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To the Readers of Acoustical Physics
The 20th century has gone into history. It was a cen-
tury of great discoveries, of investigation into the atom,
of the exploration of outer space, and of the invention
of lasers and computers, a century of molecular biology
and genetics. This was a century of scientific and tech-
nological revolution and advance. The development of
acoustics provides striking evidence of this.

Acoustics is an ancient science. From ancient times
its basis was musical and architectural acoustics. The
discovery of mechanics by Newton made acoustics an
academic science. At the end of the 19th century, after
the classical works by Helmholtz and Rayleigh, it
seemed that its development had come to an end. How-
ever, the discoveries in physics on the eve of the 20th
century and in the first years of this century also had an
effect on acoustics. Progress in electrical engineering
and electrodynamics, aerodynamics and aeronautics,
and the invention of the radio stimulated research in
new fields, i.e., electroacoustics, atmosphere acoustics,
and the acoustics of inhomogeneous moving media. An
international program was developed and studies of the
atmosphere and stratosphere were conducted in the
1930s with the help of explosions using the effects of
long-range propagation of sound. At the same time,
fundamental investigations of the physics of ultrasound
and its applications for nondestructive testing were
started.

After World War I and especially in the course of
World War II, the importance of underwater acoustics
became evident. The discovery of long-range propaga-
tion of sound in the ocean stimulated basic and applied
research in this field. Acoustic methods became domi-
nant also in the global study of the ocean. Acoustic
tomography of the ocean and acoustic oceanography
appeared.

The progress in designing jet aircraft, in rocket tech-
nology, and in the construction of ships with nuclear
power plants made it necessary to look for ways to con-
trol powerful noise of an aerohydrodynamic origin.
Extensive study of jet noise, turbulent flows, and hydro-
dynamic cavitation flows was started. It became evident
at the same time that the traditional methods of noise
and vibration control based on vibration damping and
absorption were almost exhausted. A new rapidly
developing field of acoustics, i.e., active methods of
noise and vibration control, appeared. Nonlinear acous-
tics started to develop rapidly.

The appearance of quantum mechanics, the discov-
ery of the wave nature of matter, and the development
of the physics of condensed media led to the “birth” of
1063-7710/01/4701- $21.00 © 20001
a quasi-particle of sound, a phonon. Like photons, elec-
trons, and other particles, phonons firmly occupied
their place in the present-day theories of basic and
applied physics. Acoustics “merged” with quantum
mechanics. Quantum acoustics, acoustoelectronics,
and magnetoacoustics appeared.

The invention of lasers and advances in the physics
of elementary particles and accelerator technology
stimulated extensive research in the field of photoa-
coustics and nontraditional sources and receivers of
sound. This research became the basis for laser and
radiation acoustics.

Important advances were made in “nonphysical”
fields of acoustics, i.e., the acoustics of speech, biolog-
ical and medical acoustics, and also at the interfaces of
other fields, e.g., in geoacoustics.

A striking characteristic of the progress in acoustics
in the 20th century is its frequency and spatial scales.
While at the beginning of the 20th century acoustics
embraced only the sound range of 20–20000 Hz, at the
end of the century research was conducted within the
frequency interval from deep infrasound (~10–2 Hz),
where acoustics is contiguous with the hydrodynamics
of an incompressible fluid, up to hypersound (~1012 Hz),
i.e., up to the region of the Debye frequency. It was dis-
covered that sound propagates in the ocean to distances
of tens of thousands of kilometers. This has provided
the opportunity to introduce and partially realize the
idea of acoustic monitoring of the temperature variabil-
ity of water masses in the ocean over rather long time
intervals in order to study changes in the Earth’s cli-
mate. On a different scale, a scanning acoustic micro-
scope was developed. 

Quite often some people in creative professions and
sometimes, regretfully, even physicists working in nar-
row fields identify modern acoustics only with the
acoustics of concert halls and audio technology. The
results attained in the last century in these very tradi-
tional fields are also impressive. There was no objective
criterion for the acoustic quality of a concert hall at the
beginning of the century apart from the newly intro-
duced characteristics such as the reverberation time.
There was also no acoustic basis for the acoustic design
of concert halls. At the end of the 20th century, the
result of very extensive research was seven scientifi-
cally substantiated criteria. During the last decades of
this century, in various countries of the world, concert
halls and opera houses with acoustic characteristics sat-
isfying the high demands of music-lovers, musicians,
singers, and conductors were built.
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How will acoustics develop in the new 21st century?
It is an ungracious task to make predictions. However,
considering the logic of the development of science, we
can expect that the main stimulus for its progress will
be the necessity of solving the global problems of
humanity: protection of the environment, provision of
resources and good standards of living, health protec-
tion, and the development of global communications
and information networks.

Scientific discoveries will greatly influence the
progress in acoustics in the new century. Indeed, the
development of quantum mechanics led physicists to
conclude that the world has a quantum nature. This was
extremely important for the progress of science.

Nobody could imagine that at the end of the 20th
century, 300 years after the development of mechanics
by Newton, fundamental discoveries would be made in
this field. Chaotic oscillations in nonlinear determinate
systems, which are similar to random oscillations, i.e.,
a determinate or dynamic chaos, were discovered. Cha-
otic oscillations have a new dynamic property which is
called the fractal structure. In other words, chaotic
oscillations (phenomena) arise according to regular
laws and there is not a formless chaos behind them but
a chaos with hidden order, a fractal structure. New con-
cepts have appeared: the fractal and fractal geometry.
Chaotic and fractal nonlinear dynamics have been
developed. Fractals have attracted the interest of scien-
tists working in many entirely different (as it may
seem) fields of science including acoustics. Another
discovery is called self-organization. This process is
somewhat inverse with respect to dynamic chaos. It
means the existence of an ordered behavior or state of
a dynamic system regardless of noise and fluctuations
in the system. The phenomenon of self-organization is
typical of complex nonlinear dynamic systems with
many degrees of freedom. Self-organization arises in
dynamic systems that are far from the state of thermo-
dynamic equilibrium. Determinate chaos, fractals, and
the phenomenon of self-organization are the properties
of not only mechanical or even physical nonlinear
dynamic systems as it may seem at first glance. They
are inherent in processes in biology, ecology, finance,
economics, and other fields. We may say figuratively
that the world is nonlinear. It is necessary to note by the
way that dynamic chaos can be observed also in quan-
tum systems. The discoveries in nonlinear dynamics
are comparable to the development of the theory of rel-
ativity and quantum mechanics in their revolutionary
significance. It is not accidental that fractals and fractal
geometry have attracted the attention of many research-
ers. Their significance is not limited to science. Fractals
and their beauty are revealed in the beauty of nature,
music, and even in the beauty of intricate hairdos of
African women as it has turned out!

The discovery of dynamic chaos, self-organization,
and fractals could not have taken place were it not for
the development of powerful computers. The construc-
tion of the first operational elements of a quantum com-
puter was reported recently. We may expect that real
quantum computers will appear in the 2020s to 2030s.
There is no doubt that new scientific discoveries,
advances in nonlinear dynamics, and the invention of
quantum computers will greatly affect the development
of acoustics in the coming century.

Humanity has entered the 21st century, the third
millennium. The Editorial Board of Acoustical Physics
and the Scientific Council of the Russian Academy of
Sciences on Acoustics congratulate the readers of
Acoustical Physics with this outstanding event.

Editorial Board of Acoustical Physics
and the Scientific Council of the Russian Academy

of Sciences on Acoustics

Translated by M. Lyamshev
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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Abstract—The interaction of long (sound) and short (ultrasound) waves propagating in a rarefied monodisperse
mixture of a weakly compressible liquid with gas bubbles is considered. Using the multiscale method, the Davey–
Stewartson system of equations is derived as a model of two-dimensional interaction. It is shown that, for some
values of parameters, this system is reduced to an integrable form (the Davey–Stewartson I equations) and has
localized solutions in the form of dromions (exponentially decaying waves of the short-wave envelope). One of
the most important properties of dromions is their ability to move according to the law that governs the variations
of the boundary conditions set at infinity for the long wave. It is suggested that these solutions be used for control-
ling the effects of ultrasound on bubbly liquids. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The theoretical studies of nonlinear wave processes
in liquids with gas bubbles had been restricted to inde-
pendent considerations of long and short waves. Spe-
cifically, a Korteweg–de Vries (KdV) equation was
obtained for describing the evolution of long-wave dis-
turbances in liquids with adiabatic gas bubbles [1]. The
existence of a long-wave KdV soliton was confirmed
by many experiments [2]. A nonlinear Schrödinger
equation was derived for describing the modulation of
short waves in polydisperse bubbly mixtures [3]. Mod-
ulation equations were constructed for a bubbly mix-
ture on the basis of an incompressible liquid phase [4]
and also with allowance for the heat transfer between
the phases [5].

It has been known [6] that a dispersion curve for a
bubbly liquid consists of two branches: a low-fre-
quency branch and a high-frequency one. Therefore, in
such a medium, a simultaneous propagation of long
(sound) and short (ultrasound) waves is possible.

Long and short waves can interact. The mechanism
of such an interaction was first considered for waves
propagating on the surface of water [7]. It was found
that, when the group velocity of short waves coincides
with the phase velocity of the long wave, the interaction
between these waves is maximal (resonant) [8]. Such a
long-wave–short-wave resonance requires a special
type of dispersion relation, e.g., consisting of two
branches [9], and occurs in a limited number of physi-
cal systems. Examples of such systems are waves on
the surface of water [10] and plasma [11]. In all these
1063-7710/01/4701- $21.00 © 20010
systems, the one-dimensional nonresonance interaction
is described by a nonlinear Schrödinger equation and
the resonance interaction is described by a Zakharov
system of equations; the two-dimensional nonreso-
nance dynamics obeys the Davey–Stewartson system
of equations [12].

The one-dimensional interaction between long-
wave and short-wave pressure perturbations in a liquid
with gas bubbles was studied in our previous paper
[13]. It was shown that a long-wave–short-wave reso-
nance occurs in this medium, and the aforementioned
equations were derived. In addition, the effect of the
“degeneration of interaction” was revealed, and new
equations describing the resonance interaction in the
case of such a degeneration were obtained. An analysis
of the effect of dissipation on the “degenerate” long-
wave–short-wave interaction was performed [14]. In
this paper, we derive and analyze the equations describ-
ing the two-dimensional interaction between long and
short waves in a bubbly liquid.

BASIC EQUATIONS

A bubbly liquid is a mixture that consists of spheri-
cal gas bubbles, the space between which is filled with
a homogeneous liquid. For the sake of simplification,
we assume that this mixture is rarefied and weakly
compressible, all bubbles have the same radius, and the
gas pressure in the bubbles varies according to the poly-
tropic law. We neglect the effect of external forces, as
001 MAIK “Nauka/Interperiodica”
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well as the dissipative and capillary effects. The motion
of such a bubbly liquid is described by the equations [6]

(1)

Here, v = ui + wj is the velocity vector of the mixture;
d/dt = ∂/∂t + u∂/∂x + w∂/∂y is the substantive derivative
with respect to time; p and ρ are the pressure and den-
sity of the mixture; ρl is the true density of the liquid;
Cl is the sound velocity in the bubble-free liquid; pg, αg,
and a are the pressure, volume content, and radius of
bubbles; n is the number of bubbles in a unit volume of
the mixture; κ is the polytropic index; and the subscript
0 refers to the unperturbed state of the mixture.

Using dimensionless quantities

(2)

where

(3)

(below, the tilde sign will be omitted), and neglecting the
terms of the order of the volume gas content αg as com-
pared to unity, we reduce the system of Eqs. (1) to the
following perturbation equations [3, 13]:

(4)

Let us consider the vector solution to Eqs. (4),
z = (a, p, ρ), in the form of a longitudinal plane har-
monic wave propagating along the OX-axis: z =
z0exp{i(kx – ωt)}, where z0 = (A, P, R) is the constant
vector of the solution amplitudes and k and ω are the
wave number and the frequency.

dρ
dt
------ ρdivv+ 0, dn

dt
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ρdv
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This solution is valid when k and ω are related by
the dispersion relation

k2 = ω2[b2 – 3(ω2 – 3κ)–1],

which can be represented in the form

(5)

Relation (5) falls into two branches, as illustrated in
Fig. 1: a low-frequency branch (corresponding to the
subscript “–”) and a high-frequency branch (corre-
sponding to the subscript “+”). In this case, the long-
wave asymptotics of the low-frequency branch, ωl(kl) =
ω–|k → 0, and the short-wave asymptotics of the high-fre-
quency branch, ωs(ks) = ω+|k → ∞, are as follows:

(6)

where ce and cf are the equilibrium and frozen velocities
of sound in the mixture.

Dispersion relation (5) allows the existence of the
Benney–Zakharov long-wave–short-wave resonance.

ω±
2 k( ) 1

2
--- 3κ k2 3+( )b 2– [+





=

± 3κ k2 3+( )b 2––[ ]2
36κb 2–+


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χ ce
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ωs c f ks O ks
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ce ωl/kl kl → 0
b2 κ 1–+( ) 1–

,= =

c f dωs/dks ks ∞→
b 1– ,= =

2

0 2

ω

4 k

4

6

ksrklr

ωsr

ωlr

Fig. 1. Dispersion curve for a bubbly liquid.
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This follows from the fact that, on the one hand, the
group velocity of the short wave

(7)

is an infinitesimal quantity when ks tends to zero and,
on the other hand, according to Eqs. (6) we have cf > ce.
Then, for any sufficiently small kl = klr , there exists
such a ks = ksr that provides the fulfillment of the condi-
tions for the Benney–Zakharov long-wave–short-wave
resonance (Fig. 1):

cg(ksr) = cp(klr). (8)

Here, cp(kl) = ωl/kl is the phase velocity of the long
wave.

In the case of infinitely long waves (kl  0), the
resonance condition (8) is simplified:

cg(ksr) = ce. (9)

For most bubbly media, the frequencies correspond-
ing to the upper branch of the dispersion curve belong
to the ultrasonic range. Specifically, if we consider
water with air bubbles of radius a0 = 0.1 mm at normal
conditions (p0 = 0.1 MPa, ρl0 = 103 kg/m3) and with the
volume gas content αg0 = 2.22 × 10–4, the frequency of
the short wave will be νs = ωs/(2πt*) > 32400 Hz. At the

same time, the long wave with the frequency νl =
cel*/(λlt*) ≈ 110 Hz (at λl = 6.7 m) represents audible

sound. Thus, the long-wave–short-wave interaction in a
bubbly liquid can be considered as the interaction of
ultrasound and audible sound propagating in this
medium.

INTERACTION EQUATIONS

Let us introduce a parameter ε ! 1 to satisfy the
conditions

where pl and ps represent the long-wave and short-wave
pressure perturbations in the mixture; l and s are some
numbers (degrees of smallness); and Θ is the phase of
the short wave. In a similar way, we express the per-
turbations of the bubble radius a and the perturbations
of the mixture density ρ. Then, the vector solution z =
(a, p, ρ) to system (2.4) can be represented in the form

(10)

To derive the equations for the long-wave–short-
wave interaction, it is convenient to use the method of
multiscale expansions [15], i.e., in addition to expan-

cg dωs/dks ksωs
1– ωs

2 3κ–( )= =

× 2b2ωs
2 3κce

2–– ks
2–( ) 1–

pl εlL; ps εsS; p pl psexp iΘ{ } ;+= = =

L S, O 1( ),=

z εl εm 1– zm
0( )

m 1≥
∑ εs ε m 1–( )n n 1–( )s+∑

m n 1≥,
∑+=

×  zm
n( )exp inΘ[ ] c.c.+[ ] .
sion (10), to introduce fast (t0, x0, y0) and slow variables
(tn, xn, yn) = εn(t0, x0, y0), where n = 1, 2, …, by replac-
ing the differential operators with asymptotic series:

(11)

Here, we assume that Θ = ksx0 – ωst0 and the long-wave

and short-wave components of the solution (  and

, where m, n = 1, 2, …) depend only on the slow vari-
ables. The absence of the fast variable y0 in the expres-
sion for Θ means that the short wave is a plane one.

We select (l, s) = (2, 1); then, we substitute expan-
sions (10) and (11) into Eqs. (4) and split the resulting
expressions into the harmonics of the short wave
(exp{inΘ}, where n = 0, 1, 2, …). We introduce the

notation S =  and switch to the coordinate system
moving in time t1 with the group velocity of the short
waves cg(ks); i.e., we assume that

Here, L0 is the initial profile of the long wave. The
choice of the sign in η1 and η2 determines the direction
of motion of this initial profile along x1 and y1: the
motion from left to right corresponds to the minus sign,
and from right to left, to the plus sign. We also assume
that p2 = p2(ξ). Then, we obtain the following interac-
tion equations:

(12)

where cg and ce are calculated by Eqs. (7) and (6);
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We note that the coefficients β and  are positive, and α
and δ are of the same sign for all values of ks, b, and κ > 1.

From the physical point of view, Eqs. (12) describe
the combined evolution of ultrasound and sound with
the “slow” time in a layer of the rarefied bubbly mixture
enclosed in a rectangular vessel. Sound is generated by
the nonmonochromaticity of the ultrasonic signal (the
initial component of the long wave propagates indepen-
dently), the vessel moves with the velocity Cg = cgl*/t*in the direction of wave propagation (the x axis corre-
sponds to one of the sides of the vessel), the wave
amplitudes slowly vary in the transverse direction
(along the y-axis), and the layer of liquid is assumed to
be sufficiently thin to neglect the dependence on the
vessel height (the z-axis). It should be noted that such a
combined evolution is noninertial, because the sound
propagation in a bubbly medium exactly follows the
dynamics of the ultrasonic perturbation (because of the
absence of time derivatives in the first equation).

System (12) has a spatially homogeneous solution:

(13)

where L0, R0, and ψ0 are constants. A linear analysis of
the stability of this solution against sinusoidal perturba-
tions

Λ = Λ0exp{i(Kxξ + Kyζ – Ωτ)},

Λ = (L', R', Θ'), Λ0 = ( , , )

leads to the dispersion relation

From this relation, it follows that, for a spatially
homogeneous solution (13), a long-wave instability
takes place when the following condition is fulfilled
(for β,  > 0):

(14)

In a bubbly liquid, the coefficients α and δ vanish
(the interaction degenerates) when the condition ωs =

3  is satisfied [13]. In this case, =
L0(η1, η2), and, hence, the profile of the long wave is
L(ξ, ζ) = 0. The equation for the envelope of the short
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wave S =  has the form of a two-dimensional non-
linear Schrödinger equation

(15)

However, when the zero-harmonic terms of the next
order in ε are taken into account, an interaction appears
between the envelope of the short wave S and the sec-
ond term of the expansion of the long-wave perturba-

tion L1 = :

The coefficient λ = (κ + 1)1/2 /[3κ5/2(3κ + 2)2] is
always nonzero. Thus, in the case of a degenerate inter-
action, the nonmonochromatic ultrasonic signal will
also excite audible sound, but of much lower intensity
than in the nondegenerate case.

TWO-DIMENSIONAL LOCALIZED 
STRUCTURES IN A BUBBLY LIQUID

When δ ≠ 0, Eqs. (3.3) can be transformed to a
Davey–Stewartson system of equations [10, 12]. For
this purpose, we apply the substitution L  δ–1∂Ψ/∂ξ
and introduce the notation σ = (  – ):

(16)

The analysis of the coefficients in Eq. (16) shows
that, in a bubbly liquid, the two-dimensional interaction
can be described by one of the integrable versions of
the Davey–Stewartson system, namely, by the Davey–
Stewartson I (DS-I) equations:

The passage to this system is possible with the substi-

tutions Q = δ–1∂L/∂ξ, A = S, x = ξ/ , y = ζ/ ,

and t = τ when the conditions

(17)

are satisfied (for a bubbly liquid, the coefficients α and
δ are of the same sign and, therefore, the second con-
dition (17) holds only for positive values of γ, which
means that the aforementioned substitutions are cor-
rect).

The evidence for the validity of conditions (17) is the
intersection of the curves δ1 = –1 and δ2 = 2 (Fig. 2a).

p1
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2/ce

2–[ ] 1,–= =

δ2 αδ / γ βce
2( ) 2= =
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Fig. 2. Curves δ1 = –1 and δ2 = 2 in the (ks, b) plane at κ = 1.4. At the points D1 and D2, the conditions of the existence of two-
dimensional localized structures in a bubbly liquid are satisfied.
From Fig. 2b, it follows that the intersection occurs at
the points D1 (ks1, b1 ≈ 0.74, 0.22) and D2 (ks2, b2 ≈ 1.21,
0.31), which correspond to the volume gas contents
αg01 ≈ 1.42 × 10–4 and αg02 ≈ 2.04 × 10–4 and the short
wave frequencies νs1 ≈ 0.14 MHz and νs2 ≈ 0.11 MHz
for the bubbly liquid represented by water with air bub-
bles of radius 0.1 mm at normal conditions.

Among all localized solutions to the DS-I equations,
the so-called dromion solution [18] stands out. This
solution represents a localized and exponentially
decaying structure of the short wave envelope A; in
contrast to a conventional soliton, this structure is capa-
ble of energy dissipation when interacting with distur-
bances. A dromion appears when nonzero boundary
conditions are set for the long-wave profile Q and exists
owing to the energy transfer between the long and short
waves. This localized structure has one unique prop-
erty. The dromion travels along the trajectory deter-
mined by the time dependence of the boundary condi-
tions for the long wave. Setting the law that governs the
variation of these boundary conditions, one can control
the motion of the dromion.

A single-dromion solution can easily be obtained by
rotating the coordinate system through 45° (x   +

, y   – ) and by introducing the variables U ≡
(∂Q/∂x – |A|2)/2 and V ≡ (∂Q/∂y – |A|2)/2 (the tilde sign
is omitted). Applying the boundary conditions for U at
y  –∞ and for V at x  –∞ in the form

(18)

we obtain the solution in the form [19]

x̃
ỹ x̃ ỹ

U
y ∞–→

8kr
2 η1 η1*+( )exp

1 η1 η1*+( )exp+[ ]2
-------------------------------------------------,=

V
x ∞–→

8lr
2 η2 η2*+( )exp

1 η2 η2*+( )exp+[ ]2
-------------------------------------------------,=
(19)A
χ η1 η2+( )exp

1 η1 η1*+( )exp η2 η2*+( )exp ν η1 η1* η2 η2*+ + +( )exp+ + +
------------------------------------------------------------------------------------------------------------------------------------------------------.=
Here,

where ν, kr, ki, lr, and li are arbitrary real numbers
(parameters of the solution).

Figure 3 shows the spatial distributions of the short-
wave envelope |S| = γ–1/2|A| and of the long-wave profile
L = (U + V + 2|A|2)/(2δ), which correspond to the sin-
gle-dromion solution given by Eqs. (18) and (19) with
ν = 3, kr = lr = 4/5, and ki = li = 1/5.

η1 kr iki+( )x 2krki– iΩi+( )t,+=

η2 lr ili+( )y 2lrli– iωi+( )t,+=

Ωi ωi+ kr
2 ki

2 lr
2 li

2, χ+ + + 2 2krlr ν 1–( ),= =
Numerical experiments [19] confirm the fact that
the motion of the dromion structure occurs along the
trajectory determined by the boundary conditions for
the long wave. For example, when the variables in
Eqs. (18) are given in the form

i.e., when the point of intersection of the peaks of the
boundary conditions (point C in Fig. 3) rotates about
the origin of the coordinates, the dromion also travels
around a circle.

This property can be used for controlling the ultra-
sonic effect on a bubbly liquid. By producing an ultra-

η1 η1*+ krx Ωr wt( )sin ,+=

η2 η2*+ lrx ωr wt( )cos ,+=
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Fig. 3. Spatial distributions of the short-wave envelope |S | and the long-wave profile L that correspond to a single-dromion solution.
The parameters of the bubbly liquid are ks = 0.74, b = 0.22, and κ = 1.4.
sonic perturbation in a bubbly liquid whose parameters
satisfy the DS-I equation, it is possible not only to focus
it at some point in space, but also to control its motion
by setting the laws of evolution for the audio-frequency
disturbances well away from the focus.

SUMMARY

Using the method of multiscale expansions, we con-
structed a model of the two-dimensional interaction of
ultrasound with audible sound in a bubbly liquid. We
considered two cases: the nonresonance case and the
degenerate one. In the latter case, the coefficients of
interaction between the long and short waves vanish.
The degeneration of the interaction occurs at a certain
frequency of the short wave.

It was shown that, in the nonresonance case, the
interaction can be described by the Davey–Stewartson
system of equations and, at some values of the parame-
ters, by the integrable version of this system, namely,
by the Davey–Stewartson I equations. The DS-I system
has localized solutions in the form of dromions (an
exponentially decaying envelope of the short waves)
whose specific feature is to travel in space according to
the law that governs the variation of the boundary con-
ditions set at infinity for the long wave. The possibility
to use this property of dromions for controlling the
ultrasonic effects on bubbly liquids was pointed out.

It was found that, in the case of degeneration, a non-
monochromatic ultrasonic signal generates audible
sound of much lower intensity than in the nonresonance
case.
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Abstract—The conditions of the acoustic instability of flows of thermodynamically nonequilibrium gas are
determined. It is shown that the growth increments of the velocity, temperature, pressure, and density distur-
bances are different. When the Mach numbers are small, only the velocity and temperature disturbances grow
along the flow. © 2001 MAIK “Nauka/Interperiodica”.
The study of the acoustic stability of flows of ther-
modynamically nonequilibrium gas is of interest in
connection with the development of laser engineering
and plasma aerodynamics. It is well known that, in a
thermodynamically nonequilibrium gas, an amplifica-
tion of sound is possible. Examples of such media are
chemically active mixtures, glow-discharge plasma,
gases with a nonequilibrium excitation of molecular
internal degrees of freedom, and atmosphere regions
with a nonequilibrium condensation. The acoustic
instability of these media is associated with the fulfill-
ment of the Rayleigh criterion: in the wave maximums,
the heat release from the nonequilibrium degrees of
freedom should be greater than in the minimums. As
was shown in our previous studies [1], the acoustic
increment in all these media can be written in a gener-
alized form as

, (1)

where ξ is the second viscosity coefficient, us is the
sound velocity, both these quantities depend on the fre-
quency ω, and ρ is the density of the medium. The
media with ξ < 0 are acoustically active.

Expression (1) takes no account of the inhomogene-
ity of a stationary nonequilibrium medium, which is
determined mainly by the type of the heat removal. The
heat removal due to the thermal conduction is consid-
ered in [2]. It is shown that, for a low degree of non-
equilibrium, the region of the acoustic instability (on
the pumping power–inverse relaxation time plane)
expands, and, for a high degree of nonequilibrium, it
contracts, as compared to the homogeneous case. In our
previous publication [1], we determined the correction
to Eq. (1) that takes into account the refraction losses in
the case of a transverse convective heat removal. The
propagation of an acoustic pulse or wave in one-dimen-
sional equilibrium media with a periodic inhomogene-
ity was studied by Grety et al. [3].

α ξ ω( )ω2

2us
3 ω( )ρ

---------------------=
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In this paper, we determine the conditions of the
acoustic instability of moving nonequilibrium media
relative to the sound propagation along the flow or
against it. We consider the two types of gas media: the
media with a source of heat whose power Q depends on
temperature T and density ρ and molecular media with
a vibrational excitation of molecules. The flow velocity
W is assumed to be subsonic: the Mach number is M =
W0/us ! 1.

For the first type of media, the initial system of one-
dimensional equations of gas dynamics can be written as

(2)

Here, d/dt = d/dt + vd/dx, the x axis coincides with the
flow direction, v is the velocity of gas, P is the pressure,
Cp∞ and Cv∞ are the heat capacities at constant pressure
and volume, m is the molecular mass, χ is the thermal
diffusivity, and η is the shear viscosity coefficient.
When writing the heat transfer equation and the equa-
tion of state, we used the energy units.

We represent the quantities in Eqs. (2) in the form
v = W0 + v', ρ = ρ0 + ρ', and so on, where the subscript 0
corresponds to stationary values and the prime corre-
sponds to disturbances of these quantities. For small
values of the Mach number (but large enough to neglect
the heat removal due to the thermal conduction), the

dρ
dt
------ ρ∂v

∂x
-------+ 0,=

ρdv
dt
-------  ∂P

∂x
------–

4
3
---η∂2v

∂x
2

---------,+=

Cv∞
dT
dt
------

T
ρ
---dρ

dt
------– Q T , ρ( ) χCp∞

∂2
T

∂x
2

---------,+=

P
ρT
m
-------.=
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gradients of the stationary quantities in Eqs. (2) are
equal to

(3)

where τQ = T0/Q0 is the characteristic time of heat
release. In the subsequent consideration, we will use the
approximation of linear geometric acoustics, which
requires that the inhomogeneity of the medium be weak:

or, with allowance for Eq. (3), this condition is satisfied
only for a high-frequency sound:

In the high-frequency limit, the system of Eqs. (2),
after linearization and rejection of the terms higher than
the second order of smallness, is reduced to closed equa-
tions describing the evolution of corresponding distur-
bances. For instance, for the velocity and density distur-
bances, the linearized equations take the form

(4)

(5)

where α∞ is the coefficient of amplification of high-fre-
quency sound in a nonequilibrium medium. According
to Eq. (1), it is determined by using the second viscosity
coefficient, which in the high-frequency limit is
expressed as [1, 4]

Here, u0 =  and u∞ =  are the veloc-
ities of low-frequency and high-frequency sounds; γ0 =
Cp0/Cv0; γ∞ = Cp∞/Cv∞; Cp0 = QT – Qρ and Cv0 = –Qρ are
the low-frequency heat capacities at constant pressure
and volume for the given type of media [5]; QT =
∂ lnQ0/∂lnT0; and Qρ = ∂lnQ0/∂lnρ0. Taking into

1
T0
-----

∂T0

∂x
--------- 1

ρ0
-----–

∂ρ0

∂x
--------≈ 1

τQCp∞Mu∞
---------------------------,=

1
T0
-----

∂T0

∂x
---------  ! 

ω
us

----

ωτQ @ 
1

Cp∞M
---------------.

∂2
v '

∂t
2

----------- u∞
2 ∂2

v '

∂x
2

-----------– 2W0
∂2v '
∂x∂t
-----------+

=  2α∞u∞
∂v '
∂t

--------–
4
3
--- η

ρ0
----- χ

Cv∞
---------+ 

  ∂3
v '

∂x
2∂t

-------------,+

∂2ρ'

∂t
2

---------- u∞
2 ∂2ρ'

∂x
2

----------– 2W0
∂2ρ'
∂x∂t
-----------+

3u∞

Cp∞MτQ

---------------------∂ρ'
∂x
--------=

– 2α∞u∞
∂ρ'
∂t
------- 4

3
--- η

ρ0
----- χ

Cv∞
---------+ 

 +
∂3ρ'

∂x
2∂t

-------------,

ξ
Cv 0 u∞

2
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2
–( )ρ0

ω2τQCv∞

-------------------------------------.=

γ0T0/m γ∞T0/m
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account the form of ξ, the high-frequency amplification
factor can be represented as

The actual sound amplification in a homogeneous
medium is determined by the condition ξ < 0; i.e., the
following inequality should be satisfied:

 (6)

Note that the sound amplification is also possible in
heat absorbing media (Q0 < 0), but, in this case, ξ < 0
and inequality (6) is reversed.

We seek the solution to Eq. (4) in the form

(7)

where v1 is the slowly changing amplitude of the veloc-
ity disturbance (dv1/dx ! kv1) and k = ω/u∞ is the wave
vector. In an inhomogeneous medium, it depends on the
spatial coordinate x.

Substituting Eq. (7) into Eq. (4), we obtain a reduced
equation for a slowly varying amplitude

and its solution

(8)

where

(9)

is the growth increment of the velocity disturbances
(for Gv < 0) and

is the coefficient of sound absorption associated with
the shear viscosity and the heat conduction.

Additional terms that appear in the increment in the
case of a convective heat removal are connected with
the fact that the oscillations of the flow velocity lead to
oscillations of the heat removal thus determining the
feedback between acoustic disturbances and the non-
equilibrium heat release [6].

Similarly to Eq. (8), it is possible to obtain the solu-
tion for the slowly changing amplitudes of disturbances

α∞
QT Cv∞Qρ+

2τQCp∞Cv∞u∞
----------------------------------– .=

QT Cv∞Qρ 0.>+

v ' v 1 x( ) i k∫ dx iωt–[ ] ,exp=

dv 1

dx
--------- i– Mkv 1 Gv δ+( )v 1–=

v ' v 1 x 0=( ) Gv δ+( ) xd

0

x

∫–exp=

+ i k 1 M–( ) x iωt–d

0

x

∫ ,

Gv α∞
1

4Cp∞MτQu∞
------------------------------–=

δ ω2

2u∞
3

--------- 4η
3ρ
------ χ

Cv∞
---------+ 

 =
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of ρ1, P1, and T1. The corresponding increments take
the form

(10)

All other quantities in Eq. (8) remain unchanged.
Unlike homogeneous media, in an inhomogeneous

flow, the disturbances of the gas dynamic quantities
have different increments. Earlier, a similar property
was observed for nonstationary nonequilibrium media
[7–10]. The increments may differ in both magnitude
and sign. For instance, for α∞ < 0 and small values of
the Mach number

only the velocity and temperature disturbances grow
along the flow. However, this kind of flow is unstable
for the density and pressure disturbances propagating
against the flow. Obviously, for heat-absorbing media
(Q0 < 0), the situation will be reverse. Note that the
increments G for small values of M0 may far exceed the
value of α∞.

We consider now the second type of nonequilibrium
media—a flow of vibrationally excited molecular gas.
In this case, in Eqs. (2) only the equation of heat trans-
fer will change:

(11)

where Ev is the vibrational energy (calculated per one
molecule) the change of which is described by the
relaxation equation

(12)

Here,  is the equilibrium value of the vibrational
energy, τv is the vibrational relaxation time, and Q is the
power of the source maintaining the nonequilibrium

excitation of molecule vibrations Ev > . For simplic-
ity, we consider the quantity Q as independent of T and
ρ. In such a formulation of the problem, the dependence
on these quantities would lead only to a more complex
form of the second viscosity coefficient.

From Eqs. (11) and (12) for M ! 1, it follows that

Gρ α∞
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1
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S
τvCp∞W0
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Thus, in this case, the condition of geometric acous-
tics is satisfied when

(13)

where S = (Ev0 – )/τv is the steady-state value of the
degree of nonequilibrium.

For media with high degrees of nonequilibrium S > 1,
the condition (13) is fulfilled only in the high-frequency
limit. For small values of S ! 1, Eq. (13) can also hold
for low-frequency sound (ωτv ! 1).

At the next step, we can use the above technique for
finding the growth increments for the disturbances in an
inhomogeneous flow. As a result, for high-frequency
disturbances, we obtain G in the form of Eqs. (9) and
(10) with τQ being replaced by τv/S in the second terms
of these expressions. The coefficient α∞ retains the
form of Eq. (1) but with the second viscosity coefficient
is expressed as

where, as before, u0 =  is the velocity of low-
frequency sound, γ0 = Cp0/Cv0; Cp0 = Cp∞ + Cv + S(τT +
τρ); and Cv0 = Cv∞ + Cv + SτT are the low-frequency heat
capacities at constant pressure and volume in a vibra-
tionally excited gas [1], Cv is the equilibrium vibra-
tional heat capacity, τT = ∂lnτv/∂lnT0, and τρ =
∂lnτv/∂lnρ.

Thus, we have

,

and the condition of sound amplification in a homoge-
neous vibrationally excited gas is ξ < 0; i.e.,

(14)

In an inhomogeneous flow of vibrationally excited
gas, it is necessary to use the increments determined
by Eqs. (9) and (10).

In the low-frequency limit, instead of increments (9)
and (10), one has to use the expressions

ωτv @ 
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ξ
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v 0 u∞
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ω2τvCv∞

---------------------------------------
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where M0 = W0/u0, α0 = ω2ξ0/2 ρ is the low-fre-
quency amplification factor, and

is the low-frequency second viscosity coefficient [1, 4].
For small values of S, the value of α0 is negative when
condition (14) is satisfied. Note that, for small values of
S, we have Cp0 ≈ Cp∞, u0 ≈ u∞ and the second terms in
Eqs. (15) practically coincide with the corresponding
terms of the high-frequency approximation.

Thus, in this paper, the growth increments of the gas
dynamic disturbances that occur in nonequilibrium gas
flows are determined, and it is shown that the velocity,
density, pressure, and temperature disturbances have
different increments. For heat releasing media and
vibrationally excited gases (which are active in the
homogeneous approximation), in the case of small
Mach numbers, the velocity and temperature distur-
bances grow along the flow and the pressure and den-
sity disturbances grow in the opposite direction. For
endothermic media, the situation is reversed. The
growth increments in flows may far exceed the incre-
ments in homogeneous media.

u0
3

ξ0
u∞

2
u0

2
–( )τvCv∞ρ0

Cv∞
-------------------------------------------=
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Abstract—A stratified stationary flow around a circular cylinder is accompanied by the formation of a thin,
acoustically contrasting layer extending along the horizontal axis of the flow. The theoretical and experimen-
tal studies show that the pressure differential and the backscattering coefficient of the layer can be quantita-
tively estimated in the framework of the problem on a stratified ideal incompressible liquid flow around a
cylinder. © 2001 MAIK “Nauka/Interperiodica”.
Experimental modeling of stratified flows around
two-dimensional obstacles is of great practical impor-
tance, because the elements of such flows often occur
behind extended irregularities of the sea bottom in the
open ocean, as well as in coastal and shelf zones. The
models of two-dimensional flows behind bodies are
convenient for studying the effects of the sound scatter-
ing by isolated forms of motion, such as eddies, waves,
and layered and turbulent structures. In modeling, the
effect of each of the above forms of motion can be arti-
ficially emphasized by choosing the corresponding
flow characteristics. 

In the context of acoustical tomography and ther-
mometry, where the average values of the sound veloc-
ity [1], the refractive index [2], and the propagation
time [3] are of primary importance, the scattering by
internal waves and turbulence is often considered as a
forward scattering. 

According to experimental data, backscattering is
caused to a considerable extent by turbulence. This is
particularly true in the anisotropic case, for example, in
the vertical echo sounding of a turbulent wake behind a
body moving in stratified water [4]. The level of vol-
ume scattering estimated for an isotropic turbulence is
several orders of magnitude less than the scattering
level caused by the discrete suspension (plankton)
occurring everywhere in the ocean [5]. According to
Stanton et al. [6, 7], turbulence additionally plays the
role of the marking suspension in the echo sounding of
internal waves. In this case, waves are visualized in the
echograms as two-layer periodic structures and every
layer is clearly seen only for the sounding waves of a
certain frequency range. This behavior is explained by
the combined effect of two kinds of scatterers, namely,
zooplankton and turbulence [6]. 

Generally, the contribution of internal waves to the
backscattering is small, because the local density gradi-
ents characteristic of internal waves are too small for
1063-7710/01/4701- $21.00 © 20106
causing any noticeable sound reflection at the frequen-
cies used in full-scale and laboratory studies. 

However, internal waves can produce considerable
pressure differentials in the wake behind a body.
Indeed, a stratified flow around a two-dimensional
obstacle is accompanied by the formation of thin inter-
layers in the wake, and local density gradients in these
layers can exceed those characteristic of an unper-
turbed liquid by a factor of several dozen [8]. Experi-
mental data point to a close causal link between the
interlayers and the field of attached internal waves. The
experiments with the shadow visualization demon-
strated that the wake is subdivided into two regions: the
outer region occupied by internal waves, and the inner
region adjacent to the wake axis and free from internal
waves [9, 10]. A similar situation occurs for a turbulent
flow around a thin vertical plate, when a density bound-
ary separates the turbulent wake from the field of sec-
ondary internal waves generated by this wake [11].
Such boundaries can be observed in the backscattered
field by sounding the water column. This fact was sup-
ported by laboratory experiments, in which the mea-
sured scattering coefficients agreed well with the coef-
ficients calculated in the approximation of the reflec-
tion from a plane transition layer [10, 12]. In this
connection, a theoretical and experimental investiga-
tion of the role played by the attached internal waves in
the formation of acoustically contrasting boundaries in
the stratified flow behind a two-dimensional obstacle is
of interest. 

From the standpoint of experimental testing, the
optimal theoretical model of the flow is the model that
has an exact solution free of restrictions on the ampli-
tude of internal waves, is reproducible in laboratory
conditions, and allows one to control the flow using
optical and echo-sounding methods. 

Let a horizontal flow with a constant velocity v0 =
{U, 0} be incident on a two-dimensional cylinder of
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radius R located in a basin in which the liquid is char-
acterized by the vertical profiles of density and buoy-
ancy frequency ρ0 (z) and N = (gρ–1dρ/dz)1/2, respec-
tively. Within a time interval τ, new distributions of the
flow velocity and density will be formed: v0 + v = {U +
u, w} and ρ(x, z) = ρ0(z) + ρ'(x, z). These distributions
are described by the complete system of fluid mechan-
ics equations and the boundary conditions at the body
surface. In our consideration, we assume that the z-axis
is directed downward, the x-axis is opposite to the flow
direction, and R ! L, where L is the smallest linear size
of the basin. 

It was shown [13] that, in the case of two-dimen-
sional steady-state flow of an ideal liquid, the system of
fluid mechanics equations can be reduced to a single
equation whose exact solution is known. For a homoge-
neous stratification characterized by a depth-indepen-
dent buoyancy frequency N, the introduction of the
stream function ψ for the disturbances of the veloc-
ity, u = ∂ψ/∂z and w = –∂ψ/∂x, and density, α = ρ'/ρ =
–ψN2/gU, results in the following final equation [14]: 

(1)

This equation together with the boundary condition
vn­ – v0n = 0 (n is the outer normal to the cylinder sur-
face) completely defines the problem. Aksenov et al.
[14] replaced the boundary condition by force sources
thus transforming Eq. (1) to an inhomogeneous equa-
tion and obtained the solution to the latter in the form 

(2)

where Y and J are the Neumann and Bessel functions of
the argument y = r/Rf, r = (x2 + z2)1/2 and ϕ = z/x)
are the polar coordinates, and f = U/NR is the Froude
number. The integer number M is infinite in the limit;
however, for flows with f > 0.1, the value M = 5 is suf-
ficient [14]. 

Taking into account Eq. (2), we can represent the
disturbed density α in the form 

(3)

from which it follows that, at every point of the space,
the quantity α is a function of two dimensionless
parameters: the Froude number f and the ratio of R to
the stratification scale Λ = g/N2. 

As was mentioned above, the model determined by
Eqs. (1) and (3) holds for steady-state flows. The tran-
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sient flow begins at the instant when the stream is
turned on (or the cylinder starts to move) and lasts to
the instant τ when the disturbed density takes on the
form of Eq. (3). For a laminar flow of a homogeneous
liquid about a cylinder, the value of τ coincides with the
time required for the liquid to flow from the front zone
to the wake and is of the order of R/U. On the contrary,
in stratified flows, the duration τ can multiply exceed
the ratio R/U. The reason is that a zone of blocked liq-
uid (blocked zone) is formed in front of the body, and
the kinetic energy of liquid in this zone is insufficient
for overcoming the buoyancy forces and flowing into
the wake. According to experimental data [15], the
length of this zone relative to the body center is L =
RRe/20f2, where Re = UR/ν is the Reynolds number
and ν ≈ 0.01 cm2/s is the kinematic viscosity. Corre-
spondingly, the dimensionless time of reaching the
steady state is about 

(4)

The effect of the blocked zone is the most prominent
for the Froude numbers f < 0.1. Figure 1 shows the
shadow pattern of the flow, where the blocked zone
appears as the light triangle with the vertex on the axis
of the cylinder motion (here and below, we consider
laboratory experiments in which the water is stratified
in salinity and the cylinder is moved rather than the liq-
uid: this is equivalent from the viewpoint of the theory,
but essentially simplifies the experiment). The wake
has two boundaries (its external envelopes), and the
wave beams are adjacent to them. As can be seen,
waves propagate only in the external region of the flow
and cannot penetrate into the wake. 

The blocked zone has the form of an elongated isos-
celes triangle with the vertex located at the axis of
motion. Due to this fact, the zone plays the role of an
inclined plane that favors the motion of the adjacent liq-
uid layers and their transfer into the wake even in weak
flows. The smaller the velocity of the oncoming stream,

Nτ NL/U Re/20 f 3.= =

Fig. 1. Nonstationary flow behind the cylinder (f = 0.05,
Re = 20, R = 1.3 cm, N = 0.5 s–1, and Nt = 180). Two
inclined boundaries and the adjacent alternating curved
beams of attached internal waves are clearly seen in the
wake. The light triangular region in front of the body is the
blocked zone. 
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the smaller the slope of the blocked zone and the
greater its length, which ensures that the inertia forces
overcome the buoyancy forces. The nonstationary stage
begins immediately after the flow is turned on (or the
cylinder starts to move): first, the liquid particles that
are closest to the top and the bottom of the cylinder flow
into the wake, then, the more distant particles, and,
finally, the liquid particles adjacent to the vertex of the
blocked zone. Because of this process, the density of
particles forming the near-wall layer will steadily vary
tending to the density of the liquid at the axis of motion
(z = 0). The separation of the layer from the cylinder
surface is governed by the buoyancy of the near-wall
layer relative the surrounding wake and, to a lesser
extent, by the viscosity. The first factor causes the point
of separation to move steadily toward the wake axis
during the nonstationary stage. The effect of the viscos-
ity manifests itself in the fact that the layer will be sep-
arated with some delay relative to the instant when it
reaches the height of the steady-state density. During
the nonstationary stage, all these processes bring into
existence two boundaries—the upper and lower enve-

Fig. 2. Stable stationary flow behind the cylinder (f = 0.3,
Re = 20, R = 0.75 cm, N = 1.2 s–1, and Nt = 72). Wave beams
are adjacent to the single axial boundary in the wake. The
dark triangular region in front of the body is the blocked
zone. 

Fig. 3. Stationary flow behind the cylinder (f = 0.3, Re = 90,
R = 2.5 cm, N = 0.6 s–1, and Nt = 180). The microstructural
instability is seen in the wake. The cross-sections of the
wave beams of internal waves (the inclined strips) are inter-
rupted in the unstable zone. 
lopes of the wake (Fig. 1), which slowly move toward
each other. Figure 1 clearly shows that the starting
points of wave beams are adjacent to these boundaries,
which means that the density boundaries separate the
wave region from the internal region of the wake. If we
place an immobile microcontact sensor in the path of
the boundary motion, then, at the moment the envelope
reaches the sensor, it will fix the envelope thickness and
the density differential. This approach was used in [12]
to measure the parameters of the boundaries. For the
flow regime used (f = 0.05, Re = 20), the duration of the
nonstationary stage exceeds two hours, which goes
beyond the duration of a single experiment. 

As follows from Eq. (4), the time required for reach-
ing the steady-state regime steeply decreases with
increasing Froude number. Figure 2 shows the flow pat-
tern (f = 0.3, Re = 20) at the instant Nt = 72 relative the
onset of the body motion, which is almost twice the
duration of the nonstationary stage Nτ = 37. The top
and bottom envelopes approach each other near the
motion axis and form a thin transition layer from which
wave beams originate both above and below the layer.
Note that the decrease in the duration of the nonstation-
ary stage due to the increase in the Froude number is
limited by the condition f < 2; with further increase in
the Froude number, a shear instability can appear [16]. 

An increase in the Reynolds number produces the
opposite result, i.e., an increase in the duration of the
nonstationary stage. In addition, the flow loses its lam-
inar structure for the Reynolds numbers exceeding the
critical value Re = 20 and, with further increase in the
Reynolds number, the flow becomes unstable [17]. Fig-
ure 3 shows the flow pattern (Nt = 180, Nτ = 160) for
the Froude number coincident with the foregoing case
(f = 0.3) and the Reynolds number (Re = 90) exceeding
the stability threshold by a factor greater than two. As
can be seen, on average (with respect to large-scale ele-
ments), the flow is stable and shows the basic stationary
features (an axis-type boundary and the adjacent inter-
nal waves); however, in the wake, one can see a zone of
microscale instability that masks the internal waves. 

The flow shown in Fig. 2 is the most appropriate for
experimental study of the scattering by the structures
formed by internal waves. The Reynolds number Re =
20 is optimal in this case, because such choice ensures
the maximal suppression of the viscosity effects with-
out loss of stability. For the given Froude number f =
0.3, the pattern with clearly defined internal waves and
the density boundary is observed in the wake (Fig. 2).
In addition, the time required for reaching the steady-
state pattern is quite acceptable (τ = Re/(20f 3N) = 30 s). 

The interlayer at the wake axis (Fig. 2) can be con-
sidered as a horizontal layer of constant thickness with
the density differential δρ = δρ(x) varying in the hori-
zontal direction with the spatial period equal to a half
wavelength of the attached internal wave λi/2 = πU/N.
For sounding such a boundary with a vertical acoustic
beam whose cross-section is much smaller than λi , the
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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scattering coefficient of sound n(x) can be represented
for every x in the form [12, 18] 

(5)

where 

(6)

η(x) = |δρ/ρ0|, k = 2π/λ, λ is the sound wavelength, d is
the envelope thickness normalized by the cylinder radius,
and the parameters βρ = ρ–1∂ρ/∂S = 0.8 × 10–3(‰)–1 and
βc = c−1∂c/∂S = 0.7 × 10–3(‰)–1 are the coefficients in
the linearized equations of state relating the density dif-
ferential δρ/ρ = βρδS and the sound velocity differen-
tial δc/c = βcδS to the salinity differential δS. 

As follows from Eq. (3), the density differential at
the wake axis is 

(7)

Expressions (3), (5)–(7) determine the scattering
coefficient as a function of the distance x, the Froude
number, and the ratio R/Λ. Thus, they present the theo-
retical solution of the problem. 

The oscillating factor sin(kdR) appearing in Eq. (5)
drastically depends on small variations in the thickness
d in the vicinity of kdR = mπ where the sine takes on
small values. This region is often reached in the exper-
iments because of the fluctuations of the layer thick-
ness. As a result, the scattering level exhibits uncontrol-
lable sharp oscillations. Usually, these fluctuations
occur at higher frequencies (above the buoyancy fre-
quency) and can be filtered out in the course of the pro-
cessing. 

Figure 4 shows the behavior of na as a function of
the dimensionless distance x/R for f = 0.3 and Re = 20.
The period x/R = 1 is prominent in this behavior, and it
corresponds to a half of the wavelength of the internal
wave λi(2R) = πf ≈ 1. In the calculations, we specified
d = 0.45, which corresponds to the scattering layer of
thickness 0.33 cm and coincides with the average thick-
ness of the dark horizontal interlayer at the wake axis
(Fig. 2). 

In order to consider an actual case rather than the
idealized situation (Fig. 4), we should take into account
the averaging of the backscattered signals over the
width D of the sound beam. As a result, a practicable
approximation to na will be the expression 

(8)

In the experiment, the sound beam remains immo-
bile and the coordinate x varies due to the fact that the
whole pattern of attached internal waves (together with
the structural inhomogeneities formed by these waves)
follows the body with the velocity –U. 

n na kdR( )sin ,=

na 0.5η 1 βc/βρ+( )/kdR,=

δρ ρ x d/2,( ) ρ x – d/2,( )–=

≈ ρ0 α x d/2,( ) α x – d/2,( )–[ ] .

n0 x( ) D 1– na ξ( ) ξ .d

x

x D+
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The experiment was carried out in a 240 × 40 ×
60-cm3 basin filled with water with a stratified salinity.
The buoyancy frequency, the cylinder radius, and its
velocity were N = 1.2 s–1, R = 0.75 cm, and U = 0.3 cm/s,
respectively. We used the acoustic sounding with the fol-
lowing parameters: the sound wavelength λ = 0.15 cm
(the operating frequency of echo sounder 1 MHz), the
pulse duration 30 µs, and the pulse repetition period
0.16 s. In this case, the wavelength and the layer thick-
ness are such that the oscillating factor in Eq. (5) is
sin(kdR) ≈ 1, and one can correlate the measured scat-
tering coefficient with quantity n0 calculated by Eq. (6)
taking into account Eq. (8). 

The acoustic antenna had the form of a circular
piezoceramic disc of radius a = 2.5 cm. The antenna
was placed in a damping screen (a rubber tube 8 cm
long and 2 cm in diameter), which improved its direc-
tivity property. The antenna was mounted at the height
h = 25 cm relative the wake axis. This height essentially
exceeds the length of the near zone a2/4λ = 10.5 cm
[18], and we can assume that the wake is located in the
far zone. The sound beam axis was directed along the
vertical, and its angular half-width measured by the
shadow image was 2°. The transverse size of the inson-
ified zone observed on the display was about 4 cm at the
point where it intersected the wake axis [12]. However,
the peripheral part of the beam practically did not con-
tribute to the formation of the backscattering, because
the power of the incident beam is mainly confined in
the first Fresnel zone whose diameter is (hλ)1/2 ≈ 2 cm.
Actually, the diameter of the active cross-section of the
sound cone forming the backscattering is still smaller
because of the angular divergence of the beam, owing
to which only a small central portion of the insonified
circular spot scatters in the vertical direction. Outside
the spot, the angle of incidence of the sound wave is
such that reflected rays are deflected and bypass the
antenna. 

Immediately before towing the cylinder, we mea-
sured the voltage amplitude V0 obtained at the output of
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Fig. 4. Theoretical scattering coefficient na versus the
dimensionless distance x/R for f = 0.3 and Re = 20. 
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the echo sounder from a plane horizontal plate made of
organic glass. We used the amplitude V0 to determine
the amplitude of the incident signal Vi = V0 /b, where
b = 0.3 is the empirical coefficient that takes into
account the losses related to the propagation of the
acoustic pulse and its reflection from the plate [10].
Then, we used echo signals V obtained by sounding the
wake to calculate the scattering coefficient 

(9)

The starting point of the cylinder motion was at a
distance of 20 cm from the sound beam axis. Sixty sec-
onds after the start, the cylinder entered the insonified
zone; here, the flow pattern corresponded to that shown
in Fig. 2. We started to measure the desired echo signal
immediately after the cylinder left the sound beam. At
this moment, the intense reflection from the cylinder
disappeared, and the antenna of the echo locator was
reset to the sensitive reception of weak echo signals
from the wake. 

During the measurements, the signals from the
antenna output were sent to the computer memory
through a special interface unit. The data were arranged
as voltage–depth–time three-dimensional arrays. The
array of the current values of the scattering coefficient
determined by Eq. (9) was calculated for the fixed
depth at which the wake axis was located. Then, from
this array, we filtered out the high-frequency compo-
nents, which could appear because of the random fluc-
tuations of the reflecting layer thickness and orienta-
tion. 

Figure 5 shows the measured scattering coefficient
versus the dimensionless distance x/R (curve 1). For
comparison, this figure contains additional curves
obtained by averaging the ideal theoretical curve (Fig. 4)
over a moving window according to Eq. (8). Curve 3
obtained with the averaging interval D/R = 0.5
appeared to be closest to the experimental curve. This

n V /Vi bV /V0.= =
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0
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Fig. 5. Average amplitude of the scattering coefficient n0
versus the dimensionless distance for f = 0.3 and Re = 20:
(1) the experimental curve and (2), (3) the theoretical
dependences calculated with the length of averaging D/R =
(2) 2 and (3) 0.5. 
averaging interval corresponds to the diameter of the
active part of the sound beam (D = 0.4 cm), which is
much less than the total width of the beam observed in
the shadow image. 

The features of the experimental curve coincide
with those of the theoretical one. The curves exhibit a
half-wave spatial period and a decay with distance. The
general agreement between curves 1 and 3 is evidence
in favor of the fact that the theoretical model deter-
mined by Eqs. (3), (6), and (7) with consideration for
Eq. (8) adequately describes the sound scattering from
the boundary. 

Thus, using the stationary laminar flow behind a
two-dimensional cylinder as an example, we showed
that an acoustically contrasting layer of density differ-
ential is formed in the wake. Two facts dictated the
choice of the flow regime. The first fact is that an exact
solution is known for this particular type of flow, which
allows one to calculate the magnitude of the density
differential. The second fact is that a stable and practi-
cally plain layer is formed in such a wake, which allows
one to calculate the theoretical scattering coefficient of
the layer and test it experimentally using the data of
the optical measurements and echo sounding. Note
that Eq. (1) is a linear equation, and the boundary con-
ditions represent a linear combination of the velocities
of the undisturbed (main) flow v0 and the attached
internal waves v. In these terms, the horizontal bound-
ary of the density differential given by Eq. (7) is a result
of the superposition of internal waves and the main
flow in the wake behind the body. 

As was mentioned above, boundaries with a similar
of higher contrast are also formed in nonstationary
(Fig. 1), in partially unstable (Fig. 3), and even in
totally turbulent (f ~ 1, Re ~ 5000) [11] wakes. In each
of these cases, the flow pattern is characterized by a
sharp density differential between the region of internal
waves and the zone adjacent to the wake axis, which is
evidence in favor of the fact that, in these cases, the
boundary is also formed as a result of a combined
action of internal waves and the main flow. It is not
unlikely that, although the flows behind obstacles in the
ocean are highly turbulent and nonstationary, a similar
mechanism should be present in the ocean. This means
that isolated sound-reflecting boundaries can appear in
the wakes in the ocean and act in parallel with the tur-
bulent sources of scattering. 

The following conclusions can be made from this
study. 

An acoustically contrasting density differential is
formed near the horizontal axis of the wake in a station-
ary stratified flow around a cylinder. 

The measured values of the sound-scattering coeffi-
cient of the layer agree well with the theoretical value
calculated for a plain transition layer whose density dif-
ferential can be expressed analytically as the wave solu-
tion to the problem of the flow around a cylinder. 
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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In flows behind obstacles, the attached internal
waves together with the main flow form a mechanism
for the generation of deep scattering layers. 
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The 7th International Congress on Sound and Vibration
The 7th International Congress on Sound and Vibra-
tion was held July 4–7, 2000, in Garmish-Parten-
kirchen (Germany). The Congress was sponsored by
the International Institute of Acoustics and Vibration,
the Bavarian State Ministry for Regional Development
and Environmental Affairs, and other institutions and
companies. Professor Hanno Heller was the General
Chairman of the Congress. It was a regular congress of
a series of congresses started in 1990. The previous
congresses were held in the United States (twice), Can-
ada, Russia, Australia, and Denmark.

The congresses were initiated by the International
Institute of Acoustics and Vibration (IIAV) which was
officially founded in 1995 as a public noncommercial
international institution. Members of IIAV are
researchers and experts whose priority in academic and
applied research is acoustics and vibrations. Acoustic
societies and associations from many countries are col-
lective members of the Institute. IIAV has the status of
a branch of the Union of Theoretical and Applied
Mechanics at UNESCO. Professor Sir James Lighthill,
who is well known in the international scientific com-
munity, was elected the first President of IIAV. Starting
from June 2000, Professor Colin Hansen (Australia)
has been the President of the Institute. Professor Mal-
colm Crocker (United States) is the Executive Director
of IIAV. He was the initiator and one of the founders of
IIAV together with other acousticians from many coun-
tries. Professor Crocker is a permanent chairman of sci-
entific committees and congresses. IIAV publishes the
International Journal of Acoustics and Vibration.

The 7th International Congress on Sound and Vibra-
tion was a vast and representative scientific forum.
Forty-six researchers participated in its Scientific Com-
mittee. About 450 papers were presented at the Con-
gress. They were distributed in 34 fields: keynote (ple-
nary) lectures, aeroacoustics, architectural and building
acoustics, adaptronics, aerospace measurements, active
noise control, arrays, active vibration control, biologi-
cal acoustics, boundary-element methods, finite-ele-
ment methods, condition monitoring and diagnostics,
duct-acoustics, environmental and outdoor noise,
instrumentation and transducers, musical acoustics,
modal methods, machinery noise and vibration, mea-
surement techniques, nonlinear vibrations, noise prop-
agation, passive control of noise and vibration, sound
perception, rotating systems, solids and continuous
media, statistical energy analysis, signal processing,
structural vibrations, tuned absorbers, trains and rail-
ways, underwater acoustics, ultrasonics, vehicle noise
and vibration, and wavelets.
1063-7710/01/4701- $21.00 © 20112
Eight keynote (plenary) lectures were delivered at
the congress.

A lecture by G. Lilley (Great Britain) “On the Rela-
tion between Classical Theories of Acoustic and Elec-
tromagnetic Wave Propagation” primarily treated the
particular features of the fields of moving sources of
sound and electromagnetic waves. The paper was
devoted to the memory of Sir James Lighthill, the author
of fundamental works on the theory of aerodynamic tur-
bulent noise. Professor G. Lilley together with J. Light-
hill were among the founders of this theory.

A paper by L. Beranek (United States) “Concert
Halls and Opera House Acoustics: 2000” discussed the
criteria characterizing the acoustic quality of a concert
hall or opera house and the application of these criteria
in the process of the design and construction of such
halls. The author noted that one of the best concert
halls, the Symphony Hall in Boston (United States),
was the first one constructed taking into account the
requirements determined by acoustic criteria. The hall
was built in 1900. W. Sabine, the founder of architec-
tural acoustics, was the advisor on the hall acoustics.
Only one criterion of the acoustic properties of halls
from the six criteria recognized nowadays and dis-
cussed in the paper was known at that time, namely, the
reverberation time. It was noted in the paper that the
acoustic criteria of halls adopted now were applied in
the process of the design of the Tokyo Opera City Con-
cert Hall. The acoustic rating of 23 opera houses all
over the world made up by conductors and its correla-
tion with the acoustic parameters (criteria) of these
halls are given in the paper.

A paper by V. Bolotin (Russia) “Dynamic Instabili-
ties and Postcritical Vibrations of Structures” presented
and discussed fundamental problems of the behavior of
dynamic structures in the conditions of loss of stability.
The parametric excitation of vibrations in a structure,
structure vibrations in a flow of a gas or fluid, the insta-
bility of a dynamic system under the effect of an impact
load, and vibrations and instabilities arising in rotating
systems were considered. All these problems were
treated within a unified approach.

J. Bento Coelho (Portugal) delivered a paper “On
Silencer Design Techniques.” Noise silencers are
widely used in very different devices including power-
ful blowers and air ducts, internal combustion engines
for suppression of the exhaust noise, and other devices.
A review of silencers of various types was given,
namely, resonance and dissipative silencers and silenc-
ers employing the technique of active suppression of
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noise and vibrations. The advantages and possible
applications of various silencers were indicated. The
methods of testing of silencers and the possibilities for
the comparison and evaluation of their efficiency were
described.

C. Morfey (Great Britain) presented a paper “Fun-
damental Problems in Aeroacoustics.” The paper dis-
cusses the state of the art in aeroacoustics starting from
1970. Basic information on aeroacoustics in the 1950s
and 1960s was given. The question of whether all fun-
damental problems of aeroacoustics have been solved
was raised. A critical review of four topical problems
was given. The conclusion was made that the modern
concept of the source of aerodynamic noise is incom-
plete. According to the lecturer, the four problems indi-
cated above are sound emission by a turbulent jet at
high Reynolds numbers and low Mach numbers; sound
radiation by turbulence at a plane boundary and the role
of wall fluctuations of viscous strain at the boundary;
the problem of the interaction of sound with a flow; and
wide-band noise of blowers as an aerodynamic prob-
lem of their design.

The studies conducted in the 1980s and 1990s
showed that the existence of aerodynamic sound
sources of the monopole type is possible in a turbulent
flow with dissipation and a shift of velocity. It was
noted that the role of monopole sound sources in many
cases can be dominant because of the high efficiency of
monopole sound sources in comparison with quadru-
pole sources. However, experiments demonstrated that
the monopole sources play a secondary role. At the
same time, this problem cannot be considered com-
pletely solved and further investigations (first of all
experiments) are necessary.

Up to now experts in aeroacoustics from the United
States and Europe have adhered to the opinion that
there are no dipole sources of aerodynamic noise at a
plane unlimited rigid wall in a turbulent flow. Some
papers were published at the end of the 1990s in which
this point of view was called into question, and accord-
ing to the lecturer, this is one more question that needs
additional investigation. Note that Russian (Soviet)
researchers almost always supported the opinion that
dipole sources of sound exist. However, their Western
colleagues apparently did not notice the papers devoted
to this problem and published in Soviet journals and
probably just ignored them since the results of these
studies contradicted the “common” or “settled” point of
view that there are no and cannot be dipole sources at a
plane wall. Meanwhile, as was indicated in the papers
by Soviet researchers, one of the mechanisms of the
formation of the sources of the dipole type is connected
with reflection of viscous waves born by a turbulent
flow and existing in the viscous sublayer of the turbu-
lent boundary layer from a plane surface (wall). A lon-
gitudinal (sound) wave arises from the reflection of a
viscous wave from the boundary.
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
A lecture “Modal Testing 2000” was delivered by
D. Ewins (Great Britain). The major contents of the
paper refer to the problem of the measurement of the
characteristics of the vibrations of dynamic structures
including the precision of the measurement of these
characteristics and their repeatability. This is necessary
for a more substantiated representation, calculation,
and evaluation of vibrational and acoustic fields of
dynamic structures (real objects).

G. Pavic (France) presented a paper “Power and
Energy in Vibroacoustic Systems.” The paper exposed
a method of utilization of the relationship between the
input power and vibroacoustic characteristics of a
dynamic system as a characteristic of vibroacoustic
properties of a dynamic system from the point of view
of noise suppression. The possibility of the employ-
ment of this relationship was discussed. This approach
is close in its concept to the so-called statistical energy
analysis. Two fields of application of the criterion pro-
posed by the lecturer (the ratio of input power to energy
in a dynamic system) were considered: optimization of
vibroinsulation and suppression of vibrations and noise
by active methods.

The problem of noise borne by the operation of axial
wind turbines and helicopter rotors was discussed in the
paper “Aeroacoustics of Wind Turbines and Helicopter
Rotors” by S. Wagner (Germany). Analysis of noise
sources was conducted. Possibilities were discussed
and examples were given of a computer simulation of
noise that was based on application of the finite-ele-
ment method. Examples of the calculation of noise
characteristics were given that were based on numerical
solution of nonlinear equations, the Euler equation, and
the Navier–Stokes equation.

It is necessary to note in conclusion that papers
devoted to two relatively new fields deserve special
attention. One of these fields is called “adaptronics”
and the other one, “wavelets.”

A characteristic example of a paper in the first field
is the paper “Overview of Adaptronics in Aerospace
and Traffic Engineering” by D. Sachau and E. Breit-
bach. It was noted that new structural systems were
designed and found their application in the first half of
the 1980s. The systems got the name of “smart,” “intel-
ligent,” or “adaptive” systems. At first the studies were
started in the United States and Japan and then contin-
ued in Europe beginning in Germany. Adaptive struc-
tures consist of various elements and materials including
sensors and materials with piezoelectric, electrostrictive,
magnetostrictive, and electro- and magnetorheological
properties. The application of sensors and the indicated
materials provides an opportunity to design structures
and dynamic systems adaptive to environment and
external loads and their changes. Characteristic exam-
ples of the design and application of such materials,
structures, and systems were given in the paper. An
adaptive wing is one of them. Usually the profile of an
aircraft wing is designed to be optimal for certain preset
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conditions. As a rule, these are the conditions of take-
off and landing of an aircraft. In practice, the wing turns
out to be nonoptimal in other conditions during a flight.
“Smart” and “adaptive” materials open opportunities
and offer ways to design an adaptive wing with the pro-
file changing together with changing conditions of a
flight. Adaptive wing profiles may be useful and effec-
tive for the solution of the problem of the reduction of
aerodynamic noise and vibration.

An example of the papers devoted to the field of
“wavelets” that were presented at the Congress is the
paper “Computation of Time-Varying Cross-Spectra”
by D. Newland. The author is a well-known expert in
the field of wavelet analysis. Wavelet analysis is a rela-
tively new type of signal processing that has essential
advantages over traditional techniques and is applica-
ble to the analysis of nonstationary signals. The first
papers on wavelet analysis were published in the mid-
dle of the 1980s. A wavelet is a function describing a
damped vibration. Some Russian mathematicians pre-
fer to use the term “splash analysis” instead of “wavelet
analysis” since the Russian word for “splash” corre-
sponds to the English word “wavelet” best of all. The
average value of a wavelet function is equal to zero.
Wavelet functions can form a complete orthonormal
system of functions. A wavelet function can be the ker-
nel of an integral transformation, and in this case we
can talk about an integral wavelet transformation. An
integral wavelet transformation, or in the terms of some
Russian mathematicians, an integral splash transforma-
tion, is convenient for the analysis of nonstationary sig-
nals. In contrast to the integral Fourier transformation,
it is possible to monitor the variability of the fine time
structure of a process with the help of a wavelet trans-
formation. An original technique of the computation of
the cross-spectral power of nonstationary (transient)
signals was described in the paper by Newland. The
author showed that it was possible to solve the funda-
mental problem of the processing of nonstationary sig-
nals, i.e., to determine in the process of analysis of two
simultaneously detected nonstationary signals the peak
of the amplitude and phase variation in time from the
power cross-spectrum. It was noted that the suggested
technique might be applied for the analysis of chaotic
oscillations in nonlinear dynamic systems and struc-
tures.

The 7th International Congress on Acoustics and
Vibration was well organized. An excursion program
was offered to the participants and those accompanying
them. The decision was made to have the 8th Interna-
tional Congress on Acoustics and Vibration in Hong
Kong (China).

L. M. Lyamshev

Translated by M. Lyamshev
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Abstract—This work demonstrates the usefulness of the Open Photoacoustic Cell Technique to study the
effects of irradiance and temperature on photosynthesis. In vivo and in situ photosynthetic induction measure-
ments were performed in three different species of eucalyptus plants (E. grandis, E. urophylla, and E. urogran-
dis) previously dark-adapted at different temperatures. Photosynthetic activity curves were built as a function
of light intensity, indicating the occurrence of photosynthesis saturation. E. urograndis presented higher pho-
tosynthetic activity than the other species, especially at low temperature, indicating its tolerance to stress con-
ditions. The incidence of background saturation light of various intensities allowed the in situ study of photo-
inhibition in eucalyptus plants through open photoacoustics. © 2001 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

In the past few years, the photoacoustic technique
has been employed in the study of photosynthesis [1, 2].
In this method, a leaf is usually enclosed in a cell and
exposed to a monochromatic, modulated light beam.
The principle of the photoacoustic technique relies on
the light absorption by the sample (plant leaf) with con-
sequent release of heat and oxygen at the same fre-
quency of the light beam, as the photoacoustic signal
reflects the pressure oscillation in the cell. Detected by
a microphone, this pressure oscillation is a consequence
of (i) the gas–sample interface temperature oscillation
(which produces a periodic variation of the gas tempera-
ture inside the cell) and (ii) the gas exchange between the
sample and the cell (due to the photosynthetic activity of
the leaf). The sample expansion because of gas produc-
tion can also change the gas pressure inside the cell, with
the leaf acting as an acoustic piston itself [3].

As the absorbed light energy is converted into chem-
ical energy and heat in the photosynthetic process, the
quantum yield determination is an important applica-
tion of the technique in photosynthetic investigations.
This capability of the technique was predicted by
Malkin and Cahen [4], with experimental results in
both chloroplast suspensions [5] and leaf sections [6].
Recent applications include measurements of energy
storage in Photosystems I and II [7] and photosynthetic
activities of plants under chemical stress [8–11].

1 This article was submitted by the authors in English.
1063-7710/01/4701- $21.00 © 20016
The photoacoustic signal carries information on
optical and thermal properties of the sample, parame-
ters which appear on both the amplitude (magnitude)
and the phase (delay with respect to the light absorp-
tion) of the signal. The signal phase carries information
about the delay between light excitation and pressure
change, which depends on the coefficients of heat and
oxygen diffusion. Moreover, the signal phase also
depends on the time constants of the various steps in the
electron transfer chain (delayed generation of heat).
Poulet et al. [12] determined the oxygen diffusion coef-
ficient and estimated the limiting time constant on the
donor side of Photosystem II. A more complete model
on mass diffusion was discussed by Korpium and Osi-
ander [13]. Photosynthetic induction in dark-adapted
plants was also investigated, and fast photoacoustic
transients were registered [14, 15].

In the first works using photoacoustics to study
plant photosynthesis, the leaf was cut and closed in the
cell. This began to change with the development of the
Open Photoacoustic Cell (OPC) [16–18], a compact
device formed by a commercial electret microphone
that uses its own chamber as the acoustic cell, with the
sample acting as one of the walls. As the sample itself
closes the chamber, it is not necessary to cut a leaf disc
nor to detach the leaf from the plant for measurements.
Therefore, the OPC avoids dehydration of the sample
and minimizes changes in the photoacoustic chamber
atmosphere, because part of the leaf remains exposed to
the outside, capturing external CO2. These advantages
001 MAIK “Nauka/Interperiodica”
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make the OPC detection a direct way to study the
effects of parameters like temperature and irradiance in
the photosynthesis of plant leaves. Several studies on
photosynthesis were already performed with the OPC,
such as energy storage determination [19], the effect of
dehydration in soybean leaves [20], and evidence of
heterosis in maize hybrids through photosynthetic
induction measurements [21].

Eucalyptus is an important culture due to its poten-
tial value in the paper and cellulose industries. Euca-
lyptus grandis is the most cultivated species in Brazil,
followed by E. urophylla, which has a lower growing
rate but is more tolerant to water-limited conditions
[22]. The crossing of these two species generated the
fast growing E. urograndis, apparently efficient in dry
environments [23]. However, since it was recently
developed, this hybrid has not been fully characterized
until now [24] in terms of adaptation to stressing con-
ditions, particularly high irradiance and chilling tem-
peratures. As the adaptability of a plant to different con-
ditions can be evaluated through its photosynthetic
parameters and considering that stress can affect the
productivity of eucalyptus, the study of its adaptability
to stressing conditions is justified by the necessity of
improving eucalyptus agriculture [25, 26].

This work shows the influence of temperature and
irradiance on the photosynthesis of E. grandis, E. uro-
phylla, and E. urograndis leaves in vivo and in situ
using the Open Photoacoustic Cell Technique. As far as
we know, it was the first time that the OPC technique
was applied to study the photosynthesis of tree leaves
like eucalyptus leaves.

MATERIALS AND METHODS

Photoacoustic Setup

The experimental setup used for photoacoustic mea-
surements has two light sources: a xenon arc lamp
(Oriel, mod. 6128, 1000 W) and a tungsten lamp
(Ushio/ELC, 250 W). A chopper (PAR, mod. 192) and
a monochromator (Oriel, mod. 77250) are used in front
of the xenon lamp in order to obtain modulated light of
a determined wavelength (680 nm). Optical filters limit
the light of the tungsten lamp to the visible part of the
spectrum. A double-branched optical cable is used to
guide each light beam up to the photoacoustic cell. The
chopper and the photoacoustic cell microphone are con-
nected to a lock-in amplifier (PAR-EG&G, mod. 5210)
that measures the amplitude and phase of the micro-
phone signal. The lock-in is connected through a GPIB
interface to a microcomputer for data acquisition. The
typical lock-in time-constant used is one second, which
gives a time response of the setup clearly sufficient for
our purposes.

The OPC has already been described in the litera-
ture [17–20]. The device is essentially an electret
microphone, with the photoacoustic (microphone)
chamber being closed by the leaf itself. This micro-
ACOUSTICAL PHYSICS      Vol. 47      No. 1     2001
phone is composed by a metallized electret diaphragm
and a metal plate separated by an air gap. A resistor
connects the metallic part of the membrane to the metal
backplate. Pressure oscillation in the air chamber
deflects the membrane, thus generating a voltage across
the resistor. The sensitivity is of about 10 mV/Pa.

Plant Material

Eucalyptus plants were cultivated in small pots
under 50% shade conditions. Fifty-day-old seedlings
were transferred to the laboratory where they were
dark-adapted at two different temperatures, 10 and
25°C (ambient), for 24 h. After this period, plants were
taken to the experimental setup and a selected part of an
undetached leaf was fixed to the OPC and exposed to
the modulated light beam (680 nm, 17 Hz, 8 W/m2)
coming from the optical cable. Fully expanded leaves
of the second pair were selected for measurements
(performed at ambient temperature). The photoacoustic
signal (amplitude and phase) was recorded as a func-
tion of time, with intervals of two seconds between
points. About 30 plants were measured for each species
and temperature in the photosynthetic induction exper-
iment. Measurements were performed in plants previ-
ously adapted at two temperatures to investigate the
influence of the temperature treatment on the readapta-
tion to light conditions.

Performing induction measurements for different
light intensities, the steady-state photosynthesis rate
was used to build photosynthetic activity curves, which
give the amplitude of the oxygen evolution component
as a function of irradiance. Five measurements were
performed for each species (all plants previously
adapted to 25°C) and for a given irradiance.

In the photoinhibition experiment, for a given spe-
cies adapted to one temperature, about five measure-
ments were performed for each light intensity. The
effects of irradiance were evaluated by comparing the
photoacoustic signal before and after plant exposure to
different intensities of background saturation light for
about 15 min.

RESULTS AND DISCUSSION

Photosynthetic Induction

A typical photosynthetic induction curve for euca-
lyptus is presented in Fig. 1. This figure shows that the
photoacoustic amplitude presents initially a fast tran-
sient (0 < t < 20 s), followed by a slower one, reaching
the steady state after about two minutes. The first tran-
sient expresses a rapid increase in the signal amplitude,
followed by a fast decrease back to the initial level,
while the second transient represents a continuous
increase of the signal until the steady state is reached.

Since seedlings were dark-adapted for a long period
(24 h) before measurements, their photosynthetic reac-
tion centers were deactivated [2]. Therefore, the initial
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level of the photoacoustic signal corresponds to tem-
perature oscillation (thermal component) [6]. As the
reaction centers readapt to light conditions, photosyn-
thesis starts and the production of oxygen takes place.
The corresponding variation in the photoacoustic signal
is the gas component.

Concerning the fast transient, this behavior has been
reported in the last twenty years [27]. The initial stage
of the photosynthetic induction seems to be limited by
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Fig. 1. Typical photosynthetic induction curve obtained for
E. grandis previously treated at 10°C for 24 h. Measurement
was carried out at ambient temperature. Modulated light
characteristics: λ = 680 nm, modulation frequency of 17 Hz,
and intensity of 8 W/m2. Dots represent measured points
and the solid line the best fit to Eq. (1) (many data points
were suppressed to avoid overcrowding).
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Fig. 2. Photosynthetic activity saturation curves for E. uro-
phylla (solid line) and E. urograndis plants (dotted line).
Each data set corresponds to the average over 5 measure-
ments. E. grandis saturation curve is similar to E. urophylla
curve. All plants were adapted to ambient temperature
(25°C). Modulated light characteristics: λ = 680 nm, modu-
lation frequency of 17 Hz.
metabolite levels mainly related to the inorganic phos-
phate availability in the intercellular medium. Actually,
the literature reports two possible explanations for this
transient: the first one is based on a rapid photoreduc-
tion of both glycerate-3-P and inorganic phosphate
stored during the dark period [28], while the second
relates the transient to an initial gas uptake immediately
after light incidence [14]. The fast transient was also
observed when similar measurements were performed
in spinach leaves [28]; it did not appear in the photo-
synthetic induction of maize leaves [21].

Since the gas component of the photoacoustic signal
is related to the photosynthetic rate, an analysis of the
signal amplitude and the time needed to achieve the
steady state becomes appropriated. To do this, the mea-
sured induction curves (removing the fast transient)
were adjusted by the logistic function [21]

(1)

where S0 is the initial value of the photoacoustic signal,
∆S is the signal excursion to the saturation value which
takes place during the time interval ∆t, and t0 is the
instant at which (S – S0)/∆S = 0.5.

The table shows values obtained for these parame-
ters. The results reveal important characteristics of the
eucalyptus leaves. In particular, ∆t and t0 are very short
for eucalyptus in comparison with other plants like
maize [21] and coffee [data not published]. For both
maize and coffee leaves, ∆t is in the range of a few min-
utes and t0 can be as high as 45 min, while the same
parameters in eucalyptus leaves reach values around
20 s (∆t) and 2 min (t0). These differences may be asso-
ciated to the efficiency of the Light Harvesting Com-
plex (LHC II). Since eucalyptus plants were grown
under 50%-shade conditions, their light collecting sys-
tems tend to be more efficient than those of maize and
coffee (cultivated under full sunlight).

Comparison among the three species of eucalyp-
tus shows that, especially for 10°ë adaptation, ∆S is
superior for E. urograndis. This result confirms the
superiority of this species and its higher tolerance to
low temperature. Regarding that the E. urograndis
hybrids originate from the crossing of the other two
(E. urophylla and E. grandis), this result resembles that
observed by da Silva et al. [21] for maize hybrids when
compared to their imbreds. In that case, maize hybrids
had shown superior photosynthetic performance than
imbreds.

Saturation Curves

Figure 2 shows curves of the photosynthetic activity
as a function of irradiance for E. urograndis and
E. urophylla samples adapted to 25°C. The E. grandis
curve is similar to the curve for E. urophylla. From
these data, it can be seen that E. urograndis plants
present a much higher photosynthetic activity than

S t( ) S0 ∆S
t t0–( )/∆t[ ]exp

1 t t0–( )/∆t[ ]exp+[ ]
-----------------------------------------------------,+=
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plants of the other species. These results corroborate
those obtained in photosynthetic induction measure-
ments in which the superiority of E. urograndis was
less clear due to the low irradiance (8 W/m2) then
employed. The fact that photosynthetic activity in
E.urograndis plants saturates at a higher light intensity
indicates that this is the species that can best adapt to
high irradiance environments.

Photoinhibition

It is known that photoinhibition occurs when the
plant is unable to dissipate excessive light energy and
starts accumulating highly oxidizing free radicals. Pho-
toinhibition is commonly associated with a decrease in
the photosynthetic quantum efficiency; as a conse-
quence, there is a reduction in the production of carbo-
hydrates. The association of high irradiance and low
temperature or other kinds of stress makes the plant
more susceptible to photoinhibition [29].

Figure 3 shows a typical measurement performed to
investigate photoinhibition in eucalyptus plants. These
measurements followed the same procedure adopted in
photosynthetic induction. Once the steady state was
achieved, continuous white light with a high intensity
was added to the monochromatic modulated light in
order to saturate photosynthesis. The conversion effi-
ciency of modulated light to chemical energy then goes
to zero and the oxygen starts to be liberated continu-
ously (Fig. 3, t > 350 s). White light was switched off
after 1000 s, while modulated light was kept on contin-
uously. Figure 3 shows the modulated oxygen evolution
being restored (partially or totally) after t . 1350 s.

After the white light was interrupted, the gas com-
ponent increased slowly up to a steady state, with a
time-constant of about 100 s. This slow recovering
capability to respond to modulated light indicates the
existence of a readaptation mechanism to low light
intensity. This mechanism might be related to the con-
sumption of products accumulated during exposure to
white light, as well as to the recombination of free rad-
icals hence produced. When compared to the photoa-
coustic signal amplitude immediately before the white
light incidence, the amplitude after achieving the new
steady state depends on the white light intensity itself.
For low intensities, this relative photosynthetic rate is
about one (dashed curve in Fig. 3), which means that
photoinhibition was not observed. For high intensi-
ties, however, the ratio is lower than one (solid curve
in Fig. 3), characterizing photoinhibition.

Figure 4 shows the results for the relative photosyn-
thetic rate, as defined above, for the three species and
two temperatures. Each point represents the average
over about five measurements. It is known that low tem-
perature and high irradiance are concurrent stress con-
ditions to produce photoinhibition. No differentiation
was observed between species. From Fig. 4 one can see
that all measured eucalyptus samples were photoinhib-
ACOUSTICAL PHYSICS      Vol. 47      No. 1     2001
ited for irradiances of about 350 W/m2 or higher. This
value corresponds to full sunlight incidence in an open
field. Actually, Long et al. [29] have shown that expo-
sure to full sunlight can result in a slowly reversible
diurnal decrease in PSII efficiency of plants even in
near-optimal conditions. Furthermore, our results are
compatible with values found in the literature for other
plants [8] and for eucalyptus species [30].

Finally, it can be observed that the relative rate is
even higher than one for 100 and 200 W/m2 back-
ground light intensities—values which do not fully sat-
urate photosynthesis. Under such conditions, photoin-
hibition does not take place, and indeed an optimization
of the photosynthetic process is achieved. This result
indicates that, when photosynthesis is induced by irra-
diances below the assimilation capacity of the sample,

Mean values of the adjusted parameters by Eq. (1) S0, ∆S0, t0,
and ∆t for the three eucalyptus species treated at 25 and 10°C
for 24 h before measurement. The average was taken over
about thirty (n = 30) measurements for each species and tem-
perature. The error was determined as the standard sample
deviation σn – 1 divided by n1/2.

Parameter
E. grandis E. urophylla E. urograndis

25°C 10°C 25°C 10°C 25°C 10°C

S0, µV 8 ± 1 7 ± 1 11 ± 1 11 ± 1 10 ± 1 9 ± 1

∆S, µV 31 ± 2 29 ± 2 28 ± 3 26 ± 2 33 ± 2 34 ± 2

t0, s 89 ± 4 64 ± 2 96 ± 3 78 ± 4 88 ± 4 72 ± 3

∆t, s 22 ± 2 18 ± 1 22 ± 1 26 ± 2 21 ± 2 23 ± 2
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Fig. 3. Typical measurement carried out to evaluate the pho-
toinhibition phenomenon (two E. grandis plants maintained
at 25°C before measurements). Photosynthesis is induced
on a dark-adapted plant until the steady state is reached.
Continuous white light is then switched on at t . 350 s (off
at t . 1350 s). Modulated light characteristics: λ = 680 nm,
modulation frequency of 17 Hz, and intensity to 8 W/m2.
White light intensities: 670 W/m2 for the solid curve and
360 W/m2 for the dashed one.
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Fig. 4. Photosynthetic activity after 1000 s of white light irradiation, divided by the photosynthetic activity before the white light
incidence, as a function of the white light intensity. Each point represents the average of about 5 measurements. E. grandis: squares
and solid lines, E. urophylla: circles and dashed lines; E. urograndis: triangles and dotted lines; (a) plants treated at 10°ë for 24 h;
(b) plants maintained at 25°ë. The lines represent the best fit to a logistic S-shaped curve. The photoinhibition threshold can be
observed around 350 W/m2 for all species at both temperatures.
the steady state does not correspond to the maximal
photochemical quantum efficiency.

SUMMARY

This study shows the usefulness of the Open Photo-
acoustic Technique in investigating the photosynthetic
behavior of tree leaves. Eucalyptus leaves showed a
faster photosynthetic induction when compared to that
reported for plants like maize and coffee. The results
obtained reveal that E. urograndis samples presented a
higher photosynthetic activity than plants of the other
eucalyptus species studied; this is supported by their
photosynthesis saturation curves. The higher activity
observed for E. urograndis plants is more pronounced
after adaptation to 10°C.

Comparison between the photosynthetic activity
before and after exposure to high intensities of white
light allowed the determination of the threshold for
photoinhibition, which is of about 350 W/m2 for all
species studied.

This work shows that the Open Photoacoustic Cell
is an adequate technique for the study of photosynthe-
sis in living plant samples. With the OPC, one can per-
form comparative analysis between plants from differ-
ent species, as well as the study of plants submitted to
different stress conditions. Besides the dependence on
the temperature and light treatment of the samples, the
photoacoustic signal may also depend on other experi-
mental parameters such as leaf morphology, gas atmo-
sphere, etc., allowing a wide range of investigations.
Such measurements must be performed in vivo and
in situ, for suspensions of chloroplasts cannot repro-
duce the behavior of living samples and the response of
detached leaves can be distorted by dehydration.
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Abstract—A strong acousto-optic interaction of bounded light and sound beams of a Gaussian shape is consid-
ered for different geometries permitting long-term interaction. The anisotropic spreading of an acoustic beam in
the course of its propagation is taken into account. The spectra of light beams are described by a Gaussian-poly-
nomial expression, and a set of differential equations is derived which allows one to describe various geometries
of acousto-optic diffraction. It is demonstrated that the transmission function of an acousto-optic cell essentially
depends on the ratio between the dimensions of the light and sound beams and on the angle between the propaga-
tion direction of the diffracted beam and that of the incident beam. The degree of spreading of the acoustic beam
noticeably affects the suppression of the transmission side lobes. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

One of interesting problems of acousto-optics is the
collinear diffraction of light by a traveling acoustic
wave, because this kind of propagation creates the con-
ditions for obtaining very large lengths of interaction of
light and sound. A long-term interaction can be
observed in acoustically anisotropic media with a pro-
nounced drift of a sound beam even in the case of a non-
collinear propagation of light and sound when only the
directions of the energy propagation in the incident
beams coincide. Such a geometry of the acousto-optic
interaction is called quasi-collinear. Today, it is widely
used in designing acousto-optic filters. 

The theory of acousto-optic interaction usually
operates with plane sound and light waves [1–3]. As a
rule, a bounded acoustic beam is assumed to have a
plane wavefront and the light wave is considered to be
unbounded. At the same time, experimental acousto-
optic devices (modulators, deflectors, filters, and spec-
trum analyzers) are designed utilizing acoustic and
light beams of finite dimensions with a considerable
inhomogeneity over the cross-section and along the
propagation direction. The propagation of such beams
is connected with changes in the phase distribution in
the plane of the wavefront. 

There is a series of papers devoted to the investiga-
tion of the particular features of weak and strong inter-
actions of wave beams and packets in the case of the
drift and spreading of beams in an anisotropic medium
[4–7]. These effects become significant in the case of a
large interaction length, which is characteristic of col-
linear and quasi-collinear geometries of interaction. In
the case of a collinear interaction, the wave vectors and
the group velocities of all interacting beams coincide.
1063-7710/01/4701- $21.00 © 0022
A high selectivity is attained in this case, but such an
interaction is possible only along certain directions in
crystals, which limits the variety of materials suitable
for designing effective acousto-optic devices. In the
case of the quasi-collinear geometry, which was first
considered by Parygin et al. [8] and Voloshinov [9], the
group velocities of sound and incident light are parallel,
whereas the wave vectors of all interacting waves are
not collinear in the general case. This form of diffrac-
tion can be efficiently realized in many different direc-
tions. However, in this case, a diffracted light beam can
propagate at a noticeable angle to the incident beam. 

This paper is devoted to the theoretical study of the
effect of the indicated particular feature on the charac-
teristics of the collinear and quasi-collinear diffraction
of Gaussian beams with allowance made for their drift
and divergence. 

THEORY OF ACOUSTO-OPTIC INTERACTION 
OF WEAKLY DIVERGENT BEAMS 

Let the region of interaction be a plane layer, 0 ≤ z ≤ l,
of a nonmagnetic transparent dielectric. Here, z is the
coordinate measured along the unit vector of the nor-
mal n. The electric field strength E(R, t) within the
layer is consistent with the equation following from the
Maxwell equations: 

(1)

∇ ×∇ × 1

c
2

----ε0 ∂2

∂t
2

-------+ E r t z, ,( )

=  
1

c
2

---- ∂2

∂t
2

------- ∆ε r t z, ,( )E r t z, ,( )[ ] ,–
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where c is the light velocity in vacuum; ε0 is the permit-
tivity tensor of an unperturbed medium; ∆ε(r, t, z) is its
perturbation in the acoustic field; and r = –n×n×R is the
two-dimensional vector representing the tangential
component of the radius-vector R and, hence, satisfy-
ing the condition n = 0. 

We use the following symbols to denote the opera-
tions with vectors and tensors: ∇ ×a means curl a, a×b
means the vector product of the vectors ‡ and b, and b
is their scalar product, where  is the row vector, as dis-
tinct from the column vector a. The notation Ta
shows that the second-rank tensor T is contracted with
the vectors  and a. Finally, the notation of the type

an means that the n-rank tensor T is contracted with
n vectors a. Such a notation was introduced in the
monograph by Balakshiœ et al. [2]. 

Let us apply the Fourier transform to Eq. (1) with
respect to the variable r: 

(2)

where kτ = –n×n×k is the tangential component of the
wave vector, j is the imaginary unit, and the sign ⊗
means the convolution operation with respect to the
variable kτ (in this case, the functions in square brack-
ets are subjected to the convolution). 

In the case of an anisotropic diffraction, each spec-
tral component of the field is a sum of two plane waves
of different polarizations and frequencies: 

(3)

Here, et and ed are the unit vectors of polarization and
ωt and ωd are the frequencies of the light wave. The
subscripts t and d correspond to transmitted and dif-
fracted light, respectively. 

The dependence of the amplitude of each partial
wave in Eq. (3) on z expresses the essence of the cou-
pled-mode approach. According to this approach, the
spectra of transmitted and diffracted light are assumed
to change slowly in the course of the propagation,
which allows us to omit the second-order derivatives
with respect to z in our calculations. Following this
concept, we assume that the wave vectors kα = kτ + kαzn
(where α = t, d) satisfy the dispersion relation for an

unperturbed medium, so that (–  – c–2 ε0)  =
0. We also assume that, in a perturbed medium, the
polarization vectors change weakly, and this change
can be ignored. Therefore, we will set eα(kτ) equal to

(kτ). The perturbation of the permittivity tensor under
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the effect of the sound field has the form ∆ε(r, t, z) =
–0.5ε0p∇ (A + A*)ε0, where A(r, z, t) is the field of dis-
placements of the sound beam, p is the tensor of elas-
tooptic constants, and A* is a complex-conjugate
expression. 

The spectral transformation for ∆ε(r, t, z) yields 

(4)

Here, ωs = 2πfs, fs is the ultrasonic frequency, and the
superscript “+” has the following meaning: F+(kτ) =
F*(–kτ). 

Taking into account the weak absorption of
sound in the medium, we write the sound spectrum
in an arbitrary plane z in the form A(kτ, z) =
a(kτ)A(kτ)exp((jksz – δ)z), where a is the unit vector of
the polarization of the plane sound wave, ksz is the pro-
jection onto the normal of the wave vector, and δ is the
parameter determining the sound attenuation. 

Both sound and optical fields have narrow spectral
distributions in many problems of acousto-optics. We
introduce the centered spectrum of a sound field of unit

amplitude U(f) = A(ks0τ + f). Here, f = kτ – ks0τ, ks0τ
is the tangential component of the central sound wave
in a crystal, and A0 is the amplitude of the sound shift at
z = 0. Let the coordinate z be normalized to the cell
length l (along the normal to the input plane) so that the
interaction region lies within the interval 0 ≤ z ≤ 1. 

A detailed theory of the acousto-optic interaction of
beams is given in our previous paper [10]. Substituting
Eqs. (3) and (4) into Eq. (2) and omitting the interme-
diate mathematical transformations, we obtain the sys-
tem describing a strong acousto-optic interaction (the
+1 diffraction order): 

(5)

where Γα = exp[–jzl((  – )f + 0.5 wαf)] and α = t, d. 

In Eqs. (5), the acousto-optic mismatch is η = kt0z +
ks0z – kd0z, kd0τ = kt0τ + ks0τ, and ωd = ωt + ωs; the coeffi-
cients qα0 determine the acousto-optic coupling
between the central plane waves. The vectors s and sα
and the matrices w and wα determine the dependences
ksz(f) and kαz(f) in the parabolic approximation: ksz =

f + 0.5 wf and kαz = f + 0.5 wαf. 
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Let the distribution of the displacements at the trans-
ducer surface (z = 0) have the Gaussian form: A(r) =

A0exp , where b is the symmetric real posi-

tively determined 2 × 2 matrix characterizing the
dimensions of the piezoelectric transducer. The spec-
trum of sound of unit amplitude can be written in the
form 

(6)

Let the light amplitude at z = 0 have the distribution
of an arbitrary form with the Gaussian envelope: Ei(r) =

E0E '(r')exp , r' = r – r0. Here, E0 is the

amplitude at the center of the light spot shifted by the
two-dimensional vector r0 from the center of the sound
spot and E '(r') is the function that does not exceed unity
and describes the transverse distribution of the ampli-
tude within the envelope. The matrix bi characterizes
the transverse dimensions of the light spot in the input
plane. 

Let us proceed to the dimensionless variables  =

f and = r. In the following calculations, we
will omit the sign “^.” Then, we obtain A(r) =

A0exp , U(f) = exp . The implication of

such a substitution is the normalization of the charac-
teristic transverse dimensions to the transverse dimen-
sion of the sound spot. 

Let the spectrum of incident radiation at z = 0 be
approximated by the Gaussian-polynomial expression

of the sixth order: Ui(f) = ζiexp –j f – f2 ,

where Bi = bi  is the matrix characterizing the
transverse dimensions of the light beam with respect to

the sound beam, Ai = r0 is the dimensionless shift
of the beams with respect to each other in the plane z =

0, and ζi = Ci + f + f2 + f3 + f4 +

f5 + f6. The complex quantities (C, F, G, H,

L, Π, T)i determine the difference of the spectrum of
the light beam from the Gaussian form. 

1
2
--- r̃b 1– r–

 
 
 

U f( ) 2π( ) 3/2–
A0

1–
A r( ) j f̃ r–{ }exp rd∫=

=  b
1
2
--- 1

2
--- f̃ bf–

 
 
 

.exp

1
2
---r'˜ bi

1– r'–
 
 
 

f̂

b
1
2
---

r̂ b
1
2
---–

1
2
--- r̃r–

 
 
  1

2
--- f̃ f–

 
 
 





Ãi
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Let the spectra of transmitted and diffracted light be
described by analogous expressions: 

(7)

Here, Aα = Aα(z), Bα = Bα(z), and α = t, d are the depen-
dences initially determined in an explicit form. The
parameters (C, F, G, H, L, Π, T)α also vary in the
course of the beam propagation. They will be deter-
mined in solving the simplified set of differential equa-
tions. We note that, in Eq. (7), At = Ai, Bt =Bi, Xt = Yt =

0, Ad = (1 + Bi)–1 Ai + z(Nt – Nd), Xd = (Nt – Nd),

Bd = Bi(1 + Bi)–1 + z2(Nt – Nd)2, and Yd = 2z(Nt – Nd)2.
These are the dependences set initially. The quantities
Nα determine the relative drift of the light beams (see
Appendix). Selecting a specific model of long-term
interaction, we obtain simplified expressions. 

Such a representation of the spectra of transmitted
and diffracted light is based on the following consider-
ations. An incident light beam is usually several times
thinner than a sound beam or is comparable to it in
width. Therefore, in the case of the (quasi-)collinear
interaction, the width of a transmitted light beam must
not change significantly. If the transmitted and dif-
fracted light beams propagate in diverging directions,
the beam size increases and the transmitted light spec-
trum will not be narrowed. Therefore, its change can
be described by the product of the Gaussoid, which
gives the characteristic width of the spectrum, by a
polynomial which describes the accumulated ampli-
tude-phase changes. The width of the diffracted beam
increases, while the spectrum does not expand. If, at
z = 0, the spectra of both beams are similar in shape,
then, in the course of the propagation, the part of the
energy near the spectrum center Ud increases because
of the selective energy transfer. Hence, it is possible to
select several models of the spectrum variation for the
diffracted light. 

The representation of the light spectra in the form of
Eq. (7) makes it possible to take into account additional
information on widening or narrowing of the spectrum
and on the position of the beam center. Therefore, the
dependences Aα(z) and Bα(z) must be set up initially.
On the contrary, the tensors of the polynomial factors
must be determined in the process of solving the sim-
plified set of differential equations. Below, for simplic-
ity, we consider the one-dimensional case. 

Substituting Eqs. (6) and (7) into Eq. (5), expanding
the exponential terms into a series in powers of f, and
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equating the expressions multiplying equal powers of f,
we obtain a set of differential equations for the coeffi-
cients describing the problem of strong acousto-optic
interaction of divergent beams (see Appendix). 

The relative part of the energy transmitted from the
incident light to the diffracted light (with the change of
polarization) is of most interest. According to the
Parseval theorem, this coefficient can be represented in
two ways: 

(8)

where 

DISCUSSION 

The theory given above is suitable for calculating
the diffraction characteristics at various geometries of
acousto-optic interactions. For example, the condition
Nt = Nd = 0 corresponds to a collinear diffraction of
light. In the case of a quasi-collinear geometry, the inci-
dent optical beam is directed along the sound beam,
Nt = 0, and the diffracted light beam can propagate in a
somewhat different direction, Nd ≠ 0. Finally, a geome-
try of the interaction is possible with both transmitted
and diffracted light beams propagating at a certain
angle to the sound column. We conducted calculations
for all these possible geometries of long-term interac-
tion of light and sound. 

The dependences of the intensity of diffracted light
on the Raman–Nath parameter Q = ql/2 were calculated
for various ratios between the radii of the light and
sound beams for the case of collinear diffraction (Nt =
Nd = 0). The values of the relative power of diffracted
light near the maximum of the energy transfer are pre-
sented in Fig. 1. Curve 1 corresponds to the case of
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equal radii of the light and sound beams (r and R,
respectively) at the input of the cell. The maximal level
of the power conversion does not exceed 73% in this
case and is attained at Q = 2.62. The low percentage of
light conversion is explained by the fact that different
parts of the light beam interact with sound whose
amplitude decreases toward the beam edges according
to the Gaussian law. The maximal conversion is deter-
mined in this case not by the instant when the central
part of the light beam is completely converted, but by a
somewhat later time when the lateral components of
light are efficiently diffracted. 

In the case of the radius ratio r/R = 0.3 (Fig. 1,
curve 2), light propagates within a more homogeneous
sound beam and the diffraction efficiency reaches 96%,
while the optimal value of Q decreases down to 2.15.
At r/R = 0.1 (Fig. 1, curve 3), light propagates within an
almost homogeneous sound column, and the power
maximum reaches 100% at Q = 2. A further decrease in
the diameter of the light beam leads to the growth of its
divergence with respect to the divergence of sound. In
this case, only the part of light that propagates near the
axis of the acousto-optic cell can be diffracted. The dif-
fraction efficiency again decreases (Fig. 1, curve 4 cor-
responding to r/R = 0.01). The optimal value of Q
almost does not change in this case. 

Figures 2 and 3 illustrate the case of the quasi-col-
linear geometry. The effect of the divergence of the
sound beam on the shape of the transmission curve of
the acousto-optic cell Pd(Θ), where Θ = ηl/2, is demon-
strated in Fig. 2. In this case, the incident light beam

1

4
2

3

Q3.02.62.21.8
0.7

0.8

0.9

1.0
Pd

Fig. 1. Relative power of the diffracted light Pd near the
maximum of the energy transfer versus the Raman–Nath
parameter Q for different ratios between the radii of the light
and sound beams (r and R, respectively) at the cell input: r/R =
(1) 1, (2) 0.3, (3) 0.1, and (4) 0.01; Nt = Nd = 0; D = 0.2. 
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propagates along the axis of the sound beam and the
diffracted beam at the output is shifted with respect to
the cell center. The divergence of the sound beam is
characterized by the quantity D, which shows to what

–10 –5 0 5 10
0

0.5

1.0
Pd

Θ

–10 –5 0 5 10
0

0.5

1.0

Θ

Pd

Fig. 2. Effect of the sound beam divergence on the shape
of the transmission curve of the acousto-optic cell in the
case of the quasi-collinear geometry of interaction: Nt = 0,
Nd = 0.2; D = 5 (thick curve), 2 (solid curve), and 0.2 (dashed
curve). 

Fig. 3. Effect of the diffraction angle in the case of the quasi-
collinear interaction (Nt = 0; Nd ≠ 0) on the transmission
function of the cell for a weak divergence of the acoustic
beam D = 0.2: Nd = 0.2 (thick curve), 0.2 (dashed curve),
and 1 (solid curve). 
extent the radius of the sound beam at the cell output

Rout exceeds its input radius (Rout = R ). The
dashed curve in Fig. 2 corresponds to the case of a weak
divergence of sound (D = 0.2), and the solid and thick
curves correspond to large values of the parameter D.
One can see that the growth of the sound beam diver-
gence somewhat widens the transmission band of the
cell and increases the level of the side lobes, while the
latter become smoothed and merge with the principal
maximum of the transmission function. Naturally, the
indicated curves were calculated for different values of
the Raman–Nath parameter Q, which sharply increases
with growing D. 

Figure 3 demonstrates the effect of the diffraction
angle on the transmission function of the cell in the case
of the quasi-collinear interaction (Nt = 0, Nd ≠ 0). The
thick, dashed, and solid curves correspond to the shifts
of the diffracted beam at the output by 0.2R, 0.6R, and
R, respectively. All curves were calculated for the same
value of Q. One can notice that an increase in the exit
angle of the diffracted beam leads to a considerable
decrease in the diffraction efficiency. A certain smooth-
ing of the side lobes of the transmission band of the cell
occurs simultaneously. 

Figure 4 corresponds to the case of oblique (Nt ≠ 0,
Nd ≠ 0) propagation of both light beams with respect to
the axis of the sound column. For comparison, the solid
curve in the plot describes the case of collinear geome-
try (Nt = Nd = 0) and the dashed curve corresponds to
the shift of the incident and diffracted beams by R at the

1 D
2

+

Θ

Pd
1.0

0.5

0
–6 –4 –2 0 2 4 6

Fig. 4. Transmission function of the cell in the case of the
oblique (Nt = Nd = 1) propagation of both light beams with
respect to the axis of the sound column for a weak diver-
gence of the acoustic beam D = 0.2 (the dashed curve). The
solid curve corresponds to the collinear geometry of
acousto-optic interaction (Nt = Nd = 0). 
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cell output. This curve testifies to an approximately
twofold suppression of the side lobes in the case of such
a diffraction geometry. 

CONCLUSION 

The study described above has shown that, in the
case of the collinear geometry of interaction, the ratio
between the radii of the light and sound beams consid-
erably affects the efficiency of diffraction. However, its
influence on the form of the transmission function of
the acousto-optic cell and on the level of the side lobes
is almost unobservable. On the contrary, the divergence
of the acoustic beam noticeably affects the width of the
transmission function and the degree of suppression of
the side lobes, which leads to a considerable distortion
of the transmission function of the cell. At the same time,
in the case of quasi-collinear geometry, an increase in the
angle with which the diffracted light beam exits from the
sound column only reduces the diffraction efficiency. An
oblique propagation of light with respect to the axis of a
Gaussian acoustic beam can reduce the level of the side
lobes of the transmission function. 

APPENDIX

Substituting Eqs. (6) and (7) into Eq. (5), expanding
the exponential factors in powers of f, and equating the
expressions multiplying equal powers of f, we obtain a
set of differential equations: 
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Here, Xα =  and Yα =  are the initially deter-

mined functions; 

,

the sign “+” corresponds to α = t, and the sign “–” cor-
responds to α = d. 

The quantities involved in the last expression are
determined by the recurrence formula 

the process starting from the value  = 1. Additionally,

it is necessary to set  = 0 for k < p and for k, p < 0. 
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In the equations, Q = l, Θ = ηl, and ∆ =

δl are the dimensionless mismatch, acousto-optic cou-
pling, and sound attenuation; D = b–1wl is the real
parameter describing the spreading of the sound beam
within the cell length; the quantities Kα = b–1wαl repre-
sent the measure of the spreading of light packets; and

Nα = (sα – s)l is the dimensionless drift of light
beams with respect to the sound beam within the inter-
action length (the drift is expressed in parts of the sound
beam radius). 

The given set of equations should be solved with
the initial conditions (at z = 0): (C, F, G, H, L, Π, T)t =
(C, F, G, H, L, Π, T)i, (C, F, G, H, L, Π, T)d = 0. By set-
ting up the nonzero quantities (F, G, H, L, Π, T)i, it is
possible in the general case to describe various forms of
the spectrum of incident light. 
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Abstract—The matched nonreciprocity method recently developed for acoustic diagnostics of ocean currents
is based on matching the nonreciprocity of a sound field propagating along the current and against it. In this
paper, the possibilities for linearizing this method are studied on the basis of numerical experiments. In contrast
to the strict limitations of the linear approach in the tomography of the field of sound velocity by the matched
field methods, in the method of matched nonreciprocity, the linearity is provided by the smallness of the Mach
number M of currents and by the fact that the terms quadratic in M are partially suppressed in the course of the
nonreciprocity calculation. The linear approach makes it possible to speed up the procedure of calculation
(including calculations in higher dimensional parametric spaces) and to efficiently use nonlinear procedures for
the localization of the main minimum. © 2001 MAIK “Nauka/Interperiodica”.
The new approach to acoustic tomography of ocean
currents, which is called the method of matched non-
reciprocity, has received wide acceptance [1–4]. It is
based on matching the experimentally measured and
theoretically predicted nonreciprocities of acoustic
fields for sound propagation in opposite directions. In
the cited papers [2–4], the efficiency of various value
functions whose minimization gives the desired profile
of the current was investigated. In particular, good
results were obtained in the case of matching the non-
reciprocity of the phase of the sound field, which leads
to the value functions of the form

(1)

(2)

Here, the angular brackets mean averaging, e.g., 〈A〉  =
J–1 , ∆ϑ j(q) = ϑej – ϑ tj(q), ϑej = arg[ ],

and ϑ tj = arg[ ] are the phase nonreciprocities
between the sound fields obtained at the jth element of
the array (and/or the frequency in the case of reception
of a wide-band signal) for the direct P+ and opposite P–

propagation of sound; the index e corresponds to the
measured field; the index t corresponds to the calcu-
lated field; the normalization coefficient is Aj =

| |; and the vector q parametrizes the recon-
structed field of currents.

This paper investigates the possibilities for lineariz-
ing the method of matched nonreciprocities on the
basis of numerical experiments. It should be noted that
attempts to linearize the conventional method of sound

Fc q( ) 2 1 A ∆ϑ q( )cos〈 〉 2[–{=

– A ∆ϑ q( )sin〈 〉 2 ] / A〈 〉 2 } ,

Fa q( ) A ϑ e ϑ t q( )–[ ] 2〈 〉 / Aπ2( ).=

A jj 1=
J∑ Pej

+ Pej
–*

Ptj
+ Ptj

–*

Pej
+ Pej

–*
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field matching in the tomography of the field of sound
velocity were made more than once (e.g., in [5]). How-
ever, as it was shown, in this case linearization is possi-
ble only for sufficiently small variations of the sound
velocity (∆c < 1 m/s). Therefore, in many practically
important cases, exact nonlinear calculations are neces-
sary. There are a lot of possibilities for linearization in
the case of the reconstruction of the field of currents by
the method of matched nonreciprocity where nonlin-
earity is provided by the smallness of the Mach num-
ber M of currents and by the fact that the terms qua-
dratic in M are partially suppressed in the course of the
nonreciprocity calculation.

In the linear approximation in the vector q – q0 (q0
is a certain selected point), the nonreciprocity of the
calculated phase has the form

. (3)

Substitution of this expression into Eq. (2), for exam-
ple, leads to a value function quadratic in q – q0:

(4)

In the case of the value function given by Eq. (1), such
an expression can be obtained by additional lineariza-
tion of the trigonometric functions involved in this
value function. As a result, the value function becomes
quadratic and completely analogous to the one obtained
in Munk’s linear tomographic scheme, where a linear-
ized nonreciprocity of the phase of the total field is used
instead of times of propagation along rays. This fact
noticeably speeds up the procedure of inversion and,
according to the developed technique [6], allows one to
estimate its error, attainable precision, etc.

ϑ t q( ) ϑ t q0( ) ∇ϑ t q0( ) q q0–( )+=

Fl q( ) 〈 A ϑ e ϑ t q0( )–[=

– ∇ϑ t q0( ) q q0–( ) ]2〉 / A〈 〉π2( ).
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However, in our case the situation is complicated by
the fact that, in contrast to variations in the signal prop-
agation times used in Munk’s tomography and mono-
tonic with respect to the variations of the sound veloc-
ity, the values of the nonreciprocity of the phase of the
sound field ∆ϑ j(q) from Eqs. (1) and (2) are determined
in the interval (–π, π). This leads to the appearance of
additional minimums in the function Fa(q), which form
a periodic structure in the q-space, primarily along the
barotropic component of the current. Equating the
phase difference of the sound field propagating along
and against the current to 2π, we obtain the estimate of
the variation of the characteristic current’s velocity,
which is necessary for proceeding to the next minimum
of the function Fa(q):

(5)

where c0 is the characteristic sound velocity, f is the
sound frequency, and R is the distance between emit-
ting–receiving systems. For example, for the conditions
of the Strait of Gibraltar at R = 21.18 km and frequen-
cies f = 100, 500, and 1000 Hz, this estimate yields the
values ∆um = 0.5, 0.1, and 0.05 m/s, respectively.
Hence, a complete linearization of the function Fa(q)
leading to its quadratic dependence on the variations of
(q – q0) is possible in the region where the correspond-
ing variations of the characteristic velocity of the cur-
rent do not exceed ∆um/2. Moreover, in contrast to the
linear scheme of Munk’s tomography by the arrival
times of signals, everywhere in this region the exact
function Fa(q) is not quadratic, because it has inflection
points close to its maximum. This leads to noncoinci-
dence of the minimum of the corresponding quadratic
function with the true minimum if the initial point q0 is
set after an inflection point. Therefore, an adequate

∆um c0
2 2 fR( ) 1– ,=
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Fig. 1. Typical profiles of (a) the current and (b) the sound
velocity for the conditions of the 1996 experiment in the
Strait of Gibraltar. Solid lines correspond to measurements
and dashed lines correspond to (a) the approximation of the
current by empirical orthogonal functions and (b) the effec-
tive profiles of the sound velocity.

z, m
 reconstruction of velocity of the current, which is
obtained by inversion of a system of algebraic equa-
tions as in Munk’s scheme, is possible in the case of the
determination of the point of linearization within the
limits of an even smaller region of the q-space. In this
case it is necessary to use the iteration procedure in
such inversions with the calculation of a new linear
approximation after each iteration.

A possible way of calculating Fl(q) consists in sub-
stituting the calculated values of nonreciprocity of the
phase ϑ t(q) from Eq. (3) into Eq. (4) with preliminarily

recalculating them to (q) = ϑ t(q) ± 2nπ lying
within the interval (–π, π):

(6)

We will call this approach the calculation of the linear
limited phase. In this case, the value function becomes
nonlinear but easily computable. We note that a similar
result is obtained with the use of the value function

(7)

where linear Eq. (3) is substituted into ∆ϑ(q).
We also note that the function Fc(q) is strongly

degenerate with respect to the barotropic component of
the current. This effect is caused by the invariance of
the function Fc(q) with respect to the addition of a con-
stant shift to the value of ∆ϑ j(q) and by an approxi-
mately constant phase shift of all sound modes in the
case when the velocity of the current changes by a con-
stant value.

Numerical studies were conducted in the case of
matching of the fields P+ and P– received by vertical
arrays and for various hydrological conditions typical
of various regions of the open ocean and straits where
the velocities of currents may reach relatively large val-
ues, including one of the routes (T1–T2 with the length
21.18 km) of the 1996 experiment in the Strait of
Gibraltar [7] (see also Fig. 1 and the Web site
http://atocdb.ucsd.edu.gibraltar). Solid lines in Fig. 1
show typical measured profiles of (a) the current and
(b) the sound velocity in this experiment. The current’s
profile ue(z) was approximated by empirical orthogonal
functions: the barotropic function ue1(z) = a1 = const
and the baroclinic function ue2(z) = a2{exp[–(z/z0)2] –
a3}, where the constants a1 were determined from the

orthonormalization conditions (z) uen(z)dz = Hδmn,

z0 = 60 m, and H is the depth of the approximation
interval (in the case under study, the oceanic depth was
equal to 890 m). The integrals were calculated exactly
for the piecewise-linear interpolation of the empirical
orthogonal functions by 27 points of their setting; the
effective profiles of the sound velocity corresponded to
sound radiation along and against the current. Vertical
arrays (85 hydrophones) were positioned at the depth
of 10 to 850 m.
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Fig. 2. Calculation of the functions Fa(q) for the frequencies (a) 400 and (b) 1150 Hz. Solid lines correspond to the exact calculation,
and other lines correspond to partial linearization for various points of linearization q0: long dashes are for q0 = qe and short ones
are for q0 = 0.
An adiabatic mode code was used for the computa-
tion of sound fields. The velocities of the current were
taken into account using the approximation of the
effective field of the sound velocity ceff = c + u. We note
that the layered-homogeneous medium model used for
calculating the eigenvalues of sound modes ξm allows
one to calculate exactly (by analytical formulas) both
ξm and their derivatives with respect to the components
of the two-dimensional vector q, as well as the corre-
sponding gradient of mode phases at the reception
points: ∇ϕ m(q). Now, we calculate these expressions at
a certain point q0 and form linear approximations for
the phases of the sound modes:

(8)

Then, we substitute the latter into the expressions for

the sound fields (q), (q) through the sum of the
sound modes and calculate the functions Fc(q) and
Fa(q) (Eqs. (1) and (2)). As a result, we obtain the so-
called partial linearization of the matched nonreciproc-
ity method. In this case, the functions Fc(q) and Fa(q)
stay nonlinear in q, but the time for their calculation is
considerably reduced (ten times or more). The domains
of validity of such a linearization depending on the
sound frequency were investigated. It turned out that, at
the frequencies f ≈ 100 Hz and lower, independently of
the choice of the vector q0, the partial linearization
describes with high accuracy both the positions of all
minimums in the q-space (with the error ∆ue ≤ 0.03 m/s)
and the values of the functions Fc(q) and Fa(q) up to the
variations of (q – q0) corresponding to the maximal val-
ues of the real velocities of the currents (∆u ≤ 2 m/s). It
is natural that errors in the linear expression (3) for the
phase nonreciprocity increase with the increase in dis-
tance and frequency, and the domain of validity of this
expression becomes narrower. For example, for the
conditions of the Strait of Gibraltar at the distance
21.18 km, the current’s velocities corresponding to
admissible variations of (q – q0) must not exceed
1 m/s at the frequency 250 Hz, 0.6 m/s at the fre-

ϕm q( ) ϕm q0( ) ∇ ϕm q0( ) q q0–( ).+=

Ptj
+ Ptj
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quency 500 Hz, and 0.4 m/s at the frequency 1 kHz.
Similar results were obtained for the case of calculation
of the value function (6) (the calculation of the linear
limited phase) when the values of linear phase (3) were
normalized to the interval (–π, π).

Figure 2 shows the comparison of such calculations
of the function Fa(q) for the frequencies (a) 400 and
(b) 1150 Hz as an example. In the q-space, sections are
made through the points q = 0 and q0 = 2qe in such way
that all the current’s profiles are similar to u(qe) (the
dashed line in Fig. 1a): u(q) = su(qe), 0 ≤ s ≤ 2. The
argument of ∆u in the figure is equal to the maximal
deviation of the current’s velocity from u(qe): ∆u =
maxu(q) – maxu(qe) = (s – 1)u(qe)|z = 0. Therefore, the
vector qe = (–0.21017, 0.30611) corresponds to the
point ∆u = 0; the lines originate from the left (q = 0, no
current). The calculation in the approximation of the
linear limited phase was close to the corresponding cal-
culation with partial linearization, and it is not given in
Fig. 2. One can easily see that the distance between the
minimums of the function Fa(q) corresponds to esti-
mate (5) given above (in this case, it is necessary to take
into account that the barotropic component of the cur-
rent is approximately four times less than the maximal
variation in the current’s profile, which is used as the
argument in Fig. 2). We should also note that the inter-
val of validity of the approximation of partial lineariza-
tion decreases as the frequency grows, and, therefore,
the interval of validity for the linear limited phase also
decreases. Thus, it follows from the behavior of the
dashed lines corresponding to the linearization point
q0 = qe (∆u = 0) that, at the frequency 400 Hz, the max-
imal admissible variations of the current’s profile are
∆ulm ≈ 1 m/s and, at the frequency f = 1150 Hz, ∆ulm ≈
0.4 m/s. This is confirmed also by the behavior of the
lines of partial linearization corresponding to q0 = 0 in
Fig. 2a, which are noticeably different from the exact
calculation. At the same time, analogous calculations
corresponding to q0 = q1 (at the frequency 400 Hz, q1 =
(–0.103, 0.150) and ∆u = 0.64 m/s and, at 1150 Hz,
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Fig. 3. Pattern of convergence of the iteration procedure for two starting points, 1 and 2.
q1 = (–0.148, 0.215) and ∆u = 0.37 m/s) almost com-
pletely coincide with the exact calculation.

Thus, a rough estimate of the admissible maximal
variation of the current’s profile with the use of the
approximations of partial linearization and the linear
limited phase for the conditions of the 1996 experiment
in the Strait of Gibraltar has the form

(9)

The procedure of complete linearization was also
simulated numerically for the conditions of the Strait of
Gibraltar. The results of such a simulation fully agree
with the estimates given above. In the case of selecting
the linearization point q0 in the vicinity of the bound-
aries of the region influenced by the main minimum of
the functions Fa(q) and Fc(q), from two to seven itera-
tions were necessary (depending on the selection of the
initial point q0) for the convergence to the exact solu-
tion. Recall that the ith iteration consists of two steps:
(i) calculation of the coefficients of the quadratic target
function for the initial point qi; (ii) determination of the
next point qi + 1 minimizing this function. The exact cal-
culation of the two-dimensional function Fa(q) at a fre-
quency of 400 Hz is shown in Fig. 3. In the case of set-
ting the initial (starting) point “1,” the determination of
the exact value qe requires six iterations; for the point
“2,” three iterations are necessary. The process of con-
vergence and the position of the intermediate points qi
are also shown in Fig. 3.

The influence of errors in setting both the field of the
sound velocity in the medium and the parameters of
bottom sediments on the result of the reconstruction of
the field of currents was also studied. It was found that,
although the values of the functions Fc(q) and Ea(q) at

∆ulm m/s[ ] 400/ f  Hz[ ] .≈
the points of the main minimum increased, the position
of the minimum in the q-space remained close to the
true one with the rms errors in the field of the sound
velocity in water less than 0.5 m/s, and in sediments in
the shallow sea conditions, up to 10 m/s.

A similar situation was observed at higher frequen-
cies, but, in this case, according to estimate (5), the
region of influence of the main maximum rapidly
decreased, which made it difficult to perform this pro-
cedure in practice. Naturally, it is always possible to
complete the linearization in practice in the process of
a relatively frequent monitoring of the variations of the
current ∆u(z). Namely, it is necessary to measure u0(z)
at the beginning of the experiment; select its parameters
as the initial point; and then, at the time intervals when
it is a priori known that ∆u(z) remains within the region
of influence of the main minimum of the functions
Fc(q) and Fa(q), reconstruct a new profile um(z), take it
as the initial one, and so on.

In the cases when such a procedure is impossible for
some reasons, e.g., at high frequencies at which,
according to estimate (5), the region of influence of the
main minimum is about several centimeters per second
(i.e., lies within the errors of the current’s parameter
measurement), it is apparently necessary to develop
more complex procedures of nonlinear inversion. An
additional difficulty arises here, which is connected
with the presence of a large number of equivalent min-
imums of the function Fa(q) and the independence of
Fc(q) from the barotropic component, which follows,
e.g., from the form of the two-dimensional value func-
tions Fa(q) and Fc(q) in Fig. 4. As a result, the determi-
nation of the main minimum qe = (–0.21017, 0.30611)
becomes impossible. The so-called multifrequency ver-
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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Fig. 4. Form of the value functions Fa(q) and Fc(q): (a) exact calculation of Fa(q) at a frequency of 1150 Hz, (b) exact calculation
of Fa(q) at a frequency of 1750 Hz, (c) calculation of Fa(q) at a frequency of 1150 Hz in the approximation of partial linearization,
and (d) exact calculation of Fc(q) at a frequency of 1750 Hz.
sion of the method of matched nonreciprocity for the
reception by vertical arrays was proposed by Godin and
Mikhin [3, 4] in order to overcome this difficulty. Since
the main minimum of the value functions Fa(q) and
Fc(q) does not move with the change of frequency
while other minimums change their positions, one can
expect that even a simple summation of such functions
at different frequencies will lead to a resultant value
function that is more acceptable for the inversion. If the
main goal of such a procedure is the estimation of the
position of the main minimum, one can expect that
approximate calculations using partial linearization or
linear limited phase will also lead to the desired result.
This follows, e.g., from the comparison of Figs. 4a, 4c,
where the general behavior of the functions is the same.

From the comparison of the dependences Fa(q) at
different frequencies (Figs. 4a, 4b), it follows that their
general structure differs basically by the period in the
barotropic component q1. Therefore, one can expect a
successful localization of the main minimum in the
case of utilization of the following scheme consider-
ably reducing the time of calculation. Calculating the
spectrum S(k; q2) of the function Fa(q1) for each fixed
q2, shifting it by ∆k = k0n – k0, and performing the
inverse Fourier transformation, we obtain the estimate
of the dependence Fa(q) at a shifted frequency. In fact,
this procedure is equivalent to calculating the envelope
of the function Fa(q1) and filling it with a higher fre-
quency. However, it is necessary to take into account
that, in the case of such a shift, the higher harmonics of
the fundamental component k0 of the spectrum of the
function Fa(q1) as a rule do not pass into the corre-
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
sponding harmonics of the shifted spectrum and distort
the result. Therefore, it is necessary to limit the spec-
trum making it sufficiently narrow-band. Moreover, the
procedure of shifting the spectrum, which preserves the
position of the main minimum qe1 of the function
Fa(q1), needs a corresponding change of phases of the
spectral components by ∆ϕ = (k0n – k0)qe1, which can be
easily accomplished when the position of the main
minimum is known, e.g., in the case of numerical sim-
ulation, but may be impossible if one works with mea-
sured signals.

All such approaches were simulated using the
experimental conditions of 1996 in the Strait of Gibral-
tar as an example. The spectrum of the sound signal
emitted in this experiment was within the frequency
range 1136.36–3409.09 Hz. The frequency band 1150–
1750 Hz within this range was selected for simulation.
The studies demonstrated that all these approaches give
value functions quite acceptable for estimating the
position of the main minimum. Good results were
obtained already with the averaging of five functions
uniformly distributed within the band (1150–1750 Hz).
Their further increase provided only smoothing of the
resultant function beyond the region of the main mini-
mum and two neighboring ones. The examples of such
calculations are given in Fig. 5. We note a rather high
degree of coincidence of the resultant functions
obtained by approximate and exact calculations.

Thus, the conducted study demonstrates that partial
linearization and the linear limited phase adequately
describe the effect of the field of the current’s velocities
on the functions Fc(q) and Fa(q). This makes it possible
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Fig. 5. Results of the averaging procedure for the value functions at different frequencies: (a) averaging of 21 functions Fa(q),
19 of which are obtained by way of shifting and linearly interpolating the spectra of two exact functions at the frequencies 1150
and 1750 Hz (Figs. 4a, 4b); (b) analogous result for initial functions in the approximation of partial linearization (Fig. 4c); (c) sum
of the function shown in Fig. 5a and the function Fc(q) at a frequency of 1750 Hz (Fig. 4d); and (d) analogous result for the
function shown in Fig. 5b.
to speed up the procedure of their calculation (includ-
ing the calculation in the higher-dimensional paramet-
ric spaces) and efficiently use nonlinear procedures for
the localization of the main maximum. After that, it is
possible to determine more precisely the desired solu-
tion by using a complete linearization and solving a lin-
ear problem of inversion, as well as to obtain the esti-
mate of the inversion error simultaneously with its
result, the answer to the question about the attainable
precision of measurements of currents with the help of
the method of matched nonreciprocity, etc.
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Abstract—The question concerning the uniqueness of the solution to the problem of the acoustic diffraction
by an immersed and isolated thin infinite plate with a finite scatterer is studied. It is shown that, to provide the
uniqueness of the solution, the conditions at the scatterer must lead to an energy inequality for a source-free
field, which determines the absence of the energy-carrying field components at infinity. A formula that gener-
alizes the Sommerfeld formula is obtained and is used to prove the uniqueness of the solution to the problem
of diffraction by a plate immersed in an acoustic medium. For the problem of diffraction of a flexural wave by
an irregularity of the plate, the uniqueness theorem is proved only for the case of a fixed or hinged edge. When
boundary conditions of a general form are imposed on the scatterer in an isolated plate, the uniqueness of the
solution is generally lost, which is also corroborated by an example. © 2001 MAIK “Nauka/Interperiodica”.
The boundary-value problems with generalized
impedance conditions occur in the mechanics of thin
shells, in hydroacoustics, and in the problems of elec-
tromagnetic wave diffraction by bodies with dielectric
coatings. The geometry of the studied regions becomes
increasingly complex, and, unlike the first works [1–4],
in which explicit formulas for the diffracted field were
obtained, the problems are reduced to integral equa-
tions or infinite sets of algebraic equations [5–11]. For
such diffraction problems, it is necessary to verify
whether they are well-posed problems. This is usually
accomplished by calculating the outward energy flux.
In the presence of infinite baffles with generalized
boundary conditions imposed on them, one should con-
sider not only the flux transferred in the medium, but
also the energy flux carried by the waves concentrated
near the baffle. Note that, in this case, the variables in
the spherical coordinates cannot be separated in the far-
field region and the classical proof of uniqueness [12]
cannot be applied. Therefore, the following technique
is used [13]. Consider an expanding region containing
the scatterer and write Green’s formula for the solution.
The conditions set at the boundary of the scatterer
cause integrals along the boundary to be zero. Then, the
integral over an arc (in the two-dimensional case) or
over a hemisphere (in the three-dimensional case) of a
large radius must also be zero, which means that the
energy flux and the radiation pattern of the scattered
field are zero. In particular, when the impedance
boundary conditions at the surface contain tangential
derivatives, it is necessary to impose additional, so-
called contact, conditions at the salient points or lines
of the boundary or at the points or lines where the cur-
vature of the boundary or the coefficients in the gener-
1063-7710/01/4701- $21.00 © 20003
alized impedance conditions have a jump. These condi-
tions must comply with the differential operator of the
generalized impedance. Thus, a problem is considered
well-posed if it is stated so that, in the absence of
sources, the radiation pattern is zero and the number of
conditions is minimal.

In a number of problems, the condition that the scat-
tering pattern be zero provides uniqueness of the solu-
tion. This was first was proved for the problems that
allow an explicit solution [13] or from the analysis of
the Fredholm integral equation, to which the problem
was reduced [14]. In a more general case, the question
concerning the uniqueness of the two-dimensional
boundary-value contact acoustic problems in the pres-
ence of an infinite plate was studied in [15] with the
help of the Sommerfeld formula (see [17]), which
expresses the solution to the Helmholtz equation in
terms of an analytical extension of the radiation pattern.
A similar analysis for the three-dimensional case is
given below.

The condition that the far-field radiation pattern be
zero does not entail the uniqueness of the solution to the
diffraction problem for flexural waves in an isolated
plate, because, for the Kirchhoff operator, a formula
similar to the Sommerfeld formula does not exist.
Below, we consider particular cases when the unique-
ness can be established; we also consider an example
of the formulation of a problem with a nonunique
solution.

Consider acoustic vibrations in a liquid bounded by
an infinite elastic plate (at z = 0) in the presence of a
compact scatterer Ω . Let the wave process be station-
001 MAIK “Nauka/Interperiodica”
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ary and have the circular frequency ω. The pressure in
the liquid is described by the Helmholtz equation

(1)

Here, ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the three-dimen-
sional Laplacian and c is the velocity of sound. Vibra-
tions of a thin plate obey the Kirchhoff theory

(2)

Here, ∆⊥  = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional
Laplacian and D, ρ0, and h are the parameters of the

plate: the flexural rigidity (D = Eh3(1 – σ2)–1, where

E is the Young modulus and σ is the Poisson ratio), the
density, and the thickness. The function ξ(x, y)
describes the flexural displacements and is related to
the acoustic pressure through the continuity condition

(3)

where ρ is the density of the acoustic medium.
We introduce the wave numbers of the acoustic

waves k = ω/c, the flexural waves in the isolated plate
k0 = (ρ0hω2/D)1/4, and the flexural waves for a plate in
the medium κ; i.e., κ is a positive root of the dispersion
equation

(4)

The radiation condition is imposed, which requires
that the scattered field Us cannot carry the energy from
infinity. This condition can be represented in the form
of two asymptotic expansions:

(5)

(6)

∆U x y z, ,( ) ω2

c2
------U x y z, ,( )+ 0, z 0.>=

D∆⊥
2 ρ0hω2–( )ξ x y,( ) U x y 0, ,( )+ 0.=

1
12
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ξ x y,( ) 1

ρω2
---------∂U x y 0, ,( )

∂z
---------------------------,=

κ4 k0
4–( ) κ2 k2–

ρω2

D
---------.=

Us 2π
kr
------exp ikr iπ/2–[ ]Ψ ϕ ϑ,( ), r +∞,∼

Us 2π
κr⊥
--------exp iκr⊥ iπ/4–[ ]Ψ⊥ ϕ( )exp κ2 k2– z–[ ] ,∼

r⊥           +∞.
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Fig. 1. Geometry of the problem.
Here, r =  and r⊥  =  are the radii
in the spherical and cylindrical coordinate systems,
respectively, and ϑ  =  and ϕ are the azi-
muth and polar angles. Asymptotics (5) describes a
diverging spherical wave with the pattern Ψ(ϕ, ϑ) prop-
agating from the irregularity. It is valid in the cone ϑ  ≥
ϑ0, where ϑ0 is some constant angle, ϑ0 > 0. Asymptot-
ics (6) describes a surface wave and is valid near the plate
for a limited z. As a particular case, asymptotics (6)
yields the asymptotics for the flexural displacements of
the plate

(7)

which serves as the radiation condition in the problems
on the vibrations of an isolated plate.

The scattering obstacle Ω may be of an arbitrary
nature and may consist of one or several elastic or rigid
bodies fixed on the plate or positioned separately (see
Fig. 1). At the boundary of the region Ω , the boundary
conditions (for example, the Dirichlet or Neumann con-
ditions for a perfectly rigid or perfectly elastic body Ω ,
respectively) are imposed. If the body is fixed on the
plate, contact conditions are imposed at the boundary
∂Ω⊥  of the contact region Ω⊥ .

The scatterer Ω is assumed to be passive; i.e., it does
not generate fields. The zero value of the energy gener-
ated by the scatterer is checked on the basis of the
boundary and contact conditions, which leads to the
inequality (derived below)

(8)

Here and below, the overbar symbol means complex
conjugation, n is the inner normal to the surface ∂Ω of
the scattering obstacle, ∂Ω⊥  is the boundary of the
region where the obstacle is fixed to the plate (Fig. 1),
and ν is the inner normal to this boundary in the plane
of the plate. The quantities f (the shearing force) and m
(the bending moment) are represented as [18]

(9)

(10)

Here, s and K(s) are the arc length of the contour ∂Ω⊥
and its curvature. The summation in formula (8) is per-

x2 y2 z2+ + x2 y2+

r⊥ /r( )arccos
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formed over all corner points of ∂Ω⊥ , and the quantities
Fi have the meaning of the “corner” forces [19]

The “corner” forces have the form of a jump at the
salient point of the boundary, s' and ν' referring to the
part of the boundary before the salient point and s'' and
ν'', to the part after this point.

We will not consider particular boundary and con-
tact conditions; in the following analysis, it will be suf-
ficient to assume that condition (8) is satisfied.

Condition (8) provides that the energy-carrying field
components are zero in the source-free problem; i.e., if
the total field satisfies asymptotic formulas (5) and (6),
the radiation patterns Ψ(ϑ , ϕ) and Ψ⊥ (ϕ) are identically
zero on the hemisphere and the circle, respectively. To
verify this statement, we use Green’s formula for the
functions U and  in the region bounded by the scat-
terer, the plate, and a sphere of infinite radius R. We
assume that R tends to infinity and use asymptotics (5)
and (6). After separating the imaginary part, we derive

(11)

Hence, since κ > max(k, k0), we obtain

Ψ(ϑ , ϕ) ≡ 0, ϑ  ∈  [0, π/2], ϕ ∈  [0, 2π],

Ψ⊥ (ϕ) ≡ 0, ϕ ∈  [0, 2π].

Note that, for the field scattered from the irregularity,
the left-hand side of inequality (11) is the scattering
cross section, i.e., the scattered energy normalized by
the energy per unit area of the wavefront of the incident
plane wave [20].

A similar analysis for the two-dimensional case can
be found in [14, 15].

Below, we will need the following two functions.
One of them, Green’s function for harmonic vibrations

of the acoustic medium in the region  = {–∞ < x <
+∞, –∞ < y < +∞, z > 0} bounded by the elastic plate
{z = 0}. This function is known (see, for example,
[16]); it can be constructed by the Fourier method

(12)

F D 1 σ–( )=

× ∂2ξ
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Here,

The other function is the surface Green function for
the same problem, which describes the field of a point
source located on the plate:

(13)

The integration in Eqs. (12) and (13) is performed
according to the ultimate absorption principle.

By calculating the integrals at large r with the help
of the saddle-point technique, one can easily verify that
the functions G(r, r0) and g(r, x0, y0) satisfy asymptot-
ics (5) and (6) and have the patterns

,

The surface wave patterns  and  are obtained
from the patterns Ψ(G) and Ψ(g) as

(14)

A similar formula for two-dimensional problems was
derived in [21].

We change the integration variables λ = kcosϑ cosϕ
and µ = kcosϑ sinϕ in Eq. (12) so that γ = –iksinϑ .
Using the explicit expression for the pattern Ψ(G), one
can easily show that the following formula is valid for
z > z0:

(15)
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Two versions of the integration path are possible here:
(i) the integration with respect to ϑ  is performed along
Sommerfeld’s path (π – i∞, +i∞) bypassing the point
ϑ  = π – ϑ* on the left and the point ϑ  = ϑ* on the right
(the same path as in the two-dimensional case [15], see
Fig. 2), and the integration with respect to ϕ is per-
formed within [0, π]; (ii) the integration with respect
to ϑ  is performed along a half of Sommerfeld’s path
(π/2, +i∞) bypassing the point ϑ  = ϑ* on the right,
and the integration with respect to ϕ is performed
within [0, 2π].

Now, we derive a similar formula for the solution U
to the boundary-value problem. We select a smooth sur-
face Σ supported by a smooth contour Γ on the plate, so
that the whole region Ω is within Σ. We consider
Green’s formula for the functions G and U in the region
bounded by the plate, the surface Σ, and a hemisphere
of large radius R. The relationship between the func-
tions G and g, g = –∂G/dz0|z = 0, and condition (3) yields
the identity

(16)

Identity (16) allows one to calculate the field U at
any point outside the surface Σ if the functions U,
∂U/∂n, ξ, ∂ξ/∂ν, m, and f are known at the surface Σ and
at the contour Γ. In particular, when r0 tends to infinity,

U r0( ) U r( )
∂G r0 r,( )
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---------------G r0 r,( )– 
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+ ξ r⊥( ) f g r0 r⊥,( ) f r⊥( )g r0 r⊥,( ) ---–

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∫

+
∂ξ r⊥( )

∂ν
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∂ν

------------------------
 d,.–

0–π/2 π/2 π

π – ϑ*

ϑ*

Imϑ

Reϑ

Fig. 2. Modified Sommerfeld’s path.
identity (16) yields the formula that expresses the pat-
tern Ψ(ϑ , ϕ) in terms of Ψ(G) and Ψ(g):

(17)

Here, f and m are the force and moment operators from
formulas (9) and (10). In particular, Eq. (17) determines
the analytical properties of the function Ψ. Since the
integration is performed over a finite region, these
properties are inherited from the functions Ψ(G) and
Ψ(g); i.e., the function Ψ is a meromorphic function of
ϑ  and has poles at the points that correspond to the
solutions to dispersion equation (4). The pole at ϑ  = ϑ*
corresponds to the wave propagating along the plate.
The patterns Ψ and Ψ⊥  comply with Eq. (14).

Using Eq. (15) for Green’s functions G and g and
Eq. (17), one can easily obtain a formula for U that is
similar to Eq. (15):

(18)

In this formula, the integration paths are the same as in
Eq. (15). Formula (18) is valid at a certain distance
from the plate, for z > z* = maxΣz. When this condition
is met, the integral with respect to ϑ  converges expo-
nentially in the semi-infinite bands that are free from
shading in Fig. 2.

Note that formula (18) is known for the problems of
diffraction by finite obstacles [22]. It can be used to
construct a solution by the method of the pattern inte-
gral equations [22, 23].

Let us assume that two solutions, V and W, exist for
the boundary-value problem determined by Eqs. (1)–(3)
with a given source of the field (including the plane
wave). Then, the difference U = V – W is a solution to
the source-free boundary-value problem. As shown
above, condition (8) ensures that the patterns Ψ and Ψ⊥
and the field U are zero at real observation angles. Since
Ψ is analytical with respect to ϑ , Ψ is equal to zero
throughout the entire complex plane ϑ  and, in particu-
lar, on the integration path in Eq. (18) (see Fig. 2). For-
mula (18) thus shows that the function U is zero for z >
z*. The extension of U below z* is zero, because, if a
solution to the Helmholtz equation is zero in a certain
region, it is identically zero. As a result, the solutions V
and W coincide. Due to condition (3), the respective

Ψ ϑ ϕ,( ) U r( )∂Ψ G( ) ϑ ϕ r, ,( )
∂n

-----------------------------------


Σ
∫=

–
∂U r( )

∂n
---------------Ψ G( ) ϑ ϕ r, ,( )

 dΣ

+ ξ r⊥( )fΨ g( ) ϑ ϕ r⊥, ,( ) f r⊥( )Ψ g( ) ϑ ϕ r⊥, ,( )–(
Γ
∫

+
∂ξ r⊥( )

∂ν
----------------mΨ g( ) ϑ ϕ r⊥, ,( ) m r⊥( )

∂Ψ g( ) ϑ ϕ r⊥, ,( )
∂ν

-------------------------------------
 d,.–

U r( ) Ψ ϑ ϕ,( )exp i( k x ϑ ϕcoscos(∫∫–=

+ y ϑ ϕsincos z ϑ ) ) ϑ dϑ dϕ .cossin+
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plate displacements also coincide, which proves the
following theorem:

Theorem 1. The solution to problem (1)–(3) with
arbitrary boundary conditions that satisfy inequality (8)
is unique.

Consider now the problem of diffraction by an iso-
lated plate. This problem consists in constructing a
solution to the equation

(19)

with certain boundary conditions imposed on the obsta-
cle and with radiation conditions (7) at infinity.

As before, we assume that the problem is well-
posed if the boundary conditions at the obstacle satisfy
the inequality

(20)

We note that inequality (20) coincides with inequality (8)
when U ≡ 0.

The proof obtained above for the uniqueness of the
solution to well-posed problem (1)–(3) relies on for-
mula (18), which reconstructs the acoustic field from its
radiation pattern. This formula is valid for the solution
to the Helmholtz equation in the entire space or in a
halfspace bounded by a perfect or impedance (includ-
ing the generalized-impedance) baffle. A solution to
Eq. (19), which describes flexural vibrations of an iso-
lated plate, cannot be expressed by a formula similar to
Eq. (18), and the question concerning the uniqueness of
the solution to the boundary-value problem for the iso-
lated plate proves to be more complicated. As before,
the boundary conditions and condition (20) entail that
Ψξ ≡ 0; however, in general, the field ξs(x, y) can be non-
zero.

Let us consider the function

As follows from asymptotics (7), the function ζ(x, y)

satisfies condition (7) with the pattern Ψζ = –2 Ψξ.
From Eq. (19), it follows that the function ζ(x, y) also
satisfies the Helmholtz equation with the wave number
k0. Thus, by virtue of the two-dimensional analog of
Eq. (18) (see [15])

D∆⊥
2 ξ x y,( ) ρ0hω2ξ x y,( )– 0=

Im f ξ m
∂ξ
∂ν
------+ 

  s Fiξ xi yi,( )
i

∑+d

∂Ω⊥

∫ 
 
 

0.≥

ζ x y,( ) ∆⊥ k0
2–( )ξ x y,( ).=

k0
2

ζ x y,( ) Ψζ ϕ( )exp ik x ϕcos y ϕsin+( )( ) ϕ ,d

π i∞–

+i∞

∫–=
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the function ζ(x, y) is identically equal to zero. There-
fore, a solution to the source-free boundary-value prob-
lem satisfies the equation

(21)

which differs from the Helmholtz equation only in sign,
with certain boundary conditions at the obstacle bound-
ary. The number of such conditions is determined by
the order of the operator in Eq. (19), which makes the
boundary-value problem for Eq. (21) overdetermined.

Let us first consider the boundary conditions for a
fixed or hinged edge. That is, let the condition

ξ = 0 (22)

or

(23)

be valid on the entire contour ∂Ω⊥ , or let condition (22)
be valid on a part of the contour and condition (23) be
valid on the remaining part of the contour. In this case,
the solution is unique, which follows directly from

Green’s formula. Multiply both sides of Eq. (21) by 
and perform the integration by parts. When field
sources are absent, the integral over the circle of large
radius vanishes in the limit, which leads to the identity

(24)

Here, ∇ ⊥  is the two-dimensional gradient with respect
to the coordinates x and y. By virtue of conditions (22)
and (23), the contour integral vanishes and, hence, ξ ≡ 0.
Thus, the following theorem is valid:

Theorem 2. A solution to the boundary-value prob-
lem for Eq. (19) outside an arbitrary finite region Ω is
unique if the boundary conditions are such that ξ = 0 on
a part of the boundary, Γ1, and ∂ξ/∂ν = 0 on the remain-
ing part of the boundary, Γ2 = ∂Ω⊥ \Γ1.

Now, let the boundary conditions for ξ be such that
neither condition (22) nor condition (23) is satisfied on
a part of the boundary. For example, let the edge be
free:

f = 0, m = 0

∆⊥ ξ x y,( ) k0
2ξ x y,( )– 0,=

∂ξ
∂ν
------ 0=

ξ

0 ∆⊥ ξ k0
2ξ–( )ξ Sd

R2\Ω⊥

∫∫=

=  ∇ ⊥ ξ 2 k0
2 ξ 2+( ) Sd

R2\Ω⊥

∫∫–
∂ξ
∂ν
------ξ ,.d

∂Ω⊥

∫+
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or, in the general case,

(25)

where Zf and Zm mean the force and moment imped-
ances. In particular, Zf and Zm may be constant quanti-
ties, functions of a point of the contour, or differential
operators with respect to the tangential to the contour.

To establish the uniqueness theorem for the bound-
ary-value problem for Eq. (19) with boundary condi-
tions (25), it is sufficient to show that, for a solution to
the source-free problem, we have

(26)

Then, as in the case of conditions (22) and (23), iden-
tity (24) immediately implies that ξ is zero. However, it
was found that, when the contour ∂Ω⊥  is of a general
type and when natural assumptions are made for the
impedances Zf and Zm , the validity of condition (26)
cannot be proved, and, moreover, we provide below an
example of a system in which a localized wave exists,
which means that a solution to the diffraction problem
is not unique.

Consider the vibrations of an elastic plate with a cir-
cular aperture of radius R and impose the impedance
conditions

(27)

on the edge of the aperture. Here, M and J are the per-
unit-length virtual mass and moment of inertia (it is
taken into account that f and m are the force and
moment that act on the plate).

Let us determine the values of the impedances at
which a wave localized near the aperture can exist. As
shown above, such a wave must satisfy Eq. (21); i.e., it
must have the form

Å (28)

where Kj(k0r) is the Macdonald function.

Note that, in the general case, the solution to the
problem has the form

However, we will select M and J so as to make the coef-
ficient α equal to zero. Substituting expression (28) into
impedance conditions (27) and calculating the force f

f Z f ξ , m Zm
∂ξ
∂ν
------,= =

∂ξ
∂ν
------ξ ,d

∂Ω⊥

∫ 0.≤

f ω2Mξ , m ω2Jξν= =

ξ K j k0r( )eijϕ ,=

α H j
1( ) k0r( ) βK j k0r( )+( )eijϕ .
and the moment m from formulas (9) and (10), we
obtain

It is convenient to compare the quantities M and J with
the mass M0 and the moment of inertia (with respect to
the edge) J0 of a circular sector R dϕ:

Since hρ0ω2/D = , we obtain

Figure 3 represents the mass and the moment of inertia
as functions of the parameter k0R for several first
indexes j. For j ≠ 0, the force impedance can be positive
as well as negative (which corresponds to the elasticity
impedance). The moment impedance is always posi-
tive. An example of a continuous natural vibration per-
formed by an infinite plate so that it is localized near the
irregularity and equal to zero in the far-field zone is
given in [25].

If the plate is in contact with an acoustic medium,
the uniqueness of the solution follows from the absence
of the energy-carrying field components at infinity. For
a plate in free space, we managed to prove the unique-
ness theorem for a solution to the problem of diffrac-
tion by a finite obstacle only for the case of a fixed or
hinged edge. Using an example, we showed that in the
case of general-type impedance boundary conditions,
the existence of a localized solution is possible, which

ω2

D
------M k0

3 1 1 σ–( ) j2

k0R( )2
----------------–





=
K j' k0R( )
K j k0R( )
--------------------

+ 1 σ–( ) j2

k0R( )3
----------------





,

ω2

D
------J k0

1 σ–
k0R

------------ 1 1 σ–( ) j2

k0R( )2
----------------+

K j k0R( )
K j' k0R( )
--------------------





.–




=

M0
1
2
---hρ0R2dϕ , J0

1
12
------hρ0R4dϕ .= =

k0
4

M
M0
-------

2
k0R
--------- 1 1 σ–( ) j2

k0R( )2
----------------–

K j
' k0R( )

K j k0R( )
--------------------





=

+ 1 σ–( ) j2

k0R( )3
----------------





,

J
J0
-----

12

k0R( )3
---------------- 1 σ–

k0R
------------ 1 1 σ–( ) j2

k0R( )2
----------------+

K j k0R( )

K j
' k0R( )

--------------------




.–




=
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Fig. 3. Normalized mass M/M0 and moment J/J0 impedances versus the aperture size in terms of the wavelength at σ = 1/3.
leads to a nonuniqueness of the solution. For the local-
ized solution to exist, the boundary conditions at the
obstacle must be matched in a special manner.
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Abstract—The results of calculations performed in the framework of the approximate approach developed by
the authors are presented for the diffraction of sound waves by a stiff spheroid in an acoustic waveguide. The
scattered sound field is analyzed as a function of the following parameters of the problem: the spheroid dimen-
sions, its position relative to the sound source and the receiver, the vertical profile of sound velocity in the
waveguide, and the acoustic parameters of the waveguide bottom. © 2001 MAIK “Nauka/Interperiodica”.
It is well known that the inner boundary-value prob-
lem of the wave field diffraction by spatially localized
inhomogeneities in inhomogeneous waveguides is
extremely complicated from the mathematical point of
view. In most cases, an exact solution of this problem is
impossible, and, in practice, researchers use one or
another approximate method of those described in the
review by Gorskiœ et al. [1]. However, such methods
also require much calculation. Therefore, the results
obtained in this area of research [1–6] are insufficiently
representative and do not allow one to study the space-
time variability of the diffracted sound field as a func-
tion of the parameters of the problem, such as the wave-
length, the refraction index in the waveguide, the char-
acteristics of the halfspace underlying the waveguide,
and the parameters of the inhomogeneity itself (the
dimensions and the coordinates that determine its posi-
tion in the waveguide). This study is intended to par-
tially fill the aforementioned gap for oceanic sound
channels.

For our calculations, we use the approximate
approach [7] based on the representation of the scatter-
ing matrix of the waveguide modes in terms of the scat-
tering amplitude of a body in free space. Such an
approach is highly efficient from the computational
point of view, because it allows one to divide the prob-
lem into two parts: the determination of the scattering
amplitude in free space and the determination of the
sound field at a given distance from the sound source.

Let us consider this approach in greater detail,
because, in this study, the approach is applied in a new
form, without using the WKB approximation, as in the
cited paper [7]. (In our case, the range of its applicabil-
ity extends to the lower frequency region.) Let the
waveguide consist of a water layer of depth H with the
density ρ(z) and the sound velocity c(z); the water layer
1063-7710/01/4701- $21.00 © 20035
lies on an absorbing bottom, which can be character-
ized by different parameters (the density, the sound
velocity, and the damping factor for acoustic waves).
We introduce a coordinate system fixed to the waveguide
(the x–y plane coincides with the sea surface, and the
z-axis is vertical and directed downward) and con-
sider a point source and a receiver with the coordinates
(0, 0, z0) and (x, y, z), respectively. We denote the radius-
vector of the point of reception by R. We also introduce
a coordinate system (x', y', z') fixed to the scatterer and
having its origin at a point taken as the scatterer center.
Below, the coordinates of this point (xs, ys, zs) will be
called the scatterer coordinates (for the sake of brevity).
In addition, we define the radius-vectors in the horizon-
tal plane, rs and r, for the scatterer and receiver posi-
tions, respectively. The sound field at the reception
point, P(R), which is the object of our study, can be rep-
resented as the sum of the direct P0(R) and scattered
Ps(R) fields:

(1)

To calculate the scattered sound field, we use the fol-
lowing integral representation [2–4]

(2)

where ν(R) is the density of imaginary sources distrib-
uted over the surface or throughout the volume of the
scatterer and G(R, R') is Green’s function. The integra-
tion is performed within the scatterer over some surface
or volume, depending on the kind of the source we
introduce (the surface source or the volume source).
The unknown function ν(R) is determined from the

conditions for the field at the scatterer surface . Spe-

P R( ) P0 R( ) Ps R( ).+=

Ps R( ) ν R'( )G R R',( ) R',d∫=

Ŝ
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cifically, for a perfectly rigid scatterer, this condition is
as follows:

(3)

where Pi(R) is the field incident on the scatterer.
For the diffraction problem in a waveguide, such an

equation is usually solved numerically (see, e.g., [5])
using the approximation of the unknown function ν(R)
by a step function. By contrast, our approach is based
on the assumption that, in the vicinity of the scatterer,
the medium varies smoothly, and, in this vicinity, we
can assume that Green’s function coincides with that of
free space, G0(R, R'). In this case, the source function
ν(R) corresponds to the solution to the problem of scat-
tering by an object in a homogeneous space and is con-
sidered to be known (we denote it by ν0(ki, R)). For-
mally, this function is the solution to the integral equa-
tion, which, for a perfectly rigid scatterer, has the form

(4)

where G0(R, R') = . In our calcula-

tions, to characterize the scattering by an object in an
unbounded homogeneous medium, it will be conve-
nient to use the scattering amplitude

(5)

Here, ki and ks are the wave vectors of the incident and
scattered waves, respectively. We note that the scatter-
ing amplitude can be expressed through the angles θ
and ϕ in the spherical coordinate system fixed to the
scatterer where these angles determine the propagation
directions of the incident and scattered plane waves:

.

Using the mode representation of the sound field in a
waveguide [9], we represent the sound wave in the form

(6)

where ψm(z) and ξm are the eigenfunctions and eigen-
values of the Sturm–Liouville boundary-value problem
(ξm = qm + iγm/2). In the case of an omnidirectional
point source of power W0, the coefficients are expressed

as am = ψm(z0) (where ρ0 and c0 are the
density and sound velocity in the waveguide at the
source site). To obtain the function ν(R) and, hence, the
scattered field, we determine the incident field near the
scatterer where the medium is assumed to be homoge-

∂
∂n
------ Pi R( ) ν R'( )G R R',( ) R'd∫+[ ]

R Ŝ∈
0,=

∂
∂n
------ ikiR( )exp ν0 ki R',( )G0 R R',( ) R'd∫+[ ]

R Ŝ∈
0,=

ik zs( ) R R'–[ ]exp
4π R R'–

-----------------------------------------------

F ki ks,( ) 1
4π
------ ν0 ki R',( ) iksR'–( )exp R.d∫=

F ki
± ks

±,( ) F θi ϕ i θs ϕ s, , ,( )≡

P r z,( ) bm r( )ψm z( )
m

∑=

=  amψm z( )
iqmr[ ]exp

qmr
------------------------- γmr/2–[ ] ,exp

m

∑

ρ0c0W0e
i
π
4
---
neous and weakly absorbing. When the variations of
the primed arguments are small, for the functions
involved in the expression for the incident field, we
obtain

(7)

Then, we have

(8)

where sm is a vector directed along the z axis with the

magnitude σm = ,  = (z) ±

, and  are the wave vectors with the

horizontal and vertical components (qm, ±sm), respec-
tively. Substituting the incident field (8) into Eq. (3),
which determines the condition for the unknown func-
tion ν(R), we derive the expression

(9)

Calculating the scattered field (2) with Green’s function
of the waveguide and using the approximation (7) for
the eigenfunctions near the scatterer, we obtain an
expression for the scattered field at the reception point:

(10)

where

(11)

and Sµm is the scattering matrix which has the form

(12)

ψm zs z'+( ) am
+ ismR( )exp am

– ismR'–( ),exp+≅

iqm rs r'–[ ]exp

qm rs r'–
--------------------------------------- γm rs r'– /2–( )exp

≅
iqmrs[ ]exp

qmrs

-------------------------- iqmR'[ ]exp γmrs/2–( ).exp

Pi Rs R'+( ) amψm zs z'+( )
m

∑=

×
iqm rs r'–[ ]exp

qm rs r'–
--------------------------------------- γm rs r'– /2–[ ]exp

≅ bm rs( ) am
+ ikm

+ R'( ) am
– ikm

– R'( )exp+exp[ ] ,
m

∑

k2 zs( ) qm
2– am

± 1
2
--- ψm

dψm/dz
iσm

------------------
z zs=

km
±

ν R( ) bm rs( ) am
+ ν0 km

+ R',( ) am
– ν0 km

– R',( )+[ ] .
m
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Ps r z,( ) i
8π
------ bµ rs( )ψµ z( )

µ
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×
iqm r rs–[ ]exp

qm r rs–
-------------------------------------- γm r rs– /2–[ ] ,exp

bµ rs( ) Sµmbm rs( )
m
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Sµm 4π am
+ aµ

+F km
+ kµ
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+ aµ

– F km
+ kµ

–,( )+[=
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– aµ

+F km
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We note that Eq. (12) allows one to use any known scat-
tering amplitude for a smooth body in free space,
including the one measured in the experiment.

It should be noted that the described approach is
valid on condition that the effects of multiple scattering
are small, and the medium is homogeneous in the vicin-
ity of the scatterer. In other words, the scattering body
must be offset from the waveguide boundary by a dis-
tance h that exceeds the horizontal dimensions of the
body l (i.e., h ≥ l), and the variations of the vertical
wave vector sm that occur along the z axis at a distance
equal to the vertical dimension of the body d must be

small; i.e., d <  ≡ . If we take into account

that the relationship σm ≅ mπ/H is valid within an order
of magnitude (the case of the exact equality corre-
sponds to the Pekeris model [9]) and, in addition, we

have  ≅  , the second of the two afore-

mentioned conditions can be represented in the form

(13)

For calculating the diffraction field in a waveguide
by the method described above, we selected the scatter-
ing body in the form of an acoustically stiff spheroid
elongated in the horizontal plane, with the short axis d
and the long axis l. The choice of the model was deter-
mined by the fact that the problem of scattering by a
spheroid allows a rigorous analytical solution [10].
This makes it possible to adequately describe the fine
structure of the diffraction field and to study its depen-
dence on the scatterer dimensions.

We restrict our consideration to the case of mono-
chromatic radiation of frequency f and assume that the
scatterer changes its position in the horizontal plane by
moving normally to the base line connecting the source
with the receiver (Fig. 1). The horizontal distance from
the point where the object crosses the base line to the
source will be denoted by r0s.

The scattering amplitude for a spheroid has the
form [10]

(14)

where εn =  is the Neumann symbol; Snl ,

, and  are angular and radial prolate spheroidal
functions of the first and third kinds (the primes mark-
ing the radial functions mean their derivatives with
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respect to ϑ); χ = (k/2)  and ϑ  = l/  are
the parameters of the spheroid that characterize its
wave dimensions and degree of elongation; and

(15)

where β1, 2 are the azimuth angles that determine the
position of the scatterer relative to the source and the
receiver (Fig. 1).

When χ @ 1, we can use the following asymptotic
approximation for the radial prolate spheroidal func-
tions [11]:

(16)

(17)

where Jn and  are the nth-order Bessel and Hankel

functions, respectively; ζ = ; and e = l – n. In

contrast to the functions , the existing asymptot-
ics for the angular prolate spheroidal functions Snl pro-
vide no uniform convergence with the varying parame-

ter η = . Therefore, the values of the function
Snl are determined by numerically solving the singular
Sturm–Liouville problem [11]:

l2 d2– l2 d2–

θm
+ θm

– arccos= –
qmsinβ1

k
------------------- 

  ,=

θµ
+ θµ

– arccos=
qµsinβ2

k
------------------ 

  ,=

ϕm
± π arctan+−

σm

qm β1cos
-------------------- 

 =

ϕµ
± π arctan+−

σµ

qµ β2cos
-------------------- 

  ,=

Rnl
1( ) χ ϑ,( ) π

2χϑ
----------Jn χζ 2e 1+

2
--------------- ζarctan– 

  ,≈

Rnl
3( ) χ ϑ,( ) π

2χϑ
----------Hn

1( ) χζ 2e 1+
2

--------------- ζarctan– 
  ,≈

Hn
1( )

ϑ 2 1–

Rnl
1( ) 3( ),

θm µ,
±cos

d
dη
------ 1 η2–( ) d

dη
------ χ2 1 η2–( ) n2

1 η2–
--------------– λnl+ +

× Snl χ η,( ) 0,=

η 1,≤

r0s

β2

Receiver

β1
Source

y
x

x̃

z̃

Fig. 1. Schematic diagram of the numerical experiment.
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where the function Snl(χ, η) is limited at η  ±1 and

normalized according to the formula (χ, η)dη =

1 and λnl are the eigenvalues.

The summation of the infinite binary series (14) is
practically limited to the harmonics with the numbers
n = 0, …, N∞ and l = n, …, L∞, where L∞ = [–0.5n2 + χ]

Snl
2

1–

1∫

1465 1470 1475 1480

2

4

6

8

10

12

z

c, m/s

Fig. 2. Sound velocity profiles used in the calculations. The
waveguide depth is expressed in units of wavelength λ.
and N∞ is the maximal number at which the inequality

N∞ ≤ [–0.5  + χ] holds (here, the square brackets
denote the integral part of the number). With greater
numbers of harmonics, the value of the scattering
amplitude can be refined by no more than 1%.

For our numerical calculations, we selected a plane-
parallel waveguide of depth H ≅  12λ bounded from
above by a free surface z = 0 and from below by an
absorbing fluid bottom. (To provide the possibility of
the generalization of the results, all linear dimensions
are presented in terms of the sound wavelength λ.) We
also assumed that a point sound source of power W0 =
270 W was positioned at the waveguide bottom and a
receiver was set at a distance of 103λ from it. Other
parameters of the problem, namely, the receiver depth,
the spheroid dimensions, the spheroid depth zs, the dis-
tance r0s, the horizontal distance ys from the base line, the
acoustic parameters of the bottom, the vertical sound
velocity profile c(z) in the waveguide (see Fig. 2), and
the sound wavelength were varied in the course of the
calculations.

In this paper, for brevity, we present only the most
important results of our calculations and the main con-
clusions derived from the analysis of the computational
data. Figure 3 shows the dependence of the quantity
dP = |P | – |P0 | on the distance ys for different recep-

N∞
2
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Fig. 3. Sound field variations due to the diffraction. The horizontal axis shows the distance from the scatterer to the base line. The
numbers in the plots indicate the receiver depth. The spheroid dimensions are l = (a) 2.2 and (b) 4.4, d = (a) 0.3 and (b) 0.51. All
distances, depths, and dimensions are given in units of wavelength λ.
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Fig. 4. Sound field variations due to the diffraction. The horizontal axis shows the distance from the scatterer to the base line. The
numbers in the plots indicate the receiver depth. The spheroid dimensions are l = (a) 6.6 and (b) 4.4, d = (a) 0.73 and (b) 0.51. All
distances, depths, and dimensions are in units of wavelength λ.
tion depths and for two spheroids with the dimen-
sions: (a) l = 2.2λ, d = 0.3λ and (b) l = 4.4λ, d = 0.51λ.
We assumed that the spheroid intersected the base line
halfway between the source and the receiver, i.e., at
r0s = 500λ, at the depth zs = 5.1λ. The sound velocity
profile used in this numerical example is shown in Fig. 2
by the solid line,1 and the acoustic parameters of the
bottom were as follows: the ratio of the ground and
water densities m1 = 1.8, the complex refraction index
in the bottom n = n0(1 + iα), n0 = 0.88, and the damping
factor α = 0.015. The number of modes used in the cal-
culations was selected individually for every numerical
example based on the fact that its further increase prac-
tically did not affect the resulting scattered field. Spe-
cifically, for the calculations shown in Fig. 3, the num-
ber of modes was 15. As one can see from this figure,
the value of |dP| averaged over the depth is proportional
to the area bounded by the shadow contour of the spher-
oid and the dependence of the quantity dP on the dis-
tance ys is a quasi-harmonic one with a symmetric lin-
ear frequency modulation. Similar dependences were
obtained for other acoustic parameters of the bottom (in
the numerical calculations, the values of m1 and n0 were
varied within 10% of those specified above and the

1 Note that this sound velocity profile was recorded in one of the
full-scale experiments.
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value of α was varied within 100%), for another sound
velocity profile in the waveguide (this dependence c(z)
is shown in Fig. 2 by the dashed line), for another sound
wavelength λ0 (λ0 = λ/2), and for other spheroid dimen-
sions. For example, Fig. 4 presents the results for the
sound wavelength λ0 and the spheroid dimensions (a) l =
6.6λ, d = 0.73λ and (b) l = 4.4λ, d = 0.51λ. Here, the
remaining parameters of the problem are the same as in
Fig. 3, but the calculations were performed using only
seven modes.

The statistical analysis of the computational data, on
the one hand, confirmed the approximate expressions
obtained earlier [6, 12, 13] for the variation coefficient
g, the characteristic distance between the scatterer and
the base line L within which the diffraction perturbation
of the direct field is maximal, and the law governing the
phase variation ∆ϕ(ys) of the dependence dP(ys):

. (18)

Here,  is the area bounded by the shadow contour of

the scatterer (in our case,  = πld/4) and F is the radius

of the first Fresnel zone (F = ). On the
other hand, the analysis showed that the approximate
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Fig. 5. Dependence of the maximal values of the sound field variations on the distance to the source in units of wavelength λ.
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Fig. 6. Sound field variations due to the diffraction. The horizontal axis shows the distance from the scatterer to the base line. The
numbers in the plots indicate the scatterer depth. The corresponding velocity profiles are shown in Fig. 2: (a) by the dashed line and
(b) by the solid line. All distances and depths are in units of wavelength λ.
expressions (18) are valid only for the results averaged
over the depth zs and only for the interval of distances
∆r (D ! ∆r ! r, where D is the period of interference
beats in the waveguide). For individual dependences
dP(ys), these relations can fail. As an example of such a
failure, we present the dependence of the maximal
value |dP|max on the distance r0s (Fig. 5) for a spheroid
with the dimensions l = 2.2λ, d = 0.3λ with the same
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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parameters of the waveguide and the same trajectory of
the spheroid motion (normally to the base line at the
depth zs = 5.1λ) as in Fig. 3. The maximum was deter-
mined both in the reception depth, from 6.2λ to 10.9λ,
and in the distance ys, from –133λ to +133λ. One can
see that the dependence |dP|max(r0s) is oscillatory rather
than monotone, and, only at small distances from the
source and the receiver can one notice an increase in
|dP|max that should be expected according to the approx-
imate expression (18) at a constant direct field P0 .

The complex interference structure of the sound
field, which is formed in the waveguide in the vertical
plane in the case of multimode propagation, masks the
effect of the average depth dependence of the sound
field intensity on the scattered field. To confirm this
statement, in Fig. 6 we present the calculated functions
dP(ys) for different depths of the scatterer zs and for dif-
ferent sound velocity profiles, which determine the
aforementioned dependence. Here, the dimensions of
the spheroid crossing the base line at its center were
assumed to be l = 2.2λ, d = 0.3λ. The depth of the
waveguide and the acoustic properties of the bottom
were the same as in Fig. 3. The receiver depth was 8.3λ.
We note that, when the profile c(z) has the form shown
in Fig. 2 by the solid line, the sound field is mainly con-
centrated near the bottom, under the discontinuity
layer; when the profile corresponds to that shown by
the dashed line, the sound field is almost uniformly dis-
tributed in the waveguide depth. However, this fact did
not explicitly manifest itself in the specific example
shown in Fig. 6 that compares the diffraction perturba-
tions of the sound field for the scatterer positions above
and below the discontinuity layer.

In closing, we note that the calculations performed
in this study demonstrate the complexity of the spatial
structure of the sound field formed in the waveguide as
a result of the diffraction by spatially localized inhomo-
geneities.
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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Abstract—A tunable gas sensor using surface acoustic waves (SAW) is described. It is designed on the basis
of a waveguide delay line fabricated on a piezoelectric substrate made of 128° Y-cut LiNbO3. A voltage
applied between the waveguide and two electrodes causes a local change in the properties of the substrate
near the waveguide and differently affects the sensor’s response to the vapors of various analytes. Some
results of the experimental study of the sensor, which show the change in the selectivity under the effect of
voltage, are presented. The analytes used for testing include a number of alcohols and deionized water. The
possibilities for employing such a sensor in the sensor arrays of gas analyzers of the electronic nose type are
discussed. © 2001 MAIK “Nauka/Interperiodica”.
Gas sensors on the basis of surface acoustic waves
(SAW) are widely used in gas analyzers of the elec-
tronic nose type [1]. The main part of such an analyzer
is an array of sensors—a set of sensors with different
sensitivities to various chemical substances. Different
responses are achieved by using different sensitive
coatings for different sensors of the array. The principle
of operation of these sensors is described in [2]. Their
main disadvantage lies in the different rate of ageing of
sensitive coatings, which leads to the need for repeated
calibration of an electronic nose. Anisimkin et al. [3]
propose an array of four SAW sensors with the use of
only one sensitive layer for the entire array. However,
this approach makes it possible to compensate the dis-
advantages connected with the ageing of the sensitive
coating only partially. 

In this paper, we describe a tunable SAW gas sensor
whose selectivity is determined not by the properties of
the sensitive coating, but by the voltage applied in a cer-
tain way to the metal waveguide along which the SAW
propagate. 

The schematic diagram of the sensor is shown in
Fig. 1. As a substrate, we used a 128° Y-cut LiNbO3
piezoelectric crystal with the dimensions 12 × 5 ×
0.25 mm. For the excitation and reception of SAW, two
interdigital transducers (IT) (1) were used. Every IT
consists of 30 pairs of electrodes with a spatial period
of 8 µm and an aperture of 110 µm. The distance
between the ITs is 6.5 mm. An aluminum SAW
waveguide (2) in the form of a narrow strip 24 µm wide
and 5 mm long, together with the acoustic concentra-
tors (3), and the waveguide electrodes (4), is located
between the ITs. The electrodes are as near to the
waveguide as 30 µm, which makes it possible to obtain
strong electric fields in the vicinity of the waveguide at
comparatively small voltages applied to it. The inser-
1063-7710/01/4701- $21.00 © 20042
tion loss of the delay line (with a SAW waveguide),
which actually represents the considered SAW sensor, is
15 dB at the main frequency of 486 MHz in a 50-Ω chan-
nel without matching elements. The bandwidth at a
level of 3 dB is 18 MHz. Originally, the authors of this
paper used such an acoustic delay line in high-sensitiv-
ity voltage sensors and in SAW phase shifters [4, 5]. 

Note that the described SAW sensor does not com-
prise any special sensitive coatings unless the alumi-
num waveguide is considered as such a coating. Nev-
ertheless, if required, this possibility is not ruled out.
A sensitive layer can be applied directly on the SAW
waveguide of the sensor. 

For measuring the response of the sensor, we used
an experimental setup shown schematically in Fig. 2.
The SAW sensor in a metal housing with electric leads
for the connection to the measuring instruments and
with connecting pipes for feeding and removing gas
was placed in a thermostat T1 in which a constant tem-
perature of 50 ± 0.05°C was maintained. The inner vol-

LiNbO3
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1 3
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Micro-
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V

Fig. 1. Design of the SAW sensor. 
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001 MAIK “Nauka/Interperiodica”



        

A TUNABLE GAS SENSOR USING AN ACOUSTIC WAVEGUIDE 43

                                                   
Phase
shift meter

SAW sensor

membraneEvaporator

Carrier gas

Thermostat(í2)

Thermostat(í1)

V

Rubber

Fig. 2. Experimental setup for testing the SAW sensor. 

0 5 10 15 20

–1.2

–1.6

–0.8

–0.4

0

Phase shift, deg

 Time, s

1
2

3

4
5

0 5 10 15 20

–3

–2

–1

0

1

Time, s

Phase shift, deg

+75 V

+25 V

+10 V

0 V –25 V

–75 V

Fig. 3. Measured phase shifts of the SAW signal as a func-
tion of time (the responses of the sensor) for various alco-
hols in the absence of voltage across the waveguide:
(1) methanol, (2) propanol-2, (3) ethyl alcohol, (4) pro-
panol, and (5) isoamyl alcohol. 

Fig. 4. Measured responses of the sensor to ethyl alcohol
vapor for various voltages applied to the waveguide. 
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Fig. 5. Measured responses of the sensor to water vapor for
various voltages applied to the waveguide. 
ume of the metal housing was about 2 cm3. Nitrogen
was used as a carrier gas. The gas flow rate in the exper-
iment was equal to 30 cm3/min ± 1%. The liquid testing
analytes of volume 0.1 µl were fed by means of a
microsyringe into an evaporator, which was placed in
the thermostat T2 with a constant temperature of
135°C. This temperature was higher than the boiling
points of all the analytes used in the experiment. 

A signal of frequency 486 MHz and power 1 mW
was fed to the input IT. The output signal was taken
from the output IT, and, by using a phase meter, the
phase shift of this signal was measured as a function of
time (the response of the SAW sensor). 

In the experiment, we measured the sensor responses
to vapors of alcohol (ethyl, methyl, isopropyl, propyl,
and isoamyl) and of deionized water at various voltages
applied to the electrodes of the waveguide. 
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Figure 3 displays the measured responses to various
alcohols in the absence of voltage across the waveguide
electrodes (in this case, the waveguide and the elec-
trodes are short-circuited). It is seen that the SAW sen-
sor clearly distinguishes the alcohols even without a
sensitive coating. It is quite natural, because the physi-
cal properties of various alcohols (the boiling point, the
density, the viscosity, and the saturation vapor pressure)
are different and they variously affect the propagation
of SAW in the presence of the adsorption and desorp-
tion of the molecules of alcohols. 

The voltage applied to the waveguide electrodes
changes the character of the responses. It is clearly seen
in the examples of responses to vapors of ethyl alcohol
(Fig. 4) and water (Fig. 5). A negative voltage increases
and a positive voltage decreases the magnitude of the
responses. If the voltage is sufficiently high, it can even
change the sign of the response to the opposite. As is
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seen from Fig. 6, the same value of the voltage (in our
experiment it is equal to +25 V) applied to the waveguide
affects the sensor responses to the vapors of various
alcohols in different ways. It should be noted that, for
every analyte, there exists a voltage at which the sensor
is practically insensitive to the analyte. For instance, in
our experiment, for water vapor, the value of this volt-
age is +25 V. This fact may be of certain interest in
designing an electronic nose. 

In our experiment, the temperature of the sensor was
constant and equal to 50°C; however, if the temperature
is reduced, the sensitivity of the sensor sharply
increases. Figure 7 displays the dependence of the rel-
ative change in the sensor response on temperature for
the ethyl alcohol vapor. It is seen that, at the sensor tem-
perature of about 2.3°C, the response becomes about a
hundred times greater than the response at a tempera-
ture of 50°C. Consequently, the sensitivity of the sensor
increases by the same factor with cooling. In the same
figure, the solid line shows the theoretical temperature
dependence of the relative change in the saturation
vapor pressure of ethyl alcohol. The measured values of
the sensor’s response (the experimental points)
obtained at various temperatures for the ethyl alcohol
vapor fit this dependence quite well. 

The physical mechanism of the effect of the applied
voltage on sensor’s response is not yet completely
understood. We assume that a number of factors simul-
taneously contribute to this effect. In our opinion, the
most significant of them is the dependence of sensor’s
response to a specific gas on the changes that occur in
the components of the mechanical displacements in
SAW under the action of electric fields [6]. Among
other factors, we should mention the possible influence
of electric fields on the processes of adsorption and des-
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Fig. 6. Measured responses of the sensor to vapors of vari-
ous alcohols at a voltage of 25 V across the waveguide elec-
trodes: (1) methanol, (2) propanol-2, (3) ethyl alcohol,
(4) propanol, and (5) isoamyl alcohol. 
orption of molecules of the analyte at the working sur-
face of the sensor. 

In our experiment, as the sensor’s response, we mea-
sured the phase shift of the output signal. For a conve-
nient integration with digital processing systems, it is
better to measure the change in the frequency of the
output signal by inserting the delay line in the feedback
circuit of an amplifier, as was done in [5]. 

Thus, we can conclude that the proposed sensor has
the property of a tunable chemical selectivity and, con-
sequently, is well suited for use in the sensor array of an
electronic nose. In particular, by assembling an array of
any number of identical sensors and applying different
voltages to them, it is possible to make their selectivity
different. 
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Fig. 7. Measured dependence of the sensor response on its
temperature (experimental points). The analyte is ethyl
alcohol. The solid line shows the calculated temperature
dependence of the normalized saturation vapor pressure of
ethyl alcohol. 
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Abstract—Problems of the optimal synthesis of multilayer structures implementing the ultimate perfor-
mance under the action of elastic waves are considered. It is required to design a multilayered structure by
choosing the physical properties of materials, the thickness of the layers, their number, and the mutual
arrangement of layers with different physical properties in a way such that the energy characteristics of an
elastic wave be as close as possible to the desired characteristics. From an analysis of the necessary optimum
conditions, it is inferred that the optimal solutions are characterized by a certain internal order in the structure
parameters, i.e., by an internal symmetry. When known a priori, these qualitative relations considerably
reduce the number of variants tested for the optimum and make it possible to efficiently design composite
structures implementing the ultimate performance in terms of exhibiting the desired properties under the action
of elastic waves. © 2001 MAIK “Nauka/Interperiodica”.
The design of composite materials and structures
characterized by a preliminarily specified set of proper-
ties has become a problem of fundamental importance
in the past few decades [1–13]. Layered media whose
properties vary along a single direction form the most
commonly encountered type of such inhomogeneous
structures. A wave acting upon an inhomogeneous
structure gives rise to a system of reflected and
refracted waves, which interact with the incident wave
forming a complex interference pattern. This interfer-
ence pattern depends on the structure of the inhomoge-
neous medium. Varying the structure of the composite
medium, one can control the energy characteristics of
the wave process.

The problem of primary scientific interest is the
determination of the limiting possibilities in controlling
the energy parameters of wave processes of different
physical natures (such as electromagnetic, acoustic,
temperature, and elastic waves) by systematically
choosing the structure of the inhomegeneous medium.
Solution of this problem not only determines the effi-
ciency of different devices based on the wave energy
conversions, but also offers extended possibilities for
the efficient use of the wave energy converters in new
fields of physics and engineering.

The design of structures with unique properties nec-
essarily involves the study of their ultimate perfor-
mance. The latter corresponds to the limiting level
achievable with a systematic control of the composition
and the parameters of the structure.

The solution to the problem of studying the ultimate
performance of a composite structure in controlling the
energy characteristics of wave processes of different
physical natures assumes an exhaustive search among
1063-7710/01/4701- $21.00 © 20045
all possible structures. Because the number of possible
structures is very large, an exhaustive search is imprac-
ticable even with the fastest computers. The commonly
used approaches to the solution of this problem consist
in the search among a small subset of the whole set of all
possible structure versions. However, such approaches,
on the one hand, cannot ensure that the version found
implements the ultimate performance and, on the other
hand, give no way of estimating how wide the variant
found deviates from the variant actually implementing
the ultimate performance.

Thus, the commonly used approaches
(i) give no way of objectively estimating how much

the designed structures used in different fields of phys-
ics and engineering differ from the structures imple-
menting the ultimate performance and

(ii) give no way of efficiently designing structures
implementing the ultimate performance.

A general point of the commonly used approaches is
that they all consider the problem with no account
taken of its qualitative features, in particular, the quali-
tative relations between the parameters in the structures
implementing the ultimate performance.

In this context, we formulated the problem of devel-
oping the methods for a comprehensive investigation of
the ultimate performance of composite structures. We
advance the hypothesis that general regularities exist
for structures implementing the ultimate performance.

In papers [1, 2], we determined the qualitative regu-
larities for the structure of an optimal solution for the
case of an oblique incidence of electromagnetic waves
on a system of magnetodielectric layers, as well as for
the case of an oblique incidence of acoustic waves on a
001 MAIK “Nauka/Interperiodica”
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system of layers in which the shear waves cannot prop-
agate. We stated, in particular, that the relation between
the parameters in structures implementing the ultimate
performance is characterized by a certain internal
order, or a certain internal symmetry, which allows one
to efficiently select the total set of variants implement-
ing the ultimate performance for the mentioned prob-
lems. It appeared that the symmetry of the same type is
characteristic of the relations between the parameters in
optimal structures under the action of both electromag-
netic and acoustic waves. The knowledge of such qual-
itative regularities is of essential importance for both
theory and practice [2, 4–9].

The question arises of whether the symmetry type
found for the parameters in the optimal structures for
the above models remains intact for the synthesis prob-
lems described by more complex models, in particular,
by the models that take into account the transformation
of waves of different types at the layer boundaries.

Let a set of elastic layers with different physical
properties fill the gap between two halfspaces. In this
case, we will observe a much more complex interfer-
ence pattern, because both longitudinal and transverse
waves can propagate in elastic media. In comparison
with the cases considered earlier [1, 2], the complexity
of the interference pattern is caused primarily by
mutual transformations of the two types of waves at the
layer boundaries.

Assume that it is necessary to design a multilayer
structure implementing the ultimate performance in
terms of the suppression of elastic waves in a specified
range of angular frequencies [ωmin, ωmax]. We will
assume that the halfspaces on both sides of the layered
system are filled with perfect liquids. The development
of efficient methods for investigating the ultimate per-
formance for such problems are of fundamental impor-
tance for many fields, such as ultrasonic engineering,
acoustoelectronics, nondestructive testing, seismology,
and vibration damping.

The propagation of an elastic wave in a system of
elastic layers is described by the system of equations of
elastic motion

(1)

Here, us(x, y, z, t) is the vector of particle displacement
in the sth medium, ρs is the density of the sth layer, λs

and µs are the Lamé coefficients of the sth layer, and N
is the number of layers. The vector field of displace-
ments can be represented as the superposition of two
fields [3]

(2)

Here, Φs and Ps are the scalar and vector potentials of
the wave field. A general-type plane wave can be repre-

µs∆us λ s 2µs+( )graddiv us+ ρs

∂2
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∂t
2

----------,=

s = 1 … N, ,( ).

us grad Φs rot Ps.+=
sented as a superposition of plane harmonic waves, i.e.,
as the Fourier integral

(3)

.

Here, ∆0 = k0sinϑ0, k0 = ω/c0 is the wave number of the
incident wave, c0 is the velocity of the wave in the first
halfspace, and ϑ0 is the angle of incidence of the elastic
wave. With this representation, the problem on the
propagation of an elastic wave in the system of elastic
layers is reduced to the following boundary-value prob-
lem for the spectral densities of scalar and vector poten-
tials:

(4)
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Here, ks = ω/cs is the wave number of the longitudinal
waves in the sth layer, cs is the velocity of the longitu-
dinal waves in the sth layer, γs = ω/ds is the wave num-

ber of the shear waves in the sth layer, and bs(x = )
are the coordinates of the boundaries between layers
with different physical properties.

Let the discrete set of materials admissible for the
design be given. Different physical properties of these
materials will be related through certain functional
dependences rather than be independent. We choose the
density ρ of the material as an independent parameter.
Then, the velocities of the longitudinal and transverse
waves in the material will be certain functions of den-
sity: c = c(ρ), d = d(ρ). These functions unambiguously
determine the velocities of the longitudinal and trans-
verse waves in admissible materials from their densi-
ties. We denote by Λ the set of densities of the admissi-
ble materials:

It is necessary to choose the physical properties of
the layer materials ρs(s = 1, …, N), the layer thickness

 =  – (s = 1, …, N*), the number of layers
N*, and their order in the structure so that the energy
transmission coefficient T(ω) of the structure under
design be as close as possible to the desired function

(ω). Mathematically, the problem is reduced to the
minimization of the quality criterion

(5)

on the solutions of system (4); here, τ(ω) (0 ≤ τ(ω) ≤ 1)
is the weighting function and

The problem determined by Eqs. (4) and (5) is a
combinatorial problem of the optimal control of com-
posite systems. Similar problems were studied in [2],
where the necessary optimum conditions were formu-
lated for composite systems with this type of structure.

For optimal control problem (4), (5), one can formu-
late the necessary optimum conditions by generalizing
the Pontryagin maximum principle [10] to the prob-
lems of optimal control of composite systems [2]. In
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this approach, the functions Rs [2] will appear as ana-
logs of the Hamilton functions. For optimal control
problem (4), (5), these functions can be represented in
the form

(6)

In this notation, the functions (z, ω) (i = 1, …, 8)
are expressed through the solutions fs(z, ω) and gs(z, ω)
(bs – 1 ≤ z ≤ bs, s = 1, …, N) to the initial system of
Eqs. (4) and the solutions ψs(z, ω) and ps(z, ω) (bs – 1 ≤
z ≤ bs, s = 1, …, N) to the system conjugate with sys-

tem (4) [2] and the functions (ω; ρ) are analytical
functions of ρ.

It can be shown that the functions (z, ω) satisfy
the following differential equations:

(7)

Let N* be the optimal number of layers, (s =
1, …, N*) be the optimal physical parameters of layers,
and (s = 1, …, N* – 1) be the optimal coordinates of
the layer boundaries. Then, the following condition is
satisfied for the optimal solution:

(8)

(The missing arguments of the functions Rs are calcu-
lated for the optimal solution.)

We will try to find qualitative regularities in the opti-
mal solutions to the optimum design problems set in the
form of Eqs. (4) and (5). We will consider the case that
is most interesting from both theoretical and practical
standpoints in which the desired transmission coeffi-

cient (ω) is such that its value is ultimate for every
frequency ω ∈ [ωmin, ωmax]. In other words, the desired

function (ω) can take on only two values: either 0 (a
total reflection is desired) or 1 (a total transmission is
desired).
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The problem type under consideration includes the
following optimum design problems:

(i) maximal damping of an elastic wave within a
given frequency range [ωmin, ωmax],

(ii) minimal reflection of an elastic wave within a
given frequency range [ωmin, ωmax],

(iii) maximal damping of an elastic wave in some
spectral regions and minimal reflection in other spectral
regions.

Consider first an oblique incidence of an elastic har-
monic wave of frequency ω on the system of elastic
layers and assume that the set of admissible materials
consists of two materials.

Taking into account the structure of the differential

equations (7) for the functions (z, ω) (bs – 1 ≤ z ≤ bs,
s = 1, …, N) involved in the functions Rs(; ρ) given by
Eq. (6) and the properties of the solutions to the initial
system of Eqs. (4), we can determine the relationship

between the functions (z, ω) for the nearest layers
with identical physical properties, i.e., for the layers
with the numbers s and s + 2.

This design analysis makes it possible to state that
the following equalities are satisfied for the optimal
solution:

(9)

Since the functions Rs for the internal layers with
identical physical properties have identical behavior on
the optimal solution, the distances between the optimal
boundaries of the considered layers will also be identi-
cal. Note that the optimal coordinates of the layer
boundaries are the singular points of the functions Rs,
because these points correspond to the simultaneous
maxima of the functions Rs for different elements of the
set Λ.

Consequently, we immediately obtain from Eqs. (9)

(10)

Thus, the following statement is true:
Statement 1. Let a harmonic elastic wave be

obliquely incident on a system of elastic layers and let
the set of admissible materials consist of only two
materials. Then, the internal layers with identical phys-
ical properties have identical thickness in the optimal
structure.

It is clear that, for the case of an admissible set con-
sisting of more than two materials, this statement also
holds if the optimal design consists of two or less mate-
rials of the admissible set.

Consequence. Let the admissible set consist of
more than two materials. If the optimal design for the
case of a harmonic elastic wave obliquely incident on a
system of elastic layers consists of two or less materials

α s
i

α s
i

Rs 2– *; ρ( ) Rs *; ρ( ),=

bs 3–* z bs 2–* , s = 4 … N* 1–, ,( ).≤ ≤

∆s* ∆s 2–* , s = 4 … N* 1–, ,( ).=
of the admissible set, the internal layers with identical
physical properties have an identical thickness.

Thus, the relation between the parameters in an opti-
mal elastic system shows a certain internal order, or an
internal symmetry. The established internal symmetry
property describes the regularities in the internal rela-
tions between different groups of parameters in the
optimal structure, namely, if the physical properties of
internal layers are identical in an optimal structure,

then, these layers have identical thickness:

The internal symmetry property established for the
optimal structures makes it possible to considerably
reduce the dimension of the initial design problem and
to reduce the multiparameter design problem whose
dimension is determined by the total number of layers
in the optimal structure to a three-parameter problem.
The three independent parameters to be varied in the
design are the thickness of the internal layers with dif-
ferent physical properties and the thickness of one of
the boundary layers. Consequently, the total set of
parameters describing the structure implementing the
ultimate performance can be exhaustively determined
for the case under consideration.

We return to the consideration of the general case of
an oblique incidence of a nonmonochromatic elastic
wave on the system of elastic layers. We will consider
the optimum design problem given by Eqs. (4) and (5)
under the additional assumption that, at some fre-
quency ω = ω* ∈ [ωmin, ωmax], the energy transmission
coefficient T(ω) of the system under design necessarily
takes on its ultimate value

(11)

where (ω*) is the ultimate value of the energy
transmission coefficient at the frequency ω = ω*.

It is obvious that the actual transmission coefficient
will be closest to the desired value for the harmonic
wave with the frequency ω = ω*. Consequently, the set
of globally optimal solutions to optimum design prob-
lem (4), (5) with additional condition (11) will be a sub-
set of globally optimal solutions obtained for the har-
monic wave with the frequency ω = ω*.

Therefore, the structure of the optimal solutions for
the case considered is characterized by the same prop-
erties as those obtained for harmonic wave actions.

Thus, in the more general case of elastic waves
obliquely incident on the system of elastic layers, the
relations between the parameters in the structures
implementing the ultimate performance are governed
by the same qualitative regularities as those obtained
earlier for electromagnetic and acoustic waves [2] and,
in particular, are characterized by the same internal
symmetry type.

ρs* ρs 2–* s = 4 … N* 1–, ,( ),=

∆s* ∆s 2–* s = 4 … N* 1–, ,( ).=

T ω*( ) Tω** ω*( ),=

Tω**
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As a result, the formulated optimum design problem
can be solved explicitly, which means that one can
determine the complete set of variants of layered struc-
tures implementing the ultimate performance.

The above analysis leads to the conclusion that the
necessary optimum conditions (8) contain essential
information on the structure of an optimal system.
Although the optimum design problem (4), (5) is char-
acterized by fairly complex Hamilton functions, the
qualitative structure of the optimal solution can be
determined from an analysis of their structure.

CONCLUSIONS
1. In the case of an admissible set consisting of two

materials, the elastic layered structure that is optimal
for an obliquely incident harmonic elastic wave exhib-
its the property of internal order, or internal symmetry.
This property also holds for an inharmonic elastic wave
obliquely incident on the system of elastic layers under
an additional assumption of the type of Eq. (11).

This property makes it possible to explicitly solve
the optimum design problem for the cases considered,
which means an efficient determination of the complete
set of variants of structures implementing the ultimate
performance.

2. The property of internal order, or the internal
symmetry property, established earlier for electromag-
netic and acoustic waves [2, 4] appears to be of a fairly
general nature and holds for the wave processes whose
interaction with inhomogeneous structures is described
by models that are more complicated than those consid-
ered earlier in [2, 4]. In particular, it holds for elastic
waves obliquely incident on the system of elastic layers
in which shear waves can be excited.

3. The established regularities can also be used for
investigating the general case of nonmonochromatic
elastic waves obliquely incident on the system of elas-
tic layers without any additional assumptions like con-
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
dition (11). In this case, the preliminary search within
the subset of variants selected according to the above
regularities can offer efficient solutions that are quite
appropriate for an initial approximation to the optimal
solution for the initial design problem given by Eqs. (4)
and (5).
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Abstract—The generation of ultrasound in a porous water-saturated medium subjected to rapid electromag-
netic heating is considered. The irradiation provides the Joule heating of narrow and electrically high resistive
pore throats, which interconnect cavities within the medium and, consequently, determine the permeability of
the medium. Because of the small throat sizes, the sound generation is accompanied by considerable thermal
flows going out from the throats into a relatively cold environment. Due to the latter, the output of the ultrasonic
measurement allows one to estimate the rate of the thermal exchange process. A common geometric model of
fluid flows and electric currents throughout a complicated network of intergranular cavities and their intercon-
necting throats is used for calculating the permeability of a rock on the basis of the determined values of the
thermal exchange rate. © 2001 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

The application of radiation exposure to a heteroge-
neous medium consisting of a matrix with embedded
inclusions leads to the generation of acoustic waves, the
characteristics of which are determined by the volume
fraction, shape, size, and orientation of the inclusions
[1]. In the recent past, this set of static medium param-
eters was extended by a dynamic parameter, which was
permeability. The parameter determines the ability of a
fluid or gas to penetrate through a porous structure
under pressure [2]. A new method combining the elec-
tromagnetic heating of water in the pores and the detec-
tion of an acoustical response to the heating for perme-
ability measurements in water saturated media has been
proposed recently [3]. The method is based on the non-
linear effect of sound generation, when boiling occurs
if the pressure of the saturated steam exceeds the sum
of external and capillary pressures. Since the capillary
pressure is determined by the size of pores, the size can
be found by using the acoustically registered vaporiza-
tion threshold. Unlike the direct but time consuming
method of permeability assessment by means of mer-
cury injections, this method [3] can be applied in field
conditions, for oil exploration purposes, for example.
The method of permeability control was also consid-
ered within the linear effect of ultrasound generation at
low levels of electromagnetic irradiation, but with the
use of primary microwave heating and subsequent
radiofrequency irradiation [4]. The variant of the

1 This paper was submitted by the authors in English.
1063-7710/01/4701- $21.00 © 20050
method using the radiofrequency range was proposed
later [5].

In this paper, we investigate theoretically the pro-
cess of acoustic generation resulting from the pulsed
electromagnetic irradiation of a porous medium. The
related inverse problem for the permeability recon-
struction is solved as well.

SOUND GENERATION AND THE INVERSE 
PROBLEM

Let a pulse emitted by a system of electromagnetic
coils propagate in the positive direction of the z axis
and be incident on the surface of a porous sample at
z = 0 (Fig.1). Then thermal sources of sound occur in
the medium, the power density of which is determined
by the relationship [6]

(1)

where A is the coefficient of electromagnetic wave
transmission into the medium. The distribution of elec-
tromagnetic intensity J(x, y) on the surface and the radi-
ation absorption coefficient γ of the medium create a
direction diagram for the space distribution of the
sound sources [6]. Let the system of the electromag-
netic sources provide a relatively uniform irradiation
spot on the surface. Orienting toward the problems of
oil exploration and taking into account typical well
bore diameters of 10–30 cm, we estimate the spot to be
in the diameter of 5–10 cm. We restrict the time of
sound registration by the arrival time of the acoustic
response coming from the spot perimeter. Then, assum-

Q x y z t, , ,( ) AγJ x y t, ,( ) γz–( ),exp=
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ing the sound velocity s ~ 3–5 km/s, t < a/2s ~ 5–20 µs,
we neglect the intensity variations across the xy-plane:
J(x, y) ≈ const. We assume the time of the electromag-
netic irradiation to be short: tb ~ 0.1–1 µs. After the irra-
diation process, t > tb, electromagnetic noises cannot
affect the operation of an acoustic detector placed on
the front surface at the center of the irradiation spot.

Pulse irradiation of a porous medium leads to the
appearance of nonuniform thermal pressure in the
medium constituents, but for the problem under our
consideration it can be described in terms of the effec-
tive pressure Pe(z, t) = Γe(t) (z, t). Here, the Gru-
neisen parameter Γe(t) depends on time, the kind of
irradiation, and the medium parameters [7]. The den-
sity of energy deposited into the medium is deter-
mined by the power of the radiation-induced thermal
sources: ∂ (z, t)/∂t = Q(z, t). Acoustic displacements
on the surface z = 0 originating from the exponentially
decreasing effective pressure are given by the relation-
ship

(2)

Introducing the speed of the displacements, we get

(3)

Thus, the measurements of the speed and acoustic dis-
placements give us the time dependence of the effective
pressure. By using the frequency dependence of the
radiation penetration depth into the ground, it is possi-
ble to simplify the last equation further. For this pur-
pose, we choose the radiofrequency range where the
penetration depth, γ–1, reaches tens of centimeters or
meters [8], so the second term in the right part of
Eq. (3) can be dropped.

POROUS STRUCTURE
AND ELECTROMAGNETIC HEATING

OF MATERIAL

In order to investigate the process of radiofrequency
heating for a porous medium, we use a basic sample of
wet sandstone. The permeability measurements for this
mineral are very important for many applications. The
mineral itself is dielectric, so electromagnetic radiation
is absorbed mainly by the water-filled pores.

We treat the pore net of a cube volume of the
medium having the edge length L0 as a bundle of Np

pores, in that time a single pore is considered as a
sequence of Nct intergranular cavities interconnected by
pore throats. The radiation loss is made up of two
terms: the loss due to the lag of the polarization and the
conductive loss [9]. The polarisation part Qd =
2πfε0 E2 is determined by the electric field strength

W

W

u 0 t,( ) 1
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E, the electromagnetic wave frequency f, and the
dielectric loss factor , and is approximately indepen-
dent of pore size. The second term representing the rate

of Joule heating Qj = , is determined by the spe-
cific electric conductivity of pore the water σw and the
eddy current density J = I/S. Thus, the rate of Joule
heating is dependent on the pore cross-section area S.
Electric current I = U/Rp is the result of electric poten-
tial U = EL0 induced between the opposite facets of the
cube under irradiation. Pore resistivity Rp is

(4)

Here and hereafter,

(5)

The pore is longer then the edge length as a result of
tortuosity: L > L0. Taking into account the network of

Np paralleled pores per unit facet, Np/  = ν/〈S1〉 , we
find the specific electric conductivity of the rock:

(6)

Here, ν is the porosity of the rock. From the above, the
rate of electromagnetic heating is

(7)
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Fig. 1. The principal diagram of the electromagnetic–acous-
tic experiment.
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By the summation of the polarisation and conductive
losses, we find the total rate of the heating in water-
filled pores:

(8)

where  represents a square electric field strength
averaged over the period of the electromagnetic wave.
Averaging over a pore volume gives us an equation for
the rate of heating within the pore network:

(9)

Representing the square of the applied electric

strength  in terms of the intensity of the electromag-
netic radiation Jmw, we rewrite the Eq. (9) in the form

 = Q(x, y, z)γ–1, where Q is determined by relation-
ship (1) and the penetration depth is [9]

(10)

Here, ε' is the relative dielectric constant of the medium
ε'' is the loss factor, and c the speed of an electromag-
netic wave in the medium. The complex dielectric con-
stant is determined by ε = εd + iσ/2πfε0 and can be esti-
mated by means of the equation [10]

(11)

where εr represents the dielectric permittivity of the
rock skeleton and εw is the complex dielectric constant
of bound water.

The penetration depth is plotted in Fig. 2 as a func-
tion of the electromagnetic frequency in the range of
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Fig. 2. Penetration depth for electromagnetic radiation at dif-
ferent values of the electrical conductivity of ground water
and the water saturation of the ground versus the logarithm of
the wave frequency. The porosity is (1) 5, (2) 15, (3) 20, and
(4) 30%; σw = (1) 0.01, (2) 0.1, (3) 1, and (4) 10 Cm/m.
1−900 MHz. Apparently, the penetration depth
depends on the water conductivity determined by the
concentration of salt and the pore volume fraction, and
the depth varies from several centimeters, when the
volume fraction and water conductivity reach high val-
ues, up to hundreds of meters at low values of the
parameters. Lowering the radiation frequency stimu-
lates the growth of the Joule loss part relative to the
polarisation losses. Even in the case of a low porosity
of 5% and a water conductivity of 0.1 Sm/m, if the
polarisation losses represent the main part of the total
losses at a frequency of 100 MHz, the polarisation part
is a third of the total losses only at a frequency of
1 MHz. Thus, the frequency tuning allows us to reduce
the polarisation losses and, therefore, to neglect the first
term in the brackets of Eqs. (8) and (9) and to adjust the
depth of penetration. As an example, the penetration
depth of a high porosity, 30%, and high conductivity,
10 Cm/m, medium is about 8.5 cm at the working fre-
quency of 100 MHz, but it reaches up to 27 cm if the
working frequency is reduced to 1 MHz.

EFFECTIVE THERMAL PRESSURE
AND THERMAL EXCHANGE

IN A POROUS MATERIAL

Heating leads to the appearance of thermal pressure
in heated pores Pw(t) = Γw(T) (z, t), where Γw is the
temperature dependent Gruneisen parameter of water.
Another component of pressure Pr = Γr r(z, t), where
Γr is the Gruneisen parameter of the mineral matrix,
appears in the matrix due to thermal flows going out
from the heated pores and forming the density of
absorbed energy r(z, t) in the mineral. The Pp and Pr

pressures together form the time dependent effective
pressure used in Eqs. (2) and (3) [7]:

(13)

The parameter describing pressure transformations in
acoustically slightly mismatched rock skeleton–wet
rock structures, ar , can be estimated by means of the
relationship

(14)

where K and µ are the effective bulk and shear moduli
of the wet mineral and Kr and µr represent the corre-
sponding moduli of the matrix.

Taking into account that the effective modulus K
and µ are decreasing functions of the porosity ν, the
coefficient of pressure transformation ar is a decreasing
function of the porosity with maximum value at ν = 0.
A more complicated problem is to estimate the param-
eter aw dependent on the pore shape and varying from a
minimum value in the case of spherical or needle-
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shaped pores to a maximum value in the case of flake-
like pores [11]:

(15)

For sandstone, Kr ≈ 3.6 × 1010 Pa and µr ≈ 2.2 × 1010 Pa
(quartz mainly) [12], we estimate the possible varia-
tions of the ratio aw/ar in the range of 2 ≤ aw/ar ≤ 30.
Therefore, the dependence on the energy balance of the
medium constituents is determined for the effective
pressure by the shapes of the porous cavities forming
the main volume of the pore. Substituting the obtained
boundary values and taking the water’s Gruneisen
parameter at the well bore temperature of 40°C, Γw ≈
0.16, Γr = αrKr/ρrCr = 0.6, αr = 3.4 × 10–5 °C–1, ρr =
2.7 g/cm3, and Cr = 0.74J/g°C, we estimate the possible
variations –0.5 ≤ ξ ≤ 7 for the parameter ξ = awΓw/arΓr.
The parameter determines the sensitivity of the effec-
tive pressure to the variation of the mineral–pore
energy balance:

(16)

Here, Ww(z, tb) is the density of the energy deposited
into a pore during the time of irradiation tb and Ww(z, t)
represents the density of energy remaining in the pore
up to time t. In order to derive the equation of the
energy balance, we consider thermal flows going out
from a pore segment having a cross-section area S and
length ls. Assuming that the thermal exchange is insig-
nificant for time tb, the approximation of instantly act-
ing heating used is tb = 0. The thermal flows from the
segment boundary are maximally close to the initial
thermal excitation and follow the heat conductivity law
for two contacting halfspaces [13]:

(17)

Here, Kε = λwκw/λrκr , where λw and λr are the thermal
conductivities and coefficients κw and κr represent the
temperature conductivities of the water and the min-
eral. The gradient is taken normal to the boundary, and
S⊥  ≈ 2(πS)1/2ls is the area of water–mineral contact.
Because the flows are proportional to the density of the
absorbed energy, the relative value of those is indepen-
dent of the variable z and we omit the variable. The
average of W(S, t) along the pore

(18)
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and the expression of the function (t) as a Taylor
power series of t1/2 yield near t = 0

(19)

Here, the characteristic time of thermal exchange is

determined by the relationship tT = (1 + Kε)2 /16κw ,
where the length parameter is defined as an effective
diameter and determined by the relation

(20)

Because the Joule losses provide the main heating at
frequencies below 100 MHz, we have

(21)

Taking into account that in the limiting case of t @ tT the
temperatures of the water and the mineral should be
equal, we get a more complicated approximate rela-
tionship:

(22)

where ρC = νρwCw + (1 – ν)ρrCr is the specific heat
capacity of the water-saturated mineral.

PORE STRUCTURE AND PERMEABILITY
The analysis suggests that the effective pressure

and, therefore, the acoustic response on heating are
dependent of the effective diameter De. Additionally,
the fluid flow along a pore under pressure and, there-
fore, the permeability of the porous medium are depen-
dent on the cross section [14]. Considering again a
cubic sample with the edge length L0, we establish a
relation between the permeability and the effective
diameter De. Within the approximation of stationary
flow, the rate of the flow is constant along a pore:

(23)

where dP/dl is the gradient of pressure along the pore.
Using the permeability definition [2], we find the rate of

the fluid flow qtot throughout the system of all Np/
pores:

(24)
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From that we derive the relationship for the coefficient
of permeability:

(25)

where ∆P is the difference of the pressure level applied
to opposite facets of the mineral sample. Multiplying and

dividing by 〈 〉, then using Eq. (6) and the approximate

relation 〈 〉〈 〉 ≈ , we write the relationship
for the permeability coefficient in the form

(26)

Thus, the permeability is determined by the effective
diameter

(27)

In order to estimate De, we substitute for conductiv-
ity σ the relationship given by Archie’s law: σ =
σw(Sw)nνm [2] for a fully saturated medium, Sw = 1, with
the empirical constant m = 2. This yields De = (2k)1/2ν–1.
Taking into account that commercial reservoirs gener-
ally have permeability ranging from a few millidarcys
(k ~ 10–11 cm2) up to a darcy (k = 10–8 cm2), and poros-
ity ν ≈ 0.1–0.3, we estimate that the effective diameter
varies in the range from 0.2 up to 10 µm. The size is close
to the diameters of pore throats determined in petro-
graphic observations [15]. Substituting the coefficient of
water temperature conductivity κw ≈ 0.0014 cm2/s, we
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Fig. 3. The waveforms of ultrasound signals generated by
electromagnetic pulses in a porous medium. After the repre-
sentation of heating dynamics (t < tb), on the right of the ver-
tical dashed line, the signals show the dynamics of thermal
exchange. The duration of the thermal exchange is deter-
mined by the permeability of the porous medium. 
find that 0.1 < tT < 100 µs. The size of pores is suffi-
ciently large and distributed in the range from 40 up to
400 µm [15]. For these sizes, the thermal time tT lies in
the range from ~600 µs up to 0.24 s. Comparing that
with the effective time of ultrasound generation of sev-
eral microseconds, we conclude that thermal flows
from overheated pore throats must be taken into
account, but the pore–rock skeleton thermal exchange
is insignificant.

In terms of the time of thermal exchange tT, the per-
meability k is determined by

(28)

Thus, on the one hand, the time of thermal exchange tT
determines the permeability coefficient and, on the
other hand, it manages the time dependence of the
effective pressure according to relationships (13) and
(19). That gives the opportunity for acoustical measure-
ments of time tT. For example, in the case of low
absorption γ ! 1, the speed of displacements in a
response is proportional to the effective pressure.

As follows from Eq. (16), in the case of needle-
shaped inclusions, the effective pressure reaches its
maximum Pc(z) = νarΓrWw(z, tb) on the latest stages of
the thermal exchange process, when t ~ tT. In the case
of ζ ≈ –0.5, the pressure for earlier stages is only half
of the above pressure value. More sufficient changes
are expected for flake-shaped inclusions, when ζ ≈ 7,
and the maximum of about of 8 Pc follows the pulse of
irradiation immediately. Orienting on Pc and assuming
it to be equal to the relatively easily registered pressure
of 100 Pa, we estimate the value of the current in elec-
tromagnetic coils which is required for getting this
pressure level. As it is possible to show, for the rela-
tively favorable conditions of high water conductivity
σ = 1Cm/m and porosity of 20%, the current required
in the coils is about 1KA, when the time of 10 MHz
irradiation is 1 µs. As follows from Fig. 2, the depth of
penetration in this case reaches 8 m, which is suffi-
ciently long as compared to the assumed probed depth
of 10 cm. It should be noted that it is also possible to
apply the contact method of radio-frequency heating,
where electrodes contact an investigated sample elec-
trically. The method requires sufficiently small electric
currents.

As follows from Eqs. (3) and (16), for the accelera-
tion a(0, t) = ∂w(0, t)/∂t measured after electromagnetic
irradiation (or derived numerically from the measure-
ment of acoustic stresses), the primarily unknown
parameter ξ appears as a coefficient determining the
amplitude and polarity of the acoustic response only.
Therefore, the analysis in terms of the acceleration
looks favorable. Since the effective pressure is a func-
tion of the density of energy deposited into a medium,
the complicated picture of tens of megahertz can occur
in the front part of the acoustic wave responding the
dynamics of density growth (t < tb). We are interested in

k
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latest stages representing the dynamics of thermal
exchange, so we omit the detailed investigation of the
earlier stage and just approximate the signal using
Eq. (16), where Ww(z, t < tb) = Qt.

Acoustic accelerations have been calculated for the
surface of a sandstone sample. The result of the calcu-
lations is shown in Fig. 3, where the function a(0, t)t1/2

is plotted instead of the acceleration function. Due to
the square root dependence of the effective pressure on
time, the dependence of the new function on time tT
looks more illustrative. Also the square time scale was
chosen for the abscissa axis. The curves were normal-
ized to the maximum of acceleration achieved within
the approximation used at t = tb. Curve 1 represents an
extremely short acoustic response following the elec-
tromagnetic heating of a structure having a low perme-
ability of about a millidarcy and, sequentially, a rapid
thermal exchange during tT ~ 0.1 µs. A longer pulse for
the case of intermediate porosity of 0.1 darcy, tT = 2 µs,
is presented by curve 2. A long acoustic response of the
duration of tens microseconds, curve 3, represents the
case of high permeability of about several darcies and
thermal exchange time tT = 40 µs. The pulse width from
tb up to the moment where the level of the amplitude
drops to exp(–1)/2 of the maximum signal value could
be taken as the primary estimation of the time of ther-
mal exchange. Together with independently deter-
mined porosity ν, it gives the estimation of permeabil-
ity. In order to estimate in a more exact manner, we
build the function

(29)

If a number of measurements distributed along a set
of time moments are available, we get the estimation of
the thermal time averaged over the measurement set:

(30)

CONCLUSIONS
The analysis of ultrasound generation in a porous

water saturated medium subjected to a rapid electro-
magnetic irradiation shows that the irradiation mainly
provides the Joule heating of narrow and electrically
high resistive pore throats. The throats interconnect
cavities within the medium and, consequently, deter-
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mine the permeability of the medium. Due to small
throat sizes, the sound generation is accompanied by
considerable thermal flows outgoing from the throats to
a relatively cold environment. As a result, the output of
the ultrasonic measurement represents the dynamics of
the thermal exchange process and the duration of the
process allows one to estimate the permeability value.
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Abstract—The mode spectrum of electroacoustic boundary waves guided by a strip domain uniformly mov-
ing in a 4-mm ferroelectric is considered in the quasi-static approximation. The motion of the strip domain is
found to cause the wave vector of the electroacoustic wave to be noncollinear with the guiding boundaries.
The frequency dependences of the phase velocity are presented for the symmetric and antisymmetric modes
of the electroacoustic wave. These dependences are compared in the reference system fixed to the strip domain
and in the laboratory reference system. It is shown that, at low and moderate frequencies, the symmetric mode
of the electroacoustic wave is more efficiently localized by a moving strip domain than by a single domain
wall. © 2001 MAIK “Nauka/Interperiodica”.
The Gulyaev–Bleustein [1, 2] electroacoustic bound-
ary waves are efficiently guided by single domain walls
[3–5], as well as by systems of parallel domain bound-
aries in ferroelectric crystals [6–8]. The steady interest
in such systems, which can be treated as periodic media
(superlattices) when the number of domain walls
(DWs) is great, is partly associated with the progress in
acoustics of solid layered structures [9, 10] in relation
to the new possibilities of synthesizing them by com-
puter-aided techniques. Another stimulus to study these
structures is the promising possibility of purposefully
changing the regular ferroelectric domain structure by
an external action (electric field, mechanical load, heat-
ing, etc.) in processing devices based on acoustic waves
in order to control their characteristics [11].

Experimental achievements [12] opened up possi-
bilities for practical applications of these effects. How-
ever, except for [13], theoretical studies were limited to
stationary (fixed) DWs. At the same time, it is clear
that, in general, one should allow for the DWs motion
due to the rearrangement of the ferroelectric domain
structure that accompanies switching of acous-
todomain devices. For example, the motion of DWs can
result from breaking the crystal domain structure when
the device operates in a nonstationary abnormal mode
of operation. In order to extend the field of application
and to find additional signal-processing possibilities in
acoustodomain devices, it is even more interesting to
consider the DWs motion as the forced one, caused pur-
posefully by a control action.

This paper continues the study [13] of electroacoustic
boundary waves guided by moving DW. Specifically, it
analyzes the effect of a uniform motion of a strip domain
(SD) of thickness d @ ∆ (∆ is the thickness of a 180° DW)
1063-7710/01/4701- $21.00 © 20056
on the propagation of electroacoustic boundary waves
along this domain in the (001) plane of a 4-mm tetragonal
ferroelectric. Evaluation of waveguide properties of the
moving SD seems most important, because it usually rep-
resents the main element of the regular domain structure
of polydomain ferroelectric materials [14]. On the other
hand, in controlled acoustodomain devices, crystals with
a single SD are preferred.

As in the previous paper [13], we assume that the
ferroelectric has a crystallographic orientation with the
tetrad axis being parallel to the z-axis of the laboratory
coordinate system x0yz, but it has two, rather than one,
parallel 180° domain walls of a very small wave thick-
ness k∆ ! 1, where k is the wave number of the elec-
troacoustic wave. These DWs lie in equispaced (010)
planes of the crystal at y1 = VDt and y2 = VDt + d, where t
is the time, thus forming a strip domain moving at a con-
stant speed VD||y|| [010]. We assume that the DW is
described by a structureless model and that it, as well as
the thermodynamic state of the crystal and the SD
motion, comply with the constraints imposed in [13].

As usual (see [3, 4, 6–8]), we treat the ferroelectric
as a piezoelectric crystal symmetric with respect to the
planes y = y1, 2 and represent the effective piezoelectric
modulus e15 inside and outside the SD as e15 = e for y1 <
y < y2 and e15 = –e for y < y1 and y > y2, where e is the
piezoelectric modulus of a single-domain ferroelectric.
Then, we use the quasi-static approximation and
change to the coordinate system  fixed to the SD
and related to the laboratory coordinate system through
the Galilean transformation 

(1)

x̃0 ỹz̃

x̃ x, ỹ y VDt, z̃– z, t̃ t.= = = =
001 MAIK “Nauka/Interperiodica”
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As a result, for the shear displacements u and uj || z (j = 1
for  < 0 and j = 2 for  > d) and for the electric poten-
tials

(2)

we obtain the relationships

(3)

These relationships are derived from equations obtained

in [3, 6, 7, 13]. In Eqs. (2) and (3),  = ∂2/∂  + ∂2/∂ ;
Φ and Φj are the potentials of the electrostatic leakage
fields induced from the SD surfaces into its volume and
into external regions by the piezopolarization charges;
ct = (λ*/ρ)1/2 is the shear wave velocity; λ* = λ + 4πe2/ε;
ε is the permittivity; λ is the shear modulus; and ρ is the
crystal density.

The conventional boundary conditions [1–8], which
require that the displacements, the potentials, the shear
stresses, and the normal components of the electric
induction be continuous, do not contain time deriva-
tives, and, therefore, they retain their form after we
change to the SD-fixed coordinates. One should bear in
mind only that they are transferred to the planes  =
(j – 1)d, j = 1, 2.

By virtue of Eq. (2), the boundary conditions can be
written in the form

(4)

Aiming to construct the solutions to Eqs. (3) in the
form expi(k||  – Ω ), we obtain the following equa-
tions for the characteristic coefficients q:

(5)

where β = VD/ct .
Since u, Φ, uj, and Φj must be finite in their domains

of definition, Eqs. (5) yield

(6)
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------ e

∂Φ
∂ ỹ
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In Eqs. (6), ξ = k||  – Ω  is the phase of the electroa-
coustic wave measured along the SD; Ω is the fre-
quency in the SD-fixed coordinate system; and k|| and k⊥
are the longitudinal and transverse components of the
electroacoustic wave number k = k|| + k⊥  (see Fig. 1). In
view of the constraint β < 1, we obtain

(7)

In addition to Eqs. (7), we find a relationship that is
characteristic particularly of the electroacoustic waves
and relates the amplitude attenuation factor s and the
spectral parameters k||, k⊥ , and Ω; this relationship can
be found by numerically solving the transcendental
equation

(8)

It represents the solvability condition for the system of
homogeneous algebraic equations in the amplitudes of
displacements Uj, V, and W and potentials Fj, A, and B,
which results from substituting Eqs. (6) into Eqs. (4).
According to the established terminology [1–6], Eq. (8)
can be called the dispersion relationship for the elec-
troacoustic wave guided by the moving SD. In Eq. (8),
_2 = 4πe2(ελ*)–1 is the squared electromechanical cou-
pling coefficient, κ = k||d, and σ = sd.

To calculate the electroacoustic wave spectrum, one
should determine the function σ = σ(κ) from Eq. (8),
where k⊥ d = [κ2β2(1 – β2)–1 – σ2]1/2 as a result of elimi-
nating Ω from Eqs. (7). This function together with
Eqs. (7) and the relationship between Ω and the wave
frequency ω in the laboratory coordinate system deter-
mines any characteristic of the electroacoustic wave in

x̃ t̃

k ⊥
Ω
ct

---- β
1 β2–
--------------, s

1

1 β2–
-------------- k||

2 1 β2–( ) Ω2

ct
2

------– .= =

_4κ2

σ2
----- 1 e 2κ––( ) 1 e 2σ––( )

– 2_2κ
σ
--- 1 e σ– e κ– k ⊥ dcos–( ) 1+ 0.=

k⊥

k||
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j = 2
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y

x

~

~

k

Fig. 1. SD-fixed coordinate system and the distribution of
shear displacements along a sloping wavefront of a noncol-
linear electroacoustic wave: (a) the symmetric mode and
(b) the antisymmetric mode.
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the SD-fixed coordinate system and in the laboratory
coordinate system. Before discussing the numerical
results, we give a general description of the electroacous-
tic wave on the basis of the analysis of Eqs. (6)–(8).

At β = 0 (k⊥  = 0), Eq. (8) takes a known simplified
form [6]

(9)

The upper and lower signs in Eq. (9) correspond to the
symmetric and antisymmetric modes of the electroa-
coustic wave, respectively; these modes received their
names in compliance with the distribution of the dis-
placements u from Eqs. (6) with respect to the SD mid-
dle plane  = d/2. The conclusion that the two modes
are present is also valid for β ≠ 0, because biquadratic
equation (8) has two roots (_2κ/σ)1, 2. Typical profiles
of the displacements u and uj are shown in Fig. 1,
where (a) the symmetric mode is determined by the
root of Eq. (8) with a higher ratio σ/κ, and the anti-
symmetric mode (b) corresponds to the root of Eq. (8)
with the smaller ratio σ/κ.

The motion of the SD changes the structure of the
electroacoustic wave so that its wave vector k becomes
noncollinear with respect to the guiding surfaces  = 0
and  = d. For waves guided by stationary (fixed)
boundaries, this property is observed in the leaky or
quasi-surface acoustic waves [15]; it always indicates
that the wave loses its energy due to the radiation into
the underlying halfspace or into the adjacent external
medium. When the SD moves, the electroacoustic wave
can be formally associated with the decaying leaky
wave only on one side of the SD, for  > d. On the other
side (  < 0), the wave concentrates near the bound-

σ κ_2
1 e σ–±( ) 1 e κ–+−( ).=

ỹ

ỹ
ỹ

ỹ
ỹ

1

2

k0 k*

Ω

Ω*

Fig. 2. General form of the electroacoustic wave spectrum:
the symmetric mode (solid line) and the antisymmetric
mode (dashed line).
aries, which is a property not typical of the known types
of surface or boundary waves. Thus, an energy flux
exists in this wave that flows through the DW with a
component collinear with the SD motion, which elimi-
nates the possibility of losing or accumulating the
energy at the guiding surfaces.

The inclination of the electroacoustic wavefront
(Fig. 1) in the direction of the SD motion and the for-
mation of the transverse component of the wave vector
k⊥  ≠ 0 can be considered as a response to the “ether
wind.” In fact, from the viewpoint of the observer con-
nected with the SD, the medium, due to its drift, trans-
fers energy in the direction opposite to the actual SD
motion. For the electroacoustic wave propagation to be
stationary (k|| > 0, k⊥  > 0, and Ω > 0), the wave must
compensate for this effect by the transverse component
of the energy flux. This component arises when k⊥  ≠ 0
and characterizes the power spent by the external
source (it is present implicitly because of the presence
of the SD motion) for the motion of the electroacoustic
wave connected with the SD through the piezopolariza-
tion charges.

Figure 2 shows a typical mode spectrum of the elec-
troacoustic wave guided by the SD. The SD motion
manifests itself primarily as a change in the slope of
asymptotes 1 and 2. In particular, as follows from the
first equation of Eqs. (3) and Eq. (7) for k⊥ , the low-fre-
quency asymptote 1 of the symmetric mode, which rep-
resents the dispersion law for the bulk shear waves in a
single-domain crystal, has the form Ω = kct(1 – β2) with
allowance for the medium drift. The high-frequency
asymptote 2, which is common for the two modes, rep-
resents the dispersion law for the electroacoustic wave
guided by a single moving DW [13] (the Maerfeld–
Tournois mode [3]) modified by virtue of Eq. (7) due to
the medium drift:

(10)

This law is obtained in the limit d  ∞ (σ  ∞,
κ  ∞) from Eq. (8).

The heavy dot in Fig. 2 (k*, Ω*), at which the anti-
symmetric wave originates, also belongs to asymptote 1,
and, therefore, Ω* = k*ct(1 – β2) and σ* = σ(κ*) ≡ 0.
Delocalization of the oscillations of shear displace-
ments uj from Eqs. (6) indicates that the antisymmetric
mode degenerates into the simplest one and, as
becomes clear from the error found in [16], the only
possible form of the discrete spatial spectrum of the so-
called plane homogeneous waves associated with (bet-
ter to say, captured by) the SD. Since the first of the
characteristic equations (5) has multiple roots at Ω =
Ω* and k = k*, the field of the shear displacements u
inside the SD will contain a linear function of  in
parentheses in Eqs. (6) rather than a combination of
exponential functions. The corresponding distribution

Ω kct 1 β2–( ) 1 _4
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of the shear displacements of the antisymmetric mode
is plotted in Fig. 1 with a dashed broken line.

At the point (k*, Ω*), according to Eq. (7), we have
k⊥  = k||β(1 – β2)–1/2 and k* = k||(1 – β2)–1/2. Using the sub-
stitutions e–σ ≈ 1 – σ and e–2σ ≈ 1 – 2σ in Eq. (8), in the
limit σ  0, we obtain

(11)

Our calculations have shown that, due to the constraint
_2 < 0.5 inherent in ferroelectrics far from the phase
transition, the roots of Eq. (11) almost always comply
with the condition k*d > 2. When _2 ! 1 and β ! 1, an
approximate relationship k*d ≈ 1/_2 follows from
Eq. (11) with a good accuracy. As β  1 at a fixed _2,
k*d grows unboundedly. The same result was obtained
in [6] for the case _2  0. Thus, the antisymmetric
mode disappears when the acoustodomain interaction
is absent (_2 = 0) or vanishes (_2 ≠ 0, β  1). The
latter property follows from the fact that, as β  1,
asymptotes 1 and 2 of the mode spectrum converge
(Fig. 2), and, hence, the electroacoustic wave degener-
ates into a wave that propagates in the bulk of the crys-
tal at the frequency Ω = kct (1 – β2)  0 with the
wave vector components k|| = k(1 – β2)1/2  0 and k⊥  =
kβ  k. This follows from Eq. (7) according to the
condition s = 0. Since the wavefront of this wave is par-
allel to the domain walls (k || VD), this wave cannot pro-
duce piezopolarization charges on them1 and is actually
uncoupled with the SD.

Strictly speaking, for β  1 (Ω  0, s  0,
k||  0), solution (6) describes not a propagating
wave, but a static field of shear displacements in the
entire unbounded crystal, u0 = Uexp ik⊥ , where U is
any of the amplitudes Uj or V + W. However, by chang-
ing to the laboratory coordinate system, one can easily
show that this solution really has the form of a plane
homogeneous wave u0 = Uexpi(k⊥ y – ωt) with the fre-
quency ω = k⊥ VD. It is clear that, by virtue of the pas-
sage to the limit β  1, the phase velocity v = ω/k⊥  =
VD coincides with ct.

At an arbitrary β < 1, the comparison between Eqs. (6)
in different coordinate systems with allowance for
Eqs. (1) yields the rule for transforming the mode spec-
trum of the electroacoustic wave

(12)

This expression and Eq. (7) for k⊥  give the relationship 

(13)

1 According to Eqs. (6), for β  1 (Ω  0, k||  0), we
obtain Φ, Φj = const, which means that there are no piezopolar-
ization charges on the SD boundaries.
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which predicts a positive frequency shift ω – Ω > 0
independently of the receiver position relative to the
moving SD. This can be explained by the fact that the
source is not explicitly defined in the natural wave
problems, and its role can be assigned, if at all, to the
electroacoustic wave itself, rather than to the SD. Being
present at all points of the space, the wave becomes
connected with the SD and involves the medium into
the motion along the y axis equally everywhere and acts
on the receiver as an approaching source.2

By virtue of Eq. (13), asymptote 1 in Fig. 2 takes the
form ω = kct in the laboratory coordinate system and no
longer changes its slope with β. On the contrary, it can
easily be seen from Eq. (10) that the slope of asymp-
tote 2 decreases as β  1 until it entirely converges
with asymptote 1. Therefore, though the mode spec-
trum in the laboratory coordinate system, ω = ω(k), for-
mally resembles the one in Fig. 2, its transformation
due to the SD motion proceeds in a qualitatively differ-
ent manner. The differences in the mode spectrum
behavior due to the choice of the coordinate system
reveal the relativity of the spectral representation of the
wave fields in the form of Eqs. (6) in view of Eq. (13).
This property is particularly clearly seen in the frequency
dependences of the mode phase velocities v(Ω) = Ω/k
(in the SD-fixed coordinates; Fig. 3) and v(ω) = ω/k (in
the laboratory coordinate system; Fig. 4) obtained for
the BaTiO3 crystal. In calculations, we took into
account the equality

(14)

which follows from Eq. (7) for s. By virtue of Eqs. (13)
and (14) and the first formula of Eqs. (7), the functions
v(Ω) and v(ω) can be represented in the parametric
form

(15)

where κ is the parameter and σ = σ(κ) is determined in
the course of the numerical solution of Eq. (8).

From Figs. 3 and 4 and from Eqs. (8) and (15) con-
sidered simultaneously, it follows that, independently
of the choice of the coordinate system, the electroa-
coustic wave guided by the moving SD exhibits the
property inherent in all boundary-guided (surface)
waves, namely, a slow propagation velocity: v ≤ ct . In

2 The only difference follows from the fact that the electroacoustic
wave can be localized by the SD boundaries. It consists in that,
when the receiver is in the region  > d, since the SD is
approaching the receiver, the latter records growing oscillations,
while, when the receiver is in the region  < 0, it records decreas-
ing oscillations (carried away by the SD).
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the SD-fixed coordinate system (Fig. 3), this property
of the electroacoustic wave becomes more pronounced
with increasing β, because the observer does not per-
ceive its transverse transfer. In the limit β  1, when
the longitudinal propagation terminates, the wave looks
completely decelerated (v  0). Conversely, in the
laboratory coordinate system (Fig. 4), the deceleration
of the electroacoustic wave due to the SD motion com-
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Fig. 3. Phase velocity of the electroacoustic wave guided by
an SD in BaTiO3 (_2 = 0.38) in the SD-fixed coordinate
system versus frequency for β = (1) 0, (2) 0.3, and (3) 0.6:
the symmetric mode (solid line) and the antisymmetric
mode (dashed line).

Fig. 4. Phase velocity of the electroacoustic wave guided by
an SD in BaTiO3 (_2 = 0.38) in the laboratory coordinate
system versus frequency for β = (1) 0, (2) 0.3, (3) 0.6, and
(4) 1: the symmetric mode (solid line) and the antisymmet-
ric mode (dashed line).
pletely disappears as β  1 (v  ct; see straight
line 4 in Fig. 4). This results from both the longitudinal
propagation and the transverse transfer. Therefore,
when β  1, although the wave propagation in the
longitudinal direction terminates, a possibility of the
transverse wave motion remains when, in view of the
above-mentioned uncoupling of the electroacoustic
wave with the SD, the wave degenerates into a homo-
geneous plane wave.

Since the modes exhibit a frequency dispersion,
along with the phase velocities it is reasonable to con-
sider the group velocities VgΩ = ∂Ω/∂k (in the SD-fixed
coordinates, k = k(Ω)) and Vgω = ∂ω/∂k (in the labo-
ratory coordinate system, k = k(ω)). By virtue of
Eq. (12), the relationship between them is given by the
formula

(16)

where the Galilean velocity composition law is clearly
seen. This formula reveals the twofold effect of the SD
motion on the signal transmission by the electroacous-
tic wave. First, as a result of the SD motion, the spec-
trum of the wave is modified, which affects the delay of
the transmitted signal and is characterized by the first
term in Eq. (16). Second, the transverse drift of the sig-
nal by the moving SD takes place, which is represented
by the second term in Eq. (16). The nature of the trans-
verse signal drift clearly manifests itself when β ! 1. In
this case, the SD motion primarily governs the orienta-

tion of the vector VgΩ and the component  ~ β can
be considered as a measure of the increase in the longi-
tudinal signal delay: an increase in β favors an increase

in  and also causes a decrease in , thereby
increasing the delay.

In view of Eq. (14) and frequency representations (13)
and (15), the quantities VgΩ and Vgω can be reduced to
the form

(17)

Equations (17) (which require that not only the func-
tion σ = σ(κ), but also its derivative σ'(κ), be deter-
mined numerically) along with Eqs. (13) and (15) for
the frequencies allow one to calculate the group veloc-
ities as functions of the frequency. Their difference in
the SD-fixed and laboratory coordinate systems is basi-
cally similar to that for the phase velocities (see Figs. 3,
4). However, the quantities VgΩ and Vgω approach the
high-frequency limit in a different manner: in the high-
frequency asymptotics, the group velocities of the sym-
metric and antisymmetric modes exchange their places.
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Since real crystals have finite dimensions, in order
to find whether it is possible to use the effect of the
translational transfer of the electroacoustic wave by the
moving SD, it is important to estimate the degree of its
boundary localization Γ = s/k defined as the ratio of the
wavelength to the scale (length) of the mode boundary
localization Λ = 2π/s outside the SD. In the case under
study, Γ = σ(κ)/kd; in view of Eq. (14), we obtain

(18)

This expression is invariant under transformation (1),
which allows us to limit the study to analyzing it in one
of the two coordinate systems. In particular, when used
with Eq. (15) for ω, Eq. (18) yields a parametric repre-
sentation for Γ(ω) in the laboratory coordinate system.
The quantity Γ(Ω) can be obtained through the Doppler
frequency shift.

Our calculations show that the SD motion slightly
decreases the electroacoustic wave localization coeffi-
cient. This effect is more pronounced at lower frequen-
cies for the antisymmetric mode. For the symmetric
mode, the localization coefficient exhibits a maximum
whose frequency is almost independent of β in the lab-
oratory coordinate system. The localization length is a
little greater than two wavelengths; therefore, at a dis-
tance from the SD of, e.g., three wavelengths, the sym-
metric mode of the electroacoustic wave will be virtu-
ally absent. At this and longer distances between the
SD and the external boundaries of the crystal, a self-
contained propagation of the electroacoustic wave and
the possibility of its translation by a moving SD
become real. It should be noted that, under the consid-
ered conditions, the localization of the symmetric mode
of the electroacoustic wave by an SD is always higher
than that by a single moving DW.

Γ σ κ( ) 1 β2–( )1/2

κ2 β2 1 β2–( )σ2 κ( )–[ ]1/2
------------------------------------------------------------.=
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Abstract—Experimental data are presented on the blind dereverberation of the noise-type signal generated by
a sound source moving in the deep sea. The noise emitted by a towed source is received by a drifting hydro-
phone with a high excess of the signal over the ambient noise, which results in a stable interference pattern of
high contrast. The observed interference structure indicates that the signal arrives at the receiver along different
paths. With the use of the blind dereverberation technique for the signal processing and without any a priori
information on the properties of the propagation channel, the parameters (the delay, the amplitude, and the
phase) of each of the seven interfering signals are determined. From the data obtained, the frequency response
of the filter that provides a strong suppression of the reverberation is calculated and the spectrum of the received
signal is obtained without any interference distortions. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

An important feature of the process of the sound
field formation in oceanic waveguides is the interfer-
ence caused by the surface and bottom reflections and
by the layered structure of the water bulk. The interfer-
ence effects lead to the reverberation, which consists in
the fact that, in addition to the main signal, multiple sig-
nals are received that propagate over different paths and
arrive at the receiver with different delays. The rever-
beration-caused distortions of the signal are equivalent
to the action of a nonlinear filter whose parameters are
completely determined by the delays, amplitudes, and
phases of the reflected signals. 

The only way to get rid of the reverberation distor-
tions is to filter the signal. For this purpose, one should
construct a filter with a frequency response that is
inverse with respect to that of a filter equivalent to the
reverberation distortions. To construct the reverbera-
tion-suppressing filter, special-purpose measurements
are usually carried out. For example, the reverberation
distortions can be measured for a precisely known sig-
nal. The process that leads to eliminating the reverber-
ation distortions is called dereverberation. The derever-
beration is regarded as blind when no additional mea-
surements are performed, and all the necessary
information is extracted from the received distorted sig-
nal of an a priori unknown shape. 

A method of blind dereverberation based on the
mathematical properties of the signal is known [1]. In
this method, the frequency response of the filter that is
inverse to the reverberation is found from the principle
of minimal phase shift for two receivers. However, this
method is now at the stage of development and is not
always applicable [2, 3]. 

Another method of blind dereverberation has been
developed by us and successfully applied to the in-sea
1063-7710/01/4701- $21.00 © 20062
measurements. This method is based on the direct
extraction of the required information on the parame-
ters of the delayed signals from the received distorted
signal. We managed to do so by taking into account the
specific features of the interference structure formation
[4–9]. It was found that, from the spectrum of the inter-
ference-modulated received signal, the information can
be extracted on values of the signal delays with an
accuracy of several fractions of the digitizing unit.
Based on the measured delays, we developed a tech-
nique for the determination of the signal amplitudes
and phases to a required accuracy. From these parame-
ters, we determined the frequency response of the filter
that eliminates the particular reverberation distortions. 

The method is verified by both numerical and in-sea
experiments. The latter were carried out in a deep sea
(Z = 3100 m), with the reception of the noise (within the
frequency band 10–4000 Hz) generated by a towed
sound source that passed the receiving hydrophone at a
distance of about 700 m. In these measurements,
according to the interference pattern, the level of the
emitted noise was much higher than that of the ambient
noise. The entire interference structure of the near
sound field is published in [9], and a fragment of it is
presented below. With a single experimental realization
of the received noise, 1 s in duration, the parameters
were determined of seven delayed signals, two of
which proved to have opposite phases, the others being
in phase with the most rapid and intense signal. The
amplitudes of the delayed signals were within 20–30%
of the amplitude of the maximal signal. By applying the
inverse-reverberation filter, we considerably sup-
pressed the observed interference pattern. 

The parameters of the delayed signals, which were
theoretically estimated for the specific conditions of the
001 MAIK “Nauka/Interperiodica”
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experimental site, correlate with the parameters obtained
from the experiment. 

THEORY 

We use the following model of the received signal.
An initial signal F(t ) is repeated at time intervals τn
with changed amplitudes an, which can be positive or
negative. Later, this model can be complicated by intro-
ducing a varying phase that is the same for all spectral
frequencies of F(t). With this model, the received sig-
nal P(t) can be expressed as 

(1)

Expression (1) is a particular case of a more general
expression 

(2)

where S(t) is the response of a linear filter to an excita-
tion in the form of a δ-pulse. In our case, with the spec-
ified model of the signal, the quantity S(t) is the follow-
ing sum of δ-functions: 

(3)

From the theory of linear filters, the spectrum of P(t)
is a product of the spectra of F(t) and S(t): 

(4)

Here, the spectrum means the result of a complex
Fourier transform of the function indicated by the sub-
script of G. With the model at hand, by substituting
Eq. (3) in Eq. (4), we obtain the following initial
expression: 

(5)

In Eq. (5), we performed the aforementioned gener-
alization by introducing the phase ϕn of the delayed sig-
nal, which is the same for all values of ω. 

The form of Eq. (5) suggests how one can obtain the
signal F(t) from P(t) thereby having suppressed the
distortions caused by the signal repetitions, i.e., by the
reverberation. To do so, one should produce three opera-
tions: (a) to determine the spectrum GP(ω) of the
received signal by applying the Fourier transform; (b) to
divide this spectrum by the square-bracketed expression
in Eq. (5), i.e., by the frequency response of the equiv-
alent linear filter; and (c) to apply the inverse Fourier
transform. These operations cause no problems if the
filter frequency response is known. 

The problem is how to determine the frequency
response of the equivalent linear filter solely by using

P t( ) F t( ) anF t τn–( ).
n

∑+=

P t( ) F τ( )S t τ–( ) τ ,d

∞–

t

∫=

S t( ) δ 0( ) anδ t τn–( ).
n

∑+=

GP ω( ) GF ω( )GS ω( ).=

GP ω( ) GF ω( ) 1 an iϕn( ) iωτn( )expexp
n

∑+ .=
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the signal P(t) without any other measurements (the
blind dereverberation). We show the way to do so with
the specified model for the signal P(t). According to
Eq. (5), it is sufficient to determine the values of the
quantities τn, an, and ϕn. 

First, the values of the signal delays τn must be
determined with the maximal possible accuracy. This
can be done by the spectral analysis of the logarithm of
the absolute value of the spectrum of the received sig-
nal. This procedure has different applications and is
called the cepstral analysis [1]. By taking the logarithm
of Eq. (5), we obtain 

(6)

According to Eq. (6), in the spectrum (cepstrum) of
the logarithm of the modulus of the spectrum of the
received signal, spectral lines must present at frequen-
cies (“quefrencies”) that are equal to the signal delays.
In such a way, one can both establish the fact that dis-
crete delays are present in the signal (from the exist-
ence of the associated maximum in spectrum (6)) and
determine the delay times of the signal (from the posi-
tion of this maximum). False maximums that corre-
spond to the first term in Eq. (6) may also occur. How-
ever, this fact can easily be established at the next stage
of signal processing, in the procedure of determining
the coefficients. For spectral components of the first
term in Eq. (6), zero-valued amplitudes are obtained. 

The values of the coefficients an and ϕn are sepa-
rately determined for each delay. To do so, a set of ref-
erence functions is constructed. To make this procedure
clear, let us consider the determination of the only coef-
ficient a1. The following function is taken as reference: 

(7)

where k is so far an arbitrary number and τn is the pre-
viously estimated signal delay. 

In view of Eq. (1), the logarithm of spectrum (7) can
be represented as 

(8)

where 

(9)

(10)

(11)

(12)

GP ω( )( )ln GF ω( )( )ln=
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When expression (9) is equal to zero, Eq. (8) explic-
itly involves no exponential terms of the form
exp(iωτ1). This means that, if the logarithm in Eq. (8)
can be linearized, there will be no components of spec-
trum (cepstrum) (8) at quefrencies τ1. However, the log-
arithm in Eq. (8) can be linearized if the amplitudes of
the delayed signals are sufficiently low. Below, this
condition is presented in a numerical form. Here and
further, we assume that the amplitudes of the delayed
signals are sufficiently small. In this case, by assigning
different complex values to the coefficient k, one can
achieve a situation when B1 becomes either zero or
reaches some minimal absolute value. A finite minimal
value means that the corresponding quefrency occurs in
the last term in Eq. (8). Thus, all parameters of the
reverberation frequency response which are involved in
Eq. (5) can be successively determined. 

Now, to eliminate the reverberation distortions, it is
sufficient to divide the spectrum of the received signal
by the frequency response with the determined param-
eters of the delay signals substituted in it. Then, the
inverse Fourier transform can be applied. Again, the
cepstral analysis can be used to prove that the problem
is correctly and completely solved. The cepstrum of the
reconstructed signal should not involve any intense dis-
crete components. 

EXPERIMENTAL RESULTS 

Prior to processing the experimental data, we
numerically calculated the limits of possible ampli-
tudes of the delayed signals. The calculations were car-
ried out according to the first term in expression (8).
Into this expression, specific values were substituted
for five delayed signals. These values are shown in
Table 1. The amplitudes of the signals corresponding to

–40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

–20

0

–60

Fig. 1. Amplitude of the quefrency τ1 in the first term of
Eq. (8) at B1 = 0 versus the amplitudes of the delayed sig-
nals. The values of the parameters are indicated in Table 1. 

Table 1

τn an

38 1

59 0.8

77 0.5

83 0.3
all delays except for the first one were multiplied by the
factor q varying from 0 to 0.7. The coefficient k was
specified to be precisely equal to a1. The spectrum of
the first term in Eq. (8) (cepstrum) was measured at a
single frequency that corresponds to a fixed delay τ1.
The results are presented in Fig. 1. A sharp boundary
can be seen in the amplitude values of the delayed sig-
nal: below it, there is no signal of the quefrency for
which condition (9) is valid. The sharpness of this
boundary is an important fact, which evidences that the
condition of low delayed signals does lead to accurate
estimates of their amplitudes if the proposed method is
used. 

In our experiment on blind dereverberation, a broad-
band source of noise-like sound was used. The obtained
signal was represented as a sequence of 24 realizations.
The current spectrum of the received noise is shown in
Fig. 2 in the coordinates of frequency and time (and
number of realization). The duration of the realization
that was spectrally analyzed was 0.5 s with the 8192-Hz
frequency of the signal digitization. Thus, the signal
spectrum ranged from 0 to 4096 Hz. In the current
spectrum, interference lines that indicate the interfering
modulation of intense spectral components due to the
reverberation are pronounced. 

The cepstrum (spectrum of the logarithm of the
modulus of the spectrum) is shown in Fig. 3 for this sig-
nal in the coordinates of quefrency (from 0 to 10 ms)
and number of realization. The vertical lines are well
pronounced; these lines correspond to the delay times
of the signal arrivals relative to the signal arriving first. 

To determine the delays τn, amplitudes an, and
phases ϕn of the interfering components, further pro-
cessing was performed with the use of Eqs. (7)–(9) for a
single realization (no. 8) at the seven most intense que-
frencies. The obtained results are summarized in Table 2. 

The accuracy attained in determining the maxi-
mums of quefrencies was up to 0.125 of the step of the
time grid. It was done by adding zeros to the spectrum
of the function (for details, see [10]). The amplitudes
and phases were also fairly reliably determined. The
reliability can be confirmed by Fig. 4 where the varia-
tion of the quefrency in Eq. (8) is shown for a varying
coefficient k at the quefrency 1.282 ms. The plot shown
in Fig. 4 is typical. The depth of the minimum was
always no less than 50 dB. 

Figures 5 and 6 show the spectrum and cepstrum of
the signal before and after the dereverberation proce-
dure. The parameters of the filter were the same for all
realizations. It can be seen from the figures that these
parameters are appropriate for other realizations: the
eighth row in Figs. 5 and 6 does not differ from the oth-
ers. This fact is evidence of the stability of the propaga-
tion conditions for all 24 rows of data, i.e., for the 12-s
duration of the measurements. The cross-sections of the
current spectra are shown in Fig. 7 before the process-
ing (the thick curve) and after it (the thin curve). The
cross-sections are plotted for the selected realization
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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no. 8. As a result of the dereverberation, the spectrum
of the received signal has become smoother. 

DISCUSSION 

In considering the interference effects that occur
when sound propagates in an acoustic waveguide, it is
common practice to use the analogy between wave pro-
cesses and oscillations. Then, the problem of interfer-
ence in the propagation channel is reduced to that of
signal transmission through the linear filter that is rep-
resented by the medium itself. If the nonlinear phenom-
ena caused by high sound levels are neglected, the use
of transfer functions is quite justified in describing the
channel of the sound propagation. 

The transfer functions S[ω, r, zs, zr, C(r, z), t] of an
underwater channel depend on the relative positions of
the source and receiver (r is the distance between them,
zs and zr are their depths), the distribution C(r, z) of the
sound speed, the properties of the bottom, the sea state,
the inhomogeneities of the water bulk and the sea floor,
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Fig. 2. Modulus of the current spectrum of the analyzed sig-
nal. The abscissa and ordinate axes represent the frequency
(in kHz) and the ordinal number of the realization, respec-
tively. 

Fig. 4. Cepstrum of function (8) (in dB) at the quefrency
1.282 ms versus the coefficient k involved in Eq. (8). The
absolute value of the coefficient k is plotted along the hori-
zontal axis. 
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and so on. Most of these factors can vary in time,
though the key ones governing the formation of the
sound field (such as the medium stratification, the
parameters of the waveguide boundaries and currents)
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Fig. 3. Current cepstrum for the analyzed signal. The
abscissa and ordinate axes represent the quefrency (in ms)
and the ordinal number of the realization. 

Fig. 5. Same as in Fig. 2 after the elimination of the rever-
beration. 
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Fig. 6. Same as in Fig. 3 after the dereverberation. 
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are characterized by much weaker (or slower) time
dependences. 

To study the transfer characteristics of underwater
sound waveguides treated as multichannel linear sys-

0
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–20

–30
0 1000 2000 3000 4000

Fig. 7. Modulus of the spectrum of the analyzed signal of
realization no. 8 before (the thick curve) and after (the thin
curve) the dereverberation processing. The modulus of the
spectrum is frequency averaged. 

0
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2
kHz

Table 2

τn, ms An ϕn, deg

0.214 0.232 180
0.32 0.179 0
0.778 0.242 0
1.022 0.223 0
1.282 0.123 0
4.974 0.202 0
5.264 0.2 180

Fig. 8. Interference structure of the sound field of the received
signal (0–2.0 kHz) generated by a moving source of broad-
band sound in the deep-sea experiment. The depths of the
source and the receiver are 100 and 78 m, respectively. 
tems that have a great number of inputs and outputs
with the corresponding number of the transfer func-
tions, the well-known methods of measuring the impulse
and frequency responses are applicable. These methods
are based on the use of pulsed, cw, or noise-type signals
for sounding the underwater sound channel.

In our deep-sea experiment, we used the noise trans-
mission within the frequency band 10–4000 Hz. The
signals were generated by a broadband sound source
that was towed at a depth of 100 m with a constant
speed relative to the receiver, which slowly drifted at a
depth of 78 m. A continuous sensing of the waveguide
by the noise signal allowed us to measure the squared
modulus of the frequency transfer function for various
distances r from the source. 

Figure 8 shows a fragment of the interference struc-
ture of the sound field, which was experimentally
observed at the distances 500 to 800 m from the source
within the frequency band 0–2 kHz. This figure illus-
trates the main features and laws of the sound field for-
mation in a deep sea with the deep-axis underwater
channel. As has been mentioned above, the formation
of the interference structure of the sound field produced
by a broadband sound source in a deep sea is associated
with the signals that arrive at the receiver along differ-
ent paths, with different delays τ relative to each other. 

To determine the parameters of the interfering com-
ponents (the relative delays, amplitudes, and phases),
we applied the blind dereverberation processing to the
signals that were received by the hydrophone at the dis-
tances around 700 m from the source, with weakly
varying path lengths (the source moved nearly perpen-
dicularly to the propagation path). 

To compare the measured parameters of the interfer-
ence-modulated spectrum of the received signal (see
Table 2), calculations were carried out for the interfer-
ence structure of the sound field of a point source in
view of the experimental conditions. In the calcula-
tions, we used the ray theory with the measured depth
dependence C(z) of the sound speed (Fig. 9a), the
source and receiver depths equal to zs = 100 m and
zr = 78 m, and the distances r varying up to 1000 m.
Figure 9b shows the calculated delays (measured from
the first arrival) for the signals of the ray groups that
participate in forming the interference structure. The
results are plotted versus the distance (the τ–r dia-
gram). 

The τ–r diagram presents the main groups of curves
that are associated with the following types of rays
interfering at the reception point: the rays refracted
below the channel axis (with the minimal propagation
times) and reflected from the surface (with delays that
weakly depend on the distance), the rays refracted in
the deeper channel (the monotonically decaying curve
of relative delays), and the rays refracted above the
channel axis and reflected from the surface (the set of
curves with small delays at the distances longer than
500 m). In other words, the interfering surface-reflected
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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rays are added to the classical “quartets” of rays, which
are typical of the underwater sound channel. Obvi-
ously, the different types of rays contribute differently
to the energy of the received signal. Some of them can
have a low intensity, the bottom-reflected rays being an
example for a deep sea. At a distance of about 720 m,
the spectrum of the calculated delays agrees well with
that of the measured delays presented in Table 2. It is
worth mentioning that the insufficient precision of the
available hydrological data prevents one from calculat-
ing the relative delays to an accuracy that can be
attained in the measurements based on the described
dereverberation method. 

An important advantage of the proposed method is
the possibility to determine the relative phases of the
signals with different delays. By doing so, one can dis-
tinguish between the signals propagating along the rays
that have even or odd numbers of surface reflections,
provided that the signal is first to arrive without any sur-
face reflections or with an even number of them. A phase
change of π/2 also occurs if the ray has turning points. If
reflections from the elastic bottom exist, the determina-
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Fig. 9. (a) Measured vertical profiles C(z) of the sound speed
up to the depth 3000 m; (b) calculated relative delays of the
signals versus the distance from the sound source. 
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tion of the relative phase will allow one to measure the
complex-valued reflection coefficient. 

The existence of the interference structure in the
sound field confirms the coherence of the interfering
rays, and the possibility of determining the signal
amplitudes for different delays, in fact, allows one to
determine the degree of coherence for the interacting
components. 

CONCLUSIONS 
This study opens the prospects for determining the

structure of sound signals (the delays of modes or rays,
their amplitudes and phases) from the parameters of the
nearly arbitrary sound signals that can be observed in a
sufficiently broad frequency band. The accuracy of
determining the delays is the key characteristic in, e.g.,
ocean tomography, and the elimination of the interfer-
ence distortions is important in nearly all acoustic mea-
surements. 

ACKNOWLEDGMENTS 
This work was supported by the Russian Founda-

tion for Basic Research, project nos. 99-02-16401 and
00-15-9674. 

REFERENCES 
1. M. H. Hayes, J. S. Lim, and A. V. Oppenheim, IEEE

Trans. Acoust., Speech, Signal Process. 28 (1980). 
2. S. Subramaniam, A. P. Petropulu, and C. Wendt, IEEE

Trans. Speech Audio Process. (September 1996). 
3. A. P. Petropulu and C. L. Nikias, IEEE Trans. Signal

Process. 41 (6), 2088 (1993). 
4. V. N. Golubev, V. I. Il’ichev, E. F. Orlov, et al., in Acous-

tic Waves in the Ocean, Ed. by L. M. Brekhovskikh and
I. B. Andreeva (Nauka, Moscow, 1987), pp. 100–111. 

5. Interference of Broadband Sound in the Ocean, Ed. by
V. A. Zverev and E. F. Orlov (Inst. Prikl. Fiz., Akad.
Nauk SSSR, Gorkiœ, 1984). 

6. E. F. Orlov, V. N. Fokin, and G. A. Sharonov, Akust. Zh.
34, 902 (1988) [Sov. Phys. Acoust. 34, 520 (1988)]. 

7. E. F. Orlov and G. A. Sharonov, Interference of Sound
Waves in the Ocean, (Dal’nauka, Vladivostok, 1998). 

8. Acoustic Interferometry in the Ocean, Ed. by E. F. Orlov
and G. A. Sharonov (Dal’nauka, Vladivostok, 1993). 

9. A. D. Sokolov, V. N. Fokin, and G. A. Sharonov, Izv.
Vyssh. Uchebn. Zaved., Radiofiz. 38 (8), 817 (1995). 

10. Formation of Acoustic Fields in Oceanic Waveguides,
Ed. by V. A. Zverev (Inst. Prikl. Fiz., Akad. Nauk SSSR,
Nizhni Novgorod, 1991). 

Translated by E. Kopyl



  

Acoustical Physics, Vol. 47, No. 1, 2001, pp. 68–75. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 47, No. 1, 2001, pp. 83–91.
Original Russian Text Copyright © 2001 by Ivanov.

                                                                                                                                                           
Damping of the Acoustic Diffraction and Radiation Fields 
Produced by a Convex Body 

V. P. Ivanov 
Scientific Center of Nonlinear Wave Mechanics and Technologies, Russian Academy of Sciences,

ul. Bardina 4, Moscow, 117334 Russia
e-mail: office@nwmtc.ac.ru

Received April 7, 1999

Abstract—The problem of active damping of the acoustic radiation and diffraction fields produced by
a convex body is solved using a discrete array of receivers and radiators of nonzero wave dimensions.
© 2001 MAIK “Nauka/Interperiodica”.
The development of science and technology and,
especially, the ecological problems which have become
most topical in recent years often require unconven-
tional approaches for their solution. An example is the
method of active noise control [1–8]. This method con-
sists in the damping of the extraneous acoustic field in
a given spatial region or in the damping of the field of a
radiating body with the help of auxiliary radiators that
operate in antiphase with the primary sources. The
method of active field control is formalized as an
inverse diffraction problem for acoustic fields in a
region with an unknown boundary. According to
Glasko [9], the general property of inverse problems is
that they are physically unrealizable. This paper studies
the inverse problem for a physically realizable model of
the process of active damping of acoustic fields. The
paper presents a three-dimensional generalization of
the results obtained earlier [10]. 

FORMULATION OF THE PROBLEM 

We consider the case of low-frequency diffraction,
when the characteristic wave dimensions of the body
are of the order of unity. Proceeding from the require-
ments of physical realizability, we define the velocity
field potential U excited by the extraneous sources F,
the auxiliary radiators, the radiation of the body itself,
and the field of diffraction by bodies as the solution to
the following problem. We set the origin of coordinates
inside a convex body bounded by the surface S01 and
arrange the centers of spherical receivers Sjm (m = 1, …,
Mj) of radius a1 on the spheres with the radii Rj, where
j = 1, 2. On a sphere of radius R3, where R1 < R2 < R3,
we place the centers of auxiliary spherical radiators S3m
of radius a2. The body S01 lies inside the sphere of
radius R1; outside the sphere of radius R > R3, we have
a spatial region F where extraneous sources with the
volume velocity f are located. We take into account that
the receivers average the results of measurements of the
total field U over their surfaces. The function f is
unknown, and the field generated by extraneous
1063-7710/01/4701- $21.00 © 20068
sources and described by this function should be deter-
mined in the vicinity of the body S01. Another unknown
quantity is the distribution of the normal velocity f01 of
the surface S01 which characterizes the field of the self-
radiation of the body. We assume that the known quan-
tities are 

where  is the density of the potential of the self-
radiation field of the body S01. We define the potential
U in the region outside the bodies Sjm (j = 0, …, 3, m =
1, …, Mj, and M0 = 1) as the solution to the problem 

(1)

where ∂/∂n is the derivative with respect to the normal
to the surface Sjm. We assume that the radiation condi-
tion, or the decay condition, is satisfied at infinity. We
denote by U∂ the diffraction and radiation fields pro-
duced by the bodies Sjm, j = 0, …, 3. It is necessary to
determine the spatial arrangement and the number M3
of the auxiliary radiators S3m and the complex ampli-
tudes f3m so as to satisfy the following inequality for all
points outside the sphere of radius R: 

sup|U∂| < ε, (2)

where ε is sufficiently small. 
We assume that the wave number k is not a reso-

nance one for the regions bounded by the surface S01
and the spheres Sjm and S3m. From the substitution spec-
ified above, it follows that the damping problem repre-
sents an inverse diffraction problem in a region with an
unknown boundary, because, firstly, we seek the func-
tions f3m, and, secondly, we do not know the spatial
arrangement, the total number, and the wave dimen-

Q01* µ01
* S01, QFd

S01

∫ f F,d

F

∫= =
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∆ k
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+( )U 4πf ,  k– ω/c const,  suppf F,⊆= = =
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S jm
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f jm 0 for j 1 2,,= =
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sions of the receivers and auxiliary radiators. We denote
the incident field of extraneous sources by UF and
define it as the solution to Eq. (1) in free space with
the radiation condition. To solve the problem given by
Eq. (1) with condition (2), it is necessary to consider an
auxiliary problem of measuring and separating the
fields, namely, to determine the numbers Mj (j = 1, 2),
the wave dimension ka1, and the spatial arrangement of
the receivers so as to make it possible from the mea-
surements of the normal velocity induced by the total
field at the surfaces Sjm of these receivers to calculate
the field UF inside the sphere of radius R1 and the dif-
fraction and radiation field U∂ outside the sphere of
radius R2 with a predetermined accuracy. 

SOLUTION OF THE PROBLEM OF MEASURING 
AND SEPARATING THE FIELDS 

We solve the problem of the field measurement on
the assumption that the type of auxiliary radiators real-
izing the damping problem is set beforehand. The den-
sity of the field potential at the surface of such an aux-
iliary radiator S3m is determined by the self-radiation
field and the field of diffraction and secondary diffrac-
tion by the surface S3m. For the selected type of radia-
tors, this quantity is considered as constant. Setting
ka1 ! 1 and using the aforementioned condition for the
wave number, we seek the field U, U = U∂ + UF , in the
form of a sum of simple layer potentials set at the sur-
faces Sjm, where j = 0, …, 3, and the volume potential
UF set in the region F'. These potentials have the form 

(3)

where µjm are continuous densities of the velocity
potential that are induced by the total field at the sur-
faces Sjm and Rjm and RF are the distances from the
observation point to the points of the surfaces Sjm and
the region F. We substitute Eqs. (3) for the field U into
the boundary conditions at the surfaces Sjm (j = 1, 2) and
integrate the result over the surfaces Sjm, because each
receiver averages the measured value over its surface.
As a result, we obtain a finite system of algebraic equa-
tions that relate an infinite number of amplitudes of the
spatial harmonics g1nα of the diffraction and self-radia-
tion field of the body S01 to the amplitudes g2nα of the
incident field of extraneous sources and the field
formed by the radiation of auxiliary radiators and dif-
fraction by these radiators: 
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In Eq. (4), we used the following notation: 

bqp are the directly measured quantities; δqp is the mea-
surement error due to the finiteness of the receiver sys-
tem and the method of the field measurement at the sur-

face Sqp;  is the zeroth harmonic of µ3m; ψn(x) and

(x) are Bessel and Hankel spherical functions; (x)
are associated Legendre polynomials; (r01, θ01, ϕ01) are
the spherical coordinates of a point of the surface S01 in
the basic coordinate system; (rF, θF, ϕF) are the spheri-

cal coordinates of a point of the region F; (

 

R

 

q

 

, ,

 

) are the coordinates of the receiver centers; and

(

 

R

 

3

 

, , 

 

) are the coordinates of the radiator cen-
ters in the basic coordinate system. In the case of low-
frequency fields and a uniform distribution of the
receiver centers over the spheres of radius 
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, the fol-
lowing estimate is valid for the measurement error
related to the secondary diffraction field: 

 

(5)

 

where 

 

b

 

* = 

 

|

 

b

 

qp

 

|

 

, 

 

a

 

1

 

/  < 1/4, 

 

δ

 

 is a sufficiently

small number, and  is the minimal distance between
the centers of the receivers 

 
S

 

qp

 
 and 

 
S

 

jm

 
. In Eq. (5), we used

× Pn
α θqp

0
cos( ) iαϕqp

0( )exp

=  
ψ0 ka1( )h0

1( )'
ka1( )

ψ0' ka1( )
------------------------------------------bqp 1 δqp+( )– cqp,=

q 1 2, p, 1 … Mq, ,= =

g1nα 2n 1+( ) n α–( )!
n α+( )!

------------------- µ01ψn kr01( )
S01

∫=

× Pn
α θ01cos( )exp –iαϕ01( )dS01;

g2nα 2n 1+( ) n α–( )!
n α+( )!

------------------- f hn
1( )

krF( )Pn
α θFcos( )∫

F

∫=

× exp –iαϕF( )dF d3m 2n 1+( )hn
1( )

kR3( )
m 1=

M3

∑+

× Pn
α– θ3m

0
cos( )e

iαϕ3m
0

–
, bqp µqp Sqp;d

Sqp

∫=

d3m 4πa2
2ψ0 ka2( )d3m

0
const, m 1 … M3;, ,= = =

d3m
0

hn
1( )

Pn
m

θqp
0

ϕqp
0

θ3 p
0 ϕ3 p

0

δqp
4b*
bqp

---------- ψ0
' ka1( )

ψ0 ka1( )h0
1( )'

ka1( )
----------------------------------------

N 1+( )2
N 1+( ) Nln+

kR1
-------------------------------------------------------≤

× 1 O ka1( )+( ) δqp* δ,<=

max
q p,

Rqpjm*

Rqpjm*



70 IVANOV
the assumption that M1 = M2 = (N + 1)2. For the selected
method of measurement, the following considerations
should be taken into account. In this method, only the
zeroth harmonic of the field induced at the receiver sur-
face is measured in the coordinate system related to the
center of the receiver. If the method allows one to mea-
sure other harmonics as well, which provides extra
information on the field [11], an additional error arises
at every receiver because of the unknown number of the
neglected harmonics of the field induced at the receiver.
From condition (5) with a given N, it is easy to obtain
an estimate for the allowed receiver size by replacing
the Bessel functions with their asymptotics correspond-
ing to ka1  0: 

(6)

The number N will be determined in the course of solv-
ing the damping problem. From formula (6), we obtain
the upper estimate of the receiver wave dimension,
which, in the case of a uniform distribution of receivers
over the sphere Sj, provides a small measurement error
related to the secondary diffraction field. On the other
hand, for the wave dimension of the receiver, the fol-
lowing relationship should hold: 

(7)

where the parameter k  is assumed to be preset. This
condition should be satisfied, because the field induced
at the receiver must exceed some threshold value
determined by the receiver sensitivity. The system of
Eqs. (4) has an infinite number of solutions. In the
case kR1 ≅  1.0, the field due to the diffraction by the
bodies Sjm (j = 0, …, 3) is determined with fairly high
accuracy by the first (N + 1)2 spatial harmonics. There-
fore, we seek the solution to system (4) in the form
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n ≥ N + 1, where j = 1, 2. Then, we have 
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In the previous publication [12], it was shown that, with
a certain arrangement of the receiver centers on the
spheres of radii R1 and R2, the solution to system (8)
exists for an arbitrary N, provided that the relations 

(9)

introduced in the cited paper hold and the wave number
k is not a resonance one for the layer R1 ≤ r ≤ R2 with
perfectly compliant walls; i.e., 
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The physical interpretation of condition (9) at n = 0 is
quite simple: the centers of the receivers must not lie at
the points corresponding to the zero values of the asso-

ciated polynomials (x) where the spherical harmon-
ics are equal to zero. When conditions (9) and (10) are
fulfilled, the solution to system (8) exists for any N and
any right-hand side, and this solution has the form 
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where the unknown quantities Xqnα are determined by
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Here, ∆m is the Vandermonde determinant of the 2m +
1 matrix formed by the elements {exp[2πijs/(2m + 1)]};
j = 0, …, 2m; –m ≤ s ≤ m; 

E(x) is the integral part of a number x;  = 1 for x >
0; and  = –1 for x < 0. The quantity ∆m + |α|(cq)
denotes the Vandermonde determinant of the matrix
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with the number |α| + m. The coefficients  and 
are determined by the recurrence relations given in the
appendix to the cited paper [12]. In Eq. (11), the num-
ber N is not yet determined. It will be calculated later
with the use of condition (2). Thus, we determined the
approximate values of the amplitudes of the first (N +
1)2 spatial harmonics of the incident field produced by
the extraneous source and the auxiliary radiators in the
vicinity of the body S01 and the approximate values of
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the amplitudes of harmonics of the diffraction and radi-
ation field produced by the body S01 outside the sphere
of radius R2. 

SOLUTION OF THE PROBLEM OF DAMPING 
THE DIFFRACTION AND RADIATION FIELDS 

PRODUCED BY THE BODY 

One of the approaches used for solving the damping
problem is as follows. The wave dimensions of radia-
tors are selected to be small; the radiator array is suffi-
ciently sparse; and, with the aim to increase the inten-
sity of the radiated field, radiators of monopole and
dipole types are selected. We note that the wave dimen-
sions of auxiliary radiators that provide the solution of
the damping problem cannot be as small as one likes,
because the intensity of the radiated field depends on
these dimensions. Let us consider an auxiliary radiator
in the form of a spherical shell with a spherically sym-
metric distribution of normal velocity over the surface.
The displacement or inflection of this shell in the radial
direction ur is limited by the value , which is deter-
mined by the condition that the stresses and strains in
the shell material do not exceed the allowed values
within which oscillations of the shell occur without the
shell fracture. The value  decreases with decreasing r.
Under a spherically symmetric load, the normal veloc-
ity of the surface is v = –iωur , and, hence, for the func-
tions f3p, we have a limitation: 

. (12)

The upper estimate for the function f3p is assumed to be
preset. Other methods of damping can be related to the
choice of a more complex structure of the density of the
field potential µ3p and to the use of auxiliary radiators
of tripole, quadrupole, or higher-order types. 

We begin to solve the damping problem for the field
U∂ on the assumption that ka2 ! 1. We represent the dif-
fraction field U∂ plus the field V for r ≥ R in the form 

(13)

where V is the field of diffraction by the receiver sys-

tem, (R3, , ) are the coordinates of the center of
an auxiliary radiator S3m, and (r, θ, ϕ) are the coordi-
nates of the current point in the basic coordinate sys-
tem. For condition (2) to be satisfied, i.e., for the field
U∂ to be small in magnitude, we use the following
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approach. The field 
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 can be made small in magnitude
by choosing a sufficiently small wave dimension 
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the sought quantities so that d3m = d3pν when p2 ≤ m ≤
(p + 1)2, m = p2 + ν, and apply the condition of solv-
ability (9). For such an arrangement of the radiator cen-
ters, system (14) takes the form 

(15)

The solution to system (15) can be represented in an
explicit form for arbitrary N and βnα: 

where i1 = –E , i2 = E , p = 0, 1, …, N,

and ν = 0, 1, …, 2p. 

The quantity (α + i(2|α| + 1)) represents the Van-
dermonde determinant of the matrix ∆p in which the
column of number α + i(2|α| + 1) is replaced by a col-
umn consisting of zeros with the exception of unity
standing in the νth row of the group of rows with the
number p. Thus, we determined the amplitudes d3pν of
the density of the velocity field potential at the sur-
face S3pν. 

Now, let us determine the type of the auxiliary radi-
ators that realize the damping problem. This type is
determined by the function f3pν describing the distribu-
tion of the normal velocity over the surface S3pν. We
substitute representation (3) for the field U in the
boundary conditions at the radiator surface S3p (to sim-
plify the formulas, we return to the old notation). We
use the properties of the simple layer potential. As a
result, we obtain a functional relation between the dis-
tribution of the normal velocity f3p over the surface S3p,
the amplitudes d3p, and other components of the field U: 
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Here, R3pF, R3p01, R3pjm, and R3p3m are the distances from
a point of the surface S3p to a point of the region F and
points of the surfaces S01, Sjm, and S3m, respectively;
∂/∂n denotes the derivative with respect to the normal to
the surface S3p. From Eq. (16), it follows that the func-
tion f3p can be calculated only approximately, because
the coefficients g

 

1

 

n

 

α

 

 and 

 

g

 

2

 

n

 

α

 

, which determine the val-
ues of the two last integrals on the right-hand side of
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DETERMINATION OF THE NUMBER N 

To determine the number N, we use representa-
tion (13) for the field U. With allowance for the trans-
formations described above, it takes the form 

(18)

where 

V is the field of diffraction by the receiver system; and
 is the reduced density of potential at the surface of

an auxiliary radiator, this density being generated by
the function . We consider the first term U1 on the
right-hand side of Eq. (18). Analysis of this term shows
that the number of receivers (N + 1)2 should be selected
in such a way that the readings of the receivers provide
the reconstruction of the measured field with sufficient
accuracy. Intuition suggests that the choice is related to
the approximation of the function by its values given
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The function Φ(r, θ, ϕ) cannot be interpreted as the
measured field, because this function is defined on the
entire sphere Rj and the field is undefined on the sphere
part lying inside the receivers Sjm, j = 1, 2. Let Φ(r, θ, ϕ)
represent a smooth function bounded together with its
Nth derivatives, which corresponds to the case of low-
frequency diffraction. Analysis of the solution to sys-
tem (8) shows that the function ΦN approximates the

function Φ given at the points (Rq, , ). We
require that the magnitude of the field U1 be no greater
than ε1. According to Kushnirenko [14], when the posi-

tions of the receiver centers (Rq, , ) lie in the
vicinity of the points 
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with the coordinates  simultaneously satisfying
condition (9), the number of receivers that provide a
given accuracy of the field measurement is calculated
by the formula 
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iary sources. Using the integral equation of the diffrac-
tion problem of the extraneous field diffraction by only
the body S01 to estimate Q01F and taking into account
the results obtained by Steklov [15], we obtain the
expression 

The term Q012 is estimated using the integral equation
of the diffraction problem for the field generated by
auxiliary radiators and diffracted by the body S01. In
this case, we also take into account the following con-
sideration. Since the diffraction and radiation field pro-
duced by the body should be damped as a result of the
interference of this field with the field of auxiliary radi-
ators, the magnitude of the field of auxiliary radiators
outside the sphere of radius R should be equal to the
magnitude of the field of extraneous sources and the
magnitude of the field of the self-radiation of the body
S01. Thus, we have 

where  is the distance from the origin of coordinates
to the region F. 

The term Q011 is estimated using the integral equa-
tion that describes the diffraction by the body S01 for the
secondary diffraction field caused by the receiver array,
with the extra condition (R1 – )/R1 ! 1 and with
allowance for relation (5): 
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Here, d and D are the Lyapunov constants of the surface
S01, R(s, s1) is the distance between arbitrary points of
the surface S01, K1(s, s1) is the symmetrized kernel for
∂/∂n(exp(ikR)/R), λ1 is the first eigenvalue of the inte-
gral equation with the kernel K1(s, s1), and |S01| is the
area of the surface S01. To determine the parameter λ1,
we can use the results obtained by Mikhlin and
Smolitskiœ [16]: 

where Km is the mth iteration of the kernel K1 and m is
large. 

For the aforementioned arrangement of the receiver
centers and for the number N selected according to
Eq. (19), we obtain the close-to-minimal measurement
error related to the arrangement of the receivers on the
spheres Rj, j = 1, 2. 

The second term of the sum on the right-hand side
of Eq. (18) corresponds to the uncompensated part of
the spatial harmonics of the field with the numbers n ≥
(N + 1), its presence being related to the finite number
of auxiliary radiators. With allowance for the comment
made in estimating the term Q012, we obtain that |U2|
satisfies the inequality 

(20)

The field U3 takes into account the total radiation field
discrepancy related to the use of only monopole- and
dipole-type auxiliary radiators instead of the n-pole-
type ones. In estimating the third term in the sum on the
right-hand side of Eq. (18), we require that the follow-
ing additional conditions be satisfied: 
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In this case, for U3, we obtain the estimate 
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(23)

For condition (2) to be satisfied, we require that the fol-
lowing equality be valid: 

Inequality (6) and relationships (19), (20), (22), and
(23) form a nonlinear system of equalities and ine-
qualities for the determination of the number N, the
wave dimensions ka1 and ka2, and the radii R and Rj,
j = 1, 2, 3. This system can be solved by iterations
according to the following algorithm. First, we select
the radii R1 >  and R > R3 > R2 > R1. Since, with

increasing N, we have (N)  0, the solution to
Eq. (20), which is nonlinear in N, exists and can be
found by the Newton method or by the bisection
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ter ka1. From Eq. (19), we calculate the value of N = N'
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verify the conditions 

which mean the possibility to arrange (N + 1)2 receivers
on the sphere of radius R1 and (N + 1)2 radiators on the

sphere of radius R3 so that a1/  < 1/4 and a2/  <

1/4, where  is the minimal distance between the
centers of the radiators S3p and S3q on the sphere of
radius R3. We refine the value of the radius R1 as the
maximum of the values R1 >  + a1 and R1 > (N +

1)a1/ ; we take R2 > R1 + 2a1; the value of the radius
R3 is refined as the maximum of the values R3 > R2 +

a1 + a2 and R3 > (N + 1)a2/ ; and, finally, we take R >
R3 + a2 and R > R3 + 0.1/k. Using the values of the radii

×
QF

rF* R–
---------------

Q01*

R r01*–
----------------+ Q01 1

IS01
D0+

D0
--------------------+ 

 +




+

× KS01
S01

QF 1 k rF* r01
*–( )+( )

π rF r01*–( )2
-----------------------------------------------

+
1 k R r01*–( )+( ) R3 R–( )

π R r01*–( )2
-----------------------------------------------------------

QF

rF* R–
---------------

Q01*

R r01*–
----------------+





× N 1+( )2 N 1+( ) Nln+
R1

------------------------------------------------------- V* N( )=




V* N( ),

V* N( ) ε4.=

ε j

j 1=

4

∑ ε.=

r01*

U2*

R1 N 1+( )a1/ π, R3 N 1+( )a2/ π,> >

Rqpjm* R3 p3q*

R3 p3q*

r01*

π

π

ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
Rj and R refined as described above, from Eq. (22) we
calculate the wave dimension ka2, and, from Eq. (23) in
which the Bessel spherical functions are replaced by
their asymptotics in the small parameter, we calculate
the wave dimension ka1. We compare the latter with the
value of ka1 calculated by formula (7), and select the
minimal value of these two. 

Thus, the diffraction problem of active damping is
completely solved. The physical realization of the
problem is determined by conditions (7) and (12): if the
solution of the diffraction problem yields the parameter
ka1 ≥ k  and the condition |f3p| ≤ |ω | is satisfied for
the function f3p, the problem of active field control is
physically realizable. If these conditions fail, the prob-
lem is physically unrealizable within the class of
receivers and radiators determined by conditions (7)
and (12). 
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Abstract—Elastic fields in aluminum single crystals are studied using the laser interferometry technique. The
measurements are conducted at a frequency of 10 MHz for the case of the wave propagation along the [001]
and [111] axes and also for small deviations from the [111] axis. The energy distribution is measured in the
transition region between the near and far fields. The energy of transverse elastic waves in the case of the prop-
agation along the [111]-axis is distributed within a sector. The deviation of the propagation direction from this
axis leads to radical changes in the energy distribution. © 2001 MAIK “Nauka/Interperiodica”.
The study of the elastic energy distribution in a
beam propagating in an anisotropic medium is an
important problem of crystal acoustics. The propaga-
tion of ultrasonic beams in crystals was treated theoret-
ically in detail by Khatkevich [1]. The particular fea-
tures of the polarization of elastic waves near acoustic
axes were studied by Al’shits and Shuvalov [2]. Quasi-
transverse waves propagating near the [111]-axis of a
cubic crystal are of special interest. The velocities of
transverse modes are degenerate in the case of the prop-
agation strictly along this axis. At the same time, the
plane perpendicular to the axis is not a plane of bilateral
symmetry. Therefore, the energy flux of elastic waves
deviates from the axis. The deviation angle depends on
the radiator polarization. If the initial polarization is
rotated through some angle, the energy flux deviates
through a twofold angle and it performs a complete rev-
olution when the radiator polarization is rotated
through ±π; the energy flux vector circumscribes a con-
ical surface. This is the effect of internal conical refrac-
tion [3]. The cone of internal conical refraction is circu-
lar in cubic crystals. The distribution of the beam
energy in the conditions of the conical refraction was
investigated experimentally in a germanium single
crystal [4]. It was demonstrated that, in the case of the
ultrasonic propagation strictly along the [111]-axis, the
energy is distributed within a wide crescent-shaped
area in conformity with the theory [1]. The deviation of
the beam from the axis leads to the elimination of the
velocity degeneracy and to the mode splitting. Two
sharp peaks were observed in the energy distribution.
Anisimkin and Morozov [4] suggested a very strict cri-
terion for the angle of beam deviation within which the
observation of the effect of internal conical refraction is
possible. 

The utilization of the laser detection technique pro-
vides an opportunity to study in detail the distribution
1063-7710/01/4701- $21.00 © 20076
of the elastic energy. The methods for measuring the
components of elastic displacements in the plane of a
reflecting surface and normally to it were developed by
Monchalin et al. [5], and a method for evaluating the
three components of the elastic displacements was pro-
posed by Bayon and Rasolofosaon [6]. The detection of
ultrasound with the help of a confocal Fabry–Perot
interferometer using a phase-modulated radiation was
performed by Nakano et al. [7]. We investigate the elas-
tic fields excited in an aluminum crystal by a piezoelec-
tric transducer. The detection of waves transmitted
through the sample is performed with the help of a
Doppler laser interferometer. Aluminum single crystals
are selected as the objects of investigation. They have a
high degree of structural perfection. This is especially
important for studying the effect of conical refraction,
when even small changes in the crystallographic orien-
tation of grains can affect the energy distribution in the
beam. We study the fields of longitudinal and trans-
verse (quasi-transverse) waves in the cases of their
propagation along the [001] and [111] axes of the crys-
tal and for small deviations from the [111]-axis. 

The measurements were performed using a laser
interferometer of the Institute of Nondestructive Test-
ing (Dresden, Germany). Elastic waves were excited in
crystals by piezoelectric transducers with the resonance
frequency f = 10 MHz. The piezoelectric plates were
shaped as disks with the diameters 5 mm in the case of
longitudinal waves and 6 mm in the case of transverse
waves. The piezoelectric transducer for transverse
waves had a buffer made of fused quartz. Taking into
account the sample length (about 17 mm), the buffer
length, the wave frequency, and the piezoelectric plate
dimensions, we can conclude that the measurements
were conducted within either the near field of radiation
or the transition region between the near and far fields.
A sounding signal with the duration τ = 0.4 µs was gen-
001 MAIK “Nauka/Interperiodica”
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erated by a USIP-12 ultrasonic flaw detector manufac-
tured by the Krautkrämer company. A decaying series
of pulses corresponding to the ultrasonic wave reflec-
tion in the sample was observed with the help of the
flaw detector. A beam of elastic waves propagating in
the crystal reached the opposite face and was reflected
by it. The field of elastic displacements was measured
by an OFV 3000S Doppler laser interferometer made
by the Polytec Company. The output signal of the inter-
ferometer was observed using an LC 334A oscillo-
scope (LeCroy) and digitized by it. The data were ana-
lyzed by the LabView 5.0 computer code. This soft-
ware set up the mode of scanning: the scanning field
(most often 16 × 19 mm) and the scanning interval of
0.125 or 0.25 mm. In addition, the number of measure-
ment cycles, within which the measurement data were
averaged at each point of the scanning field, was set up.
The number of cycles was selected depending on the
signal-to-noise ratio, and, as a rule, 50 or 100 cycles of
averaging were used. The information on the time
dependence of the received signal amplitude was stored
and remained accessible for further analysis. 

The LabView 5.0 code allows one to observe the
time dependence of the amplitude at any selected point
of the scanning field (the A-scan). Moreover, it is pos-
sible to analyze the B-scan, i.e., the set of the time
dependences of the amplitude measured along a
selected direction (either along the scanning direction
or perpendicular to it). Further, the amplitude distribu-
tion of the interferometer signal over the scanning
field (the C-scan) is represented by a diagram. The
LabView 5.0 code provides the possibility to select the
time interval within which the C-scan is plotted. This
allows us to separate the waves of interest. 

The samples used for our measurements were alu-
minum single crystals grown at the Institute of Metal
Physics, Ural Division, Russian Academy of Sciences.
The sample for the [001] direction was a rectangular
prism with faces coincident with the (001) crystallo-
graphic faces within 1°–2°. The samples for the [111]
direction were cut from a cylindrical ingot with the
diameter 20–22 mm. The sample length was approxi-
mately 17 mm. Two samples were cut from this ingot in
such a way that the normal to the plane-parallel faces of
one of them formed an angle of 1.5° with the [111]
direction, and, for the other sample, this angle was 5°.
The plane facets of the samples were polished in such
way that the average height of roughness was 8 µm.
The distance between two irregularities in the sample
plane was from 30 to 100 µm. 

The single crystals were grown from aluminum of
99.999% purity using the Bridgeman technique. One of
the main criteria of perfection of pure metal single crys-
tals is the presence of dislocations in them. The density
of the growth dislocations in the bulk of the crystal was
revealed by the method of etch pits and constituted
about 103 cm–2. The dislocations were freely distributed
in crystals in the form of a three-dimensional grid, or
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
they were arranged in rows forming small-angle
boundaries. An X-ray topogram of a single crystal with
the orientation [111] is given in Fig. 1. Only two crys-
tallites with the misorientation not exceeding 20' are
observed within the whole cross-section of the single
crystal. The X-ray alignment of the sample along the
[111] direction was performed especially carefully: the
normal to the face plane deviates from the axis within
no more than 0.5°. 

Let us first consider the results of the measurements
for a single crystal with the [001] orientation. A B-scan
obtained using longitudinal waves is shown in Fig. 2a
for the direction of the Y-axis in the (001) plane along
the direction of scanning. The line, along which the
B-scan was measured, passes through the center of the
projection of the piezoelectric plate onto the opposite
face of the sample. Two systems of lines are clearly vis-
ible. They correspond to the values 1.00–1.50 and
6.00–6.50 on the abscissa axis of the B-scan. The
abscissa is the time axis calibrated in microseconds
with the arbitrarily selected origin. The aforementioned
systems of lines correspond to longitudinal waves
transmitted through the sample one and three times.
One can notice the curvature of the lines that is caused
by the difference between the pulse arrival times at dif-
ferent points of the beam cross-section. The less dis-
tinct sloping lines correspond to the radiation part
reflected from the lateral faces of the sample. 

Figure 2b demonstrates a B-scan obtained in the
case of scanning in the X direction. The scanning line in
this case passes not through the beam center but is
shifted by the distance equal to the radius of the piezo-
electric plate. The distortion of the lines in this case is
more evident, especially at the beam periphery. In both
figures, the systems of lines have the form of alternat-

Fig. 1. X-ray topogram of an aluminum single crystal from
which the samples with the [111] orientation were cut out. 
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Fig. 2. B-type scans obtained for a single crystal with the [001] orientation: (a) longitudinal waves, the direction of scanning is the
Y-axis; (b) longitudinal waves, the direction of scanning is the X-axis; and (c) transverse waves, the direction of scanning is the X-axis. 
ing light and dark stripes. Light stripes correspond to
the positive half-period of the received signal and dark
stripes, to the negative one. The B-scan obtained in the
case of wave excitation by a transverse wave transducer
is presented in Fig. 2c. Here, the direction of scanning
is the X-axis. The observed pattern is interpreted as fol-
lows. The line within the interval 1.00–1.50 µs corre-
sponds in the arrival time to the longitudinal wave
excited by the piezoelectric plate as a parasitic signal.
The parasitic signal of a longitudinal wave, which was
possibly caused by insufficient damping of the piezo-
electric plate, was observed near the point 2.50 µs. The
position of the distorted line within the interval 4.70–
5.50 µs approximately corresponds to a delay in the
propagation of transverse waves. The laser interferom-
eter measures the elastic displacements normal to the
plane of the reflecting face. The origin of the signal of
a transverse wave whose elastic displacements lie in the
face plane will be discussed below. 

A C-scan corresponding to transverse waves in the
[001] crystal is shown in Fig. 3. The radiation spot of
irregular shape has the transverse dimension ≈10.00–
2.00 = 8 mm along the abscissa axis. This is somewhat
greater than the piezoelectric plate diameter (6 mm).
Figure 3 demonstrates the structure of the radiation
field in the case of coincidence of the beam axis with
the crystallographic axis in the absence of the effect of
conical refraction. 

Let us turn to the results of measurements of the
fields of ultrasonic waves for the [111] propagation
direction and the directions close to this axis. Images of
the B-type for transverse waves in the X direction per-
pendicular to the direction of scanning are shown in
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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Fig. 4, where, in the case (a), the central ray of the beam
with the wave vector k0 is parallel to the axis: k0//[111];
in the case (b), it deviates from this direction by 1.5°;
and, in the case (c), it deviates by 5°. The intervals from
5.5 to 18.5 cm (see Fig. 4a) and from 2 to 16.8 cm (see
Fig. 4b) on the ordinate axis correspond to the plane face
of the sample. The total field of the B-scan in Fig. 4c cor-
responds to the plane face of the sample. The sloping
lines in Fig. 4a, which are located beyond the indicated
interval, are formed by the radiation part coming out to
the lateral surface of the sample. The lines caused by
the parasitic radiation of longitudinal waves by the
transverse-wave transducer are present in the initial
portion of the measurement interval on the abscissa
axis in the diagrams of Fig. 4. For example, in Fig. 4a,
the lines observed from 0 to 3.5 µs correspond to the
longitudinal waves. Despite the small amplitude of the
parasitic radiation (its level is 20–25 dB less than the
level of the transverse waves), these signals can be dis-
tinguished in Fig. 4 due to the high sensitivity of the
laser interferometer to the displacements normal to the
surface. We are interested in the signals caused by
transverse waves in the interval 4.50–6.00 µs. The
amplitude distributions shown in Figs. 4a and 4c agree
qualitatively with the energy distribution pattern in the
conditions of internal conical refraction [1]. According
to the theory, the radiation energy is distributed along
almost all generatrices of the refraction cone. In the
cross-section by a straight line, this part of the radiation
must give a B-scan with the arrival time of the signal
varying nonmonotonically along the ordinate axis. At
the same time, Fig. 4a contains a radiation component
whose arrival time is approximately constant along the
whole line of the B-scan section. The deviation from
the axis must lead to the elimination of the velocity
degeneracy of the quasi-transverse waves. However,
the deviation by 1.5° from the [111] axis does not lead
to radical changes in the energy distribution (Fig. 4b).
The diagram of the B-scan for the deviation angle 5°
looks entirely different (Fig. 4c). It exhibits no distinct
pattern of signals within the interval 4.50–6.00 µs. The
pattern of the energy distribution can be observed more
illustratively in the C-scans. 

The distribution for the direction exactly along the
[111] axis is given in Fig. 5a. The time interval of obser-
vation corresponds to the arrival time 4.50–6.00 µs for
transverse waves. The oval line in the figure is the
boundary of the plane face of the sample. One can see
that radiation is distributed within a conical sector. Two
amplitude peaks are visible within this sector. The
energy distribution under the conditions of internal
conical refraction differs radically from the one given
in Fig. 3. The radiation distribution in a crystal inclined
at an angle of 1.5° to the [111]-axis is shown in Fig. 5b.
One can see that a considerable part of the elastic
energy is distributed over a wide region of the sample
with the area far exceeding the area of the radiator.
However, in Fig. 5b, it is difficult to connect any defi-
nite radius of the energy distribution with the radius of
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
the cone of internal conical refraction. Two more dis-
tinct peaks are present in Fig. 5b apart from the distrib-
uted part of the energy. One of the peaks is very close
to the sample center. 

The presence of the part of the radiation energy that
is distributed over the circular arcs testifies to the fact
that, in both cases corresponding to Figs. 5a and 5b, the
effect of internal conical refraction distorted by the
presence of additional peaks is observed. The addi-
tional peaks are probably caused by small deviations of
the central ray of the beam from the [111] axis and by
the presence of the lateral rays of the beam, which are
deflected from the axis through considerable angles in
the conditions of our experiment. It is necessary to take
into account that, in our case, we have the ratio λ/a ≈
0.1 (λ is the wavelength and a is the radiator radius).
With such a ratio, the diffraction divergence causes
deviations up to ~6° from the central ray. 

Evidently, an increase in the deviation angle from
the [111]-axis must lead to the disappearance of the
effect of internal conical refraction and, hence, to radi-
cal changes in the energy distribution. For large devia-
tion angles, the velocity degeneracy of the natural
quasi-transverse waves is eliminated and the beam is
split into two beams corresponding to two modes. In
the limiting case of large deviations, two peaks were
observed without traces of energy spreading between
them [4]. In our case, the measurements were con-
ducted at a relatively low frequency 10 MHz. When the
deviation angle is 5° (Fig. 5c), the radiation energy is
divided between the two peaks formed by two quasi-
transverse modes. However, even in this case, the radi-
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Fig. 3. C-type scan in a [001] single crystal, transverse
waves. 
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Fig. 4. B-type scan in the direction of the X-axis in the case of the excitation by a transverse wave transducer when (a) k0//[111] and
when the wave vector is deflected from the [111]-axis through the angles (b) 1.5° and (c) 5°. 
ation energy corresponding to the beam lying far from
the center is distributed over a circular arc. 

The question about the maximal deviation angle at
which the internal conical refraction is still observable
was treated by Artman [8] and Anisimkin and Morozov
[4]. Artman [8] suggested the condition that the maxi-
mal possible angle of deviation ∆ from the acoustic axis
is less than the angle of beam divergence δ ~ λ/a.
According to the measurements by Anisimkin and
Morozov [4], the observation criterion was made more
strict: ∆ < 0.1δ. In fact, the measurements can be con-
ducted in both far and near wave fields of radiation.
Therefore, in addition to the wavelength and the radia-
tor radius, a more exact condition must also include the
sample length, the size of the near zone of radiation
~a2/λ, and, probably, the cone angle of internal conical
refraction calculated according to the theory of plane
waves. 

Let us discuss the factors that determine the signal
of the laser interferometer in the case of the normal
incidence of a shear wave on the sample surface. As we
know, in the first approximation, the interferometer is
sensitive to the displacements normal to the reflecting
surface [9]. In analyzing the experimental results, we
have to take into account the surface roughness, the
deviation of the beam wavefront from a plane, and the
presence of widely deflected rays of the beam in the
conditions of the internal conical refraction. 

According to Vinogradova et al. [10], the wavefront
of the field of a disk-shaped radiator near the acoustic
axis can be approximated by a spherical surface of the
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
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radius R = a , where a is the radiator radius,

D = , Z is the sample length, and q is the wave num-

ber. In our conditions, the wavelength is λ = 0.3 mm for
transverse waves and the size of the near wave zone is
xn = 30 mm. The phase difference between the center of
the radiator projection and the point at a distance a from
the radiation axis is ∆φ = a2/2λR, and, in our condi-
tions, it is ≈π/2. The deviation of the wavefront from
the plane of the sample surface gives rise to a compo-
nent of elastic displacements that is normal to the sam-
ple surface plane. We estimate their value on the basis
of calculations [11]. The radiation deflected through the
angle θ from the [111] crystal axis splits into two quasi-
shear waves. These waves contain the longitudinal

oscillation components , which are different for the
modes i = 1 and i = 2. The components depend on the
polar β and axial θ angles: 

(1)

Here, K3 =  +  and Ci, j are the com-

ponents of the elastic constant tensor of the crystal. The
estimates give the maximal value of the ratio of the lon-
gitudinal and transverse components ≈0.08θ. The cone
angle of internal conical refraction ϑVCR calculated for
plane waves constitutes 6° for aluminum. For the rays
corresponding to this angle, the relative value of the
longitudinal component of elastic displacements does
not exceed 0.008. This value is too small to explain the
results of Fig. 5a, where the intensity of signals with the
deviation angles 4°–8° is very large. The angle of the
diffraction divergence of the beam θd ≅ λ/2a consti-
tutes 3° for our conditions. At the same time, in Fig. 5a,
one can see the rays deflected through greater angles,
up to 20°–25°. The share of the longitudinal component
of displacements constitutes up to 0.03 for these rays.
The existence of such rays is a consequence of conical
refraction [1]. 

Let us take into account the influence of the rough-
ness of the sample surface on the output signal of the
interferometer in order to explain the experimental
results. For this purpose, we separate two rays, 1 and 2,
in the beam incident on the sample surface (Fig. 6). We
introduce the angles α1, 2 between the ray and the tan-
gent to the surface at the points of incidence. We assume
that the surface structure is such that  ≤ 1.
Let N roughness elements of the average height ∆h
occur within 1 cm of the surface length. Then, we have
the average value  ~ ∆hN. For a sample the
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normal to which corresponds to the [111]-axis, the
product ∆hN is approximately equal to 0.5. An elastic
wave causes a displacement of the reflecting surface
from the position I to the position II with the normal
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Fig. 5. Distribution of the energy of elastic waves when
(a) k0//[111] and when the wave vector is deflected from the
[111]-axis through the angles (b) 1.5° and (c) 5°. 
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component of the displacement hoff. We approximate
the surface section by a stepped line. Then, the contri-
bution made by the elastic wave displacements to the
signal phase will be φS = 2hoff2π/λ. The rays reflected
from the sample Af and the reference signal Ar enter the
interferometer photodetector: 

where Aro and φr are the amplitude and phase of the ref-
erence signal and Afo(i) and φi are the same quantities for
the signal resulting from the reflection of the ith ray (i =
1, 2). The phase φsi in the reflected ith ray is caused by
the surface displacement due to the elastic wave. The
calculation is conducted for the properly normalized
intensity I: 

(2)

where Ir = (Aro)2 and If = (Afo(1))2 + (Afo(2))2. 
For the longitudinal elastic waves, the contributions

to the phase φs1 and φs2 are equal: φs1 = φs2 = φs =

u0cosωst, where ωs is the circular frequency of the

elastic wave and hoff = u0coswst. From Eq. (2), we
obtain 

(3)

In Eq. (3), I0 is the intensity of the illumination of a
given point of the sample in the absence of elastic
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Fig. 6. Schematic diagram of the rough surface with rays 1
and 2 incident on it. 
waves, I0 = Ir + If + Ih, and Ih = 2Af0(1)Af0(2)cos(ϕ1 – ϕ2).
The angles ϕ and ϕl are determined as follows: 

(4)

It is possible to tune the interferometer in such a way
that ϕr = π/4. In the case of a sufficiently smooth surface
∆h ! λ, the phase difference is |φ1 – φ2| ! π/2. In this
case, the alternating component of intensity Ih is pro-
portional to the amplitude of the elastic wave. A
speckle pattern is absent. 

In the case of transverse waves, the situation is dif-
ferent. Here, the contribution to the phase of reflection
of the rays 1 and 2 depends on the details of the sur-

face structure: φs1, 2 = u0 cosωst. Since the

amplitude of elastic waves is small, u0 ! 1, and

 ≤ 1, the phase difference δ = φs1 – φs2 is
small, |δ| ! 1. In this approximation, from Eq. (3) we
obtain 

(5)

where 

and the angle ϕ is determined by Eq. (4). By tuning the
interferometer, it is possible to obtain ϕt ≈ 0. We take

into account that δ = u0(  – )cosωst. In

the accepted approximation of small wave amplitudes,
the alternating component of intensity is 

(6)

It is necessary to average Eq. (6) over the beam cross-
section to obtain the contribution of the whole laser
beam to the intensity. Then, the factor  will be

replaced by the averaged quantity  ≈ ∆hN.
The alternating component in Eq. (6) depends on the
surface structure and demonstrates speckles in the
scanned reflections. Note that, in addition to the har-
monic component, the signal contains a component
~cos2ωst, which leads to distortions of the radio pulse
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shape and to its asymmetry. The time dependence of the
amplitude (the A-scan) in the case of transverse waves
contains low-frequency components. A typical oscillo-
gram is given in Fig. 7. The interval 4.5–6.5 µs corre-
sponds to quasi-transverse waves. In order to under-
stand the origin of the low-frequency components, it is
necessary to recall that the excitation is performed by a
pulsed signal. The partial amplitude Af0(i) of the wave
reflected from the ith point of the reflecting surface of
the sample is expressed by the product of the spectral
density S(Ω) by the local value of the reflection coeffi-
cient R(i): Af0(i) = S(Ω)R(i). The spectrum of a train of
radio pulses contains spectral components with the fre-
quency Ω proportional to the repetition frequency F of
the radio pulses. The major part of the pulse energy is
concentrated within the spectral interval of width 2/τ
centered at the carrier frequency of the radio pulses.
This interval contains 2/Fτ spectral components. We
restrict our consideration to two spectral components
for the sake of simplicity. In this case, the expression
for the amplitude of the wave reflected from the sample
takes the form 

where the subscripts (1) and (2) refer to the two
selected rays. The terms proportional to Af0(i) and 
belong to the spectral components of a pulse of the elas-
tic wave with different frequencies; they introduce the
phases φsi and . Calculating (as above) the intensity

I = At  and restricting ourselves to considering only
the low-frequency terms with the difference frequen-
cies, we obtain 

(7)

The amplitude of the spectral component of intensity
Ilf , which corresponds to the difference frequency Ω1 –

Ω2 = (n1 – n2)F, is proportional to 2[  +  +
2Af0(1)Af0(2)cos(φ1 – φ2)]. One more source of low-fre-
quency signals at the interferometer output is the inter-
action of the spectral components of the reference sig-
nal and the signal reflected from the sample. The spec-
tral component Ar0exp[i(φ + Ωrt)] of the reference
signal combined with the component Af0(i)exp[i(φi +
Ωs(i)t)] reflected from the ith point of the sample leads
to the intensity component with the frequency Ωs(i) – Ωr

and the amplitude proportional to Af0(i)Ar0cos(φi – φr).
Thus, the alternating component of the intensity of
transverse waves contains a low-frequency component

A f A f 0 1( ) i φ1 φs1+( )[ ]exp=

+ A f 0 1( )' i φ1 φ's1+( )[ ]exp

+ A f 0 2( ) i φ2 φs2+( )[ ]exp A f 0 2( )' i φ2 φ's2+( )[ ] ,exp+

A f 0 i( )'

φsi'

At*

Ilf 2 A([ f 0 1( )A f 0 1( )' A f 0 2( )A f 0 2( )' )+{≈

+ A f 0 1( )A f 0 2( )' A f 0 2( )A f 0 1( )'+( ) φ1 φ2–( ) ]2cos

+ A f 0 1( )A f 0 2( )' – A f 0 2( )A f 0 1( )'( )2 φ1 φ2–( ) } 1/2.sin
2

A f 0 1( )
2 A f 0 2( )

2

ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
which depends on the product u0 . The C-scan
obtained with the help of the laser interferometer
reflects both the distribution of the elastic field and the
roughness of the reflecting surface. 

The above analysis is needed only to qualitatively
demonstrate the presence of the interferometer signal
and its connection with the amplitude of the elastic
wave as applied to a shear wave in the conditions of the
internal conical refraction. For a quantitative compari-
son of the results with the experiment, in addition to
averaging Eqs. (6) and (7), it is necessary to take into
account the interference with the longitudinal compo-
nent of elastic displacements, which is considerable for
the lateral rays of the beam. At the same time, there is
no need to account for the variation of the delay time of
the pulse over the beam cross-section because of the
small width of the laser beam d ! λ. 

In conclusion, we summarize the main results of this
work. The distributions of the elastic fields in an alumi-
num single crystal are obtained by the laser interferom-
etry technique. The distribution of the elastic energy
within a wide sector shifted from the radiator projec-
tion is observed in the conditions of the internal conical
refraction. The sector area far exceeds the area of the
piezoelectric radiator. The deflection of the central
beam through 1.5° from the [111] axis distorts the
energy distribution, and the deflection through 5° leads
to a radical change in the distribution pattern. In the lat-
ter case, the internal conical refraction is absent. The
response of the laser interferometer to the displace-
ments of the reflecting surface due to a normally inci-
dent transverse wave is analyzed. The effect of rough-
ness of the reflecting surface and the presence of rays
widely deflected from the normal in the conditions of
internal conical refraction are taken into account. It is
demonstrated that the response of the laser interferom-
eter is proportional to the amplitude of elastic displace-
ments multiplied by the average (over the cross-section

αcot〈 〉
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Fig. 7. Oscillogram of oscillations in a single crystal with
the orientation at 1.5° to the [111]-axis; the excitation by a
transverse wave transducer. 
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of the laser beam) value of the absolute value of the
cotangent of the angle between the beam and the tan-
gent to the surface. The interferometer response to
transverse waves contains low-frequency components
with the frequencies much lower than the carrier fre-
quency of the pulse of the ultrasonic wave. 
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Abstract—Results of numerical simulation of the total and coherent sound fields and the coherence parameter
for a multimode acoustic signal excited by a monochromatic sound source and propagating in an irregular arctic
waveguide are presented. Expressions used as the basis for the algorithm of the sound field calculation by the
method of coupled normal modes are given. Both regular and stochastic sound scattering by horizontal inho-
mogeneities of the bottom, water medium, and ice cover are taken into account. It is found that, in the course
of sound propagation in an arctic waveguide, an anomalous variation of the energy coherence parameter of the
sound field as a function of distance is observed. This variation manifests itself in the form of local peaks of the
field coherence parameter. This fact should be taken into account in both the measurements of the ice cover
characteristics by acoustic methods and the evaluation of the efficiency of the operation of receiving arrays.
© 2001 MAIK “Nauka/Interperiodica”.
Long-range sound propagation in an underwater
waveguide is accompanied by sound scattering from
the horizontal inhomogeneities of the waveguide [1–4].
These inhomogeneities are commonly divided into sto-
chastic and regular ones. Regular inhomogeneities are
smooth and large-scale in character (the horizontal
scale is within tens or hundreds of kilometers). They
can be described by piecewise-analytical functions.
The sound field scattered by them has a distinct phase
structure. Regular scattering takes part in the formation
of the coherent component 〈p(r, z, t)〉  of the sound pres-
sure p(r, z, t). Here, r = exx + eyy; x, y, z are the Carte-
sian coordinates with the z axis directed downwards
and originating (z = 0) at the free water surface; t is
time; and the angular brackets mean the operation of
statistical averaging over the statistical ensemble of sto-
chastic scatterers.

Stochastic inhomogeneities, when considered within
sufficiently long parts of the waveguide, are adequately
described by the statistical theory. The sound pressure
component formed as a result of the scattering by these
inhomogeneities, (r, z, t), is called the stochastic
component. The coherence parameter is determined by
the ratio

(1)

and characterizes the degree of coherence of the sound
field. By virtue of the statistical independence of coher-
ent and stochastic pressures, we have

The coherence parameter is usually introduced for a
sound field excited by a harmonic source. This field has
interference spatial fluctuations about the average level,

p̃

Ki p r z t, ,( )〈 〉 2/ p r z t, ,( ) 2〈 〉=

p r z t, ,( ) 2〈 〉 p r z t, ,( )〈 〉 2 p̃ r z t, ,( ) 2〈 〉 .+=
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which is called the energy level. The horizontal (with
respect to r) scale of the interference fluctuations (the
distance between the neighboring minimums or maxi-
mums of the interference pattern [2, 5]) is approxi-
mately equal to the ratio of the average wavelength of
the wave cycle forming the sound field at a given inter-
val of the sound propagation track to the number of
these waves. The energy level of the sound field is
obtained as a result of averaging of the magnitude of
the squared sound pressure over the coordinate r within
a track part that covers an interval of distances ∆r
exceeding several interference scales.

The quantity Ki fluctuates in accordance with the
interference variations of the levels of |〈p(r, z, t)〉|2 and
〈|p(r, z, t)|2〉 . Therefore, we introduce the concept of the
energy coherence parameter Ke, which is determined
by the formula of the type of Eq. (1), but with the mag-
nitudes of the squared sound pressures for the coherent
and total sound fields being replaced by their energy
values. The stochastically scattered component of
sound pressure usually plays the role of interference in
acoustic measurements. Since (r, z, t) carries certain
information on the source of sound, it can be used, e.g.,
to reveal the fact of the presence of an operating radia-
tor, which is an example of effective utilization of the
stochastically scattered component of the field.

Monitoring of a signal from a sound source can be
performed at a single point of reception (by a single
hydrophone). However, spatially extended receiving
systems (arrays) are used in practice [6, 7]. If a horizon-
tal linear array is located in the far wave zone of a radi-
ator, the array can be rotated (or compensated) in such
way that it will be positioned along the phase front of
the coherent field, which corresponds to the maximum

p̃
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of the array directivity pattern and to the maximal sig-
nal amplification for the coherent component of the
field. In this case, the stochastic component of sound
pressure at the array aperture also fluctuates in phase in
a wide range with the horizontal correlation scale ρ. In
arctic sound channels at frequencies up to 100 Hz, the
correlation scale ρ has the order of magnitude from sev-
eral tens up to one hundred meters [8]. If the length L
of the array far exceeds ρ, the array amplification for
the stochastic component is L/ρ times less than for the
coherent one and the stochastic component itself,
which has a random phase, plays the role of interfer-
ence like the noise field of the medium. The maximal
increase in the ratio |〈p(r, z, t)〉|2/〈| (r, z, t)|2〉 at a linear
array can attain the value equal to the number of hydro-
phones in the linear array. A method of separation of
the coherent field from the total field with the help of an
array is grounded on this fact [8, 9, 10]. Knowing the
response of an array to the total field with strong sup-
pression of the stochastically scattered component and
knowing the level of the signal at a single hydrophone,
one can measure the coherence parameter. If the moni-
tored object moves along the sound propagation track,
the energy coherence parameter can be measured by
averaging the signal over the time interval during which

p̃
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Fig. 1. (a) Probability density of draught for the lower sur-
face of the ice cover. (b) Normalized correlation function of
roughness of the lower ice surface.
the signal passes through several interference maxi-
mums.

The practical significance of the energy parameter
of coherence lies in the fact that it provides an opportu-
nity to evaluate the efficiency of the array operation in
the field of the signal containing a stochastically scat-
tered component. We should note that the majority of
papers concerned with stochastic scattering in a sound
channel do not consider the coherence parameter of the
field.

In an arctic sound channel, temporal variations in
the medium of sound propagation are fairly weak. One
can discuss only the effect of spatial averaging of sto-
chastically scattered sound on long propagation tracks
at low (up to several hundreds of hertz) frequencies of
sound by using the spatial analog of an ergodic theo-
rem, which allows one to replace averaging over the
ensemble of rough boundaries by spatial averaging
over a single realization [11].

This paper considers the stochastic scattering of
sound only by the rough ice cover. This roughness is
assumed to be statistically homogeneous and isotropic
within sufficiently long regions of the ice cover (with
the length about tens and hundreds of kilometers). His-
tograms of the displacements of the ice–water interface
are plotted on the basis of experimental data, from
which the probability density functions are obtained for
the ice draught relative to the zero level (Fig. 1a), and
the spatial correlation functions of roughness are deter-
mined (Fig. 1b). In calculating the characteristics of the
sound field, we use the model of floating ice [12, 13].
The relation between the roughness characteristics of
the upper and lower ice boundaries can be found in
[12–14].

In the stochastic component of the field, first, we
have the accumulation of sound energy (in the case of
the modal representation of the sound field) in the
energy component 〈| (r, z, t)|2〉  and the suppression of
the interference component of the stochastic compo-
nent.

Second, scattering leads to a redistribution of sound
energy between the modes.

If we ignore the backscattering of sound or take it
into account under the approximation of multiple for-
ward scattering and single backscattering [15, 16], the
spatial variability of the mode intensity of the total field
can be described in the framework of the transfer equa-
tion [1, 16, 17].

Regular sound scattering by horizontal inhomoge-
neities of the waveguide has been much studied theo-
retically [18–20]. We take it into account in the frame-
work of the “stepwise” model [18–20] under the
assumption that the variations in the waveguide depth
and in the vertical profile of sound velocity occur rather
slowly, i.e., they have small gradients in r, and the
parameters of the eigenfunctions of the waveguide
vary only weakly within the intervals of distances

p̃
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about the wave cycle length. We attribute all small-
scale variations in the waveguide parameters to the
class of stochastic scatterers.

We consider the regular scattering of waves accord-
ing to the next scheme: vertical modes experience hor-
izontal refraction determined by the mode rays [18].
Mode rays lie in the horizontal plane and are described
by an equation analogous to the eikonal equation [2, 5]
for common rays, but, on the right-hand side of the
equation, the longitudinal wave number of a mode
ζm(r), where m is the mode number, stands instead of
the wave number of the medium. This means that mode
rays can be constructed according to the common ray
algorithm. If the track between the sound source and
the observation point deviates only slightly from the
direction of the vector of the general variation of the
regular parameters of the medium, the horizontal
refraction of mode rays is weak, since the bend points
of these rays correspond to the values of ζm(r) close to
zero, and such waves cannot exist in a real waveguide,
because |∆ζm(r)| ! |ζm(r)| for all trapped modes.

We represent the sound pressure as a superposition
of M(r) modes:

(2)

where Φm(z) is the eigenfunction of the reference
waveguide [5] at the distance r, which corresponds to
the wave number ζm(r). We have for the coherent field

(3)

If the condition

is valid near a point sound source (r = 0, z = z0), then,
in the adiabatic approximation, we can take [18]

(4)

Here, K0 = ω/c(0, z0), ω = 2πf, f is the sound frequency,
and c(r, z) is the sound velocity in water. In an irregular
waveguide, we use the expression

. (5)

It is easy to verify that |Cm(r)|2 describes the energy flux
in a mode through the waveguide cross-section in the
horizontal direction along the mode ray.

If we assume that, for the modes forming the sound
field at observation points along the sound propagation
track, the horizontal refraction of mode rays is
expressed weakly, we can replace the initial model of
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the waveguide by a stepwise working model; i.e., we
can divide the waveguide along the track into segments,
within which the waveguide parameters do not change,
and they change in steps at the segment boundaries. It
is assumed that a step is sufficiently small for the sound
field in the new model not to differ significantly from
the sound field calculated for the initial model. In our
code, this fact was taken into account automatically by
the algorithm that determined the segment length. In
the working model, the sound field within a segment is
calculated by a common code for a plane-layered
waveguide, which allows for stochastic scattering [15,
16]. The sound field at the segment boundaries is
matched by the conditions of continuity of the sound
pressure and the longitudinal component of the vector
of particle velocity and controlled by the condition of
continuity of the total sound energy flux through the
waveguide cross-section.

The eigenfunctions Φm(z) of the waveguide consti-
tute a complete orthonormalized set. We write the con-
dition for the mode normalization in the form

, (6)

where δmn is the Kronecker delta and µ(z) is the relative
density of the medium. In the waveguide, we have

(7)

If in the neighboring segments of the waveguide condi-
tion (6) is not valid for some modes, a mutual transfor-
mation (scattering) of these modes occurs. Indeed,
according to the condition of continuity of sound pres-
sure on both sides of the step

,

where the plus sign corresponds to the “after” state and
the minus sign corresponds to the “before” state, we
obtain

.

We multiply both sides of this equality by µ(z) (z)
and perform the operation of normalization. We obtain

(8)

Similarly, from the condition of continuity of the parti-
cle velocity, we obtain

. (9)
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Using Eqs. (6), (8), and (9), at the step we obtain

(10)

where the term at the right before  is the coefficient

of regular transformation of modes .

Stochastic scattering occurs within the limits of the
plane-layered segment. We assume that, in the vicinity
of the step, the parameters of the waveguide coincide
with those of a waveguide without stochastic rough-
ness. For a plane-layered segment of the sound channel,
we solve the next equation for the total field:

(11)

where er is the unit vector directed along the direction
of wave propagation. The coefficient of stochastic scat-
tering along the energy flux BnN has been considered in
[11, 21].

Equations (10) and (11) form the basis of the algo-
rithm for calculating the total and coherent sound
fields, the coherent field obeying the condition

(12)

where Jm  is the imaginary part of the wave number
in the waveguide without stochastic scatterers.

There are no inflow of energy into the resulting sound
fields and no loss of energy from them at the transition
through the step, and this allows one to control the pos-
sible error of calculation by the condition of continuity
of the total energy fluxes through the waveguide cross-
section.

The energy level of the sound fields corresponds to
the relationships

and
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and the interference value of the total field is deter-
mined by the relationship

(13)

The anomalies of propagation of the total and regu-
lar fields are calculated along with these quantities.
These anomalies are equal to 10 〈|p(r, z, t)2〉|r2) and
10 |〈p(r, z, t )〉|2r2). The anomalies of sound propa-
gation do not depend on the power of the sound source,
i.e., the result of anomaly calculation can easily be
recalculated for the source of any power.

The energy coherence parameter is determined by
the expression

(14)

We calculate the sound fields and the coherence
parameter using the code developed by Kudryashov.

Let us consider some results of sound field calcula-
tions. The ice cover is an elastic body, which has the veloc-
ity of longitudinal waves equal to 3500 (1 – i0.04) m/s, the
velocity of shear waves equal to 1800 (1 – i0.04) m/s, and
the ice density relative to that of water equal to 0.91.
Inhomogeneities of the ice–water interface and their
correlation function are given in Figs. 1a and 1b. It fol-
lows from these plots that the average thickness of the
ice cover is 4 m and the rms deviation σ of the rough
lower ice boundary from the average level is equal to
2.91 m. The roughness of the upper ice boundary is
characterized by  = 0.73 m. The code permits a piece-
wise change of the parameters of the ice cover along the
track. At the segment of the sound propagation track
where the change of the sound channel depth occurs
and which imitates the coastal slope, we consider the
ice cover as statistically homogeneous and smooth with
an average thickness of 2 m, σ = 1.2 m,  = 0.3 m, and
the horizontal correlation scale of roughness ρ0 = 75 m.
According to Fig. 1b, within the deep-water segment,
ρ0 = 57 m. We assume the bottom to be elastic with the
velocity of longitudinal waves being 1850 (1 – i0.01) m/s,
the velocity of transverse waves 350 (1 – i0.01) m/s, and
the relative density µ = 1.8.

The propagation track consists of two main parts:
the part with a constant depth of 2500 m and the part
where the depth changes linearly with distance from
2500 to 450 m and the sound velocity changes from the
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deep-water profile to a constant value in shallow water.
The latter part is located either after the deep-water part
or before it.

In this paper, we do not intend to perform the calcu-
lation by a model that is close to some specific case. An
example of such calculation was given in [12]: the sig-
nal propagation along the track 2650 km long was cal-
culated for a frequency of 20 Hz at which the level of
the total field differed little from the coherent one.

In this paper, the calculation is conducted for a
monochromatic sound signal with the frequency 90 Hz,
which propagates along a track with the length of the
deep-water part 500 km and the length of the irregular
part 60 km. The source depth is 50 m. The reception is
performed at a depth of 50 m. In these conditions, it is
possible to observe a combined effect of both stochastic
and regular scattering of sound on the sound field.

The coherence parameter in a deep-water sound
channel usually decreases monotonically with distance.
In an arctic waveguide, the change of the coherence
parameter of the sound field with distance is nonmono-
tone because of the singularity in the distribution of
sound velocity in water with depth and the presence of
the ice cover. The sound field in a deep-water arctic
waveguide is formed by two groups of modes. The first
group is concentrated in the water layer lying next to
the ice cover over the layer of Atlantic waters. These
modes have small cycle lengths and large coefficients
of attenuation and stochastic scattering. The second
group of modes refracts below the layer of the Atlantic
waters. They have greater cycle lengths and small coef-
ficients of attenuation and stochastic scattering. The
ratios of these quantities for a sound channel with the
depth 2500 m are approximately one to five. Therefore,
within the deep-water part of the track, the process of
leveling of the mode energy fluxes in the stochastically
scattered component of the sound field can occur
slower than the attenuation of the modes of the first
group. As a result, an inflection appears in the plot of
the energy coherence parameter Ke as a function of r
[22]. At first, Ke decreases with increasing r at initial
distances where the sound field is formed by the waves
of the first group (if the radiator and the observation
horizon lie in the layer adjacent to the ice). As r
increases, we enter the region where the waves of the
first group are strongly attenuated, and the main contri-
bution to the sound field is made by the waves of the
second group. The parameter Ke attains the local mini-
mum in the transition region; then, the coherence
parameter of the field increases and, then, monotoni-
cally decreases with further distance growth. In this sit-
uation, the waves reflected from the bottom almost do
not affect the parameter Ke. If the observation horizon
lies deeper than the layer adjacent to the ice, Ke mono-
tonically decreases with distance from the source. The
transition from the deep-water part of the sound chan-
nel to the irregular part, where the depth decreases
monotonically with distance and the vertical profile of
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
the sound velocity transforms into a constant velocity
with the increase in r, is often accompanied by an
increase in the coherence parameter. Then, the region
of decrease in Ke with the growth of r begins. A situa-
tion is possible when, within the deep-water part of the
track, Ke is constant or decreases as r increases. The
appearance of the region of local increase in Ke approx-
imately coincides with the appearance of the local max-
imum of the anomaly of sound propagation. In practice,
this fact means that zones of enhanced and reduced
audibility for the useful signal are present in the coastal
slope region, especially if one takes into account that
the spatial variability of the level of the noise interfer-
ence produced by the medium obeys almost the same
laws as the stochastic component (this fact will be stud-
ied separately).

Figure 2 presents (1) the plot of the dependence of
the coherent sound pressure level (in dB) on the dis-
tance in a deep-water sound channel and (2) the energy
level of the sound pressure. One can see that the energy
level almost coincides with the distance-average level
of the sound field (on the interval exceeding the period
of interference fluctuations of sound pressure).

Figure 3 shows the dependence of the propagation
anomaly for (1) the total and (2) coherent sound fields
for a propagation track starting with a shallow-water
part. Within the shallow-water part, the total field
almost coincides with the coherent field, which is
caused by weak sound scattering by an area of smooth
ice cover. The transition to the deep-water part of the
sound channel with a thick and rough ice cover is
accompanied by the accumulation of sound energy in
the stochastically scattered component of the field. The
change in the coherence parameter Ke in this case is
shown in Fig. 4. In the shallow-water region, the value
of Ke is close to unity. Then, starting from a distance of
60 km, the decrease in the coherence parameter Ke with
distance occurs at the place of transition to the deep-
water region. The part of the sound channel where the
anomalous variation of Ke with the local maximum
occurs begins at a distance of approximately 350 km.
The rise of such a maximum is possible on the deep-
water propagation track because of the reasons dis-
cussed earlier. This maximum manifests itself most dis-
tinctly when the track begins in the deep-water region.

Figure 5 presents the change of the coherence param-
eter of the sound field at a frequency of 90 Hz in a homo-
geneous (along the track) arctic waveguide with the
depth 3500 m. The depths of transmission and reception
are the same: 50 m. The parameters of the ice cover are
the same as in the case of the waveguide 2500 m deep.
Circles present the experimental values of the coherence
parameter for the same frequency in the case of the sig-
nal reception by a horizontal array; these data were
obtained in the experiment at the SP-13F station.

In the experiment, the correlation coefficient of the
sound field was determined for the case of receiving
elements separated in the horizontal plane, perpendicu-



90 KRYAZHEV, KUDRYASHOV
–118

100 101

1

–110

–102

–94

–86

–78

–70

–62

–54
dB

2

–126
102 R, km

Fig. 2. Coherent sound pressure versus the distance in a deep-water sound channel: (1) interference level and (2) energy level.

13

5

–3

–11

–19

–27

–35

–43

–51

–59

dB

100 101 102 R, km

12

100 101 102

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R, km

Ke

0

Fig. 3. Propagation anomaly on the propagation track begin-
ning in the shallow-water region: (1) total field and
(2) coherent field.

Fig. 4. Coherence parameter of the field on the propagation
track beginning in the shallow-water region.
larly to the direction toward the sound source. In the
case of increasing distance between the reference
receiver and the receiving elements of the array, the
correlation coefficient of the sound field decreases from
unity to a certain value depending on the distance to the
sound source and the frequency; with further increase
in the distance between the reference receiver and the
array elements, the correlation coefficient remains
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almost constant. This provides an opportunity to deter-
mine the difference between the coherent component of
the field and the total field by the value of the correla-
tion coefficient of the sound field with allowance for the
scattered component. Therefore, it is possible to deter-
mine the coherence parameter of the field according to
the intensity ratio of the coherent component of the
field to the total field.

Analyzing the data given in Fig. 5, we first notice
the good agreement of experimental and calculated val-
ues of the coherence parameter of the field. Second, one
can see that the value of the coherence parameter of the
field in this waveguide is greater than in the waveguide
with the depth 2500 m (Fig. 4). Large values of the
coherence parameter of the field in the 3500 m deep
waveguide are caused by the fact that the cycle lengths
are somewhat greater than those in the sound channel
with the depth 2500 m, and, therefore, the coherent
component of the field at the same distances is greater
than in the waveguide with lesser depth.

Let us consider a propagation track beginning in a
deep-water sound channel and ending in a shallow-
water region. The interference pattern for this case is
shown in Fig. 2. The dependence of the propagation
anomaly on the distance is plotted in Fig. 6. One can
see that, in the deep-water region, a distinct divergence
of the levels of the total and coherent fields takes place,
which persists also with the transition to shallow water.
As one can see from Fig. 4, there is no accumulation of
energy of the stochastically scattered component in
shallow water. However, the energy already existing is
retained, because the sound field cannot attenuate faster
than with the attenuation coefficient of the coherent
field. The increase in the propagation anomaly of both
the total and coherent sound fields is observed approx-
imately in the middle of the variable-depth part of the
sound channel. After that, the anomalies decrease with
distance, because the effects of sound attenuation start
to dominate over a certain increase in the sound energy
flux density due to the narrowing of the sound channel.
With varying distance, both regular sound scattering
and the change in the eigenfunctions of the sound chan-
nel play their roles. Figure 7 shows the dependence of
the energy parameter of coherence Ke on distance for a
waveguide starting with a deep-water part. The pres-
ence of the local maximum of Ke in the deep-water part
of the track, at a distance of 350 km, can be seen dis-
tinctly in curve 1 corresponding to the track under con-
sideration. The transition to shallow water is accompa-
nied by the local maximum of Ke due to the regular
transformation of modes and the related change in the
ratio of sound intensities of the total and coherent sound
fields at the observation horizon. Curve 2 corresponds to
the calculation for a shortened track: the length of the
deep-water part of the track is reduced to 100 km. Higher
sound intensity at the beginning of the irregular part
leads to a more distinct maximum of Ke in this region
(120 km).
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In conclusion, we summarize the results:

(1) A code providing the calculation of the sound
field with allowance for both regular and stochastic
sound scattering in an arctic waveguide is developed;
the waveguide is assumed to be inhomogeneous along
the propagation track, and the ice cover roughness is
represented by a two-scale model.

(2) It is found that, in the conditions of sound propa-
gation along irregular arctic sound channels, the appear-
ance of anomalous effects connected with stochastic
sound scattering is possible.
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(3) The energy parameter of coherence of a mono-
chromatic sound field decreases monotonically with
distance. However, it can have local maximums in an
arctic waveguide. This fact must be taken into account
when estimating the state of the ice cover by acoustic
data, as well as the efficiency of array operation.
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Abstract—Nonlinear dynamics of bubbles in liquid in the presence of the resonance and noise acoustic
fields is analyzed. The effect of fluctuations associated with the random field component is found to be most
pronounced in the vicinity of the bifurcation values of the field amplitude and detuning, these values corre-
sponding to changes in the number of stable oscillatory states of a bubble. The radiation spectrum of a single
bubble in the vicinity of the fundamental resonance is determined. In the framework of the proposed model,
a comparison of this spectrum with the real spectrum of acoustic radiation caused by cavitation is performed.
© 2001 MAIK “Nauka/Interperiodica”.
The spectrum of the radiation caused by acoustic
cavitation in liquid has the form of single lines rising
above a noise base. The positions of the lines corre-
spond to harmonics, subharmonics, and ultrasubhar-
monics of the excitation frequency. As an example,
Fig. 1 shows the spectrum of the acoustic power gener-
ated by a cavitation region in liquid as a result of its
excitation by a cylindrical piezoceramic transducer at a
fundamental resonance frequency of 10 kHz [1]. The
presence of single lines in the spectrum is related to the
strongly nonlinear dynamics of single gas bubbles that
occur in the field of an intense acoustic wave and expe-
rience a series of bifurcations of period doubling or
even a transition to dynamic chaos [2–4]. The com-
monly accepted explanation for the presence of the
noise base is the generation of short pulses accompany-
ing the collapse of single inclusions [5–9].

Individual spectral lines of the cavitation radiation
are characterized by a finite width and even by a defi-
nite shape. So far, the nature of these measurable char-
acteristics has been poorly understood. The real spec-
trum of the acoustic pressure (Fig. 1) that causes fluc-
tuations of single bubbles in the sheet noticeably differs
from the spectrum used in theoretical calculations,
which usually takes into account only the fundamental
harmonic. A step toward the generalization of the con-
ventional model was the inclusion of noise, i.e., the
analysis of the nonlinear dynamics of a bubble in the
field of an intense harmonic signal in the presence of a
random component of much lower intensity [10].

In this case, in the Rayleigh–Plesset equation
describing the radial fluctuations of a bubble

(1)RṘ̇
3
2
--- Ṙ

2 P0

ρ0
----- 1

R0

R
----- 

 
3γ

– 2δR0Ṙ+ + +
P P0–

ρ0
---------------,–=
1063-7710/01/4701- $21.00 © 20093
only the expression for the external force P changes.
Here, P0, ρ0, R0, P, and R represent the equilibrium and
current values of the pressure, the density of the liquid,
and the bubble radius; γ is the polytropic index; and δ is
the damping constant that allows for the viscous and
thermal dissipation processes and the radiation damping.

The noise component is described by the additional
term in the expression for the external field acting on
the bubble P(t) = P0 + pmsin(ωpt) + pN(t) (where pN(t)
is the random component). To make the problem a
closed one, it is necessary to describe the characteris-
tics of the random force. We use the most simple force
model in the form of a delta-correlated random process
〈pN(t)pN(t + τ)〉  = 2πSδ(τ), where S is the spectral power
of noise. The comparison with the real spectrum of the
cavitation noise shows that, in the vicinity of reso-
nances, such a model is not too rough.

The bubbles with radii exceeding 10–5 m (which
are the kind of bubbles we will consider in this paper)
are high-Q oscillatory systems that suppress the oscil-
lation spectrum outside a narrow band near the funda-

mental frequency Ω0 = (3γP0 /ρ0 )1/2; i.e., they play
the role of bandpass filters. Therefore, the noise can be
approximated by the expression pN(t) = ΠN(t)cos[Ω0t +
ϕN(t )] [11]. Let us change from the random ampli-
tudes ΠN and phases ϕN to the expressions πN(t) =
ΠN(t)cos[ϕN(t)] and (t) = –ΠN(t)sin[ϕN(t)], which
have simpler correlation functions 〈πN(t)πN(t + τ)〉  =
〈 (t) (t + τ)〉  = 2πS(Ω0)δ(τ) (here, S(Ω0) is the
spectral power of noise at the resonance frequency) and
〈πN(t) (t + τ)〉 = 〈 (t)πN(t + τ)〉  = 0. In this case, the
expression for the noise component acting on a bubble
has the form pN(t) = cos(Ω0t)πN(t) + sin(Ω0t) (t).

R0
2

πN

πN πN

πN πN

πN
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Fig. 1. Shape of the spectrum of acoustic cavitation in water. The excitation frequency is f = 10 kHz, and the pressure amplitude of
the ultrasonic field is pm = 8 × 104 Pa [1].
Solving Eq. (1) with the use of an asymptotic expan-
sion in the small parameter |R – R0 |/R0 ! 1 [12], we
arrive at a system of “reduced” equations for slowly
varying amplitudes a and phases ϑ :

Here, ε is a small dimensionless parameter introduced
for describing the order of the nonlinear terms and
u1(a, ϑ , t ) and u2(a, ϑ , t) are the higher-order terms of
the expansion; only the dependence on the “fast” time,
which describes the variations on the scale of the exter-
nal field period, is given in an explicit form.

Correct to third-order terms, we can perform the
analysis in the vicinities of the fundamental resonance,
the first and second harmonics, and the first and second
subharmonics. Generally speaking, the structure of the
“reduced” equations in each of these regions should be
different. In this paper, we restrict ourselves to describ-
ing the spectrum only in the vicinity of the fundamental
resonance (ωp ~ Ω0).

In this region, the system of the “reduced” equations
describes the bubble dynamics on the time scale that
exceeds the period of the external field 2π/ωp. Express-
ing this system in terms of the variables u(t) =
a(t)cos[ϑ(t)] and v(t) = a(t)sin[ϑ(t)] with allowance for
the random component, we obtain [10, 12]

(2)

R R0–( )/R0
1
2
--- a iωpt– iϑ+( ) c.c.+exp( )=

+ εu1 a ϑ t, ,( ) ε2u2 a ϑ t, ,( ) ….+ +

du
dt
------

pm πN t( )+

2ρ0ωpR0
2

------------------------- δu–=

+ ωp Ω0–( )v κΩ0v u2 v 2+( ),+

dv
dt
------- δv– ωp Ω0–( )u–=
The system of Eqs. (2) is an example of stochastic dif-
ferential equations. The description of the evolution of
this system is based on the solution of the Einstein–
Fokker–Planck (EFP) equation for the probability den-
sity of the dynamic states [11, 13]:

where the averaging is performed over the random
force ensemble. For the case under study, the EFP
equation has the form [13, 10, 14]

where

(3)

The presence of a small random perturbation leads
to noticeable effects only near singular dynamic states
of the bubble. In fact, it is easy to obtain a stationary
solution to Eq. (3) in the region of the existence of a sin-
gle solution to Eq. (2) in the absence of random force
(P(u•, v•) = 0, Q(u•, v•) = 0). Expanding the coefficients
P(u, v) and Q(u, v) near the stationary values u∗  =
a∗ cosϑ∗  and v∗  = a∗ sinϑ∗  to the second-order terms
inclusive, we arrive at the EFP equation for the Orn-

– κΩ0u u2 v 2+( )
πN t( )

2ρ0ωpR0
2

----------------------.+

W u v,( ) δ u u t( )–( )δ v v t( )–( )〈 〉 ,=

∂W
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--------
∂

∂u
------ PW( ) ∂

∂v
------- QW( )+ + D

∂2W

∂u2
---------- ∂2W

∂v 2
----------+ 

  ,=

P u v,( )
pm

2ρ0ωpR0
2

---------------------- δu–=

+ ωp Ω0–( )v κΩ0v u2 v 2+( ),+

Q u v,( ) δv– ωp Ω0–( )u– κΩ0u u2 v 2+( ),–=
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ρ0R0
2Ω0

2( )
-----------------------.=
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001



SPECTRUM OF ACOUSTIC RADIATION CAUSED BY CAVITATION 95
stein–Zernicke process. The solution to the latter equa-
tion has a Gaussian form [13]

,

where

;

(4)

here, Φ0 = Dln[2πD/(c11c22 – c12c12)] is the normaliza-
tion constant determined from the condition

dvWeq(u, v) = 1;

(5)

Using the probability density Weq in the form obtained
above, we determine the mean and the mean square val-
ues of the dynamic variables

(6)

Weq Φ u v,( )/D–[ ]exp=

Φ u v,( ) Φ0 1/2 c11 u u•–( )2[+=

+ 2c12 u u•–( ) v v •–( ) c22 v v •–( ) v v •–( ) ]+

c11 Λ b12
2 b22

2 b11b22 b12b21–+ +( ),–=

c22 Λ b11
2 b21

2 b11b22 b12b21–+ +( ),=

c12 Λ b11b12 b21b22+( ),=

Λ b11 b22+( )/ b11 b22+( )2 b12 b21–( )2+[ ] ;=

b11 ∂P u v,( )/∂u( )u u* v, v*= = ,=

b12 ∂P u v,( )/∂v( )u u* v, v*= = ,=

b21 ∂Q u v,( )/∂u( )u u* v, v*= = ,=

b22 ∂Q u v,( )/∂v( )u u* v, v*= = ;=

ud
∞–

+∞∫∞–

+∞∫
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4ρ0
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---------------------------------------a*.=
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2+[ ] ωp Ω0– 3κΩ0a*

2+[ ]+
-------------------------------------------------------------------------------------------------------------D

δ
----;
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=  
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The domain of applicability of Eqs. (6) is determined
by the condition of smallness of the fluctuations as
compared to the mean values [13]. This imposes an
important limitation on the noise intensity at which the
dynamic features of the bubble behavior near the reso-
nance will not be smeared by the fluctuations: D ! δ.

In addition, special consideration should be given to
the vicinities of the bifurcation curves of the dynamic
system (2), i.e., the curves on which the denominator in
Eqs. (6) becomes zero. Figures 2a and 2b show the
amplitude–frequency characteristic of bubble oscilla-
tions in the vicinity of the fundamental resonance
(i.e., the characteristic described by Eq. (5)) and the
bifurcation curves B1 and B2 in the plane of the deter-

mining parameters pm /pk, (ωp – Ω0)/ωp and  =

(32/3 κ)δ3 Ω0, where

(7)

.

Here, the plus sign corresponds to the curve B2 and the
minus sign, to the curve B1.

In the absence of noise, the singular points of the
dynamic system (2), which correspond to the stationary
states (  = 0,  = 0), are described by Eq. (5), so that
the stable states correspond to nodes and the unstable
states correspond to the saddle points in the u–v phase
plane. The bistability, i.e., the existence of two stable sta-
tionary states, is the distinctive feature of solution (5).

First of all, we note that, in the bistability region
bounded by the curves B1 and B2 (see Fig. 2), though
not too close to these curves, the behavior of the solu-
tions in the vicinity of each of the two stationary states
corresponding to the nodal points of the dynamic sys-
tem (2) has the form of Eq. (4). However, from the local
expansion of the probability density, one cannot deter-
mine the occupancy numbers of these states:
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Nevertheless, one simple relation between N1 and N2
follows from the normalization condition for the prob-
ability density Weq:

(9)

The curve lying in the plane of the determining param-
eters (the detuning and the pumping amplitude) and
corresponding to N1 = N2 is an analog of a binodal. For
all points not on this curve, one of the states is truly
equilibrium, and the other is metastable. For low-inten-
sity noise D ! δ, the occupancy numbers of the meta-
stable states are exponentially small everywhere
except for the vicinity of the binodal. In the lowest
order in D/δ ! 1, the position of the binodal does not
depend on the noise intensity. In this case, we have

N1 N2 u vWeq u v,( )dd
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+∞

∫
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Fig. 2. (a) Amplitude-frequency characteristic of bubble
oscillations in a periodic field and (b) the bifurcation curves.
The hysteretic features of the nonlinear resonance mani-
fest themselves in the bistability region bounded by the
curves B1 and B2. The point F is the critical one at which all
singularities (two nodes and one saddle point) of the
dynamic system (2) merge.
Weq ≈ exp(–Φ(0)(u, v)/D), where Φ(0) is determined by
the equation

(10)

Since, in the case under study, the probability flux of
the steady-state solution is nonzero [13] and the coeffi-
cients P and Q cannot be expressed through the intro-
duction of the potential as P = ∂H/∂u and Q = ∂H/∂v,
the determination of the analytical solution to Eq. (10)
is difficult and the only possible way of solving this
equation is the numerical integration.

Let us consider the solution in the case of intersect-
ing bifurcation curves. We start from the region of
parameters to the left of the curve B1 and increase the
detuning at a constant pressure amplitude. According to
Fig. 2b, this case corresponds to the lower branch of the
amplitude–frequency characteristic. No singularities in
the form of solution (4) occur in this case. This state
corresponds to the true equilibrium. By contrast, for the
amplitude values corresponding to the upper curve in
Fig. 2a, the denominator in Eqs. (6) becomes zero. The
behavior of this metastable state can be analyzed in suf-
ficient detail [12, 14], but, in this paper, we consider
only the steady-state solutions.

With further increase in the detuning, the occupancy
number of the equilibrium state can be considered
equal to unity everywhere up to the vicinity of the bin-
odal. Simultaneously, the lifetime of the metastable
state increases, but the occupancy number of this
locally equilibrium state will be small. After passing
the binodal, we obtain a different situation. Now, the
state corresponding to the upper curve of the ampli-
tude–frequency characteristic will be an equilibrium
one with the occupancy number close to unity, and the
state corresponding to the lower curve will have a very
small occupancy number. The equilibrium state that
corresponds to the amplitude on the upper curve will
simply intersect the bifurcation curve B2, while the
state corresponding to the lower curve will lead to a sin-
gularity in Eqs. (6).

The above situation can be completely analytically
described in the vicinity of the critical point F at
which all singular points (two nodes and the saddle) of
the dynamic system (2) merge. When |pm – pk | ! pk
and |ωp – ωk| ! ωk (in the determining parameter region
bounded by the curves B1 and B2), the distance between
these singular points is small. In this region, the bubble
dynamics is governed by two different time scales.
Their existence is related to the following factors. At
the very point of bifurcation, one of the two Lyapunov
exponents that determine the stability of the nodal point
corresponding to the metastable state becomes zero.
The two independent variables in the u–v phase plane,
which correspond to these characteristic values,
describe the fast and slow (for the zero exponent)
motions in the vicinity of the metastable state.

∂2Φ 0( )

∂u2
--------------- ∂2Φ 0( )

∂v 2
---------------+ 

  P
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------------- Q
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ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001



SPECTRUM OF ACOUSTIC RADIATION CAUSED BY CAVITATION 97
For the slow variable η = u – uk (the fast variable is

described by the expression ξ = (v – vk) – (1/ )(u –

uk), where uk = [( /2)δ(κΩ0)]1/2 and vk =

[(1/2 )δ/(κΩ0)]1/2), with the use of the subordination
principle [15], the EFP equation is reduced to the form

(11)

In the steady-state mode, the oscillatory states of a
bubble will be described by the equilibrium distribution
function

(12)

The analysis of the dependence of the distribution func-
tion on the controlling parameters ∆Ω and ∆p can be
simplified by introducing the normalized variables

,

.

In this case, the region bounded by the curves B1 and B2
is determined by the simple inequality |∆n| ≤ 1, because
the curve B1 is described by the equation ∆n = –1 and the
curve B2, by ∆n = 1.

The character of the fluctuations largely depends on
the closeness of the determining parameters to the point
F. When ∆Ω2 @ DΩ0, the distribution function  has
two sharp maxima for the values |∆n| ≤ 1 (and one for
|∆n| > 1). In this case, the bubble fluctuates about one of
the stationary states thus remaining for a long time near
it and only rarely jumping to the other state.

From Eq. (12), we can determine the “occupancy”
of the stationary states, i.e., the values of the function

 in the vicinities of the nodal points
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The equation ∆n = 0 determines the curve that is an
analog of the binodal: for the corresponding values of
the determining parameters, the bubble is with equal
probability in each of the stationary states. For all
points not on this curve, one of the states is truly equi-
librium and the other is metastable.

In the immediate vicinity of the critical point, ∆Ω2 !
DΩ0, the distribution maxima are spread, which hin-
ders the analytical calculation of the mean characteris-
tics of the system. In this case, the dynamical charac-
teristics of the system can be described by the correla-
tion functions 〈η (t)η(0)〉 , which, in their turn, are
expressed through the nonstationary solutions to the
EFP equation (11):

(13)

where Ψn is the eigenfunction and λn is the eigenvalue
of the equation

(14)

The asymptotic behavior of the correlation function is
governed by the first eigenvalue of Eq. (14):

The numerical solution of Eq. (14) can be found in [16,
17]. At the critical point, the first eigenvalue is λ1 =
1.75(κΩ0D)1/2. The value of the diffusion coefficient
depends on the spectral density of the noise. For S(Ω0) ≈
104 (Pa2/Hz) [5–7], we obtain D ≈ 8.7Ω0(Ω0 /1 Hz) ×
10–8, and for Ω0 = 2π × 5 × 104 Hz, we have λ1 ≈ 7.5 ×
103 Hz.

The results obtained above allow us to describe the
spectral characteristics of the radiation generated by a
fluctuating bubble. The monopole component of the
radiation of a bubble located at the point r' has the form

(15)

where r is the radius-vector of the observation point.
The radiation spectrum observed at the point r is deter-
mined by the expression

(16)
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This spectrum is formed by the correlations of four dif-
ferent types: the autocorrelation function of the exter-
nal field, the correlators between the noise and the bub-
ble radiation, the autocorrelation function of the noise,
and the autocorrelation function of the radiation. It is
essential that the contribution of the terms correspond-
ing to the first two types is of a purely coherent nature
(proportional to δ(ω + ωp) and δ(ω – ωp)). The autocor-
relation function of noise is frequency independent and
describes the constant base of the spectrum. The shape
of the radiation spectrum is exclusively determined by
the contribution of the autocorrelation function of the
radiation.

Substituting the asymptotic expansion for the bub-
ble radius in Eq. (15) and retaining only the leading
terms in Eq. (16), we derive

(17)
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where

(18)

(19)

.

Here, (ω) = exp(–iωτ)〈 (t) (t + τ)〉  and

 = u – 〈u〉 . The correlators of other types are calcu-
lated in a similar way.

For reference, we presented above the explicit
expression (18) for the coherent contribution to the spec-
tral density. Such a simple expression is valid at not too
small distances from the critical point. In addition, in the
bistability region, for the detuning less than its values on
the binodal, the amplitude values substituted in Eq. (18)
should be those corresponding to the lower branch of
dependence (5) and, correspondingly, the values belong-
ing to the upper branch should be used for the detuning
values lying to the right of the binodal.

Outside the vicinity of the critical point, where the
amplitude and phase fluctuations can be described by the
Ornstein–Zernicke process [13], the expression (19) for
the incoherent contribution to the spectral density can
be reduced to the following form (for definiteness, we
select the vicinity ω ~ ωp):

S̃c ω( ) 1
4
--- u〈 〉 2 v〈 〉 2+( ) δ ω ωp+( ) δ ω ωp–( )+[ ]=

=  
a*

2

4
------ δ ω ωp+( ) δ ω ωp–( )+[ ] ,

S̃n ω( ) 1
4
--- S̃uu ω ωp–( ) S̃uu ω ωp+( )+{=

+ S̃vv ω ωp–( ) S̃vv ω ωp+( )+

+ i S̃vu ω ωp–( ) S̃uv ω ωp–( )–[ ]

+ i S̃vu ω ωp+( ) S̃uv ω ωp+( )+[ ] }

S̃uu
1

2π
------ τd

∞–

+∞∫ ũ ũ

ũ

(20)S̃n ω( ) D
2
----

ω ωp–( )2 ω ωp–( ) b12 b21–( ) 1/2( ) b11
2 b12

2 b21
2 b22

2+ + +( )+ +[ ]
ω ωp–( )2 b11b22 b12b21–( )– i ω ωp–( ) b11 b22+( )+[ ] c.c.[ ]

--------------------------------------------------------------------------------------------------------------------------------------------------------,=
where (see definition (4)) b11 = –δ + 2κΩ0u∗ v∗ , b22 =

–δ – 2κΩ0u∗ v∗ , b12 = [(ωp – Ω0) + κΩ0(  + 3 )],

b21 = –[(ωp – Ω0) + κΩ0(3  + )].

Expression (20) describes the main result of this
study, namely, the shape of the spectrum of the bubble
radiation in the cavitation region. In the strongly nonlin-
ear mode under study when κΩ0  ≥ δ, this shape

widely deviates from the Lorentz one (ω) ≈ (D/2)[(ω –
2ωp + Ω0)2 + δ2]–1, to which it is reduced when the non-
linear terms are neglected.

u*
2 v*

2

u*
2 v*

2

a*
2

S̃n
For illustration, Fig. 3 shows the dependence of

the normalized spectral density SN (  = (D/2δ2)SN)
on the dimensionless variables ∆ = (ω – ωp)/δ and η =
(ωp – Ω0)/δ for the external pressure amplitude pm =
1.4pk. An important fact is that the magnitude and the
halfwidth of the spectral density of radiation are deter-
mined by the stability of the nonlinear dynamic state of
the bubble, because (b11b22 – b12b21) is the product of
the corresponding Lyapunov exponents of system (2) in
the absence of noise.

An abrupt change in the spectral density in the
vicinity of the detuning ηb corresponding to the binodal

S̃n
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Fig. 3. Spectral density of the bubble radiation SN as a function of the dimensionless variables η = (ωp – Ω0)/δ and ∆ = (ω – ωp)/δ
at pm = 1.4 pk. The values of η are plotted along the y-axis, and ∆ is represented by the x-axis.
is related to the change in the amplitude of the bubble
oscillations due to the transition from the lower branch
of the amplitude–frequency characteristic to the upper
one. For the given amplitude of the external field, the
transition point is fairly close to the bifurcation curve
B2 on which the Lyapunov exponent for the states
belonging to the lower branch becomes zero. The oscil-
lations corresponding to these states will be much less
stable. Being affected by the external noise, they will
build up to a considerably greater amplitude, which
gives rise to the sharp peak in the spectral density.

The shift of the spectral density peak to lower fre-
quencies with increasing detuning η is related to the
fact that an increase in the detuning at a fixed frequency
of the external field corresponds to the contribution of
bubbles with greater equilibrium radii and, hence, with
lower natural frequencies. Since, as was mentioned
above, for the external noise, a bubble represents a
bandpass filter near the natural frequency (the band-
width is determined by its Q-factor), a decrease in the
natural frequency evidently leads to a corresponding
shift of the spectral density peak.

The numerical solution of the Rayleigh equation for
large external pressure amplitudes showed [4, 18, 19]
that the asymptotic solution (2), which takes into
account only the terms up to the third order, adequately
describes all qualitative features of the nonlinear reso-
nance far beyond the region of the formal validity of
this solution, |R – R0 |/R0 ! 1. One can expect that this
ACOUSTICAL PHYSICS      Vol. 47      No. 1      2001
result will also be valid in the presence of noise. The
application of numerical methods in analyzing the non-
linear dynamics of a bubble in the resonance and noise
fields is a natural and necessary continuation of this
study.

Another problem consists in taking into account the
contribution of a set of bubbles with different radii that
are present in the cavitation zone. Figure 4 shows the
experimental dependences obtained by different
researchers [1, 20, 21] and demonstrating the stable
features of the shape of the cavitation radiation spec-
trum in the vicinity of the fundamental frequency.
These features include the presence of narrow spectral
components resting on a wide base, which is asymmet-
ric in shape and passes into the noise background. Evi-
dently, the narrow lines are caused by the coherent con-
tribution to the spectral density. The description of the
shape of the asymmetric base is of special interest, but
the direct use of expression (20) derived for the radia-
tion spectrum of a single bubble presents considerable
difficulties.

In the general case, in expression (17), we have a
sum of the “diagonal” terms, i.e., the autocorrelation
functions (20), and the “off-diagonal” terms, which
describe the pair correlations between the radiation
produced by different bubbles. Generally speaking, it is
unjustified to neglect the contribution of the latter.
However, for their determination, one should use the
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Fig. 4. Shape of the spectrum of the cavitation radiation near the fundamental frequency [1, 20. 21]. The specific features, namely,
the narrow components rising over a wide base, are indicated by the dotted lines for the data taken from [1]. The asymmetric base
deviates from the Lorentz form and retains its shape in widely different experimental conditions.
data on the spatial spectrum of fluctuations in the cavi-
tation region and such data are practically absent.

At the same time, some of the specific features of
the dependences shown in Fig. 4 can be understood on
the basis of Eq. (20) (or its graphic representation in
Fig. 3). Firstly, it is the halfwidth of the bases ∆ω far
exceeding the value of δ: the contribution of only the
“diagonal” terms, which can be obtained by integrating
Eq. (20) with respect to the detuning η, leads to the
value ∆ω ~ 5δ. Secondly, it is the asymmetry of the
resulting spectrum about ωp: this asymmetry is a natu-
ral result of the asymmetry of the radiation of a single
bubble. Finally, the fact that the shape of the spectrum
is determined by the stability of the dynamic states of
the bubbles allows one to predict the changes that occur
in the spectrum near the bifurcation values of the exter-
nal pressure amplitude that correspond to the loss of
stability.
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