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The results of lowest-order perturbation theory calculations of the pho-
ton and positron spectra in radiativepe2 decay are generalized to all
orders of perturbation theory using the structure-function method. An
additional source of radiative corrections to the ratio of the positron and
muon channels of pion decay, due to emission of virtual and real pho-
tons and pairs, is considered. It depends on details of the detection of
the final particles and is large enough to be taken into account in theo-
retical estimates with a level of accuracy of 0.1%. ©1997 American
Institute of Physics.@S0021-3640~97!00102-3#

PACS numbers: 13.40.Hq, 13.40.Ks, 12.15.Lk, 14.40.Aq

As a first step in the calculation of the spectra of radiative pion decays we repro
the results obtained by Berman and Kinoshita,1 treating the pion as a point-like particle
Kinoshita1 calculated the positron energy spectrum in radiative pion decay:
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wherey52«e/mp is the positron energy fraction,«e is the positron energy~here and
below we have in mind the rest frame of the pion!, L5ln(mp/me)55.6 is the ‘‘large
logarithm’’, andmp andme are the masses of the pion and positron. The quantity
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2 D 252.53•10214 MeV, ~2!

is the total width ofpe2 decay, calculated in the Born approximation.

We will now calculate the photon spectrum. Consider first the emission of a sof
photon. The corresponding contribution to the total width may be obtained by the
dard integration of the differential widths:

dGsoft
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52
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4p2 E d3k
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D 2U
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, ~3!

whereP, pe , andk are the four-momenta of the pion, positron, and photon, respectiv
P25mp

2 , pe
25me

2, k25l2, andl is the photon mass. The result has the form
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Consider now the hard photon emission process

p1~P!→e1~pe!1ne~pn!1g~k!. ~6!

The standard procedure of final-states summing of the squared modulus of its m
element and integration over the neutrino phase volume leads to the spectral distri
over the photon energy fractionx52k0/mp :
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Further integration of this spectrum give the result
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Puttingkmin
0 5D« in this formula and adding the soft photon contribution, we obtain~in

agreement with Kinoshita’s 1959 result! the contribution to the width from the inne
bremsstrahlung of a point-like pion:
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Now return to the positron spectrum. The contributions to it containing the l
logarithm L may be associated with the known kernel of the Altarelli–Parisi–Lipa
evolution equation~see Ref. 2!:

P~1!~y!5 lim
D→0

F11y2

12y
u~12y2D!1S 3212 ln D D d~12y!G5S 11y2

12y D
1

. ~10!

Using the factorization theorem, we may generalize this spectrum to include the le
logarithmic terms in all orders of perturbation theory. This may be done in term
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structure functionsD(y,s) ~Ref. 2!. In the case of the photon spectrum the functi
D~12x,s! appears. The functionD(y,s) describes the probability of finding a positro
with energy fractiony inside the initial positron. It may be present in the form of a s
of non-singlet and singlet contributions,D5Dg1De1e2

. Iteration of the evolution equa
tions gives
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It is convenient to use the smoothed form of them:
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The expressions for spectra are as follows:
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Let us discuss the contribution of the inelastic processes considered above
ratio of the widths of the positron and muon modes of pion decay,Rp l2:

Rp l25
G~p→en!1G~p→eng!

G~p→mn!1G~p→mng!
. ~15!

Close attention was paid to this quantity some years ago,3,4 but the corrections for emis
sion processes in higher orders of perturbation theory were not taken into account.
ing in mind that the quantityP(1)(y) has the property

E
0

1

dy P~1!~y!50, ~16!

we make the important observation that as long as an experiment is proceeding in
way that no cuts are imposed on the positron energy, then no large logarithmic c
butions appear. However, if the cuts are such that they integration is restricted or
convoluted with ay-dependent function, some terms proportional to the large logar
L will remain. We now suggest that there exists some minimum energy«th for detection
of the positron. An additional contribution~not considered in Ref. 4! appears:
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For typical valuesxth50.1 this additional contribution will have a magnitude of ord
1023 and should be taken into account in calculations for accuracy at the 0.1% lev
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On the possibility of measuring the degree of transverse
polarization of a proton beam by means of elastic
pe scattering

I. V. Glavanakov, Yu. F. Krechetov,a) G. M. Radutski ,
and A. N. Tabachenko
Scientific-Research Institute of Nuclear Physics, 634050 Tomsk, Russia

~Submitted 3 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 123–127~25 January 1997!

The analyzing power of the elastic scattering of high-energy polarized
protons by polarized electrons for the polarimetry of proton beams is
calculated. It is shown that this process can be used to measure the
degree of transverse polarization of a beam at energies all the way up to
those at LHC. ©1997 American Institute of Physics.
@S0021-3640~97!00202-8#

PACS numbers: 12.20.Ds, 13.60.Fz

Measurements of spin effects in proton–proton scattering are being propose
increasingly higher energies.1,2 In such experiments it is necessary to know the degre
polarization of the proton beam. One of the main criteria which determine the reacti
be used as a proton polarization analyzer is that there be no large theoretical uncer
in models for the amplitude of the process. We propose to use for this purpose the
scattering of protons by electrons. The one-photon approximation, in which the amp
uncertainties are due solely to the electromagnetic form factors of the proton and
agree well with existing experimental data, can be used for calculations in the kine
range of interest.

We showed in a previous work that the longitudinal polarization of protons w
energy above 15 GeV and the transverse polarization at proton energy.25 GeV can be
measured by means of the elastic scattering of polarized protons by polarized electr3,4

The possible variants of the polarized electronic target were analyzed.5 In solid-state
targets with a relatively low degree of polarization of the electrons~e.g., in Permendur
where the degree of polarization is about 7%!, as a result of multiple Coulomb scatterin
the beam breaks up during the acquisition of the statistical sample. Moreover, solid
and gaseous targets give a high hadronic background. It is preferable to use a be
free electrons for the target.

To describe the elastic scattering of protons by electrons, we shall emplo
spiral-amplitudes formalism~the notation is similar to that adopted for elasticpp
scattering6!. In the one-photon approximation we have
131 1310021-3640/97/020131-06$10.00 © 1997 American Institute of Physics
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Heres, t, andq2 are the squares of the total energy, the 4-momentum transfer, an
3-momentum in the center-of-momentum frame,F1(t) andF2(t) are proton form factors,
kp51.793 is the anomalous magnetic moment of the proton, andM andm are the proton
and electron masses. The amplitudesw i are normalized so that7

ds

dt
5
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2q2s
@w1

21w3
212~w2

21w5
21w6

2!#[
pa2

2q2s( , ALL( 5w1
22w3

2 ,

ANN( 54
Mm

t
F1~ t !~w12w3!, ASS( 52w2~w12w3!,

ASL( 522w6~w12w3!, ALS( 52w5~w12w3!.

The two-spin asymmetriesAIJ are defined in a reference frame attached to each par
so that the unit vectorN̂ is oriented in a direction normal to the scattering plane,L̂ is in
the direction of motion, andŜ5N̂3L̂ lies in the scattering plane. One can see from th
formulas that all the two-spin asymmetries are proportional to the difference

w12w352@F1~ t !1kpF2~ t !#,

which depends only ont. For maximumutu54q2 the asymmetryALL is close to 1,
ANN.ASS, but, as calculations showed,ASSdecreases rapidly withutu. It is also evident
thatALS is always appreciably less thanASL .

The transverse polarization of the proton beam can be determined by measuri
asymmetry of the angular distribution of the electrons, which depends onANN , ASS, and
ASL . The behavior ofANN andASL as a function of the initial proton momentum and th
electron recoil angle is displayed in Figs. 1 and 2. Form-factor scal
(11kp)GE5GM , was assumed in the calculations, so that the asymmetry does
depend on the form factors. The predicted values of these asymmetries as well
differential cross section of the reaction~Fig. 3! are quite large, so that there is hope
obtaining reliable information about the polarization of the beam over a wide en
132 132JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Glavanakov et al.
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range. Furthermore, even for 8 TeV protons~LHC! s is small~about 9 GeV2), so that the
background from the inelastic scattering is relatively small, and it is virtually absen
protons with energy less than 300 GeV.

The two-spin asymmetries of the scattering of transversely polarized proton
polarized electrons at rest are large for proton momenta less than 100 GeV/c. Specifi-
cally, the asymmetryANN is maximum for initial proton momentum of about 20 Ge
(;70%, Fig. 1!, which corresponds to a squared total energy in the center-of-mome

FIG. 1. Two-spin asymmetryANN versus proton momentum and electron recoil angle.

FIG. 2. Two-spin asymmetryASL versus proton momentum and electron recoil angle.
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frames0.0.9 GeV2. As the proton momentum increases,s increases and the asymmet
decreases, which makes it difficult to measure the polarization in the TeV energy r

We propose a new method of polarimetry of high-energy protons. The heart o
method is the use of a target consisting of a beam of polarized electrons accelerated
direction of motion of the proton~‘‘anticollider’’ scattering!. This makes it possible to
find for any proton momentum the electron momentum for whichs5s0 and so the
maximum asymmetry will be observed. As the electron momentum increases,s at first
decreases from the values85m21M212Epm to the minimum value (m1M )2, at which
point the relative velocity of the electron and proton equals zero, and then increa
s95m21M212(EpEe2PpPe) ~see Fig. 4!. HereEe (Pe) andEp (Pp) are the electron
and proton energies~momenta!. If s0,s8, s9, then for any proton momentum there exis

FIG. 3. Differential cross section versus proton momentum and electron recoil angle.

FIG. 4. Two-spin asymmetryANN and squared total energys in the center-of-momentum frame versus th
initial electron momentum for a proton momentum of 800 GeV/c.
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a pair of values of the electron momentum~which differ by an order of magnitude! for
which the asymmetry will be maximum:

Pe
65

m

M2 ~E0Pp6P0Ep!,

whereE0(P0) is the proton energy~momentum! corresponding to maximum asymmet
for scattering by electrons at rest. These two values of the momentum correspo
higher and lower electron velocity compared with the proton velocity. Ifs0.s8, i.e.,
Ep,E0, the maximum asymmetry will be reached only for one value of the momen
of the electron beam,Pe

1 .

As an illustration, Fig. 4 showsANN as a function of the initial electron momentu
for an 800 GeV/c proton beam. Two branches of the curve are shown for an elec
recoil angle of 10 mrad. These branches are due to the double-valued nature
solution of the kinematic equations. The relative directions of motion of the cente
momentum frame and the momentum of the scattered electron in the cent
momentum frame near the two maxima are opposite, so that the angular distributio
the electrons in the kinematic region of these maxima are substantially different. A
can see from the figure, the angular distribution in the first maximum is two orde
magnitude narrower than in the second maximum.

The great advantage of the ‘‘anticollider’’ variant of thepe polarimeter is that the
total energy at which measurements ofANN are to be performed corresponds to t
scattering of an electron with an energy of onlyb! about 14 MeV by a proton at rest. Th
absence of background processes simplifies the measuring apparatus and lowers
For the same reason, to make a complete kinematic determination of ‘‘anticolliderpe
scattering events it is sufficient to measure the energy and direction of an electr
proton, and one of the kinematic quantities can be measured with a low accuracy
cient for identifying~when necessary! events associated with the double-valued nature
the solution of the kinematic equations. The calculations showed that the region o
second maximum, where, over a relatively wide range of angles of emergence
electron, the asymmetry is large and is virtually independent of angle, may be attra
for HERA type colliders~in theepvariant!. In this case, the proton propagates practica
on an equilibrium orbit with energy greater than the initial energy; this can probabl
used to identify elastic scattering events.

Similar arguments can be repeated for the asymmetryASL in the TeV range.

We thank S. B. Nurushev and A. P. Potylitsyn for their interest in this work and
helpful discussions.

a!e-mail: krechetov@tsinph.tomsk.su
b!Hence it follows that the contribution of two-phonon exchange is very small.8

1RHIC Spin Coll., Proposal on Spin Physics using the RHIC Polarized Collider, August 1992.
2W.-D. Nowak, Preprint DESY 96-095.
3S. B. Nurushev, A. P. Potylitsin, G. M. Radutskyet al., in Fifth Workshop on High Energy Spin Physic,
Protvino ~1994!, p. 311.
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Effective quark Lagrangian in the instanton vacuum
with nonzero modes included

B. O. Kerbikov, D. S. Kuzmenko, and Yu. A. Simonov
Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia

~Submitted 5 September 1996; resubmitted 3 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 128–132~25 January 1997!

A new approach to the effective theory of quarks in the instanton
vacuum is presented. Exact equations for the quark propagator and
Lagrangian are derived which contain contributions of all quark modes
with known coefficients. The resulting effective Lagrangian differs
from the standard one and resembles that of the Nambu–Jona-Lasinio
model. © 1997 American Institute of Physics.
@S0021-3640~97!00302-2#

PACS numbers: 11.10.Ef, 14.65.2q, 11.15.2q, 02.30.Jr

1. The recent lattice data1 provided evidence that instantons may be responsible
nonperturbative behavior ofqq̄ correlators,2 which makes the study of the quark dynam
ics in the instantonic vacuum3–5 an important and fundamental problem.

To date practically all papers on the subject have relied upon the use of the so-
zero-mode approximation~ZMA !, which amounts to including only the zero quark mo
in a single-instanton fermion propagator.3 Correspondingly an ansatz for the partitio
function and effective quark Lagrangian~EQL! containing zero modes only have bee
proposed5 and are widely used in the literature.6,7

The purpose of this letter is to give a complete normal-mode expansion of the
and of the quark propagator. Keeping only zero-mode coefficients in this expansion
retrieves the ansatz of Ref. 5 for the EQL. Naively one would expect that this choi
the coefficients would yield the dominant contribution to the physical quantities and
justify the ZMA. However, the exact calculation of the EQL presented below does
show this dominance. More intricate is the analysis of the quark propagatorS in the
instanton–anti-instanton vacuum. Here the zero-mode term survives but higher m
enter with coefficients of the same order. A similar feature can be seen in the
partition function^detS21&, where the averagê...& is defined below. Thus a new quar
dynamics associated with nonzero modes emerges. The main features of this dy
are outlined below.

2. For clarity of discussion consider an ideal instanton gas with the superpo
ansatz8–10 and with zero net topological charge, i.e., equal numbers of instantons
anti-instantons,N15N25N/2:

Am~x!5(
i51

N

Am
~ i !~x2Ri !, ~1!
137 1370021-3640/97/020137-05$10.00 © 1997 American Institute of Physics
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21r2#
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whereVi , Ri , andr are the color orientation, position, and scale size of thei th instanton.

The EQL is obtained from the Euclidean partition function after averaging o
$V i ,Ri%:

Z5E DcDc1e2*dxc1S21c )
i51

N
dRi
V

dV i5E DcDc1e2Leff, ~3!

where we have introduced the following definitions:

S0
2152 i ]̂2 imf , Si

2152 i ]̂2gÂ~ i !2 imf , S2152 i ]̂2gÂ2 imf . ~4!

Next we introduce the standard set of eigenfunctions$un
i %, n50,1,2,...,

~2 i ]̂2gÂ~ i !!uun
i &5lnuun

i &. ~5!

ThenS21 given by ~4! has a formal representation as a sum over normal modes,

S215S0
211 (

i ,m,n
S0

21uum
i &«mn

i ^un
i uS0

21, ~6!

where«̂ can be represented either as

«mn
i 52^um

i u~Si2S0!@11S0
21~Si2S0!#

21uun
i &, ~7!

or simply as

«mn
i 52g^um

i uS0Â~ i !S0uun
i &. ~8!

Performing the averaging in Eq.~3! with the help of a cumulant or cluster expansion, o
obtainsLeff in the form

Leff5E dxc1S0
21c1 (

n52

`

~21!n21S 2VN D n21

(
fmm8

E dGn detk,l
~n!Jkl , ~9!

where

dGn5)
j51

n
dpj

~2p!4
dpj8

~2p!4
~2p!4dS (

j
~pj2pj8! D , ~10!

Jkl5~c f k~pk!!1M
mkml8

f k f l ~pk ,pl8!c f l~pl8!, ~11!

and as in Refs. 5 and 6 we have introduced the vertices

Mmm8
gr

~p,p8!5
N

2VNc
~ p̂2 img!wm~p!«mm8

i wm8
1

~p8!~ p̂82 imr !, ~12!

with wm(p) being the form factor ofum
i in momentum space.

The summation in Eq.~9! starts fromn52, since then51 term drops out as a resu
of integration over color orientations.
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The EQL in Eq.~9! is a sum ofn3n determinants. If one confines oneself to t
ZMA, i.e., puts«00

i finite and«m.0,n.0
i equal to zero, the sum runs only overn<Nf .

This restriction is due to the Grassmannian nature ofJkl . Thus even in the ZMA one
obtains, e.g., forNf53, three 232 determinants and one 333 determinant. Only the las
of these is present in the ansatz of Ref. 5, with the identification«00

i [«, M00[M .
Therefore our results are in contrast to the common lore according to which for a
number of flavorsNf , the only vertex appearing in the chiral limit contains 2Nf quark
operators. We can reproduce this result forNf52 if only «00

i is kept nonzero, while for
Nf53 this conjecture does not suffice and we get additional 4q terms.

Consider now«00
i using~8!. In the chiral limit the operatorS0Â

( i )S0 is chirally odd,
while the instanton zero mode has definite chirality, and therefore«00

i vanishes, and for
mfÞ0 one has

«00
i 5O~mf !, mf→0. ~13!

At the same time the nonzero modesumn
i do not have definite chirality, and hence th

matrix elements«mn
i do not vanish asmf→0. Thus the ZMA in the naive sense o

dominance of the zero-mode terms in the EQL is not supported by our calculations.
next section we discuss what it means in terms of the quark propagator.

3. We now turn to the quark propagator, expressing it again in terms of«mn
i . Invert-

ing ~6!, one finds

S5S02 (
i jmn

uum
i &S 1

«̂211V̂
D
mn

i j

^un
j u, ~14!

where («̂)mn
i j 5d i j«mn

i , and

~V̂!mn
i j 5^um

i uS0
21uun

j &. ~15!

Note that the summation in~14! extends over different instantons and hence overu0
i and

u0
j of different chiralities. Equation~14! is to be compared to the following expressio

common to most papers on the subject3,5,6

S5S02(
i , j

uu0
i &S 1

2im1VD
00

i j

^u0
j u, ~16!

which contains only zero-mode contributions. To derive~16! one starts with the follow-
ing approximation for the quark propagator in a single-instanton field:3,5

Si5~2 i ]̂ !211
uu0

i &^u0
i u

2 im
. ~17!

Introducing this ansatz into expression~7! for «mn
i , we get

«00
i 5

1

2im
, «m.0,n.0

i 50. ~18!

Using this form of«̂ in Eq. ~14!, one recovers the standard ZMA~16!. Now, comparing
Eq. ~18! to ~13!, we conclude that ansatz~17! is unjustified. Actually, when«00

i vanishes
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in the chiral limit in accordance with~13!, the propagator~14! still contains terms
uu0

i &^u0
j u, but with coefficients depending upon higher-mode contributionsVmn

i j . This can
be seen by expanding Eq.~14! in a series in powers of«, i.e.,

S5S02 (
i , j ,m,n

uum
i &~ «̂2 «̂V̂«̂1 «̂V̂«̂V̂«̂2...!mn

i j ^un
j u. ~19!

If one neglects nonzero modes inVmn in Eq. ~19!, then the coefficient ofuu0
i &^u0

j u
automatically vanishes. To make contact with popular instantonic technique,3,5,6 where
only zero modes are kept in the quark wave functions of the instantonsI and anti-
instantonsĪ , we rearrange the series for the quark propagator and partition function,
the relation «̂V̂5S0Â, and separate out the terms containing the overlap ofI Ī zero
modes.

In the standard ZMA these terms are assumed to be dominant, while the overla
nonzero modes are neglected. Our expression~19! includes both types of contribution
and does not show zero-mode dominance. Therefore we propose to study the new
derived above and calculate physical quantities like the chiral quark mass and
condensate in order to estimate the contribution of nonzero modes.

It is worth noting that the consistency of the approximation~17! was questioned in
Ref. 9 in connection with the calculation of the two-point correlation function. It w
shown in Ref. 9 that it is absolutely necessary to keep the terms of order;m in Si .
However, since for massive fermions the single instanton propagatorSi is not explicitly
known, the effects of the higher modes and finite mass have been investigated
numerically.11

Finally, let us examine the effect of nonzero modes in the quark partition func
which is obtained from Eq.~3! by integrating first over quark fields. Using Eq.~6! for
S21, one easily obtains

Z/Z05)
f51

Nf

det~11 «̂V̂!, ~20!

where«̂ and V̂ are the same matrices as in Eqs.~14! and ~15!. We may now repeat the
arguments presented after Eq.~19! to demonstrate the presence of nonzero modes and
absence of zero-mode dominance.

4. One may wonder why the ZMA~i.e., keeping only zero modes in the EQL! might
be invalid even though phenomenologically it seems to be giving reasonable results5–6,12

One of the reasons might be that«00
i [« has been treated as a parameter connected to

properties of the instanton vacuum via the relation«;(NcV/Nr2)1/2, while the properties
of the vacuum have been in turn adjusted to the correct value of the gluon conden

Our results are at first sight in contradiction to the Banks–Casher relation13 which
connects the chiral condensate with the density of global~quasi! zero modes. The stan
dard picture suggests that the latter originate from individual zero modes, and
would disappear as soon as~13! holds. However here the standard picture may fail.
insight into its possible failure is provided by quantum mechanics of collective leve
N potential wells in 4D. If each of the wells has one loosely bound level and a contin
~equivalent to a zero mode and nonzero modes!, then the approximation of keeping onl
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the bound-state poles in the Green’s functions of each well is known to give an
equate description of collective bound states.14 More than that, the pole approximation
a poor one even for the Green’s function of an individual well, and instead the so-c
unitary pole approximation has to be used.15

5. To summarize, we have outlined a new approach to the effective theory of q
in the instanton vacuum. Our EQL is similar to that of Nambu and Jona-Lasin16

namely it starts from a 4q term which might play an important role in phenomenolog
Analogy to the NJL model calls for construction of a gap equation yielding the ch
quark mass and quark condensate. Also, the bosonization procedure has to be per
yielding the effective chiral Lagrangian for the Nambu–Goldstone modes. Finally
low-density limit deserves a special discussion. This program is in progress now an
be reported elsewhere.

The authors are grateful to S. V. Bashinsky, Yu. M. Makeenko, V. A. Novikov,
A. Rubakov, and A. V. Smilga for helpful discussions. This study was supporte
INTAS Grant 94-2851 and by the Russian Fund for Fundamental Research, Gra
02-19184a.
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Wilson area law in a gas of Abelian monopoles

B. V. Martem’yanov and S. V. Molodtsov
Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia

~Submitted 1 October 1996; resubmitted 5 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 133–138~25 January 1997!

A gas of Abelian monopoles is studied taking account of the interaction
of the particles. The Wilson average, for which the law of areas is
obtained with allowance for Debye screening, is calculated, with a
‘‘tension’’ coefficient proportional to the monopole density. ©1997
American Institute of Physics.@S0021-3640~97!00402-7#

PACS numbers: 12.38.Aw, 11.30.Rd, 14.80.Hv

The pressing need for a realistic model of the quantum chromodynamics~QCD!
vacuum with the properties of chiral symmetry breaking~CSB! and confinement~Wilson
area law! was noted in a recent review.1 The model studied in greatest detail — a
instanton gas~liquid!2 — exhibits the CSB property but does not give confinement.3 The
dyon gas model4 proposed several years ago is most promising with respect to con
ment and exhibits the CSB property at the same time. Estimates have demonstra
possibility of the area law for Wilson loops in a gas of dyons~monopoles!. The first
quantitative results for a gas of dyons~Abelian monopoles! were obtained recently ne
glecting the interaction of the particles.5,6 It was shown that in a gas of dyons wit
characteristic sizer dyon much less than the loop sizer ~point-dyon limit! ‘‘superconfine-
ment’’ holds for the space-like Wilson loop — the tension is proportional to the siz
the loop, specifically, for a circle of radiusr ,

^W&5exp~2sr 2!, s5C nr, ~1!

wheren is the density of the dyon gas in three-dimensional space,C59.846 . . . is a
constant extracted from the numerical calculations and approximately equal top2. For-
mula ~1! is valid for quasistatic charges, when the fields generated by the particle
taken without allowance for retardation caused by displacements of the particles in
dimensional space. Allowance for motion decreases the constantC ~Ref. 6!. Furthermore,
C changes for multidyonic configurations studied in a container of large but finite
L@r . It has been noted that allowance for interaction, in particular, the screening o
field of a charge in a gas, can yield the correction to formula~1! of interest to us, i.e., it
can lead to the Wilson area law~confinement of space-like loops!.

The present letter discusses the effect of the interaction of Abelian mono
~screening! on the ‘‘confining’’ properties of a gas. Furthermore, it is shown on the b
of an explicit calculation of the two-particle correlation function that it is important
take multiparticle correlation functions into account in the present model.
142 1420021-3640/97/020142-06$10.00 © 1997 American Institute of Physics
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SPACE-LIKE WILSON LOOP FOR A NEUTRAL GAS OF MONOPOLES WITH
INTERACTION

By definition, the observed Wilson loop for a gas of monopoles is given by the l
of the time-average partial contributionW(C, t) asT→` for an instantaneous arrange
ment of the charges

^W~C!&5 lim
T→`

*0
TdtW~C,t !

T
, ~2!

where

W~C,t !5expS i g2 R
C
Am~x!dxmD ,

andC is the Wilson contour. Applying the ergodic hypothesis, we rewrite the defini
~2! for a N-particle gas in terms of the particle distribution functionFN(x1 , . . . ,xN):

^W~C!&5
*dx1 . . .dxNWN~x1 , . . . ,xN!FN~x1 , . . . ,xN!

*dx1 . . .dxNFN~x1 , . . . ,xN!
. ~3!

As was shown in Refs. 5 and 6, superconfinement~1! holds for noninteracting
particles. In a gas of particles with long-range interaction, however, a correlated arr
ment of the charges must be considered — each particle is surrounded by a clo
oppositely charged particles which screens the particle. In the simplest case of a ra
~nondegenerate! gas the Debye screening is described, with adequate accuracy,
function of the thermodynamic parameters by the Debye radiusD5(Q/e2n)1/2, where
e is the particle charge andQ is the gas temperature.

For an Abelian monopole~point dyon! we have the following magnetic fields: wit
no screening

B52
1

g
¹S 1uxu D , ~4!

and with Debye screening

B52
1

g
¹S e2uxu/D

uxu D ; ~5!

in formula ~2! a singular Dirac potential, for example, of the following form, is used

AD5
1

g

ew

r

z

@r21z2#1/2
,

wherer is the distance from the Dirac string andew is the azimuthal unit vector.

Besides screening, the interaction influences the form of the distribution functio
find which for a rarefied gas only the two-particle correlation functions need be taken
account. Specifically, for a neutral monopole–antimonopole gas averages of the fo
ing form are calculated in formula~3!:
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E dxidxj H (
i , j51

N1

W1
1~xi !W1

1~xj !Fi j
111(

i51

N1

(
j51

N2

W1
1~xi !W1

2~xj !Fi j
121 . . . J ,

whereN15N25N is the number of monopoles~antimonopoles!. Since the fields com-
mute in the present model, the Wilson loop decomposes into a product of one-pa
contributionsW2(x1 , x2)5W1(x1)W1(x2). The two-particle function is well known in
the limit «5v/D3!1 ~wherev5V/N is the specific volume!:

F151, F2512«e1e2
e2ux12x2u/D

ux12x2u/D
; ~6!

wheree1 ande2 are the particle charges and a cutoff is introduced at small distance
as to avoid nonphysical negative values in the case of repulsion.

So, forN@1 we have instead of formula~3!

^W&5F E dx1dx2
2

$W1
1W2

1F12
111W1

1W2
2F12

12%GN, ~7!

and the fluxes of the magnetic field through the contour for a monopole and antimon
are taken with the Debye screening~5!.

To see which effect — Debye screening or the change in the distribution functio
makes the larger contribution to the answer, we shall examine them separately. Fir
study the effect of a change in the distribution function on ‘‘superconfinement.’’ F
singular Dirac potential the flux of the magnetic field is expressed in terms of the
angleF within which the contour is visible from the location of the charge. Then the
part of formula~7! has the form

^W&5F E dx1dx2
2 H cosS F1

2
1

F2

2 D S 12
«

g2
e2r12 /D

r 12/D
D1

1cosS F1

2
2

F2

2 D S 11
«

g2
e2r12 /D

r 12/D
D J GN. ~8!

With no interaction5,6

^W1&5^cos~F/2!&→12C
r 3

V
, ~9!

and in a gas

^W&→S 12C
r 3

V D N,
where in the limitsN→`, V→`, andN/V5n one has

^W&→exp~2Cnr3!.

One can see from formula~8! that the most significant part, which is given by a produ
with cos(F/2), is not affected by a change of the distribution function. The contributi
of the monopole–monopole and monopole–antimonopole pairs compensate one a
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This is also confirmed by a numerical calculation both with (F reg) and without (F2) a
cutoff of the distribution function at short distances. The coefficientC in formula~9! does
not change much:

C59.115~F25F151!, C859.011~F25F reg!, C958.269~F2!,

~the dimensions of the box containing the gas are:L/r53.625,D/r50.1, «50.1). A
numerical calculation shows that compensation occurs over a wide range of values
parametersD and«, i.e., to within 10% the distribution function can be assumed to
free,F251.

The effect of allowing for Debye screening directly inW is shown in Fig. 1, which
displays the coefficientC as a function of the Debye radiusD ~the magnetic flux is
determined with the aid of the expression~5! and the flux is integrated over the minimu
surface spanned by the contour!. One can see that forD!r the coefficientC is a linear
function ofD:

C5CD

D

r
.

The following value was obtained for the coefficientCD from a numerical calculation
with a very small integration step:

CD57.9 . . . .

Hence we obtain confinement for a space-like Wilson loop in a gas of monopoles
Debye screening:

^W&→exp~2sr 2!, s5CDnD.

FIG. 1. CoefficientC as a function of the Debye radiusD. The circles show the computational results obtain
with a steph/r56.25•1022; the solid curve, those forh/r52.5•1021.
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CORRELATION FUNCTION FOR MONOPOLES

Expanding cos(F/2) in a series in powers ofF, we shall now relate the Wilson
average with the correlation functions of the fields. The first significant contributio
given by the expansion

^cos~F/2!&512^F2&/81 . . . , ^F2&5E
S3S

ds1ds2^B3~x1!B3~x2!&,

where the integration extends over the surfaceS of a circle lying in thex,y plane and
ds is an element of the surface.

For a monopole, the intensitiesBi are of the Coulomb form. The correlation functio
of such fields can be calculated exactly:

E dx

V
Bi~x2x1!Bj~x2x2!5

4p

Vux12x2u
1

2
~d i j2ninj !, n5

x12x2
ux12x2u

. ~10!

The integral of the correlation function can also be calculated exactly:

E
S3S

ds1ds2

1

ux12x2u
5
16p

3
r 3. ~11!

Therefore we have for the Wilson average the approximate result

^W&5^cos~F/2!&'12
4p2

3

r 3

V
, ~12!

or C'4p2/3, which agrees to within 30% with the complete answer forC.

The correlation function can also be calculated exactly in the case of screened
~5!:

E dx

V
Bi~x2x1!Bj~x2x2!5

4pe2ux12x2u/D

Vux12x2u
H 12 ~d i j2ninj !2

ux12x2u
2D

ninj J . ~13!

The integral

I5E
S3S

ds1ds2

e2ux12x2u/D

ux12x2u

can be estimated forD!r as

I52p2Dr 2.

We obtain for the Wilson average

^W&5^cos~F/2!&'12
p3

2

Dr 2

V
, ~14!

and for a gas we have, accordingly,

^W&'expS 2
p3

2
Dnr2D .
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The estimate obtained forCD5p3/2'15 is substantially different from the total valu
This shows that multiparticle correlation functions play an important role in the pre
model.

As was mentioned at the beginning of this letter, the results for a gas of mono
are largely identical to the results for a gas of point dyons. If an analogy with scree
in a gas of monopoles proves to be possible, then the required confinement proper
be obtained for the dyon gas.

We have calculated the Wilson loop for a gas of interacting monopoles~dyons!.
Debye screening leads to the law of areas for the Wilson average. A direct calcu
agrees with the approximate analytical calculation by the method of correlation func
It has been shown that it is important to allow for multiparticle correlation function
this problem.

This work is supported by Russian Fund for Fundamental Research~Grant 95-02-
05436! and the German Scientific Research Society~Grant 96-02-00088a!.
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Search for flavor lepton number violation in slepton
decays at LHC

N. V. Krasnikov
Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Rus

~Submitted 6 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 139–144~25 January 1997!

We show that in supersymmetric models with explicit flavor lepton
number violation due to soft supersymmetry breaking mass terms there
could be detectable flavor lepton number violation in slepton decays.
We estimate the potential for discovery of lepton flavor number viola-
tion in slepton decays at LHC. ©1997 American Institute of Physics.
@S0021-3640~97!00502-1#

PACS numbers: 12.60.2i, 11.30.Hv

Supersymmetric electroweak models offer the simplest solution of the gauge
archy problem.1–4 In real life supersymmetry has to be broken, and the masses of s
particles must be lighter thanO(1) TeV.4 For the supersymmetric extension of th
Weinberg–Salam model, soft supersymmetry breaking terms usually consist o
gaugino mass terms, squark and slepton mass terms with the same mass at Planc
and trilinear soft scalar terms proportional to the superpotential.4 For such ‘‘standard’’
supersymmetry breaking terms the lepton flavor number is conserved in the supe
metric extension of the Weinberg–Salam model. In general, however, the squar
slepton soft supersymmetry breaking mass terms are not diagonal due to many
~Refs. 5–15; allowance for stringlike or GUT interactions, a nontrivial hidden se
etc.!, and flavor lepton number is explicitly broken. As a consequence such mo
predict flavor lepton number violation inm andt decays.5–13 In our previous papers16–18

we proposed to look for flavor lepton number violation in slepton decays at LEP2
NLC.

In this paper we investigate the potential for discovery of flavor lepton num
violation in slepton decays at LHC. We find that at LHC it would be possible to disc
lepton number violation in slepton decays for slepton masses up to 300 GeV, pro
that the mixing between sleptons is close to the maximal one.

In supersymmetric extensions of the Weinberg–Salam model, supersymme
softly broken at some high-energy scaleMGUT by generic soft terms:

2Lsoft5m3/2~Ai j
u ũ R

j q̃ L
i Hu1Ai j

d d̃ R
j q̃ L

i Hd1Ai j
l ẽRl̃ LHd1h.c.!1~mq

2! i j q̃ L
i ~ q̃ L

i !1

1~mu
2! i j ũ R

i ~ ũ R
j !11~md

2! i j d̃ R
i ~ d̃ R

j !11~ml
2! i j l̃ L

i ~ l̃ L
j !11~me

2! i j ẽ R
i ~ ẽ R

j !1

1m1
2HuHu

11m2
2HdHd

11SBm3/2
2 HuHd1

1

2
ma~ll!a1h.c.D , ~1!

where i , j ,a are summed over 1, 2, 3 andq̃L , ũR , d̃R denote the left-~right-!handed
148 1480021-3640/97/020148-06$10.00 © 1997 American Institute of Physics
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squarks,l̃ L , ẽR the left- ~right-!handed sleptons, andHu , Hd the two Higgs doublets;
ma are the three gaugino masses ofSU(3), SU(2), andU(1), respectively. In most
analyses the mass terms are assumed to be diagonal at theMGUT scale, and the gaugino
and trilinear mass terms are also assumed universal at theMGUT scale. The renormaliza
tion group equations for soft parameters19 enable one to connect the high-energy sc
with the observable electroweak scale. The standard consequence of such analyse
the right-handed sleptonsẽR , m̃R , andt̃R are the lightest particles among the squarks a
sleptons. In the approximation wherein one neglects the lepton Yukawa coupling
stants they are degenerate in mass.

In our analysis we assume that the lightest stable particle is the gaugino corres
ing to theU(1) gauge group, which is now a more or less standard assumption.20 As has
been discussed in many papers,5–15 in general we can expect nonzero off-diagonal s
supersymmetry breaking terms in Lagrangian~1! which lead to additional contribution
for flavor-changing neutral currents and to flavor lepton number violation. From
nonobservation ofm→e1g decay (Br(m→e1g)<5•10211; Ref. 21! one can find
that5–19

~Dm2
em!RR

Mav
2 [~dem!RR<2k•1021Mav

2 /~1TeV!2, ~2!

wherek5O(1). FormẽR
570 GeV we find that (dem)RR<1023. The analogous bound

inferred from the nonobservation oft→eg andt→mg decays are not very stringent.5–23

The mass term for the right-handed sleptonsẽR and m̃R has the form

2dL5m1
2ẽ R

1ẽR1m2
2m̃ R

1m̃R1m12
2 ~ ẽ R

1m̃R1m̃ R
1ẽR!. ~3!

After the diagonalization of the mass term~3! we find that the eigenstates of th
mass term~3! are

ẽR85ẽR cos~f!1m̃R sin~f!, ~4!

m̃R85m̃R cos~f!2ẽR8 sin~f! ~5!

with the masses

M1,2
2 5~1/2!@~m1

21m2
2!6~~m1

22m2
2!214~m12

2 !2!1/2#, ~6!

which practically coincide for small values ofm1
22m2

2 andm12
2 . Here the mixing angle

f is determined by the formula

tan~2f!52m12
2 ~m1

22m2
2!21. ~7!

The crucial point is that even for a small mixing parameterm12
2 , on account of the

smallness of the differencem1
22m2

2 the mixing anglef is in general not small~at present
state of art it is impossible to calculate the mixing anglef reliably!. For the most
probable case when the lightest stable superparticle is the superpartner of theU(1) gauge
boson plus some small mixing with other gauginos and higgsinos, the sleptonsm̃R and
ẽR decay mainly into the leptonsmR andeR plus theU(1) gauginol. The corresponding
term in the Lagrangian responsible for slepton decays is
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L15
2g1
A2

~ ēRlLẽR1m̄RlLm̃R1h.c.!, ~8!

whereg1
2'0.13. For the case when mixing is absent the decay width of the slepton

a lepton and LSP is given by the formula

G5
g1
2

8p
MslD f'5•1023MslD f , ~9!

D f5S 12
MLSP

2

Msl
2 D 2, ~10!

whereMsl andMLSP are the masses of slepton and the lightest superparticle~U~1!-
gaugino!, respectively. For the case of nonzero mixing we find that the Lagrangian~11!
in terms of slepton eigenstates reads

L15
2g1
A2

@ ēRlL~ ẽR8 cos~f!2m̃R8 sin~f!!1m̄RlL~m̃R8 cos~f!

1ẽR8 sin~f!!1h.c.#. ~11!

At LEP2 and NLC, in neglect of slepton mixing,m̃R and t̃R slepton pair production
occurs22 via annihilation graphs involving a photon and aZ0 boson and leads to th
production ofm̃ R

1m̃ R
2 andt̃R

1t̃ R
2 pairs. For the production of right-handed selectrons

addition to the annihilation graphs we also have contributions from thet-channel ex-
change of the neutralino.23

Allowance for nonzero smuon–selectron mixing leads to the following formulas
the cross sections for LEP2 and NLC:

s~e1e2→e1e21LSP1LSP!5k@~A1Bcos2~f!!2cos4~f!

1~A1Bsin2~f!!2sin4~f!1B2sin4~2f!/8#, ~12!

s~e1e2→m1m21LSP1LSP!5k@~A1Bcos2~f!!2sin4~f!

1~A1Bsin2~f!!2cos4~f!1B2sin4~2f!/8#, ~13!

s~e1e2→m61e71LSP1LSP!5
k sin2~2f!

4
@~A1Bcos2~f!!2

1~A1Bsin2~f!!21B2~cos4~f!1sin4~f!!#. ~14!

HereA is the amplitude ofs exchange,B is the amplitude oft exchange, andk is the
normalization factor. The corresponding formulas forA, B, andk are found in Ref. 23.
The reaction~14! proceeds with violation of flavor lepton number.

It should be noted that formulas~12!–~14! are valid only in the approximation of a
narrow slepton decay width:

2Gmẽ
R
<umm̃

R

2 2mẽ
R

2 u. ~15!
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For the case when the inequality~15! does not hold, effects due to the finite decay wid
are important and decrease the cross section for violation of flavor lepton number
cross section for the reactione1e2→e1m21LSP1LSP is proportional to

s;sin2~f!cos2~f!E uD~p1 ,mẽ ,G!D~p2 ,mẽ ,G!

2D~p1 ,mm̃ ,G!D~p2 ,mm̃ ,G!u2dp1
2dp2

2 , ~16!

where

D~p,m,G!5
1

p22m22 iGm
~17!

andG ẽ'Gm̃5G. The approximation~12!–~14! corresponds to neglect of the interferen
terms in~16! and is valid if inequality~15! holds. For smaller slepton mass differences
is very important to take into account the interference terms in~16!.18,25The integral~16!
is approximately equal to

s;sin2~f!cos2~f!
2p2

b2 S 12

b2S b22 a2

4 D
S b21 a2

4 D 2 D , ~18!

wherea5mẽR

2 2mm̃R

2 , b5G@(mẽR
1mm̃R

)/2#. Taking the interference effects into a

count leads to a decrease of the cross section~14! by factors of 1, 0.82, 0.52, and 0.17 fo
umẽ

22mm̃
2 u52Gmẽ , 1.5Gmẽ , Gmẽ , and 0.5Gmẽ , respectively.

Consider now the possibility for discovery of lepton number violation in slep
decays at LHC. The possibility of discovering sleptons at LHC has been discuss
Refs. 26–28. Here we shall use the results of Ref. 28, where concrete estimate
made for the CMS detector. To be specific, let us consider two points from Ref. 2

Point A:m( l̃ L)5314 GeV,m( l̃ R)5192 GeV,m~ñ !5308 GeV,m~x̃ 1
0)5181 GeV,

m(x̃ 2
0)5358 GeV,m(g̃ )51036 GeV,m(q̃ )5905 GeV, tan(b)52, sign(m)52.

Point B: m( l̃ L)5112 GeV,m( l̃ R)598 GeV,m( ñ )593 GeV,m(x̃ 1
0)539 GeV,

m(x̃ 2
0)587 GeV,m(g̃ )5254 GeV,m(q̃ )5234 GeV, tan(b)52, sign(m)52 .

For point A the following cuts have been used:pT
l >50 GeV, Isol<0.1, uhu<2.5,

ET
miss>120 GeV, Df(ET

miss,l l )>150°, jet veto — no jets withET
jet>30 GeV in

uhu<4.5,Z-mass cut —MZ65 GeV excluded,Df( l1l2)<130°. With such cuts for a
total luminosityLt5105 pb21, 91 eventse1e21m1m2 resulting from slepton decay
have been found. The standard WS model background comes fromWW, t t̄, Wtb̄, WZ,
andt̄t and gives 105 events. No SUSY background has been found. The significan
slepton discovery at point A is 6.5. Using these results it is trivial to estimate the p
pects for the discovery of flavor violation in slepton decays. Consider the most optim
case of maximal slepton mixings and neglect of the effects of destructive interfer
For the case of maximal selectron–smuon mixing, the number of signal events co
from slepton decays isNsig(e

1e2)5Nsig(m
1m2)5Nsig(m

6e7)523. The number of
background events isNback(e

1e2)5Nback(m
1m2)5Nback(e

6m7)553. The signifi-
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canceS5 Sleptons/ABackground1 Sleptons is 5.2 for all dilepton modes. For the ca
of maximal smuon–selectron mixing we have the same number ofe1e2, m1m2, and
e6m7 signal events, whereas in the absence of mixing we do not havee6m7 events. For
the case of the maximal stau–smuon mixing we expect 23m1m2 signal events, 46
e1e2 signal events, and 2m6e7 signal events, while the background is the same as
the case of maximal smuon–selectron mixing. The significance is: 4.6(e1e2 mode!, 2.6
(m1m2 mode!, 5.2(e1e21m1m2 mode!. The case of selectron–stau mixing is simil
to that of smuon–stau mixing, the only difference being the interchangee→m, m→e.
For the case of maximal selectron–smuon–stau mixing we expect 46e1e21m1m2

1e6m7 signal events, and the significance is 2.8.

For point B the cuts are similar to the point A, exceptpT
l >20 GeV,ET

miss>50 GeV,
Df(ET

miss,l l )>160°. For a total luminosity L tot5104 pb21 the number of
e1e21m1m2 events resulting from direct slepton production has been found to be
The number of background events have been estimated equal to 989~standard model
background! 1 108~SUSY background!5 1092. The significance is 8.6. Our analysis f
the point B is similar to the corresponding analysis for the point A. For the cas
maximal selectron–smuon mixing we have found that the significance for all dele
modes is 6.4. For the case of the maximal smuon–stau mixing the significance fo
e1e21m1m2 mode is 6.6. The same significance obtains for the case of max
selectron–stau mixing. For the case of maximal selectron–smuon–stau mixing th
nificance for thee1e21m1m21e6m7 mode is 3.0. For a total luminosityL tot5105

pb21 the significance is increased by factor'3.1. It is interesting to mention that at LHC
the main mechanism of slepton pair production is the Drell–Yan mechanism, and
consequence, for equal smuon and selectron masses the corresponding cross sect
the number ofe1e2 andm1m2 signal events coincide. The corresponding cross sect
depend rather strongly on the slepton masses. If the smuon and selectron masses d
20 percent, the corresponding cross sections and, hence, the number ofe1e2 and
m1m2 signal events will differ by factor of'2, which, as has been demonstrated for
example of points A and B, is detectable at LHC. However, the effect of a 20-pe
smuon and selectron mass difference will imitate the effect of selectron–stau or sm
stau mixing. So the situation could be rather complicated. At any rate, by measurem
the difference inm1m2 ande1e2 events it would be possible to measure the differen
of smuon and selectron masses with an accuracy of'20 percent, which is very importan
because in MSSM the smuon and selectron masses practically coincide for both
handed and left-handed sleptons.

Let us state the main result of this paper: in the supersymmetric extension o
standard Weinberg–Salam model there could be soft supersymmetry breaking
responsible for flavor lepton number violation and slepton mixing. At LHC it would
possible to discover flavor lepton number violation in slepton decays for sleptons li
than 300 GeV provided that the mixing among sleptons is close to maximal. For the
of unequal smuon and selectron masses the number ofe1e2 andm1m2 events will be
different, an effect which imitates that of stau–smuon or stau–selectron mixing. A
rate, the observation~or nonobservation! of the (m1m2–e1e2) difference will allow one
to conclude that the smuon and selectron masses differ~agree! at least to an accuracy o
20 percent or to draw a conclusion as to the discovery of slepton mixing. Unfortun
152 152JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 N. V. Krasnikov
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it is rather difficult to distinguish between these two possibilities. For the case of non
smuon–selectron mixing the number ofm1m2 ande1e2 events is predicted to be th
same, and, moreover, for the case of maximal smuon–selectron mixing the numb
m1e2 and m2e1 events coincide with the numbers ofm1m2 and e1e2 events. Of
course, it is clear that the prospects for discovery of flavor lepton number violation
the most promising at NLC or them1m2 collider, but unfortunately now those prospec
are too far from reality.

I thank the CERN TH Department for hospitality during my stay at CERN, wh
this paper was completed. I am indebted to the staff of the INR theoretical departme
discussions and critical comments. I am indebted to L. Rurua for very helpful dis
sions.
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Mechanism of stratification of turbulent heat transfer in a
sound field in the presence of rotational anisotropy
of the flow

V. N. Za kovski  and V. M. Trofimov
Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Acad
of Sciences, 630090 Novosibirsk, Russia

~Submitted 4 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 145–149~25 January 1997!

It is established that the stratification of the heat transfer intensity co-
efficients inton discrete levels, as discovered previously in the turbu-
lent flow accompanying rotation of a supersonic flow, is described by
the formulaan

2/a1
252n21, n51, 2, 3, . . . . It isfound that the ratio of

the measured amplitudes of the discrete components of the pressure-
pulsation spectrum is of a similar form and corresponds to the pressure
field from multipole sources. As expected, similarly to the case of
acoustic paramagnetic resonance, the selection of discrete frequencies
of intense acoustic radiation from the external flow occurs under the
influence of resonances with the radiation of multipoles of turbulent
vortices oriented in the rotational anisotropy field. ©1997 American
Institute of Physics.@S0021-3640~97!00602-6#

PACS numbers: 47.55.Hd, 47.27.Te, 47.32.2y

It was predicted theoretically,1 two years ago and experimentally observed2 a year
later that the asymmetry of the molecules of a gas and/or the corresponding excita
their rotational degrees of freedom have at least a strong influence on the transit
turbulence in gas flows. A quantum mechanism is proposed as a possible path lea
asymmetry~in the case of spherically symmetric intermolecular interaction potentia!.1

The introduction of asymmetry into the phenomenology of developed turbulence3 makes
it possible to describe the turbulence as an active system with diffusion, capab
generating internal structure.4 Acoustic interactions with developed turbulence und
conditions of strong rotational anisotropy~losses of reflection symmetry! of the flow are
of special interest, since the effect of the acoustics on momentum and heat tra
processes is qualitatively different in the presence of asymmetry of the stressed s
such a medium.5,6

Acoustic ~vortex! flows and heat transport due to them near obstacles of diffe
types are ordinarily not established immediately, but rather they develop gradually
the retardation due to the viscosity of the medium compensates the increase in
velocity under the action of the sound. The scale of the flow is determined by
thickness of the acoustic boundary layerd5(n/v)1/2 (n is the kinematic viscosity coef
ficient andv is the angular frequency of the sound!.

In the present letter a mechanism of stratification of turbulent heat transport
154 1540021-3640/97/020154-06$10.00 © 1997 American Institute of Physics
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discrete levels is found which corresponds to interactions between the sound fields
turbulent vortices and the radiation from the discrete currents of the external flow w
are such that the acoustic flows are established so quickly that several~3–7! vortex
modes of acoustic origin, giving way to one another in a random manner, are rea
near the heat-transfer surface.

The experiments were conducted on a gasdynamic RD apparatus~Institute of Theo-
retical and Applied Mechanics, Siberian Branch of the Russian Academy of Scie!
with air flow rates of up to 10 kg/s. The distributions of the heat-transfer inten
coefficients, pressure, and pressure pulsations at the walls of a supersonic chann
measured as a function of the position of the channel axis with respect to the subson
flow rate at the entrance. Characteristic acoustic vibrations were excited in the semi
volume of the gas flow and then interacted with the sound fields of the turbulent vo
in the boundary layer of the supersonic channel.

The basic arrangement of the experiment and the measurement procedure a
sented in Refs. 5 and 6. In the present work, we obtained new data which made it po
to determine the mechanism which results in the stratification of heat transport.

The gas~air!, passing through the entrance channel1 ~Fig. 1a!, flows into the
semiclosed cavity2 and then into the second channel3, which is shaped like a conica
Laval nozzle. The diameter of the throat~critical section! equals 38.4 mm. The positio
of the nozzle3 was varied by changing the angleb, and the velocity of the flow at the
entrance to the nozzle was varied by changing the Mach numberM1 of the jet flowing
out of the channel1. The measurements were performed along the generatrices o
nozzle3 on the upstream and downstream sides; this was achieved by rotating th
relative to the nozzle by 180°.

Three heat-transport regimes are observed on the generatrix of the nozzle3 ~tem-
perature sensors4!, depending on the values ofM1 andb. The first regime~Fig. 1a!
corresponds to an ordinary turbulent heat transport regime in a supersonic channe~here
and below in the figures the curve was calculated according to Ref. 7!. The second type
~Fig. 1b and c! reflects the effect of nonstationary processes due to the instabilit
large-scale secondary vortex flows, which in turn interact with the sound field o
entrance part of the nozzle3. This type of heat transport exhibits the typical nonstatio
ary, irregular character expressed in the random variance, which increases withM1, in
the values of the heat-transfer coefficients. The third regime, first observed in Ref
characterized by a clearly observed ordering of the heat-transfer coefficientsan , which
are distributed with different probability in several levelsn ~Fig. 1d!, and by the ratio
an
2/a1

2 (n51, 2, 3, . . . )which takes on integer values.

A simple analysis shows that the squared coefficientsan
2 are related to the acousti

nature of the frequency characteristicsvn . Indeed, estimating the heat fluxes
q5l tDT/D l5aDT ~herel t is the thermal conductivity of a turbulent medium near
wall andDT is the temperature difference! and settingD l'd, we obtain

a2'l t
2/d25

l t
2

n
v or a2;v.

Measurements of the pressure pulsations at the wall of the channel3 ~Fig. 1a! in
155 155JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 V. N. Za kovski  and V. M. Trofimov
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cross sections5 revealed the following: For the first regime — no large-amplitude vib
tions, for the second regime — a nearly random distribution of the amplitudes of t
pressure pulsations~Fig. 2a!, and for the third regime — a line spectrum, qualitatively
correlated with the probability distribution ofan , of the amplitude of the pressure pu
sations~Fig. 2b!.5 The frequency spectrum of the pressure pulsations is characterize
several maxima near the frequencies 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 kHz. No
izing them to the lowest frequency, we obtain the ratios

c0:c1:c2:c3:c4:c5, where c52,

FIG. 1. Distribution of the heat-transport intensity coefficients along the generatrix of the nozzlex5X/R*
(R* is the radius of the nozzle throat!: a — M 1'0, b50°; b — M 150.18, b50°; c — M 150.35,
b50°; d —M 150.35, b520°.
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characteristic for the relative order of the quantities which appears in the sum of the
of the stress tensor in the expression relating the stress tensor with the pressure fie
multipole,8 whenc5vr /a0 ~wherer is the distance from the multipole!.

At the same time, as analysis of the data showed, the ratiosan
2/a1

2 are described to
within 0.5–10.0% by the formula

an
2/a1

252n21, n51,2,3, . . . ,

indicating directly the relation between the structural levels of heat transportan and the
pressure field of multipole sources.

It is well known that in calculating the acoustic radiation from jets the turbu
vortices are treated as a distribution of quadrupoles.9 There has been no known intera
tion between the acoustic radiation of vortices and the external fields of discrete cu
that would result in a back effect on heat-transport processes, since the energy
vortex radiation~far field! is too low.

To analyze a mechanism of this type qualitatively, we write down the main equ
of the theory of aerodynamic noise9

]2r/]t22a0
2Dr5]2Ti j /]xi]xj , ~1!

which describes the generation of a sound field~the left-hand side of Eq.~1!, wherea0 is
the speed of sound! under the action of continuously distributed acoustic quadrupole
strengthTi j ~equal to the components of the stress tensor of an element of the med!.
Here the stress tensor has the form

Ti j5rv iv j1pi j2a0
2pd i j . ~2!

The last term on the right-hand side reflects the momentum transport in the ‘‘acou
approximation.

On account of the strong rotational anisotropy of the flow due to the rotation o
channel relative to the direction of the flow at the entrance, we shall describe the t

FIG. 2. Spectra of the pressure pulsation amplitudesp (N is the percent content of a given pressure amplitu
in the sample!: a —M 150.35, b50°; b —M 150.35, b520°.
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lent motion as a nonequilibrium motion with respect to the internal angular momen
the energy-bearing vortices.3,4 Then the expression~2! can be put into the form

Ti j5t i j1p i j
11p i j

2 ,

wheret i j is the symmetric part of the tensor, which includes the momentum trans
produced by the terms on the right-hand side of Eq.~2! minus the fluctuation-induced
transport;p i j

1 andp i j
2 are, respectively, the symmetric and antisymmetric parts of

Reynolds stress tensor. The antisymmetric part of the tensor appears because the
teristic angular momentum vectors of the energy-bearing vortices have a predom
orientation in the rotational anisotropy field. Equation~1! assumes the form

]2r

]t2
2a0

2Dr5
]2t i j

]xi]xj
1

]2p i j
1

]xi]xj
1

]2p i j
2

]xi]xj
. ~3!

Here the antisymmetric part of the tensor can be represented in the formp i j
25 1

2e i j l M l

(e i j l is the Levi-Civita tensor andMl is an axial vector!. The three terms on the right
hand side of Eq.~3! are sources, the latter of which is capable of participating in in
actions with an external sound field, similarly to acoustic paramagnetic resonance~APR!,
if the characteristic angular momenta of the turbulent vortices~and therefore, also the
corresponding fields of the quadrupoles! are oriented in the field of the rotation of th
flow with bÞ0. In Ref. 6 the scales of the turbulent vortices are estimated for the
being considered here, and the corresponding frequency of an external sound fi
quired to produce an interaction analogous to APR is found.

We note that another property of turbulence discovered in magnetohydrodyna
— the ability to generate and maintain large-scale magnetic fields~thea effect10! — was
later found in the hydrodynamics of convective media in a Coriolis force field.11,12 In the
latter case, turbulence generates large-scale vortex structures and is called spira
lence. As it turned out,4 the appearance of spirality and the associated losses of symm
of the stress tensor are also caused by a breakdown of equilibrium between the c
teristic angular momenta of the energy-bearing turbulent vortices and the observe
gular momenta of the medium in the rotational anisotropy field of the flow.

This work was supported by the Russian Fund for Fundamental Research~Project
No. 96-02-19500!.
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Dynamics of a drop of magnetic liquid in a rotating
magnetic field

A. V. Lebedev and K. I. Morozova)

Institute of Mechanics of Continuous Media, Urals Branch of the Russian Academy o
Sciences, 614013 Perm, Russia

~Submitted 19 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 150–154~25 January 1997!

We report the first observation of the breakup of a rotating drop sus-
pended in a viscous liquid. To produce the motion, a magnetic liquid is
used as the material of the drop and the entire system is placed in a
uniform, rotating, low-frequency magnetic field. The frequency depen-
dence of the breakup of the drop into two smaller drops is investigated.
A theoretical description is given for small Reynolds numbers. The
drop is assumed to be ellipsoidal. The flow in the exterior and interior
regions and the drag coefficient of the liquid ellipsoid with respect to
rotational motion are calculated. A criterion for breakup of the drop is
estimated and a comparison is made with experimental data. ©1997
American Institute of Physics.@S0021-3640~97!00702-0#

PACS numbers: 75.50.Mm, 66.20.1d

The equilibrium shapes of rotating volumes of a liquid have been under inves
tion for more than a hundred years.1 The main problem addressed in these investigati
is to describe the shapes of the planets modeled by a gravitating volume of liquid.
later, the possible shapes of assumed by rotating drops as a result of the comp
between the centrifugal and surface tension forces characteristic of the liquid
studied.2 Experimental investigations were held back for a long time by the difficulty
producing rotating volumes of a liquid. Despite the fact that the synthesis of mag
liquids ~MLs! — colloidal dispersions of magnets in ordinary liquids3 — has made the
arrangement of experiments with rotating drops quite obvious, the first experim
work appeared only recently.4 This work studied the behavior of microdrops in a rotati
high-frequency~up to 500 Hz! magnetic field. It was determined that a drop can assu
prolate and oblate ellipsoidal shapes, while in strong magnetic fields a drop trans
into a ‘‘starfish’’ with a large~up to several tens! number of arms.4 This latter phenom-
enon was interpreted in complete analogy with the well-known problem of the insta
of a flat surface of a ML in a normal magnetic field.3 The samples employed in Ref.
appear to be quite exotic because of the very small drop sizes (;10mm) and extremely
low surface tension at the interface (;1025 dyn/cm). Furthermore, the viscosity of
drop was two orders of magnitude greater than that of the solvent, so that from
standpoint of the problem considered here — the rotational motion of aliquid volume,
the drops investigated in Ref. 4 were actually solid particles with negligibly small inte
motion.

In the present paper we report an experimental investigation of the motion of
160 1600021-3640/97/020160-06$10.00 © 1997 American Institute of Physics
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large (;1 mm! drops of a magnetic liquid which were suspended in an electrol
solution and were characterized by parameters typical of a liquid: The surface te
was;10 dyn/cm at the ML–solution boundary, and the viscosities of the two liqu
were of the same order of magnitude. When the sample was placed in a rotating ma
field, we observed an interesting new phenomenon — at some critical frequency a
would separate into two equal parts, which, in turn, could break up into drops of
smaller size as the frequency of the field was increased further.

A concentrated ML consisting of magnetite in kerosene with the following par
eters, determined from independent experiments, was used as the drop material: vi
h1519 cP, densityr51.5 g/cm3, and surface tensions1527 dyn/cm at a boundary with
air. The drops were suspended in a concentrated aqueous solution of zinc dichlorid
viscosityh2 53.5 cP, and the surface tension of the solution at a boundary with air
equal tos2554 dyn/cm. In the absence of a field the drops were, naturally, spheres
radiusR. In a constant magnetic field the drops became elongated, and as the field r
with a low frequency the drops executed a simple forced motion — the long axes o
drops rotated with angular velocityV52p f , wheref is the frequency of the field. In ou
experimentsf;1 Hz, the magnitude of the fieldG560 Oe, and the magnetic permeab
ity of a dropm57.1. The motion of a prolate drop can be easily observed visually. As
frequency of the field changes, the motion occurs without any visible change in s
Outwardly, the motion of a drop looks like rigid-body rotation, but there is a substa
difference between the rotation of solid and liquid particles. This difference is espe
clearly seen if a drop is studied in a coordinate system rotating with velocityV. In the
case of a liquid drop, there arises inside the drop a flow with a vorticity directed opp
to the direction of rotation of the drop, so that the normal component of the velo
equals zero at any point on the surface of the drop.

The shape of a drop remains unchanged in the entire interval of magnetic
frequencies below a critical frequencyf c . At f c the drop abruptly becomes several tim
longer, transforming into a ‘‘dumbbell.’’ As the frequency increases further up to a v
f * ~which, however, differs so little fromf c that it is impossible to distinguish thes
frequencies with our apparatus!, a dynamic equilibrium is established in the system:
dumbbell-shaped drop separates into two different parts with the same shape as the
drop. These separate drops execute one to several half-revolutions and once again
into a single dumbbell-shaped drop, which in turn, after several revolutions, once
divides in two, and so on.

In our experiment we investigated the dependence of the frequencyf * of the field at
which drop breakup is observed on the drop diameterd. First, an initial large drop was
prepared and then its size was decreased by pumping out some of the ML. The e
mental values obtained forf * in two series of experiments with different initial sizes —
d156.1 mm~triangles in Fig. 1! andd255.8 mm~circles! — are displayed in Fig. 1. As
one can see from the figure,f * decreases monotonically with increasing drop size,
the onset of breakup itself is apparently of a threshold character: Ford,3 mm a drop
remains whole for any frequenciesf of the external field.

We now proceed to a theoretical analysis of the low-frequency rotational motio
a ML drop suspended in a viscous liquid. We shall solve the problem in the St
approximation, regarding the drop to be an ellipsoid with semiaxesa>b>c. The ratio of
161 161JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 A. V. Lebedev and K. I. Morozov
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any two of the semiaxes is a function of the dimensionless parameters of the probl
the magnetic Bond number Bo5G2R/s and the frequencyVt, wheres is the surface
tension at the ML–solution boundary andt5h1R/s. We shall perform the analysis fo
Bo>1 andVt!1; this corresponds to the experimental situation. The second inequ
expresses the smallness of the characteristic shape relaxation timet of a drop compared
with the period of the field, i.e., the changes in the field can be assumed to
quasistatically. Therefore, the drop shape is stationary and is determined solely b
parameter Bo as a result of the competition between the magnetic and surface tens
just as in a static magnetic field.5 Therefore, in the low-frequency approximation und
consideration, a drop is an ellipsoid of revolution (a.b5c). This is in complete agree
ment with our observations in the frequency range from 0 tof c . Here we also note the
high accuracy of the approximation of the shape of a ML drop in a constant mag
field by an ellipsoid of revolution.5

In a rotating coordinate system, the equations of motion for the liquid inside
drop ~region 1! and outside the drop~region 2! have the form

h1,2Dv
~1,2!5¹p1,2. ~1!

Here v(1,2) and p1,2 are the velocity and pressure fields, respectively. The absenc
volume magnetic forces on the right-hand side of Eq.~1! is due to the uniformity of the
magnetic field inside the drop. A system of equations similar to Eqs.~1! was studied in
Ref. 6 in application to the solution of the problem of the behavior of an erythrocy
a shear flow. By analogy to Ref. 6, our problem of a liquid drop can be reduced t
classical Jeffrey problem7 of the rotational motion of a solid ellipsoid. Indeed, let
choose the axes of the rotating coordinate system as follows: thex axis along the long
axis of the ellipsoid and thez axis along the angular velocity vectorV. Then the solution
in the interior and exterior regions has the form

FIG. 1. Critical frequencyf * for drop breakup as a function of drop diameter. The solid curve is the resu
a calculation according to formulas~6! and ~8!; the symbols are experimental data.
162 162JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 A. V. Lebedev and K. I. Morozov
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vx
~1!52nya/b, vy

~1!5nxb/a, vz
~1!50, p15const, ~2!

vx
~2!5uJ2nya/b, vy

~2!5vJ1nxb/a, vz
~2!5vJ , p25pJ , ~3!

where vJ5(uJ ,vJ ,wJ) and pJ are the velocity and pressure fields from Jeffrey
problem7 for a stationary solid ellipsoid in an external flow with a velocity-gradie
tensor]v i /]xk which is prescribed at infinity and whose nontrivial symmetricg ik and
antisymmetricv ik parts are given by

g125g215
1

2 S ab2
b

aD , v1252v215V1
1

2 S ab1
b

aD . ~4!

The quantityn, appearing in Eqs.~2!–~4! is a parameter which is to be determined a
characterizes the intensity of the motion inside the drop. We call attention to the fac
only the tangential components of the velocity field at the surface of the ellipsoid~see
Eqs.~2! and~3!! are different from zero. Using the exact solution,7 we obtain from Eqs.
~2! and ~3! an equation of balance of the viscous and magnetic stresses acting o
drop:

h2~A122A21!5~m21!2~n22n1!HxHy/4p. ~5!

HereA1252(n1g121b2n38v12)/(a
2n11b2n2)n38 , wheren1 andn2 are the demagnetiz

ing factors along thex andy axes, respectively, andn385(n22n1)/(a
22b2). The values

of A21 are obtained fromA12 by the simple substitutions 1↔2 anda↔b. Equation~5!
determines the anglea by which the long axis of the ellipsoid (x axis! lags behind the
direction of the external fieldG. The componentsHx andHy of the uniform magnetic
field inside the ellipsoid equal8

Hx5G cosa/~11~m21!n1!, Hy5G sin a/~11~m21!n2!. ~6!

We shall calculaten on the basis of the law of conservation of energy. For this,
equate the work performed on the ML drops per unit time by the magnetic forces
erated by the field source (Pm5MV5h2(A122A21)VV, whereM is the moment of the
magnetic or viscous forces acting on a drop andV is the volume of the drop! and the
power dissipated inside and outside the drop. Omitting the simple but cumbersom
culations, we obtain the following equation for determiningn:

a

b
A122

b

a
A215nS ab2

b

aD
2S 12

h1

h2
D . ~7!

As one can see from relations~4!, ~5!, and~6!, the momentM of the magnetic forces
acting on the drop is connected with the rotational velocityV of the long axis by a linear
relation. Introducing the ratioB5V/M , we shall now determine the rotational mobilit
of an ellipsoidal liquid particle. The computed mobilitiesB of a drop in ratio to the
mobility BHS5(6h2V)

21 of a hard spherical particle of the same volume are displa
in Fig. 2 as a function of the eccentricitye5A12(b/a)2of the ellipsoid. The mobilities
were calculated for five values of the ratioh1 /h2: 0.1, 1, 10, 100, and 1000, indicate
next to the corresponding curves. A solid ellipsoid corresponds to the limith1 /h2→`
and n50 ~no internal motion!. The particle mobility for this case is determined b
Jeffrey’s formula7 ~see also Ref. 9!. It follows from an analysis of Fig. 2 that the rotatio
163 163JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 A. V. Lebedev and K. I. Morozov
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of a liquid ellipsoid differs substantially from that of a solid ellipsoid, especially for sm
drop elongation. This is because the ratio of the viscosities inside and outside the
appears in relation~6! together with the fourth power of the eccentricity. As a result,
the limit e→0 ~slightly elongated particle! the rotational mobility of the drops increase
without bound for any finite value ofh1 /h2, in contrast to the case of a solid ellipsoi
whereB approaches the limitBHS . This means that even an infinitesimal field is suf
cient to cause a visible rotation of the drop with finite velocityV. We recall that by
rotation of a drop we mean the rotation of its long axis in the laboratory coordi
system. Of course, the velocities of material particles near the surface of the dro
crease without limit ase→0.

Thus far we have considered the motion of a drop at field frequencies belowf * . To
study dynamics atf; f * , when large deformations and breakup of a drop occur, i
necessary to formulate and solve an extremely complicated stability problem. How
the value off * itself can be estimated comparatively simply from energy considerati
Indeed, letDE5E22E1 be the difference of the total~surface and magnetic! energy of
two equal small drops and one large drop. The increase of the energy byDE accompa-
nying the breakup of a drop occurs as a result of the workA performed by the sources o
the magnetic field, for which we write approximatelyA'2pM , where the latter quantity
is the energy dissipated over one period of rotation of the field in a system with one
For f5 f * , DE'A, so that to determine the critical frequency we have

f *5
G2DE

4ph2

a2n11b2n2
a21b212abn/V

. ~8!

The theoretical curvef *5 f * (d) is shown in Fig. 1 by the solid line and wa
calculated according to Eqs.~8! and ~6!, allowing for the well-known dependenc
e5e~Bo! ~Ref. 5!, and the above-indicated values of the parametersh1 , h2 , m, and

FIG. 2. Mobility B of a liquid drop relative to the mobilityBHS of a hard spherical particle as a function of th
eccentricity for six values ofh1 /h2 ~indicated on the corresponding curves!.
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G. The surface tensions at the solution — ML boundary was calculated according
Antonov’s rule:10 s5s22s1527 dyn/cm. Without overestimating the significance
relation~8!, we nonetheless note the surprising agreement between the computed
of f * and the data of our experiment. The theoretical curve in Fig. 1, however, doe
describe the threshold character of drop breakup as the drop volume decreases; thi
be due to both the simplified character of the estimate~8! and the inadequacy of th
Stokes approximation at high frequencies of the magnetic field.

We are deeply grateful to A. F. Pshenichnikov for helpful remarks and a discus
of the results of this work. This work was supported by the Russian Fund for Funda
tal Research~Grant 95-01-00408!.
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Absence of a ‘‘ferromagnet–spin glass’’ reentrant phase
transition in quasi-two-dimensional ferromagnetic
systems with competing exchange interactions

G. A. Takze , Yu. P. Grebenyuk, and I. I. Sych
Institute of Magnetism, Ukrainian National Academy of Sciences, 252680 Kiev, Ukrai

L. M. Kulikov
Institute of Problems of Materials Science, Ukrainian National Academy of Sciences,
252680 Kiev, Ukraine

~Submitted 3 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 155–158~25 January 1997!

It is shown on the basis of the results of magnetic investigations for the
example of the intercalated layered compounds Cr1/32xNixTaS2 that in
quasi-two-dimensional ferromagnets with competing exchange interac-
tions there is no reentrant ‘‘ferromagnet–spin glass’’ phase transition
all the way down to liquid-helium temperatures. ©1997 American
Institute of Physics.@S0021-3640~97!00802-5#

PACS numbers: 75.50.2y, 75.30.Kz, 75.10.Nr

The problem of the lowest critical dimensiondL of spin glasses~SGs! occupies a
special place in spin-glass physics. IfdL>D, whereD is the dimension of the magneti
system, then at finite temperatures a ‘‘paramagnet–spin glass’’~PM–SG! phase transition
is impossible. It has been shown1 theoretically and experimentally in recent years th
2,dL,3 for classical metallic spin-glass systems of the CuMn type.

We note that, together with a PM–SG phase transition at finite critical temperat
reentrant temperature transitions, for example, ‘‘ferromagnet–spin glass’’~FM–SG!, are
very typical in cooled 3D systems with competing exchange interactions.2 It must be
underscored, however, that, as far as we know, the question of the lowest critical d
sion for FM–SG phase transitions has not yet been raised either theoretically or e
mentally. Such investigations could be performed, by analogy to Ref. 1, on objects
form of thin and ultrathin films in the crossover regime 3D→ 2D. However, such
experiments are methodologically and technologically very complicated. At the s
time, there exists an entire class of natural quasi-2D systems — intercalated dic
genides of transition metals3 — in bulk samples of which the laws of formation of froze
spin states can be studied by standard methods.

The objective of the present work is to clarify whether a reentrant SG state
appear in magnetic systems with low dimensionality. Synthesized conducting poly
talline compounds Cr1/32xNixTaS2 were investigated. This choice of objects of inves
gation is motivated by the following circumstances. According to Ref. 3, the interc
Cr1/3TaS2 is a FM with Curie temperatureTc5115 K and the compound Ni1/3TaS2 is an
antiferromagnet~AFM! with Néel temperatureTN5120 K. In the compounds indicate
above, the intercalating chromium and nickel atoms, which are ordered in octah
166 1660021-3640/97/020166-05$10.00 © 1997 American Institute of Physics
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positions between layers of nonmagnetic tantalum and sulfur atoms, form the a
indicated magnetically ordered states. Therefore, under an isomorphic substitut
nickel for chromium, a FM–AFM concentration phase transition can in principle
realized in the TaS2 matrix. In this case it can be expected that SG-type states will a
in the concentration range where the type of magnetic order changes, i.e., in the
where the FM and AFM contributions of the exchange interactions to the total exch
energy are approximately the same, as happens, for example, in the fcc alloys F
~Ref. 4! and FeNiMn~Refs. 5 and 6! in different quasibinary surfaces of section.

In the present work we studied only the FM compounds Cr1/32xNixTaS2 near the
critical concentrationx050.08 at which long-range FM order appears~Fig. 1!. Investi-
gations of the formation of frozen states directly from the PM phase~compounds with
x>0.08) are of interest in themselves and are a subject of a separate analysis. W
only that our investigations show that in the concentration range 0.08,x,0.23 a frozen
magnetic state of the SG-type forms from the PM state on cooling. It is important
this state does not appear as a result of a PM–SG phase transition at a finite c
temperature, as happens in most 3D spin-glass systems, but rather it is formed in
temperature range as the indicated compounds are cooled.

Let us now discuss the experimental results. As an example, the temperature d
dences of the real and imaginary components,x8 andx9, respectively, of the dynamic
magnetic susceptibility of the compound Cr1/32xNixTaS2 with x50.06 are displayed in

FIG. 1. Magnetic phase diagram of the intercalated dichalcogenide Cr1/32xNixTaS2: 1 — Paramagnet,2 —
ferromagnet,3— possible region of existence of antiferromagnetism,4— state with chaotically frozen mag
netic moments~spin-glass type!. Tc — Curie temperature,TN — Néel temperature,TM — temperature of the
maximum of the magnetic susceptibility,Tf50 — possible temperature of the ‘‘paramagnet–spin glass’’ ph
transition;d — our preliminary investigations,h — results of the present work,n,, — according to the data
of Ref. 3.
167 167JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Takze  et al.
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Fig. 2. The most striking manifestations of SG effects should be expected to occur
compound with this composition, since this compound lies closest to the critical con
trationx050.08 in the magnetic phase diagram~Fig. 1!, and therefore the contribution o
AFM exchange to the total exchange energy is greater in this compound than in any
FM compound in a given quasibinary section. This latter circumstance is a nece
condition for the existence of reentrant temperature transitions.2

It follows from the data presented that FM ordering arises in the indicated c
pound below the Curie temperatureTc580 K. In contrast to 3D systems with reentra
temperature FM–SG transitions,6 however, appreciable anomalies in the temperat
dependencesx8(T) andx9(T) are not observed at lower temperatures. This fact sugg
that, at least in the temperature interval 4.2 K<T,Tc580 K, there is no reentran
FM–SG transition in the compounds which we are studying. Additional confirmation
this can be obtained from investigations of irreversible magnetic phenomena.

Indeed, the temperature dependences obtained for the static magnetizationM (T),
normalized to the strengthH of the measuring magnetic field, after the sample is coo
in a magnetic field~FC! and in a zero magnetic field~ZFC! are absolutely atypical for
systems with a reentrant FM–SG temperature transition, since the difference be
VZFC andMFC already appears close toTc and not at the temperatureTf!Tc of the
reentrant phase transition~Fig. 3!.

It follows from Fig. 4, where the temperature dependence of the thermorema
magnetizationMr

TRM is displayed, thatMr
TRM decreases monotonically all the way dow

to temperaturesT'Tc and at lower temperatures it is not subject to appreciable ano

FIG. 2. Temperature dependence of the real partx8 and imaginary partx9 of the dynamic magnetic suscept
bility of the compound Cr1/32xNixTaS2 (x50.06). The frequency and amplitude of the magnetization revers
field equal 72 Hz and 3.5 Oe.
168 168JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Takze  et al.
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lies associated with the appearance of a reentrant SG, as happens in frustra
ferromagnets.6

FIG. 3. Static susceptibilityM /H of the compound Cr1/32xNixTaS2 (x50.06) measured after the sample
cooled from a temperature of 100 K in magnetic fields of different intensity~FC! and in zero magnetic field
~ZFC!.

FIG. 4. Thermoremanent magnetizationMr
TRM of the compound Cr1/32xNixTaS2 (x50.06) measured after the

compound is cooled from a temperature of 140 K in a 100 Oe magnetic field.
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It should be underscored that the existence of appreciable values ofMr
TRM and of a

differenceMFC2MZFC nearTc is not due to the appearance of frozen SG-type spin st
in the investigated compound, but rather it is due to the strong nonuniformity of the
state as a result of the presence of AFM exchange. This is indicated by our discov
the present work of the existence of an exchange anisotropy in the FM compo
studied that is characteristic of heterogeneous magnetic systems.7

In summary, analysis of the experimental results obtained shows that in contr
3D systems there are no reentrant FM–SG temperature transitions in the quas
dimensional FM compounds Cr1/32xNixTaS2 with competing exchange. For this reaso
the region4 in the magnetic phase diagram~Fig. 1! is separated from region2 by a
vertical line, and in the FM region2 itself there is no line of FM–SG phase transition
The latter circumstance apparently means that the dimension of the compound s
does not exceed the lowest critical dimension of a reentrant SG.

This work was supported by the German Ministry of Science and Technolog
part of the program of collaboration between Leipzig University and the Institut
Magnetism of the Ukrainian National Academy of Sciences.
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Inelastic resonance tunneling in S–Sm–S tunnel
structures

I. A. Devyatova) and M. Yu. Kupriyanov
Scientific-Research Institute of Nuclear Physics at the M. V. Lomonosov Moscow Sta
University, 119899 Moscow, Russia

~Submitted 6 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 159–163~25 January 1997!

Inelastic resonance tunneling through junctions with an amorphous in-
terlayer and superconducting electrodes is studied. The form of the
current–voltage characteristicI (V) at low temperature and the tem-
perature dependence of the conductanceG(0) at low bias are calcu-
lated and are found to be much different from the analogous depen-
dences of structures with normal electrodes. ©1997 American
Institute of Physics.@S0021-3640~97!00902-X#

PACS numbers: 74.50.1r, 73.40.Gk

It has been shown convincingly in a series of experimental works,1–4whose purpose
was to investigate the transport properties of high-Tc Josephson junctions with semicon
ductor oxide interlayers, that quasiparticle transport in such structures occurs by me
resonance tunneling through localized states~LSs! in the interlayer. Specifically, it has
been shown by comparing the experimental form of the current–voltage characte
~IVC! in the voltage rangeV.2D/e (D is the modulus of the order parameter of t
electrodes! with the results of theoretical calculations5 that the temperature and voltag
dependences of the conductance are close to those predicted for processes with
number of LSs on the resonant trajectory (N52.3).

However, the results obtained in Ref. 5 are valid only for N–Sm–N structures
neglect the presence of superconducting ordering in the electrodes. Our objective
present work is to extend the results obtained in Ref. 5 to the case of S–Sm–S stru
~superconductor–amorphous interlayer–superconductor!.

MODEL OF THE CONTACT

To calculate the contribution of a single two-impurity configuration in the region
the interlayer to the quasiparticle current, we shall proceed from the form propos
Ref. 5~Eq. ~2.1!! for the tunneling Hamiltonian with additional terms taking into accou
the superconducting pairing in the electrodes:

H left5(
k

jkak
1ak1(

k
~Dak,↑

1 a2k,↓
1 1D* ak,↑a2k,↓!, ~1!

H right5(
p

jpap
1ap1(

p
~Dap,↑

1 a2p,↓
1 1D* ap,↑a2p,↓!. ~2!
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Herejk,p andak,p
1 are, respectively, the energies and the creation operators of elec

in the left~right!-hand superconductor, respectively. Here and below we employ the
tation of Ref. 5.

CALCULATION OF THE RESONANT CURRENT THROUGH AND ARRAY OF
TWO LSs

Using the unitary transformation

iU̇5He2phU ~3!

(He2ph is determined by Eq.~2.2! of Ref. 5!, confining attention to the case of a wea
electron–phonon interaction, and making further calculations similar to those perfo
in Ref. 5 within the limits of applicability of the kinetic equation for the populations
the LSs, deploying the well-known expressions for the correlation functions~see, for
example, Ref. 6! for averaging in the kinetic equation over the electron states in
superconducting electrodes,

^ak
1~ t !ak8~ t8!&5$uk

2f k exp$ i ek8t%1unku2~12 f k!exp$2 i ek8t%%dk,k8, ~4!

^ak8~ t8!ak
1~ t !&5$uk

2~12 f k!exp$ i ek8t%1unku2f k exp$2 i ek8t%%dk,k8,

uk
25

1

2
~11jk /ek!, unku25

1

2
~12jk /ek!, ek5Ajk

21uDu2, t5t2t8,

f k5 f ~ek!5~11exp$ek /kBT%!21,

we obtain the following expression for the quasiparticle current in the stationary ca

J5J11J2 , J15
4ex1

R1AR1
2 24x

1
/G1G2

, J252
4ex2

R21AR2
2 24x

2
/G1G2

,

R15
f l1N

G2
1
12 f r1N

G1
1
1

g
, x15~ f l2 f r !N1 f l~12 f r !, ~5!

R25
f r1N

G1
1
12 f l1N

G2
1
1

g
, x252~ f l2 f r !N1 f r~12 f l !.

The termsJ1 and J2 in Eq. ~5! correspond to the configurationse1.e2 and e1,e2,
respectively. In Eq.~5! f l5 f (e12eV) and f r5 f (e2) are the distribution functions fo
quasiparticle excitations in the left- and right-hand electrodes,e1 ande2 are the energies
of the LSs,N5N(ue22e1u)5(exp$ue22e1u/kBT%21)21 is the Bose distribution function o
the phonons,g5p(quT12u2ulqu2d(eq2ue12e2u) is the reciprocal of the tunneling tim
between LSs,T12 are the coupling matrix elements between the LSs, the constantlq is
determined in terms of the deformation potential constants at the impurity, and
phonon spectrum is determined by formulas~2.3!–~2.4! of Ref. 5. The quantitiesG1,2

determine the reciprocal of the tunneling time from the LSs into the supercondu
electrodes:

G15G1~e12eV!, G25G2~e2!,
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G1,2~e!5p^Tp1,k2
2 &Nn~0!

ueu

Ae22D2
$Q~e2D!1Q~2e2D!%. ~6!

Here ^Tp1,k2
2 & is the angle-averaged, at the Fermi surface, squared tunneling matrix

ment from the LSs into the left~right!-hand electrode, respectively, andNn(0) is the
density of states of the normal metal at the Fermi surface (Nn(0) is assumed to be th
same for both electrodes!. As expected, the expression~6! for the current differs from the
expression presented in Ref. 5 only by the structure of the coefficientsG1,2 ~6!, which
explicitly take into account the singularity in the density of states of the electrode
ueu5D.

CALCULATION OF THE AVERAGE CURRENT

To calculate the total current through the junction, expression~5! must be averaged
over the coordinates and energies of the LSs:

^J&5g2SE de1de2dz1dz2d
2r'J~e1 ,e2 ,z1 ,z2 ,r'!, ~7!

wherez1 andz2 are, respectively, the distances from the LSs to the left- and right-h
electrodes,r' is the projection of the vectorr12r2 on thexy plane, which is perpen-
dicular to the direction of the current,S is the contact area, andg is the volume density
of LSs.

The calculations simplify substantially and reduce to analytical expressions in
limit eV, D@kBT. In this limit J250, x151, R15R5G1

211G2
211g21, and the ex-

pression for the current~5!–~7! reduces to the form

^J&5g2SQ~eV22D!E dz1dz2d
2r'E

D

eV2D

de1E
D

e1
de2

4e

R1AR224/G1G2

. ~8!

Taking into account the exponential character of the decay of the matrix elementsTk2,
Tp1, andT12 as a function of the coordinates of the LSs, we find that the recipro
G i andg of the tunneling times can be written in explicit form as

G15G10 exp~2z1 /a!ue12eVu/Aue12eVu22D2,

G25G20 exp~~d2z2!/a!ue2u/Aue2u22D2, ~9!

g5g0ue12e2uexp~~z22z11r'
2 /~2~z22z1!!!/a!.

Herea is the radius of a LS,d is the thickness of the junction, andG10, G20, andg0 are
pre-exponential factors, which are weak functions of the coordinates and energies
LSs. The energy dependence ofg is determined by the Debye phonon model.

One can see from Eqs.~8!–~9! that the denominator in the integrand in Eq.~8! is an
exponential function of the coordinates of the LSs and is a much weaker function of
energies. For this reason, just as in the N–Sm–N case,5 the expression for the averag
current~8! can be put into a form in which the averaging over the coordinates actu
decouples from the averaging over the energies. For this, it is necessary to switch
~8! from integration over all coordinatesuz1,2u,d to integration over neighborhoods o
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the optimal coordinatesz10 andz20 determined by the minimum of the integrand in E
~8!. Introducing the new variablesj15z12z10 andj25z22z20 and taking into accoun
that the optimal value ofr' equals zero, we find that, with allowance for relations~9!, the
expression for the average current~8! reduces to the form

^J&5Cg2S exp~22d/3a!Q~eV22D!

3E
D

V2D

de1E
D

e1
de2F ue12eVu

A~e12eV!22D2

e2

Ae222D2
~e12e2!G 1/3,

C525/3e~G10G20g0!
1/3E dj1dj2d

2r'$F1A@F224 exp~2~j12j2!!#%21, ~10!

F5F~j1 ,j2 ,r'
2 !5exp~2j1 /a!1exp~22j2 /a!

1expS 2S j12j21
r'
2

2~z202z10!
D Y aD .

It follows from formula ~10! that the exponential dependence on the junction thickn
for an array of two LSs in the S–Sm–S case is the same as for a N–Sm–N junction,5 viz.,
(exp(22d/3a)). Therefore estimates of the maximum volume density of LSs at whic
transition occurs to current transport predominantly via an inelastic two-LS channe
the N–Sm–N structure5 are also valid in our case of a S–Sm–S junction. Choosing
corresponding variables in the integral over the energies of the LSs in Eq.~10! makes it
possible to determine the form of the IVC: At low voltages,eV>2D, the IVC is qua-
dratic }(eV22D)2 and at high voltages,eV@2D, it assumes the dependenc
}(eV22D)7/3'(eV)7/3 as in the case of a N–Sm–N junction. Numerical calculatio
show~see Fig. 1! that a transition.From a quadratic dependence to a fractional pow
law dependence~7/3! occurs ateV'3D. It is easy to show that the results of Ref. 5 f
n>3 also obtain foreV>3D.

FIG. 1. I–V characteristic of an S–Sm–S junction. The curve was calculated numerically on the ba
formula ~10! for a structure with two localized states on the trajectory. Circles — results of numerical c
lations, solid lines — fractional power-law and quadratic approximations,J0 — characteristic magnitude of the
current.
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Similar calculations yield the following expression for the temperature depend
of the conductanceG(0) at low voltages (eV!kBT):

G~0!}T4/3exp$22D~T!/kBT%exp$22d/3a%. ~11!

The temperature dependence~11! differs from that obtained for N–Sm–N structures5 by
the exponential factor, which arises naturally as a result of the presence of a gap
quasiparticle excitation spectrum. This factor is proportional to the number of quas
ticles capable of participating at a given temperature in inelastic two-particle reson
tunneling. It is easy to show that this factor also necessarily occurs in the expressi
the conductance in the cases when the number of LSs on the trajectoryn>3 (Gn

}Tn22/(n11)exp$22D/kBT%).

Numerous experimental data1–4 obtained by analyzing the IVCs of high-Tc super-
conducting junctions show that the expressions~10! do indeed approximate well the form
of the IVC at high voltages. However, analysis of the temperature dependence
conductance at low voltages gives the resultG(0)5G(0,0)1aT4/3, which is identical to
the law for N–Sm–N junctions, i.e., it does not contain the exponential fa
exp$22D/kBT% which is present in formula~11!. This problem will be examined in a
separate publication, since it cannot be solved in the framework of the present stu
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physics’’ and the RFFR–INTAS project RFBR95-1305.
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Inflating antenna: Dynamics of exciton wave packets

E. I. Rashba
L. D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia; Department
Physics, University of Utah, Salt Lake City, UT 84112, USA

~Submitted 15 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 164–169~25 January 1997!

A theory of the free-induction signal from biexcitons and bound exci-
tons is presented. Simultaneous existence of the exciton continuum and
a bound state is shown to result in a new type of the time dependence
of the free induction. The optically detected signal increases in time
and oscillates with increasing amplitude until damped by radiative and
dephasing processes. The expanding area of coherent exciton polariza-
tion ~inflating antenna! produced by the exciting pulse is the underlying
physical mechanism. The formalism developed can be applied to vari-
ous biexciton transients ©1997 American Institute of Physics.
@S0021-3640~97!01002-5#

PACS numbers: 42.50.2p, 71.35.2y

Ultrafast spectroscopy of excitons in the time domain1 has proven to be a powerfu
tool to probe the quantum coherence of exciton states, which was originally studied
the polarization of the stationary emission.2 Most of the experimental data were taken
GaAs quantum wells, but some experiments were performed with bulk excitons. Q
tum beats in various response functions are a manifestation of coherence driv
external fields. These beats appear when several states having close energies are
simultaneously. Quantum beats have been observed for magnetically split exciton le3

bound excitons with different confinement energies,4 heavy and light hole excitons,5 free
and bound excitons,6 and with biexcitons and a two-exciton continuum.7 The last two
examples are of principal importance for us in what follows. Experimental data pro
convincing evidence of a strong effect of the exciton–exciton and exciton–free-ca
interactions on the nonlinear response functions.8,9 Different theoretical approaches hav
been applied, depending on the range of parameter values. When the nonradiative
ation timest are short, the mean field approach10 works rather well. This paper deals wit
the opposite limit, i.e., the larger-t region, and is related to papers11–13 based on micro
scopic models.

The traditional approach to quantum beats is based on an energy spectrum co
ing few ~usually two! discrete energy levels. This approach can be applied to b
between heavy and light hole excitons because of momentum conservation and t
sence of interaction between these excitons. However, the biexciton and bound e
problems are more involved because of the existence of the two-exciton and s
exciton continua, respectively. For example, for a two-exciton system it is the exci
exciton interaction that supports the two-photon coherence, and the lower part o
continuum, with a width of about several biexciton binding energies,«b, contributes to
the coherent polarization along with the bound biexciton state. In add
176 1760021-3640/97/020176-06$10.00 © 1997 American Institute of Physics
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to the theoretical arguments, some experimental data provide weighty, although
rect, evidence of the role of the two-exciton continuum.

Indeed, it has been shown11 that the four-level biexciton energy scheme can
brought into agreement with the experimental data only if an enhancement factor ty
of giant oscillator strengths14 is invoked. More recent data15 provide evidence of the
significant role of the exciton–exciton interaction in the continuum. Therefore, the
quencies of allowed transitions are distributed continuously, and the frequency spr
about«b . Naive consideration suggests that such an energy spectrum should res
beats having a frequency of about«b and showing fast nondissipative decay because
accumulating phase differences between different modes. It turns out that the
physical picture is quite different.

We present an exact solution for a free induction signal excited by a one-s
exponential pulse,t,0, in a nondissipative system with a biexcitonic nonlinearity. T
special shape of the pulse simplifies calculations but does not influence the basic r
The contribution of the two-exciton continuum is consistently taken into account. W
such an approach, free induction, i.e., free oscillations of the two-exciton wave fun
C(t) for t.0, includes two modes. There existsa beating modedescribingundamped
beats whose frequency is equal to«b . There exists also agrowing modewhose amplitude
increases linearly with timet and whose carrier frequency equals the energy of
bottom of the two-exciton continuum. The growing mode is inherent in interacting
tems possessing a continuous spectrum. It describes the inflation in real space of th
packet created by the pulse. The two modes result inan optically detected free-inductio
signal which increases with t and has a monotonic and oscillating parts. Growth of the
signal is restricted by the strongradiative decay, resulting in short emission pulses. Th
same modes exist for excitons bound to impurities. We expect that these mode
contribute to different nonlinear processes, including multiple-pulse processes, an
the technique developed is of general applicability.

To clarify the basic idea and to take into account rigorously the analytical prope
of the exciton Green functions, we develop an exactly soluble model. To this en
neglect polariton effects and dephasing. We also neglect the dependence of the sc
amplitude on the polarization of the light, since that is sensitive to the band struc
geometry, etc..9,16 Excitons are treated as stable particles without internal degree
freedom. It is convenient to start with the bound exciton problem. If an electromag
waveEq~r ,t! } exp$i ~q•r2vt!1at%, a.0, is incident upon a crystal at2`,t,0, the
exciton wave functionCq~q8,t! at the instantt ~t.0! can be calculated as a linea
response to this perturbation:

Cq~q8,t !5~ iM /Av !Aq8q~ t !, Aq8q~ t !5(
j

c j~q8!c̄ j~q!

v2Ej1 ia
e2 iE j t. ~1!

Here Cq~q8,t! and cj ~q! are, respectively, the time-dependent and stationary exc
wave functions in the momentum representation. The subscriptj>1 labels single-exciton
states, both bound and free. The ground-state energy of the crystal is chosen as the
E050. The coefficientM is the matrix element, per unit cell, of the perturbation produc
by the fieldE~r ,t!, andv is the unit cell volume. The momentaq andq8, which are of
importance for optical experiments, are small and will be neglected in the final res
177 177JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 E. I. Rashba
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The amplitudeAq8q(t) describes the free precession ofCq~q8,t! for positive times.
For t50, Aq8q(t) coincides with the retarded exciton Green function

Gq8q~v!5(
j

c j~q8!c̄ j~q!/~v2Ej1 i0! ~2!

for v→v1ia. For arbitrary t, the functionsAq8q(t) andGq8q(v) are related by the
equation

Aq8q~ t !5
1

2p i E2`

`

dv8
exp~2 iv8t !

v82v2 ia
Gq8q~v8!. ~3!

Equation~3! can be checked by employing~2!, closing the integration path in the lowe
half of the complex plane, and calculating the residues at the poles ofGq8q(v8).

The subsequent transformations ofAq8q(t) are based on the introduction of th
scattering operatorT̂ ~Ref. 17!:

Gq8q~v!5Gq
0~v!dq8q1Gq8

0
~v!Tq8q~v!Gq

0~v!, ~4!

whereGq
0(v)5(v2«(q)1 i0)21 is a free-exciton Green function. Only the second te

of Eq. ~4! contributes toAq8q(t) for q8Þq and will be retained below. It is an importan
property of this term that it includes a product of twoG0 functions with nearly coinciden
poles. This property strongly influences the subsequent results. SinceTqq8(v) is analyti-
cal in the upper half plane, it obeys the following dispersion relation:

T̂~v!52
1

p E
2`

`

dv8T̂9~v8!/~v2v81 i0!, ~5!

whereT̂9~v!5Im$T̂~v!%. Substituting~4! and~5! into ~3! and performing the integration
overv8, one gets in theq8,q→0 limit:

A~ t !52
1

p E
2`

`

dv8
d

d« FT9~v8!

v82« S exp~2 iv8t !

v2v81 ia
2
exp~2 i«t !

v2«1 ia D G . ~6!

Here «5«~0! is the energy of long-wavelength excitons, andA(t) and T9~v8! are the
limits of Aq8q(t) andTq8q(v), respectively, forq,q8→0. Equation~6! is the final equa-
tion for the time-dependent amplitudeA(t). It is completely determined by the
operatorT̂.

Two basic properties of Eq.~6! follow from general arguments.

First, the derivatived/d« results in a contribution toA(t) proportional to
t exp~2i«t!. The term inA(t) which increases witht will be referred to below asthe
growing mode. It originates from the product of twoG0 functions with coincident poles
Eq. ~4!. The growing mode is reminiscent of the growing solutions of differential eq
tions with degenerate characteristic numbers. This mode describes the global evolu
the wave packet prepared by the pulse. Ast increases, the packet expands inr space. For
translationally invariant systems this expansion is accompanied by changes in the
of different Fourier components, whereas their moduli remain unchanged. Howeve
impurity potential violates momentum conservation, and the amplitude of theq50 mode
increases witht. The giant oscillator strengths observed in steady-state experiment
178 178JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 E. I. Rashba
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ascribed toexciton antennas.18 In these termsthe growing mode is an inflating excito
antenna. This picture explains why the growing mode is specific for systems posse
a continuous spectrum and, hence, extended states.

Second, the bound state is a pole ofT̂~v!. Therefore,T9~v8! includes a term pro-
portional to d~v82«1«b!. It contributes to Eq. ~6! an oscillating exponentia
exp@2i («2«b)t#. The width of the exciton band is assumed to be large compared to«b .
Under these conditions the integration along the cut in the complex plane contribu
factor exp~2i«t!. The two oscillatory terms in Eq.~6!, exp@2i («2«b)t# and exp~2i«t!,
result in beats at a frequency of«b with a time independent amplitude. This oscillatin
contribution toA~v! will be termed asthe beating mode.

The integral of Eq.~6! can be easily performed for a Frenkel exciton when
impurity potential is described by a degenerate perturbationUmn52Udm0d0n ~Ref. 19!.
Herem andn label lattice sites, and the impurity resides at the sitem5n50. In this case
Tqq8(v) does not depend on the momentaq andq8. For a two-dimensional~2D! system,
the density-of-states inside the exciton band can be chosen asr~v!51/EB , whereEB is
the width of the band. The amplitudeA(t) is shown in Fig. 1 for three values ofv. Both
the linear-in-t growth and the oscillations with a time-independent amplitude are
tinctly seen in the asymptotic region,t2p«b

21. Actually, they are seen even for sma
values oft.0, but the shape of the first oscillation is somewhat distorted. It also dep
on the shape of the exciting pulse. The data for a 3D system withr(v)
58Av(EB2v)/pEB

2 are also shown in Fig. 1. The dependence ofA(t) on dimension-
ality is rather weak.

Therefore, after a short transient the growing and beating modes dominate th
plitude A(t). The optically detected free-induction signal,I (t), is related to the zero-
momentum component of the wave function. Therefore,I (t)}uC0(0,t)u

2. In the asymp-
totic regionA(t)}$t1b/2 exp@i («bt1f)#%e2 i«t, whereb andf are real parameters, an
I (t) obeys the law:

FIG. 1. Time dependence of the amplitudeuA(t) u for a5«b , EB510«b . 3D—solid lines, 2D—dotted lines.~1!
v2«50, ~2! v2«520.5«b , ~3! v2«52«b . For t2p/«b the amplitude shows a linear growth and undamp
oscillations with a period 2p/«b .
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I ~ t !}$t21bt cos~«bt1f!%. ~7!

Interference of the two modes results in an unusual shape of the signalI (t). It consists of
the monotonic and oscillatory contributions, both of them growing~rather than decay-
ing!! with t. If one neglects the oscillating part in Eq.~7!, the radiative timetR(t)
decreases witht astR(t)}t

22. This rapid increase in the emission probability establis
the applicability limit for Eq. ~7!. One can infer from the data of Fig. 1 tha
tR

21(t)'(tR
0)21(11b«bt)

2, whereb;1, andtR
0 can be estimated as the bound-excit

radiative lifetime. The radiative lifetimetem can be evaluated from the phenomenologi
equation

E
0

1

dn5E
0

tem
dt/tR51, ~8!

which yieldstem'(tR
0/«b

2)1/3. This estimate is crude becauseA(t50) from Eq. ~1! de-
pends onv anda. For tR

0'1 ns and«b'10 meV, we gettem«b'25, which corresponds
to about three oscillations inuA(t)u; Fig. 1. Therefore, the radiative response has
shape of a short train of oscillations with a total duration of only abouttem and an
efficiency of up to 100%. Polariton effects, neglected above, are expected to contrib
this fast stage of the radiative decay, and this contribution should be dimensio
dependent.20

In what follows we generalize these results for biexcitons. There exist two proc
which result in optical production of biexcitons.7,14 The first process is two-step absor
tion with an exciton level as a real intermediate state. In this process an exciton pro
in the first step acts as an ‘‘impurity’’. All the above results are applicable to this pro
without any serious modifications. The second process is two-phonon absorption fro
ground state. The theory of this process is more cumbersome than for impurity ab
tion. Nevertheless, the final results are nearly identical.

Biexciton eigenfunctions can be written in operator form as

uK j &5
1

&

E dk

~2p!3
c j~k!cK /21k

† cK /22k
† , ~9!

wherecK /26k
† are exciton creation operators, andK is the center-of-mass momentum

a biexciton. The functionscj ~k! are eigenfunctions in the momentum representation.
biexciton wave function at positive times can be found in the second order of perturb
theory in the fieldEq~r ,t!. In the momentum representation

Cq~k,t !5
2M2AV/v

v2«~q!1 ia
Ak0~ t !, Ak0~ t !5(

j

c j~k!c̄ j~0!

2v2Ej12ia
e2 iE j t. ~10!

Here Ej are the energy levels of a two-exciton system, andV is the normalization
volume; the momentumK52q. If biexcitons are excited by two light beams with mo
mentaq1 andq2, the functionc̄ j ~0! in ~10! should be replaced byc̄ j ~~q12q2!/2!.

Equation ~10! differs from Eq. ~1! only in the coefficient and in the change
variablesv→V52v anda→2a. Therefore, the transformations which led us from E
~1! to Eq.~6! can be repeated step-by-step for biexcitons. The equation for the scat
180 180JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 E. I. Rashba
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operatorTk,k~V! depends on the interaction between excitons. The zero-radius pot
provides a satisfactory approximation for giant oscillator strengths.14 With this potential,
the operatorT̂~V! is known for three-dimensional systems,17 and it does not depend o
the momenta. Finally,A(t) actually shows the same behavior as for bound excitons

One can infer from Eq.~9! that the quantum stateCq decays into two photons with
momenta K /26k. The intensity of the free-induction signal is proportional
uCq~k,t!u

2'uC0~0,t!u
2. In the asymptotic region A(t)}$t1b/2 exp[i («bt1f)] %

3exp~22i«t!, and Eq.~7! describes the optically detected signal.

In conclusion, the coexistence of a continuous spectrum and a bound state res
the existence of growing and beating modes in the free inductionC(t), following the
exciting pulse, for biexcitons and bound excitons. The duration of the induction sign
controlled by the radiative decay rate and dephasing. If the first mechanism domi
the signal is emitted in a short pulse with a radiative yield close to unity.

I am grateful to M. D. Sturge and J. M. Worlock for helpful discussions and s
gestions and for critical reading of the manuscript. The support of the Office of N
Research under Contract No. N000149410853 is acknowledged.
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Phase diagram of a 2D metal system with a variable
number of carriers

V. P. Gusynin, V. M. Loktev,a) and S. G. Sharapov
N. N. Bogolyubov Institute of Theoretical Physics, Ukrainian National Academy of
Sciences, 252143 Kiev, Ukraine

~Submitted 28 October 1996; resubmitted 17 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 170–175~25 January 1997!

It is shown that the phase diagram of a 2D metal undergoing a super-
conducting transition consists of regions of a normal phase where the
modulus of the order parameter is absent, an ‘‘anomalous normal’’
phase where the modulus of the order parameter is different from zero
but the phase of the order parameter is a random quantity, and a
Berezinski�–Kosterlitz–Thouless phase. The characteristic tempera-
tures of transitions between the phases and the behavior of the chemical
potential as a function of the fermion density and temperature are
found. © 1997 American Institute of Physics.
@S0021-3640~97!01102-X#

PACS numbers: 74.72.2h, 74.20.Fg, 74.20.Mn, 64.60.Cn

1. Crossover between the limiting cases of Cooper-pair superconductivity
composite-boson superfluidity is drawing attention in connection with the problem
describing high-Tc superconductors~see, for example, Ref. 1!. The crossover region is
now understood for 3D systems at arbitrary temperatures2 and crossover has been stu
ied, though incompletely, in quasi-two-dimensional systems,3 while for 2D systems only
the caseT50 has been studied.2,4 The latter circumstance is well known to be due to t
fact that the fluctuations of the phase of the charged~complex! order parameter~OP! in
2D systems are so large that they make it impossible for long-range order to be
lished in such systems at any finiteT ~Mermin–Wagner–Hohenberg theorem!. The de-
scription of the appearance of a nonuniform condensate with power-law decay o
correlations~so-called Berezinskii–Kosterlitz–Thouless~BKT! phase!, however, entails
a number of difficulties. Nonetheless, several steps been made even in this directio
example, the BKT transition in the relativistic~2 1 1!-theory was studied in Ref. 5, an
crossover from superconductivity to superfluidity was studied in Ref. 6 according t
value of the carrier densitynf . However, the method employed in Ref. 6 to obtain t
temperatureTBKT of the BKT transition has a number of drawbacks. Specifically,
equation forTBKT was obtained neglecting the existence of a neutral~real! order param-
eterr, whose appearance at finiteT, being due to the breaking of only a discrete sy
metry, is consistent with the theorem mentioned above. As we shall see below,r gives
the modulus of a multivalued complex order parameter of a 2D system as a whole
only the modulus determines the possibility of the formation of nonuniform~including
vortex! configurations in the system. However, as a result of allowing for a neutral o
parameter, a region wherer decays gradually to zero appears in the phase diagram o
182 1820021-3640/97/020182-07$10.00 © 1997 American Institute of Physics
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system; this region separates the standard normal phase~NP! with r50 from the BKT
phase. Despite the exponential decay of the correlations in it, this new region of
very likely possesses unusual properties, sincer appears in all expressions in the sam
manner as does the energy gapD in the theory of ordinary superconductors, though
calculate the observed single-particle spectrum, of course, the carrier losses due t
tering of carriers by fluctuations of the phase of the order parameter and, in the c
real systems, by dopants must be taken into account.7 The possible existence of such
phase, which is also in some sense normal, might shed light on the frequently anom
~see, for example, Ref. 1! behavior of the normal state of high-Tc superconductors
specifically, the temperature dependences of the spin susceptibility, resistivity, sp
heat, photoemission spectra, and so on~see Refs. 8 and 9!, for the explanation of which
the idea of a pseudogap~and also spin gap! in the regionT.Tc is now widely employed.

Our objective in the present work is to establish thenf–T phase diagram of a 2D
metal whose carriers attract one another and to calculatenf as a function of the tempera
turesTBKT andTc

MF (Tc
MF is the temperature at whichr→0), between which lies the

region of the ‘‘anomalous normal’’ phase~ANP!.

2. We write down the simplest model Hamiltonian describing 2D fermions i
volumev:

H5cs
†~x!F2

¹2

2m
2mGcs~x!2Vc↑

†~x!c↓
†~x!c↓~x!c↑~x!. ~1!

Herex[r , t; cs(x) is the Fermi field;m is the fermion effective mass;s is the fermion
spin;m is the chemical potential;V is the attraction constant; and,\5kB51.

The desired phase diagram was calculated using the Hubbard–Stratonovich m
~see, for example, Ref. 4!, which has become standard in such problems. In this me
the partition functionZ(v, m, T) is a functional integral of the Fermi fields~Nambu
spinors! and an auxiliary fieldF5Vc↑

†c↓
† . In the 2D case, however, instead of using t

accepted method for calculatingZ in the variablesF andF* , it is better to perform the
calculation in modulus–phase variables, introducing according to Ref. 10 the param
ization F(x)5r(x)exp@2i2u(x)#, which corresponds to the obvious transformati
cs(x)5xs(x)exp@iu(x)#, where the field operatorxs(x) describes neutral fermions an
exp@iu(x)# corresponds to the charge degree of freedom. Making the corresponding
stitution in Eq. ~1! and integrating over the fieldsx, we arrive at the expressio
Z5*rDrDu exp@2bV(r,]u)#, where

V~r,]u!5
T

VE0
b

dtE drr22T Tr ln G21 ~2!

is the effective thermodynamic potential of the system andG is its single-particle Green’s
function, so that

G2152 Î ]t1t3S ¹2

2m
1m D1t1r2t3S i ]tu1

~¹u!2

2m D1 Î S i¹2u

2m
1
i¹u¹

m D
[G21~r!2S~]u!; ~3!
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in Eq. ~2! Tr is taken with respect to the spacer , the imaginary timet (<b[1/T), and
the Nambu indices, which appear in the Pauli matrixt j . It is important to note that
neither the smallness nor slowness of the variation of the phase of the order para
was assumed in obtaining expression~3!.

Since the low-energy dynamics in the phases in whichrÞ0 is determined mainly by
the long-wavelength fluctuations ofu(x), only the lowest order derivatives need b
retained in the expansion ofV(r,]u):

V~r,]u!5Vkin~r,]u!1Vpot~r!; Vkin~r,]u!5T Tr(
n51

`
1

n
~GS!nU

r5const

;

Vpot~r!5
1

VE drr22T Tr ln G21U
r5const

. ~4!

3. In the expansion ofVkin in Eq. ~4! it is sufficient to retain terms withn51, 2,
right up to;(¹u)2. The computational scheme is similar to that employed in Ref.
where only the case of high densitiesnf at T50 is studied, and givesb!

Vkin5
T

2E0
b

dtE drJ~m,T,r~m,T!!~¹u!2, ~5!

where

J~m,T,r!5
1

m
nF~m,T,r!2

T

p E
2m/2T

`

dx
x1m/2T

cosh2Ax21
r2

4T2

, ~6!

and the function

nF~m,T,r!5
m

2p HAm21r21m12T lnF11expS 2
Am21r2

T D G J ~7!

corresponds to the density of Fermi quasiparticles~for r50 the expression~7! is simply
the free-fermion density!. A direct comparison of expression~5! with the Hamiltonian of
the XY model12 and the closeness of the physical situations~two-component order pa
rameter in a 2D system! make it possible to write an equation forTBKT :

p

2
J~m,TBKT ,r~m,TBKT!!5TBKT . ~8!

Although mathematically the problem reduces to a well-known problem, the analo
incomplete. Indeed, in the standardXY model ~as well as the nonlinears model! the
vector~spin! subject to ordering is assumed to be a unit vector with no dependencec! on
T. In our case this is fundamentally not the case, and a self-consistent calculat
TBKT as a function ofnf requires additional equations forr andm, which together with
Eq. ~8! form a complete system.~In the BCS theory, which we recall is valid for ordinar
metals, it is assumed thatm5eF , where eF is the Fermi energy, and the chemic
potential is therefore not an unknown quantity.!
184 184JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Gusynin et al.
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4. The effective potentialVpot ~see Eq.~4!!, after some calculations, acquires th
form

Vpot~r!5vFr2

V
2E dk

~2p!2 H 2T ln cosh
Aj2~k!1r2

2T
2j~k!J G , ~9!

where j(k)5k2/2m2m. Then the desired missing equations are the condi
]Vpot(r)/]r50 that the potential ~9! be minimum and the equality
v21]Vpot/]m52nf , which fixesnf . For them we have, respectively,

1

V
5E dk

~2p!2
1

2Aj2~k!1r2
tanh

Aj2~k!1r2

2T
, ~10!

nF~m,T,r!5nf . ~11!

The equations~10! and ~11! obtained above comprise a self-consistent system
determining the modulusr of the order parameterd! and the chemical potentialm in the
mean-field approximation for fixedT andnf . As we have already mentioned,r andm
serve as the initial values for calculatingTBKT . The fact that the potential~9! depends
explicitly on r2 is a consequence only of a definite symmetry of the spectrum of ei
values of the operator~3!.

Settingr50 in Eqs.~10! and ~11!, we arrive~in the same approximation! at equa-
tions for the critical temperatureTc

MF and the corresponding value ofm:

ln
u«bu
Tc
MF

g

p
52E

0

m/2Tc
MF

du
tanhu

u
~g51.781!, ~12!

Tc
MF ln F11expS m

Tc
MFD G5eF . ~13!

Here«b522Wexp(24p/mV) is the energy of two-particle bound states, whereW is the
width of the conduction band,eF5pnf /m, and the change to«b means renormalization
or, in other words, passage to the limitsW→` andV→0. The parameter«b is physically
equivalent to the four-fermion constantV but is much more convenient to use. F
example, after renormalization Eq.~10! becomes

ln
u«bu

Am21r22m
52E

2m/T

`

du
1

Au21S r

TD 2FexpAu21S r

TD 211G
. ~14!

It is easy to show that atT50 the system~14!, ~11! possesses an exact solution2,4

r5A2u«bueF andm52u«bu/21eF . This shows that both the magnitude and sign ofm
are determined by the ratio betweeneF and u«bu. Otherwise, there arises a natural sep
ration of metallic systems into systems with low (eF!u«bu), high (eF@u«bu), and inter-
mediate (eF;u«bu) carrier densities. The first case corresponds to the formation of l
pairs and condensation scenarios according to the type of superfluidity; the secon
corresponds to Cooper pairs and BCS-type superconductivity; and, finally, the third
corresponds to composite bosons of intermediate radius~of the order of the average
185 185JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Gusynin et al.
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distance between fermions! and a crossover-type condensate. We also note that the q
tity ~6! vanishes on~and above! the mean-field critical line, which bounds the NP and t
ANP.

Finally, we underscore that in the equation for the variabler we restricted ourselves
to the mean-field approximation, since allowance for fluctuations ofr is not fundamental
for the final results. The non-single-valuedness of the phase of the order param
taken into account systematically — only¹u(x) were assumed to be small.

5. The numerical investigation of the systems~8!, ~11!, ~14! and~12!, ~13! gives the
following very interesting results, which are displayed graphically. a! The ANP region
~see Fig. 1! in the present model is commensurate with the BKT region. But it has
been ruled out that in the case of an indirect interaction or the quasi-two-dimens
model this region will narrow asnf increases. b! For low eF (!u«bu) the function
TBKT(eF) is linear, as is also confirmed by the analytical solution of the system~8!, ~11!,
and ~14!, which givesTBKT5eF/2. We note that the temperature of formation of
uniform order parameterTc5eF /(2a) ~wherea@1) even for the quasi-two-dimensiona
model3 in the limit of low densitynf . This shows that the weak three-dimensionalizat
can preserve~in any case, for lownf) the regions of the ANP and BKT phases, which, f
example, happens in the relativistic quasi-two-dimensional model.13 At the same time, as
the three-dimensionalization parameter increases, the BKT phase can vanish, pro
however, that the ANP region and both temperaturesTc

MF andTc are preserved. c! Figure
2 shows the values ofnf for which m differs substantially fromeF and, in other words,
the Landau Fermi-liquid theory becomes inapplicable for metals with low or interme
carrier density. As expected, the kink inm atT5Tc

MF , experiments on the observation o
which were discussed in Ref. 14 and have been interpreted for the1–2–3 cuprate,15

becomes increasingly less pronounced aseF increases. But in the present case it
interesting that in the approximation employed it happens at the NP–ANP bounda
before superconductivity actually appears. Therefore it would be of great intere
perform experiments which would reveal the temperature dependencem(T), especially
for strongly anisotropic~quasi-two-dimensional! and relatively weakly doped cuprates.!

FIG. 1. TBKT andTc
MF versus the seed-fermion density. The dots represent the functionr(eF) atT5TBKT . The

regions of the NP, ANP, and BKT phases are indicated.
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It follows from curve3 in Fig. 2 that the transition~change in sign ofm) from local to
Cooper pairs is possible not only aseF increases, which is more or less obvious, but a
~for some nf) as T increases. e! Finally, the calculations showed that the rat
2D/TBKT is always greater than 4.4; the value of 2D/Tc

MF is, however, somewhat lowe
and reaches the BCS theory limit of 3.52 only foreF@u«bu. It is interesting that this
behavior is consistent with numerous measurements of this ratio in higTc
superconductors.16,17

6. Even though the phase diagram found was obtained under simplifying ass
tions ~for example, fluctuations of only the phase of the order parameter were taken
account systematically!, it does show how sensitive the parameters of its critical lines
to the value ofnf . At the same time, it should be kept in mind that in contrast to the
transition, which occurs atr50, the BKT transition occurs in a state whererÞ0 and
therefore, as was noted above, the fluctuations of the modulus of the order para
should be weaker here and they should not suppressTc

MF completely. Allowing for them
is unlikely to affect the qualitative picture, but undoubtedly it would be interesting
estimate separately the role of the corresponding contributions of fluctuations ofr and
u. The correlated and uncorrelated pairs, whose existence in a high-Tc superconductor is
being widely discussed~see the reviews in Refs. 1, 8, and 9!, can be qualitatively com-
pared with regions where the phase diagram has been computed: Thus the pa
correlated forT,TBKT and uncorrelated forT.TBKT . In the NP region it is not so much
the fluctuations ofu but rather ofr that are important, and one should talk not abou
correlation of different pairs but rather about fluctuations in the number of pairs.

In this letter only the existence of the ANP was established and the boundar
this phase were calculated. However, the physical properties of this phase, primar
spectrum, require a special study, though it is obvious that in the ANP, which doe

FIG. 2. m(T) for different values ofeF /u«bu: 1— 0.05;2— 0.2; 3— 0.45;4— 0.6; 5— 1; 6— 2; 7— 5.
~For m.0 andm,0 the chemical potential was scaled toeF and u«bu, respectively.! The thick lines bound
regions of the BKT, ANP, and NP phases.
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exhibit superconducting properties, a gap~pseudogap! is present in the Fermi excitatio
spectrum.

One of us~V. M. L.! thanks V. A. Gasparov for a discussion of the possibilities
observing the BKT phase in high-Tc superconductors and also V. F. Gantmakher for
interest in this work and for encouragement.

a!e-mail: vloktev@gluk.apc.org
b!The total derivative with respect tot and terms which are not important for the further calculations
dropped.

c!There is no doubt that in certain situations~for example, very highT) it also can become a thermodynam
variable, i.e., dependent onT, as happens in problems of phase transitions between ordered~magnetic! and
disordered~paramagnetic! phases when the spin itself vanishes. Specifically, for quasi-two-dimensional
systems it is virtually obvious that as one proceeds from high-T regions, at first a spin modulus forms in 2D
clusters of finite size and only then does global~3D! ordering occur.

d!It should be kept in mind that in the local-pair regime (m,0) the gapD in the quasiparticle excitation
spectrum equals notr ~as in the casem.0) but ratherAm21r2 ~see the review in Ref. 2 and the literatur
cited there!.
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Contact phenomena in a semiconductor film with
activational conduction

V. B. Shikin
Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow District, Russia

~Submitted 28 November 1996; resubmitted 18 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 176–181~25 January 1997!

It is noted that the contact of an unscreened, two-dimensional electronic
system with ‘‘external’’ metallic electrodes destroys the spatial unifor-
mity of its electron density, which decreases slowly~inversely as the
distance from the interface! away from the contact zone. These effects
are especially pronounced in systems with a small number of carriers,
for example, semiconductor films with an exponentially low electron
~hole! density, when the nonuniform part of the contact density com-
petes without difficulty with its initial, uniform component. The effect
of contact phenomena on the conductivity of a semiconductor film,
which is the central part of a Corbino disk, for different temperatures,
doping levels and doping composition, sample dimensions in the direc-
tion of the current, and so on is described in detail. A comparison with
existing experiments is presented. ©1997 American Institute of Phys-
ics. @S0021-3640~97!01202-4#

PACS numbers: 73.50.Jt, 73.50.Gr

Contact phenomena are well known in the physics of three-dimensional~3D! con-
ducting media~see, for example, Refs. 1 and 2!. These phenomena are accompanied
a breakdown of the local neutrality of conductors in the contact zone as a result o
need for some free carriers to be transferred from one medium into another. Neutra
the volume of the contact pair is destroyed exponentially at interatomic distance
good metals and at the corresponding Debye screening length in typical semicond
In the case of the free faces of conductors the contact electric fields ‘‘extend’’ into
vacuum and are screened by the conductors much more weakly~power-law manner! than
in the interior.1

Surface effects are clearly not important in various three-dimensional problem
the type where Schottky barriers or the properties ofp–n junctions must be described.1,2

However, the situation changes in contact problems involving two-dimensional~2D!
conductors. The initial factors leading to the appearance of a contact potential diffe
~mainly, different work functions of the media in contact! also remain for such contacts
But in a 2D system, screening of the contact fields through the vacuum is the
possible way. As a result, the slowly decreasing contact surface charge density, wh
of no importance in three-dimensional problems, is at center stage in the study of
dimensional contact phenomena.
189 1890021-3640/97/020189-07$10.00 © 1997 American Institute of Physics
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Among the as yet few, examples of an explicit manifestation of ‘‘long-range acti
in the effect of contacts on the properties of low-dimensional electronic systems
mention the fact that the real dimensions of the region with an integer filling factor in
2D part of a Corbino disk under conditions of the quantum Hall effect~the experiment in
Ref. 3 and interpretation in Ref. 4! are different from the nominal dimensions of th
region; specific oscillations of the Corbino conductivity as a function of the magn
field,5 when the resistance of the apparatus is determined mainly by its central part,
the filling factor is small, and the period of the oscillations assumes a value th
characteristic for the metallic Corbino ‘‘electrodes’’ with a quasiclassically large fill
factor; and, so on.

Our objective in the present work is to discuss in the spirit of Ref. 4 the prope
of a quasi-one-dimensional Corbino disk whose central part is a 2D semiconducto
with activational conductivity. For simplicity, the metallic contacts are also assume
be two-dimensional. The requirement that the film be two-dimensional means tha
thicknessd of the film is less than the corresponding Debye radius for the given s
conductor. The quasi-one-dimensionality of the Corbino geometry presupposes th

R22R1!~R21R1!/2, ~1!

whereR2 andR1 are the outer and inner radii of the semiconductor part of the Corb
disk.

Specifically, we shall consider below an extreme version of the problem, in w
the semiconductor film occupies the stripz50, 2w,x,1w and is in contact with
semi-infinite metallic ‘‘electrodes’’, which also lie in thez50 plane. The composite
character of the system is determined mainly by a jump in the work functionF(x):

F~x!5Fm , uxu.w; F~x!5Fs , uxu,w. ~2!

Here 2w is the width of the semiconductor-filled strip along thex axis. Besides the work
function, the characteristics of the semiconductor include also the donor densitynd and
acceptor densityna , as well as the position of the donor levelEd and the acceptor leve
Ea with respect to the bottom of the conduction band.

The electrons occupy the same planez50 as the donors, and the electron dens
n(x) varies along thex axis, corresponding to the radial direction of the Corbino di
The properties of the film in the vertical direction are not specified. It is assumed tha
film is quite thin and that its characteristics are all uniform over its thicknessd.

The model~2! is convenient from the formal standpoint because of its simplicity
contains the well-known~from Ref. 1! singularities of the electron density in the conta
zones~see the definition ofdn0(x) in Eq. ~4!! and permits regularization of the singu
larities by the methods presented in Ref. 4.

1. Proceeding to the study of the properties of the system~2!, we consider first the
equilibrium results, comparing in so doing the ‘‘pictures’’ of 3D and 2D meta
semiconductor contacts for the case when an-type semiconductor is enriched with ext
electrons.

In the 3D case the transfer of electrons into the semiconductor results in the ap
ance of a band with high electron density2 near a contact placed at the pointx50:
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dn~x!5nkS a

a1xD
2

, a25kT/2pnke
2, x.0. ~3!

Here nk is a 3D electron density at the metal–semiconductor boundary and is pr
tional to the difference of the work functions, andk is the dielectric constant.

For the two-dimensional problem with the same accuracy as in Eq.~3!, the distri-
bution dno(x) of the perturbed electron density of contact origin is given by~the origin
of the coordinates lies at the pointx50, according to the model in Eq.~2!!

dno~x!5
kwwms

p2e~w22x2!
, ewms5Fm2Fs.0, ~4!

whereFm andFs are the work functions for the metallic ‘‘electrodes’’ and the semico
ductor. The symbol.0 in the definition ofwms in Eq. ~4! corresponds to the case o
enrichment for the semiconductor film. The power-law singularities at the ends o
interval 2w are not very important for the effective conductivity of the system~see below
for a more detailed discussion! and can be eliminated if so desired~see Ref. 4!. In the
central part, where the distributiondno(x) ~4! possesses a minimum, the definition~4!
can be used, just as in the case~3!, so long as

dno~x!.ne , ne5Ancnd exp~2Ed/2T!, nc5
4pm*T

h2
; ~5!

Here nc andm* are the 2D density of states and the electron effective mass in
conduction band of an-type semiconductor andEd is the activation energy~position of
the donor level relative to the bottom of the conduction band!.

In the situationdno(x),ne the problem of the electron distribution in the film mu
be solved more accurately than was done in the derivation of Eq.~4!. Qualitatively, just
as in the 3D theory, the interpolation

ne~x!5ne1dno~x!, 2w!x!1w, ~6!

wherene is taken from Eq.~5! anddno(x) is taken from Eq.~4!, is a good approximation
for this region.

Comparing Eqs.~3! and ~4!, it is easy to see their similarity~the weak dependenc
on T) and difference~the distribution~4! is much more even and does not contain ev
a power-law radius of convergence, as in Eq.~3!!. The accuracy of the asymptoti
expressions~3! and~4! at large distances from the contacts is also the same. This jus
the interpolation~6! for ne(x) constructed by analogy to the 3D case.

2. The next part of the calculation concerns the introduction of a correctiondn(x) to
Ohm’s law for a Corbino disk. Here we shall restrict ourselves to the simplest possi
— the Drude approximation:

j5
ne~x!e2t

m*

dm

dx
, ne~x!5ne1dno~x!, ~7!

wherem is the electrochemical potential,t is the momentum relaxation time,ne is taken
from Eq. ~5!, anddno(x) is taken from Eq.~4!. Assuming now that the current densi
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j is conserved in the radial direction of the Corbino disk, the effective relation betw
j and the potential differenceV at the edges of the high-resistance part of the disk can
determined:

V5E
2w

1w

dsdm/ds5
m* j
e2t E2w

1w ds

ne1dno~s!
. ~8!

The definition~8! attests to the fact that the singular points of the functiondno(x) from
Eq. ~4! make no contribution to the integral.

Expression~8! can ultimately be reduced to the following effective Ohm’s law:

j5s
V

2w
, s5s0f ~d!, s05e2tn0 /m* ~9!

f ~d!5
d

d2 0.5~12d2!ln
11d

12d

, d5~ 11 l /w!21/2, l5
kewms

p2e2ne
.

Herewms is given by Eq.~4! andne by Eq. ~5!.

If d512e, e!1,

f ~d!.
1

12e ln~2/e!
, e5 0.5l /w. ~10!

In the opposite limiting cased→0 (l@w)

f ~d!.3/2d2. ~11!

Formulas~9!–~11! contain the canonical part of the IVC, viz.,j5soV/2w, and a correc-
tion factor f (d) that takes into account the effect of the contacts. Asw decreases, at fixed
temperature, this factor effectively increases the conductivity as a result of the var
of the parameterl /w. If w is fixed and the temperature varies, however, then in ac
dance with the definition of the lengthl ~9! this factor modifies the activational temper
ture dependence ofs0 contained in the definition ofne .

3. As a supplement to the problem of a film of an-type semiconductor we shall als
study the case of mixed doping: donors1 acceptors. The degree of compensation

k5na /nd , k<1, ~12!

is assumed to be quite high, and the temperature interval corresponds to simple h
conduction.

It is obvious that in this case the contact electrons, which are not confined i
conduction band, reach the acceptors, charge them, and thereby locally change the
of compensation of the semiconductor, which in turn results in a renormalization o
basic parameters of hopping conduction. On this basis, we write with the aid of Ref.
effective resistance of the film in the limiting case of a deep compensation, which w
interested in here:
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V5E
2w

1w

r~x! jdx; r~x!5roexpF S 2.86

aAnd
D 1S «~x!

T D G , ~13!

«~x!5e lnF 1

12k~x!G , k~x!5
na~x!

nd
, @12k~x!#!1,

na~x!5na2dn0~x!, e5e2k21And . ~14!

Herena andnd are the corresponding two-dimensional acceptor and donor densitie
a is the characteristic Bohr radius of an electron on a separate donor. As noted abo
contact electrons with densitydno(x) ~4! influence the local acceptor densityna(x) ~14!
~the extra electrons escape to the acceptors, decreasing their active number, a
number of donor locations via which the hops occur remains unchanged!.

It is obvious that the integral~13! possesses a saddle point atx50. On this basis, we
rewrite the definition~13! in the form

V5r j , r5r0w* expF S 2.86

aAnd
D 1S «~0!

T D G , ~15!

«~0!5e lnF 1

12k~0!G , k~0!5
na~0!

nd
, @12k~0!#!1,

w*5A pT

u«9~0!u
, «9~0!52

2edno
ndw

2~12D!
, D5

na2dno
nd

.

Herena(0) is given by Eq.~14!.

Formula~15! for r shows that contact phenomena have an exponential effect o
activation energy for hopping conduction. In the strong compensation regime, the
vation energy is determined mainly by the ‘‘distance’’ between the position of the F
level and the maximum of the donor density of states. As excess electrons appe
change the degree of compensation at the center of the semiconductor, this ‘‘dist
decreases, as a result of which the activation energy for hopping conduction decre

Size effects in hopping conduction in semiconductor films have been observ
Ref. 7. For a quantitative analysis of the data in Ref. 7 it is convenient to rewrite
definition of «(0) in Eq. ~15! with the geometric factorl /w singled out:

«w[«~0!5e2k21And lnF 1

12k~12 l /w!G , k5na /nd , ~16!

l5
kfab

p2e2nd
. ~17!

The definition~16! of the activation energy contains three parameters:na , nd , andl . To
estimate their numerical values, we employ the data of Ref. 7. Figure 29 of that d
tation makes it possible to distinguish the following pairs of numbers for a chann
lengthw in microns and the corresponding activation energy«w in degrees Kelvin:

~w,«w!5~145;15!; ~12;10.8!; ~3.5;9.0!; ~1;7.6!; ~0.45;4.4!. ~18!
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Formula~16! fits the data~18! best if

k50.99, l50.1mm. ~19!

The degree to which the points~18! correspond to the defnitions~16! and ~19! is illus-
trated in Fig. 1.

Knowing k and l , we shall estimatend andewms with the aid of expressions~15!
and ~17! for «(0) andl , respectively. Fork510

nd5109 cm22, ewms5p2e2ndk
21l.10 K. ~20!

Hence it follows that the average distance between the nominal donors and acc
is greater than or of the order of 1025 cm. This distance is greater than the thickness
the films employed in the experiments of Ref. 7, and as noted above this ma
possible to employ the 2D approximation in writing formula~13! for r(x).

Comparing the quantityewms.10 K in Eq. ~20! with the known values of the
contact potential difference shows that it is relatively small. But it is necessary to
into account the fact that the activiation energies~18! are also small for typical semicon
ductor objects. In this case, it is important that even small values of the contact pot
difference are sufficient to account for the observed dependence of the activation e
on the dimensions of the channel.

In closing, we note that contact phenomena in low-dimensional systems and
cifically, in semiconductor films appreciably influence the equilibrium and trans
properties of the films. This occurs in cases when the spatially nonuniform contac
rection to the electron density is comparable to the initial electron density of the s
conductor. Taking account of the strong dependence of the nonuniform part of the d
on the geometric parameters of the problem and the temperature, it is possible to p
the various size and temperature effects of contact origin in the conductivity of sem
ductor films. Some of these effects have already been observed experimentally.

FIG. 1. Relative activation energy«(0)/e versus the channel widthw for fixed values ofk and l . The plot is
constructed in rectilinearizing coordinates fork50.99 andl50.1 mm. The open circles represent the expe
mental points from Ref. 7, whose values are presented in Eq.~18!.
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Thermoelectric effect in high- Tc superconductors: The
role of density-of-states fluctuations
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We study the effect of the density-of-states~DOS! fluctuations on the
thermoelectric coefficient of a highly anisotropic superconductor above
the critical temperature. It is shown that it is the DOS contribution
which gives rise to the leading correction to the thermoelectric coeffi-
cient, in spite of previous results where only the Aslamazov–Larkin
term was taken into account. This conclusion is valid for an arbitrary
impurity concentration. ©1997 American Institute of Physics.
@S0021-3640~97!01302-9#

PACS numbers: 72.15.Jf, 74.40.1k

1. The problem of the thermoelectric effect in the fluctuation regime has b
attracting the attention of theoreticians for more than twenty years, ever since the
of Maki.1 The main question which should be answered is whether or not the corre
to the thermoelectric coefficientb has the same temperature singularity in the vicinity
the critical temperatureTc as does the correction to the electrical conducticitys. In the
paper of Maki1 only a logarithmically divergent contribution was predicted in the tw
dimensional~2D! case, and its sign was found to be opposite to the sign of the nor
state thermoelectric coefficientb0. Later on, in a number of papers

2–4 it was claimed that
the temperature singularity of the fluctuation correction tob is the same as it is fors
~}(T2Tc)

21 in 2D!. Finally, Reizer and Sergeev5 have recently revised the problem
using both the quantum kinetic equation and linear response methods and have
that, in the case of an isotropic electron spectrum, the strongly divergent contributio2–4

are canceled out for any dimensionality, and the final result has the same logar
singularity as was found by Maki, but with the opposite sign. We should emphasize
in all papers cited above only the Aslamazov–Larkin~AL ! contribution was taken into
account, while the anomalous Maki–Thompson~MT! term was shown to be absent.2,5 It
has been mentioned5 that an incorrect evaluation of the interaction corrections to
heat-current operator in Refs. 2–4 produced erroneously large terms, which real
canceled out within the adequate procedure. Due to this strong cancelation the AL
196 1960021-3640/97/020196-06$10.00 © 1997 American Institute of Physics
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turns out to be less singular as compared to the corresponding correction t
conductivity.5

On the other hand, it is now well established that in every case, where the le
AL and MT fluctuation corrections are suppressed for some reason, the contrib
connected with fluctuation renormalization of the one-electron density of states~DOS!
can become important. As examples we can mentionc-axis fluctuative transport,6,7 the
NMR relaxation rate,8 and infrared optical conductivity.9 In this communication we show
that an analogous situation also takes place in the case of the thermoelectric coef
In what follows we study the DOS contribution to the thermoelectric coefficien
superconductors with an arbitrary impurity concentration aboveTc . We will be mostly
interested in the 2D case, but the generalization to the case of a layered supercon
will be done at the end. We show that, although the DOS term has the same tempe
dependence as the AL contribution,5 it turns out to be the leading fluctuation contributio
in both the clean and dirty cases, due to its specific dependence on the electron me
path.

2.We use units in which\5c5kB51. We introduce the thermoelectric coefficie
b in the framework of linear response theory as:

b5 lim
v→0

Im@Q~eh!R~v!#

Tv
, ~1!

whereQ(eh)R~v! is the retarded Fourier component of the correlation function of
electric and heat current operators. This correlation function in the diagrammatic
nique is represented by the two exact electron Green’s functions loop with two ext
field vertices, the first,2ev, associated with the electric current operator and the sec
i /2(en1en1n)v, associated with the heat current operator@en5pT(2n11) is the fermi-
onic Matsubara frequency andv5]j~p!/]p, wherej is the quasiparticle energy#. Taking
into account the first order of perturbation theory in the Cooper interaction and aver
over impurity configurations, one can find the ten diagrams presented in Fig. 1. The
lines representG~p,en!51/~i ẽn2j~p!!, the single-quasiparticle normal-state Gree
function averaged over impurities, which contains the scattering lifet
t~ẽn5en11/2t signen!. The shaded objects are the vertex impurity renormaliza
l~q50,en ,en8) ~see Ref. 7!. The wavy line represents the fluctuation propagatorL~q,Vk!:

L21~q,Vk!52rF ln T

Tc
1cS 121

uVku
4pT

1
2hq2

p2 D2cS 12D G , ~2!

where

h52
vF
2t2

2 FcS 121
1

4pTt D2cS 12D2
1

4pTt
c8S 12D G

is a positive constant which appears in the expression for the current in Ginzb
Landau theory in the 2D case~r is the one-electron density of states andc(x) andc8(x)
are the digamma function and its derivative, respectively!. The first diagram describes th
AL contribution to the thermoelectric coefficient and was calculated in Ref. 5 with
electron–hole asymmetry factor taken into account in the fluctuation propagator.
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grams 2–4 represent the Maki–Thompson contribution. As was mentioned in Refs.
5, neither the anomalous nor the regular parts of this diagram contribute tob in any order
of electron–hole asymmetry. In what follows we will discuss the contribution fr
diagrams 5–10, which describes the correction tob due to DOS renormalization.

For diagrams 5 and 6 we have

Q~516!~vn!522eT(
Vk

E ~dq!L~q,Vk!T(
en

i ~en1n1en!

2 E ~dp!v2

3@l2~en ,2en!G
2~p,en!G~q2p,2en!G~p,en1n!

1l2~en1n ,2en1n!G2~p,en1n!G~q2p,2en1n!G~p,en!#. ~3!

~We use the shorthand notation~dq!5ddq/(2p)d, whered is the dimensionality!. Evalu-
ating Eq.~3!, one naturally obtains a zero result without taking into account the electr
hole asymmetry. The first possible source of such a factor is contained in the fluctu
propagator and was used in Ref. 5 for the AL diagram. Our calculations show that fo
DOS contribution this correction to the fluctuation propagator results in a non-sin
correction tob in the 2D case and can be neglected. Another source of electron–
asymmetry is connected with the expansion of the energy-dependent functions in
of j/EF near the Fermi level in performing thep-integration in Eq.~3! ~EF is the Fermi
energy!:

rv2~j!5rv2~0!1jF]~rv2~j!!

]j G
j50

. ~4!

FIG. 1. The Feynman diagrams for the fluctuation correction to thermoelectric coefficient are shown
shaded partial circles are impurity vertex corrections, the dashed curves with central crosses are ad
impurity renormalizations, and the shaded heavy lines are additional impurity vertex corrections.
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tri-
o not
ctor
r

-

n
nal

th
Only the second term in Eq.~4! contributes to the thermoelectric coefficient. The con
bution of diagrams 7 and 8 can be calculated in analogous way. Diagrams 9–10 d
give any singular contribution to the thermoelectric coefficient on account of the ve
character of the external vertices, and, as a result, an additionalq2 factor appears afte
p-integration. The same conclusion concerns the MT-like diagram.3,4

Performing the integration overj, we find the contribution of the important dia
grams 5–8 in the form

Q~528!~vn!5
eT2

4 F]~rv2~j!!

]j G
j50

E ~dq!L~q,0!~S11S21S3!, ~5!

where we have separated the sums over semi-infinite~~2`,2n21#, @0,̀ !! and finite
~@2n,21#! intervals:

S152(
n50

`
2en1vn

2ẽn1vn
S ẽn1vn

~en1vn!2
1

ẽ

en
2D ,

S25
1

~1/t1vn!2 (
n52n

21

~2en1vn!2S ẽn1n

en1n
2 2

ẽn
en
2D ,

S35~11vnt! (
n52n

21

~2en1vn!S 1

en1n
2 2

1

en
2D . ~6!

S1 andS2 are associated with diagram 5–6, whileS3 is associated with diagram 7–8. I
calculating the sums~6! we are interested in terms which are linear in the exter
frequencyvn . SumS1 turns out to be an analytic function ofvn and it is sufficient to
expand it in a Taylor series after analytical continuationvn→2iv. The last two sums
over finite intervals require more attention because of their nontrivialvn dependence, and
before analytical continuation they have to be calculated rigorously. The result is

S1
R5

iv

4T2
; S2

R52
2ivt

pT
; S3

R52
iv

2T2
. ~7!

Finally, we perform the integration overq, and the total contribution associated wi
DOS renormalization in 2D case takes the form:

bDOS5
1

8p2

eTc
vF
2r

F]~v2r!

]j G
j50

lnS Tc
T2Tc

Dk~Tct!, ~8!

k~Tt!52

11
p

8Tt

TtFcS 121
1

4pTt D2cS 12D2
1

4pTt
c8S 12D G
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Tt'9.4Tt for Tt!1,

1

Tt
for Tt!1.

~9!

To generalize this result to the important case of a layered superconductor one h
make the substitution to ln(1/e)→ ln@2/(Ae1Ae1r )# ~e5(T2Tc)/Tc andr is an anisot-
ropy parameter7! and to multiply Eq.~8! by 1/pFs, wheres is the interlayer distance. In
the limiting case of a 3D superconductor~r@e! both the AL5 and DOS contributions are
nonsingular.

3.Comparing Eq.~8! with the results of Ref. 5 for the AL contribution, we conclud
that in both the limiting cases of clean and dirty systems the decrease ofb due to
fluctuation DOS renormalization dominates the thermoelectric transport due to the
process. In fact, the total relative correction to thermoelectric coefficient in the case
2D superconducting film of thicknesss can be written in the form:

bDOS1bAL

b0
520.09

1

EFt

1

pFs
lnS Tc

T2Tc
D Fk~Tct!110.6 ln

QD

Tc
G , ~10!

where the first term in square brackets corresponds to the DOS contribution~8! and the
second term describes the AL contribution from Ref. 5~QD is the Debye temperature!.
Assuming ln~QD/Tc)'2 one finds that the DOS contribution dominates the AL contrib
tion for any value of the impurity concentration:k as a function ofTt has a minimum at
Tt'0.3, and even at this point the DOS term is larger. In the two limiting casesTt!1
andTt@1 this difference increases strongly.

The temperature and impurity-concentration dependences of the fluctuation co
tions tob can be evaluated through a simple qualitative consideration. The thermoele
coefficient may be estimated in terms of the electrical conductivitys ash;(e* /eT) f ass,
wheree* is the characteristic energy involved in thermoelectric transport andf as is the
electron–hole asymmetry factor, which is defined as the ratio of the difference bet
the numbers of electrons and holes to the total number of particles. The conductivit
be estimated ass;e2N t* /m, whereN , t* , andm are the density, lifetime, and mass o
the charge~and heat! carriers, respectively. In the case of the AL contribution the h
carriers are nonequilibrium Cooper pairs with energye*;T2Tc and density

N ;pF
d T

EF
ln

Tc
T2Tc

and with a characteristic time given by the Ginzburg–Landau timet*;tGL5p/8(T2Tc).
Thus in the 2D case

DhAL;~T2Tc!/~eTc! f asDsAL;e fas ln
Tc

T2Tc
.

One can easily see that the fluctuation correction due to AL process is less sin
~logarithmic in 2D case! than the corresponding correction to the conductivity and do
not depend on impurity scattering.5
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An analogous consideration of the single-particle DOS contribution~e*;T, t*;t!
evidently results in the estimate

b;e fasTct ln
Tc

T2Tc
,

which coincides with Eq.~8! in the clean case. The dirty case is more ‘‘sophisticate
because the fluctuation density-of-states renormalization depends strongly on the c
ter of the electron motion, especially in the case of diffusive motion.10 The same density-
of-states redistribution in the vicinity of the Fermi level enters directly into the rigor
expression forb, and it is not enough to write the fluctuation Cooper pair densityN but
it is necessary to take into account some convolution withdrfl~e!. This is what was
actually done in the previous calculations.

Experimentally, although the Seebeck coefficientS52h /s is probably the easies
to measure of thermal transport coefficients, the comparison between experime
theory is complicated by the fact thatS cannot be calculated directly; it is rather
composite quantity made up of the electrical conductivity and thermoelectric coeffic
As bothh ands have corrections due to superconducting fluctuations, the total corre
to Seebeck coefficient is given by

DS5S0S Db

b0
2

Ds

s0
D . ~11!

Both these contributions provide a positive correctionDb, thus resulting in a decrease o
the absolute value ofS at the edge of superconducting transition~Db/b0,0!. As to the
fluctuation correction to the conductivity,Ds/s0.0, we see from Eq.~11! that thermo-
dynamic fluctuations aboveTc always reduce the overall Seebeck coefficient as
temperature approachesTc . So the very sharp maximum in the Seebeck coefficien
high-Tc materials experimentally observed in several papers11 seems to be unrelated t
fluctuation effects within our simple model, even leaving aside the question of the
perimental reliability of these observations.
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Momentum dependence of the dimensionality of the
electronic states in heterostructures

V. V. Kapaev and Yu. V. Kopaeva)

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Ru

~Submitted 20 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 188–193~25 January 1997!

Bound states of electrons~holes! in quantum wells and wires with
asymmetric barriers can exist in bounded regions of two- and one-
dimensional momentum space, respectively. As the corresponding mo-
mentum increases, both the disappearance~increase of dimensionality!
and appearance~decrease of dimensionality! of bound states as well as
the existence of a sequence of several such transformations of dimen-
sionality are possible. In the case of anisotropic effective masses in the
quantum wells and barriers, the forms of the lines of disappearance and
appearance of bound states are different from the forms of the isoen-
ergy lines. Therefore there is a finite energy interval~i.e., electron
density interval! where bound states exist on only a part of an isoenergy
line. The dimensionality of the states can be controlled with an electric
field; this should be observable in a number of the experiments
discussed. ©1997 American Institute of Physics.
@S0021-3640~97!01402-3#

PACS numbers: 68.65.1g

For quantum wells the in-layer wave-vector components (kx , ky) are conserved.
Since the effective-mass components are different in the materials in contact, the
tive potentials will depend onkx andky . This can even change the sign of the effect
potential, i.e., a potential well can be converted into a barrier and vice versa. This
was discussed in Refs. 1–3. However, the critical valueskc of the wave vectors for which
bound states appear or disappear are too high from the standpoint of both the pos
of observation and the correctness of the description. This letter shows that these
lems can be solved in principle for quantum wells and wires with asymmetric barri

1. The wave function of the quantum wells can be represented in the
c(x,y,z)5Z(z)exp(ikr), wherez is the coordinate in the direction of the growth ax
r lies in the plane of the layers, andk5(kx

21ky
2)1/2. The Schro¨dinger equation for

Z(z) in the case of isotropic masses in each layer of the heterostructure has the f

Z9~z!1
2mn

\2 SE2
\2k2

2mn
2UnDZ~z!50, ~1!

wheremn andUn are the effective mass and potential in thenth layer. The functions
Z and Z8/mn are continuous at the boundaries of the layers. For a quantum we
thicknessd this results in a dispersion relation for the energyE of the bound states
202 2020021-3640/97/020202-07$10.00 © 1997 American Institute of Physics
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m1m2
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k

mD sin kd50, ~2!

where

k5F2m\2 ~E2V0~k!!G1/2, k1,25F2m1,2

\2 ~V1,2~k!2E!G1/2,
m1 , m2 , andm are the effective masses in the left- and right-hand barriers and in
well; V1,2(k)5U1,21\2k2/2m1,2 andV0(k)5\2k2/2m are equal to the potentials of th
barriers and the well for finitek and toUi for k50.

For U1ÞU2 a bound state appears for well width above a critical value.4 The
asymmetry of the barriers can be characterized by the parameter

b~k!5@V2~k!2V0~k!#/@V1~k!2V0~k!#.

Form,m1 the sign of the derivative]b(k)/]k is the same as that of the parametera:

a5
U2

U1
2
m22m

m12m

m1

m2
, ~3!

i.e., ask increases, the system becomes increasingly asymmetric fora.0 ~for definite-
ness, we assume thatU2.U1) and increasingly symmetric fora,0. If m.m1, then
]b(k)/]k anda have opposite signs.

For type-I heterostructures the relationsm,m1,m2 are typical. In this case, fo
ki5@2Uimmi /\

2(mi2m)#1/2 the barrier vanishes on the left (i51) or right (i52) side
and forks5@2(U22U1)m1m2 /\

2(m22m1)#
1/2 the barrier heights are equal. The rel

tive arrangement ofk1 , k2 , and ks is determined by the sign ofa: k1,ks,k2 for
a.0 andks,k2,k1 for a,0.

Barrier asymmetry results in vanishing of a bound state for values ofkc much less
than k1 and k2. To determinekc , Eq. ~2! must be solved fork under the additional
conditionE5Vi(kci). Fora.0 there is one critical valuekc1, and the equation forkc1 is

d

l
5

1

2pk̃
tan21 F mm2

~b~kc1!21!G1/21 n

2k̃
, ~4!

where

k̃5F12~kc1 /k0!
2S 12

m

m1
D G1/2, k052p/l, l5~2p2\2/2mU1!

1/2,

n50, 1, ... is the number of the subband. Fora,0 there is a second valuekc2 which is
obtained from Eq.~4! with k̃5@U2 /U12(kc2 /k0)

2(12m/m2)#
1/2 and the substitutions

m1⇔m2 andb replaced by 1/b.

A state diagram in the variablesd(k), which describes the limit between the boun
~2D! and unbound~3D! states, is displayed in Fig. 1. Curve1 corresponds toa.0. A
bound state exists above and to the left of this curve. Ford,dc1 there is no bound state
for any k. For d.dc1 a bound state exists in the interval 0,k,kc1, and the value of
203 203JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 V. V. Kapaev and Yu. V. Kopaev
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kc1 increases from 0 tok1 asd increases. The functionE(k) for d.d1 is displayed in
inset a in Fig. 1~solid lines — 2D states, dashed lines — 3D states!.

Curves2 and28 correspond toE5V1 andE5V2 for a,0; inset b corresponds to
the cased,dc2 and inset c corresponds tod.dc2. For a,0 the functiond(kc) can
possess a maximum~curve 3 in Fig. 1!. In this case three critical valueskc exist in a
narrow range of layer thicknessesdc2,d,dmax ~see inset d!. The disappearance of th
state ask→kc1 is due to the fact that despite the symmetrization of the system, the
depth decreases more rapidly than the barrier heights equalize.

The conditionm,m1,m2 anda.0 holds for the widely investigated heterostru
tures based on three-component substances of the type AxB12xC, where barrier asymme
try is achieved as a result of different values ofx on the left and right sides. Fo
GaAs/AlxGa12xAs structures withx150.1, x250.4, andd525 Å we havekc50.3k0,
which is approximately an order of magnitude less than the value ofk1. The Fermi wave
vectorkF in this case equalskc with electron densityN51018 cm23 in the well. For small
well widths the matching of the lattices is not of fundamental importance. This incre
the number of possible compounds witha,0 for observing the effect described. A
example is the heterostructure AlxGa12xAs/InyGa12yAs/GaAs. Forx50.4 andy50.03
the parametera5220, asymmetry decreases with increasingk, and the critical width
dc at k50 equals 36.6 Å.

Applying an electric fieldFz changes the ratio of the potential barriers, leaving
masses in the layers unchanged. This ‘‘decoupling’’ of the masses and potentials
it possible to control the parametera. A transition froma.0 to a,0 ~and vice versa!
is possible in the case when the voltageDU is positive~negative! at the higher barrier,
i.e., all the situations examined above can be realized in structures with the same
position. Specifically, a functionE(k) of the type shown in the inset d in Fig. 1 i
obtained in the structure Al0.1Ga0.9As/GaAs/Al0.4Ga0.6As with a well width of 18 Å by
applying a voltage of the order of 0.1 V.

FIG. 1. Diagram of the states of a quantum well. The lines1, 2, and3 correspond to the conditionE5V1; lines
28 and 38 to E5V2, m151.1m, andm25 2.0m for U2 /U156 ~curve 1!; 4 ~2, 28), and 2 ~3, 38). Inset:
Dispersion curvesE(k): a! for curve1; b, c! — 2, 28; d! — 3, 38.
204 204JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 V. V. Kapaev and Yu. V. Kopaev
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We note several possibilities for observing the lines of disappearance~appearance!
of bound states in momentum space (kx , ky).

1. The character of the electron motion in a magnetic field will change both with
field oriented in the plane of the layers and along thez axis. Depending on the relativ
arrangement of the disappearance lines and the Fermi line, the oscillations of the k
and thermodynamic quantities in a magnetic field will correspond to the two-dimens
~2D! or three-dimensional~3D! cases. The quantum Hall effect should vanish a
2D–3D transformation. The transformation phenomenon itself can be observed
same sample by controlling the carrier density and the position of the disappearanc
by means of an electric field.

2. In the case of a 2D–3D transformation induced by an electric field, the char
of the phase transformations can change. For example, if ferromagnetic ordering
termined by magnetic ions in quantum wells by means of an indirect exchange intera
via the carriers, then ferromagnetism can vanish at a 2D–3D transformation.

3. In the case when the position of the disappearance~appearance! line changes, a
sharp change in the binding energy of excitons or impurity states can be observed
the binding energy for the 2D case is four times higher than for the 3D case. This
change will occur when the momentum of the disappearance~appearance! line equals the
corresponding reciprocal of the Bohr radius.

4. It is possible to observe the inverse Franz–Keldysh effect in superlattices
structed from asymmetric quantum wells, i.e., under the action of a fieldFz the width of
the forbidden miniband increases on account of a 3D–2D transformation. As a res
the formation of bound 2D states, the overlap integral of the wave functions bet
neighboring quantum wells decreases, and this results in a decrease of the widths
allowed minibands.

5. The 2D–3D transformation under the action of a lateral electric field can als
observed directly. The 2D–3D defocusing~or 3D–2D focusing! of electronic states
which occurs in this case can be observed in transient processes. In time-resolved
ments, the shift in the position of the excitonic line will be determined by the chang
the binding energy.

6. A system of two quantum wells, one of which possesses asymmetric barriers
be attractive for decreasing the threshold current in a quantum cascade laser.5 If the lower
subband corresponds to an asymmetric well, then the line of disappearance of th
band can lie much lower than the minimum of the top band. This will result in
suppression of one-phonon intersubband relaxation and a decrease of the thresho
rent.

2. The foregoing analysis can be easily extended to the case of anisotropic m
This case occurs if the extrema of the volume spectra do not lie at theG points of the
Brillouin zone. For hole states in Ge, Si, and III–V semiconductors, the masse
anisotropic even at theG points. Then the equation for determining the energies of
bound states has the form~2!, wherem, m1, andm2 must be interpreted as thez
components of the masses and the potentialsVi in the quantitiesk and k i must be
replaced byVi5Ui1\2/2(kx

2/mix1ky
2/miy), wheremix andmiy are the effective mass

components in thei th layer. To make a classification of the situations which are poss
205 205JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 V. V. Kapaev and Yu. V. Kopaev
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here, let us analyze the form of the lines of disappearance of the barriersV05V1 and
V05V2. The equations of these lines have the form

kx
2/ai1ky

2/bi51,

where

ai52Uimxmix /\
2~mix2mx!, bi52Uimymiy /\

2~miy2my!, i51,2.

These are ellipses ifai andbi are positive and hyperbolas if eitherai or bi are negative.
The relative arrangement of the points of disappearance of the barriers along eac
can be characterized by the parametersax anday . The relation betweenky andkx for
lines of appearance~disappearance! of the bound states is obtained from Eq.~2! with the
additional conditionE5Vi(kx , ky). The most important characteristics of the system
lines of equal energy~isoenergy lines!, which are obtained from Eq.~2! with E5 const.

Examples of the isoenergy lines~solid lines! and lines of disappearance of the bou
states~dashed lines! are presented in Fig. 2. Without loss of generality, we shall ass
that the masses in the well are isotropic and thatmiz5mix . For Figs. 2a,b the lines o
disappearance of the barriers are ellipses, and in both casesa2.a1 andb2.b1. Figure 2c
corresponds to the situation when the lineV05V1 is an ellipse andV05V2 is a hyperbola
intersecting an ellipse (a2,a1 andb2,0). For Fig. 2d the linesV05V1 andV05V2 are
hyperbolas with mutually perpendicular axes (a1.0, a2,0, b1,0, b2.0).

FIG. 2. Isoenergy lines~solid lines! and lines of disappearance~dashed lines! of quantum wells with anisotropic
masses forU2 /U152, miz5mix , and a! m1x51.2m, m2x53.0m, m1y51.15m, m2y51.7m, d50.08l; b!
m1x51.2m, m2x51.7m, m1y51.17m, m2y51.5m, d50.08l; c! m1x51.2m, m2x52.0m, m1y51.25m,
m2y50.7m, d50.14l; d! m1x51.5m, m2x50.7m, m1y50.8m, m2y53.0m, d50.30l. The isoenergy lines are
plotted with a step of 0.5 starting withE/U151.5 for part a and 1.0 for parts b–d.
206 206JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 V. V. Kapaev and Yu. V. Kopaev
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The most characteristic feature is that the forms of the lines of disappearanc
appearance are the same as those of the isoenergy lines. Therefore there is an
interval~and hence an interval of carrier densities! where bound states exist on part of th
isoenergy line. In this case the transformation of dimensionality accompanying a ch
in the controlling parameter~for example, the electric fieldFz) extends over some region
The isoenergy lines of 2D states in this region are unclosed, and magnetic breakdow
to tunneling from one section of the isoenergy curve to another can be observe
magnetic fieldHz .

3. To investigate the bound states of asymmetric quantum wires, we shall empl
approximate method consisting of reducing the two-dimensional problem to a seq
of one-dimensional problems.6 The problem is solved in two stages. First, a on
dimensional Schro¨dinger equation with potentialV(y,kz) is solved in each sectionx5
const. The resulting energy levele(x, kz), which depends on the coordinatex and wave
vectorkz , serves as an effective potentialV(x,kz) for electron motion along thex axis.

We shall investigate the dispersion lawE(kz) and calculate the existence region
bound states for quantum wires with asymmetric barriers for the example of wires w
rectangular cross section~see inset in Fig. 3! of width L and heightH. The effective mass
in the wire ism and the potential and mass in the barrier equalU1 andm1 for x,L and
m2 andU2 for x.L. For such a structure, the reduction to a one-dimensional prob
leads to the effective potentialV(x)[V1(kz)5U11\2kz

2/2m1 for x,0,
V(x)[V2(kz)5U21\2kz

2/2m2 for x.L, and the value ofV(x)[V0(kz) for 0,x,L is
determined from the solution of the transcendental equation

tan@L~2mV0 /\
22kz

2!1/2#52 f /~12 f 2!, ~5!

where

FIG. 3. BoundariesH(L) of the bound states in a quantum wire.
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F2m1~U12V0!1\2kz

2

2mV02\2kz
2 G1/2.

The solution of the 1D Schro¨dinger equation with the potentialV(x) gives the desired
wave-number dependence of the energyE(kz) of the localized state.

As in the case of quantum wells, the asymmetry of the structure can be charact
by the parametera ~3!. For a.0, there is a single condition for the appearance~disap-
pearance! of a bound stateE5V1(kz), and there are only points of disappearance of
spectrum~in quantum wells these were lines!. An example of a calculation of the family
of curvesH(L) for different kz for a wire based on GaAs/AlxGa12xAs with x50.4 for
the high barrier andx50.1 for the low barrier is presented in Fig. 3. For fixedkz , bound
states exist above and to the right of the lineH(L). For fixedH the critical valuekzc
increases monotonically withL. For example, forH530 Å one haskzc50.2k0 for
L5110 Å, kzc50.9k0 for L5140 Å, andkzc51.2k0 for L5200 Å.

The situation fora,0 is more complicated. In this case, together with the lin
H(L) corresponding toE5V1, there exist solutions withE5V2. The latter solutions
have a form similar to that displayed in Fig. 3. The main feature of the solutions
E5V1 is the existence of points of intersection of the linesH(L) for different values of
kz . For H and L corresponding to a point of intersection there are two values okz
(kz1 and kz18 ) for which E5V1. The form of the dispersion lawE(kz) in this case is
similar to that shown in the inset d in Fig. 1~solid lines — 1D, dashed lines — 3D!.

In the case of a 1D–2D~or 1D–3D! transformation, for example, induced by
transverse electric field, a transition is possible from a Tomonaga–Luttinger elec
liquid of the type in Ref. 7~bound state in a wire! to a Fermi liquid.
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Russian Interdisiplinary Science and Technology Program ‘‘Physics of solid-state n
structures,’’ and INTAS.
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Shallow acceptors in Ge/GeSi strained multilayer
heterostructures with quantum wells

V. I. Gavrilenko,a) I. V. Erofeeva, A. L. Korotkov, Z. F. Krasil’nik, O. A.
Kuznetsov, M. D. Moldavskaya, V. V. Nikonorov, and L. V. Paramonov
Institute of Microstructure Physics, Russian Academy of Sciences, 603600 Nizhni�

Novgorod, Russia

~Submitted 23 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 194–198~25 January 1997!

The impurity photoconductivity spectra of Ge/Ge12xSix strained het-
erostructures with quantum wells are investigated. It is established that
the built-in deformation in quantum-size Ge layers substantially
changes the spectrum of shallow acceptors, shifting it into the long-
wavelength region of the far-IR range. In strong magnetic fields the
photoconductivity lines are observed to split and shift as a function of
the field. This makes it possible to carry out a classification of the
transitions. ©1997 American Institute of Physics.
@S0021-3640~97!01502-8#

PACS numbers: 78.66.Db, 79.60.Jv

Size quantization in semiconductor heterostructures~HSs! substantially alters the
spectra of shallow impurities in quantum wells as compared with bulk semiconduc
At present, shallow donor impurities in quantum wells in the heterostruct
GaAs/AlxGa12xAs have been studied in greatest detail.

1,2 At the same time, impurities in
strained HSs, such as Ge/Ge12xSix , have practically escaped study. Here it is of great
interest to investigate shallow acceptors, since the deformation arising as a result
mismatch of the lattice parameters of Ge and Ge12xSix results in splitting of the valence
band, which is degenerate at the pointk 50, and a radical restructing of the ho
dispersion law. In the present work we have investigated experimentally the sh
acceptors in Ge/Ge12xSix strained multilayer HSs with quantum wells, in which th
spectra of the impurity states are determined simultaneously by both the elastic def
tion of the layers and size-quantization effects.

The Ge/Ge12xSix heterostructures (x'0.1, dGe, dGeSi'200 Å, 80–160 layers!
were grown by the gas hydride method onn-type Ge~111! substrates (r300K540245
V• cm!. For these values ofx and layer thicknesses, quantum wells for both holes
electrons exist in the germanium layers.3 The first investigations of the spectra of shallo
impurities were performed in the undoped HS Ge/Ge0.88Si0.12 ~No. 306!,4 in which impact
ionization of the residual shallow acceptors was observed when a weak static e
field ~of the order of 10 V/cm! was applied in the plane of the layers of the HS
T54.2 K.5,6 In this case, an absorption line of two-dimensional holes appeared in
cyclotron resonance~CR! spectrum; the impurity density was estimated to
N'3•1014 cm23, based on the intensity of absorption at the CR. Next, we investig
both undoped and specially doped Ge/Ge12xSix HSs. In the latter case, the center of t
209 2090021-3640/97/020209-06$10.00 © 1997 American Institute of Physics
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quantum well ~approximately 1/7 of its thickness! was doped with boron up to th
minimum possible carrier density (N'1016 cm23). The most sensitive method of pho
tothermal ionization spectroscopy was used to investigate the spectra of the sh
impurities. A ‘‘BOMEM DA3.36’’ Fourier spectrometer was used to record the pho
conductivity spectra of heterostructures in the far-IR range atT54.2 K.

The photoconductivity spectra of two undoped samples, Nos. 306 and 406
sample No. 379 with doped wells are displayed in Figs. 1a–c. One can see that a
toconductivity line near 55 cm21 ~1! and a wide band in the interval 20–40 cm21 ~2! are
characteristic for all spectra, while in bulk germanium the photoconductivity spectru
shallow acceptors has a maximum at shorter wavelengths near 100 cm21 ~see, for ex-
ample, Ref. 7!. The fact that the spectral features1 and2 are common to all three spectr
shows that they are related with the shallow acceptorsA0 located at the center of the wel
Another feature3, which lies next to the feature2 on the long-wavelength side, can b
distinguished in the spectrum of the undoped sample No. 306~Fig. 1a!.

A model of an impurity center for the case of an anisotropic parabolic band,
sidered previously in investigations of shallow donors in germanium and silicon,
used to interpret the observed photoconductivity spectra. The Ge layers in ‘‘thick’’
~in our case the characteristic thicknesses of the structures were equal to 2.5–mm!
undergo biaxial compression in the plane of the heterostructure. Such a deformatio
be considered as being the result of hydrostatic compression plus uniaxial tension
the axis of the HS. It is well known that uniaxial deformation along the@111# axis,
lowering the symmetry of the crystal lattice, results in splitting of the edges of
valence bands of the light and heavy holes (Dn'4 meV/kbar! and it also lifts the inter-
valley degeneracy in the conduction band.8 The equivalent uniaxial tensionPequiv, de-

FIG. 1. Photoconductivity spectra of Ge/Ge12xSix heterostructures (dGe,dGeSi'200 Å! at T54.2 K: a! No.
306, undoped,x50.12, 162 layers,Pequiv54 kbar; b! No. 379, Ge:B,x50.15, 81 layers,Pequiv51.7 kbar; c!
No. 406, undoped,x50.11, 162 layers,Pequiv53.7 kbar; d! No. 406 under illumination by a GaAs light
emitting diode.
210 210JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Gavrilenko et al.
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termined by the x-ray diffraction method, equal several kilobars for our samples. T
fore the splittingDn in our experimental samples is of the order of or greater than
binding energy of shallow acceptors in bulk undeformed germanium (Eb'10 meV).
Under uniaxial tension along the@111# direction the effective hole masses parallel (i) and
perpendicular (') to the deformation axis near the bottom of each subband bec
substantially different:8

mi
~1!'0.49m0 , m'

~1!'0.053m0 ; ~1!

mi
~2!'0.048m0 , m'

~2!'0.13m0 . ~2!

Thus, the longitudinal hole mass in the bottom subband~1! is an order of magnitude
larger than in the top subband~2!. For this reason, the quantization of the hole spectr
in thin Ge layers results in an even greater repulsion of the subbands1 and2. This makes
it possible to neglect, to a first approximation, the effect of the top subband2 and the
nonparabolicity of the hole dispersion law in the bottom subband1 on the spectrum of
shallow impurities. The calculations of the dependences of the energies of the groun
excited states of the impurity center in a bulk semiconductor on the effective-mass a
ropy parameterg1/3 (g5m' /mi), performed in Ref. 9, can be used to analyze
impurity photoconductivity spectra of the Ge/Ge12xSix HSs. Size quantization should no
produce any strong changes in the spectrum, since on account of the large value
massmi

(1) the characteristic extent of the wave function along the axis of the struc
ai5(4/p)2/3g1/3(\2e/e2m'

(1))/3'30 Å ~Ref. 10! is much less than the well width. It is
natural to conjecture that, just as for shallow donors in bulk semiconductors, the t
tion 1s→2p6 should be the strongest transition in the photoconductivity spectrum
Ge/Ge12xSix heterostructures. For a shallow acceptorA0 in uniaxially stretched Ge
g50.108~see Eq.~1!! and the energy of the transition 1s→2p6 , calculated according to
Ref. 9, equals 36.4 cm21, which agrees well with the spectral position of the strong
feature2 in Fig. 1. The large width and great extent of this spectral band in the lo
wavelength region in samples Nos. 379 and 406~Figs. 1b and c! can be explained by the
dependence of the spectrum on the arrangement of the impurity atom in the wel
binding energy is maximum at the center of the well and decreases as the heteroju
is approached.1,2 The spectral feature1 is evidently associated with transitions from th
ground state into upper-lying excited states and into the continuum. The lon
wavelength spectral feature3 ~Fig. 1a!, observed only in sample No. 306, could b
associated with photoexcitation ofA1 centers, which form when an additional hol
whose ‘‘parent’’ ion is located in a barrier, is trapped by a neutral acceptor in
quantum well.11 However, to confirm this hypothesis additional experiments must
performed with samples in which both the wells and the barriers are doped.

Figure 1d shows the spectrum of sample No. 406, measured with continuous
mination by radiation from a GaAs light-emitting diode (l'0.9mm). One can see tha
a new structure, consisting of a narrow line at 67 cm21 and a wide band near 70–11
cm21, appears in the spectrum under illumination. The new structure is apparently
ciated with transitions between states of compensating donors which are neutraliz
illumination from the fundamental absorption region. For the technology used, the
likely shallow donor is antimony. It is well known that for antimony the chemical shif
small ~about 3 cm21; Ref. 12! and the deviation from the model of Ref. 9, caused by
211 211JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Gavrilenko et al.
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centrocellular potential, is insignificantly small. This statement is valid for both the
material and for strained Ge layers in Ge/Ge12xSix heterostructures (Pequivi@111#),
where only three electronic valleys remain at the bottom of the conduction band~under
uniaxial extension along the@111# axis the fourth valley shifts upwards in energy by 1
meV/kbar!. Size-quantization effects should be small for the same reason as for a
tors. The observed spectral linen'67 cm21 ~Fig. 1d! can be attributed to the transitio
1s→2p6 of shallow donors in Ge (n1s→2p6

'65 cm21; Ref. 9! and the transition
1s→3p6 (n1s→2p6

'71 cm21) — transitions into upper lying states — can be attribut
to the band 75–110 cm21.

To obtain additional information about the nature of the spectral lines, investiga
of the photoconductivity of sample No. 306 in strong magnetic fieldsHi@111# were
performed. As one can see from Figs. 2 and 3, the spectral feature2 splits in a magnetic
field into two peaks. The most intense peak21 shifts linearly with increasing magneti
field into the short-wavelength region of the spectrum. The position of the second
22 is virtually independent of the field. The other spectral line1 ~11) also shifts linearly
with the magnetic field~the corresponding peak 12 was not observed, apparently becau
of superposition with the stronger line21). As one can see From Fig. 3, the magnet
field dependences of the positions of the maxima11 and21 are parallel and in strong
fields they have the same slopee/(2pmcc

2), wheremc50.07m0, which equals the two-
dimensional hole mass measured in CR experiments.5,6 This magnetic field dependence
characteristic for the transitions 1S→nP1, n52, 3,...~and the behavior of the peak22 is
characteristic for the transitions 1S→2P2),13 which confirms the above classification o
the transitions.

In summary, in the present work we have investigated the spectra of shallow i
rities in strained quantum-size heterostructures Ge/Ge12xSix . The experiments showe
that elastic deformation of the quantum-size Ge layers in a HS radically change
spectrum of shallow acceptors as compared with a bulk single crystal, shifting the

FIG. 2. Photoconductivity spectra of heterostructure No. 306 in magnetic fieldsHi @111# atT54.2 K.H, kOe:
1— 0, 2— 20, 3— 40, 4— 50.
212 212JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Gavrilenko et al.
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trum into the long-wavelength region of the far-IR range. The possibility of control
the magnitude of the deformation and the thickness of the quantum wells and als
possibility of selective doping of wells and barriers in the HSs in order to produceA0 and
A1 centers open up new prospects for producing solid-state detectors for the
range. The power–voltage sensitivity of one of the samples~No. 306!, measured using a
standard source of radiation~an absolutely black body!, was found to be quite high
S'104 V/W (NEP'10211 W/Hz1/2). This makes it possible to use this structure
a photoelectric detector for the far-IR range.
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Squeezed states of long-lived terahertz vibrations in
quantum dots

V. A. Kovarski 
ul. Akademii 6/2-37, Kishinev 2028, Moldova

~Submitted 10 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 199–200~25 January 1997!

Quantum dots based on materials with long-lived terahertz vibrations
are studied. It is shown that squeezed states of such vibrations can
result in microwave-frequency modulation of the optical radiation ab-
sorbed at electronic transitions in quantum dots. ©1997 American
Institute of Physics.@S0021-3640~97!01602-2#

PACS numbers: 73.20.Dx

Long-lived high-frequency~terahertz! vibrational modes in some amorphous a
crystalline materials have been observed in recent years.1–4 At the same time, the so
called frequency effect — a change in the vibrational frequencies accompanying a qu
tum transition of an electron from one localized state into another — is well known
localized electronic states. This frequency effect can result in the formation of a squ
vibrational state when the electronic–vibrational system is excited by an ultrashort
pulse ~for a more detailed discussion, see Ref. 5 and the references cited therein!. For
long-lived vibrations witht;1029 s a vibrational packet corresponding to the squee
state can undergo 1032104 vibrations and can be detected by means of a second~read-
out! pulse, as has been done in an experiment in molecular systems~see Ref. 6 for a more
detailed discussion!.

In a solid, the frequency effect can arise when electrons are localized in so-c
quantum dots. An intensification of the electron–phonon interaction as a result of
tron localization in quantum dots was noted in Ref. 7.

In what follows, a quantum dot in which long-lived vibrations with frequencyv and
lifetime t;1029 s exist will be studied. The effect of the quantum dot is manifes
mainly in that the luminescence band is shifted in the blue direction, as compared
the bulk material, by an amountDE determined by the size-quantization effect~for
example, in porous siliconDE.0.5 eV!.8

When the quantum dot is excited by a laser pulse witht0.1 fs, local levels~arising
from the conduction band! are populated. The vibrational packet has the form

ucsq~x,t !u25
1

Aps~ t !
expH 2

x2

s2~ t ! J , ~1!

s2~ t !5s0
2S h2 cosv2t1

1

h2 sin v2t D ,
h5

v1

v2
; s0

25\/Mv2 ; v1.v2 ,
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whereM is the mass of the oscillatorx, h is the compression factor, andv1,2 are the
vibrational frequencies of the nuclei when an electron is localized in discrete levels o
valence and conduction bands, respectively.

Formula ~1! was written for the simple case of a ‘‘squeezed vacuum,’’ when
frequency effect plays the main role in the preparation of the squeezed state an
Stokes shift can be neglected. The frequencyv2 differs from the frequencyv1 by the
amountDv determined by the matrix elements of the electronic–vibrational interac
and it can be calculated theoretically. It is better to determine this quantity experi
tally, for example, by measuring the Raman spectra ofa-Si for sufficiently intense lase
illuminations. In my opinion, the additional lines observed in the Raman spectra in
1 and 2 could be due to the frequency effect, since the laser source in Refs. 1 and
more powerful than the source in Ref. 9. In the method employing a readout puls
transition from a lower discrete state 2 of the conduction band into an excited state
the conduction band, a photon with frequencyV23 is absorbed. If the state 2 is unocc
pied, then the photon\V23 is not absorbed and passes freely through the material.

Let \V23 be less than the energy gapD23 between the states 2 and 3. Then, wh
state 2 is populated, the absorption of light involves an additional absorption of pho
The rateW23(V) of this transition per unit time is described by the formula

W23~V!;expH 2
~\V2D23!

2

2a~\v2!
2n̄

J , ~2!

wherea is the dimensionless Stokes constant andn̄ is the average occupation number
the squeezed vibration with frequencyv2.

It is easy to show thatn̄ is determined by the variance of the vibrational coordin
of the squeezed state, i.e.,n̄;s2(t), where the timet is measured from the time at whic
the squeezed state is prepared and corresponds to the time at which the readout
switched on. In the method in which the radiationV23 is always present, this absorptio
will be modulated with frequencyv2.

I thank E. Yu. Kanarovski�, my colleague at the Institute of Applied Physics at t
Moldavian Academy of Sciences, for helpful remarks.
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Comment on vortex mass and quantum tunneling
of vortices

G. E. Volovik
Low Temperature Laboratory, Helsinki University of Technology 02150 Espoo, Finlan
L. D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia

~Submitted 30 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 201–206~25 January 1997!

Vortex mass in Fermi superfluids and superconductors and its influence
on quantum tunneling of vortices are discussed. The vortex mass is
essentially enhanced due to the fermion zero modes in the core of the
vortex: the bound states of the Bogoliubov quasiparticles localized in
the core. These bound states form the normal component, which is
nonzero even in the low-temperature limit. In the collisionless regime
v0t@1 the normal component trapped by the vortex is unbound from
the normal component in a bulk superfluid/superconductor and adds to
the inertial mass of the moving vortex. In ad-wave superconductor the
vortex mass has an additional factor of (Bc2 /B)

1/2 due to the gap
nodes. ©1997 American Institute of Physics.
@S0021-3640~97!01702-7#

PACS numbers: 74.60.Ge

The vortex mass is thought to be an important issue for the problem of the qua
tunneling of vortices. The latter problem is popular now, and many experiments
discussed in terms of the macroscopic quantum tunneling of vortices in superflui
superconductors. Firm experimental proof of the quantum nucleation of vortices is
lacking. On the other hand, the characteristic plateau in the temperature depende
the critical velocity, which is always ascribed to quantum nucleation, has been
observed in superfluid3He-B ~Ref. 1!. However, the time required for quantum nucl

ation of a vortex in3He-B is 1010
6
, which is extremely large in any units. The vortices

3He-B are created in the course of development of the classical instability of the s
flow at the pair-breaking velocity. The cause of the plateau is that the characte
physical quantities, such as the gap amplitudeD, which determine the threshold of insta
bility become temperature independent at lowT. The intrinsic instability thus provides a
alternative explanation of the plateau observed in many different systems, incl
superfluid4He.

In the vortex tunneling problem the inertial mass becomes important only i
effect is comparable to the effect of the Magnus force. That is why the magnitude o
inertial mass is of prime importance. It appears that in Fermi superfluids and supe
ductors the mass of the vortex is substantially enhanced as compared to the vorte
in superfluid4He, where it is determined by the compressibility. In Fermi systems
fermions bound to the vortex core give the dominant contribution, as was first foun
Kopnin.2 We discuss this effect in detail and relate it to the normal component trappe
217 2170021-3640/97/020217-07$10.00 © 1997 American Institute of Physics
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the vortex. This effect is even more enhanced ind-wave superconductors, where th
vortex traps a substantial part of the bulk excitations due to the gap nodes.

VOLUME LAW AND AREA LAW FOR THE QUANTUM TUNNELING

In the earlier estimations of the vortex tunneling rate the mass of a vortex line
neglected.3,4 When the mass is neglected the tunneling exponent exp2Seff is determined
by the volumeV within the surface swept by the classical trajectory of the vortex in
process of the quantum tunneling:

Seff /\52pN , N 5nV. ~1.1!

Heren is the particle density;N is the number of particles in the volumeV. The volume
law for the vortex action follows from the general laws of vortex dynamics governe
the Magnus force.5

In Ref. 3 the tunneling trajectory between the ground state of the superfluid an
state with a vortex was generated by an irregularity~pinning center! on the container wall
in the presence of the superflow with the asymptotic superfluid velocityvs . For smallvs
the tunneling exponent does not depend on the pinning center and correspond
volume

V5
4p

3
R0
3. ~1.2!

HereR0 is the radius of the nucleated vortex ring:

R05~k/2pvs!ln
R0

Rcore
~1.3!

andRcore is the core size, which is of the order of the coherence lengthj.

The volume law for the tunneling exponentSeff was confirmed in Ref. 4, whereSeff
was found as the overlap integral of the many-body wave function. ThisSeff was then
minimized with respect to the velocity field in the vortex. The extremal trajectory co
sponds to the formation of an intermediate vortex state with a deformed velocity
around the vortex loop. The resulting volumeV is logarithmically reduced compared wit
Eq. ~1.2! for the direct formation of the equilibrium vortex:

Seff /\52pnV, V5
27

p ln
R0

Rcore

R0
3. ~1.4!

In this approach the volume law reflects a general property of macroscopic qua
tunneling: the tunneling exponent is proportional to the numberN of particles which
effectively participate in the tunneling. This has also been found in other systems.6,7

When the problem of vortex tunneling was revived due to the experiments on v
creep in superconductors, the effect of the vortex mass was discussed.8 If the mass term
is more important for quantum tunneling than the Magnus force, then the volume la
Eq. ~1.1! should give way to an area law. A quadratic dependence ofSeff onR0 ~area law!
was also obtained using field theory in Refs. 9 and 10, where the vortex nucleatio
218 218JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 G. E. Volovik
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considered as a process analogous to the Schwinger production of electron–positro
in an electric field. The result for the semi-classical tunneling exponent is

Seff5E
0

R0
dRA2M ~R!Evortex~R!, ~1.5!

whereEvortex(R);R ln R/Rcore is the energy of a vortex ring of radiusR andM (R) is the
mass of the vortex loop. SinceM (R) is also}R, the tunneling rate is proportional to th
areaR0

2 of the nucleated vortex ring.

This area law for the action is typical for the dynamics of string loops in syst
without a Magnus force, such as cosmic strings~see Ref. 11!, vortex rings in charge-
density-wave systems,12 in antiferromagnets, etc. The breaking of the time invers
symmetry introduces the Magnus force even in these systems~see Ref. 13 on vortices in
planar magnets and Ref. 14 on spinning global strings!, and the volume law can be
restored.

HYDRODYNAMIC MASS OF A VORTEX

In the hydrodynamic theory the mass of a vortex is nonzero due to compress
of the liquid, which leads to the ‘‘relativistic’’ expression9,15,10,16

Mhydro5
Evortex

s2
, ~2.1!

where s is the sound velocity. For Fermi superfluidss is of the order of the Ferm
velocity vF;pF/m ~m is the mass of the electron or of the3He atom!, and the estimate
for the hydrodynamic mass of a vortex loop of lengthL is

Mhydro;LmkF ln
L

j
. ~2.2!

However in this analysis the fermions in the vortex core17 are neglected. They
produce an effective mass proportional to the core areaRcore

2 ;j3 ~Refs. 2, 18, 19, 20!:

Mbound states;LmkF~kFj!2. ~2.3!

Even though it does not contain a logarithmic divergence, this gives the main con
tion, since the core radius;j in superfluid3He-B and superconductors is large compar
with the interatomic spacing:kFj @ 1. The mass of the vortex is substantially enhanc
and so the arguments that the effect of the vortex mass on the vortex tunnel
negligible3,25 become shaky. That is why it is worthwhile to consider the effect of c
fermions more thoroughly.

BOUND-STATES CONTRIBUTION TO THE VORTEX MASS: NORMAL COM-
PONENT IN THE VORTEX CORE IN THE COLLISIONLESS REGIME

The core contribution to the vortex mass was obtained by Kopnin2 in a rigorous
microscopic theory for the vortex dynamics developed by Kopnin and Kravtsov.26 Here
we associate it with the normal component trapped by the core texture. At lowT the core
contribution to the vortex dynamics is completely determined by the low-energy ex
tions in the vortex core, the energy spectrum of which isE52Qv0(kz) in the vortex
219 219JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 G. E. Volovik
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frame.17 HereQ is the angular momentum of the fermions andv0(kz) is the interlevel
spacing, which depends on the linear momentumkz5kF cosu along the vortex axis
~v0;D2/EF!D!. If the temperature is large enough,v0!T!Tc , this branch is charac
terized by a density of statesN(0)51/v0(kz).

If the vortex moves with velocityvL with respect to the superfluid component, t
fermionic spectrum in the vortex frame is Doppler shifted:E52Qv0(kz)2k•vL . In the
collisionless regime,v0t @1, the exchange between the fermions in the vortex core
in the heat bath vanishes, and the linear momentum of the bound-state fermions a
the momentum of the moving vortex. The summation of fermionic momenta in
moving vortex leads to an extra linear momentum of the vortex} vL ~see also Eq.~5.7!
of Ref. 20!:

P5( ku~2E!5Mbound statesvL , ~3.1!

Mbound states5LE
2kF

kF dkz
4p

k'
2

v0~kz!
. ~3.2!

This is an extra vortex mass which is larger by a factor (kFj)2 than the hydrodynamic
mass of the vortex.

Equation~3.2! represents the dynamical mass of the vortex in the low-tempera
limit and only in the clean~or collisionless! regime, when the exchange between the c
fermions and the heat bath is suppressed. Actually it was assumed thatTc@T@v0@1/t.
In this regime there is no spectral flow between the bound fermions and the heat
and, as a result, during the vortex motion the momentum of the core fermions i
transferred to the heat bath and adds to the momentum of the vortex, producing an
inertia. In other words, this is the contribution of the normal component associated
the vortex core, which in the collisionless regime is trapped by the vortex and is t
ferred together with the vortex.

For vortices with a core sizeRcore@j, this extra vortex mass can be represented
the integral over the local density of the normal component:

Mbound states5E d3r rn~r ,T50!. ~3.3!

This nonzero normal component atT50 is produced by the inhomogeneous order p
rameter, the texture. This can be seen for the extremely simple example of a conti
vortex in the3He-A phase, where the corresponding texture is the field of the unit ve
l̂ along the orbital angular momentum of the Cooper pairs. Let us choose the text
the form

l̂~r !5 ẑ cosh~r !1 r̂ sin h~r !, ~3.4!

with l̂~0!52ẑ and l̂~`!5ẑ. This texture represents a doubly quantized continuous vo
in 3He-A ~see Eq.~5.21! in the review21!; the latest experiments on such vortices a
discussed in Ref. 22.

The l̂-texture leads to the normal component tensor even atT50 ~Ref. 23; see Eq.
~5.24! of Ref. 24!:
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~rn! i j ~r !5
kF
4

2p2DA
u~ l̂•¹W ! l̂u l̂ i l̂ j , ~3.5!

whereDA is the gap amplitude in3He-A. For the texture in Eq.~3.4! one hasu~l̂•¹W !l̂u
5sinh ]rh, so the normal component contribution to the vortex mass should be

Mbound statesd' i j5E d3r ~rn! i j5L
kF
4

2pDA
E
0

`

dr r sin3h ] rh. ~3.6!

Equation~3.6! for the vortex mass in terms of the local normal component coinc
with the general equation~3.2! for the vortex mass in terms ofv0(kz). The interlevel
spacing for this continuous vortex was found by Kopnin:18

v0~kz!5
DA

kFr ~kz!
, cosh~r ~kz!!5

kz
kF
. ~3.7!

Here r (kz) is the radius at which the energy of the fermion,E(r ,kW )
5AvF2(k2kF)

21DA
2
„l̂(r )3 k̂)2, is zero at a givenkz . Equation~3.2! gives18

Mbound states5LE
2kF

kF dkz
4p

k'
2

v0~kz!
5

kF
4pDA

E
2kF

kF
dkz~kF

22kz
2!r ~kz!.

After inverting the functionr (kz) in Eq. ~3.7! into kz(r )5kF cosh(r ), one obtains Eq.
~3.6!.

VORTEX MASS FROM THE KINETIC EQUATION

The above results for the vortex mass can be proved using the kinetic equatio
the fermions bound to the core.2,18,19The inertial term in the force balance for the vorte
is obtained by replacing 1/t by 1/t2iv in the equation for the longitudinal~dissipative
friction! force acting on the vortex line, wherev is external frequency identified with th
frequency of the oscillations of the vortex line. In the temperature regionv0!T!Tc one
has18

Flong52vL
kF
3

4p
LE d cosu sin2 uS 1t2 iv D v0

v0
21S 1t2 iv D 2 . ~3.8!

In the limiting casev0@v@1/t one obtainsFlong5ivvLMbound states, with the vortex
mass

Mbound states5
3p

4
LC0E d cosu sin2 u

1

v0~u!
, ~3.9!

whereC05kF
3/3p2 is close to the particle densityn. This corresponds to Eq.~3.2!.

In the high-frequency limitv@v0@1/t, Eq. ~3.8! leads to the ‘‘dielectric’’ behavior
with the ‘‘pinning potential’’

U5
1

2
arL

2, a5
kF
3

4p E d cosu sin2 u v0~u!. ~3.10!
221 221JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 G. E. Volovik



n the
acter-

e
ons

p
at the
nd

ss on
ince
s

-

ct
-
uthal
:

off

ugh
y of
6072.
DISCUSSION

The vortex inertia is essentially enhanced due to the fermion zero modes i
vortex core. This fermionic contribution to the vortex mass appears when the char
istic frequency is small compared to the interlevel distancev!v0. The characteristic
frequency of the tunneling process can satisfy this condition, sincev
;AFvortex(R0)/M (R0)R0

2;v0j/R0,v0. If v.v0 the more general contribution of th
core fermions, Eq.~3.8!, is to be applied. But even in this case the effect of the fermi
is always larger than the contribution of the hydrodynamic mass in Eq.~2.1!. This is
because the frequencyv of the vortex motion cannot exceed the magnitude of the gaD,
otherwise the simple approach to the vortex dynamics is not valid. This means th
hydrodynamic mass in Eq.~2.1! never enters the tunneling rate in Fermi superfluids a
superconductors.

On the other hand, because of the limited frequency the effect of the inertial ma
the vortex tunneling is still small compared to the effect of the Magnus force. S
v!v0 the kinetic termM v̇L52 ivMvL;\nL~v/v0! is always smaller than the Magnu
forcep\nLẑ3vL . That is why the volume law for the tunneling exponent in Eq.~1.1! is
still dominant.

The situation can change in the regimev0t!1, where the Magnus force is sup
pressed by the spectral flow of fermions:p\nLẑ3vL→p\(n2C0)Lẑ3vL ~Refs. 27, 28,
19, 20!.

The vortex mass can be also important ind-wave superconductors, where the effe
of the fermions on the vortex is more pronounced due to gap nodes.29 In these supercon
ductors, with a highly anisotropic gap, the interlevel spacing depends on the azim
anglea between the momentumk in thea–b plane and the direction of the gap nodes29

v0~a!'a2
D0
2

EF
ln

1

uau
, ~4.1!

whereD0 is the gap amplitude. The vortex mass in Eq.~3.2! is:

Md' i j5LE
2kF

kF dkz
2p E

0

2p da

2p
k' ik' j

1

v0~kz ,a!
. ~4.2!

With Eq. ~4.1! for v0~a! the integral overa diverges near the gap nodes. The cut
amin;j/Rv , whereRv;jABc2 /B is the intervortex distance, gives aABc2 /B-fold en-
hancement of the vortex mass:

M;mkF
3j2LABc2

B
. ~4.3!

This equation holds if 1@B/Bc2@T2/Tc
2 andB/Bc2@EF/tD0

2.

I thank N. B. Kopnin for illuminating discussions. This work was supported thro
the ROTA co-operation plan of the Finnish Academy and the Russian Academ
Sciences and by the Russian Fund for Fundamental Research, Grant No. 96-02-1
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An optical method for simulating nonuniform systems

L. S. Al’perovich
Tel Aviv University, Ramat-Aviv 69978, Israel

S. A. Grachev, Yu. A. Gurvich, L. B. Litvak-Gorskaya, and A. P. Mel’nikov
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I. A. Cha kovski 
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~Submitted 11 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 207–211~25 January 1997!

Model experiments of a new type in the physics of nonuniform systems
are proposed. The method is based on the production of a randomly
nonuniform distribution of charge carriers in a uniform semiconductor
by means of photoexcitation with a nonuniform radiation flux. The
method makes it possible to vary easily the character of the nonunifor-
mities over wide limits. It has been used to investigate the effective
transverse conductivity of nonuniformp-Si plates in a magnetic field
(H). An anomalous transverse conductivity, previously predicted in a
number of theoretical works, has been observed. As the electric field
(E) increases, the anomalous conductivity decreases as a result of
smoothing of the nonuniformities. The nonuniformities have virtually
no effect on the conductivity in an open Hall circuit regime. ©1997
American Institute of Physics.@S0021-3640~97!01802-1#

PACS numbers: 72.20.Jv, 72.40.1w

1. Transport processes in nonuniform systems are very difficult to study experi
tally. It is quite difficult to fabricate samples with prescribed parameters character
the nonuniformity. It is even more difficult, and sometimes simply impossible, to cha
these parameters in the course of an experiment or even from one experiment to a
It is necessary to resort to artificial models. For example, some results have been ob
on a square metal grid whose conducting paths were cut randomly,1 on a three-
dimensional cubic lattice consisting of resistances and capacitances,2 and on sheets o
electrically conducting graphite paper with randomly distributed openings.3 In these ex-
periments the ratio between the volume fractions of the conducting and dielectric p
could be varied. However, it was impossible to control the conductivities of the
phases, specifically, to simulate the situation of a metal with good and poor condu

2. We propose to use nonuniform illumination of uniform semiconductors to
duce a conducting medium with a nonuniform carrier density distributionn(r ). One way
to achieve this is to illuminate a semiconductor plate through a special film — a mask
having different transparency in different sections. The method makes it possib
model not only metal–dielectric systems but also systems containing two condu
phases with different conductivities. It is easy to vary the dimensions, shape, and d
224 2240021-3640/97/020224-06$10.00 © 1997 American Institute of Physics
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of the nonuniformities and the degree of correlation in their arrangement. All th
achieved by adjusting the appropriate masks, which are easily fabricated. One ma
be replaced by another during an experiment. This distinguishes our method ad
geously from previous methods employed for simulating disordered systems.

Our objective in the present work was to investigate the effective transverse el
cal conductivity in the fieldsE andH by means of an optical method.

3. The experiments on high-mobility semiconductors, for example, InSb, sho
that the transverse magnetoresistance in them increases linearly withH, while according
to the classical theory the magnetoresistance saturates in strongH. Herring4 indicated that
this is due to the effect of nonuniformities which are small compared with the dimens
of the sample but much larger than the carrier mean free path.

In the experimental study of nonuniform media the effective conductivityseff de-
fined by the relation

^ j ~r !&5seff
•^E~r !&, ~1!

wherej „r … andE„r … are the local current density and field and the angle brackets ind
averaging over the volume of the sample, is measured. For weakly nonuniform m
seff differs very little from ^s(r )&. The conductivity becomes strongly anisotropic in
classically strong fieldH (b5mH/c@1,m is the mobility!: The diagonal components o
the local transverse conductivity tensorsxx(r )5syy(r )5s'(r ) ~the fieldH is parallel to
Z) are proportional toH22, the off-diagonal elementssxy(r )}H

21, and the longitudinal
elementszz(r ) does not depend onH. The average valueŝs ik(r )& exhibit the same
behavior. In this cases'

eff can differ substantially from̂s'(r , H)&. Herring calculated
the differenceds'

eff5s'
eff2^s'& to lowest order in the quantity

j25^ds2&/^s&2, ~2!

considering it to be small. Herês& is the average conductivity and^ds2& is the mean-
square fluctuation of the conductivity forH50. It was found thats'

eff decreases with
H more slowly than̂ s'&: ds'

eff;H21. Therefore, in strong fields the correctionds'
eff

can exceed̂s'& even forj2!1: Anomalous transverse conduction appears. Herrin
results are correct for 1,b,j2. Forb.j2 one hasds'

eff;H24/3 ~Refs. 5–7!. This refers
to three-dimensional infinite samples. In a finite sample a size effect appea
s'
eff(H) depends on the dimensionLz of the sample in the direction ofH.6,7 For two-

dimensional nonuniformitiess(r )5s(x, y) there is no size effect. In this caseds'
eff does

not depend onH for b,j21 ~Ref. 4!, while for b.j21 one has5,8

ds'
eff'

j

b
s0 , ~3!

wheres05 ^szz(r )&.

Calculations have been performed for two-phase systems.8,9

One can see from this brief review that there are a large number of theoretical r
concerning this question. However, we know of no works which are specially devot
an experimental check of the theory. Apparently, the problem lies in the difficu
which were discussed above.
225 225JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Al’perovich et al.
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We underscore the fact that according to the theory in all cases forb.1, s'
eff

decreases more slowly withH than doess' in a uniform sample.

4. Here we present the first results of the application of the optical metho
simulation. We studied the effect of nonuniformities on the effective transverse con
tivity of crystalline p-Si plates placed in a fieldH in liquid He. At liquid-helium tem-
peraturesT the free carrier density is determined entirely by photoexcitation.

The measurements were performed on a modified Corbino disk — a thin plate
(500mm) in the form of a disk with an opening at the center. The outer diameter o
plate was equal to 10 mm and the inner diameter was equal to 4 mm. A pot
difference was applied between the end surfaces with the large and small radi
magnetic field was perpendicular to the plane of the plate. In this configuration a
current exists in the disk, circulating around the axis of the disk. The radial curre
determined by the conductivitys'

eff . The use of a disk with a hole instead of a ‘‘solid
disk made it possible to avoid a high electric field density near the center of the d

The mask consisted of a;200 mm thick sapphire plate on which niobium wa
deposited. The nonuniformities — bright spots against a general gray backgrou
were obtained by a photolithographic method. The mask was prepared so that a
number of nonoverlapping nonuniformities would fit within the area of the sample
434 mm section contained 100 transparent spots of size 2Rp;200mm ~Fig. 1, inset!.
The average distance between the centers of the spots was 2Rc;440mm. The distance
between the edges of the spots wasLk;(2Rc22Rp);240mm. The ratio of the trans-
mission in a spot to the transmission outside a spot was;1/0.7'1.4. Negatives of the
masks — dark spots on a bright background — were also used.

Free carriers were generated by means of foreign~background! radiation passing
parallel toH through a pure Si filter and a mask, pressed to the metallized side t
disk, and through a 5mm insulating polyethylene film~wavelength range 1–7mm!. In
this range the experimental samples are practically transparent and the excitation
form over the depth of the sample. To avoid reflections of radiation, which would sm
the nonuniformities, an absorber with a permittivity close to that of the sample
pressed to the back surface.

The experiments were performed on weakly doped Si:B samples with a main i
rity densityN;6•1015 cm23. For weak fieldsE, the mobility was determined by sca

FIG. 1. X(b) for sample 1:1— negative,2— positive. Inset: Enlarged fragment of the mask.
226 226JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Al’perovich et al.
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tering by neutral impurities:m55•104 cm2/V•s. The densityNk of the compensating
impurity, determining the free-carrier lifetimet, was chosen so as to reduce to a mi
mum the diffusional smearing of the density nonuniformities (Ld!Lk , Ld is the diffusion
length!. The fieldE corresponded to the Ohmic region of the current–voltage chara
istic under uniform excitation. The fieldH was varied in the range 0,H,30 kOe
(0,b,15, the quantization parameter for heavy holes\vc /kT,0.5, andvc is the
cyclotron frequency!.

The effect of the nonuniformities was determined from the ratio ofs'
eff to ^s'& for

the same values ofH. The transverse conductivity (s'
h ) under uniform excitation, chose

so that ^s'&5s'
h at H50, was used for̂ s'&. It is easy to show that this equalit

remains essentially valid in classically strong fieldsH.

The experimental results are illustrated for Si:B samples with close valuesN
(;6•1015 cm23) but different compensation: 1! Nk;5•1013 cm23; 2! Nk;1013 cm23;
and, 3! Nk;2•1012 cm23. The ratiosX5s'

eff/s'
h as a function ofb for small E (51

V/cm) for sample 1 are presented in Fig. 1 for the following cases: ‘‘negative’’ ma
~curve1! and ‘‘positive’’ masks~curve2!. One can see that the presence of the nonu
formities cause the relative magnetoresistance to decrease (X to increase!; X starts to
increase forb.1, reaching values of 1.9 and 2.1 forb515.

The functionsX(E) for H518 kOe~positive! for samples 1, 2, and 3~curves1, 2,
and3! are presented in Fig. 2. One can see that the lower the value ofNk , the moreX
decreases with increasingE.

5. We shall first give a qualitative discussion of the results obtained. One ca
from Fig. 1 that in the presence of nonuniformities the transverse conductivity decr
with H more slowly than for the uniform case:X(H) .1. This is observed forb.1, i.e.,
when conductivity anisotropy appears. The ratiods'

eff/s'
h reaches 1 forb515: An

anomalous transverse conductivity is present (s'
h5^s'&!).

FIG. 2. X versusE for H518 kOe for samples1, 2, and3. Mask — positive.
227 227JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Al’perovich et al.
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As E increases atH5 const, the ratioX decreases~Fig. 2!. The lower the value of
Nk ~the longer the lifetimet), the greater the decrease is. This is completely underst
able. In the presence of a fieldE the nonuniformities drift in the Hall direction. IfE is
sufficiently large, the nonuniformities are smoothed andj decreases, and the effect d
creases accordingly.

6. We now consider the quantitative aspect of the problem. The densityn(r ) is
proportional to the local transparency of the mask. Simple calculations give in our

j5H 0.13 ~negative!;

0.15 ~positive!. ~4!

Therefore, the conductivitys'
eff in strong fieldsH (b515) is twice the conductivity

^s'& even for smallj ('0.1). We note that for the negative and the positive the dep
dencesX(H) for close values ofj are close, although in these cases the nonuniformi
themselves differ substantially in character. This agrees with the fact that according
theory the effect of nonuniformities is determined solely by the parameterj.

The configuration of the experiment is such that the nonuniformities which aris
two-dimensional:n(r )5n(x,y). Then for jb.1, using Eq. ~3! and the fact that
^s'&5s0b

22 ands'
eff'ds'

eff , we obtain the estimate

X~H !'bj. ~5!

For the maximum valueb515 formula~5! gives

Xmax5H 2.0 ~negative!;

2.4 ~positive!. ~6!

The experimental values areXmax'1.9 and 2.1, respectively. This is fairly good agre
ment. However, since the experimental situation is complicated by a number of fa
~the presence of light holes, weak quantization inH) and since the dependence
^s'& on b is weaker than predicted by the theory, it is more accurate to say that a
ment obtains in order of magnitude.

7. We now briefly discuss the effect ofE. It is easy to show that forb@1 there is
enough time over the lifetimet for a carrier to be displaced in the Hall direction by
distanceLdr'mEtb21. For E510 V/cm andb510 one hasLdr'2 mm and 100mm
for samples 1 and 3, respectively. In the first caseLdr!LK , and drift plays no role. In the
second caseLdr'LK , and the smoothing is substantial. The experimental results a
completely with these estimates~see Fig. 2!.

8. We also performed a series of experiments in the absence of a Hall current. I
case, withH varying in the range 0–30 kOe, the nonuniformities have virtually no ef
on the conductivity.

Let us now summarize: 1! The optical method for simulating a nonuniform mediu
in application to the problem of transverse conductivity in a magnetic field was foun
be completely adequate for the problem posed, and 2! the method made it possible t
obtain a direct proof of the existence of anomalous transverse conductivity in a c
cally strong magnetic field.
228 228JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Al’perovich et al.
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Erratum: Experimental observation of the interference of
three- and five-wave mixing processes in optical
second harmonic generation in a solution of
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Pis’ma Zh. Éksp. Teor. Fiz.65, No. 2, 216–217~25 January 1997!
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PACS numbers: 01.90.1g

The journal Pis’ma Zh. E´ksp. Teor. Fiz. publishes short articles which require ra
publication and are of interest to a wide range of physicists. Rapid publication is for
observations of new physical phenomena and theoretical works containing fundame
new results.

The complete text should not exceed 20 kB in TeX, allowing 1 kB for each fig
If there are no figures, this is approximately 8 or 9 double-spaced type-written p
including the abstract and references. As a rule, tables are not published.

The first page of the manuscript should look like this:

Title.

Initials and last names of the authors.

Institutions where the authors are employed (including the city and postal code
recommended that the e-mail address of one author be given).

Abstract.

The main text follows after skipping one line.

The last names of foreign authors are written in the Russian transcription, bu
original spelling must be indicated in a footnote. The names of foreign institutions
written in English.

We call to the attention of Russian authors the fact that the transliteration o
names from Russian into English is done according to strict rules~see Pis’ma Zh. E´ksp.
Teor. Fiz.58, No. 8, p. 699!. If for some reason the authors desire a different transc
tion of their last names, they must indicate it on a separate sheet of paper.

Due to technical constraints on the publication of the journal and in keeping with
point of a brief communication, articles should not be overloaded with a large numb
formulas, and the results should not be duplicated in the formulas, tables, and figure
figures must be drawn clearly in a format ensuring that all details can be clearly u
stood. Gray-scale figures should be submitted only if absolutely necessary, since
preparation delays publication. The figure captions should be listed on a separate s
paper. The last names of the authors and the figure number should be indicated
back of the figure.

Upper case letters~with no periods! should be used for the common abbreviatio
and their combinations, and each abbreviation should be explained the first time
pears. Footnotes should be numbered sequentially throughout the entire article.

The references should be listed at the end of the article and numbered in the te
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example, Ref. 1. The references are listed in the order in which they appear in the
The following format should be used for the references:

a. For journal articles, first the initials and then the last name of the authors, the
of the journal, the number of the volume~underlined or boldface!, the page, and then th
year in parentheses are given. If there are more than four authors, then only the firs
are listed. For example:

1. A. B. Ivanov, V. G. Petrov, I. M. Sergeevet al., Zh. Éksp. Teor. Fiz.92, 290
~1990!.

b. In the case of books the initials and last names of the authors, the complet
of the book, the year and location of publication are given~if the book is a translation,
then the information for the original must be indicated in parentheses!.

Since no proofreading is done, the manuscripts must be prepared extremely
fully. Special care must be taken in showing accurately the indices and exponents,
ing them with a half-arc. Primes must be carefully distinguished from the number 1
the number 1 must be distinguished from a comma. When possible, cumbersome n
should be avoided and the composition of the formulas should be simplified~for example,
by using exp!. Russian letters should not be used in the designations and indicesFor
example,Popt should be written instead ofPopt .

To avoid misunderstandings and errors, upper and lower case letters shou
clearly distinguished in formulas, if necessary, by marking with a pencil upper
letters with two underbars and lower case letters with two overbars. Greek letters s
be underlined in red and vectors should be underlined with a thick blue line~do not use
arrows above the letters!.

Manuscripts with figures should be submitted in two copies, one of which mus
signed by all authors. Gray-scale figures should be submitted in three copies.~Publication
could be expedited by submitting in addition diskettes with the text in TeX or LaTeX! In
addition, for countries in the Commonwealth of Independent States the institution t
to appear in the title of the article as the principal institution should be indicated.

The exact address with the postal code, the last name, full first name, and
nymic of the author to whom correspondence should be addressed as well as hi
phone number at work and at home should be attached to the manuscript.

The editorial office mails out~to Muscovites gives out! reprints of articles~25 copies
of the Russian version and 15 copies of the English translation!.

Reprints are kept in the editorial offices for not more than three months from
date of publication.

In connection with the rapid translation of the journal into English, the edi
request that, when possible, the authors indicate in the articles the PACS classifi
~the classification scheme of the American Institute of Physics adopted in Ame
journals!. The classification is published in Pis’ma Zh. E´ksp. Teor. Fiz.58, Nos. 7 and 9.

Pis’ma Zh. Éksp. Teor. Fiz. also accepts articles in English. Therefore the journ
bilingual. Authors desiring to publish their article in English must submit two copie
the English text, three copies of the figures with the English designations, on a se
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sheet of paper the title of the article and the last names of the authors in Russian,
diskette with the text prepared using the TeX or LaTeX programs.

The editorial staff will not engage in editing the language. However, the edito
staff reserves the right to reject an article if there are any doubts concerning the co
ness of the English. In this case a Russian version of the article can be submitted
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