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The results of lowest-order perturbation theory calculations of the pho-
ton and positron spectra in radiative,, decay are generalized to all
orders of perturbation theory using the structure-function method. An
additional source of radiative corrections to the ratio of the positron and
muon channels of pion decay, due to emission of virtual and real pho-
tons and pairs, is considered. It depends on details of the detection of
the final particles and is large enough to be taken into account in theo-
retical estimates with a level of accuracy of 0.1%. 1©97 American
Institute of Physicg.S0021-364(®7)00102-3
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As a first step in the calculation of the spectra of radiative pion decays we reproduce
the results obtained by Berman and Kinoshitegating the pion as a point-like particle.
Kinoshita calculated the positron energy spectrum in radiative pion decay:
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wherey=2¢./m_ is the positron energy fraction, is the positron energyhere and
below we have in mind the rest frame of the piob=In(m_/m.;)=5.6 is the “large
logarithm”, andm_ andm, are the masses of the pion and positron. The quantity
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is the total width ofw,, decay, calculated in the Born approximation.

We will now calculate the photon spectrum. Consider first the emission of a soft real
photon. The corresponding contribution to the total width may be obtained by the stan-
dard integration of the differential widths:
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whereP, p., andk are the four-momenta of the pion, positron, and photon, respectively,
P2=m2, p2=mZ, k?=\2, and\ is the photon mass. The result has the form
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Consider now the hard photon emission process

7" (P)—e"(Pe) + ve(p,) + ¥(K). (6)

The standard procedure of final-states summing of the squared modulus of its matrix
element and integration over the neutrino phase volume leads to the spectral distribution
over the photon energy fraction=2k%m_:
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Further integration of this spectrum give the result
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Puttingk;,=Ae in this formula and adding the soft photon contribution, we obtain
agreement with Kinoshita's 1959 reguthe contribution to the width from the inner
bremsstrahlung of a point-like pion:
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Now return to the positron spectrum. The contributions to it containing the large
logarithm L may be associated with the known kernel of the Altarelli—Parisi—Lipatov
evolution equatior(see Ref. 2
2
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Using the factorization theorem, we may generalize this spectrum to include the leading
logarithmic terms in all orders of perturbation theory. This may be done in terms of
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structure functiondD(y,o) (Ref. 2. In the case of the photon spectrum the function
D(1—x,0) appears. The functioB(y,o) describes the probability of finding a positron
with energy fractiory inside the initial positron. It may be present in the form of a sum

of non-singlet and singlet contributior3,=D 7"+ D" Iteration of the evolution equa-
tions gives

1 .
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It is convenient to use the smoothed form of them:
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The expressions for spectra are as follows:
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Let us discuss the contribution of the inelastic processes considered above to the
ratio of the widths of the positron and muon modes of pion deBay,:
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Close attention was paid to this quantity some years®4dmit the corrections for emis-

sion processes in higher orders of perturbation theory were not taken into account. Keep-
ing in mind that the quantit*(y) has the property

f 1O'y PM(y)=0, (16)
0

we make the important observation that as long as an experiment is proceeding in such a
way that no cuts are imposed on the positron energy, then no large logarithmic contri-
butions appear. However, if the cuts are such that ythiategration is restricted or
convoluted with ay-dependent function, some terms proportional to the large logarithm

L will remain. We now suggest that there exists some minimum enggdgr detection

of the positron. An additional contributiofmot considered in Ref.)dappears:
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For typical valuesx;,=0.1 this additional contribution will have a magnitude of order
102 and should be taken into account in calculations for accuracy at the 0.1% level.
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The analyzing power of the elastic scattering of high-energy polarized
protons by polarized electrons for the polarimetry of proton beams is
calculated. It is shown that this process can be used to measure the
degree of transverse polarization of a beam at energies all the way up to
those at LHC. ©1997 American Institute of Physics.
[S0021-364(07)00202-9
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Measurements of spin effects in proton—proton scattering are being proposed for
increasingly higher energié<.In such experiments it is necessary to know the degree of
polarization of the proton beam. One of the main criteria which determine the reaction to
be used as a proton polarization analyzer is that there be no large theoretical uncertainties
in models for the amplitude of the process. We propose to use for this purpose the elastic
scattering of protons by electrons. The one-photon approximation, in which the amplitude
uncertainties are due solely to the electromagnetic form factors of the proton and which
agree well with existing experimental data, can be used for calculations in the kinematic
range of interest.

We showed in a previous work that the longitudinal polarization of protons with
energy above 15 GeV and the transverse polarization at proton enet§yGeV can be
measured by means of the elastic scattering of polarized protons by polarized elgétrons.
The possible variants of the polarized electronic target were analyledolid-state
targets with a relatively low degree of polarization of the electr@ng., in Permendur,
where the degree of polarization is about)7%s a result of multiple Coulomb scattering,
the beam breaks up during the acquisition of the statistical sample. Moreover, solid-state
and gaseous targets give a high hadronic background. It is preferable to use a beam of
free electrons for the target.

To describe the elastic scattering of protons by electrons, we shall employ the
spiral-amplitudes formalismthe notation is similar to that adopted for elaspp
scatterin§). In the one-photon approximation we have
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Heres, t, andqg? are the squares of the total energy, the 4-momentum transfer, and the
3-momentum in the center-of-momentum frarfg(t) andF,(t) are proton form factors,
kp=1.793 is the anomalous magnetic moment of the protonMueshdm are the proton

and electron masses. The amplituggsare normalized so that

pe=(++ 1A~ +)=

do ma? ma’
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Mm
Ann :4TF1('C)(901—<P3), Ass =2¢,(¢1— ¢3),

ASLE =—2¢6(P1— @3), ALSE =2¢s5(p1— @3).

The two-spin asymmetrie&,; are defined in a reference frame attached to each particle
so that the unit vectoN is oriented in a direction normal to the scattering pldfnés in

the direction of motion, an8=Nx L lies in the scattering plane. One can see from these
formulas that all the two-spin asymmetries are proportional to the difference

p1—@3= —[F1(t) + xpFa(1)],

which depends only on. For maximum|t|=4q? the asymmetryA , is close to 1,
Ann=Ass, but, as calculations showeflg s decreases rapidly witft|. It is also evident
thatA g is always appreciably less thay, .

The transverse polarization of the proton beam can be determined by measuring the
asymmetry of the angular distribution of the electrons, which dependg,qn Ass, and
As. . The behavior oAy andAg, as a function of the initial proton momentum and the
electron recoil angle is displayed in Figs. 1 and 2. Form-factor scaling,
(1+kp)Gg=Gpy, was assumed in the calculations, so that the asymmetry does not
depend on the form factors. The predicted values of these asymmetries as well as the
differential cross section of the reactidfig. 3 are quite large, so that there is hope of
obtaining reliable information about the polarization of the beam over a wide energy
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FIG. 1. Two-spin asymmetnjyy vVersus proton momentum and electron recoil angle.

range. Furthermore, even for 8 TeV protdhsiC) s is small(about 9 GeV), so that the
background from the inelastic scattering is relatively small, and it is virtually absent for
protons with energy less than 300 GeV.

The two-spin asymmetries of the scattering of transversely polarized protons by
polarized electrons at rest are large for proton momenta less than 10@.CG&pécifi-
cally, the asymmetnAyy is maximum for initial proton momentum of about 20 GeV
(~70%, Fig. 3, which corresponds to a squared total energy in the center-of-momentum

ASL (%)

FIG. 2. Two-spin asymmetrjg, versus proton momentum and electron recoil angle.
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FIG. 3. Differential cross section versus proton momentum and electron recoil angle.

frames,=0.9 Ge\f. As the proton momentum increasssncreases and the asymmetry
decreases, which makes it difficult to measure the polarization in the TeV energy range.

We propose a new method of polarimetry of high-energy protons. The heart of the
method is the use of a target consisting of a beam of polarized electrons accelerated in the
direction of motion of the protori“anticollider” scattering. This makes it possible to
find for any proton momentum the electron momentum for whiehs, and so the
maximum asymmetry will be observed. As the electron momentum incremsgdjrst
decreases from the valsé=m?+M?+ 2E,m to the minimum valuerfi+M)?, at which
point the relative velocity of the electron and proton equals zero, and then increases to
s"=m?+M?+2(E,E.— P,P) (see Fig. 4 HereE, (P,) andE, (P,) are the electron
and proton energiggnomenta. If sp<s’, s”, then for any proton momentum there exists

H -0, mrad
8o} i ~--=-- 0.15 mrad
P —— 10 mrad

0 . Stae, i " 0385
0.0t 0.1 1 10

Electron momentum (GeV/c)

FIG. 4. Two-spin asymmetnAyy and squared total energyin the center-of-momentum frame versus the
initial electron momentum for a proton momentum of 800 GeV/
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a pair of values of the electron momentymhich differ by an order of magnitugidor
which the asymmetry will be maximum:

m
P =12 (EoPp= PoEyp),

whereEy(Py) is the proton energgmomentum corresponding to maximum asymmetry

for scattering by electrons at rest. These two values of the momentum correspond to

higher and lower electron velocity compared with the proton velocitysyifs’, i.e.,

E,<Eq, the maximum asymmetry will be reached only for one value of the momentum

of the electron bean®; .

As an illustration, Fig. 4 showa, as a function of the initial electron momentum

for an 800 GeW proton beam. Two branches of the curve are shown for an electron
recoil angle of 10 mrad. These branches are due to the double-valued nature of the
solution of the kinematic equations. The relative directions of motion of the center-of-
momentum frame and the momentum of the scattered electron in the center-of-
momentum frame near the two maxima are opposite, so that the angular distributions of
the electrons in the kinematic region of these maxima are substantially different. As one
can see from the figure, the angular distribution in the first maximum is two orders of
magnitude narrower than in the second maximum.

The great advantage of the “anticollider” variant of tpe polarimeter is that the
total energy at which measurements Afy are to be performed corresponds to the
scattering of an electron with an energy of dhigbout 14 MeV by a proton at rest. The
absence of background processes simplifies the measuring apparatus and lowers its cost.
For the same reason, to make a complete kinematic determination of “anticollpser”
scattering events it is sufficient to measure the energy and direction of an electron or
proton, and one of the kinematic quantities can be measured with a low accuracy suffi-
cient for identifying(when necessayevents associated with the double-valued nature of
the solution of the kinematic equations. The calculations showed that the region of the
second maximum, where, over a relatively wide range of angles of emergence of the
electron, the asymmetry is large and is virtually independent of angle, may be attractive
for HERA type colliderg(in theepvariany. In this case, the proton propagates practically
on an equilibrium orbit with energy greater than the initial energy; this can probably be
used to identify elastic scattering events.

Similar arguments can be repeated for the asymm&gryin the TeV range.

We thank S. B. Nurushev and A. P. Potylitsyn for their interest in this work and for
helpful discussions.
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YHence it follows that the contribution of two-phonon exchange is very shall.
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Effective quark Lagrangian in the instanton vacuum
with nonzero modes included
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A new approach to the effective theory of quarks in the instanton
vacuum is presented. Exact equations for the quark propagator and
Lagrangian are derived which contain contributions of all quark modes
with known coefficients. The resulting effective Lagrangian differs
from the standard one and resembles that of the Nambu—Jona-Lasinio
model. © 1997 American Institute of Physics.

[S0021-364(97)00302-3

PACS numbers: 11.10.Ef, 14.65q, 11.15-q, 02.30.Jr

1. The recent lattice da"E)rovided evidence that instantons may be responsible for
nonperturbative behavior @fq correlators: which makes the study of the quark dynam-
ics in the instantonic vacuuit an important and fundamental problem.

To date practically all papers on the subject have relied upon the use of the so-called
zero-mode approximatiofZMA ), which amounts to including only the zero quark mode
in a single-instanton fermion propagafo€orrespondingly an ansatz for the partition
function and effective quark LagrangidBQL) containing zero modes only have been
proposed and are widely used in the literatuté.

The purpose of this letter is to give a complete normal-mode expansion of the EQL
and of the quark propagator. Keeping only zero-mode coefficients in this expansion, one
retrieves the ansatz of Ref. 5 for the EQL. Naively one would expect that this choice of
the coefficients would yield the dominant contribution to the physical quantities and thus
justify the ZMA. However, the exact calculation of the EQL presented below does not
show this dominance. More intricate is the analysis of the quark propa§aitorthe
instanton—anti-instanton vacuum. Here the zero-mode term survives but higher modes
enter with coefficients of the same order. A similar feature can be seen in the quark
partition function(detS™1), where the average..) is defined below. Thus a new quark
dynamics associated with nonzero modes emerges. The main features of this dynamics
are outlined below.

2. For clarity of discussion consider an ideal instanton gas with the superposition
ansat?71% and with zero net topological charge, i.e., equal numbers of instantons and
anti-instantonsN_ =N_=N/2:

N
A#(X):i; AV (x—Ry), (1)

137 0021-3640/97/020137-05$10.00 © 1997 American Institute of Physics 137



A(l 7la;w(x R) pZQ+TaQ
I T R R)ZH 7T

where(); , R;, andp are the color orientation, position, and scale size of thénstanton.

)

The EQL is obtained from the Euclidean partition function after averaging over
{Q; R}

N
Z:f D¢D¢+e—fdx¢/*8’ldfﬂ ?inZJ D¢D¢+e_|-eﬁ, (3)

i=1
where we have introduced the following definitions:
Sol=—ig—im;, S l=—ig—gAl—im;, S l=-ig—gA—im;. (4)
Next we introduce the standard set of eigenfunctifujg, n=0,1,2,...,
(=i0=gAD)up)=Nqlup). (5)
ThenS™! given by (4) has a formal representation as a sum over normal modes,

st 2 S ueme(UnlSy (®)
wheree can be represented either as
emn= ~(Unl (S~ So)[ 1+ S (S = Sp)]~*|un), (7)
or simply as
Einn= — O(Un| SoA" Spluy). ®)

Performing the averaging in EB) with the help of a cumulant or cluster expansion, one
obtainsL . in the form

Lefr= fdxl,// S ¢+§‘, (-1 1( ) Py fdr def)Jy, 9)
where

dr, H D ks 2 (E (p=p)) ) (10

Jk|=(dffk(pk))*Mnfkr'nl,(pk,p()wf'(p(), (19
and as in Refs. 5 and 6 we have introduced the vertices

M (P.P") = 2\',\IN (P=iMg) @m(P) &y @ (P)(B' =My, (12

with ¢,(p) being the form factor ofi,, in momentum space.

The summation in Eq9) starts fromn=2, since then=1 term drops out as a result
of integration over color orientations.
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The EQL in Eq.(9) is a sum ofnXn determinants. If one confines oneself to the
ZMA, i.e., putsey finite and ey~ 1~ €qual to zero, the sum runs only owves N .
This restriction is due to the Grassmannian naturd,@f Thus even in the ZMA one
obtains, e.g., foN;=3, three X2 determinants and onex3 determinant. Only the last
of these is present in the ansatz of Ref. 5, with the identificatigy=e, Mg=M.
Therefore our results are in contrast to the common lore according to which for a given
number of flavorsN;, the only vertex appearing in the chiral limit containil 2quark
operators. We can reproduce this result ¥qe=2 if only &g, is kept nonzero, while for
N;=3 this conjecture does not suffice and we get additiomptetms.

Consider nowe), using(8). In the chiral limit the operatoB,A?)S; is chirally odd,
while the instanton zero mode has definite chirality, and therefgyeranishes, and for
m;#0 one has

e0o=0(my), m—0. (13

At the same time the nonzero models,, do not have definite chirality, and hence the
matrix elementsep,, do not vanish asn;—0. Thus the ZMA in the naive sense of
dominance of the zero-mode terms in the EQL is not supported by our calculations. In the
next section we discuss what it means in terms of the quark propagator.

3. We now turn to the quark propagator, expressing it again in term#,rpﬂnvert-
ing (6), one finds

_ 1 \"
S=S— X, Iu'm>(é_1+\7) (ul], (14)

ijmn
where €)= &j&mn, and

(V)ihn={Um|So |- (15
Note that the summation ifi4) extends over different instantons and hence ajeand

ul, of different chiralities. Equatioti14) is to be compared to the following expression
common to most papers on the subjé&

1
2im+V

ij )
(ut|, (16)
00

S:SO_%: |ug)

which contains only zero-mode contributions. To deri¢6) one starts with the follow-
ing approximation for the quark propagator in a single-instanton fi2ld:

S (Y
—(—jg) 14—
S=(=19) "+ — 17)
Introducing this ansatz into expressiéf for &', we get
i 1 i
€00~ 5im Em>on>0=0- (18

Using this form ofe in Eq. (14), one recovers the standard ZMA6). Now, comparing
Eqg. (18) to (13), we conclude that ansaft7) is unjustified. Actually, whem;, vanishes
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in the chiral limit in accordance witt{13), the propagator(14) still contains terms
|up){(ub|, but with coefficients depending upon higher-mode contributMs This can
be seen by expanding E(lL4) in a series in powers o, i.e.,

S=S— > |ulN(e—eVe+eVvave—..)l (ul]. (19
I,J,mn

If one neglects nonzero modes W, in Eq. (19), then the coefficient ofuio><u5|
automatically vanishes. To make contact with popular instantonic techiirfushere
only zero_modes are kept in the quark wave functions of the instartansd anti-
instantond , we rearrange the series for the quark propagator and partition function, using
the relationeV=SyA, and separate out the terms containing the overlapl ofero
modes.

In the standard ZMA these terms are assumed to be dominant, while the overlaps of
nonzero modes are neglected. Our expres&l® includes both types of contributions
and does not show zero-mode dominance. Therefore we propose to study the new EQL
derived above and calculate physical quantities like the chiral quark mass and chiral
condensate in order to estimate the contribution of nonzero modes.

It is worth noting that the consistency of the approximati@r was questioned in
Ref. 9 in connection with the calculation of the two-point correlation function. It was
shown in Ref. 9 that it is absolutely necessary to keep the terms of erdein S;.
However, since for massive fermions the single instanton propaatemot explicitly
known, the effects of the higher modes and finite mass have been investigated only
numerically*

Finally, let us examine the effect of nonzero modes in the quark partition function,
which is obtained from Eq(3) by integrating first over quark fields. Using E@) for
S 1 one easily obtains

N¢
Z2iZo=]] de(1+2Vv), (20)
f=1

wherez andV are the same matrices as in E@s) and(15). We may now repeat the
arguments presented after Efj9) to demonstrate the presence of nonzero modes and the
absence of zero-mode dominance.

4. One may wonder why the ZMA.e., keeping only zero modes in the EQhight
be invalid even though phenomenologically it seems to be giving reasonable reSits.
One of the reasons might be thagt=¢ has been treated as a parameter connected to the
properties of the instanton vacuum via the relatior(N.V/Np?) 12 while the properties
of the vacuum have been in turn adjusted to the correct value of the gluon condensate.

Our results are at first sight in contradiction to the Banks—Casher refatidrich
connects the chiral condensate with the density of glépahs) zero modes. The stan-
dard picture suggests that the latter originate from individual zero modes, and hence
would disappear as soon ék3) holds. However here the standard picture may fail. An
insight into its possible failure is provided by quantum mechanics of collective levels in
N potential wells in 4D. If each of the wells has one loosely bound level and a continuum
(equivalent to a zero mode and nonzero moderen the approximation of keeping only
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the bound-state poles in the Green’s functions of each well is known to give an inad-
equate description of collective bound statéMore than that, the pole approximation is

a poor one even for the Green’s function of an individual well, and instead the so-called
unitary pole approximation has to be uséd.

5. To summarize, we have outlined a new approach to the effective theory of quarks
in the instanton vacuum. Our EQL is similar to that of Nambu and Jona-LaSinio,
namely it starts from a ¢ term which might play an important role in phenomenology.
Analogy to the NJL model calls for construction of a gap equation yielding the chiral
quark mass and quark condensate. Also, the bosonization procedure has to be performed,
yielding the effective chiral Lagrangian for the Nambu—Goldstone modes. Finally, the
low-density limit deserves a special discussion. This program is in progress now and will
be reported elsewhere.

The authors are grateful to S. V. Bashinsky, Yu. M. Makeenko, V. A. Novikov, V.
A. Rubakov, and A. V. Smilga for helpful discussions. This study was supported by
INTAS Grant 94-2851 and by the Russian Fund for Fundamental Research, Grant 96-
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A gas of Abelian monopoles is studied taking account of the interaction
of the particles. The Wilson average, for which the law of areas is
obtained with allowance for Debye screening, is calculated, with a
“tension” coefficient proportional to the monopole density. 97
American Institute of Physic§S0021-364(17)00402-7
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The pressing need for a realistic model of the quantum chromodynd@icE)
vacuum with the properties of chiral symmetry break{@$B) and confinemenfWilson
area law was noted in a recent reviewThe model studied in greatest detail — an
instanton gasliquid)? — exhibits the CSB property but does not give confineniértie
dyon gas modélproposed several years ago is most promising with respect to confine-
ment and exhibits the CSB property at the same time. Estimates have demonstrated the
possibility of the area law for Wilson loops in a gas of dydgnsonopoleg The first
guantitative results for a gas of dyofsbelian monopoleswere obtained recently ne-
glecting the interaction of the particle$.It was shown that in a gas of dyons with
characteristic sizegy,, much less than the loop size(point-dyon limiy “superconfine-
ment” holds for the space-like Wilson loop — the tension is proportional to the size of
the loop, specifically, for a circle of radius

(Wy=expg(—or?), o=C nr, (1)

wheren is the density of the dyon gas in three-dimensional sp@ce9.84%6 ... is a
constant extracted from the numerical calculations and approximately equdl for-

mula (1) is valid for quasistatic charges, when the fields generated by the particles are
taken without allowance for retardation caused by displacements of the particles in three-
dimensional space. Allowance for motion decreases the corGtéRef. 6. Furthermore,

C changes for multidyonic configurations studied in a container of large but finite size
L>r. It has been noted that allowance for interaction, in particular, the screening of the
field of a charge in a gas, can yield the correction to fornjlijeof interest to us, i.e., it

can lead to the Wilson area lafgonfinement of space-like loops

The present letter discusses the effect of the interaction of Abelian monopoles
(screeningon the “confining” properties of a gas. Furthermore, it is shown on the basis
of an explicit calculation of the two-particle correlation function that it is important to
take multiparticle correlation functions into account in the present model.
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SPACE-LIKE WILSON LOOP FOR A NEUTRAL GAS OF MONOPOLES WITH
INTERACTION

By definition, the observed Wilson loop for a gas of monopoles is given by the limit
of the time-average partial contributidh(C, t) asT—« for an instantaneous arrange-
ment of the charges

JodtW(C,t)

(W(C)= lim ==,

T—oo

2

where

W(C,t)=ex;<ig %CAM(x)dxﬂ),

andC is the Wilson contour. Applying the ergodic hypothesis, we rewrite the definition
(2) for a N-particle gas in terms of the particle distribution functieg(x,, . . . Xy):

Jdxg . dXWWN(X1, « oo X)X, - e XN

(W(e))= Jdx - dxgFn(Xa, - - Xn)

()

As was shown in Refs. 5 and 6, superconfinem@ntholds for noninteracting
particles. In a gas of particles with long-range interaction, however, a correlated arrange-
ment of the charges must be considered — each particle is surrounded by a cloud of
oppositely charged particles which screens the particle. In the simplest case of a rarefied
(nondegenerajegas the Debye screening is described, with adequate accuracy, as a
function of the thermodynamic parameters by the Debye rabiag®/e’n)¥? where
e is the particle charge an@ is the gas temperature.

For an Abelian monopolé&oint dyon we have the following magnetic fields: with
no screening

s Lo 1] ®
g X
and with Debye screening
1 eflxllD
B=-— §V T y (5)

in formula (2) a singular Dirac potential, for example, of the following form, is used:

_1e‘p z
°Tg b [P

wherep is the distance from the Dirac string aeg is the azimuthal unit vector.

Besides screening, the interaction influences the form of the distribution function, to
find which for a rarefied gas only the two-particle correlation functions need be taken into
account. Specifically, for a neutral monopole—antimonopole gas averages of the follow-
ing form are calculated in formulés):
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N, N, N_
f dxidxj[ilzl Wf(xi)Wf(xj)FﬁﬂL;l ]Zl Wi (X)W (X)F+ ..,

whereN,_ =N_=N is the number of monopoldantimonopoles Since the fields com-
mute in the present model, the Wilson loop decomposes into a product of one-particle
contributionsWy (X, X5)=W;(X1)W;(X,). The two-particle function is well known in
the limit e=v/D3<1 (wherev=VI/N is the specific volume
e7|X17X2|/D

Fi1=1, Fzzl—Selezm, (6)
wheree; ande, are the particle charges and a cutoff is introduced at small distances so
as to avoid nonphysical negative values in the case of repulsion.

So, forN>1 we have instead of formulg)

J’ dx;dx, N

wy=| [ T wiE L Wi W) )

and the fluxes of the magnetic field through the contour for a monopole and antimonopole
are taken with the Debye screeniff).

To see which effect — Debye screening or the change in the distribution function —
makes the larger contribution to the answer, we shall examine them separately. First, we
study the effect of a change in the distribution function on “superconfinement.” For a
singular Dirac potential the flux of the magnetic field is expressed in terms of the solid
angle® within which the contour is visible from the location of the charge. Then the real
part of formula(7) has the form

e e—rlle
ne,

[ [ dxudx, P, b,
<W>—U 2 (003(7+7 o> T1lD

(Dl (DZ P e—rlle N
*C"F(T?)(“?—rum )] ®
With no interactior®
[3
<W1>=<C0:{(D/2))—>1—Cv, (9)
and in a gas
r3 N
<W>—> l—Cv) ,

where in the limitsN—o, V—o, andN/V=n one has
(W)—exp —Cnrd).

One can see from formul®) that the most significant part, which is given by a product
with cos®/2), is not affected by a change of the distribution function. The contributions
of the monopole—monopole and monopole—antimonopole pairs compensate one another.
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FIG. 1. CoefficientC as a function of the Debye radills The circles show the computational results obtained
with a steph/r=6.25 10~2; the solid curve, those fdi/r=2.5-10"1.

This is also confirmed by a numerical calculation both wih.( and without £,) a
cutoff of the distribution function at short distances. The coefficit formula(9) does
not change much:

C=9.115(F,=F;=1), C’=9.011(F,=F,y), C’=8.269F,),

(the dimensions of the box containing the gas ark:=3.625,D/r=0.1, £¢=0.1). A
numerical calculation shows that compensation occurs over a wide range of values of the
parameter® ande, i.e., to within 10% the distribution function can be assumed to be
free,F,=1.

The effect of allowing for Debye screening directly\ivi is shown in Fig. 1, which
displays the coefficien€ as a function of the Debye radiu3 (the magnetic flux is
determined with the aid of the expressi@) and the flux is integrated over the minimum
surface spanned by the conthudne can see that f@ <r the coefficientC is a linear
function of D:

The following value was obtained for the coefficigd from a numerical calculation
with a very small integration step:

Cp=7.9....

Hence we obtain confinement for a space-like Wilson loop in a gas of monopoles with
Debye screening:

(W)—exp —or?), o=CpnD.
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CORRELATION FUNCTION FOR MONOPOLES

Expanding cosP/2) in a series in powers ob, we shall now relate the Wilson
average with the correlation functions of the fields. The first significant contribution is
given by the expansion

(COS(CD/2)>21—<(I)2>/8+ ey <(D2>: fsxsdo'ld0'2<83(xl)B3(X2)>,

where the integration extends over the surf&cef a circle lying in thex,y plane and
do is an element of the surface.

For a monopole, the intensiti& are of the Coulomb form. The correlation function
of such fields can be calculated exactly:

v i(X=Xq)Bj(x Xz)—mz( ij—nin;), n_|x1—x2|' (10
The integral of the correlation function can also be calculated exactly:
f dored 1 167 , 1D
—=—T"
SXS 71 02|X1_X2| 3
Therefore we have for the Wilson average the approximate result
2 r3
(W)=(cod @/2))~1——— 1/, (12)

or C~42/3, which agrees to within 30% with the complete answerGor
The correlation function can also be calculated exactly in the case of screened fields
(5):

v Bi(x—Xx1)B;(X XZ)_W (4 —nin;)) >p (- (13

The integral

e [x1—x2l/D
I=f do,doy——
SxS X1 =Xy

can be estimated fdD<r as
|=27°Dr2,
We obtain for the Wilson average
(W)=(cog®/2))~1- %3 Dvrz, (14)

and for a gas we have, accordingly,
71_3
(W)wexp{ - ?Dnr2>.

146 JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 B. V. Martem'yanov and S. V. Molodtsov 146



The estimate obtained f&@p= m3/2~15 is substantially different from the total value.
This shows that multiparticle correlation functions play an important role in the present
model.

As was mentioned at the beginning of this letter, the results for a gas of monopoles
are largely identical to the results for a gas of point dyons. If an analogy with screening
in a gas of monopoles proves to be possible, then the required confinement property will
be obtained for the dyon gas.

We have calculated the Wilson loop for a gas of interacting monopolgsns.
Debye screening leads to the law of areas for the Wilson average. A direct calculation
agrees with the approximate analytical calculation by the method of correlation functions.
It has been shown that it is important to allow for multiparticle correlation functions in
this problem.
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We show that in supersymmetric models with explicit flavor lepton
number violation due to soft supersymmetry breaking mass terms there
could be detectable flavor lepton number violation in slepton decays.
We estimate the potential for discovery of lepton flavor number viola-
tion in slepton decays at LHC. @997 American Institute of Physics.
[S0021-364(7)00502-1

PACS numbers: 12.66., 11.30.Hv

Supersymmetric electroweak models offer the simplest solution of the gauge hier-
archy problent™ In real life supersymmetry has to be broken, and the masses of super-
particles must be lighter tha®(1) TeV* For the supersymmetric extension of the
Weinberg—Salam model, soft supersymmetry breaking terms usually consist of the
gaugino mass terms, squark and slepton mass terms with the same mass at Planck scale,
and trilinear soft scalar terms proportional to the superpotehfial such “standard”
supersymmetry breaking terms the lepton flavor number is conserved in the supersym-
metric extension of the Weinberg—Salam model. In general, however, the squark and
slepton soft supersymmetry breaking mass terms are not diagonal due to many causes
(Refs. 5—15; allowance for stringlike or GUT interactions, a nontrivial hidden sector,
etc), and flavor lepton number is explicitly broken. As a consequence such models
predict flavor lepton number violation ja and 7 decays.~**In our previous papet&*®
we proposed to look for flavor lepton number violation in slepton decays at LEP2 and
NLC.

In this paper we investigate the potential for discovery of flavor lepton number
violation in slepton decays at LHC. We find that at LHC it would be possible to discover
lepton number violation in slepton decays for slepton masses up to 300 GeV, provided
that the mixing between sleptons is close to the maximal one.

In supersymmetric extensions of the Weinberg—Salam model, supersymmetry is
softly broken at some high-energy scdlie; 1 by generic soft terms:

— Loof= Myl AT RG | Hy+AfJdEG | Ha+ Al BRI Hg+h.c)+(md)id LG )™
+(m3)ija R(T jR)++(m§)ij dire(djpa)++(m|2)ij| ( {)++(m§)ifé RERT
2 + 2 + 2 1
+miHH, +msH4Hg +| Bmg,,H Hg+ Ema()\)\)a"_ h.c.|, @
wherei,j,a are summed over 1, 2, 3 am , Ug, ER denote the left{right-)handed
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squarks,l, , er the left- (right-)handed sleptons, and,, Hy the two Higgs doublets;

m, are the three gaugino massesif(3), SU(2), andU(1), respectively. In most
analyses the mass terms are assumed to be diagonal tdhescale, and the gaugino

and trilinear mass terms are also assumed universal M thg scale. The renormaliza-

tion group equations for soft parametérenable one to connect the high-energy scale
with the observable electroweak scale. The standard consequence of such analyses is that
the right-handed sleptoie , ur, and7y are the lightest particles among the squarks and
sleptons. In the approximation wherein one neglects the lepton Yukawa coupling con-
stants they are degenerate in mass.

In our analysis we assume that the lightest stable particle is the gaugino correspond-
ing to theU (1) gauge group, which is now a more or less standard assunfptkshas
been discussed in many papers in general we can expect nonzero off-diagonal soft
supersymmetry breaking terms in Lagrangi@hwhich lead to additional contributions
for flavor-changing neutral currents and to flavor lepton number violation. From the
nor%otigervation ofu—e+y decay Br(u—e+vy)<5-10"%; Ref. 21 one can find
that™

(AmPep)rr

i =(8e,)rr=2k-10" M3 /(1TeV)?, 2)
av

wherek=0(1). Formg, =70 GeV we find that §¢,) rr=< 10 3. The analogous bounds
inferred from the nonobservation of-ey and 7— uy decays are not very stringehi>

The mass term for the right-handed sleptegsand ug has the form
—dL=mie fEr+ M3 rlirt M€ RiRt K RER). ()

After the diagonalization of the mass tert®) we find that the eigenstates of the
mass term3) are

‘€R="ER €O @)+ ug SiN( ), 4

HR=THr COS ¢) — €k SiN(p) (5)
with the masses

M3 = (1/2)[(m2+m3) = (M5 —m3)2+4(m3,)?) 2], (6)

which practically coincide for small values ofé—mj3 andm2,. Here the mixing angle
¢ is determined by the formula

tan(2¢) =2ma,(mi—m3) L. (7

The crucial point is that even for a small mixing parame’rﬁrz, on account of the
smallness of the differenaa? —m3 the mixing anglep is in general not smallat present
state of art it is impossible to calculate the mixing anglereliably). For the most
probable case when the lightest stable superparticle is the superpartnety¢fithgauge
boson plus some small mixing with other gauginos and higgsinos, the sleptoaad

‘er decay mainly into the leptonsg andeg plus theU (1) gaugino\. The corresponding
term in the Lagrangian responsible for slepton decays is
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291 — - — -
le_z(eRMeR+MR)\L,U«R+h-C-), (8)

V2

Whereg§~0.13. For the case when mixing is absent the decay width of the slepton into
a lepton and LSP is given by the formula

2

g1 _
=2 -MgA¢~5-10 SMgAs, 9)
MESP)2
A =( - : (10
f Mg

where Mg and M| gp are the masses of slepton and the lightest superpartitl®)-
gauging, respectively. For the case of nonzero mixing we find that the Lagrarigian
in terms of slepton eigenstates reads

20, _ I
le%[em(ea co8 ) — Tif SN )+ Ferh (T COS )

+€L sin(¢))+h.cl. (11)

At LEP2 and NLC, in neglect of slepton mixing,z and7g slepton pair production
occuré? via annihilation graphs involving a photon andZi boson and leads to the
production ofu s g and7g 7 5 pairs. For the production of right-handed selectrons, in
addition to the annihilation graphs we also have contributions fromt{tigannel ex-
change of the neutralin.

Allowance for nonzero smuon-—selectron mixing leads to the following formulas for
the cross sections for LEP2 and NLC:

o(ete —eTe +LSP+LSP)=k[(A+Bcog(¢))%cos(¢)

+ (A+Bsirf(¢))?sint( ¢) + B2sin*(2¢)/8], (12
olete —u " u +LSP+LSP)=K[(A+Bcog(¢))%sin'(¢)

+ (A+Bsir?(¢))%cos(¢)+B2sint(2¢)/8], (13
olete —»uT+e*+LSP+LSP)= W[(M Bcog(¢))?

+(A+Bsir?(¢))?+B?(cod () +sirt(¢))]. (14

Here A is the amplitude ok exchangeB is the amplitude ot exchange, andt is the
normalization factor. The corresponding formulas #AgrB, andk are found in Ref. 23.
The reaction(14) proceeds with violation of flavor lepton number.

It should be noted that formuld42)—(14) are valid only in the approximation of a
narrow slepton decay width:

2Img <|mé —mZ |. (15
R p'R R
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For the case when the inequalitis) does not hold, effects due to the finite decay width
are important and decrease the cross section for violation of flavor lepton number. The
cross section for the reacti@ e” —e* u~ +LSP+LSPis proportional to

o~sin2(d>)co§(¢)f |D(py,mz,T)D(py,mz,I)

—D(py,m;,T)D(p,,m;,T)|?dpZdp3, (16)

where

D(p!mar): p2_ (17)

m°—il'm

andl'z~I";=TI". The approximatiori12)—(14) corresponds to neglect of the interference

terms in(16) and is valid if inequality(15) holds. For smaller slepton mass differences it
is very important to take into account the interference terman'®2° The integral(16)

is approximately equal to

a2

2[ w2 &

, 272 b (b 4

T~ SiP(¢)CoS(p) 77| 1- 27 | (18)

b2+ Z

where azméR— m%R , bzl“[(ngJr m;R)/Z]. Taking the interference effects into ac-
count leads to a decrease of the cross se¢fidnby factors of 1, 0.82, 0.52, and 0.17 for
|mZ—mé|=2I'mg, 1.5'mg, I'mg, and 0.5'my, respectively.

Consider now the possibility for discovery of lepton number violation in slepton
decays at LHC. The possibility of discovering sleptons at LHC has been discussed in
Refs. 26—28. Here we shall use the results of Ref. 28, where concrete estimates were
made for the CMS detector. To be specific, let us consider two points from Ref. 28:

Point A: m(I,) =314 GeV,m(Ig) =192 GeV,m(7)=308 GeV,m(y %) =181 GeV,
m(x 9)=358 GeV,m(g )=1036 GeV,m(q )=905 GeV, tanf)=2, sign(u)=—.

Point B: m(1,)=112 GeV,m(1z) =98 GeV,m(7 )=93 GeV, m(} 1) =39 GeV,
m(x 5)=87 GeV,m(g )=254 GeV,m(q ) =234 GeV, tanB)=2, sign(u)=— .

~ For point A the following cuts have been usgi=50 GeV,Isol<0.1,|7|<2.5,
ET=120 GeV, A¢p(EF'™,11)=150°, jet veto — no jets withEF'=30 GeV in
| 7|<4.5,Z-mass cut —M =5 GeV excludedA ¢ (1 71 7)<130°. With such cuts for a
total luminosityL;=10° pb™%, 91 eventse*e +u " u~ resulting from slepton decays
have been found. The standard WS model background comes\itamtt, Wtb, WZ,
and77 and gives 105 events. No SUSY background has been found. The significance for
slepton discovery at point A is 6.5. Using these results it is trivial to estimate the pros-
pects for the discovery of flavor violation in slepton decays. Consider the most optimistic
case of maximal slepton mixings and neglect of the effects of destructive interference.
For the case of maximal selectron—smuon mixing, the number of signal events coming
from slepton decays ifNgg(e"e )=Ngg(u n )=Ngg(u"e")=23. The number of
background events iNp,(€ €7 )=Npael ™ 7)) =Npae€ 1 +)=53. The signifi-
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canceS= Sleptonsi{/Background+ Sleptons is 5.2 for all dilepton modes. For the case
of maximal smuon—selectron mixing we have the same numbef ef , 4™ x~, and

e u”* signal events, whereas in the absence of mixing we do notéraue events. For
the case of the maximal stau—smuon mixing we expeciu23.~ signal events, 46
e"e” signal events, and 2*e* signal events, while the background is the same as for
the case of maximal smuon—selectron mixing. The significance isee6( mode, 2.6
(u*u” mode, 5.2*e +u* ™ mode. The case of selectron—stau mixing is similar
to that of smuon-stau mixing, the only difference being the intercharge, u—e.

For the case of maximal selectron—smuon—stau mixing we expeet'46+u*u”
+e*u™ signal events, and the significance is 2.8.

For point B the cuts are similar to the point A, excght=20 GeV,ET*>50 GeV,
AG(ET™®11)=160°. For a total luminosity L=10* pb~! the number of
ete +u"u” events resulting from direct slepton production has been found to be 323.
The number of background events have been estimated equal (st&8fard model
backgroungl + 10§ SUSY backgroung= 1092. The significance is 8.6. Our analysis for
the point B is similar to the corresponding analysis for the point A. For the case of
maximal selectron—smuon mixing we have found that the significance for all delepton
modes is 6.4. For the case of the maximal smuon—stau mixing the significance for the
e"e"+u"u” mode is 6.6. The same significance obtains for the case of maximal
selectron—stau mixing. For the case of maximal selectron—smuon—stau mixing the sig-
nificance for thee*e +u*u~+e“u™ mode is 3.0. For a total luminositly,,= 10°
pb~! the significance is increased by facteB.1. It is interesting to mention that at LHC
the main mechanism of slepton pair production is the Drell-Yan mechanism, and, as a
consequence, for equal smuon and selectron masses the corresponding cross sections and
the number oB*e™ andu™ ™ signal events coincide. The corresponding cross sections
depend rather strongly on the slepton masses. If the smuon and selectron masses differ by
20 percent, the corresponding cross sections and, hence, the numeéreofand
n* u” signal events will differ by factor of=2, which, as has been demonstrated for the
example of points A and B, is detectable at LHC. However, the effect of a 20-percent
smuon and selectron mass difference will imitate the effect of selectron—stau or smuon—
stau mixing. So the situation could be rather complicated. At any rate, by measurement of
the difference inu™ ™~ ande™e™ events it would be possible to measure the difference
of smuon and selectron masses with an accuraey2f percent, which is very important
because in MSSM the smuon and selectron masses practically coincide for both right-
handed and left-handed sleptons.

Let us state the main result of this paper: in the supersymmetric extension of the
standard Weinberg—Salam model there could be soft supersymmetry breaking terms
responsible for flavor lepton number violation and slepton mixing. At LHC it would be
possible to discover flavor lepton number violation in slepton decays for sleptons lighter
than 300 GeV provided that the mixing among sleptons is close to maximal. For the case
of unequal smuon and selectron masses the numbetef and ™~ events will be
different, an effect which imitates that of stau—smuon or stau—selectron mixing. At any
rate, the observatiofor nonobservationof the (u™ uw~—e*e™) difference will allow one
to conclude that the smuon and selectron masses ¢iftgee at least to an accuracy of
20 percent or to draw a conclusion as to the discovery of slepton mixing. Unfortunately
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it is rather difficult to distinguish between these two possibilities. For the case of nonzero
smuon-selectron mixing the number @f = ande™e™ events is predicted to be the
same, and, moreover, for the case of maximal smuon—selectron mixing the numbers of
ue” and u~e” events coincide with the numbers of" .~ ande*e” events. Of
course, it is clear that the prospects for discovery of flavor lepton number violation are
the most promising at NLC or the™ .~ collider, but unfortunately now those prospects
are too far from reality.

| thank the CERN TH Department for hospitality during my stay at CERN, where
this paper was completed. | am indebted to the staff of the INR theoretical department for
discussions and critical comments. | am indebted to L. Rurua for very helpful discus-
sions.
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Mechanism of stratification of turbulent heat transfer in a
sound field in the presence of rotational anisotropy
of the flow
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It is established that the stratification of the heat transfer intensity co-
efficients inton discrete levels, as discovered previously in the turbu-
lent flow accompanying rotation of a supersonic flow, is described by
the formulaa?/a3=2""1, n=1, 2,3, ... . It isfound that the ratio of

the measured amplitudes of the discrete components of the pressure-
pulsation spectrum is of a similar form and corresponds to the pressure
field from multipole sources. As expected, similarly to the case of
acoustic paramagnetic resonance, the selection of discrete frequencies
of intense acoustic radiation from the external flow occurs under the
influence of resonances with the radiation of multipoles of turbulent
vortices oriented in the rotational anisotropy field. 1®97 American
Institute of Physicg.S0021-364(®7)00602-§

PACS numbers: 47.55.Hd, 47.27.Te, 47:3%.

It was predicted theoreticalfytwo years ago and experimentally obsefadyear
later that the asymmetry of the molecules of a gas and/or the corresponding excitation of
their rotational degrees of freedom have at least a strong influence on the transition to
turbulence in gas flows. A quantum mechanism is proposed as a possible path leading to
asymmetry(in the case of spherically symmetric intermolecular interaction potentials
The introduction of asymmetry into the phenomenology of developed turbiilemaices
it possible to describe the turbulence as an active system with diffusion, capable of
generating internal structufeAcoustic interactions with developed turbulence under
conditions of strong rotational anisotrofipsses of reflection symmedrpf the flow are
of special interest, since the effect of the acoustics on momentum and heat transport
processes is qualitatively different in the presence of asymmetry of the stressed state of
such a medium:?®

Acoustic (vorteX) flows and heat transport due to them near obstacles of different
types are ordinarily not established immediately, but rather they develop gradually until
the retardation due to the viscosity of the medium compensates the increase in their
velocity under the action of the sound. The scale of the flow is determined by the
thickness of the acoustic boundary layss (v/w)Y? (v is the kinematic viscosity coef-
ficient andw is the angular frequency of the soynd

In the present letter a mechanism of stratification of turbulent heat transport into
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discrete levels is found which corresponds to interactions between the sound fields of the
turbulent vortices and the radiation from the discrete currents of the external flow which
are such that the acoustic flows are established so quickly that sé8eral vortex
modes of acoustic origin, giving way to one another in a random manner, are realized
near the heat-transfer surface.

The experiments were conducted on a gasdynamic RD appdhastitute of Theo-
retical and Applied Mechanics, Siberian Branch of the Russian Academy of Sdiences
with air flow rates of up to 10 kg/s. The distributions of the heat-transfer intensity
coefficients, pressure, and pressure pulsations at the walls of a supersonic channel were
measured as a function of the position of the channel axis with respect to the subsonic gas
flow rate at the entrance. Characteristic acoustic vibrations were excited in the semiclosed
volume of the gas flow and then interacted with the sound fields of the turbulent vortices
in the boundary layer of the supersonic channel.

The basic arrangement of the experiment and the measurement procedure are pre-
sented in Refs. 5 and 6. In the present work, we obtained new data which made it possible
to determine the mechanism which results in the stratification of heat transport.

The gas(air), passing through the entrance chante(Fig. 13, flows into the
semiclosed cavit® and then into the second chanilwhich is shaped like a conical
Laval nozzle. The diameter of the thrdatitical section equals 38.4 mm. The position
of the nozzle3 was varied by changing the angle and the velocity of the flow at the
entrance to the nozzle was varied by changing the Mach nuivihenf the jet flowing
out of the channel. The measurements were performed along the generatrices of the
nozzle3 on the upstream and downstream sides; this was achieved by rotating the axis
relative to the nozzle by 180°.

Three heat-transport regimes are observed on the generatrix of the Baiele-
perature sensord), depending on the values ™, and 8. The first regime(Fig. 13
corresponds to an ordinary turbulent heat transport regime in a supersonic ctrenael
and below in the figures the curve was calculated according to ReThé second type
(Fig. 1b and ¢ reflects the effect of nonstationary processes due to the instability of
large-scale secondary vortex flows, which in turn interact with the sound field of the
entrance part of the nozz& This type of heat transport exhibits the typical nonstation-
ary, irregular character expressed in the random variance, which increaseld! with
the values of the heat-transfer coefficients. The third regime, first observed in Ref. 5, is
characterized by a clearly observed ordering of the heat-transfer coeffigignishich
are distributed with different probability in several levelsFig. 1d, and by the ratio
a?la? (n=1, 2, 3,...)which takes on integer values.

A simple analysis shows that the squared coefficiefftare related to the acoustic
nature of the frequency characteristics,. Indeed, estimating the heat fluxes as
g=MAT/Al=aAT (here), is the thermal conductivity of a turbulent medium near a
wall andAT is the temperature differencand settingAl ~ §, we obtain

2
azw)\tzlﬁzzjtw or a’~w.

Measurements of the pressure pulsations at the wall of the cha@n(fégy. 19 in
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FIG. 1. Distribution of the heat-transport intensity coefficients along the generatrix of the nozéR*
(R* is the radius of the nozzle thrgata — M;~0, B=0°; b — M;=0.18, B=0°; ¢ — M;=0.35,
B=0°;, d —M,=0.35, B=20°.

cross sections revealed the following: For the first regime — no large-amplitude vibra-
tions, for the second regien— a nearly random distribution of the amplitudes of the
pressure pulsationd=ig. 28, and for the third regim — a line spectrum, qualitatively
correlated with the probability distribution af,,, of the amplitude of the pressure pul-
sations(Fig. 2b).° The frequency spectrum of the pressure pulsations is characterized by
several maxima near the frequencies 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 kHz. Normal-
izing them to the lowest frequency, we obtain the ratios

c%ct:c%cd:c*:cd wherec=2,
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FIG. 2. Spectra of the pressure pulsation amplityglés! is the percent content of a given pressure amplitude
in the samplg a — M ;=0.35, 3=0°; b —M;=0.35, 3=20°.

characteristic for the relative order of the quantities which appears in the sum of the terms
of the stress tensor in the expression relating the stress tensor with the pressure field of a
multipole® whenc=wr/a, (wherer is the distance from the multipole

At the same time, as analysis of the data showed, the rafi@ are described to
within 0.5-10.0% by the formula

aﬁ/aiZZ”ﬂ, n=123...,

indicating directly the relation between the structural levels of heat tranapaahd the
pressure field of multipole sources.

It is well known that in calculating the acoustic radiation from jets the turbulent
vortices are treated as a distribution of quadrupdl€kere has been no known interac-
tion between the acoustic radiation of vortices and the external fields of discrete currents
that would result in a back effect on heat-transport processes, since the energy of the
vortex radiation(far field) is too low.

To analyze a mechanism of this type qualitatively, we write down the main equation
of the theory of aerodynamic nofse
ﬁzp/ﬁtz—agAp=(92T,J /(9Xi(9xl' y (1)

which describes the generation of a sound fighe left-hand side of Eq1), wherea, is

the speed of soundinder the action of continuously distributed acoustic quadrupoles of
strengthT;; (equal to the components of the stress tensor of an element of the medium
Here the stress tensor has the form

Tij=pviv;+ Pij—agpdy; - 2

The last term on the right-hand side reflects the momentum transport in the “acoustic”
approximation.

On account of the strong rotational anisotropy of the flow due to the rotation of the
channel relative to the direction of the flow at the entrance, we shall describe the turbu-
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lent motion as a nonequilibrium motion with respect to the internal angular momenta of
the energy-bearing vorticé$. Then the expressiof2) can be put into the form
Tij:Tij+7Tier+7TiI'
where 7;; is the symmetric part of the tensor, which includes the momentum transport
produced by the terms on the right-hand side of &).minus the fluctuation-induced
transport;wﬁ and m;; are, respectively, the symmetric and antisymmetric parts of the
Reynolds stress tensor. The antisymmetric part of the tensor appears because the charac-
teristic angular momentum vectors of the energy-bearing vortices have a predominant
orientation in the rotational anisotropy field. Equatidh assumes the form

(92p 1y Pat P

2 ij J ij
s —a2Ap= + . 3
gz~ dop IXiOX;  OXIXj X IX; )

Here the antisymmetric part of the tensor can be represented in theﬂf@r-m%eij, M,

(&1 is the Levi-Civita tensor and!l, is an axial vector The three terms on the right-
hand side of Eq(3) are sources, the latter of which is capable of participating in inter-
actions with an external sound field, similarly to acoustic paramagnetic resoffsPBg

if the characteristic angular momenta of the turbulent vortigesl therefore, also the
corresponding fields of the quadrupolese oriented in the field of the rotation of the
flow with B#0. In Ref. 6 the scales of the turbulent vortices are estimated for the flow
being considered here, and the corresponding frequency of an external sound field re-
quired to produce an interaction analogous to APR is found.

We note that another property of turbulence discovered in magnetohydrodynamics
— the ability to generate and maintain large-scale magnetic fighesy effect® — was
later found in the hydrodynamics of convective media in a Coriolis force feléln the
latter case, turbulence generates large-scale vortex structures and is called spiral turbu-
lence. As it turned outthe appearance of spirality and the associated losses of symmetry
of the stress tensor are also caused by a breakdown of equilibrium between the charac-
teristic angular momenta of the energy-bearing turbulent vortices and the observed an-
gular momenta of the medium in the rotational anisotropy field of the flow.
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Dynamics of a drop of magnetic liquid in a rotating
magnetic field
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We report the first observation of the breakup of a rotating drop sus-
pended in a viscous liquid. To produce the motion, a magnetic liquid is
used as the material of the drop and the entire system is placed in a
uniform, rotating, low-frequency magnetic field. The frequency depen-
dence of the breakup of the drop into two smaller drops is investigated.
A theoretical description is given for small Reynolds numbers. The
drop is assumed to be ellipsoidal. The flow in the exterior and interior
regions and the drag coefficient of the liquid ellipsoid with respect to
rotational motion are calculated. A criterion for breakup of the drop is
estimated and a comparison is made with experimental datal 97
American Institute of Physic§S0021-364(®7)00702-0

PACS numbers: 75.50.Mm, 66.26d

The equilibrium shapes of rotating volumes of a liquid have been under investiga-
tion for more than a hundred yedrhe main problem addressed in these investigations
is to describe the shapes of the planets modeled by a gravitating volume of liquid. Much
later, the possible shapes of assumed by rotating drops as a result of the competition
between the centrifugal and surface tension forces characteristic of the liquid were
studied? Experimental investigations were held back for a long time by the difficulty of
producing rotating volumes of a liquid. Despite the fact that the synthesis of magnetic
liquids (MLs) — colloidal dispersions of magnets in ordinary liguids- has made the
arrangement of experiments with rotating drops quite obvious, the first experimental
work appeared only recentfyThis work studied the behavior of microdrops in a rotating
high-frequency(up to 500 Hz magnetic field. It was determined that a drop can assume
prolate and oblate ellipsoidal shapes, while in strong magnetic fields a drop transforms
into a “starfish” with a large(up to several tensnumber of armé.This latter phenom-
enon was interpreted in complete analogy with the well-known problem of the instability
of a flat surface of a ML in a normal magnetic fi€ldche samples employed in Ref. 4
appear to be quite exotic because of the very small drop sizd€ wm) and extremely
low surface tension at the interface- (0™ ° dyn/cm). Furthermore, the viscosity of a
drop was two orders of magnitude greater than that of the solvent, so that from the
standpoint of the problem considered here — the rotational motionliglial volume,
the drops investigated in Ref. 4 were actually solid particles with negligibly small internal
motion.

In the present paper we report an experimental investigation of the motion of quite
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large (~1 mm) drops of a magnetic liquid which were suspended in an electrolytic
solution and were characterized by parameters typical of a liquid: The surface tension
was ~ 10 dyn/cm at the ML-solution boundary, and the viscosities of the two liquids
were of the same order of magnitude. When the sample was placed in a rotating magnetic
field, we observed an interesting hew phenomenon — at some critical frequency a drop
would separate into two equal parts, which, in turn, could break up into drops of even
smaller size as the frequency of the field was increased further.

A concentrated ML consisting of magnetite in kerosene with the following param-
eters, determined from independent experiments, was used as the drop material: viscosity
7,=19 cP, density= 1.5 g/cnt, and surface tensiom, =27 dyn/cm at a boundary with
air. The drops were suspended in a concentrated aqueous solution of zinc dichloride with
viscosity 7, =3.5 cP, and the surface tension of the solution at a boundary with air was
equal too,=54 dyn/cm. In the absence of a field the drops were, naturally, spheres with
radiusR. In a constant magnetic field the drops became elongated, and as the field rotated
with a low frequency the drops executed a simple forced motion — the long axes of the
drops rotated with angular velocify=2=f, wheref is the frequency of the field. In our
experimentd ~1 Hz, the magnitude of the field =60 Oe, and the magnetic permeabil-
ity of a dropu=7.1. The motion of a prolate drop can be easily observed visually. As the
frequency of the field changes, the motion occurs without any visible change in shape.
Outwardly, the motion of a drop looks like rigid-body rotation, but there is a substantial
difference between the rotation of solid and liquid particles. This difference is especially
clearly seen if a drop is studied in a coordinate system rotating with veléxitin the
case of a liquid drop, there arises inside the drop a flow with a vorticity directed opposite
to the direction of rotation of the drop, so that the normal component of the velocity
equals zero at any point on the surface of the drop.

The shape of a drop remains unchanged in the entire interval of magnetic field
frequencies below a critical frequen€y. At f. the drop abruptly becomes several times
longer, transforming into a “dumbbell.” As the frequency increases further up to a value
f,. (which, however, differs so little fronf; that it is impossible to distinguish these
frequencies with our apparajys dynamic equilibrium is established in the system: A
dumbbell-shaped drop separates into two different parts with the same shape as the initial
drop. These separate drops execute one to several half-revolutions and once again merge
into a single dumbbell-shaped drop, which in turn, after several revolutions, once again
divides in two, and so on.

In our experiment we investigated the dependence of the frequgnalithe field at
which drop breakup is observed on the drop diamdtdFirst, an initial large drop was
prepared and then its size was decreased by pumping out some of the ML. The experi-
mental values obtained fdr, in two series of experiments with different initial sizes —
d;=6.1 mm(triangles in Fig. 1 andd,=5.8 mm(circles — are displayed in Fig. 1. As
one can see from the figuré, decreases monotonically with increasing drop size, but
the onset of breakup itself is apparently of a threshold characterd €& mm a drop
remains whole for any frequenciésof the external field.

We now proceed to a theoretical analysis of the low-frequency rotational motion of
a ML drop suspended in a viscous liquid. We shall solve the problem in the Stokes
approximation, regarding the drop to be an ellipsoid with semiaxeb=c. The ratio of
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FIG. 1. Critical frequencyf, for drop breakup as a function of drop diameter. The solid curve is the result of
a calculation according to formuld6) and (8); the symbols are experimental data.

any two of the semiaxes is a function of the dimensionless parameters of the problem —
the magnetic Bond number BaG?R/o and the frequency) , whereo is the surface
tension at the ML—solution boundary aner n,R/o. We shall perform the analysis for
Bo=1 and() <1, this corresponds to the experimental situation. The second inequality
expresses the smallness of the characteristic shape relaxatiom tifreedrop compared

with the period of the field, i.e., the changes in the field can be assumed to occur
quasistatically. Therefore, the drop shape is stationary and is determined solely by the
parameter Bo as a result of the competition between the magnetic and surface tensions —
just as in a static magnetic fieldTherefore, in the low-frequency approximation under
consideration, a drop is an ellipsoid of revolutiee{b=c). This is in complete agree-
ment with our observations in the frequency range from ®.toHere we also note the

high accuracy of the approximation of the shape of a ML drop in a constant magnetic
field by an ellipsoid of revolution.

In a rotating coordinate system, the equations of motion for the liquid inside the
drop (region ) and outside the drofregion 2 have the form

mAVI2=Vp,,. 1)

Here v+ and p1, are the velocity and pressure fields, respectively. The absence of
volume magnetic forces on the right-hand side of &g.is due to the uniformity of the
magnetic field inside the drop. A system of equations similar to Eigswvas studied in

Ref. 6 in application to the solution of the problem of the behavior of an erythrocyte in
a shear flow. By analogy to Ref. 6, our problem of a liquid drop can be reduced to the
classical Jeffrey problefmof the rotational motion of a solid ellipsoid. Indeed, let us
choose the axes of the rotating coordinate system as follow thés along the long

axis of the ellipsoid and the axis along the angular velocity vectfr. Then the solution

in the interior and exterior regions has the form
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vM'=—vyalb, v§,l)=1/Xb/a, vi’=0, p,=const, @
v@=u;—vyalb, U§2>:UJ+yxb/a, v?=w;, P=py, 3

where v;=(u;y,v;,w;) and p; are the velocity and pressure fields from Jeffrey’s
problenT for a stationary solid ellipsoid in an external flow with a velocity-gradient
tensordv; /9x, which is prescribed at infinity and whose nontrivial symmetyje and
antisymmetricw;,, parts are given by

l/a b

Y12= 7’2125 B 5

1

a b
v 017 —wy =0+ > 3

—+

5t al 4

The quantityr, appearing in Eqs2)—(4) is a parameter which is to be determined and
characterizes the intensity of the motion inside the drop. We call attention to the fact that
only the tangential components of the velocity field at the surface of the elligsed
Egs.(2) and(3)) are different from zero. Using the exact solutiowe obtain from Egs.

(2) and (3) an equation of balance of the viscous and magnetic stresses acting on the
drop:

772(A12—A21)=(,u—1)2(n2—n1)HXHy/477_ (5)

Here A;,=2(nyy1,+ b?njwy5)/(@%n +b2n,)ns, wheren, andn, are the demagnetiz-
ing factors along the andy axes, respectively, anth=(n,—n;)/(a?—b?). The values
of A,, are obtained fronA,, by the simple substitutions<:2 anda«<b. Equation(5)
determines the angle by which the long axis of the ellipsoidk(axis) lags behind the
direction of the external fielé. The componentsi, andH, of the uniform magnetic
field inside the ellipsoid equfl

Hy=G cosa/(1+(u—1)ny), Hy=G sina/(1+(u—1)ny). (6)

We shall calculater on the basis of the law of conservation of energy. For this, we
equate the work performed on the ML drops per unit time by the magnetic forces gen-
erated by the field sourcé(,=MV= n,(A1,— Ay QV, whereM is the moment of the
magnetic or viscous forces acting on a drop ahik the volume of the dropand the
power dissipated inside and outside the drop. Omitting the simple but cumbersome cal-
culations, we obtain the following equation for determinirng

SN IDZ1 e 7
p 2 giaT VT g _%- @)

As one can see from relatiof¥), (5), and(6), the momeniM of the magnetic forces
acting on the drop is connected with the rotational velo€itgf the long axis by a linear
relation. Introducing the rati®=Q/M, we shall now determine the rotational mobility
of an ellipsoidal liquid particle. The computed mobiliti8s of a drop in ratio to the
mobility Bs=(67,V) ~* of a hard spherical particle of the same volume are displayed
in Fig. 2 as a function of the eccentricig= \'1— (b/a)?of the ellipsoid. The mobilities
were calculated for five values of the ratin / ,: 0.1, 1, 10, 100, and 1000, indicated
next to the corresponding curves. A solid ellipsoid corresponds to the 4y, —
and »=0 (no internal motion The particle mobility for this case is determined by
Jeffrey’s formuld (see also Ref. 9 It follows from an analysis of Fig. 2 that the rotation
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FIG. 2. Mobility B of a liquid drop relative to the mobilit3,;5 of a hard spherical particle as a function of the
eccentricity for six values of, / 77, (indicated on the corresponding curyes

of a liquid ellipsoid differs substantially from that of a solid ellipsoid, especially for small
drop elongation. This is because the ratio of the viscosities inside and outside the drop
appears in relatio6) together with the fourth power of the eccentricity. As a result, in
the limit e—0 (slightly elongated particlethe rotational mobility of the drops increases
without bound for any finite value of, / 7,, in contrast to the case of a solid ellipsoid,
whereB approaches the limB,s. This means that even an infinitesimal field is suffi-
cient to cause a visible rotation of the drop with finite velodity We recall that by
rotation of a drop we mean the rotation of its long axis in the laboratory coordinate
system. Of course, the velocities of material particles near the surface of the drop de-
crease without limit ag—0.

Thus far we have considered the motion of a drop at field frequencies lhglowo
study dynamics af~f, , when large deformations and breakup of a drop occur, it is
necessary to formulate and solve an extremely complicated stability problem. However,
the value off , itself can be estimated comparatively simply from energy considerations.
Indeed, [etAE=E,— E; be the difference of the totésurface and magnejienergy of
two equal small drops and one large drop. The increase of the ener§¥ taccompa-
nying the breakup of a drop occurs as a result of the wogerformed by the sources of
the magnetic field, for which we write approximatéy=27M, where the latter quantity
is the energy dissipated over one period of rotation of the field in a system with one drop.
Forf=f,, AE~A, so that to determine the critical frequency we have

_G?AE  a’n;+b’n, g
* 4wy, a®+b?+2abv/Q° ®)
The theoretical curvd,=f,(d) is shown in Fig. 1 by the solid line and was

calculated according to Eq$8) and (6), allowing for the well-known dependence
e=¢(Bo) (Ref. 5, and the above-indicated values of the parametgrs ,, u, and

f
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G. The surface tension at the solution — ML boundary was calculated according to
Antonov’s rule!® ¢=0,—0;=27 dyn/cm. Without overestimating the significance of
relation (8), we nonetheless note the surprising agreement between the computed values
of f, and the data of our experiment. The theoretical curve in Fig. 1, however, does not
describe the threshold character of drop breakup as the drop volume decreases; this could
be due to both the simplified character of the estin{&eand the inadequacy of the
Stokes approximation at high frequencies of the magnetic field.
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of the results of this work. This work was supported by the Russian Fund for Fundamen-
tal ResearchGrant 95-01-00408

3e-mail: morozov@psu.ac.ru

1H. Lamb, HydrodynamicsDover, New York, 1949Russian translation, Gostekhizdat, Moscow, 1947
2S. Chandrasekhar, Proc. R. S@86, 1 (1965.
3M. 1. Shliomis, Usp. Fiz. Naukl12 427 (1974 [Sov. Phys. Uspl7, 153(1974].
4J.-C. Bacri, A. Cebers, and R. Perzynski, Phys. Rev. [7&t2705(1994.
5J.-C. Bacri and D. Salin, J. Phys. Let3, 649 (1982.
63. R. Keller and R. Skalak, J. Fluid Mech20, 27 (1982.
’G. B. Jeffrey, Proc. R. Soc. A02, 161(1922.
8L. D. Landau and E. M. LifshitzElectrodynamics of Continuous MedRegrgamon Press, New YofRussian
original, Nauka, Moscow, 1992
V. N. Pokrovski, Statistical Mechanics of Dilute Suspensidits Russian, Nauka, Moscow, 1978.
10yu. G. Frolov, Surface Phenomena and Disperse SystémBRussian, Khimiya, Moscow, 1989.

Translated by M. E. Alferieff

165 JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 A. V. Lebedev and K. |. Morozov 165



Absence of a “ferromagnet—spin glass” reentrant phase
transition in quasi-two-dimensional ferromagnetic
systems with competing exchange interactions
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L. M. Kulikov
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It is shown on the basis of the results of magnetic investigations for the
example of the intercalated layered compoundg;CNi, TaS that in
guasi-two-dimensional ferromagnets with competing exchange interac-
tions there is no reentrant “ferromagnet—spin glass” phase transition
all the way down to liquid-helium temperatures. 97 American
Institute of Physicg.S0021-364(17)00802-3

PACS numbers: 75.58y, 75.30.Kz, 75.10.Nr

The problem of the lowest critical dimensiah of spin glasse$SG9 occupies a
special place in spin-glass physicsd|f=D, whereD is the dimension of the magnetic
system, then at finite temperatures a “paramagnet—spin gl@&4-SQG phase transition
is impossible. It has been sholvtheoretically and experimentally in recent years that
2<d <3 for classical metallic spin-glass systems of the CuMn type.

We note that, together with a PM—SG phase transition at finite critical temperatures,
reentrant temperature transitions, for example, “ferromagnet—spin gl&d=-SQ), are
very typical in cooled 3D systems with competing exchange interactidhsiust be
underscored, however, that, as far as we know, the question of the lowest critical dimen-
sion for FM—SG phase transitions has not yet been raised either theoretically or experi-
mentally. Such investigations could be performed, by analogy to Ref. 1, on objects in the
form of thin and ultrathin films in the crossover regime 3B 2D. However, such
experiments are methodologically and technologically very complicated. At the same
time, there exists an entire class of natural quasi-2D systems — intercalated dichalco-
genides of transition metdls— in bulk samples of which the laws of formation of frozen
spin states can be studied by standard methods.

The objective of the present work is to clarify whether a reentrant SG state can
appear in magnetic systems with low dimensionality. Synthesized conducting polycrys-
talline compounds Gp_4Ni,TaS, were investigated. This choice of objects of investi-
gation is motivated by the following circumstances. According to Ref. 3, the intercalate
CrysTaS is a FM with Curie temperaturé.= 115 K and the compound NiTa$S is an
antiferromagnetAFM) with Neel temperaturd y=120 K. In the compounds indicated
above, the intercalating chromium and nickel atoms, which are ordered in octahedral
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FIG. 1. Magnetic phase diagram of the intercalated dichalcogenige Mi,TaS: 1 — Paramagnet2 —
ferromagnet3 — possible region of existence of antiferromagnetidm,- state with chaotically frozen mag-
netic momentgspin-glass type T, — Curie temperatureT, — Néel temperatureT,, — temperature of the
maximum of the magnetic susceptibiliff;=0 — possible temperature of the “paramagnet—spin glass” phase
transition;® — our preliminary investigationg,] — results of the present worky,V — according to the data

of Ref. 3.

positions between layers of nonmagnetic tantalum and sulfur atoms, form the above-
indicated magnetically ordered states. Therefore, under an isomorphic substitution of
nickel for chromium, a FM—AFM concentration phase transition can in principle be
realized in the Tagmatrix. In this case it can be expected that SG-type states will arise
in the concentration range where the type of magnetic order changes, i.e., in the region
where the FM and AFM contributions of the exchange interactions to the total exchange
energy are approximately the same, as happens, for example, in the fcc alloys FiNiCr
(Ref. 4 and FeNiMn(Refs. 5 and Bin different quasibinary surfaces of section.

In the present work we studied only the FM compoundg;C¢Ni, TaS, near the
critical concentratiorky=0.08 at which long-range FM order appe&fg. 1). Investi-
gations of the formation of frozen states directly from the PM pHasenpounds with
x=0.08) are of interest in themselves and are a subject of a separate analysis. We note
only that our investigations show that in the concentration range<«880.23 a frozen
magnetic state of the SG-type forms from the PM state on cooling. It is important that
this state does not appear as a result of a PM—SG phase transition at a finite critical
temperature, as happens in most 3D spin-glass systems, but rather it is formed in a wide
temperature range as the indicated compounds are cooled.

Let us now discuss the experimental results. As an example, the temperature depen-
dences of the real and imaginary componegtsand x”, respectively, of the dynamic
magnetic susceptibility of the compound,Gr,Ni,TaS with x=0.06 are displayed in
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FIG. 2. Temperature dependence of the real parand imaginary parg” of the dynamic magnetic suscepti-
bility of the compound Cy;_«Ni,TaS, (x=0.06). The frequency and amplitude of the magnetization reversing
field equal 72 Hz and 3.5 Oe.

Fig. 2. The most striking manifestations of SG effects should be expected to occur in the
compound with this composition, since this compound lies closest to the critical concen-
trationxy=0.08 in the magnetic phase diagréRig. 1), and therefore the contribution of
AFM exchange to the total exchange energy is greater in this compound than in any other
FM compound in a given quasibinary section. This latter circumstance is a necessary
condition for the existence of reentrant temperature transitions.

It follows from the data presented that FM ordering arises in the indicated com-
pound below the Curie temperatufg=380 K. In contrast to 3D systems with reentrant
temperature FM—SG transitiofishowever, appreciable anomalies in the temperature
dependenceg’ (T) andy”(T) are not observed at lower temperatures. This fact suggests
that, at least in the temperature interval 4.2<KT<T.=80 K, there is no reentrant
FM—SG transition in the compounds which we are studying. Additional confirmations of
this can be obtained from investigations of irreversible magnetic phenomena.

Indeed, the temperature dependences obtained for the static magneti&iion
normalized to the strengtH of the measuring magnetic field, after the sample is cooled
in a magnetic fieldFC) and in a zero magnetic fielFC) are absolutely atypical for
systems with a reentrant FM—SG temperature transition, since the difference between
VZFC and MFC already appears close . and not at the temperatufg<T, of the
reentrant phase transitigfig. 3).

It follows from Fig. 4, where the temperature dependence of the thermoremanent
magnetizatiorM ™M is displayed, tham ™M decreases monotonically all the way down
to temperature3~T. and at lower temperatures it is not subject to appreciable anoma-
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FIG. 3. Static susceptibilitM/H of the compound Gf;_4Ni,TaS, (x=0.06) measured after the sample is
cooled from a temperature of 100 K in magnetic fields of different inter{§i€) and in zero magnetic field

(ZFO).

lies associated with the appearance of a reentrant SG, as happens in frustrated 3D

ferromagnets.
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FIG. 4. Thermoremanent magnetizatibtf "™ of the compound Gf,_Ni,TaS, (x=0.06) measured after the
compound is cooled from a temperature of 140 K in a 100 Oe magnetic field.
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It should be underscored that the existence of appreciable valdﬂg%‘f and of a
differenceM "~ M %€ nearT, is not due to the appearance of frozen SG-type spin states
in the investigated compound, but rather it is due to the strong nonuniformity of the FM
state as a result of the presence of AFM exchange. This is indicated by our discovery in
the present work of the existence of an exchange anisotropy in the FM compounds
studied that is characteristic of heterogeneous magnetic systems.

In summary, analysis of the experimental results obtained shows that in contrast to
3D systems there are no reentrant FM—SG temperature transitions in the quasi-two-
dimensional FM compounds gy ,Ni,TaS with competing exchange. For this reason,
the region4 in the magnetic phase diagrafRig. 1) is separated from regio by a
vertical line, and in the FM regiog itself there is no line of FM—SG phase transitions.
The latter circumstance apparently means that the dimension of the compound studied
does not exceed the lowest critical dimension of a reentrant SG.

This work was supported by the German Ministry of Science and Technology as
part of the program of collaboration between Leipzig University and the Institute of
Magnetism of the Ukrainian National Academy of Sciences.
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Inelastic resonance tunneling in S—Sm-S tunnel
structures
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Inelastic resonance tunneling through junctions with an amorphous in-
terlayer and superconducting electrodes is studied. The form of the
current—voltage characteristi¢V) at low temperature and the tem-
perature dependence of the conducta@G¢@®) at low bias are calcu-
lated and are found to be much different from the analogous depen-
dences of structures with normal electrodes. 1897 American
Institute of Physicg.S0021-364(17)00902-X]

PACS numbers: 74.58r, 73.40.Gk

It has been shown convincingly in a series of experimental wbtkehose purpose
was to investigate the transport properties of highosephson junctions with semicon-
ductor oxide interlayers, that quasiparticle transport in such structures occurs by means of
resonance tunneling through localized staleSs) in the interlayer. Specifically, it has
been shown by comparing the experimental form of the current—voltage characteristic
(IVC) in the voltage rang&>2A/e (A is the modulus of the order parameter of the
electrodes with the results of theoretical calculationthat the temperature and voltage
dependences of the conductance are close to those predicted for processes with a small
number of LSs on the resonant trajectoly=2.3).

However, the results obtained in Ref. 5 are valid only for N-Sm—N structures and
neglect the presence of superconducting ordering in the electrodes. Our objective in the
present work is to extend the results obtained in Ref. 5 to the case of S—Sm-S structures
(superconductor—amorphous interlayer—superconductor

MODEL OF THE CONTACT

To calculate the contribution of a single two-impurity configuration in the region of
the interlayer to the quasiparticle current, we shall proceed from the form proposed in
Ref. 5(Eq. (2.1) for the tunneling Hamiltonian with additional terms taking into account
the superconducting pairing in the electrodes:

Hien= 20 &t 2 (Aagaly +A%aga ), @

Hiight= % £pay A+ % (Aaj,a’, +A*a, @ ). )

171 0021-3640/97/020171-05$10.00 © 1997 American Institute of Physics 171



Here ¢ , and akfp are, respectively, the energies and the creation operators of electrons
in the lefright)-hand superconductor, respectively. Here and below we employ the no-
tation of Ref. 5.

CALCULATION OF THE RESONANT CURRENT THROUGH AND ARRAY OF
TWO LSs

Using the unitary transformation
iU=Heg_pnU 3

(He—pn is determined by Eq(2.2) of Ref. 5, confining attention to the case of a weak
electron—phonon interaction, and making further calculations similar to those performed
in Ref. 5 within the limits of applicability of the kinetic equation for the populations of
the LSs, deploying the well-known expressions for the correlation functises, for
example, Ref. Bfor averaging in the kinetic equation over the electron states in the
superconducting electrodes,

(8 (Dae (t))={uff, expli et +|n*(1- fiexp —iegtH S (4)

(A (t)ay (1) ={ud(1—f)expli e} + | v ?fi exp{ —i €T S

1 1
=5 (At éled, nd?=51-&lea),  a=VEFIAZ  r=t-t,
fi=f(e)=(1+exple/kgTH 1,
we obtain the following expression for the quasiparticle current in the stationary case:
dey dey_

= ) J—__ )
T Ry RE—4y ITyT, R_+\RE—4y IT T,

J=J,+J_, J

fi+N 1—f+N 1
Ty X (TN (L), ®)

ff+rN 1-fi+N 1
R_= T, + T, +;, x_=—(fi—f)ON+f,(1-f1).
The termsJ, and J_ in Eq. (5) correspond to the configuratiorg> e, and e;<e,,
respectively. In Eq(5) fi=f(e;—eV) and f,=f(e,) are the distribution functions for
quasiparticle excitations in the left- and right-hand electrodesand e, are the energies
of the LSSN=N(|e,— €;]) = (exp{|e,—€1|/kg T} —1) L is the Bose distribution function of
the phononsy= 34| T15%|\g|?5(eq— | €1~ €,]) is the reciprocal of the tunneling time
between LSsT, are the coupling matrix elements between the LSs, the constaist
determined in terms of the deformation potential constants at the impurity, and the
phonon spectrum is determined by formul@s3—(2.4) of Ref. 5. The quantitied’; ,
determine the reciprocal of the tunneling time from the LSs into the superconducting
electrodes:

I'1=Ti(e;—eV), TI';=Ty(ep),
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|l
Jei—A?
Here(Tf,l’kz) is the angle-averaged, at the Fermi surface, squared tunneling matrix ele-
ment from the LSs into the leffright)-hand electrode, respectively, ah,(0) is the
density of states of the normal metal at the Fermi surfa¢g @) is assumed to be the
same for both electrodgsAs expected, the expressit) for the current differs from the
expression presented in Ref. 5 only by the structure of the coefficlgrngg6), which
explicitly take into account the singularity in the density of states of the electrodes at
le|=A.

'y A €)=m(T5142)Nn(0) {O(e—A)+O(—e—A)}. (6)

CALCULATION OF THE AVERAGE CURRENT

To calculate the total current through the junction, expresé@dmust be averaged
over the coordinates and energies of the LSs:

(9= gzsf deide,dzdz,d%p, J(€1,€2,21,22.p,), (7)

wherez; andz, are, respectively, the distances from the LSs to the left- and right-hand
electrodesp, is the projection of the vectar,—r, on thexy plane, which is perpen-
dicular to the direction of the currerth is the contact area, arglis the volume density

of LSs.

The calculations simplify substantially and reduce to analytical expressions in the
limit eV, A>kgT. In this limit J_=0, y, =1, R,=R=T;*+T, +y7%, and the ex-
pression for the current)—(7) reduces to the form

eV—-A
<J>:g25(ev—2A)f dzldzzdzpif (8)

€1 4e
dflf d€2 .
A A R+ \/R _4/F1F2
Taking into account the exponential character of the decay of the matrix elemgnts
T,1, and Ty, as a function of the coordinates of the LSs, we find that the reciprocals
I'; and y of the tunneling times can be written in explicit form as

I1=Toexp(—2z;/a)|e;—eV|/V|e;—eV|*— A%,
[=T5 exp((d—2zy)/a)|eo|/ V] €| “— A%, 9

Y= Yol €1— €2|€‘XF((22_21+Pf/(2(22_21)))/a)-

Herea is the radius of a LSd is the thickness of the junction, addg, I'5g, andy, are
pre-exponential factors, which are weak functions of the coordinates and energies of the
LSs. The energy dependencepfs determined by the Debye phonon model.

One can see from Eq&3)—(9) that the denominator in the integrand in E8). is an
exponential function of the coordinates of the LSs and is a much weaker function of their
energies. For this reason, just as in the N—-Sm—N talse,expression for the average
current(8) can be put into a form in which the averaging over the coordinates actually
decouples from the averaging over the energies. For this, it is necessary to switch in Eq.
(8) from integration over all coordinatgg; ) <d to integration over neighborhoods of
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FIG. 1. |-V characteristic of an S—Sm-S junction. The curve was calculated numerically on the basis of
formula (10) for a structure with two localized states on the trajectory. Circles — results of numerical calcu-
lations, solid lines — fractional power-law and quadratic approximatidfs;- characteristic magnitude of the
current.

the optimal coordinates,, and z,, determined by the minimum of the integrand in Eq.
(8). Introducing the new variableg, =z, —z,o and £&,=z,— 7, and taking into account
that the optimal value gb, equals zero, we find that, with allowance for relati¢®s the
expression for the average curré8} reduces to the form

(J)y=Cg?S exp(—2d/3a)O(eV—2A)

va—Ad feld le,—eV| € ( ) v
€ €| ————= €1— € ,
A L)y 772 V(e;—eV)2—A2? \Je2— A? v

C=25%(T' 1ol 5070) " f ddEd2p (F+ P de@2(6-6) L (10

F=F(&1,&,p0) =exp(2€,/a) +exp( —2&,/a)

2
pL
+ex;{ 2(61_§2+ 2(220_210)) / 3

It follows from formula (10) that the exponential dependence on the junction thickness
for an array of two LSs in the S—Sm—S case is the same as for a N—Sm—N juhitzon,
(exp(—2d/3a)). Therefore estimates of the maximum volume density of LSs at which a
transition occurs to current transport predominantly via an inelastic two-LS channel for
the N—Sm—N structureare also valid in our case of a S—Sm-S junction. Choosing the
corresponding variables in the integral over the energies of the LSs ifLBgmakes it
possible to determine the form of the IVC: At low voltages/=2A, the IVC is qua-
dratic «(eV—2A)? and at high voltageseV>2A, it assumes the dependence
x(eV—2A)"B~(eV)"? as in the case of a N-Sm—N junction. Numerical calculations
show(see Fig. 1that a transition>From a quadratic dependence to a fractional power-
law dependencé€7/3) occurs ateV~3A. It is easy to show that the results of Ref. 5 for
n=3 also obtain forV=3A.
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Similar calculations yield the following expression for the temperature dependence
of the conductanc&(0) at low voltages € V<<kgT):

G(0)x T#%exp{—2A(T)/kgT}exp{ — 2d/3a). (12)

The temperature dependendd) differs from that obtained for N—Sm—N structutdsy

the exponential factor, which arises naturally as a result of the presence of a gap in the
quasiparticle excitation spectrum. This factor is proportional to the number of quasipar-

ticles capable of participating at a given temperature in inelastic two-particle resonance
tunneling. It is easy to show that this factor also necessarily occurs in the expression for
the conductance in the cases when the number of LSs on the trajettody (G,

o TN 2/ Dexp{— 2A/kgT}).

Numerous experimental daté obtained by analyzing the IVCs of highs super-
conducting junctions show that the expressit® do indeed approximate well the form
of the IVC at high voltages. However, analysis of the temperature dependence of the
conductance at low voltages gives the re§(0)=G(0,0)+ a T3, which is identical to
the law for N-Sm—N junctions, i.e., it does not contain the exponential factor
exp{—2A/kgT} which is present in formuldl1). This problem will be examined in a
separate publication, since it cannot be solved in the framework of the present study.

This work was supported by the program “Modern problems of condensed-state
physics” and the RFFR—INTAS project RFBR95-1305.
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Inflating antenna: Dynamics of exciton wave packets
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A theory of the free-induction signal from biexcitons and bound exci-
tons is presented. Simultaneous existence of the exciton continuum and
a bound state is shown to result in a new type of the time dependence
of the free induction. The optically detected signal increases in time
and oscillates with increasing amplitude until damped by radiative and
dephasing processes. The expanding area of coherent exciton polariza-
tion (inflating antennpproduced by the exciting pulse is the underlying
physical mechanism. The formalism developed can be applied to vari-
ous biexciton transients @997 American Institute of Physics.
[S0021-364(97)01002-3

PACS numbers: 42.50p, 71.35-y

Ultrafast spectroscopy of excitons in the time domadias proven to be a powerful
tool to probe the quantum coherence of exciton states, which was originally studied from
the polarization of the stationary emissioiost of the experimental data were taken on
GaAs quantum wells, but some experiments were performed with bulk excitons. Quan-
tum beats in various response functions are a manifestation of coherence driven by
external fields. These beats appear when several states having close energies are excited
simultaneously. Quantum beats have been observed for magnetically split excitort levels,
bound excitons with different confinement enerdiésavy and light hole excitorisiree
and bound exciton$,and with biexcitons and a two-exciton continudrithe last two
examples are of principal importance for us in what follows. Experimental data provide
convincing evidence of a strong effect of the exciton—exciton and exciton—free-carrier
interactions on the nonlinear response functidhBifferent theoretical approaches have
been applied, depending on the range of parameter values. When the nonradiative relax-
ation timesr are short, the mean field appro&ttvorks rather well. This paper deals with
the opposite limit, i.e., the largerregion, and is related to papé&¥st®based on micro-
scopic models.

The traditional approach to quantum beats is based on an energy spectrum compris-
ing few (usually twg discrete energy levels. This approach can be applied to beats
between heavy and light hole excitons because of momentum conservation and the ab-
sence of interaction between these excitons. However, the biexciton and bound exciton
problems are more involved because of the existence of the two-exciton and single-
exciton continua, respectively. For example, for a two-exciton system it is the exciton—
exciton interaction that supports the two-photon coherence, and the lower part of the
continuum, with a width of about several biexciton binding energigs,contributes to
the coherent polarization along with the bound biexciton state. In addition
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to the theoretical arguments, some experimental data provide weighty, although indi-
rect, evidence of the role of the two-exciton continuum.

Indeed, it has been shownthat the four-level biexciton energy scheme can be
brought into agreement with the experimental data only if an enhancement factor typical
of giant oscillator strength$ is invoked. More recent dataprovide evidence of the
significant role of the exciton—exciton interaction in the continuum. Therefore, the fre-
guencies of allowed transitions are distributed continuously, and the frequency spread is
aboute,. Naive consideration suggests that such an energy spectrum should result in
beats having a frequency of abatt and showing fast nondissipative decay because of
accumulating phase differences between different modes. It turns out that the actual
physical picture is quite different.

We present an exact solution for a free induction signal excited by a one-sided
exponential pulset<<0, in a nondissipative system with a biexcitonic nonlinearity. The
special shape of the pulse simplifies calculations but does not influence the basic results.
The contribution of the two-exciton continuum is consistently taken into account. With
such an approach, free induction, i.e., free oscillations of the two-exciton wave function
T(t) for t>0, includes two modes. There existsbeating modalescribingundamped
beats whose frequency is equakip There exists also growing modevhose amplitude
increases linearly with tim¢ and whose carrier frequency equals the energy of the
bottom of the two-exciton continuum. The growing mode is inherent in interacting sys-
tems possessing a continuous spectrum. It describes the inflation in real space of the wave
packet created by the pulse. The two modes reswhioptically detected free-induction
signal which increases with t and has a monotonic and oscillating p&tewth of the
signal is restricted by the stromgdiative decayresulting in short emission pulses. The
same modes exist for excitons bound to impurities. We expect that these modes also
contribute to different nonlinear processes, including multiple-pulse processes, and that
the technigue developed is of general applicability.

To clarify the basic idea and to take into account rigorously the analytical properties
of the exciton Green functions, we develop an exactly soluble model. To this end we
neglect polariton effects and dephasing. We also neglect the dependence of the scattering
amplitude on the polarization of the light, since that is sensitive to the band structure,
geometry, etc:'® Excitons are treated as stable particles without internal degrees of
freedom. It is convenient to start with the bound exciton problem. If an electromagnetic
wave Eq(r t) = expli(q-r —wt)+at}, a>0, is incident upon a crystal ate<t<0, the
exciton wave function\Ifq(q’,t) at the instantt (t>0) can be calculated as a linear
response to this perturbation:

() y(a)

—iEt
o—Ejtia e @

V(@ D=(M/V0)AG (), Agg() =2
Here W4(q',t) and ¢;(q) are, respectively, the time-dependent and stationary exciton
wave functions in the momentum representation. The subgeriptiabels single-exciton
states, both bound and free. The ground-state energy of the crystal is chosen as the origin,
E,=0. The coefficienM is the matrix element, per unit cell, of the perturbation produced
by the fieldE(r,t), andv is the unit cell volume. The momentpandq’, which are of
importance for optical experiments, are small and will be neglected in the final results.
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The amplitudeA, (t) describes the free precessionj(q’,t) for positive times.
Fort=0, Ay 4(t) coincides with the retarded exciton Green function

Gy @)= #4(a)4(@)/(@—E;+i0) @
for o—w+ia. For arbitraryt, the functionsAq 4(t) and G 4(w) are related by the
equation

A 1 fmd ,exp(—iw't)G ) 3

o= 057 | 4o =i Cudl@): ®
Equation(3) can be checked by employing), closing the integration path in the lower
half of the complex plane, and calculating the residues at the pol€g gfw’).

The subsequent transformations A&f4(t) are based on the introduction of the
scattering operatof (Ref. 17:

Grg(®)=Gy(w) 5q gt Gg/ (@) Tq (@) GY(@), (4)

whereGg(w) =(w—e(q)+i0) ! is a free-exciton Green function. Only the second term
of Eq. (4) contributes toA 4(t) for g’ +#q and will be retained below. It is an important
property of this term that it includes a product of t@8 functions with nearly coincident
poles. This property strongly influences the subsequent results. Bipd) is analyti-

cal in the upper half plane, it obeys the following dispersion relation:

:l'(w)=—% Jt;dw’:r"(w')/(w—w’-i—iO), (5)

where‘i’”(w)zlm{:r(w)}. Substituting(4) and (5) into (3) and performing the integration
over o', one gets in the',q—0 limit:
d T”(wl)

de | ' —¢

exp—iw't) exp—iet)

wo—w'tia w—cetia

l )
A(t)=—; fﬁwdw’ . (6)

Here e=¢(0) is the energy of long-wavelength excitons, afft) and T"(«’) are the

limits of Ag 4(t) and T4 (), respectively, forg,q’—0. Equation(6) is the final equa-

tion for the time-dependent amplituda(t). It is completely determined by the
operatorT.

Two basic properties of Eq6) follow from general arguments.

First, the derivatived/de results in a contribution toA(t) proportional to
t exp(—iet). The term inA(t) which increases withh will be referred to below ashe
growing modelt originates from the product of tw&° functions with coincident poles;
Eq. (4). The growing mode is reminiscent of the growing solutions of differential equa-
tions with degenerate characteristic numbers. This mode describes the global evolution of
the wave packet prepared by the pulsetAscreases, the packet expands ispace. For
translationally invariant systems this expansion is accompanied by changes in the phases
of different Fourier components, whereas their moduli remain unchanged. However, the
impurity potential violates momentum conservation, and the amplitude aftemode
increases wittt. The giant oscillator strengths observed in steady-state experiments are
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FIG. 1. Time dependence of the amplitudét)| for a=e,, , Eg=10¢,, . 3D—solid lines, 2D—dotted lineg1)
w—e=0, (2) 0—e=—0.5,, (3) w—e=—¢g,. Fort2m/e, the amplitude shows a linear growth and undamped
oscillations with a period &/¢,, .

ascribed toexciton antenna¥ In these termshe growing mode is an inflating exciton
antenna This picture explains why the growing mode is specific for systems possessing
a continuous spectrum and, hence, extended states.

Second, the bound state is a poleTdfv). Therefore,T"(w’) includes a term pro-
portional to &w' —e+s,). It contributes to Eq.(6) an oscillating exponential
exd —i(e —¢p)t]. The width of the exciton band is assumed to be large comparsgl. to
Under these conditions the integration along the cut in the complex plane contributes a
factor exfi—iet). The two oscillatory terms in Eq6), exd —i(e—¢,)t] and exg—ist),
result in beats at a frequency af with a time independent amplitude. This oscillating
contribution toA(w) will be termed aghe beating mode

The integral of Eq.(6) can be easily performed for a Frenkel exciton when the
impurity potential is described by a degenerate perturbafigh= — U 6,000, (Ref. 19.
Herem andn label lattice sites, and the impurity resides at the siten=0. In this case
Tqq (@) does not depend on the momegtandq’. For a two-dimensionalD) system,
the density-of-states inside the exciton band can be chosptwis1/Eg, whereEg is
the width of the band. The amplitud¥t) is shown in Fig. 1 for three values af. Both
the linear-int growth and the oscillations with a time-independent amplitude are dis-
tinctly seen in the asymptotic regiot2 e, 1. Actually, they are seen even for small
values oft>0, but the shape of the first oscillation is somewhat distorted. It also depends
on the shape of the exciting pulse. The data for a 3D system with)
=8\/w(EB—w)/7TEé are also shown in Fig. 1. The dependenceA@f) on dimension-
ality is rather weak.

Therefore, after a short transient the growing and beating modes dominate the am-
plitude A(t). The optically detected free-induction signé{t), is related to the zero-
momentum component of the wave function. Therefoge),=| ¥ (0,t)|%. In the asymp-
totic regionA(t)=<{t+b/2 exdi(ept+ ¢) 1}e” ', whereb and ¢ are real parameters, and
I(t) obeys the law:
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I(t)<{t?+ bt cogept+ ¢)}. (7)

Interference of the two modes results in an unusual shape of the ${ghdk consists of
the monotonic and oscillatory contributions, both of them growiregher than decay-
ing!) with t. If one neglects the oscillating part in E¢7), the radiative timerg(t)
decreases withasx(t)t 2. This rapid increase in the emission probability establishes
the applicability limit for Eqg. (7). One can infer from the data of Fig. 1 that
RHt)~(72) "1+ Bent)?, whereB~1, and} can be estimated as the bound-exciton
radiative lifetime. The radiative lifetime,,, can be evaluated from the phenomenological
equation

1 Tem
f dn=J dt/Tg=1, (8)
0 0

which yields 7.~(7%/£2)'>. This estimate is crude becausét=0) from Eq.(1) de-

pends onw and a. For 72~1 ns ands,~10 meV, we getr,£,~25, which corresponds

to about three oscillations ipA(t)|; Fig. 1. Therefore, the radiative response has the
shape of a short train of oscillations with a total duration of only abgutand an
efficiency of up to 100%. Polariton effects, neglected above, are expected to contribute at
this fast stage of the radiative decay, and this contribution should be dimensionality
dependent?

In what follows we generalize these results for biexcitons. There exist two processes
which result in optical production of biexcitods? The first process is two-step absorp-
tion with an exciton level as a real intermediate state. In this process an exciton produced
in the first step acts as an “impurity”. All the above results are applicable to this process
without any serious modifications. The second process is two-phonon absorption from the
ground state. The theory of this process is more cumbersome than for impurity absorp-
tion. Nevertheless, the final results are nearly identical.

Biexciton eigenfunctions can be written in operator form as

. 1 dk + +
|KJ>:5J W¢j(k)¢K/z+k¢K/2—ka 9

wherezp&,zik are exciton creation operators, aKdis the center-of-mass momentum of

a biexciton. The functiong; (k) are eigenfunctions in the momentum representation. The
biexciton wave function at positive times can be found in the second order of perturbation
theory in the fieldEy(r,t). In the momentum representation

2M2 Vv AL

\Pq(k’t):a)—s(q)—i-ia 20—Ej+2ia

Asolt), Ako<t>=; (10
Here E; are the energy levels of a two-exciton system, ahds the normalization
volume; the momentunK =2q. If biexcitons are excited by two light beams with mo-
mentag, andq,, the functiony;(0) in (10) should be replaced by;((q;—0,)/2).

Equation (10) differs from Eg. (1) only in the coefficient and in the change in
variableso—Q=2w and a—2a«. Therefore, the transformations which led us from Eq.
(1) to Eq.(6) can be repeated step-by-step for biexcitons. The equation for the scattering
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operatorT, ({2) depends on the interaction between excitons. The zero-radius potential
provides a satisfactory approximation for giant oscillator strentfthfgith this potential,

the operatofT(Q) is known for three-dimensional systeffsand it does not depend on
the momenta. FinallyA(t) actually shows the same behavior as for bound excitons.

One can infer from Eq(9) that the quantum staté, decays into two photons with
momenta K/2+k. The intensity of the free-induction signal is proportional to
[Wo(kDP~[WoO1)F. In the asymptotic region A(t)ec{t+b/2 expli(ept+ ¢)]}
Xexp(—2iet), and Eq.(7) describes the optically detected signal.

In conclusion, the coexistence of a continuous spectrum and a bound state results in
the existence of growing and beating modes in the free inducki¢t), following the
exciting pulse, for biexcitons and bound excitons. The duration of the induction signal is
controlled by the radiative decay rate and dephasing. If the first mechanism dominates,
the signal is emitted in a short pulse with a radiative yield close to unity.

| am grateful to M. D. Sturge and J. M. Worlock for helpful discussions and sug-
gestions and for critical reading of the manuscript. The support of the Office of Naval
Research under Contract No. N0O00149410853 is acknowledged.
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It is shown that the phase diagram of a 2D metal undergoing a super-
conducting transition consists of regions of a normal phase where the
modulus of the order parameter is absent, an “anomalous normal”
phase where the modulus of the order parameter is different from zero
but the phase of the order parameter is a random quantity, and a
Berezinski—Kosterlitz—Thouless phase. The characteristic tempera-
tures of transitions between the phases and the behavior of the chemical
potential as a function of the fermion density and temperature are
found. © 1997 American Institute of Physics.

[S0021-364(107)01102-X]

PACS numbers: 74.72h, 74.20.Fg, 74.20.Mn, 64.60.Cn

1. Crossover between the limiting cases of Cooper-pair superconductivity and
composite-boson superfluidity is drawing attention in connection with the problem of
describing highF. superconductor¢see, for example, Ref.)1The crossover region is
now understood for 3D systems at arbitrary temperafuaad crossover has been stud-
ied, though incompletely, in quasi-two-dimensional systémjle for 2D systems only
the casél =0 has been studiet The latter circumstance is well known to be due to the
fact that the fluctuations of the phase of the char@inplex order parametefOP) in
2D systems are so large that they make it impossible for long-range order to be estab-
lished in such systems at any finite(Mermin—Wagner—Hohenberg theorgrithe de-
scription of the appearance of a nonuniform condensate with power-law decay of the
correlations(so-called Berezinskii—Kosterlitz—ThouleBKT) phase, however, entails
a number of difficulties. Nonetheless, several steps been made even in this direction. For
example, the BKT transition in the relativistiz + 1)-theory was studied in Ref. 5, and
crossover from superconductivity to superfluidity was studied in Ref. 6 according to the
value of the carrier densityi; . However, the method employed in Ref. 6 to obtain the
temperaturel gkt of the BKT transition has a number of drawbacks. Specifically, the
equation forTgk was obtained neglecting the existence of a nelted) order param-
eter p, whose appearance at finite being due to the breaking of only a discrete sym-
metry, is consistent with the theorem mentioned above. As we shall see helpwes
the modulus of a multivalued complex order parameter of a 2D system as a whole, and
only the modulus determines the possibility of the formation of nonuniféntiuding
vortex) configurations in the system. However, as a result of allowing for a neutral order
parameter, a region whepedecays gradually to zero appears in the phase diagram of the
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system; this region separates the standard normal ghé®ewith p=0 from the BKT
phase. Despite the exponential decay of the correlations in it, this new region of states
very likely possesses unusual properties, sin@ppears in all expressions in the same
manner as does the energy gagn the theory of ordinary superconductors, though to
calculate the observed single-particle spectrum, of course, the carrier losses due to scat-
tering of carriers by fluctuations of the phase of the order parameter and, in the case of
real systems, by dopants must be taken into accblihe possible existence of such a
phase, which is also in some sense normal, might shed light on the frequently anomalous
(see, for example, Ref.)lbehavior of the normal state of high:- superconductors,
specifically, the temperature dependences of the spin susceptibility, resistivity, specific
heat, photoemission spectra, and soee Refs. 8 and)9for the explanation of which

the idea of a pseudogdpnd also spin ggpn the regionT>T, is now widely employed.

Our objective in the present work is to establish theT phase diagram of a 2D
metal whose carriers attract one another and to calcolaés a function of the tempera-
tures Tger and TVF (TYMF is the temperature at whigh—0), between which lies the
region of the “anomalous normal” phags@&NP).

2. We write down the simplest model Hamiltonian describing 2D fermions in a
volumev:

2

v T t
= 5o | W0 = V0B (0 1 (X) 11 (X). (D

2m

H=y!(x)

Herex=r, 7; ,(X) is the Fermi fieldm is the fermion effective mass; is the fermion
spin; u is the chemical potential is the attraction constant; anfi=kg=1.

The desired phase diagram was calculated using the Hubbard—Stratonovich method
(see, for example, Ref.)Awhich has become standard in such problems. In this method
the partition functionZ(v, w, T) is a functional integral of the Fermi field&Nambu
spinorg and an auxiliary fieIdI)=V¢%r¢1r. In the 2D case, however, instead of using the
accepted method for calculatiyin the variablesb and®*, it is better to perform the
calculation in modulus—phase variables, introducing according to Ref. 10 the parameter-
ization ®(x)=p(x)exd—i26(x)], which corresponds to the obvious transformation
U(X)=x,(X)exdif(x)], where the field operatoy,(x) describes neutral fermions and
exié(x)] corresponds to the charge degree of freedom. Making the corresponding sub-
stitution in Eqg. (1) and integrating over the fieldg, we arrive at the expression
Z=[pDpDo exd — B (p,30)], where

T (8 5 .
Q(p,&0)=vfo de drpc=TTrin g (2

is the effective thermodynamic potential of the system @ilits single-particle Green’s
function, so that

G l=—10,+ V—2+ +rp—Ts 10,0+ (Vo +i iV20+iV¢9V
- 73 2m M TIP— T3 T 2m 2m m
=G Y(p)—3(d6); (3
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in Eq. (2) Tr is taken with respect to the spacethe imaginary timer (<8=1/T), and

the Nambu indices, which appear in the Pauli matrjx It is important to note that
neither the smallness nor slowness of the variation of the phase of the order parameter
was assumed in obtaining expressiGi

Since the low-energy dynamics in the phases in whietD is determined mainly by
the long-wavelength fluctuations af(x), only the lowest order derivatives need be
retained in the expansion 6i(p,d6):

1
Qp,30)= (P19 + pof(p); - Luinlp,dO)=TTr 2, —(GI)"|

p=const

(4)

Q 1 drp? InG1!
pot(P)—v roc=TTrin G

p=const

3. In the expansion of);, in Eq. (4) it is sufficient to retain terms witim=1, 2,
right up to~(V #)2. The computational scheme is similar to that employed in Ref. 11,
where only the case of high densitiesat T=0 is studied, and givés

T(8
QkiHZEJO de er(/,L,T,p(M,T))(Va)Z, (5)

dx , (6)

v

and the function

2 2
Vu?+p?

+ -
1 ex;{ T

-

corresponds to the density of Fermi quasiparti¢fes p=0 the expressioli7) is simply
the free-fermion densijy A direct comparison of expressi@h) with the Hamiltonian of
the XY model? and the closeness of the physical situati¢iwegn-component order pa-
rameter in a 2D systelimake it possible to write an equation fogkr :

m
Ne(w, T.p)= E[ Vst p®+pu+2T In

au
EJ(:U’-TBKTiP(/L:TBKT)):TBKT- (8)

Although mathematically the problem reduces to a well-known problem, the analogy is
incomplete. Indeed, in the standaxdY model (as well as the nonlineasr mode) the
vector (spin subject to ordering is assumed to be a unit vector with no deperfdemce

T. In our case this is fundamentally not the case, and a self-consistent calculation of
Tgkt a@s a function oh; requires additional equations fprand u, which together with

Eq. (8) form a complete systen(ln the BCS theory, which we recall is valid for ordinary
metals, it is assumed that=er, where e is the Fermi energy, and the chemical
potential is therefore not an unknown quanjity.
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4. The effective potential . (see Eq.(4)), after some calculations, acquires the
form

2 dk VEX(K) +p?
Qpolp)=v pV‘fW[ZT In cosh%—g(k)] , 9

where ¢(k)=k?2m—pu. Then the desired missing equations are the condition
IQydp)dp=0 that the potential (99 be minimum and the equality
v "9/ Iu=—n¢, which fixesn;. For them we have, respectively,

1 [ dk 1 t h\/gz(k)+p2
Vol @m @ o 2r
nF(IU‘!Tip):nf' (11)

The equationg10) and (11) obtained above comprise a self-consistent system for
determining the modulug of the order paramet@rand the chemical potential in the
mean-field approximation for fixedl andn;. As we have already mentioneg,and
serve as the initial values for calculatiigyt . The fact that the potentigb) depends
explicitly on p? is a consequence only of a definite symmetry of the spectrum of eigen-
values of the operatdi).

(10

Settingp=0 in Egs.(10) and(11), we arrive(in the same approximatiorat equa-
tions for the critical temperatur“ég"F and the corresponding value pf

lep| v JMIZTQAFd tanhu

In W ;— o u m (7:1.78]), (12)
TVF In 1+ex;{%) _— (13)
C

Hereep= —2Wexp(—4n/mV) is the energy of two-particle bound states, whéfés the
width of the conduction bandg:= 7wn;/m, and the change te, means renormalization
or, in other words, passage to the limits—~ andV—0. The parametet,, is physically
equivalent to the four-fermion constakt but is much more convenient to use. For
example, after renormalization ELO) becomes

e » 1
n———=2| du . (14
notpt—p T p p
u’+ 7| |exp u?+ 7 +1

It is easy to show that af=0 the system(14), (11) possesses an exact solufién
p=+2|epler and u= —|ep|/2+ €. This shows that both the magnitude and signuof

are determined by the ratio between and|e,,|. Otherwise, there arises a natural sepa-
ration of metallic systems into systems with lower&|ep|), high (eg>]ey|), and inter-
mediate €-~|ep|) carrier densities. The first case corresponds to the formation of local
pairs and condensation scenarios according to the type of superfluidity; the second case
corresponds to Cooper pairs and BCS-type superconductivity; and, finally, the third case
corresponds to composite bosons of intermediate ra@ifishe order of the average
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FIG. 1. Tgxr andTMF versus the seed-fermion density. The dots represent the funtigh at T=Tgyr . The
regions of the NP, ANP, and BKT phases are indicated.

distance between fermionand a crossover-type condensate. We also note that the quan-
tity (6) vanishes orfand abovgthe mean-field critical line, which bounds the NP and the
ANP.

Finally, we underscore that in the equation for the varigblee restricted ourselves
to the mean-field approximation, since allowance for fluctuationsiefnot fundamental
for the final results. The non-single-valuedness of the phase of the order parameter is
taken into account systematically — orfiy9(x) were assumed to be small.

5. The numerical investigation of the systef(8%, (11), (14) and(12), (13) gives the
following very interesting results, which are displayed graphicallyTlae ANP region
(see Fig. 1in the present model is commensurate with the BKT region. But it has not
been ruled out that in the case of an indirect interaction or the quasi-two-dimensional
model this region will narrow a®; increases. bFor low er (<|ep|) the function
Takr(€gp) is linear, as is also confirmed by the analytical solution of the sys&ntll),
and (14), which gives Tgkt=€g/2. We note that the temperature of formation of a
uniform order parametéf.= e /(2a) (wherea>1) even for the quasi-two-dimensional
modef in the limit of low densityn; . This shows that the weak three-dimensionalization
can preserv@n any case, for low;) the regions of the ANP and BKT phases, which, for
example, happens in the relativistic quasi-two-dimensional mddithe same time, as
the three-dimensionalization parameter increases, the BKT phase can vanish, provided,
however, that the ANP region and both temperatfﬁ%% andT, are preserved.)digure
2 shows the values aof; for which u differs substantially fromeg and, in other words,
the Landau Fermi-liquid theory becomes inapplicable for metals with low or intermediate
carrier density. As expected, the kink,iunathTQ"F , experiments on the observation of
which were discussed in Ref. 14 and have been interpreted fol-t#2e-3 cuprate'®
becomes increasingly less pronouncedeasincreases. But in the present case it is
interesting that in the approximation employed it happens at the NP—ANP boundary or
before superconductivity actually appears. Therefore it would be of great interest to
perform experiments which would reveal the temperature dependefite especially
for strongly anisotropi¢quasi-two-dimensionabnd relatively weakly doped cuprates. d
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FIG. 2. u(T) for different values ofeg /|ep|: 1 — 0.05;2 — 0.2;3 — 0.45;4—0.6;5— 1,6 —2; 7 — 5.
(For u>0 and u<0 the chemical potential was scaled dp and |e,|, respectively. The thick lines bound
regions of the BKT, ANP, and NP phases.

It follows from curve3 in Fig. 2 that the transitiolichange in sign of) from local to
Cooper pairs is possible not only as increases, which is more or less obvious, but also
(for some n;) as T increases. ke Finally, the calculations showed that the ratio
2A/Tgkr is always greater than 4.4; the value af/Z'Y'F is, however, somewhat lower
and reaches the BCS theory limit of 3.52 only f@r>|s,|. It is interesting that this
behavior is consistent with numerous measurements of this ratio in Thigh-
superconductor¥’

6. Even though the phase diagram found was obtained under simplifying assump-
tions (for example, fluctuations of only the phase of the order parameter were taken into
account systematicallyit does show how sensitive the parameters of its critical lines are
to the value oh;. At the same time, it should be kept in mind that in contrast to the 3D
transition, which occurs gi=0, the BKT transition occurs in a state whgre&0 and
therefore, as was noted above, the fluctuations of the modulus of the order parameter
should be weaker here and they should not suppFE§scompletely. Allowing for them
is unlikely to affect the qualitative picture, but undoubtedly it would be interesting to
estimate separately the role of the corresponding contributions of fluctuatignsiod
0. The correlated and uncorrelated pairs, whose existence in arpighperconductor is
being widely discussetsee the reviews in Refs. 1, 8, ang 8an be qualitatively com-
pared with regions where the phase diagram has been computed: Thus the pairs are
correlated fofT <Tgkt and uncorrelated fof >Tgyr . In the NP region it is not so much
the fluctuations of9 but rather ofp that are important, and one should talk not about a
correlation of different pairs but rather about fluctuations in the number of pairs.

In this letter only the existence of the ANP was established and the boundaries of
this phase were calculated. However, the physical properties of this phase, primarily the
spectrum, require a special study, though it is obvious that in the ANP, which does not

187 JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Gusynin et al. 187



exhibit superconducting properties, a gageudogapis present in the Fermi excitation
spectrum.

One of us(V. M. L.) thanks V. A. Gasparov for a discussion of the possibilities of
observing the BKT phase in high: superconductors and also V. F. Gantmakher for his
interest in this work and for encouragement.

de-mail: vioktev@gluk.apc.org
BThe total derivative with respect te and terms which are not important for the further calculations are

dropped.

C)TheF;E is no doubt that in certain situatioffier example, very highT) it also can become a thermodynamic
variable, i.e., dependent oh, as happens in problems of phase transitions between or¢magheti¢ and
disorderedparamagneticphases when the spin itself vanishes. Specifically, for quasi-two-dimensional spin
systems it is virtually obvious that as one proceeds from fAigkgions, at first a spin modulus forms in 2D
clusters of finite size and only then does glot&D) ordering occur.

9t should be kept in mind that in the local-pair regimg<0) the gapA in the quasiparticle excitation
spectrum equals ngt (as in the casg.>0) but ratheryu?+ p? (see the review in Ref. 2 and the literature
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Contact phenomena in a semiconductor film with
activational conduction

V. B. Shikin

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow District, Russia

(Submitted 28 November 1996; resubmitted 18 December)1996
Pis'ma Zh. Ksp. Teor. Fiz65, No. 2, 176—-18125 January 1997

It is noted that the contact of an unscreened, two-dimensional electronic
system with “external” metallic electrodes destroys the spatial unifor-
mity of its electron density, which decreases sloilyversely as the
distance from the interfag@away from the contact zone. These effects
are especially pronounced in systems with a small number of carriers,
for example, semiconductor films with an exponentially low electron
(hole) density, when the nonuniform part of the contact density com-
petes without difficulty with its initial, uniform component. The effect
of contact phenomena on the conductivity of a semiconductor film,
which is the central part of a Corbino disk, for different temperatures,
doping levels and doping composition, sample dimensions in the direc-
tion of the current, and so on is described in detail. A comparison with
existing experiments is presented. 1®97 American Institute of Phys-
ics. [S0021-364(07)01202-4

PACS numbers: 73.50.Jt, 73.50.Gr

Contact phenomena are well known in the physics of three-dimensi@balcon-
ducting mediasee, for example, Refs. 1 andl Zhese phenomena are accompanied by
a breakdown of the local neutrality of conductors in the contact zone as a result of the
need for some free carriers to be transferred from one medium into another. Neutrality in
the volume of the contact pair is destroyed exponentially at interatomic distances for
good metals and at the corresponding Debye screening length in typical semiconductors.
In the case of the free faces of conductors the contact electric fields “extend” into the
vacuum and are screened by the conductors much more wgakder-law mannegrthan
in the interiort

Surface effects are clearly not important in various three-dimensional problems of
the type where Schottky barriers or the propertieg-afi junctions must be describéd.
However, the situation changes in contact problems involving two-dimensi@l
conductors. The initial factors leading to the appearance of a contact potential difference
(mainly, different work functions of the media in contpatso remain for such contacts.

But in a 2D system, screening of the contact fields through the vacuum is the only

possible way. As a result, the slowly decreasing contact surface charge density, which is
of no importance in three-dimensional problems, is at center stage in the study of low-

dimensional contact phenomena.
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Among the as yet few, examples of an explicit manifestation of “long-range action”
in the effect of contacts on the properties of low-dimensional electronic systems, we
mention the fact that the real dimensions of the region with an integer filling factor in the
2D part of a Corbino disk under conditions of the quantum Hall effewt experiment in
Ref. 3 and interpretation in Ref,) 4re different from the nominal dimensions of this
region; specific oscillations of the Corbino conductivity as a function of the magnetic
field,> when the resistance of the apparatus is determined mainly by its central part, where
the filling factor is small, and the period of the oscillations assumes a value that is
characteristic for the metallic Corbino “electrodes” with a quasiclassically large filling
factor; and, so on.

Our objective in the present work is to discuss in the spirit of Ref. 4 the properties
of a quasi-one-dimensional Corbino disk whose central part is a 2D semiconductor film
with activational conductivity. For simplicity, the metallic contacts are also assumed to
be two-dimensional. The requirement that the film be two-dimensional means that the
thicknessd of the film is less than the corresponding Debye radius for the given semi-
conductor. The quasi-one-dimensionality of the Corbino geometry presupposes that

R,—R;<(R;+Ry)/2, 1

whereR, andR; are the outer and inner radii of the semiconductor part of the Corbino
disk.

Specifically, we shall consider below an extreme version of the problem, in which
the semiconductor film occupies the stdp-0, —w<x<+w and is in contact with
semi-infinite metallic “electrodes”, which also lie in the=0 plane. The composite
character of the system is determined mainly by a jump in the work fundtipg:

P(X)=D,,, [X|>w; OdX)=dg, |x|<w. (2

Here 2w is the width of the semiconductor-filled strip along thaxis. Besides the work
function, the characteristics of the semiconductor include also the donor depsityd
acceptor density,, as well as the position of the donor le&] and the acceptor level
E, with respect to the bottom of the conduction band.

The electrons occupy the same plane0 as the donors, and the electron density
n(x) varies along the axis, corresponding to the radial direction of the Corbino disk.
The properties of the film in the vertical direction are not specified. It is assumed that the
film is quite thin and that its characteristics are all uniform over its thickdess

The model(2) is convenient from the formal standpoint because of its simplicity. It
contains the well-knowitfrom Ref. 1) singularities of the electron density in the contact
zones(see the definition oBny(x) in Eqg. (4)) and permits regularization of the singu-
larities by the methods presented in Ref. 4.

1. Proceeding to the study of the properties of the sys@mwe consider first the
equilibrium results, comparing in so doing the “pictures” of 3D and 2D metal—
semiconductor contacts for the case whamtgpe semiconductor is enriched with extra
electrons.

In the 3D case the transfer of electrons into the semiconductor results in the appear-
ance of a band with high electron denéityear a contact placed at the poit 0:
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2
. a’=«Tl2mne?, x>0. ©)

SN(X)=ny P

Heren, is a 3D electron density at the metal-semiconductor boundary and is propor-
tional to the difference of the work functions, ards the dielectric constant.

For the two-dimensional problem with the same accuracy as if&gthe distri-
bution én,(x) of the perturbed electron density of contact origin is giver(thg origin
of the coordinates lies at the poirt 0, according to the model in EQR))

KW@ms

o) = zewe—x?)

v EPms= D= P>0, (4)
where®, and® are the work functions for the metallic “electrodes” and the semicon-
ductor. The symbob>0 in the definition ofp.,s in Eq. (4) corresponds to the case of
enrichment for the semiconductor film. The power-law singularities at the ends of the
interval 2w are not very important for the effective conductivity of the systese below

for a more detailed discussipand can be eliminated if so desiréske Ref. 4 In the
central part, where the distributiofn,(x) (4) possesses a minimum, the definitigh

can be used, just as in the ca8g so long as

4mm, T
Ng(X)>Ng, Ng=+ncng exp(—Ey/2T), n.= h2* : (5)

Here n, and m, are the 2D density of states and the electron effective mass in the
conduction band of a-type semiconductor and is the activation energyposition of
the donor level relative to the bottom of the conduction band

In the situationsn,(x) <n, the problem of the electron distribution in the film must
be solved more accurately than was done in the derivation of4tgQualitatively, just
as in the 3D theory, the interpolation

Ne(X)=Ngt+ SNy(X), —W<X<+w, (6)

wheren, is taken from Eq(5) andén,(x) is taken from Eq(4), is a good approximation
for this region.

Comparing Eqs(3) and(4), it is easy to see their similaritithe weak dependence
on T) and differencgthe distribution(4) is much more even and does not contain even
a power-law radius of convergence, as in E8)). The accuracy of the asymptotic
expression$3) and(4) at large distances from the contacts is also the same. This justifies
the interpolation(6) for n.(x) constructed by analogy to the 3D case.

2. The next part of the calculation concerns the introduction of a correéti¢r) to
Ohm’s law for a Corbino disk. Here we shall restrict ourselves to the simplest possibility
— the Drude approximation:

o ng(x)e?r du

| = m—*a, Ne(X)=Ng+ SNy(X), (7
wherepu is the electrochemical potential,is the momentum relaxation tima, is taken
from Eq. (5), and ny(x) is taken from Eq(4). Assuming now that the current density
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j is conserved in the radial direction of the Corbino disk, the effective relation between
j and the potential differencé at the edges of the high-resistance part of the disk can be
determined:

v—f+wd /d—m*jrw ds 8
B sdu/ds= €%7 ) _wNgt dNng(S)” ®)

The definition(8) attests to the fact that the singular points of the functiag(x) from
Eqg. (4) make no contribution to the integral.

Expression8) can ultimately be reduced to the following effective Ohm's law:

. \%
j=o5. o=0of(8), oo=e?my/m, 9
1) Kep
= = -2 = ms
f(o) yy O=(1+l/w)~ 4 | e
5— 0.5(1—52)In1T5

Here o5 is given by Eq.(4) andn, by Eqg. (5).

If 6=1—¢, e<1,
(o) =— o8] 10
(=T iz € 09w (10

In the opposite limiting casé—0 (I>w)
f(8)=3/26°. 11

Formulas(9)—(11) contain the canonical part of the IVC, viz+ o,V/2w, and a correc-

tion factorf () that takes into account the effect of the contactswAdecreases, at fixed
temperature, this factor effectively increases the conductivity as a result of the variation
of the parametel/w. If w is fixed and the temperature varies, however, then in accor-
dance with the definition of the length(9) this factor modifies the activational tempera-
ture dependence afy contained in the definition afi,.

3. As a supplement to the problem of a film ohdype semiconductor we shall also
study the case of mixed doping: donctsacceptors. The degree of compensation

k=n,/ng, k=1, (12

is assumed to be quite high, and the temperature interval corresponds to simple hopping
conduction.

It is obvious that in this case the contact electrons, which are not confined in the
conduction band, reach the acceptors, charge them, and thereby locally change the degree
of compensation of the semiconductor, which in turn results in a renormalization of the
basic parameters of hopping conduction. On this basis, we write with the aid of Ref. 6 the
effective resistance of the film in the limiting case of a deep compensation, which we are
interested in here:
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v—fw Xjdx;  p(x)= exp{( 2'86>+ = (13
=], p(idx; p(x)=po e = |
1 NnL(X)
S(X):G In 1——k(X) ) k(X): Ng , [1—k(X)]<1,
Na(X)=Nna—no(x), e=e?k 1ng. (14

Heren, andny are the corresponding two-dimensional acceptor and donor densities and
a is the characteristic Bohr radius of an electron on a separate donor. As noted above, the
contact electrons with densijn,(x) (4) influence the local acceptor density(x) (14)

(the extra electrons escape to the acceptors, decreasing their active number, and the
number of donor locations via which the hops occur remains unchanged

It is obvious that the integrdll3) possesses a saddle poinkat0. On this basis, we
rewrite the definition(13) in the form

o o 2.86 &(0)
V=pj, p=pow*ex avng =

Na(0)
. k(0)= g [1—-k(0)]<1,

(15

e(0)=¢€In

=

. el "0)= 2edn, A Nya— dn,
W =N ¢ O T hwaai—ay AT T,

Heren,(0) is given by Eq(14).

Formula(15) for p shows that contact phenomena have an exponential effect on the
activation energy for hopping conduction. In the strong compensation regime, the acti-
vation energy is determined mainly by the “distance” between the position of the Fermi
level and the maximum of the donor density of states. As excess electrons appear and
change the degree of compensation at the center of the semiconductor, this “distance”
decreases, as a result of which the activation energy for hopping conduction decreases.

Size effects in hopping conduction in semiconductor films have been observed in
Ref. 7. For a quantitative analysis of the data in Ref. 7 it is convenient to rewrite the
definition of(0) in Eqg. (15) with the geometric factol/w singled out:

1
SWES(O)ZGZK_l\/n_d In m}, k=n,/ny, (16)
_ Kap
= e 17

The definition(16) of the activation energy contains three parameteys:ng, andl. To
estimate their numerical values, we employ the data of Ref. 7. Figure 29 of that disser-
tation makes it possible to distinguish the following pairs of numbers for a channel of
lengthw in microns and the corresponding activation enesgyin degrees Kelvin:

(w,ey,)=(145;15; (12;10.89; (3.5;9.0; (1;7.6; (0.45;4.9. (18

193 JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 V. B. Shikin 193



o °

e(0)/e
T
o

! J
0 2.5 50

Wn{1/(1-k(1-1/w))]

FIG. 1. Relative activation energy(0)/e versus the channel widtlv for fixed values ok andl. The plot is
constructed in rectilinearizing coordinates for 0.99 andl=0.1 wm. The open circles represent the experi-
mental points from Ref. 7, whose values are presented ir(18).

Formula(16) fits the data(18) best if
k=0.99, [=0.1um. (19

The degree to which the pointé8) correspond to the defnitiond6) and (19) is illus-
trated in Fig. 1.

Knowing k andl, we shall estimat&y and eg,,s with the aid of expressiongl5)
and(17) for £(0) andl, respectively. Fok=10

ng=10 cm 2, een=m2e’ngk =10 K. (20)

Hence it follows that the average distance between the nominal donors and acceptors
is greater than or of the order of 10 cm. This distance is greater than the thickness of
the films employed in the experiments of Ref. 7, and as noted above this makes it
possible to employ the 2D approximation in writing formyls) for p(x).

Comparing the quantitee,,e=10 K in Eq. (20) with the known values of the
contact potential difference shows that it is relatively small. But it is necessary to take
into account the fact that the activiation enerdi&8) are also small for typical semicon-
ductor objects. In this case, it is important that even small values of the contact potential
difference are sufficient to account for the observed dependence of the activation energy
on the dimensions of the channel.

In closing, we note that contact phenomena in low-dimensional systems and, spe-
cifically, in semiconductor films appreciably influence the equilibrium and transport
properties of the films. This occurs in cases when the spatially nonuniform contact cor-
rection to the electron density is comparable to the initial electron density of the semi-
conductor. Taking account of the strong dependence of the nonuniform part of the density
on the geometric parameters of the problem and the temperature, it is possible to predict
the various size and temperature effects of contact origin in the conductivity of semicon-
ductor films. Some of these effects have already been observed experimentally.
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We study the effect of the density-of-stat@»09) fluctuations on the
thermoelectric coefficient of a highly anisotropic superconductor above
the critical temperature. It is shown that it is the DOS contribution
which gives rise to the leading correction to the thermoelectric coeffi-
cient, in spite of previous results where only the Aslamazov-Larkin
term was taken into account. This conclusion is valid for an arbitrary
impurity concentration. ©1997 American Institute of Physics.
[S0021-364(17)01302-9

PACS numbers: 72.15.Jf, 74.4k

1. The problem of the thermoelectric effect in the fluctuation regime has been
attracting the attention of theoreticians for more than twenty years, ever since the paper
of Maki.! The main question which should be answered is whether or not the correction
to the thermoelectric coefficieft has the same temperature singularity in the vicinity of
the critical temperaturd@_ as does the correction to the electrical conductieityn the
paper of Makt only a logarithmically divergent contribution was predicted in the two-
dimensional(2D) case, and its sign was found to be opposite to the sign of the normal-
state thermoelectric coefficief. Later on, in a number of papéré it was claimed that
the temperature singularity of the fluctuation correctiorBtes the same as it is foo
(x(T-T,) ! in 2D). Finally, Reizer and Serge®have recently revised the problem
using both the quantum kinetic equation and linear response methods and have shown
that, in the case of an isotropic electron spectrum, the strongly divergent contriBttions
are canceled out for any dimensionality, and the final result has the same logarithmic
singularity as was found by Maki, but with the opposite sign. We should emphasize that
in all papers cited above only the Aslamazov—Larki ) contribution was taken into
account, while the anomalous Maki—ThompsMiT) term was shown to be absémtlt
has been mentionedhat an incorrect evaluation of the interaction corrections to the
heat-current operator in Refs. 2—4 produced erroneously large terms, which really are
canceled out within the adequate procedure. Due to this strong cancelation the AL term
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turns out to be less singular as compared to the corresponding correction to the
conductivity®

On the other hand, it is now well established that in every case, where the leading
AL and MT fluctuation corrections are suppressed for some reason, the contribution
connected with fluctuation renormalization of the one-electron density of Sla@S)
can become important. As examples we can mentiaxis fluctuative transpoft’ the
NMR relaxation rat€ and infrared optical conductivityIn this communication we show
that an analogous situation also takes place in the case of the thermoelectric coefficient.
In what follows we study the DOS contribution to the thermoelectric coefficient of
superconductors with an arbitrary impurity concentration abbyeWe will be mostly
interested in the 2D case, but the generalization to the case of a layered superconductor
will be done at the end. We show that, although the DOS term has the same temperature
dependence as the AL contributidit,turns out to be the leading fluctuation contribution
in both the clean and dirty cases, due to its specific dependence on the electron mean free
path.

2. We use units in whictk =c=kg=1. We introduce the thermoelectric coefficient
B in the framework of linear response theory as:

Im[Q*"R(w)]
m-————

Tw @

w—0

where Q(Eh)R(w) is the retarded Fourier component of the correlation function of the
electric and heat current operators. This correlation function in the diagrammatic tech-
nique is represented by the two exact electron Green’s functions loop with two external
field vertices, the first;-ev, associated with the electric current operator and the second,
i/2(en+ €,4,)V, associated with the heat current operdtgr= 7T(2n+1) is the fermi-

onic Matsubara frequency ang=90&(p)/dp, whereé is the quasiparticle energjyTaking

into account the first order of perturbation theory in the Cooper interaction and averaging
over impurity configurations, one can find the ten diagrams presented in Fig. 1. The solid
lines representG(p,e,)=1/(i'e,—&p)), the single-quasiparticle normal-state Green's
function averaged over impurities, which contains the scattering lifetime
(e, = €,+1/27signe,). The shaded objects are the vertex impurity renormalization
Ng=0,¢,,€,/) (see Ref. . The wavy line represents the fluctuation propaghior(,):

g0 || T 1 |19 299° 1 )
(0,Q)=-p n-ITC+1// staT T 2 3| (2
where
037

=77

1 1 1 1 (1
N2 " aat) "2 @ V2
is a positive constant which appears in the expression for the current in Ginzburg—
Landau theory in the 2D cagp is the one-electron density of states af{at) and /' (x)
are the digamma function and its derivative, respectivélize first diagram describes the

AL contribution to the thermoelectric coefficient and was calculated in Ref. 5 with the
electron—hole asymmetry factor taken into account in the fluctuation propagator. Dia-
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FIG. 1. The Feynman diagrams for the fluctuation correction to thermoelectric coefficient are shown. The
shaded partial circles are impurity vertex corrections, the dashed curves with central crosses are additional
impurity renormalizations, and the shaded heavy lines are additional impurity vertex corrections.

grams 2—4 represent the Maki—Thompson contribution. As was mentioned in Refs. 2 and
5, neither the anomalous nor the regular parts of this diagram contribgtentany order

of electron—hole asymmetry. In what follows we will discuss the contribution from
diagrams 5-10, which describes the correctioBtdue to DOS renormalization.

For diagrams 5 and 6 we have
i T
Q=50 =-2eTS [ (daL(@anTS "2 [ (o
k €n

X [)\2( €n,— €n)Gz(p! €n)G(q_ p,— En)G(p16n+ v)

+ )\2( €n+vr €En+ V)Gz(pven+ V)G(q_ p,— 6n+V)G(p7 Gn)]- (3)
(We use the shorthand notati¢ahg)=d%q/(27)¢, whered is the dimensionality Evalu-
ating Eq.(3), one naturally obtains a zero result without taking into account the electron—
hole asymmetry. The first possible source of such a factor is contained in the fluctuation
propagator and was used in Ref. 5 for the AL diagram. Our calculations show that for the
DOS contribution this correction to the fluctuation propagator results in a non-singular
correction toB in the 2D case and can be neglected. Another source of electron—hole
asymmetry is connected with the expansion of the energy-dependent functions in power
of &Eg near the Fermi level in performing theintegration in Eq(3) (Eg is the Fermi
energy:

pv2(£)=pv?(0)+ £ 4

ﬁ(pvz(g))}
€|,y
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Only the second term in E@4) contributes to the thermoelectric coefficient. The contri-
bution of diagrams 7 and 8 can be calculated in analogous way. Diagrams 9—10 do not
give any singular contribution to the thermoelectric coefficient on account of the vector
character of the external vertices, and, as a result, an additigrfactor appears after
p-integration. The same conclusion concerns the MT-like diagram.

Performing the integration ovef, we find the contribution of the important dia-
grams 5-8 in the form

eT?
=

I(pv3(§))

Q" ¥(w,) 7

} f (dQIL(G,0)(31+3,+33), )
£=0

where we have separated the sums over semi-infiifitec,—v—1], [0,,0)) and finite
([—»,—1)) intervals:

Z 2e,+
21222 EnT W,

n=0 2'En+ .,

+
2 2
(€n+wv) €n

Ento, ne')

1 iy ., F

- - 2 n v__n

2 Uty 2, (260t @) (.52 )
-1

3:=(1+w,7) E (2en+ w,)

n=—v

1 1) ®
72— 2|
n+v En

3, andX, are associated with diagram 5-6, whilgis associated with diagram 7-8. In
calculating the sumg¢6) we are interested in terms which are linear in the external
frequencyw,. Sumz,; turns out to be an analytic function af, and it is sufficient to
expand it in a Taylor series after analytical continuatiepp—~—iw. The last two sums
over finite intervals require more attention because of their nontryjalependence, and
before analytical continuation they have to be calculated rigorously. The result is

R iw R 2iwT R iw
Elzﬁzi %5=- ’Tl'T; Esz_ﬁz- )

Finally, we perform the integration over and the total contribution associated with
DOS renormalization in 2D case takes the form:

1 eT.[d(v2p) T
BDOSZWUTFPC — In T—CT k(TeT), (8)
£=0 ¢
a
Sy =
k(Tr)=-—

TT

2wl il am e
N2 " amts) 2 27 V2
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2
~ for Tr<1,
743) Tr~94Tr T
= 9

1
— for Tr<1.
Tr

To generalize this result to the important case of a layered superconductor one has to
make the substitution to In@/— In[2/(\e+ Je+r)] (e=(T—T.)/T, andr is an anisot-

ropy parametéy and to multiply Eq.(8) by 1/pgs, wheres is the interlayer distance. In

the limiting case of a 3D superconductoe>¢) both the AL® and DOS contributions are
nonsingular.

3. Comparing Eq(8) with the results of Ref. 5 for the AL contribution, we conclude
that in both the limiting cases of clean and dirty systems the decreagkdofe to
fluctuation DOS renormalization dominates the thermoelectric transport due to the AL
process. In fact, the total relative correction to thermoelectric coefficient in the case of a
2D superconducting film of thicknesscan be written in the form:

DOS AL
u=—0.09ii|n( Te )
Bo Errpes \T-T¢

where the first term in square brackets corresponds to the DOS contrilg8tiand the
second term describes the AL contribution from Ref@h, is the Debye temperature
Assuming If®p/T.)~2 one finds that the DOS contribution dominates the AL contribu-
tion for any value of the impurity concentratior:as a function oflf = has a minimum at
T7=0.3, and even at this point the DOS term is larger. In the two limiting c@isesl
and Tr>1 this difference increases strongly.

M

Op
T

k(To7)+10.6 In (10)

The temperature and impurity-concentration dependences of the fluctuation correc-
tions toB can be evaluated through a simple qualitative consideration. The thermoelectric
coefficient may be estimated in terms of the electrical conductiviag »~(e* /e T)f .0,
where € is the characteristic energy involved in thermoelectric transportfgpis the
electron—hole asymmetry factor, which is defined as the ratio of the difference between
the numbers of electrons and holes to the total number of particles. The conductivity can
be estimated as~e?/ 7*/m, where /", 7, andm are the density, lifetime, and mass of
the charggland heat carriers, respectively. In the case of the AL contribution the heat
carriers are nonequilibrium Cooper pairs with enee§y-T— T, and density

and with a characteristic time given by the Ginzburg—Landau titnerg, =#/8(T—T,.).
Thus in the 2D case

AP~ (T=TOl(eT) fah oAt ~efygIn =——.

T-T,
One can easily see that the fluctuation correction due to AL process is less singular
(logarithmic in 2D caskthan the corresponding correction to the conductivity and does
not depend on impurity scatteriig.
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An analogous consideration of the single-particle DOS contribugr-T, 7 ~17)
evidently results in the estimate
Te

T-T.

which coincides with Eq(8) in the clean case. The dirty case is more “sophisticated”
because the fluctuation density-of-states renormalization depends strongly on the charac-
ter of the electron motion, especially in the case of diffusive matioFhe same density-
of-states redistribution in the vicinity of the Fermi level enters directly into the rigorous
expression foB, and it is not enough to write the fluctuation Cooper pair dengifyout

it is necessary to take into account some convolution wiil(e). This is what was
actually done in the previous calculations.

B~ef TerIn

Experimentally, although the Seebeck coeffici8rt— 7 /o is probably the easiest
to measure of thermal transport coefficients, the comparison between experiment and
theory is complicated by the fact th& cannot be calculated directly; it is rather a
composite quantity made up of the electrical conductivity and thermoelectric coefficient.
As both n ando have corrections due to superconducting fluctuations, the total correction
to Seebeck coefficient is given by

AS (AB AU) 11

o Bo oo/ (1D
Both these contributions provide a positive correctig8 thus resulting in a decrease of
the absolute value db at the edge of superconducting transitids/3,<0). As to the
fluctuation correction to the conductivitho/oy>0, we see from Eq(ll) that thermo-
dynamic fluctuations abové&,. always reduce the overall Seebeck coefficient as the
temperature approachd&s. So the very sharp maximum in the Seebeck coefficient of
high-T, materials experimentally observed in several papessems to be unrelated to
fluctuation effects within our simple model, even leaving aside the question of the ex-
perimental reliability of these observations.
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Momentum dependence of the dimensionality of the
electronic states in heterostructures
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Bound states of electronéoles in quantum wells and wires with
asymmetric barriers can exist in bounded regions of two- and one-
dimensional momentum space, respectively. As the corresponding mo-
mentum increases, both the disappeardimm@ease of dimensionality

and appearandglecrease of dimensionaljtpf bound states as well as
the existence of a sequence of several such transformations of dimen-
sionality are possible. In the case of anisotropic effective masses in the
guantum wells and barriers, the forms of the lines of disappearance and
appearance of bound states are different from the forms of the isoen-
ergy lines. Therefore there is a finite energy interdas., electron
density intervgl where bound states exist on only a part of an isoenergy
line. The dimensionality of the states can be controlled with an electric
field; this should be observable in a number of the experiments
discussed. ©1997 American Institute of Physics.
[S0021-364(07)01402-3

PACS numbers: 68.6%9

For quantum wells the in-layer wave-vector componers, k,) are conserved.
Since the effective-mass components are different in the materials in contact, the effec-
tive potentials will depend ok, andk, . This can even change the sign of the effective
potential, i.e., a potential well can be converted into a barrier and vice versa. This fact
was discussed in Refs. 1-3. However, the critical vakgesf the wave vectors for which
bound states appear or disappear are too high from the standpoint of both the possibility
of observation and the correctness of the description. This letter shows that these prob-
lems can be solved in principle for quantum wells and wires with asymmetric barriers.

1. The wave function of the quantum wells can be represented in the form
¥(X,y,2)=2Z(z)exp(kp), wherez is the coordinate in the direction of the growth axis,
p lies in the plane of the layers, ari=(ki+kZ)¥2 The Schrdinger equation for
Z(z) in the case of isotropic masses in each layer of the heterostructure has the form

, 2my,
Z (Z)+ ﬁT

£2k?
E— Z—rnn—Un)Z(Z)ZO, (1)

wherem, and U, are the effective mass and potential in thih layer. The functions
Z and Z'/m, are continuous at the boundaries of the layers. For a quantum well of
thicknessd this results in a dispersion relation for the eneEywf the bound states
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K1 Ko KiKo, M K| |
—+ —|coskd+ —— —]sin kd=0, (2
ml m2 mlmz K m
where
2m 1/2 2m12 1/2
k=| T2 (E-Vo(K)| , K10=| 57 (Vidk~B)| |,

m,, m,, andm are the effective masses in the left- and right-hand barriers and in the
well; Vi K) = U1 »+%%k?2m, 5, and Vo(k) =7%2k?/2m are equal to the potentials of the
barriers and the well for finit& and toU; for k=0.

For U;#U, a bound state appears for well width above a critical valdde
asymmetry of the barriers can be characterized by the parameter

B(K)=[Va(k) = Vo(K) /[ V1(k) = Vo(K)].
For m<m; the sign of the derivativeB(k)/dk is the same as that of the parameter

U, my,—mmy
S U; mp—mmy’

a ()
i.e., ask increases, the system becomes increasingly asymmetrie>d (for definite-
ness, we assume that,>U,) and increasingly symmetric fox<<0. If m>m,, then
dB(k)/ ok and o have opposite signs.

For type-l heterostructures the relatioms<m;<<m, are typical. In this case, for
ki=[2U;mm /2%(m;—m)]*2 the barrier vanishes on the left£1) or right (=2) side
and forks=[2(U,—U;)m;m,/%%(m,—m,)]¥? the barrier heights are equal. The rela-
tive arrangement ok, k,, andkg is determined by the sign of: k;<k,<k, for
a>0 andks<k,<k; for «<0.

Barrier asymmetry results in vanishing of a bound state for valués afuch less
thank,; andk,. To determinek., Eq. (2) must be solved fok under the additional
conditionE=V;(k¢;). For >0 there is one critical valuk.;, and the equation fdt., is

1/2

d 1 | m K 1 n y
X_ﬁtan E('B( WD+ o=, (4)
where
m 1/2
K= 1—(kc1/k0)2(1—5) . ko=2mIN, N=(27*h%12mU,)*?,
1

n=0, 1, ... is the number of the subband. Feo 0 there is a second valug, which is
obtained from Eq(4) with K=[U,/U;— (key/ko)?(1—m/m,)]*2 and the substitutions
m;<m, and B replaced by 18.

A state diagram in the variablekk), which describes the limit between the bound
(2D) and unbound3D) states, is displayed in Fig. 1. Cuniecorresponds ta>0. A
bound state exists above and to the left of this curve.d<od,; there is no bound state
for any k. For d>d;; a bound state exists in the intervak@&<k.,, and the value of
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FIG. 1. Diagram of the states of a quantum well. The lihg8, and3 correspond to the conditide=V,; lines
2" and 3’ to E=V,, m;=1.1m, andm,= 2.0m for U,/U;=6 (curve l); 4 (2, 2'), and 2(3, 3'). Inset:
Dispersion curve&(k): a for curvel; b, 0 — 2, 2'; d) — 3, 3'.

k¢q increases from O té&; asd increases. The functioB(k) for d>d; is displayed in
inset a in Fig. 1(solid lines — 2D states, dashed lines — 3D states

Curves2 and2' correspond tE=V, andE=V, for «<0; inset b corresponds to
the cased<<d;, and inset ¢ corresponds tb>d;,. For <0 the functiond(k.) can
possess a maximuigturve 3 in Fig. 1). In this case three critical valuds exist in a
narrow range of layer thicknessds,<d<d,,,, (see inset i The disappearance of the
state ak— Kk is due to the fact that despite the symmetrization of the system, the well
depth decreases more rapidly than the barrier heights equalize.

The conditionm<<m;<<m, and «>0 holds for the widely investigated heterostruc-
tures based on three-component substances of the tye 4C, where barrier asymme-
try is achieved as a result of different values fon the left and right sides. For
GaAs/ALGa, _,As structures withx;=0.1, x,=0.4, andd=25 A we havek.= 0.3,
which is approximately an order of magnitude less than the valltg.ofhe Fermi wave
vectorkg in this case equals, with electron densitfN=10'® cm™2 in the well. For small
well widths the matching of the lattices is not of fundamental importance. This increases
the number of possible compounds with<0 for observing the effect described. An
example is the heterostructure,Slg, _,As/In,Ga, _,As/GaAs. Forx=0.4 andy=0.03
the parameterr= —20, asymmetry decreases with increaskjgand the critical width
d. atk=0 equals 36.6 A.

Applying an electric field=, changes the ratio of the potential barriers, leaving the
masses in the layers unchanged. This “decoupling” of the masses and potentials makes
it possible to control the parameter A transition froma>0 to «<<0 (and vice verspa
is possible in the case when the voltay¥ is positive (negative at the higher barrier,

i.e., all the situations examined above can be realized in structures with the same com-
position. Specifically, a functiofiE(k) of the type shown in the inset d in Fig. 1 is
obtained in the structure AGa, JAs/GaAs/Al, Ga, As with a well width of 18 A by
applying a voltage of the order of 0.1 V.
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We note several possibilities for observing the lines of disappear@ppearande
of bound states in momentum spadg (k,).

1. The character of the electron motion in a magnetic field will change both with the
field oriented in the plane of the layers and along zhexis. Depending on the relative
arrangement of the disappearance lines and the Fermi line, the oscillations of the kinetic
and thermodynamic quantities in a magnetic field will correspond to the two-dimensional
(2D) or three-dimensional(3D) cases. The quantum Hall effect should vanish at a
2D-3D transformation. The transformation phenomenon itself can be observed in the
same sample by controlling the carrier density and the position of the disappearance lines
by means of an electric field.

2. In the case of a 2D—3D transformation induced by an electric field, the character
of the phase transformations can change. For example, if ferromagnetic ordering is de-
termined by magnetic ions in quantum wells by means of an indirect exchange interaction
via the carriers, then ferromagnetism can vanish at a 2D—3D transformation.

3. In the case when the position of the disappeardappearangeline changes, a
sharp change in the binding energy of excitons or impurity states can be observed, since
the binding energy for the 2D case is four times higher than for the 3D case. This sharp
change will occur when the momentum of the disappearéameearanddine equals the
corresponding reciprocal of the Bohr radius.

4. It is possible to observe the inverse Franz—Keldysh effect in superlattices con-
structed from asymmetric quantum wells, i.e., under the action of aFigttie width of
the forbidden miniband increases on account of a 3D-2D transformation. As a result of
the formation of bound 2D states, the overlap integral of the wave functions between
neighboring quantum wells decreases, and this results in a decrease of the widths of the
allowed minibands.

5. The 2D-3D transformation under the action of a lateral electric field can also be
observed directly. The 2D-3D defocusirigr 3D—-2D focusing of electronic states
which occurs in this case can be observed in transient processes. In time-resolved experi-
ments, the shift in the position of the excitonic line will be determined by the change in
the binding energy.

6. A system of two quantum wells, one of which possesses asymmetric barriers, may
be attractive for decreasing the threshold current in a quantum cascadlfakerlower
subband corresponds to an asymmetric well, then the line of disappearance of the sub-
band can lie much lower than the minimum of the top band. This will result in the
suppression of one-phonon intersubband relaxation and a decrease of the threshold cur-
rent.

2. The foregoing analysis can be easily extended to the case of anisotropic masses.
This case occurs if the extrema of the volume spectra do not lie df theints of the
Brillouin zone. For hole states in Ge, Si, and Ill-V semiconductors, the masses are
anisotropic even at thE points. Then the equation for determining the energies of the
bound states has the forf2), wherem, m;, and m, must be interpreted as the
components of the masses and the potendglsn the quantitiesk and x; must be
replaced byVi=Ui+ﬁ2/2(k)2(/miX+ k§/miy), wherem;, andm;, are the effective mass
components in théth layer. To make a classification of the situations which are possible
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FIG. 2. Isoenergy linegsolid lineg and lines of disappearanégashed linesof quantum wells with anisotropic
masses folJ,/U;=2, m,=m,, and & my,=1.2m, m,,=3.0m, my,=1.15m, m,,=1.7m, d=0.08\; b)
my,=1.2m, my=1.7m, my=1.17m, mp=15m, d=0.08\; ¢) my=1.2m, my=2.0m, m;,=1.25m,
My, =0.7m, d=0.14\; d) my,=1.5m, my,=0.7m, my,=0.8m, m,,=3.0m, d=0.30\. The isoenergy lines are
plotted with a step of 0.5 starting wits/U,=1.5 for part a and 1.0 for parts b—d.

here, let us analyze the form of the lines of disappearance of the bavijery, and
Vo=V,. The equations of these lines have the form

k/ai+KZ/bi=1,
where
a;=2U;mmy /A% (mi,—m,), bj=2U;mmy /A% (my—m,), i=12.

These are ellipses #&; andb; are positive and hyperbolas if eithar or b; are negative.

The relative arrangement of the points of disappearance of the barriers along each axis
can be characterized by the parameteysand «, . The relation betweek, andk, for

lines of appearanc@isappearangef the bound states is obtained from Eg). with the
additional conditiorE=V;(k,, k). The most important characteristics of the system are
lines of equal energyisoenergy lines which are obtained from E¢2) with E= const.

Examples of the isoenergy linésolid lineg and lines of disappearance of the bound
states(dashed linesare presented in Fig. 2. Without loss of generality, we shall assume
that the masses in the well are isotropic and thgt=m;, . For Figs. 2a,b the lines of
disappearance of the barriers are ellipses, and in both egses; andb,>b,. Figure 2c
corresponds to the situation when the Iig=V, is an ellipse an&¥/,=V, is a hyperbola
intersecting an ellipseab<a; andb,<0). For Fig. 2d the line¥,=V; andV,=V, are
hyperbolas with mutually perpendicular axes %0, a,<0, b;<0, b,>0).
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FIG. 3. Boundariesi(L) of the bound states in a quantum wire.

The most characteristic feature is that the forms of the lines of disappearance and
appearance are the same as those of the isoenergy lines. Therefore there is an energy
interval (and hence an interval of carrier densijisdere bound states exist on part of the
isoenergy line. In this case the transformation of dimensionality accompanying a change
in the controlling parametdfor example, the electric fielf,) extends over some region.

The isoenergy lines of 2D states in this region are unclosed, and magnetic breakdown due
to tunneling from one section of the isoenergy curve to another can be observed in a
magnetic fieldH,.

3. To investigate the bound states of asymmetric quantum wires, we shall employ an
approximate method consisting of reducing the two-dimensional problem to a sequence
of one-dimensional problenfsThe problem is solved in two stages. First, a one-
dimensional Schidinger equation with potentiaf(y,k,) is solved in each section=
const. The resulting energy levelx, k,), which depends on the coordinateand wave
vectork,, serves as an effective potentia(x,k,) for electron motion along the axis.

We shall investigate the dispersion law(k,) and calculate the existence region of
bound states for quantum wires with asymmetric barriers for the example of wires with a
rectangular cross sectigsee inset in Fig. Bof width L and heighH. The effective mass
in the wire ism and the potential and mass in the barrier equiandm, for x<L and
m, andU, for x>L. For such a structure, the reduction to a one-dimensional problem
leads to the effective potential V(x)=V,(k,)=U,+%%k2m; for x<O0,
V(X)=V,(ky) = U2+ﬁ2k§/2m2 for x>L, and the value o¥/(x)=Vy(k,) for 0<x<L is
determined from the solution of the transcendental equation

tar L(2mV,/h2—k2)Y?)=2f/(1—f?), (5)

where
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m [ 2my (U, — Vo) +#2k2]Y2
Tmy| 2mVy—- 4232

The solution of the 1D Schdinger equation with the potenti®(x) gives the desired
wave-number dependence of the enefgfk,) of the localized state.

As in the case of quantum wells, the asymmetry of the structure can be characterized
by the parametesw (3). For >0, there is a single condition for the appearaftdisap-
pearanceof a bound stat&=V,(k,), and there are only points of disappearance of the
spectrum(in quantum wells these were line®\n example of a calculation of the family
of curvesH (L) for differentk, for a wire based on GaAs//ba, _,As with x=0.4 for
the high barrier anat= 0.1 for the low barrier is presented in Fig. 3. For fixed bound
states exist above and to the right of the liH€L). For fixedH the critical valuek,
increases monotonically with. For example, forH=30 A one hask,.=0.%, for
L=110 A, k,.=0.%, for L=140 A, andk,.=1.2, for L=200 A.

The situation fora<<0 is more complicated. In this case, together with the lines
H(L) corresponding tcE=V,, there exist solutions witle=V,. The latter solutions
have a form similar to that displayed in Fig. 3. The main feature of the solutions with
E=V, is the existence of points of intersection of the lit#d_) for different values of
k,. For H andL corresponding to a point of intersection there are two valuek, of
(k1 and k) for which E=V,. The form of the dispersion la¥(k,) in this case is
similar to that shown in the inset d in Fig.(%olid lines — 1D, dashed lines — 3D

In the case of a 1D-20or 1D-3D transformation, for example, induced by a
transverse electric field, a transition is possible from a Tomonaga—Luttinger electronic
liquid of the type in Ref. Mbound state in a wineto a Fermi liquid.
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Shallow acceptors in Ge/GeSi strained multilayer
heterostructures with quantum wells

V. I. Gavrilenko,? |. V. Erofeeva, A. L. Korotkov, Z. F. Krasil'nik, O. A.
Kuznetsov, M. D. Moldavskaya, V. V. Nikonorov, and L. V. Paramonov

Institute of Microstructure Physics, Russian Academy of Sciences, 603600:Nizhni
Novgorod, Russia

(Submitted 23 December 1996
Pis’'ma Zh. Kksp. Teor. Fiz65, No. 2, 194—-19825 January 1997

The impurity photoconductivity spectra of Ge/GgSi, strained het-
erostructures with quantum wells are investigated. It is established that
the built-in deformation in quantum-size Ge layers substantially
changes the spectrum of shallow acceptors, shifting it into the long-
wavelength region of the far-IR range. In strong magnetic fields the
photoconductivity lines are observed to split and shift as a function of
the field. This makes it possible to carry out a classification of the
transitions. ©1997 American Institute of Physics.
[S0021-364(07)01502-9

PACS numbers: 78.66.Db, 79.60.Jv

Size quantization in semiconductor heterostructi¢Ss substantially alters the
spectra of shallow impurities in quantum wells as compared with bulk semiconductors.
At present, shallow donor impurities in quantum wells in the heterostructures
GaAs/AlLGa, _,As have been studied in greatest detdiAt the same time, impurities in
strained HSs, such as Ge/GgSi,, have practically escaped study. Here it is of greatest
interest to investigate shallow acceptors, since the deformation arising as a result of the
mismatch of the lattice parameters of Ge and G8i, results in splitting of the valence
band, which is degenerate at the pokit=0, and a radical restructing of the hole
dispersion law. In the present work we have investigated experimentally the shallow
acceptors in Ge/Ge,Si, strained multilayer HSs with quantum wells, in which the
spectra of the impurity states are determined simultaneously by both the elastic deforma-
tion of the layers and size-quantization effects.

The Ge/Ge_,Si, heterostructuresx=0.1, dge, dges~200 A, 80-160 layebs
were grown by the gas hydride method nilype Ge&111) substrates dzgox=40—45
Q- cm). For these values of and layer thicknesses, quantum wells for both holes and
electrons exist in the germanium layérghe first investigations of the spectra of shallow
impurities were performed in the undoped HS Ge/g&8Bi; 1, (No. 308,% in which impact
ionization of the residual shallow acceptors was observed when a weak static electric
field (of the order of 10 V/ich was applied in the plane of the layers of the HS at
T=4.2 K38 In this case, an absorption line of two-dimensional holes appeared in the
cyclotron resonance(CR) spectrum; the impurity density was estimated to be
N~3-10' cm 3, based on the intensity of absorption at the CR. Next, we investigated
both undoped and specially doped Ge/G&i, HSs. In the latter case, the center of the
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FIG. 1. Photoconductivity spectra of Ge/GeSi, heterostructuresdg,,dges~200 A) at T=4.2 K: @ No.
306, undopedx=0.12, 162 layersPq,~=4 kbar; h No. 379, Ge:Bx=0.15, 81 layersPeq,,~ 1.7 kbar; ¢
No. 406, undopedx=0.11, 162 layersPeq,~=3.7 kbar; d No. 406 under illumination by a GaAs light-
emitting diode.

guantum well (approximately 1/7 of its thicknessvas doped with boron up to the
minimum possible carrier densityN¢&= 10 cm™23). The most sensitive method of pho-
tothermal ionization spectroscopy was used to investigate the spectra of the shallow
impurities. A “BOMEM DA3.36" Fourier spectrometer was used to record the photo-
conductivity spectra of heterostructures in the far-IR rangé=att.2 K.

The photoconductivity spectra of two undoped samples, Nos. 306 and 406, and
sample No. 379 with doped wells are displayed in Figs. 1la—c. One can see that a pho-
toconductivity line near 55 cmt (1) and a wide band in the interval 20—40 cm(2) are
characteristic for all spectra, while in bulk germanium the photoconductivity spectrum of
shallow acceptors has a maximum at shorter wavelengths near 100 (see, for ex-
ample, Ref. 7. The fact that the spectral featurkand?2 are common to all three spectra
shows that they are related with the shallow accepd@rocated at the center of the well.
Another feature3, which lies next to the featur2 on the long-wavelength side, can be
distinguished in the spectrum of the undoped sample No.(B@f 13.

A model of an impurity center for the case of an anisotropic parabolic band, con-
sidered previously in investigations of shallow donors in germanium and silicon, was
used to interpret the observed photoconductivity spectra. The Ge layers in “thick” HSs
(in our case the characteristic thicknesses of the structures were equal to @2®-5
undergo biaxial compression in the plane of the heterostructure. Such a deformation can
be considered as being the result of hydrostatic compression plus uniaxial tension along
the axis of the HS. It is well known that uniaxial deformation along fh&1] axis,
lowering the symmetry of the crystal lattice, results in splitting of the edges of the
valence bands of the light and heavy holds£4 meV/kbaj and it also lifts the inter-
valley degeneracy in the conduction b&hfihe equivalent uniaxial tensioR gy, de-
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termined by the x-ray diffraction method, equal several kilobars for our samples. There-
fore the splittingA , in our experimental samples is of the order of or greater than the
binding energy of shallow acceptors in bulk undeformed germaniig=@0 meV).
Under uniaxial tension along tii&11] direction the effective hole masses parallpl énd
perpendicular ) to the deformation axis near the bottom of each subband become
substantially different:

m{V~0.49n,, m{’'~0.053ny; 1)
m(?~0.048n;, m{®~0.13m,. 2

Thus, the longitudinal hole mass in the bottom subb@dnds an order of magnitude
larger than in the top subbarid). For this reason, the quantization of the hole spectrum
in thin Ge layers results in an even greater repulsion of the subdamad2. This makes
it possible to neglect, to a first approximation, the effect of the top subBaamtl the
nonparabolicity of the hole dispersion law in the bottom subbhmth the spectrum of
shallow impurities. The calculations of the dependences of the energies of the ground and
excited states of the impurity center in a bulk semiconductor on the effective-mass anisot-
ropy parametery® (y= m, /my), performed in Ref. 9, can be used to analyze the
impurity photoconductivity spectra of the Ge/GgSi, HSs. Size quantization should not
produce any strong changes in the spectrum, since on account of the large value of the
massmﬁl) the characteristic extent of the wave function along the axis of the structure
ay= (4/m)2Py3(n%ele?’m{M)/3~30 A (Ref. 10 is much less than the well width. It is
natural to conjecture that, just as for shallow donors in bulk semiconductors, the transi-
tion 1s—2p. should be the strongest transition in the photoconductivity spectrum of
GelGg_,Si, heterostructures. For a shallow accep#dt in uniaxially stretched Ge
v=0.108(see Eq(1)) and the energy of the transitiors+ 2p.., calculated according to
Ref. 9, equals 36.4 cit, which agrees well with the spectral position of the strongest
feature2 in Fig. 1. The large width and great extent of this spectral band in the long-
wavelength region in samples Nos. 379 and 40i§s. 1b and kcan be explained by the
dependence of the spectrum on the arrangement of the impurity atom in the well: The
binding energy is maximum at the center of the well and decreases as the heterojunction
is approached? The spectral featuré is evidently associated with transitions from the
ground state into upper-lying excited states and into the continuum. The longest-
wavelength spectral featur@ (Fig. 13, observed only in sample No. 306, could be
associated with photoexcitation &* centers, which form when an additional hole,
whose “parent” ion is located in a barrier, is trapped by a neutral acceptor in the
quantum wellt! However, to confirm this hypothesis additional experiments must be
performed with samples in which both the wells and the barriers are doped.

Figure 1d shows the spectrum of sample No. 406, measured with continuous illu-

mination by radiation from a GaAs light-emitting diode~0.9 um). One can see that

a new structure, consisting of a narrow line at 67 ¢nand a wide band near 70-110
cm™ 1, appears in the spectrum under illumination. The new structure is apparently asso-
ciated with transitions between states of compensating donors which are neutralized by
illumination from the fundamental absorption region. For the technology used, the most
likely shallow donor is antimony. It is well known that for antimony the chemical shift is
small (about 3 cm*; Ref. 12 and the deviation from the model of Ref. 9, caused by the
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FIG. 2. Photoconductivity spectra of heterostructure No. 306 in magnetic Figllfia11] at T=4.2 K. H, kOe:
1—0,2—20,3—40,4—50.

centrocellular potential, is insignificantly small. This statement is valid for both the bulk
material and for strained Ge layers in Ge[{GgSi, heterostructures F(equi\“[lll]),

where only three electronic valleys remain at the bottom of the conduction (oader
uniaxial extension along tHe 11| axis the fourth valley shifts upwards in energy by 12
meV/kbay. Size-quantization effects should be small for the same reason as for accep-
tors. The observed spectral line=67 cmi ! (Fig. 1d can be attributed to the transition
1s—2p. of shallow donors in Ge i .5, ~65 cm ! Ref. 9 and the transition

1s—3p. (vlsﬁzpfn cm 1) — transitions into upper lying states — can be attributed
to the band 75-110 cnt.

To obtain additional information about the nature of the spectral lines, investigations
of the photoconductivity of sample No. 306 in strong magnetic fi¢hdg111] were
performed. As one can see from Figs. 2 and 3, the spectral feagplts in a magnetic
field into two peaks. The most intense pezik shifts linearly with increasing magnetic
field into the short-wavelength region of the spectrum. The position of the second peak
2~ is virtually independent of the field. The other spectral ind™) also shifts linearly
with the magnetic fieldthe corresponding peak lwas not observed, apparently because
of superposition with the stronger lir®"). As one can see From Fig. 3, the magnetic-
field dependences of the positions of the maxitiaand 2" are parallel and in strong
fields they have the same slopK 2rm.c?), wherem,=0.07m,, which equals the two-
dimensional hole mass measured in CR experinefithis magnetic field dependence is
characteristic for the transitionsSt-nP*, n=2, 3,.. (and the behavior of the pe&k is
characteristic for the transitionsSt- 2P ~),*% which confirms the above classification of
the transitions.

In summary, in the present work we have investigated the spectra of shallow impu-
rities in strained quantum-size heterostructures Gel@&i,. The experiments showed
that elastic deformation of the quantum-size Ge layers in a HS radically changes the
spectrum of shallow acceptors as compared with a bulk single crystal, shifting the spec-
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FIG. 3. Positions of the lines and2 (Fig. 1) in the spectrum of sample No. 306 versus the magnetic field.

trum into the long-wavelength region of the far-IR range. The possibility of controlling
the magnitude of the deformation and the thickness of the quantum wells and also the
possibility of selective doping of wells and barriers in the HSs in order to prodfiead

A" centers open up new prospects for producing solid-state detectors for the far-IR
range. The power—voltage sensitivity of one of the samfies 306, measured using a
standard source of radiatiofan absolutely black bodywas found to be quite high:
S~10* VIW (NEP~10 1! W/HzY?. This makes it possible to use this structure as

a photoelectric detector for the far-IR range.
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Squeezed states of long-lived terahertz vibrations in
guantum dots

V. A. Kovarskil
ul. Akademii 6/2-37, Kishinev 2028, Moldova

(Submitted 10 December 19P6
Pis’'ma Zh. Kksp. Teor. Fiz65, No. 2, 199-20025 January 1997

Quantum dots based on materials with long-lived terahertz vibrations
are studied. It is shown that squeezed states of such vibrations can
result in microwave-frequency modulation of the optical radiation ab-
sorbed at electronic transitions in quantum dots. 1897 American
Institute of Physicg.S0021-364(107)01602-3

PACS numbers: 73.20.Dx

Long-lived high-frequencyterahertz vibrational modes in some amorphous and
crystalline materials have been observed in recent ye4rat the same time, the so-
called frequency efféc— a change in the vibrational frequencies accompanying a quan-
tum transition of an electron from one localized state into another — is well known for
localized electronic states. This frequency effect can result in the formation of a squeezed
vibrational state when the electronic—vibrational system is excited by an ultrashort laser
pulse (for a more detailed discussion, see Ref. 5 and the references cited thEi@in
long-lived vibrations withr~10"° s a vibrational packet corresponding to the squeezed
state can undergo i6 10* vibrations and can be detected by means of a se (-
out) pulse, as has been done in an experiment in molecular syssem®ef. 6 for a more
detailed discussign

In a solid, the frequency effect can arise when electrons are localized in so-called
quantum dots. An intensification of the electron—phonon interaction as a result of elec-
tron localization in quantum dots was noted in Ref. 7.

In what follows, a quantum dot in which long-lived vibrations with frequencsnd
lifetime 7~10"° s exist will be studied. The effect of the quantum dot is manifested
mainly in that the luminescence band is shifted in the blue direction, as compared with
the bulk material, by an amouE determined by the size-quantization effdtr
example, in porous silicoAE=0.5 eV).2

When the quantum dot is excited by a laser pulse wijth 1 fs, local levelqarising
from the conduction bandare populated. The vibrational packet has the form

Sy )22t p[_x_z]
|l/l O(Xrt)| \/;U(t)ex O'Z(t) 1 (1)

2 20 2 1 .
o“(t)=0p| 7 COSw2t+7sm wot ],

w1 2 )
n= —, Uozﬁ/sz, w1>w2,
w3
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whereM is the mass of the oscillator, » is the compression factor, ane , are the
vibrational frequencies of the nuclei when an electron is localized in discrete levels of the
valence and conduction bands, respectively.

Formula (1) was written for the simple case of a “squeezed vacuum,” when the
frequency effect plays the main role in the preparation of the squeezed state and the
Stokes shift can be neglected. The frequengydiffers from the frequencyw, by the
amountA w determined by the matrix elements of the electronic—vibrational interaction,
and it can be calculated theoretically. It is better to determine this quantity experimen-
tally, for example, by measuring the Raman spectra-&i for sufficiently intense laser
illuminations. In my opinion, the additional lines observed in the Raman spectra in Refs.
1 and 2 could be due to the frequency effect, since the laser source in Refs. 1 and 2 was
more powerful than the source in Ref. 9. In the method employing a readout pulse at a
transition from a lower discrete state 2 of the conduction band into an excited state 3 of
the conduction band, a photon with frequerey, is absorbed. If the state 2 is unoccu-
pied, then the photori(},5 is not absorbed and passes freely through the material.

Let Q) ,3 be less than the energy gaps; between the states 2 and 3. Then, when
state 2 is populated, the absorption of light involves an additional absorption of phonons.
The rateW,4(Q) of this transition per unit time is described by the formula

(FQ—Ay)2
2a(hw2)2n_] ’ @

wherea is the dimensionless Stokes constant and the average occupation number of
the squeezed vibration with frequeney.

W23(Q ) -~ exp{ -

It is easy to show that is determined by the variance of the vibrational coordinate
of the squeezed state, i.a5 o?(t), where the time is measured from the time at which
the squeezed state is prepared and corresponds to the time at which the readout pulse is
switched on. In the method in which the radiatiQn; is always present, this absorption
will be modulated with frequencw,.
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Moldavian Academy of Sciences, for helpful remarks.
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Comment on vortex mass and quantum tunneling
of vortices
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Vortex mass in Fermi superfluids and superconductors and its influence
on guantum tunneling of vortices are discussed. The vortex mass is
essentially enhanced due to the fermion zero modes in the core of the
vortex: the bound states of the Bogoliubov quasiparticles localized in
the core. These bound states form the normal component, which is
nonzero even in the low-temperature limit. In the collisionless regime
wom>1 the normal component trapped by the vortex is unbound from
the normal component in a bulk superfluid/superconductor and adds to
the inertial mass of the moving vortex. Irdawave superconductor the
vortex mass has an additional factor d8.6/B)? due to the gap
nodes. ©1997 American Institute of Physics.

[S0021-364(17)01702-1

PACS numbers: 74.60.Ge

The vortex mass is thought to be an important issue for the problem of the quantum
tunneling of vortices. The latter problem is popular now, and many experiments are
discussed in terms of the macroscopic quantum tunneling of vortices in superfluids or
superconductors. Firm experimental proof of the quantum nucleation of vortices is still
lacking. On the other hand, the characteristic plateau in the temperature dependence of
the critical velocity, which is always ascribed to quantum nucleation, has been also
observed in superfluidHe-B (Ref. 1). However, the time required for quantum nucle-

ation of a vortex irfHe-B is 1606, which is extremely large in any units. The vortices in
®He-B are created in the course of development of the classical instability of the super-
flow at the pair-breaking velocity. The cause of the plateau is that the characteristic
physical quantities, such as the gap amplitddevhich determine the threshold of insta-
bility become temperature independent at [BwT he intrinsic instability thus provides an
alternative explanation of the plateau observed in many different systems, including
superfluid*He.

In the vortex tunneling problem the inertial mass becomes important only if its
effect is comparable to the effect of the Magnus force. That is why the magnitude of the
inertial mass is of prime importance. It appears that in Fermi superfluids and supercon-
ductors the mass of the vortex is substantially enhanced as compared to the vortex mass
in superfluid*He, where it is determined by the compressibility. In Fermi systems the
fermions bound to the vortex core give the dominant contribution, as was first found by
Kopnin2 We discuss this effect in detail and relate it to the normal component trapped by
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the vortex. This effect is even more enhanceddimave superconductors, where the
vortex traps a substantial part of the bulk excitations due to the gap nodes.

VOLUME LAW AND AREA LAW FOR THE QUANTUM TUNNELING

In the earlier estimations of the vortex tunneling rate the mass of a vortex line was
neglected* When the mass is neglected the tunneling exponent&pis determined
by the volumeV within the surface swept by the classical trajectory of the vortex in the
process of the quantum tunneling:

Seit/h=2m1", N =nV. 1.1

Heren is the particle density;/"is the number of particles in the volunve The volume
law for the vortex action follows from the general laws of vortex dynamics governed by
the Magnus forcé.

In Ref. 3 the tunneling trajectory between the ground state of the superfluid and the
state with a vortex was generated by an irregulgpinning centeron the container wall
in the presence of the superflow with the asymptotic superfluid velogitfFor smallv g
the tunneling exponent does not depend on the pinning center and corresponds to a
volume

V=—R3 (1.2)
HereR, is the radius of the nucleated vortex ring:

Ro=(k/2mvg)In =—

Rcore
andR.,,. is the core size, which is of the order of the coherence legigth

The volume law for the tunneling expone®y; was confirmed in Ref. 4, whei®.
was found as the overlap integral of the many-body wave function. $hisvas then
minimized with respect to the velocity field in the vortex. The extremal trajectory corre-
sponds to the formation of an intermediate vortex state with a deformed velocity field
around the vortex loop. The resulting voluies logarithmically reduced compared with
Eq. (1.2 for the direct formation of the equilibrium vortex:

27 5
Set/h=2mnV, V=——"—R3. (1.4
0

1.3

7 In
core
In this approach the volume law reflects a general property of macroscopic quantum
tunneling: the tunneling exponent is proportional to the numbérnf particles which
effectively participate in the tunneling. This has also been found in other sy8tems.

When the problem of vortex tunneling was revived due to the experiments on vortex
creep in superconductors, the effect of the vortex mass was discliisbé. mass term
is more important for quantum tunneling than the Magnus force, then the volume law of
Eq. (1.1) should give way to an area law. A quadratic dependen&pbn R, (area law
was also obtained using field theory in Refs. 9 and 10, where the vortex nucleation was
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considered as a process analogous to the Schwinger production of electron—positron pairs
in an electric field. The result for the semi-classical tunneling exponent is

Ro
Seft= fo dR\/ZM(R)EvorteiR)v (1.9

whereE, ;e R) ~ R In R/R IS the energy of a vortex ring of radi&andM (R) is the
mass of the vortex loop. Sindd (R) is alsoxR, the tunneling rate is proportional to the
areaR?3 of the nucleated vortex ring.

This area law for the action is typical for the dynamics of string loops in systems
without a Magnus force, such as cosmic strifgee Ref. 1}, vortex rings in charge-
density-wave system,in antiferromagnets, etc. The breaking of the time inversion
symmetry introduces the Magnus force even in these systepesRef. 13 on vortices in
planar magnets and Ref. 14 on spinning global stiingad the volume law can be
restored.

HYDRODYNAMIC MASS OF A VORTEX

In the hydrodynamic theory the mass of a vortex is nonzero due to compressibility
of the liquid, which leads to the “relativistic” expressiofr10-16

Evortex

Mhydro: Z 23

where s is the sound velocity. For Fermi superfluidsis of the order of the Fermi
velocity v~ pg/m (m is the mass of the electron or of tAe atom, and the estimate
for the hydrodynamic mass of a vortex loop of lengths

L
I\/Ihydm~Lmk,: |n E (22)
However in this analysis the fermions in the vortex ¢brare neglected. They
produce an effective mass proportional to the core &ga~& (Refs. 2, 18, 19, 20

Mpound state'vamkF(kFg)z- (2.3

Even though it does not contain a logarithmic divergence, this gives the main contribu-
tion, since the core radius¢ in superfluid®He-B and superconductors is large compared
with the interatomic spacindgg£& > 1. The mass of the vortex is substantially enhanced,
and so the arguments that the effect of the vortex mass on the vortex tunneling is
negligible*?® become shaky. That is why it is worthwhile to consider the effect of core
fermions more thoroughly.

BOUND-STATES CONTRIBUTION TO THE VORTEX MASS: NORMAL COM-
PONENT IN THE VORTEX CORE IN THE COLLISIONLESS REGIME

The core contribution to the vortex mass was obtained by Kdpnira rigorous
microscopic theory for the vortex dynamics developed by Kopnin and Kravfsdere
we associate it with the normal component trapped by the core texture. At tbe core
contribution to the vortex dynamics is completely determined by the low-energy excita-
tions in the vortex core, the energy spectrum of whiclEis — Quwg(k,) in the vortex
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frame!’ Here Q is the angular momentum of the fermions anglk,) is the interlevel

spacing, which depends on the linear momentky® k- cosé along the vortex axis
(wg~AHEg<A). If the temperature is large enoughy<T<T,, this branch is charac-
terized by a density of staté$(0)= 1/wqy(k,).

If the vortex moves with velocity, with respect to the superfluid component, the
fermionic spectrum in the vortex frame is Doppler shiftBe: — Qwq(k,) —k-v, . In the
collisionless regimegwy7>1, the exchange between the fermions in the vortex core and
in the heat bath vanishes, and the linear momentum of the bound-state fermions adds to
the momentum of the moving vortex. The summation of fermionic momenta in the
moving vortex leads to an extra linear momentum of the vortex (see also Eq(5.7)
of Ref. 20:

P= 2 KO(—E)=Mpound statdL » (3.2
" L ko dk, k?
bound states” ke A (UO( kz) .

This is an extra vortex mass which is larger by a factqré)? than the hydrodynamic
mass of the vortex.

(3.2

Equation(3.2) represents the dynamical mass of the vortex in the low-temperature
limit and only in the clearor collisionles$ regime, when the exchange between the core
fermions and the heat bath is suppressed. Actually it was assuméer, that> w > 1/7.

In this regime there is no spectral flow between the bound fermions and the heat bath,
and, as a result, during the vortex motion the momentum of the core fermions is not
transferred to the heat bath and adds to the momentum of the vortex, producing an extra
inertia. In other words, this is the contribution of the normal component associated with
the vortex core, which in the collisionless regime is trapped by the vortex and is trans-
ferred together with the vortex.

For vortices with a core sizR ¢, this extra vortex mass can be represented as
the integral over the local density of the normal component:

M bound states:f dr pn(r, T=0). (3.3

This nonzero normal component &0 is produced by the inhomogeneous order pa-
rameter, the texture. This can be seen for the extremely simple example of a continuous
vortex in the®He-A phase, where the corresponding texture is the field of the unit vector

| along the orbital angular momentum of the Cooper pairs. Let us choose the texture in
the form

1(r)=2 cos 7(r)+F sin 7(r), (3.9

with f(0)=—2 andi(oo)=2. This texture represents a doubly quantized continuous vortex
in He-A (see Eq.(5.21) in the review?); the latest experiments on such vortices are
discussed in Ref. 22.

The I-texture leads to the normal component tensor eveh=ad (Ref. 23; see Eq.
(5.29 of Ref. 29:
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4

ke nnn
(Pn)l]( )= ZA |(| ||| Ijv (3.5

where A, is the gap amplitude ifHe-A. For the texture in Eq(3.4) one has|(f-§)f|
=sin 5 d, », SO the normal component contribution to the vortex mass should be

ki (=
M bound stateéLij:J' d®r(pn)ij=L 27h, jo dr r sin’zn g, 7. (3.6)

Equation(3.6) for the vortex mass in terms of the local normal component coincides
with the general equatiofB8.2) for the vortex mass in terms aby(k,). The interlevel
spacing for this continuous vortex was found by KopHin:

ke,
wo(ky) = cos (1 (kz)) = - 3.7

An
Ker(ky) ’
Here r(k,) is the radius at which the energy of the fermiorE(r,Iz)
= Jv2(k—kg)2+A2(I(r) x k)2, is zero at a giverk,. Equation(3.2) gives®

ke dk, k2 ke
Mpound states Lf A —k A
—kg 4T wo(Ky) TAA

fk dk,(kE—K2)r (k).

After inverting the functiorr (k,) in Eq. (3.7) into k,(r)=Kkg cos#(r), one obtains Eq.
(3.6.

VORTEX MASS FROM THE KINETIC EQUATION

The above results for the vortex mass can be proved using the kinetic equation for
the fermions bound to the cofé®°The inertial term in the force balance for the vortex
is obtained by replacing 2hy 1//—iw in the equation for the longitudindtissipative
friction) force acting on the vortex line, wheteis external frequency identified with the

frequency of the oscillations of the vortex line. In the temperature regipRT<T, one
had®

o

—_—. (3.8
2 1—iw)
.

k3 , 1
Flong= — VL prp LJ d cos @ sir? 0 ;—Iw
wg+

In the limiting casewy>w>1/7 one obtaing=,q=i @V Mpgyng states With the vortex
mass

3
Mbound states - LCOJ d cosé sirt § —— (3.9

(0)
whereC,=kZ/37? is close to the particle density. This corresponds to E@3.2).

In the high-frequency limitw>wy>1/7, Eq.(3.8) leads to the “dielectric” behavior
with the “pinning potential”

1 k2
u=3 ar?, a= i f d cosd sir 6 wy(6). (3.10
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DISCUSSION

The vortex inertia is essentially enhanced due to the fermion zero modes in the
vortex core. This fermionic contribution to the vortex mass appears when the character-
istic frequency is small compared to the interlevel distangew,. The characteristic
frequency of the tunneling process can satisfy this condition, sinece
~ VFyored Ro)/ M (Ro) R5~ woé/ Rg< wq. If @>w, the more general contribution of the
core fermions, Eq(3.9), is to be applied. But even in this case the effect of the fermions
is always larger than the contribution of the hydrodynamic mass in(Ed). This is
because the frequenayof the vortex motion cannot exceed the magnitude of theyap
otherwise the simple approach to the vortex dynamics is not valid. This means that the
hydrodynamic mass in E@2.1) never enters the tunneling rate in Fermi superfluids and
superconductors.

On the other hand, because of the limited frequency the effect of the inertial mass on
the vortex tunneling is still small compared to the effect of the Magnus force. Since
w<w, the kinetic termMv, = —iwMv, ~AnL(w/wp) is always smaller than the Magnus
force minLzXv, . That is why the volume law for the tunneling exponent in Bql) is
still dominant.

The situation can change in the regimgr<1, where the Magnus force is sup-
pressed by the spectral flow of fermionsinLzxv, — 7#i(n—Cy)LZXv, (Refs. 27, 28,

19, 20.

The vortex mass can be also importantlimvave superconductors, where the effect
of the fermions on the vortex is more pronounced due to gap rfddeshese supercon-
ductors, with a highly anisotropic gap, the interlevel spacing depends on the azimuthal
anglea between the momentuknin thea—b plane and the direction of the gap nod&s:

AZ 1
In — 4.1

w a)~a2— ,
ol =g N

whereA, is the gap amplitude. The vortex mass in E82) is:

M S _LJKF dk, 27Tdak K 1
HTE ) g 2w Joo 2w T wg(ky,a)

With Eq. (4.1) for wy(a) the integral overa diverges near the gap nodes. The cutoff
amin~ &R, , whereR,~&{B.,/B is the intervortex distance, gives ¥B.,/B-fold en-
hancement of the vortex mass:

M~mk§§2L\/%. 4.3

This equation holds if £B/B.,>T?/T2 andB/B_,>Eg/7A3.

4.2
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the ROTA co-operation plan of the Finnish Academy and the Russian Academy of
Sciences and by the Russian Fund for Fundamental Research, Grant No. 96-02-16072.

222 JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 G. E. Volovik 222



1U. Parts, V. M. H. Ruutu, J. H. Koivuniendt al, Europhys. Lett31, 449 (1995.

2N. B. Kopnin, JETP Lett27, 390(1978.

3G. E. Volovik, JETP Lett15, 81 (1972.

4E. B. Sonin, Zh. ksp. Teor. Fiz64, 970(1973 [Sov. Phys. JETR7, 494 (1973].

5M. Rasetti and T. Regge, Physica8®, 217 (1975.

SE. M. Lifshitz and Yu. Kagan, Zh. IEp. Teor. Fiz62, 385(1972 [Sov. Phys. JETR5, 206 (1972].

S. V. lordanskii and A. M. Finkelstein, Zh k8p. Teor. Fiz62, 403(1972 [Sov. Phys. JETBS, 215(1972].

8G. Blatter, V. B. Geshkenbein and V. M. Vinokur, Phys. Rev. L&&.3297(1997).

°R. L. Davis, Physica BL78 76 (1992.

10H-¢c Kao and K. Lee, hep-th/9503200; R. lengo, and G. Jug, cond-mat/9506062.

1IF. Lund and T. Regge, Phys. Rev.12, 1524(1976.

123, M. Duan, Phys. Rev. B8, 4860(1993; Phys. Rev. Lett72, 586 (1994.

13A. Nikiforov, E. B. Sonin, Zh. Ksp. Teor. Fiz85, 642 (1983 [Sov. Phys. JETBS8, 373(1983].

¥R. L. Davis and E. P. S. Shellard, Phys. Rev. L8, 2021 (1989.

153, M. Duan, Phys. Rev. Let?5, 974(1995.

16C. Wexler and D. J. Thouless, cond-mat/9612059.

17C. caroli, P. G. de Gennes and J. Matricon, Phys. Rev. BeR07 (1964.

18N. B. Kopnin, Physica B210, 267 (1995.

19A. van Otterlo, M. V. Feigel'man, V. B. Geshkenbein, and G. Blatter, Phys. Rev. T%t8736(1995.

20M. Stone, Phys. Rev. B4, 13222(1996.

2IM. M. Salomaa and G. E. Volovik, Rev. Mod. Phy&9, 533(1987).

22p. J. Manninen, T. D. C. Bevan, J. B. Coek al, Phys. Rev. Lett77, 5086(1996.

3G. E. Volovik, and V. P. Mineev, Zh. IBp. Teor. Fiz81, 989 (1981 [Sov. Phys. JETB4, 524 (1981)].

24G. E. Volovik, in Helium Three eds. W. P. Halperin, L. P. Pitaevskii, Elsevier Science Publishers B. V., p.
27, 1990.

25M. J. Stephen, Phys. Rev. Le#2, 1534(1994. )

26N, B. Kopnin and V. E. Kravtsov, JETP Let23, 578(1976; Zh. Eksp. Teor. Fiz.71, 1644 (1976 [Sov.
Phys. JETRI4, 861(1976)].

27G, E. Volovik, JETP Lett57, 244 (1993.

28N. B. Kopnin, G. E. Volovik and UParts, Europhys. Let82, 651 (1995.

2G. E. Volovik, JETP Lett58, 469 (1993.

Published in English in the original Russian journal. Edited by Steve Torstveit.

223 JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 G. E. Volovik 223



An optical method for simulating nonuniform systems

L. S. Al'perovich
Tel Aviv University, Ramat-Aviv 69978, Israel

S. A. Grachev, Yu. A. Gurvich, L. B. Litvak-Gorskaya, and A. P. Mel'nikov
Moscow State Pedagogical University, 119882 Moscow, Russia

I. A. Chaikovskil
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Submitted 11 December 1996
Pis’'ma Zh. Kksp. Teor. Fiz65, No. 2, 207-21125 January 1997

Model experiments of a new type in the physics of nonuniform systems
are proposed. The method is based on the production of a randomly
nonuniform distribution of charge carriers in a uniform semiconductor
by means of photoexcitation with a nonuniform radiation flux. The
method makes it possible to vary easily the character of the nonunifor-
mities over wide limits. It has been used to investigate the effective
transverse conductivity of nonuniformSi plates in a magnetic field
(H). An anomalous transverse conductivity, previously predicted in a
number of theoretical works, has been observed. As the electric field
(E) increases, the anomalous conductivity decreases as a result of
smoothing of the nonuniformities. The nonuniformities have virtually
no effect on the conductivity in an open Hall circuit regime. 1897
American Institute of Physic§S0021-364(®7)01802-]

PACS numbers: 72.20.Jv, 72.4Qv

1. Transport processes in nonuniform systems are very difficult to study experimen-
tally. It is quite difficult to fabricate samples with prescribed parameters characterizing
the nonuniformity. It is even more difficult, and sometimes simply impossible, to change
these parameters in the course of an experiment or even from one experiment to another.
It is necessary to resort to artificial models. For example, some results have been obtained
on a square metal grid whose conducting paths were cut randomy,a three-
dimensional cubic lattice consisting of resistances and capacitarzeson sheets of
electrically conducting graphite paper with randomly distributed operiingshese ex-
periments the ratio between the volume fractions of the conducting and dielectric phases
could be varied. However, it was impossible to control the conductivities of the two
phases, specifically, to simulate the situation of a metal with good and poor conduction.

2. We propose to use nonuniform illumination of uniform semiconductors to pro-
duce a conducting medium with a nonuniform carrier density distribut{oi. One way
to achieve this is to illuminate a semiconductor plate through a specraHil a mask
having different transparency in different sections. The method makes it possible to
model not only metal—dielectric systems but also systems containing two conducting
phases with different conductivities. It is easy to vary the dimensions, shape, and density
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of the nonuniformities and the degree of correlation in their arrangement. All this is
achieved by adjusting the appropriate masks, which are easily fabricated. One mask can
be replaced by another during an experiment. This distinguishes our method advanta-
geously from previous methods employed for simulating disordered systems.

Our objective in the present work was to investigate the effective transverse electri-
cal conductivity in the field&€ andH by means of an optical method.

3. The experiments on high-mobility semiconductors, for example, InSb, showed
that the transverse magnetoresistance in them increases linearli withile according
to the classical theory the magnetoresistance saturates in strdterring' indicated that
this is due to the effect of nonuniformities which are small compared with the dimensions
of the sample but much larger than the carrier mean free path.

In the experimental study of nonuniform media the effective conductivf{ de-
fined by the relation

(i(n)y=0°"-(E(N)), (D)

wherej(r) andE(r) are the local current density and field and the angle brackets indicate
averaging over the volume of the sample, is measured. For weakly nonuniform media
" differs very little from(o(r)). The conductivity becomes strongly anisotropic in a
classically strong fieldH (8= uH/c>1, u is the mobility: The diagonal components of

the local transverse conductivity tensey,(r) = oy (r)= o (r) (the fieldH is parallel to

Z) are proportional tad ~2, the off-diagonal elementsxy(r)ocH‘l, and the longitudinal
elemento,Ar) does not depend ohl. The average value&r;(r)) exhibit the same
behavior. In this case*" can differ substantially fronfo, (r, H)). Herring calculated

the differencess®"=o*"— (| ) to lowest order in the quantity

=802 {0)?, 2

considering it to be small. Hergr) is the average conductivity afdo?) is the mean-
square fluctuation of the conductivity fét=0. It was found thatrfff decreases with

H more slowly than(o, ): 60°"~H 1. Therefore, in strong fields the correctida°"

can exceedo, ) even foré2<1: Anomalous transverse conduction appears. Herring’s
results are correct ford B< £2. For B> £2 one hasdo "~ H =2 (Refs. 5-7. This refers

to three-dimensional infinite samples. In a finite sample a size effect appears —
oiﬁ(H) depends on the dimensidn, of the sample in the direction d.%’ For two-
dimensional nonuniformities(r) = o(x, y) there is no size effect. In this cage*" does

not depend o for B<¢~* (Ref. 4, while for 8> &1 one has®

50iﬁ~ é 00, 3)

B
whereog= (a,Ar)).
Calculations have been performed for two-phase systéms.

One can see from this brief review that there are a large number of theoretical results
concerning this question. However, we know of no works which are specially devoted to
an experimental check of the theory. Apparently, the problem lies in the difficulties
which were discussed above.
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FIG. 1. X(B) for sample 1:1 — negative,2 — positive. Inset: Enlarged fragment of the mask.

We underscore the fact that according to the theory in all caseg¥et, afﬁ
decreases more slowly witH than doesr, in a uniform sample.

4. Here we present the first results of the application of the optical method of
simulation. We studied the effect of nonuniformities on the effective transverse conduc-
tivity of crystalline p-Si plates placed in a fielti in liquid He. At liquid-helium tem-
peraturesT the free carrier density is determined entirely by photoexcitation.

The measurements were performed on a modified Corbinlo -disa thin plate
(500 um) in the form of a disk with an opening at the center. The outer diameter of the
plate was equal to 10 mm and the inner diameter was equal to 4 mm. A potential
difference was applied between the end surfaces with the large and small radii. The
magnetic field was perpendicular to the plane of the plate. In this configuration a Hall
current exists in the disk, circulating around the axis of the disk. The radial current is
determined by the conductivitzyfﬁ. The use of a disk with a hole instead of a “solid”
disk made it possible to avoid a high electric field density near the center of the disk.

The mask consisted of & 200 wm thick sapphire plate on which niobium was

deposited. The nonuniformities — bright spots against a general gray background —
were obtained by a photolithographic method. The mask was prepared so that a large
number of nonoverlapping nonuniformities would fit within the area of the sample. A
4Xx4 mm section contained 100 transparent spots of skRg~200 um (Fig. 1, insel.
The average distance between the centers of the spots R@as420 um. The distance
between the edges of the spots vias- (2R.—2R;) ~240 um. The ratio of the trans-
mission in a spot to the transmission outside a spot wa#).7~1.4. Negatives of the
masks — dark spots on a bright background — were also used.

Free carriers were generated by means of forélmatkground radiation passing
parallel toH through a pure Si filter and a mask, pressed to the metallized side to the
disk, and through a fum insulating polyethylene filntwavelength range 1-gm). In
this range the experimental samples are practically transparent and the excitation is uni-
form over the depth of the sample. To avoid reflections of radiation, which would smear
the nonuniformities, an absorber with a permittivity close to that of the sample was
pressed to the back surface.

The experiments were performed on weakly doped Si:B samples with a main impu-
rity densityN~6-10"° cm™ 3. For weak fieldsE, the mobility was determined by scat-
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FIG. 2. X versusE for H=18 kOe for sampleg, 2, and3. Mask — positive.

tering by neutral impuritiesu=5-10* cm?/V-s. The densityN, of the compensating
impurity, determining the free-carrier lifetimg was chosen so as to reduce to a mini-
mum the diffusional smearing of the density nonuniformitieg<€L,, L4 is the diffusion
length. The fieldE corresponded to the Ohmic region of the current—voltage character-
istic under uniform excitation. The fieltH was varied in the range <OH <30 kOe

(0< B<15, the quantization parameter for heavy hotes./kT<0.5, andw, is the
cyclotron frequency

The effect of the nonuniformities was determined from the ratio®fto (o, ) for
the same values &i. The transverse conductivityr(j) under uniform excitation, chosen
so that(o, )=0" at H=0, was used fo o). It is easy to show that this equality

remains essentially valid in classically strong fieldis

The experimental results are illustrated for Si:B samples with close valuds of
(~6-10% cm™3) but different compensation)) Ny,~5- 10 cm™3; 2) N,~102 cm™3;
and, 3 Ny~2-10'2 cm2. The ratiosX= " ¢" as a function of3 for smallE (=1
V/cm) for sample 1 are presented in Fig. 1 for the following cases: “negative” masks
(curvel) and “positive” masks(curve2). One can see that the presence of the nonuni-
formities cause the relative magnetoresistance to decre@de {ncreasg X starts to
increase forB>1, reaching values of 1.9 and 2.1 f8=15.

The functionsX(E) for H= 18 kOe(positive for samples 1, 2, and Qurvesl, 2,
and3) are presented in Fig. 2. One can see that the lower the valbk ,ofhe moreX
decreases with increasirig)

5. We shall first give a qualitative discussion of the results obtained. One can see
from Fig. 1 that in the presence of nonuniformities the transverse conductivity decreases
with H more slowly than for the uniform cas¥(H) >1. This is observed fo8>1, i.e.,
when conductivity anisotropy appears. The raﬂoi“/af reaches 1 forB=15: An
anomalous transverse conductivity is preseﬁjczé(aﬁ!).
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As E increases atl = const, the raticX decrease¢Fig. 2). The lower the value of
N, (the longer the lifetimer), the greater the decrease is. This is completely understand-
able. In the presence of a fiell the nonuniformities drift in the Hall direction. E is
sufficiently large, the nonuniformities are smoothed @ndecreases, and the effect de-
creases accordingly.

6. We now consider the quantitative aspect of the problem. The denéilyis
proportional to the local transparency of the mask. Simple calculations give in our case

0.13 (negative;
§=10.15 (positive. (4)

Therefore, the conductivityrjff in strong fieldsH (B=15) is twice the conductivity

(o) even for smalk (=~0.1). We note that for the negative and the positive the depen-
dencesX(H) for close values of are close, although in these cases the nonuniformities
themselves differ substantially in character. This agrees with the fact that according to the
theory the effect of nonuniformities is determined solely by the parangeter

The configuration of the experiment is such that the nonuniformities which arise are
two-dimensional:n(r)=n(x,y). Then for £8>1, using Eq.(3) and the fact that
(0 )=00B87? and "~ 50°", we obtain the estimate

X(H)~ BE. ®)
For the maximum valug= 15 formula(5) gives
2.0 (negative;
Xmax=) 2.4 (positive. ®

The experimental values ab&,,,~1.9 and 2.1, respectively. This is fairly good agree-
ment. However, since the experimental situation is complicated by a number of factors
(the presence of light holes, weak quantizationH) and since the dependence of
(o) on B is weaker than predicted by the theory, it is more accurate to say that agree-
ment obtains in order of magnitude.

7. We now briefly discuss the effect &. It is easy to show that fo8>1 there is
enough time over the lifetime for a carrier to be displaced in the Hall direction by a
distancel 4,~uE7B~ 1. For E=10 V/cm andB=10 one had 4,~2 um and 100um
for samples 1 and 3, respectively. In the first chge<Ly , and drift plays no role. In the
second caséy,~Lk, and the smoothing is substantial. The experimental results agree
completely with these estimatésee Fig. 2

8. We also performed a series of experiments in the absence of a Hall current. In this
case, withH varying in the range 0—30 kOe, the nonuniformities have virtually no effect
on the conductivity.

Let us now summarize:)Irhe optical method for simulating a nonuniform medium
in application to the problem of transverse conductivity in a magnetic field was found to
be completely adequate for the problem posed, anth method made it possible to
obtain a direct proof of the existence of anomalous transverse conductivity in a classi-
cally strong magnetic field.
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ERRATA

Erratum: Experimental observation of the interference of
three- and five-wave mixing processes in optical
second harmonic generation in a solution of
bacteriorhodopsin [JETP Lett. 64, No. 10, 718-723
(25 November 1996)]

A. V. Balakin, D. Boucher, N. I. Koroteev, P. Masselin, A. V. Pakulev,

E. Fertein, and A. P. Shkurinov
Pis'ma Zh. Ksp. Teor. Fiz65, No. 2, 218(25 January 1997

PACS numbers: 42.65.Ky, 42.25.Hz, 99.1Q.

The authors gave the incorrect grant number. Instead of Grant No.
93.02.15-026, the correct grant number is 96.02-165961997
American Institute of Physic§S0021-364(07)01902-4
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observations of new physical phenomena and theoretical works containing fundamentally
new results.

The complete text should not exceed 20 kB in TeX, allowing 1 kB for each figure.
If there are no figures, this is approximately 8 or 9 double-spaced type-written pages,
including the abstract and references. As a rule, tables are not published.

The first page of the manuscript should look like this:
Title.
Initials and last names of the authors.

Institutions where the authors are employed (including the city and postal code; it is
recommended that the e-mail address of one author be given).
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paper. The last names of the authors and the figure number should be indicated on the
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Since no proofreading is done, the manuscripts must be prepared extremely care-
fully. Special care must be taken in showing accurately the indices and exponents, mark-
ing them with a half-arc. Primes must be carefully distinguished from the number 1, and
the number 1 must be distinguished from a comma. When possible, cumbersome notation
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To avoid misunderstandings and errors, upper and lower case letters should be
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letters with two underbars and lower case letters with two overbars. Greek letters should
be underlined in red and vectors should be underlined with a thick bluédme@ot use
arrows above the letters

Manuscripts with figures should be submitted in two copies, one of which must be
signed by all authors. Gray-scale figures should be submitted in three odhietication
could be expedited by submitting in addition diskettes with the text in TeX or LaTeX.
addition, for countries in the Commonwealth of Independent States the institution that is
to appear in the title of the article as the principal institution should be indicated.

The exact address with the postal code, the last name, full first name, and patro-
nymic of the author to whom correspondence should be addressed as well as his tele-
phone number at work and at home should be attached to the manuscript.

The editorial office mails outto Muscovites gives oliteprints of article$25 copies
of the Russian version and 15 copies of the English transhation

Reprints are kept in the editorial offices for not more than three months from the
date of publication.

In connection with the rapid translation of the journal into English, the editors
request that, when possible, the authors indicate in the articles the PACS classification
(the classification scheme of the American Institute of Physics adopted in American
journalsg. The classification is published in Pis'ma Ztkdp. Teor. Fiz58, Nos. 7 and 9.

Pis’'ma Zh.'ERsp. Teor. Fiz. also accepts articles in English. Therefore the journal is
bilingual. Authors desiring to publish their article in English must submit two copies of
the English text, three copies of the figures with the English designations, on a separate

231 JETP Lett., Vol. 65, No. 2, 25 Jan. 1997 Instructions for authors 231



sheet of paper the title of the article and the last names of the authors in Russian, and a
diskette with the text prepared using the TeX or LaTeX programs.

The editorial staff will not engage in editing the language. However, the editorial
staff reserves the right to reject an article if there are any doubts concerning the correct-
ness of the English. In this case a Russian version of the article can be submitted.
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