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Directed solidification of binary meltsis commonly
used for producing metal ingots, whose quality is deter-
mined by the transition character of the metal from the
liquid to solid state [1, 2]. The metal undergoing solid-
ification consists of threeregions, inwhichitisin solid,
liquid, and two-phase states, respectively. Being situ-
ated between the liquid and solid zones, the two-phase
region determines all general properties of the solid
phase [3]. This region forms mainly due to supercool-
ing occurring in the melt ahead of the crystallization
front [4]. Supercooling arising under certain conditions
is related to concentration changes (diffusion) which
cause the formation of aregion where the melt temper-
ature is lower than the equilibrium temperature of the
phase transition; consequently, the melt isin the meta
stable state. Thus, concentration-caused supercooling
can lead to the formation of acellular front, adendritic
structure, and so forth. According to experimenta
papers|[5, 6], the solidification of metal meltsisaccom-
panied by the fast formation of a dendritic structure.
This leads to the removal of supercooling attained
through heat release by dendrite growth in the two-
phase zone. The system of equations of heat-and-mass
transfer describing crystallization under such condi-
tions was first proposed by V.T. Borisov in [3, 7], and
the two-phase zone was then referred to as the quasi-
equilibrium zone.

The nonlinear system of equations of the quasi-
equilibrium two-phase zone was analyzed by asymp-
totic methodsin [8, 9]. Based on the obtained solutions,
the authors of these paperswere abl e to replace the two-
phase zone with a discontinuity surface in the case of
both the “narrow” [8] and “wide” [9] zone. Analysis of
the stability of these solutions was carried out after-
wards in [10-12]. We note that the obtained solutions
far from involve all the possible cases of solidification
because the parameters, in terms of which the asymp-
totic expansions are written, are not always small. This
paper presents the general analytic solution to the sys-
tem of equations describing the quasi-equilibrium two-
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phase zone and also presents calculations of tempera-
ture and impurity-concentration jumps caused by pass-
ing across the two-phase zone. With these jumps in
mind, we replaced the quasi-equilibrium two-phase
with a discontinuity surface which separated the solid
and liquid phases in the general case.

We consider the solidification of a binary melt with
fixed temperature gradients in the solid phase (g) and
in the melt (g;). The solidification rate ug and the width
of the two-phase zone & are assumed to be steady-state.
The solid phase and the melt occupy theregions € < ugt
and & > ug + J, respectively, where & is the coordinate
and T isthetime. Plane & = ugt isthe boundary between
the solid phase and the two-phase zone, whereas plane
& = U + O separates the two-phase zone from the melt.
The system of equations for heat-and-mass transfer in
the quasi-equilibrium two-phase zone hasthe following
form (as usua, the diffusion of the impurities is
neglected in the solid phase):

0 _ 0007 , 06,
s[(1-9)a] = 5233@35 kot (1)
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Here, 0 and o, are the impurity concentrations in the
two-phase zone and in the melt, respectively; 6,, 8., and
8 arethe temperaturesin the melt, solid phase, and two-
phase zone, respectively; 6, is the transition tempera
ture of the pure melt; ¢ is the volume fraction of the
solid phase in the two-phase zone; D and D, are the dif-
fusion coefficients in the two-phase zone and in the
melt, respectively; misthe slope of the liquidus line; k
is the equilibrium distribution coefficient of the impu-
rity; p is the density; L is the latent heat of the phase
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transition; and A is the heat conductivity in the two-
phase zone.

The terms proportional to % in Egs. (1) and (2)
correspond to the trapping of impurities and heat
release, both of which result from the formation of
solid-phase domainsin the two-phase zone. The second
eguation in (2), i.e., the condition of the quasi-equilib-
rium state of the two-phase zone, indicatesthat the tem-
peraturein the two-phase zoneis equal to thetransition
temperature of the binary melt. In the region character-
ized by linear scale | and thermal diffusivity a, the

2

relaxation time of the temperaturefield t, = IE ismuch
2
shorter than that of the diffusion field 1 = P
D, Ko

103-10* E Therefore, derivatives of temperature with

respect to time are neglected in the equations of heat
conduction. We consider that, far from the boundary
between the two-phase zone and the melt, the impurity
concentration is known:

0—>0,, §—>0o. “)
The following conditions of heat-and-mass balance are
met at surfaces & = ut and & = ut + &, which bound the
two-phase zone:

AG-A D = pL(1-d)u, E=uT  5)
5t
(1-K)(1- ¢)ou+Dg§-o, E=uT (6
0
$=0, o=o0, gg D,ac;' E=urT+9d. (7)

The transport coefficients characterizing the two-phase
zone are calculated using the simplest formulas,

A=MN1-0)+A0, D =D(1-9¢), )

which correspond to the well-known mixture rule. The
model presented hereis substantiated in detail in [8, 13].

In the reference system having vel ocity ug, the solid-
ification process is steady. Therefore, after transforma-
tion to this system, we can integrate the first equation
in (2). Then, using the result from boundary condi-
tion (5), we can represent solidification rate u, as

_ )\sgs_)\lgl
Us = ol )

Let us introduce the following dimensionless vari-

ALEKSANDROV

ables and parameters:

— US(E_UST) t = U_gT c = 2
DI 1 DI ) O_ooa
8 Y _ Amao,,
T = — A = . P= ) (10)
_du, o _ gD,
D’ ' mo.,us

Eliminating temperature T in (1)—9) with the help of
the quasi-equilibrium state condition and using vari-
ables (10), we obtain two equations for functions ¢(x)
and c(x) at 0 < X < € and boundary conditions in the
form

[(1 ¢)E99+c }+kcd¢ -0,

dc . 0+PGA
dx ~ PIA1-9)+ 9]’

(1D

(l—k)c+g—§:0, X = 0 (12)
=0, c=1+G, g—i=—G|, X =¢€. (13)

Condition (13) determines the zone width €. Below, we
consider the exact solution to system (11)—(13). The
first equationsin (11) is multiplied by dx with substitu-
tion of dc

dx
eguation in (11). Thisleads to the differential equation
determining function c($(x)):

with the expression given in the second

(1- ¢)

_1d7(1-9)(¢ +PGA,)
G LI - v crry e

Its solution, meeting boundary condition (13), has the
form

c(000) = (1-0) 146+ 28] ag
A(1-y) -y =PGA,
= d
= I J (1-y)[Ai(1-y) +y1° (4
Substituting g— in the form g—i = 3—; g—q) into the sec-

ond equation in (11) and calculating g—q(; , We get adif-
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ferential equatlon for ¢(x). Its solution has the form

(x=¢,¢=

x(¢) = 8—10%[% +G + l]—(g)%l—y)k_l}
0

« PIAL=Y) + 9]
y+PGA,; '
We denote the volume fraction of the solid phase at the
left boundary x = 0 as ¢ and, by using (12), obtain the
following equation for ¢
dc

I = —(1-K)c,

(16)

b = ..

Then, c(¢) is taken from (14) at ¢ = ¢ g—i is taken

from the second equation in (11), and both are substi-
tuted into the previous equation. As aresult, we have

¢ +PGA,
PIAL(1-04) + ¢.]

(17)
= (1-(L-0.) 16+ 23(0.)]

Substitution of x = 0 and ¢ = ¢into (16) yields the

equation for the dimensionless width of the two-phase
zone:

0K

PV ]y
y+PGA,

Thus, the width of the two-phase zone is expressed in
terms of thermal parameters. Figure 1 demonstrates
plots ¢ {gs) and &(gy) at g, = 1°C/cm, which are calcu-
lated according to formulas (17) and (18) [velocity u,
involved in dimensionless temperature gradient G, is
eliminated by using relation (9)]. Under the assumption
of afixed value of gradient g,, the dependence of the
dimensional zone width & on the solid-phase tempera-
ture gradient g,

Oy &

(18)

— S(gs)DIpL
6(95) - )\sgs_)\lgl '

isderived by eiminating velocity ug using expression (9).
The corresponding curve is shown in Fig. 2. Function
x(¢) can be easily constructed by substituting €(g.)
from (18) into (16). Theinversefunction ¢(x) is plotted
in Fig. 3. The concentration c(x) of impurities in the
solid phase (Fig. 3) isdetermined by substitution of the
derived function into (14) and (15).

(19)
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Fig. 1. ¢ {g) and e(gs) plotsfor the Fe-Ni alloy atk = 0.68,
m = 2.65°C/wt %, L = 4855 callg, D; = 5 x 10~ cm?s,

p=7glcm?, A; = 0.1 cal cm °Cls, A= 0.177 cal cm °Cls,
0, =0.3.
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Fig. 2. &(g) at g, = 1°C/cm plots for the Fe-Ni alloy, whose
thermal and physical characteristics correspond to Fig. 1.
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Fig. 3. ¢(x) (solid curves) and c(x) (dashed curves) plotsfor
the Fe-Ni aloy with thermal and physical characteristics
corresponding to Fig. 1 a g = 1°C/cm and (1) g = 5,
(2) 15, and (3) 25°C/cm. Vertical lines show the width & of
the quasi-equilibrium two-phase zone, which is calculated
by formula (19) at the given gradients and conforms to
Fig. 2.
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Thus, the complete solution to the problem of
directed solidification of a binary melt having a
guasi-equilibrium two-phase zone is given by relati-
onships (14)—(19).

The obtained solutions have the form of implicit
functions. Therefore, to carry out stability analysis,
solidification with a quasi-equilibrium two-phase zone
should be replaced with an equivalent frontal process.
The main idealiesin the substitution of the discontinu-
ity surface & = 2(1) separating the solid phase from the
melt for the actual two-phase zone. After this substitu-
tion, in the solid phase and the melt, the problem is
described by equations of heat conduction at tempera-
tures B, and 6,, respectively. In the melt, there is an
additional equation of impurity diffusion correspond-
ing to concentration g,. The position of boundary (1) is
also unknown in these second-order equations. There-
fore, to solvethe prablem, it isnecessary to specify seven
boundary conditions. Three of them are specified far
from the discontinuity surface (for example, it is possi-
ble to fix the temperature gradients and impurity con-
centration in the melt). The other four boundary condi-
tions are obtained in the following way.

Thetemperature at the boundary separating the two-
phase zone from the melt must be equal to the phase
transition temperature:

6, = 6,—ma,,

£ = 3(1).

Another boundary condition results from condition 6 =
6GD

ot - MoElr
two-phase zone, and from the boundary conditions

given at the boundary between the two-phase zone and
the melt:

(20)

which is valid inside the

(29:(?_91 Qg:%
0f 0d&’ o0& ot

It hasthe form
d0,

00, _ _

&——maz, E—Z(T)
Then, using condition (9), we can write the boundary
condition related to the heat balance:

06, 06,  dz
Mgz Mg T Plar
The last condition specified at & = Z(1) determines the
temperature jump. Taking into account the condition of
quasi-equilibrium and formulas (11) and (12), we find

8,-96 =

21)

£ = 5(1). (22)

mo (c|X —Cl, - 0)

mo, ¢, + PGA,

= Mou(1+G) - A PA (1= 6,
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At & = 2(1), the second term in the right-hand side of
the above relationship can be expressed in terms of the
jump of the temperature derivative:

1 [d9_do:y_do| _de

mom[dx dx} dx|,_, dx
¢, +PGA

P[/\l(l—(l)*)+¢*]'

Here, the condition of the quasi-equilibrium state, the
boundary conditions (12) and (13), and the second
Eqg. (11) are taken into account. The dimensional final
expression presented below is obtained by eliminating
the second terms in the right-hand sides of the last two

X=¢€

=GI_

relationships and by substituting ug with 3 , g, with
26, d .. a0
FI and Wlth Ug D'OE'
06 _1-k dz
1 k I e _e - 0-00 Ty
& = 2(1).

Stability analysis of the formulated model with the
boundary conditions (20)—(23) specified at the discon-
tinuity surface can now be carried out in the general case
in analogy to papers [10-12]. Note that stability regions
werefound earlier in certain limiting cases[11, 12]. This
meansthat, in these cases, the solution derived is stable.

Thus, in this paper, we have constructed the general
solution to the classical system of nonlinear equations
describing the quasi-equilibrium two-phase zone. This
system was first proposed by Borisov in the early
1960s. The solution found alows us to calculate the
jumps of thermal parameters corresponding to a pass
through the two-phase zone and to replace them, in the
general case, by a discontinuity surface between the
solid phase and the melt. As a result, stability analysis
can be carried out in the general case and we can apply
conventional numerical methods for solving time-
dependent problems with one moving boundary.

ACKNOWLEDGMENTS

This work was supported by INTAS (grant
no. 96-0457) within the scope of the research program
of the International Center of Fundamental Physics
(Moscow).

REFERENCES

1. M. Hemings, Solidification Processing (McGraw-Hill,
New York, 1974; Mir, Moscow, 1977).
2. B. Chamers, Principles of Solidification (Wiley, New
York, 1964; Metallurgiya, Moscow, 1968).
3. V. T. Borisov, Theory of Two-Phase Zones in Metal
Ingots (Metallurgiya, Moscow, 1987).
DOKLADY PHYSICS Vol. 45

No. 11 2000



THEORY OF SOLIDIFICATION WITH A QUASI-EQUILIBRIUM TWO-PHASE ZONE

. G. P. lvantsov, Dokl. Akad. Nauk SSSR 81 (2), 179
(1951).

. V. T. Borisov and Yu. E. Matveev, Fiz. Met. Metalloved.
13, 456 (1962).

. B. W. Webb and R. Viskanta, in Proceedings of the VII|
International Conference on Heat Transfer, San Fran-
cisco, 1986 (Washington, 1986), Vol. 4, Gen. Papers.

. V. T. Borisov, Dokl. Akad. Nauk SSSR 136, 583 (1961)
[Sov. Phys. Dokl. 6, 74 (1961)].

. Yu. A. Buevich, L. Yu. Iskakova, and V. V. Mansurov,
Prikl. Mekh. Tekh. Fiz., No. 4, 46 (1990).

. L.Yu. Iskakovaand V. V. Mansurov, Rasplavy, No. 1, 82
(1994).

DOKLADY PHYSICS Vol. 45 No. 11 2000

10.

11.

12.

13.

573
D. V. Aleksandrov and V. V. Mansurov, Kristallografiya
41, 376 (1996) [Crystallogr. Rep. 41, 357 (1996)].

D. V. Aleksandrov and V. V. Mansurov, Kristallografiya
42, 402 (1997) [Crystallogr. Rep. 42, 357 (1997)].

Yu. A. Buyevich, D. V. Alexandrov, and V. V. Mansurov,
Macrokinetics of Crystallization (Begell House, New
York, 1999).

N. A. Avdonin, Mathematical Formulation of Crystalli-
zation Processes (Zinatne, Riga, 1980).

Trandated by Yu. Veerevochkin



Doklady Physics, \ol. 45, No. 11, 2000, pp. 574-577. Translated from Doklady Akademii Nauk, \Vol. 375, No. 2, 2000, pp. 177-180.
Original Russian Text Copyright © 2000 by Zakhidov, Kasymdzhanov, Kurbanov, Khabibullaev.

PHYSICS

L uminescence Centerson the Surface of Optical Glasses

E. A. Zakhidov, M. A. Kasymdzhanov, S. S. Kurbanov,
and Corresponding Member of theRAS P. K. Khabibullaev

Received June 23, 2000

The study of the nature and properties of different
glass defects, particularly in silicate glass, is of interest
in solid state physics and chemistry and bears impor-
tant significance on practical applications in the com-
mercia production of optical fibers, optical systems,
and microelectronic devices. These defects can be situ-
ated both in the bulk and on the surface of the solid. The
bulk and surface defects of silicon dioxides, such as
E'-centers, nonbridge oxygen atoms, peroxide radicals,
and others, possess similar optical characteristics[1, 2].

On the glass surface, certain radicas like =Si,
=Si0%, =Si00°, =Si0OCO°, =SiONN can be stabilized
and, thus, their individual absorption spectra can be
identified [3]. However, whilein contact with the envi-
ronment, these defects are rapidly modified and under
natural conditions, paramagnetic centers on the surface
of the silicon dioxide are not detected. The characteris-
tics of the surface layers always differ from thosein the
bulk of the material due to the sharp changes occurring
at the phase boundary and in its vicinity. Silicate glass
usually has a large chemical affinity for water vapor.
Being in contact with an ambient atmosphere contain-
ing unsaturated water vapors, the freshly prepared sur-
face of the silicate glass reacts with the active surface
regions and forms OH- ions (chemisorption). At longer
exposures, adsorbed water reacts with an alkaline glass
component, forming alkaline solutions on the surface.
Thermal treatment of the glass surface may lead to its
dehydration accompanied by the formation of two-,
three-, and four-term rings consisting of Si and O atoms
[4]. The three-term rings are stressed and decompose
for the first turn under external actions.

Improved methods of synthesis and purification of
initial glass constituents have madeit possible to essen-
tially lower the concentration of dyeing elementsin the
glass bulk. Asaresult, impurity bandsin the absorption
spectrum of the quartz glass disappear. The absence or
low intensity of the doped luminescence enabled us to
find a new form of previously unobserved lumines-
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cence in massive silicate glass, namely, rapid broad-
band luminescence excited within the glass transmis-
sion band [5-8]. As additional investigations have dem-
onstrated, this luminescence is related to quasi-
molecular complexes composed of elements of abasic
substance and an impurity.

With decreasing impurity concentration, the lumi-
nescence intensity excited in the bulk of glass aso
decreases. However, in this case, under normal condi-
tions, it is impossible to provide for the glass surface
purity as compared to the glass bulk purity. In this con-
nection, the intensities of surface and bulk lumines-
cence in certain conditions can be commensurable,
although the thickness of the excited layers is signifi-
cantly smaller in the former case. Therefore, in the
high-purity glasses, the contribution of the surface
luminescence to the bulk (rapid broadband) lumines-
cence can be significant, especially when the thickness
of the samples under investigation is small and the glass
surface luminescence also arrives at the spectrometer
dlit. Usualy, in high-purity glasses, the radiation inten-
sity from the bulk of the material is quite low. Asinves-
tigations [9] have shown, impurity concentrations in
the bulk of glassand onits surface may differ by several
orders of magnitude. The goal of the present study isto
investigate the spectral-kinetic characteristics of the
surface luminescence for pure quartz glass and multi-
component silicon glass under the action of UV radia-
tion and to determine the contribution of the surface
luminescence to the luminescence of the entire sample.

The investigations were performed with the help of
a modernized spectral-computational KSVU-23 setup
composed of an MDR-23 monochromator and signal
acquisition and processing systems. The system for
detecting optical signals consisted of FEU-77, FEU-79,
and FEU-100 photodetectors and a boxcar integrator,
making it possible to detect signals by the pulse-strob-
ing method. The spectral range under investigation was
200 to 850 nm; the setup time resol ution was not worse
than 5 ns. The strobe width changed from 10 ns to
400 ps. Thismade it possible to set up astrobe at acer-
tain part of the pulse being investigated and to detect
spectraresolved in time. The bulk and surface lumines-
cence were excited by a nitrogen-laser beam (with a
wavelength of 337 nm, aduration of ~9 ns, and a power
of ~15 kW) at an angle of 90° with respect to theregis-

1028-3358/00/4511-0574%$20.00 © 2000 MAIK “Nauka/Interperiodica’



LUMINESCENCE CENTERS ON THE SURFACE OF OPTICAL GLASSES

tration axis. The results obtained were analyzed by a
computer. We have investigated quartz glasses with
trademarks KI, KU-2, KU-1, and KUV (types| to IV)
high-purity multicomponent silicon glass of the K1082
and F1087 types consisting of 70% silicon dioxide, and
commercial glasses K8 and TF-1. The samples had
high-quality polished surfaces. The sample thickness
was from 10 to 12 mm.

The luminescence spectra were recorded with the
help of a special digphragm with dimensions of
5 x5 mm, which was placed directly in front of the
sample. In the cases when the position of the dia
phragm was in the middle or at the edge of the sample,
we recorded, correspondingly, the luminescence radi-
ated only by the bulk or by both the bulk and the sur-
face. In certain cases, the surface luminescence was
excited by radiation dlipping over the surface when the
radiation fell onto the surface at a very acute angle.

Recording luminescence spectra of optical glass
along with the luminescence of its surface has shown
that they are more complicated in comparison with the
case of the bulk. These spectra contain an additional
long-wave band in the vicinity of 520 nm which deter-
mines the appearance of two spectral maxima in the
[uminescence spectrum or a maximum shifted towards
the long-wave side. Figure 1 shows the luminescence
spectra for both the bulk + surface (curve 1) and bulk
only (curve 2) for the KU-1 (Fig. 1a) and KUVI
(Fig. 1b) quartz glasses and for the K 1082 multicompo-
nent glass (Fig. 1c). We recorded only the rapidly
damping part of theluminescence (the strobe width was
40 ns without time delay). Analysis of the lumines-
cence spectra shows that the short-wave parts of the
bulk + surface spectra and the pure bulk spectra coin-
cide exactly, provided they are properly normalized.
Such acoincidenceis observed for all investigated sam-
ples and makes it possible to assume that the short-
wave part of the bulk + surface luminescence spectrum
isdetermined by the bulk luminescence centers, whereas
the long-wave part is determined by both the bulk and
the surface centers. Under this assumption, the bulk
luminescence spectra were subtracted from the bulk +
surface spectra. The difference spectra derived by this
method are given in Fig. 1 (curves 3). These spectra
may be considered as the luminescence spectra for the
glass surfaces. The surface luminescence spectra for
thethree types (KU-1, KUVI, and KI-2) of quartz glass
have spectral maximain the vicinity of 530 nm, which
weakly differ from each other. At the same time, spec-
tra of the KI quartz glass and of the K1082 multi-
component glass have their maxima in the vicinity of
~480 nm.

Investigations of time characteristics have shown
that the attenuation of the surface luminescence has no
exponential nature and that its full width at the half-
maximum is on the order of 10 to 15 ns. The nonexpo-
nential nature of the attenuation law iswell pronounced
in the luminescence spectra obtained by the time-reso-
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Fig. 1. Luminescence spectrafor (a) KU-1, (b) KUVI, and
(c) K1082 silicon glasses, which were measured under dif-
ferent conditions: (1) bulk + surface; (2) only bulk; (3) the
luminescence spectrum obtained by subtracting spectrum
(2) from spectrum (1) for a strobe width of 40 ns and zero
time delay.

lution method. For example, the steady luminescence
spectrum of the KU-2 glass is much wider than that of
the fast component (both obtained with a strobe width
of 40 us and without any time delay) and has a second
impurity line at ~450 nm.

Anincrease in temperature |eads to the temperature
guenching of the luminescence. When a sample is
heated from 20 to 300°C, the intensities of the bulk +
surface luminescence and the bulk luminescence alone
decrease by afactor of ~4.5 and ~2.5, respectively. The
former spectra obtained at temperatures of 20 and
300°C differ insignificantly from one another, even
though they have different therma quenching coeffi-
cients. This might be related to the small overlap of the
bulk and surface impurity lines.

As is seen from the bulk + surface spectra and the
difference spectra, the relation between the bulk- and
surface-luminescence intensities depends on the type
of quartz glass. The statistical weight of the surface
luminescence is the highest for the KU-1 quartz glass.
Inthe K8, F1087, and TF-1 commercial optical glasses,
the surface luminescence is not seen against the back-
ground of the intense bulk luminescence. In the case of
the dispersive SIO,, whose surface is well developed,
thereversed situationisobserved:; i.e., the surface lumi-
nescence dominatesin the luminescence spectrum[10].
Aswas established previously [6], the rapid broadband
luminescence intensity, i.e., the bulk luminescence,
increases in quartz glasses in accordance with the fol-
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Fig. 2. Luminescence spectra for KU-2 quartz glass irradi-

ated by y-rays at a dose of 10° rad, which were measured
under different conditions: (1) bulk + surface; (2) only bulk;
(3) the luminescence spectrum obtained by subtracting
spectrum (2) from spectrum (1) for a strobe width of 40 ns
and zero time delay.

lowing sequence: KU-1, KSG (typelll), KUVI (typelV),
KU-2, KV (type II), and KI (type I). Hence, we may
conclude that, indeed, the luminescence intensity does
not change significantly from one glass sample to
another and is determined, as awhole, by the polishing
quality and the surface purity. The same conclusion
also follows from analyzing the mechanisms of the for-
mation of luminescence centers on the glass surface.
Unlike the bulk luminescence centers, the surface cen-
ters are more subjected to the action of the environ-
ment. For example, the intensity of the surface lumi-
nescence for dispersive SiO, changes by a factor of
~1.6 [10] depending on the measurement conditions,
i.e., whether they are performed in ambient air or in
vacuum. After mechanical treatment, nonbridge-oxy-
gen-atom and peroxide-radical type defects are formed
on the surface of silicon dioxide relatively easily and
their concentration before contact with the environ-
ment and interaction with its atoms is larger than in
the case of the same bulk defects [2]. Therefore, we
can suppose that, in our case, the luminescence surface
centers are formed mainly during the mechanical pro-
cessing of the glass surface and are modified under the
influence of environmental atoms.

The luminescence centers may also be formed and
stabilized in the bulk and on the surface of a substance
under the action of radiation. To elucidate the role of
radiation in forming the surface luminescence centers,
we have investigated the surface luminescence of a
KU-2 glass exposed 9 years ago to y-rays at a dose of
10° rad. Absorption spectrum measurements show that
an additional absorption induced by the radiation is not
yet completely annedled. In Fig. 2, the bulk + surface
(curve 1) and bulk (curve 2) steady luminescence spec-
tra (the strobe width is 40 ps) for the KU-2 y-irradiated
glass and the difference spectrum obtained by subtract-
ing the latter from the former are presented under the
assumption that the impurity line at 670 nm is deter-
mined only by the bulk centers. This assumption is
based on the results of [2], wherein, after contact with

ZAKHIDOV et al.

the environment, the surface centers of the nonbridge
oxygen atoms are not observed. On the other hand, the
power density of the nitrogen laser (~1 MW/cm?) used
in the experiments is not sufficient to destroy the glass
surface. Asis shown in [11], when destroying the SiO,
surface by intense UV radiation, luminescence maxima
at 440, 560, and 650 nm are observed. In the authors
opinion, the first and third luminescence bands are
determined by the E'-center and nonbridge oxygen
atom, respectively, while the second band is related to
silicon nanoparticles. As is seen from analyzing the
steady spectra for the surface luminescence of KU-2
quartz-glass samples irradiated and not irradiated by
y-rays, they-radiation leads only to achangein therela
tion between the intensities of the impurity lines at
~450 and ~520 nm. This relation changes in favor of
thefirst line. The same changes occur with the impurity
line at ~535 nm in the luminescence spectrum for the
quartz glass of special manufacture, in which the con-
centration of transient metals, OH groups, and Cl, is

lower than 107> wt %. These changes indicate that after
(or during) y-irradiation, the new luminescence centers
appear on the sample surface. They may beformed asa
result of the breaking off of OH bonds and the replace-
ment of hydrogen by another element (impurity) with
subsequent formation of a quasi-molecular complex
consisting of elements of the basic substance and the
impurity, as is the case for the rapid broadband [umi-
nescence. The same mechanism of center formation
may al so be suggested for the case of mechanically pro-
cessing the glass surface, in which complexes can be
formed by attaching impurities of broken =Si—O bonds
appearing in great amount when the glass surface is
ground or polished. The spectral-kinetic characteristics
of the surface luminescence are the following: univer-
sality of the phenomenon for most optical glasses, close
location of maxima, short durations, and a honexpo-
nential character of the attenuation laws. The sensitiv-
ity to y-radiation and temperature al so indicates that the
surface luminescence can have the same nature as that
with the bulk luminescence of optical glasses (rapid
broadband luminescence), which is excited within the
glass transmission band.

In contrast to complexes being formed in the glass
bulk, impurities that are absent there but available in
great amounts in the environment can also participate
in the creation of surface complexes. Therefore, the
luminescence spectrum of surface complexes differs
from that of bulk complexes. The energy states of a
guasi-molecular complex depend strongly on the posi-
tion, charge, and size of the impurity ion. Hence, we
may expect that a complex formed with the participa-
tion of the same impurity ion will possess different
energy characteristics depending on whether it is
formed on the surface or in the bulk of the material. On
the glass surface, the distance between a nonbridge
oxygen atom and an impurity ion differs from that
between them in the glass bulk. Therefore, the impurity
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ion has alarger degree of freedom due to the absence of
surrounding atoms on one side of the surface. There-
fore, relaxation of the excited surface complex, which
precedes photon emission, can be very strong and, asa
consequence, there occurs a greater Stokes shift of the
maximum in the luminescence spectrum compared to
the case of the bulk complexes at the same energies of
exciting radiation. The concentration of the surface
complexes is higher than that in the bulk. However,
because of the small thickness of the surface layer,
where the complexes are formed, the intensity of their
luminescence is very low. Therefore, the surface lumi-
nescence can be found only in those optical-glass sam-
ples in which the bulk luminescence intensity is low or
when the bulk and surface luminescence spectra are
shifted with respect to each other.

Thus, we may conclude that in high-purity optical
glasses, the longer wave luminescence defined by the
surface centersis excited simultaneously with the exci-
tation of the rapid broadband luminescence. The spec-
trum of this luminescence has a large Stokes shift and
kinetic characteristics similar to those of the bulk [umi-
nescence excited within the range of the glass transmis-
sion band. The surface luminescence is sensitive to the
effects of y-irradiation and temperature and has differ-
ent spectral maxima depending on the glass type. It is
possible that this luminescence is determined by quasi-
molecular complexes formed by nonbridge oxygen
atoms and an impurity ion on the glass surface.
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Analysis of the results of precision measurements
using aballistic setup for studying the aerodynamic drag
in the case of a spherical body flying in an air gas-dis-
charge plasma and in nonionized air was performed
in[1]. Comparison of the results shows that a certain
frame formed by highly excited metastable strongly
interbound molecules[2, 3] arisesin plasma. The frame
has a clearly expressed regular structure with a density
of 0.224 x 10 cm3 and a binding energy of 2.42 x
10% erg/lcm?®. In this case, the distance between the
bound molecules is ~10° cm and the binding energy
per molecule is 10.8 x 107%3 erg, which exceeds the
mean thermal kinetic energy of an air molecule at a
plasma temperature of 1400 K almost by a factor of
four. Owing to the strong bond between the particlesin
the frame, they have no trandationa degrees of free-
dom and, therefore, do not participate in creating exter-
nal pressure. As a whole, the frame parameters corre-
spond to the Rydberg state of highly excited gas parti-
cles for which the collectivization of outer electron
shells occurs. We denote the concentrations of free and
bound molecules as n; and n,,, while the external static

pressureis P; = niKT (k= 1.38 x 107'¢ erg/K isthe Bolt-
zmann constant and 7 isthe gas-kinetic plasmatemper-
ature).

It was found that in the gas discharge process, in
both polyatomic and monoatomic gases, frames of the
same standard type are formed for each gas indepen-
dently of the pressure and temperature of a perfect
component of plasma and the method of ionization.
The initiation of the frame has an energy threshold
determined by the discharge voltage across the elec-
trodes (~1 kV for air) of a plasmaproducing generator.

A complicated three-wave structure of shock waves
in gas-discharge plasma, which is composed of a pre-
cursor [4] including aleader [5] and aremainder wave,
was discovered in 1989-1990. Anomalous parameters
of shock waves in plasma were investigated in a shock
wave tunnel with a cross section of 100 x 100 mm
in[6]. In the tunnel air operating section 160 mm in
length, a cold pulsed transverse glow discharge was

International Academy of Astronautics,
BP 1268-16, F-75766 Paris, France

formed, whose combustion duration and mean temper-
ature were <1 ms and approximately 300 K, respec-
tively. The density and pressure in the shock wave were
detected in the central zone of the operating section
located at a distance of 150 mm from the onset of the
transverse el ectric-discharge region.

The static pressure P; (measured by a piezoelectric
sensor mounted in a plane wedge with an apex of 30°)
and the free-molecule concentration n; (measured by a
Michelson optical interferometer) were registered vir-
tually simultaneously as functions of time lapsed from
the moment of entry of the shock wave into the detec-
tion region. Note that the interpretation of the results
obtained in this study only became possible after the
specific elastic molecular frame in the gas-discharge
plasma was discovered.

In thefirst series of experiments, a pressure of 6 torr
was maintained both before plasma generation and in
the state without ionization. While generating gas-dis-
charge plasma, the frame was formed and, conse-
quently, n,, = 0.224 x 10* cm2 of the free molecules
in the operating section were in the bound state and the
external pressure reached P; = 5.29 torr at T = 300 K
(ny, = 1.708 x 10'” cm~3). In Fig. 1, we display the char-
acteristic pressure P; in plasma as a function of time't
and in nonionized air (curves I and 2) and the density
n; (curves 3 and 4) for the shock wave entering into the
operating section with avelocity of 516 m/s.

According to the dynamic equations of plasma
in[2, 3], the sonic velocity in the plasma was 665 m/s
at temperature T = 300 K. Hence, for the measured
shock front velocity 714 m/s in the plasma, the wave
was transonic with aMach number M = 1.07. From the
moment of the shock wave entry into the plasma, its
compression occurred, the free and bound molecules
being compressed simultaneously and identically. But
with increasing n,,, the potential energy of the plasma
elevated, while the kinetic energy of the chaotic motion
decreased correspondingly; i.e., plasma cooling took
place [see Fig. 1a, the dependence T(t) = P;/kn; (5); the
segment ¢ = 040 ps corresponds to a leader]. Due to
decreasing flow temperature, the pressure at the wave
front remained virtually invariable, while the density
increased by approximately 10%.
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Fig. 1. Shock wave in air plasma and in nonionized air. (a) v, = 516 and (b) 1500 m/s; Pg = 5 torr, To = 300 K. Plasma: (1) Py(t),

(3) n(t), and (5) T(V). Air: (2) Py(t), (4) ne(t), and (6) T(b).

Furthermore, the nonlinear interaction between
these four quantities (P;, n;, T, and the plasma vel ocity)
resulted (to the time moment t = 150 ps) in the motion
of the plasma flow being essentialy slowed down, the
plasmadensity and pressureincreasing, and the plasma
temperature proving to be ~50 K lower than that in the
shock wave of nonionized air for the same velocity,
516 m/s.

Figure 1b shows the evolution of the shock wave
entering into the plasma with a velocity of 1500 m/s.
Before the discharge was switched on, the pressure in
the operating section was maintained at 5 torr. Because
the velocity of sound was 662 m/s in this case and the
shock front velocity was 1825 m/s, the supersonic
motion of the shock wave occurred with a Mach num-
ber M = 2.76. The time dependence T(t) of plasmatem-
perature (curve 5) showed that, in the interval from 30
to 50 us, a decrease in plasma temperature of 216 K
occurred owing to fast dowing down of the flow and an
accompanying abrupt increase in plasma density.
Therefore, in spite of a significant increase in n;, we
observed only asmall risein P;.

DOKLADY PHYSICS Vol. 45
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At t > 50 ps, however, the situation changed radi-
cally because of frame destruction; his occurred as a
result of compression by a factor of ~3.4. The bound
molecules became free, whereas the accumulated
potential energy and the binding energy were returned
to the flow. In this case, the plasma temperature
increased to 1801 K and the pressure increased by
afactor of 3.3. Since the accumulated energy corre-
sponded to atemperature of 1365 K for the shock wave
in nonionized air, the difference AT, = 436 K in these
temperatures appeared by virtue of the liberation of the
binding energy. In fact, because the specific binding
energy is2.42 x 10* erg/cm?, while the heat capacity of
al the 1.61 x 10 molecules contained in 1 cm?® is
55.53 erg/K, the calculated value of the originated tem-
perature difference AT.,q = 436 K coincides with that
measured in the experiment.

It should be noted that the formation time for a
steady precursor is on the order of 100 ps and that its
thicknessin the shock-wave tunnel of larger diameter is
~5.5 cm. When the directions of the wave motion and
of the electron drift in the longitudinal electric fidd of
the discharge coincided with each other, the thickness
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and the velocity of the precursor were greater than in the
case when the electrons drifted towards the wave [6].

In the case of frame deformation, therma energy
loss leads to a decrease in the actual experimental
shock-front velocity compared to theoretical values
found for a completely reversible elastic deformation.
For a shock wave entering with a velocity of 516 m/s
into decomposing plasma (Fig. 1a), the experimental
front velocity was 714 m/s, while its theoretical value
was 742 m/s; i.e., it was 3.8% higher. Thus, in this case,
the irreversibility of the frame compression process
wasrelatively small. For the shock wave with avelocity
of 1500 m/s (Fig. 1b), the experimenta value of the
front velocity was found to be 1825 m/s, while the cor-
responding calculated value (ignoring the irreversibil-
ity of the deformation process) was equal to 1978 m/s;
i.e., theloss(7.7%) wastwice as high asin the previous
example.

As a conseguence of the summation of concentra-
tions for molecules bound in the frames in the incident
and reflected waves in the air gas-discharge plasma, it
becomes possible to detect the interaction between the
external long-wave laser radiation and the frame ele-
ments [7]. In this case, it was found that the probing
radiation with wavelengths A = 0.638 and 0.534 nm do
not damp, whereas anomal ously high damping (scatter-

MISHIN

ing) wasfound for laser radiation with A = 10.6 um, the
damping coefficient being ~2 x 1072 cm™. This can
only be explained by the presence of moleculesin the
plasmawhich are bound in a Rydberg collective system
owing to the joining of their external electron shells.
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In this paper, we solve the kinetic problem of
intense evaporation of molecular gas from a spherical
particle into vacuum. We explicitly find the hydrody-
namic boundary conditions for intense evaporation of
diatomic and triatomic gases and demonstrate their
strong dependence on the Knudsen number in therange
0<Kn<0.1 (Kn=A/ry, A isthe mean free path of mol-
ecules near the evaporating surface and r,, isthe particle
radius). This problem was not discussed in earlier
papers[1-3]. We show that internal degrees of freedom
lead to an appreciable decrease in the temperature jump
and only dlightly affect the gas concentration at the
boundary of the Knudsen layer.

The problem of intense evaporation from aspherical
particleinto vacuum was discussed in [1-3]. According
to numerical calculations presentedin[2, 3], at Kn < 1,
the flow near a particle is formed in a region with size
far exceeding A. Consequently, under this condition
(Kn < 1), the flow is hydrodynamic and can be
described by the Navier—Stokes equations with correc-
tion for kinetic boundary conditions. Relations of
parameters of condensed and gas phases, i.e., the jumps
of parametersin the Knudsen layer, can be determined
only within the framework of kinetic theory.

A three-layer model of steady-state gas flow was
proposed in [4] for the gas flowing from a pointlike
source and was characterized by the Reynolds number
Re > 1 and the Prandtl number Pr = 3/4. The nonequi-
librium region located near the source is fitted to the
region of the nonviscous supersonic gas flow described
by the Euler equations through an interlayer of the vis-
cous flow being characterized by the Mach number
M~ 1.

In thelimiting case Kn — 0, the three-layer model
[4] was used in [1] to obtain hydrodynamic boundary
conditions corresponding to the evaporation of mono-
atomic and diatomic gases.

In all papers mentioned above, except [1], only
monoatomic gases were considered. However, most

Moscow Pedagogical University,
ul. Radio 10a, Moscow, 105007 Russia

gases are polyatomic. Therefore, it is of significant
interest to study these processes for molecular gases.

It iswell known that the vibrational degrees of free-
dom of most molecular gases are “frozen” in a wide
temperature range, whereas the rotational degrees of
freedom can be considered using the quasi-classical
approach [5, 6].

We assume that the following parameters character-
izing a particle are known: T, is the temperature of the
particle surface and n, is the concentration of saturated
vapor of the surface material at temperature T,. Let us
consider the case of a steady-state spherically symmet-
ric expansion of the evaporated substance. Taking into
account that the Knudsen number is small, we can use
the Chapman—Enskog function as a distribution func-
tion withinthe gas. A linearized version of thisfunction
hasthe form [5, 7]

= fi(l+®+Ww), =123, @)

3/
falv) = ”EQ 0 ex'ot*szD

3/2 2
vy = nm O Emet A
fi(v,Vv)) nEanTD expE—ZKT VIE, i 2,3,
® = Ang_glm e M}
31 Car rUp2kT 2 ]
_ K 1dT 5 _meTy
Y oc,pTdr L2 2kTL
_ K 1dT (5+j md o . _
s optarOz o VD 523
v, = J_(»\)2 v =/\/le§+32®§ szg
27 \2kT B 2kT  2kT  2kT®

Here, subscripts i = 1, 2, and 3 correspond to mono-
atomic, diatomic, and triatomic gases, respectively;
terms ® and W, arerelated to the viscosity and heat con-
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duction; j isthe number of internal degrees of freedom
( =2 and 3 for diatomic and triatomic gases, respec-
tively); m is the molecular mass; J is the moment of
inertia of a diatomic molecule; J,, J,, and J; are the
principal moments of inertia of atriatomic molecule; v
and o = (W, W,, w;) are the trandational and angular
velocities of amolecule; u and ¢ = v —u arethe average
and thermal vel ocities of molecules; kisthe Boltzmann
constant; p, n, and T are the pressure, concentration,
and temperature of the gas; n and K are the viscosity
and thermal conductivity; and c, is the specific heat at
constant pressure.

For gases, the boundary condition at surfacer =r,,
can be written under the assumption that the Maxwell
distribution fg (i = 1, 2, and 3 for monoatomic, diato-
mic, and triatomic gases, respectively) with tempera-
ture equal to that of the surface (T) is valid for mole-
cules emitted by the surface. For the sake of simplicity,
evaporation and energy-accommodation coefficients
are set equal to unity. Asaresult,

m 2, O mv0
fq(v) = nSEiZ kTD eXpD_ZKTS% v, >0,

Vi
Vi a5 )

D’S/Z

2
fsi(vl Vi) = nSEQ kT 0 pD—ZkT

v, >0,

Jw’ lei
= _— = +
Ve T i, Vs «/ 2kT,

Taking into account viscosity n and thermal conductiv-
ity K, we can describe the motion of an evaporated sub-
stance in the expanding flow of the system using the
Navier—Stokes equations.

Far from the particle, in theregion of the nonviscous
flow (n = 0 and k = 0), the system of the Navier—Stokes
equations reduces to the Euler equations. The solution
to these equations is known and presented in [4]. In the
intermediate region situated near the sonic pointr =r,
the solution to the Navier—Stokes equations is expressed
in terms of the modified Hankel functions [4].

At Pr=3/4and Kn < 1, inthe interior region adja-
cent to the evaporating surface, the equations of fluid
dynamics are transformed to [ 1, 4]

i =23,

33005
2KT,

szg
2KT,

1

dw 23
9t = 2-(k,a) —W—W 3)
y—-1 y+1 -
e+—2 w - 0,
X=X _n _ 8y N
&= XT T S 3(y+1) 'm’
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B = H-, Xll =1+ [1(1—8)]_1/3a213211 “4)
4 30
1 y+1E.1 '

Here, w = u/c,, 8 = T/T,, yisthe adiabatic index, m is
the mass flux from the particle (m = const), ¢, =
JYR, T, and T, arethe average val ues of velocity u and
temperature T at the sonic pointr =r, (i.e,ar=r,,we
have w =1 and 8 = 1), and a is a small parameter
(@'~ Re).

A solution to Eqg. (3) hasthe form

1 -1/3 2/3

=x;+kia

&)

X L - —} - —Io l1-w

[arctan{ (ka) ™ *(1-w)} 2 9w,
Here, R= 1/x = r/r, is the dimensionless radius vector
and thevalue &, = 2.3381 is calculated by using the con-
dition of the asymptotic sewing of solution (3) together
with that from the intermediate region wherew ~ 1.

Expressions (3)—(5) can be used to determine the

T ng QU
dr dr
involved in distribution function (1). After the corre-
sponding transformations are undergone, taking into
account relationship n = Ap,(2myTkT,)'”?, distribution
function (1) takes the form

gradients of thermodynamic functions

= fi[by+ b;hg v, + byhogv? + bshy v e
+bahg v (Vg + vg) + biho(V + V)
+2hyZ,T(V, —Ug)vg 1,

bo = 1+2d—[(5+ ) —22]2r,

by, = —225d +[(5+ ) —62] 2T, ©6)
b, = zod + 6251, by = 27,1, b, = —Zod + 2771,
g=YFrilrdwg oy —1Wordwy
y wolhEL)y 2y 6,LdgL)
Ro—:—(l), z, = éMo, WO:MO,#—Z;)MS’
8y Kn1l _ m
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Here, subscript O corresponds to the parameters at the

hydrodynamic evaporation boundary.
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Let us assume the Knudsen layer to be infinitely
thin. Then, it can be considered as a surface of hydro-
dynamic discontinuity which does not violate the con-
servation laws for fluxes of mass, momentum, and
energy. In other words, the quantities C,,,, C,,,, and C,,
(n=1, 2, 3) defined by the relationships

J.Qinfiin = Cim i = 1! 2’3’ n= 1, 21 31
Q, = d’v; Q, = d*v2v,dv,,
Q; = d3viv§dv3,

)

Qi=m Q,=mv,, i=123,

N

mv mV
Qi3 = > Qs = T‘*‘kTVz,

mV
Qux = > + kTV3,

and corresponding to monoatomic, diatomic, and tri-
atomic gases, respectively, also remain unchanged.
Without solving the Boltzmann equation, these condi-
tions provide an opportunity to establish arelationship
between the surface parameters T, and n, and the vapor
parameters T, and n, at the outer boundary of the Knud-
sen layer. Integration of (7) performed with allowance
for (6) leadsto a system of three equations with thefol-
lowing four unknown variables: M,, Kn, T,/T,, and
Ny/Ns. 1t is convenient to use My, as a free parameter.
Then, dimensionless temperature T,/ T, and concentra-
tion n,/n, are determined by the expressions

To_ (4% n_ T, "
T. 2X; | N 2X,T,

whereas the Knudsen number Kn is found from the
equation

o Kel%
arn X

The notation used aboveis as follows:

®)

Xy = bgFo+ biFy +byF, + bsFa + by Fo + bsFy,

X, = bgFy + biF, + byFs+ bsFy + by Fy + bsFy,

TR+ .
X; = bo%Z_ZJFo"'FzE"'JZSTFo
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For monoatomic (j = 0), diatomic (j = 2), and triatomic
(j = 3) gases, the calculated boundary values of the mac-
roscopic parameters are presented in the table. If
Kn—= 0, then the Mach number M,, temperature
To/ T, and concentration n,/n, tend to their limiting val-
ues, which, for monoatomic (j = 0) and diatomic (j = 2)
gases, agree rather satisfactorily with the results of [1]
corresponding to Kn — 0. These values are (j = 0)
Mgy =0.423, T,/Ts = 0.838, and ny/ns = 0.645; (j = 2)
Mgy = 0.415, T,/ T, = 0.913, and n,/n, = 0.661. Accord-
ing to the table, for both molecular and monoatomic
gases, an increase in the Knudsen number Kn leads to
the growth of Mach number M, and to a decrease in
dimensionless gas temperature T,/ T, and concentration
ny/ns. Consequently, temperature and concentration
jumps occurring in the Knudsen layer become more
pronounced.
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Tablel
Kn 1=0 1=2 ]=3

Mg TolTs No/Ng Mg TolTs No/Ng Mg TolTs No/Ng

Kn—0| 0.386 0.911 0.664 0.404 0.942 0.663 0.410 0.950 0.663
0.0025 0.410 0.903 0.648 0.430 0.936 0.647 0.437 0.945 0.646
0.005 0.425 0.897 0.638 0.447 0.932 0.637 0.454 0.941 0.636
0.01 0.450 0.888 0.624 0.477 0.924 0.620 0.484 0.935 0.619
0.02 0.500 0.868 0.597 0.528 0.911 0.593 0.437 0.923 0.590
0.03 0.550 0.847 0.573 0.577 0.897 0.568 0.586 0.911 0.560
0.04 0.590 0.829 0.555 0.622 0.884 0.547 0.632 0.899 0.545
0.05 0.632 0.811 0.537 0.665 0.871 0.529 0.675 0.888 0.526
0.06 0.670 0.794 0.522 0.703 0.858 0.513 0.713 0.877 0.510
0.07 0.700 0.780 0.511 0.735 0.848 0.501 0.745 0.868 0.498
0.08 0.732 0.764 0.499 0.762 0.838 0.491 0.771 0.860 0.488
0.09 0.755 0.752 0.491 0.782 0.830 0.484 0.791 0.853 0.481
0.1 0.774 0.742 0.486 0.798 0.824 0.479 0.806 0.848 0.476

Comparison of the results obtained at the same val-
ues of the Knudsen number for monoatomic and mole-
cular gasesleadsto the conclusion that excitation of the
rotational degrees of freedom produces a pronounced
effect on the boundary values of the gas temperature:
To/ Ts increases (its jump becomes smaller) and only
dlightly affects concentration ny/ns. At Kn = 0.1, the
largest temperature change is as high as 11 and 14% at
the transition from monoatomic gas to diatomic and tri-
atomic gases, respectively.
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The effect of jumplike growth of the neck in apoly-
ethylene terephthalate (PETP) film accompanied by
oscillations of the load and temperature at the neck
front was reported in [1]. The neck jumps are inter-
preted in terms of the heat release at the neck front giv-
ing riseto local heating of the polymer, which resultsin
an increase in velocity. This results in still more heat
releases, and the neck velocity increases in an ava
lanche-like manner. Drastic elongation of the sample
leads to adecreasein theload and adecreasein the heat
release. The transient zone begins to cool down, caus-
ing a decrease in the neck growth rate. The growth rate
decreases until the neck becomes nearly immobile.
After that, the stress again beginsto increase. When the
stress reaches critical value, the jump of the neck front
is repeated.

Theaim of this paper isto find the criterion determin-
ing the generation of self-oscillations which accompany
neck growth in a polymer film.

Film samples of commercia amorphous PETP
110 pm thick, 10 mm wide, and 40 mm long were used
in the experiments. The extension of the samples stud-
ied was performed in air using the AGS-10 kKNG testing
apparatus supplied by the Shimazu company.

Typical stress dependence of the elongation is
shownin Fig. 1. After attaining theyield stress, theload
exhibits 3—4 oscillations. Then, a steady-state flow of
the polymer is established under constant tensile stress.
At a certain moment, periodic oscillations of the load
appear on the diagram. The amplitude of oscillationsis
1/5-1/4 that of the tensile stress.

The photograph illustrating neck formation is pre-
sented in Fig. 2. At the initial steady-state stage of the
growth, the neck istransparent. Thisregion is darker at
the black background. At the stage of self-oscillations,
alternation of dark and light (turbid) stripesisobserved.

* |nstitute of Synthetic Polymeric Materials,
Russian Academy of Sciences,
Profsoyuznaya ul. 70, Moscow, 117393 Russia
** Semenov Institute of Chemical Physics,
Russian Academy of Sciences,
ul. Kosygina 4, Moscow, 117977 Russia

The elastic elongation of the sampleis[2]

L,o L,0,
AL, = —+ ,
¢ E E,

ey

where L isthe length, E is the elasticity modulus, o is
the stress, and subscripts 1 and 2 denote the nonori-
ented part of the sample and the neck, respectively
(Fig. 3). The stress in the neck is 0, = S,0/S, = Ao,
where A isthe degree of tension in the neck. Theincre-
ment of the sample length during time dt is equal to
dL = Vdt, where V is the extension rate. If the neck
growth rate equals u, then the increment of the plastic
strainintimedtisdL, = (A — 1)udt. Hence, we obtain

do _ V-(A-1)u
dt D

@)

where D = L,/E; + AL,/E, isthe compliance of the sam-
ple. The plastic flow in the transient zone requires work
equal to the force multiplied by the magnitude of the
plastic elongation (A — 1)aS,udt. Assuming a to be the

g, MPa
60
30/
1 2 2 1 1 1 ]
0 20 140 160 180 200
€, %

Fig. 1. Tensile stress versus strain for the PETP film
0.11 mm thick.
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Fig. 2. Photograph of the sample after its extension. The neck grew from right to left.

fraction of work spent to heat release in the transient
zone, we have

dQ; = a(A-1)oS,udt. 3)

The released heat causes an increase in temperature
in the zone, and a certain part of it is dissipated. The
heat losses are caused by the thermal conductivity of
the polymer and heat transfer to the surrounding
medium. Assuming that the sample cooling is con-
vective, we find that the heat transfer to the outer
medium is

dQ, = B(T-T,)wddt, 4)
where (3 is the heat exchange coefficient, w is the sam-
plewidth, d isthelength of thetransient zone, and T, is
the temperature of the surrounding medium. The heat

transferred from the transient zone by the heated poly-
mer can be written as

dQ; = cpSu(T -Ty)dt, (5)

where c isthe specific heat and p isthe polymer density.
The heat spent to the zone heating is equal to dQ, —

dQ, — dQ;, and we get
dT _ a(A—l)ou_U(T—To)_B(T—To) ©)
dt pcd d pch '’

where T isthe current temperature of the zone. Analyz-
ing the stability of the neck growth, note that Egs. (2)
and (6) have atrivial solution, which correspondsto the
constant neck growth rate:

_ Vv
uS - )\ _ 11 (7)
a(A—-1)oug _UAT  BAT _
pcd d pch =0, ®)

where AT = T, — T, isthe magnitude of the zone heating
before instability arises and u; and o are the growth
rate and the stress corresponding to the steady-state
flow in the neck.

We linearize Egs. (2)—6). Let us assume that the
neck moves with constant velocity (7). Then, we
change the variablesinvolved: T=T,+ 6 and 0 = o, +
S where 6 and S are the deviations of the temperature

and stress from their values corresponding to the
steady-state transition to the neck. We should take into
account that the neck growth rate depends on the tem-
perature and stress. Performing the series expansion of
the growth rate, we retain only linear terms:

U = ug+0d;ub +0d,uS,

where d;u=0u/0T and 0,u = du/0c arethe partial deriv-
atives of the growth rate with respect to temperature
and stress, respectively. We assume that the values of 6
and o are small in comparison to o and S Retaining
only the linear termsin the expansion, we obtain a sys-
tem of two linear differential equations with constant
coefficients:

ds _ (A-1)d,u_. (A-1)0u
i 5 S- 5 9, )
ATo,u a()\ 1)u
dt 0 Pchug ES
EBATGTU a(A—-1)uo, Eﬁ (10)

i Pchug pcdAT

The sum of the two exponentials is the solution to this
system[3]. Theinitial fluctuationsin stress and temper-
ature infinitely increase if the argument of one of the

I II III

Fig. 3. Moddl: I. nonoriented part of the sample; I1. transient
zone; I11. neck. Visthe extension rate and u isthe neck front
velocity.
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exponentials exceeds zero. Note that the exponents are
positive if the following inequality is met:

oaB(A-1)os do ugpch+Bd A-1

pc(Upch+ Bd)dT _ pcdhd,u ~ D 0. an
In (11), only thefirst term is positive (derivative g—(_?

is negative); the second and third terms are negative.
Therefore, to meet the inequality, the first term should
belarge and the second and third terms should be small.
Asaconsequence, for the existence of self-oscillations,

the derivatives g—_ol_ and d,u should be large. These con-

ditions are fulfilled at temperatures near the glass tran-
sition temperature T, of the polymer. If the temperature
of the outer medium is lower than T, it is necessary to
take into account the heating of the transient zone. The
extension rate must be sufficiently high for the temper-
ature of the transient zone to be raised to the glass tran-
sition point. If the PETP film is stretched under room
temperature, this condition is absolutely necessary for
the generation of self-oscillations.

In addition, to meet criterion (11), compliance D of
the sample must be high. Since the compliance is pro-
portional to the sample length, the sample must be suf-
ficiently long. Analyzing the effect of compliance, we
can find the ratio of thefirst and third terms of inequal-
ity (11). The third term can be neglected, if it is much

less than the first one. For the values g-_gl_, E, a, g, A,

c[1], and p typical of PETP[4], inequality (11) reduces
toL > 50h[1]. For thefilm thicknessh=0.11 mm, ine-
quality (11) is met, if the sample is much longer than
5 mm. Consequently, for sample lengths much larger
than 5 mm, the effect of compliance influence can be
neglected.

It is easier to meet criterion (11) when the transient
zone has small length d and the sample thickness is
large. Finally, the high degree A of polymer stretching
in the neck favors the validity of (11). In PETP, A is
equal t05.5-6.0[1, 5]. Such avalueishigher than those
obtained for most other polymers. Thisis probably why
it wasin PETP that the self-oscillations were observed
for the first time. The specific heat and density are
approximately equal for most polymers at normal tem-
peratures, and these parameters cannot essentially
affect the generation of self-oscillations.

Theleft sidef of criterion (11) isplotted in Fig. 4 as
afunction of neck growth rate u. For low and very high
rates, function f(u) is negative and the neck motion is
stable. The u range corresponding to f > 0 determines
the existence domain for self-oscillations.

A change in heat transfer coefficient B shifts the
curve in Fig. 4 along the u-axis. Function f remains
unchanged if coefficient B and the neck growth rate

DOKLADY PHYSICS Vol. 45 No. 11 2000
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Fig. 4. The left side of inequality (11) versus neck growth
rate.

change by the same factor. Consequently, high heat
transfer 3 (in the course of extension, e.g., in aliquid)
does not rule out the generation of self-oscillations, but
only at very high extension rates. The decreasein com-
pliance shifts function f downward along the vertical
axis. For a certain value of compliance, function f turns
out to be negative at any extension rate. Consequently,
there exists a compliance threshold below which the
self-oscillations cannot exist.

Self-oscillations are caused by the thermal instabil-
ity of the neck growth. Severa conditions favor the
generation of self-oscillations: first of all, a high value
of do

dT
occurring in the polymer; second, a high sample com-
pliance D (in our case, this condition is met if the sam-
ple length far exceeds 5 mm); third, a small length of
the operating zone; and, finally, a high degree of poly-
mer stretching in the neck. Note also the existence of
the lower and upper bounds for the extension rate
between which the self-oscillations exist.

observed in the vicinity of the glass transition
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INTRODUCTION

The accelerated diffusion of impurities along grain
boundaries has been observed in a number of transition
metals: Coand Feina-Zr[1, 2], Coina-Ti [3], Coand
Ni in Nb[4, 5], and C in a-Fe[6]. Note, however, that
the data on the grain-boundary diffusion of carbon,
which is the most suitable element for the study of
impurity diffusion in these metals, are incomplete: the
results reported in [6] exhibit a significant spread and
characterize the grain-boundary diffusion in a-Fe only
at three temperature values (648, 686, and 739 K).
These datado not allow usto estimate either the activa-
tion energy of the grain-boundary diffusion of carbon
or the value of the preexponential factor. The main
method used to measure the diffusion penetrability of
grain boundaries is based on the plotting of profiles of
diffusion-driven penetrations using layer-by-layer radi-
ometric analysis. Hence, the main difficulty in the mea-
surement of the carbon diffusion in a-Fe seems to be
related to the very low solubility of carbon in the bulk
of a-Fe. Thediffusion “wedges’ arising after annealing
in the vicinity of grain boundaries are very narrow, and
the concentration of the diffusing element at the bound-
aries determined after removing the layer of the bulk
diffusion is low. Therefore, it is very difficult to per-
form measurements at the “tails” of the concentration
profiles, which characterize the diffusion along the
grain boundaries.

From this standpoint, Nb is the most suitable object
for experimental study of carbon grain-boundary diffu-
sion, since carbon solubility seems to be somewhat
higher in Nb than in a-Fe. However, in the study of car-
bon diffusion in niobium, another difficulty arises
which severely complicates the interpretation of the
experimental profiles of the diffusion-driven penetra-
tion. The difficulty is that the grain boundaries in pure
Nb are characterized by a high mobility [4, 5] and the
migration of boundaries is observed under diffusion
annealings; this migration cannot even be suppressed

* All-Russia I nstitute of Aviation Materials,
ul. Radio 17, Moscow, 105007 Russia
** Moscow Ingtitute of Seel and Alloys,
Leninskiz pr. 4, Moscow, 117936 Russia

by preliminary high-temperature annealings. The pres-
ence of mobile grain boundariesin apolycrystal during
the course of diffusion annealing can strongly affect the
shape of the measured concentration profiles. Thus, the
correct interpretation of these profiles becomes almost
impossible. This problem was solved when the model
of diffusion along the moving grain boundary was
developed [7, 8] alongside a procedure based on this
model, which provides an opportunity to process the
concentration profilesin apolycrystal with two types of
boundaries, mobile and immabile [4]. The developed
models and techniques were successfully applied to the
study of Co and Ni diffusion in niobium by the method
of radiometric layer-by-layer analysis[4, 5].

In this paper, the diffusion of carbon along grain
boundaries in Nb was studied using radioisotope tech-
niques. Taking into account the importance of identify-
ing the moving grain boundaries in the structure of the
polycrystals, we made an attempt to reveal them using
high-resolution autoradiography.

EXPERIMENTAL TECHNIQUE
AND THE PROCESSING
OF MEASURED PROFILES

We used high-purity Nb samples. The impurity con-
tent in Nb and the sample preparation technique are
described in [4, 5].

The carbon diffusion in Nb was studied by the fol-
lowing technique. The donor samples saturated by the
radioactive carbon served as the sources of 3 radiation
(with energy E,,, = 156 keV) of the radioactive carbon
14C. The saturation was performed by the application of
a specia paste containing “C (the total radioactivity
3.7 x 10° Bq) onto the donor samples and by subse-
quent annealing. For the diffusion annealings, a pair of
Nb samples was packed together with adonor in asuch
way that an air space remained between them. The dif-
fusion pairs prepared in such a manner were wrapped
in titanium foil and placed in a vacuum-sealed silica
ampoule, which was then annealed at a given tempera-
ture. After diffusion annealing, a layer approximately
1 mm thick was removed from the Nb sample surface,
but not from the flat operating part.

1028-3358/00/4511-0588%$20.00 © 2000 MAIK “Nauka/Interperiodica’



DIFFUSION OF CARBON ALONG GRAIN BOUNDARIES IN NIOBIUM

The profiles of the diffusion penetration of the
radioactive isotope “C into the Nb polycrystals after
diffusion annealing were measured using the method of
radiometric layer-by-layer analysis. The activity of the
removed layers was measured using a liquid-based
radioactivity sensor.

The obtained profiles were interpreted within the
framework of the generalized Fisher model [7, 8]. This
model predicts that under diffusion in a polycrystal
with immobile and mobile grain boundaries, the grain-
boundary region of the concentration curve consists of
two parts: thetail of the curve usually related to the dif-
fusion along the stationary boundaries and the interme-
diate region between the zone of the bulk diffusion and
the tail, which characterizes the diffusion aong the
mobile grain boundaries. The whole profile of the
grain-boundary diffusion in a polycrystal with immo-
bile and mobile grain boundaries was approximated by
the function [4]

Inc = In[q; exp(—0,Y°°) + Qzexp(—aLy)], (1)

where c is the layer concentration, y is the penetration
depth, and q; are the fitting coefficients. The coefficient

0= _9Inc was used for calculating the diffusion pen-

2 6/5
oy
etrability of the stationary boundaries P = sD'd (here, s
is the coefficient of the diffusant equilibrium segrega
tion at the grain boundaries, D' is the coefficient of the
grain-boundary diffusion, and & is the diffusion width
of the grain boundaries):

2
P= 1.3085'%91 . )
Here, D is the coefficient of the bulk diffusion and t is
the duration of diffusion annealing. It is obvious that
formula (2) coincides with the conventional expression
for calculating the diffusion penetrability of grain boun-
dariesin apolycrystal with immobile boundaries[9].

In order to calculate the diffusion penetrability of
grain boundaries, it is necessary to know the diffusion
coefficients D in the bulk. For calculating D, we used
the Le Claire expression [10], which was obtained as a
result of averaging literature data on the bulk diffusion
of carbon in Nb:

0141.92kImol ' > i

_ —6
D=1x10 exp RT om s . 3)

RESULTS AND DISCUSSION

In the autoradiogram (Fig. 1), the pattern of the
accelerated diffusion of carbon aong the grain bound-
ariesin Nb is clearly seen; this pattern revea s the pres-
ence of two kinds of grain boundaries in the structure,
mobile and stationary. The moving boundary leaves a
trace of radioactive atoms behind itself in the bulk. In
the autoradiogram, it lookslike awide dark strip strewn
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Fig. 1. Accelerated diffusion of 14C along theimmobile and
mobile grain boundariesin niobium (autoradiogram, x500).

with silver crystals. The immobile boundary is signifi-
cantly narrower, and its autographic width is defined by
the size of the developed emulsion crystals situated
aboveit.

The experimental profiles of the '“C diffusion-
driven penetration into the Nb polycrystals and the
model curves approximating them (formula (1)) in the
zone of the boundary diffusion are shown in Fig. 2

using the conventional coordinates logc—y®°. The
experimental profilesin the zone of grain-boundary dif-
fusion consist of two regions. Thefirst, aregion of large
penetration depths which is well linearized in these
coordinates, characterizes the diffusion along the sta-
tionary (immobile) grain boundaries. The second is an
intermediate region at smaller depths of penetration
which characterizes the diffusion along the mobile
grain boundaries.

The separation of the regions on the concentration
profiles, which characterize the diffusion of carbon
along the immobile grain boundaries, allows usto cal-
culate the diffusion penetrability P of these boundaries
using formula (2). The calculated values of P, together
with the parameters of the boundary diffusion regime
a = sd/2(Dt)2 and B = P/[2Dx(Dt)'2], are given in the
table. The Arrhenius equation obtained according to the

Parameters of the grain-boundary diffusion of carbon in nio-
bium

T,K |t,103s| D, m%s P, m¥/s a* B
951 | 36 |[1.6x104|19x108|3x10°| 8
893 | 45 |[50x10%5|7.0x10%|5x10°| 15
878 | 39 |[36x107°|55x1019|7x10°| 20
855 | 7.8 |21x1071%|24%x1079|6x10°| 14
803 | 6.6 |[59x107|62x10%|1x10*| 26

* Calculations were carried out under the assumption that s ~ 1.
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Fig. 2. Profiles of the diffusion-driven penetration of '“C
into niobium polycrystals at various temperatures.

temperature dependence of P for the grain-boundary
diffusion of carbon in Nb has the form
P = (3633)x10°

149.6 + 7.3 kJ mol”’ _
x expls = mo qm’s™. )

A conventional regime predicted by a mathematical
model of the diffusion along the grain boundaries
(regime B,) occurswhen 3 > 1 and a < 1. Infact, for
the onset of the B, regime, it is sufficient that conditions
B> 10and a < 0.1 be met.

No difficulties occur in evaluating parameter 3. Its
values are given in the table. Evidently, condition 3 > 10
was met amost at al temperatures.

Difficulties arise when evaluating parameter a. In
order to calculate parameter a, we must know the val-
ues of the equilibrium segregation coefficients sfor car-
bon at the grain boundariesin Nb at low temperatures.
Usually the values of s are estimated based on the data
on the solubility of the diffusant in the volume of a sol-
vent, i.e., the object under study. However, the solubil-
ity of carbon in Nb a low temperatures is aso
unknown. Therefore, it isdifficult to implement such an
approach in this case.

We specified the values of parameter a for the diffu-
sion of carbon in Nb in the table; these values were cal-
culated under the obviously untrue assumption that
s~ 1. Itisclear fromthetablethat the conditiona < 0.1
will not be met if s~ 10°. Now, we estimate the possi-
bility that such a regime, unfavorable to our experi-
ments, will occur.

Let us take an experimental value for the diffusion
penetrability of the grain boundariesby diffusing Cinto

VASILENOK et al.

Nbat T=900K: P=7 x 10 m?¥s (P = sD'd). Accord-
ing to the Fisher model, we assume & = 5 x 1071 m.
Then, we get sD' = 1.4 x 10° m?/sfor T = 900 K. Tak-
ing s~ 10°, we obtain D' = 1.4 x 10 m?%s. Now, we
compare the value obtained for D' with the diffusion
coefficient for carbonintheNb bulk at 900K: D =5.8 x
1015 m?/s. Assuming that s ~ 10°, we obtain the values
of the grain-boundary diffusion coefficients coinciding
inorder of magnitude with the diffusion penetrability in
the bulk. However, this does not agree with our experi-
mental data: the autoradiograms clearly show that the
diffusion penetrability of grain boundariesin Nb for the
diffusion of carbon is considerably higher than that in
the bulk.

Thus, our suggestion that s ~ 10° is erroneous. In
fact, condition s < 10° should be met. For example,
assuming that s~ 10° < 105, weget D' =1 x 107> m?/s.
For such a value of the coefficients of the carbon
boundary diffusionin Nb, condition D' > D ismet and
both the conditions determining the onset of the B,
regime arise (a < 0.1, B > 10).

In conclusion, consider the relationship between the
diffusion penetrabilities in the bulk and at the grain
boundariesin Nb for the self-diffusion and diffusion of
impurities. We choose for the estimates the specific
temperature value T = 900 K. Calculating P to the self-
diffusion along grain boundariesin Nb using the empir-
ical Gust relationship [11], we obtain Py, = (D'®)y, =
1.5 x 10%’ m¥/s. Assuming that 6 = 5 x 10° m, we
obtain the value D' = 3 x 1078 m?/s for the coefficient
of the grain-boundary self-diffusion. In the case of vol-
ume self-diffusion in Nb, we calcul ate the correspond-
ing diffusion coefficient using the formula[4]

-1

D = 53x 10 ep LM D o1 5)
Hence, we obtain D = 9.9 x 102 m?/s. In the case of
self-diffusion, the ratio of the diffusion penetrability of
the grain boundaries and the bulk at 900 K in Nb is
D'/D = 3 x 10°. Taking into account that the tempera-
ture of 900 K is very low for diffusion in Nb (T/T,, =
0.35), the relationship obtained for the diffusion pene-
trability of the grain boundaries and for the bulk in Nb
looks reasonable.

The similar relationships for the impurity diffusion
inNb at 900 K are

CoinNb:s~10?, 3=5x10m/[4],
and D'/D =4 x 106;

CinNb:s~103, 3=5x109m,andD'/D =3 x 102

We found that, on the one hand, the bulk and bound-
ary diffusion of carbon in Nb differ by only two orders
of magnitude. In contrast to most other systems, in the
case of the carbon diffusion in Nb, this difference is
also retained at high temperatures, since the activation
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energies for the bulk and grain-boundary diffusion are
close to each other.

On the other hand, in the sequence of diffusants Nb—
Co(Ni)-C, a sharp decrease in the magnitude of the
ratio D'/D is observed at low temperatures; it can be as
large as seven orders of magnitude. The most probable
cause of the observed effect is the change of the diffu-
sion mechanism, which manifestsitself most clearly in
the diffusion of carbon in Nb.
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To analyze the effect on the tube walls and environ-
ment of a pressure pulse P(t), generated in a vertical
tubefilled with aliquid as aresult of the combustion of
fuel in the bottom portion of the tube, we need to know
the pulse duration and shape. The pressure rise induced
by the combustion is followed by a pressure drop due
to the expansion of the combustion products. This pro-
cess is of practical interest, for example, as applied to
oil wells, where the expansion of combustion products
isdriven by the compression and displacement of aque-
ous salt solutions (henceforth called water for brevity)
occupying the well space above the combustion prod-
ucts. Some results of numerical simulations for pro-
cesses of this type were reported in [1]. However, the
presentation in [1] did not include any formulas or
equations explaining the approximations employed and
the dependence of the results on basic system para-
meters.

In what follows, we analyze the pressure pulse as
depending on the combustion duration and other
parameters (with water treated both as a compressible
and incompressible fluid). Thefiltration of the combus-
tion products and the formation of cracks in the ambi-
ent medium are not taken into account.

1. STATEMENT OF THE PROBLEM

At theinitial moment, a quiescent combustible mix-
ture fills a bottom tube segment of height L. A liquid
(water) column (LC) fills the tube up to a point located
a a certain distance from its top end. A cylindrical
combustion wave propagating in the radial direction is
simultaneously initiated on the tube axis. As the pres-
sure increases in the burning mixture, the combustion
products displace the water like a piston, giving riseto
a compression wave propagating along the tube
upwards. The qualitative and quantitative characteris-

* Emanuel Institute of Biochemical Physics,
Russian Academy of Sciences,
ul. Kosygina 4, Moscow, 117977 Russia
** Semenov Institute of Chemical Physics,
Russian Academy of Sciences,
ul. Kosygina 4, Moscow, 117977 Russia

tics of the motion depend on the ratio of the combustion
time 1 to the time t,, required for a hydrodynamic dis-
turbance to propagate from the burning center to the
upper LC boundary. Depending on the ratio 1/1,,, the
compression wave either transforms into a shock wave
(the faster this occurs, the smaller the t/1,, ratio is) or
retains a smooth pressure profile over the entire dis-
tance traveled up to the upper LC boundary. In the limit
of t/1,, > 1, water can be treated as an incompressible
fluid and the LC motion can be treated as that of a
rigid rod.

At the pressures P < 1 GPa considered below, the
isentropic dependence of pressure on water density pis
described by the Tait equation [2]:

P = B(0"-1), B = 3047 atm, n = 7.15, ospﬂ,
1
(D

wherep, istheinitial water density. The values of B and
n given above are characteristic of seawater with a salt
concentration of 0.7 mol/l at an initial temperature of
20°C. Sincethese parameters weakly depend on the salt
concentration (see sonic velocities for saline water
in [3]) and on the temperature change aong the tube,
these values can be approximated for other initial tem-
peratures and higher solution concentrations used in
practice. Within the pressure range indicated above,
shock-wave compression is close to an isentropic pro-
cess and the Hugoniot adiabat for the water is given by

Eqg. (1).

In arigorous formulation of the problem, the solu-
tion for P(t) can only be obtained by numerical meth-
ods. However, the basic trends in the fluid dynamics of
the process preceding to the formation of a rarefaction
wave at the upper LC boundary can be determined ana-
Iytically with a dependence on the parameters of the
problem, thus reducing the cal culations to a minimum.
Below, we use the following basic approximations.

1. The gas bubble-L C interface (henceforth referred
to as the contact surface) is assumed to be planar.
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2. The state of combustion productsis modeled by a
uniform gas bubble with pressure

P = Pu(0)0(Ve), (@)

where V, is the bubble volume. The first multiplicand
in (2) depends only on time and characterizes the vari-
ation of gas-bubble pressure due to heat release and
changes in chemical composition in the course of a
constant-volume combustion process. The second mul-
tiplicand represents the dependence of pressure on vol-
ume in an adiabatic process. Assuming that, in the case
when a combustion process takes place in a constant
closed volume, pressureisalinear function of the burnt
mass fraction and that the combustion front propagates
at a constant velocity, we obtain

_ tcf .
Pu(t) = Pi+Poagy, ST 3

P.t) = P,+P . t>T.

Here, P, is the pressure attained as the combustible
mixture burns out in a constant volume. The second
multiplicand in (2) is prescribed in the form of a poly-
trope:

K
B(Vy) = B\%H - A+25, 4

where X is the coordinate of the contact surface mea-
sured from its starting position upwards. The values of
P...x and k are used as parameters that characterize the
combustible mixture.

3. Inthe case of fast combustion, the approximation
of aspatially isobaric processis used (see Section 3).

2. SLOW COMBUSTION
(t/ty ~ 0.25-1)

The combustion-induced gradual pressure growthin
a gas bubble gives rise to an initially isentropic com-
pression wave propagating in water and transforming
into a shock wave after traveling a certain distance.
However, it is shown below that when T > 1,,/4 (Which
correspondsto T > 0.5 sfor an LC height of 2700 mm),
the distance required for a compression wave to trans-
form into a shock wave is greater than the entire LC
height. Under these conditions, until the compression
wave reaches the upper LC boundary, the flow in the
water column is described by a simple Riemann wave
[4]. At the same time, the gas-bubble pressure can be
found by solving a first-order ordinary differential
eguation without introducing any additional simplify-
ing assumptions. In a simple compression wave, the
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Gas-bubble pressure evolution: (1) t=0.2; (2) 0.5; (3) 0.8s.
Incompressible-fluid approximation: (4) 0.5 s.

velocity of the medium U isrelated to the density vari-
ation by the well-known equation

P
C
U = (=dp, 5
J’pp 6)
P1

where C is the sonic velacity. Substituting into (5) the
expression
n-1_1/2

Ll

MmBo =2, (6)

0 py

which follows from (1), and integrating the resulting
equation, we obtain

C =

C=C,+ ﬂ—z—lu. )
Here, C, isthe sonic velocity ahead of the wave. {For-
mula (7) is equivalent to a well-known relation for a
simple wave in an inviscid gas [4] when the isentropic
exponent is substituted for n.} Combining (6) with (1),
we obtain an expression for the sonic velocity asafunc-
tion of pressure. Then, using (7), we find the following
relation between the fluid velocity U and pressurein a
simple wave:

2C _ (n=1)/2n 0
U(x t) = 1§P—P1+1} 19 @®)

n-1 B 0

Applying (8) to the contact surface, we find

dXx 2C, ﬁP(t) -P; (n-Lyjen ]
g #1]-1g
dt n-1 B 0

where P(t) is the pressure at the contact surface. This
pressure, equa to the gas-bubble pressure, is given



Table
1, a, m/s? tg, S Xgny M toin S
1 70 53 7800 2
0.5 190 20 2900 2
0.2 640 0.58 860 0.58
0.1 1450 0.27 380 0.27

by (2)—«(4). Equation (9) is solved numerically with the
initial condition X;_, = 0. The figure shows the behav-
ior of P(t) predicted for three values of T for k = 2:
(1) 1=02, (2 0.5, and (3) 0.8 s. As an illustration of
the importance of taking water compressibility into
account in solving this problem, we also present a
result calculated in the approximation of incompress-
ible fluid (curve 4).

These results can be used to estimate the scope of
the solution in terms of the time ty, and location xg, of
shock-wave formation. Noting that the contact-surface
motion with an approximately constant acceleration a
(depending on 1) at t < T isfollowed by its deceleration,
we can use the self-similar solution for amotion driven
by a piston moving with aconstant acceleration to eval-
uate ty, [4]. It can be shown that

Coo . 2C 2C}
T (n+a’ " (n+1)a

for media described by Eq. (1). The table shows
approximate values of a and corresponding values of t,
and xg, for several values of 1. The results presented in
the table imply that ty, > t, and, equivaently, x, > H
when 1 = 0.5 sand H < 3000 m. In other words, the
compression wave cannot transform into a shock wave
asit passes by the entire L C length and retains the char-
acteristics of a simple wave described by (8) at t < t,,.
In the general case of an arbitrary 1, the LC fluid
dynamics is described by asimple wave at t < t,;,, =
min{t,, ty}. Analyzing the gas-bubble pressure devel-
opment, we should bear in mind that the time interval
over which Eqg. (8) remains valid for a contact surface
is approximately twice as long as that for the entire
compression wave. This is explained by the fact that
thistime is determined by the moment when the acous-
tic wave carrying the information about the incipient
breakdown of the simple wave caused by its reflection
from the free surface or by its transformation into a
shock wave reaches the contact surface, rather than by
the moment t;, .

3. FAST COMBUSTION
(t/ty, < 1)

In this case, the shock wave develops near the con-
tact surface and substantially affects P(t). To perform

ALEKSANDROV, KUZNETSOV

an approximate analytical calculation of P(t), we use
the isobaric model; i.e., we assume that the LC stateis
spatially isobaric (LC pressure is a function of time
only). At pressures below 1 to 3 GPa, the Hugoniot adi-
abat in (1) rewritten in the D-U representation (where
D and U are the shock-wave velocity and fluid vel ocity
behind the front, respectively) is equivalent to the fol-
lowing relation [5]:

D = C,+2U. (10)

Assuming that the initial water-temperature gradi-
ent is negligible, we can use the isobaric model
described above to formulate an equation for the
motion of the contact surface. In thismodel, both water
velocity and pressure are independent of the coordi-

nate. Therefore, %—)t( = U. Substituting (10) into thewell

known expression for shock pressure P = p,DU + P,
we obtain

P-P, = p,C,U +2p,U" (11)

Solving Eq. (11) for U and using the fact that 9(%( =U,

we arrive at the equation for the coordinate of the con-
tact surface:

dX

_ 12
dt + P(X1 t) Pli| , G = Cl (12)

_ 2 !
‘G+[G 2 2

where, asin (9), thefunction P(X, t) isdefined by (2)—4).

However, sincer%—>t< < L in the case of afast combus-

tion process, EqQ. (12) can beintegrated under the initial
condition (X = 0),_,. According to (3), the function
P(X, t) does not involve any explicit time dependence
under these conditions and Eq. (12) can be solved in
guadratures.

CONCLUSION

The method proposed here for modeling the dynam-
icsof aliquid filling atube can be used to calculate the
pressure profile generated when a combustible mixture
placed at the bottom closed end of atubeisburned. The
calculation takes into account the following defining
parameters. the liquid compressibility, parameters of
the equations of state, combustion duration, combusti-
ble-mixture and liquid heights, and others. This can be
performed by both analytically and numerically solv-
ing afirst-order ordinary differential equation (instead
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The bending of a layer weakened by a noncircular
holethroughit was considered in [1]. In [2-4], asimilar
problem for a layer with a circular hole was solved
using other methods. Papers [2-4] are devoted to the
study of the stressed states of ahollow circular cylinder
with a finite length or an annular plate subjected to
symmetric or skew-symmetric loads.

In this paper, we propose a new method for solving
three-dimensional problems of elasticity theory for the
bending of thick shells of finite length. This method
reduces the boundary value problem to an infinite set of
one-dimensional singular integral equations. The algo-
rithm obtained makes it possible to study the stressed
states of shells with variable thickness, which are used
in various crucia constructions.

We consider a skew-symmetric loaded cylindrical
shell with finite length 2h, which is bounded by two
cylindrical surfaces whose directrices are smooth
closed contoursL, and L, (L; n L, =0).

Let the bases x; = +h of the shell be force-free and
the normal and tangential loads N, T, and Z be applied
to the cylindrical surfaces.

We assume that the curvatures for both the direc-
trices of the cylindrical surfaces and the vector
components of the applied load satisfy the Holder con-
dition [5] inL; (j = 1, 2) and, moreover, that the func-

tions N = N(X;, X, X3), T = T(X;, X, X3), and Z =
Z(X,, %y, X3) can be expanded in theinterval [-h, h] into
the Fourier series with respect to the X5 -coordinate.
The boundary conditions on the cylindrical surfaces
are given by
(011 +02) _e—2i¢(022_011 +2i0,) = 2(N- iT)’(l)
Re[e" (013 —i0z)] = Z,

where | is the angle between the outward normal to L
and the Ox;-axis.

* Moscow State Technical University—-Moscow
Automotive Institute, Moscow,
ul. Bol'shaya Semenovskaya 38, 105830 Russia
** Qumy Sate University,
ul. Rimskogo-Korsakova 2, Sumy, 400007 Ukraine

To describe a stressed state of a thick shell, we pro-
ceed from the homogeneous solutionsfound by Lur’ e[6].
These solutions correspond to homogeneous condi-
tions at the cylinder bases.

We write out the integral representations for the
biharmonic and metaharmonic functions entering into
the homogeneous solutions in the following form:

F(x4, X,) = [pAGds+ [qGds,
frcef
Om(X1, X2) = Ingo(Gmr)dS,
L
Wi(X1, %) = quKO(ykr)dS1
L
l-z=re% (2

G =r’lnr, r=7-4,

2
L=[]L, Img,=0, T =¢&+i0L,
j=1

. o* y*
Z= X +iXo, Umzf' Yy = }:
of = (Zm;rl)rr.

Here, K,(X) is the MacDonald functions; the densities

p(Q), ..., g(Q) are subject to definition; and y; arethe
roots of the corresponding transcendental equation [6].

We expand all even and odd components of both the
stress tensor and applied load into the Fourier cosine
and sine series, respectively:

U= Zumcoscr’;xg,,

V = Z VmSINOH Xg

X3
h

With regard to these expansions, we obtain the fol-
lowing boundary conditionsfor the Fourier coefficients

with x5 =
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X3
1 2 3

0.5+

0 i cree/P'

Fig. 1.
of the stress tensor:
(ot +05)) —e (0 —of} + 2ic}
= 2(N,—iT.), 3)

Re[€¥(0 o] = Z,, m=01,...
Using representations (2) and the expressions for
stress given in [6], evaluating the Fourier coefficients

M and substituting their limiting values into bound-

gij;
ary conditions (3), we arrive at an infinite set of one-
dimensional singular integro-differential equations.
Here, we do not write out this set becauseit istoo cum-
bersome.

The numerical simulation of theinfinite set was per-
formed by the method of mechanical quadratures [7]
and the subsequent application of the reduction
method.

To characterize the stress state of the cylindrical sur-
faces, we consider three components of the stress
vector:

.2 2 .\
Oge = 01,800+ 0,08 6 —20,,c0505N0O,

092 = —0'13Sine+0'23COSe, e = LIJ_T[1 (4)

Oz = Ogs.

To evaluate them, we first solve numerically the set
of the integro-differential equations for the boundary
value problem, then determine the Fourier coefficients

o[ and, using formulas (4), calculate the desired

stress of the cylindrical surface.
DOKLADY PHYSICS Vol. 45
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As an example, we consider a thick shell with a
cylindrical surface having the following directrices:

L) _ 5 1) - D)
L;: & = Ry’cosd,, & = Ry 'sing,,
0<¢,<2m
.2 _ 2 - @
L, & = Ri"cosh,+ py, & =Ry 'sing, + p,,

0<¢,<2m.

Here, L, isthe exterior contour.

Let the inner cylindrical surface of the shell be
force-free and the outer surface be subjected to the load

2(N=iT) = Pxg(1+e™2).

Inthiscase, therelative stress og¢/P at the point ¢, =
172 isshownin Fig. 1 asafunction of the x;-coordinate.

Thecurves 1, 2, and 3 correspond to Ril) = él) =11,

X3

0.5

]
Oee/P
Fig. 3.
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4, and 2, respectively, with b/ Rf) =1(p,=p,=0)and

R? = R? = 1. The similar curves in the case of

h/ Riz) = 4 are presented in Fig. 2. The dots show the
results of [2, 4], which correspond to the bending of a
force-free layer weakened by the tunnel hole through it

and subjected to the load a;; = Px, at infinity.

Let the inner cylindrical surface of the shell be
force-free and the outer surface be subjected to the load
N = Px,. In this case, the relative stress ggy/P at the
point ¢, = 172 as a function of the x;-coordinate is
shown in Fig. 3. The curves 1, 2, and 3 correspond to

p, = 0, 6, and 8, respectively, with h/R® =1, R? =
R? =1, RY =10, RY =5, and p, = 0.

The numerical results are obtained for the Poisson’s
ratiov = 1/3.

=
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In this study, the mathematical theory for anew form
of the Newtonian law of gravitation is developed [1].
This form manifests itself in the appearance of time-
independent sets in a gravitational field. The potential
of thisfield can also differ from the Newtonian poten-
tial as little as desired. Yet this makes it possible to
explain the quantization of planetary orbits, the appear-
ance of Saturnian rings, and the striped character of the
asteroid belt. Kepler developed his laws for planetary
motion on the basis of the observations of Tycho Brahe.
However, his extension of the results of these observa-
tionsto arbitrary positions of closed orbits was unjusti-
fied. Newton found the potential for the gravitational
field based on the Keplerian laws. Therefore, the poten-
tial found by Newton cannot be used for describing the
planetary motion in the cases mentioned above.

We consider for definiteness the motion of a mass
point in the central gravitational field:

mit = KR ()
r
axg
where R = Ey% is the vector column and r is its
Oz

Euclidean lengthr = J/X* +y* + 7.

Equation (1) can also be represented in the form

R = grale(. 2)

Here, misthe mass of the mass point and k is the grav-
itational constant.

We put { = logr. Then, the Newtonian potential is

ke 3)
We introduce into the consideration the potential
ke™[1+ f(Q)] @)

instead of potential (3). Then, for potential (4),

S. Petersburg Sate University,
Universitetskaya nab. 7/9, S. Petersburg,
199164 Russia

Eq. (2) takesthe form
R = KROQ)
r

In this case, function ¢(¢) is determined from the equa-
tion

&)

$(@) = 1+ () - (0. (6)
Here, the derivative of function f with respect to param-
eter ( isdenoted asf'.

Theorem 1. For the arbitrary choice of a continu-
ous bounded function ¢(¢) given for { [0 (-0, +c0),
Eqg. (6) has the unique bounded solution f,({), which is
continuously differentiable. In this case, if function
$(Q) isperiadic, then f,({) isalso periodic, and if func-
tion ¢(¢) is almost periodic, then f,(¢) is also almost
periodic.

Remark 1.1. The function f,(¢) is defined by the
formula

fo(Q) = J’e“‘”)d)(n)dn- )
14

Remark 1.2. It follows from formula (7) that if
function ¢ is a bounded integrable function, then f, is
continuous and bounded.

Weintroduce into the consideration a set R of points
in space E3, inwhich function ¢ > 0, and denote this set
as F*. Similarly, we denote F- and F° as sets of points
in the space E* for which ¢ <0and ¢ = 0, respectively.

Theorem 2. A set of circular orbits entirely situated
in set F+ passes through the arbitrary point of set F*.
None of the circular orbits can pass through the arbi-
trary point of set F-. Moreover, any motion correspond-
ing to the unbounded increase or decrease of time
leaves set F. If the motion startsin set F° and has the
initial zeroth velocity, then the motion remainsthere: in
other words, the time-independent motions are accu-
mulated in this set.

Remark 2.1. If R° O FO, then the circular orbit
0 1.-0.
R = R’coswt + O—JR sinwt

isthe solution to system (5) and isentirely contained in

1028-3358/00/4511-0599%$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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set F* provided that R is orthogonal to R® and |RY| =

|IR°|ca where w= /#(¢) and { =1Inr°.
Remark 2.2. If R° O F-, then for the motion with the

initial given R, R’ remainsin the Laplacian plane and
exhibits hyperbolic behavior with a tendency to leave
set F~ while increasing and decreasing time.

Remark 2.3. We assume () = cosp; then for a
reasonably small €, the variation of the Newtonian
potentia is as small as desired. However, the function
®(Q) = ecospl — eusinpd + 1 for a sufficiently large
parameter 1 quantifies space E* into sets F* and F-,
which are separated by spheres belonging to set F°.

The behavior of themotionin setsF*, F-, and F° are
described above. This behavior shows that the modifi-
cation proposed for the Newtonian law of gravitationis
more adapted to the description of not only planetary
systems but also of the structure of atoms, since func-
tion ¢(¢) isgiven for all values ¢ 1 (—oo, +00).

Let the initid condition R, R® for system (1) be
given. Then, these conditions define the Laplacian
plane passing through the origin, so that the mation
given by these initial data lies in this plane. We repre-
sent the motions occurring in this plane with the help of
polar coordinates:

_ a
= 1—gcosy’ ®
Here, p and | are polar coordinatesand € and a are cer-
tain parameters.

In the Cartesian coordinates corresponding to this
plane, the mation can be represented in the form

3 =_ PCQSUJ, )
n = psiny.

Functions (9) satisfy the system of differential equa-
tions

1 = _ + ,
§ | n VED (10)
n'=¢&+yn’,
wherey = €/a isthe system parameter.
Theorem 3. System (10) has the first integral
&+n° _
(Y& -1)°
If theinitial conditions§,, n, for agiveny> 0 satisfy
N £0+ No .
the inequdity I, < 1, I, = ————;, then they define

0
an elipse in the Laplacian plane. Moreover, the family

ZUBOV

of the ellipses hasthe boundary |, = 1, which isaparab-
ola. For |, > 1, the equation | = |, determines a hyper-
bolaintheplane. Asyg,—1 — 0, |, — +o. Thelim-
iting value defines the integral manifold & = 1/y. This
integral manifold divides the Laplacian plane into two
halves, so that motions beginning in one of the halves
never approach the other half. This phenomenon is
called The Great Chinese Wall in observational astro-
nomy.

If y=0, then all motionsin the Laplacian plane are
circular. The behavior of system (10) for y < O is deter-
mined from the above in the case of replacing & with —§
and Y with —.

For the modified potential, Egs. (10) take the form
¢ =-n+yen(1+9(p)),
nN' = &+yn“(1+9(p)).

Theorem 4. Integrating system (11) yields the inte-
gral equation

(11)

a
p= m

O O
1—ecos[P +J’g(p)dljJD
O s O

(12)

Remark 4.1. It follows from Egs. (11) and (12) that
the existence of closed orbits situated in all the sets F+,
F-, and F° is plausible. These orbits can help us to
explain the diving motions of Martian satellites, the
orbit-to-orbit transitions for Saturnian satellites, and
the existence of fresh comets.

Remark 4.2. Inthe case of the Newtonian potential,
it was established [2] that the arbitrary motion of matter
can be represented in the phase space as a totality of
three topological transformations occurring simulta-
neoudly: the orthogonal transformation, the transfor-
mation of compression or extension, and another suc-
cessive orthogonal transformation. This remark also
remains valid for the modified potential.
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1. When the shear yield strength of a material tends
to zero, the scalar constitutive relation of the viscoplas-
tic medium (the Bingham-I1" yushin model) is reduced
to a physicaly linear relation for viscous fluid. In this
limit, the flow studied below, in acertain sense, tendsto
the classical Jeffery—Hamel flow. The steady motion of
viscous fluid in aflat confuser and a diffuser have been
studied intensively [1-6]. Sometimes, this motion was
chosen as a support flow for the approximate solution
of a more complicated prablem, for example, the
nonisothermal problem [3]. Perturbing the Jeffery—
Hamel flow by alow yield strength can be classed as a
problem of deformation stability against the perturba-
tion of material functions[4, 5, 7].

We developed a mathematical formalism for inves-
tigation of the flows in a viscoplastic medium having a
low yield strength under deformation in aflat confuser.
The approach isvalid at arbitrary values of constitutive
parameters of the system, i.e., the opening angle and
the Reynolds number. The efficient numerical and ana-
lytical method of accelerated convergence and the effi-
cient computational algorithm are constructed. The
corresponding software is created. A high-accuracy
complete solution to the problem is constructed within
the class of symmetrical functions at the fixed opening
angle, and the numerical simulation is performed. Pre-
viously unknown graphical relationships are obtained;
mechanical effects are revealed and interpreted.

Let the flow of a viscous incompressible fluid hav-
ing density p and dynamic viscosity i occur in the
region Q = {r, 8: r > 0, |8| < B}, where 23 is the con-
fuser opening angle and Q > O isthe outflow rate. Then,

0 0 .
components v, and v4 of the velocity vector v°, com-
ponents v° , vg,, and v, of the strain rate tensor v°,

* |nstitute of Problems of Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
** Moscow State University,
\orob' evy gory, Moscow, 119899 Russia

and maximum slip velocity U° have the form
VP = -Qriv(e), v; = -vg = Qriv(e),
Vo = —Qr2v(e)/2,

(D
ve=0, U°=(2v:v)" = QrF(o),

FO) = (V2 +4v?)",

where V is an unknown dimensionless function to be
determined. For flow (1), the incompressibility condi-
tion is met automatically.

. . 0 0 0 0
Inviscousfluid, components ;, , Ggq, 0,,, and Oy

of the stress tensor g° aswell as T are expressed in the
form

2pQ° -
USr;ee = _poi g—(e?r 2V(6)1 022 = —po,
o o 2
o _ PQ -2, o_ Py
O = Rer V@), T Rer F(8),

where pQ/u is the Reynolds number and p° is the pres-
sure. The quantities U° and T° are interrelated by the
scalar constitutive relation of a viscous medium T° =
(PQ/Re)/U°.

Desired function V() is a solution to the following

nonlinear boundary-value problem corresponding to a
constant flow rate[1, 2, 6]:

V" +4V —ReV? = C,
. 3)
V(*B) = 0, J’V(B)de =1
-B

Here, C is an arbitrary constant [C = V"(B)] to be
determined from (3). As a result, parameters (1), (2),
and the pressure

2
o _ pQ° 2C-4V
P=Re" 2

will be fully determined.

)
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The numerical and analytical solution to problem (3),
convenient in further analysis of viscoplastic flow, is
constructed in [6] for the parameter range (0 < 3 < 172,
0 <Re = 10% and isof interest for its potential applica-
tions.

2. We consider the flow of a viscoplastic medium
(the Bingham-lI’yushin model) obeying the scalar
relationship

T=Ts+%%U, 1,>0. (5)
The existence of shear yield point t.in (5) leadsto con-
tradictionswhen solving for the separation of variables.
A review of analytical, numerical, and experimental
studies of such flows both in flat and conical confusers
and diffusersisgiven in [4]. Below, we present the for-
mulation of the problem and possible approaches to its
solution.

In domain Q, we use the equations of motion and
the incompressibility condition

—gradp + Divs = pv, divv = 0. ©6)

The stressdeviator s= 0 + pl, where o isthe stress ten-
sor, is related to the strain rate tensor v by the vector
constitutive relations

- EFS pQ
s =205+ Re%v (7

Using the relation between tensor v and vector v
(the Stokes relationships) in (7) and substituting (7)
into (6) yields a closed system of three equations with
respect to v,, vy, and p. This system is complemented
by nondlip boundary conditions and aconstant flow rate
condition:

B
v(xp) = 0, Irvrde = Q. (8)

An approximate solution to problem (5)—7) is con-
structed using asymptotic expansion in powers of a
small numerical parameter T, which characterizes the
relative smallness of dimensiona quantity 1. in (5)
and (7):

@

v=vl+tnvWa
v=uv +rv(l)+ .
U=uU"+tu®+

Thefirst termsin expansions (9) correspond to the Jef-
fery—Hamel flow (Section 1). Substitution of (9) into
(5)—7) yields the following first-approximation equa-
tions for the unknown variables v(, p®», vV, sV and
Ui 14]:

p=p +1pV+ ..
s=+1sW+ . )

(1)
Str

r

5ree

_pr Srr,r"'2

KLIMOV et al.

_ w V. o.V o
- _anF/Vr,r_r_zvr +FV6 %
(10)
(1) (1)
@, Sre., L Sro o,V o
o +Sre,r+2 pQ%VVe, t=Vy %
r r?
(1) (1) (1)
74 "4 74
V§12+ r 4 Yoo _ o U = 20 .
T U

Using both the Stokes rel ationships and formula (1),
we can present tensor s’V and its components as

P = Z[T—SV—O + gv(”},
Ty° Re

O<W¥<m,

sny = 2U—”, (11)

)
T
0 _ Yoo + PR re @
Relr

(1)
_Is _Ve [
Sre T o,r r D

According to (3) and (8), the boundary conditions and
the constant-flow-rate condition for v have the form

B
vi'eB) = vi'p) = 0, [rvi'de =0 (12)

Substitution of expressions (11) into (10) leadsto a

closed linear system of equations with respect to v‘",

vY and p. Due to functions sinW and cos ¥, these

equatlons are inhomogeneous and should be solved
taking into account conditions (12).

3. A solution to problem (10)—(12) is sought in the
form [4]

@ _ Ts TW(0) @ _ Ts
v, = ——2, Vs = —=rW(0),
PQ 2 o = 1pq" MO

where W(0) is the dimensionless stream function. For
expressions (13), incompressibility condition (10) is
met automatically. Components of tensor vV are deter-
mined based on (13). The problem of finding the

desired functions v, v{?, and p can be reduced to

(13)
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the following linear nonhomogeneous boundary-value
problem for only one unknown stream function \W(0) [4]:

W" 4w : ‘ragnw| =
[_R_e ~ 5 T 2V'W+2(cos¥) +4S|nLIJ} = 0,(14)
W(B) = W(p) = O.

Using (14), we find W(8) and then determine the pres-
sure perturbation ptV:

o _ [_pQow™ 0, s :
p = [_ReDT +2Wet - (cosW¥)

+2T?SsinkIJ+pQV'W}Inr +P(6), (15)

P(6) = 2pqvw—%(gnw)'+2§f%cosw.

Note that known expressions for function V(0) and its
derivatives should be substituted into (14) and (15).
Otherwise, the boundary-value problems (3) and (14)
should be solved simultaneously.

As is known, the rigid zones (flow cores) Q, 00 Q
can form during the deformation of viscoplastic media.
At small 1, these zones Q, and their boundaries .,
which separate them from viscoplastic flow, are deter-
mined from the conditions

Q, = {r,0: T<ty},
>, ={r,0: 2tv% v® =—U°2}.

In the laboratory reference system, the boundaries
of rigid (quasi-rigid) zones are immobile. However,
there occurs a mass transfer inside them.

Determination of the asymptotic boundaries Z, as
T, — 0 is of particular interest. Substituting expres-
sions (1) for v° and v into (16), we find the boundary
of rigid zoner*(8) in polar coordinates:

re) = QJTER(B), R = 22F

D )
D = (AVW -V'W")"%
Denominator D(B) is not defined at all 8 [ (-f3; B) (see
below).
At the rigid-zone boundary r*(0) (17), the compo-

nents of both velocity vector v* and strain rate tensor
v* are described by the approximate expressions

(16)

(17)

T V. RW
O= |5 - _v_RW -
v /pV(e), V, == Vo= RW,
T vV W
0= = = _ =Yy _W
v > QV(e), V., Voo 22 (18)
Ve W'
VoT R
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4. Approximate analysis of the problem concerning
the steady-state flow of a viscoplastic medium with a
low yield strength is reduced to solving a nonlinear
boundary-value problem. It is described by an eighth-
order system of equations and contains four unknown
integration constants. The solution also depends on the
parameters of the system, angle B and the Reynolds
number Re, which vary in a wide range. Below, we
present the results of a numerical and analytical study
of the problem. These results are based on the modified
method of accelerated convergence, which was devel-
oped by usandisaccurateto arelativeerror of 10°-10~".

To calculate and present the results conveniently, we
reduce the boundary-value problem (3), (14) to normal -
ized variables, i.e., to argument x and unknown func-
tions y(x) and w(x). As aresult,

Z =y-1, y(X)=2BV(0), x=2LBB, O0<sx<1,
zy,w,w =0,

y'+a’y—by’ = A; x =01,

wW" +a’w —2by'w = k+@, w(x) = W(0),

oy, ¥, A, &, b) =a’by(y? + a’y?)
x (2y?+2a’y* — Ay —by’),

where A = (2)’C and k are arbitrary constants which
should be determined while solving the boundary-value
problem at given a=43 and b=23Re. Parameters A and
k can be eliminated by differentiation with respect to x.
Variable z corresponds to aquadraturein (3), i.e., to the
condition of a constant flow rate. Function ¢ (19) arises
owing to functions cosW and sin'V in (14).

Note that the boundary-value problem for z and y
can be separated out. Its sufficiently complete analyti-
cal and numerical solution, which belongs to the class
of symmetrical functions, is presented in [6]. The com-
putational aspect of the problem lies in the determina-
tion of y=¥(0) and A =y"'(0) at given a and b. The solu-
tion is obtained as aresult of integration of the Cauchy
problem. At fixed values of the parameter a (i.e., angle
B), y(b) and A(b) are determined by the recurrent algo-
rithm of accelerated convergence and the continuation
procedure with respect to the parameter b.

At known values of y, ¥, and A, solving the linear
boundary-val ue problem for w(x) (19) is reduced to the
determination of missing values of parameters ¢ =
w"'(0) and k =w"(0). Values of c(b) and k(b) (a isfixed)
are calculated by a single integration of the three
Cauchy problems for functions w;, w, and w,. They
are described by the equation and initial data of
type (19) under thefollowing additional conditions: k=
@ =0and w, =1 (forwy); k=1, @ =0,and w (0)=0
(for wy); and k = wj, (0) = O (for w,,). Having been cal-
culated, the functions w,(x), wi(x), and w(x) then allow
us to present the desired function w(x) as w = cw, +

(19)
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Fig. 2. Profilesy; ,(x) of velocity in aviscous fluid and the
stream functions w; (x) of a viscoplastic medium at
b] =10 and bz =100.

kw +w,, and to find coefficients ¢ and k using boundary
conditions (19):
c = [W(L)W, —Wy(D)w(1)]& 7,
K = [WiL)wy—W(HWi(1)]5 ™,
3 = w(hwi(1) —we(1)w(1) # 0.

(20)

Using (19) and (20) to calculate the quantities ¢ and
k at required values of the parametersa and b, i.e, B
and Re, we can determine function w(x) and its deriva-
tivesw' and w" as a solution to the Cauchy problem for
Eq. (19). These functions are also used to construct the

KLIMOV et al.

desired characteristics of the viscoplastic flow. They are
rs, v, vy ,and soforth; i.e, R* = R(X), V' = V,(X),
5 = Vu(X), etc. [see (17) and (18)].

The calculated characteristics of viscous and visco-
plastic flows symmetric with respect to x = 1/2 in aflat
confuser are illustrated in Figs. 1-3. The calculations
have the relative error of 10-10-5. For the sake of def-
initeness, we consider the case 3 = 10°. Parameter b var-
ies within the range 0 < b < 100, i.e., where 0 < Re <
300. Functions y(b), A(b), c(b), and k(b), which deter-
mine a solution to boundary-value problem (19)
through the integration of the corresponding Cauchy
problem, are plotted in Fig. 1. These curves have arel-
atively simple form. However, they are difficult to plot
based on (20) and [6] since tedious computations are
required, especially at b > 1. Typical plotsy, , andw, ,
of variablesy(x) and w(x) at b= b, ,, whereb, = 10 and
b, = 100, are shown in Fig. 2.

We revealed the following qualitative effect: at 0 <
b < b* = 60 (b, < 60), the flow of aviscoplastic medium
in the confuser is characterized by two quasi-rigid
zones, which are situated symmetrically with respect to
x=1/2 (8 = 0) (Fig. 38). Far from the origin of coordi-
nates, the medium flows mainly through three gaps,
which are situated along the confuser walls and
between the zones, i.e., in certain neighborhoods of
x =0, 1/2,and 1. At small b, the central gap between the
zonesisnarrow (arbitrarily narrow asb — 0). With an
increasein b (b < b*), expansion occurs whilethe zones
become narrower. At b > b* (b, > b*), the third quasi-
rigid zone arises along the central confuser ray and the
medium flows through four gaps, which are situated
near the walls and between the zones (Fig. 3b). When
the parameter b grows, the lateral zones converge and
shift toward the confuser walls while the central zone
expands. It is noteworthy that the boundaries R, ,(x) (17)
of the quasi-rigid zones have vertical asymptotes corre-
sponding to rays for argument 8. These asymptotes are
related to zeros of the denominator D(x) in the expres-
sionfor R(X) in (17); positive and negative values of the
radicand in D correspond to the zones R(x) and to the
gaps through which the medium flows, respectively.
According to (17) and (18), plots for the velocity com-
ponents at zone boundaries V,(xX) and Vy(x) aso have
vertical asymptotes at the mentioned points. We note
that at b < b*, the radial velocity component V,,
changes its sign at the zone boundary when X varies
with respect to themidpoint x=1/2 (6 =0): itispositive
between the zones and negative between the zones and
thewalls. Thetransverse component Vy, isantisymmet-
ric with respect to x = 1/2 and directed toward the mid-
dle part of the confuser.

When there are three quasi-rigid zones (b, = 100),
component V,, of the velocity for particles in the outer
zones varies similarly to V,, . In the central zone, this
guantity is strictly negative and the transverse velocity

DOKLADY PHYSICS Vol. 45
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Fig. 3. Boundaries of quasi-rigid zones R, ,(x) and radial [V ,(X)] and transverse [V, ,(X)] velocity components at these bound-

ariesfor b; = 10 and b, = 100.

component Vg, is directed toward the confuser walls.
Due to this fact, the central zone expands. In the outer
(near-wall) zones, the transverse velocity component
changes its sign. Closer to the walls, it is directed
toward the middle of the confuser and has the opposite
direction (toward the walls) inside the flow. Conse-
guently, these zones become narrower. Moreover, as b
grows, they shift toward the confuser walls.

In the framework of the approximate model under
study (1o — 0), the behavior of quasi-rigid zones in
thelimit of b — oo can be analyzed by using analytical
methods and by examining the asymptotic expressions
for solving the Jeffery—Hamel problem [1, 4, 6].
According to thisanalysis, the lateral zones* adhere” to
the confuser walls at a certain sufficiently large value of
parameter b (i.e., the Reynolds number) and their width
decreases (unlimitedly). At the inner boundaries of
these zones, the transverse component of the particle
velocity isdirected toward thewalls. Theradial compo-
nent is positive, i.e., directed from the origin of coordi-
nates (oppositely to the main flow of the medium). The
central quasi-rigid zone expands and takes the shape of
a half-strip with a rectangular lower border (a sector
without avertex). At itsboundary, the radial component
of the particle velocity is negative (directed to the ori-
gin of coordinates). At the lateral parts of thisboundary,
the transverse components are directed, as for the lat-

DOKLADY PHYSICS Vol. 45 No. 11 2000

eral zones, to the corresponding walls. Thisis an indi-
cation of the tendency to expansion.
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Owing to their shape, vast vortex formations found
in the ocean at depths of approximately one kilometer
have been called lenses [1-4]. Many lenses discovered
in the Northern Atlantic thousands of kilometers to the
southwest of Gibraltar contained Mediterranean water.

Thisstudy isbased on the results of observationsfor
three lenses called “Meddy” [3, 4] and the lens “Meso-
polygon-85" [1, 2]. The general featuresintrinsicto this
phenomenon and the characteristic orders of magni-
tudesfor their parameters are thefollowing: there exists
adensity-homogeneous [ 2] or weakly stratified rotating
core [3]; the periphera velacities are proportional to
the radius; the highest peripheral velocity is~30 cm/s,
the rotation timeis~5 to 6 days; the horizontal and ver-
tical sizes of the core are ~20 to 40 km and ~400 m,
respectively [2]; the distinctions between the tempera-
ture and salinity in the lens center and in the back-
ground water at the same horizons attain +4°C and
+1%o, respectively; the ratio of the lens-density excess
to the background-water density at the same horizonsis
Ap/p ~ 10 for the “Mezopolygon-85" lens; and the
background-water stratification characterized by a
Véisda-Brunt frequency N squared amounts to N? =

‘gﬁ‘g ~ 107 s? at a horizon corresponding to the lens

density (h is the depth counted off from the ocean sur-
face and g isthe gravitational acceleration).

We propose mechanical models for this phenome-
non, which explain the displacements of the lenses for
long distances (~3500 km along a straight line for the
“Mezopolygon-85" and ~1700 km for the “Meddy-1")
from Gibraltar to the southwest and the south and the
long lifetime of these formations, ranging from 3 to
10 years and longer according to the estimates of [2].

Explaining the motion of the lenses as being trans-
ferred by deepwater flows is not consistent with mea-
surement data. The cause should be sought in the dis-
tinctions between the mechanical characteristics of the
lenses and those of the ambient water. We imply the
distinctionsin density and the existence of proper rota-

Institute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 117192 Russia

tion. Initialy, we ignore thermohaline processes. The
ocean is taken as a perfect incompressible density-
inhomogeneous liquid with a stable stratification. In
this consideration, we choose a system of coordinates
related to the rotating Earth. We compare two
approaches: a lens as a rotating solid or as a homoge-
neous rotating liquid mass. On the basis of full-scale
measurements, it was assumed that solids modeling
lenses are strongly flattened axisymmetric ellipsoids
with a semiaxis ratio of ~10%. The effects of the
medium are displayed by two mechanisms, namely, by
static and dynamic mechanisms presented by
Archimedean forces and by dynamic reactions, respec-
tively, which involve the apparent masses. From the
theory of motion for a solid in liquid [5], we used the
structure of expressions for reactions induced by the
motion of perturbed water, while the apparent masses
involved in them are determined approximately allow-
ing for the Earth’'s rotation and the ocean’s stratifi-
cation.

The specific action of these factors is expressed in
the blocking perturbances introduced by a lens in a
bounded region, whose dimensions are determined by
the horizontal Rossby radius R, = (gH)"%/f, (H is the
characteristic vertica size, f, = Qsin¢ is the Coriolis
parameter, and ¢ is the latitude of the point under con-
sideration) and by the vertical dimension, the so-called
Rossby height, Hg = L|f,|/N (L isthe characteristic hor-
izontal size) [6, 7]. For the lensradiusL = R = 20 km
and the lens height H, = 0.4 km, Ry ~ 250 km and Hg, ~
0.2 km. The perturbed ocean zone containing the lens
occupies a cylinder with a radius of ~250 km and a
height of ~0.8 km. This qualitative distinction from the
classical theory [5], where the perturbed region is infi-
nite, leads to substantial quantitative variations in the
apparent masses. Estimations of the apparent masses
show that Ay; = M(Ry)/24(Rg — R)’HgH, = 7.6 x 10°M
along the lens-rotation axisand that A;; = A\,, < M in
the perpendicular direction, where M is the lens mass.
The apparent mass A4; of adisk of the same dimensions
for a motion within a nonrotating homogeneous
unbounded space filled with liquid is lower by three
orders of magnitude.

In the position of the hydrostatic equilibrium of a
nonrotating solid ellipsoid in astratified liquid, the hor-

1028-3358/00/4511-0606%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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izontal plane of symmetry is arranged at a horizon,
where the background-water density p is equal to the
body density p,. The moment of hydrostatic forces is
zero. The rotating body has a proper angular momen-
tum H = Cw, w = congt, C isthe polar moment of iner-
tia, and w is the angular-velocity modulus for the
proper rotation. In the case of an anticyclonic rotation
(asit takes placein alens), the angular-momentum vec-
tor is directed downwards to the ocean depth. The
H-vector motion in the inertial space is the sum of its
motion with the Earth and its motion with respect to the
Earth. When a body has no velocity with respect to the
Earth other than a proper-rotation velocity, the H-vec-
tor variation is related only to the variation of its direc-
tion in theinertial space owing to the rotation with the
Earth (the gyroscopic precession). According to the
theorem on angular-momentum variation, we have for
H = const

dH
dt

Here, Q isthe angular velocity of the Earth’s rotation
and M is the moment of external forces acting on the
body. For such amotion and anticyclonic rotation of the
body, the moment must be directed westward. This is
the moment of the Archimedean hydrostatic forces act-
ing on a body in stratified liquid. For this, the body
must be inclined in the meridian plane with respect to
the local horizon, so that its southern part would be
dlightly drown, while the northern part must be slightly
raised over the horizon as is shown in the figure. The
moment M, of the Archimedean forces acting from the
side of alinearly stratified liquid on the axisymmetric
ellipsoid of revolution, whichisinclined under an angle
o to the horizon, is determined by the expression

= [@xH] = M. )]

M, = %Vg(c2 az)— sinacosa.

Here, Vistheellipsoid volume, aand c arethelargeand

small semiaxes, and gﬂ = const isthe coefficient in the

dependence of the density variation with depth. The
proper kinetic moment of the axisymmetric ellipsoid
withmass M = Vp, isdetermined by the expressionH =

w = (2/5)Vp,a*w. Substituting H and M, into (1) and
taking into account that ¢ << a, sind = a, cosa = 1 for

small angles a and that ‘QE‘Q = N2, we obtain an
|

expression for the small angle of inclination a of the
body’s proper-rotation plane to the local horizon:

— 2w cosp ‘”szosq’, 2)

For the “Mezopolygon-85" lens (w ~ Q/5, ¢ = 20°,
and N2 ~ 107 s?), we have a = 1', while for the
“Meddy-1" lens (w ~ Q/6 and ¢ = 28°), a = 0.5". Pos-
sible additions to the angle a and the body inclination
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to the meridian, which are associated with the lens
motion with respect to the Earth with a velocity of
1 cm/s, are four orders of magnitude lower than a. In
the case of investigating slow lens motions over long
periods of time, these additions may be ignored.

The eguations for the relative center-of-mass motion
are composed in spherical coordinates: ¢ and A are the
geocentric latitude and longitude of the point under
consideration, respectively, and r is the distance
between the body’s center of mass and the Earth’s cen-
ter. The dlipsoidal shape of the Earth is taken into

account by introducing asmall angler-! or between a

local verticad and a radius vector directed from the
Earth’s center. Since

cosd ~sind ~ 1,

dA\l <0 = h(t
‘dt . r=r(0)+h

(histhe depth counted off from the free ocean surface),
dr _ or dd) dh
dt ~ a¢dt dt dt

= < rcosq>‘d_)_“,
t dt

< |99
dt

the set of simplified equations in projections onto the
principal axes of the body has the form

M?rcosd) (2Msing + cx)\33cos¢)Qrd¢

= )\33Qcos¢a,
o o 3)
d +2MQr5|n¢cos¢ dt = —-[M-m(h)]ga
2
Aas[gdt—hﬂa%ﬂ = [M=m(h)]g.
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Here, m(h)g is the Archimedean force and the angle a
is positive when the southern edge of the body is
dlightly drown. The first two equations are similar to
those of a hydrostatic system and, in the approximation
of the precession theory [8] with alowancefor relation-
ship 2Msin¢ < aAs;cos¢ being fulfilled for actual val-
ues of parameters, take the form

d¢ _1dh d)\ _ a[M-m(h)]g

"Gt Tadr "G oMasng - Y
Equation (4) shows that motion along ageographic par-
allel occursunder the conditions of geostrophic balance
when the Coriolisinertiaforce is balanced by the pres-
sure gradient. In this case, the role of —gradp is played
by the projection onto the meridian of the skating force
along the inclined plane. The former equation relates
thevelocity along avertical with the horizontal velocity
along ameridian.

From (2) and (4), we obtain the expression for the
velocity along apardld:

d\ _ AM glool
rcosp— = ——
AM !
For M 10 (for the center-of-mass position

200 m higher than the relevant isopycnic line),
(& :% =15x10°s?, N2=10°s? and ¢ = 20°,

we obtain u~ 0.5 cm/s. The order of magnitude for this
velocity corresponds to the observed results.

do

at > d 7 con
sequently, the path traveled by the body along the
meridian is much larger than the depth variation. If the
body was displaced ~600 km southwards, the submer-
sion was~90 m. For an average linear horizontal veloc-
ity of ~2 cm/s, this occurs for approximately one year.
The traveled path, velocity, and time correspond to
observations of the “Meddy-1" lens[5].

In the case of a linear stratification of the back-

ground and of using the relationship ar(:j—q) = Zi] fol-
t? t?

Sincea < 1, wehavefrom (4) that r —

lowing from (4), the third equation of set (3) takes the
form

)\33d h
M gt?
with a period of vibrations of ~10.3 days.

Thus, the mechanical model described reveals the
principal features in the slow motion of the lenses,
namely, the appearance of the western and southern
components for the center-of-mass velocity, i.e., the
motion of lensesto the southwest. However, this model
is “too fast” for the motion along the vertical channel.
We can “slow down” the motion along the vertical by
introducing a strong resistance and by taking the turbu-

2-BZ 2+ N°h = 0

LAVROVSKII et al.

lent viscosity into account. However, allowing for ther-
mohaline processes which undoubtedly manifest them-
selvesfor long periods of time seems to be more appro-
priate for the model. For example, in effect, the motion
of the“Meddy-1" lens at the observation interval is, for
the most part, described by Egs. (4), if we consider
the center of mass of the lens to be situated virtually
at the corresponding isopycnic lineg; i.e., h = h,, but
h, # const, while h, = hy(t). The low vertical velocity

hy
?j? at > 0 is caused by thermohaline processes for

which the effect of cooling on the density prevails over
the effect of salt diffusion from the lens. The lens
remaining in the position of quasistatic equilibrium
(IM - m(hy)] = 0) at each time moment slowly sinks
down. We call such aregi me thermohal i ne submersion.

do _
dt =0, 9t = /ra <0;i.e,
the longitude remains almost mvariable, wh| lethe lens
moves virtually southwards (observed in [4]).

It followsfrom (4) that

The long life of the intrusion vortex formations is
associated with the existence of the equilibrium form of
the lens rotating core. The rotating mass of aliquid, in
contrast to a solid inclined at an angle a (2) to the par-
alel in the equilibrium state, can create the hydrostatic
moment necessary for equilibrium by varying its shape.
We show that such a steady shape does exist for an anti-
cyclone. We introduce the (X, y, 2)-coordinate system
with the origin in the center of mass of the lens. Let the
z-, x-, and y-axes be directed upwards along the local
vertical, eastwards, and northwards, respectively. The
characteristic horizontal dimension of the lensis much
smaller than the Earth’s radius. Therefore, we consider
the case of a stratified-liquid plane layer tangent to the
Earth and residing in the uniform gravitational field.
We represent the vector of the lens-particle velocity V
by the components v, = -y - K2), v, = wx, and v, = 0.
This corresponds to the mation with a constant angular
velocity w along the circumferences whose centers are
located along the straight line y = Kz in the meridian
plane. The equation of continuity is fulfilled. The
Gromeko—-Lamb equation for the core has the form

[2Q +rotV] xV = —lgradCD,
P (5)

® = p,+0.5p,V>+p,gz.

Outside the core, the liquid is quiescent and linearly
stratified. The boundary conditions are pi(z) =
P X6 Yo Z); %o Vi, @Nd Z, are coordinates for the points
of the core boundary; and p;(2) and p,(X, y, 2) are the
pressures outside and inside the lens, respectively. The
projections of the relative vortex are (0, wk, 2w); the
projections of the planetary vortex are (0, 2Q,, 2Q,);
and the projections of the absolute vortex are (0, 2Q, +
Kw, 2Q, + 2w). From the consistency requirements for

DOKLADY PHYSICS Vol. 45

No. 11 2000



MEDITERRANEAN LENSES AS LIQUID GYROSCOPES IN THE OCEAN

2Q
Egs. (5), it followsthat k = Y Note that the tan-

2Q,+w
gent of the inclination angle for the absolute vortex
with respect to the local vertical is exactly equal to k.
Integrating (5) and using the boundary conditions, we
obtain the equation for the water mass interface:

W o+ 20 2+yz + 295 1N2
3(0+ 2000 +Y) + fozan -3

-2Q,wyz+A = 0.

(6)

H

“dp;
Here, A = p(0, 0, 0) — J’%dz is the pressure excess

0
in the lens center with respect to the background at
z=0 and z = H, corresponds to the ocean surface.
Reducing (6) to the canonical form by rotating the axes
about the parallel (y = y'cosa — Zsind, z = y'sind +
Zcos0) a an angle a, we find

40Q,
tan2a = ) > > 5. (1)
w(2Q, + W) [4Q, - (w+2Q,)] =N

In the case of the anticyclone (w < 0) and the actual val-
ues of the parameters for the lenses under observation,
it followsthat o isasmall angle and its expression coin-
cides exactly with (2) for the inclination angle of a
solid. The surface obtained is a triaxial ellipsoid close
to an ellipsoid of revolution. The equation for thisellip-
soid written out in the principal axes for a < 1 with
approximate values for the coefficientsis

X+(y), (@) -4

2 )
a c
2A 2A ©
2 2
a = >0, ¢ = —>0.
Pl (2Q,—[wd) o N?
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The ratio between the principal semiaxes is 2 =

N

|l (2Q,—0d)
have a/c ~ 1.2 x 10%, which agrees well with the obser-
vations. Note that for the cyclone (w > 0), no closed
equilibrium configuration exists for a homogeneous
rotating mass of liquid in the stable-stratified ocean.
This fact explains why the majority of the vortex for-
mations found in the northern hemisphere were anticy-
clones[1, 2].

. For the “Mezopolygon-85" lens, we
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In the theory of combustion, the model of chain-
flame propagation was proposed by Ya.B. Zel'dovich
and D.A. Frank-Kamenetskii [1] (see also [2]). In suc-
ceeding years, this line of research was actively devel-
oped by many investigators (see, for example, [3-6]).
In modern notation, the following nonlinear equation
correspondsto the smplest model of chain-flame prop-
agation:;

U = Uy +2u°(1-u), (1)

which isreferred to asthe Zel’dovich model [5, p. 198]
by expertsin mathematical modeling. At the sametime,
in mathematical studies on the dynamics of “reaction +
diffusion” systems, problem (1) is treated as a part of
the so-caled KPP (Kholmogorov—Petrovskii—
Piskunov) problem concerning the existence of travel-
ing-wave type solutions.

There is a well known classical exact solution to

Eq. (1) [4]:
_ 1
u,(t,x) =

1+exp(x—1)’ )

which has the form of a traveling wave with unity
velocity. In this study, we first find the exact time-
dependent solution to model (1):

exp(t—x)—1
2t + x + exp(t—x)’

Uy(t, x) = 3)
which, in contrast to classical self-similar solution (2),
makes it possible to also study the transient processes
leading to the steady-state wave. Furthermore, we gen-
eralize our consideration to the case of many spatial
variables.

In recent years, the technique of constructing exact
solutions to the sets of equations of the reaction + dif-
fusion type was developed in the cycle of studies of
O.V. Kaptsov [7-10] and in paper [11]. Solution (3) is

Institute of Computer Modeling, Sberian Division,
Russian Academy of Sciences,
Akademgorodok, Krasnoyar sk, 660036 Russia

found using namely thistechnique. The scheme of con-
structing solution (3) to model (1) isasfollows.

According to [7, 8], manifold

h(t, X, Uy, Uy, ...) = 0 4)
isinvariant with respect to equation (1), if
(DM )], = O 5)

where D, is the operator of total differentiation with
respect to timet. Relationship (5) is assumed to be met
dueto (1), (4), and their differential consequenceswith
respect to variable x.

Invariant manifold (4) for equation (1) is sought in
the form

U = o (U)Uy + B(u). (6)
Substituting (6) in (1), we obtain
u, = a(u)u, + B(u) —2u’ + 2u°. (7

Invariance condition (5) for manifold (6) with respect
to equation (7) hasthe form

utxx = Dt(G(U)UX‘F B(U)) (8)

Condition (8) must be met due to Egs. (6), (7), and to
their differential consequences:

o"ul + (au, + B)(2a'u, + o + B' — 6u” + 4u)

+u(20'au,+a'f+ap' + B"u,—12uu + 4u,)
= (a'ug+ B)(au,+ B—2u° + 2u°%) ©
+a(a'u:+a(au, +B) + B'u,—6uu’+4uu).

Considering (9) asthe condition for which thethird-
power polynomia in terms of u, becomes zero, we
obtain the following set of equations:

a" =0, 20'a+B"-12u+4 =0,
B+ul-u® =0, BU-u’)-B(2u-3u’) = 0.
The solution to this set has the following form:

a =3u-1, B = U+ U

1028-3358/00/4511-0610$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Characteristic profiles u(t, X) at moments of time
t=0,1,2,3 4.

This means that Eq. (1) has the invariant manifold

U, —(3u—1)u, +u’—u’ = 0. (10)
Integrating ordinary differential equation (10) and
determining the dependence of the functions of integra-
tion on t by means of the substitution of the found solu-
tion into Eq. (1), we obtain an explicit solution to (3).

Generally speaking, the described procedure pro-
vides an opportunity to obtain a more general expres-
sion for the explicit solution to Eq. (1) (with parameters
k and m):

kexp(t—x)—1

ut, x; km) = 2t + x+m+kexp(t—x)’

which, however, can be transformed to form (3) by
shifting independent variablest and x.

Comparing (2) and (3), we note that, accurate to a

trandation in x, we can pass to the limit
Uy(t, X) — u,(t,x) for t — oo;

i.e., at reasonably large times, new solution (3) tendsto
classical self-similar solution (1). What more, u,(t, X)
makesit possibleto investigate not only the solutionsto
model (1) at large times, but also the transient pro-
cesses. The characteristic profiles u,(t, xX) for various
moments of time are shownin Fig. 1. Profile u,(t, X) has
two pronounced extrema (upper and lower “over-
shoots”). Direct calculations show that the upper over-
shoot disappears quite quickly, while the lower over-
shoot tends to zero rather slowly. It is easy to write out
2000
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Fig. 2. Asymptotic curves for the velocity of the u,(t, X)
wave propagation for levelsu, = 0.1, 0.5, 0.9.

the integral characteristics of the upper and lower over-
shoots:

-1-2t

Sp= [ H1+ eXp(t‘X)‘lx)%dx

2t + x+ exp(t—

= 3t+1-In(exp(3t+1)-1),
_ o ept—x-1
Sow = J:2t+x+exp(t—x) '

The latter integral is diverging. This characterizes the
slow convergence to zero of the lower overshoot.

The convergence of u,(t, X) in the wave velocity is
different for various levels of u, (Fig. 2). However, at
reasonably large times, the velocity of wave motion
tends to unity [to the velocity of motion of classical
wave (2)]. The relationship between the classical and
new solutions to model (1) of chain-flame propagation
is illustrated in Fig. 3. The classical wave catches up
with the new solution and surpasses it. At times of the
order of 10°, they already movein parallel at a constant
velocity.

For amultidimensional model of chain-flame prop-
agation,

U= Y U+ 2u*(1-u),

i=1
the classical self-similar solution has the form

_ 1
T 1+ exp(X-t)’

(1)

Uy (t, Xgy «ony Xp) (12)
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Fig. 3. Comparison of thenew (2) and classical (1) solutions
at moments of timet =0, 5, 10, 15.

n
where X = L z X; . The new time-dependent solution
n

i=1
similar to (3) is

exp(t—X)—-1

uy(t, Xq, ... 2T+ X+ exp(I=X)

» %n) = (13)

The two-dimensional-wave profile u,(t, x;, X,) at the
moment of time t = 0 is shown in Fig. 4. Nonlinear
“step” (13) tends to classical step (12) at reasonably
large times, which is similar to what occurs in the one-
dimensional case (see Fig. 3).

Thus, in this paper, we considered a new exact solu-
tion to the model of chain-flame propagation. This
solution enables us to investigate not only the limiting
regimes, but the transient ones as well. Knowledge of
such solutions can be used, in particular, in testing the
numerical algorithms and codes intended for calculat-
ing the mathematical models of the reaction + diffusion
type having a more general form than those considered
here. Knowledge of the parameter-dependent exact
solutions u,(t, x; k, m) also provides an opportunity to
easily analyze the effect of these parameters on the
characteristics of wave processes in specific systems.
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Fig. 4. Profile uy(t, x, y) for two-dimensional model (11) of
chain-flame propagation at t = 0.
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We consider the properties of flows for isotropic
incompressible fluids under shear-free stress. We argue
that in the general case of arbitrary principal stresses,
flow is freest when the two principal stresses are equal
to each other and the third differs from them. In this
case, the flow is governed by wave equations.

1. Saint-Venant [1] proposed the following set of
equations describing the plane flow of an isotropic per-
fectly plastic fluid:

the equilibrium equations

QE_X.F?_T_)Q/ = 01 QE&’+99_V = 0,

ox oy ox oy
where o, 0,, and T, are the stress tensor components
in the Cartesian (X, y)-coordinate system;

the plasticity condition

(1.1)

(0,—0,)" +415, = 4K,
where k is the shear yield stress;
the incompressibility condition

k = congt, (1.2)

ete, = 0; (1.3)

and the isotropy condition
Exy(ox - Gy) = Txy(sx - 8y) ’
where g,, €, and g, are the strain-rate tensor compo-

nents.

Theisotropy condition (1.4) requires that the princi-
pal directions of the stress tensor and those of the
strain-rate tensor be coaxial.

We assume that a stressed state with o, oy, and Ty =

const exists. In this case, we can choose the coordinate
axes along the principal directions 1 and 2, namely,

(1.4)

Oy = 0;, 0, = 0y, T, = 0; 0,0, = const. (1.5)

Inview of (1.5), the equilibrium equations are satis-
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Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

** Yakovlev Chuvash State Pedagogical University,
ul. Dzerzhinskogo 20, Cheboksary, 428000 Russia

fied. From (1.2) and (1.5), we have

0,-0, = +2k. (1.6)
It follows from (1.4)—1.6) that
€y(0,-0,) =0, gk =0. (1.7)
We assume that
0, =0, k=0. (1.8)

By virtue of (1.8), Eq. (1.7) is satisfied and the
quantity €,, may be nonvanishing. In this case, the
isotropic-fluid flow is determined by incompressibility
condition (1.3), which can be represented as

ou, v _

ox oy
Here, u and v are the displacement velocity compo-
nents.

Assuming that the velocity potential exists, namely,

1.9)

9% |, -9
u= I’ v = 3y’ (1.10)
and using (1.9) and (1.10), we arrive at
2 2
Q_(l_;+0__<|_; = 0. (1.11)
ox- oy

It follows from assumption (1.10) that the flow isirro-
tationd; i.e.,

a Y- (1.12)

Relationships (1.9)—<1.12) define the kinematics of
apotential flow for anideal incompressible fluid.

For k# 0, it follows from (1.6) and (1.7) that
(1.13)

Equations (1.9) and (1.13) govern the flow of an
incompressible perfectly plastic fluid under the uni-
form stress given by (1.5) and (1.6). In order to satisfy
the incompressibility condition, we introduce the
stream function

-0y el
U= 5 VT gy (1.14)
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It follows from (1.13) and (1.14) that

O’y o'y _
PR Bl
ox~  ay
Thus, for desirably small values of k # 0, the uni-
form flow of the isotropic fluid is governed by wave
Eq. (1.15). Provided that the stress components are
equal to each other, i.e., o, = 0,, Laplace Eq. (1.11)
governs the flow of an ideal incompressible fluid but
does not hold truein the limit ask — 0 [see (1.6)].

It is worth noting that the rel ationships between the
stress components and the strain rate impose con-
straints on the flows governed by Eq. (1.15). For an
incompressible viscous fluid under conditions (1.15),
we can write out that

(1.15)

ex+e, =0, ¢g,=0, Sx—8y=i(01—02), (1.16)

where U is the coefficient of viscosity.
It follows from (1.16) that

us= Zi(ol—oz)x"'cb
. H (1.17)
v = —ﬁ(ol—oz)y+ C,, C,C, = const.

2. In the case of a three-dimensional flow, we con-
sider the incompressibility conditions

ou_dv _ ow

ete te, =0, Ix a_y E:O 2.1
and the isotropy conditions [2]
Oik€kj = E€ikO; (2.2)

and require that the principal directions for the stress
tensor and the strain-rate tensor be coaxial.

In the Cartesian coordinate system, isotropy condi-
tions (2.2) take the form

OyExy + TyEy

TyExz t OyEy,

Ty €t Tyzexy T 0€y; = €04 sszxy T €Ty,

+T,0€y; = ETyy + €40y + €T

Xy=y
Sxysz + syTyz + 8y2021

yzs

T8, = 2.3)

We assume that
Ty =T1,=1,=0, 0,=0;, 0, =0, 0.4
0, = 03 0; = const.
From (2.3) and in view of (2.4), we have
ey(0,—0,) =0, g,(0,—-03) =0,
xy(01—03) x2(01—03) 2.5)

€,,(0,—03) = 0.
We now assume that

0, = 0, = O3 (2.6)

IVLEV et al.

In this case, relationships (2.5) are satisfied and the
quantities €y, €,,, and €, may be nonvanishing.

Assuming that the velocity potential exists, i.e.,
ox’ oy’ 0z’
and using (2.1) and (2.7), we obtain the harmonic
L aplace equation
2 2 2
a_q; + m + a_q; = 0.
X’ ay’ oz
It follows from conditions (2.7) that the flow isirro-
tationd, i.e.,
a_u_a_v = O_V_O_W =0 6_W_6_u
dy 0x "0z oy "X 0z
Relationships (2.1) and (2.7)—«2.9) define the flow
kinematics for an ideal incompressible fluid.
In the case of

u

2.7)

(2.8)

=0. 29

01 = 02, 01_03 = 2k, k¢0, (2.10)
we have from (2.5) and (2.10) that
€&, =€, =0 (2.11)

and that the quantity €,, may be nonvanishing.

In terms of the displacement-velocity components,
Egs. (2.11) take the form

ou  ow _ ov , ow _
6_2 + & = 0, 37 + dy 0. (2.12)
To satisfy Egs. (2.12), we assume [ 3] that
_ow o0y - 0y
u= 3y’ v = 3y’ w = 37 (2.13)

According to (2.1) and (2.13), the function W must
obey the wave equation

2 2 2
a_l'li + a_ll; _a_qz'] = 0.
ox~ o0y- 0Z

Thus, relationships (2.10), corresponding to the

full-plasticity condition [4], specify the shear nature for
the flow of an isotropic incompressible fluid.

It follows from relationships (2.13) that
Ju dv _

dy 0x
According to (2.15), the flow determined by rela-
tionships (2.1) and (2.12)—«2.14) is irrotational in the
(x,y)-plane.
In the case of

(2.14)

(2.15)

0, %0,

(2.16)
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with regard to (2.16) and (2.5), the equation
(2.17)

must be attached to relationships (2.11).
It follows from (2.13) and (2.16) that

2
oy _ 0
oxay
Using (2.18) and (2.14), we arrive at
W=fi(x+2)+f(x=2) + fa(y+2) + f,(y—

(2.18)

2).(2.19)

Conditions (2.17) and (2.18) impose constraints on
the flow governed by relationships (2.1) and (2.12).

Thus, in the case (2.6) of al principal stresses being
egual to each other, Egs. (2.1) and (2.7)—2.9), which
correspond to the flow of anideal incompressible fluid,
arevalid. Inthe casewherenot all principal stressesare
egual to each other, the flow of an isotropicincompress-
ible fluid is freest when condition (2.10) is satisfied.
The flow is governed by rdationships (2.1) and
(2.12)-(2.14).

3. In the case of the orthogonal curvilinear coordi-
nates a, (3, and y, the incompressibility condition takes
theform

g, tegte, = 0. (3.1
If the axes a, 3, and y correspond to the principal direc-
tions 1, 2, and 3, respectively, then conditions (2.5) are
written out as

€,5(0,—0,) = 0, &,(0,—-03) =0,

(3.2)
€py(0,—03) = 0.
The relationships
0, = 0;, 0;—0, = 2K (3.3)

specify three cases which are similar to (2.5), (2.10),
and (2.11):

€y = €gy = 0, &4#0, 3.4
€p = €y = 0, &, %0, (3.5
€up = €qy = 0, €5, #0. (3.6)

As an example, we consider the cylindrical coordi-
nates p, 6, and z In this case,

e = ou 1[ aD/D 1au}
» = ap' B0 T 2[Papth pos
- lov lrlow  dvp
YT p f: = 50pa0 T a0 7
e _ ow e _ 1@u awD
2= 570 BT 50" ap0!
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where u, v, and w are the displacement-velocity com-
ponents along the axes p, 6, and z, respectively.

According to (3.1) and (3.7), the incompressibility
equation is given by

au+16v u. ow

o p69+5+az 0. (3.8)
With regard to (3.7), Egs. (3.4) take the form
_ ow | du
spZ SGZ 0’ ap + aZ 07
sw . d (3.9)
38 T5,PV) =0
For Egs. (3.9) to be satisfied, we assume that
Ly 11—
u= 20’ v = 530" w FER (3.10)
Using Egs. (3.10) and (3.8), we arrive at
2
f’_"; 10 L“ aq; 1ow _ o, (3.11)
op°> p°a8° o7 POP

With alowance for (3.7), Egs. (3.5) take the form

€0 = &, = 0, aD/D o qun =0,

P app0" 36070~
(3.12)
ovo, 9wg_ o
520p0" 36020
For Egs. (3.12) to be satisfied, we assume that
20y oy _ 20lIJ
u=p 3p’ pae wW=p 37 (3.13)
Using (3.8) and (3.13), we arrive at
2 2 2
a_ll"_ia_q']+a_llJ+§a_lIJ = 0. (314)

op° p’ae° o POP
With regard to (3.7), Egs. (3.6) take the form

OD/D 0 u[ -0,

€, = &,, =0,

po pz [bD ae[sz
(3.15)
o0vo, 1ow -0
62%25 26p '

For the first equation of (3.15) to be satisfied, we
assume that

0 0
v _pzag v =058

From the second equations of (3.15) and (3.16), we
obtain

(3.16)

(3.17)
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Using Egs. (3.8) and (3.17), we arrive at
oO'w _ _0u, 1dv  ug
dpdz  oplop po6 pl!
Fw _ 2 0%y
0poz 0pdZ
From Egs. (3.18) and (3.16), we obtain the equation

for the function ® = @ :
ap

v 190 o’
07 p°06° o9p® POP p?

(3.18)
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The kinetic nature of fracture in solids underlies
some features in the behavior of macroscopic cracks at
the starting stage of their propagation in a dynamic
stress field [1-3]. Analysis of experimental data dem-
onstrates that one of the dominant factors in this pro-
cess is the incubation period of preparation for the
development of a macroscopic rupture of a material.
Among the effects related to the existence of the incu-
bation time, the effect of fracture delay is of specia
importance. This effect impliesthat arupture at agiven
point of the material can occur at astage when the mag-
nitude of the local force field is reduced. This phenom-
enon was clearly observed in experimentsinvolving the
spalling of materials [1] and, based on the theory of
incubation time, was predicted for sampleswith macro-
scopic cracks [2].

In this paper, we report the results of our experimen-
tal study, including those confirming the existence of
delayed fracture near the crack tip under short-pulse
loading. We interpret these results in terms of the incu-
bation-time criterion [3].

The experiments were performed using polymethyl
methacrylate samples. The samples had a thin cut imi-
tating a macroscopic crack and were characterized by
the following material parameters. ¢, = 1970 m/s, ¢, =

1130 m/s, and K, =1.47 MPam'/2, wherec, and ¢, are

the longitudinal and transverse velocities of the elastic
waves and K, is the ultimate stress-intensity factor

under static loading.

The character of fracture under dynamic loading
was determined with the help of a magnetic-pulse
method of loading. The scheme and the procedure of
loading [4] created a pulsed pressure uniformly distrib-
uted over the edges of the cracklike cut. This pressure
was formed using the flat current-carry bus. The gener-
ator of the electric-current pulses produced an oscilla-
tory mode discharge with a period T ~ 5.5-6 ps and

Research Ingtitute of Mathematics and Mechanics,
S. Petersburg Sate University (Petrodvorets Branch),
Bibliotechnaya pl. 2, Petrodvorets, 198904 Russia

attenuation-time constant T, ~ 4 ps. The amplitude of
the electric-current pulse ranged from 150 to 300 kA in
correspondence with the loading stress amplitude vary-
ing from 140 to 320 MPa. In the case of the oscillatory
mode of the capacitor-bank discharge to the flat copper
buses with cross sections chosen to meet the maximum
value of the action integral for copper [5], it was possi-
bleto consider the pressure distribution as uniform and
to determine it using the following relationship:

204 %ntm (1)

P(t) = POeXpDTD

the pres-

T
At the time moment t,, = arctan%nTDZI

sure attains its maximum value

As a photochronograph, we used an SFR-2 high-speed
camera with the optical scheme assembled to corre-
spond to the chronograph mode.

We tested ten samples. In these tests, the oscillation
period T was 5.6 ps, the attenuation-time constant was
T, = 4.2 ps, and the pressure-pulse amplitude P, varied
from 140 to 320 MPa. The results of analyzing a high-
speed photography pattern are showninFig. 1. Notethe
stepwise character of the crack growth. At its initial
moment, the crack-growth velocity ranges from 100 to
500 m/s depending on the loading. If the applied load
exceeds the threshold value, the initial part of the dis-
tance passed before the first stop is several millimeters
and the corresponding velocity equals 420450 m/s.
The rest part is passed at a substantially lower velocity,
on the order of 100 m/s. The moments of stopsin the
crack motion correlate with the time necessary for the
loading wave to pass the doubled distance from the
crack edgesto the sample boundary. In spite of the step-
wise character of the crack growth, the resulting crack

1028-3358/00/4511-0617%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Ly, mm

10

1 1
0 100 200 1, ps

Fig. 1. Typical high-speed photography pattern of crack
growth: the crack length Ly as afunction of time.

P, MPa
400}

300 -

200 -

100

I, Hs

Fig. 2. Amplitude of the fracturing pulse as a function of
time elapsed before fracture onset.

length was found to be proportional to the loading
amplitude causing the fracture.

Anaysis of the high-speed photography patterns
allowed us to revea the dependence of the initia
moment of crack propagation on the amplitude of the
applied load. To comparethis experimental dependence
with calculation results, we used the mathematical
model involving the loading of edges of a semi-infinite
crack by normally acting forces. The solution to such a
problem describes the actual experimental situation
before the arrival of waves reflected from the model
boundaries to the crack tip. For the samples used in the
experiment, the time was only dlightly larger than
100 ps. The stress-intensity factor has the following
form [6] for this problem:

t

— (aP(s)
K (t) = [—=ds, 2
2¢,./cc —c5

where a = 2. Since only loading amplitude

Cy 4/ TIC,

P(t) was varied during the experiments, the intensity
factor values differed only by a certain multiplier. The

BEREZKIN et al.

highest intensity factor value was attained after the
beginning of loading at the time moment t = 1.7 ps.

The use of the structure-time criterion [3] provides
an opportunity to calculate the moment of the fracture
onset as a function of the amplitude of the applied
pulse. In the case under consideration, this criterion can
be written in the form [7]

t
1 1 1
D[R sK,, 3)
t-1

where T isthe incubation time, which isan independent
characteristic of the material. For the chosen material,
T = 32 ps. This value was previously found in experi-
ments that determined threshold amplitudes leading to
fracture [4].

Calculation shows that the minimum amplitude cor-
responding to the fracture is 94.7 MPafor the loading
pulses used in these experiments. In Fig. 2, we show the
calculated dependence of the applied pulse amplitude
P, on the time t corresponding to the onset of crack

growth. Circles denote the experimental results. It can
be seen that the time elapsed before the beginning of
crack propagation far exceeds the duration of the load-
ing pulse. The dashed line (t = 1.7 ps) corresponds to
the moment when the stress-intensity factor attains its
highest value. The timein thisfigure is measured from
the moment of load application.

Study of the stressed state at the crack tip showsthat
the crack motion begins at a certain elapsed time after
the moment when the local force field at the crack tip
attains its peak, i.e., at the descending branch of the
stress-intensity factor. It was found that before the
beginning of the crack motion, asignificant decreasein
the stress-intensity factor (by more than afactor of five)
can occur. This phenomenon is referred to as delayed
fracture. Fracture delay was observed in experiments
with the spallinglike fracture [6]. It was also predicted
by the fracture theory for materials with cracks [3, 7].
Fracture delay is defined as the time elapsed from the
moment when the local force field attains the highest
value to the moment of fracture. The delayed fracture
can be explained in terms of the structure-time
approach, whereas the conventional concept of critical
stress-intensity factor isinconsistent with this phenom-
enon. In Fig. 2, the fracture delay is the distance from
the calculated curve or the experimental point to the
dashed line.

We may conclude, that the experimental study of
fracture in polymethyl methacrylate samples with mac-
roscopic cracks under the effect of loading by micro-
second pulses reveals the following characteristic fea-
tures of this phenomenon:

the stepwise character of the crack growth continu-
ing after the termination of the loading;

proportionality of the crack length to a loading
amplitude that exceeds the threshold value;
2000
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delay in the beginning of crack motion with respect
to the moment of attaining the highest value of a local
force field near the crack tip.
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Using one of the existing methods for the separation
of variables, we can reduce arbitrary rigid differential
equations to a set of ordinary differential equations of
thefirst order. This set can be represented in the matrix
form:

Y'(x) = AY(X) +F(x), (*) = % 0<x<1. (1)

Here, Y = {y,(X), ..., Y(X)}T is the desired m-dimen-
sional vector function of the problem; A = |jg;|| is the
mx m matrix of the mdimensional variable coeffi-
cientsa; = a;(x); and F = {f,(x), ..., f,(x)} T isthe vector
function defining the external load.

The boundary conditions are al so represented in the
vector-matrix form:

HL(0)Y(0) = b, (0), Hgr(1)Y(1) = br(1). ()

Here, H, and Hy are the matrices defining the boundary
conditions, which have, respectively, the dimensions
(m-r)xmandr x mand theranks (m-r) and r, and
b, and bg are the vectors in the (m — r)-space and
r-space, respectively.

We assume that an arbitrary solution Y(X) to the set
of homogeneous differential equations written out in
form (1) can befound to an accuracy of the constantsC:

Yo(x) = ®(x)C, 3

where @(x) isthe m x m matrix of an arbitrary system
of functions.

A similar situation took place when A.N. Krylov
employed the Cauchy general method [1] of integrating
differential equations with constant coefficients and
first obtained the known hyperbolic-trigonometric
functions for a differential equation governing the
bending of elastically supported beams[2].

The Cauchy method, remarkablein terms of its gen-
erality, proved complicated in application. Therefore,

Institute of Applied Mechanics,
Russian Academy of Sciences,
Leninskir pr. 32a, Moscow, 117334 Russia

this method was not employed further. In particular, as
applied to differential equations in the mechanics of
plates and shells, functions with similar properties have
not been obtained to date.

Wewill seek such aset of functions which would be
a solution to the homogeneous differential equation for
set (1) and would satisfy the arbitrary initial conditions
of the Cauchy problem. Under the initial conditions,
this implies that such a set represented in the matrix
form is reduced to a unit matrix. Our goal is similar to
that of A.N. Krylov, but we use arbitrary solution (3) as
abasis rather than the Cauchy method.

We admit that a set of Cauchy—Krylov functions,
which isasolution to homogeneous differential Eg. (1),
isfound. Then,

Yo(x) = K(X)Y(0), “

where K(x) isthe m x m matrix of the Cauchy—Krylov
functions and Y(0) is an m-column defining the arbit-
rary initial conditions.

Solution (3) isvalid for arbitrary values of its argu-
ment, among which for x = 0. Hence,

C = d(x)'Y(0).

Eliminating column C of the integration constants
from solution (3) and comparing the result with Eq. (4),
we find that the set of Cauchy—Krylov functions is
defined by an arbitrary set of functions:

K(x) = ®(x)®(0)™ (5)

It is evident that the Cauchy—Krylov functions can
be constructed, e.g., for differential equations in the
mechanics of plates and shells.

It is of principle importance that in contrast to the
Cauchy method, the approach under consideration
allows usto construct the Cauchy—Krylov functionsfor
differential equations with variable coefficients.

The necessity of seeking an arbitrary set of the func-
tions ®(x) is an evident, and possibly the single disad-
vantage of this method for constructing Cauchy—Kry-
lov functions.

This disadvantage is hot detrimental in applications,
because solutions have aready been found for certain
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cases (e.g., solutions have aready been obtained for
differential equations in the mechanics of standard-
shape plates and shells). A similar situation takes place
for many equations of mathematical physics.

Thefact that the Cauchy—Krylov functions are capa-
ble of specifying relations between desired quantities
and their valuesfor an arbitrary argument aswell asfor
arbitrary initial conditions is an extremely important
feature of these functions, which allows usto construct
new methods for solving boundary value problems.

Similarly to the above-said, we can obtain
Yo(X) = P)P(x) Y (%), (©6)

where d(x)P(x,)! are the Cauchy—Krylov functions
and Y(x,) isacolumn of desired quantities for an arbi-
trary initial argument X

The Cauchy—Krylov functions obtained allow us to
construct ssimple and stable algorithms for solving
boundary value problems for rigid differentia equa-
tions, which save computer calculation time and mem-
ory, and to obtain solutions with a controllable accu-
racy. In order to simplify our consideration, we do not
analyze the partia solution to Eqg. (1).

As an example, we construct algorithms for solving
boundary value problems for rigid differential equa-
tionsin the mechanics of plates and shells.

We admit that Eq. (1) iswritten out in the canonical
form and that the vector-function Y(x), characterizing
the cross section of ashell, consists of geometric p and
force q parts. We subdivide the matrix K(x) of the
Cauchy—Krylov functions into the corresponding
blocks Aj, i, ] = 1, 2. Then, relationships (6) are repre-
sented as two matrix equations:

Qs = _AI%Allps"' Azépe

(7
e = (Ao —ApAAL)Ps + ApALpe.

Here, the indices s and e stand for the start- and end
points, respectively, of an arbitrarily chosen interval, in
which the numerical calculations are stable aong the
shell length. Using the geometric and force conditions
of conjugation for these stable-calculation intervals, we
obtain the set of matrix algebraic equations:

B11Po—Baxp: = Ry,
Bsipi_1+ (Bs—Byi+1)Pi =B+ 1Piv1 = R,

B3sPs-1* BssPs = Ry,

DOKLADY PHYSICS Vol. 45 No. 11 2000
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where sisthe number of intervals conjugated,
Bi. = _AI%iAlli! B, = -
Bsi = (Azli—AzziAEiAui): B, = AZZiAI;i-

Solving the set of the algebraic equations obtained
with allowancefor the boundary conditions, wefind the
vectorsp;. The corresponding vectors q; are determined
by relationships (7). It isevident that the algorithm con-
structed reproduces the algorithms of analytical solu-
tionsto boundary val ue problems and has no numerical
analogues.

A set of algebraic equations for solutions to a
boundary value problem can be obtained by the follow-
ing agorithm of trandating the boundary conditionsto
agiven point x* of an interval.

With the help of the Cauchy—Krylov functions, we
define relations between the vector-functions at the
ends of arbitrary stable-calculation intervals. For the
(i + 1)th end of the interval, we have

Yier = K(Xiv1, %)Y (®)

Wetranglate boundary conditions (2) into theith end
of a stable-calculation interval and transform them to
the orthonormal form with the help of known formulas
used in Godunov’s method [3]. As aresult, we have

Using solution (8), we eliminate Y, from this expres-
sion for the boundary conditions, transform them into
the orthonormal form, and obtain the boundary con-
ditions at the (i + 1)th end of the stable-calculation
interval:

Wii1Yii1 = @41
Reiterating the procedures described, we translate

the boundary conditions defined at the left end of the
interval to those at a given point x*:

WLOXF)Y (X*) = @ (x*).
The boundary conditions at the right end of the
interval are similarly trandated to the point x*:
Wr(X*)Y (X*) = og(x*).

Combining the boundary conditions translated into
the point x*, we write out

WY (x*) = oo*.

At this point, we compl ete the sol ution to the bound-
ary value problem with the solution to the algebraic
equation obtained:

Y (x) = (W) o

In essence, the algorithm constructed differs from
that of Godunov’'s method, in which the stability of
numerically solving differential equationsisensured by
the orthonormalization of the solutions rather than, as
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is needed, of the boundary conditions as we propose tions which were previously considered to be useless

to use. when numerically solving boundary value problems.
The simplicity of the methods constructed is evi-

dent. Their efficiency was confirmed by the solution of REFERENCES

boundary value problems in the mechanics of shells 1. V. A. Steklov, Foundation of the Integration Theory of

and by the reduction of the computer calculation time Ordinary Differential Equations (Gos. Izd., Moscow,

1927).

2. A.N.Krylov, About Calculation of Beams Laying on an
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3. S. K. Godunov, Usp. Mat. Nauk 16, 171 (1961).

by two orders of magnitude. The use of analyticaly
constructed Cauchy—Krylov functions also provides an
admissible calculation error.

The methods proposed alow us to use, in practice,
numerous analytical solutionstorigid differential equa- Trandated by V. Chechin
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The relaxation kinetics of residual stresses in a
cylindrical shell in relation to the diffusion flow of
vacancies is considered. Theoretical results are applied
to explain thefailure of contact between abulk cylinder
and a shell under thermal loading.

The continuity of thermal flow in the construction
elementsis achieved through the suitable connection of
the contacting surfaces. The contact failure is accompa-
nied by an increase in thermal resistance and, as a con-
sequence, by arise in temperature. The possible cause
of this undesired phenomenon is a diffusion-induced
relaxation of residua stresses. This relaxation stems
from the migration of vacancies and depends on the
stressed state in the bulk. Such a dependence is based
on the relation between the stress sign and the direction
of the vacancy flow in relation to the diffusion. This
flow is always directed toward the domain of compres-
sive stress. In this paper, we consider the relaxation
kinetics of residual stresses with different signs in a
cylindrical shell. The inner surface of the shell isin
contact with the surface of abulk cylinder (for example,
arodlike fuel element with a shell). The choice of such
amodel system isjustified for several reasons. First, in
the cylindrical shell, it is possible to obtain residual
stresses of different sign through cutting and addition
(exclusion) of a part of the material and subsequent
joining of the edges of the cut. Second, the distribution
of residua stresses is described by simple analytical
relationships. Third, alogarithmic dependence of resid-
ual stresses on field coordinates enables usto derive the
exact analytical solution to the diffusion equation in
forcefields.

Let the system “cylinder shell” be at a constant tem-
perature with the coefficients of linear expansion being
equal. Hence, under these conditions, thermal stresses
do not arise. We also assume that the dislocation mech-
anisms of stress relaxation are negligible since the
stresses are small. Then, the residual stresses of differ-
ent sign in the cylindrical shell are created in the fol-
lowing way. In one case, (a) the edges of the shell cut
are moved apart at an angle w and a missing material is
placed in the opening. Thus, the parts of the material
near the outer and inner shell surfaces will be in com-
pressed and tensile states, respectively. In the second
case, (b) we cut the shell to an opening angle wand join
the edges of the cut. A self-balanced system of residual
stresses changes the sign. Now, the material near the

inner and that near the outer surface will bein a state of
compression and tension, respectively. If cylindrica
shells with residual stresses of different sign tightly
enclose the solid cylinder, then the contact between
them becomes tighter in case (a) and fails in case (b).
This is determined by the diffusion-induced vacancy
flow resulting from the relaxation of residual stresses.
Indeed, in case (a), the vacancy flow is directed from
the inner shell surface to the outer. The atomic flow
directed in the opposite direction causes a decrease in
the inner shell radius, and contact between adjacent
surfaces becomestighter. In case (b), diffusion-induced
vacancy flow is directed from the outer surface of the
shell to the inner surface. This is accompanied by an
increasein theinner shell radius and, as a consequence,
by afailure of contact between adjacent surfaces. Thus,
diffusion-induced relaxation of residual stresses depen-
dent on sign can either improve the contact between
adjacent surfaces or make it worse.

The nonzero components of the residua stress ten-
sor for the operations corresponding to cases (a) and (b)
are determined by the following relationships (the pla-
nar deformation) [1]:

1—DLD 2
o, = . T i g—% In%2
roo2n(l-v R R’
R
2
g
1+ = 2
o _bo r g
% = vy LT I"RY _age gl @
TR
O-zz = V(O'”+0'¢¢)
Nalj
:___u_(i).v___1+2|n1+ EH] |nr_0,
21(1-V) dqg R
T RD

where [ is the shear modulus, v is the Poisson ratio, w
isthe rotation angle of the edges of the shell cut, andr,,
and R are the inner and outer radii of the shell, respec-
tively. These relationships are also used to describe the
stress field in the neighborhood of the wedge disclina-
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tion [2], which simulates various structural imperfec-
tions of an actual crystal (for example, theternary joints
of grain boundaries in a polycrystal) [3, 4]. The direc-
tion of the diffusion-induced vacancy flow is deter-
mined by thefirst invariant of the residual stresstensor:

oy = O-rr"'o-qni)"'o-zz

2
25 @)
_ po(L+v) r ro
= E———|1+2In=+ In=1|.
21m(1-vV) R 1_ET_0D2 R
CRO

The sign of o, depends on rotation angle w for the
edges of the shell cut, all other factors being equal. In
case (a), it isusually assumed that w < 0 (g;, > 0 on the
inner shell surface and g;, < 0 on the outer surface). The
opposite sign of w > 0 corresponds to case (b) (0, <0
on the inner shell surface and o, > 0 on the outer sur-
face). The interaction potential between a vacancy and
the residual stress field is determined by the well-
known relationship

_ Oy
V= Z4v, 3)
where Av is the change in the volume of the crystal
when the vacancy is introduced. Since vacancies cause
the decrease in the lattice parameter, one usualy
assumes that Av < 0. The equilibrium vacancy concen-
tration depends exponentially on potential V-

v
T coexpEk—TEr 4)

where ¢, is the averaged vacancy concentration. In the
domain of compression of the shell material, the equi-
librium vacancy concentration exceeds the mean value,
since V > 0. The tensile stress reduces the equilibrium
vacancy concentration as compared to the mean value,
since V < 0. This physically means that, due to the
relaxation of the residua stresses, vacancies migrate
from the tensile domain to the compression domain,
whereas the atomic flow proceedsin the opposite direc-
tion. The nonuniform field of the vacancy concentra-
tion creates concentrati on-induced stresses of the oppo-
sitesign of theresidual stresses. These are calculated in
asimilar fashion as the thermal stresses[5]. The linear
expansion coefficient corresponds to a change in the
lattice parameter due to vacancy concentration.

To illustrate the relaxation kinetics of residua
stresses, consider the compression domain (r,<r <R,)
of the shell material near itsinner surface. Thisdomain
is bounded by the outer radius R,, where ¢,, = 0 and,
therefore, V=0. Then, at r = R,, the mean vacancy con-
centration remains unchanged due to the vacancy
inflow from the tensile domain (R, < r < R). The use of
this illustrative example is explained by the fact that
such adistribution of residual stresses leads to contact

VLASOV, FEDIK

failure between the cylinder and shell owing to diffu-
sion-induced vacancy flow. Diffusion-induced vacancy
redistribution is described by the non-steady-state dif-
fusion equation in the potential field V with corre-
sponding initial and boundary conditions:

1dc _ O(cOV)
Dt - Ac+———————-kT , TgSr<Ry, )
c(r,0) = ¢y, c(ro,t) = ¢, Cc(Ry,t) = ¢,

where D isthe diffusion coefficient for vacanciesand c,
is the equilibrium vacancy concentration at r = r,. The
rest notation is the same as used before. At the initial
time instant, the vacancy concentration is equal to the
mean value of ¢,. The same concentration also remains
at r = R,, since at this boundary V = 0 and vacancies
from the tensile domain (R, < r £ R) of the shell mate-
rial migrate there. The boundary condition at r = r,
indicates that the equilibrium vacancy concentration is
immediately established, and further on, it remains
unchanged in the process of diffusion-induced redistri-
bution. Note that the field of compressive stressesin the
vicinity of the inner shell surface is equivalent to the
pressure inside the cylindrical cavity. If this pressure
exceedsthe Laplace pressure, the cavities enhancetheir
radius as a result of vacancy flow. In the case under
study, the field of compressive stresses is distributed
nonuniformly and has a peak at boundary r =r,. The
existence of the compressive stresses in the whole
range (r, < r £ R)), rather than at boundary r = r,, only,
increases the vacancy flow and the rate of increase for
the inner shell radius. This is described by the second
term in the right-hand side of Eq. (5). The logarithmic
coordinate dependence of potential V essentially sim-
plifies the diffusion equation in the force field. Since
the vacancy diffusion depends on gradient OV of the
potential, the constants in relationship (2) can be
neglected. We have AV = 0 because V is a harmonic
function. The above discussion leads us to the follow-
ing mathematical formulation of problem (5):

Dot 42 r or’
q = Hw(1+V)Av
3m(1-v)KT'’
c(ro,t) = ¢y C(Ry, t) = Co.
The dimensionless parameter a determines the contri-

bution of the field of residual compressive stresses to
the total diffusion-induced vacancy flow:

j = —Dg—f—ia—vm— ¥c , acO (7)

At a < 1, thefield of residua stresses should be con-
sidered as a weak disturbance of the vacancy flow due
to the concentration gradient. If a > 1, the residua
stresses prevail in the process of diffusion. At a =1, the

rhySr<Ry, (6)

c(r, 0) = c,,
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diffusion-induced vacancy flow related to the gradients
of concentration and potential V are comparable. These

vacancy flows have opposite directions: oV

T directs

vacancies toward boundary r = r, and g(—r: directs them

from this boundary. The dynamic equilibrium deter-
mined by relationship (4) is achieved when these
vacancy flows are equal. Any deviation from equilib-
rium (for example, a part of the vacancies being spent
to the increase of the shell radius) is rapidly restored.
As follows from the estimations, a is close to unity.
Indeed, for p =5 x 10" Pa, w =0.1rad, v = 0.3, Av =
107 m3, and kT = 102° J, we obtain a = 1. The sign of
parameter a depends on w and Av. For our example,
w> 0, Av <0, and, hence, a < 0. Further on, without
loss of generality, we assume that a = —1. This allows
us to emphasize the role of residual stresses due to dif-
fusion-induced vacancy migration. At a = -1, the solu-
tion to Eq. (6) describes the kinetics of diffusion-
induced vacancy redistribution in the field of residual
compressive stresses:

cC—Cy Ry —r
Cp,—Co Ri—Tg
.n[nn(r — ro)} (8)
2 Ri—ro exp{ °n°Dt }
nZ n (Ri=ro)°

The residual compressive stresses convert the problem
from having cylindrical symmetry to being planar; i.e.,
the profile of concentration is formed in accordance to
the planar symmetry. As aresult, we have a higher for-
mation rate for the vacancy concentration field. This
directly follows from the form of diffusion equation (6).

Indeed, at ge

PP < 0, the variation rate for the vacancy

oc

concentration
ot

at a = —1 exceeds the corresponding
ac
ot
tration determined by the competition of two diffusion
processes isformed ast — co. Its profileis the linear
function of coordinates. This results from our approxi-

, _ . ro_r
mation (o = —1), since exp %nﬁm =&

The increase in the inner shell radius due to the
relaxation of residual stressesis governed by the diffu-
sion-induced vacancy flow. Each vacancy exchanging
positionswith an atom causes an increase in the volume
of the cylindrical hollow in the order of the atomic vol-
ume. In the quasi-equilibrium approximation (a slow
process of shell radius variation is accompanied by a
rapid tuning of the field of vacancy concentration), the

value of = at a = 0. The equilibrium vacancy concen-
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rate of increasing the shell radius can be written as
(under condition ¢, < 1; i.e., the vacancy concentration
a the boundary is significantly less than that in the
hollow)

drg _ Mc c oV
dt _QNODQ)r_kTarEl:rO
ro(Ri—ro) Ri—ro
o 2 2
‘< exp[_Lth}
(Ry=ro)

n=1

)

where Q isthe atomic volume and N, is the number of
atoms per unit volume. Therest notation coincideswith
the one previously used. In the framework of the model
under consideration (the instantaneous attainment of
equilibrium vacancy concentration at boundary r = r),
the maximum rate of increase in the inner shell radius
occurs at initial moments of time. Further on, this pro-

cess becomes dower, and at Dt/ rg > 1, the rate tends
to the steady-state value
d_r_0 _ QNgD(R;Cp—r4Cp)
dt ro(Ry—rg)
In general, the changein the radius or, can be found by

integrating expressions (9) and (10). At R,c, > rC,,
QN, =1, and R, > r,, we have in the steady-state case

(10)

dry _c,D

at T, —ory = ,/2¢,Dt;

(11)

i.e., we obtain the well-known relationship for the dif-
fusion-induced change of characteristic sizes (e.g., at
the growth of the new phase). The change in the shell
radius or, depends on the level of residua stresses,
which determines the equilibrium vacancy concentration
at boundary r =r,. At c,= 10~ am, D = 10> cm?/s, and
t=10* s, we obtain &r, = 10~° cm. This value should be
compared with the changein the shell radius due to the
thermal expansion of the material:

ory=PBroT, (12)
where 3 is the coefficient of linear expansion and T is
theincrease in temperature. For B=10°K!, T= 10° K,
and r, = 1 cm, we have &r, = 10-* cm. This means that
on a macroscopic scale, the change in the entire shell
radius resulting from the relaxation of residual stresses
is essentially smaller in comparison with the thermal
expansion of the shell material. In other words, the fail-
ure of thermal contact along the whole perimeter of the
shell contacting with the cylinder in relation to the
vacancy flow is possible only when the shell moves
from the cylinder as a result of the difference in the
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coefficients of linear expansion. At the contact bound-
ary between the shell and the cylinder, there are, as a
rule, discontinuities (hollows) of different nature. Their
characteristic sizes are significantly smaller than the
shell radius. Therefore, evolution of these discontinui-
tiesisdetermined by the diffusive relaxation of residual
stresses, since the thermal increase of their sizeisrela-
tively small. Indeed, for r, = 10 cm (r, is the charac-
teristic size of a hollow) under the same temperature
conditions, we obtain or, = PBr,T = 107 cm. The
increase in size of the same hollow due to diffusion-
induced vacancy flow under the conditions discussed
above is dr; = 10°® cm. Thus, the local failure of the
thermal contact between adjacent surfaces dueto a dif-
fusion-induced development of discontinuitiesis prob-
ably under along-term thermal loading of construction
elements. Naturally, this situation arises when residual
compressive stresses exist on the inner surface of a
cylindrical shell. If the residual stresses change their
sign, then the inner shell radius becomes smaller and
the discontinuities at the interface disappear. This is
related to the fact that the diffusion-induced vacancy

VLASOV, FEDIK

flow is now directed from the tensile domain (r, < r <
R,) to the compressivedomain (R, < r < R). Thethermal
contact between the surfaces becomes tighter. In this
case, the mathematical treatment of the diffusion pro-
cesses does not differ from those reported earlier.

REFERENCES

. A.l.Lur e, Theory of Elasticity (Nauka, Moscow, 1970).

2. V. A. Likhachev and R. Yu. Khairov, Introduction to the
Theory of Disclinations (Leningradsk. Gos. Univ., Len-
ingrad, 1975).

3. N.M.Vlasov andV.A. Zaznoba, Dokl. Akad. Nauk 363,
472 (1998) [Dokl. Phys. 43, 761 (1998)].

4. N. M. Vlasov and V. A. Zaznoba, Fiz. Tverd. Tela
(St. Petersburg) 41 (1), 64 (1999) [Phys. Solid State 41,
55 (1999)].

5. I.1. Fedik, V. S. Kolesov, and V. N. Mikhailov, Tempera-

ture Fields and Stresses in Nuclear Reactors (Energo-

atomizdat, Moscow, 1985).

=

Translated by Yu. Vishnyakov

DOKLADY PHYSICS Vol. 45 No. 11 2000



Doklady Physics, \ol. 45, No. 11, 2000, pp. 627-631. Trandated from Doklady Akademii Nauk, \Vol. 375, No. 3, 2000, pp. 338—-342.

Original Russian Text Copyright © 2000 by Chashechkin, Kistovich, II"inykh.

MECHANICS

Experimental Study of the Generation of Periodic | nternal Waves
by the Boundary Layer on a Rotating Disk

Yu. D. Chashechkin, Yu. V. Kistovich, and Yu. S. II'inykh
Presented by Academician A. Yu. Ishlinskit February 10, 2000

Received February 11, 2000

The exact solution to the linearized problem of the
generation of internal waves, which involves internal
waves and internal boundary flows [1], alows us to
estimate errors intrinsic to the well-known method of
force (or mass) sources [2]. In the case of small dis-
placements, calculations of perturbances excited by an
oscillating bar satisfactorily agree with the measure-
ment results of [3]. There exist situations when a body
moving periodically in continuously stratified viscous
fluid does not radiate (in the linear case) and generates
only isopycnic boundary flows. This situation takes
place, e.g., in the case of a horizontal disk performing
torsional vibrations [4]. However, by virtue of the non-
linear nature of the hydrodynamic system of equations,
various forms of motion interfere with one another. In
particular, thin-layer boundary flows can be a source of
periodic waves [4]. Previously, experimental studies of
such internal-wave generators were not conducted.
Therefore, it is of interest to investigate the practical
feasibility of the principlesfor nonlinear generation. In
the present paper, the possibility of generation of three-
dimensional beams of periodic internal waves by tor-
sional vibrations of ahorizontal disk are studied and the
principal regularities connecting wave-field character-
istics with the properties of a medium and source
motion parameters are established.

The experiments were performed in a laboratory
wave channel with dimensions 9.0 x 0.6 x 0.6 m filled
with an exponentially stratified solution of common
salt, which had transparent windows made of optical
glass. The period (for the frequency N) of the buoyancy

21T A\
T, =% =2n /=
TN T[g’

here A — rdinpgg™ h ificati A .
where A = 5——1 isthe stratification scale, py(2) is

the density profile, and g is the free-fall acceleration,

Institute of Problems in Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

was determined by the density tag method [5] and was
found in our experiment to be T, = 7.5 s. Observations
of the flow pattern in the vertical plane were performed
by the shadow | AB-451 device using the method called
“the vertical dlit-thread in focus’ [6]. Due to the sym-
metry of the flow pattern in the linearly stratified
medium, the shadow device visualizes the perturbance
distribution in the central vertical axis, where the light
beam passes along the tangent to the wave phase sur-
faces. The rest contributions initiated by perturbances
along the beam are mutually compensated. The mea-
surements of wave displacements were carried out by
an electrical-conduction single-electrode sensor and
using sweep-vibration methods[7]. The sensor was cal -
ibrated before each experiment in accordance with the
lifting-submersing procedure. The error of wave-dis-
placement measurement did not exceed 20%.

The wave source was a horizontal disk 1 mm thick
and 2 (or 4) cm in diameter. The disk wasfixed to aver-
tical rod 2 mm in diameter, which was connected
through areducer to adc motor. To reduce perturbances
of the medium, the rod was placed in an immobile tube
6 mmin diameter. Adjustment of the rotation frequency
and the law of disk motion was performed by varying
the voltage applied to the motor. The angular displace-
ment of the motor was recorded by a multiturn potenti-
ometer. Three types of disk motion were studied: tor-
sional harmonic vibrations (with the angular velocity
Q = Q,sinw*t); intermittent alternate rotations (meander)

+Q,, nT<t<nT+12-
Q=Q -
—Q,, nT+§<t<nT+T,

where T = 21/ w* ; and harmonic torsional vibrations
against the background of a uniform rotation (Q = A+
Q,sinw*t). The maximum linear velocity for the disk
edge motion was U = 10 cm/s.

The flow shadow pattern appearing after the com-
pletion of two 4-cm-disk vibrationsis shown in Fig. 1.
Among the optical inhomogeneities of the pattern, we
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Fig. 1. Shadow pattern of aflow formed by ahorizontal disk performing torsional vibrations; T, =7.5s, T=20s, U =2 cm/s.

can distinguish a sequence of thin strips positioned in
paralel tothedisk, which arelinked by three embedded
ring-shaped structures. Two systems of inclined, almost
horizontal, diffusive dark and light strips branch out of
the external surface of the layered structure. In the
upper half space, the interior strip is dark, whereas in
the lower one, the opposite situation takes place. Hori-
zontal strips are antisymmetric to both the right and the
left. The positions of the horizontal interlayers, as well
asthe size and shape of the vortices linking these inter-
layers, and the mutual positions of the dark and light
inclined strips vary with time.

Comparison with the results of [3, 8] for shadow
observations of stratified flows shows that inclined dif-
fusive strips represent schematically periodic internal
waves with frequency w = 2w* = 0.62 s, which prop-
agate at an angle 6 = 47° to the horizon, as well as dif-
fusive horizontal strips, i.e., waves of the zero fre-
guency, and high-gradient interlayers, i.e., shells of
rotating ring-shaped flows at the disk edge. The distri-
bution of optical perturbances in the shadow image,
when the blackening density is determined by the hori-
zontal component of the refractive index (or the den-
sity) bound by the linear relationship [8], testifiesto the
existence of an antisymmetric pattern of periodic
waves: acrest in the upper half space corresponds to a
hollow in the lower one and vice versa.

Observations of the flow pattern show that at theini-
tial phase of the flow, boundary flows arise at both disk
sides; each of these flowsforms acircular flow rotating
together with the disk, the cross section of this flow
having an annular shape. The large and small ring radii
monotonically increase with time up to the moment of
changing the rotation direction. At this moment, the

flow separates from the disk and beginsto attenuate. As
far asthe ring-shaped flow is being damped, its vertical
dimension decreases and its vortices collapse. In the
case of changing the rotation direction (at every half of
a period), a new pair of boundary flows and, corre-
spondingly, a pair of new monotonically raising annu-
lar flows arise. In each of these flows, the fluid takes
part in two types of rotary movement, namely, around
the vertical disk axis in the horizontal plane and in the
vertical plane around the circular symmetry axis. Asin
the uniform medium, the disk forms the middle flow
[9], in which the fluid flows along the vertical axis and
isthrown away in the disk plane forming a wave beam
of zero frequency in the stratified medium. The direc-
tion of the middle flow induced by the disk is indepen-
dent of its rotation direction.

In the shadow pattern (Fig. 1), we observe traces of
three pairs of annular flows. The first (outer) flow pair
has collapsed under the action of buoyancy forces; the
second (central) pair has a clearly expressed annular
structure similar to the vortex structure in a homoge-
neous fluid [10]; and the third pair intervenes in them.
The external boundaries of annular flows are seen
above and below the disk asthin horizontal interlayers.
Their thickness does not exceed 0.3 mm and, in fact, is
determined by the resolution of the shadow device [6].
The shape of the exterior annular flow demonstrates
that the mixing of the fluid inside this flow is weak,
since its fragments come to the disk horizon within the
observation time.

The outer boundary of annular flows being formed
near the disk radiates two groups of axisymmetric peri-
odic internal waves at a frequency w = 2w*. These
waves propagate at an angle 6 = 47° to the horizon. Fur-
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Fig. 2. Recorded signals of electrical-conductance and disk position sensors.

thermore, al elements of this pattern are repeated in
every half of a period and the common-rotation direc-
tion of annular vorticesin the horizontal plane changes.

The signals registered from the electrical-conduc-
tance sensor installed in the internal-wave beam at a
distance of 8 cm from the disk (the sensitive element of
the sensor is depicted in the upper right angle of Fig. 1)
areshowninFig. 2. Inthe samefigure, the signalsfrom
the disk angular position for which a multiturn potenti-
ometer is used is also presented. The upper pair of
records corresponds to the case when the 4-cm disk
performs harmonic torsional vibrations at a constant
frequency and with different amplitudes [(1-4): U =
0.4, 1.3, 3.5, and 5.8 cm/g]. Stable internal waves are
excited at al velocities of disk motion. Comparing the
upper pair of records, we can see that the frequency of
the radiated wave exceeds that for the torsional vibra-
tions by afactor of two. The small amplitude modula
tion of the signal is initiated by seiches existing in the
basin. The drift of the potentiometer signal with timeis
caused by the specific asymmetry of the control signa
and by features of the motor operation in itself. The
internal-wave amplitude increases linearly with the tor-
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sional-vibration amplitude[(1-4): n = 0.01, 0/03, 0/06.
0.11 cm].

The lower pair of the records in Fig. 2 corresponds
to the case when, in addition to the aternating voltage,
the permanent voltage is applied to the motor. The
value representing this voltage consequently becomes
equal to the harmonic-signal amplitude and, further-
more, exceedsit. In this case, torsional harmonic vibra-
tions of the 2-cm disk (Usinw*t, U = 2.8 cm/s, w* =
0.31 s%) are added to the unidirectional rotation (with
velocity values 1-5, respectively, of 0, 1.0, 3.5, 6.0, and
9.8 cm/s) and are gradually transformed into motion
with the alternate angular velocity of the constant sign
(Up > U). In the sensor signal which is initialy har-
monic and has the frequency 2w*, a noticeable compo-
nent appears that becomes dominating with further
increase in the permanent rotation component (see seg-
ment 3). In this case, the energy of emitted waves also
increases.

The dependence of the vertical displacementsin the
internal-wave beam on the maximum velocity of the
disk edge in the case of purely torsional vibrations is
presented in Fig. 3 (the sensor is placed at a distance of
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Fig. 4. Vibration amplitude for particles on the beam axis as
a function of the distance to the radiator (T, = 7.5 s,
D=4cm, T=16.7s, U =2cm/s).

8 cm from the disk aong the beam axis). At low rota-
tion velocities of the disk (U < 3 cm/s), the wave ampli-
tude increases quadratically for the radiators of both
diameters (D = 2 and 4 cm: n = 0.005U2% and 0.04U?%; )
and U are expressed in millimeters and centimeters per
second, respectively, see curves 1 and 2). At intermedi-
ate velocities, the amplitude-increase rate is gradually
slowed, and for U > 8 cm /s, saturation takes place
owing to the combined action of the nonlinearity and
viscosity effects.

The plot illustrating the attenuation of particle dis-
placement amplitudes at the beam axis as a function of
the distance to the radiator is presented in the double-
logarithmic scale in Fig. 4. Making use of the least-
squares method shows that for g < 7 cm, experimental
points are grouped around the curve n = 1.14q714. At
longer distances (q > 7 cm), the recorded wave ampli-
tude attains saturation (the vertical displacement is on

CHASHECHKIN et al.

the order of 0.05 mm) caused by the wave background
of the basin. This background is formed due to the
action of other independent sources (mechanical vibra-
tions of the ground, aswell asvibrations of the base and
walls of the basin, which are caused by the action of the
wave-producing device). The level of residua vibra-
tions in Fig. 4 corresponds to the modulation depth in
Fig. 2.

As was shown in the experiments, the amplitude of
the wave being radiated substantially depends on the
characteristics of disk motion (under the condition of
preserving the frequency and amplitude for its periodic
component). When the envelope is a meander, only
annular flows and waves are observed in the flow pat-
tern (running internal waves are absent).

Asis shown in the theory of the excitation of inter-
nal waves by the horizontal disk performing the tor-
sional vibrationsin astratified viscousfluid [4], thetrue
wave source is an isopycnic boundary flow character-
ized by a single azimuth velocity component u,. The
stream function W for the beam of radiated waves sat-
isfies the equation

0’ 10, n20h 00 0 107
Pt

2 2
_ 10

rotoz’

ey

where A is Laplacian, v is the kinematic viscosity, and
the origin of the cylindrical coordinate system (r, ¢, 2)
istaken in the disk center. The solution to this equation
with exact boundary conditions describes both running
waves [4] and zero-frequency waves. The form of the
right-hand side of Eq. (1) impliesthat the frequency of
waves excited by harmonic torsional vibrations of the
disk istwice that of their own frequency. The meander
squared is a quantity independent of time, which
explains the radiative inefficiency of the periodic
motion of thistype.

It follows from the solution to Eq. (1) that torsional
vibrations of adisk whoseradiusissmaller thanthevis-

cous wave scale Ly = 3/gv/N excite a single-mode
wave beam. The displacements of the particles along
the beam axis are

h(q) = U’R’sin® ] 2cos'® DJJGFDZD
48(1 + 2)Hv*NgD  T6U

where I is the gamma function and q is the distance
along the beam axisto the source. The quadratic depen-
dence of the wave amplitude on the velocity U in (2) is
consistent with the measurement data exhibited in
Fig. 3. In this theory, the wave amplitude also depends
guadratically on the disk radius. The ratio of the coeffi-
cients in formulas interpolating experimental data of
Fig. 3isequa to 8, whereas the ratio squared for disk

)
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diametersis 4. This discrepancy is associated with the
fact that under the experimental conditions, the waves
excite both isopycnic boundary flows and annular rotat-
ing vortices. The efficiency of the second generation
mechanism that is not taken into account in the theory
elevates with increasing disk diameter. The decreasein
the beam amplitude with the distance from the source,
which is calculated in accordance with (2) under the
experimental conditions presented in Fig. 4, isgiven by
the expression h = 1.2997, where h and q are
expressed in millimeters and centimeters, respectively.
For g < 7, empirical data can be approximated by the
dependence h = 1.14g~'*. Deviations in the indices
(8%) and coefficients (13%) do not exceed the mea
surement error for the wave amplitudes by the contact
€l ectrical-conductance sensor, which attains 20% in the
experiments under discussion. Thus, the disk perform-
ing high-amplitude torsional vibrations in the continu-
ously stratified fluid efficiently radiates periodic inter-
nal waves.

The method described expands the spectrum of possi-
ble meansfor excitation of interna wavesincluding wave
generation under the action of viscous stresses [11],
as well as by varying the volume and position of a
body [12].
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In[1, 2], the completeintegrability for atwo-dimen-
sional problem of motion of a solid in a resistant
medium under jet flow was shown. In this situation, for
a system of dynamic equations there exists one first
integral, which is a transcendental function (in the
sense of the theory of functions for complex variables,
which have essential singularities) of quasi-velacities.
In the above-mentioned studies, the overall interaction
between the medium and the body was assumed to be
concentrated on a part of the body’s surface that hasthe
shape of a (one-dimensional) plate.

More recently [3, 4], the two-dimensional problem
was generdized for the spatia (three-dimensional)
case. In thisinstance, the system of dynamic equations
has a complete set of first integrals: one analytic, one
meromorphic, and one transcendental . In this event, the
overall interaction between the medium and the body is
assumed to be concentrated on a part of the body’s sur-
face that has the shape of aflat (two-dimensional) disk.

Every so often, the structure of the dynamic equa-
tions of mation is conserved when the dynamic proper-
ties are extended to cases of higher dimension. For
example, a theory of motion for a four-dimensional
(or even n-dimensional) solid is currently being devel-
oped [5, 6]. The authors of those papers succeeded in
demonstrating that the equations of motion near an
immobile point are Hamiltonian equations for a multi-
dimensional solid. The present paper deals with study
of the motion of the so-called four-dimensional solid
interacting with a resistant medium according to the
laws of jet flow. Theresults of thistype of study are pre-
sented for thefirst time.

In this paper, the overal interaction of a (four-
dimensional) solid with a medium is assumed to be
concentrated on the (three-dimensional) part of the
body’s surface that has the shape of a (three-dimen-
sional) sphere. In this case, the vector of the angular

Institute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 117192 Russia

velocity of motion for the body is six-dimensional and
the center-of-mass velocity is four-dimensional.

Setting up the problem and equations on the
so(4) group. We assume that a four-dimensiona solid
moves in a resistant medium filling in a four-dimen-
sional domain of a Euclidean space and that the overall
interaction of the medium with the body is concen-
trated on a (three-dimensional) part of the body’s sur-
face that has the shape of a three-dimensional disk D3.
The distance between the point N of theresistanceforce
application and the center D of the disk is afunction of
only one parameter. This parameter is the angle of
attack o measured between the vector of the velocity v
at the point D and the middle perpendicular to the disk
drawn from the body’s center of mass C in a four-
dimensional space (cf. [2, 4]).

In the four-dimensional space, the resistance is nor-
mal to the disk D?3; the resistance force can be written
out intheform S=s,(a)v?, where s, isthe nonnegative
resi stance coefficient.

We relate the coordinate system Dx;%,X;%, to the
body; the axis Dx, of the system coincideswith the axis
CD and the axes Dx,, Dx3, and Dx, lie in the disk
hyperplane.

If the inertia operator is of the diagonal form
diag{1,, I,, I3, 1} inthe system Dx;x,X;X, and Q is the
angular velocity matrix for the solid, i.e.,, Q [ so(4),
then the part of the equations of motion for the four-
dimensional solid corresponding to the group so(4) has
the following form [5-7]:

QN+AQ +[Q, QAN +AQ] = M. (1)
Here,
N = diag{ Ay, A5, A5, AL,

Ay = %(_Il-'- I+ 15+ 1), ...,

1
A, = §(|l+ L+ 15—1,),

1028-3358/00/4511-0632%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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M is the moment of external forces acting on the body
in R* and projected onto the “natural” coordinates in
so(4), and [-] is the commutator in so(4). The matrix
Q [ so(4) isconveniently expressed in terms of thefol-
lowing natural coordinates:

E O _(A)G (A)S _wgé
a3 W 0 —w, w, a @)

D_ws 004 O _('01 D
0 0
Ows —w, w 0 [

Here, w,, w,, W, Wy, Ws, and wy are the components of
the angular velocity in projections onto the natural
coordinatesin so(4).

The resistance coefficient s, is conveniently pre-
sented in the form s;(a) = s(a) sgncosa . If (0, Xon, X3ns
X,) are the coordinates of the point N in the system
Dx,%,%3%, and {-S 0, 0, 0} is the coordinates of the
resistance vector in the same system, then the following

mapping should be constructed for calculating the
resistance moment:

R'x R* — s0(4). (3)

This mapping transforms a pair of vectors from R* to a
certain element of the group so(4).

The resistance moment is of the following formin
projections onto the coordinates in the so(4) group:

(0,0, X,0S, 0, —XanS XonS) O R® = M O's0(4). (4)

Here, we should take into account that X,y = R(a)cos 3,
Xsn = R(a)sinf;cosB,, and X, = R(Q)sinf,sinf, if
(v, a, B,, B,) are the spherical coordinatesin R*.

With alowance made for all these points, we can
arrive at the following equations of mation in the resis-
tance field under consideration:

(Aa+ A3+ (A3 =) (0305 + 0,w0,) = 0,  (5)
Ao+ Ao+ (A, —A,) (00305 —w,00,) = 0, (6)
(Aa+ Az + (A —Ap) (W06 + Wy Ws) = XgnS, (7)
A3+ Ay + (A —Ag)(ws6 + wywy) = 0, (8)
(Ap+ A3)ws + (Mg —Aq) (W0 — Wy W3) = —X3pS, (9)
(AL +A2) 6+ (A —Ap) (W05 + Wyws) = XppS. (10)
Dynamicson R, By analogy with the three-dimen-
sional case, expressions similar to Euler and Rivalsfor-
mulas can be derived; i.e, in an arbitrary coordinate

system, the velocities and accelerations for two arbi-
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trary points A and B of a four-dimensional solid are
connected by the following relations:

Vg = Vo +QAB, wg = w,+Q°AB+EAB. (11)

Here, Q O so(4) and E = Q" [ so(4). The matrix E is
referred to as the accel eration matrix.

Equations of motion for the center of mass of afour-
dimensional solid in R* can be derived employing for-
mulas (11).

Motion in aresistant medium under the action of
servo coupling (cf. [1, 4]). We consider a class of body
motion for which the following condition is obeyed at
all times:

V = const. (12)

We also assume that a certain (servo) pulling force acts
on the body; the force ensures that condition (12) isful-
filled and is areaction of agiven servo coupling (cf. the
two- and three-dimensional cases [1-4]).

The fulfillment of condition (12) can be attained
using a specific choice for the magnitude of the pulling
force along the straight line CD.

The case of a dynamically-symmetric solid. We
suppose that, by analogy with the three-dimensional
case, the following equalities are obeyed:

L=1y=1, (13)
In such an event, there exist three cyclic first inte-
grasfor Egs. (5)—10):
W, = W, W, = Wy, W), = Wi
For smplicity, we consider motions at zero levels:
(14)

For describing the body motion, a pair of dynamic
functions (R(a), s(a)) is used, information about which
is of a qualitative nature. By analogy with low-dimen-
siona cases, without loss of generdity for [1-4], we
can assume that

0 0 0
W, = w, = w, =0.

R(a) = Asna, A>0, s(a) = Bcosa, B>0.
Asaresult, in apart of so(4), the equations take the
i 2 _ ABQ,
following form Epere, Ny = 2,0

w, = nav’sinacosasinB,sinB,, (15)

W, = —Ngv>sina cosa sinp; cospP,, (16)

. 2 2 .
We = NV sina cosa cosP;. (17)

If the natural replacement of the angular velocities

isintroduced according to the formulas
Z; = W3C0SP; + wssing,, (18)

Z, =—w,Sinf,cosf; + wsCcosP,cosP; + wgsinP, (19)
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Z; = W3SNP,SiNPB; —wscosP,sinB; + wsCosP,, (20)
then the combined equations of motion on so(4) x R

[with the four conditions in (12) and (14) taken into
account] acquire the symmetric form

. 2 .
a = —zz;+angvsina,

cosa
sina’

. 2 2. 2 2
Z; = Nygv-sinacosa —(z; + 2,)

. CosO , _2€0sa COS
Z, = Z,23= —— — Bl, 21)
sina sina sinB3,
. cosa cosa CoSf3;
Zl - 2123 A - 122 A A ]
sina sina sinB,
Bl = 2 cosa
1T Zgna’
. cosal
BZ = - (22)
snasinf;

The sixth-order system of Egs. (21), (22) has an
independent subsystem (21) of the fifth order. In gen-
eral, for complete integration of the given system, we
need to know five independent first integrals. However,
after substituting the variables

2 2 Z
2,2, —=2 = JZ1+Z, Z. = 2_2

1

(23)

system (21), (22) can be reduced to the following form:
o’ = —z;+onivsina,

2 COSA

z, = niv’sinacoso — 7 =—, (24)
sina

7 C0S cosf3;
sina sinB,’

z, = J1+

(25)
7z, COSO

mgna’

B> = -7(z z)

B, =

cosa
sinasinB;’ (26)

The fifth-order system of Egs. (21) is seen to be
decomposed into independent subsystems of even
lower order: system (24) is of the third order and sys-
tem (25) (after the replacement of time) is of the second
order. Thus, for complete integrability of system (24)—

SHAMOLIN

(26), it is sufficient to indicate two independent inte-
grals of system (24): one for system (25) and an addi-
tional integral attaching Eq. (26).

System (24) appears in the dynamics of a three-
dimensional solid [4]. It has two transcendenta inte-
gras:

2 2 : 2.2 .2
7 +Z,—onivzssina + njvisin‘o

= C, = congt,(27)

zsina
|:|_Z % | U = =
CSna’ Sna’ sina C, = const. (28)
Thefirst integral of system (25) has the form
J1+27
= C; = const. (29)

sna
In turn, the additional first integral is of the form

N cosf3;

N

Conclusion. Previoudly, only motions of a four-
dimensional body were considered for M = 0. The
present paper opens up new lines of thinking, i.e., the
investigation of equations of motion for a solid on
so(4) x R (M # 0).

Asfor the technique of integrating the dynamic sys-
tems under consideration, it can also be extended,

almost without exception, to the so(n) x R space of an
arbitrary dynamically symmetric n-dimensional solid.

= sn{Cs;(B,+C,)}, C, = const. (30)
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