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The effect of large-scale caustics in nondissipative dark matter on the
pair correlation function of galaxies is investigated. It is shown that if
the initial correlation function of the galaxies is of a power-law form,
then the presence of caustics in the observation region does not change
the form of the function but only decreases its amplitude. 1€97
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Together with a large number of works concerning linear and weakly nontiftear
effects in the formation of the large-scale structure of the universe, there are some recent
papers devoted to a theoretical investigation of the formation of objects in the strongly
nonlinear regioff. A characteristic feature of this region is the appearance of multistream
flows (in the Lagrangian terminology — crossings of the trajectories of individual par-
ticles). In Ref. 6 a method of adiabatic capture was developed to investigate strong
nonlinearities in the limit of an infinite number of streams. The asymptotic correlation
functions in the limit of large correlations were obtained using this method. It was found
that the initial correlations are unimportant for correlations in a region with a sufficiently
large number of streams. This letter studies the fate of the initial correlations in a region
with a small number of streams.

In a hierarchical picture, the short-wavelength fluctuations, which lead to the forma-
tion of galaxies, are the first to arrive at the nonlinear stage, while large-scale fluctuations
(clusters and superclusters of galaxiemsach the nonlinear stage only at later times. The
correlations of the galaxies correspond to the correlations of the high density peaks from
which the galaxies formefiand they are determined mainly by the spectrum of galactic-
scale perturbations. According to observations, the total mass of the dark matter in clus-
ters and superclusters of galaxies is several tifopsto an order of magnituglgreater
than the mass of the dark matter in galaXi@herefore, the dynamics of the development
of inhomogeneities is determined not only by the distribution of the galaxies themselves
but also, and predominantly, by the distribution of the intergalactic dark matter. For this
reason, galaxies can be treated as test particles following the general motion of the
matter. After a definite period of time has passed following the formation of the galaxies,
large-scale fluctuations reach the nonlinear stage, and multistream flows arise in them as
well. On account of a redistribution of the galaxies in space the development of large-
scale inhomogeneities leads to a change in the correlations of the galaxies. Therefore, the
final correlation properties of the distribution of the galaxies are affected by perturbations
not only on the galactic scale but also on large scales.
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The density distribution near a caustic separating a region with different numbers of
streams has the following characteristic fofam one side of the causjic

p=C(Ax)™*, (€

whereAx is the distance from the caustic in a direction along the normalGzadconst.

From the observational standpoint, it is easiest to observe the caustic which formed first
and which separates the one- and three-stream regions. We shall term such caustics
primary. Thus, this letter examines the transformation of the correlation function of
galaxies in the regions near caustics where three-stream flows have formed but before
flows with a large number of streams have formed there.

For a sufficiently large region of observation the correlation function can be approxi-
mated, to a good degree of accuracy, by an average over an ensemble of galaxies. At the
same time, large-scale inhomogeneities which are comparable in size to the regions of
observation cannot be regarded as a random function but must be treated as a specified
external field.

TRANSFORMATION OF THE CORRELATION FUNCTION

Let q_represent comoving coordinates of some specific galaxy in the epoch of
galaxy formatiort; and letx be the coordinates of this galaxy at the time of observation

t,>t,. We denote the transformation function 6q): x= f (q). This function, which
depends on the specific form of the large-scale inhomogeneity in the observation region,
specifies the character of the redistribution of the galaxies in the multistream region. The

multistream nature is manifested in multivaluedness of the inverse functib(dp. The

densityn’(x_) of galaxies at time, is related with the density(m of galaxies at time
t, by the relation

n'(x)= f d3qn(q)6®(x—f(q)),

where® is the Dirac delta function. We shall examine at the titpe region of space
Q with volumeV. To calculate the observed correlation functigiir) we shall perform
three averagings:

a) spatial averaging over the regiéh neglecting boundary effects;
b) average with respect to the directions of the vedter r /r; and,
c) averaging over an ensemble of galaxies at time

After performing the averageg-ac) we obtain

12 ’ _L 2 3 LT T T
N [1+é¢& (r)]—47TV Iﬂzld kfnd x{(n'(x)n’"(x+r))

_ d3fd3 A1+ &r|yD18(|F(q)—fF(q+ry)|/r—1 2
=7-v| dd y L1+ &(r|yD1S8(f ()= f(q+ry)|/ir=1), (2

wheren’ is the average density of galaxies in the regidnn is the average density of
galaxies in the image of the regiodd under the transformatiorf (q), and the first

594 JETP Lett., Vol. 65, No. 8, 25 April 1997 Yu. N. Eroshenko and M. I. Zel'nikov 594



FIG. 1.

integration extends over values qf such thatf (q) e Q. Here &(r) and & (r) are the
correlation functions of the galaxies at time$; and t,, respectively,

(n(a)n(a"))y=n71+&(la—a’D].

Let us consider the particular case when the transformatiom) is nearly one-
dimensional in the regiof), i.e., f (q) changes very little in two of three directions. This
happens if the observation region is much smaller than the radius of curvature of the
caustic. In this case the caustic can be regarded as being approximately flat. Let the

distinguished direction of the normal to the caustic coincide with the direqtcand let
the transformation in this direction be given by the functfg¢q,). Then

f(a)=(f(1);02;03)-
Next, letQ) be a curvilinear cylinder whose generatrix is directed alongthaxis and is
of lengthl. Letq=q; andy= y,, and lef | ] be the segment on thg axis that represents
the projection of() on thex; axis. Under these assumptions, form(@ assumes the
form

2
n

1+§’(r)=—z,J dQJ dy
2In"Jiem  Jif@-farryl<r

X[1+ErVy*+1-[f(a)—f(a+ry]7rd)]. ©)

The regions of integration are indicated under the integrals. Let us call the integral of 1
in Eq. (3) the “induced correlations” and the integral &fthe “transformed correla-
tions” of the galaxies.

Let the region Q) lie near the caustic, as shown in Fig. 1. The segment
[11=[Xa:Xp], X is the coordinate of the caustic, arg<<x.<X,. The pointx, corre-
sponds to the poing, in the merging stream$ and2 and the pointy; in the streans:
x.=f(qc) =f(gs). We expand the function(q) in a series about the point, (we mark
the quantities evaluated at the potwith a subscript):
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1 ” 2 1 " 3
fa)=xct+ 5T c(a=0c) "+ &f c(q=0)"+- - - . 4

Here we have taken into account the fact thiat 0. Letx, be chosen such that expan-
sion (4) to quadratic terms is valid in the region fraxg to x;. This assumption is valid
if

fis
<1, 5

where 8 is found from the conditiord= 3/ 5°> andd=x.—X,. For f.#0 there always
exist values ofd which are so small that the conditidB) holds. LetL=—2/f] and
L>0. In the regior X, ; X,] there also exists a third stream flowing toward the streams
forming the caustic. In contrast to the streabsnd?2, the characteristics of the stred@n

on the segmerjtx,; X,] change very little ifl is sufficiently small. We approximate the
transformation function in the third stream by a linear functiga) =x.+ #(q—0as),
where ¢y=const. We shall now calculate the induced correlations on the basis of our
formalism. We shall have in mind values ofwhich are small enough that

4rL < &2, thatis, r<d.

We also make the natural assumption that
S

Physically, the conditior{6) means that the matter in the caustic is compressed much
more strongly than in the third stream and also that the matter in the entire observation
region{) has been compressed in comparison with the state at thet {ime

A calculation of the induced correlations gives a logarithmic dependence, similar to
that obtained previously in Ref. 9.

We shall now calculate the transformed correlations under the assumption that the
initial correlations of the galaxies have a power-law fag(n) = ar ~#, whereg is close
to the observed value of 1.8. The transformed correlations give the following contribution
in Eq. (3):

a n [f(@)—f(q+ry)]?] A2
e d dy| y*+1— :
r# 2in szm)e[l] a @ —fqrral<r L re

Performing the calculations on the basis of the assumptions made, we obtain
N
a n?iyms | 2 P U - S
Pzl T T gzt

wherel is the gamma function and is the Gauss hypergeometric function, with the
asymptotic forms
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1 for 1—y<1;
13 B-1
P SIS S
i ) 1J§F( 2 ) for y<1.

¥ 2 T(B2)
The ration?/n’? can be expressed in terms of the ratio of the volumes of the observation
region and its image. The final expression for the new correlation function can be written
as

N[

-

2 -2
1+&'(r)= |_+1,_0 4L17 1 In (d/r)
e I
—2 - - 2|l .. "1 _ "2
+y 2+ ar B [msl 1—F(B/2) +y F(Z,Z,Z,l W )

(7)

In the calculations it was found that the terms corresponding to the correlations of gal-
axies from the caustic and from the stre&ncan be neglected in comparison with the
correlations written out above.

It is important to note that under the assumptions made, the power-law form of the
correlations holds for arbitrang>1, and a change iB results only in a change in their
amplitudes. If there are no caustics in the observation region, thefi7Egssumes the
form

13
1+§'(r):1+§(r)|:(§;5;5;1_902)-

Therefore, a uniform one-dimensional compression only decreases the amplitude of the
power-law correlation function.

All quantities appearing in Eq7) can be expressed in terms of observable charac-
teristics. For example, the quantitieeindd are specified parameters of the observation
region. To within “basing” effects, the quantitys is the ratio of the density; of
galaxies in the third stream in front of the caustic to the density of galaxies in the field,
andar ~# is the correlation function of the galaxies in the field. If the léis observed
in the distribution of the galaxies, then the quantitycan be expressed in terms Gf
according to the formula =4C? p3, wherep, is the present-day cosmological density
and s=.Ld by definition. Therefore the resulf) contains no model parameters and it
can be compared directly with observations.

The combinations of the parameters appearing in (#j.can also be expressed
in terms of n, n’, and ng=¢n as follows: 4./I=(l/d)((n’—n3)?/n?),
26/l=(n"—nz)/n.

According to several observations, a plateau or even a local minimum is indeed
observed in the radial profile of the density at distances of 1.2—2 Mpc from the centers of
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many galactic cluster€:!! These features, however, cannot be attributed to primary
caustics, since distances of 1.2—2 Mpc correspond to dense virialized regions. To observe
a primary caustic it would be desirable to perform a similar investigation of the density
distribution at large distances from the centers of clusters. Since the primary caustic is
gravitationally coupled with the cluster, there exists a maximum cluster—caustic distance,
and this distance does not exceed the initial Slzef the inhomogeneity from which the
cluster formed. The quantitik can be estimated as follow&=(M/py)*~10 Mpc,
whereM ~ 10%*M, is the typical mass of a galactic cluster.

Another method for observing caustics, besides looking for beh&¥joiis to in-
vestigate the correlation functions. In Ref. 9 it was pointed out that induced correlations
have a logarithmic singularity, and the character of the singularity in the behavior of a
three-point correlation function was found. According to expressiOn not only the
induced but also the transformed correlations contribug itp, and in the limitr — 0 the
power-law divergence in the latter correlations is stronger than the divergence of
In(d/r). This raises the question: Under what conditions can a logarithmic contribution be
observed against the background of power-law correlations? Let us examine the most
favorable case wheh~d. Then, in view of Eq(6), the contribution of the third stream
in the function(7) can be neglected. The relative magnitude of the logarithmic term at
somer and forB=~1.8 is

4L In(d/r)
e &n) ®

The quantityL/é characterizes the clumping of galaxies at distart&®m caustics as
compared with the density of the galaxies in the figldbasing” effects are neglected

In a review of APM galaxie’$ it was found that(r) <100 forr=500 Mpc. Therefore,
even forL/ 6~ 10 the relative contribution of the logarithmic teii®) is greater than 0.1.

The valueL/5 ~10 corresponds to the distant periphery of a cluster, since the average
clumping of galaxies in a cluster is 200, while at the centers of clusters this quantity
reaches 15-1C (Ref. 13.

Further support for the existence of caustics would be the discovery of a relative
motion of streams of galaxies of different morphological types. The point is that the
streams of galaxies forming a caustic have first passed through the dense central regions
of a cluster. Since the galaxies are subjected to tidal forces in a rapidly varying gravita-
tional potential, their morphological type could have chandedexample, a galaxy can
be converted from a spiral into an irregular or even elliptical galaxythe character of
their activity could have changed. At the same time, the third stream moving toward the
caustic should consist of unperturbed, predominantly spiral galaxies.
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We discuss exact renormalization grotRG) in R? gravity using the
effective average action formalism. The truncated evolution equation
for such a theory against the de Sitter background leads to a system of
nonperturbative RG equations for cosmological and gravitational cou-
pling constants. An approximate solution of these RG equations shows
that antiscreening or screening behavior of the Newtonian coupling
arises, depending on the higher-derivative coupling constantsl9@y
American Institute of Physic§S0021-364(17)00208-9

PACS numbers: 04.26.q

In the absence of a consistent theory of quantum gravity it may be that consideration
of effective models for quantum gravitQG) is the only possibility for taking gravita-
tional phenomena into account in high-energy physics. One may start from a particular
model of QG(see Ref. 1 for a reviemand formulate an effective model which describes
the theory in some region. In such a way, an effective theory of the conformal factor for
describing QG in the far infrareht large distancésas been formulatetThat theory,
which is based on a higher-derivative scalar, provides a way of estimating the behavior of
the Newtonian coupling.

One may consider Einstein gravity as an effective theory and estimate the quantum
corrections to the Newtonian couplthgsing the effective-field-theory technique. More-
over, as non-renormalizability is not a problem in such an approach, one can apply the
exact RG say, in the form of an effective average action, in order to formulate the
nonperturbative RG equations for the coupling constants in Eistein gfatitythe same
way it is very interesting to considd®? gravity as an effective model. Such models
attract a lot of attentiorisee Ref. 1 for a review and list of referengdseing multipli-
catively renormalizablébut eventually non-unitary in a perturbative approatlote that
the perturbative RG equations for higher-derivative gravity were first considered in Ref.
8 (see Ref. 1 for an introductionA kind of effectiveR? gravity leads to a more or less
successful inflationary Universe.
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In the present letter we formulate the evolution equation and nonperturbative RG
equations for the coupling constantsR3 gravity! The action initially is given by the
following (in Euclidean notation

1 1
s=f d“x\/a[ ER*R*+WCMVQBC’U‘VOI’B—WR2—2K2R+4K2A , (1)

whereR*R* = 1/4e""*Pe, , > R\ RY%, C,,,0p is the Weyl tensorx™2=327G is the
Newton constant, and,f2,»? are gravitational coupling constants. It is well known that
the theory with actiorfl) is multiplicatively renormalizable and asymptotically free. Note
that a perturbative running of the Newtonian coupling constant in a tHépwyith matter

has been discussed in Ref. 10.

Following the approach of Ref. 6, we will write the evolution equation for the

effective average actiofi,[g,g] defined at a nonzero momentum ultraviolet scale
below some cutoffA ;- The truncated form of this evolution equation is

— 1 — _ _
aldg.9]=5Tr [(T\Pg. 9]+ R¥*g]) *aRI™ 1]

-2 GTrl(-Milg,g]+RETaDaRETg1l, 2

heret=In k, Ry are cutoffs in the gravitational and ghosts sectorsre the weights for
ghosts(we have a Fadeev—Popov ghost withb=1 and a so-called third ghost with
weightcre=1/2),9,,=9,,,+h,,, whereh,,, is the quantum gravitational field,() is

the Hessian ofk[g,a with respect tag,,, at fixedg_ﬂv, andM; are ghost operators.
Note that the right-hand side of E(R) is very similar to the one-loop effective action.

At the next step we have to specify the truncated evolution equation for the theory
(1). Starting from the UV scalé . and evolving the theory down to smaller scales
k<A cuoff, WE may use a truncation of the form

s o1, 1 1 1 1
K HZNKK y f7_>ZNkf_z’ ;ZHZNKVT' A—>)\k, (3)

wherek dependence is denoted by a subsckiptWe will restrict consideration here to
only the lower-derivative terms in the reduction Bf, i.e., the higher-derivative cou-
pling constants may be regarded as free parameters.

Choosingg_,”:gw (in which case the ghost term disappe¢aaad projecting the
evolution equation on the space with low-derivative terms, one gets the left-hand side of
the evolution equatiof2) as follows:

ALL0.01-26 | 40 ~R(@)3Zuct 200 Zui)] @

The initial conditions forZyy, A are chosen as in Ref. 6.

The right-hand sides of the evolution equations may be found after very tedious
calculations(choosing the de Sitter backgrouRy,,=1/4g,,,R, calculating the path in-
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tegral, and making an expansion ). We drop the details of these calculations. The
final system of nonperturbative renormalization grdR®) equations for the Newtonian
and cosmological constants is obtained as follows:

9 Qk=[2+ 7n(K) 19k, ®
whereg, is the dimensionless renormalized Newtonian constant,

0=k?G=K?Z\\G .
The anomalous dimensiony(k) is given by

n(K) = 9kB1( ok, Bak s Yok » O2k) T In(K) kB @2k, Bar s Yok » k) (6)

where
1
B1(aok,Bak: Yok O2k) = E( 10D 1( arzy) + 100 7( B ) — 10D 1(0) + 2D 1( )
+2P3(8) — (60ar; +5)D5( ) — (6081 +5)D5( By

24 2 2 2
+| 7= =6 |P5(0) =12y, P5(yar) —120:P5( 62 ) |

K-3

(7)

1 - _ - -
Bo( ok, Bok s Yok O2k) = — E[ 5d1(ag) +5P1(Ba) + 7P 1(0) + DI yz)

1 1 =52 1 52
+®1(55)—3 011+1—2 D5(ay)—3 /31+1_2 D5(Bak)
—3<I>3<0>—6y1<1>§<yzo—salcbiwzo] .

Here
_ 1 242 112407 K46 4Ny |72 o
awhr=1t 67 T2\ 3 T ek )|t k| (8)
s 1 o1 [ 8 e
YLOTo(K=3) " 2(K=3)| " k%K)
K2f2 4)\k 1/2
azk,ﬂzﬁﬁ 1+ 1+W , 9

1/ 2}

Note thatK =3f2?/(f2+21?), which corresponds to the choice of the so-called gauge-
fixing independent effective actidifior a review see Refs. 1 and 1By this choice, we
solve the gauge-dependence probléon a related discussion in case of Einstein gravity,

see Ref. J. The functionsbP(w) and®P are given by the integrals

2.2 8)\k
i e e )
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1 (= RO9z)-zRY(2)
~ 1 (= RO(z)
q’ﬁ(W)ZWL 22 RO WP
Solving (6),
Bi( Ak,
(K= 9ikB1(N i, ki) 11

1-giBo( N ki)

where k2= k?/k?, N =\ /k?, we see that the anomalous dimensigpis a non pertu-
bative quantity. The evolution equation for the cosmological constant is obtained as
follows:

N0 = ~[2= TN+ e 1003 az) + 1003 B1) — 1095(0)

+ 201y + 20K 820 — (K [ED Y ) + 5D B + TDL(0)

+ DY y2) + DX 8201 - (12

Equations(5) and(12) with (11) determine the value of the running Newtonian constant
and cosmological constant at the sdateA .. The above evolution equations include
nonperturbative effects which go beyond a simple one-loop calculation.

Next we estimate the qualitative behavior of the running Newtonian constant, as the
above system of RG equations is too complicated and cannot be solved analytically. To
this end we assume that the cosmological constant is much smaller than the IR cutoff
scale,\<k?, so we can puk,=0 to simplify Egs.(8) and(9). After that, we make an
expansion in powers ofGk?) ~1, keeping only the first terrfi.e., we evaluate the func-

tions ®R(0) and&)ﬁ(O)) andfinally obtain (with g,~k2G)

Gy=Go[1-WGK?+ ...], (13)
where
1 1 2\ 7x?
w=—>B1(0,0= E{ 50+ 22 7) -

In case of Einstein gravity, a similar solution has been obtained in Refs. 6 and 7. In
getting (13) we use the same cutoff function as in Ref. 6.

We see that sign of¢ depends on higher-derivative coupling constants:

, 7% 22f?
w>0, if 50— ——+—>0. (14
3 v
The coupling constant? may be chosen to be negatiygee Ref. L For example, for
f2=1, v>=+1 we getw>0, and the Newtonian coupling decrease&amcreases; i.e.,
we find that the gravitational coupling is antiscreening. On the contraryf%erl,
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v?>=—1/2 we getw<0, and thus screening behavior of the Newtonian coupling. It
means that in such a phase the gravitational changass is screened by quantum
fluctuations, or, in other words, that the Newtonian coupling is smaller at smaller dis-
tances. The sign of the quantum correction to the Newtonian potential will be different as
well.

Note that the above quantum correction to the Newtonian coupling constant has
been calculated in Ref. 10 using the one-loop approach and perturbative RG equations. It
is clear that the result of such a calculation is different from the one presented above, as
we have used a nonperturbative RG method. Moreover, as we noted at the beginning, the
theory under discussion is multiplicatively renormalizable in the perturbative approach,
but most likely it is not unitary in that approach. Hence, the perturbative results cannot be
trusted in many situations. On the contrary, within the nonperturbative approach the
theory is considered as an effective theory, and problems with non-unitarity are therefore
not important. The possibility of getting some nonperturbative results in models of QG in
four dimensions looks very attractive and may aid in the construction of new QG models.

Thus we have found that Newtonian coupling may show screening or antiscreening
behavior inR? gravity, depending on the higher-derivative couplings. That shows explic-
itly that R? quantum gravity may lead to different physical consequences than Einstein
gravity even at low energies.
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A method of searching for the invisible axion emitted in M transitions
of isomeric nuclei is proposed. It is determined experimentally that the
probability of emission of an axion in the M1 transition if*"Te is
<1.3-10"° (90% confidence level © 1997 American Institute of
Physics[S0021-364(17)00308-3

PACS numbers: 14.80.Mz, 23.20.Js, 23.20.Lv

Theoretical invisible-axion models in which the scale of symmetry breaking is ar-
bitrary and can extend down to the Planck mass serve as a basis for the experimental
search for a pseudoscalar particle which interacts weakly with matter and whose mass
ranges from 102 eV up to tens of ke\}=° Although the limits on the axion mass
obtained from astrophysical estima&téspan almost the entire scale of possible masses,
direct laboratory experiments give an upper limit of 6 keV for the axion fiass.

The “missingy ray” method for nuclear magnetic transitions opens up new possi-
bilities for axion searcheslf an ideal detector, which detects all particles arising from
the decay of a nucleus, is developed, then the emission of the invisible axion which
leaves the detector without any interactions will be accompanied by a shift of the spec-
trum by an amount equal to the M transition energy. Such events can be detected. In our
view, it is preferable to study M transitions in isomeric nuclei primarily because there is
no uncertainty associated with the emission of a neutrino, characteristic for nuclei under-
going B and EC decay.

EXPERIMENTAL SETUP

In the present work, the energy spectrum of photons and electrons which arises with
the decay of &*"Te nucleus T,,= 57 days) was analyzed in order to observe an axion.
This isomeric nucleus undergoes two successitnsitions with energies of 109.3 keV
(M4 transition and 35.5 keV(M1 transition, E2/M1=0.029)° The decay scheme is
shown in Fig. 1, together with the decay modes and the types of particles produced and
their energy and probability of appearance per decay. Since the excited tellurium nucleus
interacts with an atomic shell, each decay of a nucleus is accompanied by a cascade of
v rays, conversion electrons, x rays, and Auger electrons.

Two cylindrical planar HPGe detectors butted together at their end surfaces were
used to measure the energy spectrum. A small recess, 0.5 mm deep and 3 mm in diam-
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FIG. 1. Main modes of decal™"Te — *°Te.

eter, was ground out at the center of the end face of one of the detectors to hold the
125Te source.

A preparation of tellurium of “special radiation purity” grade was specially pre-
pared for this experiment. A strip of tin foiD.1 g was irradiated in a VVR-M reactor for
one month in a flux of 1&¥ neutrons/cr-s. After 60 days the tin was dissolved in
hydrochloric acid and 5 mg of selenium was added to the solution obtained. The mixture
of Se and*?™"Te was precipitated from the solution with tin dichloride, and the precipi-
tate was washed and dissolved in 5.5 M HCI plus one drop of FINRadioactive
tellurium was collected at the top of the chromatographic column with anionite. The
column was first flushed with a 5.5 M solution of HCI, and then th&Te zone was
washed out, first wit a 3 M solution and finally wih a 1 M solution. The anionite
purification operation was repeated three times, after which the solution of radiotellurium
was evaporated in the presence of HN&dd 0.005 M HSO,. A drop of the sulfuric acid
solution was placed in a depression on the gold coating of the HPGe detector and the
tellurium was deposited by electrolysis, forming an invisible spot 3 mm in diameter.

The working region of each detector was 40 mm in diameter and 7 mm thick. The
configuration of the working volume of the two detectors ensured absorption of the
35-keV y ray to a level of 101 The absorption of the 109-keV photon was 97%, which
increased the background near 100 keV somewhat on account of the backscattering of
v rays by the detector holder.

Before deposition of?*"Te, the germanium detectors were placed in turn into a
separate cryostat. The upper limit of the electron energy losses in the gold c(&@ing
wgl/en?) and in the insensitive layer of the detector was determined witfiBa source.

For a 481.7-keV electron incident along the normal these losses did not exceed 0.2 keV,
indicating that the detector could detect theseries x rays of tellurium, which have an
average energy of 4 keV, with an efficiency of 95%. If it is assumed that the coefficient
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of out-diffusion of electrons from the detector surface equals 0.3 for the configuration
employed, then it can be expected that the loss of 30-keV electrons as a result of multiple
reflections will not exceed I®. Like the AugerL electrons, the 4-keV conversion
electrons are absorbed in the dead layer of the detector and do not contribute to the total
energy released.

After the tellurium was deposited on one of the detectors, the detector was placed on
the beryllium window of a spectrometer with a(lSi) detector. The x-ray spectrum
obtained in the decay of™"Te was measured with a resolution of 160 eV, and the
probability of AugerL-electron emission was determin@91). This figure is of funda-
mental importance, since the proposed method permits distinguishing the emission of an
axion from the absorption of a photon or electron in the insensitive layer of the detector.
The probability of absorption in it is higher for a 27-keV x r@yr 30-keV electropthan
for a 35-keV x ray(or 34-keV electrop At the same time, thé x rays accompanying
such transitions are detected with nearly 100% efficiency, which will give rise to an
additional intensity in the line, shifted to higher energies by 4 keV. According to the
decay scheme in Fig. 1, when an axion is emitted in an M1 transition, two peaks with
energies 104.5 and 108.3 keV and an intensity ratio of 2.9 should be observed in the total
spectrum. If the energy shortfall is due to absorption of particles in the insensitive layer
of the detector, the ratio of the intensities of the indicated peaks will decrease to 2.2. This
difference can be a criterion of a positive result of an observation.

After the indicated measurements were performed, the HPGe detectors were placed
up against each other in a cryostat and cooled to liquid-nitrogen temperature. The detec-
tors had individual bias voltages of 1200 and 900 V, which were applied taxthe
contact; the potential of their comman contact was zero. Both detectors had similar
spectrometric channels: a preamplifier with resistive feedback and a uncooled field-effect
transistor and an amplifier with a formation time constant giR and a 12-digit ADC
graduated to 60 eV/channel. The resolution measured with respect to the 122ke/
of °'Co was 1.7 keV. The two channels were fed into an adder, the signal from which was
fed into a separate ADC. The total energy spectrum from both detectors, the total spectra
from each detector, and four spectra corresponding to coincidences and anticoincidences
between detectors were stored in the computer memory. The two-dimensional energy
spectrum was also stored in order to search for the optimal background/effect ratio.

RESULTS

A total of 1.4 10® decays of'?"Te were detected over 62 h of measurements. A
typical spectrum from one detector for one series of measurements is shown in Fig. 2.
The spectrum contains 29 peaks, corresponding to different decay mot&8T# and
satellites associated with the emission of germanium x rays from the detector. The num-
bers1 and 2 label the two main peaks, with intensities of about-1® keV ! and
energies of 27.4K ,; ,») and 104.5 keMe104, e77+ K,). Peak3 corresponds to the
monochromatic 77-keV electron line. The resolution of the HPGe detector measured
according to this line was 1.8 keV. The shift in the position of the peak, as determined
according to the x-ray lines of tellurium and germanium, was 320 eV. This means that the
average energy losses during passage through the insensitive layer of the detector were
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FIG. 2. Emission spectrum itt""Te decay, measured by one of the detectors. The maximum of fiesic2
equals 1.510° keV 2.

equal to about 700 eV for 30-keV electrons. The lide5, and6 are shifted by 4 keV to
the left of the total-absorption peak44.8 ke\j — this is due to the loss of an x ray,
conversion electron, or Auger electron.

The total spectrum from the two detectors is displayed in Fig. 3. As expected, the
maximum of the peak corresponding to the total detected energy lies at 132 keV and not
144.8 keV. The energy shortfall is due to the loss of one or two Augelectrons or one
4-keV conversion electron. Since the resolution for the total spectrum is 1.5 times worse,
the right-hand edge of the peak possesses a profiled shape corresponding to unresolved
peaks with energies of 136, 140, and 144 keV. The background level near 104 keV was
equal to 1.410° keV ! and was determined by the tails of the electron lines associated
with multiple reflections of electrons from the surface of the detectors.

The maximum likelihood method was used to find the intensities of the 104.5-keV
and 108.3-keV lines. The likelihood function was found from the assumption that the
number of counts in each channel has a normal distribution and is a sum of an exponen-
tial function, chosen to describe the background, and the response function for the elec-
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FIG. 3. Spectrum of the total detected energy. The intensity of the main peak is decreased by a factor of 20. The
vertical lines indicate the positions of the expected axionic lines.
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trons, which is determined from the total spectrum. The response function was repre-
sented as a Gaussian peak, whose variance was determined by the resolution of the
composite detector, and an exponential tail with an area of 40%.

The value obtained for the ratio of the intensity of the axion radiation to the total
intensity was ,/1,=(6+4)-10"°, which corresponds to a limit,/I ,<1.3-10"° at the
90% confidence level.

Let us compare the above result with the theoretical estimates. As a result of the
residual neutron—proton interaction in nuclei with two particles of one kind above a
magic core and a half-filled shell of particles of the other kind, the spectra of such nuclei
contain low-lying “intruder” states, corresponding to the deformed mean field, in addi-
tion to the single-particle states of a spherical nucleus. According to data from stripping
and capture nuclear reactions, the lowest level$ 1322", and 11/2 in 1?°Te are largely
single-particle level$! Their energetics can be explained by the presence of a negative
deformation,e~ —0.1.

In the energy region studied, the standard long-wavelength approximation for point

nucleons can be used to determine the probabilitigandw, of nuclear electromagnetic
and axionic transitions, respectively. In the single-particle approximation, when the
nuclear transition is determined by the change in the state of a single nucleon and this
nucleon is a neutrong(n)=0), the axion transition operator can be related with the
magnetic transition operator having the same multipolarity:

0
Ga— g;
eus(n)

whereg?1 and g; are the isoscalar and isovector parameters of the axion—nucleon inter-
action, u(n)= —3.827 is the spin gyromagnetic ratio of the neutron. Taking account of
the ratio(1) and the possibility of an admixture of an E2 transition, we obtain for the ratio
of the axion and magnetic transition probabilities

T(AL)=2 T(ML), 1)

o, 295-92)°E3 -
w, (1+8%)e’us(n)Ey’

where E5=E>—m3. For the axion—nucleon coupling constants we employ the values
obtained in Refs. 12-1492=—1.77.10"5 (m,/1 keV)(1+2.943), gi=—-2.7510"°
(my/1 keV), andS=0.68. The dependence af,/w, on m, is bell-shaped, reaching a
maximum value of 2.810°% at m,=22 keV. Therefore, our theoretical estimate is 4.6
times lower than our experimental estimate; this makes it impossible to establish a limit
on the axion mass in the range 0—35 keV.

The sensitivity of the “missingy ray” method can be increased. First, the back-
ground near 104 keV must be decreased; it is determined by the tails of the electron lines
produced by multiple reflections of electrons from the surface of the detectors. For this,
the thickness of the insensitive layer of the detector and the thickness and atomic number
of the conducting coating must be decreased. The contribution of the natural radioactivity
to the background is almost an order of magnitude smaller, but it also can be decreased
by passive shielding. Increasing the measurement time and improving the resolution by
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using cooled head cascades in the preamplifiers open up additional possibilities. Appar-
ently, all of these measures will make it possible to reach a sensitivity to axion mass at a

level of 1 keV.

de-mail: derbin@Inpi.spb.su

LA. R. Zhitnitskii, Yad. Fiz.31, 497 (1980 [Sov. J. Nucl. Phys31, 497 (1980].

2M. Dine, F. Fishler, and M. Sredniki, Phys. Lett. 184, 199 (1981).

3M. B. Wise, H. Georgi, and S. Glashow, Phys. Rev. L4tt. 402 (1981).

4J. E. Kim, Phys. Rev. Let#3, 103(1979.

5M. A. Shifman, A. I. Vainstein, and V. |. Zakharov, Nucl. Phys.1B6, 493(1980.
SM. S. Turner, Phys. Refd97, 67 (1990.

’G. G. Ruffelt, Phys. Repl98 1 (1990.

8R. M. Barnett, Y. Inoue, T. Asanuma, and M. Imamura, Phys. Re84238 (1996.
°M. Miniwa, Y. Inoue, T. Asanuma, and M. Imamura, Phys. Rev. L&1.4120(1993.
10C. M. Lederer and V. S. Shirleyable of IsotopesWiley, New York, 1978, Vol. 7.
113, Katakuraet al, Nucl. Data Sheetg0, 217 (1993.

12D, B. Kaplan, Nucl. Phys. 60, 215 (1985.

13M. Srednicki, Nucl. Phys. 260, 689 (1985.

14W. C. Haxton and K. Y. Lee, Phys. Rev. Le6, 2557 (1991).

Translated by M. E. Alferieff

610 JETP Lett., Vol. 65, No. 8, 25 April 1997 Derbin et al. 610



Concerning experiments on coherent transition radiation
by relativistic electrons

N. F. Shul'ga and S. N. Dobrovol'skil
National Science Center, Kharkov Physicotechnical InstfUB10108 Kharkov, Ukraine

(Submitted 11 March 1997
Pis'ma Zh. Ksp. Teor. Fiz65, No. 8, 581-58425 April 1997

It is shown that the macroscopic transverse dimensions of the target can
strongly influence the spectrum of transition radiation emitted by rela-
tivistic electrons in thin layers of matter and that the effect is extremely
important in experiments on coherent transition radiation in the infra-
red. © 1997 American Institute of Physid§0021-364(®7)00408-§

PACS numbers: 41.68.m, 41.75.Ht

1. A series of experiments® was recently conducted in order to study the coherent
transition radiation emitted by relativistic electrons in thin layers of matter. The measure-
ments were performed on electron beams with an energy of the order of 100 MeV. The
coherent transition radiation emitted by short bunches of an electron beam was investi-
gated in the infrared region, where the thickness of the target is small compared with the
wavelength of the emitted wave. The experimental results were analyzed using formulas
from the theory of transition radiation for targets of infinite transverse“stze.

This letter calls attention to the fact that for ultrarelativistic electrons the transverse
distances responsible for the transition radiation process can be macroscopic, exceeding
not only the transverse size of the target but also the size of the channel in which the
beam moves. This situation occurs, specifically, in the experiments of Refs. 1-3. We
shall show that when the finite macroscopic dimensions of the target are taken into
account, the transition radiation spectrum becomes strongly distorted and the intensity of
the radiation in the infrared range becomes much lower than in the case of a target of
infinite transverse size. This circumstance is extremely important, because the intensity of
the radiation that would be expected for a target of unbounded transverse size can be
reduced by several orders of magnitude when the transverse dimensions of the target are
taken into account. This effect occurs even for transition radiation of a single particle in
a thin layer of matter. For this reason we shall analyze this very simple case here.

2. Let us consider the transition radiation of a relativistic electron passing through a
thin layer of matter. To this end, we introduce the vector potewt{alt) of the field of
a particle moving in a medium with relative permittiviggr) =1+ €,(r), wheree,(r) is
the correction to the vacuum value of the permittivity;(r)= const inside and
€,(r)=0 outside the plate, respectivelyrhen the equation for the Fourier component
A, (r) of the field can be written in the forfd

2

w? 4 0] 1)
V2+? Aw(r):_?Jw(r)‘i‘?Aw(r)‘FE V; div A(r), 1)
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wherej,(r) is the Fourier component of the current density of the charge.
At large distances from the targeR{ ) the asymptotic solution of Ed1) is

~ ikR — c w2 1)
Aw|Rﬂw—ﬁ d°re [Jw(r)+ﬂ el(r)?Aere V;)dlv A,

] ) )

wherek is the wave vector in the direction of emission aidl=w/c. Knowing this
asymptotic solution, we can construct the Poynting vector of the electromagnetic waves
emitted by the particle and we can find the spectral-angular distribution of the radiation

dE 2
dwd0:471'zc|k.(le—'—I % ©)
where

Ie=f dire ki (1),

V*l div A
E \Y w(r)

|/ = ¢ fd3 —ik-r w2 A
1 re Ez—el(r) oM +e

In our case of a thin target it can be assumed that the velocity of the particle is
constant inside the target. Thep=0, and we are dealing only with transition radiation,
which is determined by the nonuniformity of the permittiviggr). Furthermore, if

€,a,w/c<1, (4)

wherea, is the thickness of the plate, then the field of the particle will change very little
as the particle passes through the target. To a first approximation in the paréddter
solution of Eq.(1) will correspond to the vector potential of the field of the particle in
vacuum

0 2e iwzlv
Aw(r)zn?e Ko(pwlvy), (5

wheree is the electron chargey is the Lorentz factor of the electron,is a unit vector

in the direction of the particle velocity, the z axis is parallel tov, p is the transverse
coordinate, ando(x) is a modified Bessel functiohSubstituting this expression for
A?u into Eq.(3), we obtain the first term in the expansion of the spectral-angular radiation
density in powers of the parametera,w/c. In the case when the particle passes through
the center of a cylindrically symmetric thin plate with radiaug we find the following
expression for the spectral distribution of the radiation in the angle interval
(9,9+d0):

d?E B d?E,,
dodQ  dwdQ

wherew, = y/a, , dQ=sin 9d9, andd?E../dwd) is the spectral-angular distribution
of the radiation for a target with infinite transverse sizg {«),”®
d’E..  2€° Z sifd .
dodQ  m (sif9+y 22 0

F2(y sin 9, 0lw,), (6)

Elazw
Cc
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and the functior=(y,x) determines the effect of the transverse dimensions of the target
on the transition radiation:

2

F(y,x)= Y

1 X €1
f uduKy(u)ds(yu) + 777 -XKo(X)Ja(yx) |- ®
0 €1
Herey=1y sind, z=w/w, , Ki(X), Ko(x), and J;(x) are the corresponding Bessel
functions®

The functionF(y,x) has a simple asymptotic form for small and large values of the
argumenk. If x>1, thenF(y,x)~ 1. The spectral-angular density of transition radiation
in this frequency rangéi.e., for o> w,) is identical to the corresponding result for a
target of unbounded transverse sizg { ).

However, ifx<1, i.e.,, o<, , then in the region of characteristic angles of the
transition radiationd=<y !

€1
l+ €1

1
F(y,x)= = (y?+1)x?1-2 : 9

4 2
where C=0.577 is the Euler constant. The spectral-angular radiation density in this
frequency range decreases rapidly wihand becomes small compared with the case
a, —» even foro~w, . The integration oveu in Eq. (8) corresponds to integration
over the transverse radial coordinate of the taiyget yu/w. The upper limit of the
integral is determined by the transverse size of the tgsggt=a, . The main contribu-

tion to this integral comes from values

X
C+In —)

per=min(Ay.a,), (10

where\ =c/w is the wavelength of the emitted wave. The second term iN&ds due
to the transverse jump in the permittivity. Rofy<<a, the contribution of this term to the
radiation spectrum can be neglected.

In summary, according to E{6), the character of the transition radiation changes
substantially forh y~a, . In the frequency range whevey<<a, the spectrum of the
transition radiation does not depend on the transverse dimensions of the target. However,
if \y=a, , then we find that the spectral density of the transition radiation is substan-
tially suppressed in comparison with the spectral density in the &mit-oc. The param-
eters in the experiment of Ref. 1 wexe-0.1 cm andy~ 200, so that y~20 cm. The
transverse dimensions of the target in that experiment wgrgé®em. Therefore in that
experiment the transverse dimensions of the target should have had a large effect on the
coherent transition radiation.
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Radiative energy loss of high-energy quarks in finite-size
nuclear matter and quark—gluon plasma
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The induced gluon radiation of a high-energy quark in a finite-size
QCD medium is studied. For a sufficiently energetic quark produced
inside a medium we find the radiative energy ImquacLZ, wherelL is

the distance traveled by quark in the medium. It has a weak dependence
on the initial quark energ¥,. The L? dependence turns to' as the
quark energy decreases. Numerical calculations are performed for a
cold nuclear matter and a hot quark—gluon plasma. For a quark incident
on a nucleus we predidtE,~0.1E,(L/10 fm)?, with B close to unity.

© 1997 American Institute of Physids$0021-364(®7)00508-3

PACS numbers: 12.38.Qk, 13.60.Le, 25.20.Lj

The radiative energy loss of a high-energy parton in a QCD medium is currently
under active investigatioh.® In classical electrodynamics the radiation of a charged
particle in a dense medium was first considered long ago by Landau and Pomeranchuk.
The quantum treatment of this phenomenon was given by MigtialRef. 4 (see also
Ref. 8 we developed a new path integral approach to the bremsstrahlung in a dense
medium, applicable in both QED and QCD. In the present paper we evaluate within the
formalism of Ref. 4 the radiative energy loss of a fast quark,, propagating through
a finite-size uniform QCD medium. We consider both a cold nuclear matter and a hot
qguark—gluon plasmé&GP. Following Ref. 2, we model the QGP by a system of static
scattering centers described by the Debye screened potestigl—r up)/r, whereup is
the color screening mass. For the screening mass we use perturbative formula
wp=(1+ng/6)Yg.T (Ref. 9, wheregs= V4mas is the QCD coupling constant, and
T is the temperature of the QGP. We assume that a fast quark produzed ahrough
a hard mechanism propagates in a medium of extealiong thez axis.

Neglecting the multigluon emission, we can write the radiative energy loss as
AE,=E Jld dp 1
a=Fa ) OXXGxe ()

whereE, is the initial quark energy is the Feynman variable for the radiated gluon, and
dP/dx is the probability of gluon radiation as functionxfIn the approach of Ref. 4 the
evaluation ofdP/dx is reduced to solving a two-dimensional Salirmer equation in
impact-parameter space. The longitudinal coordiagtiays the role of time. This Schro
dinger equation describes the evolution of the light-cone wave function of a fictitious
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three-bodyq@ color singlet system. The relative positions of the constituents of the
gqg system in the impact-parameter space ggg=—pX, pg=0, p;=(1—Xx)p. The
corresponding Hamiltonian has the form

2

. p
H= 2 Toe2), )
U(p,z)=—iw. 3)

Here u(x) =Eqx(1—x) is the reduced “Schidinger mass,’n(z) is the density of the
medium, andos(p,X) is the cross section of interaction of tlgggg system with a
medium constituenfcolor center for QGP and nucleon for nuclear mattkr the case of
QGP on the right-hand side of E(®) there is an implicit summation over tripléjuark
and octet(gluon) color states.

In order to simplify the analysis we neglect the>qg spin-flip transitions, which
give a small contribution to the energy loss. Then the radiation rate is given by

dP = * i(€é2—§61)
&—2 Refo dglLIdgz exp{ - L—f}g(&,fz,X)[K(OyfzIO.&)

—K,(0,£,]0.1)]. 4

Here the generalization of the QED vertex operator of Ref. 4 to QCD reads

34'_4X-i-2x2 .
o Epx)= 2 > ]p<§;)2(§>(§§1>

: ®

K is the Green’s function for the Hamiltonig®), K, is the vacuum Green’s function,
L¢=2Ex(1—x)/[max?+mi(1—x)] is the so called gluon formation lengttime), mj,

is the quark mass, amt is the mass of the radiated gluon. The latter plays the role of
an infrared cutoff, removing the contribution of the long-wavelength gluon excitations,
which cannot be treated perturbatively. In contrast to the expression of Ref. 4 for the
bremsstrahlung spectrum of an electron incident on the target of Ref. 4, in which the
integration ovek; starts from—oc, in Eq. (4) we integrate oveg; from £,=0, i.e., from

the point where a fast quark is produced by hard scattering.

The three-body cross section entering the imaEinary pote@ialan be expressed
in terms of the dipole cross section for color singiet pair® o,(p),

9 1
a3(p.X) = gloalp) +o2((1=X)p))] — g oa(xp). (6)

The radiation rate is dominated by the contribution frene1/my (Ref. 4, where

a2(p)=C,(p)p? and C,(p) has a smoottilogarithmio dependence op.'*1° This al-

lows one to estimate the energy loss by replaci@g(p) by Cy(1/mg). Then

o3(p,X) = C3(X) p?, with C5(x) ={9[ 1+ (1—x)?] —X?}C,(1/my)/8, and the Hamiltonian
(1) takes the oscillator form with the frequency
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1 (n(z)Cg(x)>1’2_l—i (n(z)CS(x)>1’2
2 w(X) 2 |Egx(1-x)

Making use of the oscillator Green’s function after some algebra one can represent

the bremsstrahlung ratd) in the form

dP doB |
dx dx 1, )
where

do®" 4 Ca(x)(4—4x+2x%)
dx — 9mx[mix*+ms(1-x)]"’

®

is the Bethe—Heitler cross section. The suppression fadfarl), depending on the
dimensionless variables

[4nCy(X)Eqx(1—x)]*?

7=Lil01= max2+mg(1—x) ©)

~ _L[m§x2+mg(1—x)]

I=L/Ls= 2EX1x) (10

is given by

S(n,H)=SV(7.)+S?(7,), (11
3 I y1 iyz) 1 ® r}

1) - _J2 _

s WZRefo dyljo dyz exy{ 7 [)722 sin(gy,)] |’ (12
3 In * i(y1+y2)

g”(n,l):WzRefo dylf0 dy, ex;{—T
N L ¢ r} (13

(y1ty2)® [cogdy))(tan(¢ys)+dy2)]| |’

with ¢=Q/|Q|=exp(in/4). The two terms on the right-hand side (4fl) correspond
in (4) to the contributions from the integration regio&s<¢,<L and ;<L <¢,, re-
spectively. The variables ii12), (13) in terms of those in(4) are y,;=(L—&)|Q|,
yo=(&—£)|Q] (in (12)) andy,= (£&,—L)|Q] (in (13)). In arriving at(13) we have used
a representation of the first Green'’s function in the square brackét§ in terms of a
convolution of the oscillator Green’s functidfor the interval ¢;,L)) and the vacuum
one(for the interval (,&,)). Notice that the functional form of our resultsxa€ 1 differs
from the one obtained in Ref. 5 within the soft gluon approximation.

In a medium it is eithel; or 1/Q| which sets the effective medium-modified
formation lengthL{= min(L;,1/|Q|), which is the typical value of,— ¢, in (4) for
L>L; . The finite-size effects come into play only latsL¢, i.e.,I<ly= min(1,1/7).
From (11)—(13) we find S(#,1)~—12 log| as|—0. The source of this suppression of

radiation at smallL is obvious: the energetic quark produced through a hard mechanism
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loses the soft component of its gluon cloud, and radiation at distances shorter than the
time required for regeneration of the quark gluon field turns out to be suppressed. For
I>1, the expression foS(#,l) reduces to that for the infinite medium, for which the
expressions( 7,1 =»)~3/7\2 (7>1) andS(7,l =»)~1—167*/21 (3<1) were de-

rived in Ref. 4. Notice that according to Eq®) and (10), »—0 andl—« asx—0,1,

and the Bethe—Heitler regime obtains in these limits.

Before presenting the numerical result, let us consider the energy loss at a qualitative
level. We begin with the case of a sufficiently larf§g such that the maximum value of
L¢, L{(max), is much bigger thah. Taking into account the finite-size suppression of
radiation atl¢ =L, we find thatAE, is dominated by the contribution from two narrow
regions ofx: x= dg=~Lmj/2loE, and 1-x<o, g~LMma/214Eq. In both the regions the
finite-size effects are marglnal and the energy Ioss can be estimated using the infinite
medium suppression factor. For instance,

16a,Ca( O)E Ln

MBS0y~ ——g "

f dxS 7(x),l =). (14

Using (9) one can show thap(x=< 6y) =<1 atL<m2/2nC3(O) In this region ofL in (14)

we can putS(7(x),l=»)~1 and fmdAE ~0. 2& <C3(0)nL2, which does not depend

on the quark energy. Alt>m2/2n C5(0) the typical values o in (14) are much bigger
than unity, and using the asymptotlc formula for the suppression factor we obtain
AE4~asC3(0)n L2. A similar analysis forx close to unity gives a contribution ttsEg
suppressed by a factor ef 1/4 as compared to that for small Notice that in thisL
regime, despite the fnz infrared divergence of the Bethe—Heitler cross sectibg,

has only a smootm, dependence originating from the factos. We emphasize that the
above analysis of the origin of the leading contributions makes it evident thdepen-
dence ofAE, cannot be regarded as a consequence of the Landau—Pomeranchuk—Migdal
suppression of the radiation rate due to small-angle multiple scatterings.

The finite-size effects can be neglected akH, becomes proportional ta if
L¢(max)<L. If in addition the typical values of; are much bigger than unity, froil),
(7), (8) along with the asymptotic form d8(»,l =«) at »>1 one can obtain the fol-
lowing infrared-stable resulAE,~ 1.1asL \nC3(0)E,.

In numerical calculations we takey=0.75 GeV. This value ofn, was obtained in
Ref. 12 from the analysis of HERA data on the structure funcEgrwithin the dipole
approacf? to the BFKL equation. It is also consistent with the nonperturbative esttfhate

of the gluon correlation radius in the QCD vacuum. For scattering ofj g system on

a nucleon, we find from the double gluon mddethat Cy(1/mg)~1.3-4, where the
lower and upper bounds correspond to thehannel gluon propagators with masses of
0.75 and 0.2 GeV, respectively. The latter choice allows one to reproduce the dipole cross
section extracted from the data on vector meson electroproduttidawever, there is
every indication®*3that a considerable part of the dipole cross section obtained in Ref.
15 comes from the nonperturbative effects, for which our approach is not justified. For
this reason we tak€,(1/my) =2, which seems to be a plausible estimate for the pertur-
bative component of the dipole cross sectitn.
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For scattering of the qg system on a color center we estimatg(1/mg) using the
double gluon formula with the Debye screened gluon exchangesT #@50 MeV we
obtained C,(1/mg)~0.5 for a triplet center. For an octet center the result is
CA/C=9/4 times larger, wher€,(Cg) is the octettriplet) second-order Casimir in-
variant. For the quark mass, which controls the transverse size df digesystem at
x~1, we takem,=0.2 GeV. Notice that our prediction fakE, is insensitive to the
value ofmy.

For nuclear matter, taking=0.15 fm 3 and ag=1/2 for L<5 fm we obtained
AEg~a(L/5 fm)?, with a~ 0.55, 1, 1.23 GeV an@~ 1.5, 1.85, 1.95 foE,=10, 50,
and 250 GeV. Calculations withs=1/3 for QGP atT=250 MeV yield for the same
energiesa~ 4.2, 10.2, 14.8 GeV ang~ 1.2, 1.65, 1.9. The above values gfwere
determined forL<5 fm. In the region =L=<10 fm B is 10-20% smaller. At
E,=250 GeVa and g flatten. Notice that ;(max)~5-10 fm for E,~10-40 GeV in
nuclear matter and foE,~150-600 GeV in QGP. Thus our numerical results say that
the onset of thé.? regime takes place whdr (max)L=2. The closeness g8 to unity
at E;=10 GeV for QGP agrees with a small valuelgf(max) (~1 fm). We checked
that variation ofm, gives a small effect. Theny dependence oA E, becomes weak at
E4,=50 GeV. However, it is sizeable forE,~10-20 GeV. For instance
AE4(my=0.375)AE4(my=0.75)~1.5 atE;=10 GeV,L~5 fm. Our predictions for
AE, must be regarded as rough estimates with uncertainties of at least a factor of 2 in
either direction. Nevertheless, the rather large valueSEf obtained for QGP indicate
that the jet quenching may be an important potential probe for formation of the decon-
finement phase i\A collisions.

We also studied the energy loss of a fast quark incident on a target. In this case
radiation by the initial quark is allowed, and the lower limit of integration ofem (4)
must be replaced by-«. For the case of bremsstrahlung in QED this situation was
discussed in Ref. 8. It was shown that after the medium Green'’s function is expanded in
a series in the potential, the spectrum can be represented as a sum of the Bethe—Heitler
term and an absorptive correction. For our choice of the gluon mass the absorptive
correction is relatively small. This means thAqucEanaSC3(O)/m§. For nuclear
matter in the regior <10 fm the numerical calculations giveE~0.1E,(L/10 fm)#
with 8~0.9-1 forE =50 GeV andB~0.85-0.9 for E,=200 GeV. This result differs
drastically from the prediction of Ref. AE,~0.25(/1 fm) GeV. Our estimate is in
gualitative agreement with the longitudinal energy flow measured in pardollisions
with a dijet final stat!® and with the energy loss obtained from the analysis of the
inclusive hadron spectra imA interactions.’

I would like to thank D. Schiff for discussions and hospitality at LPTHE, Orsay,
where this work was completed.
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We argue that sufficiently complex grand unified theories involving
extra strong intractions that confine at very short distances may lead to
a heavy axion solution of the CP problem of QCD. This axion may
have a mass within the accessible energy range, and its low-energy
interactions emerge through mixing with axial Higgs bdshrmnother
signature of this scenario is softly broken Peccei—Quinn symmetry in
the electroweak Higgs sector. We present a toy GUT exhibiting these
features. ©1997 American Institute of Physics.
[S0021-364(®7)00608-1

PACS numbers: 12.16g, 14.80.Mz

In QCD, the effectiveﬂ—parameteﬁz 6+ arg detM g, breaks CRRef. 1) and is

experimentally constrained to be unnaturally sméaks 10~ 1° (for reviews see, e.g., Ref.

2). An elegant solution to this strong CP problem is based on the Peccei—(R@n
symmetry and predicts a light particle, an axion. In view of constraints obtained from
experimental searches for the Weinberg—Wilézakion, a widely accepted option is an
extremely light invisible axiori.A potential problem with the latter comes from possible
non-renormalizable terms in the low-energy Lagrangian, which may be due to very high
(say, Planckianscales and need not respect PQ symmetiegligible for other pur-
poses, these terms would introduce an extra axion potential and ruin the PQ mechanism
precisely because the QCD contribution to the axion potential is tiny. From this point of
view it is safer to have the axion heavy enough.

In this paper we point out that heavy axions may appear in sufficiently complex
grand unified theories containing extra gauge interacti@nth unbroken gauge grolip
which become strong well above the accessible energies. The efféeiseameters of
QCD and these extra strong interactions may be equal to each other due to a symmetry
built into a GUT. If there isonePQ symmetry relevant tboth QCD and the extra strong
interactions, the PQ mechanism rotates away both of thgs&rameters, and the axion
obtains its mass predominantly from the extra strong interactions and is therefore heavy
(much heavier than the Weinberg—Wilczek axion

A similar idea was put forward by Tyen the context of technicolor plus Higgs
models with PQ symmetry. However, mafiy not all) such models predict numerous
pseudo-Goldstone bosons; some of these are charged and have masses well below 40
GeV, which is ruled out experimentally. This problem is not inherent in GUTs.

To be specific, let us consider a toy GUT. This model is realistic for several reasons,
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but we expect that it will pick up generic features of possible heavy axions. The model is
a non-supersymmetric GUT with the gauge groBpJ(5)XxSU(5), where the first
SU(5) is meant to model the real world and the sec8td(5) is a mirror group. Let the
fermionic and Higgs content be mirror symmetric. Ordin@mjirror) fermions are sin-

glets under mirrofordinary) SU(5) and form the usual 5and 10-plets under ordinary
(mirror) SU(5). There are one Higgs 24-plet and two Higgs 5-plets in €20(5) sector
which are singlets under partn&U(5). Let usrequire that at this stage ea@&1J(5)

sector has its own PQ symmetry that rotates the two Higgs 5-plets in the opposite ways,

o) — dool),  pP— el (1)
for ordinary Higgs 5-pletsp?, and
- dhplt, P e Fp? (2)

for mirror Higgs 5-pletsd>§-,1'2). To have just one PQ symmetry, let us introduce an
SU(5)X SU(5) singlet complex scalar fiel® of PQ charge 1 that interacts with both
ordinary and mirror Higgs 5-plets,

Lseo=het TS +h oM T0PS?+ hec. (3)

The self-interaction of is required to be symmetric under the phase rotationS, gio
the remaining PQ symmetry i), (2) with B=a and S— €“S. Let us assume for
definiteness tha® does not obtain vacuum expectation value, though this assumption is

not crucial for further discussion.

Let us now require that at thénigh) energy scales where bo®U(5) groups are
unbroken, the harddimension 4 terms in the whole Lagrangian are mirror symmetric,
while the soft terms are not. This implies, in particular, thgtinan= Omiror (the 6 terms
are hardl and that the phases of Yukawa couplings are the same in ordinary and mirror
sectors. This requirement also implies the equality of the couplings entering3Eq.
h’=h. Hence, without loss of generality one sétgo be real(the phase oh can be
rotated away by the phase rotation $f. In one loop, the interactiofB) introduces a
direct interaction between ordinary and mirror Higgs 5-plets,

Lw,q::)\(qoémqogz))-(<I>(52)TCD§1))+ h.c., (4)

where Ach? In(mg/u) and u is the normalization scale. Note thatis real and the
interaction(4) is still PQ symmetric.

Let us require that, just like ordinar$pU(5), mirror SU(5) breaks down to
SU(3)meX U(1)mem, wheremc andmEM refer to mirror color and mirror electromag-
netism, respectively. Since the soft terms of the mirror sector are different from those of
ordinary sector, this breaking occurs at different energy scales. Consider the case when
mirror SU(5) breaks down at much lower energy than the ordinary GUT scale. The
coupling constant ofSU(5) runs faster than that c6U(3), so themirror coupling
constant is larger than that of ordina®(3). at the point where mirro8U(5) breaks
down. HenceSU(3),,c. becomes strong at a scalg,; which is larger than the ordinary
Aqgcp- Assuming

(O~ (L) ~vm>A e (5)
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we have the mirror world similar to the ordinary world, but scaled up in enegg with
vm/Amc NOt necessarily of the same order as the ratio of the ordinary Higgs expectation
value to the QCD confinement scalgd A gcp~ 10%).

By the mirror symmetry of the hard terms, the effecté«parameters of the ordinary
and mirror sectors are equal to each ofhext least at the tree level. By performing PQ
rotation, one makes both of them equal to zero. By the mirror PQ mechanism, the axion
field then takes a zero vacuum expectation value, and both the mirror and ordinary strong
interactions conserve CP. In other words, at a nonzero mirror effeétiparameter

Omimor the phase of the vacuum expectation valueddf'®% is proportional to

0 mirror DY the PQ mechanism; the interacti@) aligns the phase af{" () to the same
value, so the effective ordinary-parameter, after PQ rotation, becomes equal to
O ordinary— Ominor="0, at least at the tree level.

The axion obtains its mass predominantly due to mirror strong interactions. It is, in
fact, a mirror Weinberg—Wilczek axion. The expression for the mass is a scaled-up
version of the Weinberg formula. Recalling that the mass of the Weinberg—Wilczek
axion scales amW\,\pcAg’éDu 12" we estimate the axion mass in our model as

y Ape \ ¥ v |12
a Ageo . Myw-

This may certainly be much larger thayy .

To get an idea of the numbers, let us point out that non-supersymn&itki6)
becomes strong at about®1GeV. HenceA .= 10° GeV. Under the assumptigs) and
using my,w~ 100 keV, we have

Mo=<1 TeV.

Let us stress that by varying,. andv,, one can easily get the axion much lighter than
1 TeV. Say, atA ,,.~3 TeV andv,,~10 TeV one had ,~20 GeV.

The axion interactions with ordinary matter come from the tédn At energies
below v, we have

PPN =c 02 +icwmalx), (6)

wherec,; andc, are constants of order 1, aadx) is the axion field. The first term here
produces the off-diagonal mass term for the ordinary Higgs fields that breaks the low-
energy PQ symmetry(1l) explicitly and softly. The corresponding mass parameter,
m;,=VACivm should be of the order of 100 GeV to avoid fine tuning in the ordinary
electroweak Higgs sector. The second term in &), on being inserted into Eq4),
induces mixing between axion and axial Higgs bogdhwhich is of ordermZu/v .
Hence, one expects a mixing angle

2
v my,

Oano|~— 77—
|a,A| Um|Mio_M§|

With v~ 10°*~1C GeV this angle is in the range 18-10 4, but this estimate is again
strongly parameter-dependent, and the mixing may be somewhat higher.
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Thus, in our toy model the axion is a relatively light remnant of extra strong inter-
actions operating at very short distances. The axion mass may be well within the acces-
sible range of energies; its interactions with ordinary matter come from mixing with the
axial Higgs bosomA?, and the mixing angle may not be negligibly small. The scalar
potential of the ordinary Higgs fields exhibits softly broken PQ symmetry. We expect that
these features are generic to the class of grand unified theories where the strong CP
problem is solved in the way discussed in this paper.

The author is indebted to G. Farrar for helpful and encouraging correspondence and
to A. Dolgov, I. Khriplovich, V. Kuzmin, M. Shaposhnikov, P. Tinyakov, and M. Vo-
loshin for helpful discussions. This work was supported in part by the Russian Fund for
Fundamental Research, Grant No. 96-02-17449a, and by the U.S. Civilian Research and
Development Foundation for Independent States of FSRDF, Award RP1-187.

@Mechanisms that may make invisible axion heavy enough are discussed in Ref. 8.

PNote that the soft terms consistent with PQ symmetry do not contain phases, which otherwise would be
different in the ordinary and mirror sectors.

9The effectived of ordinary strong interactions may acquire radiative corrections, but they aresmall.
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The production of coherent x radiation by 800-MeV electrons in a
target consisting of three 16m silicon crystals is investigated at the
Tomsk synchrotron. The target structure makes it possible to observe
from each crystal in turn, as the target is rotated, the radiation due to
the summation of parametric x radiati@XR) and the diffracted reso-
nance transition radiatio(DRTR) produced at the surfaces of the pre-
ceding crystals. The orientational dependence obtained shows that the
contribution of the DRTR increases with the number of the crystal in
the series, so that the angular density of the DRTR from the third
crystal is approximately 1.7 times higher than the density of the PXR.
© 1997 American Institute of Physids$0021-364(®7)00708-1

PACS numbers: 41.56h, 78.70—g

A new concept for the generation of coherent x rays by relativistic electrons in
complex periodic structures has been developed in a series of recent'Wbsksording
to this concept, narrowly directetht large angles to the axis of the electron bgam
quasimonochromatic x radiation is generated by passing electrons through composite
targets of the type “layered structure crystal” or assemblies of several thin, mutually
oriented crystals. Here, besides parametric x radidffotR), there appears an additional
contribution on account of the diffraction of the transition x radiation.

The well-studied electron PXR, generated in the Bragg direttginin a cone with
an angle of severay ! (y is the relativistic factor of an electrgnhas a spectral lin-
ewidth of less than 10% with a total yield of about POphotons per electron.

The resonance transition x radiatidRTXR) arising when an electron passes
through a layered targeis stronger than the PXR, and for several hundreds of thin foils
it can comprise several photons per electron. The energies of the emitted RTXR photons
range up tE =% w,y, wherew, is the plasma frequency of the medium and the spectral
bandwidth of the radiation is-50-80%, depending on the absorbing properties of the
radiator material. The RTXR photons are emitted into a cone with an angle of several
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FIG. 1. 3@ Experimental arrangement: RXTR — resonance transition x radiation, Bs — bremsstrahlung, TCT
— triple-crystal target, DRTR — diffracted transition radiation, PXR — parametric x radia@or— quan-
tometer. b Geometry of radiation generation in a triple-crystal target. I, 1l, and Ill — directions of the
reflections of the radiation emitted from the first, second, and third crystals, respectively.

¥~ 1 in the direction of motion of the electrons. The form of the spectrum and the cone
angle of the radiation can be varied by varying the foil thicknesses and the widths of the
gaps between the foils.

According to the proposed concept, the RTXR formed in an amorphous layered
structure is then diffracted by the crystallographic planes in the Bragg direction together
with the PXR. However, if the target consists of a collection of mutually oriented thin
crystals, then the RTXR formed by the surfaces of the crystals is also diffracted in the
subsequent crystals in the Bragg direction together with the PXR. Experiments performed
at the Tomsk and Tokyo synchrotrons showed that the new x-ray sources combine the
positive qualities of the RTXRhigh intensity and PXR(monochromaticity, large angles
of emission relative to the electron bearm addition, it was found that the radiation
yield from complex targets is much higher than the PXR yield from a crystal. The spectra
and orientational dependences of the radiation from the aforementioned complex targets
were measured, but the details of the photon emission from such structures were not
investigated.

In the present work, on account of the special construction of the triple-crystal
target, we were able to observe the formation of the total flux of coherent x radiation
(PXR + DRTR) as a function of the number of plates participating in the emission
(DRTR stands for diffracted resonance transition radiation

The experimental arrangement is displayed in Fig. 1a. A 800-MeV accelerated elec-
tron beam in the Tomsk synchrotron was directed onto an inner target. The main layered
crystalline target and a one-crystal target of equivalent thick@&gm) for measuring
the “pure” PXR were secured on a goniometric head, which could be moved vertically
S0 as to position the targets successively in the electron beam. The bremsstrahlung was
detected with a Gauss quantometer, the readings of which were used to normalize the
results of the measurements. The coherent radiation emitted from the crystal at the angle
0p=205=18°12 exited through the 20@sm thick beryllium window of the synchro-
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tron chamber and entered the detector. The detector consisted of H)Naray spec-
trometer with a 2-mm thick crystal. The energy resolution was equal to about 35% for
5Co (6.4 keV line and 16% for***Am (59.6 ke\j. The detection threshold was set at 7
keV. The beryllium entrance window of the detector was 40 mm in diameter and 200
pm thick. A 2-mm wide vertical slit collimator was placed in front of the detector. The
target—detector distance was equal to 458 cm, including 243 cm of air.

The main target consisted of three A6n thick silicon crystals separated by 147-
um gaps. The crystal plates were cut so that (20 crystallographic planes were
perpendicular to their surfaces. The target was fabricated at the Toshiba Corporation and
is described in detail in Ref. 7. The outer crystals of the target are disoriented relative to
the central crystal by 4.3 and 5.7 mrad in different directions. Three well-separated x-ray
reflections rays in the Bragg directiofsee Fig. 1k differing by twice the relative angle
of disorientation of the crystals, can be obtained by passing a narrow electron beam
through such a radiator at some angle to(@20) planes in the Laue geometry. The first
reflection peak from the first crystal is formed as a result of RXR are neglecting the
diffraction of the transition radiation produced at the entrance surface of this ¢rystal
Then the second reflection peak is due to PXR from the second crystal and diffraction of
the transition radiation produced at the surfaces of the first crystal. The third reflection
peak, in turn, is formed by PXR from the third crystal and DRTR from the two preceding
crystals. By measuring the characteristics of the reflections it is possible to draw infer-
ences about the process in which coherent x rays are genterated by relativistic electrons
passing through a complex crystal structure.

The experimental PXR spectrum obtained on an equivalent target in the Bragg
orientation®g =0.50 contains first- and second-order spectral peaks. The ratio of the
outputs of the PXR photons in the energy raitge-29-44 and 10-29 keV, correspond-
ing to the second and first spectral peaks, equals 0.13. The orientational dependences
(ODy) of the PXR photon yield in the indicated energy intervals were also measured on
an equivalent target.

The experimental OQidots of the yield of PXR+ DRTR photons E,=10-29
keV) from a triple-crystal target is displayed in Fig. 2. The OD obtained contains three
peaks — I, I, and Ill, which appear when the target crystals are placed, in turn, in the
Bragg positions. The three dashed curves show the partial contributions to the overall
pattern of the PXR formed in each crystal. The form of these curves was obtained by
analyzing the OD of the radiation measured on the equivalent target. The solid curve
shows the OD of the PXR vyield from a triple-crystal target as the sum of the above-
mentioned partial contributions, taking into account the photoabsorption in the radiator
material and the geometry of the radiator. The partial DRTR contributiomse with
dot9 to the total yield of the radiation were obtained by subtracting from the experimen-
tal OD (dotg the total OD of the PXRsolid curvs.

Figure 2 shows that the peaks in the OD of the partial DRTR yields from separate
crystals are much narrower than for the PXR yield. Their widths equal 1.25 and 4.75
mrad, respectively. Therefore, the DRTR is a much more narrowly directed source of x
rays than PXR. Furthermore, it follows from the figure that the DRTR vyield at the
maximum of the OD increases as the number of the crystal increases, so that the angular
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FIG. 2. Measured orientational dependefdets of the yield in a collimated detector of x rays generated by
800-MeV electrons in a triple-crystal target. Dashed curves — contributions to the OD due to PXR from three
crystals; solid curve — sum of the PXR contributions; two pe@did curve with dots— contributions due

to DRTR from the first crystalleft-hand peakand the second crystélight-hand peak

density of the DRTR from the third crystal is approximately 1.7 times higher than the
PXR density.

According to the theor§,the distribution of the resonance transition x radiation is
determined by the expression

0.5

= ————— 72_
Or E(litly) 7 I+,

ﬁwp 2
E

Y

wherel; andl, are, respectively, the thickness of the crystals and the width of the gaps
between them. It is important to note that expresgibnimplies that the angular distri-
bution of the RTXR and therefore also the DRTR can be regulated by varying the
parameters of the target, while the width of the angular distribution of the PXR is
determined solely by the characteristics of the cry’tal:

AO=((1+2) [y 2+ (hw,/E,)?]+(0©)2°5, (2)

Where(G)>ﬁqS is the mean-square angle of multiple scattering of the electrons in the target
materials f w,si=30 eV.

The radiation spectra measured as the triple-crystal target is turned successively by
angles corresponding to symmetric positions of the crystals are presented in Fig. 3. When
the first crystal is symmetric relative to the electron beam and deté8tagg orienta-
tion), the radiation spectrum is similar to the PXR spectrum. The ratio of the radiation
yields in the second and first spectral peaks equals 0.13. When the target is placed in a
position symmetric for the second crystal, this ratio becomes equal to 0.11 on account of
the contribution of the DRTR, for which the proportion of photon yields in the first and
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FIG. 3. Spectra of radiation emitted from a triple-crystal target at the centers of the reflections I, I, and IlI

(curvesl, 2, and3).

second spectral intervals is different, as observed in Ref. 2. In a position which is sym-
metric for the third crystal, when the DRTR contribution increases, the value obtained for
the ratio drops to 0.09.

In Fig. 4 the computed ODs of the PXR and DRTR yields are compared with
experiment. The calculations were performed in the kinematic approximation. Theoreti-
cal models for PXRand for DRTR taking account of the experimental conditions were

025

=

=

[~
|

Photon yield, arb. units

6,-6, /2, mrad

FIG. 4. Comparison of the experimentdbts and computed orientational dependences of the PXR from three
crystals(dashed curvgsthe DRTR from the second and third crystékft- and right-hand peaks, denoted by
the dotted curves and the sum of the PXR and DRTR contributions from all crystals taking account of
interference(solid curve.
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used in the calculations. The dashed curves show the partial yields of PXR from the three
crystals; the thin solid curves show the DRTR yields from the second and third crystals.

Comparing Figs. 4 and 2, it can be concluded that the computed ratio of the DRTR
and PXR yields does not correspond to the ratio obtained in the experiment, and the sum
of the yields does not describe the form of the experimental orientational dependence. We
conjectured that the anomalously high radiation yield in the experimental [2eakd3
is due to the interference of the DRTR and PXR. This interference was taken into account
in a model approximation — the square of the sum of the DRTR and PXR amplitudes
was calculated for the entire radiation cone, after which the geometry of the detector was
taken into account. The curve obtaingdick line in Fig. 4 is in much better agreement
with experiment, though the difference once again is quite large, especially for peak Ill.
To understand the observed defect, additional investigations are probably required.

The main results of the experiment are as follows.

1. The use of a novel triple-crystal target whose crystals are slightly disoriented with
respect to one another made it possible to observe the production of resonance transition
x radiation diffracted by a crystal as a function of the number of interfaces separating the
media participating in the generation of the RTXR.

2. The results confirm the results obtained in Refs. 2—4: When a layered structure, a
source of RTXR, is positioned in front of the crystal, an effective increase in the x-ray
yield is obtained at largefBragg angles with respect to the electron beam than in the
case of “pure” PXR.

3. The angular distribution of the DRTR is much narrower than that of the PXR and
can be regulated by varying the parameters of the layered structure positioned in front of
the crystal. As a consequence of the narrower angular distribution, the spectral DRTR
peaks will be more monochromatic than the PXR peaks. Moreover, it was shown that the
fraction of the contribution from the higher harmonics to the DRTR spectrum is much
smaller than in the PXR spectrum.

4. Analysis of the ratios of the DRTR and PXR contributions to the formation of the
orientational dependence of the radiation from a triple-crystal target shows that these
components can add together synergistically. That is, the resulting radiation is not simply
a sum of the DRTR and PXR, but rather it is the result of their interference. But this
question requires further, more detailed, investigations.
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Magnetic moment of type-ll superconductors near the
critical field H,., and the formation of metastable
states for Ginzburg—Landau parameter k<1
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The magnetic induction in cylindrical superconductor samples in mag-
netic fields close tdH, is found. It is shown that vortex-type meta-
stable states exist in a quite wide range of values of the Ginzburg—
Landau paramete<<1 corresponding to type-l superconductors.
© 1997 American Institute of Physids$0021-364(®7)00808-9

PACS numbers: 74.25.Ha, 74.60.Ec, 74.20.De

1. INTRODUCTION

The mixed state of type-Il superconductors was investigated in Ref. 1. However, in
calculating the magnetic field the author made an incorrect assumption, which, as it turns
out, is nonetheless justified provided that the Ginzburg—Landau paramésegreater
than and not close to 1. As a result, it was found that the mixed state does not exist for
x<1. Actually, however, a mixed state can be realized in a wide rangé, corre-
sponding to type-l superconductors, and the structure of the vortex lattice itself depends
on the value ofx.

2. SOLUTION OF THE GINZBURG-LANDAU EQUATION NEAR THE CRITI-
CAL FIELD H,,

The free energy s of the superconducting state in an external magnetic Figldan
be represented in the fofm

74(3)
167°T2

D
FS—Fszf dzr(—(l—T/TC)|A|2+;TT|&A|2+ |A|4
Cc

1
+§f d3r((VA)2—2Hg- (VXA)+H2), (1)

whereA is the vector potentialy_= d/dr —2ieA, and v=mpy/27? is the density of
states at the Fermi surface. The coefficiendepends on the electron transport mean free
pathl,, and equals

Ultr 8TTtI'
D =Dyt 7 Ddif:?; n=1-

1
( lﬁ( 1/2+ 47TT7'tr) — lﬂ(l/Z)) ,
ly=v- 7, (2
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wherev is the velocity of electrons at the Fermi surface af(a) is Euler'sy function.
Varying the free energyl) with respect toA and A, we obtain the Ginzburg—Landau
equations

;T—_:?Caz_AJr(l—T/TC)A— ;i(jl_)c|A|2A=0
L oxvxac], j= T as a*—ara A, 3
4 4T,
In a magnetic field
H=H02=ﬂ(l—T/TC), 4
meD
the linearized equatiofB) has a solution of the forfn
A=exp2ieHxy—eH(x—x;)?), (5
for arbitraryx,. The gauge
A=(0, Hx, 0) (6

was used in obtaining E@5). We shall seek solutions of E3) for Hy<H, such that
the physical quantitiefA|2, H(x,y), andj are periodic functions of the coordinates
andy. Let a; , be unit-cell vectors, i.e.,

|A(r+Na;+May)|?=|A(r)|2. (7)

From the condition that the current density be periodic we find

ax
é}“(ﬁ —2eA

wherel is a closed contour drawn along the edge of the unit cell amslthe phase of

the order parameter. Since the order parameter is a single-valued function of the coordi-
nates, Eq(8) leads to the condition of quantization of the magnetic f#ixhrough the

unit cell:

-dI=0, ®

aw
¢:€N’ N=12,.... 9

This exact relation greatly simplifies the search for a solution of the system of equations
3.

We seek in the following form a solution of Eq$3) in a magnetic field
Ho<Hg:

A:(O,BX, 0)+A1+A2+, A:A0+A1+A2+,
Ag=>, Cy exp(2ieBNxy—eB(x—Nx;)?), (10)
N

whereB is the magnetic induction inside the superconducBy(H(r))) and the vec-
tors A, possess two nonzero componetits2) and are proportional toH,— B). The
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quantities|A |2~ (H,— B)?*** and C3~ (H,— B). In what follows, we shall employ
the gauge dik=0. In this gauge all quantitie&, are periodic functions of the coordi-
nates. In the gauge employed in Ref. 1 the quantifigsre increasing functions of,
which presents additional difficulties in investigations of the system of equat®ns

It should be expected th@,|=|a,| in an isotropic superconductor. Lkf , be the
elementary reciprocal-lattice vectors. The order paranjétgrin this case can be rep-
resented as

|A|2:N Mz:,w Cnm exp (i(Nky+Mkp)-1)). D

For a triangular lattice with one flux quantum per cell we find

0,1); ky,= 1
(1<> fl(f ),

i
2\3eB¥=m; Cy=C, exp(— gNZ),

a
CNM=C331’4eXp(—inM——(N2+M2—NM) . (12
' V3
For a square lattice with one flux quantum per cell we obtain
k=200 k=210
1_X1(;)! 2_Xl(1)y
eHX=m; Cyn:1=Cnx=Co,
2
Cym= MN exp| — = (N2+M? ) 13
N,M \/E( ) p ( ) (

We also give an expression for the quantities characterizing a triangular lattice with two
flux quanta per cell:

( 1(01) o ( Xq (3,70,
\/§EHX§:W; Cn+1=Cn=0Co,
C231/4
Cnzk+1=0; Cnx=——F N7 exp | imK(N— K)—F(N2+4K2 2KN) |. (14

For the order parametéy, determined by expressidi0) the current density, can be
expressed in terms of the square modulhg/? as

o wevD
11527 7,

W’_ﬂx

J
o 1ol s
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and therefore Eq(3) for the magnetic fieldH,; assumes the for

a_aH_wzevDa_aAz 16
Iy ax ()=~ T W,—5| ol*. (16)

It follows from Eg.(16) that the magnetic fielt ,(r) inside the superconductor can
be represented as
m?evD

Hy(D)=—

(1802 =(|Aol*). (17)

since the vector potentidl; (VxXA;=H;) should remain bounded.

In contrast to Ref. 1, we shall assume that the indudBarannot be reconstructed
from Eq. (16), since in the thermodynamic limit the system of equati@Bshas an
enormous number of solutionseHR?>1 (R is the characteristic transverse size of the
cylinden. The free parameter is the area of the unit ¢elhgnetic inductiorB). There-
fore, the inductiorB should be determined from the condition that the free enékghas
a minimum with respect t® for a prescribed value of the external magnetic fidigl

d(Fs—Fp) _

B 0. (18

Ultimately, the impossibility of determining the magnetic induct®rirom Eg. (3)
for the vector potential is due to the flow of surface currents. The total magnetic moment
M is produced by both the volumattice) and surface currents. The volume current is
determined by the structure of the lattice and can be easily found. The contribution of the
surface currents leads to the formation of a large number of metastable states. The
condition (18) selects from among them the state that gives a minimum of the free
energy.

It follows from Egs.(1) and (10) that the free energy density-§—Fy)/V can be
represented as a power series kh.{— B)

1
(Fs—FywIV= g{(B_Ho)Z‘F P1(Hez—B)?+Py(Hea—B)3/Hep+ . . . ). (19

The coefficientsP, in Eq. (19) are determined by the type of vortex lattice and the
value of the parameter. To determine the coefficie@,, we shall employ the method of
eliminating secular terms in E@3).

The condition|A,|<|A,| can be satisfied, provided that the nonuniform part in the
linearized equatiort3) is orthogonal toA (see also Ref. )1 This condition yields the
following equation forCy:

7D o= B)(| A2
4—-|-C( c2— B){(| Ayl >_87T

7¢ 1 )
222 (180 + > (Arin =0, (20
C

where the vector potentidl; is determined by the expression
9?A, _
VXA]_:H]_ or _W:47T]1 (21)
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In Eq.(21) A, is a periodic function of the coordinates, and the magnetic Hglénd the
current densityj; are determined by Eq$17) and (15).

Using Eqgs.(15), (16), and(21), we find

. 1 2
<A1'Jl>:E<H1>' (22

From Egs.(17), (20), and(22) we find the following expression fdiAo|?)
27%eDT, H,—B

Ag|?y= : 23

169= 723 =612 23

wherek is the Ginzburg—Landau parameter ghds determined by the relation
(Al 1 [TUB)\Y? o
“{AH2 T 7%eD\ 2av | 49

where(x) is the Riemanry function.

The values of the coefficien® are given below for three types of lattices. These
values can be trivially found using Egd.2), (13), and(14):

B=1.15952— triangular lattice with one flux quantum;
B=1.18034— square lattice with one flux quantum;
B=1.33897 — triangular lattice with two flux quanta.

Now we can find the free enerdis in the vortex state. From Egél), (22), and(23)
we find
(HCZ_B)Z n (Hc2_B)3
B— 1) 2 8mH,,

K2

1
(Fs—Fn)/IV= %(B_Ho)z— +.... (25)

87TK2< B—
The coefficient?, in Eq. (25) is of the order of 1. We shall find its dependence on

x and the structure of the lattice elsewhere.

We also note that if the parameter>1 and not close to 1, then neH., the last
term in Eqg.(25) is small and can be dropped. In this case we find from(E§).

Ho—p= _ 2™ B 26
0T BA(1-1KD) (26)

Expressior(26) is identical to Abrikosov’s resuftHowever, asc — 1 the region of
applicability of formula(26) becomes narrower. Foe<1 the solution of Eq(17) by
Abrikosov’s method corresponds to a maximum and not a minimum of the free energy
(1). To obtain the minimum the third term in ER5) must be taken into account. Let

Z=H.—B. (27)
We find from Eqgs.(18) and (25)
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Z:

chﬂ(Kz_l) \/( chﬁ(KZ_l) 2 2Ho(Hea—Ho) 28)

T 3P,(11 B(2-1)) 3P,(11 B(2—1))) 3P,

We note that the correction to the free energy given by E2f.and(28) is always
negative at the point of the minimum. Similarly, the free endi@y is also negative on
the entire path oB from Hg up to the poinB,,;,. This means that “supercooling” — a
delay with a transition to the superconducting stateZ(l) — can occur only up to the
point He,<H. (H. is the thermodynamic critical field

The expression for the free energy given by formwas) and (28) exhibits a
nontrivial dependence on the parameterand 8. Therefore, it is necessary to calculate
P, in order to determine the type of lattice near the pairtl.
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Effect of impurities on the low-temperature behavior
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mixed state
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In the presence of zeros of the order parameter in an anisotropic super-
conductor, the combined effect of a magnetic field and impurities leads
to two different limiting magnetic-field dependences of the specific
heat. These dependences are studied both for Born scatterers and in the
unitary limit for several specific examples of anisotropic pairing. A
estimate is given for the crossover field. 97 American Institute of
Physics[S0021-364(®7)00908-0

PACS numbers: 74.60.Ec, 74.25.Bt, 74.62.Dh

The experimental study of the thermodynamic and transport properties of anisotro-
pic superconductors in magnetic fields yields important information about the existence
and locations of zeros of the order parameter on the Fermi surface, which is essential for
determining the symmetry of the superconducting state.

In the case of an anisotropic superconductor in a magnetic field the quasiparticle
density of states at the Fermi surface is nonzero for momentum directions near the zeros
of the order parametér8In a clean superconductor, in the case of a line of simple zeros
of the order parameter the density of states in the mixed state is proportion® to
which leads to the appearance of a characteristic magnetic-field-dependent term
CxTyH/Hg, in the specific heat.A dependence of this kind was recently observed
experimentally in YBCO-2

Impurities can also result in a nonzero density of states near the zeros of the order
parameter on the Fermi surfat@? For this reason, it is natural to expect competition
between the effect of impurities and a magnetic field on the behavior of the density of
states. The combined effect of a magnetic field and impurities on superconductivity in
isotropic superconductors was studied in Ref. 13. The present letter examines the effect
of impurities on the low-temperature behavior of the specific heat of superconductors
with anisotropic pairing in a mixed state. As will be shown below, in the presence of
zeros of the order parameter even a comparatively small amount of impurities can have a
large effect on the magnetic-field dependence of the thermodynamic characteristics of a
superconductor.
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We shall find the quasiparticle density of states at low temperatures for the vortex
phase in a fieldld<H,,, parallel to a high-symmetry crystallographic axis, at distances
£,<r<R from the axis of the vortex, wheie~ £3+H¢,/H is the distance between the
vortices(for the temperatures considered we &) = &) . In this range of distances the
modulus of the impurity-averaged order parameter is constant in space, to a high degree
of accuracy, and the magnetic-field-induced superfluid velocity varies quite slowly as a
function of the distance from a vortex. This makes it possible to use the well-known
expressions for the impurity-renormalized quasiparticle energgnd order parameter

A for a homogeneous superconductor. For isotropic impurity scattering, we have in the
Born approximation

S0t g(e), gl@)=2i75(w) < oveks > D)
w=w+—0(w), w)=2i2(w)= — — ,
27 V(@—vgk)? =K (ks )7

(2

. i B(ki,w)
(ki )=tk + 57|
X

(0—Vs-k{)>—|A(K{ ,@)|?

where is the relaxation time in the normal metal aqd. . )k, denotes an average over
all orientations of the Fermi momentukg .

In Egs. (1) and(2) the square root is defined so that the real part of the expression
being averaged in Eq1) is always nonnegativéspecifically, Reg(w)=0). This re-
quirement determines the rule for selecting the regular branch of the square root in
expressiongl) and (2).

The quasiparticle density of states Ng(w)=N(0)Reg(w), whereN(0) is the
density of states at the Fermi surface in a normal metal. The quasiparticle density of
states at the Fermi surface is important for low-temperature thermodynamic properties of
a superconductor. For this reason, we eet0 everywhere. Then Eq¢l) become

9(Q) iQ— vk
O=——, g(Q)= . =
V(i Q—vgk)?— A (K, Q)[2

)

27 !

K¢

wherei Q=w(w=0), =0, g(Q)=g(w=0), andA(k;,Q)=A(k;,w=0).
It follows from the conditions Rg({)=0 and( =0 that the corresponding branch

with a cut in the complex plane along the positive abscissa must be chosen for the

function \/z in the denominator in Eq23). Then the imaginary part of the functiofz is

always positive. The sign of the real part of this function is the same as the sign of

Im z=—2(vs-k¢) Q. (specifically, the real part of/z is an odd function of \s-k)).

Hence it follows that the imaginary part of the expression being averaged ifi3Eq.

vanishes after being averaged over all directionkpof As a result,g({1) is a real
function taking on nonnegative values.

Next, for this choice of the regular branch ¢ and with the condition Re<0
Q%+ Kk, Q)*> (vs k), (4)
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the real part of the function being averaged in Eg).is an analytic, even function of
(vs-ks). As a result, the integration over the directions of the Fermi momentum for
which the condition4) holds gives a contribution tg({2) for which the first term in its
expansion in powers of the superfluid velocity is proportionalgtoln the opposite case,
Rez>0, \z has different signs on the two edges of the cut and the function being
averaged in Eq(3) is found in the clean limit to depend dng-k;|. Thereforeg(Q)
acquires a contribution proportional to the modulus of the superfluid velocity. It is im-
portant that in contrast to expressi@l) the numerator in Eq(2) does not have a term
which is linear invg. As a result, terms linear im; do not arise in the description of the

combined effect of impurities and a magnetic field Dk, , Q).

If the order parameter of an anisotropic superconductor possesses zeros on the Fermi
surface(or is anomalously small in some regions of the Fermi sujfaiben a narrow
region of integration over momentum directions near the zeros gives the main contribu-
tion to the functiong(w), at least whenQ,vg-k;<Ao, whereZ0=ma>gr|K(kf,Q)|.
When the order parameter possesses zeros, the conditiapproximately reduces to the
inequality Q>|vs-k;|, which breaks down for small}, i.e., sufficiently low impurity
densities. Therefore two qualitatively different types of behavior of the quasiparticle
density of states as a function of the magnetic field and impurity density can be realized.
In the limiting case()>v,-k; the first term in the expansion of the density of states is
proportional tovi, while the term linear irvg dominates ifQQ <vg-K; .

Let us consider a superconducting phase in which the order parameter has a line of
zeros on the equator of a “spherical” Fermi surface, and near this line

|A(ke)|= Aol 0— /2. (5)

Furthermore, let the order parameter change sign on reflection in the equatorial plane:
A(7m—0)=—A(6). These conditions are satisfied, for example, by the polar phase
A(k;)=Aycosd and the superconducting phases ) for E;, andE,, pairing in a hex-
agonal superconductor. The last two phases are ofterf1/Séd explain the properties of

the heavy-fermion superconductor YPEor Q,vs-ki<<A, the contribution from a nar-

row region near such a line of zeros to the quantities under study dominates and makes it
possible to describe analytically, to logarithmic accuracy, the behavior of the density of
states in explicit form, if the magnetic field is oriented along an axis of high symmetry.
In this case there is no impurity renormalization of the order parameter.

Taking into account only the contribution f{{2) from a narrow region near the
line of zeros of the order parameter, we substitute expregsjppmto Eqg. (3) and we
confine the integration over orientations of the momentum on the Fermi surface to inte-
gration over co8 from zero to some valué of the order of 1. This is justified if
Q,vs-ki<<Ag. As a result, we obtain

A
1+( A ) 1

4AA,
Q[V1+ (v k/Q)2+1])°

In the limiting case of no magnetic field there is no need to cut off the integration over the
angled. Since the coefficienA is of the order of 1 and appears only in the argument of
the logarithmic function, we can see that the approximation made is quite accurate.

g(Q)= 9 +—In (6)
Ay Ay

640 JETP Lett., Vol. 65, No. 8, 25 April 1997 Barash ef al. 640



To take impurity scattering into account beyond the Born approximation, the rela-
tion (6) must be studied together with the following equatieee, for example, Refs. 12
and 9:

g()
cos 8y+ g2 (O)sint sy’

whered, is the phase of impurity scattering in a normal metal, Erel’,, sir? &. In the
Born approximation we havE=1/27, and in the unitary limifl’=I",=n,,/wN(0).

Q=T (7)

In a “dirty” superconductor {}>v,-k;) we find from Eq.(6)

O (2AAg) | (vekf)
g<m~A—Oln( o ) TWOR ®
while for sufficiently high purityQ <vs- ks we have
Q Vg- kf + Q 4AAO 9
= T8 ke ©

From Eqs(7) and(8) we find in the Born approximationsg<<1) for the density of
states in a “dirty” superconductor

—27A (VS' kf)2
NS(VS):N(O)RE g(Q)%N(O)ZTQ%4AN(O)TAOe o 1+ m , (10)
and in the unitary limit §o— /2)
1
Ns(Vs)~Nsy(Vs=0)| 1+ m(Vs'kf)z)- (11

HereNg (vs=0) is the density of states in the unitary limit in the absence of a magnetic
field. Actually, this quantity is nonzero for any arrangement of the line of zgratsonly
along the equatdron the Fermi surfacE-*2

In a “clean” superconductorQ <vs-k;), we find from Eq.(9) in the Born approxi-
mation

Ne(Ve) = N(O)Re g(02) ~N(0) 27~ N(0) =K1 1.4 ~ L[ A0 12
(Vs =N(OReg(2)~N(0)2r0~N(0) = 1+ 7in| T, (12)
while in the unitary limit we have
B NI, vs~kf[ I'yAg 4AA,
Ng(Vs)=N(0O)Reg(Q)=~ Q ~N(0) A [1+ AL n voke) | (13

The functionNg(vs) for the polar phaseé\ (k;)=A,cosd and the superconducting
phases (1) for E;4 andE,, pairing in a hexagonal superconductor is constructed in Fig.
1. The functions A (k;)|=Aqcosd sind and |A(ks)|=A,cosd sirP, respectively, were
chosen as the basis functions in the last two cases. The three examples under discussion
were studied both in the case when the Born approximation is applicable and in the case
when scattering by impurities must be described in the unitary [fioitl" ,=0.01A, and
I',=0.1Ap). In the scale employed in Fig. 1, the “dirty” limif)>vg-k; in the Born
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FIG. 1. Ng(vs) for the polar phasédotted ling and the phases (},E4 (dashed lingandE,, (solid line) in
a hexagonal superconductor. The three families of curves from bottom to top correspond to Born scattering and
the unitary limit withI'=0.01A, andI"'=0.1A,,.

approximation is realized for indistinguishably small valuesvgf(see also Eq(10),

where we can set approximately, for exampl&,=5). The functionNg(vs) in the Born
approximation reflects, to within this accuracy, only the behavior of a “clean” supercon-
ductor. In agreement with Eq12), in the Born approximation with sufficiently small
values ofvg- ki /A we haveNg(vs) =N(0)vs- ks /A for all three types of pairing. As the
values ofvg- ki /A increase, the analytical results obtained above become inapplicable
even for the polar phase, since under these conditions a wide region of momentum
directions, and not only a narrow interval of these directions near the line of zeros, now
contributes to the formation of the density of states. Eqy and E,, pairings, as

Vs-Ki /A increases, the contribution of the zeros of the order parameter which are lo-
cated at the poles of the Fermi surface begin to make a very large contribution to the
density of states. This contribution increases the density of states compared with the case
of a polar phase, where there are no such points. The density of states in the presence of
second-order zeros is higher than in the case of first-order zeros. These factors determine
the relative positions of the curves under discussion. As one can see from Fig. 1 and as
a direct calculation confirms, the density of states in the Born approximation in a
“clean” superconductor with the order paramete¥(k;)|=A,cosésin @ is a linear
function of vg (Ng(vs)/N(0)=vs-ki/Ap) all the way up to valuesg-k;/Ayg=1, where

the derivative oNg changes abruptly to zero. In the presence of scattering in the unitary
limit this dependence changes appreciably with increasing impurity density as a result of
the high value of Ng,(0) (=0.2IN(0) for I';=0.01A, and ~0.53\(0) for
I',=0.1A) and the smearing of the jump in the derivative.
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FIG. 2. Ng(H) for superconducting phases in a hexagonal superconductor in the unitary linhit=for01A
and'=0.1A,.

Spatial averaging of the main terh(0)vs- k¢ /A, describing the local density of
states ¥¢(r)=1/2mr) in the case of quite clean superconductors, over the vortex phase
(é€0<<kr<R) gives, as is well known, the expressibiy(H)=KN(0)H/H.,, where the
coefficientK is of the order of 1(this coefficient is calculated in Ref. 16This behavior
of the average density of stateNg(H) occurs, generally speaking, in fields
H* <H<H,,, whereH* is the crossover field. Under the conditih<H*, impurities
play a large role in the formation of the average density of states. On averaging the
density of states over the vortex phase in a “dirty” superconductor in the unitary limit
(11) we find

Ns(H)=Ng,0) 1+DHiIn<E)), (19
c2

H

where D=aA /321", (a is a coefficient of the order of)1 We have for the low-
temperature specific he@/ TxNg(H)+BN(0)H/H,. The last term is due to the con-
tribution of the vortex coresR is a coefficient of the order of)1A function of the form
(14) was recently discussed in Ref. 3.

The functionsNg(H) for the three cases of anisotropic pairing discussed above are
displayed in Fig. 2 for the unitary limit witl",=0.1A, and I"';=0.01A,. Since the
averaging is performed under the assumption Ratéo(H,/H)Y%> &, only fields in
the rangeH ;<H=<0.04H, are studied. To estimaté* in the unitary limit, we obtain
H*/HCZZ(ZFUN(O)/AoNs)Z, H*"“O.OJ.HCZ f0r Fu:OO:lAO and H*~0.1H02 fOI’
Fu:O.le.
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In closing, let us state once again the main result: In a mixed state of superconduc-
tors with lines of zeros in the excitation spectrum, the square-root dependence of the
density of states on the magnetic field can change to a dependence of thd forkh if
the impurity density is sufficiently high.
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Effect of spin relaxation on the polarization of excitonic
luminescence in disordered systems
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The kinetics of localized excitons in systems with disorder is studied
with allowance for the fine structure of the excitonic state and for spin
relaxation processes. The exciton distribution function, formed as a
result of the competition between radiative and nonradiative recombi-
nation, spin relaxation, and intercenter transitions with an exponentially
wide scatter in transition times, is calculated. 1®97 American Insti-
tute of Physics[S0021-364(97)01008-4

PACS numbers: 71.55.Jv, 71.35.Cc, 78.60.Ya, 76.60.Es, 77.22.Ej

Low-temperature luminescence in quantum-well structures is due to radiative re-
combination of excitons localized at nonuniformities of the heterointerfaces or at com-
position fluctuations. Therefore the presence of disorder in a system is directly reflected,
for example, in the inhomogeneous width of the excitonic luminescence line and in the
Stokes shift of the line relative to the excitonic absorption peak. This letter examines the
influence of the exciton fine structure and the effect of spin relaxation processes on the
behavior of such a system in an external magnetic field. The photoluminescence spectra
of localized excitons are calculated, opening up additional possibilities for characterizing
structures with nonuniformities by polarized luminescence methods.

BALANCE EQUATIONS IN HOPPING RELAXATION

If the arrival at all localization centers is identical, then in the absence of energy
relaxation the luminescence spectrum has the same form as the density of localized states
g(e).1? For convenience, here and below, the localization energf/a state is used as
the argument. The fine structure of the state for each independent localization center can
be taken into account, just as for excitons in an ideal systms, for example, Ref.)3

In the contrary case, the excitonic distribution forms as a result of competition
between recombination processeadiative and nonradiatiye&nd spin and energy relax-
ation processes. Energy relaxation results in transitions of an exciton between atates
low temperature — with an increase in the localization enerlyy disordered systems
these processes are characterized by a substantial scatter in the times. For example, the
rate of intercenter tunneling transitions is determined by the overlap of the states and
therefore it is a rapidly decreasirgxponential function of the distance between the
centers' In this case, from among all the localized states one can distinguish those from
which departure due to energy relaxation is inefficient. The rate of transfer into other
states is determined by the local configuration of the centers. The ratio of the total
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recombination rate in a given excitonic state and the rate of departure into other states
makes it possible to characterize the state as “recombining” or “relaxing.” The density
g* (e) of the recombining states must be calculated in a specific model.

As a model system of the tail of localized states we shall consider a collection of
localization centers distributed randomly in space. For simplicity, we confine our atten-
tion to energy relaxation in the approximation of hops to a nearest neigfiborthis
approximation the excitonic states can be classified according to the localization energy
e and the distance to the nearest accessible center. Neglecting, in accordance with the
approximation chosen, the dependence of the rate of intercenter transitions on the local-
ization energy of the initial and final states, we obtain

g*(e)=g(e)exd —p(e)V], P(6)=fmd6’9(6')- D)

Herep(e) is the density of localization centers with energly> e, andV is the volume

of the region in which the absence of a nearest neighbor dictates whether the state is a
recombining state. For example, for isotropic two-dimensional syskmy= mr?, the

area of a circle of radius.

With allowance for the electron spis=*1/2 and the angular momentum of a
heavy holej=+3/2, the bottom excitonic statel—hhl(1s) is fourfold degenerate.
Further, excitonic states with the projection of the angular momersttij= +2, +1,

—1, and —2 on the growth axis of the structure are enumerated successively by the
indicesm=1, 2, 3, and 4.

Assuming that the rate of hole spin relaxation is higher than that of the electron spin
relaxation(see, for example, Ref)pwe take into account only the flips of the hole spins.
Then the spin relaxation processes are associated with the sublevels 1,3 and 2,4 of the
excitonic quartet. Depending on the type of semiconductors in the heterostructure, the
g factor of the electron and hole in the exciton can be positive or negafiee definite-
ness, we choosig.|<g;, (the case typical for GaAs/AlGaAs structuyeBr a magnetic
field such thai\ .= uggnB>kgT this results in thermalization of the holes in the bottom
Zeeman sublevel. Here the transitions>B and 2—4 are the only important processes
in the spin-flip problem.

The densityg},(e) of recombining localized states is related with the sizes of the
regionV,,=V(r,,) by the relation(1), wherer,, ..., r, are determined by the rates of
departure from the sublevels of the quartet

op(r)=wptos, op(fr)=oto,tos, op(r3)=o+tw,, onr)=w,.

)

Here w,(w,) is the radiative(nonradiative recombination rate of an exciton amndg,(r)
determines the intercenter transition rate. We note that hole spin relaxationJéte
included in the total recombination rate in the quartet states, since when the hole spin
flips, the exciton departs from the corresponding sublevel. So, the degfsft) of
recombining states is different for different sublevels of a quartet.
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Neglecting the spin relaxation processes, the following set of integral equations can
be obtained for the average arrivB},,(e) in an excitonic sublevein of a state with
localization energye in the stationary state in the case of low pump intensities:

) ¢, 9(e)—gn(e)

I'n(e)=T} (6)+f0d6 —p(e')
Herel”ﬁr?)(e) is the arrival due to localization of free excitons or direct resonance gen-
eration of localized excitons. For sublevels 3 and 4, in taking into account the hole spin
relaxation it is also necessary to take into account the arrival from sublevels 1 and 2,
respectively. For the arrival-+3 of interest to us below, this is most easily done if
;> ws. In this case an exciton in a recombining state., with a distance to the nearest
neighborr >r,) is known to be in a recombining state-r ;>r 5 after the hole spin flips.
Therefore further energy relaxation of such an exciton to sublevel 3 is impossible. Thus
the transition -3 does not changE(go)(e), but the additional contribution to the lumi-
nescence from excitonic sublevel 3 due to flipping of the hole spin in the exciton must be
taken into account. v, <wg, then after the hole spin flips the localized exciton can
continue to hop along the system of localization centers. This “couples” equaf®ns
and the resulting closed system of integral equations must be solved by numerical meth-
ods.

I'(€). (3

POLARIZATION LUMINESCENCE IN A MAGNETIC FIELD

Assuming the excitation to be nonresonant, we shall neglect the difference of the
capture rates of excitons to states with different localization energies.l‘l’ﬂﬂédoes not
depend one, and the luminescence intensities of an optically active doubtet2, 3
equal, respectively,

1= o oA, (4
()= g o P+ il

where
ﬂ(e)sg;(e)rm(e)=p<o>r<n?>iﬁ—gexp{—p<e>vm+Ei[—p<e>VmJ

—Ei[=p(0)Vnl},

and Eik) is the exponential integral function. The second termldfe) takes into
account the above-described contribution to the luminescence of excitons arriving at
sublevel 3 upon a flip of the hole spin.

With allowance for the Zeeman splitting of the states of the radiation doublet
A=pug(g9,—9e) B, the degree of circular polarization of the luminescence is
(et A2)—13(e—A/2)

(et A2)+15(e—Al2)°

©)

€
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FIG. 1. g Polarization of the luminescence of the tail of localized states in a magnetic field. The results of exact
and approximate calculations of the circular polarization are shown by the dashed and dotted lines, respectively.
The luminescence spectradi™ ando(~) polarizations are shown by the solid line.@ontributions of the
Zeeman splitting of the radiation double®() and spin relaxation processeB¢f to the degree of circular
polarization of the luminescence.

In moderately strong magnetic fields, such that the splittings much less than the
characteristic localization energies, for a low spin relaxation rate<€ w,) and the same
rate of arrival in all sublevelsf(ﬁ?)zl“(o)), the expression foP(e€) can be expanded in
a power series i and wg:

P(e)=Pa(e)A+Py(€)ws,

g(e) 1d

- g(e)
Pale)=5 g lreVs—e PVs]4 2 in €

: (6)

p(e)
53 _ _ d(!)h -1
- - = _a-plelV p(0)Vz7| =&
O e e A e s v o I
1 FHe)
20, F3(€)’

where 83=(dV/dr)r:rS. We underscore the fact that here we have derived universal
relations valid for arbitrary functiong(e) and w,(r).

DISCUSSION

The solid lines in Fig. 1a show the luminescence spectralil polarization cal-
culated on the basis of the above model according to Et)swith an exponential
localization-energy dependence of the excitonic density of states and a tunneling mecha-
nism of intercenter transitions:
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gle)=goe 70, wy(r)=wpe "3, (7)

whereg, specifies the total density of localized stap€8)=gye, anda is determined by

the localization radius of the exciton. The calculation was performed for a two-
dimensional system with the following set of parametersi’goe=0.1, w,=w,,
ws=0.10,, 02=3-100,, andA=0.2¢,.

The luminescence contours are displaced with respect to one another on account of
the Zeeman splitting of the radiation doublet. The integratéd-polarization signal is
stronger than the{")-polarization signal because of the hole spin relaxation. The polar-
ization of the luminescence of the localized excitons is shown in Fig. 1 by the dashed
line. The computational results obtained with the approximate forii@lare shown by
the dotted line. For the chosen parameter set a discrepancy between the results of the
exact and approximate calculations is observed only near the mobility threshold, where
the degree of circular polarization reaches high valies,1.

The curves in Fig. 1 demonstrate the relative extent to which the degree of circular
polarization of the luminescence is affected by Zeeman splittihg @nd spin relaxation
processesH,).

The relaxation of localized excitons in a magnetic field is determined by the relative
sizes of three energy scales €5, Ay, andkgT — and requires a separate analysis of
different limiting cases. For example, at temperatgE< ¢, there is no need to take
account of hops accompanied by a decrease of the localization energy or delocalization of
the exciton. For typical values @f, of the order of several meV, liquid-helium tempera-
tures turn out to be low. However, the inequalky>kgT can be satisfied only in strong
magnetic fields or in heterostructures with lamgedactors. In the opposite case, both
direct and inverse hole transitions between Zeeman sublevels must be taken into account.
Relating the rates of inverseo{) and direct (vs) transitions by the phenomenological
relation o = we” 2" 8T we obtain in the limit of a low spin relaxation rate,<w,

P(T)=Pg(1—e 4n'ksT),

Let us also point out a possible additional effect of external magnetic fields. In the case
of nonresonance excitation of electron—hole pairs with a substantial density, the prob-
ability that an electron binds with its own holewvin exciton) is negligibly small. This
means that random electrons and holes bind to form an exciton, i.e., both the radiative
and nonradiative states of an excitonic quartet are filled. An external magnetic field
impedes carrier motion and effectively confines carriers near the point of production of
the electron—hole pair, as a result of which the number of twin excitons increases and the
radiation doublet is predominantly filled. This theory can be extended to the case of
selective generation of an exciton on the sublevels of a quartet.

We note that in Ref. 8, in characterizing the disordered solid substitution solutions
GaSeS, an analysis was made of the polarized luminescence spectra in a magnetic field in
the Voigt geometry. Spin relaxation processes were neglected, and the polarization was
due to mixing of the states of an excitonic triplet by the magnetic field.

The polarized luminescence of localized excitons in single crystals of the solid
solution Cd$_,S, in a magnetic field was recently investigated experimentally in Ref. 9.
A spectral change in the sign of the circular polarization was observed at the short-
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wavelength edge of the emission band. The fact that the positions of zero polarization and
maximum luminescence do not coincide with one another is interpreted in Ref. 9 quali-

tatively in terms of the thermalization of excitons. In the present letter a systematic

microscopic theory explaining this difference was constructed. A comparison with the

calculations performed in the proposed model can be used for characterization of the
samples, e.g., for determining the Urbach parameters of the tail of localized states, the
spin relaxation rates, and tlgefactors of electrons and holes.

CONCLUSIONS

In this letter we have examined the kinetics of excitons in the tail of localized states
of a disordered system in an external magnetic field in the Faraday geometry. We inves-
tigated the effect of energy and spin relaxation processes on the polarized luminescence
spectra of localized excitons. The spectral dependence of the luminescence signals was
obtained analytically for a model system in the approximation of hops between nearest
neighbors.
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V. |. Lavrent'yev and A. D. Pogrebnyak
Sumy Institute of Surface Modificati®h244030 Sumy, Ukraine

R. Sandrik
Oxford University, OX1 3NP Oxford, UK

(Submitted 12 March 1997
Pis'ma Zh. Ksp. Teor. Fiz65, No. 8, 618—62225 April 1997

The distribution of vacancy defects in the surface layera-&fe after
irradiation with a high-current pulsed electron beam is studied experi-
mentally by unique nuclear-physical methods — low-energy positron
annihilation, Rutherford backscatterindRBS), and proton-induced
x-ray emission(PIXE). Regions with low local density, which are
sources of crater formation on the surface of the irradiated sample, are
observed by scanning a proton microbeam. Positron lifetime measure-
ments reveal that as the electron beam power increases, nonequilibrium
vacancies tend to be captured by carbon impurity atoms.1987
American Institute of Physic§S0021-364(®7)01108-7

PACS numbers: 61.80.Fe, 61.72.Ji, 78.70.Bj

1. The interaction of high-density pulsed particle bedipisotons, ions, electrops
with matter produces substantial changes in the properties of the surface'1dyers
through a combination of energy absorption mechanisms. The absorption processes in
such interactions generate high densities of faamd linea? defects. Reliable data on
the defects produced by pulsed irradiation are required for studying the nature of the
absorption mechanisms. At present these mechanisms have not been studied in detalil
because of the limited possibilities of the experimental methods for studyingthinihk-
ness ranging from several nanometers up to several micromsteface layers with a
nonuniform depth distribution of the defedts.

In the present work we employed a combination of modern nuclear-physical meth-
ods to study the characteristic features of the defect structure produced in the surface
layers of a-Fe by irradiation with a pulsed low-energy high-current electron bézn
HCEB).

2. Annealeda-Fe samples with an initial grain size of 2-3 mm were used in the
experiment. The total impurity content did not exceed 0.01 wt.% and the initial disloca-
tion density was less than 1@m 2. The samples were irradiated in a Nadezhda-2
electron sourcewith average electron energy of about 20 keV, pulse duratisi®.8
us, and deposited energy densityper pulse from 1.0 to 5.3 J/émThe working vacuum
was equal to 10* Pa. The vacancy subsystem of the defect structure was studied by the
low-energy positron beam method with positron energy from 0.2 to 30 K&¥nto
University, Italy)’ by measuring the lifetime-, and Doppler broadening parametgof
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FIG. 1. S parameter of the Doppler broadening of the annihilation peak at 0.51 MeV versus the positron beam
energy(layer depth for a-Fe: 1 — initial state;2 — after irradiation with a LEHCEB withw=2.5 J/cnj,
7=0.8 us; 3 — average irradiation with a LEHCEB witw=4.2 J/cni, 7=0.8 us.

the annihilation peakDBAP).2 A ?>Na(e*,y) positron source with a measurement ac-
tivity of 12 xCi in a Mylar packet was used to measure the positron lifetime. The lifetime
of the source was described by two componenis: 250 ns,l;=6.2% andr,=450 ns,
I,=2.5%. A29Bi source was used for calibration. A qualitative analysis of the elemental
distribution over the surface of the sample was performed using colored maps with
regions ranging in size from 160100 up to 250& 2500 wm, obtained by the RBS and
PIXE methods by scanning a 3-MeV proton microbe@mford University. The micro-

beam current was equal to 100 nA and the beam diameter was less than
1pm.

3. Computer analysis of the time spectra of the positrons made it possible to deter-
mine the quantitative characteristics of the annihilating positrons in the experimental
samples: the lifetime, and the intensity,, of the annihilation photongn relative units.

For example, fora-Fe samples irradiated with an electron beam with energy density
w=3.3 J/cns, the positron time spectrum has two componentg:=108 ns,l1,=67%

and 7,,=195 ns,1,,=33%. Increasing the energy density of the electron beam to
w=4.2 Jicm changes the parameters of the positrons as followg= 108 ns,
l1,=72.5% andr,,=165 ns,| ,,=27.5%.

Figure 1 displays the energy spectra of the param$tef the DBAP of a-Fe
samples before and after one shot of an electron beam with different energy densities
w. Actually, these dependences show the density distribution of vacancy defects over the
depth beneath the surface. The results displayed in Fig. 1 attest to an increase in the
vacancy content over the entire extent of the profile investigatedo 1020 nmy, starting
at 20 nm. Increasing the energy density introduced by the electron beam in the interval
1.0-4.5 J/crh increases thé& parameter for the entire experimental range of positron
energies. Asw is further increased up to 5.2 J/énthe density of the vacancy defects
(S parameterdecreases, especially in the surface layapsto 400 nn.

The RBS and PIXE investigations of the distribution of the elemental composition
of the surface ofz-Fe samples irradiated at low energy densitiasup to 3.5 J/crf),
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FIG. 2. PIXE (a) and RBS(b) maps, obtained for the distribution of the elements by scanning a proton
microbeam, from 2508 2500 xwm regions on the surface of anFe sample irradiated with a LEHCEB with
w=2.0 J/cnd: a — Fe; b — C; ¢ —diagram of the surface distribution of Fe, showing a clearer image of the
map a.

performed by scanning a proton microbeam, showed the presence of a carbon impurity
distributed comparatively uniformly with average density 10—15 at.% in the investigated
regions(Fig. 2b. No other impurities were observed in these experiments. However,
characteristic “shadings” are observed on the color maps showing the iron distribution;
these shadings define an apparently circular region of the surface about 2000 nm in size
(Fig. 2a. The diagram presented in Fig. 2c exhibits a sharper black-and-white image of
the observed iron distribution.

4. The initial depth profile of the energy absorbed in the pulsed irradiation of the
metal surface by a 20-keV electron beam is a Gaussian with a maximum at a depth of
about 1um.! Therefore if the energy density deposited in the sample is high enough,
melting starts in the subsurface layers. Calculations performed by solving numerically a
one-dimensional heat conduction equation fo#e irradiated with a 20-keV pulsed
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electron beantone pulser=0.8 us) show that asv increases from 2.3 to 5.2 J/énthe
thickness and lifetime of the melted layer increase in the range 0.7+2.%nd 0.5-3
us, respectively. The surface layer ofi-Fe cools at a rate of B0° K/s and the crys-
tallization front moves with a velocity from 2 to 5 m/s, depending on the cooling time
and the depth of the layér.

5. The results of a modeling of the melting of the surface layera-6fe under a
pulsed electron beam show that for energy densitidsss than 3 J/chthere is rapid
melting and quenching of a subsurface layer located at a depth of approximately
1 wm. At such high quenching rates {(80° K/s) a high density of nonequilibrium
vacancies formsup to 10 3; Ref. 4, and these are detected by the positron annihilation
method. The component of the positron lifetimg,=108 ns, obtained by irradiating
a-Fe (w=23.3 J/icnf), corresponds to the lattice of the defect-free iron crystehe
second component,,=195 ns is close to the lifetime of a positron at a divacafcy.
Therefore, the nonequilibrium vacancies formed with low energy densitied the
electron beam mainly combine to form divacancies. The maximum density of divacancies
initially lies at a depth of about L.m, corresponding to the maximum of the absorbed
energy. As heat is redistributed under the influence of temperature gradients, the layers of
material lying closer to the surface are heated more rapidly because the temperature in the
surface layers is increasing at a higher rate than the temperature is decreasing into the
interior of the samplé'.2 As a result, most of the nonequilibrium vacancidacancies
migrate toward the surface. The easiest vacancy migration paths are dislocations and
grain boundaries. This should result in the accumulation of vacancies near one- and
two-dimensional defects in the surface layers of the sample. Therefore, the local density
of the material should decrease near such defects. This phenomena is observed in the
investigation of the surface distribution of the elements mBe sample irradiated with
an electron beam with low energy (up to 3 J/cri), for which the maps of the iron
distribution along the boundary of a grain-sized region exhibit shadings indicating a
decrease in the local density of the material at these locafigs 2¢. The fact that
nonequilibrium vacancies migrate toward the surface is also conistent with the high
values of theS parameter in the surface layers of the mate(ffad. 1). Evidently, these
regions with a low local density are the sources of cratering on the surface of material
irradiated with a LEHCEB at high energy densitfés?

The change in the second component of the positron lifetimg e 165 ns as the
LEHCEB energy density increases wo=4.2 J/cn? shows that the nonequilibrium va-
cancies join together to form “vacancy—carbon atom” complekasthis value ofw the
carbon density ine-Fe increases substantially after the action of the LEHCEB. Carbon
enters the surface layers of the sample from the residual vapors in the vacuum chamber
under the action of an intense electron beam even at low energy densities; this is illus-
trated by the results of the analysis of the elemental composition of the s(iFigcb).
Carbon migrates into the material under the action of the deformation wave generated by
the LEHCEB; this determines the extended spatial distribution of the “carbon—vacancy”
complexes and the high values of tBgarameter in deeper layeiSig. 1). Some of the
vacancies, as a result of redistributions, annihilate with interstitial atoms, and in conse-
quence the intensity of the second comporigptdecreases as increases. Furthermore,
the decrease iy, in the latter case could be due to the formation of complexes consist-
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ing of a vacancy plus two or three carbon atoms as a result of an increase in the carbon
concentration. The binding energy of a positron with a vacancy decreases sharply in such
complexes, since the addition of carbon in “vacancy—carbon atom” complexes lessens
the ability of a positron to be localized in the states formed.

In summary, in the present work the evolution of vacancy defects in the surface
layers ofa-Fe after irradiation with a LEHCEB was studied by nuclear-physical methods
(RBS, PIXE, low-energy positron annihilatipnlt was shown that as a result of the
absorption of the energy deposited in the sample by the LEHCEB, regions with a low
local density, in which the nonequilibrium vacancies displaced by the heat front from the
quenched subsurface layer are concentrated, form on the surface of the sample near the
boundary of an initial grain of the material. As the energy density in the electron beam
increases, these regions can become sources of cratering. At the same time, as the carbon
content increases, the nonequilibrium vacancies form “vacancy—carbon atom” com-
plexes.

We thank our colleagues at Trento University for assisting in the positron annihila-
tion experiments as well as Dr. G. W. Grime for financial support of the experiments
performed at Oxford. This work is supported in part by the Ukrainian State Committee on
Science and Technology under Projects Nos. 07.05.04/73-93 and 07.02.02/035-92.
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Exciton—exciton collisions and conversion of interwell
excitons in GaAs/AlGaAs superlattices
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The ratio of the densities of intra- and interwell excitons in a symmetric
system of coupled quantum well— a superlattice based on a
GaAs/AlGaAs heterostructure — is investigated over a wide range of
optical excitation power densities. Conversion of interwell excitons into
intrawell excitons as a result of exciton—exciton collisions is observed
at high exciton densities. Direct evidence for such a conversion mecha-
nism is the square-root dependence of the interwell exciton density on
the optical excitation level. The decrease in the lifetime of interwell
excitons with increasing excitation density, as measured directly by
time-resolved spectroscopy methods, confirms the explanation pro-
posed for the effect. @€1997 American Institute of Physics.
[S0021-364(97)01208-3

PACS numbers: 71.35.Gg, 78.4p

1. Excitonic states in semiconductor superlatti(®lss) remain a subject of scientific
interest due to the importance of the influence of excitonic effects on the carrier energy
spectrum in such systems. The overlapping of the wave functions of the size-quantum
states corresponding to neighboring wells in semiconductor SLs leads to the appearance
of coupled excitonic states in which electrons and holes are spatially separated and lie in
different quantum well$-% Such states are called interwell excitons. Interwell excitons
play an important role in the description of the optical and transport properties of semi-
conductor SLs, specifically, they determine the spectrum of optical transitions in the case
of Wannier—Stark quantization of the carriers in an axial electric fieldnterwell ex-
citonic states are also of interest because of the experimental discovery of Bloch oscil-
lations and the electromagnetic radiation associated with fifem.

Interwell excitons can also exist in symmetrically coupled quantum systems: double
quantum wells and superlatticE$®-%n the latter case the interwell excitons are similar
to Wannier—Stark excitons in a superlattice with inclined bands, but in the symmetric
case localization is of a Coulomb origin. In this situation the width of an excitonic
miniband is much smaller than that of the corresponding electron and hole minibands.

In the present work we used time-resolved optical spectroscopy to study the pro-
cesses that affect the lifetimes of interwell excitons in a symmetric system of coupled
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FIG. 1. PL spectrun{solid line) and fragment of the PL excitation spectrydotted ling of excitons with
heavy holes. Inset: Arrangement of the experimental structure.

quantum wells. We discovered that the luminescence of interwell excitons is quenched
with increasing density because the interwell excitons are converted into intrawell exci-
tons as a result of exciton—exciton collisions.

2. We investigated a superlattice based on a GaAs®@éd,-As heterostructure
grown by molecular-beam epitaxy. The superlattice consisted of 20 symmetrically
coupled GaAs wells, 80 A wide, with ALGa, -As barriers, 50 A wide, between them. It
was shown previously on the basis of the luminescence excitation spectra that close to
optimal conditions for observing interwell excitons are realized in such strucftés.
Specifically, it was that the oscillator strength of an interwell exciton is about #0the
corresponding quantity for an intrawell exciton.

The photoluminescend®L) spectra were studied as a function of the power density
of continuous-wavéHe—Ne laserfiw=1.959 eV} and pulsedpicosecond laser system,
hw=2.033 eV excitation. A optical waveguide technique was used to excite and collect
the PL signal. The PL signal was detected by the time-correlated photon counting
method, which made it possible to detect both the luminescence kinetics and the PL
spectra with a definite time deldgime resolution 0.3 ns including the time-integrated
spectra.

3. Figure 1 displays the PL spectruisolid line) and a fragment of the PL excitation
spectrum(dotted curve of excitons with heavy holes. The strongest line in the spectrum
is D(1sHH) — a state of an intrawell exciton. The excited stBt2sHH), lying near
the dissociated states of intrawell excitons, also appears in the PL excitation spectra. A
line 1(1sHH) due to interwell excitons is observed between th¢lsHH) and
D(2sHH) lines. These lines were identified on the basis of an investigation of the PL
excitation spectra in magnetic fiellfsComparison of the intensities of the PL lines of
intra- and interwell excitons in Fig. 1 shows that the interwell excitons are not in thermal
equilibrium with the intrawell excitons, and the actual population of the states corre-
sponding to the interwell excitons @t=1.5 K is many orders of magnitude higher than
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FIG. 2. a — Variation of the form of the PL spectra with increasing average pulsed-excitation power density
P. The value ofP, in W/cn?, is indicated to the right of the spectra. All spectra are normalized to the intensity
of the intrawell-exciton lineb — The same, for continuous excitation.

the thermal equilibrium population. We note that iDé2sHH) line is not present in the

PL spectrum. This means that the relaxation of intrawell excitons from an excited state to
the ground state is much more rapid. The relatively slow relaxation of an interwell
exciton into a intrawell exciton in the system under study is not unexpected, since for
weak steady pumping the main relaxation mechanism is nonresonant subbarrier electron
tunneling, which is a slow process. For the barrier widths in our system the tunneling
time is estimated to be,,,~10 ° s

4. The behavior of the luminescence spectra of the intravi)l &nd interwell ()
excitons as a function of the stationary and pulsed excitation power density in the range
from 10 3 to 10" ! W/cn? is illustrated in Figs. 2a and b. The density;,, of intrawell
excitons varied in the process, from®10 10’ cm™ 2 in the case of cw pumping and from
1% to 10!° cm 2 in the case of pulsed excitation. The dengity,, was estimated
assuming that all of the laser radiation energy absorbed in the sample goes into the
formation of excitons. It has been established that, to a high degree of accuracy, the
intensity of the luminescence from intrawell excitons is a linear function of the pumping
over the entire experimental range of power densities. At the same time, the lumines-
cence of the interwell excitons exhibits a clearly nonlinear character: superlinear growth
of the intensity of an interwell exciton at low excitation levels and sublinear growth at
high excitation levelgFig. 3.
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(linear dependengedashed line —a=0.5 (square-root dependenc¢and, dotted line —a=0.85 (sublinear
dependende Inset: Diagram of the conversion process from an interwell to an intrawell exciton .

We attribute the quenching of the luminescence of interwell excitons under strong
pumping to inelastic exciton-exciton collision processes. As the density of the interwell
excitons increases, the probability of exciton—exciton pair collisions with conversion into
intrawell excitons increases appreciably. This process is illustrated schematically in the
inset in Fig. 3 and can be written as followeh, , 1 + e, 1hy—eh+ s 1hkr 1, Where
eh 1 ande,, 1hy is an interwell exciton, consisting of an electron and a hole localized
in different (kth andk + 1sp wells, andeh, and e, 1hy; is a intrawell exciton
consisting of an electron and hole localized in the same well. This conversion mechanism
does not require subbarrier electron or hole tunneling and can be very efficient at high
interwell exciton densities.

The kinetic equation describing the interwell exciton dengity, has the form

dninter_ Ninter  Ninter  Ninter
dt = Ointer— - -

1
Trad Ttun Tcon

where the terngier is responsible for the generation of interwell excitongq is the
radiative lifetime,r,, is the quantum tunneling time, ang,, is the conversion time of
interwell into intrawell excitons. Here the different channels for nonradiative losses of
interwell excitons, besides tunneling and conversion, are neglected. Assuming,that

the average inelastic collision time for interwell excitons, we can write

659 JETP Lett., Vol. 65, No. 8, 25 April 1997 Filin et al. 659



TC_O::']: Tex—eV oNinter: Where oo, _oy IS the exciton—exciton scattering cross section and
Ve IS the thermal velocity of the excitons. Under stationary conditions we have

1 1
_t

2
Ninter T (Tex—e ex) Ninter
Trad  Ttun

Ginter—

At high densities the terms linear im,, can be neglected. Thamyer~ (Qinte) > As-
suming thatgier~ P~ Ninva, WhereP is the excitation power density ang,,, is the
intrawell exciton density, and taking into account the fact that the intehgjty of the
interwell exciton line is given by ye=Ninter/ Trag» We obtainl e~ n¥2.~P12 ie., in
the limit of high densities the intensity of an interwell-exciton line asymptotically ap-
proaches a square-root dependence on the excitation power dédsstyed line in

Fig. 3.

The superlinear growth of the intensity of an interwell exciton at low excitation
densities could be due to electron and hole localization on fluctuations of the random
potential (fluctuations of the relief at the heterointerfaces of the quantum \wéfishe
case of strong localization the overlap of the electron and hole wave functions in the
plane of the wells decreases, and the radiative probability of an interwell exciton de-
creases. As the pump power density increases, the localized states are filled and most
interwell excitons are above the mobility threshold. The exciton—exciton scattering
mechanism becomes possible for mobile excitons and for this reason, as the excitation
power density increases further, the superlinear dependence of the intensity changes into
a sublinear dependence.

In the low densities the term quadratic im,,., can be neglected in the kinetic
equation. Then, SiNCe & Tyn, We obtainl e~ GinterTwun/ 7rad- Therefore, at low den-
sities the superlinear increase of the intensity could be due to the decreaserijg,the

The assumption that the conversion time of interwell into intrawell excitons de-
creases as a result of exciton—exciton collisions at high densities is confirmed by mea-
surements of the decay kinetics of PL. Curves of the decay of the PL of an interwell
exciton are displayed in the top part of Fig. 4. The decrease in the lifetime is already
evident from the kinetic curves obtained for four different pump power densities. How-
ever, the interwell-exciton line lies on the comparatively intense short-wavelength shoul-
der of the line of an intrawell exciton, whose dynamics can distort the kinetics of the line
under study. The time dependences of the intensity of the interwell-exciton line are
shown at the bottom of Fig. 4 for two pump power densities. The curves were obtained
from the time-delayed spectra by the spectral deconvolution method. The very small
decrease in the lifetime from=0.58 ns forP;=1.7-10 % W/cn? to 7=0.42 ns for
P,=3.5-10"2 W/cn? is due to the fact that in this range of pump power densities the
lifetime is determined mainly by,,,, while according to our estimates,, varies from
15to 5 ns.

The intensity of the PL line of interwell excitons is shown at the bottom right-hand
side of Fig. 3 as a function of the peak intrawell-exciton density with pulsed excitation.
(To simplify the figure, the curve of the intrawell-exciton line intensity, which is linear
just as in the case of continuous pumping, is not presented in the figine scale of the
peak densities with pulsed pumping is combined with the scale of the densities with
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FIG. 4. Variation of the PL kinetics of an interwell exciton with increasing pumping fRyw1.7-1073 to
P,=3.510" 2 W/cn?. Bottom part of the figure — time dependence of interwell-exciton line intensities for two
pump power densities; the values plotted were obtained from time-delayed spectra by the spectral-
deconvolution method. The straight lines correspond to a decay with the characteristic=tin&8 ns for

P, and 7=0.42 ns forP,. The experimental error along tixaxis is the same for all points and corresponds

to the width of the time gates. The error along thexis is indicated for the points where it exceeds the size

of the symbol.

continuous pumping. The dependence shown is clearly subligearalso the spectra in

Fig. 29 and is described by the power lage= x* with «=0.85. This value ofx agrees

with the fact that the peak density in the pulsed experiment corresponds to the transitional
region from a superlinear to a square-root law.

5. In closing, we note that the proposed mechanism of conversion of inter- into
intrawell excitons as a result of exciton—exciton collisions is most efficient in a sym-
metrically coupled system of quantum wells with flat bands. In systems with tilted bands,
this mechanism should be suppressed as a result of the polarization of the electron and
hole by the electric field.

This work was supported in part by the Russian Fund for Fundamental Research
under Grant No. 96-02-17535, INTAS under Grant No. 576i95, and by the Ministry of
Science and Technology Policy under the program “Nanostructures.” We are grateful to
K. Scerensen for preparing the heterostructures employed in this work.
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Characteristic features of vortex depinning in a layered
superconductor
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The field H*(T) for the onset of dissipation is estimated self-
consistently from the results of an investigation of the transverse resis-
tance and current—voltage characteristics of aSBCaCyOg
(BSCCO-2212 single crystal in a mixed state. It is established that
H* is close toH.; in the interval T./2<T<T,.. Rapid growth of
H*(T), accompanied by a transformation of the current—voltage char-
acteristics, as the temperature decreases beld® K attests to the
formation of a nonvanishing region of stability of an ordered state of
the vortex system, possibly as a result of a change in the effective
dimensionality of the fluxoid. ©1997 American Institute of Physics.
[S0021-364(107)01308-X

PACS numbers: 74.60.Ge, 74.72.Hs

There are a large number of theoretical workshich need to be verified experi-
mentally, on the properties of the vortex system in layered Aigsuperconductors. Of
greatest interest is the prediction that the thermodynamic character of the melting of a
regular vortex lattice will change from a first-order phase transition in the weak-disorder
limit to various types of “vortex glass—vortex liquid” transitions as the degree of disor-
der increaseS.There are many works, most of which were performed on BSCCO-2212
crystals, devoted to verifying these predictiGn® Perfect single crystals are used for
investigations of the effect of weak disorder because the coherence length is small, which
decreases to the atomic level the scale of defects which influence the properties of the
vortex system. In most investigatidng (see footnot®) the phase transformation in a
vortex system has been identified with an experimentally measured quantity, the so-called
line of irreversibility or irreversibility fieldH;,(T), which in field—temperature coordi-
nates separates the dissipative state from the region of undamped currents. Although most
papers on the BSCCO-2212 system claim good agreement of the results with the corre-
sponding models, a comparison of the results obtained by different methods reveals both
guantitative discrepancidseaching several orders of magnityided a different charac-
ter of the temperature dependendg (T). Since the “vanishingly small” value of the
critical current is often associated with the observational capability of the experimental
method, the discrepancies mentioned can presumably be attributed to differences in the
sensitivity of the methods employed. However, as far as | know, the problem of taking
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into account the influence of the criterion used on the magnitude and character of the
temperature dependenklg,(T) has thus far not even been posed, even though in several
cases, for example in Ref. 4, the aforementioned discrepancies have been invoked to
confirm the applicability of some elegant theoretical constructs.

In the present work the dynamic characteristics of a vortex system in the mixed state
of a Bi,S,CaCyOg (BSCCO-2212 crystal were investigated by the resistive method;
transverse charge-carrier transport was used to obtain a weak measuring current regime.
An additional argument was that the transverse transport is sensitive to the interlayer
interaction, which determines the properties of the sy$t@ime influence of the resistive
criterion R* employed to determinkl;, on the magnitude and character of the tempera-
ture dependenclE* (T) extracted from the experimental data was studied and the inter-
polation construction of théi* (T) dependence for the lev&,, corresponding to the
onset of a deviation from linearity of the current—voltage characteri$i€) of the
crystal was tested.

For the experimental BSCCO-2212 crystdlg==86.3, 89, 92.3, and 92.9 K the
high critical temperature being due to the partial substitution of yttrium impurity for
calcium in the latticé. The samples were selected according to their macroscopic com-
position uniformity and the absence of blotkésee footnot®; low-resistance electrical
contacts were prepared by fusing a conducting composite indioghlanes:! The tem-
perature dependences of the transverse resistance were measured with an ac current
bridge (10—100uA) at 10—77 Hz. The rate of change of the temperature was chosen so
that that maximum temperature difference between the measuring thermometer and the
sample did not exceed 10 mK. The quasistationary IVCs were measured for dc current;
the noise level of the circuit did not exceed 2 nV in a 15 T field. These experiments were
conducted in a short-circuited solenoid at constanb(mK) temperature. The measure-
ments were performed in the previously described superconducting cryomagnetic sys-
tems with an active temperature control schéfné;the orientationHL ab was set di-
rectly in the course of the experiment according to the maximum of the angular
dependence of the resistance in the mixed state of the crystal.

The typical temperature dependences of the interlayer resistance of a BSCCO-2212
single crystal are displayed in Fig. 1la R+1/T coordinates. They clearly illustrate the
character of the variation of the resistance as the resistive state is established in the
sample. Since the irreversibility field is determined according to the resistance decreasing
below a definite valu&* determined by the resolution of the particular experiment, and
since the broadening of the transition in a magnetic field is continuous, the decisive
influence of the criteriorR*on H;, is obvious. This is illustrated in Fig. 1b, which
displays the values dfi* determined from the data in Fig. 1a for a number of values of
R*. In constructing the functionsl* (T) a correspondence was established between the
temperature at which the resistance decreasd®f'tand this external field. As one can
see from the figure, whilel* depends strongly oR*, the change in the character of the
temperature dependencek’(T) is not so great. Therefore, in order to estimate the
physically reasonable values bf;(T), an attempt was made to construct H&(T)
curves for an arbitrarily small levé&* by extrapolating the experimental data of Fig. 1b,
assuming that the character of the change in the dynamical characteristics of the system
remains unchanged @&—0. Specifically, it was postulated that the chardttef the
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FIG. 1. g Typical temperature dependences of the reduced transverse resistance of BSCCO-2212 in a constant
external field perpendicular to tkeb plane of the crystal. The results are presentedifer0.02, 0.03, 0.06, 0.1,
0.2,0.3,05,0.7,1.0, 1.4, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, andléB.® T

right). b) Values of H* determined according to the data @ for the levels R*/R(100 K)=3-10"2,

1-1072, 3.10°3%, 1.10°3, and 310 % The dashed curve is an extrapolation of the experimental curves
H*(T) to the levelRy,. Inset: Temperature variation of the expongrih the approximation oH* (R*) by the

relation R* ~H T,

dependenceR* ~H?” determined forT= const from the data in Fig. 1b remains un-
changed; the values of the exponenare given in the inset in Fig. 1b. Finally, it was
assumed that this approximation could be extrapolated to a range of temperatures only
partially measured experimentally, specifically, to two bounded intervals — one interval
directly nearT., and the other at low temperatures. On the basis of these assumptions,
the construction of &* (T) curve for an arbitrarily small level dR* is trivial. But since

the phase transition in a vortex system presuppaspsori the development of strong
nonlinearities in the dynamical characteristics of the systemditional investigations

were required in order to clarify the limits of applicability of the assumptions employed.

Since the IVCs are sensitive to the dynamical properties of the vortex systen,
transverseV/(l) curves were measured in the temperature range 27-100 K for several
fixed values of the external magnetic field. Special attention was focused on the region
50<T<75 K, where the effect oR* on H*(T) is strongest(see Fig. 1h It was
determined that the transvergél) characteristics of the BSCCO-2212 crystal in a mixed
state are very complicated, their character being illustrated by the curves in Fig. 2. As one
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FIG. 2. Temperature evolution of the transverse IVC of a BSCCO-2212 crystat&2.7, 53.3, 54.6, 55.1,
55.6, and 56.2 KH=0.08 T. Dashed curve -¥x|.

can see from the data presented, appreciable nonlinearities are observed at high currents.
As a rule, they are accompanied by a multivalued, hysteretic IVC; moreover, asymmetry
of the characteristics with respect to the direction of the current is often observed, as one
can see from the data for~55.1 K in Fig. 2. The nonlinearity and especially the
multivaluedness of the characteristic evidently are due to the Josephson nature of the
interlayer interaction, though the parasitic effect of overheating also cannot be completely
ruled out. A more detailed discussion of this question falls outside the scope of this letter.

We note that in most measurements of the transverse IVCs in BSCCO-2212 atten-
tion was focused mainly on the characteristics of the internal Josephson'éfféspe-
cifically, on the magnitude of the superconducting gap in the excitation spectrum and in
consequence a voltage sensitivity several orders of magnitude coarser than ours was used.
Perhaps this is why it remained unnoticed that in a wide range of temperatures and fields
jumps to “quasiparticle” branches occur not from a nondissipative Josephson “trunk”
but from a substantially resistive characteristic, which is close to Ohmic in the low-
voltage region. At the same time, it must be said that our results, though exhibiting clear
discrepancies with the data in Refs. 13-15, are in qualitative agreement with the more
precise measurements in Ref. 4.

In contrast to Refs. 13 and 14, in the present study the initial segments of the IVCs
of the crystal were of greatest interest. It was determined that they are satisfactorily
approximated by a linear law over a widfeld-dependenttemperature range below the
critical temperature, while as the temperature decreases below a field-dependent thresh-
old Ty,, deviations from Ohm’s law are observed first at the lowest voltages detected in
the experiment. This is illustrated in Fig. 2, which displays IVCs measured at several
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FIG. 3. Characteristic fieltH* (T) constructed by extrapolating the experimental points to the Bygl the
designations are the same as in Fig. 1b. Dashed curves — asymptotic exprédsians H ,(T). The
penetration fieldH, was determined according to the deviation of the diamagnetic susceptibility from a
constant® these data were obtained on two fragments of the same crystal in a separate SQUID magnetometric
experiment. Close values of the demagnetizing fabtowere determined both by a calculation in which the
shape of the sample was approximated by an inscribed ellipsoid, and by a direct experiment with a tin sphere
and foil close in size to the sample. Inset: Identical data presented as a function of the reduced temperature
1-T/T,.

temperatures in a narrow regior=52-56 K nearTy,; the dashed curve shows the
Ohmic dependenc¥é(l). It is obvious that the development of nonlinearities of the IVC,
attesting to the presence of a nonvanishing critical current, simultaneously changes the
meaning of the concept of resistance and establishes a natural limit of applicability for
our assumptions.

As one can see from Fig. 2, the change in the character of the IVC from linear to
non-Ohmic occurs in a relatively narrow temperature range of widthK. The effect
can be characterized by a threshold resistageorresponding to the lower limit of the
Ohmic response. Analysis of families of IVGsimilar to those presented in Fig) 2
measured for several values of the external field gave estirRgted virtually the same
magnitude forTy,~ 35, ~47, ~55, and~76 K.

The temperature dependence obtained for the characteristidffeloly extrapolat-
ing the experimental points to the levg},, which is obviously a natural lower limit of
applicability of the extrapolation procedure employed, is shown by the dashed curve in
Fig. 1b. These same data are presented in the standard scales in Fig. 3, where the different
symbols denote the initial levels &* (the designations are the same as in Fig. As
one can see from Fig. 3, the curve constructed is satisfactorily approximated by the
relations
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H~exp(—T/Ty), H~(1-T/T)%, (1)

at low temperatures and at temperatures figarrespectively, as shown in the figure by
the dashed lines for the paramet@&s=5.4 K, T,=93.9 K, andB=1. We note that the
critical exponent is determined with a low accuracy, since the scatter of the points admits
an approximation with3=0.9—1.4. The valueB=1 was used on the basis of the fact
that the adjustable paramet& was close to the experimentally determined value

T 0~92.9 K.

As one can see from Fig. 3, in a wide regide40 K the temperature dependence
of the characteristic field is close tt.;(T), demonstrating only quantitative discrepan-
cies. This result agrees qualitatively with Zel'dov’s observaficarsd supports the idea
that the efficacy of vortex pinning vanishes at high temperatures as a result of an effective
breakdown of their cohesiveness due to thermal fluctuations.

The decending character of the IVC, similar to what we observed at temperatures
T<Ty, is ordinarily attributed to a nonvanishing critical current. However, since the
detective power of the experiment corresponds to a substantial electric field
~(1—10)-10 ® V/cm in the sample, it is impossible to rule out the possibility that the
V(I) characteristic isS-shaped with a second Ohmic segment beyond the limits of our
resolution. In this case the true phase boundary for the existence of an undamped super-
current in a wide temperature range>40 K, obviously approaches, if not asymptoti-
cally, H;; and the existence region of the vortex lattice becomes vanishingly narrow,
casting doubt on the adequacy of the interpretation in Ref. 5.

The sharp change in the character of the temperature depenHér{d® at low
temperatures <40 K is probably due to an additional mechanism that increases the
effectiveness of pinning and can tentatively be attributed to a change both in the character
of the pinning itself and in the effective dimension of the vortex filament. Indirect evi-
dence in support of the latter conjecture could be the change, obseVed3@t-35 K, in
the character of the IVC from the type illustrated in Fig. 2 to the hysteretic quasi-
Josephson characteristics with a distinguished nondissip@ttviae noise levélbranch
separated from the numerous “quasiparticle” branches by a~gap °>—10 % V. Such
an IVC attests, with a high degree of reliability, to the development of a nondissipative
state and is consistent with the model of two-dimensional metindgich predicts a
temperature'l'ﬁ?wZS K close to that obtained experimentally. At the same time, both the
type of dependence of the low-temperature braRiéh(T) and the parameters of the
corresponding asymptotic expressiails satisfactorily agree with those calculated in
Ref. 17 under the assumption that the geometric barrier has the governing effect.

This work was supported in part by the Russian Fund for Fundamental Research, the
Council on Superconductivity, and EPSRC. It is my pleasant duty to acknowledge A. I.
Larkin, N. V. Zavaritski, D. Geshkenbein, M. Indenbom, |. Zel'dov, and G. Blatter for
helpful discussions, V. V. Khristyuk for technical consultations and assistance in fabri-
cating the essential parts of the apparatus, and the staff at the Institute of Semiconductor
Physics and the IRC for encouragement and for providing the conditions necessary for
this work.
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bReferences 2—6 are by no means exhaustive: There are more than 100 published works on this subject, and the

interpretation of the results of the few known exceptions requaresiori the validity of some assumptions
that are by no means obviofls.

9T, was determined at the levRl= 10" *R,,,,according to thd}(T) measurements in the laboratory field. The
main conclusions of this work are based on the results of detailed investigations of the crystal with
T0~92.9 K, which agree well with the data obtained in control experiments on all other samples.

9The spread in the critical temperatures for any pair of contacts to the sample did not exceed the transition
width, equal to 0.6—1.8 K according to the (8.20 *)Rn,, criterion. The absence of splitting and a fine
structure of the minima in the angular dependeriRég) in the resistive state in 80 kOe gives an estimated
upper bound 0f0.015° for the angle of disorientation of the blocks.

®In other words, it is postulated that the activational character of the decrease in the resistance with temperature
remains unchanged: As one can see from Fig. 1a, the resistive “tailsR{@)/R(100 K)<3-10 2 are
satisfactorily approximated by this law over the entire range of fields investigated.
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Application of symmetry operations for construction
of quasiperiodic structures in a plane

A. A. Polyakov®
Chelyabinsk State Technical University, 454080 Chelyabinsk, Russia
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A method is proposed for constructing a quasiperiodic structure of
symmetry elements — regular pentagons and five-pointed stars — in a
plane. The growth of the structure is determined by the action of the
symmetry operations, whose effect is not completely identical to that of
similar operations in classical crystallography. The tilififfjlower of
pentagons’, consisting of a central pentagon and five side pentagons
joined along the edges, is studied. The growth of this tiling is accom-
panied by the appearance of a “flower of stars” and by the formation
of isolated pores in the form of rhombi. The relation between the ob-
tained structure and Penrose tiling is examined, and it is noted that
some vertices of the Penrose tiling coincide with all vertices of the
polygons of the packing obtained. @997 American Institute of
Physics[S0021-364(07)01408-4

PACS numbers: 61.50.Ah, 61.44.Br

The experimental discovery of quasicrystams generated a spate of interest in
possible methods for resolving the conflict between the existence of quasiperiodic struc-
tures with five- and tenfold symmetry axes and the fact that classical crystallography
forbids such structures. Before this discovery, planar quasiperiodic structures with five-
fold axes had been constructed by means of Penrose %illings packing and an entire
class of quasiperiodic structures have been described by different methods, among them
projecting methods* and methods for constructing two- and three-dimensional Penrose
tilings by formulating matching rules or deflation rudés for polygons or polyhedra. A
transition from cubic lattices in five and six dimensions to quasicrystalline lattices in two
and three dimensions has been worked out in the projecting methods. The existence of
translational and rotational symmetry in such models has been suspéated
N-dimensional periodic lattice was used as the initial lajtibeit thus far an approach to
constructing such structures by means of the symmetry operations belonging to classical
crystallography and acting on symmetric geometric objects has not been worked out.

At the same time, attempts have been made to describe quasiperiodic structures from
the standpoint of the regular defectiveness of standard crystal packings as well as by
constructing a Frank—Casper phase with a large unif¢éauling® applying a twinning
operation to periodically arranged atoms, was able to arrar@@00 atoms in a unit cell
and calculate a diffraction pattern close to that obtained from an icosahedral'piase.
approach is distinguished by the fact that at some stage a transition occurs from a qua-
siperiodic to a periodic structure.
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a) b) <)

FIG. 1. Growth of a quasiperiodic packing of pentagons and stars with a global fivefold axis. Application of the
operations “opening of a flower.”

In the present letter a model of a quasicrystalline structure in two dimensions is
constructed by means of reflection operations in the plane and rotation about a symmetry
axis; the structure so obtained does not reduce to a periodic structure. Consider a tiling
consisting of regular pentagons &nd regular five-pointed starg with equal edges. The
ratio of the § edge length to the edge length of an interior pentagonalzstapbtained
by continuing the sides of the star, equals, wherer=(1+/5)/2=1.618 is the golden
mean. Figure 1d shows a structure which Mackegs called a “snowflake.” The growth
of this structure is accompanied by an increase in the pores between the pentagons and
merging of the pores into figures with a large area. We shall construct a similar structure
from pentagons and stars, and in the process we shall change the structure so that the
pores in it are isolated. The construction is associated with the symmetry of a pentagon
(Fig. 138, characterized by the presence of a fivefold axis at the center and symmetry
planes. If a pentagon Ss subjected to simultaneous reflections in the five symmetry
planes passing through its edg€&sg. 1b), then a structure which we shall term below a
“flower” obtains (Fig. 19. We shall call the operation forming a “flower” from a
pentagon the “opening of a flower.”

Such a “flower” can be generalized by continuing the outer edges, afrfiil they
intersect; the resulting figure can be called a generalized pentagprREpeating the
operation “opening of a flower” applied to(B, we obtain the “snowflake” of Ref. 5.

The further development of the “flower” differs from the growth of “snowflake,” since
the pores will be filled by a different mechanism. Note that a number of symmetry planes
of the pentagons intersect at the poin{fig. 1d: a) global planes — pentagons55(1),

5(11); b) “petals” of the flower KlI); ¢) petals of the flower @), which is a petal of 8l).

By analogy to classical crystallography, it can be conjectured that a fivefold center of
symmetry appears at this point. The action of this axis will give rise to the
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FIG. 2. Symmetry axes and planes operating during the growth of a quasiperiodic structure with a global
tenfold axis.

formation of a starZ, at the location of a pore. The result of repeating the operation
“opening up of a flower” on %llI) and the action of the fivefold axis in the interpetal
space will be a ring consisting of five stafsig. 16. The space at the center is empty. It

is logical to apply to it the operation opposite to “opening of a flowéftlosing of the
flower”). This will produce a “flower of stars,” in the pores between whose petals
pentagons 5are now present. Repetition of the operation “opening of a flower” on
5(111') will engender between the petals a “flower of a flower of stars” in whose interpetal
space a “flower of 5’ coinciding with 5(1), is formed. Therefore the processes by which

a structure of pentagons and stars grows are intertwined. A similar structure with a star at
the center(“flower of stars”) can also be obtained. For this, a sEris placed at the
center of the structure and the operations “opening of a flower” are repeated. This
process will be accompanied by a growth of the flower oh%he pores and will develop

in a manner similar to the growth of a “flower of stars” in the pores of a “flower of
pentagons.”

The “flower” tiling can be used to form a structure with a tenfold global axis. Let
the symmetry plane&O and BO, which engender 5with centersO; and O}, pass
through two nonadjacent sides of a pentagon center€ dFig. 2). The characteristic
symmetry plan€D O’ of the initial pentagon and the pland© andBO intersect at the
point O. This intersection forms a global tenfold axis. Therefore, all elements located in
the sectorAOB automatically appear in other sectors of the surface. The characteristic
symmetry planes of the pentagons centere@aandO; (0;0” andO;,0") intersect at
the pointO” and produce at the poi@” a fivefold symmetry axis which operates mainly
in the sectorAOB. The action of this axis leads to the formation of a star of pentagons
a andb. The characteristic symmetry plan€50” and 070" of stars centered &b}
andOf in turn generate a fivefold symmetry axis at the p@it. The action of this axis
(similarly to the axisQ") inside the sectoAOB is expressed in the appearance of a ring
of five pentagons and also in the cloning of all figures relative to the plai@% and
BO™". The pentagon 5centered aO” is filled by an operation of the type “closing of a
flower.” It should be noted that the elements of the structure are growing “flowers” of
5, and star<Z, (Fig. 3.

A guantitative analysis showed that the tilings obtaifiébwer of 5,

flower of
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FIG. 3. Packing of pentagons and stars in the presence of a tenfold symmetry axis.

Z,,” structure with a tenfold axisare characterized by the ratio of the number of ele-
ments that converge, with growth, to the same values. The pores in these packings are
isolated and consist of two types of rhombi similar to those in the Penrose tiling — large
(L) and small §). The edges of the rhombi are equal to the edges of the pentagons 5
and the angles between the edges are equatt® 2L) and #/5 (S). The ratios of the
reciprocals of the total areas of the pentagons, stars, larehd S rhombi equal

S; s g tisgt=1:(72—0.5):7%: 7. The ratio of the number of pentagons and stars

is N5:N,=7%:1. The pores comprise 16.54% of the area. The convergence of the real
quantities to the indicated values is very slow: The error ) 3% at a total number of
pentagons~ 107,

Attempts to describe the obtained structure by a decoration of the Penrose tiling
were unsuccessful. At the same time, if a global center is made to coifcithe case of
the construction of a “flower” of 5) with the center of symmetry of the first star with
true (in the terminology of Ref. bfivefold symmetry axes of the Penrose tiling, marked
in Fig. 4 by the dots, then all vertices of &ndZ; will also be the vertices of the rhombi
in the Penrose tiling. The points with the “true” fivefold symmetry of the Penrose tiling
correspond to the vertices of a generalized large rhombus after five deflation operations.

‘0‘\%’(.’\‘- :’:’\l‘b‘

ALY

FIG. 4. Superposition of Penrose tiling on a “flower of pentagons.”
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In such a construction the edge of a pentagpeduals the sum of the short diagonal of
the large rhombus and twice the long diagonal of the small rhombus. At the centers of the
pentagons 5aredecagons circumscribed around stars consisting of six rhombi with a
center of the typg222223* and around figures with vertice83121 and (4222*,
joined along the central large rhomb(the designations of the vertices in the Penrose
tiling are taken from Henley’s artiche The centers of the stas will also be centers of

the stars of large rhombi of the Penrose tiling of the typ2222 and(22222*. Large
rhombi will stand at the centers of all. andZ; edges, and the edges of the pentagons
and stars will pass along the shortest diagonals of the rhombi.

Let us now note the characteristic features of the techniques used to construct struc-
tures consisting of pentagons and stajsThe symmetry operations operate on existing
elements of the structure and engender new elements with which these operations can
conflict (“opening of a flower”); 2) they engender new elements in free space without
changing the old elements; and,alocal action is possiblessymmetry axis, “closing of
a flower”). The first feature is not characteristic for the symmetry operations of classical
crystallography. For example, it is evident that when the operation “opening of a flower”
is used to pack honeycombs consisting of regular hexagons, the operative symmetry
planes are intrinsic symmetry planes for the new elements. A very important property is
that the symmetry operations include time as a parameter. The concept of “a given point
in time” is at work. The growth process can be described only in terms which include the
direction of time. Time reversal changes the essence of the symmetry operations.

Concentration nonuniformities of the structure grow along linear dimensions with
each step of the growth of the structure, while the amplitude of these nonuniformities
does not exceed the initial valuéhe maximum ratio of the pentagons and stars(in 5
is N5:N,=30:5 and the maximum density of stars4() is N;:N5;=6:5). In thecase
when this model works, the following characteristics of quasicrystals are possifileel
diffraction pattern formed by the scattering of radiation by surface atoms or atoms in the
bulk will change slightly as the region of the crystal diffracting the radiation changes, and
a decrease in the size of the crystallites will result in a redistribution of the intensity, and
2) in the case of a single crystal there should exist a weak diffraction pattern for scatter-
ing of radiation with wavelengths many times longer than the interatomic distance. An
example is the diffraction of visible-range radiation accompanying reflection from crystal
faces.

The “flower” motif is not the only motif in the construction of planar quasiperiodic
structures by means of symmetry operations, but apparently it is the simplest. It is also
possible to build by analogous principles structures 0&8d Z, in which a star is the
main motif. A star of the next order will form in a manner such that its interior pentagon
will consist of a single staZ, and fifteen pentagons.5 The extension of the above
operations of quasicrystal growth to three dimensions will result in the appearance of
structural elements — two types of icosahedra, differing in size by a facter &l
icosahedra will have the same orientation. Neighboring icosahedra of the same size will
share an edge, and their centers and the center of the edge will lie on the same line.
Icosahedra of different size touch one another at the vertices, and once again their centers
and the common vertex also lie on the same straight line. Three-dimensional structures
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with a global fivefold or tenfold axes can be obtained, and the figures presented above
can be interpreted as surfaces of section through these structures.

In Ref. 8 it is noted, in describing reétontaining defecjsand incommensurate
crystals from the standpoint of modern crystallography, that the change in symmetry as
compared with the ideal crystal lattice is manifested not as a decrease but rather as an
increase in the degree of symmefiy the case when the floral symmetry is taken into
account, more than three dimensions are used to describe the properties, and a crystal is
treated as a large molecule or cluster of atbrdss is well known, incommensurate
crystals are often used as an analog of quasicrystals, so that it is not surprising that these
characteristics are close to the structure described in this letter.

In closing, | wish to thank Academician N. A. Vatolin and Professor B. R.
Gel'chinski for their encouragement and for a critical discussion of the material.
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From effective BCS action to vortex dynamics
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The topological term in the effective action for the electrically neutral
BCS system is discussed. It is applied for the calculation of the trans-
verse force acting on a vortex in the limit of a smooth vortex core and
vanishing interlevel distance in the vortex core. The controversy be-
tween the topological terms in the articles by I. J. R. Aitchisbml.,
Phys. Rev. B51, 6531 (1995 and A. van Otterloet al, cond-mat/
9703124 is resolved. €997 American Institute of Physics.
[S0021-364(®7)01508-9

PACS numbers: 11.2%d, 67.57.Fg, 74.20.Fg, 74.60w

1. INTRODUCTION

There have been many papers on the subject of the effective action for the BCS
system. They differ in the topological terms: while in most of these papers the topological

term is taken to b@¢/2, wheren is the particle density ang is the phase of the order

parameter(see, e.g., Ref.)l in a few papers it is taken asn{ Cgy)@/2, where
Co= p'ﬁ/37-r2 is the particle density in the normal metake, e.g., Ref.)2These different
topological actions lead to different predictions for the transverse force acting on a
moving vortex. Here we discuss this controversy.

Actually both actions give the correct hydrodynamic equations for the BCS system
in the uncharged limit. This is because the difference between the topological actions is
a total time derivative if the paramet€y, is treated as a dynamical invariant. This means
that both actions should lead to the same prediction for the vortex dynamics. However,
this is contingent on proper treatment of the time derivative of the action. On the other
hand, in the presence of a vortex the phasis not defined globally, which means that
the topological action in terms ap is ill-defined. That is why we propose another form
of the topological term in the effective action, which does not contain the phase of the
order parameter explicitly and which follows from the gradient expansion of the effective
action.

This action allows us to find the transverse force acting on a vortex in the special
limiting case in which the bosonic effective action provides a complete description of the
vortex dynamics, i.e., in the case when the quantization of the levels in the vortex core
can be neglected and the vortex core is smooth on the scale of the coherence length. In
this limit our result for the transverse force coincides with that obtained in microscopic
calculations’
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2. EFFECTIVE BCS ACTION AT T=0

The calculated topological term in the BCS action can be expressed in terms of the
order parametefgap function A as

_1jd3 J'ld fsc dt an (aA IA*  IA 9A* L
Sop=57 ) A7) 97 aAPD\ ot ar  or ot ) @

Here 7 is an auxiliary coordinate introduced when the effective action T®1h is
represented as 'IIr(l) drGa,G 1. The dependence onis chosen in such a way that at
7=0 the coupling and the gap function are abseft,t,7)|,—,=0, while 7=1 corre-
sponds to the physical81 dimensions, i.e. A(r,t,7)|,—;=A(r,t). In Eq. (1) n is the
particle number density, which depends omM\. At =0 one has
n(r=0)=p,3:/3772£C0, which is the particle density in the absence of the gap at the
same chemical potential.

The quantityn— C, is small in the weak-coupling limit of the BCS model, where it
is determined by the particle—hole asymmetry, C0~nA2/E§<n. In a smooth cross-
over from the BCS superconductivity to the condensate of the Cooper pairs, discussed in
many papergsee the recent papér§ the paramete€, decreases and can become zero
at some value of the coupling paramegerC,(g) =0 atg>g. . In this case aj=g. one
has the quanturfLifshitz) transition atfT=0. This zero-temperature transition definitely
happens if the quasiparticle spectrum has nodes, e.g., in the casedfvénee Cooper
pairing or in thep-wave state with the symmetry of the A phase of superfitid. In this
case ag=g. the spectrum of quasiparticles is reconstructed — the nodes disagpear
Secs. 6.2 and 9.4 in Ref).7This is similar to the Lifshitz transition in metals, where the
topology of Fermi surface changes. In what follows we assume that we are on the BCS
(weak-coupling side, i.e., below the Lifshitz poing<g,.

In the BCS action the relevant variable is the gap functigrwhich means that all
other variables, including are the functions dfA |2. The variation of the action over the
order parameter is the surface integral in the 5-dimensional spaegd)(and thus is
expressed in terms of the physical coordinates)(
dA IA*

*

oA

r SA* — S 2

s
Son=37 | 4T ] A 0ap)

In principle from the variation of this topological action one can recover the action in the
physical space—time, but the well-defined action explicitly contains the parameter
Co=n(|A|?=0)=pd/3m:
I R :

Sop= 77 r t(n—n(|A[*=0)) rNE ©)

If A(r,t) is nowhere zerdthis requirement excludes the case when vortices are
present one can introduce the phageof the order parameter:

A=|Ale". 4
This allows one to express the variation of the topological action ifBdn terms of the
canonically conjugate variablesand ¢:
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5Smp=%f dgrfldt(a—n5¢—%6n), (5)

at
where
o= S(AP). ®)
a(|A]%)
The action in Eq(3) can be also used in this case, it gives
Stop= —% d3r f:dt(n—co)%. (7)

This is what was obtained in Ref. 2.
The conventional contribution to the action is

Sozf d3r£;dt

whereng is the superfluid densityn is the mass of the fermiowg= (#/2m) V ¢ is the
superfluid velocity, ande is the energy density, which depends ph|?. Varying
S=Sy+ Sy OVer ¢ and|A|? gives the conventional hydrodynamic equatiéwe have
neglected the nonlinear terms in this proceglure

1mnSv2+e(|A|2) 8
2 s ’

an _

— +V- (N9 =0, ©
ip el a(|Al%)

o R BT ania(AP) (10

It is important here that the hydrodynamic equations are general and do not contain
the paramete€,. This is because the term containing the facgrin Eq. (7) is a total
derivative. In this sense there is no difference between the topological terms discussed in
Refs. 1 and 2. The difference becomes important when zeroes appkeamid the phase
of the order parameter is no longer defined globally. This is the case with vortices. To
find the vortex dynamics we must return to the action in @yfor the order parameter,
which does not contain the phageexplicitly.

3. EFFECTIVE ACTION FOR THE VORTEX DYNAMICS IN CONTINUOUS
LIMIT

The effective actiors=Sy+ S,,, can be used in the derivation of the dynamics of a
vortex line only under certain conditions. We assume that the description in terms of the
order parameter is complete, i.e., there are no other degrees of freedom. All the fermionic
degrees of freedom are assumed to have been integrated out when the effective action
was obtained. In this integration the fermionic spectrum is treated classically, i.e., the
spectrum is taken as a function of commuting spatial coordinsged momentunp:
E=c%(p) + |A(r)|2. This means that if one applies this effective action to vortices one
neglects the quantization of the fermions in the vortex background. This is justified only
when the distance between the energy levels is small compared to the width of the levels,
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wo7T<<1. This is a necessary condition for application of the effective action to the vortex
motion. Another important condition is that the core size of the vortex must be large
compared to the coherence length so that one can neglect the higher-order gradient terms
in the action.

Under these conditions we can show that the BCS effective action leads to the
following equation of motion for the vortex:

7NA(N—Cp)zX Vv, = 7NANZX V. (11

Herev, is the vortex velocity with respect to the heat batbrmal component or crystal
lattice), which is here assumed to be at ras}; is the superfluid velocity of the external
superflow;N is the winding number of the vortex. This agrees with the result of micro-
scopic calculationsfor the electrically neutral case in the limit of large core size and in
the regimewyr<<1.

To get Eq.(11) from the BCS action, let us introduce the vortex coordiraig).
For simplicity we consider a rectilinear vortex along thaxis, so the order parameter
A depends only om—r(t), where both vectors are 2-dimensional:

A(r,t)=A(r—r(1)). (12
The variation of the topological action in Eq®) and (3) becomes
5S[Op=i.f dr é’nz (24 287 —%M*)f dt(ﬂéy “o 2. (13
2i AP\ ax gy gy ax ) | ot T T gt
For an axisymmetric vortex with
A(r,o)=a(r)e'Ne, (14

wherer and ¢ are cylindrical coordinates ard is the winding number, one obtains

.fds I NLFd o 2aNL 0
) R ax Gy ay ax ) 27N, g =2mNLInG) ~n(0))

=2aNL(n—Cy), (15)

wherelL is the length of the straight vortex line. We took into account that on the vortex
axis (r=0) the order parameter is zem@0)=0, and therefora(0)=C,.

The same result can be obtained for any type of vortex with winding number
because the volume integral can be transformed to a surface integral far from the vortex
core, the outcome of which depends only yand n(|A()|?) —n(|A|?=0)=n—C,.

As a result

IXL IyL

The variation of this topological action oveir, gives the force acting on the vortex,
which is represented by the term on the left-hand side of(EQ.

Note that the expression for the variation of E2).
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5S[°p_i 5, N *

o, 21 YTAIAPR

oA _
—VA*-VA (17)

ot
transforms to Eq.(10) of Ref. 3 if one neglects the coordinate dependence of
an/d(]A|?). That approximation is justified only in the weak-coupling limjt<1, ex-
plored in Ref. 3, while our approach is not limited by the weak-coupling assumption: we
assume only thag<g..

In Ref. 8 the Eq(10) of Ref. 3 is generalized to the case of anisotropic pairing with
a momentum-dependent gap functidiip,r), but still in the weak-coupling limit. We
can generalize this to the arbitrary coupling strength by introducing a momentum-
dependent particle distribution function

1 e(p) d°p
n(p,r)=§ 1- \/sz(p)+|A(pr)|2 , n(r)=2fwn(p,r). (18
Then
([ dPpd®r (= an(p,r)
PSop= 1 <2w>3ffw TNCRIE

><(aA(p,r) ﬁA*(pJ))'

TaA*(p,r)—aA(p,r) o (19

Applying the same procedure as before, one obtaingHj).for any (smooth structure
of the vortex core and for arbitrary anisotropic pairing state.

The term on the right-hand side of Ed.1) is obtained from the kinetic energy term
in S in Eq. (8). In the presence of an external superflay the relevant term is

vso~fd3r NeVs=Veo- P. (20)
The linear momentunP related to the vortex coordinate is

P=mANNLZXr, . (21)

The variation ofvgy- P overr, gives the second term in E¢L1).

Equation(11) is not Galilean invariant. Galilean invariance is restored by introduc-
ing the velocity of the normal component, which coincides with the velocity of crystal
lattice in the case of superconductors or with the heat bath of the normal excitations in the
case of superfluids. This equation can be represented as the balance of three forces acting
on the vortext?

ahENZX[N(Ve— V) + Co(V, — V) + (N—Ng)(V,—Ve) ]=0. (22)

These are, respectively, the Magnus, spectral-flow, and lordanskii forces in the terminol-
ogy of Ref. 10.
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A force balance of the form in Eq11) was also obtained in Ref. 11, again in the
limit wy7<<1; the first discussion of the term on the left-hand side of @d) as origi-
nating from the topological action was probably given in Ref.(4@e the paragraph
containing(10) in Ref. 12.

4. DISCUSSION

The effective topological actions discussed in Refs. 1 and 2 are equivalent to each
other in the particular case when the phase of the condensate is defined globally, and thus
in the absence of vortices. In this case the two topological actions differ by a total time
derivative and thus lead to the same hydrodynamic equations for the conjugate variables
— the particle densityn and the condensate phage However these actions cannot be
used when zeroes are present in the order parameter. In the presence of zeroes the
topological action in Eqgs(2) and (3) (or in Eq. (19 for the more general case of
anisotropic pairingis to be used; this settles the controversy between the aforementioned
actiong'? in favor of that in Ref. 2.

Equations(2) and(3) also describe the vortex dynamics in a special limiting case.
This dynamics agrees with the general phenomenological approach using the Poisson
brackets schem€.In this approach the phenomenological param€gis introduced as
the dynamical invariant of the system, which does not violate the general properties of
the hydrodynamical Poisson brackets. The BCS effective action for the neutral BCS
system in Eqs(2) and (3) gives the precise value of this phenomenological parameter,
Co= p§/37r2, in the regime in which the action is applicable to the vortex dynamics. The
conditions of applicability arey7<1 andR., &y, WhereR . is the core radius. They
correspond to a vortex with a smooth core.

In the opposite limitwo7= the effective action for the vortex dynamics in the BCS
system can also be derived from first principles by examining the Berry phasethe
recent papéf). In this case the discrete spectrum of the electrons in the core is of prime
importance. The properties of the exact wave functions of the electron in the potential
produced by the vortex lead to a zero value of the canonical momentum density at the
origin, S(0)=0, in Ref. 14. This gives a value of zero for the param€&gin Eq. (22),
in complete agreement with the result of Ref. 10, obtained in the ligpit=c<. The finite
lifetime 7 destroys the coherence of the wave functions and finally restores the maximal
value of Cg in the limit wy7<<1.

I would like to thank Jacek Dziarmaga, Nikolai Kopnin, and Anne van Otterlo for
some stimulating discussions.
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Electronic structure of linear chains of fullerenes
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The band structure of linear chains of fullerene molecules is calculated
as a function of the intermolecular-electron overlap integrdl, which
increases under increasing external pressure. Chains consisting of neu-
tral (C59) and charged (§) molecules are studied. It is shown that
there is a sharp transition from a metat narrow-gap semiconduchor

to an insulatofwith band gap~1 eV) with increasingT. The proposed
model makes it possible to describe the formation of solid-carbon struc-
tures, containing chains of covalently bound fullerene molecules, with
different pressure-dependent semiconductor properties. 198Gy
American Institute of Physic§S0021-364(®7)01608-3

PACS numbers: 61.48.c, 71.20.Tx

Linear chains of fullerenes were recently discovered iRC4 compounds
(A = K, Rb, Cs, NaCs, NaRb).1® Phase transitions with a change of lattice symmetry
are observed in these structures. In the orthorhombic phase the distance between the
centers of the molecules in the direction of the crystallographic vextequals only
9.1-9.3 A. It is conjectured that the fullerene molecules form in this direction a polya-
nion chain with covalently bound & molecules. It is believed that the polymer bond in
polyanion A Cg, chains forms if the midpoint of the two closest parallel double bonds
belonging to neighboring molecules falls on the intermolecular axis;thelectron
orbitals of the two closest pairs of carbon atoms form an intermolecular overlap. The
observation of identically oriented linearly polymerized neutrg/i@olecules in the solid
phase was recently reported. Such chains are formed in amorphous fullerite structures at
high pressures and temperatufe¥. The details of the mechanism of formation of the
polymer chains have not been adequately studied.

It is well known that the rigid-band model describes poorly the electronic structure
of compounds of the type &g, (x=1, 2, 3, 4), wheréA is an alkali-metal atom. One
reason for this could be the electron—phonon interaction. The band structure of fullerides
reflects primarily the molecular structure of the highly symmetrig.GSince the three-
fold degeneratd,, level forms the conduction band of,8s, compounds, the Jahn—
Teller effect should play a fundamental role héte.

The calculations were performed in a model proposed by Su, Schrieffer, and Heeger
(SSH,*2in which hops of ther electrons between neighboring carbon atoms are studied
and the local electron—phonon interaction is treated in an adiabatic approximation. This
approach was used in Ref. 13 to calculate the spectrum of an isolated fullerene molecule,
and it was also shown that the formation of “long” and “short” bonds between the
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carbon atoms on the surface of thg,@olecule could be due to the electron—phonon
interaction. It is conjectured that the electrons do not directly affect the optical and
chemical properties, but they do provide a bond between the carbon atoms on the surface
of Cgg, determining the energy of elastic deformation of the bonds.

In a previous work we extended this model to the case of fulleride crySt&le-
sides intramolecular electronic transitions, intermolecular transitions between the nearest
atoms to the neighboring molecules were also introduced. The main objective of present
work was to study the behavior of the valendg)( and conductiont(,) bands as a
function of the intermolecular overlap integral for neutral linearly polymerizggdnil-
ecules in the amorphous phase and for polyanionic chai@An the orthorhombic
phase.

The interaction between the chains is assumed to be weak, and charge transfer from
the alkali-metal atoms to the molecules is assumed to be complete. Furthermore, we
neglect the electron—electron correlations. The interaction of the electrons with the inter-
molecular vibrations is weak compared with the intramolecular interactions, since the
mass of the molecule is much greater than the mass of the carbon atom. The SSH
Hamiltonian is given in the fordd—23

H= th+ Hel,el—phv @
Hel,el—ph: - E 2 (t— OZPT,)CP?;C{?’S— T E Cnm;r Cnm,vs-i- h.c., (2
m (L,1")s (mnm’n’)s
K m .2
Homs 2 2 (o)) )
mL)
.
04+ t1u
o2t
a0l
021
3

o4l

038 |- hl.l

10 N N N " I 1 " 1
050 055 060 065 070 075 0,80 085 090 095

Th

FIG. 1. Energy characteristics as a functiorildior Cg. T andt — inter- and intramolecular overlap integrals
of 7 electrons. The,, band in eV — conduction bandh,, — valence band.
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FIG. 2. Same as Fig. 1, for chargeg,@nolecules.

Here the operatonr,""s+ creates an electron with spénat thelth carbon atom belonging to
the mth molecule, andl' andt are intermolecular and intramolecular “hopping” inte-
grals, determined by the overlap of theelectron clouds of the nearest carbon atoms.
The term proportional te reflects the dependence of the intramolecular overlap on the
change in bond Iengtb,’ln, between the nearest carbon atolmsnd|’ in the mth mol-
ecule. As a result of translational invarianq{,‘,,zpw. The calculations were per-
formed for the following values of the parametets:2.1 eV, a=6.0 eV/A, k=52.5
eV/A? (Ref. 14; T was varied from 0.6to 0.9.

The computational results for the Jahn—Teller distortions and the electron density
distribution on the surface of molecules in a chain as a function of the intermolecular
overlap integrall were presented in Ref. 14. It was shown that there exists a critical
value T* for which a redistribution of the electron density on thg, Gurface occurs:
T*/t=0.74 for neutral chains an@i*/t=0.68 for charged chains.

The energy characteristics of the valence and conduction bands as a function of
for neutral and polyanionic chains are displayed in Fig. 1 and 2, respectively. For both the
neutral and polyanionic chains the position of the valence and conduction bands is a
nonmonotonic function of, and their widths, remaining smali0.5 for both Gy and
Cgo), change very little. The bands closest to those under study do not overlap with them
and are separated from them by an energy interval of the order of 1 eVTiiedrhe
threefold degeneracy of thg, level is completely lifted. In the limiT—T* the band
gapA=0.5 eV for G,. For G, the valenceh, and conductiorn,, bands merge. As the
molecules come closer to one anoth€rificreasef the band gap changes abruptly at the
point T* (A=0.80 eV for neutral chains and=0.35 eV for charged chaipsIf T
continues to increase in the above-indicated range, then the band gap will also increase.
The decrease ih asT—T* is a consequence of the one-dimensional character of the
investigated periodic structures, when many degrees of freedom are present at one site of
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a one-dimensional lattice, while the abrupt change in the band dep &t is due to the
Jahn—Teller effect. Having attributed the increase in the parariieterthe increase in
pressure, it is natural to conclude that a transition of from a narrow-gap semiconductor to
an insulator occurs in solid g at some pressure. The rapid increase in the band gap at
pressures above some critical value indicates the possibility that strong covalent bonds
are formed between theggmolecules in a chain. Therefore the model makes it possible
to describe the high-pressure formation of solid-hydrogen structures containing chains of
covalently bound fullerene molecules and exhibiting different semiconductor properties.
These properties can be varied by changing the pressure.

This work was supported under the State Scientific and Technical Program “Topical
Problems in Condensed-Matter Physics” in the area “Fullerenes and atomic clusters”
(Project No. 9610Pand by the Russian Fund for Fundamental Reseéecbject No.
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Thermal conductivity of crystalline fullerite C 60 In the
simple cubic phase
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Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow District, Russia
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The behavior of the thermal conductivikfT) of bulk faceted fullerite

Cgo Crystals is investigated at temperatuiles 8—220 K. The samples

are prepared by the gas-transport method from pugge €ontaining

less than 0.01% impurities. It is found that as the temperature de-
creases, the thermal conductivity of the crystal increases, reaches a
maximum afT =15-20 K, and drops by a factor ef2, proportional to

the change in the specific heat, on cooling to 8 K. The effective phonon
mean free path,, estimated from the thermal conductivity and known
from the published values of the specific heat of fullerite, is comparable
to the lattice constant of the crystal,~d=1.4 nm at temperatures
T>200 K and reaches valueas,~50d at T<15 K, i.e., the maximum
phonon ranges are limited by scattering on defects in the volume of the
sample in the simple cubic phase. In the rafige25-75 K the ob-
served temperature dependehg@) can be described by the expres-
sion k(T)~exp@/bT), characteristic for the behavior of the thermal
conductivity of perfect nonconducting crystals at temperatures below
the Debye temperatur® (0®=80 K in fullerite), where umklapp
phonon—phonon scattering processes predominate in the volume of the
sample. ©1997 American Institute of Physics.
[S0021-364(©7)01708-9

PACS numbers: 61.48c, 72.80.Rj

It is well known' that at normal temperatures and pressurgsmMblecules form
crystals with a highly symmetric face-centered cubic structtee) in which the mol-
ecules located at the vertices of a cube rotate freely. Below the “orientational melting”
point T,,~260 K crystalline fullerite passes into a simple cutsc phase consisting of
four cubic sublattices distinguished by the relative orientation of thent@lecules(the
unit cell contains four moleculgsExperimental observations have shown that the strong
scatter in the results obtained in investigations of the thermodynamic propertiggisf C
due to both the difference in the degrees of purity and perfection as well as the effect of
thermal cycling on the properties of the samples: the fcc—sc phase transition can result in
the formation of defects in the volume of the sample under the action of thermoelastic
stresses generated during thermal cyclisge Refs. 2 and 3 and the references cited
therein. Orientational defect& local disorientation of the neighboring molecules in the
crystal lattice, produced as a result of the thermal vibrations of the molecules, could be
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an additional source of quasiparticle scattering in a crystal in the sc pHemsethis
reason, the properties of samples of greater perfection and purity must be investigated
experimentally over a wide range of temperatures below room temperature, where the
intramolecular interactions can be neglected, in order to draw reliable conclusions about
the characteristic behavior of the transport coefficients and about the role of different
excitation relaxation mechanisms in the fullerite lattice.

This letter reports and discusses the results of investigations of the thermal conduc-
tivity of bulk (volume ~3 mnt) faceted fullerite G, crystals prepared by the gas-
transport method from material of high purity, containing less than 0.01% impurities in
the initial powder. The measurements were performed at temperdter8s-220 K, i.e.,
in the existence region of the sc phase. These are the first investigations of the thermal
conductivity of G crystals below 30 K. Lowering the minimum temperature of the
measurements by a factor 6f4 made it possible to observe the appearance of a maxi-
mum in the curvek(T) in the regionT=20-15 K and the subsequent drop in the thermal
conductivity at temperatures below 15 K. Comparing with the results of previous inves-
tigations of the thermal conductivity of crystals prepared from material containing
~0.5% impuritie§ showed that the many-fold increase in the purity and, apparently, the
degree of perfection of the experimental samples substantially changed the temperature
dependence of the thermal resistakcé(T) at temperatures below the Debye tempera-
ture ® =80 K: from linear in Ref. 4 to nearly exponential in the regiba 75— 25 K in
our sample. However, it was found that even in such a crystal the effective phonon mean
free pathh , at temperatures below the point of the maximum of the thermal conductivity
is much shorter than the linear dimensions of the saquglo”‘ mm, i.e., the maxi-
mum values of the thermal conductivity in the experimental crystal are limited by scat-
tering on defects in the volume of the sample.

SAMPLE PREPARATION AND MEASUREMENT PROCEDURE

Fullerite single crystals were grown from the gas phase by the method described in
Ref. 7, for example. Powder containing 99.99%, @as used as the initial material. To
remove volatile impurities, the powder was held for several hours at a temperature of
250 °C in a dynamic oil-free vacuum, after which vacuum sublimation was performed
three times. This yielded smallggcrystals, which were placed into a quartz ampul, 10
mm in diameter and 150 mm long, which was evacuated to a pressurd 0f 4torr and
sealed. The crystals were grown in a horizontal furnace with two temperature gradients
under the following conditions: The sublimation temperature was equal to 550 °C and the
crystallization temperature was equal to 530 °C. The growth time of the crystals with
linear dimensions of up to 3 mm was equal to 8—10 h. This made it possible to prepare
faceted fcc single crystals with a volume of3 mn?.

The thermal conductivity was measured by the stationary heat-flux method. The
temperature difference along the sample was measured with a Chromel-Constantan ther-
mocouple. The wires of the thermocouple wereuld in diameter and the contacts were
separated by a distance of the order of 1 mm. The thermocouples and the heater were
glued to the sample with IBM lacquer, which possesses a high thermal conductivity and
is easily removed with a solvent consisting of 50% methahd@0% toluene.
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FIG. 1. Thermal conductivity of a fullerite crystal. Dols— results of our measurements. Solid cu®/e—
exponential dependendgT). The computed curv@ describes the dependenkéT)~C(T). Curve 4 —
thermal conductivity of the crystal investigated in Ref. 4.

The average rate of coolintheating of a sample was~0.1-0.05 K/min. The
typical values of the temperature difference along the sample with the heater switched on
did not exced 2 K at 100 K andwvere less tha 1 K attemperature§ <20 K.

MEASUREMENT RESULTS AND DISCUSSION

1. Experimental dataThe measurements of the thermal conductivity of the crystals
were performed mainly on two samples. The behavior of the thermal conductivity of the
best experimental crystal is shown in Fig. 1. The poihtsorrespond to measurements
obtained both during cooling from room to liquid-helium temperature and during the
subsequent heating of the sample from liquid-helium temperatures. It was found that, in
contrast to the observations in Refs. 2 and 3, thermal cycling in the range from liquid-
helium to liquid-nitrogen temperatures does not cause a systematic decrease in the maxi-
mum values of thermal conductivitg, ., as a result of the accumulation of defects in the
sample. We attribute the large cycle-to-cycle scatter in the values of the different sets of
experimental points neds,,, mainly to the inadequate insensitivity of the thermocouple
at temperature$ <30 K. The temperature dependendd) of the second sample inves-
tigated in the temperature range from room to liquid-nitrogen temperatures is close to that
shown in Fig. 1.

The solid curve2, drawn through the experimental points in the interval 25-75 K,
and the dotted curve3 correspond to the dependenc&$T)=A exp@/bT) and
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k(T)=D-C(T). Here® =80 K is the Debye temperature of fullefittandb=2.5 is a
numerical parameter. The values of the numerical paramatdss andD were found by

fitting the computed curve® and 3 to the experimental points. In constructing the curve

3, which corresponds to the behavior of the thermal conductk(ty) of the crystal at a
constant phonon mean free path= const, we employed the results of recent measure-
ments by Pal’nichenko of the specific h&({T) of a G crystal from the same batch as

our samples. The new data agree with the temperature dependiicein the less pure
samples:® We note that the parametbr= 2.5 agrees well with the Peierls theory esti-
mates of the probability of umklapp phonon—phonon scattering processes in an ideal
crystal at temperatureéb< @ 8°

The effective phonon mean free pakh(T) in the experimental crystal can be
estimated from the measured thermal conductikity) , using the values o€(T) and
the average sound velocity~3.5-10° m/s, which are known from different
experimentg;>>®

Ap=3k(T)/C(T)v. (€

It was found that the values so obtained fqy at T>200 K are close to the lattice
constant of the crystal=1.4 nm and increase tv,~50d at temperatures below the
maximum of the thermal conductivity of the sample<15 K. The difference in the
numerical estimates of, in the present work and in Ref. 4 {~3d and T=260 K) is

due to the difference in the choice of the valueoAndv. However, the differences of

the approaches to estimating, do not change the main poinirst, these estimates
confirm the importance of using the phonon (Debye) model for describing mechanisms of
heat transfer in the sc phase offXrystals, and, second, they show that the maximum
phonon ranges in the experimental crystal are several orders of magnitude shorter than
the dimensions of the crystal.

2. DiscussionTo clarify the nature of such strong phonon scattering in the volume
of a pure fullerene crystal, we must compare our observations with the results of previous
measurements. One of the most important results obtained in Ref. 4 was the discovery
that below 90 K the thermal conductivity of a sample depends on the rate of cooling or
on the observatioffiannealing time at constant temperature. Under prolonged annealing
at constant temperature in the range 85—-90 K the valkeiméreased by several percent.
The characteristic relaxation time of the annealing processes increased-ftomh at
87.5 K up to~4.5 h at 85 K. These observations could be explained by assuming the
existence of orientational defects in the sc-phase crystal; the equilibrium density of such
defectsNyo=1{1+expU,/T)} drops exponentially aT<T,,. According to the esti-
mates made in Ref. 4, the energy of formation of an orientational defeetl30 K is
much lower than the height of the potential barri¢y~3000 K separating differently
oriented molecules at neighboring sites of the crystal lattice in the sc phase. The time
over which the equilibrium densitiyo of defects is reached is determined by the hop-
ping time of molecules from one orientational state into anotherj expU,/T),
where j~10Hz is the characteristic vibrational frequency of the molecules in the
lattice. Since the quantity,, increases rapidly with decreasing temperature and reaches
v~ 1.6-10% s at 85 K, for any reasonable rate of cooling@.1-0.001 K/s below 85 K a
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quite large number of orientational defects “freezes” in the crystal; this corresponds to a
transition of the crystal into an “orientational glass” state.

The effective phonon mean free path in our sample below 15 K,is50d. Fol-
lowing the results of Ref. 4, we shall assume that the maximum phonon ranges are
limited by scattering on “frozen” orientational defects, i.e.,

)\p:)\pd:dslﬂ'Nd(O), (2)

whereg is the cross section for the scattering of thermal phonons by orientational defects
andNy(0) is the density of such defects. To a first approximation it can be assumed that
the cross section for phonon scattering by orientational defeetsl? and is virtually
temperature-independent. Hence it is easy to estimate that the relative density of frozen
defects in a sample grown from purg @eachedN4(0)~0.02.

At temperatures below the maximum of the thermal conductiVityl5 K, together
with scattering by defects, the phonon—phonon scattering becomes important, so that the
effective phonon mean free path is determined by the expreagiom N, )+ X4 . Ac-
cordingly, the thermal conductivity of the crystal can be written as

K(T)= 5 CToN(T) = C(TI NG/ N5, 3

Here N4(T,t) is the relative density of orientational defects, which in the general case
depends on the cooling rate and the annealing tigteconstant temperature. As one can
see from Eq(3), in discussing the contribution of different scattering mechanisms it is
more convenient to switch to the thermal resistakce:

k™ =kpg + Koy =3{aNg/d>+ N H{C(T)v}. (33

The temperature dependence of the thermal resistance is shown in Fig. 2. The
notation is the same as in Fig. 1. The cu/édescribes the contribution of the thermal
resistance due to phonon scattering by defects at temper&tu8® K. The solid curve
2 corresponds to the temperature dependéog‘ééT)~exp(—80/2.5l’). The dashed line
shows the continuation of this curve beyond the computational interval 25-75 K. The
straight line4 describes the behavior of the thermal resistance of the crystal as obtained
in Ref. 4, which we calculated according to formy&) assuming that the specific heat
of fullerite above 30 K is temperature-independent, the density of frozen orientational
defectsNg=Ny4(0), and theeffective phonon mean free path with phonon—phonon scat-
tering is)\pp~T*1. The latter condition, strictly speaking, holds only for®, accord-
ing to Refs. 8 and 9. In this approximatida *=k i +k,={N4(0)+BT}A, where
A andB are numerical constants. The valuekgﬁ1L in the sample can be estimated from
the intersection of the straight lieand the ordinaté.Using the known experimental
values of the specific heat @t=30 K and the average velocity of sound and assuming
that the cross section for scattering of phonons by frozen orientational def@cts3& K
equalso=d?, we find that the density of frozen defects in a crystal containing 0.5%
impurities, according to our estmates,Ng(0)~0.07, which is more than three times
greater than the density of defects in our sanfjiles important that here both estimates
of N4(0) were obtained from the experimental data by the same method
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FIG. 2. Thermal resistande ! versus temperature. The designations are the same as in Fig. 1. Thelaurve
was taken from Ref. 4 and corresponds to the contribution of phonon scattering by equilibrium defects.

The densityN,4 of the orientational defects in the volume of the crystal approaches
the equilibrium valueN4,(T) at T>88 K. The dotted curvda in Fig. 2 corresponds to
the computed cunfek 1~ Ng,(T) at high temperatures. As one can see from Fig. 2, if in
the entire temperature range the density of the orientational defects in our sample is three
times lower than in Ref. 4, the thermal resistance of the purer sample at temperatures
T>30 K is determined mainly by phonon—phonon scatteKfg= 3k, . Moreover, the
temperature dependen&e }(T) in the intervalT=25—75 K is closer to exponential
(curve2) than to linear. At temperatures at the order of or higher than the Debye tem-
perature,T>80 K, the exponential dependence should, of course, approach the power
law ko ~T", wheren=1-2 (Refs. 8 and

Thus the observed temperature dependé(ce in a bulk crystal consisting of pure
Ceo Can be qualitatively described on the basis of the Debye—Peierls phonon $odel.
However, a careful analysis of the experimental temperature dependence of the thermal
conductivity of our samplgpoints in Figs. 1 and )2shows that as the temperature
increases, a slight kink is observed in the cuk(¢&) in the regionT~90-100 K. This is
not surprising, since at these temperatures the temperature deperkgg(ice should
change as a result of “thawing” of the orientational defects and the corresponding
change in the temperature dependeNgéT). In the approximations adopted above, the
contribution of the phonon scattering by orientational defects does not exceed 30% in this
temperature range, but this is enough to change the slope of thekcUr{E) in the purer
sample.
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Unfortunately, accurate quantitative calculations of the expected temperature depen-
dence\,,(T) and, correspondingly,,(T) are impossible at present, since the form of
the dispersion curves(K) for phonons of different modes in fullerite is unknown. To
compare the theoretical predictions with the measurements of the thermal conductivity
and specific heat of pure crystals, it is also necessary to determine the ratio of the
contribution of the Debye component to the specific heat of fullddteresponding to
traveling phononsand, for example, the Einstein componégimcoherent vibrations of
the moleculesat temperatures above several kehfimnd the contribution of orienta-
tional defects to the specific heat of the crystal in the sc phase.

The effective phonon ranges in the crystal, estimated from the specific heat, are
limited to values\ < 10* mm. It can be conjectured on the basis of the results obtained
in Ref. 4 that phonon scattering by orientational defects plays the main role here. It is also
possible that defects appear as a result of the fcc—sc phase transition, which is accom-
panied by a~1% jump in the molar volume, as the sample is mounted rigidly on the
cold finger. In the latter case it is difficult to count on a further increase in the maximum
thermal conductivity of the fullerite crystals without a radical change in the measurement
methods.

We are grateful to Yu. A. Osip’yan for encouragement, to V. A. Pal'nichenko for
providing the measurements of the specific heat of crystallige © A. A. Levchenko
and V. N. Kopylov for helpful discussions, and to A. V. Lokhov and M. K. Makova for
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The manifestly supersymmetric four-dimensional Wess—Zumino model
with quenched disorder is considered at the one-loop level. The infrared
fixed points of a beta function form the moduli spagé=RP?, where

two types of phases are found: with and without replica symmetry.
While the former phase possesses only a trivial fixed point, this point
become unstable in the latter phase, which may be interpreted as a spin
glass phase. €1997 American Institute of Physics.
[S0021-364(97)01808-3

PACS numbers: 12.60.Jv, 75.10.Nr

1. INTRODUCTION

There are a great many field-theoretical models describing a system in quenched
random fields or with random coupling consta(Refs. 1-3, etg. In solid state physics
such models naturally arise from the corresponding pure systems whenever impurities are
introduced. It is interesting to extend randomness to other well-studied field theories, just
as, for example, disorder was implemented into minimal conformal models in Ref. 3. It
was shown in Ref. 4 and subsequent papers that stochastic equations, like field theories in
the presence of random external sources, often prove to possess some hidden supersym-
metry. Kurchan endorsed this result for spin glass dynamics. Because supersymmetry
can handle perturbative corrections, such random theories are especially interesting. Such
an approach will be taken in this paper.

On the other hand in field theories with manifest space—time supersymmetry the
superpotential is a holomorphic function not only of the fields but also of the coupling
constant$. Therefore the couplings and fields enter the potential on an equal footing, so
that it seems very natural to introduce a rand@@aussiap distribution of some cou-
plings in the Lagrangian. But the power of supersymmetry is so strong that the superpo-
tential gets no quantum correctiohsj.e., provided that the coupling has no dynamical
D-terms, integrating over it solves the problem.

In Sec. 2 we formulate a four-dimensional supersymmetric Wess—Zumino theory in
a random field. In Sec. 3 the infrared fixed points of one-I@efunctions are found in
the context of the replica method. Analysis of these fixed points suggests the existence of
two phases on the moduli spac&=RP?. Numerical evaluation of the most general
expressions is eventuated in the phase diagram, which is illustrated by two simple ex-
amples in Sec. 4. Section 5 is devoted to discussions and conclusions.
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2. WESS-ZUMINO MODEL PERTURBED BY RANDOMNESS

It follows from the above arguments it follows that the SUSY analog of a theory
with disorder must contain dynamical terms for the random field. In the present paper we
consider a four-dimensional Wess—Zumino model that is the supersymmetric counterpart
of the ¢*-model (the two theories are defined in the same critical dimension, and the
scalar potential after integrating the auxiliary field in the former model is actydiy
Since, according to Ref. 7, Wess—Zumino theory is defined only as a low-energy field
theory, we will study the Wilsonian effective action obtained by integrating over fast
modes with momenta A’'<P<A. We thereby define a chiral superfield
® = ¢+ 0+ 6°F and a random superfield. In this notation the original actions

1 1
s=fd4xd20d2§(gq>+cl>—c1>+H—H+<I>+ GH*H +§f d*xd?O(\jPH?

FNGP2H+ NP3+ N H3) +h.c. ()

This action admits the following treatment. It may be obtaiffed a given set of param-
eterg from the usual Wess—Zumino action by the replacerdent® +H, as one usually
does in a summation over local extrema.

One of the most powerful methods of dealing with random fields is the replicatrick,
which we will use here to solve this “toy” model. It reduces to introducimgopies
(replicag of our system, integrating out the field, and then solving-replica problem
and takingn=0 at the end of the calculations. After replication the actibntakes the
form

n
1
S=fd4xd20d26' > (ng;’@a—Q;’H—H+d>a)+aH+H}
a=1

+h.c. 2

1 n
+ yf d4xd29{ D (NP H2H N LDZH+ N D) + A jHS
: a=1

As will be shown later, the model depends only on the relative values of the lambdas, so
that one can put them small enough to determine Hhéeld from the saddle-point
equation on the D-term only:

n n
H=u) ®, andH'=u), ®;. (3)
a=1 a=1
Substituting it back intd2) yields:

n n

— 1

S= >, | d*xd?60d? 0., D] Dp+ —f d*d20| D, NP, D,D,
a,b=1 3! a,b,c=1

n n
+ > A®2Dp+ > Agd3 | +he. (4)
a,b=1 a=1
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where g,,=0+3U, Jga.2p,=3U, and the three types of verticels;=\ju’+\ud,
N>=\,U, and\ 3=} mix replica indices in different ways. It is the actit¢#) that we are
going to study.

3. FIXED POINTS OF 8 FUNCTIONS

The renormalization groufRG) equations forg,,, easily follow from the one-loop
diagram for the pure Wess—Zumino thedry:

n n

dg b 1
: 2 (95

din A = 288172 gkgggb'i_ Zhgcﬂzl [(gac+gbc)gcd+gacgbd]+3)\2)\3

n

+0ho)+ Zgab;l (Gact be)

n
+9)\1)\3ch:1 (gacgad+gbcgbd)] . (5)

Taking into account the possible replica symmetry breaking, we take the Parisi ansatz for
Jap:* the off-diagonal part off,;, is parametrized by an internal functigix) defined on

a unit intervalx €[ 0,1], and the diagonal part §,,=7. The replica-symmetric case is
obtained by puttingy(x) =g=const. The algebra of Parisi matrices (@,a(x)) is de-

fined by the multiplication rulé:

c=ab: c=ab- joldxa(x)b(x),

. 1
c(x)=b(x) a—JO dxa(y)|+a(x)

E—Joldxb(y)}

_ j:dwa(x)—a(y))(b(x)—b(y)>. ®)

By means of this rule we get sums over replica indices that appe@& im the n—0
limit:

n n n
bzl gac—;é_g—cdgzl gacgcd_’(a_azbzl ggc_;éz_? (7
where
1 1
g= fo dxg(x) and g®= fo dxg?(x). (8)

As usual in spin glass theory, one deals with the problem of finding the inftiRed
fixed point§ of Eq. (5), which determine the dynamics of the system:

3 272 2 = _\2 SN AV~ 2_ A2

2397+ (A2+3MAg) (g~ 9) "+ Aohs[29(g—0g)+9 “~g7]=0 ©)
3 2.2 2 =~ _\2 TNl m2_ N2

23070+ (A2+ 3N 1h3) (9~ 9) "+ AA5[29(X) (g~ 9) + 9"~ 97]=0. (10
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FIG. 1. Surviving(in then—0 limit) )\g-contributions.

For example, the.% term is produced by the two nonvanishifwgith number of replicas
diagrams shown in Fig. 1.

These equations have two remarkable properties: they are homogeneowmdh
g, i.e., they depend only on their squares. This type of dependenkeelis us that the
zeroes of the beta function®)—(10) do not depend on the values of the couplings
themselves, but only on their mutual ratios, so that the moduli space of the theory is
RP? instead ofR3={\;,\,,\3}. Therefore, without loss of generality, we may put the
couplings very small, while keeping their ratios fixed. In this limit the results that we are
going to obtain are exact. Moreover, in what follows we will asswgé& 0, so that we
can choose it to be;=1 and denote.,=\ and\ ;= u (affined map.? The special case
N3=0 will be studied in the first example of Sec. 4.

Quadratic dependence gnin (10) means that for each set of general characteristics,
such agy, g ? andg, there are only two possible valugs, (if any) which the function
g(x) can take on at a IR-fixed point. Moreover, the same must be trug fiwecause
formally it also satisfies a similar equati®®). We are free to chosg=g,, for instance.

Let us denote the measure of points on a unit intervad whereg(x) =g, as 1—x, and
the measure of points whemgx) =g, asx,. For example, it may be a stepwise distri-
bution:

01, Xo<x<1,
= 11
9 0o, 0<Xx<X,. (D
Thus we have two equatior{8), (10) in three unknownsg, , andx,, with g and
g? depending on them. I§); and g, are not simultaneously equal to z&rthen we
actually have only two unknownsg and the ratiop= g,/g;. In this notation Eqs(9)
and (10) may be rewritten as

2., 2 2, 2 2
1+{ A+ 20 |xo(1=p)"+ XM 2(1-p) +(1-pT)]=0,
12
2 2 2, 2 2
p?+ §>\2+2M Xo(1=p)"+ 3%A[2p(1~p)+(1-p)]=0,

which determine botlp andx, and, consequently, the phase of the system.

Curiously enough, for a given solutigm and X, we get a whole set of RG-fixed
points{g,g(x)}, differing by an arbitrary factor. Of course, this degeneracy will be lifted
by higher loop corrections, so that particular value of the fixed point will be determined
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FIG. 2. The phase diagragnot drawn to scale

by the full perturbative expansion. In the one-loop approximation, the explicit data for
(9,9(x)) at a fixed point may be determined by the initial conditignandu.

If for some set of couplings there is no solution (b2) except the trivial one
§=g(x)=0, we will refer to this point on the phase spafe u}e.7Z=RP? as a
replica-symmetric point and will denote the corresponding phase as “RS.” Otherwise,
replica symmetry is broken witl, being the solution 0f12), and the corresponding
phase “RSB” looks like a spin glass system.

Since(12) must be solved by the sanpe by equating the solutions to each equation
we get a relation betweexy and{\,u}e.Z. Instead of writing the resulting compli-
cated formulapartly because it can not be solved #gy)), we display it forxg=1:

>\2+3M+>\i\/§>\2—gﬂ+§>\ )\2+3M—)\i\/§)\2—g,u,—§)\
2 277 2 2 27 2

A+3u—\ B 3 ., ‘ (13
§+)\ +3,LL_3)\

where the signs in the two sides are taken independently. Replacingoh and

w— X3, we get Eq(13) for arbitraryx,. This expression describésart o a curve in

./ that separates the RS and RSB phases as shown in Fig. 2. The shaded region indicates
a replica-symmetric phase and the unshaded region corresponds to replica symmetry
breaking, where there is a non-trivial solution(8), and the trivial poinfgf=g(x) =0
becomes unstable, as will be discussed at length in the second example of the next
Section.

4. TWO SIMPLE EXAMPLES
a) A3=0. In this case the beta functiofs) become

d§ _ 2~ 2 dg(X) _ 1 2,.._, 2
dinA - 2822079% Gia T2 (0 9
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These equations may be easily integrated, with the result:

A A
~ o~ 2 — 32 =
gA_g(),A’+ 48772)\2 In A gA(X) gO,A’(X)+ 48772)\2 In A

where the constanf=(g—g)? is determined by the initial conditions and remains
unchanged during renormalization group flow. Since for apythe only fixed point is
T=9(x)=0, this phase is always replica-symmetric and is not as interesting as the
others.

b) A,=0<~A=0. Equationg9) and(10) take the form;:
§°+2u(§-9)°=0
g%(x)+2u(G-9)%=0
for which g, ,= =g for someg+0 in the SG phase. In parametrizatigii)
9=(91—92)%0=29% and g%= (g7~ g3)Xo=29"o. (15
Substituting it into(14) yields a nontrivial solution:

(14

1
[— 8u
which exists only foru<<— 1/8. It is therange ofu where the RSB phase can be found.

Let us emphasize that it is precisely at these pointszhthat the trivial fixed point

T=9(x)=0 becomes unstable, for example, against perturbatior§. ifo see this,

considerg=e:

de B
dinA
wherea<0 if (16) is true(i.e., an arbitrarily smalk increases in value during the flow

to low energies This simple case illustrates the behavior of the general sy&@mOn
the phase diagram it corresponds to thexis, where both the RS and RSB phases exist.

—8uxi=1 or xo= (16)

e, (17

5. SUMMARY

Starting from the(space—timesupersymmetric Wess—Zumino model in a random
and quenched backgrouridl), we have found that the renormalization group equations
(5) at a fixed point are quadratic homogenous equations in the couplings andrire
former property allowed us to take the couplings very small and to reduce the moduli
space ta#=RP?. There are two types of pointphasesin this moduli space, those
with and without broken replica symmetry.

Though we have found all IR-fixed points of the one-Igdfunction, the stability of
the nontrivial fixed points and of the analytic RG flow to them remain unexplored.
Finally, it is interesting to generalize this analysis to more complex supersymmetric
theories and to find realistic models whose critical behavior correspond to such theories.
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YFor the sake of simplicity the mass terms are omitted.

9The points where thg functions vanish.

9If N3#1 then the correct parameters are\, /A5 and u=X\/\3.
®Otherwise we get a trivial replica-symmetric fixed point.
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