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Directed solidification of binary melts is commonly
used for producing metal ingots, whose quality is deter-
mined by the transition character of the metal from the
liquid to solid state [1, 2]. The metal undergoing solid-
ification consists of three regions, in which it is in solid,
liquid, and two-phase states, respectively. Being situ-
ated between the liquid and solid zones, the two-phase
region determines all general properties of the solid
phase [3]. This region forms mainly due to supercool-
ing occurring in the melt ahead of the crystallization
front [4]. Supercooling arising under certain conditions
is related to concentration changes (diffusion) which
cause the formation of a region where the melt temper-
ature is lower than the equilibrium temperature of the
phase transition; consequently, the melt is in the meta-
stable state. Thus, concentration-caused supercooling
can lead to the formation of a cellular front, a dendritic
structure, and so forth. According to experimental
papers [5, 6], the solidification of metal melts is accom-
panied by the fast formation of a dendritic structure.
This leads to the removal of supercooling attained
through heat release by dendrite growth in the two-
phase zone. The system of equations of heat-and-mass
transfer describing crystallization under such condi-
tions was first proposed by V.T. Borisov in [3, 7], and
the two-phase zone was then referred to as the quasi-
equilibrium zone.

The nonlinear system of equations of the quasi-
equilibrium two-phase zone was analyzed by asymp-
totic methods in [8, 9]. Based on the obtained solutions,
the authors of these papers were able to replace the two-
phase zone with a discontinuity surface in the case of
both the “narrow” [8] and “wide” [9] zone. Analysis of
the stability of these solutions was carried out after-
wards in [10–12]. We note that the obtained solutions
far from involve all the possible cases of solidification
because the parameters, in terms of which the asymp-
totic expansions are written, are not always small. This
paper presents the general analytic solution to the sys-
tem of equations describing the quasi-equilibrium two-
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phase zone and also presents calculations of tempera-
ture and impurity-concentration jumps caused by pass-
ing across the two-phase zone. With these jumps in
mind, we replaced the quasi-equilibrium two-phase
with a discontinuity surface which separated the solid
and liquid phases in the general case.

We consider the solidification of a binary melt with
fixed temperature gradients in the solid phase (gs) and
in the melt (gl). The solidification rate us and the width
of the two-phase zone δ are assumed to be steady-state.
The solid phase and the melt occupy the regions ξ < usτ
and ξ > usτ + δ, respectively, where ξ is the coordinate
and τ is the time. Plane ξ = usτ is the boundary between
the solid phase and the two-phase zone, whereas plane
ξ = usτ + δ separates the two-phase zone from the melt.
The system of equations for heat-and-mass transfer in
the quasi-equilibrium two-phase zone has the following
form (as usual, the diffusion of the impurities is
neglected in the solid phase):

(1)

(2)

(3)

Here, σ and σl are the impurity concentrations in the
two-phase zone and in the melt, respectively; θl , θs, and
θ are the temperatures in the melt, solid phase, and two-
phase zone, respectively; θ0 is the transition tempera-
ture of the pure melt; ϕ is the volume fraction of the
solid phase in the two-phase zone; D and Dl are the dif-
fusion coefficients in the two-phase zone and in the
melt, respectively; m is the slope of the liquidus line; k
is the equilibrium distribution coefficient of the impu-
rity; ρ is the density; L is the latent heat of the phase
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transition; and λ is the heat conductivity in the two-
phase zone.

The terms proportional to  in Eqs. (1) and (2)

correspond to the trapping of impurities and heat
release, both of which result from the formation of
solid-phase domains in the two-phase zone. The second
equation in (2), i.e., the condition of the quasi-equilib-
rium state of the two-phase zone, indicates that the tem-
perature in the two-phase zone is equal to the transition
temperature of the binary melt. In the region character-
ized by linear scale l and thermal diffusivity a, the

relaxation time of the temperature field τa =  is much

shorter than that of the diffusion field τD =   ~

10–3–10–4 . Therefore, derivatives of temperature with

respect to time are neglected in the equations of heat
conduction. We consider that, far from the boundary
between the two-phase zone and the melt, the impurity
concentration is known:

(4)

The following conditions of heat-and-mass balance are
met at surfaces ξ = usτ and ξ = usτ + δ, which bound the
two-phase zone:

(5)

(6)

(7)

The transport coefficients characterizing the two-phase
zone are calculated using the simplest formulas,

(8)

which correspond to the well-known mixture rule. The
model presented here is substantiated in detail in [8, 13].

In the reference system having velocity us, the solid-
ification process is steady. Therefore, after transforma-
tion to this system, we can integrate the first equation
in (2). Then, using the result from boundary condi-
tion (5), we can represent solidification rate us as

(9)

Let us introduce the following dimensionless vari-
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. Below, we
consider the exact solution to system (11)–(13). The
first equations in (11) is multiplied by 
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tion of  with the expression given in the second
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Its solution, meeting boundary condition (13), has the
form
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ferential equation for ϕ(x). Its solution has the form
(x = ε, ϕ = 0):

(16)

We denote the volume fraction of the solid phase at the
left boundary x = 0 as ϕ∗  and, by using (12), obtain the
following equation for ϕ∗ :

Then, c(ϕ) is taken from (14) at ϕ = ϕ∗ ,  is taken

from the second equation in (11), and both are substi-
tuted into the previous equation. As a result, we have

(17)

Substitution of x = 0 and ϕ = ϕ∗  into (16) yields the
equation for the dimensionless width of the two-phase
zone:

(18)

Thus, the width of the two-phase zone is expressed in
terms of thermal parameters. Figure 1 demonstrates
plots ϕ∗ (gs) and ε(gs) at gl = 1°C/cm, which are calcu-
lated according to formulas (17) and (18) [velocity us ,
involved in dimensionless temperature gradient Gl , is
eliminated by using relation (9)]. Under the assumption
of a fixed value of gradient gl, the dependence of the
dimensional zone width δ on the solid-phase tempera-
ture gradient gs,

, (19)

is derived by eliminating velocity us using expression (9).
The corresponding curve is shown in Fig. 2. Function
x(ϕ) can be easily constructed by substituting ε(gs)
from (18) into (16). The inverse function ϕ(x) is plotted
in Fig. 3. The concentration c(x) of impurities in the
solid phase (Fig. 3) is determined by substitution of the
derived function into (14) and (15).

x ϕ( ) ε
yd

d 1 Gl
J y( )

P
-----------+ + 

  1 y–( )k 1–

0

ϕ

∫–=

×
P Λ l 1 y–( ) y+[ ]

y PGlΛ1+
----------------------------------------dy.

dc
dx
------ 1 k–( )c, ϕ– ϕ*.= =

dc
dx
------

ϕ* PGlΛ1+
P Λ1 1 ϕ*–( ) ϕ*+[ ]
-------------------------------------------------

=  1 k–( ) 1 ϕ*–( )k 1– 1 Gl
1
P
---J ϕ*( )+ + .

ε
yd

d 1 Gl
J y( )

P
-----------+ + 

  1 y–( )k 1–

0

ϕ*

∫=

×
P Λ1 1 y–( ) y+[ ]

y PGlΛ1+
-----------------------------------------dy.

δ gs( )
ε gs( )DlρL
λ sgs λ lgl–
-------------------------=

10 15

0.3

0.4

0.2

0.1
5 20

1

2

0
gs, 

°C/cm

εϕ*

Fig. 1. ϕ∗ (gs) and ε(gs) plots for the Fe–Ni alloy at k = 0.68,

m = 2.65°C/wt %, L = 485.5 cal/g, Dl = 5 × 10–5 cm2/s,

ρ = 7 g/cm3, λl = 0.1 cal cm °C/s, λs = 0.177 cal cm °C/s,
σ∞ = 0.3.
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Fig. 2. δ(gs) at gl = 1°C/cm plots for the Fe–Ni alloy, whose
thermal and physical characteristics correspond to Fig. 1.
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Fig. 3. ϕ(x) (solid curves) and c(x) (dashed curves) plots for
the Fe–Ni alloy with thermal and physical characteristics
corresponding to Fig. 1 at gl = 1°C/cm and (1) gs = 5,
(2) 15, and (3) 25°C/cm. Vertical lines show the width δ of
the quasi-equilibrium two-phase zone, which is calculated
by formula (19) at the given gradients and conforms to
Fig. 2.
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Thus, the complete solution to the problem of
directed solidification of a binary melt having a
quasi-equilibrium two-phase zone is given by relati-
onships (14)–(19).

The obtained solutions have the form of implicit
functions. Therefore, to carry out stability analysis,
solidification with a quasi-equilibrium two-phase zone
should be replaced with an equivalent frontal process.
The main idea lies in the substitution of the discontinu-
ity surface ξ = Σ(τ) separating the solid phase from the
melt for the actual two-phase zone. After this substitu-
tion, in the solid phase and the melt, the problem is
described by equations of heat conduction at tempera-
tures θs and θl, respectively. In the melt, there is an
additional equation of impurity diffusion correspond-
ing to concentration σl . The position of boundary Σ(τ) is
also unknown in these second-order equations. There-
fore, to solve the problem, it is necessary to specify seven
boundary conditions. Three of them are specified far
from the discontinuity surface (for example, it is possi-
ble to fix the temperature gradients and impurity con-
centration in the melt). The other four boundary condi-
tions are obtained in the following way.

The temperature at the boundary separating the two-
phase zone from the melt must be equal to the phase
transition temperature:

(20)

Another boundary condition results from condition θ ≡

θ0 – mσ or  ≡ , which is valid inside the

two-phase zone, and from the boundary conditions
given at the boundary between the two-phase zone and
the melt:

.

It has the form

(21)

Then, using condition (9), we can write the boundary
condition related to the heat balance:

(22)

The last condition specified at ξ = Σ(τ) determines the
temperature jump. Taking into account the condition of
quasi-equilibrium and formulas (11) and (12), we find
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1 k–( )P
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At ξ = Σ(τ), the second term in the right-hand side of
the above relationship can be expressed in terms of the
jump of the temperature derivative:

Here, the condition of the quasi-equilibrium state, the
boundary conditions (12) and (13), and the second
Eq. (11) are taken into account. The dimensional final
expression presented below is obtained by eliminating
the second terms in the right-hand sides of the last two

relationships and by substituting us with , gl with

, and  with :

(23)

Stability analysis of the formulated model with the
boundary conditions (20)–(23) specified at the discon-
tinuity surface can now be carried out in the general case
in analogy to papers [10–12]. Note that stability regions
were found earlier in certain limiting cases [11, 12]. This
means that, in these cases, the solution derived is stable.

Thus, in this paper, we have constructed the general
solution to the classical system of nonlinear equations
describing the quasi-equilibrium two-phase zone. This
system was first proposed by Borisov in the early
1960s. The solution found allows us to calculate the
jumps of thermal parameters corresponding to a pass
through the two-phase zone and to replace them, in the
general case, by a discontinuity surface between the
solid phase and the melt. As a result, stability analysis
can be carried out in the general case and we can apply
conventional numerical methods for solving time-
dependent problems with one moving boundary.
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The study of the nature and properties of different
glass defects, particularly in silicate glass, is of interest
in solid state physics and chemistry and bears impor-
tant significance on practical applications in the com-
mercial production of optical fibers, optical systems,
and microelectronic devices. These defects can be situ-
ated both in the bulk and on the surface of the solid. The
bulk and surface defects of silicon dioxides, such as
E'-centers, nonbridge oxygen atoms, peroxide radicals,
and others, possess similar optical characteristics [1, 2].

On the glass surface, certain radicals like ≡Si0,
≡SiO0, ≡SiOO0, ≡SiOCO0, ≡SiONN0 can be stabilized
and, thus, their individual absorption spectra can be
identified [3]. However, while in contact with the envi-
ronment, these defects are rapidly modified and under
natural conditions, paramagnetic centers on the surface
of the silicon dioxide are not detected. The characteris-
tics of the surface layers always differ from those in the
bulk of the material due to the sharp changes occurring
at the phase boundary and in its vicinity. Silicate glass
usually has a large chemical affinity for water vapor.
Being in contact with an ambient atmosphere contain-
ing unsaturated water vapors, the freshly prepared sur-
face of the silicate glass reacts with the active surface
regions and forms OH– ions (chemisorption). At longer
exposures, adsorbed water reacts with an alkaline glass
component, forming alkaline solutions on the surface.
Thermal treatment of the glass surface may lead to its
dehydration accompanied by the formation of two-,
three-, and four-term rings consisting of Si and O atoms
[4]. The three-term rings are stressed and decompose
for the first turn under external actions.

Improved methods of synthesis and purification of
initial glass constituents have made it possible to essen-
tially lower the concentration of dyeing elements in the
glass bulk. As a result, impurity bands in the absorption
spectrum of the quartz glass disappear. The absence or
low intensity of the doped luminescence enabled us to
find a new form of previously unobserved lumines-
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cence in massive silicate glass, namely, rapid broad-
band luminescence excited within the glass transmis-
sion band [5–8]. As additional investigations have dem-
onstrated, this luminescence is related to quasi-
molecular complexes composed of elements of a basic
substance and an impurity.

With decreasing impurity concentration, the lumi-
nescence intensity excited in the bulk of glass also
decreases. However, in this case, under normal condi-
tions, it is impossible to provide for the glass surface
purity as compared to the glass bulk purity. In this con-
nection, the intensities of surface and bulk lumines-
cence in certain conditions can be commensurable,
although the thickness of the excited layers is signifi-
cantly smaller in the former case. Therefore, in the
high-purity glasses, the contribution of the surface
luminescence to the bulk (rapid broadband) lumines-
cence can be significant, especially when the thickness
of the samples under investigation is small and the glass
surface luminescence also arrives at the spectrometer
slit. Usually, in high-purity glasses, the radiation inten-
sity from the bulk of the material is quite low. As inves-
tigations [9] have shown, impurity concentrations in
the bulk of glass and on its surface may differ by several
orders of magnitude. The goal of the present study is to
investigate the spectral-kinetic characteristics of the
surface luminescence for pure quartz glass and multi-
component silicon glass under the action of UV radia-
tion and to determine the contribution of the surface
luminescence to the luminescence of the entire sample.

The investigations were performed with the help of
a modernized spectral-computational KSVU-23 setup
composed of an MDR-23 monochromator and signal
acquisition and processing systems. The system for
detecting optical signals consisted of FEU-77, FEU-79,
and FEU-100 photodetectors and a boxcar integrator,
making it possible to detect signals by the pulse-strob-
ing method. The spectral range under investigation was
200 to 850 nm; the setup time resolution was not worse
than 5 ns. The strobe width changed from 10 ns to
400 µs. This made it possible to set up a strobe at a cer-
tain part of the pulse being investigated and to detect
spectra resolved in time. The bulk and surface lumines-
cence were excited by a nitrogen-laser beam (with a
wavelength of 337 nm, a duration of ~9 ns, and a power
of ~15 kW) at an angle of 90° with respect to the regis-
000 MAIK “Nauka/Interperiodica”
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tration axis. The results obtained were analyzed by a
computer. We have investigated quartz glasses with
trademarks KI, KU-2, KU-1, and KUVI (types I to IV)
high-purity multicomponent silicon glass of the K1082
and F1087 types consisting of 70% silicon dioxide, and
commercial glasses K8 and TF-1. The samples had
high-quality polished surfaces. The sample thickness
was from 10 to 12 mm.

The luminescence spectra were recorded with the
help of a special diaphragm with dimensions of
5 × 5 mm, which was placed directly in front of the
sample. In the cases when the position of the dia-
phragm was in the middle or at the edge of the sample,
we recorded, correspondingly, the luminescence radi-
ated only by the bulk or by both the bulk and the sur-
face. In certain cases, the surface luminescence was
excited by radiation slipping over the surface when the
radiation fell onto the surface at a very acute angle.

Recording luminescence spectra of optical glass
along with the luminescence of its surface has shown
that they are more complicated in comparison with the
case of the bulk. These spectra contain an additional
long-wave band in the vicinity of 520 nm which deter-
mines the appearance of two spectral maxima in the
luminescence spectrum or a maximum shifted towards
the long-wave side. Figure 1 shows the luminescence
spectra for both the bulk + surface (curve 1) and bulk
only (curve 2) for the KU-1 (Fig. 1a) and KUVI
(Fig. 1b) quartz glasses and for the K1082 multicompo-
nent glass (Fig. 1c). We recorded only the rapidly
damping part of the luminescence (the strobe width was
40 ns without time delay). Analysis of the lumines-
cence spectra shows that the short-wave parts of the
bulk + surface spectra and the pure bulk spectra coin-
cide exactly, provided they are properly normalized.
Such a coincidence is observed for all investigated sam-
ples and makes it possible to assume that the short-
wave part of the bulk + surface luminescence spectrum
is determined by the bulk luminescence centers, whereas
the long-wave part is determined by both the bulk and
the surface centers. Under this assumption, the bulk
luminescence spectra were subtracted from the bulk +
surface spectra. The difference spectra derived by this
method are given in Fig. 1 (curves 3). These spectra
may be considered as the luminescence spectra for the
glass surfaces. The surface luminescence spectra for
the three types (KU-1, KUVI, and KI-2) of quartz glass
have spectral maxima in the vicinity of 530 nm, which
weakly differ from each other. At the same time, spec-
tra of the KI quartz glass and of the K1082 multi-
component glass have their maxima in the vicinity of
~480 nm.

Investigations of time characteristics have shown
that the attenuation of the surface luminescence has no
exponential nature and that its full width at the half-
maximum is on the order of 10 to 15 ns. The nonexpo-
nential nature of the attenuation law is well pronounced
in the luminescence spectra obtained by the time-reso-
DOKLADY PHYSICS      Vol. 45      No. 11      2000
lution method. For example, the steady luminescence
spectrum of the KU-2 glass is much wider than that of
the fast component (both obtained with a strobe width
of 40 µs and without any time delay) and has a second
impurity line at ~450 nm.

An increase in temperature leads to the temperature
quenching of the luminescence. When a sample is
heated from 20 to 300°C, the intensities of the bulk +
surface luminescence and the bulk luminescence alone
decrease by a factor of ~4.5 and ~2.5, respectively. The
former spectra obtained at temperatures of 20 and
300°C differ insignificantly from one another, even
though they have different thermal quenching coeffi-
cients. This might be related to the small overlap of the
bulk and surface impurity lines.

As is seen from the bulk + surface spectra and the
difference spectra, the relation between the bulk- and
surface-luminescence intensities depends on the type
of quartz glass. The statistical weight of the surface
luminescence is the highest for the KU-1 quartz glass.
In the K8, F1087, and TF-1 commercial optical glasses,
the surface luminescence is not seen against the back-
ground of the intense bulk luminescence. In the case of
the dispersive SiO2, whose surface is well developed,
the reversed situation is observed; i.e., the surface lumi-
nescence dominates in the luminescence spectrum [10].
As was established previously [6], the rapid broadband
luminescence intensity, i.e., the bulk luminescence,
increases in quartz glasses in accordance with the fol-
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Fig. 1. Luminescence spectra for (a) KU-1, (b) KUVI, and
(c) K1082 silicon glasses, which were measured under dif-
ferent conditions: (1) bulk + surface; (2) only bulk; (3) the
luminescence spectrum obtained by subtracting spectrum
(2) from spectrum (1) for a strobe width of 40 ns and zero
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lowing sequence: KU-1, KSG (type III), KUVI (type IV),
KU-2, KV (type II), and KI (type I). Hence, we may
conclude that, indeed, the luminescence intensity does
not change significantly from one glass sample to
another and is determined, as a whole, by the polishing
quality and the surface purity. The same conclusion
also follows from analyzing the mechanisms of the for-
mation of luminescence centers on the glass surface.
Unlike the bulk luminescence centers, the surface cen-
ters are more subjected to the action of the environ-
ment. For example, the intensity of the surface lumi-
nescence for dispersive SiO2 changes by a factor of
~1.6 [10] depending on the measurement conditions,
i.e., whether they are performed in ambient air or in
vacuum. After mechanical treatment, nonbridge-oxy-
gen-atom and peroxide-radical type defects are formed
on the surface of silicon dioxide relatively easily and
their concentration before contact with the environ-
ment and interaction with its atoms is larger than in
the case of the same bulk defects [2]. Therefore, we
can suppose that, in our case, the luminescence surface
centers are formed mainly during the mechanical pro-
cessing of the glass surface and are modified under the
influence of environmental atoms.

The luminescence centers may also be formed and
stabilized in the bulk and on the surface of a substance
under the action of radiation. To elucidate the role of
radiation in forming the surface luminescence centers,
we have investigated the surface luminescence of a
KU-2 glass exposed 9 years ago to γ-rays at a dose of
105 rad. Absorption spectrum measurements show that
an additional absorption induced by the radiation is not
yet completely annealed. In Fig. 2, the bulk + surface
(curve 1) and bulk (curve 2) steady luminescence spec-
tra (the strobe width is 40 µs) for the KU-2 γ-irradiated
glass and the difference spectrum obtained by subtract-
ing the latter from the former are presented under the
assumption that the impurity line at 670 nm is deter-
mined only by the bulk centers. This assumption is
based on the results of [2], wherein, after contact with
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Fig. 2. Luminescence spectra for KU-2 quartz glass irradi-
ated by γ-rays at a dose of 105 rad, which were measured
under different conditions: (1) bulk + surface; (2) only bulk;
(3) the luminescence spectrum obtained by subtracting
spectrum (2) from spectrum (1) for a strobe width of 40 ns
and zero time delay.
the environment, the surface centers of the nonbridge
oxygen atoms are not observed. On the other hand, the
power density of the nitrogen laser (~1 MW/cm2) used
in the experiments is not sufficient to destroy the glass
surface. As is shown in [11], when destroying the SiO2
surface by intense UV radiation, luminescence maxima
at 440, 560, and 650 nm are observed. In the authors'
opinion, the first and third luminescence bands are
determined by the E'-center and nonbridge oxygen
atom, respectively, while the second band is related to
silicon nanoparticles. As is seen from analyzing the
steady spectra for the surface luminescence of KU-2
quartz-glass samples irradiated and not irradiated by
γ-rays, the γ-radiation leads only to a change in the rela-
tion between the intensities of the impurity lines at
~450 and ~520 nm. This relation changes in favor of
the first line. The same changes occur with the impurity
line at ~535 nm in the luminescence spectrum for the
quartz glass of special manufacture, in which the con-
centration of transient metals, OH groups, and Cl2 is
lower than 10–5 wt %. These changes indicate that after
(or during) γ-irradiation, the new luminescence centers
appear on the sample surface. They may be formed as a
result of the breaking off of OH bonds and the replace-
ment of hydrogen by another element (impurity) with
subsequent formation of a quasi-molecular complex
consisting of elements of the basic substance and the
impurity, as is the case for the rapid broadband lumi-
nescence. The same mechanism of center formation
may also be suggested for the case of mechanically pro-
cessing the glass surface, in which complexes can be
formed by attaching impurities of broken ≡Si–O bonds
appearing in great amount when the glass surface is
ground or polished. The spectral-kinetic characteristics
of the surface luminescence are the following: univer-
sality of the phenomenon for most optical glasses, close
location of maxima, short durations, and a nonexpo-
nential character of the attenuation laws. The sensitiv-
ity to γ-radiation and temperature also indicates that the
surface luminescence can have the same nature as that
with the bulk luminescence of optical glasses (rapid
broadband luminescence), which is excited within the
glass transmission band.

In contrast to complexes being formed in the glass
bulk, impurities that are absent there but available in
great amounts in the environment can also participate
in the creation of surface complexes. Therefore, the
luminescence spectrum of surface complexes differs
from that of bulk complexes. The energy states of a
quasi-molecular complex depend strongly on the posi-
tion, charge, and size of the impurity ion. Hence, we
may expect that a complex formed with the participa-
tion of the same impurity ion will possess different
energy characteristics depending on whether it is
formed on the surface or in the bulk of the material. On
the glass surface, the distance between a nonbridge
oxygen atom and an impurity ion differs from that
between them in the glass bulk. Therefore, the impurity
DOKLADY PHYSICS      Vol. 45      No. 11      2000
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ion has a larger degree of freedom due to the absence of
surrounding atoms on one side of the surface. There-
fore, relaxation of the excited surface complex, which
precedes photon emission, can be very strong and, as a
consequence, there occurs a greater Stokes shift of the
maximum in the luminescence spectrum compared to
the case of the bulk complexes at the same energies of
exciting radiation. The concentration of the surface
complexes is higher than that in the bulk. However,
because of the small thickness of the surface layer,
where the complexes are formed, the intensity of their
luminescence is very low. Therefore, the surface lumi-
nescence can be found only in those optical-glass sam-
ples in which the bulk luminescence intensity is low or
when the bulk and surface luminescence spectra are
shifted with respect to each other.

Thus, we may conclude that in high-purity optical
glasses, the longer wave luminescence defined by the
surface centers is excited simultaneously with the exci-
tation of the rapid broadband luminescence. The spec-
trum of this luminescence has a large Stokes shift and
kinetic characteristics similar to those of the bulk lumi-
nescence excited within the range of the glass transmis-
sion band. The surface luminescence is sensitive to the
effects of γ-irradiation and temperature and has differ-
ent spectral maxima depending on the glass type. It is
possible that this luminescence is determined by quasi-
molecular complexes formed by nonbridge oxygen
atoms and an impurity ion on the glass surface.
DOKLADY PHYSICS      Vol. 45      No. 11      2000
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Analysis of the results of precision measurements
using a ballistic setup for studying the aerodynamic drag
in the case of a spherical body flying in an air gas-dis-
charge plasma and in nonionized air was performed
in [1]. Comparison of the results shows that a certain
frame formed by highly excited metastable strongly
interbound molecules [2, 3] arises in plasma. The frame
has a clearly expressed regular structure with a density
of 0.224 × 1017 cm–3 and a binding energy of 2.42 ×
104 erg/cm3. In this case, the distance between the
bound molecules is ~10–6 cm and the binding energy
per molecule is 10.8 × 10–13 erg, which exceeds the
mean thermal kinetic energy of an air molecule at a
plasma temperature of 1400 K almost by a factor of
four. Owing to the strong bond between the particles in
the frame, they have no translational degrees of free-
dom and, therefore, do not participate in creating exter-
nal pressure. As a whole, the frame parameters corre-
spond to the Rydberg state of highly excited gas parti-
cles for which the collectivization of outer electron
shells occurs. We denote the concentrations of free and
bound molecules as nf and nb , while the external static
pressure is Pf = nf kT (k = 1.38 × 10–16 erg/K is the Bolt-
zmann constant and í is the gas-kinetic plasma temper-
ature).

It was found that in the gas discharge process, in
both polyatomic and monoatomic gases, frames of the
same standard type are formed for each gas indepen-
dently of the pressure and temperature of a perfect
component of plasma and the method of ionization.
The initiation of the frame has an energy threshold
determined by the discharge voltage across the elec-
trodes (~1 kV for air) of a plasma producing generator.

A complicated three-wave structure of shock waves
in gas-discharge plasma, which is composed of a pre-
cursor [4] including a leader [5] and a remainder wave,
was discovered in 1989–1990. Anomalous parameters
of shock waves in plasma were investigated in a shock
wave tunnel with a cross section of 100 × 100 mm
in [6]. In the tunnel air operating section 160 mm in
length, a cold pulsed transverse glow discharge was
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formed, whose combustion duration and mean temper-
ature were <1 ms and approximately 300 K, respec-
tively. The density and pressure in the shock wave were
detected in the central zone of the operating section
located at a distance of 150 mm from the onset of the
transverse electric-discharge region.

The static pressure Pf (measured by a piezoelectric
sensor mounted in a plane wedge with an apex of 30°)
and the free-molecule concentration nf (measured by a
Michelson optical interferometer) were registered vir-
tually simultaneously as functions of time lapsed from
the moment of entry of the shock wave into the detec-
tion region. Note that the interpretation of the results
obtained in this study only became possible after the
specific elastic molecular frame in the gas-discharge
plasma was discovered.

In the first series of experiments, a pressure of 6 torr
was maintained both before plasma generation and in
the state without ionization. While generating gas-dis-
charge plasma, the frame was formed and, conse-
quently, nb0 = 0.224 × 1017 cm–3 of the free molecules
in the operating section were in the bound state and the
external pressure reached Pf = 5.29 torr at T = 300 K
(nf0 = 1.708 × 1017 cm–3). In Fig. 1, we display the char-
acteristic pressure Pf in plasma as a function of time t
and in nonionized air (curves 1 and 2) and the density
nf (curves 3 and 4) for the shock wave entering into the
operating section with a velocity of 516 m/s.

According to the dynamic equations of plasma
in [2, 3], the sonic velocity in the plasma was 665 m/s
at temperature T = 300 K. Hence, for the measured
shock front velocity 714 m/s in the plasma, the wave
was transonic with a Mach number M = 1.07. From the
moment of the shock wave entry into the plasma, its
compression occurred, the free and bound molecules
being compressed simultaneously and identically. But
with increasing nb0 , the potential energy of the plasma
elevated, while the kinetic energy of the chaotic motion
decreased correspondingly; i.e., plasma cooling took
place [see Fig. 1a, the dependence T(t) = Pf /knf (5); the
segment t = 0–40 µs corresponds to a leader]. Due to
decreasing flow temperature, the pressure at the wave
front remained virtually invariable, while the density
increased by approximately 10%.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Shock wave in air plasma and in nonionized air. (a) v0 = 516 and (b) 1500 m/s; P0 = 5 torr, T0 = 300 K. Plasma: (1) Pf(t),
(3) nf(t), and (5) T(t). Air: (2) Pf(t), (4) nf(t), and (6) T(t).
Furthermore, the nonlinear interaction between
these four quantities (Pf, nf, T, and the plasma velocity)
resulted (to the time moment t ≈ 150 µs) in the motion
of the plasma flow being essentially slowed down, the
plasma density and pressure increasing, and the plasma
temperature proving to be ~50 K lower than that in the
shock wave of nonionized air for the same velocity,
516 m/s.

Figure 1b shows the evolution of the shock wave
entering into the plasma with a velocity of 1500 m/s.
Before the discharge was switched on, the pressure in
the operating section was maintained at 5 torr. Because
the velocity of sound was 662 m/s in this case and the
shock front velocity was 1825 m/s, the supersonic
motion of the shock wave occurred with a Mach num-
ber M = 2.76. The time dependence T(t) of plasma tem-
perature (curve 5) showed that, in the interval from 30
to 50 µs, a decrease in plasma temperature of 216 K
occurred owing to fast slowing down of the flow and an
accompanying abrupt increase in plasma density.
Therefore, in spite of a significant increase in nf , we
observed only a small rise in Pf .
DOKLADY PHYSICS      Vol. 45      No. 11      2000
At t > 50 µs, however, the situation changed radi-
cally because of frame destruction; his occurred as a
result of compression by a factor of ~3.4. The bound
molecules became free, whereas the accumulated
potential energy and the binding energy were returned
to the flow. In this case, the plasma temperature
increased to 1801 K and the pressure increased by
a factor of 3.3. Since the accumulated energy corre-
sponded to a temperature of 1365 K for the shock wave
in nonionized air, the difference ∆Texpt = 436 K in these
temperatures appeared by virtue of the liberation of the
binding energy. In fact, because the specific binding
energy is 2.42 × 104 erg/cm3, while the heat capacity of
all the 1.61 × 1017 molecules contained in 1 cm3 is
55.53 erg/K, the calculated value of the originated tem-
perature difference ∆Tcalcd = 436 K coincides with that
measured in the experiment.

It should be noted that the formation time for a
steady precursor is on the order of 100 µs and that its
thickness in the shock-wave tunnel of larger diameter is
~5.5 cm. When the directions of the wave motion and
of the electron drift in the longitudinal electric field of
the discharge coincided with each other, the thickness
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and the velocity of the precursor were greater than in the
case when the electrons drifted towards the wave [6].

In the case of frame deformation, thermal energy
loss leads to a decrease in the actual experimental
shock-front velocity compared to theoretical values
found for a completely reversible elastic deformation.
For a shock wave entering with a velocity of 516 m/s
into decomposing plasma (Fig. 1a), the experimental
front velocity was 714 m/s, while its theoretical value
was 742 m/s; i.e., it was 3.8% higher. Thus, in this case,
the irreversibility of the frame compression process
was relatively small. For the shock wave with a velocity
of 1500 m/s (Fig. 1b), the experimental value of the
front velocity was found to be 1825 m/s, while the cor-
responding calculated value (ignoring the irreversibil-
ity of the deformation process) was equal to 1978 m/s;
i.e., the loss (7.7%) was twice as high as in the previous
example.

As a consequence of the summation of concentra-
tions for molecules bound in the frames in the incident
and reflected waves in the air gas-discharge plasma, it
becomes possible to detect the interaction between the
external long-wave laser radiation and the frame ele-
ments [7]. In this case, it was found that the probing
radiation with wavelengths λ = 0.638 and 0.534 nm do
not damp, whereas anomalously high damping (scatter-
ing) was found for laser radiation with λ = 10.6 µm, the
damping coefficient being ~2 × 10−2 cm–1. This can
only be explained by the presence of molecules in the
plasma which are bound in a Rydberg collective system
owing to the joining of their external electron shells.
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In this paper, we solve the kinetic problem of
intense evaporation of molecular gas from a spherical
particle into vacuum. We explicitly find the hydrody-
namic boundary conditions for intense evaporation of
diatomic and triatomic gases and demonstrate their
strong dependence on the Knudsen number in the range
0 < Kn ≤ 0.1 (Kn = λ/r0, λ is the mean free path of mol-
ecules near the evaporating surface and r0 is the particle
radius). This problem was not discussed in earlier
papers [1–3]. We show that internal degrees of freedom
lead to an appreciable decrease in the temperature jump
and only slightly affect the gas concentration at the
boundary of the Knudsen layer.

The problem of intense evaporation from a spherical
particle into vacuum was discussed in [1–3]. According
to numerical calculations presented in [2, 3], at Kn ! 1,
the flow near a particle is formed in a region with size
far exceeding λ. Consequently, under this condition
(Kn ! 1), the flow is hydrodynamic and can be
described by the Navier–Stokes equations with correc-
tion for kinetic boundary conditions. Relations of
parameters of condensed and gas phases, i.e., the jumps
of parameters in the Knudsen layer, can be determined
only within the framework of kinetic theory.

A three-layer model of steady-state gas flow was
proposed in [4] for the gas flowing from a pointlike
source and was characterized by the Reynolds number
Re @ 1 and the Prandtl number Pr = 3/4. The nonequi-
librium region located near the source is fitted to the
region of the nonviscous supersonic gas flow described
by the Euler equations through an interlayer of the vis-
cous flow being characterized by the Mach number
M ~ 1.

In the limiting case Kn  0, the three-layer model
[4] was used in [1] to obtain hydrodynamic boundary
conditions corresponding to the evaporation of mono-
atomic and diatomic gases.

In all papers mentioned above, except [1], only
monoatomic gases were considered. However, most
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gases are polyatomic. Therefore, it is of significant
interest to study these processes for molecular gases.

It is well known that the vibrational degrees of free-
dom of most molecular gases are “frozen” in a wide
temperature range, whereas the rotational degrees of
freedom can be considered using the quasi-classical
approach [5, 6].

We assume that the following parameters character-
izing a particle are known: Ts is the temperature of the
particle surface and ns is the concentration of saturated
vapor of the surface material at temperature Ts . Let us
consider the case of a steady-state spherically symmet-
ric expansion of the evaporated substance. Taking into
account that the Knudsen number is small, we can use
the Chapman–Enskog function as a distribution func-
tion within the gas. A linearized version of this function
has the form [5, 7]

(1)

Here, subscripts i = 1, 2, and 3 correspond to mono-
atomic, diatomic, and triatomic gases, respectively;
terms Φ and Ψi are related to the viscosity and heat con-
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duction; j is the number of internal degrees of freedom
(j = 2 and 3 for diatomic and triatomic gases, respec-
tively); m is the molecular mass; J is the moment of
inertia of a diatomic molecule; J1, J2, and J3 are the
principal moments of inertia of a triatomic molecule; v
and w = (ω1, ω2, ω3) are the translational and angular
velocities of a molecule; u and c = v – u are the average
and thermal velocities of molecules; k is the Boltzmann
constant; p, n, and T are the pressure, concentration,
and temperature of the gas; η and κ are the viscosity
and thermal conductivity; and cp is the specific heat at
constant pressure.

For gases, the boundary condition at surface r = r0
can be written under the assumption that the Maxwell
distribution fsi (i = 1, 2, and 3 for monoatomic, diato-
mic, and triatomic gases, respectively) with tempera-
ture equal to that of the surface (Ts) is valid for mole-
cules emitted by the surface. For the sake of simplicity,
evaporation and energy-accommodation coefficients
are set equal to unity. As a result,

(2)

Taking into account viscosity η and thermal conductiv-
ity κ, we can describe the motion of an evaporated sub-
stance in the expanding flow of the system using the
Navier–Stokes equations.

Far from the particle, in the region of the nonviscous
flow (η = 0 and κ = 0), the system of the Navier–Stokes
equations reduces to the Euler equations. The solution
to these equations is known and presented in [4]. In the
intermediate region situated near the sonic point r = r1 ,
the solution to the Navier–Stokes equations is expressed
in terms of the modified Hankel functions [4].

At Pr = 3/4 and Kn ! 1, in the interior region adja-
cent to the evaporating surface, the equations of fluid
dynamics are transformed to [1, 4]
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r1

ṁ
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(4)

Here, w = u/c1, θ = T/T1, γ is the adiabatic index,  is
the mass flux from the particle (  = const), c1 =

 and T1 are the average values of velocity u and
temperature T at the sonic point r = r1 (i.e., at r = r1 , we
have w = 1 and θ = 1), and a is a small parameter
(a−1 ~ Re).

A solution to Eq. (3) has the form

(5)

Here, R = 1/x = r/r1 is the dimensionless radius vector
and the value ξ1 = 2.3381 is calculated by using the con-
dition of the asymptotic sewing of solution (3) together
with that from the intermediate region where w ~ 1.

Expressions (3)–(5) can be used to determine the

gradients of thermodynamic functions  and 

involved in distribution function (1). After the corre-
sponding transformations are undergone, taking into
account relationship η = λp0(2m/πkT0)1/2, distribution
function (1) takes the form

(6)

Here, subscript 0 corresponds to the parameters at the
hydrodynamic evaporation boundary.
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ṁ
ṁ
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Let us assume the Knudsen layer to be infinitely
thin. Then, it can be considered as a surface of hydro-
dynamic discontinuity which does not violate the con-
servation laws for fluxes of mass, momentum, and
energy. In other words, the quantities C1n, C2n, and C3n

(n = 1, 2, 3) defined by the relationships

(7)

and corresponding to monoatomic, diatomic, and tri-
atomic gases, respectively, also remain unchanged.
Without solving the Boltzmann equation, these condi-
tions provide an opportunity to establish a relationship
between the surface parameters Ts and ns and the vapor
parameters T0 and n0 at the outer boundary of the Knud-
sen layer. Integration of (7) performed with allowance
for (6) leads to a system of three equations with the fol-
lowing four unknown variables: M0 , Kn, T0/Ts, and
n0 /ns. It is convenient to use M0 as a free parameter.
Then, dimensionless temperature T0/Ts and concentra-
tion n0 /ns are determined by the expressions

(8)

whereas the Knudsen number Kn is found from the
equation

(9)

The notation used above is as follows:
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For monoatomic (j = 0), diatomic (j = 2), and triatomic
(j = 3) gases, the calculated boundary values of the mac-
roscopic parameters are presented in the table. If
Kn  0, then the Mach number M0, temperature
T0/Ts, and concentration n0 /ns tend to their limiting val-
ues, which, for monoatomic (j = 0) and diatomic (j = 2)
gases, agree rather satisfactorily with the results of [1]
corresponding to Kn  0. These values are (j = 0)
M0 = 0.423, T0/Ts = 0.838, and n0 /ns = 0.645; (j = 2)
M0 = 0.415, T0/Ts = 0.913, and n0 /ns = 0.661. Accord-
ing to the table, for both molecular and monoatomic
gases, an increase in the Knudsen number Kn leads to
the growth of Mach number M0 and to a decrease in
dimensionless gas temperature T0/Ts and concentration
n0 /ns . Consequently, temperature and concentration
jumps occurring in the Knudsen layer become more
pronounced.
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Table 1

Kn
j = 0 j = 2 j = 3

M0 T0/Ts n0/ns M0 T0/Ts n0/ns M0 T0/Ts n0/ns

Kn  0 0.386 0.911 0.664 0.404 0.942 0.663 0.410 0.950 0.663

0.0025 0.410 0.903 0.648 0.430 0.936 0.647 0.437 0.945 0.646

0.005 0.425 0.897 0.638 0.447 0.932 0.637 0.454 0.941 0.636

0.01 0.450 0.888 0.624 0.477 0.924 0.620 0.484 0.935 0.619

0.02 0.500 0.868 0.597 0.528 0.911 0.593 0.437 0.923 0.590

0.03 0.550 0.847 0.573 0.577 0.897 0.568 0.586 0.911 0.560

0.04 0.590 0.829 0.555 0.622 0.884 0.547 0.632 0.899 0.545

0.05 0.632 0.811 0.537 0.665 0.871 0.529 0.675 0.888 0.526

0.06 0.670 0.794 0.522 0.703 0.858 0.513 0.713 0.877 0.510

0.07 0.700 0.780 0.511 0.735 0.848 0.501 0.745 0.868 0.498

0.08 0.732 0.764 0.499 0.762 0.838 0.491 0.771 0.860 0.488

0.09 0.755 0.752 0.491 0.782 0.830 0.484 0.791 0.853 0.481

0.1 0.774 0.742 0.486 0.798 0.824 0.479 0.806 0.848 0.476
Comparison of the results obtained at the same val-
ues of the Knudsen number for monoatomic and mole-
cular gases leads to the conclusion that excitation of the
rotational degrees of freedom produces a pronounced
effect on the boundary values of the gas temperature:
T0/Ts increases (its jump becomes smaller) and only
slightly affects concentration n0 /ns . At Kn = 0.1, the
largest temperature change is as high as 11 and 14% at
the transition from monoatomic gas to diatomic and tri-
atomic gases, respectively.
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The effect of jumplike growth of the neck in a poly-
ethylene terephthalate (PETP) film accompanied by
oscillations of the load and temperature at the neck
front was reported in [1]. The neck jumps are inter-
preted in terms of the heat release at the neck front giv-
ing rise to local heating of the polymer, which results in
an increase in velocity. This results in still more heat
releases, and the neck velocity increases in an ava-
lanche-like manner. Drastic elongation of the sample
leads to a decrease in the load and a decrease in the heat
release. The transient zone begins to cool down, caus-
ing a decrease in the neck growth rate. The growth rate
decreases until the neck becomes nearly immobile.
After that, the stress again begins to increase. When the
stress reaches critical value, the jump of the neck front
is repeated.

The aim of this paper is to find the criterion determin-
ing the generation of self-oscillations which accompany
neck growth in a polymer film.

Film samples of commercial amorphous PETP
110 µm thick, 10 mm wide, and 40 mm long were used
in the experiments. The extension of the samples stud-
ied was performed in air using the AGS-10 kNG testing
apparatus supplied by the Shimazu company.

Typical stress dependence of the elongation is
shown in Fig. 1. After attaining the yield stress, the load
exhibits 3–4 oscillations. Then, a steady-state flow of
the polymer is established under constant tensile stress.
At a certain moment, periodic oscillations of the load
appear on the diagram. The amplitude of oscillations is
1/5–1/4 that of the tensile stress.

The photograph illustrating neck formation is pre-
sented in Fig. 2. At the initial steady-state stage of the
growth, the neck is transparent. This region is darker at
the black background. At the stage of self-oscillations,
alternation of dark and light (turbid) stripes is observed.
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The elastic elongation of the sample is [2]

(1)

where L is the length, E is the elasticity modulus, σ is
the stress, and subscripts 1 and 2 denote the nonori-
ented part of the sample and the neck, respectively
(Fig. 3). The stress in the neck is σ2 = S1σ/S2 = λσ,
where λ is the degree of tension in the neck. The incre-
ment of the sample length during time dt is equal to
dL = Vdt, where V is the extension rate. If the neck
growth rate equals u, then the increment of the plastic
strain in time dt is dLp = (λ – 1)udt. Hence, we obtain

(2)

where D = L1/E1 + λL2/E2 is the compliance of the sam-
ple. The plastic flow in the transient zone requires work
equal to the force multiplied by the magnitude of the
plastic elongation (λ – 1)σS1udt. Assuming α to be the

∆Le
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-----------,+=

dσ
dt
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D

------------------------------,=
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Fig. 1. Tensile stress versus strain for the PETP film
0.11 mm thick.
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Fig. 2. Photograph of the sample after its extension. The neck grew from right to left.
fraction of work spent to heat release in the transient
zone, we have

(3)

The released heat causes an increase in temperature
in the zone, and a certain part of it is dissipated. The
heat losses are caused by the thermal conductivity of
the polymer and heat transfer to the surrounding
medium. Assuming that the sample cooling is con-
vective, we find that the heat transfer to the outer
medium is

(4)

where β is the heat exchange coefficient, w is the sam-
ple width, d is the length of the transient zone, and T0 is
the temperature of the surrounding medium. The heat
transferred from the transient zone by the heated poly-
mer can be written as

(5)

where Ò is the specific heat and ρ is the polymer density.
The heat spent to the zone heating is equal to dQ1 –
dQ2 – dQ3, and we get

(6)

where T is the current temperature of the zone. Analyz-
ing the stability of the neck growth, note that Eqs. (2)
and (6) have a trivial solution, which corresponds to the
constant neck growth rate:

(7)

(8)

where ∆T = Ts – T0 is the magnitude of the zone heating
before instability arises and us and σs are the growth
rate and the stress corresponding to the steady-state
flow in the neck.

We linearize Eqs. (2)–(6). Let us assume that the
neck moves with constant velocity (7). Then, we
change the variables involved: T = Ts + θ and σ = σs +
S, where θ and S are the deviations of the temperature

dQ1 α λ 1–( )σS1udt.=

dQ2 β T T0–( )wddt,=

dQ3 cρS1u T T0–( )dt,=

dT
dt
------ α λ 1–( )σu

ρcd
----------------------------

u T T0–( )
d

----------------------- β
T T0–( )
ρch

--------------------,––=

us
V

λ 1–
------------,=

α λ 1–( )σsus

ρcd
-------------------------------

us∆T
d

------------ β∆T
ρch
-----------–– 0,=
and stress from their values corresponding to the
steady-state transition to the neck. We should take into
account that the neck growth rate depends on the tem-
perature and stress. Performing the series expansion of
the growth rate, we retain only linear terms:

where ∂Tu = ∂u/∂T and ∂σu = ∂u/∂σ are the partial deriv-
atives of the growth rate with respect to temperature
and stress, respectively. We assume that the values of θ
and σ are small in comparison to σs and S. Retaining
only the linear terms in the expansion, we obtain a sys-
tem of two linear differential equations with constant
coefficients:

(9)

(10)

The sum of the two exponentials is the solution to this
system [3]. The initial fluctuations in stress and temper-
ature infinitely increase if the argument of one of the

u us ∂Tuθ ∂σuS,+ +=

dS
dt
------ –

λ 1–( )∂σu
D

--------------------------S
λ 1–( )∂Tu

D
--------------------------θ,–=
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u V

d

Fig. 3. Model: I. nonoriented part of the sample; II. transient
zone; III. neck. V is the extension rate and u is the neck front
velocity.
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exponentials exceeds zero. Note that the exponents are
positive if the following inequality is met:

(11)

In (11), only the first term is positive (derivative 

is negative); the second and third terms are negative.
Therefore, to meet the inequality, the first term should
be large and the second and third terms should be small.
As a consequence, for the existence of self-oscillations,

the derivatives  and ∂σu should be large. These con-

ditions are fulfilled at temperatures near the glass tran-
sition temperature Tg of the polymer. If the temperature
of the outer medium is lower than Tg, it is necessary to
take into account the heating of the transient zone. The
extension rate must be sufficiently high for the temper-
ature of the transient zone to be raised to the glass tran-
sition point. If the PETP film is stretched under room
temperature, this condition is absolutely necessary for
the generation of self-oscillations.

In addition, to meet criterion (11), compliance D of
the sample must be high. Since the compliance is pro-
portional to the sample length, the sample must be suf-
ficiently long. Analyzing the effect of compliance, we
can find the ratio of the first and third terms of inequal-
ity (11). The third term can be neglected, if it is much

less than the first one. For the values , E, α, σs, λ,

c [1], and ρ typical of PETP [4], inequality (11) reduces
to L @ 50h [1]. For the film thickness h = 0.11 mm, ine-
quality (11) is met, if the sample is much longer than
5 mm. Consequently, for sample lengths much larger
than 5 mm, the effect of compliance influence can be
neglected.

It is easier to meet criterion (11) when the transient
zone has small length d and the sample thickness is
large. Finally, the high degree λ of polymer stretching
in the neck favors the validity of (11). In PETP, λ is
equal to 5.5–6.0 [1, 5]. Such a value is higher than those
obtained for most other polymers. This is probably why
it was in PETP that the self-oscillations were observed
for the first time. The specific heat and density are
approximately equal for most polymers at normal tem-
peratures, and these parameters cannot essentially
affect the generation of self-oscillations.

The left side f of criterion (11) is plotted in Fig. 4 as
a function of neck growth rate u. For low and very high
rates, function f(u) is negative and the neck motion is
stable. The u range corresponding to f > 0 determines
the existence domain for self-oscillations.

A change in heat transfer coefficient β shifts the
curve in Fig. 4 along the u-axis. Function f remains
unchanged if coefficient β and the neck growth rate

αβ λ 1–( )σs

ρc usρch βd+( )
---------------------------------------dσ

dT
------

usρch βd+
ρcdh∂σu

---------------------------–
λ 1–

D
------------ 0.>––

dσ
dT
------

dσ
dT
------

dσ
dT
------
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change by the same factor. Consequently, high heat
transfer β (in the course of extension, e.g., in a liquid)
does not rule out the generation of self-oscillations, but
only at very high extension rates. The decrease in com-
pliance shifts function f downward along the vertical
axis. For a certain value of compliance, function f turns
out to be negative at any extension rate. Consequently,
there exists a compliance threshold below which the
self-oscillations cannot exist.

Self-oscillations are caused by the thermal instabil-
ity of the neck growth. Several conditions favor the
generation of self-oscillations: first of all, a high value

of  observed in the vicinity of the glass transition

occurring in the polymer; second, a high sample com-
pliance D (in our case, this condition is met if the sam-
ple length far exceeds 5 mm); third, a small length of
the operating zone; and, finally, a high degree of poly-
mer stretching in the neck. Note also the existence of
the lower and upper bounds for the extension rate
between which the self-oscillations exist.
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INTRODUCTION

The accelerated diffusion of impurities along grain
boundaries has been observed in a number of transition
metals: Co and Fe in α-Zr [1, 2], Co in α-Ti [3], Co and
Ni in Nb [4, 5], and C in α-Fe [6]. Note, however, that
the data on the grain-boundary diffusion of carbon,
which is the most suitable element for the study of
impurity diffusion in these metals, are incomplete: the
results reported in [6] exhibit a significant spread and
characterize the grain-boundary diffusion in α-Fe only
at three temperature values (648, 686, and 739 K).
These data do not allow us to estimate either the activa-
tion energy of the grain-boundary diffusion of carbon
or the value of the preexponential factor. The main
method used to measure the diffusion penetrability of
grain boundaries is based on the plotting of profiles of
diffusion-driven penetrations using layer-by-layer radi-
ometric analysis. Hence, the main difficulty in the mea-
surement of the carbon diffusion in α-Fe seems to be
related to the very low solubility of carbon in the bulk
of α-Fe. The diffusion “wedges” arising after annealing
in the vicinity of grain boundaries are very narrow, and
the concentration of the diffusing element at the bound-
aries determined after removing the layer of the bulk
diffusion is low. Therefore, it is very difficult to per-
form measurements at the “tails” of the concentration
profiles, which characterize the diffusion along the
grain boundaries.

From this standpoint, Nb is the most suitable object
for experimental study of carbon grain-boundary diffu-
sion, since carbon solubility seems to be somewhat
higher in Nb than in α-Fe. However, in the study of car-
bon diffusion in niobium, another difficulty arises
which severely complicates the interpretation of the
experimental profiles of the diffusion-driven penetra-
tion. The difficulty is that the grain boundaries in pure
Nb are characterized by a high mobility [4, 5] and the
migration of boundaries is observed under diffusion
annealings; this migration cannot even be suppressed
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by preliminary high-temperature annealings. The pres-
ence of mobile grain boundaries in a polycrystal during
the course of diffusion annealing can strongly affect the
shape of the measured concentration profiles. Thus, the
correct interpretation of these profiles becomes almost
impossible. This problem was solved when the model
of diffusion along the moving grain boundary was
developed [7, 8] alongside a procedure based on this
model, which provides an opportunity to process the
concentration profiles in a polycrystal with two types of
boundaries, mobile and immobile [4]. The developed
models and techniques were successfully applied to the
study of Co and Ni diffusion in niobium by the method
of radiometric layer-by-layer analysis [4, 5].

In this paper, the diffusion of carbon along grain
boundaries in Nb was studied using radioisotope tech-
niques. Taking into account the importance of identify-
ing the moving grain boundaries in the structure of the
polycrystals, we made an attempt to reveal them using
high-resolution autoradiography.

EXPERIMENTAL TECHNIQUE
AND THE PROCESSING 

OF MEASURED PROFILES

We used high-purity Nb samples. The impurity con-
tent in Nb and the sample preparation technique are
described in [4, 5].

The carbon diffusion in Nb was studied by the fol-
lowing technique. The donor samples saturated by the
radioactive carbon served as the sources of β radiation
(with energy Emax = 156 keV) of the radioactive carbon
14C. The saturation was performed by the application of
a special paste containing 14C (the total radioactivity
3.7 × 109 Bq) onto the donor samples and by subse-
quent annealing. For the diffusion annealings, a pair of
Nb samples was packed together with a donor in a such
way that an air space remained between them. The dif-
fusion pairs prepared in such a manner were wrapped
in titanium foil and placed in a vacuum-sealed silica
ampoule, which was then annealed at a given tempera-
ture. After diffusion annealing, a layer approximately
1 mm thick was removed from the Nb sample surface,
but not from the flat operating part.
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The profiles of the diffusion penetration of the
radioactive isotope 14C into the Nb polycrystals after
diffusion annealing were measured using the method of
radiometric layer-by-layer analysis. The activity of the
removed layers was measured using a liquid-based
radioactivity sensor.

The obtained profiles were interpreted within the
framework of the generalized Fisher model [7, 8]. This
model predicts that under diffusion in a polycrystal
with immobile and mobile grain boundaries, the grain-
boundary region of the concentration curve consists of
two parts: the tail of the curve usually related to the dif-
fusion along the stationary boundaries and the interme-
diate region between the zone of the bulk diffusion and
the tail, which characterizes the diffusion along the
mobile grain boundaries. The whole profile of the
grain-boundary diffusion in a polycrystal with immo-
bile and mobile grain boundaries was approximated by
the function [4]

lnc = ln[q1exp(–q2y6/5) + q3exp(–q4y)], (1)

where c is the layer concentration, y is the penetration
depth, and qi are the fitting coefficients. The coefficient

q2 =  was used for calculating the diffusion pen-

etrability of the stationary boundaries P ≡ sD'δ (here, s
is the coefficient of the diffusant equilibrium segrega-
tion at the grain boundaries, D' is the coefficient of the
grain-boundary diffusion, and δ is the diffusion width
of the grain boundaries):

(2)

Here, D is the coefficient of the bulk diffusion and t is
the duration of diffusion annealing. It is obvious that
formula (2) coincides with the conventional expression
for calculating the diffusion penetrability of grain boun-
daries in a polycrystal with immobile boundaries [9].

In order to calculate the diffusion penetrability of
grain boundaries, it is necessary to know the diffusion
coefficients D in the bulk. For calculating D, we used
the Le Claire expression [10], which was obtained as a
result of averaging literature data on the bulk diffusion
of carbon in Nb:

(3)

RESULTS AND DISCUSSION

In the autoradiogram (Fig. 1), the pattern of the
accelerated diffusion of carbon along the grain bound-
aries in Nb is clearly seen; this pattern reveals the pres-
ence of two kinds of grain boundaries in the structure,
mobile and stationary. The moving boundary leaves a
trace of radioactive atoms behind itself in the bulk. In
the autoradiogram, it looks like a wide dark strip strewn

–
∂ cln
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D
t
---- 
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with silver crystals. The immobile boundary is signifi-
cantly narrower, and its autographic width is defined by
the size of the developed emulsion crystals situated
above it.

The experimental profiles of the 14C diffusion-
driven penetration into the Nb polycrystals and the
model curves approximating them (formula (1)) in the
zone of the boundary diffusion are shown in Fig. 2

using the conventional coordinates . The
experimental profiles in the zone of grain-boundary dif-
fusion consist of two regions. The first, a region of large
penetration depths which is well linearized in these
coordinates, characterizes the diffusion along the sta-
tionary (immobile) grain boundaries. The second is an
intermediate region at smaller depths of penetration
which characterizes the diffusion along the mobile
grain boundaries.

The separation of the regions on the concentration
profiles, which characterize the diffusion of carbon
along the immobile grain boundaries, allows us to cal-
culate the diffusion penetrability P of these boundaries
using formula (2). The calculated values of P, together
with the parameters of the boundary diffusion regime
α = sδ/2(Dt)1/2 and 
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 are given in the
table. The Arrhenius equation obtained according to the
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temperature dependence of P for the grain-boundary
diffusion of carbon in Nb has the form

(4)

A conventional regime predicted by a mathematical
model of the diffusion along the grain boundaries
(regime B2) occurs when β @ 1 and α ! 1. In fact, for
the onset of the B2 regime, it is sufficient that conditions
β > 10 and α < 0.1 be met.

No difficulties occur in evaluating parameter β. Its
values are given in the table. Evidently, condition β > 10
was met almost at all temperatures.

Difficulties arise when evaluating parameter α. In
order to calculate parameter α, we must know the val-
ues of the equilibrium segregation coefficients s for car-
bon at the grain boundaries in Nb at low temperatures.
Usually the values of s are estimated based on the data
on the solubility of the diffusant in the volume of a sol-
vent, i.e., the object under study. However, the solubil-
ity of carbon in Nb at low temperatures is also
unknown. Therefore, it is difficult to implement such an
approach in this case.

We specified the values of parameter α for the diffu-
sion of carbon in Nb in the table; these values were cal-
culated under the obviously untrue assumption that
s ~ 1. It is clear from the table that the condition α < 0.1
will not be met if s ~ 105. Now, we estimate the possi-
bility that such a regime, unfavorable to our experi-
ments, will occur.

Let us take an experimental value for the diffusion
penetrability of the grain boundaries by diffusing C into

P 3.6–2.3
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× –
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Fig. 2. Profiles of the diffusion-driven penetration of 14C
into niobium polycrystals at various temperatures.
      

Nb at T = 900 K: P = 7 × 10–19 m3/s (P ≡ sD'δ). Accord-
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of the grain-boundary diffusion coefficients coinciding
in order of magnitude with the diffusion penetrability in
the bulk. However, this does not agree with our experi-
mental data: the autoradiograms clearly show that the
diffusion penetrability of grain boundaries in Nb for the
diffusion of carbon is considerably higher than that in
the bulk.

Thus, our suggestion that 
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For such a value of the coefficients of the carbon
boundary diffusion in Nb, condition 
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In conclusion, consider the relationship between the
diffusion penetrabilities in the bulk and at the grain
boundaries in Nb for the self-diffusion and diffusion of
impurities. We choose for the estimates the specific
temperature value 

 

T

 

 = 900 K. Calculating 

 

P

 

 to the self-
diffusion along grain boundaries in Nb using the empir-
ical Gust relationship [11], we obtain  P  Nd   = (  D  '  δ  )  Nb    =
1.5 

 
×

 
 10–27 m3/s. Assuming that δ = 5 × 10–10 m, we

obtain the value D' = 3 × 10−18 m2/s for the coefficient
of the grain-boundary self-diffusion. In the case of vol-
ume self-diffusion in Nb, we calculate the correspond-
ing diffusion coefficient using the formula [4]

(5)

Hence, we obtain D = 9.9 × 10–28 m2/s. In the case of
self-diffusion, the ratio of the diffusion penetrability of
the grain boundaries and the bulk at 900 K in Nb is
D'/D = 3 × 109. Taking into account that the tempera-
ture of 900 K is very low for diffusion in Nb (T/Tm =
0.35), the relationship obtained for the diffusion pene-
trability of the grain boundaries and for the bulk in Nb
looks reasonable.

The similar relationships for the impurity diffusion
in Nb at 900 K are

Co in Nb: s ~ 102, δ = 5 × 10–10 m [4],
and D'/D = 4 × 106;

C in Nb: s ~ 103, δ = 5 × 10–10 m, and D'/D = 3 × 102.

We found that, on the one hand, the bulk and bound-
ary diffusion of carbon in Nb differ by only two orders
of magnitude. In contrast to most other systems, in the
case of the carbon diffusion in Nb, this difference is
also retained at high temperatures, since the activation
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391.6 kJ  mol 
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energies for the bulk and grain-boundary diffusion are
close to each other.

On the other hand, in the sequence of diffusants Nb–
Co(Ni)–C, a sharp decrease in the magnitude of the
ratio D'/D is observed at low temperatures; it can be as
large as seven orders of magnitude. The most probable
cause of the observed effect is the change of the diffu-
sion mechanism, which manifests itself most clearly in
the diffusion of carbon in Nb.
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To analyze the effect on the tube walls and environ-
ment of a pressure pulse P(t), generated in a vertical
tube filled with a liquid as a result of the combustion of
fuel in the bottom portion of the tube, we need to know
the pulse duration and shape. The pressure rise induced
by the combustion is followed by a pressure drop due
to the expansion of the combustion products. This pro-
cess is of practical interest, for example, as applied to
oil wells, where the expansion of combustion products
is driven by the compression and displacement of aque-
ous salt solutions (henceforth called water for brevity)
occupying the well space above the combustion prod-
ucts. Some results of numerical simulations for pro-
cesses of this type were reported in [1]. However, the
presentation in [1] did not include any formulas or
equations explaining the approximations employed and
the dependence of the results on basic system para-
meters.

In what follows, we analyze the pressure pulse as
depending on the combustion duration and other
parameters (with water treated both as a compressible
and incompressible fluid). The filtration of the combus-
tion products and the formation of cracks in the ambi-
ent medium are not taken into account.

1. STATEMENT OF THE PROBLEM

At the initial moment, a quiescent combustible mix-
ture fills a bottom tube segment of height L. A liquid
(water) column (LC) fills the tube up to a point located
at a certain distance from its top end. A cylindrical
combustion wave propagating in the radial direction is
simultaneously initiated on the tube axis. As the pres-
sure increases in the burning mixture, the combustion
products displace the water like a piston, giving rise to
a compression wave propagating along the tube
upwards. The qualitative and quantitative characteris-
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tics of the motion depend on the ratio of the combustion
time τ to the time τw required for a hydrodynamic dis-
turbance to propagate from the burning center to the
upper LC boundary. Depending on the ratio τ/τw , the
compression wave either transforms into a shock wave
(the faster this occurs, the smaller the τ/τw ratio is) or
retains a smooth pressure profile over the entire dis-
tance traveled up to the upper LC boundary. In the limit
of τ/τw @ 1, water can be treated as an incompressible
fluid and the LC motion can be treated as that of a
rigid rod.

At the pressures P ≤ 1 GPa considered below, the
isentropic dependence of pressure on water density ρ is
described by the Tait equation [2]:

(1)

where ρ1 is the initial water density. The values of B and
n given above are characteristic of sea water with a salt
concentration of 0.7 mol/l at an initial temperature of
20°C. Since these parameters weakly depend on the salt
concentration (see sonic velocities for saline water
in [3]) and on the temperature change along the tube,
these values can be approximated for other initial tem-
peratures and higher solution concentrations used in
practice. Within the pressure range indicated above,
shock-wave compression is close to an isentropic pro-
cess and the Hugoniot adiabat for the water is given by
Eq. (1).

In a rigorous formulation of the problem, the solu-
tion for P(t) can only be obtained by numerical meth-
ods. However, the basic trends in the fluid dynamics of
the process preceding to the formation of a rarefaction
wave at the upper LC boundary can be determined ana-
lytically with a dependence on the parameters of the
problem, thus reducing the calculations to a minimum.
Below, we use the following basic approximations.

1. The gas bubble–LC interface (henceforth referred
to as the contact surface) is assumed to be planar.

P B σn 1–( ), B 3047 atm, n 7.15, σ ρ
ρ1
-----,≡= = =
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2. The state of combustion products is modeled by a
uniform gas bubble with pressure

(2)

where Vb is the bubble volume. The first multiplicand
in (2) depends only on time and characterizes the vari-
ation of gas-bubble pressure due to heat release and
changes in chemical composition in the course of a
constant-volume combustion process. The second mul-
tiplicand represents the dependence of pressure on vol-
ume in an adiabatic process. Assuming that, in the case
when a combustion process takes place in a constant
closed volume, pressure is a linear function of the burnt
mass fraction and that the combustion front propagates
at a constant velocity, we obtain

(3)

Here, Pmax is the pressure attained as the combustible
mixture burns out in a constant volume. The second
multiplicand in (2) is prescribed in the form of a poly-
trope:

(4)

where X is the coordinate of the contact surface mea-
sured from its starting position upwards. The values of
Pmax and k are used as parameters that characterize the
combustible mixture.

3. In the case of fast combustion, the approximation
of a spatially isobaric process is used (see Section 3).

2. SLOW COMBUSTION 
(τ/τw ~ 0.25–1)

The combustion-induced gradual pressure growth in
a gas bubble gives rise to an initially isentropic com-
pression wave propagating in water and transforming
into a shock wave after traveling a certain distance.
However, it is shown below that when τ > τw/4 (which
corresponds to τ > 0.5 s for an LC height of 2700 mm),
the distance required for a compression wave to trans-
form into a shock wave is greater than the entire LC
height. Under these conditions, until the compression
wave reaches the upper LC boundary, the flow in the
water column is described by a simple Riemann wave
[4]. At the same time, the gas-bubble pressure can be
found by solving a first-order ordinary differential
equation without introducing any additional simplify-
ing assumptions. In a simple compression wave, the
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velocity of the medium U is related to the density vari-
ation by the well-known equation

(5)

where C is the sonic velocity. Substituting into (5) the
expression

(6)

which follows from (1), and integrating the resulting
equation, we obtain

(7)

Here, C1 is the sonic velocity ahead of the wave. {For-
mula (7) is equivalent to a well-known relation for a
simple wave in an inviscid gas [4] when the isentropic
exponent is substituted for n.} Combining (6) with (1),
we obtain an expression for the sonic velocity as a func-
tion of pressure. Then, using (7), we find the following
relation between the fluid velocity U and pressure in a
simple wave:

(8)

Applying (8) to the contact surface, we find

(9)

where P(t) is the pressure at the contact surface. This
pressure, equal to the gas-bubble pressure, is given
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by (2)–(4). Equation (9) is solved numerically with the
initial condition Xt = 0 = 0. The figure shows the behav-
ior of P(t) predicted for three values of τ for k = 2:
(1) τ = 0.2, (2) 0.5, and (3) 0.8 s. As an illustration of
the importance of taking water compressibility into
account in solving this problem, we also present a
result calculated in the approximation of incompress-
ible fluid (curve 4).

These results can be used to estimate the scope of
the solution in terms of the time tsh and location xsh of
shock-wave formation. Noting that the contact-surface
motion with an approximately constant acceleration a
(depending on τ) at t ≤ τ is followed by its deceleration,
we can use the self-similar solution for a motion driven
by a piston moving with a constant acceleration to eval-
uate tsh [4]. It can be shown that

for media described by Eq. (1). The table shows
approximate values of a and corresponding values of tsh
and xsh for several values of τ. The results presented in
the table imply that tsh > tw and, equivalently, xsh > H
when τ ≥ 0.5 s and H ≤ 3000 m. In other words, the
compression wave cannot transform into a shock wave
as it passes by the entire LC length and retains the char-
acteristics of a simple wave described by (8) at t < tw .
In the general case of an arbitrary τ, the LC fluid
dynamics is described by a simple wave at t < tmin ≡
min{tw, tsh}. Analyzing the gas-bubble pressure devel-
opment, we should bear in mind that the time interval
over which Eq. (8) remains valid for a contact surface
is approximately twice as long as that for the entire
compression wave. This is explained by the fact that
this time is determined by the moment when the acous-
tic wave carrying the information about the incipient
breakdown of the simple wave caused by its reflection
from the free surface or by its transformation into a
shock wave reaches the contact surface, rather than by
the moment tmin .

3. FAST COMBUSTION
(τ/τw ! 1)

In this case, the shock wave develops near the con-
tact surface and substantially affects P(t). To perform

tsh

2C1

n 1+( )a
--------------------, xsh

2C1
2

n 1+( )a
--------------------= =

Table

τ, s a, m/s2 tsh, s xsh, m tmin, s

1 70 5.3 7800 2

0.5 190 2.0 2900 2

0.2 640 0.58 860 0.58

0.1 1450 0.27 380 0.27
an approximate analytical calculation of P(t), we use
the isobaric model; i.e., we assume that the LC state is
spatially isobaric (LC pressure is a function of time
only). At pressures below 1 to 3 GPa, the Hugoniot adi-
abat in (1) rewritten in the D–U representation (where
D and U are the shock-wave velocity and fluid velocity
behind the front, respectively) is equivalent to the fol-
lowing relation [5]:

(10)

Assuming that the initial water-temperature gradi-
ent is negligible, we can use the isobaric model
described above to formulate an equation for the
motion of the contact surface. In this model, both water
velocity and pressure are independent of the coordi-

nate. Therefore,  = U. Substituting (10) into the well

known expression for shock pressure P = ρ1DU + P1 ,
we obtain

(11)

Solving Eq. (11) for U and using the fact that  = U,

we arrive at the equation for the coordinate of the con-
tact surface:

(12)

where, as in (9), the function P(X, t) is defined by (2)–(4).

However, since τ  ! L in the case of a fast combus-

tion process, Eq. (12) can be integrated under the initial
condition (X = 0)t = τ . According to (3), the function
P(X, t) does not involve any explicit time dependence
under these conditions and Eq. (12) can be solved in
quadratures.

CONCLUSION

The method proposed here for modeling the dynam-
ics of a liquid filling a tube can be used to calculate the
pressure profile generated when a combustible mixture
placed at the bottom closed end of a tube is burned. The
calculation takes into account the following defining
parameters: the liquid compressibility, parameters of
the equations of state, combustion duration, combusti-
ble-mixture and liquid heights, and others. This can be
performed by both analytically and numerically solv-
ing a first-order ordinary differential equation (instead
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of by time consuming numerical analysis of partial dif-
ferential equations of fluid dynamics, as are commonly
used in analyses of such problems). It is demonstrated
that water compressibility is an important factor that
must be taken into account within the range of the
parameters considered here.
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The bending of a layer weakened by a noncircular
hole through it was considered in [1]. In [2–4], a similar
problem for a layer with a circular hole was solved
using other methods. Papers [2–4] are devoted to the
study of the stressed states of a hollow circular cylinder
with a finite length or an annular plate subjected to
symmetric or skew-symmetric loads.

In this paper, we propose a new method for solving
three-dimensional problems of elasticity theory for the
bending of thick shells of finite length. This method
reduces the boundary value problem to an infinite set of
one-dimensional singular integral equations. The algo-
rithm obtained makes it possible to study the stressed
states of shells with variable thickness, which are used
in various crucial constructions.

We consider a skew-symmetric loaded cylindrical
shell with finite length 2h, which is bounded by two
cylindrical surfaces whose directrices are smooth
closed contours L1 and L2 (L1 ∩ L2 = ∅ ).

Let the bases  = ±h of the shell be force-free and
the normal and tangential loads N, T, and Z be applied
to the cylindrical surfaces. 

We assume that the curvatures for both the direc-
trices of the cylindrical surfaces and the vector
components of the applied load satisfy the Hölder con-
dition [5] in Lj (j = 1, 2) and, moreover, that the func-
tions N = N(x1, x2, ), T = T(x1, x2, ), and Z =
Z(x1, x2, ) can be expanded in the interval [–h, h] into

the Fourier series with respect to the -coordinate.
The boundary conditions on the cylindrical surfaces

are given by

(1)

where ψ is the angle between the outward normal to Lj

and the Ox1-axis.

x3

x3 x3

x3

x3

σ11 σ22+( ) e
2iψ– σ22 σ11– 2iσ12+( )– 2 N iT–( ),=

Re e
iψ σ13 iσ23–( )[ ] Z ,=
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To describe a stressed state of a thick shell, we pro-
ceed from the homogeneous solutions found by Lur’e [6].
These solutions correspond to homogeneous condi-
tions at the cylinder bases.

We write out the integral representations for the
biharmonic and metaharmonic functions entering into
the homogeneous solutions in the following form:

(2)

Here, Kn(x) is the MacDonald functions; the densities
p(ζ), …, qk(ζ) are subject to definition; and  are the
roots of the corresponding transcendental equation [6].

We expand all even and odd components of both the
stress tensor and applied load into the Fourier cosine
and sine series, respectively:

with  

With regard to these expansions, we obtain the fol-
lowing boundary conditions for the Fourier coefficients
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∫=

ψk x1 x2,( ) qkK0 γkr( ) s,d

L

∫=

G r
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V vm σm*x3sin∑=
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h
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of the stress tensor:

(3)

Using representations (2) and the expressions for
stress given in [6], evaluating the Fourier coefficients

, and substituting their limiting values into bound-
ary conditions (3), we arrive at an infinite set of one-
dimensional singular integro-differential equations.
Here, we do not write out this set because it is too cum-
bersome.

The numerical simulation of the infinite set was per-
formed by the method of mechanical quadratures [7]
and the subsequent application of the reduction
method.

To characterize the stress state of the cylindrical sur-
faces, we consider three components of the stress
vector:

(4)

To evaluate them, we first solve numerically the set
of the integro-differential equations for the boundary
value problem, then determine the Fourier coefficients

 and, using formulas (4), calculate the desired
stress of the cylindrical surface.

σ11
m( ) σ22

m( )
+( ) e

2iψ– σ22
m( ) σ11

m( )
– 2iσ12

m( )
+( )–

=  2 Nm iTm–( ),

Re e
iψ σ13

m( )
iσ23

m( )
–( )[ ] Zm, m 0 1 …, ,= =

σij
m( )

σθθ σ11 θ σ22 θ 2σ12 θ θ,sincos–cos
2

+sin
2

=

σθz σ13 θ σ23 θ, θcos+sin– ψ π,–= =

σzz σ33.=

σij
m( )

0.5

0 2
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σθθ/P

x3

Fig. 1.
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As an example, we consider a thick shell with a
cylindrical surface having the following directrices:

Here, L1 is the exterior contour.
Let the inner cylindrical surface of the shell be

force-free and the outer surface be subjected to the load

In this case, the relative stress σθθ/P at the point ϕ2 =
π/2 is shown in Fig. 1 as a function of the x3-coordinate.

The curves 1, 2, and 3 correspond to  =  = 11,

L1: ξ1
1( )

R1
1( ) ϕ1, ξ2

1( )
cos R2

1( ) ϕ1,sin= =

0 ϕ1 2π;<≤

L2: ξ1
2( )

R1
2( ) ϕ2cos p1, ξ2

2( )
R2

2( ) ϕ2 p2,+sin=+=

0 ϕ2 2π.<≤

2 N iT–( ) Px3 1 e
2iψ–

+( ).=

R1
1( )

R2
1( )

4.0

0.5

0

1 2 3

σθθ/P

x3

Fig. 2.
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x3

σθθ/P

Fig. 3.
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4, and 2, respectively, with h/  = 1 (p1 = p2 = 0) and

 =  = 1. The similar curves in the case of

h/  = 4 are presented in Fig. 2. The dots show the
results of [2, 4], which correspond to the bending of a
force-free layer weakened by the tunnel hole through it

and subjected to the load  = Px3 at infinity.

Let the inner cylindrical surface of the shell be
force-free and the outer surface be subjected to the load
N = Px3 . In this case, the relative stress σθθ/P at the
point ϕ2 = π/2 as a function of the x3-coordinate is
shown in Fig. 3. The curves 1, 2, and 3 correspond to

p1 = 0, 6, and 8, respectively, with h/  = 1,  =

 = 1,  = 10,  = 5, and p2 = 0.

The numerical results are obtained for the Poisson’s
ratio ν = 1/3.

R1
2( )

R1
2( )

R2
2( )

R1
2( )

σ11
∞

R1
2( )

R1
2( )

R2
2( )

R1
1( )

R2
1( )
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A New Form for the Newtonian Law of Gravitation
Corresponding Member of the RAS V. I. Zubov

Received June 05, 2000
In this study, the mathematical theory for a new form
of the Newtonian law of gravitation is developed [1].
This form manifests itself in the appearance of time-
independent sets in a gravitational field. The potential
of this field can also differ from the Newtonian poten-
tial as little as desired. Yet this makes it possible to
explain the quantization of planetary orbits, the appear-
ance of Saturnian rings, and the striped character of the
asteroid belt. Kepler developed his laws for planetary
motion on the basis of the observations of Tycho Brahe.
However, his extension of the results of these observa-
tions to arbitrary positions of closed orbits was unjusti-
fied. Newton found the potential for the gravitational
field based on the Keplerian laws. Therefore, the poten-
tial found by Newton cannot be used for describing the
planetary motion in the cases mentioned above.

We consider for definiteness the motion of a mass
point in the central gravitational field:

(1)

where R =  is the vector column and r is its

Euclidean length r = .

Equation (1) can also be represented in the form

(2)

Here, m is the mass of the mass point and k is the grav-
itational constant.

We put ζ = logr. Then, the Newtonian potential is

(3)

We introduce into the consideration the potential

(4)

instead of potential (3). Then, for potential (4),

mṘ̇
kmR

r3
-----------,–=

x

y

z 
 
 
 

x2 y2 z2+ +

Ṙ̇ grad
k
r
--.=

ke ζ– .

ke ζ– 1 f ζ( )+[ ]
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Eq. (2) takes the form

(5)

In this case, function ϕ(ζ) is determined from the equa-
tion

(6)

Here, the derivative of function f with respect to param-
eter ζ is denoted as f '.

Theorem 1. For the arbitrary choice of a continu-
ous bounded function ϕ(ζ) given for ζ ∈ (–∞, +∞),
Eq. (6) has the unique bounded solution f0(ζ), which is
continuously differentiable. In this case, if function
ϕ(ζ) is periodic, then f0(ζ) is also periodic, and if func-
tion ϕ(ζ) is almost periodic, then f0(ζ) is also almost
periodic.

Remark 1.1. The function f0(ζ) is defined by the
formula

(7)

Remark 1.2. It follows from formula (7) that if
function ϕ is a bounded integrable function, then f0 is
continuous and bounded.

We introduce into the consideration a set R of points
in space E3, in which function ϕ > 0, and denote this set
as F+. Similarly, we denote F– and F0 as sets of points
in the space E3 for which ϕ < 0 and ϕ = 0, respectively.

Theorem 2. A set of circular orbits entirely situated
in set F+ passes through the arbitrary point of set F+.
None of the circular orbits can pass through the arbi-
trary point of set F–. Moreover, any motion correspond-
ing to the unbounded increase or decrease of time
leaves set F–. If the motion starts in set F0 and has the
initial zeroth velocity, then the motion remains there: in
other words, the time-independent motions are accu-
mulated in this set.

Remark 2.1. If R0 ∈  F0 , then the circular orbit

is the solution to system (5) and is entirely contained in

Ṙ̇
kRϕ ζ( )

r3
-----------------.–=

ϕ ζ( ) 1 f ζ( ) f ' ζ( ).–+=

f 0 ζ( ) e ζ η–( )ϕ η( ) η .d

ζ

+∞

∫=

R R0 ωt
1
ω
---- Ṙ

0 ωtsin+cos=
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set F+ provided that R0 is orthogonal to  and  =

|R0 |ω, where ω =  and ζ = lnr0 .

Remark 2.2. If R0 ∈  F–, then for the motion with the

initial given R0,  remains in the Laplacian plane and
exhibits hyperbolic behavior with a tendency to leave
set F– while increasing and decreasing time.

Remark 2.3. We assume f(ζ) = εcosµζ; then for a
reasonably small ε, the variation of the Newtonian
potential is as small as desired. However, the function
ϕ(ζ) = εcosµζ – εµsinµζ + 1 for a sufficiently large
parameter µ quantifies space E+ into sets F+ and F–,
which are separated by spheres belonging to set F0 .

The behavior of the motion in sets F+, F–, and F0 are
described above. This behavior shows that the modifi-
cation proposed for the Newtonian law of gravitation is
more adapted to the description of not only planetary
systems but also of the structure of atoms, since func-
tion ϕ(ζ) is given for all values ζ ∈  (–∞, +∞).

Let the initial condition R0,  for system (1) be
given. Then, these conditions define the Laplacian
plane passing through the origin, so that the motion
given by these initial data lies in this plane. We repre-
sent the motions occurring in this plane with the help of
polar coordinates:

(8)

Here, ρ and ψ are polar coordinates and ε and α are cer-
tain parameters.

In the Cartesian coordinates corresponding to this
plane, the motion can be represented in the form

(9)

Functions (9) satisfy the system of differential equa-
tions

(10)

where γ = ε/α is the system parameter.
Theorem 3. System (10) has the first integral

If the initial conditions ξ0, η0 for a given γ > 0 satisfy

the inequality I0 < 1, I0 = , then they define

an ellipse in the Laplacian plane. Moreover, the family

Ṙ
0

Ṙ
0

ϕ ζ( )

Ṙ
0

Ṙ
0

ρ α
1 ε ψcos–
-------------------------.=

ξ ρ ψ,cos=

η ρ ψ.sin=

ξ' –η γξη ,+=

η' ξ γη2,+=

ξ2 η2+

γξ 1–( )2
--------------------- I .=

ξ0
2 η0

2+

γξ0 1–( )2
------------------------
of the ellipses has the boundary I0 = 1, which is a parab-
ola. For I0 > 1, the equation I = I0 determines a hyper-
bola in the plane. As γξ0 – 1  0, I0  +∞. The lim-
iting value defines the integral manifold ξ = 1/γ. This
integral manifold divides the Laplacian plane into two
halves, so that motions beginning in one of the halves
never approach the other half. This phenomenon is
called The Great Chinese Wall in observational astro-
nomy.

If γ = 0, then all motions in the Laplacian plane are
circular. The behavior of system (10) for γ < 0 is deter-
mined from the above in the case of replacing ξ with −ξ
and ψ with –ψ.

For the modified potential, Eqs. (10) take the form

(11)

Theorem 4. Integrating system (11) yields the inte-
gral equation

(12)

Remark 4.1. It follows from Eqs. (11) and (12) that
the existence of closed orbits situated in all the sets F+,
F–, and F0 is plausible. These orbits can help us to
explain the diving motions of Martian satellites, the
orbit-to-orbit transitions for Saturnian satellites, and
the existence of fresh comets.

Remark 4.2. In the case of the Newtonian potential,
it was established [2] that the arbitrary motion of matter
can be represented in the phase space as a totality of
three topological transformations occurring simulta-
neously: the orthogonal transformation, the transfor-
mation of compression or extension, and another suc-
cessive orthogonal transformation. This remark also
remains valid for the modified potential.
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1. When the shear yield strength of a material tends
to zero, the scalar constitutive relation of the viscoplas-
tic medium (the Bingham–Il’yushin model) is reduced
to a physically linear relation for viscous fluid. In this
limit, the flow studied below, in a certain sense, tends to
the classical Jeffery–Hamel flow. The steady motion of
viscous fluid in a flat confuser and a diffuser have been
studied intensively [1–6]. Sometimes, this motion was
chosen as a support flow for the approximate solution
of a more complicated problem, for example, the
nonisothermal problem [3]. Perturbing the Jeffery–
Hamel flow by a low yield strength can be classed as a
problem of deformation stability against the perturba-
tion of material functions [4, 5, 7].

We developed a mathematical formalism for inves-
tigation of the flows in a viscoplastic medium having a
low yield strength under deformation in a flat confuser.
The approach is valid at arbitrary values of constitutive
parameters of the system, i.e., the opening angle and
the Reynolds number. The efficient numerical and ana-
lytical method of accelerated convergence and the effi-
cient computational algorithm are constructed. The
corresponding software is created. A high-accuracy
complete solution to the problem is constructed within
the class of symmetrical functions at the fixed opening
angle, and the numerical simulation is performed. Pre-
viously unknown graphical relationships are obtained;
mechanical effects are revealed and interpreted.

Let the flow of a viscous incompressible fluid hav-
ing density ρ and dynamic viscosity µ occur in the
region Ω = {r, θ: r > 0, |θ| < β}, where 2β is the con-
fuser opening angle and Q > 0 is the outflow rate. Then,

components  and  of the velocity vector v0, com-

ponents , , and  of the strain rate tensor v0,

v r
0 v θ

0

v rr
0 v θθ

0 v rθ
0
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and maximum slip velocity U0 have the form

(1)

where V is an unknown dimensionless function to be
determined. For flow (1), the incompressibility condi-
tion is met automatically.

In viscous fluid, components , , , and 
of the stress tensor σ0 as well as T0 are expressed in the
form

(2)

where ρQ/µ is the Reynolds number and p0 is the pres-
sure. The quantities U0 and T0 are interrelated by the
scalar constitutive relation of a viscous medium T0 =
(ρQ/Re)/U0.

Desired function V(θ) is a solution to the following
nonlinear boundary-value problem corresponding to a
constant flow rate [1, 2, 6]:

(3)

Here, C is an arbitrary constant [C = V''(±β)] to be
determined from (3). As a result, parameters (1), (2),
and the pressure

(4)

will be fully determined.
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The numerical and analytical solution to problem (3),
convenient in further analysis of viscoplastic flow, is
constructed in [6] for the parameter range (0 < β < π/2,
0 < Re & 103) and is of interest for its potential applica-
tions.

2. We consider the flow of a viscoplastic medium
(the Bingham–Il’yushin model) obeying the scalar
relationship

(5)

The existence of shear yield point τs in (5) leads to con-
tradictions when solving for the separation of variables.
A review of analytical, numerical, and experimental
studies of such flows both in flat and conical confusers
and diffusers is given in [4]. Below, we present the for-
mulation of the problem and possible approaches to its
solution.

In domain Ω , we use the equations of motion and
the incompressibility condition

(6)

The stress deviator s = σ + pI, where σ is the stress ten-
sor, is related to the strain rate tensor v by the vector
constitutive relations

(7)

Using the relation between tensor v and vector v
(the Stokes relationships) in (7) and substituting (7)
into (6) yields a closed system of three equations with
respect to vr, vθ, and p. This system is complemented
by nonslip boundary conditions and a constant flow rate
condition:

(8)

An approximate solution to problem (5)–(7) is con-
structed using asymptotic expansion in powers of a
small numerical parameter τ, which characterizes the
relative smallness of dimensional quantity τs in (5)
and (7):

(9)

The first terms in expansions (9) correspond to the Jef-
fery–Hamel flow (Section 1). Substitution of (9) into
(5)–(7) yields the following first-approximation equa-
tions for the unknown variables v(1), p(1), v(1), s(1), and
U(1) [4]:
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r
-------+ + +
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Using both the Stokes relationships and formula (1),
we can present tensor s(1) and its components as

(11)

According to (3) and (8), the boundary conditions and
the constant-flow-rate condition for v(1) have the form

(12)

Substitution of expressions (11) into (10) leads to a

closed linear system of equations with respect to ,

, and p(1). Due to functions sinΨ and cosΨ, these
equations are inhomogeneous and should be solved
taking into account conditions (12).

3. A solution to problem (10)–(12) is sought in the
form [4]

(13)

where W(θ) is the dimensionless stream function. For
expressions (13), incompressibility condition (10) is
met automatically. Components of tensor v (1) are deter-
mined based on (13). The problem of finding the

desired functions , , and p(1) can be reduced to
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the following linear nonhomogeneous boundary-value
problem for only one unknown stream function W(θ) [4]:

(14)

Using (14), we find W(θ) and then determine the pres-
sure perturbation p(1):

(15)

Note that known expressions for function V(θ) and its
derivatives should be substituted into (14) and (15).
Otherwise, the boundary-value problems (3) and (14)
should be solved simultaneously.

As is known, the rigid zones (flow cores) Ωr ⊆  Ω
can form during the deformation of viscoplastic media.
At small τ, these zones Ωr and their boundaries Σr ,
which separate them from viscoplastic flow, are deter-
mined from the conditions

(16)

In the laboratory reference system, the boundaries
of rigid (quasi-rigid) zones are immobile. However,
there occurs a mass transfer inside them.

Determination of the asymptotic boundaries Σr as
τs  0 is of particular interest. Substituting expres-
sions (1) for v0 and v(1) into (16), we find the boundary
of rigid zone r*(θ) in polar coordinates:

(17)

Denominator D(θ) is not defined at all θ ∈ (–β; β) (see
below).

At the rigid-zone boundary r*(θ) (17), the compo-
nents of both velocity vector v* and strain rate tensor
v* are described by the approximate expressions

(18)
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4. Approximate analysis of the problem concerning
the steady-state flow of a viscoplastic medium with a
low yield strength is reduced to solving a nonlinear
boundary-value problem. It is described by an eighth-
order system of equations and contains four unknown
integration constants. The solution also depends on the
parameters of the system, angle β and the Reynolds
number Re, which vary in a wide range. Below, we
present the results of a numerical and analytical study
of the problem. These results are based on the modified
method of accelerated convergence, which was devel-
oped by us and is accurate to a relative error of 10–5–10–7.

To calculate and present the results conveniently, we
reduce the boundary-value problem (3), (14) to normal-
ized variables, i.e., to argument x and unknown func-
tions y(x) and w(x). As a result,

(19)

where λ = (2β)3C and k are arbitrary constants which
should be determined while solving the boundary-value
problem at given a = 4β and b = 2βRe. Parameters λ and
k can be eliminated by differentiation with respect to x.
Variable z corresponds to a quadrature in (3), i.e., to the
condition of a constant flow rate. Function φ (19) arises
owing to functions cosΨ and sinΨ in (14).

Note that the boundary-value problem for z and y
can be separated out. Its sufficiently complete analyti-
cal and numerical solution, which belongs to the class
of symmetrical functions, is presented in [6]. The com-
putational aspect of the problem lies in the determina-
tion of γ = y'(0) and λ = y''(0) at given a and b. The solu-
tion is obtained as a result of integration of the Cauchy
problem. At fixed values of the parameter a (i.e., angle
β), γ(b) and λ(b) are determined by the recurrent algo-
rithm of accelerated convergence and the continuation
procedure with respect to the parameter b.

At known values of y, y', and λ, solving the linear
boundary-value problem for w(x) (19) is reduced to the
determination of missing values of parameters c =
w''(0) and k = w'''(0). Values of c(b) and k(b) (a is fixed)
are calculated by a single integration of the three
Cauchy problems for functions wc , wk , and wφ. They
are described by the equation and initial data of
type (19) under the following additional conditions: k =
φ ≡ 0 and  = 1 (for wc); k = 1, φ ≡ 0, and (0) = 0

(for wk); and k = (0) = 0 (for wφ). Having been cal-
culated, the functions wc(x), wk(x), and wφ(x) then allow
us to present the desired function w(x) as w = cwc +

z' y 1, y x( ) 2βV θ( ), x≡–
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kwk + wφ and to find coefficients c and k using boundary
conditions (19):

(20)

Using (19) and (20) to calculate the quantities c and
k at required values of the parameters a and b, i.e., β
and Re, we can determine function w(x) and its deriva-
tives w' and w'' as a solution to the Cauchy problem for
Eq. (19). These functions are also used to construct the

c wk 1( )wφ' wk' 1( )wφ 1( )–[ ]δ 1– ,=
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Fig. 1. Missing initial data vs. parameter b (Re number).
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Fig. 2. Profiles y1, 2(x) of velocity in a viscous fluid and the
stream functions w1, 2(x) of a viscoplastic medium at
b1 = 10 and b2 = 100.
desired characteristics of the viscoplastic flow. They are
r*, , , and so forth; i.e., R* = R(x),  = Vr(x),

 = Vθ(x), etc. [see (17) and (18)].

The calculated characteristics of viscous and visco-
plastic flows symmetric with respect to x = 1/2 in a flat
confuser are illustrated in Figs. 1–3. The calculations
have the relative error of 10–4–10–5. For the sake of def-
initeness, we consider the case β = 10°. Parameter b var-
ies within the range 0 ≤ b ≤ 100, i.e., where 0 ≤ Re &
300. Functions γ(b), λ(b), c(b), and k(b), which deter-
mine a solution to boundary-value problem (19)
through the integration of the corresponding Cauchy
problem, are plotted in Fig. 1. These curves have a rel-
atively simple form. However, they are difficult to plot
based on (20) and [6] since tedious computations are
required, especially at b @ 1. Typical plots y1, 2 and w1, 2
of variables y(x) and w(x) at b = b1, 2, where b1 = 10 and
b2 = 100, are shown in Fig. 2.

We revealed the following qualitative effect: at 0 <
b ≤ b* & 60 (b1 < 60), the flow of a viscoplastic medium
in the confuser is characterized by two quasi-rigid
zones, which are situated symmetrically with respect to
x = 1/2 (θ = 0) (Fig. 3a). Far from the origin of coordi-
nates, the medium flows mainly through three gaps,
which are situated along the confuser walls and
between the zones, i.e., in certain neighborhoods of
x = 0, 1/2, and 1. At small b, the central gap between the
zones is narrow (arbitrarily narrow as b  0). With an
increase in b (b & b*), expansion occurs while the zones
become narrower. At b > b* (b2 > b*), the third quasi-
rigid zone arises along the central confuser ray and the
medium flows through four gaps, which are situated
near the walls and between the zones (Fig. 3b). When
the parameter b grows, the lateral zones converge and
shift toward the confuser walls while the central zone
expands. It is noteworthy that the boundaries R1, 2(x) (17)
of the quasi-rigid zones have vertical asymptotes corre-
sponding to rays for argument θ. These asymptotes are
related to zeros of the denominator D(x) in the expres-
sion for R(x) in (17); positive and negative values of the
radicand in D correspond to the zones R(x) and to the
gaps through which the medium flows, respectively.
According to (17) and (18), plots for the velocity com-
ponents at zone boundaries Vr(x) and Vθ(x) also have
vertical asymptotes at the mentioned points. We note
that at b < b*, the radial velocity component Vr1
changes its sign at the zone boundary when x varies
with respect to the midpoint x = 1/2 (θ = 0): it is positive
between the zones and negative between the zones and
the walls. The transverse component Vθ1 is antisymmet-
ric with respect to x = 1/2 and directed toward the mid-
dle part of the confuser.

When there are three quasi-rigid zones (b2 = 100),
component Vr2 of the velocity for particles in the outer
zones varies similarly to Vr1 . In the central zone, this
quantity is strictly negative and the transverse velocity

v r* v θ* Vr*

Vθ*
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Fig. 3. Boundaries of quasi-rigid zones R1, 2(x) and radial [Vr1, 2(x)] and transverse [Vθ1, 2(x)] velocity components at these bound-
aries for b1 = 10 and b2 = 100.
component Vθ2 is directed toward the confuser walls.
Due to this fact, the central zone expands. In the outer
(near-wall) zones, the transverse velocity component
changes its sign. Closer to the walls, it is directed
toward the middle of the confuser and has the opposite
direction (toward the walls) inside the flow. Conse-
quently, these zones become narrower. Moreover, as b
grows, they shift toward the confuser walls.

In the framework of the approximate model under
study (τs  0), the behavior of quasi-rigid zones in
the limit of b  ∞ can be analyzed by using analytical
methods and by examining the asymptotic expressions
for solving the Jeffery–Hamel problem [1, 4, 6].
According to this analysis, the lateral zones “adhere” to
the confuser walls at a certain sufficiently large value of
parameter b (i.e., the Reynolds number) and their width
decreases (unlimitedly). At the inner boundaries of
these zones, the transverse component of the particle
velocity is directed toward the walls. The radial compo-
nent is positive, i.e., directed from the origin of coordi-
nates (oppositely to the main flow of the medium). The
central quasi-rigid zone expands and takes the shape of
a half-strip with a rectangular lower border (a sector
without a vertex). At its boundary, the radial component
of the particle velocity is negative (directed to the ori-
gin of coordinates). At the lateral parts of this boundary,
the transverse components are directed, as for the lat-
DOKLADY PHYSICS      Vol. 45      No. 11      2000
eral zones, to the corresponding walls. This is an indi-
cation of the tendency to expansion.
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Owing to their shape, vast vortex formations found
in the ocean at depths of approximately one kilometer
have been called lenses [1–4]. Many lenses discovered
in the Northern Atlantic thousands of kilometers to the
southwest of Gibraltar contained Mediterranean water.

This study is based on the results of observations for
three lenses called “Meddy” [3, 4] and the lens “Meso-
polygon-85” [1, 2]. The general features intrinsic to this
phenomenon and the characteristic orders of magni-
tudes for their parameters are the following: there exists
a density-homogeneous [2] or weakly stratified rotating
core [3]; the peripheral velocities are proportional to
the radius; the highest peripheral velocity is ~30 cm/s;
the rotation time is ~5 to 6 days; the horizontal and ver-
tical sizes of the core are ~20 to 40 km and ~400 m,
respectively [2]; the distinctions between the tempera-
ture and salinity in the lens center and in the back-
ground water at the same horizons attain +4°C and
+1‰, respectively; the ratio of the lens-density excess
to the background-water density at the same horizons is
∆ρ/ρ ~ 10–4 for the “Mezopolygon-85” lens; and the
background-water stratification characterized by a
Väisälä–Brunt frequency N squared amounts to N2 =

 ~ 10–5 s–2 at a horizon corresponding to the lens

density (h is the depth counted off from the ocean sur-
face and g is the gravitational acceleration).

We propose mechanical models for this phenome-
non, which explain the displacements of the lenses for
long distances (~3500 km along a straight line for the
“Mezopolygon-85” and ~1700 km for the “Meddy-1”)
from Gibraltar to the southwest and the south and the
long lifetime of these formations, ranging from 3 to
10 years and longer according to the estimates of [2].

Explaining the motion of the lenses as being trans-
ferred by deepwater flows is not consistent with mea-
surement data. The cause should be sought in the dis-
tinctions between the mechanical characteristics of the
lenses and those of the ambient water. We imply the
distinctions in density and the existence of proper rota-

dρ
dh
------

g
ρ
---
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tion. Initially, we ignore thermohaline processes. The
ocean is taken as a perfect incompressible density-
inhomogeneous liquid with a stable stratification. In
this consideration, we choose a system of coordinates
related to the rotating Earth. We compare two
approaches: a lens as a rotating solid or as a homoge-
neous rotating liquid mass. On the basis of full-scale
measurements, it was assumed that solids modeling
lenses are strongly flattened axisymmetric ellipsoids
with a semiaxis ratio of ~102. The effects of the
medium are displayed by two mechanisms, namely, by
static and dynamic mechanisms presented by
Archimedean forces and by dynamic reactions, respec-
tively, which involve the apparent masses. From the
theory of motion for a solid in liquid [5], we used the
structure of expressions for reactions induced by the
motion of perturbed water, while the apparent masses
involved in them are determined approximately allow-
ing for the Earth’s rotation and the ocean’s stratifi-
cation.

The specific action of these factors is expressed in
the blocking perturbances introduced by a lens in a
bounded region, whose dimensions are determined by
the horizontal Rossby radius RR = (gH)1/2/f0 (H is the
characteristic vertical size, f0 = Ωsinϕ is the Coriolis
parameter, and ϕ is the latitude of the point under con-
sideration) and by the vertical dimension, the so-called
Rossby height, HR = L|f0 |/N (L is the characteristic hor-
izontal size) [6, 7]. For the lens radius L = Rl = 20 km
and the lens height Hl = 0.4 km, RR ~ 250 km and HR ~
0.2 km. The perturbed ocean zone containing the lens
occupies a cylinder with a radius of ~250 km and a
height of ~0.8 km. This qualitative distinction from the
classical theory [5], where the perturbed region is infi-
nite, leads to substantial quantitative variations in the
apparent masses. Estimations of the apparent masses
show that λ33 ≈ M(RR)4/24(RR – Rl)2HRHl ≈ 7.6 × 104M
along the lens-rotation axis and that λ11 ≈ λ22 ! M in
the perpendicular direction, where M is the lens mass.
The apparent mass λ33 of a disk of the same dimensions
for a motion within a nonrotating homogeneous
unbounded space filled with liquid is lower by three
orders of magnitude.

In the position of the hydrostatic equilibrium of a
nonrotating solid ellipsoid in a stratified liquid, the hor-
000 MAIK “Nauka/Interperiodica”
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izontal plane of symmetry is arranged at a horizon,
where the background-water density ρ is equal to the
body density ρl. The moment of hydrostatic forces is
zero. The rotating body has a proper angular momen-
tum H = Cw, ω = const, C is the polar moment of iner-
tia, and ω is the angular-velocity modulus for the
proper rotation. In the case of an anticyclonic rotation
(as it takes place in a lens), the angular-momentum vec-
tor is directed downwards to the ocean depth. The
H-vector motion in the inertial space is the sum of its
motion with the Earth and its motion with respect to the
Earth. When a body has no velocity with respect to the
Earth other than a proper-rotation velocity, the H-vec-
tor variation is related only to the variation of its direc-
tion in the inertial space owing to the rotation with the
Earth (the gyroscopic precession). According to the
theorem on angular-momentum variation, we have for
H = const

(1)

Here, W is the angular velocity of the Earth’s rotation
and M is the moment of external forces acting on the
body. For such a motion and anticyclonic rotation of the
body, the moment must be directed westward. This is
the moment of the Archimedean hydrostatic forces act-
ing on a body in stratified liquid. For this, the body
must be inclined in the meridian plane with respect to
the local horizon, so that its southern part would be
slightly drown, while the northern part must be slightly
raised over the horizon as is shown in the figure. The
moment MA of the Archimedean forces acting from the
side of a linearly stratified liquid on the axisymmetric
ellipsoid of revolution, which is inclined under an angle
α to the horizon, is determined by the expression

MA = Vg(c2 – a2) sinα cosα.

Here, V is the ellipsoid volume, a and c are the large and

small semiaxes, and  = const is the coefficient in the

dependence of the density variation with depth. The
proper kinetic moment of the axisymmetric ellipsoid
with mass M = Vρl is determined by the expression H =
Cω = (2/5)Vρla2ω. Substituting H and MA into (1) and
taking into account that c ! a, sinα ≈ α, cosα ≈ 1 for

small angles α and that  = N2 , we obtain an

expression for the small angle of inclination α of the
body’s proper-rotation plane to the local horizon:

(2)

For the “Mezopolygon-85” lens (ω ~ Ω/5, ϕ ≈ 20°,
and N2 ~ 10–5 s–2), we have α ≈ 1′, while for the
“Meddy-1” lens (ω ~ Ω/6 and ϕ ≈ 28°), α ≈ 0.5′. Pos-
sible additions to the angle α and the body inclination
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to the meridian, which are associated with the lens
motion with respect to the Earth with a velocity of
1 cm/s, are four orders of magnitude lower than α. In
the case of investigating slow lens motions over long
periods of time, these additions may be ignored.

The equations for the relative center-of-mass motion
are composed in spherical coordinates: ϕ and λ are the
geocentric latitude and longitude of the point under
consideration, respectively, and r is the distance
between the body’s center of mass and the Earth’s cen-
ter. The ellipsoidal shape of the Earth is taken into

account by introducing a small angle r–1  between a

local vertical and a radius vector directed from the
Earth’s center. Since

cosϕ ~ sinϕ ~ 1,  ! Ω,

 ! Ω, r = r(ϕ) + h(t)

(h is the depth counted off from the free ocean surface),

the set of simplified equations in projections onto the
principal axes of the body has the form

(3)
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Here, m(h)g is the Archimedean force and the angle α
is positive when the southern edge of the body is
slightly drown. The first two equations are similar to
those of a hydrostatic system and, in the approximation
of the precession theory [8] with allowance for relation-
ship 2Msinϕ ! αλ 33cosϕ being fulfilled for actual val-
ues of parameters, take the form

. (4)

Equation (4) shows that motion along a geographic par-
allel occurs under the conditions of geostrophic balance
when the Coriolis inertia force is balanced by the pres-
sure gradient. In this case, the role of –gradp is played
by the projection onto the meridian of the skating force
along the inclined plane. The former equation relates
the velocity along a vertical with the horizontal velocity
along a meridian.

From (2) and (4), we obtain the expression for the
velocity along a parallel:

For  ~ 10–4 (for the center-of-mass position

200 m higher than the relevant isopycnic line),

 ≈ 1.5 × 10–5 s–1, N2 ≈ 10–5 s–2, and ϕ ≈ 20°,

we obtain u ~ 0.5 cm/s. The order of magnitude for this
velocity corresponds to the observed results.

Since α ! 1, we have from (4) that r  @ ; con-

sequently, the path traveled by the body along the
meridian is much larger than the depth variation. If the
body was displaced ~600 km southwards, the submer-
sion was ~90 m. For an average linear horizontal veloc-
ity of ~2 cm/s, this occurs for approximately one year.
The traveled path, velocity, and time correspond to
observations of the “Meddy-1” lens [5].

In the case of a linear stratification of the back-

ground and of using the relationship αr  ≈  fol-

lowing from (4), the third equation of set (3) takes the
form

with a period of vibrations of ~10.3 days.
Thus, the mechanical model described reveals the

principal features in the slow motion of the lenses,
namely, the appearance of the western and southern
components for the center-of-mass velocity, i.e., the
motion of lenses to the southwest. However, this model
is “too fast” for the motion along the vertical channel.
We can “slow down” the motion along the vertical by
introducing a strong resistance and by taking the turbu-
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lent viscosity into account. However, allowing for ther-
mohaline processes which undoubtedly manifest them-
selves for long periods of time seems to be more appro-
priate for the model. For example, in effect, the motion
of the “Meddy-1” lens at the observation interval is, for
the most part, described by Eqs. (4), if we consider
the center of mass of the lens to be situated virtually
at the corresponding isopycnic line; i.e., h ≈ h0 , but
h0 ≠ const, while h0 = h0(t). The low vertical velocity

 =  > 0 is caused by thermohaline processes for

which the effect of cooling on the density prevails over
the effect of salt diffusion from the lens. The lens
remaining in the position of quasistatic equilibrium
([M – m(h0)] ≈ 0) at each time moment slowly sinks
down. We call such a regime thermohaline submersion.

It follows from (4) that  ≈ 0,  = – /rα < 0; i.e.,

the longitude remains almost invariable, while the lens
moves virtually southwards (observed in [4]).

The long life of the intrusion vortex formations is
associated with the existence of the equilibrium form of
the lens rotating core. The rotating mass of a liquid, in
contrast to a solid inclined at an angle α (2) to the par-
allel in the equilibrium state, can create the hydrostatic
moment necessary for equilibrium by varying its shape.
We show that such a steady shape does exist for an anti-
cyclone. We introduce the (x, y, z)-coordinate system
with the origin in the center of mass of the lens. Let the
z-, x-, and y-axes be directed upwards along the local
vertical, eastwards, and northwards, respectively. The
characteristic horizontal dimension of the lens is much
smaller than the Earth’s radius. Therefore, we consider
the case of a stratified-liquid plane layer tangent to the
Earth and residing in the uniform gravitational field.
We represent the vector of the lens-particle velocity V
by the components vx = –ω(y – κz), vy = ωx, and vz = 0.
This corresponds to the motion with a constant angular
velocity ω along the circumferences whose centers are
located along the straight line y = κz in the meridian
plane. The equation of continuity is fulfilled. The
Gromeko–Lamb equation for the core has the form

(5)

Outside the core, the liquid is quiescent and linearly
stratified. The boundary conditions are pf (zb) =
pl(xb, yb, zb); xb, yb , and zb are coordinates for the points
of the core boundary; and pf (z) and pl(x, y, z) are the
pressures outside and inside the lens, respectively. The
projections of the relative vortex are (0, ωκ, 2ω); the
projections of the planetary vortex are (0, 2Ωy, 2Ωz);
and the projections of the absolute vortex are (0, 2Ωy +
κω, 2Ωz + 2ω). From the consistency requirements for

dh
dt
------

dh0

dt
--------

dλ
dt
------ dϕ

dt
------

dh0

dt
--------

2W rotV+[ ] V× 1
ρl
----gradΦ,–=

Φ pl 0.5ρlV
2 ρlgz.+ +=
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Eqs. (5), it follows that κ = . Note that the tan-

gent of the inclination angle for the absolute vortex
with respect to the local vertical is exactly equal to κ.
Integrating (5) and using the boundary conditions, we
obtain the equation for the water mass interface:

(6)

Here, ∆ = pl(0, 0, 0) –  is the pressure excess

in the lens center with respect to the background at
z = 0 and z = HO corresponds to the ocean surface.
Reducing (6) to the canonical form by rotating the axes
about the parallel (y = y'cosa – z'sinα, z = y'sinα +
z'cosα) at an angle α, we find

(7)

In the case of the anticyclone (ω < 0) and the actual val-
ues of the parameters for the lenses under observation,
it follows that α is a small angle and its expression coin-
cides exactly with (2) for the inclination angle of a
solid. The surface obtained is a triaxial ellipsoid close
to an ellipsoid of revolution. The equation for this ellip-
soid written out in the principal axes for α ! 1 with
approximate values for the coefficients is

(8)

2Ωy

2Ωz ω+
--------------------

ω
2
---- ω 2Ωx+( ) x2 y2+( ) ω

2Ωy
2

2Ωz ω+
-------------------- 1

2
---N2– 

  z2+

– 2Ωyωyz ∆+ 0.=

p fd
zd

-------- zd

0

H0

∫

2αtan
4ωΩy

ω 2Ωz ω+( ) 1– 4Ωy
2 ω 2Ωz+( )2–[ ] N2–

---------------------------------------------------------------------------------------------.=

x2 y'( )2+

a2
---------------------- z'( )2

c2
----------+ 1,=

a2 2∆
ρl ω 2Ωz ω–( )
--------------------------------------- 0, c2> 2∆

ρlN
2

----------- 0.>= =
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The ratio between the principal semiaxes is  =

. For the “Mezopolygon-85” lens, we

have a/c ~ 1.2 × 102, which agrees well with the obser-
vations. Note that for the cyclone (ω > 0), no closed
equilibrium configuration exists for a homogeneous
rotating mass of liquid in the stable-stratified ocean.
This fact explains why the majority of the vortex for-
mations found in the northern hemisphere were anticy-
clones [1, 2].
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In the theory of combustion, the model of chain-
flame propagation was proposed by Ya.B. Zel’dovich
and D.A. Frank-Kamenetskiœ [1] (see also [2]). In suc-
ceeding years, this line of research was actively devel-
oped by many investigators (see, for example, [3–6]).
In modern notation, the following nonlinear equation
corresponds to the simplest model of chain-flame prop-
agation:

(1)

which is referred to as the Zel’dovich model [5, p. 198]
by experts in mathematical modeling. At the same time,
in mathematical studies on the dynamics of “reaction +
diffusion” systems, problem (1) is treated as a part of
the so-called KPP (Kholmogorov–Petrovskiœ–
Piskunov) problem concerning the existence of travel-
ing-wave type solutions.

There is a well known classical exact solution to
Eq. (1) [4]:

(2)

which has the form of a traveling wave with unity
velocity. In this study, we first find the exact time-
dependent solution to model (1):

(3)

which, in contrast to classical self-similar solution (2),
makes it possible to also study the transient processes
leading to the steady-state wave. Furthermore, we gen-
eralize our consideration to the case of many spatial
variables.

In recent years, the technique of constructing exact
solutions to the sets of equations of the reaction + dif-
fusion type was developed in the cycle of studies of
O.V. Kaptsov [7–10] and in paper [11]. Solution (3) is

ut uxx 2u2 1 u–( ),+=

u1 t x,( ) 1
1 x 1–( )exp+
-----------------------------------,=

u2 t x,( ) t x–( ) 1–exp
2t x t x–( )exp+ +
---------------------------------------------,=
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Russian Academy of Sciences, 
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found using namely this technique. The scheme of con-
structing solution (3) to model (1) is as follows.

According to [7, 8], manifold

(4)

is invariant with respect to equation (1), if

(5)

where Dt is the operator of total differentiation with
respect to time t. Relationship (5) is assumed to be met
due to (1), (4), and their differential consequences with
respect to variable x.

Invariant manifold (4) for equation (1) is sought in
the form

(6)

Substituting (6) in (1), we obtain

(7)

Invariance condition (5) for manifold (6) with respect
to equation (7) has the form

(8)

Condition (8) must be met due to Eqs. (6), (7), and to
their differential consequences:

(9)

Considering (9) as the condition for which the third-
power polynomial in terms of ux becomes zero, we
obtain the following set of equations:

The solution to this set has the following form:

h t x ux uxx …, , , ,( ) 0=

Dt h( )
1{ }

( )
4{ }

0,=

uxx α u( )ux β u( ).+=

ut α u( )ux β u( ) 2u3 2u2.+–+=

utxx Dt α u( )ux β u( )+( ).=

α''ux
3 αux β+( ) 2α'ux α2 β' 6u2 4u+–+ +( )+

+ ux 2α'αux α'β αβ' β''ux 12uxu 4ux+–+ + +( )

=  α'ux β'+( ) αux β 2u3 2u2+–+( )

+ α α 'ux
2 α α ux β+( ) β'ux 6uxu

2 4uxu+–++( ).

α'' 0, 2α'α β'' 12u– 4+ + 0,= =

β u3 u2–+ 0, β' u2 u3–( ) β 2u 3u2–( )– 0.= =

α 3u 1, β– u3 u2.+–= =
000 MAIK “Nauka/Interperiodica”



EXACT TIME-DEPENDENT SOLUTIONS IN THE SIMPLEST MODEL 611

   
This means that Eq. (1) has the invariant manifold

(10)

Integrating ordinary differential equation (10) and
determining the dependence of the functions of integra-
tion on t by means of the substitution of the found solu-
tion into Eq. (1), we obtain an explicit solution to (3).

Generally speaking, the described procedure pro-
vides an opportunity to obtain a more general expres-
sion for the explicit solution to Eq. (1) (with parameters
k and m):

which, however, can be transformed to form (3) by
shifting independent variables t and x.

Comparing (2) and (3), we note that, accurate to a
translation in x, we can pass to the limit

i.e., at reasonably large times, new solution (3) tends to
classical self-similar solution (1). What more, u2(t, x)
makes it possible to investigate not only the solutions to
model (1) at large times, but also the transient pro-
cesses. The characteristic profiles u2(t, x) for various
moments of time are shown in Fig. 1. Profile u2(t, x) has
two pronounced extrema (upper and lower “over-
shoots”). Direct calculations show that the upper over-
shoot disappears quite quickly, while the lower over-
shoot tends to zero rather slowly. It is easy to write out

uxx 3u 1–( )ux u3 u2–+– 0.=

u t x; k m, ,( ) k t x–( ) 1–exp
2t x m k t x–( )exp+ + +
-----------------------------------------------------------,=

u2 t x,( )          u 1 t x ,( ) for t           ∞ ;                 
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Fig. 1. Characteristic profiles u2(t, x) at moments of time
t = 0, 1, 2, 3, 4.
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the integral characteristics of the upper and lower over-
shoots:

The latter integral is diverging. This characterizes the
slow convergence to zero of the lower overshoot.

The convergence of u2(t, x) in the wave velocity is
different for various levels of u2 (Fig. 2). However, at
reasonably large times, the velocity of wave motion
tends to unity [to the velocity of motion of classical
wave (2)]. The relationship between the classical and
new solutions to model (1) of chain-flame propagation
is illustrated in Fig. 3. The classical wave catches up
with the new solution and surpasses it. At times of the
order of 103, they already move in parallel at a constant
velocity.

For a multidimensional model of chain-flame prop-
agation,

, (11)

the classical self-similar solution has the form 

(12)

Sup –1 t x–( ) 1–exp
2t x t x–( )exp+ +
---------------------------------------------+ 

  xd

∞–

–1 2t–

∫=

=  3t 1 3t 1+( )exp 1–( ),ln–+

Slow
t x–( )exp 1–

2t x t x–( )exp+ +
--------------------------------------------- x.d

t

∞

∫–=

ut uxixi
2u2 1 u–( )+

i 1=

n

∑=

u1 t x1 … xn, , ,( ) 1
1 X t–( )exp+
-----------------------------------,=
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where X = . The new time-dependent solution

similar to (3) is

(13)

The two-dimensional-wave profile u2(t, x1, x2) at the
moment of time t = 0 is shown in Fig. 4. Nonlinear
“step” (13) tends to classical step (12) at reasonably
large times, which is similar to what occurs in the one-
dimensional case (see Fig. 3).

Thus, in this paper, we considered a new exact solu-
tion to the model of chain-flame propagation. This
solution enables us to investigate not only the limiting
regimes, but the transient ones as well. Knowledge of
such solutions can be used, in particular, in testing the
numerical algorithms and codes intended for calculat-
ing the mathematical models of the reaction + diffusion
type having a more general form than those considered
here. Knowledge of the parameter-dependent exact
solutions u2(t, x; k, m) also provides an opportunity to
easily analyze the effect of these parameters on the
characteristics of wave processes in specific systems.
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n
------- xi

i 1=

n

∑

u2 t x1 … xn, , ,( ) t X–( )exp 1–
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We consider the properties of flows for isotropic
incompressible fluids under shear-free stress. We argue
that in the general case of arbitrary principal stresses,
flow is freest when the two principal stresses are equal
to each other and the third differs from them. In this
case, the flow is governed by wave equations.

1. Saint-Venant [1] proposed the following set of
equations describing the plane flow of an isotropic per-
fectly plastic fluid:

the equilibrium equations

(1.1)

where σx, σy, and τxy are the stress tensor components
in the Cartesian (x, y)-coordinate system;

the plasticity condition

(1.2)

where k is the shear yield stress;
the incompressibility condition

(1.3)

and the isotropy condition

(1.4)

where εx, εy, and εxy are the strain-rate tensor compo-
nents.

The isotropy condition (1.4) requires that the princi-
pal directions of the stress tensor and those of the
strain-rate tensor be coaxial.

We assume that a stressed state with σx, σy, and τxy =
const exists. In this case, we can choose the coordinate
axes along the principal directions 1 and 2, namely,

(1.5)

In view of (1.5), the equilibrium equations are satis-

∂σx

∂x
--------

∂τ xy

∂y
---------+ 0,

∂τ xy

∂x
---------

∂σy

∂y
--------+ 0,= =

σx σy–( )2 4τ xy
2+ 4k2,  k const,= =

εx εy+ 0;=

εxy σx σy–( ) τ xy εx εy–( ),=

σx σ1, σy σ2, τ xy 0; σ1 σ2, const.= = = =
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fied. From (1.2) and (1.5), we have

(1.6)

It follows from (1.4)–(1.6) that

(1.7)

We assume that

(1.8)

By virtue of (1.8), Eq. (1.7) is satisfied and the
quantity εxy may be nonvanishing. In this case, the
isotropic-fluid flow is determined by incompressibility
condition (1.3), which can be represented as

(1.9)

Here, u and v are the displacement velocity compo-
nents.

Assuming that the velocity potential exists, namely,

(1.10)

and using (1.9) and (1.10), we arrive at

(1.11)

It follows from assumption (1.10) that the flow is irro-
tational; i.e.,

(1.12)

Relationships (1.9)–(1.12) define the kinematics of
a potential flow for an ideal incompressible fluid.

For k ≠ 0, it follows from (1.6) and (1.7) that

(1.13)

Equations (1.9) and (1.13) govern the flow of an
incompressible perfectly plastic fluid under the uni-
form stress given by (1.5) and (1.6). In order to satisfy
the incompressibility condition, we introduce the
stream function

(1.14)

σ1 σ2– 2k.±=

εxy σ1 σ2–( ) 0, εxyk 0.= =

σ1 σ2, k 0.= =

∂u
∂x
------ ∂v

∂y
-------+ 0.=

u
∂ϕ
∂x
------, v

∂ϕ
∂y
------,= =

∂2ϕ
∂x2
--------- ∂2ϕ

∂y2
---------+ 0.=

∂u
∂y
------ ∂v

∂x
-------– 0.=

εxy 0, ∂u
∂y
------ ∂v

∂x
-------+ 0.= =

u
∂ψ
∂y
-------, v–

∂ψ
∂x
-------.= =
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It follows from (1.13) and (1.14) that

(1.15)

Thus, for desirably small values of k ≠ 0, the uni-
form flow of the isotropic fluid is governed by wave
Eq. (1.15). Provided that the stress components are
equal to each other, i.e., σ1 = σ2 , Laplace Eq. (1.11)
governs the flow of an ideal incompressible fluid but
does not hold true in the limit as k  0 [see (1.6)].

It is worth noting that the relationships between the
stress components and the strain rate impose con-
straints on the flows governed by Eq. (1.15). For an
incompressible viscous fluid under conditions (1.15),
we can write out that

(1.16)

where µ is the coefficient of viscosity.
It follows from (1.16) that

(1.17)

2. In the case of a three-dimensional flow, we con-
sider the incompressibility conditions

(2.1)

and the isotropy conditions [2]

(2.2)

and require that the principal directions for the stress
tensor and the strain-rate tensor be coaxial.

In the Cartesian coordinate system, isotropy condi-
tions (2.2) take the form

(2.3)

We assume that

(2.4)

From (2.3) and in view of (2.4), we have

(2.5)

We now assume that

(2.6)

∂2ψ
∂x2
--------- ∂2ψ

∂y2
---------– 0.=

εx εy+  = 0, εxy = 0, εx εy–  = 
1
µ
--- σ1 σ2–( ),

u
1

2µ
------ σ1 σ2–( )x C1,+=

v –
1

2µ
------ σ1 σ2–( )y C2,+= C1 C2, const.=

εx εy εz+ + 0, ∂u
∂x
------ ∂v

∂y
------- ∂w

∂z
-------+ + 0= =

σikεkj εikσkj=

σxεxy τ xyεy τ xzεyz+ + εxτ xy= εxyσy εxzτ yz,+ +

τ xyεxz σyεyz τ yzεz+ + εxyτ xz εyτ yz εyzσz,+ +=

τ xzεz τ yzεxy σzεxz+ + εxzσx εyzτ xy εzτ xz.+ +=

τ xy τ yz τ xz 0, σx σ1, σy σ2,= = = = =

σz σ3; σi const.= =

εxy σ1 σ2–( ) 0, εxz σ1 σ3–( ) 0,= =

εyz σ2 σ3–( ) 0.=

σ1 σ2 σ3.= =
In this case, relationships (2.5) are satisfied and the
quantities εxy, εxz, and εyz may be nonvanishing.

Assuming that the velocity potential exists, i.e.,

(2.7)

and using (2.1) and (2.7), we obtain the harmonic
Laplace equation

(2.8)

It follows from conditions (2.7) that the flow is irro-
tational, i.e.,

(2.9)

Relationships (2.1) and (2.7)–(2.9) define the flow
kinematics for an ideal incompressible fluid.

In the case of

(2.10)

we have from (2.5) and (2.10) that

(2.11)

and that the quantity εxy may be nonvanishing.

In terms of the displacement-velocity components,
Eqs. (2.11) take the form

(2.12)

To satisfy Eqs. (2.12), we assume [3] that

(2.13)

According to (2.1) and (2.13), the function Ψ must
obey the wave equation

(2.14)

Thus, relationships (2.10), corresponding to the
full-plasticity condition [4], specify the shear nature for
the flow of an isotropic incompressible fluid.

It follows from relationships (2.13) that

(2.15)

According to (2.15), the flow determined by rela-
tionships (2.1) and (2.12)–(2.14) is irrotational in the
(x,y)-plane.

In the case of

(2.16)

u
∂ϕ
∂x
------, v

∂ϕ
∂y
------, w

∂ϕ
∂z
------,= = =

∂2ϕ
∂x2
--------- ∂2ϕ

∂y2
--------- ∂2ϕ

∂z2
---------+ + 0.=

∂u
∂y
------ ∂v

∂x
-------– 0, ∂v

∂z
------- ∂w

∂y
-------– 0, ∂w

∂x
------- ∂u

∂z
------– 0.= = =

σ1 σ2, σ1 σ3– 2k, k 0,≠= =

εxz εyz 0= =

∂u
∂z
------ ∂w

∂x
-------+ 0, ∂v

∂z
------- ∂w

∂y
-------+ 0.= =

u
∂ψ
∂x
-------, v

∂ψ
∂y
-------, w

∂ψ
∂z
-------.–= = =

∂2ψ
∂x2
--------- ∂2ψ

∂y2
--------- ∂2ψ

∂z2
---------–+ 0.=

∂u
∂y
------ ∂v

∂x
-------– 0.=

σi σ j,≠
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with regard to (2.16) and (2.5), the equation

(2.17)

must be attached to relationships (2.11).
It follows from (2.13) and (2.16) that

(2.18)

Using (2.18) and (2.14), we arrive at

(2.19)

Conditions (2.17) and (2.18) impose constraints on
the flow governed by relationships (2.1) and (2.12).

Thus, in the case (2.6) of all principal stresses being
equal to each other, Eqs. (2.1) and (2.7)–(2.9), which
correspond to the flow of an ideal incompressible fluid,
are valid. In the case where not all principal stresses are
equal to each other, the flow of an isotropic incompress-
ible fluid is freest when condition (2.10) is satisfied.
The flow is governed by relationships (2.1) and
(2.12)−(2.14).

3. In the case of the orthogonal curvilinear coordi-
nates α, β, and γ, the incompressibility condition takes
the form

(3.1)

If the axes α, β, and γ correspond to the principal direc-
tions 1, 2, and 3, respectively, then conditions (2.5) are
written out as

(3.2)

The relationships

(3.3)

specify three cases which are similar to (2.5), (2.10),
and (2.11):

(3.4)

(3.5)

(3.6)

As an example, we consider the cylindrical coordi-
nates ρ, θ, and z. In this case,

(3.7)

εxy 0, ∂u
∂y
------ ∂v

∂x
-------+ 0==

∂2ψ
∂x∂y
------------ 0.=

ψ f 1 x z+( ) f 2 x z–( ) f 3 y z+( )+ += f 4 y z–( ).+

εα εβ εγ+ + 0.=

εαβ σ1 σ2–( ) 0, εαγ σ1 σ3–( ) 0,= =

εβγ σ2 σ3–( ) 0.=

σi σ j, σi σκ– 2k= =

εαγ εβγ 0, εαβ 0,≠= =

εαβ εβγ 0, εαγ 0,≠= =

εαβ εαγ 0, εβγ 0.≠= =

ερ
∂u
∂ρ
------, ερθ

1
2
--- ρ ∂

∂ρ
------ v

ρ
---- 

  1
ρ
---∂u

∂θ
------+ ,= =

εθ
1
ρ
---∂v

∂θ
------- u

ρ
---, εθz+

1
2
--- 1

ρ
---∂w

∂θ
------- ∂v

∂z
-------+ 

  ,= =

εz
∂w
∂z
-------, ερz

1
2
--- ∂u

∂z
------ ∂w

∂ρ
-------+ 

  ,= =
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where u, v, and w are the displacement-velocity com-
ponents along the axes ρ, θ, and z, respectively.

According to (3.1) and (3.7), the incompressibility
equation is given by

(3.8)

With regard to (3.7), Eqs. (3.4) take the form

(3.9)

For Eqs. (3.9) to be satisfied, we assume that

(3.10)

Using Eqs. (3.10) and (3.8), we arrive at

(3.11)

With allowance for (3.7), Eqs. (3.5) take the form

(3.12)

For Eqs. (3.12) to be satisfied, we assume that

(3.13)

Using (3.8) and (3.13), we arrive at

(3.14)

With regard to (3.7), Eqs. (3.6) take the form

(3.15)

For the first equation of (3.15) to be satisfied, we
assume that

(3.16)

From the second equations of (3.15) and (3.16), we
obtain

(3.17)

∂u
∂ρ
------

1
ρ
---∂v

∂θ
------- u

ρ
--- ∂w

∂z
-------+ + + 0.=

ερz εθz 0, ∂w
∂ρ
------- ∂u

∂z
------+ 0,= = =

∂w
∂θ
------- ∂

∂z
----- ρv( )+ 0.=

u
∂ψ
∂ρ
-------, v

1
ρ
---∂ψ

∂θ
-------, w

∂ψ
∂z
-------.–= = =

∂2ψ
∂ρ2
---------

1

ρ2
-----∂2ψ

∂θ2
--------- ∂2ψ

∂z2
---------–

1
ρ
---∂ψ

∂ρ
-------+ + 0.=

ερθ εθz 0,
∂

∂ρ
------ v

ρ
---- 

  ∂
∂θ
------ u

ρ2
----- 

 + 0,= = =

∂
∂z
----- v

ρ
---- 

  ∂
∂θ
------ w

ρ2
----- 

 + 0.=

u ρ2∂ψ
∂ρ
-------, v ρ–

∂ψ
∂θ
-------, w ρ2∂ψ

∂z
-------.= = =

∂2ψ
∂ρ2
---------

1

ρ2
-----∂2ψ

∂θ2
---------– ∂2ψ

∂z2
---------

3
ρ
---∂ψ

∂ρ
-------+ + 0.=

ερθ ερz 0,
∂

∂ρ
------ v

ρ
---- 

  ∂
∂θ
------ u

ρ2
----- 

 + 0,= = =

∂
∂z
----- v

ρ2
----- 

  1

ρ2
-----∂w

∂ρ
-------+ 0.=

u ρ2∂ψ
∂ρ
-------, v– ρ∂ψ

∂θ
-------.= =

∂w
∂ρ
------- ρ2 ∂2ψ

∂ρ∂z
------------.=
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Using Eqs. (3.8) and (3.17), we arrive at

(3.18)

From Eqs. (3.18) and (3.16), we obtain the equation

for the function Φ = :

. (3.19)

∂2w
∂ρ∂z
------------

∂
∂ρ
------ ∂u

∂ρ
------

1
ρ
---∂v

∂θ
------- u

ρ
---+ + 

  ,–=

∂2w
∂ρ∂z
------------ ρ2 ∂3ψ

∂ρ∂z2
--------------.=

∂ψ
∂ρ
-------

∂2Φ
∂z2
----------

1

ρ2
-----∂2Φ

∂θ2
---------- ∂2Φ

∂ρ2
----------–

5
ρ
---∂Φ

∂ρ
-------–

3

ρ2
-----Φ–+ 0=
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The kinetic nature of fracture in solids underlies
some features in the behavior of macroscopic cracks at
the starting stage of their propagation in a dynamic
stress field [1–3]. Analysis of experimental data dem-
onstrates that one of the dominant factors in this pro-
cess is the incubation period of preparation for the
development of a macroscopic rupture of a material.
Among the effects related to the existence of the incu-
bation time, the effect of fracture delay is of special
importance. This effect implies that a rupture at a given
point of the material can occur at a stage when the mag-
nitude of the local force field is reduced. This phenom-
enon was clearly observed in experiments involving the
spalling of materials [1] and, based on the theory of
incubation time, was predicted for samples with macro-
scopic cracks [2].

In this paper, we report the results of our experimen-
tal study, including those confirming the existence of
delayed fracture near the crack tip under short-pulse
loading. We interpret these results in terms of the incu-
bation-time criterion [3].

The experiments were performed using polymethyl
methacrylate samples. The samples had a thin cut imi-
tating a macroscopic crack and were characterized by
the following material parameters: c1 = 1970 m/s, c2 =
1130 m/s, and  = 1.47 MPa m1/2, where c1 and c2 are
the longitudinal and transverse velocities of the elastic
waves and  is the ultimate stress-intensity factor
under static loading.

The character of fracture under dynamic loading
was determined with the help of a magnetic-pulse
method of loading. The scheme and the procedure of
loading [4] created a pulsed pressure uniformly distrib-
uted over the edges of the cracklike cut. This pressure
was formed using the flat current-carry bus. The gener-
ator of the electric-current pulses produced an oscilla-
tory mode discharge with a period T ~ 5.5–6 µs and

K Ic

K Ic

Research Institute of Mathematics and Mechanics, 
St. Petersburg State University (Petrodvorets Branch), 
Bibliotechnaya pl. 2, Petrodvorets, 198904 Russia
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attenuation-time constant T1 ~ 4 µs. The amplitude of
the electric-current pulse ranged from 150 to 300 kA in
correspondence with the loading stress amplitude vary-
ing from 140 to 320 MPa. In the case of the oscillatory
mode of the capacitor-bank discharge to the flat copper
buses with cross sections chosen to meet the maximum
value of the action integral for copper [5], it was possi-
ble to consider the pressure distribution as uniform and
to determine it using the following relationship:

(1)

At the time moment tm = , the pres-

sure attains its maximum value

As a photochronograph, we used an SFR-2 high-speed
camera with the optical scheme assembled to corre-
spond to the chronograph mode.

We tested ten samples. In these tests, the oscillation
period T was 5.6 µs, the attenuation-time constant was
T1 = 4.2 µs, and the pressure-pulse amplitude Pm varied
from 140 to 320 MPa. The results of analyzing a high-
speed photography pattern are shown in Fig. 1. Note the
stepwise character of the crack growth. At its initial
moment, the crack-growth velocity ranges from 100 to
500 m/s depending on the loading. If the applied load
exceeds the threshold value, the initial part of the dis-
tance passed before the first stop is several millimeters
and the corresponding velocity equals 420–450 m/s.
The rest part is passed at a substantially lower velocity,
on the order of 100 m/s. The moments of stops in the
crack motion correlate with the time necessary for the
loading wave to pass the doubled distance from the
crack edges to the sample boundary. In spite of the step-
wise character of the crack growth, the resulting crack

P t( ) P0
2t
T1
-----– 

  2π t
T
--- 

  .sin
2

exp=

2π
T1

T
----- 

  T
2/π
--------arctan

Pm

P0
2tm

T1
--------– 

 exp

1
T2/T1

2

4/π2
-------------+

 
 
 

---------------------------------.=
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length was found to be proportional to the loading
amplitude causing the fracture.

Analysis of the high-speed photography patterns
allowed us to reveal the dependence of the initial
moment of crack propagation on the amplitude of the
applied load. To compare this experimental dependence
with calculation results, we used the mathematical
model involving the loading of edges of a semi-infinite
crack by normally acting forces. The solution to such a
problem describes the actual experimental situation
before the arrival of waves reflected from the model
boundaries to the crack tip. For the samples used in the
experiment, the time was only slightly larger than
100 µs. The stress-intensity factor has the following
form [6] for this problem:

(2)

where α = . Since only loading amplitude

P(t) was varied during the experiments, the intensity
factor values differed only by a certain multiplier. The

K I t( ) αP s( )
t s–

--------------- s,d

0

t

∫=

2c2 c1
2 c2

2–

c1 πc1

----------------------------
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Fig. 1. Typical high-speed photography pattern of crack
growth: the crack length Lst as a function of time.

Fig. 2. Amplitude of the fracturing pulse as a function of
time elapsed before fracture onset.
highest intensity factor value was attained after the
beginning of loading at the time moment t ≈ 1.7 µs.

The use of the structure-time criterion [3] provides
an opportunity to calculate the moment of the fracture
onset as a function of the amplitude of the applied
pulse. In the case under consideration, this criterion can
be written in the form [7]

(3)

where τ is the incubation time, which is an independent
characteristic of the material. For the chosen material,
τ = 32 µs. This value was previously found in experi-
ments that determined threshold amplitudes leading to
fracture [4].

Calculation shows that the minimum amplitude cor-
responding to the fracture is 94.7 MPa for the loading
pulses used in these experiments. In Fig. 2, we show the
calculated dependence of the applied pulse amplitude
Pm on the time t∗  corresponding to the onset of crack
growth. Circles denote the experimental results. It can
be seen that the time elapsed before the beginning of
crack propagation far exceeds the duration of the load-
ing pulse. The dashed line (t ≈ 1.7 µs) corresponds to
the moment when the stress-intensity factor attains its
highest value. The time in this figure is measured from
the moment of load application.

Study of the stressed state at the crack tip shows that
the crack motion begins at a certain elapsed time after
the moment when the local force field at the crack tip
attains its peak, i.e., at the descending branch of the
stress-intensity factor. It was found that before the
beginning of the crack motion, a significant decrease in
the stress-intensity factor (by more than a factor of five)
can occur. This phenomenon is referred to as delayed
fracture. Fracture delay was observed in experiments
with the spallinglike fracture [6]. It was also predicted
by the fracture theory for materials with cracks [3, 7].
Fracture delay is defined as the time elapsed from the
moment when the local force field attains the highest
value to the moment of fracture. The delayed fracture
can be explained in terms of the structure-time
approach, whereas the conventional concept of critical
stress-intensity factor is inconsistent with this phenom-
enon. In Fig. 2, the fracture delay is the distance from
the calculated curve or the experimental point to the
dashed line.

We may conclude, that the experimental study of
fracture in polymethyl methacrylate samples with mac-
roscopic cracks under the effect of loading by micro-
second pulses reveals the following characteristic fea-
tures of this phenomenon:

the stepwise character of the crack growth continu-
ing after the termination of the loading;

proportionality of the crack length to a loading
amplitude that exceeds the threshold value;

1
τ
--- K I t '( ) t 'd K Ic

,≤
t τ–

t

∫

DOKLADY PHYSICS      Vol. 45      No. 11      2000
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delay in the beginning of crack motion with respect
to the moment of attaining the highest value of a local
force field near the crack tip.
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Using one of the existing methods for the separation
of variables, we can reduce arbitrary rigid differential
equations to a set of ordinary differential equations of
the first order. This set can be represented in the matrix
form:

(1)

Here, Y = {y1(x), …, ym(x)}T is the desired m-dimen-
sional vector function of the problem; A = ||aij || is the
m × m matrix of the m-dimensional variable coeffi-
cients aij = aij(x); and F = {f1(x), …, fm(x)}T is the vector
function defining the external load.

The boundary conditions are also represented in the
vector-matrix form:

(2)

Here, HL and HR are the matrices defining the boundary
conditions, which have, respectively, the dimensions
(m – r) × m and r × m and the ranks (m − r) and r, and
bL and bR are the vectors in the (m – r)-space and
r-space, respectively.

We assume that an arbitrary solution Y0(x) to the set
of homogeneous differential equations written out in
form (1) can be found to an accuracy of the constants C:

(3)

where Φ(x) is the m × m matrix of an arbitrary system
of functions.

A similar situation took place when A.N. Krylov
employed the Cauchy general method [1] of integrating
differential equations with constant coefficients and
first obtained the known hyperbolic-trigonometric
functions for a differential equation governing the
bending of elastically supported beams [2].

The Cauchy method, remarkable in terms of its gen-
erality, proved complicated in application. Therefore,

Y' x( ) AY x( ) F x( ), *( )'+
d *( )
dx

-----------, 0 x 1.≤ ≤= =

HL 0( )Y 0( ) bL 0( ), HR 1( )Y 1( ) bR 1( ).= =

Y0 x( ) Φ x( )C,=
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this method was not employed further. In particular, as
applied to differential equations in the mechanics of
plates and shells, functions with similar properties have
not been obtained to date.

We will seek such a set of functions which would be
a solution to the homogeneous differential equation for
set (1) and would satisfy the arbitrary initial conditions
of the Cauchy problem. Under the initial conditions,
this implies that such a set represented in the matrix
form is reduced to a unit matrix. Our goal is similar to
that of A.N. Krylov, but we use arbitrary solution (3) as
a basis rather than the Cauchy method.

We admit that a set of Cauchy–Krylov functions,
which is a solution to homogeneous differential Eq. (1),
is found. Then,

(4)

where K(x) is the m × m matrix of the Cauchy–Krylov
functions and Y(0) is an m-column defining the arbit-
rary initial conditions.

Solution (3) is valid for arbitrary values of its argu-
ment, among which for x = 0. Hence,

Eliminating column C of the integration constants
from solution (3) and comparing the result with Eq. (4),
we find that the set of Cauchy–Krylov functions is
defined by an arbitrary set of functions:

(5)

It is evident that the Cauchy–Krylov functions can
be constructed, e.g., for differential equations in the
mechanics of plates and shells.

It is of principle importance that in contrast to the
Cauchy method, the approach under consideration
allows us to construct the Cauchy–Krylov functions for
differential equations with variable coefficients.

The necessity of seeking an arbitrary set of the func-
tions Φ(x) is an evident, and possibly the single disad-
vantage of this method for constructing Cauchy–Kry-
lov functions.

This disadvantage is not detrimental in applications,
because solutions have already been found for certain

Y0 x( ) K x( )Y 0( ),=

C Φ x( ) 1– Y 0( ).=

K x( ) Φ x( )Φ 0( ) 1– .=
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cases (e.g., solutions have already been obtained for
differential equations in the mechanics of standard-
shape plates and shells). A similar situation takes place
for many equations of mathematical physics.

The fact that the Cauchy–Krylov functions are capa-
ble of specifying relations between desired quantities
and their values for an arbitrary argument as well as for
arbitrary initial conditions is an extremely important
feature of these functions, which allows us to construct
new methods for solving boundary value problems.

Similarly to the above-said, we can obtain

(6)

where Φ(x)Φ(xs)–1 are the Cauchy–Krylov functions
and Y(xs) is a column of desired quantities for an arbi-
trary initial argument xs .

The Cauchy–Krylov functions obtained allow us to
construct simple and stable algorithms for solving
boundary value problems for rigid differential equa-
tions, which save computer calculation time and mem-
ory, and to obtain solutions with a controllable accu-
racy. In order to simplify our consideration, we do not
analyze the partial solution to Eq. (1).

As an example, we construct algorithms for solving
boundary value problems for rigid differential equa-
tions in the mechanics of plates and shells.

We admit that Eq. (1) is written out in the canonical
form and that the vector-function Y(x), characterizing
the cross section of a shell, consists of geometric p and
force q parts. We subdivide the matrix K(x) of the
Cauchy–Krylov functions into the corresponding
blocks Aij , i, j = 1, 2. Then, relationships (6) are repre-
sented as two matrix equations:

(7)

Here, the indices s and e stand for the start- and end
points, respectively, of an arbitrarily chosen interval, in
which the numerical calculations are stable along the
shell length. Using the geometric and force conditions
of conjugation for these stable-calculation intervals, we
obtain the set of matrix algebraic equations:

Y0 x( ) Φ x( )Φ xs( ) 1– Y xs( ),=

qs A12
1–– A11ps A12

1– pe,+=

qe A21 A22A12
1– A11–( )ps A22A12

1– pe.+=

B11p0 B21p1– R0,=

…
B3ipi 1– B4i B1i 1+–( )pi B2i 1+ pi 1+–+ Ri,=

…
B3sps 1– B4sp3+ Rs,=
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where s is the number of intervals conjugated,

Solving the set of the algebraic equations obtained
with allowance for the boundary conditions, we find the
vectors pi . The corresponding vectors qi are determined
by relationships (7). It is evident that the algorithm con-
structed reproduces the algorithms of analytical solu-
tions to boundary value problems and has no numerical
analogues.

A set of algebraic equations for solutions to a
boundary value problem can be obtained by the follow-
ing algorithm of translating the boundary conditions to
a given point x* of an interval.

With the help of the Cauchy–Krylov functions, we
define relations between the vector-functions at the
ends of arbitrary stable-calculation intervals. For the
(i + 1)th end of the interval, we have

(8)

We translate boundary conditions (2) into the ith end
of a stable-calculation interval and transform them to
the orthonormal form with the help of known formulas
used in Godunov’s method [3]. As a result, we have

Using solution (8), we eliminate Yi from this expres-
sion for the boundary conditions, transform them into
the orthonormal form, and obtain the boundary con-
ditions at the (i + 1)th end of the stable-calculation
interval:

Reiterating the procedures described, we translate
the boundary conditions defined at the left end of the
interval to those at a given point x*:

The boundary conditions at the right end of the
interval are similarly translated to the point x*:

Combining the boundary conditions translated into
the point x*, we write out

At this point, we complete the solution to the bound-
ary value problem with the solution to the algebraic
equation obtained:

In essence, the algorithm constructed differs from
that of Godunov’s method, in which the stability of
numerically solving differential equations is ensured by
the orthonormalization of the solutions rather than, as

Bi1 A12i
1– A11i, B2i– A12i

1– ,–= =

B3i A21i A22iA12i
1– A11i–( ), B4i A22iA12i

1– .= =

Yi 1+ K xi 1+ xi,( )Yi.=

WiYi wi.=

Wi 1+ Yi 1+ wi 1+ .=

WL x*( )Y x*( ) wL x*( ).=

WR x*( )Y x*( ) wR x*( ).=

WL
*Y x*( ) w*.=

Y x*( ) WL
*( ) 1– w*.=
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is needed, of the boundary conditions as we propose
to use.

The simplicity of the methods constructed is evi-
dent. Their efficiency was confirmed by the solution of
boundary value problems in the mechanics of shells
and by the reduction of the computer calculation time
by two orders of magnitude. The use of analytically
constructed Cauchy–Krylov functions also provides an
admissible calculation error.

The methods proposed allow us to use, in practice,
numerous analytical solutions to rigid differential equa-
tions which were previously considered to be useless
when numerically solving boundary value problems.
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The relaxation kinetics of residual stresses in a
cylindrical shell in relation to the diffusion flow of
vacancies is considered. Theoretical results are applied
to explain the failure of contact between a bulk cylinder
and a shell under thermal loading.

The continuity of thermal flow in the construction
elements is achieved through the suitable connection of
the contacting surfaces. The contact failure is accompa-
nied by an increase in thermal resistance and, as a con-
sequence, by a rise in temperature. The possible cause
of this undesired phenomenon is a diffusion-induced
relaxation of residual stresses. This relaxation stems
from the migration of vacancies and depends on the
stressed state in the bulk. Such a dependence is based
on the relation between the stress sign and the direction
of the vacancy flow in relation to the diffusion. This
flow is always directed toward the domain of compres-
sive stress. In this paper, we consider the relaxation
kinetics of residual stresses with different signs in a
cylindrical shell. The inner surface of the shell is in
contact with the surface of a bulk cylinder (for example,
a rodlike fuel element with a shell). The choice of such
a model system is justified for several reasons. First, in
the cylindrical shell, it is possible to obtain residual
stresses of different sign through cutting and addition
(exclusion) of a part of the material and subsequent
joining of the edges of the cut. Second, the distribution
of residual stresses is described by simple analytical
relationships. Third, a logarithmic dependence of resid-
ual stresses on field coordinates enables us to derive the
exact analytical solution to the diffusion equation in
force fields.

Let the system “cylinder shell” be at a constant tem-
perature with the coefficients of linear expansion being
equal. Hence, under these conditions, thermal stresses
do not arise. We also assume that the dislocation mech-
anisms of stress relaxation are negligible since the
stresses are small. Then, the residual stresses of differ-
ent sign in the cylindrical shell are created in the fol-
lowing way. In one case, (a) the edges of the shell cut
are moved apart at an angle ω and a missing material is
placed in the opening. Thus, the parts of the material
near the outer and inner shell surfaces will be in com-
pressed and tensile states, respectively. In the second
case, (b) we cut the shell to an opening angle ω and join
the edges of the cut. A self-balanced system of residual
stresses changes the sign. Now, the material near the
1028-3358/00/4511- $20.00 © 20623
inner and that near the outer surface will be in a state of
compression and tension, respectively. If cylindrical
shells with residual stresses of different sign tightly
enclose the solid cylinder, then the contact between
them becomes tighter in case (a) and fails in case (b).
This is determined by the diffusion-induced vacancy
flow resulting from the relaxation of residual stresses.
Indeed, in case (a), the vacancy flow is directed from
the inner shell surface to the outer. The atomic flow
directed in the opposite direction causes a decrease in
the inner shell radius, and contact between adjacent
surfaces becomes tighter. In case (b), diffusion-induced
vacancy flow is directed from the outer surface of the
shell to the inner surface. This is accompanied by an
increase in the inner shell radius and, as a consequence,
by a failure of contact between adjacent surfaces. Thus,
diffusion-induced relaxation of residual stresses depen-
dent on sign can either improve the contact between
adjacent surfaces or make it worse.

The nonzero components of the residual stress ten-
sor for the operations corresponding to cases (a) and (b)
are determined by the following relationships (the pla-
nar deformation) [1]:

(1)

where µ is the shear modulus, ν is the Poisson ratio, ω
is the rotation angle of the edges of the shell cut, and r0
and R are the inner and outer radii of the shell, respec-
tively. These relationships are also used to describe the
stress field in the neighborhood of the wedge disclina-
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tion [2], which simulates various structural imperfec-
tions of an actual crystal (for example, the ternary joints
of grain boundaries in a polycrystal) [3, 4]. The direc-
tion of the diffusion-induced vacancy flow is deter-
mined by the first invariant of the residual stress tensor:

(2)

The sign of σll depends on rotation angle ω for the
edges of the shell cut, all other factors being equal. In
case (a), it is usually assumed that ω < 0 (σll > 0 on the
inner shell surface and σll < 0 on the outer surface). The
opposite sign of ω > 0 corresponds to case (b) (σll < 0
on the inner shell surface and σll > 0 on the outer sur-
face). The interaction potential between a vacancy and
the residual stress field is determined by the well-
known relationship

(3)

where ∆v is the change in the volume of the crystal
when the vacancy is introduced. Since vacancies cause
the decrease in the lattice parameter, one usually
assumes that ∆v < 0. The equilibrium vacancy concen-
tration depends exponentially on potential V:

(4)

where c0 is the averaged vacancy concentration. In the
domain of compression of the shell material, the equi-
librium vacancy concentration exceeds the mean value,
since V > 0. The tensile stress reduces the equilibrium
vacancy concentration as compared to the mean value,
since V < 0. This physically means that, due to the
relaxation of the residual stresses, vacancies migrate
from the tensile domain to the compression domain,
whereas the atomic flow proceeds in the opposite direc-
tion. The nonuniform field of the vacancy concentra-
tion creates concentration-induced stresses of the oppo-
site sign of the residual stresses. These are calculated in
a similar fashion as the thermal stresses [5]. The linear
expansion coefficient corresponds to a change in the
lattice parameter due to vacancy concentration.

To illustrate the relaxation kinetics of residual
stresses, consider the compression domain (r0 ≤ r ≤ R1)
of the shell material near its inner surface. This domain
is bounded by the outer radius R1 , where σll = 0 and,
therefore, V = 0. Then, at r = R1 , the mean vacancy con-
centration remains unchanged due to the vacancy
inflow from the tensile domain (R1 < r ≤ R). The use of
this illustrative example is explained by the fact that
such a distribution of residual stresses leads to contact
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failure between the cylinder and shell owing to diffu-
sion-induced vacancy flow. Diffusion-induced vacancy
redistribution is described by the non-steady-state dif-
fusion equation in the potential field V with corre-
sponding initial and boundary conditions:

(5)

where D is the diffusion coefficient for vacancies and cp

is the equilibrium vacancy concentration at r = r0 . The
rest notation is the same as used before. At the initial
time instant, the vacancy concentration is equal to the
mean value of c0 . The same concentration also remains
at r = R1 , since at this boundary V = 0 and vacancies
from the tensile domain (R1 < r ≤ R) of the shell mate-
rial migrate there. The boundary condition at r = r0
indicates that the equilibrium vacancy concentration is
immediately established, and further on, it remains
unchanged in the process of diffusion-induced redistri-
bution. Note that the field of compressive stresses in the
vicinity of the inner shell surface is equivalent to the
pressure inside the cylindrical cavity. If this pressure
exceeds the Laplace pressure, the cavities enhance their
radius as a result of vacancy flow. In the case under
study, the field of compressive stresses is distributed
nonuniformly and has a peak at boundary r = r0 . The
existence of the compressive stresses in the whole
range (r0 ≤ r ≤ R1), rather than at boundary r = r0 only,
increases the vacancy flow and the rate of increase for
the inner shell radius. This is described by the second
term in the right-hand side of Eq. (5). The logarithmic
coordinate dependence of potential V essentially sim-
plifies the diffusion equation in the force field. Since
the vacancy diffusion depends on gradient ∇ V of the
potential, the constants in relationship (2) can be
neglected. We have ∆V = 0 because V is a harmonic
function. The above discussion leads us to the follow-
ing mathematical formulation of problem (5):

(6)

The dimensionless parameter α determines the contri-
bution of the field of residual compressive stresses to
the total diffusion-induced vacancy flow:

(7)
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diffusion-induced vacancy flow related to the gradients
of concentration and potential V are comparable. These

vacancy flows have opposite directions:  directs

vacancies toward boundary r = r0 and  directs them

from this boundary. The dynamic equilibrium deter-
mined by relationship (4) is achieved when these
vacancy flows are equal. Any deviation from equilib-
rium (for example, a part of the vacancies being spent
to the increase of the shell radius) is rapidly restored.
As follows from the estimations, α is close to unity.
Indeed, for µ ≈ 5 × 1010 Pa, ω = 0.1 rad, ν ≈ 0.3, ∆v ≈
10−29 m3, and kT ≈ 10–20 J, we obtain α ≈ 1. The sign of
parameter α depends on ω and ∆v. For our example,
ω > 0, ∆v < 0, and, hence, α < 0. Further on, without
loss of generality, we assume that α = –1. This allows
us to emphasize the role of residual stresses due to dif-
fusion-induced vacancy migration. At α = –1, the solu-
tion to Eq. (6) describes the kinetics of diffusion-
induced vacancy redistribution in the field of residual
compressive stresses:

(8)

The residual compressive stresses convert the problem
from having cylindrical symmetry to being planar; i.e.,
the profile of concentration is formed in accordance to
the planar symmetry. As a result, we have a higher for-
mation rate for the vacancy concentration field. This
directly follows from the form of diffusion equation (6).

Indeed, at  < 0, the variation rate for the vacancy

concentration  at α = –1 exceeds the corresponding

value of  at α = 0. The equilibrium vacancy concen-

tration determined by the competition of two diffusion
processes is formed as t  ∞. Its profile is the linear
function of coordinates. This results from our approxi-

mation (α = –1), since exp  = .

The increase in the inner shell radius due to the
relaxation of residual stresses is governed by the diffu-
sion-induced vacancy flow. Each vacancy exchanging
positions with an atom causes an increase in the volume
of the cylindrical hollow in the order of the atomic vol-
ume. In the quasi-equilibrium approximation (a slow
process of shell radius variation is accompanied by a
rapid tuning of the field of vacancy concentration), the
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rate of increasing the shell radius can be written as
(under condition cp ! 1; i.e., the vacancy concentration
at the boundary is significantly less than that in the
hollow)

(9)

where Ω is the atomic volume and N0 is the number of
atoms per unit volume. The rest notation coincides with
the one previously used. In the framework of the model
under consideration (the instantaneous attainment of
equilibrium vacancy concentration at boundary r = r0),
the maximum rate of increase in the inner shell radius
occurs at initial moments of time. Further on, this pro-

cess becomes slower, and at  @ 1, the rate tends
to the steady-state value

(10)
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on a macroscopic scale, the change in the entire shell
radius resulting from the relaxation of residual stresses
is essentially smaller in comparison with the thermal
expansion of the shell material. In other words, the fail-
ure of thermal contact along the whole perimeter of the
shell contacting with the cylinder in relation to the
vacancy flow is possible only when the shell moves
from the cylinder as a result of the difference in the
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coefficients of linear expansion. At the contact bound-
ary between the shell and the cylinder, there are, as a
rule, discontinuities (hollows) of different nature. Their
characteristic sizes are significantly smaller than the
shell radius. Therefore, evolution of these discontinui-
ties is determined by the diffusive relaxation of residual
stresses, since the thermal increase of their size is rela-
tively small. Indeed, for r1 = 10–4 cm (r1 is the charac-
teristic size of a hollow) under the same temperature
conditions, we obtain δr1 = βr1T ≈ 10–7 cm. The
increase in size of the same hollow due to diffusion-
induced vacancy flow under the conditions discussed
above is δr1 ≈ 10–6 cm. Thus, the local failure of the
thermal contact between adjacent surfaces due to a dif-
fusion-induced development of discontinuities is prob-
ably under a long-term thermal loading of construction
elements. Naturally, this situation arises when residual
compressive stresses exist on the inner surface of a
cylindrical shell. If the residual stresses change their
sign, then the inner shell radius becomes smaller and
the discontinuities at the interface disappear. This is
related to the fact that the diffusion-induced vacancy
flow is now directed from the tensile domain (r0 ≤ r ≤
R1) to the compressive domain (R1 < r ≤ R). The thermal
contact between the surfaces becomes tighter. In this
case, the mathematical treatment of the diffusion pro-
cesses does not differ from those reported earlier.
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The exact solution to the linearized problem of the
generation of internal waves, which involves internal
waves and internal boundary flows [1], allows us to
estimate errors intrinsic to the well-known method of
force (or mass) sources [2]. In the case of small dis-
placements, calculations of perturbances excited by an
oscillating bar satisfactorily agree with the measure-
ment results of [3]. There exist situations when a body
moving periodically in continuously stratified viscous
fluid does not radiate (in the linear case) and generates
only isopycnic boundary flows. This situation takes
place, e.g., in the case of a horizontal disk performing
torsional vibrations [4]. However, by virtue of the non-
linear nature of the hydrodynamic system of equations,
various forms of motion interfere with one another. In
particular, thin-layer boundary flows can be a source of
periodic waves [4]. Previously, experimental studies of
such internal-wave generators were not conducted.
Therefore, it is of interest to investigate the practical
feasibility of the principles for nonlinear generation. In
the present paper, the possibility of generation of three-
dimensional beams of periodic internal waves by tor-
sional vibrations of a horizontal disk are studied and the
principal regularities connecting wave-field character-
istics with the properties of a medium and source
motion parameters are established.

The experiments were performed in a laboratory
wave channel with dimensions 9.0 × 0.6 × 0.6 m filled
with an exponentially stratified solution of common
salt, which had transparent windows made of optical
glass. The period (for the frequency N) of the buoyancy

,

where Λ =  is the stratification scale, ρ0(z) is

the density profile, and g is the free-fall acceleration,
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was determined by the density tag method [5] and was
found in our experiment to be Tb = 7.5 s. Observations
of the flow pattern in the vertical plane were performed
by the shadow IAB-451 device using the method called
“the vertical slit-thread in focus” [6]. Due to the sym-
metry of the flow pattern in the linearly stratified
medium, the shadow device visualizes the perturbance
distribution in the central vertical axis, where the light
beam passes along the tangent to the wave phase sur-
faces. The rest contributions initiated by perturbances
along the beam are mutually compensated. The mea-
surements of wave displacements were carried out by
an electrical-conduction single-electrode sensor and
using sweep-vibration methods [7]. The sensor was cal-
ibrated before each experiment in accordance with the
lifting-submersing procedure. The error of wave-dis-
placement measurement did not exceed 20%.

The wave source was a horizontal disk 1 mm thick
and 2 (or 4) cm in diameter. The disk was fixed to a ver-
tical rod 2 mm in diameter, which was connected
through a reducer to a dc motor. To reduce perturbances
of the medium, the rod was placed in an immobile tube
6 mm in diameter. Adjustment of the rotation frequency
and the law of disk motion was performed by varying
the voltage applied to the motor. The angular displace-
ment of the motor was recorded by a multiturn potenti-
ometer. Three types of disk motion were studied: tor-
sional harmonic vibrations (with the angular velocity
Ω = Ω0sinω*t); intermittent alternate rotations (meander)

where T = ; and harmonic torsional vibrations
against the background of a uniform rotation (Ω = A +
Ω0sinω*t). The maximum linear velocity for the disk
edge motion was U = 10 cm/s.

The flow shadow pattern appearing after the com-
pletion of two 4-cm-disk vibrations is shown in Fig. 1.
Among the optical inhomogeneities of the pattern, we

Ω Ω0

+Ω0, nT t nT< < T
2
---+
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T
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---+ t nT< < T ,+
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Fig. 1. Shadow pattern of a flow formed by a horizontal disk performing torsional vibrations; Tb = 7.5 s, T = 20 s, U = 2 cm/s.
can distinguish a sequence of thin strips positioned in
parallel to the disk, which are linked by three embedded
ring-shaped structures. Two systems of inclined, almost
horizontal, diffusive dark and light strips branch out of
the external surface of the layered structure. In the
upper half space, the interior strip is dark, whereas in
the lower one, the opposite situation takes place. Hori-
zontal strips are antisymmetric to both the right and the
left. The positions of the horizontal interlayers, as well
as the size and shape of the vortices linking these inter-
layers, and the mutual positions of the dark and light
inclined strips vary with time.

Comparison with the results of [3, 8] for shadow
observations of stratified flows shows that inclined dif-
fusive strips represent schematically periodic internal
waves with frequency ω = 2ω* = 0.62 s–1, which prop-
agate at an angle θ = 47° to the horizon, as well as dif-
fusive horizontal strips, i.e., waves of the zero fre-
quency, and high-gradient interlayers, i.e., shells of
rotating ring-shaped flows at the disk edge. The distri-
bution of optical perturbances in the shadow image,
when the blackening density is determined by the hori-
zontal component of the refractive index (or the den-
sity) bound by the linear relationship [8], testifies to the
existence of an antisymmetric pattern of periodic
waves: a crest in the upper half space corresponds to a
hollow in the lower one and vice versa.

Observations of the flow pattern show that at the ini-
tial phase of the flow, boundary flows arise at both disk
sides; each of these flows forms a circular flow rotating
together with the disk, the cross section of this flow
having an annular shape. The large and small ring radii
monotonically increase with time up to the moment of
changing the rotation direction. At this moment, the
flow separates from the disk and begins to attenuate. As
far as the ring-shaped flow is being damped, its vertical
dimension decreases and its vortices collapse. In the
case of changing the rotation direction (at every half of
a period), a new pair of boundary flows and, corre-
spondingly, a pair of new monotonically raising annu-
lar flows arise. In each of these flows, the fluid takes
part in two types of rotary movement, namely, around
the vertical disk axis in the horizontal plane and in the
vertical plane around the circular symmetry axis. As in
the uniform medium, the disk forms the middle flow
[9], in which the fluid flows along the vertical axis and
is thrown away in the disk plane forming a wave beam
of zero frequency in the stratified medium. The direc-
tion of the middle flow induced by the disk is indepen-
dent of its rotation direction.

In the shadow pattern (Fig. 1), we observe traces of
three pairs of annular flows. The first (outer) flow pair
has collapsed under the action of buoyancy forces; the
second (central) pair has a clearly expressed annular
structure similar to the vortex structure in a homoge-
neous fluid [10]; and the third pair intervenes in them.
The external boundaries of annular flows are seen
above and below the disk as thin horizontal interlayers.
Their thickness does not exceed 0.3 mm and, in fact, is
determined by the resolution of the shadow device [6].
The shape of the exterior annular flow demonstrates
that the mixing of the fluid inside this flow is weak,
since its fragments come to the disk horizon within the
observation time.

The outer boundary of annular flows being formed
near the disk radiates two groups of axisymmetric peri-
odic internal waves at a frequency ω = 2ω*. These
waves propagate at an angle θ = 47° to the horizon. Fur-
DOKLADY PHYSICS      Vol. 45      No. 11      2000
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Fig. 2. Recorded signals of electrical-conductance and disk position sensors.
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thermore, all elements of this pattern are repeated in
every half of a period and the common-rotation direc-
tion of annular vortices in the horizontal plane changes.

The signals registered from the electrical-conduc-
tance sensor installed in the internal-wave beam at a
distance of 8 cm from the disk (the sensitive element of
the sensor is depicted in the upper right angle of Fig. 1)
are shown in Fig. 2. In the same figure, the signals from
the disk angular position for which a multiturn potenti-
ometer is used is also presented. The upper pair of
records corresponds to the case when the 4-cm disk
performs harmonic torsional vibrations at a constant
frequency and with different amplitudes [(1–4): U =
0.4, 1.3, 3.5, and 5.8 cm/s]. Stable internal waves are
excited at all velocities of disk motion. Comparing the
upper pair of records, we can see that the frequency of
the radiated wave exceeds that for the torsional vibra-
tions by a factor of two. The small amplitude modula-
tion of the signal is initiated by seiches existing in the
basin. The drift of the potentiometer signal with time is
caused by the specific asymmetry of the control signal
and by features of the motor operation in itself. The
internal-wave amplitude increases linearly with the tor-
 PHYSICS      Vol. 45      No. 11      2000
sional-vibration amplitude [(1–4): η = 0.01, 0/03, 0/06.
0.11 cm].

The lower pair of the records in Fig. 2 corresponds
to the case when, in addition to the alternating voltage,
the permanent voltage is applied to the motor. The
value representing this voltage consequently becomes
equal to the harmonic-signal amplitude and, further-
more, exceeds it. In this case, torsional harmonic vibra-
tions of the 2-cm disk (Usinω*t, U = 2.8 cm/s, ω* =
0.31 s–1) are added to the unidirectional rotation (with
velocity values 1–5, respectively, of 0, 1.0, 3.5, 6.0, and
9.8 cm/s) and are gradually transformed into motion
with the alternate angular velocity of the constant sign
(U0 > U). In the sensor signal which is initially har-
monic and has the frequency 2ω*, a noticeable compo-
nent appears that becomes dominating with further
increase in the permanent rotation component (see seg-
ment 3). In this case, the energy of emitted waves also
increases.

The dependence of the vertical displacements in the
internal-wave beam on the maximum velocity of the
disk edge in the case of purely torsional vibrations is
presented in Fig. 3 (the sensor is placed at a distance of
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8 cm from the disk along the beam axis). At low rota-
tion velocities of the disk (U < 3 cm/s), the wave ampli-
tude increases quadratically for the radiators of both
diameters (D = 2 and 4 cm: η = 0.005U2 and 0.04U2; η
and U are expressed in millimeters and centimeters per
second, respectively, see curves 1 and 2). At intermedi-
ate velocities, the amplitude-increase rate is gradually
slowed, and for U > 8 cm /s, saturation takes place
owing to the combined action of the nonlinearity and
viscosity effects.

The plot illustrating the attenuation of particle dis-
placement amplitudes at the beam axis as a function of
the distance to the radiator is presented in the double-
logarithmic scale in Fig. 4. Making use of the least-
squares method shows that for q < 7 cm, experimental
points are grouped around the curve η = 1.14q–1.54. At
longer distances (q > 7 cm), the recorded wave ampli-
tude attains saturation (the vertical displacement is on

2 6

0.2

0.4

105

0.04

0.1

0 84

1

2

U, cm/s

η, mm

q, cm

η, mm

3

Fig. 3. Vibration amplitudes for particles on the internal-
wave beam axis as a function of the disk edge rotation veloc-
ity: (1) D = 4 and (2) 2 cm.

Fig. 4. Vibration amplitude for particles on the beam axis as
a function of the distance to the radiator (Tb = 7.5 s,
D = 4 cm, T = 16.7 s, U = 2 cm/s).
the order of 0.05 mm) caused by the wave background
of the basin. This background is formed due to the
action of other independent sources (mechanical vibra-
tions of the ground, as well as vibrations of the base and
walls of the basin, which are caused by the action of the
wave-producing device). The level of residual vibra-
tions in Fig. 4 corresponds to the modulation depth in
Fig. 2.

As was shown in the experiments, the amplitude of
the wave being radiated substantially depends on the
characteristics of disk motion (under the condition of
preserving the frequency and amplitude for its periodic
component). When the envelope is a meander, only
annular flows and waves are observed in the flow pat-
tern (running internal waves are absent).

As is shown in the theory of the excitation of inter-
nal waves by the horizontal disk performing the tor-
sional vibrations in a stratified viscous fluid [4], the true
wave source is an isopycnic boundary flow character-
ized by a single azimuth velocity component uϕ . The
stream function Ψ for the beam of radiated waves sat-
isfies the equation

(1)

where ∆ is Laplacian, ν is the kinematic viscosity, and
the origin of the cylindrical coordinate system (r, ϕ, z)
is taken in the disk center. The solution to this equation
with exact boundary conditions describes both running
waves [4] and zero-frequency waves. The form of the
right-hand side of Eq. (1) implies that the frequency of
waves excited by harmonic torsional vibrations of the
disk is twice that of their own frequency. The meander
squared is a quantity independent of time, which
explains the radiative inefficiency of the periodic
motion of this type.

It follows from the solution to Eq. (1) that torsional
vibrations of a disk whose radius is smaller than the vis-

cous wave scale LV =  excite a single-mode
wave beam. The displacements of the particles along
the beam axis are

(2)

where Γ is the gamma function and q is the distance
along the beam axis to the source. The quadratic depen-
dence of the wave amplitude on the velocity U in (2) is
consistent with the measurement data exhibited in
Fig. 3. In this theory, the wave amplitude also depends
quadratically on the disk radius. The ratio of the coeffi-
cients in formulas interpolating experimental data of
Fig. 3 is equal to 8, whereas the ratio squared for disk

∂2

∂t2
------- ∆ 1

r2
----– 

  N2 ∆ ∂2

∂z2
-------– 

  ν ∂
∂t
----- ∆ 1

r2
----– 

  2
–+ Ψ

=  
1
r
---

∂2uϕ
2

∂t∂z
----------,

gν3 /N

h q( ) U2R2 θsin

48 1 2+( )
--------------------------- 2 θcos

4

π3ν4N8q10
------------------------- 

 
1/6

Γ 7
6
--- 

  ,=
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diameters is 4. This discrepancy is associated with the
fact that under the experimental conditions, the waves
excite both isopycnic boundary flows and annular rotat-
ing vortices. The efficiency of the second generation
mechanism that is not taken into account in the theory
elevates with increasing disk diameter. The decrease in
the beam amplitude with the distance from the source,
which is calculated in accordance with (2) under the
experimental conditions presented in Fig. 4, is given by
the expression h = 1.29q–5/3, where h and q are
expressed in millimeters and centimeters, respectively.
For q < 7, empirical data can be approximated by the
dependence h = 1.14q–1.54. Deviations in the indices
(8%) and coefficients (13%) do not exceed the mea-
surement error for the wave amplitudes by the contact
electrical-conductance sensor, which attains 20% in the
experiments under discussion. Thus, the disk perform-
ing high-amplitude torsional vibrations in the continu-
ously stratified fluid efficiently radiates periodic inter-
nal waves. 

The method described expands the spectrum of possi-
ble means for excitation of internal waves including wave
generation under the action of viscous stresses [11],
as well as by varying the volume and position of a
body [12].
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In [1, 2], the complete integrability for a two-dimen-
sional problem of motion of a solid in a resistant
medium under jet flow was shown. In this situation, for
a system of dynamic equations there exists one first
integral, which is a transcendental function (in the
sense of the theory of functions for complex variables,
which have essential singularities) of quasi-velocities.
In the above-mentioned studies, the overall interaction
between the medium and the body was assumed to be
concentrated on a part of the body’s surface that has the
shape of a (one-dimensional) plate.

More recently [3, 4], the two-dimensional problem
was generalized for the spatial (three-dimensional)
case. In this instance, the system of dynamic equations
has a complete set of first integrals: one analytic, one
meromorphic, and one transcendental. In this event, the
overall interaction between the medium and the body is
assumed to be concentrated on a part of the body’s sur-
face that has the shape of a flat (two-dimensional) disk.

Every so often, the structure of the dynamic equa-
tions of motion is conserved when the dynamic proper-
ties are extended to cases of higher dimension. For
example, a theory of motion for a four-dimensional
(or even n-dimensional) solid is currently being devel-
oped [5, 6]. The authors of those papers succeeded in
demonstrating that the equations of motion near an
immobile point are Hamiltonian equations for a multi-
dimensional solid. The present paper deals with study
of the motion of the so-called four-dimensional solid
interacting with a resistant medium according to the
laws of jet flow. The results of this type of study are pre-
sented for the first time.

In this paper, the overall interaction of a (four-
dimensional) solid with a medium is assumed to be
concentrated on the (three-dimensional) part of the
body’s surface that has the shape of a (three-dimen-
sional) sphere. In this case, the vector of the angular

Institute of Mechanics, Moscow State University,
Michurinskiœ pr. 1, Moscow, 117192 Russia
1028-3358/00/4511- $20.00 © 200632
velocity of motion for the body is six-dimensional and
the center-of-mass velocity is four-dimensional.

Setting up the problem and equations on the
so(4) group. We assume that a four-dimensional solid
moves in a resistant medium filling in a four-dimen-
sional domain of a Euclidean space and that the overall
interaction of the medium with the body is concen-
trated on a (three-dimensional) part of the body’s sur-
face that has the shape of a three-dimensional disk D3 .
The distance between the point N of the resistance force
application and the center D of the disk is a function of
only one parameter. This parameter is the angle of
attack α measured between the vector of the velocity v
at the point D and the middle perpendicular to the disk
drawn from the body’s center of mass C in a four-
dimensional space (cf. [2, 4]).

In the four-dimensional space, the resistance is nor-
mal to the disk D3; the resistance force can be written
out in the form S = s1(α)v2 , where s1 is the nonnegative
resistance coefficient.

We relate the coordinate system Dx1x2x3x4 to the
body; the axis Dx1 of the system coincides with the axis
CD and the axes Dx2, Dx3, and Dx4 lie in the disk
hyperplane.

If the inertia operator is of the diagonal form
diag{I1, I2, I3, I4} in the system Dx1x2x3x4 and Ω is the
angular velocity matrix for the solid, i.e., Ω ∈  so(4),
then the part of the equations of motion for the four-
dimensional solid corresponding to the group so(4) has
the following form [5–7]:

(1)

Here,

Ω
.
Λ ΛΩ

.
Ω ΩΛ ΛΩ+,[ ]+ + M.=

Λ diag λ1 λ2 λ3 λ4, , ,{ } ,=

λ1
1
2
--- –I1 I2 I3 I4+ + +( ) …,,=

λ4
1
2
--- I1 I2 I3 I4–+ +( ),=
00 MAIK “Nauka/Interperiodica”
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M is the moment of external forces acting on the body
in R4 and projected onto the “natural” coordinates in
so(4), and [·] is the commutator in so(4). The matrix
Ω ∈  so(4) is conveniently expressed in terms of the fol-
lowing natural coordinates:

(2)

Here, ω1, ω2, ω3, ω4, ω5, and ω6 are the components of
the angular velocity in projections onto the natural
coordinates in so(4).

The resistance coefficient s1 is conveniently pre-
sented in the form s1(α) = s(α) . If (0, x2N, x3N,
x4N) are the coordinates of the point N in the system
Dx1x2x3x4 and {–S, 0, 0, 0} is the coordinates of the
resistance vector in the same system, then the following
mapping should be constructed for calculating the
resistance moment:

(3)

This mapping transforms a pair of vectors from R4 to a
certain element of the group so(4).

The resistance moment is of the following form in
projections onto the coordinates in the so(4) group:

 . (4)

Here, we should take into account that x2N = R(α)cosβ1,
x3N = R(α)sinβ1cosβ2, and x4N = R(α)sinβ1sinβ2 if
(v, α, β1, β2) are the spherical coordinates in R4 .

With allowance made for all these points, we can
arrive at the following equations of motion in the resis-
tance field under consideration:

(5)

(6)

(7)

(8)

(9)

(10)

Dynamics on R4. By analogy with the three-dimen-
sional case, expressions similar to Euler and Rivals for-
mulas can be derived; i.e., in an arbitrary coordinate
system, the velocities and accelerations for two arbi-

0 ω6– ω5 ω3–

ω6 0 ω4– ω2

ω5– ω4 0 ω1–

ω3 ω2– ω1 0 
 
 
 
 
 
 

.

αcossgn

R4 R4         so 4 ( ) . ×

0 0 x4NS 0 x3NS– x2NS, , , , ,( ) R6∈ M so 4( ).∈

λ4 λ3+( )ω1

.
λ3 λ4–( ) ω3ω5 ω2ω4+( )+ 0,=

λ2 λ4+( )ω2

.
λ2 λ4–( ) ω3ω6 ω1ω4–( )+ 0,=

λ4 λ1+( )ω3

.
λ4 λ1–( ) ω2ω6 ω1ω5+( )+ x4NS,=

λ3 λ2+( )ω4

.
λ2 λ3–( ) ω5ω6 ω1ω2+( )+ 0,=

λ1 λ3+( )ω5

.
λ3 λ1–( ) ω4ω6 ω1ω3–( )+ x3NS,–=

λ1 λ2+( )ω6

.
λ1 λ2–( ) ω4ω5 ω2ω3+( )+ x2NS.=
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trary points A and B of a four-dimensional solid are
connected by the following relations: 

(11)

Here, Ω ∈  so(4) and E =  ∈  so(4). The matrix E is
referred to as the acceleration matrix.

Equations of motion for the center of mass of a four-
dimensional solid in R4 can be derived employing for-
mulas (11).

Motion in a resistant medium under the action of
servo coupling (cf. [1, 4]). We consider a class of body
motion for which the following condition is obeyed at
all times:

v = const. (12)

We also assume that a certain (servo) pulling force acts
on the body; the force ensures that condition (12) is ful-
filled and is a reaction of a given servo coupling (cf. the
two- and three-dimensional cases [1–4]).

The fulfillment of condition (12) can be attained
using a specific choice for the magnitude of the pulling
force along the straight line CD.

The case of a dynamically-symmetric solid. We
suppose that, by analogy with the three-dimensional
case, the following equalities are obeyed:

I2 = I3 = I4. (13)

In such an event, there exist three cyclic first inte-
grals for Eqs. (5)–(10):

For simplicity, we consider motions at zero levels:

(14)

For describing the body motion, a pair of dynamic
functions (R(α), s(α)) is used, information about which
is of a qualitative nature. By analogy with low-dimen-
sional cases, without loss of generality for [1–4], we
can assume that

As a result, in a part of so(4), the equations take the

following form here,  = :

(15)

(16)

(17)

If the natural replacement of the angular velocities
is introduced according to the formulas

(18)

(19)

v B v A ΩAB, wB+ wA Ω2AB EAB.+ += =

Ω
.

ω1 ω1
0, ω2 ω2

0, ω4 ω4
0.= = =

ω1
0 ω2

0 ω4
0 0.= = =

R α( ) A α , Asin 0, s α( )> B α , Bcos 0.>= =


 n0

2 AB
2I2
-------



ω3

.
n0

2v 2 α α β1 β2,sinsincossin=

ω5

.
n0

2v 2 α α β1 β2,cossincossin–=

ω6

.
n0

2v 2 α α β1.coscossin=

z1 ω3 β2 ω5 β2,sin+cos=

z2 ω3 β2 β1 ω5 β2 β1 ω6 β1,sin+coscos+cossin–=
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(20)

then the combined equations of motion on so(4) × R4

[with the four conditions in (12) and (14) taken into
account] acquire the symmetric form

(21)

(22)

The sixth-order system of Eqs. (21), (22) has an
independent subsystem (21) of the fifth order. In gen-
eral, for complete integration of the given system, we
need to know five independent first integrals. However,
after substituting the variables

, (23)

system (21), (22) can be reduced to the following form:

(24)

(25)

(26)

The fifth-order system of Eqs. (21) is seen to be
decomposed into independent subsystems of even
lower order: system (24) is of the third order and sys-
tem (25) (after the replacement of time) is of the second
order. Thus, for complete integrability of system (24)–

z3 ω3 β2 β1sinsin ω5 β2 β1 ω6 β1,cos+sincos–=

α
.

–z3 σn0
2v α ,sin+=

z3

.
n0

2v 2 α α z1
2 z2

2+( ) αcos
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------------,–cossin=
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.
z2z3
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αsin

------------ z1
2 αcos

αsin
------------
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--------------,+=

z1

.
z1z3
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αsin
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αcos
αsin

------------
β1cos
β1sin

--------------,–=

β1

.
z2

αcos
αsin

------------;=

β2

.
z1

αcos
α β1sinsin

-------------------------.–=

z1 z2         z ,  z 1
2 z 2

2 + , z * 
z

 
2 

z
 

1
 ----= =

α
.

–z3 σn0
2v α ,sin+=

z3

.
n0

2v 2 α αcossin z2 αcos
αsin

------------,–=

z
.

zz3
αcos
αsin

------------;=

z*
.

1 z
*
2+ z

αcos
αsin

------------
β1cos
β1sin

--------------,=

β1

. zz*
1 z*

2+
------------------- αcos

αsin
------------;=

β2

.
z1 z z*,( ) αcos

α β1sinsin
-------------------------.–=
(26), it is sufficient to indicate two independent inte-
grals of system (24): one for system (25) and an addi-
tional integral attaching Eq. (26).

System (24) appears in the dynamics of a three-
dimensional solid [4]. It has two transcendental inte-
grals:

(27)

(28)

The first integral of system (25) has the form

(29)

In turn, the additional first integral is of the form

(30)

Conclusion. Previously, only motions of a four-
dimensional body were considered for M ≡ 0. The
present paper opens up new lines of thinking, i.e., the
investigation of equations of motion for a solid on
so(4) × R4 (M ≠ 0).

As for the technique of integrating the dynamic sys-
tems under consideration, it can also be extended,
almost without exception, to the so(n) × Rn space of an
arbitrary dynamically symmetric n-dimensional solid.
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