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At the beginning of the 60s, the appearance of lasers
was followed by fast development of the electrodynam-
ics of nonlinear media. Progress in the experimental
technique achieved at that time made it possible to
observe a number of nonlinear effects [1, 2] proceeding
in crystals under the action of intense laser radiation.

However, it follows from fundamental physical rea-
sons that electrodynamics is nonlinear not only in
material media but in vacuum as well. Under conditions
of laboratory experiments, when the magnitudes of the
fields B and E are much smaller than the characteristic

quantum-electrodynamic value Bq =  = 4.41 ×

1013 Gs, according to the terminology introduced by
R.V. Khokhlov, a vacuum is a nonlinear nondispersive
medium with extremely small magnetic and electric
susceptibilities. Therefore, it is not an easy task to study
the effects of nonlinear electrodynamics in a vacuum.
However, at present, a possibility associated with fur-
ther development of superhigh-resolution laser spec-
troscopy [3] appeared, which allows the effects caused
by the nonlinearity of electrodynamics in a vacuum to
be observed in optical experiments.

In field theory, several different models of the non-
linear electrodynamics of vacuum are considered. In
the case of weak fields, their Lagrangian can be written
out in the parameterized form [6]:

(1)

where h = ∆ – , ξ = , g = , and the val-
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η2 , and τ1 depend on the model chosen for the nonlin-
ear electrodynamics of vacuum.

In particular, in Heisenberg–Einstein nonlinear
electrodynamics, the parameters η1, η2, and τ1 have

quite concrete values [9]: η1 =  = 5.1 × 10–5, η2 =

 = 9 × 10–5, and τ1 = . At the same time, in

the Born–Infeld theory, these parameters are expressed

in terms of an unknown constant a2: η1 = η2 =  and

τ1 = 0.

Equations for the electromagnetic field in nonlinear
electrodynamics are similar to those of nonlinear elec-
trodynamics of continua:

(2)

Using expression (1), it is easy to expand the vectors D

and H in powers of  and  with a post-Maxwellian

accuracy of the first order:

(3)

From the standpoint of the eikonal equation, accord-
ing to the laws of nonlinear electrodynamics, the prop-
agation of a weak electromagnetic wave in vacuum
through an imposed external electromagnetic field is
equivalent to propagation of this wave in a certain
effective space–time whose metric tensor depends on
the magnitude and the direction of the external electro-
magnetic field.
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We now find the components of the metric tensor in
this space–time for the case when a weak electromag-
netic wave with frequency ω propagates in the field of
an intense laser radiation having a frequency Ω . We
denote the vectors of electric and magnetic fields for
the first and the second of these waves as e and b and E
and B, respectively.

In the zeroth approximation over the vectors b and
e, the system of nonlinear differential equations (2) has
a solution in the form of a plane elliptically polarized
wave:

(4)

Invariants of this wave are equal to zero. Therefore, in
the first approximation over b and e, system of equa-
tions (2), (3) takes the form

(5)

It follows from these equations that the expression

rotb –  differs from zero by first-order post-Max-

wellian terms. Therefore, the expression 3gτ1h rotb –

 has the second order of smallness and should be

omitted since initial equations (5) are written out with
an accuracy to the terms of the first order of smallness.
We represent the vectors b and e in the form

(6)

where S = S(t, r) is the eikonal and we consider the vec-
tors b0 and e0 as weakly varying functions of t and r
compared to exp[iS(t, r)].

Substituting expression (6) into Eq. (5) and elimi-
nating vector b, we arrive at the system of linear alge-
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braic equations Παβeβ = 0 with respect to three compo-
nents of the vector eβ = (e)β, where

(7)

and the notation NK = [KE], NS = [—SE] is introduced.

As is well known, the condition det ||Παβ|| = 0 for the
existence of nontrivial solutions to this system of equa-
tions yields the dispersion equation. In order to repre-
sent this equation in explicit tensorial form, we employ
formulas of the tensor analysis which were proved
in [10, 11]. Following these formulas, we can write out
the condition det||Παβ|| = 0 in the form

Substituting expressions (7) into this equation and

dividing the relationship obtained by , we find

Thus, depending on the polarization of the weak
electromagnetic wave propagating in the field of an
intense electromagnetic wave (4), the eikonal in the
nonlinear electrodynamics with Lagrangian (1) must
satisfy one of the following equations:

(8)
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Equations (8) are the Hamilton–Jacobi equations

for a massless particle moving in a certain space–time
whose metric tensor depends on the field of the strong
electromagnetic wave. For the first type of weak elec-
tromagnetic waves satisfying the first equation of
Eqs. (8), we have

For the second type of weak electromagnetic waves, we
find

Since the curvature tensor Rjnml for the metrics obtained
is identically zero, both these four-dimensional spaces
are pseudo-Euclidean.

We consider how the properties of these metric ten-
sors depend on the polarization of the strong electro-
magnetic wave.

For the circularly polarized wave,  = . In this
case, the components of the metric tensors are indepen-
dent of the spatial coordinates and time but are not
diagonal. This implies that these tensors are metric ten-
sors of inertial reference systems in which the speed of
light depends on the propagation direction and polar-
ization of the electromagnetic wave. Therefore, the
nonlinear action of a circularly polarized strong elec-
tromagnetic wave in vacuum on the propagation of a
weak electromagnetic wave is equivalent to the intro-
duction of an anisotropic medium.

For a linearly or elliptically polarized wave, the con-

dition  ≠  holds true. In this case, the components
of metric tensors are functions of spatial coordinates
and time. These components correspond to noninertial
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reference systems moving in pseudo-Euclidean space–
time. Thus, the action of a strong electromagnetic wave
which is not circularly polarized on the propagation of
a weak electromagnetic wave is equivalent to the intro-
duction of an anisotropic medium and an action of iner-
tia forces of a noninertial reference system in that space
region in which these waves interact with one another.
This feature can be used as a basis for an experimental
search for the manifestation of nonlinearity in the elec-
trodynamics of vacuum.
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If the parameters of an active medium exceed a cer-
tain threshold, an autowave propagates uniformly in
this medium; otherwise, its amplitude and velocity
decrease. In this paper, we derive an approximate equa-
tion describing slow autowave-velocity variations. In a
near-threshold region, its solutions agree with the
results of numerical simulation of an autowave.

1. While studying autowaves, the so-called reac-
tion–diffusion model is widely used. In this model, the
width and the velocity of a solitary wave are on the

orders of  and ~ , respectively, where D and

τR correspond to the diffusion coefficient for a reaction
activator and the characteristic time of the relevant
chemical reaction. Waves of this type have a propaga-
tion threshold (see, e.g., review [1]). When the param-
eters of the medium exceed the threshold, the autowave
problem has two solutions characterized by different
wave velocities, the slow wave being unstable. The
threshold corresponds to merging of the stable and
unstable solutions. Below the threshold, there are no
steady-state solutions to the problem; the wave attenu-
ates, and its amplitude and velocity decrease. Near the
threshold, the attenuation occurs slowly and an equa-
tion describing the slow variations of the wave velocity
can be obtained. We now derive this equation consider-
ing an exothermal reaction with a high activation
energy. However, near the threshold, the equation takes
a form that does not contain quantities relevant to a par-
ticular reaction and, consequently, applicable to an
arbitrary autowave.

A wave of the exothermal reaction propagates due
to the heat transfer to an original substance, the wave
width and velocity being determined by the thermal dif-
fusivity. The heat release is concentrated in the vicinity
of the temperature maximum, i.e., in the reaction zone.
Ahead, in the warm-up zone with its relatively low tem-

DτR
D
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-----
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perature, we may ignore the reaction, while behind, in
the cooling zone, the reaction does not proceed because
the substance is entirely exhausted. The three-zone
structure is characterized by the Zel’dovich number Z
and the cooling time τ, where

Here, E is the activation energy, Q is the reaction heat,
c is the heat capacity, and T0 is the thermostat tempera-
ture. In the case of Z @ 1, the reaction zone is narrow
compared to the wave width and, consequently, can be
approximately considered as a discontinuity surface for
both the heat flow and the diffusion flux [2]. Thus, the
wave obeys the equations

(1)

(2)

which are written out in the reference system, where the
reaction zone is quiescent at x = 0 and satisfies the
boundary conditions

(3)

The quantities τR(Tb), , and  determine the

scales of time, length, and velocity, respectively; χ is
the thermal diffusivity; n is the concentration of the
original substance; T is the temperature counted off

from T0 using the scale Tb – T0; α = ; u(t) is the

instantaneous wave velocity; and

(4)

Here, u0 is the velocity of the wave propagating uni-
formly at α = 0, u0 ~ Z–1, and Tm = T (x = 0). To exclude
the complication of the problem due to effects related
to the diffusive instability, the diffusivity and the ther-
mal diffusivity are assumed to be equal. System (1)–(4)
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has steady-state solutions at α < α th ≈ (2eZ)–1. For
α = α th, the difference 1 – Tm ≈ Z –1 ! 1, which justi-
fies the approximate representation of the activation
law (4).

According to (1)–(3), the initial conditions already
do not affect the solution at times ~Z2 . For t @ Z2 , we
can write out that

(5)

where

(6)

the integrand in (5) being substantially nonzero only
within the interval ~Z2 near the upper limit. According
to (1) and (3), we obtain, in the same approximation,

(7)

This formula implies the complete conversion of the
substance so that n = 0 behind the reaction zone. Equal-
ities (4), (5), and (7) allow the quantities u, ϕ, and Tm to
be determined. In the case of uniform wave propaga-
tion, u = ϕ. Near the threshold, the velocity of the wave
varies slowly and the difference between u and ϕ is not
large. Furthermore, everywhere in the integrands of
expressions (5) and (7) (except in exponential func-
tions), we use the expansions

(8)

where 〈u〉  is defined by the equality

Expansions (8) are applicable as long as the difference
t – t ' is small. However, as was mentioned above, only
this variation range of t ' essentially contributes to the
results of calculating integrals (5) and (7). To perform
these calculations, we introduce a new integration vari-
able ξ1 in (7), which is related to t ' by the equality
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the integral, the upper limit can be shifted to infinity. As
a result, the left-hand side of (7) takes the form

(10)

We now simplify the multiplier ahead of the exponen-
tial function in (10), retaining only those terms that

contain the derivative  with a power not exceeding

the first one. As a result, this multiplier takes the form

(11)

Here, the instantaneous and average velocities are
replaced by the threshold velocity uth = u(α th) every-
where except in the small difference ϕ – u. Substitut-
ing (10) and (11) into (7), we find

(12)

Furthermore, we perform similar transformations in
the integrand of expression (5). Replacing the integra-
tion variable t '  ξ2 according to the formula

(13)

and using both expansions (8) and the linearization in

, we arrive at the relation

(14)

Using relation (4), we can now express the temperature
Tm in terms of ϕ and then replace ϕ in (14) by u. Indeed,
according to (12), the difference ϕ – u is proportional to

. However, in this case, a correction ~ (u – uth)

arises in (14) which can be ignored near the threshold.
Retaining terms leading with respect to u – uth and α –
αth in the left-hand side of this equality, we derive the
following equation for the velocity:

(15)

As is seen, this equation contains only uth and αth as
parameters and, consequently, is applicable to any
autowave having a propagation threshold. At α < αth,
there exist two solutions characterized by constant
velocity, the slow branch being unstable. At α > αth, the
velocity decreases with time and the wave attenuates.
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Attenuation curves for an autowave under near-threshold conditions. The values of α × 104 are (1) 3.0, (2) 2.9, (3) 2.8, (4) 2.7, and
(5) 2.6.
As long as (α – αth) ! αth , the deceleration becomes
small as the velocity approaches uth . This stage of slow
variations is typical for the development of the explo-
sive instability near the limit (see [3]) and for chaotic
regimes with intermittency [4]. In accordance with
Eq. (15), the function u(t) is determined by the equality

(16)

Here, ui = u(t = 0) so that the characteristic attenuation

time is ~ .

2. For numerical simulation of an autowave, we
used the system of equations
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within the interval 0 < x < x0 (x0 = 300). The boundary
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conditions were taken to be

(19)

The calculations were carried out assuming that Z = 10
and β = 0.09; the steps in variables x and t are equal to
0.1 and 0.2, respectively. Distributions schematically
representing a wave with the reaction zone at x = x1 =

 were used as initial conditions:

where ui is the initial velocity. Furthermore, the value of
u was chosen in a manner which made it possible to retain

the maximum of the function  at the point xm

situated not far from . At the nth time step, the value of

u was calculated by the formula (corrector)
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For a number of values of α, the function u(t) calcu-
lated in this way was compared with the solutions to
Eq. (15). The values of uth , α th , and u0 were calculated
in the course of numerical experiments based on sys-
tem (17)–(19). These values turned out to be αth ≈
0.000259 and uth ≈ 0.08, i.e., coinciding at u0 ≈ 0.1276
with the known asymptotic estimations (see [5]) within

an accuracy to ~ .

The attenuation curves are plotted in the figure. The
results calculated by formula (16) are shown by solid
lines, while the data of the numerical simulation
obtained with the step ∆t = 100 are represented by dots.
The initial time interval (t ~ Z2), inside which the wave-
structure formation occurs, is excluded from the plots.
We can see the qualitative agreement between the solu-
tions to Eq. (15) with the results of the numerical sim-
ulation. In particular, there exists, in each curve, an
inflection point at u ≈ uth . The closer α is to αth , the
longer the stage of a slower decrease in the velocity.
However, in contrast to the calculations based on
Eq. (15), the numerical simulation can reveal an irreg-
ular wave behavior near the threshold. Such a behavior
is caused by a “random” rounding-off during the calcu-
lation process. Far from the threshold, the effect of ran-
dom rounding-off is insignificant. As α approaches αth ,

1
Z
---
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the susceptibility of a wave to external actions
increases infinitely. Since, under actual conditions,
there always exist random variations of parameters
(noise), the fluctuation region with chaotic wave prop-
agation therein must be adjacent to the threshold. The
description of the fluctuation region is beyond the
scope of this paper and will be presented later.
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INTRODUCTION

New alternative inequalities for the polarizability
tensor of a homogeneous dielectric body are obtained.
As special cases, the well-known inequalities proposed
by Polya follow from these inequalities. A possible
practical implementation of the inequalities found is
demonstrated by example.

The polarizability tensor  of a dielectric particle
relates its dipole moment p induced by a uniform
external electric field to the field intensity E0 by the
formula [1]

(1)

If the particle is homogeneous and its material is char-
acterized by a symmetric positive-definite permittivity
tensor , then  depends on  and particle geometric
parameters.

For  = ∞, (∞) determines the polarizability ten-
sor  of a conducting particle having the same shape

as the dielectric particle. The quantity (0) differs
from the magnetic polarizability tensor  of a super-
conducting particle of the same shape by a constant fac-
tor only. We recall that, in the case when a supercon-
ducting particle is placed in an external magnetic field
of intensity H0 , this field induces a magnetic moment
on the particle:

In SI units, (0) = ε0 .

The exact solution to the problem of the polarizabil-
ity tensor is known only for a uniform dielectric ellip-
soid,

(2)

α̂

p α̂E0.=

ε̂ α̂ ε̂

ε̂ α̂
α̂ c

α̂
α̂m

m α̂mH0.=

α̂ α̂m

α̂ ε0V ε̂ ε0ê–( )N̂ ε0ê+[ ] 1– ε̂ ε0ê–( ).=
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Here,  is the ellipsoid depolarization tensor [1],  is
the unit tensor, and V is the ellipsoid volume. In partic-
ular, as follows from (2),

(3)

All tensors introduced here are symmetric;  and 

are positive definite, and  is negative definite. The

trace of the -tensor is equal to unity:

(4)

The problem of finding the polarizability tensor is
intricate. Therefore, variational-estimate methods were
found interesting for use in practical calculations. The
first such estimates (formulated as hypotheses) were
the inequalities

(5)

known as the Polya hypotheses [2]. Proofs of two-
dimensional analogs for these inequalities were given
in [2]. The inequalities, in themselves, were proved
much later, in [3, 4].

The extension of inequalities (5) to problems on the
polarizability of dielectric bodies was given in [5–7].
The essential achievement of these papers consisted in
generalization of the depolarization-tensor concept (usu-
ally defined only for ellipsoids) to bodies of arbitrary
shape. This generalization resulted from the formula

which relates the mean (over the region V) intensity of
the electric field to the uniform polarization P of the

region V that produces this field. The tensor  is posi-
tive definite and symmetric, and its trace is equal to

unity. Elements of a matrix representing  in a certain
coordinate system can be found from the formula

(6)

N̂ ê

α̂ c ε0V N̂
1–
, α̂m V ê N̂–( ) 1–

.–= =

α̂ c N̂

α̂m

N̂

Sp N̂ 1.=

1
3
--- Sp α̂ c 3ε0V ,

1
3
--- Sp α̂m

3
2
---V–≤≥

E〈 〉 V
1
ε0
---- N̂P,–=

N̂

N̂

Nij
1

4πV
----------

ni r( )n j r '( )
r r '–

-------------------------- S 'd S.d

∂V

∫
∂V

∫=
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Here, ni(r) are the components of the unit vector nor-
mal to the surface ∂V at the point r. Using formula (2)
and finding the depolarization tensor for an arbitrary
body, we can calculate the polarizability tensor for a
dielectric ellipsoid with the same volume, the same
depolarization tensor, and the same permittivity tensor.

We denote this polarizability tensor by ( , , V).
The following inequalities are proven in [5, 7]:

(7)

In particular, the inequalities

follow from these inequalities for   ∞ and   0
and, as was demonstrated in [6], inequalities (5). Esti-
mates (7) were applied in [5, 7] to calculate cross
sections for the scattering of electromagnetic waves
by small dielectric particles.

It is worth noting that inequalities (7) provide a
method of obtaining either the upper or lower bound for
the polarizability tensor, whereas principles [8] of the
variational dielectric electrostatics make it possible to
obtain two-sided estimates. This is very convenient,
because, having at hand the two-sided estimates along
with an approximate value of the polarizability tensor,
the maximum error for this approximation can be
found. This brings up a question: is it possible to find
alternative inequalities for (7)? The goal of this paper is
to find such inequalities.

VARIATIONAL PRINCIPLES 
AND THE PROBLEM OF POLARIZABILITY

We assume that a dielectric particle occupies a
region of space V and its material is characterized by a
field of the positive-definite symmetric permittivity
tensor . The electric field Eout(r) produced by
external sources polarizes the particle. The polarization
P(r) induced by the external field serves as a source of
the electric field E(r), whose scalar potential is

(8)

The corresponding electric induction can be expressed
in terms of the vector potential

(9)

by the formula

α̂ e ε̂ N̂

α̂ α̂ e ε̂ N̂ V, ,( ) for ε̂ ε0ê,≥≥

α̂ α̂ e ε̂ N̂ V, ,( ) for ε̂ ε0ê.≤≤

α̂ c ε0V N̂
1–
, α̂m V ê N̂–( ) 1–

–≤≥

ε̂ ε̂

ε̂ r( )

ϕ r( ) 1
4πε0
----------- P r '( ) r r '–( )⋅

r r '– 3
---------------------------------- V '.d

V

∫=

A r( ) 1
4π
------ P r '( ) r r '–( )⋅

r r '– 3
----------------------------------

V

∫ V 'd=

D ∇ A.×=
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The quantities E = –∇ϕ , D(r), and P(r) are bound by
the relation

(10)

Solving the fundamental problem of electrostatics for a
dielectric body placed in an external electric field
implies finding the unknowns E(r), D(r), and P(r) from
the known quantity Eout(r).

The general scheme for solving this problem, which
employs the concept of characteristic multipoles and
higher polarizabilities for a dielectric particle, is con-
structed in [9] on the basis of variational principles.
These principles are conveniently represented in the
form of inequalities: 

(11)

Here, the true field distributions are marked by the sub-
script 0 to distinguish them from the tentative ones.
Continuous piecewise smooth potentials ϕ(r) and A(r)
are admissible in the functionals

(12)

(13)

In particular, potentials (8) and (9), found for a certain
tentative polarization distribution P(r), can be taken
tentatively as ϕ(r) and A(r).

From the viewpoint of the general approach devel-
oped in [9], the problem of the polarizability tensor for
a dielectric particle is a problem of the characteristic
multipoles of the first order. In this case, the homoge-
neous electric field E0 should be used instead of Eout(r)
by taking, in relations (11)–(13),

With allowance for relation (1), we can write out

and use inequality (11) for determining the boundaries
in which the value of the tensor  can be confined.

The choice of a tentative function is the basic prob-
lem of realizing the method of variational inequalities.
In solving this problem, physical considerations can
play an essential role. It is worth noting that solving this
problem for an isolated conductor [10] turned out to be

D r( ) ε0E r( ) P r( ).+=

L A( )– L A0( )–≤

=  
1
2
--- P0 r( ) Eout r( )⋅ Vd

V

∫ W ϕ0( ) W ϕ( ).≤=

W ϕ( ) 1
2
--- ε0 ∇ϕ( )2(∫=

+ Eout ∇ϕ–( ) ε̂ ε0ê–( ) Eout ∇ϕ–( ) )dV ,

L A( ) 1
2ε0
-------- D2 D ε0Eout+( )+(∫=

× ε0ε̂
1– ê–( ) D ε0Eout+( ) )dV ,

D ∇ A× .=

Eout r( ) E0.=

P0 r( ) E0⋅ Vd

V

∫ E0 α̂ E0⋅ ⋅=

α̂
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equivalent to solving the fundamental problem of elec-
trostatics. However, here, we deal with relatively simple
tentative functions. Therefore, the estimates obtained
have a rather wide field of application.

THE APPROXIMATION 
OF THE DIELECTRIC-PARTICLE 

POLARIZATION BY UNIFORM POLARIZATION

An external homogeneous electric field polarizes a
homogeneous anisotropic dielectric ellipsoid so that a
homogeneous polarization arises in its volume. This
can be verified by substituting the potentials deter-
mined from formulas (8) and (9) into variational ine-
qualities (11) under the condition of a homogeneous
distribution P(r) inside the ellipsoid for ϕ(r) and A(r).
In this case, W(ϕ) and W(A) turn into quadratic forms
in components of P. Minimizing these forms with
respect to P, we arrive at the solution to the problem on
a homogeneous dielectric ellipsoid in a homogeneous
external electric field. A question naturally arises: can a
homogeneous polarization be a reasonable approxima-
tion for the true polarization of homogeneous dielectric
particles whose shape differs (possibly, very essen-
tially) from an ellipsoid? Variational inequalities (11)
make it possible to answer this question for different
bodies.

We substitute ϕ(r) determined by relation (8) into
functional (12) under the condition of homogeneous
polarization distribution over the volume of a dielectric
particle. Then, for the integral of the first term in inte-
grand (12), we obtain 

The depolarization tensor  of the region V is specified
by formula (6).

For calculating the integral of the second term in
integrand (12), we notice that, in the region occupied by
a particle,

(14)

It is reasonable to call  the local depolarization
tensor. This tensor is symmetric, and its trace is equal
to unity. However, unlike the depolarization tensor of
the region

the local tensor  can be not positive definite in cer-
tain parts of the region V. For example, if the region V

1
2
---ε0 ∇ϕ( )2 Vd∫ V

2ε0
--------P N̂ P.⋅ ⋅=

N̂

E r( ) 1
4πε0
-----------∇ n r '( )

r r '–
--------------- S ' P⋅d

∂V

∫–
1
ε0
---- n̂ r( ) P.⋅–= =

n̂ r( )

N̂ n̂ r( )〈 〉 V
1
V
--- n̂ r( ) V ,d

V

∫= =

n̂ r( )
consists of two equal touching balls centered at the
points R1 and R2 , then, at the point of tangency,

We introduce the following notation for positive-defi-
nite symmetric tensors of the second rank:

(15)

Then,

Minimizing the expression obtained for the functional
W(ϕ) with respect to P, we arrive at a tensor  repre-

senting the upper bound for the tensor ; i.e.,

(16)

We recall that tensor inequality (16) implies the posi-
tive definiteness of the tensor  – .

It is worth noting that from inequality (16) for  <
, the second inequality of relations (7) follows. The

passage to this inequality is realized by replacing the

tensor  –  by the larger tensor (  – ) . Ine-

quality (7) is weaker than inequality (16). For  > ,

such a replacement cannot be done since  –  >

(  – ) .

To obtain the lower bound for the polarizability ten-
sor, we substitute the vector potential A(r) from rela-
tion (9) into functional L(A) (13) and assume that the
polarization is uniformly distributed over the dielectric-
body volume. When calculating values of L(A), we
employ the relation

(17)

Using (17), we find

where

(18)
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(19)

Minimizing the value of the functional L(A) with
respect to P, we obtain the lower bound  for the
dielectric-particle polarizability tensor:

(20)

Inequality (20) combined with inequality (16) allows
us not only to find an approximate value of the polariz-
ability tensor but also to determine the maximum error
of this approximation.

The first inequality of (7) follows from inequality (20)
provided that the condition  >  holds. To pass to

this inequality, the tensor  –  should be replaced by
the larger tensor

Inequality (20) is more rigorous than the first inequality
of (7). For  < , such a replacement is impossible
since

and the inequality can, generally speaking, change its
direction after the replacement.

The inequalities

which improve the well-known inequalities, can also be
written out for the polarizability tensor of a conductor
and the magnetic-polarizability tensor of a supercon-
ductor that have the same shape as a dielectric particle,
while using inequalities (16) and (20).

AN EXAMPLE

We apply the results obtained to estimate the linear
polarizabilities of two equal parallel infinite cylinders
with circular cross sections of radius a and an axis-to-
axis distance l ≥ 2a, the cylinder material being homo-
geneous and isotropic. For such a problem, the following
expressions should be substituted into inequalities (16)
and (20):
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Here, i is the unit vector of a straight line intersecting
the cylinder axes and is orthogonal to them and j is the
unit vector which is orthogonal to the cylinder axes and
to the vector i. As a result of this substitution, we arrive
at the following expressions:

where 

In particular, for ε = 2ε0, l = 2a (the cylinders are in con-
tact),

The example considered demonstrates that the esti-
mates determined by inequalities (16) and (20) can be
rather exact.

CONCLUSIONS

We note that inequalities (16) and (20), which express
the principal results of the paper, are transformed into
equalities in the case of a homogeneous dielectric ellip-
soid. Thus, the field-source distributions that result in an
exact solution to variational problem (11)–(13) of the
polarizability for a dielectric ellipsoid are used in this
paper as tentative (basis) ones for constructing esti-
mates of polarizability for arbitrary-shape dielectric
bodies. The complete analysis of the corresponding
variational problems is carried out. Further extension of
the basis of tentative functions and improvement of the
variational estimates for the polarizability tensor can be
achieved by employing the characteristic-multipole
technique developed in [10].
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Our objective is to test experimentally the applica-
bility of the contemporary physical theory to the
description of the crystal state of a material subjected to
the effect of an electrostatic field whose strength is
close to the value of the electrical breakdown field.

The concept of a soft mode [1], which is equivalent
to the Landau theory [2], covers an extensive class of
phase transitions that occur under changes of tempera-
ture, pressure, and magnetic field. The only exception
to this class was, to date, phase transitions proceeding
under the action of an external electrostatic field. This
theory was not verified for such transitions owing to the
difficulties in achieving an electric field strength
exceeding 15 × 106 V/m. We studied the field-induced
phase transition using the Raman-scattering method
and revealed a quasisoft behavior of one of the lattice
vibrations: the spectral line frequency does not vanish
at the point of the phase transition, as was postulated in
the theory, but attains a minimum. A revealed similarity
of the phase transition to a soft-mode one indicates that
the phase transitions occurring under a change of elec-
tric field fit the ideas of the soft-mode concept and the
Landau theory, can be described on their basis, and
confirm their universal character.

In an antiferroelectric (AFE) crystal PbZrO3 (lead
zirconate), an external electrostatic field induces three
phase transitions in electric fields with a strength up to
5 × 107 V/m [3, 4]. Studies carried out by the methods
of X-ray diffraction and spectroscopy [5] and by the
method of electron spin resonance [6] have shown that
the observed phase transitions are associated with mod-
ification of the crystal symmetry and that PbZrO3 is

* Department of Physics, University of Puerto Rico at 
Mayaguez, 00680 USA

** Institute of Physics, Rostov State University, 
Rostov-on-Don, 344104 Russia

*** Department of Chemistry, University of Puerto Rico at 
Mayaguez, 00680 USA

**** Institute of Cell Biophysics, Russian Academy of 
Sciences, Pushchino, Moscow oblast, 142292 Russia
1028-3358/01/4606- $21.00 © 20389
more convenient to use when searching for regularities
in the atomic-structure dynamics in electric fields than
any other crystal.

Experiments on Raman scattering in crystals have
been limited so far to fields up to 5 × 106 V/m. We have
studied Raman scattering in PbZrO3 in electric fields
up to 28 × 106 V/m. Raman scattering spectra were
obtained with a T64000 spectrograph using excitation
by argon laser radiation (λ = 514.5 nm, 20 mW, 5 min)
and an original method of applying an electric field
described elsewhere [7].

The general shape of the spectrum (Fig. 1) differs
from that reported in [8] by the presence of additional
lines with frequencies of 22.9 and 28.4 cm–1. On apply-
ing the electric field to a crystal, we observe a shift of
the line with a frequency of 233 cm–1 (Fig. 2), the
appearance of a new line at 673 cm–3, and a change in
the intensity of other lines.

We will consider in detail the dependence of the line
position on the electric field. In the absence of the field
(Fig. 3), this line is positioned at 233 cm–1. The fre-
quency dependence of this line on the field has a weak
maximum in the region of 106 V/m. Near this field
strength, changes in the intensity of the lines 22.9, 28.4,
and 35.8 cm–1 are observed and a new line with a fre-
quency of 673 cm–1 appears. The intensity of the latter
rises with further increase in the field strength. The
minimum of the function ω(E) is observed for the elec-
tric field strength E = 239.5 × 105 V/m, near which the
crystal undergoes a phase transition from the antiferro-
electric (AFE) phase, whose lattice belongs to the
Pbam space group, into a ferroelectric (FE) phase with
the Cm2m space group. The line with E = 244.75 ×
105 V/m, passing through the point of the phase transi-
tion, separates the plane of Fig. 3 into two parts. The
left part is consistent with an AFE phase; the right one,
with an FE phase. It is easy to make sure that the corre-
sponding functional dependences ω(E) for these two
parts are different, but both functions have a minimum
near E = 244.75 × 105 V/m. Such a behavior of the fre-
quency of the spectral line near the phase transition due
001 MAIK “Nauka/Interperiodica”
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Fig. 1. The Raman spectrum of PbZrO3; T = 293 K (IRs is the relative intensity of Raman scattering light, ω is the frequency).
to the temperature or hydrostatic pressure effect is char-
acterized in the literature as a quasisoft behavior [9].

According to the commonly accepted interpretation
[10], normal vibrations with frequencies in the range
210–240 cm–1 in perovskite-type crystals with the gen-
eral formula ABO3, in which Zr occupies the B posi-
tion, are deformation-type and are associated with the
change in the angle of the O–Zr–O bond. Recent results
of theoretical studies give indirect evidence that the
vibration of interest corresponds to a soft ferroelectric
mode [11]. According to [11], the Born effective charge
calculated for different transverse optical modes in
PbZrO3 is maximum for a soft ferroelectric mode
involving Zr atoms. This implies that the frequency of
this mode should have the strongest dependence on the
external electric field as compared to other vibrations.

The above arguments, as well as the fact that only
the frequency of the line at 233 cm–1 depends notably
on the electric field, justify our suggestion that this
vibration can be associated with the induced phase
transition Pbam  Cm2m we are studying here. This
suggestion is also supported by the frequency behavior
near the phase-transition point, which is typical of the
soft mode (and some other modes): it follows from
Fig. 3 that the vibration frequency as a function of the
field changes at a rate three times higher in the FE
phase than in the AFE phase near the phase transition.
Similar relationships are also fulfilled for spontaneous
phase transitions; they are commonly known as the
rules of “two” and “four” [12].

To discuss the dependence of the frequency ω on E
for the AFE phase (Fig. 3) from the standpoint of lattice
dynamics, we use the basic formula for the frequency
200

ω, cm–1

225 250

1

2

3

4

Fig. 2. Fragments of the Raman spectrum of PbZrO3 at
various strengths of the electric field near the line that has
a frequency of 233 cm–3 in the absence of an electric field;
E = 116 × 105 (1), 204 × 105 (2), 226 × 105 (3), 239 ×
105 V/m (4); T = 293 K.
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Fig. 3. Quasisoft behavior of the frequency ω of the line at 233 cm–1 in the Raman spectra of PbZrO3 for the phase transition
AFE  FE (Pbam  Cm2m) induced by an electric field; T = 293 K.
of the transverse optical mode ωT deduced by Cochran
[1]; though sufficiently rough, this formula is a useful
illustration for the case under consideration:

(1)

Here, R is the effective force constant, Z is the effective
charge, v  is the unit cell volume, µ is the reduced ionic
mass, e is the electron charge, and n is the refraction
index. We have established in this report, as well as in
previous works [13], that the unit cell parameters and
birefringence of PbZrO3 are independent of the electric
field strength up to the field strength that induces the
phase transition. This gives grounds to consider only R
and Z functions of the electric field in (1) and interpret
the observed frequency change as a result of the elec-
tric-field dependence of the force constants. This con-
clusion agrees with the fact that the appearance of the
ferroelectric state in crystals with perovskite-type
structure is not related to the dependence of the electro-
static polarizability on the crystal volume [12]. Equat-
ing expression (1) to a polynomial,

which approximates to within acceptable accuracy the
square of the experimental plot presented in Fig. 3, and
taking into account the fact that both terms in the right-

µωT
2 R

4π n2 2+( ) Ze( )2

9v
----------------------------------------.–=

ω E( )[ ] 2 a bE2 cE4 dE6 f E8,+ + + +=
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hand side of Eq. (1) are positive, we find R and Z as a
function of the field E:

,

with the coefficients a = 53881.5 cm–2, b =
0.26986617 cm–4/kV2, c = –2.1948731 × 10–5 cm–6/kV4,
d = 4.8372522 × 10–10 cm–8/kV6, f = –3.4644176 ×
10−15 cm–10/kV8, and a1 + a2 = a.

Extrapolating graphically the polynomial depen-
dence ω(E) to ω = 0, we obtain the field strength E =
315.6 × 105 V/m at which the balance of short-range
and Coulomb forces results in the loss of crystal stabil-
ity with respect to small deformations.

One can explain physically that, in contrast to a
spontaneous phase transition, the lowering of the soft-
mode frequency for the field-induced phase transition
is less significant: the dielectric polarizability, which
jumpwise increases in the induced phase, is thermody-
namically conjugated to the electric field, which favors
a forced freezing of atomic displacements with the
wave vector k = 0 even for a relatively high frequency
of the soft mode.

To summarize, we can say that, in accordance with
the soft mode theory, the reduction of the mechanical
stability of a crystal is observed near the phase transi-
tion induced by an electric field. The total loss of stabil-

R
µ
--- bE2 dE6 a1,+ +=

Z2

µ
----- 9v cE4 f E8+( )

4π n2 2+( )e2
-------------------------------------– a2+=
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ity is postulated as the main reason for the spontaneous
phase transition. However, in the case studied, the drop
of the thermodynamic stability of the AFE phase with
respect to the FE phase occurs at lower fields than the
field at which the crystal becomes mechanically
unstable.
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An empirical frequency-angular dependence charac-
terizing the high-frequency backscattering by a ruffled
sea surface is well known. This dependence was obtained
in [1] by Schulkin and Shaffer by means of analysis and
generalization of many experimental results:

(1)

Here, Ns is the amplitude (expressed in decibels) of the
sound scattering by the sea surface, f is the sound fre-
quency, h is the amplitude of the rough sea, and θ is the
sliding angle.

To date, there exists no explanation for the physical
mechanisms governing the origin or nature of this depen-
dence. Meanwhile, we can see that dependence (1) is
described by a power law with a fractional (noninteger)
exponent, which is typical of the scattering of waves by
fractal structures and surfaces. It is well known that
power dependence of the wave scattering on the fre-
quency (wavelength) and scattering angle with a frac-
tional exponent [2] is characteristic of these fractals. It
is natural to relate dependence (1) to the fractal features
of a sea surface.

There exist rather convincing data in favor of the
fact that the sea surface exhibits fractal features. For
example, Barenblatt and Leœkin [3] indicated the self-
similarity of the high-frequency spectrum for wind
waves on the sea surface and proposed a formula
describing the frequency spectrum of the rough sea.
This spectrum features a power law with an exponent
that can acquire fractional values. The authors of [3]
paid attention to many experimental observations, indi-
cating the fact that the frequency spectrum of sea-sur-
face waves is described by the power (fractal) law.

In [4], expressions are derived that characterize, in
three-dimensional space, the elevations and the fre-
quency spectrum for a billowy sea surface. These
expressions are obtained on the basis of the modified
Weierstrass–Mandelbrojt function, which is often used
for describing fractal surfaces. It was noted in [4] that
the sea surface under a strong swell is fractal with sur-
face-wave amplitudes of 0.1 to 100 m, the fractal
dimension being D ≈ 2.25.

Ns 10 fh θsin( )0.99log 45.–=
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In a recent publication [5], an attempt was made to
theoretically relate dependence (1) to the fractal fea-
tures of the sea surface. Sound scattering in two-dimen-
sional space is considered under the condition that the
surface is described by the Koch generalized fractal
curve. This curve is characterized by the parameters

(2)

Here,

(3)

n is the number of the sequence (step) for the formation

of the fractal curve; Λ0 is a seed; , , and  are
elements composing a generatrix element of the Koch
curve; A0 is the amplitude; and Θ is the angle between
neighboring elements of the fractal set (Koch curve).
The Hausdorff measure for the indicated generalized
fractal curve is expressed by the formula

(4)

where D is the fractal dimension, 1 < D < 2.
The calculation of the sound scattering is performed

in the Kirchoff approximation, when the condition λ !
Λ0, A0 is valid, where λ is the wavelength of the sound
wave. In essence, the calculation of sound scattering by
a surface is approximated by the Koch prefractal. In
this case, in order to exclude prefractal peculiarities
from the consideration, the calculation of the scattered
field was based on the procedure proposed in [6]. The
expression for the intensity of the sound backscattering
by a rough surface (i.e., by the Koch prefractal), which
was obtained in [5], has the form

(5)

Expression (5) virtually coincides with formula (1)

under the assumption that the conditions Θ ≈  and

D ≈ 0.5 are fulfilled. It is worth remembering that the

n 0, a 0( ) Λ,= =

n = 1, a1
1( ) = 
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4
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dimension of the Koch prefractal is characterized by
the condition 1 < D < 2.

In the opinion of the author of [5], the necessity of
satisfying the equality D ≅  0.5 in formula (5) may be
explained by the fact that the degeneration of the Koch
continuous fractal curve into the Cantor set occurs. It is
well known that the Cantor-set dimension is 0 < D < 1 [2].

In our opinion, this explanation, being not suffi-
ciently evident, may turn out to be quite reasonable in
the light of optical experiments [7]. The authors of this
experiment studied the fractal properties of collapsing-
wave zones on the sea surface. The experimental data
were collected as a result of remote optical probing of
the sea surface. A series of large-scale photographs of a
ruffling sea surface with the presence of foam forma-
tions that accompany collapsing surface gravity waves
was obtained. In other words, this experimental mate-
rial contained data related to the backscattering of light
(i.e., electromagnetic waves) by the sea surface in the
case of collapsing waves. It was established that the
distribution of the collapsing zones is fractal with the
dimension D = 0.5, which characterizes the Cantor set.

Comparing formulas (1) and (5) with the experi-
mental results of [7], we can conclude that the acousti-
cal experiments, whose results are generalized in [1],
correspond to the conditions when the sound backscat-
tering arises on separate wave troughs of the sea-sur-
face ruffle. However, in this state of the sea, even in the
presence of collapsing sea waves, as observed in optical
experiments [7], the efficient production of the near-
surface layer of air bubbles did not yet occur. In the
opposite case, when this layer does occur at the sea sur-
face, the dependence described by formula (1) is vio-
lated. However, therewith, as was shown in [8], the
sound backscattering by the sea surface also obeys the
power law. In this case, the sound scattering is caused
not by the direct effect of the sea surface but by a layer
of air bubbles. It turned out that the spectrum of the
sound-velocity fluctuations in the layer of near-surface
bubbles satisfies the Kolmogorov–Obukhov law,
which, as is now well known, reflects the fractal struc-
ture of the turbulence. The calculations of the backscat-
tering intensity performed in [8] are in agreement with
experimental data for both rather low frequencies (from
0.1 kHz) and a wide range of sliding angles of inci-
dence. Schulkin and Shaffer emphasize in [1] that
power laws for intensity variations of the sound back-
scattering by the sea surface were obtained by a number
of researchers. As above [cf. (1)], their experimental
results can be written out in the form

(6)

Hence, it follows from [9], [10], [11] and [12] that K1 =
3.28 × 102, ν1 = 2.03; K2 = 5.57 × 103, ν2 = 1.52; K3 =
1.81 × 103, ν3 = 1.43; and K4 = 6.88 × 10, ν4 = 1.03,
respectively. At the same time, for dependence (1)
in [1], we have K = 3.649 × 104 and ν = 0.99.

Ns 10 fh θ/Kisin( )
νi.log=
Dependences (6) could be considered individual, in
a certain sense, occasional facts. The authors of [1],
apparently, analyzed these dependences from these
positions and, as a result of generalization, obtained the
averaged dependence described by expression (1). In
the actual situation, the results of [9–12] taken sepa-
rately seem to be quite reasonable. They reflect the
experimental conditions or, in other words, the state of
the sea surface, i.e., its fractal properties. In this case,
the exponent in the power law indicates the fractal
dimension. This conclusion coincides with the above-
mentioned ideas of [2]: the approximation of experi-
mental spectra for wind waves of the sea surface obeys
the power (fractal) law

(7)

where ω is the wave frequency and A is constant.

Analysis of a large number of experimental spectra
of developed sea waves, which was performed in [13]
(see also [1]), has shown that for the frequency range
ω = 1.5–3.8 s–1, the values of n lie in the interval γ =
2.5–4.3.

The fact that the fractal properties of a billowy sea
surface can be characterized by different fractal dimen-
sions depending on external conditions and the state of
the sea surface is confirmed, in particular, by the results
of optical experiments [14] and their comparison with
the experimental data of [7]. In [14], the results of
experimental studies are presented for static character-
istics of wind waves on the ocean surface. The investi-
gations were carried out by scanning the sea surface by
a laser beam. It was found that the set of mirror points
on a ruffling ocean surface corresponds to a Cantor set
with fractal dimension 0 < D = 0.8 < 1. It should be
remembered that optical experiments [7] yield the frac-
tal dimension D = 0.5. The experimental results of [7]
and [14] do not contradict each other. Moreover, they
indicate the existence of a variety of fractal properties
for a billowy sea surface.

As should be expected, at small amplitudes of the
surface ruffling or sufficiently long sound waves, Ray-
leigh scattering is observed. In this case, the exponent
in the power law of the sound-intensity variation as a
function of the frequency is γ = 4. The sea surface is
similar to an Euclidean surface. However, even when it
is fractal rather than Euclidean, its fractal properties did
not manifest themselves in scattering of low-frequency
sound.

Thus, we may state that the high-frequency sea sur-
face reverberation is characterized by fractal properties
or has a fractal nature in a wide variation range of the
sea ruffling. The frequency dependence for the rever-
beration intensity obeys the power law with a fractional
exponent. The value of the exponent yields information
on the fractal properties of the sea surface and its fractal
dimension and, thus, can serve as a characteristic of
sea-surface ruffling.

Ns Aω γ– ,=
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The problem associated with describing critical
phenomena in charged-particle systems is of both
applied and theoretical importance. From the applied
standpoint, the problem is interesting because both
plasma and electrolyte solutions and melts are related
to this class of systems. From the theoretical stand-
point, the problem attracts attention through the fact
that, in the case of charged particles, the available
Kadanov–Wilson theory of critical phenomena, which
is based on methods of the similarity theory and renor-
malization-group theory [1], has faced a challenging
phenomenon that could not be explained [2]. In addi-
tion, methods of numerical simulations also proved
unsuccessful [3]. As a result, until now, it has been
unclear how important the critical indices in the
charged-particle systems are. However, it is this topical
issue that is of principal importance. The matter is that
in the Kadanov–Wilson theory, all substances are
divided into universality classes and it is postulated that
the critical indices are the same within each class. At
the same time, there exist no criteria that make it possi-
ble to relate a particular substance to a given class.
Moreover, at present, it is entirely unknown whether
different classes exist if all substances are related to the
same class. Thus far, this question has been considered
only empirically. There exist certain experimental data
that imply the fact that the critical indices in liquids
may slightly differ from those predicted by the
Kadanov–Wilson theory for crystals. Nevertheless, the
discrepancies observed in experiments are too small
and insufficiently reliable to make final conclusions
(see [4]).

In [5, 6], an alternative (with respect to the
Kadanov–Wilson theory) approach to the critical phe-
nomena was developed. It is based on a local Ornstein–
Zernike equation that characterizes the state of a sub-
stance at a given point of a system rather than on a glo-
bal Gibbs distribution describing the state of the mac-
roscopic system as a whole. However, since the equa-
tions underlying these grounds are based on the same
postulates, both approaches are essentially equivalent

Institute of Physical Chemistry, 
Russian Academy of Sciences, 
Leninskiœ pr. 31, Moscow, 117915 Russia
1028-3358/01/4606- $21.00 © 20396
[7]. Therefore, the Ornstein–Zernike equation virtually
represents the same Gibbs distribution written out in
the integral form [8].

As is shown in [5, 6], in the certain vicinity of a crit-
ical point, the Ornstein–Zernike equation has two solu-
tions, namely, regular and critical. When approaching
the critical point, the regular solution gradually degen-
erates, completely vanishing at this point. In contrast,
the critical solution degenerates when going away from
the critical point. However, in the nearest neighborhood
of the critical point, the critical solution generates
nonanalytic values of critical indices that satisfy the
same similarity relationships as in the Kadanov–Wil-
son theory (note that the particular values of indices
were not calculated in [5, 6]).

In this study, the method developed in [5, 6] is
extended to the case of critical phenomena in charged-
particle systems. In particular, we show that, in these
systems, only the regular (analytical) solution exists.
However, it generates critical indices that differ from
those predicted by the Van der Waals theory (and, of
course, from the nonanalytic indices in the Kadanov–
Wilson theory). In addition, we also show that the crit-
ical amplitudes in these systems tend to infinity when
approaching the critical point (in the case of neutral
particles, they are always finite).

FORMULATION OF THE PROBLEM

In what follows, we restrict ourselves, for simpli-
city, to consideration of the so-called primitive electro-
lyte model defined by the following relationships:

(1)

where e± are the charges of cations and anions; ρα are
their concentrations; σαβ are the particle diameters for
different species α and β = + and –, respectively; Φαβ(r)
are the short-range interaction potentials; and r is the
distance between particles. In this case, the system of
Ornstein–Zernike equations takes the form [9]

e e+ e–, ρ– n±σ3 ραβ,= = = =

σ σαβ, Φ r( ) Φαβ r( ),= =

h++ t( ) ϕ t( )–= C++ t( )+
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(2)

where t = , hαβ =  – 1 is the

common correlation function, θ = kBT is the tempera-
ture (expressed in ergs), ωαβ(t) are the thermal poten-
tials, Cαβ = hαβ – ωαβ + Bαβ are the direct correlation
functions, and Bαβ(t) are the bridge functionals. In addi-
tion, Eq. (2) involves the electrostatic potential ϕ(t), its
value being determined by the Poisson equation

(3)

and by the electrical-neutrality condition of the Debye
atmosphere

(4)

here,  = 8πχρ = , where RD is the Debye radius

and χ = .

The system of equations obtained corresponds to
the exact formulation of the problem. However, this
system is unclosed until closing equations that link
Bαβ and ωαβ are given. Below, we do not need the clos-
ing equations, since they are required only for calculat-
ing particular values of amplitudes and other numeri-
cal coefficients.

THE GENERAL SOLUTION

We expand all functions involved in Eqs. (1)–(4)
into the Fourier integral

(5)

Thereafter, Eqs. (3) and (4) are reduced to the system of
algebraic equations

(6)
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(7)

Solving this system with respect to the unknowns hαβ,
we arrive at

(8)

where

(9)

(10)

Substituting solution (8) into (5), we obtain [5]

(11)

This integral can be calculated with the help of the the-
ory of residues. Closing the real axis in the upper half-
space by an arc of infinite radius, we find

(12)
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(13)

and k = iz and zj are the roots of the transcendental
equation

(14)

Using these formulas, it is possible to find the electro-
static potential,

(15)

where

as well as the condition for the electrical neutrality of
the Debye atmosphere,

(16)

CRITICAL PHENOMENA
As is well known, a critical point is defined by the

conditions

(17)

where P is pressure. Therefore, the isothermal com-
pressibility, by definition, equal to [8],
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,

becomes infinite at the critical point. Substituting (12)
into this expression, assuming zj = λj + iµj , and integrat-
ing over t, we have

(18)

where A =  +  and all values of λj and µj lie in
the interval 0 ≤ λj , µj ≤ ∞. It follows from equality (18)
that κθ may become infinite only if the real root of the
transcendental equation (14) λ0 vanishes and the corre-

lation radius R =  = ∞. In cases of arbitrary values of

λj and µj (j ≥ 1), κθ has a finite value. Moreover, since,
by definition [9],

(19)

where  =  are the moments of

the function Cαβ on the order of 2l, we have, at the crit-
ical point, the equality

(20)

Expanding in (13) the amplitude  into a series in
terms of λ0 , we obtain as λ0  0 that

(21)

where

Next, substituting this expression into relation-

ship (18) and taking into account that A =  + ,
we find that, when approaching the critical point, the
isothermal compressibility increases by the law

(22)

(we recall that, in the case of neutral particles, it varies

as κD ~ , where the critical index η ≈ 0.05 [9]).
Since the regular (analytical) solution at the critical
point becomes infinite [see formula (21)], then no solu-
tions can manifest themselves against the background
of the regular solution.
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Thus, we show that the critical indices in charged-
particle systems differ from the predictions of both the
classical and Kadanov–Wilson theories.
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Over a long period of time, I was involved in activ-
ities associated with substantiating experiments
employing the effect of coherent excitation of energy
levels of fast atoms or relativistic nuclei penetrating a
crystal [1–4]. In particular, the feasibility of testing the
equivalence principle for the gravitational field and the
accelerated reference system (for accelerations a ~
1020–1021 cm/s2) was analyzed. I also studied the con-
sistency of possible results of such experiments and
well-known experiments on testing certain conclusions
of the general relativity (GR). In the process of this
analysis, I came up against an intriguing and paradoxi-
cal situation.

Unfortunately, the numerous long-term discussions
I was involved in did not result in any intelligible scien-
tific elucidation of the paradoxical situation. Therefore,
I considered it necessary to attract the attention of the
scientific community to this issue by writing this paper.

As is well known, the GR predictions related to vari-
ation of a photon frequency when moving along the
direction of the gravitational-potential gradient, as well
as those related to the variation of the timepiece rate at
points with different gravitational potentials, were con-
firmed in experiments [5–9].

The gravitational shift of the photon frequency

 =  was measured in the well-known experi-

ments of Pound and Rebka [5, 6] and Vessot and Levine
[7] (Fig. 1).

Variation of the frequency ∆ν of photons emitted by
57Fe nuclei [5, 6] or hydrogen atoms in a hydrogen fre-
quency standard [7], when rising (or dropping) through
a height H in the gravitational field, has been experi-

∆ν
ν

------- gH

c2
-------

1 The preliminary version was published in the ITEP preprint
No. 27-98.
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mentally recorded. This effect was detected through
comparison with a reference frequency of an “oscilla-
tor” located at the photon-detection point. In [5, 6],
57Fe nuclei (identical to nuclei radiating photons with
an energy of 14 keV at H = 0) were taken as an oscilla-
tor of the reference frequency at the elevation H. In the
experiment of Vessot and Levine [7], a hydrogen fre-
quency standard identical to that emitting photons at
the ground level played the same role.

In both cases, it was implied as self-evident that the
energy distances between levels for nuclei [5, 6] and
atoms [7] are independent of the gravitational potential.

We recall that the stability of the emitted-photon fre-
quency and the fixation accuracy of the detected-pho-
ton frequency are unambiguously determined by the
stability of the energy distance between levels in nuclei
[5, 6] and atoms [7]. The treatment (and even execu-
tion!) of these experiments is impossible without
assuming the independence of energy-level positions
from the gravitational potential. Indeed, even a small
shift of the photon frequency can be detected only by
comparing it with an invariant reference frequency
determined by the invariant positions of nuclear or
atomic energy levels.

Three alternative variants in treating the results of
experiments on the gravitational shift of the photon fre-
quency are apparently possible:

(a) when rising in the Earth’s gravitational field, the
photon frequency varies in exact accordance with the

formula  =  predicted by the GR, while the posi-

tions of nuclear and atomic energy levels are indepen-
dent of the gravitational potential;

(b) the photon frequency does not vary, whereas the
nuclear and atomic energy levels follow the gravita-
tional-potential variation in accordance with the depen-

dence  = ;

(c) both the photon frequency and the nuclear levels
vary; in this case, different alternatives are possible

∆ν
ν

------- gH

c2
-------

∆ν
ν

------- gH

c2
-------
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H = 20 m

∆E(0)/h = ∆E(H)/h

∆ν /ν = gH/c2

∆Ε (H)

I II

Hydrogen
I

57Fe*

57Fe 57Fe*

∆Ε (0)
H = 0

H = 104 km

H = 0

Fig. 1. Gravitational shift of the photon frequency [5–7].

standard
frequency

Hydrogen
standard

frequency

Hydrogen
standard

frequency
when moving in the gravitational field depending on
the sign and the value of these variations.

As is seen from [5–7], version (a) is, undoubtedly
and without a trace of hesitation, taken in these papers.

The effect of the gravitational potential on the time-

piece rate this dependence is given quantitatively by

the twin formula  =  was studied in experi-

ments [8–10]. They were performed by comparing
readings of two high-precision frequency standards in a
position with the same gravitational potential. Then,
one of the frequency standards was lifted, for a while,
to a position with different values of the gravitational
potential (i.e., to an altitude on the order of a few kilo-
meters).

The divergence between the readings of these instru-
ments after bringing them to the initial point (Fig. 2)
quantitatively supports the gravitational-potential depen-
dence of the timepiece rate predicted by the GR.

The treatment of these experiments is unambigu-
ously related to the assumption that the position of
atomic energy levels (specifying the rate of the fre-
quency standards) depends on the value of the gravita-
tional potential in which these atoms reside. In this
case, the atoms play the role of a “timepiece” measur-
ing the time-rate variation at different altitudes in the
Earth’s gravitational field. Therefore, the treatment of the
well-known experiments of Pound and Rebka [5, 6], as
well as those of Vessot and Levine [7], is based, as a
matter of course, on assumptions implying the invari-
ance of atomic and nuclear energy levels. These
assumptions contradict the well-known GR predictions
on the variation of the timepiece rate at points with dif-
ferent gravitational potential. This conclusion is also
supported by the experiments performed in [8–10]. It
follows from these experiments that there exists, at




∆T
T

------- gH

c2
-------
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least, a dependence of atomic energy levels on the grav-
itational potential. In other words, atoms are timepieces
following the variation of the gravitational potential!

Thus, we may conclude that the positive results of
the experiments on the gravitational shift of the photon
frequency [5–7] and on the gravitational change of the
timepiece rate [8–10] are, unfortunately, incompatible.

If the atomic and nuclear energy levels are inde-
pendent of the gravitational potential, then experi-
ments [5–7] and [8–10] should yield positive and neg-
ative results, respectively. If the positions of atomic and
nuclear energy levels depend on the gravitational
potential, then, in contrast to experiments [8–10],
experiments [5–7] cannot yield positive results. It is
impossible to simultaneously obtain positive results in
both experiments [5–7] and [8–10] since atomic and
nuclear energy levels cannot be simultaneously depen-
dent on and independent of the gravitational potential.

This fairly paradoxical and conjectural situation
“springing from nowhere” entails a chain of important
physical corollaries whose discussion is premature.
However, one of them should be recalled. For example,

∆E(0)/h ≠ ∆E(H)/h

∆T /T = gH/c2

.
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Fig. 2. Variation of the timepiece rate depending on the
gravitational potential [8–10].
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the motion in an effective gravitational field caused by
acceleration (equivalence principle!) is the heart of the
twin paradox [11].

Evidently, the indicated inconsistency between the
results of experiments, which have already become
classical, necessitates additional experimental confir-
mation in other experiments carried out by different
techniques. These experiments could be the coherent
excitation of energy levels of fast atoms and relativistic
nuclei when penetrating a crystal [1–4]. In these exper-
iments, the projectile nucleus serves as a timepiece
whose rate is studied by means of a series of successive
interactions with the crystal atoms. A sharp resonant
dependence of the effect makes it possible to isolate the
component of the energy-level shift in flying nuclei.
The appearance of this component is stipulated by the
action of the varying effective gravitational potential,
which, in turn, is caused by the deceleration of nuclei in
the crystal substance.
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1. The coefficient of dynamic viscosity η (below, for
brevity, viscosity) enters into the linear relation
between the shear velocity  in a fluid and the tangent
component of a force acting between fluid layers in the

case of shear. When η is independent of  = ,

where u is the velocity, the liquid is called Newtonian.
The quantity η–1 is called fluidity. Depending on the
nature of the medium, temperature T, and pressure p,
the range of the viscosity variation is great, e.g., from
η = 10–3 Pa s (water under normal conditions) to
1012 Pa s in the region of the glass transition. It follows
from the given values of η that the approximation of the
Newtonian liquid suggests a corresponding space–time
scale of performing an experiment or a passage to a
more complicated description of a medium as viscous-
elastic. The relaxation time τ of shear stresses is deter-
mined by the order of magnitude on the basis of the
ratio of the viscosity coefficient to an “instantaneous”
shear modulus G in Hooke’s law:

(1)

We have analyzed experimental data on the viscosity of
relatively simple molecular liquids and extrapolated
these data to the region of a supercooled state. The
interest in supercooling (T < Tm, where Tm is the melt-
ing temperature at a given pressure) is associated with
both the problem of homogeneous nucleation [1] and
the conditions of preparation of solid-amorphous sam-
ples, including metallic glasses. Here, the main diffi-
culty consists in the choice of the viscosity dependence
on the liquid thermodynamic parameters and in the
intrinsic consistency of data related to T, p, v , and η in
the case of using far-range extrapolation.

The goal of this study was to establish the character
of the melt-viscosity variation in the line of the crystal–
liquid phase equilibrium for both the high pressure and

ε̇

ε̇
dux

dy
--------

τ η
G
----.=
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extended states of coexisting phases (p < 0) in the case
of extrapolating the melting line to the metastable
region. For materials being normally melted, the deriv-

ative  is positive. An elevation of both temperature

and pressure results in the opposite viscosity variation,
such that the resulting effect depends on the slope of the
melting line. The preliminary consideration [2] has
shown that while moving along this line, the liquid
becomes more viscous with increasing temperature.
This can result in the vitrification of the melt not in the
low-temperature region of the continued melting line
but in its high-temperature region. In this paper, the
problem indicated is considered on the basis of experi-
mental data on the viscosity of a series of liquids and on
the basis of extrapolating the values of η over isobars.
For the melting line, the Simon equation [3]

(2)

was used, in which c > 1, p∗  are the individual constants
and T0 is the melting temperature at the zero pressure.
The applicability of Eq. (2) and its corollaries were dis-
cussed in [4] and in other publications.

2. There are two approaches to the description of
viscosity that are the most well-known. According to
Frenkel, the fluid viscosity is associated with the acti-
vation energy E of a local molecular regrouping:

(3)

where A is a weak (compared to the exponential factor)
function of temperature and pressure. The activation
energy increases with decreasing temperature and
increasing pressure. When approaching the glass-tran-
sition region under atmospheric pressure, the parameter
E increases by an order of magnitude compared to its
values for low-viscous states [1]. Another approach
was developed by Bachinskiœ [5]. The essence of this
approach is expressed in the statement that the viscosity

dp
dTm
----------

1 p
p*
------+

T
T0
----- 

  c

=

η A
E

kT
------ 

  ,exp=
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of a liquid is determined by its specific volume. Bachin-
skiœ proposed the formula

(4)

where c and ω are individual constants. Although sub-
sequent verification has shown the inadequacy of
expression (4) in a wide range of viscosities, the heuris-
tic importance of this expression is retained. Frenkel’
considered the possibility of formulas (3) and (4)
agreeing on the basis of the hole theory of liquids. We
have chosen the following expressions for viscosity:

(5)

(6)

They are known as the Fulcher–Tamman and
Doolittle formulas, respectively, and can be considered
modified versions of formulas (3) and (4). Introducing
the quantities T1 and ν1 a priori determines the zero flu-
idity by the conditions T = T1 or ν = ν1 , but the values
of T1 and ν1 in themselves depend on pressure. In addi-
tion, parameters A and b are assumed to be functions of
pressure, whereas B and a are considered individual
constants. Experimental data for fluid viscosities in the
isobars were treated within this approximation using
the glass-transition temperature of each material under
atmospheric pressure. The consistency of data for T, p,
ν, and η was verified for the melting line and glass-

η c
ν ω–
-------------,=

η A
B

T T1–
--------------- 

  ,exp=

η a
b

ν ν1–
-------------- 

  .exp=

200
T, ä

400 600 800

12

8

4

0

–4

logη [Pa s]

1 2 η(Tm)

Fig. 1. Variation of the benzene viscosity along the melting
line η(Tm) and along the isobars (1) p = 0.1 and
(2) 300 MPa. Dots correspond to experimental data. Solid
lines are the results of calculations according to formula (5).
transition line by calculations according to formulas (5)
and (6). Formula (5) was taken as a basis.

Data on the viscosity of the following liquids were
analyzed: argon [6], carbon tetrachloride [7], benzene
[8], dodecane [9], octadecane [9], and carbon dioxide
[10]. The pressure range in the references indicated was
360 MPa for dodecane and 200–300 MPa for other liq-
uids. The viscosity variation with temperature for two
isobars (to the left) and in the benzene melting line is
shown in Fig. 1 in a semilogarithmic scale. According
to our estimate, the glass transition (η = 1012 Pa s) on
the melting line for benzene occurs at a temperature of
833 K and a pressure of 6.5 GPa.

3. The elevation of the fluid viscosity in the melting
line with temperature is associated with the reduction
of the specific fluid volume ν in the same direction
under the coexistence of phases. This is expressed by
the local condition [2]

(7)

where βT =  is the isothermal compressibility

coefficient and α =  is the coefficient of ther-

mal expansion. Inequality (7) is valid for the conven-
tional melting materials for which the melting line

slope  is larger than that of the isochore of a liquid

at the point of intersection of the isochore with the
melting line. There exists another local criterion that

provides the inequality  > 0:

(8)

This criterion relates the melting-line slope to the con-
stant-viscosity line expressed in the T and p variables.
The melting line, three isoviscous curves, and the iso-
chore that has a common [with the line η(T, p) =
3 mPa s] point in the melting line are shown in Fig. 2
for dodecane.

Qualitatively, the behavior of the fluid viscosity in
the melting line is remarkable not only by increasing η
with temperature but by retaining low values of η in the
case of metastable continuation of the melting line to

the region of low temperatures, i.e., at  < 1. This fol-

lows from the monotonicity of isoviscous curves
η(T, p) = const and from their nonintersecting with one
another (Fig. 2).

Although the viscosity in the melting line increases
with temperature, this is not yet sufficient evidence that
the glass transition occurs in the melting line. Here, the

Ml
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mutual disposition of the glass transition line η(T, p) =
1012 Pa s and the melting line in the T, p plane for vari-
ous materials, as well as the possibility of mutual inter-
section of these lines, are important. In addition to the
check of the consistency of data for η, which are calcu-
lated by formulas (5) and (6), we also take into account
the conditions of explosive crystallization [1] in the
case of heating of amorphous layers for a number of
organic materials. Under atmospheric pressure, the
temperature of explosive crystallization T∗  is higher
than the glass-transition temperature approximately by
15 K and the viscosity of 107–108 Pa s [1] corresponds
to this temperature.

The melting temperature T0, the fluid viscosity cor-
responding to this temperature and atmospheric pres-
sure, and the glass-transition temperature Tg, at under
this pressure are presented in the table for each of the
materials under consideration. The values of the melt

viscosity at  = 0.8 and 1.5 are also given, and the

pressure pg in the melting line at which the melt under-
goes the glass transition is estimated. For the same
material, the data of various authors can strongly differ.
Thus, for carbon tetrachloride, the value for Tg, at = 61 K
was taken from [11], in which the glass-transition point
was estimated from experiments on the crystallization
of amorphous layers. The authors of [12] indicate
another value, Tg, at = 129 K, which was obtained by
extrapolating glass-transition temperatures for solu-
tions of carbon tetrachloride in ethylbenzene to zero
concentration of the second component. At Tg, at = 61 K,

the ratio  is 0.25; i.e., it is sufficiently lower than

the similar ratio for organic materials with a more com-
plicated molecular configuration. For example, in the
case of dichlorethane, thiophene, and benzene, we have

 = 0.40 [1], 0.39 [1], and 0.47 [12], respectively.

The values of Tg, at, which are indicated in the table for
argon and carbon dioxide, are obtained under the

T
T0
-----

Tg at,

T0
----------

Tg at,

T0
----------
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assumption that  = 0.25. For dodecane and octade-

cane, this ratio is assumed to be 0.6. Plotting the isovis-
cous curves (Fig. 2), we can expect their nonlinearity in
the region of negative pressures. Indeed, only in this
case is their intersection impossible. Under high pres-
sures, p ≈ p∗ , the lines of constant viscosity in coordi-
nates T, p are close to straight lines. This property is
also confirmed experimentally for the glass-transition
line [13]. Solving the question on the fluid glass transi-
tion in the melting line, we adhered to the following
rule. Let the parameter p∗  in the Simon equation (2) be
taken as a scaling value for pressure. This parameter
serves as a characteristic of the internal pressure in the
condensed phase [3, 4] for each of the materials. We
assume that the liquid undergoes the glass transition in
the melting line if the glass-transition line η(T, p) =
1012 Pa s, in its extrapolation, intersects the melting line

Tg at,

T0
----------

100

T, ä

200 300 400

600

200

400

0

–400

p, MPa

3
5

–200

Tg

Tm

η = 1 mPa s

Fig. 2. Dodecane melting line Tm(p), viscosity isolines η =

1, 3, 5 mPa s, and Tg(p) for η = 1012 Pa s with extrapolation
to the region of negative pressures. The dashed-dotted line
is the isochore ν = 1.3 cm3/g of the liquid.
Viscosity of liquids at various points of the melting line and the glass-transition temperature Tg, at under atmospheric pressure

Material T0, K η(T = 0.8T0), 
mPa s

η (T = T0), 
mPa s

η(T = 1.5T0), 
mPa s pg, GPa s Tg, at, K

Carbon tetrachloride 250.6 1.8 2.0 2.7 61

Benzene 278.6 0.3 0.82 3.8 6.5 18.1 131

Dodecane 263.7 0.6 2.8 20.1 5.3 14.9 160

Octadecane 301.0 1.3 4.0 55 2.7 7.9 181

Carbon dioxide 216.6 0.15 0.25 0.59 54

Argon 83.8 0.20 0.28 0.47 21

pg

p*

-----
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T = fm(p) at a pressure  < 20. In the opposite case,

the question remains open since the validity of the pro-
cedure employed becomes unreliable. For the sub-
stances listed in the table, argon, carbon dioxide, and
carbon tetrachloride can be related to this case.

Thus, the analysis of the behavior of the fluid vis-
cosity, which was undertaken by us, yields the follow-
ing pattern for the variation of η in the melting line with
allowance for its continuation far beyond the triple

point. The liquid retains the high fluidity  in the low-

temperature (metastable) region of the melting line,
which is caused by the omnidirectional extension of
coexisting phases. The melt viscosity monotonically
increases with temperature, and in the vicinity of a cer-
tain point of the melting line {T, p}m, g, the liquid can
undergo the glass transition. This conclusion has not
only a cognitive but a practical meaning, e.g., for met-
allurgy and geophysics. For example, in [14], on the
basis of extrapolating the iron melting line to p ≈
300 GPa, a conclusion was made as to the vitreous state
of the Earth’s core. This conclusion requires additional
analysis, but the approach, in itself, confirms the neces-
sity of further study of the fluid viscosity in the melting
line within a wide range of temperatures and pressures
for various materials.
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Because of a series of technological (sometimes,
occasional) reasons, the profile of the refractive index
for actual optical fibers has a fairly complicated form.
When evaluating the dispersion characteristics of an
actual optical fiber, all the features of its refractive
index need not be allowed for, because many of them
are random in nature and would not noticeably influ-
ence the calculation results.

A graded-index fiber with an arbitrary refractive
index is the optimum mathematical model for actual
graded-index fibers, which are widely used in various
optical-fiber devices. In this paper, we derive both exact
dispersion equations and equations for the critical
wavelengths of all the waveguide modes of a graded-
index fiber with an arbitrary refractive-index profile. In
fact, we develop a method for evaluating the dispersion
characteristics for graded-index fibers that is more effi-
cient than known methods (they were analyzed in
monograph [1]). Within the framework of the model
proposed, this method has the maximum range of use;
in addition, it is exact, fairly simple, and efficient.

APPROXIMATION
FOR THE REFRACTIVE-INDEX PROFILE 

We consider a graded-index fiber consisting of a
core, whose permittivity is given by a piecewise contin-
uous function ε(r) (in the cylindrical coordinate system
r, ϕ, and z, with z being the guide axis), and of an infi-
nitely thick cladding with a constant permittivity ε00 .
Without loss of generality, we assume that the function
ε(r) is continuous from the right at the discontinuity
points, including the point r = 0.

Omitting intermediate transformations based on
interpolation with the optimum sampling of its points,
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we present the permittivity for this fiber in the follow-
ing form:

Here, r0 = 0, r1, r2, …, rN  – 1 are the discontinuity points
of the function ε(r), rN is the core radius,

Such an interpolation (with the optimum sampling
of its points) can be used to most closely represent the
permittivity for a fiber core as a power series only if the
refractive-index profile for this fiber is given analyti-
cally. If the refractive-index profile for a graded-index
fiber is given in the form of tabulated values, other
methods (for example, a step-function approximation
[2–4]) have to be employed.

DISPERSION EQUATIONS
In what follows, we omit the factor exp[j(ωt – βz +

mϕ)], which describes the common dependence of the
electric and magnetic field strengths, E = (Er, Eϕ, Ez)
and H = (Hr, Hϕ, Hz), respectively, on the time t and
coordinates z and ϕ of a waveguide mode with the azi-
muthal number m. Here, ω and β are the circular fre-
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quency and the longitudinal-propagation constant for
the mode, respectively. In this case, using the Maxwell
equations for a nonmagnetic dielectric medium, we
obtain the following set of equations:

Here,

γ = ,   k0 =  = ,

ε0 and µ0 are the dielectric and magnetic constants,
respectively, and λ is the wavelength.

Taking into account that the components of the vec-
tors E and H must tend to zero more rapidly than r–1 as
r  ∞, we present a continuous solution to this set of
equations in the following form:

Here,
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de
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Km(ρr/rN) is the MacDonald function of the integer
order m, and c1, c2, c3, and c4 is a nontrivial solution to
the homogeneous system of equations

where

is a matrix whose determinant must be zero.
We eliminate the unknowns c3 and c4 from this set

of equations and, then, set the determinant of the sys-
tem obtained equal to zero. As a result, we arrive at the
equation

where

This is a dispersion equation for the symmetric modes
H0n and E0n or for the hybrid modes HEmn and EHmn

when m = 0 or m = 1, 2, …, respectively, with n = 1,
2, ….

For m = 0, this equation is reduced to two indepen-
dent equations:

and

which are dispersion equations for the modes E0n and
H0n , respectively (n = 1, 2, …).

EQUATIONS 
FOR THE CRITICAL WAVELENGTHS

For a waveguide mode of a fiber, the dispersion
equation implicitly determines the dependence β(λ) for
this mode. The exact upper bound for the wavelengths
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satisfying the condition λβ(λ) > 2π  (with u2 > 0)
is the critical wavelength for this mode.

We proceed to the limit γ   in the dispersion
equations obtained. As a result, we arrive at the equa-
tions

with

These equations determine the critical wavelengths,
respectively, for the modes E0n , H0n , HE1n and EH1n

(m = 1), and HEmn and EHmn (m = 2, 3, …), with n = 1,
2, ….

When solving these equations, the wavelength
dependence of the refractive-index profile must be
taken into account. The problem of determining this
dependence is not discussed in this paper because, in
each specific case, its solution requires a proper
approach. Possible methods of solving this problem
were given in [5–7].
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1. When devising metal vapor lasers, the use of
metal halides is presently considered a promising
method of metal-atom injection into a discharge; it is
best suited to practical implementation [1]. In this case,
for a number of active media, laser action can be gained
by utilizing not only transitions of atoms and ions of
metals but also molecular transitions of metal monoha-
lides. This is primarily true for monohalides of the
IIB-group metals, i.e., for molecules of the MX-type,
where M = Zn, Cd, Hg and X = Cl, Br, I.

Dihalides MX2 provide the initial material for for-
mation of these molecules in plasma. The dissociative
electron-impact excitation

MX2 + e  MX* + X(*) + e' (1)

is a major process for obtaining excited monohalide
molecules. Here, e and e' are incident and scattered
electrons, respectively. Excited particles are marked by
asterisks. Generally, a halogen atom X produced by the
dissociation can find itself in the ground state as well as
in excited states; for a reasonably high energy of the
incident electron, an atomic halogen ion in the ground
state or excited states can be produced, etc.

Process (1) is studied for a number of halides of the
IIB-group metals (see, e.g., [2, 3]), mainly for mercury
halides. A high saturation vapor pressure is characteris-
tic of all these compounds at a temperature not consid-
erably higher than room temperature. The study of col-
lisions between electrons and halides of the IIA-group
metals, i.e., alkali-earth metals, is also of interest.
Although a reasonably dense vapor can be obtained for
these compounds only at temperatures of approxi-
mately 1000 K and higher, the advent of lasers and their
use as an active medium seems to be a technically trac-
table problem. However, for performing calculations
or, at least, for estimating parameters of such lasers, it
is necessary to know the constants that characterize
inelastic collisions between electrons and molecules of
alkali-earth-metal dihalides. Moreover, in any event,
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this information is of interest in such divisions of fun-
damental science as molecular spectroscopy, chemical-
bond theory, plasma physics, and chemistry.

Inelastic collisions between slow monoenergetic
electrons and SrCl2 molecules that result in the forma-
tion of excited molecules of strontium monochloride
are experimentally studied in this paper. The author is
not aware of theoretical data on the molecule under
consideration.

2. The method of extended crossed beams [4, 5] in
combination with optical spectroscopy is the basis for
the experiment with molecules SrCl2. Among the dis-
tinctive features of this method, mention should be
made of its high sensitivity and universality. This
makes the method a useful tool for studying atoms of
virtually all elements, as well as various categories of
molecules (oxides, hydroxides, halides, etc.).

To produce a molecular beam, strontium dichloride
is placed into a tantalum crucible whose external sur-
face is heated by an electron ray. Defocusing of the ray
to approximately 40 mm makes it possible to obtain a
more uniform temperature field and to avoid hot spots.
At the same time, in the course of the evaporation, the
thermal excitation of molecules with filling of rovibra-
tional levels of the ground electronic state of a SrCl2
molecule inevitably occurs. It is well known [6–8] that
the cross sections for various electron–molecule colli-
sions depend on the initial vibrational level on which
the molecule finds itself prior to its collision with an
electron. However, specific results for the processes of
dissociative excitation, in particular, for a SrCl2
molecule, have not been published to date.

The evaporation of strontium dichloride proceeds at
a temperature of 1200 K, the molecule concentration in
the crossing region for the electron and molecular
beams being 1.2 × 1010 cm–3. The SrCl2 molecule is
characterized by three fundamental oscillations with
the fundamental frequencies ν1 = 285, ν2 = (60), and
ν3 = 318 cm–1 [9]; the bracketed value was determined
in [9] as an estimate. Evidently, the distribution of mol-
ecules over the oscillation levels ν2 turns out to be quite
wide under the conditions of our experiment and the
individual contribution of an excitation from each of
001 MAIK “Nauka/Interperiodica”
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the oscillation levels to the resulting cross section is rel-
atively small. At the same time, for the oscillations ν1
and ν3 , the ratio of the populations for two neighboring
levels is 0.711 and 0.685, respectively. For these oscil-
lations, at the lowest levels with the oscillation quan-
tum number ν' = 0–5, 85 and 88% of the total number
of beam molecules are found, respectively. Therefore,
the role of each of the low levels for these oscillations
is reasonably large and variation in their population
may have a pronounced effect on the resulting cross
section. This should be properly accounted for in the
subsequent comparison of theoretical data with the
present experimental results.

The electron-beam current density was not in excess
of 0.8 mA/cm2 everywhere in the range of operating
energies, i.e., from 0 to 100 eV. The width of the elec-
tron-energy distribution at the electron-collector entry,
measured by the retarding potential method, was not in
excess of 1.0 eV in the range of electron energies
between 20 and 100 eV (for 90% of the beam elec-
trons).

The spectral resolution is one of the most important
experimental factors in studying molecular-spectrum
excitation. In the present paper, it was approximately
0.1 nm in the ultraviolet and visible range for λ ≤
600 nm. For longer wavelengths, the resolution was
impaired to 0.2 nm as a result of replacing the diffrac-
tion grating, which was caused by the construction
parameters of the MDR-3 monochromator.

The remaining experimental conditions are not spe-
cific to studying collisions between electrons and SrCl2
molecules; these conditions were discussed earlier [4,
5]. The measurement error of the relative values of the
cross section for the studied spectral bands of SrCl was
8–18%. This stems from both their position in the spec-
trum and the rather complicated structure of the inves-
tigated spectral objects. The error in determination of
absolute values of cross sections was within the limits
from ±25 to ±35%.

3. The optical emission spectrum excited by colli-
sions of electrons with an energy of 100 eV with stron-
tium–dichloride molecules was studied in the spectral
range 338–700 nm. Molecular bands are found in the
red part of the spectrum within the range 623–688 nm,
as well as at the boundary between the visible and ultra-
violet regions in the range 391–406 nm. Using data
from [10], these band systems are identified as being
possessed by the SrCl molecule. The bands of the red
system have violet shading and closely spaced series
pertaining to the electron transition A2Π–X2Σ+. The
bands of the ultraviolet system have a red shading and
can be assigned to the electron transition B2Σ+–X2Σ+.
An efficient generation takes place on this transition in
lasers utilizing similar molecules of monohalides of the
IIB-group metals.

It is worth noting that the interpretation of the stron-
tium monochloride bands was changed in [11] as com-
pared to the initial paper [10]. In particular, the system
DOKLADY PHYSICS      Vol. 46      No. 6      2001
A2Π–X2Σ+ is considered a result of the superposition of
two resonance systems: A2Π1/2 (Te = 15112 cm–1),
A2Π3/2 (14818 cm–1)–X2Σ+ (0) and B2Σ+ (15719 cm–1)–
X2Σ+(0). It is seen that the electron energies Te for these
states differ from one another by 600–900 cm–1, so that,
given the large extent of these systems, their partial
overlap is inevitable. On the other hand, the system
B2Σ+–X2Σ+ from [10] is interpreted in [11] as C2Π1/2, 3/2–
X2Σ+. Since the data on the band-border positions are
lacking in [11] and the excitation cross sections are
found for these bands in the present study, the initial
notations from [10] are retained in the table.

Because of a close spacing of the spectral bands,
individual bands cannot be isolated at the average spec-
tral resolution of the apparatus, although, in the present
study, the resolution is much better than in most other
beam experiments. As with the MgCl molecule [12],
we succeeded only in resolving sequences. In this case,
in the system A2Π–X2Σ+, there is a virtually complete
spectral overlap for the branches (P1, Q1) of the
sequence ∆v = +1 and for the branches (P2, Q2) of the
sequence ∆v = –1.

The measurement results are presented in the table.
Here, we indicate the sequence and the values of the
oscillation quantum numbers for the upper v' and lower
v'' levels, the branch, the wavelength of the band border
λ, and the values of the excitation cross section Q100 for
the electron energy of 100 eV. The classification is
given, according to the data of paper [10], for the
88Sr35Cl molecule. Two optical excitation functions
(OEF) are measured in the electron-energy range 0–
100 eV. For these functions, in the column OEF, the
number corresponding to the curve numbering in the
figure, as well as the wavelength at which the OEF was
recorded, is given. The two OEFs related to the
sequences 0 in the system A2Π–X2Σ+ are very close in
shape, as can be seen from the figure.

At low electron energies, the dissociative excitation
of the strontium monochloride may be caused by the
following reaction channels:

SrCl2 +  e SrCl* + Cl– (4.48) (2)

 SrCl* + Cl + e' (6.86) (3)

 SrCl* + Cl* + e' (~16.1) (4)

 SrCl* + Cl+ + e' + e'' (19.83). (5)

Here, e'' is an electron knocked out from a chlorine
atom when it is ionized; the remaining designations
correspond to those used earlier for reaction (1). The
bracketed numbers following the reaction equations are
the minimum calculated values for the appearance
energy Ea. When calculating these values, the thermal
motion energy, as well as the possibility that a portion
of the incident electron energy is transformed into the
kinetic energy of heavy particles in the course of the
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Dissociative excitation cross sections for sequences of the SrCl molecule

Sequen-
ce, ∆v v' – v'' Branch λ, nm

Q100,
10–18 cm2

OEF,
no., λ

Sequen-
ce, ∆v v' – v'' Branch λ, nm

Q100,
10–18 cm2

OEF,
no., λ

System A2Π–X2Σ+ System B2Σ+–X2Σ+

–2 0–2 Q1 688.08

5.16 –

–2 3–5 R2 403.85

1.53 –

… Q1 … … R2 …

5–7 Q1 686.15 8–10 R2 405.05

–1 0–1 P1 675.59

12.8 –

3–5 Q2 403.97

… P1 … … Q2 …

3–4 P1 674.64 10–12 Q2 405.62

0–1 Q1 674.50 –1 0–1 R1 400.84

2.25 –

… Q1 … … R1 …

6–7 Q1 672.65 5–6 R1 402.29

0 0–0 P1 662.01

17.7 1–661.0

0–1 Q1 400.93

1–1 P1 661.75 … Q1 …

0–0 Q1 661.40 5–6 Q1 402.37

… Q1 … –1 0–1 R2 398.25

3.58 –

6–6 Q1 659.64 … R2 …

+1 1–0 P1 649.10

6.34 –

5–6 R2 399.68

… P1 … 0–1 Q2 398.34

4–3 P1 648.50 … Q2 …

1–0 Q1 648.29 4–5 Q2 399.53

… Q1 … 0 0–0 R1 396.08

4.80 –
6–5 Q1 647.39 1–1 R1 396.39

–1 0–1 P2 649.10 0–0 Q1 396.15

… P2 … 1–1 Q1 396.47

3–4 P2 648.50 0 0–0 R2 393.64

8.96 –
0–1 Q2 648.24 1–1 R2 393.93

… Q2 … 0–0 Q2 393.71

8–9 Q2 646.69 1–1 Q2 394.01

0 0–0 P2 636.25

14.3 2–636.0

+1 1–0 R1 391.73

2.65 –

… P2 … … R1 …

6–6 P2 635.26 4–3 R1 392.73

0–0 Q2 635.89 1–0 Q1 391.82

… Q2 … … Q1 …

7–7 Q2 634.73 5–4 Q1 393.09

+1 1–0 P2 624.53

4.50 –

… P2 …

8–7 P2 623.97

1–0 Q2 623.71

… Q2 …

9–8 Q2 623.15
dissociation (production of “hot” particles [13]), was
ignored. Reference data on the bond rupture energies
and other energy characteristics of particles are taken
from [14]. In reaction (4), the chlorine-atom excita-
tion to the same group of lower states as that in paper
[12] was considered. All values of Ea are calculated
for the branches (P1, Q1) of the sequence 0 in the sys-
tem A2Π–X2Σ+.
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The appearance-energy value measured for the OEF
of this sequence is Ea = 7.0 ± 0.3 eV. It correlates well
with that calculated for reaction (3). No manifestations
of reaction (2) exceeding the noise level were observed;
the same situation also holds for the molecules studied
earlier. However, the features of the OEF structure
associated with reactions (4) and (5) are well
pronounced. At the same time, in the energy range
7−16 eV, three peaks are found for both OEFs; their ori-
gin remains unclear. These features are not found for
the MgCl molecule [12]; however, when studying elec-
tron–atom collisions [15], they often appear for the
OEF of a strontium atom. Theoretical studies seem to
be necessary for interpretating the OEF structure for
strontium monochloride in the indicated energy range.

Comparing the results of the present study for stron-
tium monochloride with those obtained earlier [12] for
a similar molecule of magnesium monochloride, one
can conclude that the absolute values of the dissociative

1.0

20

0.5

0

Q, rel. units

0 40 60 80 100

E, eV

1

2

Optical functions of dissociative excitation for a strontium
monochloride molecule.
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excitation cross sections for bands of the system A2Π–
X2Σ+ for the MgCl molecule are several times greater
than those for the SrCl molecule. The difference is
about a factor of two for the sequences –1 and +1 and
is close to 3.5 for the most intense sequence 0. The sys-
tem B2Σ+–X2Σ+ for the MgCl molecule was not studied
in [12]. According to the data taken from [11, part 1,
p. 392], the state B2Σ+ for the MgCl molecule is much
higher than the state A2Π and the transitions B2Σ+–A2Π
are observed, whereas the transitions B2Σ+–X2Σ+ are not
observed.
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In [1, 2], we observed an effect of decreasing prop-
agation velocity of longitudinal sound waves in a fine
elastic rod after its immersion in a liquid. The decrease
in the sound velocity is governed by the so-called
boundary layer of the liquid, which vibrates together
with the rod as an associated mass. The thickness of
this layer depends on both the vibration frequency and
both the density and viscosity of the liquid. At a sound
signal frequency of about 100 kHz, the typical value of
the boundary layer thickness for technical oils is 10 to
50 µm [1]. Therefore, the decrease in the sound veloc-
ity is considerable only for thin samples, i.e., samples
whose thickness does not exceed a few hundreds of
microns.

Since the thickness of the boundary layer depends
on the viscosity of a liquid, it is appropriate to employ
the above effect for determining the viscosity. An
advantage of this method is the possibility of perform-
ing high-rate viscosity measurements that attain a rate
of up to several thousands per second. Such high rates
make it possible to measure the viscosity even in the
case when it varies with time.

The problem of the effect of a liquid on the propa-
gation velocity and the damping of acoustic waves in a
thin strip immersed into an infinite volume of a liquid
was solved analytically [1]. However, there exists the
problem of controlling the behavior of polymeric resins
deposited in liquid form on a metal surface and solidi-
fied on it.

The goal of this study is to theoretically solve the
problem related to the propagation of a longitudinal
harmonic acoustic wave in a thin elastic strip coated by
a layer of an incompressible Newtonian liquid.
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Russian Academy of Sciences, 
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We introduce a system of coordinates such that the
free surface of a liquid coincides with the plane X = 0.
The longitudinal vibrations of the elastic strip along the
Y-axis are described by the equation [3–5]

(1)

Here, u is the displacement of a small strip element
from the equilibrium position; ρ0 and E are the strip
density and the elastic modulus, respectively; τ is the
shear stress describing the action of the liquid on the
strip; and H is the strip thickness (Fig. 1a). We note that
the shear stress τ is doubled during two-sided deposit-
ing of the liquid (Fig. 1b). In this case, H is half the
elastic-strip thickness.

In order to find the stress τ, we consider the shear
vibrations of the liquid in the case of the strip with the

ρ0H
∂2u

∂t2
-------- EH

∂2u

∂y2
-------- τ .+=

Y

X

(a) (b)

hh H 2H

12

ω

Fig. 1. Calculation scheme: (a) (1) elastic rod, (2) liquid,
(H) strip thickness, and (h) liquid-layer thickness; (b) two-
sided deposited liquid layer.
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thickness 0 < x < h, where h is the thickness of the liq-
uid layer. The motion of the liquid is described by the
equation [6]

(2)

Here, v  is the velocity of the liquid along the axis of
strip longitudinal vibrations (i.e., the Y-axis) and ρ and
η are the density and viscosity of the liquid, respec-
tively. The solution to Eq. (2) is sought in the form

(3)

where ω is the circular frequency of strip vibrations.
Substituting v  into (2), we obtain

(4)

The boundary conditions have the form v  =  at

x = h and  = 0 at x = 0. The first condition provides

equal velocities of the motion for the liquid and the
strip at their interface x = h. The second condition fol-
lows from the absence of forces on the free boundary
x = 0. With allowance for the boundary conditions, the
solution to Eq. (4) has the form

(5)

where q0 is the integration constant and

Equation (5) determines the shear wave in the liquid
that is generated by strip longitudinal vibrations.

The stress produced by the action of the liquid on
the strip is equal to that in the liquid taken with the

opposite sign: τ = –η  at x = h,

(6)

We seek the solution to Eq. (1) for the longitudinal
vibrations of the strip in the form

where k is the wave number. Then, the strip velocity is
determined by the relationship

(7)

We assume that the length of the longitudinal wave in

the strip λ =  greatly exceeds the transverse wave

in the liquid. Taking y = 0 with due regard to the equal-

ρ∂v
∂t
------- η∂2v

∂x2
---------.=

v q x( ) iωt–( ),exp=

iωρq– ηd2q

dx2
--------.=

∂u
∂t
------

dq
dx
------

q q0 ikxx( ),cosh=

kx 1 i+( ) ωρ
2η
-------= .

∂q
∂x
------

τ iq0ηkx ikxh( ).sinh–=

u u0 i ωt ky–( )–[ ] ,exp=

v iωu0 i ωt ky–( )–[ ] .exp–=

-
 2π

k
------
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ity of the velocities of the liquid and the strip at their
interface x = h, we find

(8)

Substituting relationships (6) and (8) into the wave
equation (1), we arrive at the dispersion relation

(9)

In an elastic material, the elasticity modulus and the
sound velocity are bound by the relation [7]

(10)

where c0 is the sound velocity in a strip free of liquid.
Taking into account that the hyperbolic tangent is deter-
mined by the equality [8, 9]

where x and y are real-valued quantities, the solution to
Eq. (9) has the form

(11)

where

(12)

(13)

As is known, the phase velocity of the longitudinal
wave can be found as a ratio of the circular frequency
to the modulus of the wave number k:

(14)

The wave damping is determined by the complex
part of the wave number k. If the damping is weak and
β ! 1, the wave amplitude is described by the relation-
ship

(15)

Apart from the problem of determining the velocity
and damping coefficient for the acoustic wave (with the
help of parameters relevant to the strip and liquid), we
can also solve the inverse problem, i.e., find the viscos-
ity of the liquid using the velocity and wave damping
coefficient. To do this, it is necessary to solve
Eqs. (12)–(14), which is possible, in the general case,
only numerically. Nevertheless, in asymptotic cases of
extremely small and extremely large thicknesses of a
liquid, the problem can be solved analytically.

iωu0– q0 ikxh( ).cosh=

ρ0Hω2 EHk2= ηkxω ikxh( ).tanh+

E ρ0c0
2,=

x iy–( )tanh
2x i 2ysin–sinh
2x 2ycos+cosh

---------------------------------------,=

k
ω
c0
---- 1 α iβ+ + ,=

α ρη
2ωH2ρ0

2
--------------------

2ϕ 2ϕsin+sinh
2ϕ 2ϕcos+cosh

-----------------------------------------,=

β ρη
2ωH2ρ0

2
--------------------

2ϕ 2ϕsin–sinh
2ϕ 2ϕcos+cosh

-----------------------------------------, ϕ ωρ
2η
-------h.= =

c
c0

1 α+( )2 β2+4
------------------------------------.=

u u0
ωβy
2c0
----------– 

  .exp=
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For a very large layer thickness, the length of the
transverse wave

is negligibly small compared to the thickness of the liq-
uid layer. Then, the relationships

are satisfied. In this case,

Thus, the problem is reduced to solving that for an elas-
tic strip with a thickness 2H immersed in an infinite
volume of a liquid [1]. This is evident since the last
problem is a particular case of that being solved in this
study. Using the results of [1], we find

(16)

The solution to the inverse problem is

(17)

The second asymptote of solution (11)–(13) corre-
sponds to a very thin liquid layer. If the thickness of the
liquid is much smaller than the length λx of the trans-
verse wave, then the inequality ϕ ! 1 holds. Expanding

λ x
2π
kx

------ 4π2η
ωρ

------------= =

ϕ  @ 1, 2ϕtanh 1,=

2ϕ  ! 2ϕ , 2ϕ  ! 2ϕcoshcossinhsin

α β ρη
2ωH2ρ0

2
--------------------.= =

c c0 1 ρη
8ωH2ρ0

2
--------------------–

 
 
 

.=

η
8ωH2ρ0

2 c0 c–( )2

ρc0
2

-----------------------------------------.=

0.2

0.1

0.3

0.4

0
0.01 0.1 1 10 1000.001

1

2

3

α, β

η, Pa s

Fig. 2. Coefficients (1) α and (2) β as functions of the vis-
cosity of a liquid. The calculation was performed for an alu-
minum strip 100 µm thick, which had been coated by a liq-
uid layer with a density of 900 kg/m3 and thickness of
30 µm; (3) α and β for the infinite volume of a liquid.
the function  = x –  +  into a series [8], we

reduce Eq. (9) to the form

(18)

The viscosity of the liquid is determined by the formula

(19)

Ignoring the subtrahend in the denominator of
Eq. (18), we have

(20)

where m = ρh and m0 = ρ0H are masses of the liquid and
the strip, respectively. Thus, the physical meaning of
Eq. (20) is the following. At a small thickness (h ! λx)
of the liquid layer, the entire liquid vibrates as an asso-
ciated mass together with the strip. In this case, the
sound velocity is determined only by the mass (thick-
ness) of the liquid and is independent of its viscosity.
As is seen from the more exact equation (18), such a
dependence does take place but is rather weak.

It is worth noting that Eq. (20) is derived from the
classical formula (10), provided that the rod–liquid
system is assumed to be a homogeneous composite
material with averaged stiffness and density. In this
sense, Eq. (20) is an analog of the so-called mixture
rule. According to this rule, the stiffness Ec and the den-
sity ρm of the armored composite material are deter-
mined by averaging characteristics of the armor and
the matrix [10]:

where V and V0 are the volume fraction of the matrix
(liquid) and the armor, respectively.

The relationship (18) for the sound velocity involves
the thickness of the liquid layer in the fifth power.
Hence, in the case of a thin layer (or high viscosity) of
a liquid, the variation in the layer thickness results in
significant errors while determining the viscosity.
Therefore, the viscosity determination based on the
damping of sound waves can turn out more exact than
that based on their velocity.

Figure 2 shows the coefficients α (curve 1) and β
(curve 2), which were calculated according to formu-
las (12) and (13), as functions of the viscosity η of a
liquid. It is clearly seen that the coefficient α monoton-
ically rises and attains its asymptotic limit at a large vis-
cosity. For comparison, curve 3 illustrates the behavior
of the same parameters for the infinite volume of the
liquid, i.e., when α = β. It is worth noting the existence

xtanh
x3

3
----- 2x5

15
--------

c
c0

1 ρh
ρ0H
---------- 2ω2ρ3h5

15η2ρ0H
----------------------–+

-----------------------------------------------------.=

η 2ω2ρ3h5c2

15 c2ρ0H c2ρh c0
2ρ0H–+( )

------------------------------------------------------------------.=

c1 c0
m0

m0 m+
-----------------,=

ρc Vρ V0ρ0 and Ec+ VE V0E0,+= =
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of a region in which the coefficient α is higher than that
in the case of infinite volume of the liquid.

The damping (curve 2) has a maximum correspond-
ing to the value ϕ = 1.13 when the thickness of the liq-

uid layer is roughly  of the transverse-wave length.

We recorded experimentally a region characterized by
a high damping while studying the process of solidify-
ing an epoxy resin on an aluminum substrate. In this
region, we even observed the disappearance of a signal.
We note also a region in which the coefficient β is
slightly higher than that for the infinite volume of a
liquid.

A weak damping at the low viscosity of the liquid is
caused by a small value of the associated mass of the
liquid. The weakening of the damping at a very high
viscosity is explained by the fact that the shear dis-

placement  of the liquid decreases, which follows

from Eq. (5) for small parameters kxx. In this case, the
entire liquid vibrates together with the rod as an associ-
ated mass, as if they were a solid body. The work of
shear forces in the liquid decreases, and the damping is
lowered.

1
5
---

dq
dx
------

0.10.001

1

2

η, Pa s

4500

5000

4000
0.01 1 10

c, mm/min

Fig. 3. Sound velocity as a function of the viscosity of a liq-
uid. The cases of 1 and 2 correspond to a finite and infinite
volume of a liquid, respectively.
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The sound velocity (curve 1), which was calculated
from Eqs. (12)–(14) as a function of the viscosity of the
liquid, is shown in Fig. 3. The velocity monotonically
decreases and attains its limiting value at a large viscos-
ity. Curve 2 characterizes the behavior of the sound
velocity for an infinite volume of the liquid. The
appearance of a region in which the sound velocity is
lower than that in the infinite volume of the liquid
seems surprising. However, such a behavior is
explained by both the reflection of the generated wave
from the free surface of the liquid and interaction
between the reflected wave and the strip. This phenom-
enon is observed in the region of the maximum damp-
ing when the thickness of the liquid layer is comparable
to the length of the generated transverse wave.
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The velocity of a longitudinal acoustic wave in an
elastic material is specified by its elasticity modulus E
and density ρ [1]:

(1)

In [2, 3], the effect of reducing the wave velocity
was found for elastic rods made in the form of a thin
strip or fiber and immersed in a liquid. A reduction of
the velocity is observed only in thin samples with a
thickness on the order of a hundred microns. The effect
found is caused by the fact that the so-called boundary
layer of a liquid vibrates together with the rod. The
thickness of this layer depends on the vibration fre-
quency and the density and viscosity of the liquid.
When the sound velocity depends on the viscosity, the
effect discovered is employed for the determination of
the viscosity of liquids. An advantage of this method is
its ability to provide high-rate measurements, which
makes it possible to control the chemical reactions with
a time-dependent viscosity that proceed in liquids. As a
sensor, we used metallic strips and fibers with a diame-
ter of approximately 0.1 mm [2, 3], which were
immersed in the liquid under investigation. The use, for
this purpose, of a thin capillary filled with the liquid
presents a number of advantages, among them the pos-
sibility of operating with a very small quantity (speci-
fied by the capillary volume) of liquid. The problem of
the effect of liquid on the propagation of sound in a thin
pipe (capillary) has not yet been solved. The goal of this
study is to theoretically seek a solution to this problem.

We consider the propagation of a longitudinal
acoustic wave in an elastic capillary filled with a vis-
cous liquid (Fig. 1). The presence of the liquid is taken
into account by adding a term describing the interaction

c
E
ρ
---.=
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of the fiber with the liquid into the vibrational equation
[2, 3]:

(2)

Here, u is the displacement of a capillary element from
the equilibrium position; Y is the direction of the capil-
lary axis; ρ0 and E are the density and the modulus of
elasticity for the capillary material, respectively; S =

π(  – R2) is the capillary cross section; R and R1 are
the inner and outer radii of the capillary, respectively;
and τ is the shear stress arising as a result of capillary
interaction with the liquid.

For finding the shear stress τ, we solve the problem
of motion of a liquid in the capillary. We consider an

Sρ0
∂2u

∂t2
-------- SE

∂2u

∂y2
-------- 2πRτ .+=

R1
2

Y

R

r

ω

2R1

Fig. 1. Scheme of calculations.
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unbounded cylindrical capillary with an inner radius R
in contact with an incompressible viscous liquid. The
capillary executes longitudinal harmonic vibrations
along its Y-axis. In the cylindrical coordinates, the
motion of the liquid is described by the equation [4–6]

(3)

where v  is the velocity of liquid along the Y-axis of
vibrations, ρ is the density, and η is the viscosity of the
liquid.

We seek the time-periodic solution to Eq. (3) in the
form

where ω is the angular frequency of vibrations. By

changing the variable r = z, we reduce relation-

ship (3) to the form

(4)

Equation (4) represents the Bessel equation of the

complex argument z = xi , where x = –r .

Bounded at x = 0, the solution to this equation is known
as the Bessel function of the first kind of the argument

xi . This function is also termed the Tomson function
[7, 8]:

(5)

where ber and bei are, respectively, the real and imagi-
nary parts of the Tomson function and s0 is a constant.

The shear stress with which the liquid acts on the

capillary is τ = –η  for r = R. Using the evenness of

the Tomson function, i.e., the conservation of its value
while changing the sign of its argument, we obtain

(6)

where

The solution to Eq. (2) is sought in the form
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where k is the wave number. The velocity of the capil-

lary is found as :

(7)

The velocity of liquid s0(berx0 + ibeix0)exp(iωt) at the
capillary boundary is equal to v :

(8)

where x0 = –R . Substituting relationships (6) and

(8) into Eq. (2), we obtain

(9)

Taking into account formula (1), which relates the
elasticity modulus to the sound velocity, we determine
the wave number as

(10)

Here, c0 is the sound velocity in the capillary without a
liquid,

(11)

The sound velocity can be found as a ratio of the
angular frequency to the wave-number modulus:

(12)

The damping of a longitudinal wave is determined
by the imaginary part of the wave number k. Assuming
the damping to be weak (β ! 1), we expand relation-
ship (10) into a series in order to find the wave
amplitude:

(13)

In the asymptotic limits of a small and ultimately
large capillary inner radius, solution (10) is simplified.
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In the asymptotic case x @ 1, the functions berx and
beix take the form [7, 8]

Using these relationships, we obtain

The sound velocity is expressed by the relationship

berx

x

2
------- 

 exp

2πx
---------------------- x

2
------- π

8
---– 

  ,cos≈

ber'x

x

2
------- 

 exp

2πx
---------------------- x

2
------- π

8
---+ 

  ,cos≈
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x

2
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2πx
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2
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8
---– 
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2
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2
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8
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 sin .≈

α β R
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2 R2–
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ωρ0

2
----------.= =
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β

Fig. 2. Coefficients α and β as functions of the viscosity η
of a liquid. The calculation was carried out for a capillary
with inner and outer diameters of 100 and 200 µm, respec-
tively. Densities of the liquid and the capillary material were
900 and 2600 kg/m3, respectively. The sound velocity mea-
sured in the absence of the liquid was 5.1 km/s.
(14)

The viscosity of a liquid is specified by the formula

(15)

In the asymptotic limit of x ! 1, the length of the
transverse wave greatly exceeds the capillary diameter.
Expanding the functions berx and beix into a series for
x ! 1 [7, 8] and restricting ourselves to first terms of the

expansion, namely, berx = 1 – , ber'x = – , beix =

, and bei'x =  – , we determine the coefficients

α and β as

(16)

Here, m = πR2ρL is the mass of the liquid in the capil-

lary and L and M = π(  – R2)ρ0L are the capillary
length and mass, respectively.

Ignoring the minuend in Eq. (16), we obtain α = .

The sense of this relationship consists in the fact that, at
a small capillary thickness, the whole liquid vibrates as
an associated mass together with the capillary material.
In this case, the wave-propagation velocity is specified
only by the masses of both the liquid and capillary and
is independent of the viscosity of the liquid:

(17)

Solving Eq. (16) with respect to the viscosity η and
considering the damping to be small, we obtain

(18)

where

The viscosity of the liquid can also be determined
from the signal damping:

In theoretical evaluation of the coefficients α and β,
it is more convenient to calculate the functions berx and
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beix not in the form of a series (poorly convergent at
large x) but using numerical integration:

(19)

(20)

where ber0x ≡ berx and bei0x ≡ beix.
Relationships (19) and (20) are derived from the

Bessel integral

(21)

where n = 0, 1, 2, 3, … is the subscript of the Bessel
function. The argument z of the Tomson function is a
complex quantity. It is possible to pass to the real-val-
ued argument using the relationship

The derivatives of the functions berx and beix were
determined using recursion formulas:

In Fig. 2, we show the coefficients α and β calcu-
lated from Eq. (11) as functions of the viscosity of the
liquid. The coefficient α monotonically increases and
attains its limit at a high viscosity. The coefficient β
attains its maximum at a certain viscosity of the liquid.
Low damping at a low viscosity of the liquid is
explained by the small length of the transverse wave
and, consequently, by the low associated mass of the
liquid. Reduction in the damping at a high viscosity is
explained by the fact that the whole liquid vibrates with
the rod as an associated mass. As a consequence, the
energy loss decreases and the signal damping is
reduced.

In Fig. 3, we present the sound velocity, which was
calculated from Eqs. (12)–(14), as a function of the vis-
cosity of the liquid. The velocity monotonically
decreases and attains its limit. The lower limit of the
velocity at a high viscosity is determined by the fact
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that the whole liquid participates in the vibrations as an
associated mass.
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The evolution of pressure waves in a liquid with
one-sized bubbles has been reasonably well studied
both theoretically and experimentally and described,
for example, in monographs [1, 2]. In particular, it was
shown that an initial perturbation in a gas–liquid
medium can disintegrate into solitary waves (solitons),
and their properties were studied in considerable detail.
In [3, 4], it was shown that taking into account the poly-
disperse nature of a gas–liquid medium leads to an
additional damping of pressure perturbations without
qualitatively modifying the wave structure. In [5], the
existence of oscillatory solitary waves (multisolitons)
in a liquid with gas bubbles of two different sizes was
discovered. Numerical calculations [6, 7] showed that,
in the case of a propagation of nonlinear perturbations
in a liquid with gas bubbles of two different sizes, the
existence of two degrees of freedom results in the for-
mation of complicated wave structures (multisolitons).
The simplest structures are multisolitons with a (2, 1)
oscillation mode. The oscillation mode is understood as
the number of oscillations of small-sized (m) and large-
sized (n) bubbles in an oscillatory solitary wave. Steady
multisolitons with a discrete amplitude spectrum, as
well as quasisteady multisolitons with a continuous
amplitude spectrum, were numerically investigated in
[6, 7]. In [8], the structure and damping of oscillatory
solitary waves were experimentally investigated in a
liquid containing gas bubbles with bubble-radius ratios

of  = 2  and  = 3. The slow-motion filming of gas

bubbles in a wave confirmed the resonant nature of
multisoliton formation.

In this study, we investigated experimentally the
evolution and structure of solitary waves in a liquid
containing gas bubbles of two different sizes, with the

radius ratios  = 1.5 and  = 1.7. The existence of

new types of oscillatory solitary waves caused by reso-
nant oscillations of bubbles has been shown.
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The experiments were carried out using a “shock-
tube” type setup. Its operational part represented a ver-
tical thick-wall steel pipe with an inner diameter of
0.053 m and a length of 1.5 m. This pipe was filled by
a liquid and saturated by gas bubbles produced by two
independent bubble generators arranged in the lower
part of the pipe. The spread of bubble sizes in a liquid
was within the range of ±5%. The bulk gas content in
a liquid was less than 1%. We used a 50% solution of
glycerin in distilled water as a working liquid and
Freon 12 as a gas phase. Bell-shaped pressure waves
were generated by an electromagnetic radiator arranged
on the bottom of the operational part of the setup. The
signal formed when a thin copper plate was pushed away
from an electromagnetic coil in the passing of a current
pulse through the coil. Pressure-wave profiles were
detected by piezoelectric pressure sensors arranged
lengthwise to the operational part of the apparatus. The
signals from sensors were fed into an analog-to-digital
converter and then processed by a computer.

It is experimentally shown that such media are char-
acterized by an instability of appearance and evolution
of complicated wave structures (multisolitons). From
an initial signal, either ordinary solitary waves or mul-
tisolitons breaking up into ordinary solitary waves in
the process of evolution can be isolated. Figure 1 illus-
trates the evolution of pressure waves in a liquid with
gas bubbles of two different sizes, with the bubble-

radius ratio  = 1.5. It is seen that an oscillatory soli-

tary wave with the (3, 2) oscillation mode (according to
the terminology accepted in [6]) is separated from an
initial bell-shaped signal at a distance of x = 0.56 m
from the input into the gas–liquid medium. In the time
required for such a wave to propagate through the
medium, a large-sized bubble makes two oscillations in
the wave; the small-sized bubble, three oscillations.
Unlike the multisolitons with the (2, 1) oscillation

mode present in a liquid with gas bubbles with  = 2

[8], which are stable and do not qualitatively change
shape in the process of evolution, in our experiments,
the (3, 2) solitary wave is unstable and breaks up into
ordinary solitary waves (Fig. 1; x = 0.76 m). The profile
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Fig. 1. Structure of a multisoliton with the (3, 2) oscillation mode. R1 = 0.53 mm.
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Fig. 2. Structure of a multisoliton with the (2, 2) oscillation mode. R1 = 0.53 mm,  = 1.5.
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of an ordinary solitary wave is well described by the
calculation for a monodisperse medium with the aver-
aged radius value proposed in [4]. The quasistable (3, 2)
multisolitons in a liquid containing gas bubbles with

the radius ratio  = 1.5 were previously discovered

numerically in [7]. However, the predicted multisoli-
tons are stable, as opposed to the experimentally
observed multisolitons, and do not break up in the pro-
cess of evolution. The cause of instability of such mul-
tisolitons may be the difference in the experimental
bubble-radius ratio from the calculated ratio, an insuf-
ficiently narrow size distribution of bubbles, and heter-
ogeneity of the gas–liquid mixture. To clarify the rea-
sons for this instability, it is necessary to carry out
numerical calculations with allowance for real experi-
mental conditions.

A specific feature of quasistable solitary waves in a
liquid with gas bubbles of different sizes is their possi-
ble interaction [7]. This phenomenon can lead to the

R2

R1
-----
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formation of new wave structures. The simplest struc-
ture is a numerically calculated (2, 2) mode formed via
the interaction of two ordinary solitary waves with
closely related amplitudes [7]. The calculated (2, 2)
mode is stable and varies only slightly in its shape in the
process of propagation. In our experiments, we also
discovered the interaction of solitary waves in a liquid
with gas bubbles of two different sizes and the forma-
tion of a new wave structure (Fig. 2). From an initial
signal, two solitary waves are isolated, the interaction
of which led to the equalization of their amplitudes and
to the formation of a new quasistable wave structure. In
the process of evolution, the wave amplitude decreases
via dissipative losses, but the wave structure is retained
(Fig. 2). Note that, in experiments, contrary to in calcu-
lations, the solitary waves are coupled through a rar-
efaction wave. The presence of bubbles of two different
sizes in a liquid leads to the appearance of a rarefaction
zone with a sufficiently large wave amplitude (up to
20% of the solitary-wave amplitude). The calculations
performed in [4] showed that, in a polydisperse
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Fig. 3. Structure of a pressure wave with a moderate amplitude. R1 = 0.53 mm,  = 1.5.
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medium, small-sized bubbles can “follow” the pressure
of a liquid in the wave, while large-sized bubbles can-
not. The delay in the expansion of large-sized bubbles
at the rear front of the first solitary wave and the essen-
tial nonlinearity of the medium are likely to lead to the
formation of the rarefaction zone. Similar wave struc-
tures were found in a liquid with gas bubbles of two dif-

ferent sizes, with  = 1.7, and their behavior corre-

sponds qualitatively to the wave structures shown in
Fig. 2.

As the amplitude of the signal entering the medium
increases, the process of formation and separation of
solitary waves is delayed. Within the interval of mea-
surement, the solitary waves remain coupled or form an
oscillatory shock wave (Fig. 3). An interesting feature
of the structure of coupled solitary waves is the non-
monotone behavior of the solitary-wave envelope,
which differs from that obtained in the previous theo-
retical analysis and numerical calculations [1, 2]. The
appearance of an analogue of “beats” is presumably
associated with the transformation of solitary waves.
This means that, in the process of propagation of soli-
tary waves, a phase shift takes place between pressure
oscillations in the wave and bubble-radius oscillations
owing to the divergence of these waves, which can ini-
tiate the beats.

No formation of chaotic structures in a liquid with

gas bubbles of two different sizes, with  = 1.7, which

was predicted in [7], was observed experimentally.

Thus, new types of wave structures (multisolitons)
are experimentally found in a liquid with gas bubbles of

two different sizes, with the bubble-radius ratios  =

1.5 and  = 1.7. The multisolitons with the (3, 2)

oscillation mode are shown to be unstable and to disin-
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tegrate into ordinary solitary waves. The multisolitons
with the (2, 2) oscillation mode are stable and damp in
the process of evolution owing to dissipative losses but
qualitatively retain their shape. During the propagation
of a series of solitary (oscillatory shock) waves, a non-
monotone behavior is observed for the solitary-wave
envelope; this can be associated with a phase shift
between the pressure oscillation in the wave and the
bubble-radius oscillations in the process of evolution of
these waves.
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The pattern of attached internal waves [1] as an ana-
logue of lee waves in the atmosphere [2] and ocean [3],
as calculated by the source–sink method [4], agrees sat-
isfactorily with observations and laboratory measure-
ments on waves past perfectly shaped obstacles [5]
when the wake effect can be ignored. The wave field
around a symmetric body dipped into a continuously
stratified fluid is antisymmetric about the horizontal
plane passing through the line of motion of the body
center. In some flow regimes with waves interacting
actively with vortices in the wake, the antisymmetric
wave pattern evolves into a symmetric one at a large
distance from the obstacle [6]. In a real situation, the
obstacles are generally irregular in shape and, there-
fore, a skew in the flow can affect the field structure of
radiated waves. This work is devoted to the experimen-
tal study of the internal waves generated by a vertical or
inclined plate towed uniformly when not only a drag
force but also a lifting force arises.

Experiments were made with a setup including a
tank measuring 220 × 40 × 60 cm3, a system creating a
saline stratification, a mechanism for the model towing,
a carriage intended for the mounting and translating of
sensors, a device for acquisition and processing of
experimental data, and a schlieren. Linear stratification
in the tank is created by the continuous replacement
method. The density profile and the velocity distribu-
tion are determined with the help of a vertical marker
acting as the wake past a freely falling sugar crystal [7].
The layer displacements and the medium buoyancy
period Tb (in our experiment, this amounts to 14 s) were
measured by a contact “one-electrode” conduction
transducer that was calibrated directly in experiments by
the “lift–plunge” method. A rectangular plate 2.5 cm
wide and 0.1 cm thick was mounted vertically or at some
angle to the motion direction and was towed horizon-
tally with a velocity U = 0.08–0.6 cm/s. The plate is
fixed on the carriage mounted over the tank by thin
transparent knifes.

Institute of Problems of Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
1028-3358/01/4606- $21.00 © 20425
The flow pattern was observed with the aid of a
IAB-458 schlieren equipped with photo-, filming-, and
video-systems. Visualization was implemented by two
versions of the Maksutov methods, “vertical slit–knife”
and “vertical slit–filament at the focus” [8], which are
suitable in dealing with media exhibiting wide varia-
tions in the gradient of the refraction index. The first
method records disturbances of the horizontal compo-
nent of the refraction index gradient and is preferable,
due to its high sensitivity, in cases of weak stratification
(or low velocities), when perturbations of the density
gradient are small and light rays are not intercepted by
the construction elements of the experimental setup.

The second method visualizes the modulus of the
perturbation of the refraction-index gradient in a
medium. The filament is disposed at the center of the
slit image and, as a consequence, the minimum level of
the average visual field illumination corresponds to an
undisturbed state. In this case, the loci of crests and
troughs, as they vary in contrast, are distinguished from
the entire wave pattern. This method is more suitable
for observing fine structural perturbations that are not
shadowed by a contrast image of waves, which is typi-
cal of the knife method.

The density label, the vertical marker, is a long-lived
hydrodynamic wake past freely falling sugar crystal
whose thickness δ ~ 0.25 cm. The time of the wake
observation in the shadow picture is 10–150 s, depend-
ing on the velocity distribution in the flow. The contin-
uous profile of the horizontal component of velocity is
calculated from the measured displacements of the
marker over the known time interval ∆t.

The key parameters of the problem are the density

ρ(z), its vertical gradient , the kinematic fluid vis-

cosity ν, the diffusion coefficient of the stratifying
additive κs , the free fall acceleration g, the plate height
h = bsinα (α is its slope to the motion direction), and
the obstacle velocity U. The exponential stratification is

characterized by the scale Λ =  and by the
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(a) (b)

Fig. 1. The antisymmetric wave field near the vertical (a) and inclined (b) plates moving from right to left. Tb = 14 s; (a) U =
0.21 cm/s, α = 90°, h = 2.5 cm, lx = 0.1 cm, λ = 3.0 cm, Re = 52, Fr = 0.19; (b) U = 0.5 cm/s, α = 53°, h = 3.0 cm, lx = 1.5 cm, λ =
7.0 cm, Re = 140, Fr = 0.56. Visualization is implemented by the method of slit–filament at the focus. Dark and gray lines designate
crests and troughs of the internal waves, respectively. The thin straight line in the left part of the frames designates the vertical. The
curved lines (a) are markers visualizing the velocity profiles in leading and lagging perturbations.
depth-independent buoyancy frequency N =  or

the buoyancy period Tb = .

The structure-forming elements of the flow are the
attached internal waves with wavelength λ = UTb [1, 2],

velocity scale δu =  and density scale δρ = 

boundary layers on the obstacle, and diffusion-induced

flows with variability scales δν =  and δs =  for

the velocity and density, respectively [9]. Basic dimen-
sionless parameters are defined as the ratios of intrinsic
scales of the characteristic structural elements: the Rey-

nolds number Re =  = , the inner vortex Froude

number Fr =  = , and the ratio between scales

C = . The Schmidt number Sc =  = Å ≈ 700 was

unchanged in all the experiments.

Figure 1 depicts the typical flow with the antisym-
metric field of attached inner waves past the obstacle
(the flow visualization is implemented by the method of
slit–filament at the focus; crests and troughs corre-
spond, respectively, to dark and gray lines). Such a field
structure is characteristic of a vertical plate or other sym-
metric obstacles whose perturbing effect is accounted
for by fluid displacement and viscous friction force and
is observed at an arbitrary value of the inner vortex
Froude number [1, 5, 6]. It follows from the theory that

g
Λ
---- 



2π
N
------




 ν

U
----



 κ s

U
-----



ν
N
----

κ s

N
-----

Uh
ν

------- h
δu

-----

U
Nh
------- λ

2πh
---------

Λ
h
---- ν

κ s

-----
δu

δρ
-----
the crest and trough loci are arcs of a circle [1]. The
shape of the phase surfaces deviates, owing to the Dop-
pler effect, from the calculated shape only in the vicin-
ity of the outer boundary of the density wake, where
they are entrained by the wake flow. A symmetric vor-
tex adjoins the plate in the bottom region, and its outer
high-gradient envelope evolves into the central high-
gradient interlayer shown by the dark line past the body
(Fig. 1a).

The interlayer occurrence in the lagging layer is
accounted for by the general stratification rearrange-
ment due to the moving obstacle. The density jump
lying in the central plane is formed as a result of the
blocking effect: the slowing down and pushing through
of the fluid in front of the two-dimensional obstacle
under the action of buoyancy and viscosity forces and
the closing up of fluid layers past the plate, which vary
in density and were previously spaced along the verti-
cal direction. A similar phenomenon is observed in the
flow past two- and three-dimensional obstacles. The
effect of blocking a cylinder upstream was studied in
detail in [10].

The system of high-gradient interlayers disposed in
a layer varying in thickness (its average height is 1 cm)
makes up the outer part of the density wake past the
plate. In this flow regime, interlayers with a typical
thickness of 0.1 cm do not form a single high-gradient
wake envelope; their shape reflects the spatial field
structure of the attached waves. The height of the fine-
structure wake varies periodically with the distance
from the obstacle and reaches, in the upper half-space,
a maximum on the crests and a minimum on the troughs
of the attached waves (in the lower half-space, the
height maxima lie at troughs of the waves). Thus, in this
flow regime, the wavelength of the attached wave deter-
DOKLADY PHYSICS      Vol. 46      No. 6      2001
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(a) (b)

Fig. 2. The symmetric field of the attached internal waves downstream of the inclined plate moving from right to left. Tb = 14 s; U =
0.21 cm/s; α = 53°; h = 2.0 cm; lx = 1.5 cm; λ = 3.0 cm; Re = 42; Fr = 0.23. The flow visualization is implemented by the slit–
filament (a) and slit–knife method (b). The sensing element of the conduction transducer past which the plate moves is seen in the
upper part of the frame.
mines the scale of the streamwise modulation of the
density wake past the plate, which agrees qualitatively
with the downstream flow pattern of a horizontal cylin-
der in the regime of vortex bubbles [11].

In the case of the motion of an inclined plate which
is acted upon not only by a drag force but also by a lift
force, the general structure and elements of the flow
persist; however, the wave system observed in the
upper half-space is shifted, as a unit, relative to the sys-
tem of the internal waves observed in the lower half-
space (Fig. 2). Experiments conducted in a wide veloc-
ity range show that in the case of a slightly developed
bottom vortex, the plate edges serve as active centers of
the wave generation. If the vertical size of the bottom
vortex exceeds the obstacle height, the wave generation
centers are situated in the neighborhood of its upper
and lower poles. The high-gradient interlayer separates
the wave systems, and its displacement relative to the
central horizontal plane depends on the value and direc-
tion of the lift force, which, in turn, is determined by the
motion velocity and the plate tilt.

High-gradient interlayers formed in the flow stabi-
lize the flow pattern downstream of the obstacle in gen-
eral and fine details. The two photographs obtained in
two independent experiments (Fig. 2) are similar qual-
itatively and quantitatively. However, the visualization
by the filament method (Fig. 2a) shows the density
deformation structure on the outer boundary of the den-
sity wake more distinctly than the standard visualiza-
tion (Fig. 2b).

In this instance, when the tilt angle α = 53° (this
angle is counted from the horizontal plane passing
through the body center and the head edge of the plate),
the high-gradient interlayer at the separation point in
the wake is displaced upward by 0.4 cm from the plate
center. It bends on a scale of ∆x = 2.1 cm, which is less
DOKLADY PHYSICS      Vol. 46      No. 6      2001
than the wavelength of the attached internal wave λ =
UTb = 2.9 cm due to the Doppler effect. In this case, the
swing of the interlayer oscillations amounts to 0.5 cm
and far exceeds its displacements in a flow regime with
an antisymmetric field of attached internal waves
(Fig. 1a).

The phase shift in the flow regime presented in
Fig. 2 is equal strictly to one-half of the wavelength,
and the wave field in the vicinity of the obstacle is sym-
metric about the density wake center. In essence, the
displacements of the wave fields (backward in the
upper half-space and forward in the lower half-space
relative to the body center and to the wave pattern
shown in Fig. 1a) are determined, in this case, by the
positions of the generation centers, which lie on the
body edges and are spaced at lx = h cosα = 1.5 cm; in
these experiments, this separation is equal to one-half
of the wavelength. The stable vortexlike structure that
substantially distorts the shape of the phase surfaces is
formed in the wake in the vicinity of the third wave. It
follows from the deformation character of the wave
crests and troughs that the velocity profile of the lee
stream is smooth, while the density perturbations are
formed by individual interlayers whose thickness δ ≈
0.05 cm is much smaller than the height of the shift
layer.

The antisymmetric pattern of attached internal
waves downstream of the inclined plate is restored as
the velocity of the plate motion increases (Fig. 1b). In
this regime, the density wake is characterized by a well-
defined vortex structure. The vorticity comes off the
asymmetric bottom vortex in the form of vortex loops
whose longitudinal dimension correlates with the
wavelength of the internal wave. The crest of the inter-
nal wave is in contact with the first peak of the vertical
vortex size in the upper half-space, as well as with the
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vortex bubble in Fig. 1a. The stratification inhibits the
vertical motion rather rapidly, and density inhomoge-
neities are disposed almost horizontally even in the sec-
ond wave past the body. Phase surfaces are close to a
semicircle almost everywhere with the exception of the
region immediately adjoining the wake where they
interfere with the second wave (Fig. 2b, right part).

A number of time series presented in Fig. 3 depict
the amplitude properties of the wave fields in the vicin-
ity of the inclined plane. A stationary sensor is mounted
over the upper edge of the obstacle at a distance of ∆z =

 (one-half of the wavelength); the wave amplitude

and time are normalized to the obstacle height h and to
the buoyancy period, respectively. All the graphs are
presented on the same scale; the time origin corre-
sponds to the instant of passing the plate center through
the vertical plane in which the sensor is disposed.

All the time series are alike in behavior. A gentle
depression (a leading perturbation) corresponds to the
onset of perturbations at the given distance; the maxi-
mum amplitude, decreasing monotonically with dis-
tance from the obstacle, characterizes the wave crest

UTb

2
----------

0

t/Tb

0.25

∆/h

5

7

6

5

4
3

2

1

Fig. 3. The time series of displacements of fluid particles in
the internal waves generated by a 2-cm high plate mounted
at an angle α = 53° to the motion direction. 1–7: Fr = 0.18,
0.19, 0.21, 0.24, 0.28, 0.32, 0.36.
nearest to the obstacle. Nonlinearity in the wave pattern
manifests itself in the region of maximum amplitudes
(0.21 < Fr < 0.32) as an asymmetry of displacements in
crests and troughs and as distortions in the waveform.
Comparison between the time series shows that Fr =
0.24 is the necessary condition for the maximum effi-
ciency of the wave generation. The amplitudes of
attached waves decrease rather rapidly with a decrease
in the Froude number (Fr < 0.24) and with its increase
(Fr > 0.28), lasting until the vortex elements of the flow
in the wake become additional strong wave sources.
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1. INTRODUCTION

There is a wide class of steady-state viscous gas
flows that are important to industrial application in
which the disturbance propagation upstream is insig-
nificant. This class includes limited mixed flows, the
most part of which are overlapped by a sonic surface.
Since small (acoustic) disturbances do not propagate
counter to a supersonic flow, the physical conditions at
the right-hand boundary situated downstream with
respect to the sonic surface weakly affect the main-
stream region [1, 2]. For internal flows, such a regime
is realized, for example, in a Laval nozzle that repre-
sents a component of chemical or gas-dynamic lasers
or of rocket or other-type engines [1, 3]. In the case of
external flows, this effect occurs in the shock layer
being formed by a supersonic flow around blunted bod-
ies [2, 4]. It is unreasonable to use the complete
Navier–Stokes equations for numerical simulation of
such flows. This is especially true while calculating
chemically and thermally nonequilibrium gas-mixture
flows at moderate or large values of the Reynolds num-
ber [2, 3].

The most efficient models describing these flows are
based on systems of parabolic or hyperbolic equations.
These equations are evolutionary with respect to the
longitudinal coordinate along the dominating flow
direction. Therefore, they can be solved by fast space-
marching methods for one downstream run [2, 3].

For internal viscous flows in Laval nozzles, such
models were proposed in [5–7]. However, models [5, 6]
are inadequate for flows with considerable transverse
pressure gradients, while the applicability of model [7]
is limited by moderate values of the longitudinal duct-
wall curvature.

For the problem of a supersonic viscous gas flow
around a blunted body, nonelliptic models were pro-
posed in [8, 9]. However, their efficiency depends on
the azimuth angle counted off from the frontal stagna-
tion point.
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Russian Academy of Sciences, 
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The hyperbolic model [10] proposed recently for
internal mixed viscous flows is free of disadvantages
intrinsic to models [5–7] and allows pressure fields
with considerable transverse pressure gradients to be
adequately reproduced. Here, we propose a new gas-
dynamic model for external mixed viscous flows. It is
based on hyperbolic-type equations and is intended to
describe the shock layer being formed by a supersonic
flow near a blunted body at large or moderate values of
the Reynolds number. In contrast to [8, 9], this model
well reproduces distributions of pressure and heat flux
along the surface of a body placed into a flow and
makes it possible to calculate flows around thin bodies
with lengths hundreds of times their diameters. We
demonstrate, as an example, the calculation data for a
shock layer formed near a sphere and a very long
blunted (in the hemispherical-shape) cylinder in con-
tact with a moving viscous fluid. These calculations
agree sufficiently well with the corresponding calcula-
tions according to the equations of the full viscous
shock layer (FVSL) [11] and the Navier–Stokes equa-
tions.

2. A FLOW MODEL

We consider a steady-state flow of a viscous heat-
conducting perfect gas in a shock layer, which forms
near an unyawed either smooth axisymmetric or plane
blunted body. According to [2], at moderate or large
values of the Reynolds number, the descriptions of
flows by the FVSL model [11] and by the Navier–
Stokes equations are close to each other. Therefore, as
input equations, we use equations which describe the
FVSL and are written out in the curvilinear coordinate
system (ξ, η). These equations are

(1)
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g
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(3)

(4)

(5)

where

Here, xRw0 and yRw0 are the natural orthogonal body-
attached coordinates; Rw0 is the blunted-nose radius; rw
and Kw are the contour of a smooth body and its curva-
ture, respectively; α is the angle between a tangent to
the surface and the body’s axis of symmetry; uV∞cosα
and vV∞ are the velocity components tangent and nor-

mal to the surface; ρρ∞ , pρ∞ , , and µµ∞ are the

density, pressure, temperature, and the dynamic viscos-
ity, respectively; ys is the shock-layer thickness along a

surface normal; γ = , where cp and cv are the spe-

cific heats at constant pressure and volume, respec-
tively; Re∞ is the Reynolds number; Pr is the Prandtl
number; and ν = 0 and 1 for the plane and axisymmetric
cases, respectively. The subscripts ∞, w, 0, and s label
values of quantities in the incident flow, on the body’s
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surface, in the axis of symmetry, and immediately
behind the shock wave, respectively.

The derivative of the shock-wave contour which
enters into Eqs. (1)–(4) is related to the shock-layer
thickness ys by the geometric expression

(6)

where β is the angle between a tangent to the shock
wave and the body’s axis of symmetry.

We obtain an elliptic-hyperbolic model consisting
of a system of FVSL equations, which is simplified
below in the following manner.

We present the pressure p in the multiplicative form

where ps(ξ) satisfies the trivial equation

(7)

We replace the pressure gradient entering into (2) by
the expression

(8)

the weighting function ω(ξ, η) being taken in the form

(9)

where åx is the local Mach number determined with
the use of the longitudinal velocity component u. Then,

the density and  are excluded from Eqs. (1)–(4)

with the help of the equation of state (5) and Eq. (6),
respectively.

We now determine the type of system of equations
derived. Assuming that, at large values of the Reynolds
number the mathematical type of the system of differ-
ential equations (1)–(4), (6), (7) with respect to the
unknowns u, v , T, ϕ, ps, and ys is determined by inviscid
terms [12], we consider the characteristic equation

Here, A and B are the matrices corresponding to the
longitudinal and transverse gradients of the desired
functions, respectively, and λ are the eigenvalues. With
allowance for expressions (8) and (9), the characteristic
equation has only real-valued eigenvalues. Therefore,
the system of equations under consideration is hyper-
bolic with respect to the variable ξ throughout the entire
range of the Mach numbers [12].

The model corresponding to the system of equations
derived is termed the model of the hyperbolic viscous
shock layer (HVSL model). It takes into account, as
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much as possible, the inviscid disturbance transfer
downstream and ignores it upstream. Thus, the elliptic
properties of the FVSL system of equations are associ-

ated with the term (1 – ω)ps , which represents a part

of the pressure gradient in the longitudinal-momentum
equation (2).

The boundary conditions for Eqs. (1)–(4) and (7) in
the variables u, v , T, ϕ, and ps are the following. In the
shock wave (η = 1), they are three of four generalized
Rankine–Hugoniot relations [2] and ϕ = 1. On the sur-
face (η = 0), which is in contact with the fluid, they are
the given temperature and the conditions of attachment
and the absence of injection (these conditions are
imposed on the velocity components). The fourth,
Rankine–Hugoniot relation between the angle β and ps
serves, in fact, for determining the shock-layer thick-
ness ys by Eq. (6).

To determine the initial conditions in the axis
(plane) of symmetry, we solve the system of ordinary
differential equations. These are degenerate equations
obtained from (1)–(4) and (7) at ξ = 0.

3. THE CALCULATION RESULTS

Initial distributions of the desired functions along
the axis of symmetry depend on the curvature Ks0 of a
shock wave. Moreover, for the longitudinal gradients of

ϕ∂
ξ∂

------

Fig. 1. Branching solutions corresponding to different cur-
vatures Ks0 of shock waves in the axis of symmetry near the
sonic line. Solid and dashed curves correspond to the
desired ultimate solution and other solutions, respectively.
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u, v , T, and ps entering into the HVSL equations, the
evolutionary matrix is degenerate in the sonic line
åx = 1 (as is the similar matrix corresponding to the
longitudinal gradients of u, v , T, and p in the FVSL
equations). Therefore, the integral curves of the HVSL
equations, which correspond to different values of Ks0 ,
branch in the vicinity of the sonic line. The integral
curves of equations describing a viscous mixed flow in
the Laval nozzle also behave in a similar way [10, 13].
Thus, in the latter case, a gas-flow rate plays the part of
Ks0 . Similarly to the existence of a unique critical flow
rate, there exists a unique “critical” value of Ks0 . This
value is in correspondence with the ultimate integral
curve of the HVSL equations, which can be smoothly
continued beyond the sonic line; it is the integral curve
that represents the desired solution to the problem.

The HVSL equations were solved for the case of
σ = 0.95 in Eq. (9) by the method developed in [13]. We
used a difference scheme with fourth (with respect to η)
and second (with respect to ξ) orders of accuracy and
solved the difference equations by the vector-sweep
method at each marching step.

For the flow around a sphere, Fig. 1 shows the dis-

tributions of  as functions of the azimuth angle

θ =  – α, which branch off the desired ultimate dis-

tribution in the vicinity of the sonic line at γ = 1.4,

ϕ∂
ξ∂

------ 
 

w

π
2
---

Fig. 2. Distribution (over the sphere surface) of pressure
normalized to that at the stagnation point for M∞ = 10,

Re∞ = 103, and Tw = 0.2. The calculations are performed by

(‡) the HVSL model; (b) the model from [9] (Re∞ = 104);
(c) the FVSL model, this work; (d) the FVSL model, the
time-marching method [14]; and (e) Euler equations.
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µ ~ T 0.5, Pr = 0.7, M∞ = 7.5, and Re∞ = 103. Figure 2
presents the distribution of relative pressure over the
surface of a sphere placed in a flow, which are calcu-
lated by different models. The elliptic-hyperbolic sys-

Fig. 3. Distribution (over the sphere surface) of the heat flux
normalized to its value at the stagnation point for a sphere at
M∞ = 7.5, Re∞ = 103, and Tw = 0.24. The calculations are
performed by (a) the HVSL model; (b) the model from [9]
(Re∞ = 104); (c) the FVSL model, this work; (d) the FVSL
model; and the time-marching method [14].

Fig. 4. Coefficient of the total drag for the frontal and lateral
surfaces of a cylinder CD blunted in the shape of a hemi-
sphere as a function of the cylinder length L at M∞ = 20,
Re∞ = 750, and Tw = 0.025. The calculations are performed
by the FVSL model (solid line) and the HVSL model
(dashed line). The dot indicates the drag of the hemisphere
calculated in [4] by the Navier–Stokes equations.
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tem of the FVSL equations is solved by the method
described in [10] and is based on global iterations with

respect to . The iterations rapidly converge; i.e., for

the initial approximation (in the case when it is pre-
sented by the HVSL model), even one iteration yields a
solution accurate to within 0.5%. According to Fig. 2,
the distributions calculated by the HVSL and FVSL
models are close to each other. The inaccuracy of the
model from [9], which is the best of [8, 9], is noticeable

at θ > .

Figure 3 shows the distribution of relative heat flux
over the sphere surface. We can see that the results of
the HVSL and FVSL models are also close to each
other. The total resistance of frontal and lateral sur-
faces, which is calculated by the HVSL and FVSL
models for a cylinder blunted in the shape of a hemi-
sphere, is shown in Fig. 4 as a function of the cylinder
length L. The dot in Fig. 4 represents the hemisphere
drag calculated by the Navier–Stokes equations [4]. The
difference between these results is smaller than 1–2%.

Thus, the new hyperbolic model, which is devel-
oped for a mixed flow in a viscous shock layer near a
blunted body, allows sufficiently accurate calculation
of aerodynamic characteristics such as heat flux, pres-
sure, and drag. The model can be used to calculate a
flow around a thin body with a length hundreds of times
its diameter. The model is developed as a result of a
more detailed (compared to [15]) separation of the
hyperbolic and elliptic terms of the longitudinal pres-
sure gradient, which are responsible for inviscid distur-
bance propagation upstream and downstream. The
model completely takes into account the mechanisms
of the information transfer upstream and, in fact, allows
for calculations up to the point of boundary-layer sepa-
ration. Moreover, this model represents a good initial
approximation for performing calculations by the
FVSL model and the Navier–Stokes equations.
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We consider a linear oscillatory system with many
degrees of freedom, whose periodic coefficients are
functions of three independent parameters: the fre-
quency and amplitude of a periodic excitation and the
parameter of dissipative forces. The last two quantities
are assumed to be small. We analyze the instability of
the trivial solution (parametric resonance). For an arbi-
trary periodic-excitation matrix and a positive-definite
matrix of the dissipative forces, we derive general
expressions for the regions of the main and combina-
tion resonances. We study two particular cases for the
periodic-excitation matrix that are often encountered in
applications: a symmetric matrix and a stationary
matrix multiplied by a scalar periodic function. It is
shown that in both cases, the resonance regions repre-
sent, to a first approximation, cones in the three-dimen-
sional space of the parameters. The relationships
obtained allow us to analyze the influence of both the
natural frequencies and the resonance number on the
instability region. We employ the method of examining
parametric-resonance regions which is based on ana-
lyzing the behavior of multipliers and uses formulas for
the derivatives of the monodromy matrix with respect
to the parameters [1, 2]. As an example, the problem on
the dynamical stability of the plane bending of a beam
loaded by periodic moments is considered.

In referring to previous studies, we should mention
book [3], wherein systems close to Hamiltonian sys-
tems were studied, as well as papers [4–7], in which
systems were transformed to normal coordinates of a
conservative system (i.e., the systems for which a tran-
sition matrix is required). This paper differs from the
previous studies in the statement of the problem and in
both the method of analyzing the problem and the
results obtained.

1. We consider a linear oscillatory system with peri-
odic coefficients,

(1)

Here, M, D, and C are the symmetric positive-definite
(m × m) matrices of mass, damping, and potential

Mẏ̇ γDẏ+ C δB Ωt( )+( )y+ 0.=
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forces, respectively; B(τ) is a piecewise continuous
2π-periodic matrix of a parametric excitation; y =
(y1, …, ym)T is the vector of the generalized coordi-
nates; and the point stands for the derivative with
respect to time.

We now analyze the stability of the trivial solution
y ≡ 0 to system (1) as a function of the vector of three
parameters p = (γ, δ, Ω) whose components describe
the amplitude of dissipative forces and the amplitude
and frequency of a periodic excitation, respectively. We
assume that the quantities γ and |δ| are small, i.e., that
system (1) is close to an autonomous conservative sys-
tem. The evident restrictions γ > 0 and Ω > 0 are
imposed on the parameters γ and Ω .

We rewrite (1) as a set of equations of the first order:

(2)

The (2m × 2m) matrix A(Ωt) is a real-valued periodic

function with period T = . The (2m × 2m) matrix

X(t) satisfying the relationships

(3)

is referred to as a matriciant of system (2), with I being
the unit matrix. The value of the matriciant at t = T is
referred to as a monodromy matrix F = X(T) [3].
According to the known theorem on the parameter
dependence of solutions to differential equations, the
monodromy matrix is a smooth function of the param-
eter vector p. The eigenvalues ρ of the matrix F are
called multipliers. System (2) is asymptotically stable
if all its multipliers are located inside the unit circle on
the complex plane, i.e., |ρ| < 1. If at least one multiplier
is outside of the unit circle, i.e., |ρ| > 1, then the system
becomes unstable [3].

If γ = δ = 0, system (1) is conservative. Seeking its
solutions in the form y = uexp(iωt), we arrive at the
eigenvalue problem

(4)

where the second equality is a normalization condition.
The real-valued natural frequencies ω and vibration

ẋ A Ωt( )x, x y
ẏ 

 
 

.= =

2π
Ω
------

Ẋ A Ωt( )X, X 0( ) I= =

Cu ω2Mu, uTMu 1,= =
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modes u are determined from these equations. We
assume that all the frequencies 0 < ω1 < ω2 < … < ωm

are different and denote the corresponding eigenvectors
by uj, with j = 1, …, m.

When γ = δ = 0, the multipliers of the monodromy
matrix F0 are given by [3]

(5)

Since all the multipliers ρj (5) are at the unit circle
|ρ| = 1, the stability of system (1) for nonzero γ and δ is
determined by perturbations of all the multipliers. In
general, all ρj are different. Repeated multipliers appear
for the following critical values of the frequency Ω:

(6)

(7)

Equalities (6) and (7) define, respectively, the main
(simple) and combination resonances and correspond
to the double multipliers ρ = (–1)k and ρ = exp(iωjT).
Multipliers of higher order originate only if the quanti-
ties ωj ± ωl are linked by rational relationships. Here, j,
l = 1, …, m; j ≥ l; and j ≠ l in the case of ωj – ωl. These
cases are nongeneric and will not be considered in this
paper.

2. We assume that, for γ = δ = 0 and a certain Ω = Ω0,
all the multipliers of the monodromy matrix F0 are
different. Using the formulas for the derivatives of sim-
ple multipliers with respect to parameters [1, 2] and
taking (4) into account, we obtain, to a first approxima-
tion, the following expression for the modulus of the
multiplier of system (2):

(8)

where p0 = (0, 0, Ω0). It follows from the assumption on
the positive definiteness of the dissipative matrix D that
the coefficient of γ in (8) is negative. Therefore, the
introduction of small dissipative forces results in the
displacement of all the simple multipliers into the inte-
rior of the unit circle for small |δ| and |Ω – Ω0|. This
implies that small dissipative forces stabilize system (1),
which is subjected to weak parametric excitations for
noncritical values of the frequency Ω .

3. The instability (parametric resonance) can origi-
nate at frequencies Ω close to critical values (6) and (7).
Under these conditions, the double multipliers appear

ρ j ρ j, iωjT±( )exp i
2πωj

Ω
------------± 

  ,exp= =

j 1 … m., ,=

Ω
2ωj

k
---------= , j 1 … m, k, , 1 2 …;, ,= =

Ω
ωj ωl±

k
-----------------, j l, 1 … m,, ,= =

j l, k> 1 2 …, ,=

ρ j p( ) 1
πu j

TDu j

Ω0
-------------------γ– o p p0–( ),+=
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at the unit circle. Let the frequency Ω = Ω0 of a para-
metric excitation satisfy the relationship

(9)

for certain frequencies ωj and ωl of the conservative
system and for a certain natural number k. It is worth
noting that condition (9) involves both the case of main
resonance (6) for j = l and the case of the summed com-
bination resonance (7) for j > l.

Condition (9) implies that two multipliers coincide:

Denoting ρ0 = ρj = , we obtain that ρ0 = (–1)k for
j = l (main resonance), while for j > l, ρ0 is a complex-
valued multiplier (combination resonance). The double
multiplier ρ0 is semisimple because two linearly inde-
pendent eigenvectors correspond to it. Employing the
theory of perturbations for multiple eigenvalues [8] and
the formulas for the derivatives of the monodromy
matrix with respect to the parameters [1, 2], we find the
equation for the stability region in the first approxi-
mation:

(10)

Here, ∆Ω = Ω – Ω0, and the coefficients ηj, ηl, σ+, ξ1 ,
and ξ2 are real quantities determined by the relation-
ships

(11)

It is worth noting that the constants ηj and ηl are posi-
tive due to the assumption on the positive definiteness
of the dissipative matrix D. Inequality (10) defines the
form of the stability region in the three-dimensional
space of the parameters p = (γ, δ, Ω).

We now consider the critical frequency Ω0 satisfy-
ing the condition

(12)

for a certain natural number k (difference combination
resonance). In this case, there is a semisimple double
multiplier ρ0 = ρj – ρl for γ = δ = 0. Then, the first

ωj ωl+ kΩ0=

ρ j ρl iωjT0( ), T0exp
2π
Ω0
------.= = =

ρl

γ2 η j η l+( )2 η jη lγ
2 ξ1δ

2– k2 ∆Ω
σ+δ

k
---------+ 

 
2

+

– ξ2δ
2 k η j η l–( ) ∆Ω

σ+δ
k
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  γ+

2

0.>

η j = u j
TDu j, η l = ul

TDul, σ+ = 
ωjc0

ll( ) ωlc0
jj( )+

2ωjωl

-----------------------------------,–

ξ1 iξ2+
c k–

jl( )ck
lj( )

ωjωl
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lj( ) 1

2π
------ ul

TB τ( )u je
ikτ τ .d

0

2π

∫= =

ωj ωl– kΩ0, j l>=
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approximation for the stability region in the neighbor-
hood of the point p0 = (0, 0, Ω0) takes the form

(13)

Here, the real coefficients ηj, ηl, ξ1, and ξ2 are deter-
mined by relationships (11) and the real constant σ_ is

given by the equality σ_ = . Changing

the sign of the inequalities in (10) and (13) yields the
equation for the boundary of the stability region in the
first approximation.

We now analyze the configuration of the instability
regions (parametric resonance) in the following most
common cases.

(a) Let the parametric-excitation matrix B(Ωt) be

symmetric. Then, the quantities  and  are com-
plex conjugate. Therefore, ξ2 = 0 and the quantity ξ1

in (11) takes the form

In the case of main and combined resonances of the
summation type (9), stability condition (10) leads to an

γ2 η j η l+( )2 η jη lγ
2 ξ1δ

2 k2 ∆Ω
σ–δ

k
---------+ 

 
2

+ +

– ξ2δ
2 k η j η l–( ) ∆Ω

σ–δ
k

---------+ 
  γ–

2

0.>

ωjc0
ll( ) ωlc0

jj( )–
2ωjωl

-----------------------------------

c k–
jl( ) ck

lj( )

ξ1
c k–

jl( )ck
lj( )

ωjωl

-----------------
ak

jl( )( )2
bk

jl( )( )2
+

4ωjωl

-------------------------------------- 0,≥= =

ak
jl( ) 1

π
--- u j

TB τ( )ul kτ( )cos τ ,d

0

2π

∫=

bk
jl( ) 1

π
--- u j

TB τ( )ul kτ( )sin τ .d

0

2π

∫=

ΩΩ0

δ

γ

0

Fig. 1.
inequality defining the parametric resonance region
(after the reduction of the positive factor):

(14)

Since the quantities ηj and ηl are positive and ξ1 ≥ 0,
condition (14) for ξ1 ≠ 0 defines the interior of a cone
in the three-dimensional space of the parameters p =
(γ, δ, Ω) (Fig. 1). The cone axis defined by the centers
of the conic plane sections at δ = const is determined by

the equations γ = 0 and Ω – Ω0 + = 0. In the case of

parametric excitation, with a zero mean  =  = 0,
we have σ+ = 0 and, therefore, the cone axis is parallel
to the Oδ-axis. The stability region corresponds to the
exterior of the cone.

When the number k specifying the number of reso-
nances (9) increases at fixed values of ωj and ωl , the
coefficient ξ1 decreases as the modulus squared of the
Fourier series expansion term. As a result, the instabil-
ity cone rapidly shrinks with increasing k and the cone
axis is straightened. The section of the cone by the
plane δ = const (with the parametric excitation ampli-
tude fixed) is an ellipse. Because of the factor k2 in (14),
the ellipse shrinks in the direction of the OΩ-axis with
increasing k. Since the denominators in (11) contain the
products ωjωl , the quantities ξ1 and |σ+ | decrease with
increasing j and l. As a result, the instability cone
shrinks and its axis is straightened with increasing j and
l, i.e., for resonances at higher frequencies.

In the case of the difference-type combination reso-
nance (12), it follows from stability condition (13) that
the parametric-resonance region is defined by the ine-
quality

(15)

It is noteworthy that inequality (15) differs from (14)
only in the sign of the second term and in the coefficient
σ–, which is used in place of σ+. Consequently, for
ξ1 ≠ 0 (nondegenerate case), only one of the inequali-
ties (14) and (15) defines a cone, while the other gives
the point γ = δ = ∆Ω = 0 (absence of resonance). There-
fore, for positive ξ1 , the region of the difference-type
combination resonance is lacking. It is worth noting
that, in the case of Hamiltonian systems (without dissi-
pation), the absence of the difference-type combination
resonances has already been noted [3].

(b) Let the parametric-excitation matrix have the
form B(Ωt) = ϕ(Ωt)B0, where B0 is an arbitrary time-
independent matrix and ϕ(τ) is a 2π-periodic scalar

η jη lγ
2 ξ1δ

2– 4k2 η jη l

η j η l+( )2
----------------------- ∆Ω

σ+δ
k

---------+ 
 

2

0.≤+

σ+δ
k

---------

c0
jj( ) c0

ll( )

η jη lγ
2 ξ1δ

2 4k2 η jη l

η j η l+( )2
----------------------- ∆Ω

σ–δ
k

---------+ 
 

2

0.≤+ +
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function. In this case, the product  in (11) is
real. Therefore, ξ2 = 0 and the coefficient ξ1 is given by

(16)

In the case of the main resonance and the summed com-
bination resonance (9), the stability condition (10)
defines the parametric-resonance region (14). For the
difference-type combination resonance (12), the insta-
bility region is given by (15). In the nondegenerate
case, when ξ1 ≠ 0, the sign of ξ1 coincides with that of
cjl . For the main resonance, cjj ≥ 0; therefore, when
cjj ≠ 0, there exists the main-resonance region defined
by cone (14). The existence of combination resonance
regions depends on the sign of cjl . Namely, for cjl > 0 or
cjl < 0, only the region of the summed or difference-
type combination resonance exists, respectively. The
shape of the parametric-resonance regions (cones)
depends on the resonance number k and the frequencies
ωj and ωl just as in the case (a) described above. When
cjl = 0, the resonance region is either absent or degener-
ate (i.e., the first approximation represents a straight
line).

We formulate the results obtained in the following
statement.

Theorem. For a symmetric matrix B(τ) = BT(τ),
system (1) exhibits only the main resonance (6) and the
summed combination resonance (7). In the case of
B(τ) = ϕ(τ)B0, where ϕ(τ) is a periodic scalar func-
tion and B0 is a constant matrix, either the main reso-
nances (6), the summed combination resonances (for
cjl > 0), or the difference-type combination resonances
(for cjl < 0) are realized in the system. In the three-
dimensional space of the parameters γ, δ, and Ω, the
regions of both main and summed combination reso-
nances are described by cones (14), while those of differ-
ence-type combined resonances are given by cones (15).

The cases (a) and (b) considered above correspond
to the most conventional forms of parametric excita-
tions. In other cases, stability conditions (10) and (13)
can be used to find the three-dimensional resonance
regions. Condition (10) defines the parametric-reso-
nance region (14) (cone) for ξ1 > 0 and ξ2 = 0, while
condition (13) describes the resonance region (15) for
ξ1 < 0 and ξ2 = 0.

4. We now fix the parameter γ > 0 and consider the
case of ξ2 = 0 [for example, cases (a) and (b) consid-
ered above]. Then, to a first approximation, the para-
metric-resonance regions are defined by (14) and (15).
Depending on the sign of ξ1, the parametric-resonance
region is either absent or occupies the interior of the

c k–
jl( )ck

lj( )

ξ1

c jl α k
2 βk

2+[ ]
4ωjωl

----------------------------, c jl u j
TB0ulul

TB0u j,= =

α k = 
1
π
--- ϕ τ( ) kτ( )cos τ , βkd

0

2π

∫  = 
1
π
--- ϕ τ( ) kτ( )sin τd .

0

2π

∫
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hyperbolas (conic sections by the plane γ = const) on
the two-dimensional plane of the parameters δ and Ω
(Fig. 2). The asymptotes of these parabolas are deter-
mined by the equation

(17)

where the subscript s stands for “+” and “–” for reso-
nances (9) and (12), respectively. If the average over a
period for the matrix B(Ωt) is zero, then σ+ = σ– = 0.
The parametric-resonance region on the plane (δ, Ω)
decreases with increasing the dissipative parameter γ.
In the first approximation, using (14) or (15), we find
the minimum (critical) excitation amplitude |δ| and the
corresponding frequencies at which the parametric res-
onance is possible:

(18)

Here, Ω0 is the resonance frequency given by (9) or
(12), depending on the resonance type (Fig. 2).

5. As an example, we now consider Bolotin’s prob-
lem [5, 9] on the dynamic stability of the plane bending
of a beam. The elastic beam is assumed to be simply
supported at its ends and loaded by the periodic
moments M(Ωt) = δϕ(Ωt) in the plane of its maximum
stiffness, where ϕ(τ) is a 2π-periodic function. Bend-
ing-torsional vibrations off this plane are described by
the equations [9]

(19)
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Here, w(x, t) is the transverse deflection of the beam;
θ(x, t) and r are the torsion angle and the radius of iner-
tia for the beam’s cross section, respectively; EJ and GI
are the bending and torsion stiffnesses of the beam,
respectively; m is the mass per unit length of the beam;
γ is the parameter of dissipative force (viscous friction);
and d1 and d2 are fixed constants defining the bending
and torsional friction forces. The boundary conditions
take the form

(20)

where l is the beam length. We seek the solution to sys-
tem (19), (20) in the form of a series [5]:

(21)

where Wn(t) and Θn(t) are unknown functions of time.
Substituting (21) into Eq. (19), we obtain a set of ordi-
nary differential equations with respect to Wn(t) and
Θn(t) of the form of (1) with

(22)
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Here, ωn1 and ωn2 are the natural frequencies of bend-
ing and torsional vibrations of the beam, respectively:

(23)

The eigenvectors corresponding to the frequencies ωn1

and ωn2 are equal to un1 = (1, 0)T and un2 = (0, 1)T,
respectively.

We now analyze the stability of system (1) with
matrices (22) for a certain fixed n. Since B(Ωt) =
ϕ(Ωt)B0 , where B0 is a fixed matrix, this system
belongs to the type considered in item (b). The quanti-
ties determined from Eqs. (16) take the form

(24)

Therefore, the regions of the difference-type combina-
tion resonance are absent, while the main resonance
regions are degenerate (in order to analyze them, higher
approximations are required). According to (14), the
regions of the summed combination resonance at fre-

quencies close to Ω0 = , k = 1, 2, … are

defined by

(25)

where the quantities αk and βk are determined from
(16).

To carry out numerical calculations, we set n = 1,

ϕ(τ) = cosτ, d1 = d2 = 1, ωn1 = 1 s–1, ωn2 =  s–1, l2m =

 kg cm, and r2 =  cm2. The boundary of the com-

bination resonance region (with k = 1) given by (25) in
the first approximation is shown in Fig. 3 (solid curves).
The same quantity obtained by numerical evaluation of
the monodromy matrix for various values of the param-
eters γ, δ, and Ω is also shown (dashed curves). The
Runge–Kutta method was employed to integrate
Eqs. (3). It is seen from Fig. 3 that the exact (obtained
numerically) and approximate regions of the combina-
tion resonance are well matched up to the amplitudes
δ ≈ 0.8.

This work was supported by the Russian Foundation
for Basic Research, project no. 99-01-39129.
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The problem of supercritical behavior of shells
involving the determination of their stable and unstable
equilibrium states after they have lost their stability has
been rather poorly studied. This problem is closely
associated with the calculation of the shell nonlinear
stress-strain state before buckling, as well as with the
attainment of stability under the conditions of a prelim-
inary nonlinear stress-strain state.

In this regard, shallow spherical cups, along with
cylindrical shells, are the most thoroughly investigated.
To describe the behavior of shallow shells with a finite
bending, the so-called Marguerre equations are most
often used. Attempts to completely solve the problem
of supercritical behavior of an ideal shallow spherical
cup were performed by H. Weinitschke [9] (1960),
G. Thurston [8] (1961), D. I. Shilkrut, et al. [5] (1969),
L. Bauer et al. [6] (1973), and N.V. Valishvili [1]
(1976). However, only Mescall [7], in 1966, succeeded
in solving this problem. In Fig. 1, we show the loading
trajectory of a shallow spherical cup with a rigidly fixed
contour; this cup is subjected to the action of a uniform
transverse pressure [7]. Here, q* and  denote the
dimensionless transverse loading and the relative
deflection at the cup pole.

As is seen in Fig. 1, the cup loading trajectory exhib-
its points of intersection. This fact led Mescall to an
erroneous conclusion on the existence of bifurcation
points in this trajectory. Moreover, this statement was
repeated in various publications dedicated to the stabil-
ity of shells, e.g., in [2]. In fact, there cannot be bifur-
cation points in the shell-loading trajectory, provided
the shell deformation is axisymmetric. Only ultimate
points that correspond to the state of indifferent equilib-
rium of the shell can exist there. In the vicinity of these
ultimate points, the shell may loose its stability through
snapping. Bifurcation points appear in the loading tra-
jectory when there is a possibility of asymmetric shell
deformation. These points correspond to states of shell

w0
*

Moscow State Technical University 
“Moscow Automotive Institute,”
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indifferent equilibrium in which an Eulerian buckling
may occur accompanied by the appearance of asym-
metric forms of shell bending.

Unfortunately, after Mescall had published this
paper, nobody succeeded in completely reproducing
the process of cup supercritical deformation. No stud-
ies follow those of Mescall. This was likely associated
with computational difficulties in solving the nonlinear
equations. Therefore, the question of the appearance of
bifurcation points in the loading trajectory of a shallow
spherical shell under the condition of its axisymmetric
deformation alone remained open.

The goal of this study is to solve a complete problem
on the finite bending of a shallow spherical cup rigidly
fixed around its contour under the action of uniform
transverse pressure. On the basis of this solution, we
also try to elucidate the types of singular points present
in the cup loading trajectory under the condition of axi-
symmetric deformation alone.

We consider a shallow spherical cup with curvature
radius R and thickness h. Let the cup rigidly fixed
around its contour and having a radius a be subjected to
the action of uniform transverse pressure q. The prob-
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201816146420
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w*
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Fig. 1. Loading trajectory for the thin-walled shallow spher-
ical cup. The solution by Mescall.
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lem of the cup axisymmetric snapping and supercritical
behavior in the variational formulation on the basis of
the Margerr equation involves two functions u and ϑ r

that vary independently. These functions describe,
respectively, the radial displacements of middle-sur-
face points and the rotation angle of a surface normal
with respect to this surface. Such a formulation follows
from the Lagrange principle, written out, for this case,
in the form

(1)

where Nrr , NΘΘ, and Mrr with MΘΘ are, respectively,
specific normal forces and specific bending moments
arising in the shell.

These force functions and the shell deflection are
unambiguously described by the independently varying
functions u and ϑ r . These functions are represented by
finite sums:

(2)

In these sums, Ui and Θi are the unknown generalized
displacements, while ui(r) and ϑ i(r) are the basis func-
tions given with the help of Bessel functions and obey-
ing the boundary conditions of the problem:

u = ϑ r = 0 at r = 0, u = ϑ r = 0 at r = a.

Thus, we can write out Eqs. (1) of the shell equilibrium
in the form of a set of nonlinear algebraic equations:

F(X) = 0. (3)

Here, we imply that the vector F = (F1F2…F2K)T con-
sists of summands standing in the left-hand side of
Eq. (1) with variations of generalized displacements Ui

and Θi (i = 1, 2, 3, …, K). In this case, the vector X, in
accordance with the concept of equivalence of all solu-
tion variables, is composed of generalized displace-
ments including transverse loading:

X = (U1Θ1…UKΘK q)T.

The order of vector X is determined by the number of
terms taken into account in partial sums (2): Nmax =
2K + 1.

The solution to the set of nonlinear algebraic equa-
tions (3) is constructed by the continuous-extension
method. In accordance with [4], the basis of the method
consists in numerical solution of the Cauchy problem

rNrrδu rMrrδϑr–( )
0

a 1
r
--- rNrr( )' NΘΘ–[ ]δu





0

a

∫–

–
1
r
--- rMrr( )' MΘΘ–( ) r

R
---Nrr+

+ Nrrϑ r
r
2
---q+ δϑr





rdr 0,=

u Uiui r( ), ϑ r

i 1=

K

∑ Θiϑ i r( ).
i 1=

K

∑= =
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[equivalent to the set of equations (3)] with zero initial
conditions, which corresponds to the unloaded-shell
state. A method of the discrete extension [3] is used to
compensate for errors in the components of vector X.
These errors are accumulated when numerically solv-
ing the equivalent set of equations. The method of dis-
crete extension is based on Newton’s method realized
for an extended space of variables. Such an approach
makes it possible to determine the solution vector X
with a preassigned error at an arbitrary regular point in
the loading trajectory, including its ultimate points.

As a result of this solution, the shell-loading trajec-
tory, i.e., the locus corresponding to its equilibrium
states, turns out to be a certain curve in a space with
dimension Nmax , which is determined by a number of
independent variables of the solution. This number
depends on the degree of problem discretization.
Therefore, a question arises as to the least number of
shell characteristics necessary for sufficient, complete
description of the shell deformation process. The suffi-
ciently complete description implies a representation
(as a rule, graphical) of the process under consideration
that adequately reflects all evolutions of the shell stress-
strain state without loosing the essence of the process.

To solve this problem, we now return to variational
equation (1). The force variables entering into this
equation are unambiguously described by independent
functions u and ϑ r . Thus, the potential energy of the
shell deformation is unambiguously given by any two
functions taken from the pairs ui and Nrr or ϑ r and Mrr .
This implies that each of the several possible stress-
strain states for a given loading is assigned uniquely to
two cup characteristics alone. They can be any two
taken from the above pairs. Using two such functions,
we can reconstruct (for a given loading) the stress-
strain state of the shell without solving the equation of
the shell equilibrium. Therefore, these functions,
together with the value of the applied loading, unam-
biguously and sufficiently completely describe the
stress-strain state of a cup at each point of a loading tra-
jectory.

Each of the chosen functions can be characterized
by its norm or its value at a characteristic point for
which the cup pole is usually taken. Since the functions
u and ϑ r have zero values at the cup pole, Nrr(0) and
Mrr(0) should be chosen as the cup-state parameters.
Hence, in order for the loading trajectory to unambigu-
ously and completely describe an arbitrary stress-strain
state of a cup in any method and for arbitrary degree of
problem discretization, it is sufficient to describe and
construct this trajectory in the three-dimensional space
of variables Nrr(0), Mrr(0), and q.

This conclusion may be confirmed by other consid-
erations based on the variational formulation of the
problem of finite deflections for a shallow spherical
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Fig. 2. Projection of the loading trajectory for the thin-walled shallow spherical cup, µ = 8.00.
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cup. To determine its stress-strain state, instead of the
boundary value problem

(4)

we can write out the Cauchy problem that provides a
similar solution for a given loading q:

Here, Nrr0 and Mrr0 are, respectively, the specific normal
radial forces and the specific bending moment at the
cup pole, which are found from the solution to the
boundary value problem (4) for a given loading q. This
confirms the conclusion that three values, namely,

1
r
--- rNrr( )' NΘΘ–[ ] 0 0 r a≤ ≤( ),=

1
r
--- rMrr( )' MΘΘ–[ ] r

R
---Nrr Nrrϑ r

r
2
---q+ ++ 0,=

u 0( ) 0, ϑ r 0( ) 0, u a( ) 0, ϑ r a( ) 0,= = = =

1
r
--- rNrr( )' NΘΘ–[ ] 0 0 r a≤ ≤( ),=

1
r
--- rMrr( )' MΘΘ–[ ] r

R
---Nrr Nrrϑ r

r
2
---q+ ++ 0,=

u 0( ) 0, ϑ r 0( ) 0,= =

Nrr 0( ) Nrr0, Mrr 0( ) Mrr0.= =
Nrr(0), Mrr(0), and q, are sufficient for unambiguous
description of the stress-strain state of a shallow spher-
ical cup.

The description of the trajectory for an axisymmet-
ric cup deformation in the space of variables Nrr(0),
Mrr(0), and q is not unique. This is explained by the fact
that the shell deflection w can be unambiguously deter-
mined by the radial bending moment Mrr . This is why
the value of the radial bending moment Mrr(0) at the
cup pole can be replaced by the deflection w(0), also
calculated at the same point, without a loss of unique-
ness and completeness in description of the loading tra-
jectory. Thus, it is possible to construct one more space
of variables Nrr(0), w(0), and q, which provides unam-
biguous and complete description of the loading trajec-
tory for a shallow spherical cup.

We construct the loading trajectory for a shallow
spherical cup, which is calculated on the basis of the
solution to the system of equations (3) for the thin-wall
parameter µ = 8.00. The construction is performed in
the space of variables for which we take the specific
radial forces, the bending moment in the cup pole, and
the transverse loading. Three projections of the trajec-

tory in the space { , q*}, { , q*}, and { ,Mrr0
* Nrr0

* Mrr0
*
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} are shown in Fig. 2. Here, q* is the dimension-
less transverse load,

ν is the Poisson’s ratio for the shell material, and E is
its elastic modulus. We consider

the cup thin-wall parameter. The quantities  and

 denote dimensionless specific normal radial
forces and the specific bending moment at the cup pole,
namely,

The projections of the loading trajectory in the coordi-

nates { , q*} and { , q*} characterize the shell
deflection and the shell tension–compression, respec-
tively. The third projection of the loading trajectory in

the coordinates { , } has an adjusting charac-
ter. In these projections, the ultimate points of the load-
ing trajectory are denoted by numbers 1 to 8. As is
shown in Fig. 3, these three projections correspond to a

single curve in the space { , , q*}. In this
space, each point of the loading trajectory corresponds
to only one stress-strain equilibrium state of the cup.
Moreover, this result is valid for an arbitrary degree of
shell discretization, when tens, hundreds, or thousands
of desired generalized shell displacements are included
into the number of unknowns of the solution to the set
of nonlinear algebraic equations of equilibrium.

As is seen in Fig. 3, the loading trajectory of a shal-
low cup is a smooth curve having no points of intersec-
tion. At the same time, any projection of the loading tra-
jectory in Fig. 2 has at least one point of intersection.
This fact led Mescall, who published a paper devoted to
the projection of a loading trajectory in coordinates
{ , q*} (Figs. 1, 4), to a wrong conclusion on the
existence in this trajectory of bifurcation points. In fact,
as is seen in Fig. 3, under the condition that axisymmet-
ric shell deformation alone is possible, the loading tra-
jectory cannot have bifurcation points. Only ultimate
points can exist in it. The points of intersection of the
loading trajectory, which were accepted by Mescall as
bifurcation points (Fig. 4), are, in fact, its regular

Nrr0
*

q*
1
2
--- 3 1 ν2–( )qR2

Eh2
---------,=

µ 12 1 ν2–( )4 a2

Rh
-------=

Nrr0
*
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*
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*
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points. They are the only points of intersection for the
regions of projection of the loading trajectory that
belongs to the extended space of variables. At the same
time, the trajectory in itself has no points of intersection
in this space (Fig. 3). The same arguments can be
related to cusps. The loading trajectory of a shallow
spherical cup has no cusps. This trajectory contains
points belonging to regions with a small (compared to
other regions) radius of curvature. They may be
assumed to be cusps. However, in fact, the loading tra-
jectory of a cup is a smooth curve.
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7 8
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Fig. 3. Loading trajectory for the thin-walled shallow spher-
ical cup, µ = 8.00.
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To date, one-dimensional waves in a liquid contain-
ing bubbles (bubble liquid) have been thoroughly
investigated [1, 2]. In this paper, we study the evolution
of two-dimensional waves in such a liquid. We consider
a case of a plane impact upon a liquid containing a
finite-size bubble zone, as well as a case of concen-
trated impact upon a homogeneous bubble-containing
liquid. Horseshoe-shaped soliton waves are revealed
whose propagation qualitative features are similar to
analogous wave patterns in plasma [3].

Let a bubble zone be located in a liquid which, in the
general case, is bounded by a cylindrical surface whose
generatrix is parallel to the z-axis (the zone longitudinal
size is much longer than the transverse one). We con-
sider two-dimensional wave disturbances. This situa-
tion can be realized, e.g., in the case of an action on the
system boundary of a pressure independent of the
z-coordinate [p = p0(t, y)] for x = x0 .

In order to describe the motion of the bubble liquid
under assumptions which are usual for these systems,
we write out a set of equations for the masses, number
of bubbles, momenta, and pressure in the bubbles in the
one-velocity approximation [1]:

(1)

dρi

dt
-------- ρi

∂u
∂x
------ ∂v

∂y
-------+ 

 + 0, i l g,,= =

dn
dt
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∂u
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∂y
-------+ 

 + 0,=

ρdu
dt
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∂ pl

∂x
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dt
-------

∂ pl

∂y
--------+ 0,= =

d pg

dt
--------- –

3γpg

a
------------w

3 γ 1–( )
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--------------------q,–=
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d
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∂
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Here, a is the bubble radius, γ is the adiabat index for a

gas, pi is the phase pressure,  are phase true densities,
αi are volume phase contents, q is the heat-transfer
intensity, n is the number of bubbles per unit volume,
and w is the radial bubble density. The velocities u and
v  correspond to the motion along the x- and y-coordi-
nates. We label the parameters of the liquid and gaseous
phases by the subscripts i = l, g, respectively.

While describing the radial motion, in accordance
with the refinements proposed in [4], we assume that
the velocity of this motion consists of two components:

(2)

where wR is described by the Rayleigh–Lamb equation

(3)

and νl is the viscosity of the liquid. The additional
velocity wA is determined from the solution (in the
acoustical approximation) to the problem of spherical
unloading on a sphere with radius a in a carrier liquid:

(4)

where Cl is the sound velocity in the liquid. We assume
that the liquid is acoustically compressible and the gas
is calorically perfect:

(5)

α l αg+ 1, αg
4
3
---πa3n,= =

ρi ρi
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where R and Tg are, respectively, the gas constant and
temperature of the gas. Henceforth, the subscripts 0
indicate that the corresponding parameter relates to the
initial unperturbed state.

The heat flow q is given by the approximate finite
relation

where T0 = const is the temperature of the liquid, λg is
the heat conductivity, and Nu is the Nusselt number.
For the bubble liquid described above, the equilibrium
sound velocity C and the Minnaert frequency ωM of the
bubble free oscillations are determined as [1]

For numerical analysis of the evolution of nonlinear
waves in a bubble liquid, it is more convenient to use
the system of equations presented here and written out
in Lagrange variables. We take initial Eulerian coordi-
nates as these variables. This choice is associated, in
particular, with the fact that the bubble screen written
out in Lagrange coordinates is immovable.

The results of the numerical experiment are illus-
trated in Figs. 1 and 2, in which the evolution of the
wave pulse initiated by a plane impact at the boundary
x0 = 0 in a water volume containing an air-bubble
screen of the rectangular cross section is presented:

A semi-infinite channel is taken as a calculation
domain. On the boundaries of this domain (x0 = 0, 0 <
y0 < Ly , y0 = 0, and y = Ly), the conditions are assumed
to be the same as those on a rigid wall. It should be
mentioned that in the present study, we consider a case
when the wave pulse, being completely formed, inter-
acts with the bubble screen. The calculation region is
taken to be sufficiently broad in order to avoid the effect
of secondary signals produced as a result of reflections
from the boundaries of the calculation domains during
a period of the wave-pulse action. In this and subse-
quent calculations, the pressure distribution is symmet-

ric with respect to the straight line y = . Therefore,

the calculation results (spatial pressure distributions)
are presented for one of the half-planes separated by
this straight line. It is seen that when propagating a

q Nu= λg

Tg T0–
2a

-----------------,
Tg

T0
-----

pg

p0
----- a

a0
----- 

  3

,=

C
γp0

ρl0αg0
---------------, ωM

1
a0
-----

3γp0

ρl0
------------.= =

p0 t y,( ) p0= ∆ p0
t δt/2–

δt/2
------------------ 

 
2

– .exp+

Ly

2
-----
longer signal (Fig. 2), tower-shaped pressure distribu-
tions can be produced at certain time moments in the
screen pressure sensors owing to two-dimensional
effects. In this case, pressure sensors placed at these
points record significant pressure bursts. In the example
under analysis, the D2 sensor located in the middle of
the bubble screen records signals with amplitudes of
about 6 atm, which exceeds the amplitude of the initial
signal by a factor of two. This tower-shaped pressure
burst decreasing in amplitude is carried away along the
direction of the basic-wave propagation. This picture
can be seen from the calculated oscillogram for the D3
sensor (the recorded amplitude exceeds the initial one
by almost 1 atm). In the case of a short signal (Fig. 1),
the D2 sensor placed in the middle of the same screen
virtually does not record an external pulsed signal,
while the D3 sensor acquires only a weakened signal
with an amplitude of about 1 atm. Thus, when pulsed
signals propagate in a liquid containing a finite-size
bubble screen and the time duration of each signal is

sufficiently long δt > , it is quite possible that,

inside the screen, there is an elevation of the pressure
amplitude such that it can exceed the amplitude of the
initial pulse. In the case of sufficiently short pulses

δt ≤ , particles of the two-phase system inside

the screen virtually do not feel the propagation of the
wave pulse (as if completely protected from its
action).

Figures 3 and 4 represent spatial pressure distribu-
tions evolving along the transverse coordinate of the
wave pulse given in the form

(6)

and acting through the Lagrange boundary x0 = 0 in the
homogeneous water–air bubble mixture. It is seen that
in the case of a longer pulse (Fig. 3) whose characteris-
tic duration greatly exceeds the period of bubble free

oscillations  [i.e., (δt @ )], virtually only one
leading wave is formed that is similar to a horseshoe-
shaped soliton [3]. In contrast to the one-dimensional
soliton, its damping is determined not only by the dis-
sipation but also by the two-dimensional spreading. As
is seen, the amplitude of the leading soliton is larger
than that of the horseshoe-shaped wave packet associ-
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Fig. 1. Propagation of a wave pulse in a liquid in the case of a finite-size bubble screen. The pressure distribution p(x, y) is
given for the time moment t = 0.6 ms. Calculated oscillograms for the D1, D2, and D3 sensors are presented. The sensors
are located at a distance of 0.1 m ahead of the bubble screen, in the middle of the bubble screen, and beyond the bubble
screen at a distance of 0.05 m from its rear boundary, respectively. The initial parameters of the water-air mixture and the
pulse are lx = ly = 0.05 m, αg0 = 10–2, a0 = 10–3 m, p0 = 0.1 MPa, T0 = 300 ä, ∆p0 = 0.3 MPa, and δt = 0.1 ms.
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Fig. 2. The same as in Fig. 1, with the pulse duration δt = 1 ms. The pressure distribution p(x, y) is presented for the time moment
t = 1.7 ms. Calculated oscillograms are given for D1, D2, and D3 sensors located at a distance of 0.4 m ahead of the bubble screen,
in the middle of the bubble screen, and beyond the bubble screen at a distance of 0.05 m from its rear boundary, respectively. Other
parameters are the same as in Fig. 1.
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Fig. 4. The same as in Fig. 3 for the pulse duration δt = 0.1 ms (δy = 0.04 m). Other parameters are the same as in Fig. 3.
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ated with the manifestation of the bubble radial inertia.

In the case of a short pulse (Fig. 4), when δt ~ , a
diverging wave packet forms with characteristic wave-

lengths λ . .
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