≤ 0 and (q1 – f1, e) ≤ 0. These inequalities
determine a two-dimensional (dihedral) angle in a
space of two (three) parameters, which is the first
approximation to the stability domain (Fig. 3).

5. As an example, we consider two-dimensional
vibrations of a two-link pipe, along which a fluid with
the linear mass m and pulsating velocity

flows. The pipe parts are connected by elastic hinges
having the rigidity coefficients equal to c; they have the
length l and linear mass M = 2m. The right end is free.
We choose the angles ϕ and ψ of the deviation of the
pipe parts from a horizontal axis as generalized coordi-
nates. The linearized equations for the motion of the
system in terms of dimensionless variables are of the
form [7]

(15)

where O is the zero matrix of the dimension 2 × 2, and
differentiation with respect to the dimensionless time τ

u t( ) U 1 ν ωtsin+( )=

ẋ Gx, x ϕ ψ ϕ̇ ψ̇, , ,( )T ,= =

G τ( ) O I

M 1– C– M 1– B– 
 
 

,   M 4 1.5

1.5 1
 

 
 
 

 ,= =

B v τ( ) 1 2

0 1 
 
 

, C 2 f τ( )–     1– f τ( ) +

1– 1
 

 
 
  ,= =                    
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is denoted by a dot. The following notation is used:

The matrix operator G(τ) with the period T = 2π/w
smoothly depends on the dimensionless parameters p =
(w, ν, V

 

)

 

.
We consider the point 

 

p

 

0

 

 = (8, 0.737, 2.8) in the
parameter space. We calculate the monodromy matrix

 

F

 

0

 

 at this point and find the multipliers of the matrix:

Since ordinary complex-conjugate multipliers lie in the
unit circumference 

 

|ρ

 

1,

 

 

 

2

 

|

 

 = 1, and the other multipliers
are inside the unit circle, the point 

 

p

 

0

 

 is the regular point
of the stability-domain boundary of the 

 

B

 

3

 

-type.
According to (14), the  cone tangent to the stability
domain at the point 

 

p

 

0

 

 is described by the expression
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1

 

; the vectors 

 

r

 

and 

 

k

 

 are calculated according to (2), (9). The vector

 

n

 

 = 

 

r

 

cos

 

ω

 

 + 

 

k

 

sin

 

ω

 

 = (0.03, –2.05, 0.51) is the normal
to the stability-domain boundary and lies in the para-
metric-resonance region. The numerically calculated
boundary of the stability domain and the vector 

 

n

 

 are
shown in Fig 4a.

Finally, we consider the point 
 
p
 

0
 

 = (3.643, 0.5555,
2.6), at which the monodromy matrix  F 0  has the multi-
pliers 

 
ρ

 

1

 
 = 

 
ρ

 

2

 
 = –1, 

 
ρ

 

3

 
 = 0.225, 

 
ρ

 

4

 
 = 0.026, second-order

Jordan chains (10) being relevant to a twofold multi-
plier (we denote it by 

 

ρ

 

0

 

 = –1). Since the twofold mul-
tiplier 

 

ρ

 

0

 

 = –1 belongs to the boundary, and two others

τ α t, f τ( ) v̇ τ( ) v 2 τ( ),+= =

v τ( ) V 1 ν wτsin+( ), w
ω
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----,= =
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α l
-----,   and   α 2 
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 --------.= =

ρ1 2, 0.882i±( ), ρ3exp 0.535, ρ4 0.152.= = =
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lie inside the unit circle, from Theorem 1, a singularity
of the stability-domain boundary of the C2 type (i.e., of
the dihedral-angle type) is realized at the point p0 .
According to (2), (11), we find the vectors f1 = (–5.15,
45.2, –7.77), q1 = (4.49, –31.1, 3.16). From Theorem 2,
these vectors define the cone tangent to the stability
domain

The vectors f1 and –(q1 + f1) are normals to the sides of
the dihedral angle, and they lie in the region of the para-
metric resonance. The vector eτ tangent to the edge of
the dihedral angle is equal to eτ = (q1 + f1) × f1 . In
Fig. 4b (to the left), a dihedral angle is shown, which is
an approximation for the stability-domain boundary in
the vicinity of the point p0 . For comparison, at the right
of Fig. 4b, the numerically calculated stability-domain
boundary is shown confirming the presence of the sin-
gularity and reasonable agreement of the results
obtained.

KC2
e: f1 e,( ) 0 q1 f1+ e,( ) 0≥,≤{ } .=
Our results can be employed in solving various
problems of stabilization of parameter-dependent peri-
odic systems with the use of gradient methods.
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We consider unidimensional and multidimensional
linear unsteady nonhomogeneous boundary value
problems for equations of the parabolic and hyperbolic
types with coefficients being arbitrary functions of spa-
tial coordinates and time. We derive general formulas
allowing solutions to these problems to be expressed in
terms of the Green’s functions in the case of boundary
conditions of all basic types. These results can be used
in the theory of heat transfer and mass transfer, in wave
theory, and in other branches of mechanics and theoret-
ical physics.

The formulas obtained generalize results of a large
number of studies (e.g., [1–7]) in which special
unsteady boundary value problems were considered.

1. Parabolic equations with one spatial variable.
We consider a linear nonhomogeneous differential par-
abolic equation of the general form with variable coef-
ficients

(1)

where

(2)

Hereafter, subscripts in the operator L indicate that its
coefficients depend on x and t.

In the domain {t ≥ 0, x1 ≤ x ≤ x2}, the solution to the
boundary value problem for equation (1) under arbi-
trary nonhomogeneous initial conditions and boundary
conditions

 for t = 0, (3)

 for x = x1, (4)

 for x = x2, (5)

∂w
∂t
------- Lx t, w[ ]– Φ x t,( ),=

Lx t, w[ ] a x t,( )
∂2w

∂x2
--------- b x t,( )

∂w
∂x
------- c x t,( )w,+ +≡

a x t,( ) 0.>

w f x( )=

s1∂xw k1w+ g1 t( )=

s2∂xw k2w+ g2 t( )=
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can be represented as the sum

(6)

where ∂xw is the partial derivative with respect to x.
Here, G(x, y, t, τ) is the Green’s function that, for arbi-
trary t > τ ≥ 0, satisfies the homogeneous equation

(7)

with the special nonhomogeneous initial condition and
homogeneous boundary conditions

G = δ(x – y)  for t = τ, (8)

 for x = x1, (9)

 for x = x2. (10)

Here, the quantities y and τ enter into problem (7)–(10)
as free parameters (x1 ≤ y ≤ x2), and δ(x) is the Dirac
delta function.

The functions Λ1(x, t, τ) and Λ2(x, t, τ) in the inte-
grands of two last terms in solution (6) are expressed in
terms of the Green’s function G(x, y, t, τ). For the
boundary value problems of basic types, the corre-
sponding formulas for Λm(x, t, τ) (m = 1, 2) are listed in
Table 1.

It is important to emphasize that both the Green’s
function G and functions Λm are independent of the

w x t,( ) Φ y τ,( )G x y t τ, , ,( ) yd τd

x1

x2

∫
0

t

∫=

+ f y( )G x y t 0, , ,( ) yd

x1

x2

∫

+ g1 τ( )a x1 τ,( )Λ1 x t τ, ,( ) τd

0

t

∫

+ g2 τ( )a x2 τ,( )Λ2 x t τ, ,( ) τ ,d

0

t

∫

∂G
∂t
------- Lx t, G[ ]– 0=

s1∂xG k1G+ 0=

s2∂xG k2G+ 0=
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Table 1

Type of the boundary value problem Form of the boundary conditions Functions Λm(x, t, τ)

First (s1 = s2 = 0, k1 = k2 = 1) w = g1(t) at x = x1 Λ1(x, t, τ) = ∂yG

w = g2(t) at x = x2 Λ2(x, t, τ) = –∂yG

Second (s1 = s2 = 1, k1 = k2 = 0) ∂xw = g1(t) at x = x1 Λ1(x, t, τ) = –G(x, x1, t, τ)

∂xw = g2(t) at x = x2 Λ2(x, t, τ) = G(x, x2, t, τ)

Third (s1 = s2 = 1, k1 < 0, k2 > 0) ∂xw + k1w = g1(t) at x = x1 Λ1(x, t, τ) = –G(x, x1, t, τ)

∂xw + k2w = g2(t) at x = x2 Λ2(x, t, τ) = G(x, x2, t, τ)

Mixed (s1 = k2 = 0, s2 = k1 = 1) w = g1(t) at x = x1 Λ1(x, t, τ) = ∂yG

∂xw = g2(t) at x = x2 Λ2(x, t, τ) = G(x, x2, t, τ)

Mixed (s1 = k2 = 1, s2 = k1 = 0) ∂xw = g1(t) at x = x1 Λ1(x, t, τ) = –G(x, x1, t, τ)

w = g2(t) at x = x2 Λ2(x, t, τ) = –∂yG

x y t τ, , ,( )
y x1=

x y t τ, , ,( )
y x2=

x y t τ, , ,( )
y x1=

x y t τ, , ,( )
y x2=
functions Φ, f, g1 , and g2 that define nonhomogeneous
terms in the boundary value problem. If the coefficients
of operator (2) are independent of time t, then the
Green’s function depends only on three arguments:
G(x, y, t, τ) = G(x, y, t – τ).

Formula (6) also holds true for this problem with the
boundary conditions of the third kind provided that k1 =
k1(t) and k2 = k2(t). In this case, the relations between
the functions Λm (m = 1, 2) and the Green’s function G
are the same as in the case of the constant coefficients
k1 and k2 (although the Green’s function in itself is dif-
ferent).

The solutions to the first, second, and third
boundary value problems in the semi-infinite interval
x1 ≤ x < ∞ are often required to vanish at infinity
(w  0 as x  ∞). In this case, the solution can be
found by formula (6) with Λ2 = 0 and with the expres-
sion for the function Λ1 given in Table 1.

It is worth noting that the Green’s function for vari-
ous unsteady boundary value problems can be found,
for example, in the books [1, 2, 5–8].

2. Hyperbolic equations with one spatial vari-
able. We consider a linear nonhomogeneous hyperbolic
equation of the general form with variable coefficients

(11)

where the form of the operator Lx, t[w] is given by for-
mula (2).

The solution to equation (11), which satisfies the
nonhomogeneous initial conditions

w = f0(x) at t = 0, (12)

∂tw = f1(x) at t = 0 (13)

∂2w

∂t2
--------- ϕ x t,( )

∂w
∂t
------- Lx t, w[ ]–+ Φ x t,( ),=
and arbitrary nonhomogeneous boundary conditions (4)
and (5), can be represented as the sum

(14)

Here, G(x, y, t, τ) is the Green’s function that satisfies
the homogeneous equation

(15)

with the semi-homogeneous initial conditions

G = 0 at t = τ, (16)

∂tG = δ(x – y) at t = τ (17)

and homogeneous boundary conditions (9) and (10).
The functions Λ1(x, t, τ) and Λ2(x, t, τ) in the inte-

grands of two last terms in solution (14) are expressed

w x t,( ) Φ y τ,( )G x y t τ, , ,( ) yd τd

x1

x2

∫
0

t

∫=

– f 0 y( )
τ∂

∂
G x y t τ, , ,( )

τ 0=

yd

x1

x2

∫

+ f 1 y( ) f 0 y( )ϕ y 0,( )+[ ]G x y t 0, , ,( ) yd

x1

x2

∫

+ g1 τ( )a x1 τ,( )Λ1 x t τ, ,( ) τd

0

t

∫

+ g2 τ( )a x2 τ,( )Λ2 x t τ, ,( ) τ .d

0

t

∫

∂2G

∂t2
--------- ϕ x t,( )

∂G
∂t
------- Lx t, G[ ]–+ 0=
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Table 2

Type of the boundary value problem Form of the boundary conditions (21) Function U(x, y, t, τ)

First w = g(x, t) at x ∈  S U(x, y, t, τ) = (x, y, t, τ)

Second  = g(x, t) at x ∈  S U(x, y, t, τ) = G(x, y, t, τ)

Third  + kw = g(x, t) at x ∈  S U(x, y, t, τ) = G(x, y, t, τ)

∂G
∂My
----------–

∂w
∂Mx
----------

∂w
∂Mx
----------
in terms of the Green’s function G(x, y, t, τ). For the
boundary value problems of basic types, the corre-
sponding formulas for Λm(x, t, τ) are listed in Table 1.

Formula (14) also holds true for this problem for the
boundary conditions of the third kind with k1 = k1(t) and
k2 = k2(t).

3. Parabolic equations with many variables. We
consider a linear nonhomogeneous differential para-
bolic equation in n spatial variables, which takes the
general form

(18)

where

(19)

Equations of this type, with n = 1, 2, 3, are the basis of
the mathematical theory for the mass-and-heat transfer
[1, 7, 8].

Let V be a closed domain in the space 5n having a
sufficiently smooth indivisible surface S = ∂V. The solu-
tion to the linear boundary value problem in the domain
V for equation (18) with arbitrary nonhomogeneous ini-
tial and boundary conditions

w = f(x) at t = 0, (20)

 at x ∈  S (21)

∂w
∂t
------- Lx t, w[ ]– Φ x t,( ),=

Lx t, w[ ] aij x t,( )
∂2w

∂xi∂x j

---------------
i j, 1=

n

∑≡

+ bi x t,( )
∂w
∂xi

------- c x t,( )w,+
i 1=

n

∑

x = x1 … xn, ,{ } , aij x t,( )ξ iξ j σ ξ i
2, σ 0.>

i 1=

n

∑≥
i j, 1=

n

∑

Γx t, w[ ] g x t,( )=
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can be represented as a sum

(22)

Here, G(x, y, t, τ) is the Green’s function that, for all t >
τ ≥ 0, satisfies the homogeneous equation

(23)

with the special nonhomogeneous initial conditions
and homogeneous boundary condition

G = δ(x – y) at t = τ, (24)

 at x ∈  S. (25)

The quantity y = {y1, …, yn} enters into problem (23)–
(25) as an n-dimensional free parameter (y ∈  V), and

The Green’s function is independent of the func-
tions Φ, f, and g defining nonhomogeneous terms in the
boundary value problem. The integration in solution (22)
is carried out over the parameter y, with dVy =
dy1dy2…dyn .

The function U(x, y, t, τ) in the integrand of the last
term of solution (22) is expressed in terms of the
Green’s function G(x, y, t, τ). For the boundary value
problems of three basic types, the corresponding for-
mulas for U(x, y, t, τ) are listed in Table 2 (in the case
of the third boundary value problem, the coefficient k
can depend on x and t). The operators of differentiation
along the conormal of operator (19), which enter into
the boundary conditions of the second and third kinds
and in the solution to the first boundary value problem,

w x t,( ) Φ y τ,( )G x y t τ, , ,( ) Vyd τd

V

∫
0

t

∫=

+ f y( )G x y t 0, , ,( ) V yd

V

∫

+ g y τ,( )U x y t τ, , ,( ) Syd τ .d

S

∫
0

t

∫

∂G
∂t
------- Lx t, G[ ]– 0=

Γx t, G[ ] 0=

δ x y–( ) δ x1 y1–( )δ x2 y2–( )…δ xn yn–( ).=
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are defined by the relations [4]

(26)

where N = {N1, …, Nn} is the unit outward normal to
the surface S. In the special case when ai,i(x, t) = 1 and
ai,j(x, t) = 0 for i ≠ j, operator (26) coincides with the
usual operator of differentiation along the normal to the
surface S.

If the coefficients of equation (23) and boundary
condition (25) are independent of time t, then the Green’s
function takes the form G(x, y, t, τ) = G(x, y, t – τ).

Remark. If boundary conditions of different types are

imposed in certain domains of the surface S = , i.e.,

 for x ∈  Si,

then the last term in solution (22) should be replaced by
the sum

4. Hyperbolic equations with many variables. We
consider a linear nonhomogeneous hyperbolic equation
in n spatial variables which takes the general form

(27)

where the operator Lx, t[w] is explicitly given by for-
mula (19).

The solution to the boundary value problem in the
domain V for equation (27) under the arbitrary nonho-
mogeneous initial conditions

w = f0(x) at t = 0, (28)

 at t = 0 (29)

and arbitrary linear boundary condition (21) takes the
form

(30)

∂G
∂Mx

---------- aij x t,( )N j
∂G
∂xi

-------,
i j, 1=

n

∑≡

∂G
∂My

---------- aij y τ,( )N j
∂G
∂yi

-------,
i j, 1=

n

∑≡

Si

i

∑
Γx t,

i( ) w[ ] gi x t,( )=

gi y τ,( )Ui x y t τ, , ,( ) Syd τ .d

Si

∫
0

t

∫
i

∑

∂2w

∂t2
--------- ϕ x t,( )

∂w
∂t
------- Lx t, w[ ]–+ Φ x t,( ),=

∂tw f 1 x( )=

w x t,( ) Φ y τ,( )G x y t τ, , ,( ) Vyd τd

V

∫
0

t

∫=

– f 0 y( )
τ∂

∂
G x y t τ, , ,( )

τ 0=

Vyd

V

∫

+ f 1 y( ) f 0 y( )ϕ y 0,( )+[ ]G x y t 0, , ,( ) V yd

V

∫

+ g y τ,( )U x y t τ, , ,( ) Syd τ .d

S

∫
0

t

∫

Here, G(x, y, t, τ) is the Green’s function satisfying
both the homogeneous equation

(31)

with the semihomogeneous initial conditions
G = 0 at t = τ,

 at t = τ
and homogeneous boundary condition (25).

If the coefficients entering into equations (31) and
boundary condition (25) are independent of time t, then
the Green’s function takes the form G(x, y, t, τ) =
G(x, y, t – τ).

The function U = U(x, y, t, τ) in the integrand of the
last term in solution (30) is expressed in terms of the
Green’s function G(x, y, t, τ). For the boundary value
problems of principal types, the corresponding formulas
for U are listed in Table 2 (in the case of the third bound-
ary value problem, the coefficient can depend on x and
t). It is worth noting that the relation between the func-
tion U and the Green’s function in the case of the bound-
ary value problem for parabolic equation (18) is the same
as that for hyperbolic equation (27) provided that the
boundary conditions imposed are identical (naturally, the
Green’s functions for these problems are different).
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In the mechanics of continua, it is usual practice to
adopt the following standard set of invariants for a sym-
metric second-rank stress-state tensor regardless of the
medium type (solid body, viscous fluid, etc.):

(1)

Here, the principal values of the stress tensor

σ1, σ2, σ3 (2)

and the trihedron for the principal directions of tensor
σij (i, j = x, y, z) determine the stress state in a small vol-
ume of a continuous medium; and σij = σji [1, 2].

It is generally believed in models that a change only
in the second invariant is essential; effects of the first
one for incompressible media and the third one associ-
ated with the type of a stress state are often ignored. As
a result, the information on the principal-direction tri-
hedron is lost. Thus, choosing the first and second
invariants (for the stress deviator) does not call for
information on principal directions.

A representation of invariants, which is similar
to (1), is also used for the symmetric strain tensor or the
strain rate tensor. In this case, a similarity of the stress
tensor and strain (strain rate) one is adopted to relate
invariants of a stress state to those of a strain (strain
rate) state. Note that deviations from the similarity are
both possible and natural in actual situations [3–5]
(Fig. 1).

Taking into account these facts and proceeding from
physical interpretation of the energy dissipation pro-
cesses in models of plastic and viscous media, we pro-
pose to introduce another set of invariants related to
areas of the maximum tangential stresses T and princi-
pal shears Γ (shear-strain rate). Data from solid-state
physics and recent results obtained in mesomechanics
[6] indicate these directions of investigation [7, 8].

In this case, in performing identity transformations,
it is easy to pass from (2) to substantiating this new set
of invariants:

(3)

I1 σ1 σ2 σ3, I2+ + σ1σ2 σ2σ3 σ3σ1,+ += =

I3 σ1σ2σ3.=

σ1 σ2 σ3, σn T σ2 σn T ,–≥ ≥+≥ ≥
T σ2 σn T , 1 µσ 1,–≥ ≥–≥–≥
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where

It is rather probable that the Lode–Nadai parameter µσ
characterizing a type of the stress state was introduced
in exactly the same manner.

We now make two comments concerning the new
invariant set

(4)

which completely specifies the stress state in an ele-
mentary volume of the medium. In other words, the fol-
lowing statement is valid: Three invariants (4) are nec-
essary and sufficient to specify the stress state in an ele-
mentary volume of a continuum.

T
σ1 σ3–

2
-----------------, σn

σ1 σ3+
2

-----------------,= =

µσ
σ2 σn–

T
-----------------

2σ2 σ1– σ3–
T

-------------------------------- T 0≠( ).= =

T
σ1 σ3–

2
-----------------, σn

σ1 σ3+
2

-----------------, µσ,= =

0

–0.2

–0.4

–0.6

–0.8

–1.0 –0.8 –0.6 –0.4 –0.2 0

Copper
Aluminum
Steel

µσ

µp
dε

Fig. 1. Lode parameter of the plastic-strain increment tensor
as a function of the same parameter for the stress tensor.
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The first comment is associated with the fact that the
condition of isotropy for set (1), which is understood
that it does not depend on directions of the principal
axes, was never discussed while introducing invariants
(except for rare cases when the third invariant should be
taken into account). Actually, allowing for the first and
second invariants did not require an account for the ori-
entation of the principal-direction trihedron of the
stress tensor.

In contrast to this, introducing set (4) definitely indi-
cates such a dependence, because the invariant T is
related to area elements for maximum tangential
stresses, which bisect angles between the first and the
third principal directions. The invariant σn is indepen-
dent of principal directions, while the invariant µσ, as
well as T, is closely related to the orientation of the
principal axis and indicates the influence of other (two)
extreme tangential stresses

(5)

because

T23

σ2 σ3–
2

-----------------, T12

σ1 σ2–
2

-----------------,= =

µσ
T23 T12–

T
---------------------.=

1.2

1.1

1.0
–1.0 –0.8 –0.6 –0.4 –0.2 0.20 0.4 0.6 0.8 1.0

µ

σ1 – σ3

Fe, Cu, Ni

Fig. 2. Relative value of the maximum tangential stress as a
function of the Lode parameter (σz is the ultimate strength
at the uniaxial tension).

I

II
III

T

τmax

µ0

τresidual

ΓÂ Γ

Fig. 3. Illustration of the descending branch of the maxi-
mum tangential stress on the principal strain diagram (at the
uniaxial tension).

σz
It is well known that for a uniaxial tension (biaxial
compression)

µσ = 1,
while in the case of a torsion,

µσ = 0.
This implies that the role of areas with tangential

stresses (5) increases at µσ ≠ 1 compared to the case
µσ = 0. Considering the data of [4] (Fig. 2) in this
context, we emphasize that the necessity of introducing
the smooth plasticity conditions of the Huber–Mises
type does not follow from these Lode–Nadai data.
However, allowance for the Lode–Nadai parameter,
i.e., for the type of the stress state, turns out to be nec-
essary (1 ≥ µσ ≥ –1).

Thus, it is stated that introducing these three invari-
ants, T, σn , and µσ enables us to describe anisotropy of
the resistance to shears, which arises at irreversible
strains and failure. Moreover, owing to this, we are able
to construct a mathematical model for the deformation
of solid bodies, which is adequate to physical processes
[6–8]. In the case under consideration, principal facts
used as the basis for the construction of this model are
the experimental relationship between the maximum
tangential stress and principal torsional shear (for
µσ = 0) and attraction to the consideration (in accor-
dance with the data of Fig. 2) of other area elements
with extreme tangential stresses in accordance with the
values of the Lode–Nadai parameter. Note, that the
same experimental law T = T(Γ) valid for principal ele-
mentary areas manifests itself for these areas (Fig. 3).

In recent years, wide attention was attracted in geo-
physics and geomechanics to studying ordered block
structures in massifs, and the hierarchy of these struc-
tures was revealed [7, 8]. Thus, they establish the exist-
ence and development of blocks that are closely related
with areas of maximum tangential stresses and princi-
pal shears, which were mentioned above. In this con-
nection, it should be pointed out that, from the physical
standpoint, the set of invariants proposed describes
most closely the deformation of a massif under the
action of technogenic and tectonic loads. Apparently, as
is shown by investigations in the strength of solid bodies
conducted by the School of Academician V.E. Panin, it is
also reasonable to follow this route in the mechanics of
deformable solid body.

The proposed model allows us to confidently trace a
certain important phenomenon, namely, the behavior of
a material in the supercritical state. In fact, after the
maximum value of the tangential stress has been
attained for a material, a practically new material
arises, whose behavior calls for different description
[10, 11, 13]. Nevertheless, the laws of mechanics (laws
of mass, momentum, and energy conservation) remain
valid. It is these laws that determine the material prop-
erties in the post-ultimate (post-peak) state. When the
extreme (for a given body) value of the principal shear
DOKLADY PHYSICS      Vol. 45      No. 8      2000
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(Γ = Γe) is attained, this shear value is preserved in an
elementary volume, and the growth of the domain of
irreversible deformations (and failures) occurs only at
the expense of an increase in an amount of such ele-
ments. The fact that other extreme area elements come
into play, in accordance with Fig. 2 and in correspon-
dence to the same law [T = T(Γ)], determines the resid-
ual strength of the material.

In order to illustrate the proposed synthetic model,
we present the system of basic equations for the prob-
lem of the plane deformation of a solid body [10, 13].
Papers [10, 11] contain the preliminary results concern-
ing the statement of new boundary value problems on
the basis of the models developed. For example, new
equations describing irreversible deformation can be
derived on the basis of the model proposed for the case
of the plane deformation of an elastoplastic body (here,
the usual notation is used): 

(6)

where

This system is of the hyperbolic type and has two fam-
ilies of real characteristics

(7)

with the following relationships for them:

(8)

It is easy to see a close analogy between the new
system for strains and the classical Saint-Venant system
for stresses. Apparently, it is this analogy that was indi-

∂ω̂
∂x
------- 2ψ∂ψ

∂x
------- 2ψ∂ψ

∂y
-------sin+cos– 0,=

∂ω̂
∂y
------- 2ψ∂ψ

∂x
------- 2ψ∂ψ

∂y
-------cos+sin+ 0,=

ω 1
2
--- ∂v

∂x
------- ∂u

∂y
------– 

  , 2ψtan
εxy

εy εx–
---------------,

2ω
Γ e

------- ω.ˆ= = =

dy
dx
------ ψ,

dy
dx
------ ψcot=tan–=

ω ψ+ α const, ω ψ– β const.= = = =
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cated by Academician S.A. Christianovich in his
famous paper [12].

From the practical standpoint, the results presented,
including new equations for the plane problem (6) and
(7), (8), allow us to consider from a new standpoint the
boundary value problem for the brittle failure [10, 11,
13] and for a press tool on a compliant (with allowance
for irreversible strains) base.
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In this paper, we call an undular bore a free plane
(as a rule, nonlinear) gravity wave, whose free surface
level passes from its lower to higher value executing
gradually convergent oscillations, rather than monoton-
ically or by a jump. The term undular wave has a
broader meaning and includes the case of stimulated
waves. An undular wave may be smooth, with the col-
lapsing first crest or several collapsing first crests. An
example of recording a smooth undular bore, which
was performed by a stationary wavemeter, is presented
in Fig. 1.

We have not managed to obtain adequate analytical
representations for undular waves due to their nonlin-
earity and unsteadiness. Incomplete available informa-
tion on undular waves is based on physical and numer-
ical experiments. The majority of investigations are
devoted to the undulating hydraulic jump [1]. Detailed
experiments with free undular waves in a channel were
conducted in [2]. An example of numerical experiments
based on the Navier–Stokes equations is represented by
the paper [3]. Mathematical models yielding solutions
of the undular-bore type with the collapsing leading
edge were proposed in [4].

Below, we present some results of a physical exper-
iment, which are useful to qualitively compare the inner
structure of the undular bore with the results of numer-
ical calculations based on different mathematical mod-
els. Here, by the term inner structure, we imply a ran-
dom ensemble of trajectories (limited in time) of
labeled particles.

The statement of the problem is clarified in Fig. 1.
A steady nonuniform turbulent flow with the constant
volumetric rate Q was created in a rectangular channel
with the length of 3.8 m and the width B = 6 cm with
the plane horizontal bottom. The following notation is
used therewith: h(x, t) is the depth of the undisturbed
flow, h0 is the depth ahead of the leading edge, x is the
longitudinal coordinate, ∆z is the deviation of the free
surface from the equilibrium position, t is time, ∆t is the

Lavrent’ev Institute of Hydrodynamics, 
Siberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’eva 15, Novosibirsk, 
630090 Russia
1028-3358/00/4508- $20.00 © 20422
exposition time per one frame at photographing, and
V = Q/Bh. In the examples presented below, the flow
was subcritical, h decreased monotonically, and V
increased downstream.

At t = 0, the flow was stopped in the cross section
x = 0 by a rapidly dropping gate. Trajectories of labeled
micron-size particles (i.e., particles of aluminum pow-
der) were recorded with a photographic camera and
video camera. In contrast to the PIV-method [5] that
has recently become popular, the time of exposure for
each frame was taken on purpose greater: It ranged
from 1/60 to 1/2 s. This made it possible to trace trajec-
tories of individual particles for a sufficiently long time,
although the shape of the free surface was strongly dis-
torted. Information on the shape of the free surface was
obtained by the video recording, which determined
∆z(x) at a fixed t, and also by stationary wavemeters
recording ∆z(t) for fixed x. The velocity of the longitu-
dinal displacement c for the height-averaged point of
the wave leading edge was calculated according to sig-
nals of two wavemeters spaced by ∆x = 30 cm apart.
Henceforth, this quantity is referred to as the bore prop-
agation velocity.

One new interesting result of measurements with
wavemeters is the following. Previously, in experi-
ments with initially stagnant fluid, it was found [6] that,
in contrast to predictions of the first approximation of
the shallow-water theory, undular waves retained their
smoothness, while passing by the first critical velocity

3
4 1

5
42

1

2

012x, m

z, cm
t, s

∆z, cm

0
Q

1

h(x)

Fig. 1. Unperturbed flow and undular bore for Q = 0.323 l/s:
(1) ∆z(t) at x = 210 cm; (2) wavemeter; (3) unperturbed free
surface; (4) channel bottom; (5) gate; for (1), h0 = 2.8 cm;

 = 33.2 cm/s; c = 40 cm/s; and  = 48.9 cm/s.c1* c2*
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1

2
1

Fig. 2. Bore structure for Q = 0.648 l/s (the bore propagates leftwards). In Figs. 2–4, 1 is the channel bottom. For scale lines x = 230
and 240 cm, h0 . 3.55 cm; ∆t = 1/15 s; V = 30.5 cm/s; c = 44 ± 1.5 cm/s;  = 28.5 cm/s;  = 46.2 cm/s.c1* c2*

Fig. 3. Initial stage of developing the bore presented in Fig. 2: (1) channel bottom; (2) the gate. For the middle of the leading edge,
x = 18 cm and ∆t = 1/15 s.
c1 =  and began to collapse at the greater second
critical velocity. A good quantitative measure of the lat-
ter is the ultimate propagation velocity of solitary

waves, c2 = 1.294 , which was derived in [7] from
the complete system of equations for the potential
motion. These experiments confirmed the result for
waves across the counterflow as well. Note that, in the
first approximation, the first and second critical veloci-

ties can be defined as  =  – V and  =

1.3  – V, respectively. For example, the condition
 < c <  is valid for the plot 1 in Fig. 1, and a wave

retained its smoothness.

The most important result obtained by photograph-
ing consists in the following. In the counterflow, the
severe vertical stratification of the particle-motion
velocity occurs in the fluid under the undular bore. A
sufficiently thick boundary layer of the damped fluid is
formed near the bottom. Above this layer, particles con-
tinue to move in the previous direction with velocities
on the order of V forming a twisting jet. In a collapsing
wave, damping of the incoming flow also takes place in
the near-surface layer. The unsteadiness and collapsing
result in the fact that the separation into domains of
damped and moving fluid has an alternating character
in both time and space. Photographs (Figs. 2, 3) are pre-
sented as illustrations.

gh

gh

c1* gh c2*

gh
c1* c2*
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In Fig. 2, a wave is shown in the transition state
between the smooth and collapsing forms. The wave
leading edge has collapsed at x < 210 cm. Then, it
became smooth but the corner point, characteristic for
the critical state, retained on its frontal slope rather than
on the wave crest, as is the case in the theory of stand-
ing or solitary waves with the ultimate amplitude. The
comparison of the values of c, ,  placed under-
neath the photograph confirms the aforesaid about the
conditions for the transition from collapsing waves to
smooth undular ones.

At the initial stage of the bore evolution (Fig. 3),
apart from the clearly defined stratification into the jet
and the stagnant zone, the formation of vortices near
the free surface and collapsing of the leading edge,
which are accompanied by an intense involvement of
air into water, do occur.

A photograph of the head part of the undular bore
propagating in the fluid stagnant ahead of it is presented
for comparison in Fig. 4. A perturbance was introduced
by removing a partition creating the level difference
∆h. In this example, the condition c1 < c < c2 was ful-
filled, and the wave was smooth. Its inner structure is
considerably simpler than in the case of the propaga-
tion across the counterflow. In particular, particle tra-
jectories under the wave first crest are quite similar to
those for a solitary wave [8]. The structure of a collaps-
ing undular wave propagating in stagnant fluid is con-

c1* c2*
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1

Fig. 4. Bore structure for the stagnant fluid (the bore propagates rightwards): 1 is the channel bottom. For the scale lines x = 210 and
220 cm, ∆t = 1/30 s; h0 = 3.5 cm; ∆h = 3.2 cm; c = 71.5 cm/s; c1 = 58.6 cm/s; and c2 = 76.2 cm/s.
siderably simpler than in the presence of the counter-
flow.
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1. The Drozdova–Kulikovskiœ equations for long-
wave approximation. While deriving the Boussinesq
equations, two small parameters are usually assumed to
exist: the depth-to-wavelength ratio and the amplitude-
to-depth one [2]. The derivation of the Boussinesq
equations for fluid flow in channels [1] does not assume
the smallness of the second parameter and is as follows.

The mass and momentum conservation laws for the
potential flow of perfect incompressible fluid in a hori-
zontal channel of an arbitrary cross section are written
out as

(1.1)

Here, t is time; x is the coordinate along the bed axis; u
is the velocity along the bed axis, which is averaged
over the cross section; P is the sum (divided by the den-
sity) of the pressure forces in the cross section; and S is
the flow cross-section area.

The function P is determined in [1] by application of
the Lagrange generalized coordinates to a certain fluid
volume. We isolate a fluid element x0 – l/2 ≤ x ≤ x0 + l/2
of a small width l and with the cross section S (see
Fig. 1). This fluid element moves in the flow being
deformed. The element deformation is ignored, so that
the lateral faces of the element remain parallel. S is
taken as the generalized coordinate of the element, and
the Lagrange equation is written out:

.

On the left-hand side, there is the variational derivative
of the Lagrange function. This function L = T – U is
equal to the difference between the kinetic and poten-
tial energies of the fluid element and depends on S and

time derivatives , . The function L depends also on
the size l, which is expressed in terms of S by the rela-

∂S
∂t
------ ∂Su

∂x
---------+ 0, S

∂u
∂t
------ u

∂u
∂x
------+ 

  ∂P
∂x
------– .= =

δL
δS
------ QS,

δL
δS
------– ∂L

∂S
------

d
dt
-----∂L

∂Ṡ
------–

d2

dt2
-------∂L

∂ Ṡ̇
------ …–+= =

Ṡ Ṡ̇
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tion Sl = V = const. The pressure is calculated by con-
sidering the work ρPδl = –QSδS under the transverse
tension of the element filled with incompressible fluid

(1.2)

Equations (1.1) and (1.2) with the additional condition
Sl = V = const have been obtained in [1]. In the case of

the calculated function L( , , S), they form the
desired closed system of the Boussinesq equations for
determining u and S.

Taking into account the constant value of the vol-
ume V, it is more convenient to express the total pres-
sure in terms of the variational derivative for the func-
tion L/(ρV), the layer width l not entering into this
derivative. As a result, we obtain the closed system of
two equations

(1.3)

Approximation (1.3) can be shown to be the first term

of the asymptotic series in the derivatives S, , , ….
The second term of the series is obtained by introduc-

P
SQS

ρl
---------

S
ρl
-----δL

δS
------.–= =

Ṡ̇ Ṡ

∂S
∂t
------ ∂Su

∂x
---------+ 0,=

S
∂u
∂t
------ u

∂u
∂x
------+ 

  ∂
∂x
------ S2 δ

δS
------ L

ρV
------- 

  .=

Ṡ Ṡ̇

Fig. 1.
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ing the second generalized coordinate determining the
fluid-element deformation, etc.

2. An integral of steady motion. If the function
L/(ρV) does not explicitly depend on t and x, three inte-
grals of system (1.3) can be found for a steady motion.
Two of them are the constant flow rate and the Ber-
noulli integral:

The Bernoulli integral can be written out in the form of
the Lagrange equations or of the Hamilton principle,
which is equivalent to these equations:

Since the Lagrange function depends only on the gen-
eralized coordinate S and its derivatives and does not
depend explicitly on time, the Lagrange equations
obtained have a third energy integral. It is more conve-
nient to express this integral in terms of x-dependent
functions. To do this, we make use of the substitution

dt = (S/Q)dx,  = QS'/S (the prime denotes the deriva-
tive with respect to x) in the action integral. Then, the
Hamilton principle transforms to the form

(2.1)

The Euler–Lagrange equations corresponding to prin-
ciple (2.1) have the energy integral

(2.2)

in which all three arbitrary constants Q, A1, and A2 are
transferred to the right-hand side. For periodic waves,
these three constants are expressed in terms of wave
parameters, such that the amplitude a, wavelength λ,
and mean depth H. Furthermore, the dependence of the
wave-propagation velocity on the wave parameters is
found from the relation between the flow rate and a, λ,
and H.

Su Q, Q2
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δS
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ρV
------- 

 +– A1.= =

δ
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∞
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Ṡ
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∞
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2S
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Λ0 S'' S' S, ,( ) L
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–S '
d
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∂Λ0

∂S''
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∂Λ0

∂S''
--------- S'

∂Λ0

∂S'
--------- Λ0–+ +

=  
Q2

2S
------ A1 A2S,+ +
Examples of exact solutions to steady-state equa-
tions (1.3) obtained with general integral (2.2) are pre-
sented below.

3. Solitary waves in channels. Methods for calcu-
lating the kinetic energy

in a channel cross section of an arbitrary form are pre-
sented in [1]. Here, y and z are the Cartesian coordi-
nates in the channel cross section; the z-coordinate
being directed vertically upwards; and vy, vz are the
corresponding components of the velocity for fluid par-
ticles. The integration is carried out over the wetted
area of the cross section.

The velocity field has a potential ϕ, which is deter-
mined from the solution of the boundary value problem
for the Poisson equation

The kinetic energy was calculated exactly in [1] for
channels of the rectangular and triangular shapes. For
shallow and narrow channels, approximate asymptotic
formulas were obtained.

The potential energy U includes the energy Ug of the
gravity force and may contain, in addition, the surface
tension energy Uσ or the energy UE of elastic film at the
fluid surface:

(3.1)

Here, zc is the vertical coordinate of the geometric cen-
ter for the wetted cross section; S is the cross-section
area, which is a function of the depth S(h) for a channel
of a given shape; b = Sh is the width of the free surface;
σ is the coefficient of surface tension; E, I are the
Young’s modulus and moment of inertia of the elastic
film, respectively.

Thus, the method developed in the present paper
allows us to find exact solutions to the Boussinesq
equations for capillary-gravitation waves in channels
and for waves with an elastic film.

We consider solutions for solitary waves with the
condition imposed at infinity: h  h∞ as x  ±∞.

T
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2 v z
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U Ug Uσ UE,
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We introduce the dimensionless coordinates of the
wave profile X, Y and the wave velocity c:

(3.2)

Here, the flow rate is expressed in terms of the cross-
section area S∞ and the fluid velocity at the infinity (Q =
S∞v∞).

For a rectangular channel with a unit width and free
surface, the cross-section area is S = h. The kinetic and
potential energies are calculated exactly: 

(3.3)

Substituting Λ0 in energy integral (2.2), we arrive at the
equation

whose integration is carried out completely by the
method of separation of variables. For periodic waves,
we obtain the well-known solution expressed in terms
of elliptic functions [3].

For solitary waves, the energy integral can be
reduced in terms of dimensionless variables (3.2) to the
form

(3.4)

From this expression, the constants A1, A2 are deter-
mined and the relation between the wave velocity and
the dimensionless amplitude a related to the depth h∞ is
found:

(3.5)

The exact trinomial expansion 

[4, 6] differs insignificantly from approximation (3.5).
The problem of a solitary wave in a triangular chan-

nel with the cross-section shape z = p|y| is solved
equally easily. The cross-section area for such a chan-
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nel is equal to S = h2/p. The exact expressions for the
kinetic and potential energies are written out [1] as

Energy integral (2.2) is reduced, in terms of dimension-
less variables (3.2), to the form

In the expansion in terms of powers of Y, the coeffi-
cients of Y and Y3 are zeros. Thus, we find the constant
A and the velocity c:

4. Capillary-gravitational solitary waves. In the
rectangular channel, the wave under consideration can
be described by the Froude and Weber dimensionless
numbers

We determine the Lagrange function L = T – Ug – Uσ
from (3.1) and (3.3) and substitute it into (2.1). Then, in
terms of dimensionless variables (3.2), variational prin-
ciple (2.1) and energy integral (2.2) take the form

(4.1)

(4.2)

The energy equation for solitary wave (3.4) follows
from (4.2) for W = 0. The employment of variational
principle (4.1) for a capillary-gravitation wave is an
essential adjunct, because it allows for the discovery of
new solutions with a discontinuous derivative. In this
case, it is insufficient to solve equation (4.2). It is essen-
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tial that, at the discontinuity point of solution (4.2), the
Weierstrass–Erdman conditions should be satisfied,
i.e., the conditions of the continuity of the momentum

 and energy Y'  – Λ. Solution (4.2) satisfies the
latter condition automatically. When these conditions
are fulfilled, the solution realizes the extremum of func-
tional (4.1), i.e., the minimum for  ≥ 0 and the
maximum for ΛY'Y' ≤ 0.

The general solution to equation (4.2), which satis-
fies the conditions Y → 1 for X → ±∞, has the paramet-
ric representation

(4.3)

The point X = ∞ corresponds to the parameter value t =
1/β; the values t = 0 or t = ∞ correspond to the point
X = 0. Therefore, the range of values for the parameter
t is confined by the intervals t ∈  [0, 1/β (smooth soli-
tons) or t ∈  (1/β, ∞) (discontinuous solitons).

It is more convenient to introduce the wave ampli-
tude a and the Bond number β > 0 instead of the wave
parameters G and W. The range of values for the param-
eters a and β breaks down into two regions correspond-
ing to a(1 – β) > 0 and a(1 – β) < 0 in which waves have
quantitative distinctions.

Smooth solitons, a(1 – b) > 0. The parameter t var-
ies within the limits 0 ≤ t < 1/B; the numbers G, W, and
B depend on a and β as
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Fig. 2.
the wave velocity is β-independent and equals c =

. The solitons are symmetric with respect to the
point X = 0 and have a smooth profile. In the vicinity of
|X| ! 1, the profile is parabolic:

(4.4)

For β < 1, the solitons have the positive amplitude a > 0
(elevation); for β > 1, the amplitude is negative, i.e.,
a < 0 (inverse soliton). The effect of the soliton inver-
sion for the Weber number exceeding a certain thresh-
old value was noted in the numerical studies [7]. For
periodic waves, this effect was mentioned in [8]. In the
analytic investigation [9], the threshold value for the
Weber number W = 1/3G was found, wherein the sign
of the soliton amplitude changes. The analytic solution
for the inverse soliton in the case of a large value of the
surface-tension coefficient was obtained in [10].

Solitons with discontinuity of a tangent, a(1 –
b) < 0. The parameter t varies within the limits 1/β < t <
∞; the numbers G, W, and B are determined by the for-
mulas

the wave velocity depends linearly on the Bond number

c = β . Solitons are also symmetric with respect
to the point X = 0, but the derivative Y'(X) has a second-
kind discontinuity. For |X| ! 1, the velocity profile is of
another asymptotic form:

(4.5)

The fulfillment of the Weierstrass–Erdman conditions
is easily verified. Therefore, the solution obtained with
a discontinuity of the tangent at X = 0 is an extremal for
the functional in (4.1). In the extremal, for a > 0, the
condition ΛY'Y' ≥ 0 is met and the minimum of the action
functional in (4.1) is realized; for a < 0 and ΛY'Y' ≥ 0, the
maximum of the functional is realized.

In Fig. 2a, the elevation-soliton profiles for constant
positive amplitude and various Bond numbers are
shown. As β increases, the soliton area decreases, and
the curvature at the vertex monotonically increases to
infinity as β  1. For β > 1, solitons have vertical tan-
gent at the vertex and the derivative Y' becomes infinite.
At a constant positive amplitude, the soliton dimen-
sionless velocity c is β-independent for β < 1 and is pro-
portional to β for β > 1 (see Fig. 2b).

Figure 3a shows the profiles of the inverse solitons
at the constant negative amplitude and various Bond
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numbers. As β increases from zero to infinity, the soli-
ton area increases from zero to infinity. At the lower
point, the curvature is infinite for 0 < β < 1 and mono-
tonically decreases from infinity to zero as β increases
from unity to infinity. At a constant negative amplitude,
the soliton velocity is proportional to β for β < 1 and is
β-independent for β > 1 (Fig. 3b).

a < 0

β < 1
β > 1

X
(a)

(b)

Y – 1

a–

c

β 1 a–

1 a–

β
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Fig. 3.
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High-resolution optical and probe methods are used
to isolate not only large-scale elements (internal waves
immersed into a wake and soaring vortices) in a contin-
uously stratified fluid flow around a two-dimensional
obstacle but also internal boundary flows. The latter
represent thin high-gradient interlayers inside and,
sometimes, outside a cocurrent flow [1]. An advancing
disturbance and both internal waves and vortices in a
lagging wake behind the obstacle, which were investi-
gated in detail by experimental and theoretical meth-
ods, are presented in [2–4]. Parameters of high-gradient
shells that belong to the density wake and contact with
the boundary layer on the obstacle are determined
in [5]. Patterns of internal boundary flows in the field of
attached internal waves, which are obtained by differ-
ent shadow methods, can be found in [6]. In the present
paper, we, for the first time, have experimentally deter-
mined boundaries for a domain of existence (in the
coordinate plane given by the Froude and Reynolds
numbers) of isolated discontinuities in a wave wake
behind a cylinder. We have also shown that the structure
of the extended regime diagram depends on a stratifica-
tion level. The usually assumed universal character of
the extended diagram [3, 4] violates due to an allow-
ance for the entire complex of steadily observed ele-
ments, which include fine-structure components of
both the wave wake and density wake.

Dimensional parameters of the problem are the den-

sity ρ(z) and its vertical gradient , the free-fall accel-

eration g, the diameter D and the velocity U of the cyl-
inder, the kinematic fluid viscosity ν, and the diffusion
coefficient κs of a component causing stratification. The
exponential stratification is characterized by the scale

Λ = , the buoyancy frequency N = , and

the buoyancy period Tb = 2π/N. Internal scales of the

dρ
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problem are presented by the thicknesses of the veloc-
ity boundary layer (δu = ν/U) and of the density bound-
ary layer (δρ = κs/U), both formed on the obstacle, and
the length of the attached internal wave λ = UTb. Both
internal boundary flows and unsteady flows induced by
diffusion on an impermeable surface [7] are character-

ized by the scales of velocity δν =  and density

δs = . The basic dimensionless parameters are
presented by ratios between the internal scales. They
are the Reynolds number Re = UD/ν = D/δu, the internal
Froude number Fr = U/ND = λ/2πD, the scale ratio C =
Λ/D, and the Schmidt number Sc = ν/κs = δu/δρ ≈ 700
(the Schmidt number was constant during the experi-
ments). The necessity of recording all elements of the
flow pattern puts forward strict requirements to experi-
mental equipment. It is the highest resolution shadow
instruments that actually satisfy this necessity [8].

The experiments were carried out in a tank with vol-
ume of 220 × 40 × 60 cm3 . It had transparent windows
and was filled with a stratified solution of common salt
with the buoyancy period Tb from 5.3 to 25 s. Monitor-
ing of both the homogeneity and the stratification level
was carried out by the method of a density marker [9].
Plastic horizontal cylinders were towed in the tank with
the constant speed U = 0.01–6.5 cm/s. They had the
diameter D = 1.5–7.6 cm and a length equal to the tank
width. Monitoring of motion uniformity was carried
out by an optical method. The experiments were con-
ducted at the following values of the dimensionless
problem parameters: 10 < Re < 5000, 0.008 < Fr < 8,
and 100 < C < 15 000.

We performed the observations by the IAB-451 and
IAB-458 shadow instruments using Maksutov methods
[10]. The most detailed flow-pattern structure in the
vertical plane is obtained by the method called “Verti-
cal slit–thread in focus” (Fig. 1). It is characterized by
the complete set of scales intrinsic to the problem. The
obstacle dimension D determines the vertical size of a
region occupied by the fluid held in front of the body.
The length λ characterizes unsteady internal waves,
which smoothly turn into attached waves behind the
obstacle. The scales δu and δρ determine the thickness

ν/N

κ s/N
000 MAIK “Nauka/Interperiodica”
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of a shell for the velocity wake and density wake,
respectively, at points of flow separation from the
obstacle. The scales δν and δs characterize isolated
interlayers that are formed in the field of internal waves
and are separated from both the wake and the body by
a fluid layer free from fine-structure features.

At small values of the Reynolds number (Re < 200)
and moderate values of the Froude number (Fr < 1.2),
the density wake splits into separate extended interlay-
ers, whose deformation reflects distribution of wave-
induced displacements behind the body. Darker lines
visualize crests of unsteady waves and attached internal
waves, where the former arise in front of the body and
the latter, behind it. Binary light gray lines show wave
troughs. The wave field is asymmetric with respect to
the central horizontal plane. Wave surfaces behind the
body in the quiescent fluid represent semicircles [11].
Actual shapes of the crests and the troughs differ from
the calculated ones due to the Doppler effect in the flow
layer with a velocity shift. A wavelength measured
along a normal to the phase surface is equal to λu =
4 cm in the upper half-space and to λb = 3.1 cm in the
bottom half-space. The difference is caused by the
dependence of the buoyancy period on the depth (Tb =
15.0 s above the line drawn by the moving center of the
body and Tb = 11.3 s below this line).

Here, the high-gradient interlayers do not form an
entire exterior high-gradient shell of the density wake,
as is observed in many other regimes [5]. Therefore, the
attached internal waves pass through the density wake.
Crests and troughs from the upper and lower half-
spaces join consecutively, forming a single wave sys-
tem. The shape of the connecting line inside the density
wake varies with increasing distance from the obstacle,
which reflects the complex vortex structure of the wake
and the dependence of the buoyancy period on the
depth.

Horizontal high-gradient interlayers formed in the
field of attached internal waves are situated at a dis-
tance h = 3.1 cm from the wake axis. The leading edge
of the interlayers is situated in the region of maximum
amplitudes of the internal waves and lies at a distance
of r = 4 cm from the cylinder center. The thickness of
these interlayers depends weakly on parameters of the
motion, while their length grows with increasing the
Froude number and, under the conditions of this exper-
iment, substantially exceeds the dimension of the win-
dow. In the case of slower motion, when these interlay-
ers are not long [1, 6], their back and front edges are
free from singularities.

Analysis of the experimental data shows that, in
both strongly (Tb = 6.0 s) and weakly (Tb = 12.5 and
20.5 s) stratified fluid, isolated discontinuities are
observed in the field of attached internal waves near the
cylinders having the diameters D from 1.5 to 7.6 cm
and towed with the speed U = 0.04–0.5 cm/s if values of
the internal Froude number are small (0.02 < Fr < 0.5)
and the Reynolds number is moderate (30 < Re < 500).
DOKLADY PHYSICS      Vol. 45      No. 8      2000
Similarly to papers [3, 4], a domain of existence of this
flow regime is shown in the plane given by the Froude
and Reynolds numbers (Fig. 2). The regime of curls [3]
or vortices [4] soaring in the field of attached internal
waves is realized to the left of this domain at small val-
ues of the Froude number (Fr < 0.3). Then, a multipole
vortex system [4] forms at the front interlayer edge in
the region of maximum amplitudes of the internal
waves. This system is a source of its own density wake
presented by a rectilinear or wavelike high-gradient
interlayer. With increasing the Reynolds number, a flow

Fig. 1. Shadow pattern of a flow with isolated soaring dis-
continuities in the field of attached internal waves. A cylin-
der with the diameter D = 2.5 cm moves from the left to the
right at a speed of U = 0.29 cm/s. The other parameters are
Tb = 15 s, Fr = 0.28, Re = 74, and C = 5500.

5
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0.40.20 Fr

0

200

400

Re

Fig. 2. Domain of existence of isolated soaring discontinui-
ties arising in the field of attached internal waves in the
coordinate plane composed of the Froude and Reynolds
numbers. Flow regimes are classified according to Figs. 3
and 4: (5) the regime of soaring vortices, (6) vortex fila-
ments in the wake, and (8) the density wake split into wave-
and-vortex interlayers.
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pattern at the front edge of the interlayer becomes more
complicated; i.e., a larger number of vortices are being
identified in it [4]. A line that separates the regimes of
soaring vortices from those of isolated discontinuities
is given by the relation Re = 1200Fr + 15.

Two flow types exist to the right of the region of the
isolated discontinuities. At small values of the Rey-
nolds number (Re < 200), the flow pattern is the sim-
plest. It includes only an advancing disturbance, inter-
nal waves, and a density wake split into separate
oblique interlayers [4]. A boundary between these
regimes is given by the relation Re = 960Fr – 215. At
large values of the Reynolds number (Re > 200 and
Fr > 0.5), the vertical wake dimension grows and
decreases cyclically with the distance from the body.
Horizontal vortex filaments (vortex bubbles [3]) appear
in the regions of wake widening, their positions being
determined by the phase structure of the attached inter-
nal waves.

0.01 0.1 1 Fr

Re

10

100

1000

1 2 4 5 6 8
9 10 11 12 13

0.1 1 Fr

10

100

1000
Re

1 2 3 4 5
6 7 8 9 10

Fig. 3. Diagram of flow regimes at strong stratification
(C < 2000).

Fig. 4. Diagram of flow regimes at weak stratification
(C > 2000).
Allowing for steadily reproducible small-scale com-
ponents in a stratified-flow pattern behind the cylinder,
the regime map loses its universality and becomes
dependent on the scale ratio C. For the strong stratifica-
tion of the fluid (C < 2000, see Fig. 3), within the
parameter ranges under investigation (5.3 < Tb < 25 s,
1.5 < D < 7.6 cm, and 0.01 < U <6.5 cm/s), we observe
different flow regimes (according to the classification
performed towards increasing values of the Froude and
Reynolds numbers). They are a wake (1) with a split
high-gradient shell; a wake (2) with a central high-gra-
dient interlayer in which a microscale instability (3)
develops [12]; isolated discontinuities (4) in the field of
attached internal waves with an adjacent regime of
soaring vortices (5) arising at the front edges of the dis-
continuities. At 0.1 < Fr < 1 and 80 < Re < 1000, the
internal waves strongly deform the cocurrent flow, and
isolated vortex filaments (6) are observed in regions of
wake widening. Near regions of wake narrowing, trains
of soaring vortex systems, which are separated from the
wake by a fluid layer (7) free from fine-structure distur-
bances, are formed in the field of internal waves. Points
corresponding to a regime of cusped wave-and-vortex
objects (8), in which there is no whole high-gradient
shell of the density wake, are situated at the lower
boundary of the given parameter range. At Re > 200
and 0.45 < Fr < 1.4, a narrow turbulent wake (9) is
observed behind the cylinder. At Re > 350 and Fr > 1,
turbulent vortex objects (10) are formed inside the den-
sity wake. Overlapping the regimes occurs at small and
moderate values of the Froude number (0.02 < Fr < 1
and 20 < Re < 1000).

The regime map has a clearer structure in a weakly
stratified fluid (C > 2000). It is shown in Fig. 4, where
the notation used in Fig. 3 is preserved for repeated
flow types. Similarly to the previous case, the laminar
cocurrent flow with the split high-gradient shell (1),
which occurs at Fr < 0.02 and Re < 40, is changed by
the wake (2) having the central high-gradient interlayer
as the Reynolds number increases. At Re > 70 and Fr <
0.1, the isolated discontinuities (4) and the soaring vor-
tices (5) arise in the field of attached internal waves. At
Fr > 0.1, the separate vortex filaments (6) or the oblique
wave-and-vortex interlayers (8) are observed in the
density wake. In the last case, at small values of the
Reynolds number and moderate values of the Froude
number, there is no entire high-gradient shell of the
density wake (8) split into separate layers and interlay-
ers. When the speed increases, an attached vortex forms
both in the bottom part of the body and in the uniform
fluid. Dynamics of its intrinsic motion generates char-
acteristic wake elements with longitudinal scales dif-
fering from a wavelength of the attached internal wave.
At Re > 200, Fr > 0.7, as in strongly stratified fluid, the
narrow turbulent wake (9) is observed rather than the
wider turbulent flow with separate vortex elements (10)
at Re > 350 and Fr > 1. 

Furthermore, we discuss flow regimes that are
present in the diagram and are absent in strongly strat-
DOKLADY PHYSICS      Vol. 45      No. 8      2000
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ified fluid. Within a wide range of the parameters, there
is an undular wake (11) for which the scale of longitu-
dinal variation is determined by the period of natural
oscillations of the bottom vortex. An increase in the
wake speed leads to the growth of the amplitude of the
wake transverse oscillations. In this case, laminar vorti-
ces forming the Strouhal–Karman vortex street (12)
enter the wake sequentially. At a still higher speed,
when the flow inside the bottom vortex becomes irreg-
ular, an array of turbulent vortices (13) forms in the
wake.

Qualitative features of the regime maps presented in
Figs. 3 and 4 differ essentially from each other. For
weak stratification, domains of existence of the men-
tioned flow regimes are compact and, at relatively large
values of the Froude and Reynolds numbers, have clear
boundaries. For strong stratification, domains for the
existence of the given regimes in the parameter space
are being extended. Moreover, at close values of the
parameters, three and more flow types can exist around
the bodies differing in their diameters. The observed
ambiguity of the flow regimes (each of them actually
forms a compact domain in the three-dimensional
parameter space given by the Froude and Reynolds
numbers and the scale ratio) testify to the incomplete-
ness of the plane regime map [3, 4] and the necessity of
constructing the three-dimensional map in the C-, Fr-,
and Re-axes. In general, the regimes should be classi-
fied in the four-dimensional space given by the Froude,
Reynolds, and Peclet numbers as well as the scale ratio.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Sci-

ence and Technology of Russian Federation (the Pro-
DOKLADY PHYSICS      Vol. 45      No. 8      2000
gram for supporting unique instrumentation) and the
Russian Foundation for Basic Research (project
no. 99–05–64980).

REFERENCES

1. Yu. D. Chashechkin and V. V. Mitkin, Dokl. Akad. Nauk
362, 625 (1998) [Dokl. Phys. 43, 636 (1998)].

2. P. G. Baines, Topographic Effects in Stratified Flows
(Cambridge Univ. Press, Cambridge, 1995).

3. D. L. Boyer, P. A. Davies, H. J. S. Fernando, et al., Phi-
los. Trans. R. Soc. London, Ser. A 328, 501 (1989).

4. Yu. D. Chashechkin and I. V. Voeœkov, Izv. Akad. Nauk,
Fiz. Atmos. Okeana 29, 821 (1993).

5. I. V. Voeœkov and Yu. D. Chashechkin, Izv. Akad. Nauk,
Mekh. Zhidk. Gaza, No. 1, 20 (1993).

6. V. V. Mitkin, Cand. Sci. (Phys.–Math.) Dissertation
(Moscow, Inst. Probl. Mech., Russ. Acad. Sci., 1998),
p. 111.

7. V. G. Baœdulov and Yu. D. Chashechkin, Izv. Akad.
Nauk, Fiz. Atmos. Okeana 29, 666 (1993).

8. L. A. Vasil’ev, Shadow Methods (Nauka, Moscow,
1968).

9. S. A. Smirnov, Yu. D. Chashechkin, and Yu. S. Il’inykh,
Izmer. Tekh., No. 6, 15 (1998).

10. D. D. Maksutov, Shadow Methods for Researching Opti-
cal Systems (Gostekhteorizdat, Moscow, 1934).

11. M. J. Lighthill, Waves in Fluids (Cambridge Univ. Press,
Cambridge, 1978; Mir, Moscow, 1981).

12. V. V. Voeœkov, V. E. Prokhorov, and Yu. D. Chashechkin,
Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 3 (1995).

Translated by Yu. Verevochkin


	359_1.pdf
	363_1.pdf
	367_1.pdf
	372_1.pdf
	376_1.pdf
	380_1.pdf
	384_1.pdf
	389_1.pdf
	392_1.pdf
	395_1.pdf
	397_1.pdf
	401_1.pdf
	405_1.pdf
	410_1.pdf
	415_1.pdf
	419_1.pdf
	422_1.pdf
	425_1.pdf
	430_1.pdf

