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The complicated form of the cosmic-ray spectrum recorded in the en-
ergy range 19-10°° eV by giant detector arrays is analyzed. It is
shown that the spectrum in the region'3a10*° eV is apparently iden-
tical to the injection spectrum with power-law exponent approximately
equal to 3.2-3.3. The flat component in the region (3.8)x 10'° eV

is due to the braking of extragalactic protons by relict photons. The
spectrum apparently has no blackbody cutoff at energies above
3.2x10"° eV. © 1997 American Institute of Physics.
[S0021-364(®7)00110-3

PACS numbers: 98.70.Sa

The origin of ultrahigh-energy cosmic rayg ¥ 10'’ eV) has not been conclusively
established. The experimental data show that cosmic rays with en&gidx 10'° eV
are apparently extragalactic? If this is so, then their spectrum could have a blackbody
cutoff:*® As a result of interactions of cosmic rays with relict photons in the intergalactic
space, the recorded flux of610'° eV particles will be half the value expected from a
power-law extrapolation of the spectrum. However, if the proton sources are no farther
away than 40-50 Mpc from us, there will be no blackbody cutoff because protons with
any energy up t&E~10? eV traverse such distances virtually unimpefiéd.Ref. 7 it
was shown that the main sources of protons with endgyE,,~3.2x10'° eV are
apparently nuclei of active galaxies located no farther than 40 Mpc from us, if the Hubble
constant equals 75 km/Mlpc. In this case the proton spectrum has no blackbody cutoff.
At present the experimental data obtained with various detector &rfapsither confirm
nor rule out the presence of a blackbody cutoff.

The origin of cosmic rays in the energy range! 40E<10'° eV has been deter-
mined on the basis of not only the spectrum but also the anisotropy and chemical
compositiom:~3 However, the existing experimental data are not precise enough to de-
termine whether cosmic rays with such energies are galactic or extragalactic.

In the present work, we analyzed the spectrum of cosmic rays in the energy range
E>10 eV in order to determine their origin.

The cosmic-ray spectra measured with the detector arrays of Refs. 8—12 and nor-
malized with respect to energy in the same manner as in Ref. 3 are presented in Fig. 1.
The spectrum has the following forf°At E~5x 10 eV the slopey of the spectrum
increases fromy~3.0-3.1 toy~3.2-3.3(the error in determining’ equals 0.02-0.06
and in the regiorE~10'° eV it decreases te~2.6—2.7 — a flat component appears in
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FIG. 1. Cosmic-ray spectra, normalized with respect to energy in the same manner as in Ref. 3, in the region
E>10Y eV according to measurements performed with the following detector afays: Yakutsk® x —
Akeno and AGASA’ + — Fly's Eyel® O — Haverah Park! Solid line — theoretical spectrum.

the spectrum. The error in determining the slope of the flat component equal(3itel.
spectral slopes are not given in Refs. 11313.

The propagation of protons in the galaxy can be described in the diffusion approxi-
mation if their energy does not exceed'1010'® eV.}* Furthermore, in Refs. 15-17 it
was shown that the particles no longer propagate by diffusion if their energy is greater
than some valug&, the proton spectrum in the energy rarife E, being identical to the
injection spectrum(We note that this result was obtained by different methods in Refs.
15-17: In Refs. 15 and 16 it was inferred from the drift of ultrahigh-energy cosmic rays
in large-scale magnetic fields, while in Ref. 17 it was inferred from a transition to
collisionless propagation of particles in a medium in which they excite MHD waes.
estimate of the energi, was obtained from a numerical simulation of the particle
trajectories in the galactic magnetic fidldEy,~2x 10* eV. Hence it follows that in the
region E=2x10'® eV the slopey, for a power-law injection spectrumequals 7,

Yo= V-

The regionE=2x 108 eV is the region where the slope of the measured spectrum
increases. According to the measurements reported in Ref. 18, cosmic rays with such
energies consist mostly of protons. This means that their injection spectrum apparently
changes at energieE>10 eV: Its slope increases toy,~3.2—3.3, while for
E<3x10Y eV the slope did not exceed 2.75¢<2.75! (The slope of the injection
spectrum at X 10°-4x 10 eV has not yet been determined, so that we will not make
any comparisons for this segment. Different points of view are presented in Refs. 3 and
14)

Apparently, particles with enerdy>E,, are accelerated mainly in sources located
no farther than 40—50 Mpc from d$??°and so their spectrum has no blackbody cutoff.
If this is so, then the slope of the spectrum in this region equals the slpp the
injection spectrum. Let us assume that in the redonkE,, the injection spectrum is the
same as in the regioE=2x 10" eV. Then in the regiorE>E,, the slope of the
spectrum will equaly=3.2-3.3.
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TABLE I. Computed slopey, of the flat component for different valuéwithin the experimental errpr
of its upper limitE; and the slopey of the spectrum.

Y E37 ev Y1

3.0 4.9<10'° 2.6
3.05 4.8<10% 2.65
3.05 4.9<10"° 2.7
3.1 4.5 10'° 2.6
3.2 4.5<10° 2.7
3.25 4.3x10"° 2.7
3.3 4.2x10'° 2.7

Particles with energ\e>E,, which propagate from sources located at distances
greater than 40 Mpc from us will interact with the relict radiation until their energy
decreases t&~(3.2-5)x 10" eV. Particles with such energies may not undergo any
interaction in the intergalactic space, since their ranges in the relict radiation field will be
quite long —\>1000 Mpc® As a result, protons with energigs>3.2x 10'° eV are
transferred into the regioB~(3.2—5)x 10'° eV, and in consequence the slope of the
spectrum in this region will change from>3.1 to y;:

) E3
f E_ydE=f E~"dE,

Epb Epb

whereEj is the upper limit of the energy range of the flat component. We shall find the
value of y; from the data given in Refs. 3 and 8-13. The measured valug;adb
E;~4x10 eV, and the particle energy is determined to withi20—-30%2° For this
reason, we estimated the slopg, for several values ofE; in the interval

4X 10°<E;<5x 10" eV and several values of in the interval 3.8<y=<3.3. The
computed values of, are presented in Table I. Taking into consideration the 30% error

in determining the energy, the energy range of the flat compondati€2 —5)x 10

eV. It agrees with the measurements performed in Refs. 8, 9, and 11-13 and is not
inconsistent with the monocular data presented in Ref. 10. The possible existence of a flat
component of this nature in the spectrum was predicted in Refs. 21-23.

Thus protons with energids<E,,, are galactic and protons with energies E,,
are extragalactic, while the injection spectra of the two types of protons are identical. The
theoretical spectrum obtained on the basis of this modej§er3.25 is displayed in Fig.
1. It is normalized to the intensity measured Eat7x 10'° eV. Furthermore, it was
assumed in the calculations that the flat component lies in the energy range
E~(3.2-5)%x 10" eV. The theoretical spectrum agrees with the measurements within
the limits of error.

Let us compare the slopes of the theoretical and measured spectra in the region
E=10"eV. It is evident from Table | that a slopg in agreement with the slope of the
flat component can be obtained on the basis of the proposed model.

To estimate the slope of the measured spectrum in the ré&gio,,,, we shall make
use of the experimental data reported in Ref. 3: Up to 1993 only 881 events with energy

765 JETP Lett., Vol. 65, No. 10, 25 May 1997 A. V. Uryson 765



E=10' eV, seven events witlE=10? eV, and two events witlE=10%° eV were
recorded. For a power-law spectrum wibh particles with energy not less thds,
N(=E), we haveN;(=E;)/N,(=E,)=(E;/E,;)”"*, whence we obtairy=23.1"37 for
E,=10" eV andE,=10? eV.

The energies of some of the 881 events lie in the intervél —3.2)x 10'° eV, and
these events comprise the flat component. Therefore the slope of the spectrum in the
region E>3.2x10'° eV will be greater than the estimate;>3.1 and therefore
vo>3.1.

If there is no blackbody cutoff, the proton spectrum is identical to the injection
spectrum in two regions: 2 10¥<E< 10" eV andE=5x10'° eV. Estimates of the
slope of the spectrum in these intervals agree:3.2—3.3 andy>3.1. Therefore the
measured spectrum apparently has no blackbody cutoffRef. 3 it was concluded on
the basis of the same experimental data that a blackbody spectrum might be present. It
was assumed there that if there is no cutoff, then the slope of the spectriam-16g), is
identical to the slope of the flat compongnt.

It follows from the picture presented above that in the region of the dip the galactic
cosmic rays are replaced by extragalactic cosmic rays. The amplitude of the anisotropy of
the galactic cosmic rays fd&>10'® eV is somewhat larger than for extragalactic cosmic
rays, but because of the large measurement errors their origin still cannot be determined
reliably in this mannef* Data on the chemical composition in this region are also still
not determined. According to the measurements reported in Ref. 10, the composition of
cosmic rays in the regionx410'"—4x 10'° eV varies — protons start to predominate in
this region, but according to the measurements reported in Ref. 18, the proton fraction
already starts to increase at10' eV.

The results obtained can be checked in further measurements of the cosmic-ray
spectra in the regioE>10'" eV performed with the detector arrays of Refs. 8—11 and
with those of Refs. 25 and 26 and also with SHAL-160@hich will have a much better
energy resolution.

| am grateful to S. I. Nikol'ski and G. B. Khristiansen for a discussion of the
experimental data and to V. A. Dogel’ and V. S. Ptuskin for a discussion of galactic
cosmic ray propagation models.
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Inclusive semileptonic decays of B mesons
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The probability of inclusive semileptonic decay Bfmesons is calcu-
lated in the constituent-quark model. A compact formula is obtained for
the differential decay width of B meson in terms of the corresponding
decay width of a freeb quark and the wave function of the internal
motion of the quarks in theB meson. Numerical values of
semileptonic-decay widths are obtained for a series of models of the
wave function. ©1997 American Institute of Physics.
[S0021-364(07)00210-7

PACS numbers: 13.20.He, 12.39.Hg

Inclusive decays oB mesons in models of the decay of a fleguark have been
studied many times befofe. In what follows, the probability of the inclusive decay of
B mesons is calculated in the constituent-quark model, and the quark—hadronic duality
principle is checked for different models of the quark wave function. The approach
employed below is based on the same method as that developed in Refs. Jvamdhd
takes into account the nonperturbative coupling of the heavy quark with a spgdsator
a number of modifications have been made which have a large effect on the form of the
results and make it possible to obtain results in a form whose physical meaning is
transparent. Some features of the method are:

a) The nonperturbative wave function of tBemeson is used under the assumption
that all quarks lie on the mass shell. This gives agreement, first, with methods for ob-
taining the wave function from the Schiioger equation and, second, with the diagram-
matic approach.

b) It allows for the fact that in obtaining the differential decay width d8 aneson
it is preferable, in a certain sense, to integrate first over the transverse monggnifm
the heavy quark and then over the variable— the longitudinal momentum fraction in
the infinite-momentum frame. This makes it possible to express the decay width of the
B meson as a product of the decay width df guark and a weighting functiofsee Eq.
(5)), previously introduced in a general form by Bjorken.

¢) The integration ovex is performed not over constant limits from 0 to 1 but rather
over limits which depend on the values of the kinematic variablaadz’ (the notation
is explained beloyw These limits “collapse” as the mass of the created hadronic system
approaches the lowest hadronic threshold.

The differential inclusive semileptonic decay width with the formation of charmed
hadronic states has the fotm
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G*Mg  ,2lql/Lg
dre'= Vel 3 MB weedydz, @

whereMg is the mass of th8 mesonz’ =P’?/M2, whereP’ is the total momentum of
the final hadronic statg;=q%M2, whereq=P— P’ is the momentum transfer amlis
the momentum of th& meson;

Mg
lal= —¢(1+y z')*-4y; do="%" B(1+y-2)

in the rest frame of th& meson;(L¢, B) = 3(qaqﬁ gaﬁqz) is the leptonic tensotthe
lepton masses are neglectew<” is the hadronic tensor

dx
Web= f L*A(py,Pe) 8((P— ) *—mg) f(x,pf)~ -dp? , @

where L*%(py,,pc) =2(PEpE+ pEps — 9*#(pope) —ie“#¥°pgpd); and, x and p, are
light-cone variables for the quark

Pos  PotPi
:P_+:PO+P3' pJ_:pb_nZ(XPz)i
the z axis being oriented in the direction of the vectpin the rest framen,=q/|q|.

The distribution function‘(x,pf) is normalized according to the condition that the
elastic form factof=(0)=1:

f f(x,p?)dxdp? =1. 3
The contraction of the tensors is
o) w2 )2+ (i md) 2] @
Mé 3Q+M B b c b C 0>
where

xM q-
|0=|0<q2,qo)=ff(x,pfo>dx; pf(,:piO(x):uz—B—széa—mé;

q-=qo=lal; w?=mi+g®—mZ;

m, andm, are the masses of theeandc quarks. The functiomﬁo(x) appears as the root
of the argument of the delta function in E@).

Finally, the differential decay width is

d2rer  dr, .
defdg,  dq? F(d?,q0), (5)
where

769 JETP Lett., Vol. 65, No. 10, 25 May 1997 S. Ya. Kotkovskii 769



dar, Gm;
dg? 19273

4|qp| q° q?\?
2 _ 2 _ -
|Vcb| mﬁ (1 P) +mt2)(1+P) 2 mg

is the decay width of a freb quark,

5'3 I\)| OBN

1
|Qb|:|Qb|(q2):2—mb M4—4m§q2, p=

The weighting function in our case has the form

2mg |q
F(92,g0)= — — | f(x,p? )dx. 6
(q qO) Q+ |qb| ( pio) ()

In Ref. 5 a sum rule is presented for the weighting functions in the limiting case of heavy
b andc quarks:

f F(9?,00)dgo=1, @)

which means that the decay width of tBemeson equals the decay width obaquark.
The application of Eq.(7) to our case gives(passing to the limitsm,—Mg,
me—M’=/P’2, and simultaneouslyn,— o, m;— o) our normalization conditior3).
This verifies that our approach meets the general requirements.

As stated above, the limits of theintegral in Eq.(4) depend ory andz’ as dictated
by the requiremenpfo(x)>0. It follows from this requirement that

1
X1 <X<X3, X1,z=m[,u21 Vit —4amgg?].

The conditionx; = x5, which means that the phase volume of the final quarks reduces to
zero, gives the value’ =z,(y) for the lower limit with respect ta’, i.e., the hadronic
threshold.

From Eq.(5) it is easy to obtain an expression for the semileptonic width ratio
drev 1 4|q|
Tt B30a:
where the total width

dBr=

(3~ &%+ y(8+ D) - 2y2IMBlodydZ, ®

G2 5
— B 2__ — 3
[io= ,3—(477)3 [Vcp|s=0.45x 10" eV,

and B is a factor whose value is close to ohe.

Formula (8) was used to perform numerical calculations of the total semileptonic
ratio (see Table)l for the decay oB* mesons for the following model wave functions:

I) Free b quark. This case corresponds th,pf)= S(X—my/Mp) 5(pf) and
dre/dg?=drg/dg?. The values of the quark masses were taken to be the same as in
model IIl.

I1) Distribution from Ref. 3:
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TABLE 1.

Experiment | I 1} IV \%

Bre” (10.4+0.4)% 11.4% 10.6% 8.4% 9.5% 9.6%

exd —p?/p§(1—x)1,

X 1-x {o
2 = — — —
f(x,p7) Al_xexr{ )\( Z 1 x
where po=Mgmg,/Ng, {o=Msp/Mg, the parameter,=1, and the quark masses are
m,=4.8 GeV,m.=1.4 GeV, andn,,=0.3 GeV.

Il The distribution functionf(x,pf) obtained by an appropriate transformafion
from a solution® (k) of the relativistic Schrdinger equatiod,wherek is the magnitude
of the relative momentum of the quarks in their center-of-mass framengrdd.997
GeV, m.=1.628 GeV, andng,=0.22 GeV.

IV) The solution of the Schdbinger equation in the nonrelativistic approximatfon.
The masses aren,=5.279 GeV,m.=1.835 GeV, andn,,=0.337 GeV.

V) Approximation of the solution of the Schiimger equation by a Gaussian
distribution® W (k) = (47/ 8?)*“exp(~k3/23%), where for aB mesonB=0.41 GeV. The
quark masses anm@,=4.88 GeV,m.=1.55 GeV, andng,=0.33 GeV.

It can be concluded on the basis of the results obtained that the principle of global
duality holds well in the case of semileptonic decay8ahesons for most of the models
examined, i.e., the total integral ovet gives branching values which are close to the
experimental values.

The integration over’ can be performed starting not at the lowest threshold but
rather a some initial value;, as done in Ref. 3, thereby obtaining the probability of a
transition into the so-called “continuous spectrurBt€”(X’), which when added with
the probabilities of transitions to lower-lying single-particle hadronic states D and
D*) should give the total probability. In the calculations the vaiye(2.15 GeV/
Mg)? was used. The model Il in this case givs®’(X')=2.9%), which when added
with Br®"(D)=1.87% and Br®’(D*)=5.64% (Ref. 3 gives the good value
Br®”=10.41%. Similar figures are obtained for model IIBré”(X’')=4.4%,
Br¢”(D)=2.07%, andBr®”(D*)=5.98%. These values give a somewhat higher value
than the experimental valugr®’=12.45%.

| thank Professors K. A. Ter-Martirosyan and |. M. Narodet$éi a discussion of
the questions examined in this letter.

¥e-mail: kotkovsk@heron.itep.ru
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New possibilities for producing photon echoes from a
homogeneous ensemble of atoms and with the
use of a single light pulse
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In investigations of predicted new types of photon echoes — an echo
from a homogeneous ensemble of atoms and an echo of a single light
pulse — have established that the magnitude and form of these new
types of photon echoes are completely determined by the type of opti-
cal transition and by the “area” and polarization of the exciting light
pulses(and the form can be controlled by varying the magnetic fidtd

is also established that the echo amplitude decreases for both small
(compared to Land large light-pulse areas, and the optimal areas for
which the maximum echo is obtained have been found. Investigations
show that such photon echoes can also appear under conditions when
an ordinary photon echo is abseint atomic or molecular gases at high
pressure, in the far-IR region of the spectrum, from cooled trapped
atoms or ions, and so @n © 1997 American Institute of Physics.
[S0021-364(17)00310-1

PACS numbers: 42.50.Md

1. The photon ech@PE) effect, which was predicted in Refs. 1 and 2, consists in the
fact that the irradiation of a medium by two light pulses engenders a response in the form
of a radiation pulse separated from the second exciting pulse by the same time interval as
that between the two exciting pulses. This interval can be much longer than the decay
time of the macroscopic polarization, which decays because of the rapid dephasing of
individual radiators due to the difference of their characteristic frequencies. The second
pulse serves to rephase the radiators, restoring the macroscopic polarization induced by
the first pulse and thus giving rise to a photon echo.

Therefore the ordinary PE effect requires the presence of inhomogeneous line broad-
ening. However, different forms of photon echoes are possible, even in the case of
homogeneous broadening, if an external magrietiectrig field is additionally imposed
on the mediunt:* This letter reports the results of investigations of PEs from a homoge-
neous ensemble of atofhand from a single light pulSen the presence of a magnetic
field.

2. Let the average optical frequenay of the exciting pulses be in quasiresonance
with the transition frequency, of the atomgmolecule$ between the degenerate energy
statesl and u with total angular momentd, and J,, respectively. When an atom is
placed in a strong external quasistatic magnetic fitldhe resonance frequencies of the
transitions between different degenerate energy sublevels change by the ‘amount
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AMH=Q (D[gM—gy(M+0)], (D

whereQ (t)=e|H(t)|/2mc is the Larmor frequencyg, and M, are the Landdactors
and the projections of the total angular momentum of the lowet!) and upper
(k=u) levels on the quantization axis (oriented along the fieldd), e and m are the
electron charge and mass, ands the speed of light.

On account of the selection rules for the allowed dipole transition studied in the
present letter, the quantity can assume the values 0 ahd.. For certain distinguished
polarizations of the lighto can take on only one of these values=0 for linear
polarization alongH, ando=+1 or —1 for light propagating in a direction parallel to
H and having right- or left-circular polarization, respectively. As one can see from ex-
pression(1), for such polarizations of the light the interaction with the light couples each
lower magnetic subleve¥, only with one upper sublevéll, + o. Therefore the problem
of the interaction of light(with fixed polarizations with a resonant atom with two
guasidegenerate states in a magnetic field red(iteme neglects the decay from the
upper state into the lower stat® analysis of the interaction of light with a collection of
two-level systems. Furthermore, as one can see fron{Egthe resonance frequencies
are different for each such two-level system, differing by the valudpf In conse-
quence, such a collection of two-level systems can be treated as an analog of an ensemble
of two-level atoms with different frequencies, which therefore exhibits “inhomogeneous
line broadening.” A characteristic feature of such an “ensemble” is that each two-level
system differs not only in the resonance frequency but also in the magnitude of the
transition dipole momend(M,). The behavior ofi(M,) depends on the type of optical
transition ,=J, or J,=J,=1) and the polarization of the light, ard{M,) can be
expressed in terms of a Clebsch—Gordan coefficiend(M,)=(J,/|d||J))
X(—1)1"M(IM I —M,|1a)/ 3. Here(J,||d||J)) is the reduced matrix element of
the dipole moment for the transitian—1, and(J,M J,—M,|10) is a Clebsch—Gordan
coefficient.

3. On the basis of the analogy indicated above, it is easy to calculate the magnitude
of the PE from such a homogeneous ensemble of quasidegenerate two-level atoms. To
simplify the analysis, we shall confine our attention to short square light pulses separated
by a time intervalT and having duration¥, T,<A(J,,0). In this case the polarization
P(t) of the PE at time after the first pulse can be represented in the form

P(t)=2N RgAt)exiot)], )

SiIN(6,(M))V1+Yy3(M)))
V1+y3(M))
0,(M))

y(M,)sir? (2 V1+y4(M))

—2i

:’%(t)z—izg, d(M)f(M))
|

L y2M)) SV, ®

S(M,,t) ={sir(8,(M) V1+ €?y*(M))/2)/[ 1+ €2y*(M ) }exd i (t—T,— T
—-2T)Q(M))]. (4)
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In the expressions presented abaMds the number of atoms per unit volumigM)) is

the population distribution over the sublevels of the lower level of the atoms before the
interaction with the light, y(M,)=Q(M)/Qg (M), Q(M))=wo—w+A(M),0)
=Q0o+A(M,;,0), QElvz(Ml)zd(Ml)El,Z/ﬁv 01,2(M|)=QE1V2(M|)T1,2, and e=E,/E;.

These expressions were obtained on the assumption that noe ordinary inhomogeneous
broadening is present.

To obtain general analytical expressions for a PE for arbitrary valuey ahd
J. . let us examine the cage>1 (as the calculations show, these expressions differ from
the exact ones by less than 15%, even for3). In this case the new variable
u=M/J, can be treated as a continuous variable, which enables the substitution
DIV )—J31,(. .. )du in expression(3) and makes it possible to use the asymptotic

expressions for the Clebsch—Gordan coefficiénts.

As the calculations show, the behavior of the PE differs substantially for different
types of transitions J,=J, or J,=J,=1) and light polarizations. The computational
results for a PE from a homogeneous ensemble of atoms are presented below for two
cases. Both results are presented for conditions such that the frequency of the exciting
light exactly equals the resonance frequency of the atoms in the absence of a magnetic
field and the distribution of the atoms over the lower sublevels is uniform
(f(M))=1/(23,+1)).

Let the PE be excited by linearly polarized light€£0) whose frequency is in
resonance with the frequency of an atomic transition @jti J, . In this case expression
(3) for the polarizationA(t) of the light in the continuous approximation indicated above
assumes the form

AD=1(d(3)/[2(1+y*(J) €?) v(1+y2(J|))])s:2+l [D(s7+0,02)—[y(J)/

V1+y*(ID1(D(7,01)~D(7+50,,50,))], ©)

where D(7,0)=]1(7)—[ja(7+0)—ji(7=0)1/2, 7=(9,—9)IQ (t=T;—T,—2T),
0,=01V1+y(J), Or,=0,y1+y“(J)e", 01,=0:(J)), and ji(X)=cosk)/x—
sin(x)/x? is a first-order spherical Bessel functidithe dependence of the intensity of the
PE on6,; and 7 in the casef,= 7 andy(J;)=e=1 is displayed in Fig. 1a.

The PE obtained with the same polarization of the light but for the transition
J,=J,=1 behaves qualitatively differently. In this case expres$®rfor the polariza-
tion A(t) with e=Q(J,)/Qg(0)=1 becomes

At)=12d(0)Sin 6,/2)SiN( 0,/2)[ oK 01/2)F 1(7) + SN 6,/2) Fo( 7)1, (6)

where F,(7)=1637 cos@)+(#?—3)sin@]/> and F,(7)=16(7>—15)cosf)
—3(272—5)sin(r)]/01,2(0). Thedependence of the intensity of the PE@nand 7 in the
casef, = is displayed in Fig. 1b.

4. It turns out that external fields make it possible to obtain PEs of a completely new
type — a photon echo of a single light pufsln the case of an ordinary photon echo the
rephasing of the atomic oscillators after the firsf2 light pulse is due to the subsequent
irradiation of the ensemble of atoms by a secomdpulse. In our case this can be
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FIG. 1. Intensity of the photon ech@ arbitrary units,f,= 7, e=1) as a function 0¥, andr: a — Case of
a transition withd,=J, (y(J,)=1); b — case of a transition with,=J,+1 (Q(J,)/Qg(0)=1).

achieved without repeated irradiation by making a specific change in the value of the
magnetic field. Indeed, after the atoms are irradiated with a light pulse, the induced
macroscopic dipole moment decays as a result of the dephasing of individual oscillators
with different frequencies according to E(.). Since this frequency difference depends
on H, rephasing of the macroscopic dipole moment can be achieved and therefore a PE
can be obtained by changing the figlchanging its sigh after the light pulse. The
intensity of the photon echo in this case reaches a maximum at the time when the integral
of the field over the time elapsed after the irradiation with the first pulse vanishes.

The polarization of such a single-pulse PE can be represented by the same relations
(2) and(3) which describe a two-pulse PE. However, express&irior S(M, ,t) must be
replaced in this case by the following expressiSM ,t) = (1/2)exp{ [Qot+ (M, ,1)]),
where (M, ,t)=fE,A(M| ,t/)dt’. Let this unusual PE be induced by a single linearly
polarized light pulse whose frequency is in resonance with the frequency of the atomic

transition withJ,=J, . In this case the expression for the polarizatidft) of the light in
the continuous approximation indicated above has the form

AD=1(dIN/VLI+y* (It +0) =1 (¢() — ©) +2(y(J))/
V1+y2(J3))D(¥(1),0)], v
where®=61+y?(J)) and ¥(t)=9(J, ,t). The dependence of the intensity of the PE

on # and ¢ in the casey(J;) =1 is displayed in Fig. 2a.

A PE obtained with the same light polarization but for the transitigsJ, =1
behaves qualitatively differently. In this case the expression for the polarizat{bh
with Q(J3))/Qg(0)=1 is

At)=2id(0)[sin(0)] 1 ((1))/ (1) — (1—cod 6))j2(¢(1)) /(1) ], 8

where 6= 6(0) and j,(x)=—x(d/dxX)[j1(x)/x] is a second-order spherical Bessel
function® The dependence of the intensity of the PEand ¢ is shown in Fig. 2b.

5. This qualitative difference in the behavior of PE for different transitions can be
interpreted as follows. As indicated above, transitions between different sublevels differ
not only in their frequencies, as a result of the anomalous Zeeman effect, but also in the
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FIG. 2. Intensity of the photon echo of a single light pulsearbitrary unit3 as a function ofy and 6. a —
Case of a transition witd,=J, (y(J;)=1); b — case of a transition with,=J,+1 ((J,)/Qg(0)=1).

matrix elements of the dipole moments, which influence the strength of the interaction
with the light. Therefore the Bloch vector for each transition is rotated through a different
angle by the light pulse, the rotation for each transition occurring, in general, around
different axes. As a result of this, the total macroscopic moment of the atoms immedi-
ately after the passage of the light pulse will also be different for different transitions.
Figure 3 displays for the transitions under study a polar diagram of the initial distribution
of the dimensionless dipole momendg(x)+idy(x))/d after the passage of a light
pulse. Hereds(n) is the in-phase component of the transition dipole moment with
M= uJ; anddy(u) is the quadrature component. The dipole monteatualsd(J,) for

the case in Fig. 3a and(0) for the case in Fig. 3b. In the ordinary PE effect the dipole
moments for all atoms after passage of the firgf pulse are identical and are directed

in the g direction(dashed line in Fig. 3aThe diagram in Fig. 3b is obviously closer to
the classical case than the diagram in 3a. Therefore the form of the PE for the case in 3b
is closer to that of an ordinary PE.

Since the form of the photon echo depends radically on the type of optical transition,
this can be used to determine experimentally the characteristics of the atomic states
which are coupled. The above-examined mechanism of the formation of the unusual
photon echo extends the conditions under which the echo can appear: Such a PE can be

FIG. 3. Polar diagram of the initighfter the first light pulsedistribution of the complex dimensionless dipole
moments of the atomsd{(u) +idy(x))/d: a — Case of a transition with,=J, ; b — case of a transition with
Jy=J+1.
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observed even in the case when homogeneous line broadening predominates. Specifi-
cally, a photon echo of this type is possible in atomic or molecular gases under high
pressure, in the infrared and far-IR regions of the spectrum, as well as from cooled

trapped atoms or ions.
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Quantum theory of cooling of atoms below the one-
photon recoil energy by a pulsed field

A. V. Taichenachev,® A. M. Tumaikin, and V. I. Yudin
Novosibirsk State University, 630090 Novosibirsk, Russia

(Submitted 24 April 199y
Pis'ma Zh. Kksp. Teor. Fiz65, No. 10, 744-74925 May 1997

A completely quantum-analytical description of the cooling of atoms
with angular momentg;=1—j.=1 by a pulsedr, —o_ field is de-
veloped. The problem of the change produced in the distribution of the
atoms over the internal and translational degrees of freedom by a single
field pulse is solved exactly with respect to recoil effects. Recurrence
formulas for the distribution after the action of an arbitrary sequence of
pulses are found in analytical form. It is shown thifield pulses result

in the formation and narrowing of peaks at discrete points in momen-
tum space as well as broadening of the envelope of these peaks. Ex-
plicit formulas are obtained for the peaks and envelopes in the case of
a wide initial momentum distribution, and their asymptotic behavior for
N>1 is investigated. ©1997 American Institute of Physics.
[S0021-364(17)00410-9

PACS numbers: 32.80.Pj

1. The pioneering works listed as Ref. 1 initiated intensive investigations of the
kinetic manifestations of coherent population trappi6#T). Different schemes for laser
cooling of atoms below the one-photon recoil energy by velocity-selective CPT in fields
with spatial polarization and intensity gradients have now been developed theorétically
and partially implemented experimentalty. Recently, two groups proposed a new
pulsed(Ramsey cooling schemé&? which, as is evident from the experimental results
and quantum simulatiorfsmakes it possible to obtain narrower structures in the velocity
distribution of the atoms and within a shorter time than in the case of a continuously
acting field. This letter develops a completely quantum-analytical description of the Ram-
sey cooling effect for the example of the transitigF=1—j.=1 in a pulsedor,; —o_
field. Our basic approximation is that in the dark state the lifetime of the atoms, limited
by translational-motion effects, is much longer than the duratiof the light pulse. In
perturbation theory this condition can be expressed as the ineqyaliky/Q)%<1 (y is
the radiation width of the excited leveky is the Doppler shift, and) is the Rabi
frequency,’® satisfaction of which implies that either the atoms are precooled or the laser
field is quite strong. Furthermore, we shall assume that a stationary interaction regime is
realized, i.e.,yr>1 andySr>1, whereS=Q?/(y%/4+ 6) is the saturation parameter
and ¢ is the detuning from resonance. Under these conditions, after the field pulse has
acted, the density matrix of the atoms in the coordinate representation has the form

p(21,25) =¥ nc)W(Z1,25) (P (1)
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where| W ) is the dark state, i.e., the state which has not interacted with the field; this
state is a coherent superposition of the wave functions of the magnetic sublevels of the
ground state(see Eq.(9) below). The functionW depends on the initia(before the
application of the light pulsedensity matrix and can be found exacflyithout the use of

an expansion in terms of the recoil momenjuny the method which we described in

Ref. 6. The evolution of the density matrix of the atoms in the ground state during free
propagation is determined by the kinetic energy oper#ipr The solution of the prob-

lem of calculating the corresponding unitary operator exffHgT) is well known. Ap-

plying in the required order the transformations indicated above, the atomic distribution
after the action of an arbitrary sequence of field pulses can be calculated. In the present
letter this problem is solved foj,=1. Recurrence formulas relating the distribution
WNFD) after theN+ 1-st pulse with the distributiotV®™ after N pulses are found in
analytical form. It is shown that a sequence of pulses results in the formation and nar-
rowing of peaks at discrete points in momentum space as well as broadening of the
envelope of these peaks. Explicit formulas are obtained for the peaks and envelope in a
case of practical interes— a wide (compared with the photon pulsmitial momentum
distribution — and their asymptotic behavior fdi=>1 is studied. It is found that the
width of the peaks decreases agM/and the width of the envelope increases\d.

2. Let us examine the one-dimensional moti@hong thez axis) of atoms whose
ground and excited states form the optical transiigs 1—j.=1 under a resonance
interaction with a pulsedr, —o_ field. We assume that the field is monochromatic
throughout the pulse duration:

E(z,t)=e(z)Ey exp —iwt)+c.C., (2

&(z)=(e_, exp(kg)—e., exp(-ikz)/\2, wheree.,;=F(e*ig)/\2 are cyclic unit
vectors. The field?2) is linearly polarized everywhere in space. At the pant0 the
polarization vectoe(z) is oriented in the direction of the axis, and at arbitrary it is
rotated by the anglkz. It is convenient in this connectidias shown in Ref. 6to switch
from the laboratory to a local coordinate systé85) in which thex’ axis rotates to-
gether withe(z). Specifically, the Hamiltonian of the free atom in the rotating CS is

H0= HK+ﬁw0He, Whel’e

. (p-1kd)?
o= 3

is the kinetic energy operator, which now depends on the angular momentum projection
operatord,, wq is the transition frequency, and
Je

1:[e: E |jeuu*e><jeu“e| (4

Me="le

is the projection operator onto the excited state, |fgu.) are the wave functions of the
degenerate magnetic sublevels. The Hamiltonian of the resonance interaction of atoms
with the field (2) is spatially uniform in the local CS:

Hay r=%QV exp(—iwt)+ h.c., (5)
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where() is the Rabi frequencywhich, with no loss of generality, we shall assume to be
positive) and the dimensionless operaois determined in terms of the Clebsch—Gordan
coefficients(the quantization axis is directed along theaxis): V=(V_;—V_ )/ /2,
where

\A/q: 2 |jea/~Le><je(jgvl):Me|jg vﬂg;laq><jg ng|- (6)
HMe Mg

Separating in the standard manner the rapid time dependence at the frequency of the
field, we obtain a quantum kinetic equation describing the evolution of the slow compo-
nents of the density matrix in the rotating CS:

d A

(21,2 = — [, P21, 22) 1= 1LV V) (20, 20)] - (7121 6)

X M ep(21,25) + (¥12+18)p(21,2)TTe) + ¥

X 2 Qulk(zi=2)Vep(z1.29)Vs, ()
where 6= w— g is the detuning from resonance and the functiQygk(z;—2,)) de-
scribe the induced and spontaneous recoil effects:

3/sin(kz) cogkz) sin(kz)
Q*l(kz)zi( k2 TTka? T k2°

)exp(Iikz);

cogkz) sin(kz)
T k2? T k2)?

Qo(k2)=3 (8)

Equation(7) exactly takes into account the quantum effects which are due both to mo-
mentum transfer from the field to the atoms in radiation processes and to the translational
motion of the atoms.

3. If the lifetime of the atoms in the dark state is much longer than the pulse duration
yr(kv/Q)2<1, then in solving the problem of the change produced in the atomic dis-
tribution by a light pulse, the first term on the right-hand side of &g can be dropped.
This gives a system of first-order ordinary differential equatiopsit=_“~p whose sta-
tionary solution has the fornil). The dark statéW ) is annihilated by the operator
representing the interaction with the fields | ¥yc)=0, and it is a superposition of
the Zeeman wave functions of the ground state:

1
|WNC>:E(“9'_1>_“9!1>)- 9

The functionW(z,,z,) is a two-point distribution function in the local CS and is deter-
mined by the momentum transfer in spontaneous and induced photon scattering processes
during the action of the field and also by the initiakfore the action of the light pulse
distribution over the internal and translational degrees of freedom. According to Ref. 6,
the functionW after the action of the field pulse can be written in the form
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W(z;,2,]t + T):Tr{é(zl_zz);’(zl,zzh)}, (10

where the matrixC(z,—z,) is the left eigenvector of the Liouville operatdf, corre-
sponds to the zero eigenvalu€ ¢£'=0), and satisfies the normalization condition
(¥nelC(2)|Wne)=1. The explicit form of the matrix C for the transition
jg=1—]j.=1 was found in Ref. @Eq. (37)) and, for lack of space, is not reproduced
here.

4. After the field is switched off, the atoms are in the ground state, so that their
evolution during free propagation is determined by the kinetic energy opé@tor

|‘I’NC>W(Z1122|t)<‘I’Nc|eXF(;i— |:||<T)- (12)

~ [N
p(zl,zz|t+T)=exp( % HeT

Combining Egs(11) and(10), we obtain a recurrence formula relating the distribution
WNFD) after the action of thél+ 1-st pulse with the distributiod/™) after the action of
N pulses:

WNFTD(2) =WN(2) + S(k2)(WN(z2+ 4w, T/IK) + WN(z— 4w, T/k) —2WN(2)),

2—-Q_1(k2) —Q4(k2)
8-2Q_4(k2)—2Qy(k2)’
wherez=z, -z, and the dependence ap+ z, is droppedwe are studying the spatially
homogeneous caseWe shall determine the initial conditions for the recurreft®)
as follows. Prior to the first pulse, let the atoms be in the ground state and possess
an isotropic distribution over magnetic sublevelﬂg;)yvg(z)z 5Mg,,,gF(°)(z)/3,
where F(9)(z) is the initial distribution in the laboratory CS. After the first pulse we
obtain

S(kz)= (12

2Qq(kz)+4 cogkz) FO(z)
4-Q_1(k2)=Qu(kz) 3
The formulas obtained solve the problem. Let us now examine separate cases.

5. The natural length scale in Eqd.2) and(13) is the wavelength = 2#/k of the
light. If the momentum variance in the initial distribution is much greater than the photon
momentum, then the functidf(®)(z) is nonzero in a smallcompared with\) neighbor-
hood ofz=0. In the same approximation, the distribution function after the action of
N pulses consists of a regular system of peaks located at the pointA8,T/K,
+8w, Tlk. . .:

Wh(z)= (13

W(N)(z)=2| dNE N(z—40,TI/K), (14)

where the functions” M(0)=1 are nonzero in a small neighborhood o0 and
describe the change in the envelope at each step. The amplij;&'.fem‘ the peaks satisfy
the recurrence formula

Y=V S TH(A N+ it —24Y) (15

with the initial condition¢|(l)= O & (N) can be represented as a finite product
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N
7 Mz =T (1-(k2)2DMEO)(2), (16)
i=1

where the “diffusion” coefficientd Y= 11/30, andDN>V=7(1— ¢{V)/10 depends on
the amplitude.

The momentum distributiofFourier transform with respect to the differenge
corresponding to Eq(14) is a productv™(p)=®M(p)~ N(p) of a periodic(with
period 2rfik/4w, T) and symmetridrelative top=0) function

N—-1

<I><N>(p)=1+2|21 co 4w, Tlp/ (1K) N 17

by a smooth envelop& ™ (p).

Within the periodicity intervall — 7w k/(4w,T), whkl/(4w,T)] the function (17)
describes the formation of a maximum at the point where all harmonics interfere con-
structively, intensifying one another. As one can see from @8§), the coefficients
o) are real, symmetricg™ = ¢™)), and positive. Therefore the maximum lies at the
point p=0. As the numbeN of pulses increases, the number of the harmonics in Eq.
(17) and their amplitudes increase. Obviously, this increases the maximum of the func-
tion ®™N)(p) and decrease its width.

The observed distribution function in the laboratory CS is expressed in terms of
WMN(p) by the formulaF N (p)=(WMN(p+#k)+WN(p—7k))/2, which describes
the splitting of each peak in a local basis into two peaks in the laboratory basis.

6. Formulag(15) and(16) make it possible to analyze the asymptotic behavior of the

solution for a large number of pulses. Fhie>1 the dependence of the coefficients

fN) onN andl can be approximated by a smooth functi(N,l), and Eqs(15) can be
approximated by a second-order differential equatigiN,1)/IN=ad?¢(N,1)/l2 with
the boundary conditiorp(N,0)=1 and the initial conditiong(0,)=0. Here we have
neglected the dependence of the coefficaenn |, as is valid for 40, T> 1. Therefore the
problem reduces to the heat conduction equation for a semi-infinite rod whose end is kept
at a constant temperature. The solution of this problem has the form
&(N,)=1—erf(1/(2y/aN)), where the “thermal conductivity” isa=1/4. Hence one
can see that the width of the peaks in the momentum distribution decreased\ag hé
“diffusion” coefficient DY) in Eq. (16) for the envelope of the peaks also has the
asymptote 1YN. Therefore the width of the envelope increase®N¥4 and the relative
fraction of atoms in one pealthe area of the pealdecreases a4

It is interesting to note that similar asymptotes for the width and area of the peaks
are obtained in the problem of cooling by velocity-selective CPT in a stationary
o, —o_ field, if N is taken as the interaction time with the field.

7. In this letter we have developed a comparatively simple analytical description of
the Ramsey cooling of atoms, assuming that the translational motion of the atoms can be
completely neglected during the action of a light pulse. In the method presented the
quantum effects due to recoil on absorpti@mission of photons and the free motion of
the atoms in the absence of a field are taken into account exactly. We have shown that the
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interaction of the atoms with light pulses under conditions of coherent population trap-
ping (CPT) makes it possible to create a correlation between arbitrarily separated points
z, andz,. This is of fundamental importance for atomic optics and atomic interferometry.
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Properties of IR-active lattice vibrations in the vicinity of
kinks in the Frenkel-Kontorova model
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The properties of infrared lattice vibrations in the presence of kinks in
the Frenkel-Kontorova model are analyzed. Our results show that the
vibration of particles involved in kink formation is very similar to that

in a gap mode around a force-constant defect. We found that the IR
phonon mode intensity possesses a universal dependence on a certain
combination of system parameters and kink concentration. On the basis
of these results a criterion is proposed for separating the regime of
weakly interacting kinks in the system from the regime of a kink lattice.

© 1997 American Institute of Physids$0021-364(1®7)00510-0

PACS numbers: 63.26e

A system of interacting particles in a sinusoidal external poteigti@ Frenkel—
Kontorova (FK) modet) is widely used for description of a broad variety of physical
phenomena, such as the statics and dynamics of incommensurate (degsesg., Ref.

2), transport properties in quasi-one dimensional conduds®s Ref. 3 and references
therein, diffusion of adatoms on a metal surfatetc. The features of the FK model
which are usually explored relate to its kink-like solitons. Properties of the kinks have
been described in a number of publicatidn¥) The dynamics of the FK model has also
been extensively studied, but mostly in relation to the kink lattice rather than to single
kinks1'~1* At the same time, it is not yet completely clear at what values of the system
parameters can the single-kink effects still be important.

The aim of the present study is to investigate the influence of both a single kink and
a kink lattice on the infrared-active phonon spectrum and to specify the range of model
parameters in which its properties can be treated in terms of nearly independent kinks
rather than in terms of the superstructure associated with the kink lattice.

The investigations were performed in two approachgsa imolecular dynamics
(MD) simulation was used for relaxation of the system to an equilibrium state according
to the method proposed in Ref. 15, after which all the particles were subjected to a small,
uniform, step-like displacement and the subsequent vibrations were analyzed by means of
a Fourier transformation;)ithe eigenvector problefEVP) was solved in the harmonic
approximation to study the vibrational spectrum of the system. The kinks in this case
were taken into account through expansion of the potential energy around particle equi-
librium positions determined from the MD simulation.

Let us consider a chain of particles of massand chargee with nearest neighbor
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interaction in the sinusoidal external potenti&x)=—(V-a?/4w?)cos(2mx/a), where
a is the period of the potential. In case of a harmonic interparticle potential the equation
of motion for nth particle is

U,
at?

U, Va | U,
m +77+K2(2Un_un—l_un+1)+Zsm 277? =ekE(t), 1)
where y is phenomenological damping ait(t) is external electric field. Suppose that
the time-dependent positionU, of the particle can be represented as
U,=na+ Uﬂ+ 5n(t),whereuﬂ is quasistatic variable describing a shift of the equilib-
rium position of the particle with respect to the corresponding potential minimum, and
6,(t) describes a vibration of the particle about the new equilibrium posmﬁ)nThen
with the substitutionss,(t) = 6,(w)explwt) andE(t) =E, exp(wt), Eqg. (1) can be split
into two equations:

Y%
K2(2U2—U2,1—Uﬂ+l)+zsin(277U2)=0, )

Sn(@)[Veog2mUp) — 0’ +iwy] +Ky(28y(@) = 8y 1(@) = Sns1(@) =B, (3)

here and below we have adopted the valmesl, e=1 anda=1. If one disregards the
trivial caseUﬂ=0, Eq.(2) describes a quasistatic kink-like deformation of the clidire

to neglect of the dynamical term we restrict our analysis to standing kinks, anihyle

Eq. (3) describes the particle vibration about the new equilibrium position. In the con-
tinuum limit Eq.(2) reduces to the sine-Gordon equatfowith the single-kink solutiotf
Uo(i)=27"tan {exd +2(n—i)a/R ]}, Ry=2K,/V can be regarded as the kink ra-
dius measured in units @f, andi is the kink position. Substituting this solution into Eq.
(3), one can obtain the complex succeptibiljfw) =E, 'S 8,(w), where the peaks in
Im(x(w)) correspond to resonances, and Ref,(w,)) corresponds to the suitably
normalized eigenvector of the modeat.

It is well established that the presence of kinke domain wall$ in case of a
negligible Peierls—Nabarro potential barrier results in a zero-frequency (peaison
mode in the optical conductivity spectrum(w)=w Im(x(w)) (see Fig. 1 correspond-
ing to translational motion of kinks. The high-frequency peaks in Fig. 1 correspond to
phonons, the strongest one being related to the in-phase vibrations of particles inside
potential wells. The particles involved in the kink formation obviously possess a higher
vibrational amplitude at low frequencies, while, as is seen in Fig. 2, they are almost
completely eliminated from the phonon-like normal mdtlee strongest peak in Fig).1
Also shown, by the dashed lines in Fig. 2, are the eigenvectors for the case of an external
force-constant defech V(i) at the particle site, with the rest particles being situated
inside the potential wells. The corresponding spectrum is also shown in Fig. 1. The
strength of the defect is determined from the equafion

AV 1

1+W2

k2 @
V+ 4K2~sin2(§)
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FIG. 1. Conductivity spectra of the Frenkel-Kontorova model containing 32 particles arranged over 31 poten-
tial wells: 1 is the spectrum calculated by E) and (O) is that obtained by MD simulation fdk,=4V,

JV=36 arb. units2 is the spectrum corresponding to a force-constant defect —4.123V (see text, for a
position of the kink at the middle particle No.16.

which implies zero-frequency gap mode formation in the vicinity ofitheparticle. As is
shown in Fig. 2, the eigenvector of the gap mode is very close to that of the kink, while
the eigenvectors of the phonon-like mode are nearly the same in both cases. Also the
localization lengtrS,,, of the gap modéthe half-width of the peak shown by the dashed
line in Fig. 2 is equal toR,/+/2 over a wide range d®, values(see the inset in Fig.)2

On this basis one may treat the system with kinks as a defect, or impurity crystal, taking
for the description of its vibrational properties all the results already known. For instance,
it is well understood tha§y,, is basically determined by the separatighf of the gap

mode from the optical band and by the bandwidtk2. One may argue therefore that

the similarity between kink and the gap-mode eigenvectors and the kink eigenvector itself
does not depend on the potential anharmonicity, provided that its influence on the above-
mentioned parameters is small enough. Thus, we expect that our results will be applicable
for a more realistic interparticle potential, too. From the analogy between the kinks and

7 -
o8- wsh
Gap mode . RS}
R N
06 HEY
] i
2 04 b
g
& 02
o
S
S0
_g Phongn
2 -02k
| | L 1 1

1 1
0 1§ 20 25 30 35
Particle number

|
0 §

FIG. 2. The kink and the phondithe strongest peak in Fig) gigenvectors obtained in ways corresponding to
those in Fig. 1. The symbols in the inset show the dependence of the gap-mode radius on the kink radius

Re=2K,/V.
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FIG. 3. a: The particle arrangement in the FK model of 128 partigleswn by symbolsin 120 potential wells
(solid line). b: The eigenvectors of the kink-likg, 3) and phonon-likg2, 4 modes.K,=4V (solid symbol$
andK,=16V (open symbols vV =236 arb. units.

defects it follows also that the IR phonon mode intensity will show a linear decrease
versusn, for low kink concentration. This indeed does take place in certain range of
Ry values.

Although theN-kink solution of Eq.(2) is also availablé? it is more convenient to
approximate it by a sum of single-kink solutions. Our MD study of the ground state of a
system consisting of 128 particles arranged inNpBotential wells with cyclic boundary
conditions showed that even foli,>1 (N, is the number of kinKsthe kink lattice can
be perfectly described as a sum of the single-kink solutions Rjita2K,/V. Namely,
for Ny=8 andK,=4V (RI"™'=4.0) the valueR™P =3.94 has been obtained. Similar
results have also been obtained for the case when the number of potential wells exceeds
that of the particles. The dipole moment spectiy@) =Im[ 2 6,,(w)/Eq] has been both
calculated from(3) with US=3=UJ(i) replaced byR,=Rf*® and obtained from MD
simulation via a fluctuation-dissipation approach for various valuesnefR,n,
(n,=N,/128 is the kink concentratignThe two approaches agree rather well even at
very low frequencies, although the harmonic approximation obviously fails=a@. Two
examples of the particle arrangement and corresponding eigenvectors of the IR vibrations
are presented in Fig. 3. The eigenvectors #6r0.25 look quite similar to those for the
single kink or gap mode, while fo=0.5 even the particles which still occupy the
potential wells and are not involved in the kink formation are strongly involved in the
characteristic IR vibratioficompare Figs. 3a and BHt should be pointed out that there
is no noticeable difference between the commensurate and incommensuratevbases
the kink lattice period is or is not equal, respectively, to an integer number ajtti¢he
kink concentration is not too high. Otherwise the difference manifests itself in a small
shift of the position of the zero-frequency peak shown in Fig. 1.

Let us now discuss the question of the intensity of the phonon peaks shown in Fig.
1 as a function of the parameter. For this investigation we used the EVP approach,
using Eq.(3) for various values oK,/V andny. The results are presented in Fig. 4. The
integrated intensitys = [ | (w)dw of the phonon peaks reveals a universal dependence on
the parameter;= R,n,. We found also that the eigenvectors of the strongest IR vibration
obtained for different, but for the samey values, can be transformed to each other by
proper scaling of, i.e., they obey some sort of scaling invariance. Note, that the param-
eter » means the volume fractiofin the 1D casg occupied by the kinks, and the
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FIG. 4. Integrated intensity of the phonon-like modes vergasR,n, calculated according to E¢3) for FK
model of 128 particles arranged in 112 we(ly (n,=1/8), 120 wells(2) (n,=1/16), and 124 wellg3)
(ne=1/32).

observed decrease IR at low 7 values can be interpreted as washing out of the high
frequency density of states by gap modes associated with the kinks. At hjghéren

the kinks form a real lattice and eventually a sinusoidal superstructure due to interaction
with each other, the decreaseliyr<  slows down because the real kink radius cannot
exceed(in any casg one-half of the kink lattice period. Indeed, the linear decrease in
Is shown in Fig. 4 ends at a cutoff value gt=0.4, which implies that the aforemen-
tioned restriction on the kink radius =< O.Zlks_1 (ks=ny) whereks is the kink lattice

(or superstructupewave vector measured in units ef2a. Thus, we can display a range

of parameter&yK,/V <0.2 in which it is possibléor even necessaryo describe the
properties of the system in terms of independent kinks rather than in terms of some
effective superstructure related to the kink lattice. Since the IR eigenvectors have been
argued to be not very sensitive to anharmonicity, one might expect that this criterion will
hold for more realistic potentials too.

Using the above criterion, one can tell whether the kinks are important for the
description of some patrticular system. For example, in the charge-density-wave conduc-
tor (TaSe),| the superstructure wave vectly=0.085 (Ref. 20, JV can be associated
with the giant IR peak frequenay~ 0.005 eV(Ref. 21), and an upper bound oy‘K_z can
be estimated as’K_2< wp,=1 eV (Ref. 22, wherew, is the plasma frequency. Thus one
obtainsksyK,/V<1, which implies that the kink effects can be important in this com-
pound. A more detailed consideration of the vibrational properties of 1D conductors on
the basis of the results obtained here will be given in a forthcoming paper.

In conclusion, we have shown tha: the vibrational properties of kinks in the
Frenkel-Kontorova model are very similar to those of the gap modes in a 1D crystal with
force-constant defects;)iion the basis of the universal dependence of the IR phonon
mode intensity on certain combination of the system parameters it is possible to estimate
whether single-kink effects are important for a particular physical system.
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Quasiparticle dynamics and phase locking in a S—-I-S
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New dynamical equations describing the Josephson effect and nonequi-
librium quasiparticle distribution in a multilayer Josephson tunnel
structure afl ~ T are obtained, starting from the microscopic theory. It

is shown that quasiparticle dynamics has a strong influence on the
Josephson effect. Novel regimes with giant charge-imbalance oscilla-
tions are found. A new type of hysteresis on the current—voltage char-
acteristic is predicted. €1997 American Institute of Physics.
[S0021-364(®7)00610-5

PACS numbers: 74.48K, 74.50+r, 74.80.Dm

The dynamics of multilayer Josephson structures has been an important subject of
theoretical and experimental investigations during the last few years. Recent experiments
on the Josephson effect in artificial Nb—AINb stacked junctiorfsand natural layered
high-T, superconductofsshow that these structures have a similar dynamic behavior and
can be considered on a common bddis.both of these systems the interaction between
Josephson junctions and their mutual phase locking are of great interest and importance.
A theory of magnetic coupling in layered structures is developed in Ref. 4 and applied to
the problem of the synchronization of the Josephson vortex motion. But in the case of
thin superconducting layers some other mechanisms are to be taken into account, espe-
cially disequilibrium(of the electron—hole imbalance typef the quasiparticle distribu-
tion inside the superconducting layers, which can be essential if the layer thiacknisss
smaller than the characteristic length of the disequilibrium relaxatidsee Refs. 5-7
and references thergin This criterion is obviously fulfiled for structures with
layers of atomic thickness(high-T superconductojs For artificial structures
le=V2aDT/mA2(1+4A%t412)Y4 where t_'=14g: 10©,2T3¢(3)is the inelastic
electron—phonon scattering frequenay,is the electron—phonon interaction constant,
Op is the Debye temperatur®=Iv/3 is the electron diffusion coefficienty is the
energy gapl is the mean free path, ang is the Fermi velocity. A typical value dt is
about 1um, so thatdy<<lg can be fulfilled at least af~T., whereA—0 andlg— .
Disequilibrium results in the so-called quasiparticle coupling, which is well known in
S—N-Sjunction systems.

In this paper we consider the Josephson effect with the quasipartical dynamics taken
into account in aS—I-S multilayer Josephson tunnel structure with layer thickness
do<<lg, so that the superconductors are in a homogeneous nonequilibrium state. We also
assume the dirty limitl<dy) and use the averaged-over-momentum-direction quasipar-
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ticle distribution functiomL introduced by Eliashbef§which describes the quasielectron
(at €>0) and quasihole (at €<0) energy distributions. In equilibrium
n'=n'_=n®=1/2(1—tanh(d/2T)).

The origin of the nonequilibrium Josephson effect $3-1-S systems is well
established " First of all, a tunnel junction is a source of disequilibrium in a nonsta-
tionary state due to injection of quasiparticles, so tifathanges in some way. We start
from the kinetic equation fon.(t) in theith layer, obtained for the present system by
Bulyzhenkov and IvleV, lvlev,’® and Gulyan and Zharkot*

€

an'

€

Ueﬁ:Qi—li(ne)+Qi+1i(ne)+|e_prt”ie)’ @

1°=Pn,) is the electron—phonon collision integral a@{n,) is the tunnel source of
disequilibrium, which for tunneling fron$; to S; has the format T~T)

Qij(ne): g[(uE_U+uEuE_U)(BE_U_ﬁE_aé)_(u6+v_uEuE+U)(ﬁE+U_BE_ ae)

+(1+ue)aefv_'—(l_ue)aeJrv]Sign €, (2)
where we introduce the following notations in every layer:

% do:
a.=(n,—n_,)0(e?—A?signe, B.=(n.+n_.—1)0(e*—A?)signe, v=§%,

|e| 0(e?— A?) A0(e®>—A?)sign e AO(A%—€?)
€=—1 UE= , Wez—,
Jee—A? Jee—A? A°— €2
®ij= 60— 0; is the Josephson phase difference, all functions with shifted arguments relate
to the superconductd; (the injectoj and all functions with unshifted arguments relate
to the superconductd® , v=(4e2N(0)RSd) ! is the “tunnel frequency,”R is the

normal resistivity of the tunnel junction/=Sd, is the volume of the superconducting
layer, andN(0)=mpg/272.

A nonequilibriumn, results in generation of a nonzero invariant potential
D=+ (h/2e)(96/t)

in the superconducting layers, whepes the electrostatic potential arttis the phase of
superconducting condensat® £ 0 in the equilibrium state The shift of the chemical
potential of the superconducting condensate from its equilibrium valpgase® and is
determined by

eq)zf:(né—n_e)dez f:asde, 3

which is a direct consequence of the quasineutrality conditierom (3) one can see that

® is proportional to the difference in the electron and hole distribution functions and thus
is associated with the so-called “charge imbalance.” Charge-imbalance phenomena have
been extensively studied in tunnel structures, beginning from the pioneer work of
Tinkham and Clarké? Besides a large variety of static statesg., at a resistive N—S
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boundary, weak charge imbalance oscillations are investigated in the form of linear
waves(see the review in Ref.)6and also in Josephson junctiofisin this work we
show that new regimes with strong charge imbalance oscillations can ariSelinS
multilayer structures.

Energy gapA is to be obtained from the nonequilibrium self-consistency equation

1— Op 1—n€—n_€OI (% B q 4
=0), (@-apmies9), (emapymie @

The next important point to notice is that in the nonequilibrium regime an ordinary
Josephson relation dg/dt)=(2e/#)V between the Josephson phase difference
@i;= 0;— 6; and voltageV;; = ¢; — ¢; is violated>’ Instead, we havérom the definition
of @)

d(,Dij 2e 2e
The tunnel current also is different from the equilibrium one. A correct expression in the
casedg;; /dt=const was obtained by Gulyan and Zharkdv:

Jij=Jo sin(gj;) +J1 cod @ij) +Jgp,

1 0
Jozﬁfixdf[vfwf'f'vﬂf_'—UE+UWEﬁE+U:|1
1 o0
Jl:ﬁ 7xdEUEUG+U(BE+U_BE)I

1 £
‘]qp:ﬁf_mde{ueue+v(ﬁs_ Bs+v) tueaey,— u5+vaé}' (6)

From (5) and(6) we see that disequilibrium modifies the interlayer Josephson effect, and
a self-consistent description is necessary. The kinetic equéltjoi2) together with the
Josephson relatiotb), current expressiofb) and self-consistency equatio(®, (4) are

the full set of equations to be solved.

In this paper we consider temperatufies T, at which an analytical solution of the
kinetic equations may be obtained. It means that we use a small parawi€terl, and
the results have the same accuracy. Furthermore, a typical Josephson voltage is of the
order of V.=RI., wherel.=(7/2)(A/eRtanhA/2T) (the Ambegaokar—Baratoff for-
mula). At T~T, we obtainV.=(7/4)(A/e)(A/T) and thuseV,<A<T. Typical Joseph-
son frequencies arkw;~2eV,<A, T, and finallyed<A. As a result of these equali-
ties, kinetic equation is linear and may be solved in adiabatic limit in which the
microscopic expression®) and (2) for the current and tunnel source, respectively, are
correct. We can also neglect change in the energy gap in this case.

At A<T the potentiakb is determined by the quasiparticle distribution over a large
energy rangee~T, and the anomalies at~A can all be neglected. Taking<T, we
obtain from(2)
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(0)

€

de

Because this tunnel source is antisymmetric over energies, we can take
B.=BY=—tanh/2T) at|e|>A in the first approximatiortand, accordingly, for equi-
librium A), and fora! we obtain

v—al+alsigne.

Qij(n)=v

dai Vi—1i  UVii+1 . . . .
€ i i—1 i+1 -1 i
dt 2v 2T cosH(e/2T) 2acta Ha Tq e @

where we takel®Pn,) in the = approximation, which is correct in our case, and
7q=(4T/wA)t, is a well-known charge-imbalance relaxation time.

A solution of equation(7) in all layers simultaneously can be found in the well-
known fornf
i_ eq)i(t)
YT 2T cost(el2T)

One can see that the self-consistency equat®nis satisfied automatically, and for
®,(t) we obtain

®

TqWqu)i:??(Vi—li—Viiu), 9
where
8T
7]=2V7'q=71_—A1/'{E (10

is the parameter of disequilibrium. Ai=0 we obtain® =0 and the ordinary Josephson
relations. In the same approximation we obtain fréBnthe expression for the current

. Vij
Jij=J¢ Sm(‘Pij)"'E- (1D

Taking (9), (11), and(5), we obtain the full set of dynamical equations fo8al-S
multilayer structure with nonequilibrium layers.

d(Pij 2e 2e
a9t =7 Vit 7 (-,
L Vij o dVi
Jij=Jc S'm‘Pij)'{'ﬁ“'CW_J(t): (12

do,
Tagr T ®i= 7(Vi-1i—Vii+a), V(t)=2i Viiig.

Here the displacement currefdV/dt associated with the junction capacitanCeis

added as in the usual tunnel theory, ald) and V(t) are the external current and
voltage. This set of equations describes the quasiparticle interaction between Josephson
junctions. At =0 this system describes noninteracting junctions with independent
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FIG. 1. Current—voltage characteristics o8al-S —I-S Josephson structure at small coupli@ay and large
coupling (b) between junctions.

phasesp;;(t). In the static limit our equations coincide with the equations obtained by
Iviev.2? In the case of zero capacitand@=0) they are similar to the system obtained by
Artemenko and Volkov forS—N—-Slike structure€. One sees that at finite a trivial
solution ¢;; = ¢(t), u=0 always exists. But we find that this solution can be unstable
(due to parametric instability of the charge imbalanead a strongb~V arises in this
case.

Below we considefas an examp)ea simpleS—I-S —1-S Josephson tunnel struc-
ture with equilibrium bank$S) and a thin middle layefS') in the fixed-current limit, and
in dimensionless form we obtain

dZQDl d@l . dlu .
Bgz g, TsiMe)—u—B4-=1
d’p, dep du
B4zt g, TsiMea +ut+By-=],
du ~(de1  de,
“E““”(F_F : (13
B 2eJ.R?C _ TqWc ~ 7
T h o T2y T iv2y
(t)= 2e () _2eRJC ot
7 T , ¢ P T=wl.

The current—voltage characteristics of a lag@inction at various coupling param-
eters 7 (a=0.01, =10, 7=0.05,0.3) are shown in Fig. 1, and the corresponding

w(t) dynamics is shown at one selected point. We see that at small coupjin@.05,

Fig. 1a the current—voltage characteristic is the same as for two independent junctions,
but the junction phases are locked due to the quasiparticle interaction. At large coupling
(7=0.3, Fig. 1b the “charge-imbalance” regime at low currents gives way to the
phase-locked regime at high currents, and novel type of hysteresis takes place.
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Finally, we have shown that the dynamics#|—Smultilayer Josephson structures
is drastically altered by quasiparticle effects in the case of strong coupling.
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Solitary flexural waves on a supersonic domain wall in
yttrium orthoferrite

M. V. Chetkin, Yu. N. Kurbatova, and V. N. Filatov
M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

(Submitted 15 April 199y
Pis'ma Zh. Kksp. Teor. Fiz65, No. 10, 760-76%25 May 1997

Solitary flexural waves on a supersonic domain wall in yttrium ortho-
ferrite are observed and investigated. These waves have a sharp leading
edge and a protracted trailing edge, reminiscent of the waves accom-
panying moving vertical Bloch lines in iron garnet films. The total
velocity of the solitary flexural waves in yttrium orthoferrites for all
observed amplitudes equals the maximum velocity of the domain walls.
Two solitary waves with identical amplitudes colliding head-on are
annihilated. The waves possess topological charges, and they move and
form dynamic profiles under the influence of gyroscopic forces.

© 1997 American Institute of Physids50021-364(17)00710-X

PACS numbers: 75.50.Gg, 75.70.Kw

The dynamics and collisions of topological magnetic solitons — vertical Bloch lines
(VBLs) — in iron garnet films have now been investigated in detail both experimentally
and theoretically. In those investigations the solitary flexural waves arising under the
influence of gyroscopic forces accompanying moving VBLs are recorded. This technique
employs the Faraday effect and double- and triple-exposure high-speed photography in
real-time! Static VBLs are also recorded by the method of dark-field anisotropic diffrac-
tion of light?

The existence of VBLs in iron garnets is connected with the fact that the magnetic
moments are able to rotate not only in the plane of the domain wall but also in a plane
perpendicular to wall. As a rule, the antiferromagnetism vectart orthoferrites can
rotate in theac or the ab plane. In the first case, the weak ferromagnetism vector also
rotates in the same plariéJntil recently, VBLs had not been observed in orthoferrites,
neither in statics nor dynamics. In Ref. 4 solitary flexural waves — large-amplitude kinks
on domain walls(DWs) — moving with the speed of sound were observed in yttrium
orthoferrite. This letter reports the results of an experimental investigation of the motion
and collisions of small-amplitude solitary waves on a DW in yttrium orthoferrite that
could be interpreted as the observation of dynamic VBLs moving with supersonic ve-
locities on DWs in yttrium orthoferrite. The observation of small-amplitude kinks on
supersonic DWs in yttrium orthoferrite was reported in Ref. 5. They were observed for
only 4 ns. Their appearance was quite accidental. Their lifetimes and collision times were
not investigated. In the present work we studied the dynamics of domain walls in thin
(several tens of microns thigkttrium orthoferrite slabs cut out perpendicular to the optic
axis, by double-exposure high-speed photography using 0.25 ns light pulses. The light
pulse was obtained by means of a nitrogen laser and a dye laser amplifier pumped by a
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FIG. 1. Velocity of Nel (+) and Bloch O) domain walls versus the magnetic field in a @dn thick
YFeO,; slab, cut perpendicular to the optic axis.

transverse discharge. We used this setup before to investigate the dynamics of DWs in
orthoferrites, but in the present work we made a number of improvements in it. Specifi-
cally, a vitrified glass plate with a small opening was used in the spark gap of the
transverse-discharge laser. The opening stabilized the triggering time of the laser and the
long-term operation of the laser. A single &le¢ype DW, oriented perpendicular to the
surface of the sample, was established by means of a gradient magnetic field, oriented
perpendicular to the surface of the sample, with gke 800 Oe/cm. This wall was
oriented perpendicular to tleeaxis of the slab. The magnetic moments in the domains on
different sides of the wall lay in a plane perpendicular todhexis, at angles of40° to

the plane of the sample. As usiiahe DW was set in motion by a pulsed field produced

by two coils (each having an inner diameter of 1.5 mglued on the surface of the
sample. The dependence of the velocity of DWs in such a slab for different orientations
of the walls in the plane of the slab is displayed in Fig. 1. For a puréelgl &V, the

region where the velocity of the wall is constant and equal to the velocity of transverse
sound extends over 100 Oe. This is a very wide region, and its width could be due to the
comparatively small thickness of the experimental sanfplethis case 30um). The
constant-velocity region gradually decreases in width as the DW is rotated in the plane of
the sample, and, in accordance with the earlier experimental data and the prediction of the
theory in Ref. 6, for a Bloch DW, oriented parallel to theaxis, it practically vanishes.

Here a region in which the velocity of the DW is constant and equal to the velocity of
transversésic] sound becomes appreciable. One or two separate wirgan2h diam-

eter were glued on the same sample perpendicular to the static position ofehBWe

with the largest constant-velocity region for the purpose of passing a current producing a
local decelerating magnetic fields for a brief tinfeeveral tens of nanosecond¥his
current was applied after the entire DW had acquired a definite velocity in response to the
pulsed current in the coils advancing the DW. A theory of the width of the region of
constant velocity equal to the velocity of transverse sound forel B&V in orthoferrite

was examined in Ref. 7, but the finite width of the sample, which influences the width of
the region of constant velocity of the DW near the velocity of sound, was neglected. As
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FIG. 2. Double-exposure high-speed photograph of solitary flexural waves on a moving domain wall in yttrium
orthoferrite. The wall moves from bottom to top; the solitary waves move from right to left. The delay time
At=9 ns. The arrows mark the positions of the solitary waves.

one can see from Fig. 1, the transition of aeN®W moving with the velocity of
transverse sound to a supersonic velocity occurred very sharply in our experiment. Then,
after a decelerating pulse was applied to the separate wires, solitary flexural waves with
sharp leading and protracted trailing edges, lagging completely behind the DW and
moving from right to left along the wall, were clearly observed on the nearly rectilinear
sections of the DW, which were moving with a velocity of 12 km/s from bottom to top.
The dark strip in Fig. 2 represents the region traversed by the DW in the time between
two light pulses. The velocities of flexural waves with two different amplitudes along the
DW, which are determined from the double-exposure high-speed photographs, were
equal to 16 km/s. The profile of these solitary flexural waves remained unchanged
throughout the entire experimentally accessible observation time, right up to 50-60 ns.
Solitary flexural waves, produced by a pulsed current in each of the two separate wires
and moving in opposite directions, were observed. The interval of velocities of the entire
DW where these solitary flexural waves could be observed was very narrow, 200 m/s. At
lower and higher velocities of the DW, solitary flexural waves moving along the DW did
not arise and were not observed. Figure 3 displays a double-exposure high-speed photo-
graph of a moving DW. The time delay between the two light pulses equals 9 ns. A
solitary flexural wave travels along the DW from left to right. In Fig. 2 the solitary
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FIG. 3. Same as Fig. 2, for a solitary wave moving from left to right.

conductor is almost invisible; it was glued close to the coils. In Fig. 3 two conductors can
be seen to intersect the DW; each conductor could produce a pair of solitary flexural
waves moving in opposite directions. In our experiments their velocities along the DW
were identical in absolute magnitude. Hence it can be concluded that small-amplitude
kinks move under the influence of a gyroscopic force which is proportional to the veloc-
ity of the DW. In orthoferrites this velocity is very high and allows motion of kinks with

all observed amplitudes and a total velocity of 20 km/s. The velocities of the DWs are
much lower in the case of iron garnets, so that the velocities of the waves accompanying
VBLs have been linked to their topological charges and, in consequence, with their
amplitudes as well. This is why the situation in iron garnets is different from that in
yttrium orthoferrite. The maximum velocity of a DW in orthoferrites is 20 km/s and
equals the velocity of spin waves on the linear section of their dispersion relation. All of
the solitary flexural waves that we observed experimentally in yttrium orthoferrite moved
with a velocity of 16 km/s along the DW, regardless of their amplitude. The velocity
U of the solitary waves, the velocity of the DW, and the maximum velocity were
related by the relation
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U2+v2=c? @

Such a relation for low-amplitude disturbances on a one-dimensional orthoferrite wall has
been obtained theoretically from the linearized equation of métibhe result(1) was
obtained experimentally and pertains to easily observable amplitudes of the nonlinear
solitary waves. It means that the leading edge of a solitary wave is part of a DW whose
velocity cannot exceed a maximum velocity equalctoTherefore a similarity exists
between the dynamic profiles of solitary flexural waves on supersonic DWSs in yttrium
orthoferrite and the analogous profiles in iron garnet films, where they undoubtedly
accompany vertical Bloch lines. It can be concluded from this similarity that VBL-type
topological formations arise even on supersonic DWSs in orthoferrite. This result is con-
firmed by direct experiments on head-on collisions of two solitary flexural waves with the
same amplitudes and moving along a DW in the experimental orthoferrite slab. In Fig.
4a, under illumination by the first light pulse, these waves are 280 apart. Five
nanoseconds later they have almost completely annihilated one another. Complete anni-
hilation is seen in Fig. 4b. The dynamics and mechanism of appearance of topological
magnetic solitons on DWs in orthoferrite have not yet been studied theoretically. The
surface of the orthoferrite slab, where the spin-reorientation field should be weaker than
in a bulk samplé;*° could play a large role in the appearance of solitary flexural waves
and, possibly, the VBL-type topological formations which are associated with them.
True, in Kerr-effect magnetooptic investigations, where the Kerr effect apparently occurs
at a depth of several tens of angstroms, the effect of the surface was observed only near
the spin-orientation temperature. In Ref. 11, no effect was found in ¥Fe@rdinary
laboratory magnetic fields. In Ref. 9 it is shown that 228NBW in an antiferromagnet
remains stable with a pair of neighboring spins emerging into a plane perpendicular to the
wall. In a high transverse magnetic field, this emergence of the spins can happen in two
mutually perpendicular planes. A similar situation possible occurs in weak ferromagnets
as well, which in principle could result in the formation of VBLs. It seems to us that the
instability of a supersonic domain wall in yttrium orthoferrite, manifested, specifically, as

a change in the orientation of the plane of the DW, and the absence of hysteresis in the
magnetic-field dependence of the velocityof the DW in the supersonic ranyeould

give rise to topological formations on a supersonic DW in yttrium orthoferrite. It is of
interest to perform numerical calculations of the formation and dynamics of solitary
flexural waves taking account of the rotation of the magnetic moments of the DW in a
plane perpendicular to thac plane. Model calculations can be performed for small
damping parameters, which are characteristic of yttrium orthoferrite. These calculations
will shed light on the character of the profiles and amplitude of solitary flexural waves,
their dependence on the velocity of the DW, and so on. However, the general mechanism
of the production of solitary flexural waves on domain walls in orthoferrites requires a
separate theoretical analysis with allowance for the role of the surface and supersonic
instability of dynamic DWs in orthoferrite. It should be noted that attempts to decelerate
or accelerate local sections of a dynamic DW in yttrium orthoferrite have been made
before® but on much longer sections. They did not give rise to solitary waves. It has not
been ruled out that the solitary flexural waves observed in the present work in yttrium
orthoferrite are much more stable than the analogous waves in iron garnets; this could
lead to progress in the development of VBL-based memory systems.
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FIG. 4. Double-exposure high-speed photographs of two colliding solitary flexural waves. Onset of the anni-
hilation processAt=5 ns(a). Total annihilationAt=9 ns(b).
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Fine structure of excitonic levels in quantum dots
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The experimental results of a study of the fine structure of the levels of
excitons localized in InAlAs quantum dots in an AlGaAs matrix are
reported. Transformations from optical orientation to alignment and
from alignment to orientation, which occur due to the exchange split-
ting of a dipole-active excitonic doublet and are allowed by the low
symmetry of a quantum dot, are observed in a longitudinal magnetic
field (Faraday geometjy A comparison of theory with experiment for

a self-organized ensemble of quantum dots enables a determination of
the character of the distribution over the dipole orientations for reso-
nance optical transitions. @997 American Institute of Physics.
[S0021-364(©7)00810-4

PACS numbers: 73.20.Dx, 71.35y, 33.15.Pw

When the electron and hole spin states are taken into account, the energy levels of
excitons in semiconductors are degenerate, even in the case of simple bands. Specifically,
the ground statel-hhl(1s) of an exciton with a heavy hole in quantum wells with the
zinc blende lattice is fourfold degenerate and is characterized by the angular momentum
projectionsM =s+j==*=1 and*2, where the electron spis= *+1/2 and the hole an-
gular momentumj =+ 3/2. The exchange interaction splits this level into a radiative
doublet| 1) and two close-lying, optically-inactive singlets. When the exciton is local-
ized in an anisotropic island or anisotropic quantum dot, the symmetry of the system is
lowered and the radiation doublets should split into two sublevels which are linearly
polarized in two orthogonal directions whose orientation is determined by the form of the
localizing potential In an optical near-field investigation of the photoluminescence spec-
tra of excitons localized in GaAs/AlGaf801) quantum wells, Gammoet al? observed
exchange splitting of thel-hhl(1s) doublet into two components polarized along the
[110] and[110] axes. The analogous splitting occurring in type-l1l GaAs/AIGAAY)
superlattices on account of the localization of an exciton at an individual interface and the
low (C,,) symmetry of a single isolated interfadeas been studied by polarized photo-
luminescence methods. It was shown that the observation of the “optical orientation—
optical alignment” or “alignment—orientation” transformation in a magnetic fil(t,

i.e., the observation of the lineé&eirculan polarization of the photoluminescence in the
case of circularly(linearly) polarized excitation, makes it possible to determine reliably
the magnitude of the splitting and the direction of polarization of the optically active
sublevels without resolving the fine structure spectrally. In the present work we investi-
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gated the fine structure of localized excitons in a self-organized system of InAlAs/
AlGaAs quantum dots.

The structures investigated were grown on semi-insulating G@8ssubstrates by
molecular-beam epitaxy in a Riber 32P system with a solid-state source ,0fAAs
quantum-dot array was formed in a process of self-organized growth at a temperature of
485 °C by depositing lfAl; _,As with an effective thickness of 1.6 nmx£0.45)° The
rest of the structure was grown at a temperature of 700 °C under conditions of enrichment
with arsenic. The active region in the sample consists of three rows of quantum dots
separated by 5 nm thick AiGa, -As layers. It is bounded on the substrate and surface
sides by 50-period Al;sGay s5As (2 nm)/GaAs (1 nm) superlattices, which are followed
by 0.15 and 0.1um thick Al,Ga _,As (x=0.45-0.6) and AJ¢Ga JAs layers, respec-
tively. The RHEED pattern from the surface of the growing film was used to monitor the
transition from two-dimensional uniform to three-dimensional nonuniform growth of
INAIAS.

The samples were placed at the center of a superconducting solenoid and loaded into
a cryostat with liquid helium. The helium was pumped down to a temperdiar2 K.
Both quasiresonancéKr™ laser, \.,=6764 A and nonresonancéHe—Ne laser,
Mex=6328 A) photoexcitation were performed. The exciting light was incident on the
sample at a small angle with respect to the growth axalong which the intensity was
recorded in the “reflection” geometry, and the polarization of the luminescence was
analyzed in the Faraday geometry. In the experiments we used a modulation method in
which the position of the analyzer is fixed and the sample is excited by light with a
variable sign of the circular or linear polarization at the frequency 26.61 kHz of a
photoelastic modulatorThe values of the effective polarization were measured:

|7+~ |110_|1f) | 100_ | 010

c_ «@ a | _ T« a I"_Ta a

Pa——la+ T Pa=T110, 110" Po ™ T00 00 ()
o Tl I+ a la

Here the symbol; represents the intensity of the recombination radiation in thg)
configuration of the polarizer and analyzer, wher@nd 8 stand for linear polarization
along the[100], [010], [110], or [110] axis or for circular polarizatiomr, or o_ .

The low-temperature photoluminescence spectrum of the experimental structure un-
der nonresonance excitation consists of a single band with half-wietB0 meV and a
maximum atE=1.787 eV. Under quasiresonance excitatidrwE1.832 eV), peaks
displaced from the exciting line by an amount equal to the energy of optical phonons in
GaAs(35 meV) and AlAs (48 me\) as well as a weakly expressed structure appear in the
radiation spectrum. Such a transformation of the photoluminescence spectrum under
resonance excitation was observed in Refs. 7 and 8 for an analogous system of quantum
dots. The experimental data presented below were obtained on a phonon peak displaced
from the laser line by 35 meV. Similar results are also obtained on a different phonon line
shifted by 48 meV from the exciting line.

Figure 1a displays the degree of circular polarization as a function of the longitudi-
nal magnetic field Faraday geometiywith excitation by circularly polarized light. A
substantial increase in the degree of polarization of the radiation followed by saturation
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FIG. 1. Optical orientatioria) and optical alignment of excitons along tHEL0] and[110] axes(b) and along

the [100] and[010] axes(c) in a structure with quantum dots in a longitudinal magnetic field. The photolumi-
nescence was recorded at the wavelength 6890 A under quasiresonance excitatiqp=w@f64 A. The solid

lines show the computational results obtained with the following values of the parameters:

10/ mo=h0, 19 o=1.56 T,P=47%, PP=34%, P, =28%.

are observed. The characteristic scale of the variation in the degree of polarization is
determined by the energy splitting of the excitonic radiation doublet and equals about
25T.

Optical alignment of excitons is observed under excitation with light linearly polar-
ized along thd110] axis as well as along thed00] axis (Figs. 1b and 1 In a longitu-
dinal magnetic field linear polarization is suppressed in the same characteristic range of
fields where an increase of circular polarization is obserfge@ Fig. 1a We note that
suppression of the alignment alohyL0] is determined by the difference of the degrees
of linear polarization in zero and strong magnetic fields, since an intensity modulation is
superposed on the measured degree of effective linear polariz;éitignThis intensity
modulation is due to_the difference in the absorption coefficients between light polarized
along the[110] and[110] axes(linear dichroism, equals 13%, and is independent of the
field B. There is no linear dichroism in the case of excitation along 18] and[010]
axes.

As indicated at the beginning of this letter, the combination of an anisotropic ex-
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FIG. 2. Conversion of optical alignment along el 0] axis into orientatior(a) and conversion of orientation

into alignment along th¢110] and [110] axes(b) in a longitudinal magnetic field. The solid lines were
calculated for the same values of the parameters as the curves in Fig. 1, and the out-of-balance factor
f=0.55. (c) — Change produced in the intensity of the excitonic photoluminescence by anticrossing of a
sublevel of a radiative doublet with an optically inactive state of the exciton.

change interaction and the Zeeman effect in an exciton results in intercoupling of the
optical orientation and alignment. This effect is demonstrated in Fig. 2a and 2b: In the
experimental structure with quantum dots in a longitudinal magnetic field the orientation
of the excitonic spins is intercoupled with the alignment of the oscillating dipole mo-
ments in the system of ax¢$10] and[110]. It should be noted particularly that under
excitation with circularly polarized light in a magnetic field a component of linear polar-
ization in the system of axdd4.00] and[010] does not arise, nor is the reverse effect
observed, wherein linear polarization along the d4€X)] and[010] is transformed into
circular polarization is also not observed.

The intensity of the photoluminescence in a magnetic field was also found to exhibit
a resonance change, associated with the anticrossing of the radiative and nonradiative
sublevels of theel-hhl(1s) quartet(Fig. 20. It is obvious that anticrossing occurs at
B=4 T. A resonance variation in the circular polarization of the radiation is observed for
the same value of the field and for excitation with light with a fixed linear
polarizationE || [ 100]. Anticrossing of excitonic sublevels has been observed previously
in InAs/GaAs quantum dof$.

To analyze the optical orientation and alignment of excitons it is convenient to treat
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the doublet| 1) as a pair of states with pseudosg@s 1/2. Then the Hamiltonian
describing the splitting of the doublet in a longitudinal magnetic fi|dz can be written
in the form

7/:ﬁ(910'1+920'2+QH(T3), (2)

where ) =g uB, g| is the longitudinalg factor of the excitony, is the Bohr mag-
neton,o; are the Pauli matrices for the axes 1, 2, and 3 of the effective space in which the
pseudospin rotates, and(),; and 7# (), are the exchange splitting parameters of the
radiative doublet. Fof),=(=0, ,#0 the components of the doublet are polarized
along the axes | [110] andy || [110] and forQ,=Q=0, Q;#0 they are polarized
along the axex’|| [100], y’ || [010] rotated by 45° relative to the, y axes. The average
values of the pseudospin projections are related with the degrees of polarization of the
emitted light (Stokes parameterdy the simple relation®,, =2S,;, P,=-2S,, and
P.=2S;. Similar relations exist between the polarization of the incident light and the
direction of pseudospis® at the moment of excitation, if no partial loss of polarization
occurs in the excitation process. According to E?), the pseudospin precesses around
the vectorﬁ(Ql,Qz,QH)with frequency|ﬁ|. If this frequency greatly exceeds the re-
ciprocal 7~ of the exciton lifetime and the spin relaxation time satisfigs 7, to find
the average pseudospin vec®it is sufficient to project the vectd@ on the direction of
Q,ie.,S=0(Q-3)/|Q2 This yields a relation between the polarization of the photo-
luminescence and the exciting light

Pi=A;P) (i,j=1".l.c), 3

9 -—00, 0,0

-0,0, Q% -0 |. (4)

1
1Mall= 52070z 3
Q. Q0 Qj
We note that if level anticrossing and absorption dichroism are neglected, the polarization
P{ equals the valueg!, introduced in Eq(1).

In the experiment, light emitted by a large number of quantum dots is analyzed and
the matrix A,z must be averaged over tHe; and (), distributions, to which shape
fluctuations of the quantum dots and local deformations contribute. The apparent incon-
sistencies in the experimental results J-optical alignment of excitons for any direction
of linear polarization of the exciting light and 2orientation—alignment” conversion in
a longitudinal field, indicating that thel 10] and[110] axes are not equivalent — can be
satisfactorily explained by assuming that the positive and negative valu€k, afre
equally probable and the average valu€)gfis different from zero. In this case, after the
components\;; are averaged, the components which are odd,rvanish and the matrix
(4) assumes the form

0? 0 0
1 ~ _
A= =————os 0 02 —£0,0]. (5)
I |1|| 02+ 02+ 02 N 2 225
1 2 [ 2
—fQ, 0 O

To calculate approximately the random variancein and ), relative to the average
values(Q,)=0, (Q,)#0, on switching from expressiof#) to Eq. (5) we replaced)?
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by the mean-square valug¢Q?)=02 (n=1,2) and Q,Q; by 0,0, where
f=(02>/f22 and|f|<1. The computational results obtained with expressi@hand (5)

are displayed in Figs. 1, 2a, and &wlid lineg. The deviation ofP]Q from 1 is due to
polarization losses accompanying quasiresonance excitation of the excitons. As one can
see from Fig. 2b, the influence of anticrossing on the polarization cannot be completely
eliminated in the experiment. A separate analysis is required in order to take this effect
into account on the basis of the theory in Ref. 10.

In summary, in contrast to type-1l GaAs/AlAs superlattitard the structure GaAs/
AlGaAs with quantum wellg,the position of the principal axes of the anisotropic ex-
change splitting for localized excitons in InAlAs/AlGaAs quantum dots is not fixed in the
[110] and[110] directions and is characterized by two linearly independent parameters
Q, andQ,. The quantum dots investigated are shaped in the form of pyramidsibly,
truncated, whose height is parallel to the axig| [001] and whose rectangular base is
oriented along th¢100] and[010] axes®!! Quantum dots with a square base are char-
acterized byC,, point symmetry, for which};=0, ,#0, and the components of the
radiation doublet are polarized along 0] and[110] axes. In the general case of a
rectangular base the symmetry is loweredQg, and Q;#0. It is obvious that this
guantity has opposite signs for quantum dots with bases extended [ihQbleand[010]
directions. If the rectangular bases are not predominantly oriented i®®ieplane, the
average valuéQ,)=0 but the mean-square value @f; is nonzero.
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for Fundamental Research under Grants Nos. 95-02-06038 and 96-02-17824, and INTAS
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A qualitative theory of nuclear magnetism against a background of
superconductivity in metals is proposed. Even though the supercon-
ducting transition temperature is much higher than the nuclear ordering
temperature, nuclear ferromagnetism can partially or completely de-
stroy superconductivity. An experimental method of determining the
effective electron—nuclear spin—spin interaction constant for supercon-
ductors is discussed. @997 American Institute of Physics.
[S0021-364(1®7)00910-9

PACS numbers: 76.58.g, 74.25.Nf, 75.50.Bb, 75.50.Cc

1. The strong effect of nuclear ferromagnetism on superconductivity in metals was
first discovered in Ref. 1. The fact that ferromagnetic nuclear order can destroy super-
conductivity was pointed out in Ref. 2. The crux of the phenomenon is, qualitatively, as
follows. Even though the superconducting phase transition tempergiglie ordinarily
many orders of magnitude higher than the nuclear ordering tempemgyrehe energy
loss accompanying the destruction of superconductivity is only of the ordlégretﬁF per
electron g is the Fermi energy of the electrgrend notT,., as appears at first glance.
This is because it is only the relatively few electrons that are near the Fermi surface
which are responsible for the superconductivity. However, the ferromagnetic nuclear
ordering energy is of the order @f.,, per nucleus. Therefore if the density of nuclei is not
too different from that of the electrons, we obtain as a rough criterion for the destruction
of superconductivitchneF>Tge.

2. The metallic compound Auln which is a type-l superconductor with critical
temperaturdl ..=0.207 K and critical magnetic field.(T—0)=1.45 mT, was investi-
gated in Ref. 1. A ferromagnetic phase transition in the system of In nuclei is observed at
T.,=35 uK. In consequence of this transition, @sdecreased decreases to 0.87 mT
and broadening of the superconducting phase transition Hipl') at temperatures
T<T., occurs. As a result of the good thermal contact between them, the electrons and
nuclei are in thermodynamic equilibrium, i.&"=T¢€. The equilibration time is about 1
h. This letter proposes a qualitative theory of the phenomenon discovered in Ref. 1 and
predicts results for possible experiments where superconductivity and nuclear ferromag-
netism compete with each other.
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The (H,T) phase diagram of the metal depends on the method by which nuclear
order is obtained. In Ref. 1 low temperatures were achieved by the nuclear demagneti-
zation method, i.e., first, a phase transition to a ferromagnetic state occurs in the nuclear
system in the normal phase of the metal and then the metal becomes superconducting as
the magnetic field decreases. Therefore the phase transition occurs as a function of the
magnetic field and not temperature, in which case the nuclear system becomes ferromag-
netic in the superconducting phaseTadecreases. This greatly simplifies the analysis of
the phenomenon because superconductivity does not have a back effect on the nuclear
ferromagnetism: Superconductivity appears in a state with a fixed nuclear magnetic order.
This removes in part the question of the existence of a nonuniform superconducting state,
i.e., a LOFF phas&? The transition into this phase can occur only with a long time delay,
if the ordinary uniform phase is metastable.

A nuclear domain structure with a spontaneous nuclear momdeT) within a
domain arises at temperatur€s<T.,. The maximum value oM ,(T) corresponds to
the total polarization of the nuclei in a domain. The average nuclear mdvheoter the
metal sample depends on the initial demagnetization conditions, since the domain walls
move extremely slowly. To determine the temperature dependence of the critical mag-
netic fieldH., we employ the well-knowir expression for the free enerdys of the
superconductor,

_V o2 a2 B¢ _ _ v
FS_Fn_Z(ZJ —Ao)+ g, J=puH,, B.=H.t+47M,, (1)

whereF , is the energy of the normal metal;is the electronic density of states;, is the

gap in the electron spectrum®Bt=0; J is the energy separation arising between electrons
with opposite spins as a result of the magnetization of the electrons by the nuclei; and,
H, is the effective nuclear field at an electron and is proportional to the magnetic nuclear
momentM ,(T). Leaving unspecified, for the time being, the relation betwdeg(iT) and
H,(T), we obtain from Eq.(1) the dependence dB.(T) on M,(T) or M,(T) on
B.(T):

MAT)(  BX0) ”1’2

B°(T):B°(T°”)[l_ M2\ 1 BZ(Te)

B2(Ten) —B2(T) |

Mn(T):Mn(O){m 2

The measured quantity is nBt(T) butH.(T). The average nuclear momewit, adjusts

to the external magnetic field extremely slowly and is mainly determined by the initial
nuclear demagnetization conditions, i.e., by the value of the magnetic field at which
nuclear order first appeared, and not by the valuel &fT). Therefore, upon varying the
initial experimental conditions, one can determidg(T) from Eq. (2) by subtracting
from B,(T) the T-independent constant/M . The first relation in Eqs(2) makes it
possible to determine, by a rough calculatiorMyf(T) in the mean-field approximation,

the curveH(T) of coexistence of the superconducting and normal phases of the metal.
The second relation in Eg$2) is more informative and makes it possible to determine
from the experimental temperature dependenced pfthe magnetizatiorM ,(T) of a
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cubic Heisenberg ferromagnet with siBs 9/2 (nuclear spirl,)). We note that in Ref. 1

it was indicated that the measur@&ddependence ofl. does not correspond to existing
theoretical models; however, expressions of the {@evere not analyzed. Since in Ref.

1 H.(T) did not depend too strongly on the initial experimental conditions, there are
grounds for not distinguishing betwe&g andH. in Eq. (1), i.e.,M, can be set equal to
zero. Then the value of the maximum nuclear fielg{ T=0) reached upon total polar-
ization of the nuclei can be determined from E#y.

Ag

/U“e\/E

Since the density of states does not appear in Eq3) and H.(0) andH.(T.,) are
known' for Auln,, we obtain, assuming that, and T, are related in accordance with
the BCS theory,

H(Z:(O) 1/2
g

O B AT

)

Ha(0)~0.15 T, J(0)=puH,(0)~0.21 K.

The parameteid ,(0) is an important characteristic of the metal. It is known only for two
substances — Li and N@ef. 6, and it determines the shift of the electronic resonance
line with total polarization of the nuclei by the Overhauser method. This shift is very
difficult to measuré.

3. For this reason, we shall discuss an experimental method of determining the value
of H, at least for superconductors. For this we make use of the possibility of producing
a nonequilibrium state in which the nuclear temperature is decoupled from the electron
temperatureT"<TE. If T°*<T,,, thenT, does not appear in the final expressions for the
observed quantities, so that it can be conventionally set equal to zero and only the nuclear
temperature need be followed. If the experiment starts at a high magnetidifjedahd
high nuclear temperatufE)>T.,, when the nuclear system is almost completely polar-
ized and is ideal, and the magnetic fieldis switched off adiabatically, then the nuclear
magnetic moment will persist right up to the point of the phase transition of the metal to
the superconducting state. It is important that for the nuclear system this transition occurs
instantaneously at a nuclear magnetic monMptH,, Tg). The critical fieldB, is found
from Eq. (2), whereM,(T) must be replaced byl ,(Hq,Tg). The initial conditionsH,
andTg can always be chosen so that the magnetization of the electrons by the(thelei
parameted in Eq. (1)) is more consequential than the replacemenitighby B, in Eq.

(2). Indeed, in Eq(1) J competes with the small quantity,, while B. can be estimated
from the expressioB,=H 1+ x,), where x, is the nuclear susceptibility, which is
small at high temperaturés>T,,,. Thus,H.(H,T{) can be measured during adiabatic
demagnetization. In the superconducting phase the Befdjuals zero and the nuclear
momentM , relaxes to zero. Now, if a magnetic field is switched on, then superconduc-
tivity will be destroyed in a fieldH ., which is higher tharH (H,Tg), and from Eq.(1)

we find the parameter

Ao

:U’e\/E
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Since the values dfl and T, were chosen such that the nuclear—nuclear interaction can
be neglected during the entire adiabatic demagnetization stage, we have

H
Hn(Ho,T8>=HSBS(M

T ) ®)

whereB; is the Brillouin function and—|ﬂ is the limiting value ofH,, for w,Ho>Tg,

when all nuclei are polarized. Therefore by measukigrersusT] andHy it is possible

to determine on the basis of Eq8) and(5) the effective magnetic nuclear fielH)ﬂ under
conditions of total polarization of the nuclei. We note that in Ref. 7, where nuclear
relaxation in superconducting Al was investigated, supercooling of the nuclear system,
which causesi, to differ fromH .y, was observed during on—off cycling of the magnetic
field.

Let us now determine the phenomenological electron—nuclear spin—spin interaction
constantJ, in the free-electron model, neglecting the band structure of the metal. For
this, we write this interaction in the fof

Venzi_:é(re_rn)@r (6)

wheren, is the density of nuclei. If now the factdr appearing in Eq(1) and charac-
terizing the magnetization of the electrons by the nuclei is expressed in teiqg,0bne
obtainé

J(HO,T8>=JOBS< “T—H") Y
0

Analysis of the experimental data presented in Ref. 1 for Agives J;=~0.21 K. A

nonequilibrium nuclear magnetization should strongly affect superconductivity in the

metals In, Ta, Bifilms), Sbh, and TI, which, according to an analysis of the Knight shift

data, have high values of the superconducting transition tempergisitegether with a

strong electron—nuclear spin—spin interactidyy,.
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The appearence of a new type of localized states at the helicoidal tran-
sition is predicted. The order parameter decays with an oscillation in
the vicinity of the defect provoking the localized transition. The cases
of point, linear, and planar defects are considered, and the specific heat
jumps are calculated. €997 American Institute of Physics.
[S0021-364(©7)01010-4

PACS numbers: 75.2%z, 75.30.Kz

1. INTRODUCTION

The presence of defects and inhomogeneities of various sorts may strongly influence
the phase transition in bulk materials. Surface defects are an example. If the local tran-
sition temperature near the surface is somewhat higher than in the bulk, then a localized
near-surface state appears at a temperdtygreslightly above the bulk critical tempera-
ture Too. This situation is characteristic for surface magnettsuperconductivity local-
ized near a twinning plarfeand local structural transitiorts.

If the Landau functional approach is used to describe the phase transition, the local
increase of transition temperature can be modeled Byfunctional contribution to the
free energy densitys- y8(r) 2, wherey is the order parameter. The problem of finding
the critical temperature of the localized transition is then reduced to one of determining
the eigenvalue of a corresponding equation for the order paraméter This equation,
when the gradient term in the Landau free energy functional has the usual form
~(V)?, is just the Schrdinger equation with a-functional potential and self energy
E~(TcL—Tco) (see for example Refs. 1 and. Zrhe one dimensional potential well
always has a localized state with negative enérgyte that a local increase in the
transition temperature corresponds to a weak negatiftenctional potentigl Then near
the surfacdor plane defegtthe temperature of the localized transition will be higher than
that of the bulk transitionT ¢, — Tco~ 2. For a linear defect the difference is exponen-
tially smalf* and eventually non-observable. In the case of a point defect the local tran-
sition is absent, as there is no localized state for a weak three-dimensidmattional
potential?

However, the situation turns out to be quite different in the case of a phase transition
to a helicoidal state. To be more specific, we will consider a magnetic helicoidal transi-
tion like that observed in Mn8iand FeGé, for example. In the absence of a center of
symmetry of the crystal structure, the magnetic free energy functional contains terms
~XM-curl M (whereM is the local magnetizatiorwhich lead to the formation of a
helicoidal magnetic structureThe same is true also for cholesteric liquid crystals.
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In the present article, we demonstrate for a helicoidal transition that even a point-
like increase in the transition temperature leads to the formation of a very specific local-
ized state above the bulk critical temperature. We calculate the structure and thermody-
namic characteristics of such unusual localized states near point, linear, and planar
defects.

2. LOCALIZED STATE NEAR A POINT DEFECT

We consider the problem using the Landau-type functional for the magnetic free
energy:

ne b
FzM—é M2+ S M*+a% (VM) +a%(VMy)?+a%(VM,)?
+AM-curl M—yM?5(r) |d3r. (1)

where @ is of the order of the magnetic transition temperafligg, n is the density of
magnetic atomayl g is the saturation magnetization®t 0, andr=(T—T¢g)/T¢o- Note

that T¢q is the critical temperature of the ferromagnetic transition which occurs in the
absence of the termaM - curl M. In the presence of this terfthe case of a crystal lattice
without a center of symmetyythe transition to the helicoidal magnetic structure occurs
at some temperatureT: higher than the ferromagnetic transition temperature
((Te—Teo)/ Teo=7o=(N/2a)?). The term— yM245(r) describes the local increase in the
transition temperature near the point defect, the magnetic stiffness coefficent the
order of the interatomic distance, and the coefficiemtas the usual meaning. For sim-
plicity, and having in mind MnSi, we consider the functional for the case of cubic crystal
symmetry.

To reduce the number of coefficients, it is convenient to make a change of variable
tor’—r/a, and we will henceforth omit the prime. First we consider the question of the
temperature of the localized transition and the magnetic structure that arises. For that we
may neglect the term-M# in the functional(1) and write it in the Fourier representation
as

_n0

F sz% (T+q2)|v|q-M,q+i3(|v|,q(q><|v|q)—'«;% Mg Mg |- 2)
S

wherex=\/a andy= ya®.
Minimizing the energy oveM,, after some algebra we obtain
M\~ (7+0%)?]
(7+0°)
YA[d(d-Mo) —g°Mo]
(7+97) ’
where My=M(r=0) is the magnetization at the localized defect. In the absence of
defect, fory=0, we have from3) 7=Aq—q?. The actual wave vector of the helicoidal

M [N2q%— (74922 =i YA (qX M) +

()
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state corresponds to the maximum temperature gverhis maximum is realized for
q=q0=7(/2, and the transition temperatureqi§=')(2/4, which is naturally higher than
ferromagnetic critical temperature-£€0). If we are interested in the formation of the
localized state just above the bulk transition &at=7— 7p<7, , the singular part of
M, will be related with the wave vectdg|=q,, and we obtain fron{3) the following
expressions foM:

Vo~ 17(@xXMo)  2y[q(g-Mo)~gMo] @
T X[or+(a-g0)2] N2 [om+H(a—ado0)’]

The critical temperature for the appearance of the localized solution is given by the
“self-consistent” equation
3

d
M0=M(0)=JMqﬁ. (5

The main contribution to the integréd) comes from the regiofg| =q,. Taking this into
account we obtain for the shift of transition temperatéirg= 7| — 75, (Wherer¢ is the
critical temperature for the localized Stht@TCI(;TO/6W)2. Then even a small local
increase of “bare” transition temperature gives rise to a localized state. This property is
a characteristic of the helicoidal transition and is absent for the ferromagnetic transition.

After taking the Fourier transform of Ed4), we obtain the distribution of the
magnetic moment in the real space. Choosing zhaxis alongM(0), in cylindrical
coordinates it may be written as

3 (900 (4c2)
M, =540\ o (g Jse (G (@)

3
M,=35M(0) \/g (Gor) V(dop)*+(Ao2)%),

[(dop) 7+ (a2 7T V212
3 /2
MZ:EM(O)L Sit @ Jo(qop Sin A)cog gez cos #)dé. (6)

Note that in calculating the Fourier transform @f) we have putg=qq in the
nominator, as is justified for a distance |of2/(qo\/87;) around the defect. At larger
distances the magnetic moment decreases exponentially, and the effective Wlofme
the localized state i$/~q53(5rc)‘3’2. It increases whedr-—0, which is a general
phenomenon for localized stated and is related with the diverging of the effective
coherence length nedi.. Then for smallery the localized state appears closer to the
bulk transition temperature, but its dimensions becomes larger. The str@6twethe
localized state is rather complicated. The distribution of the magnetic moment in the
planez=2m/qq is presented in Fig. 1.

Knowing the magnetic moment distribution, we can obtain the jump in the specific
heat at such a localized transition:

816 JETP Lett., Vol. 65, No. 10, 25 May 1997 A. Buzdin and Y. Meurdesoif 816



et o2 ool o N NN

Ve N
N\l ey >
Y
~

J&\\\&tJ/$\
\
¥
y

PEEE R R R E S
XN SN\

A4
NN~ T T
NN >

FIG. 1. The magnetic structure for a point defect in the plaa@w/q,. The in-planeM, andM, components
of magnetization are presented. Note thatzteis is chosen along the magnetic momentaty=z=0.

2
243
ne UMdr} ne 277(2)2 1
AC

- MngCO f M4d3|’ B MngCO I_ § q057C

where the factol =1.17 comes from numerical evaluation of the integral. The diver-
gence of AC as y—0 can be attributed to the increase of the effective volume as
y—0; however, the specific heat densityC/V~ (57c)*? goes to zero fory—0.

3. LOCALIZED STATE NEAR A LINEAR DEFECT
The only change in the initial Landau functional for the magnetic free energy in this
case is that the local increase of the critical temperature along the linear defect is de-

scribed by a term-7yM?2(0,0,2) §(x) 8(y), with the z axis chosen along the line. We
obtain a self-consistent equation similar ® for My(q,), whereMy(q,) is Fourier
harmonic ofM(p=0,2).

Using equation(4), we find the following system of equations giving the relation
betweensT and the free parameter,, whereq, is a modulation vector along the defect:
_EJ iNG, M3+ (a2+a2)ME da,
Y 57+ (6Q)? (2m)?
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Myzif XM+ (g5 +a2)My da,
o \2 5t+(50)° (2m)*’

2_27’ afM§  da,
0= =5 2 2 (7)
N o7+(69)° (2m)

The critical temperaturér, must be obtained by maximization @f with respect to
g;. One solution withM§=MY¥=0 can be easily found. For this solution maximum

transition temperature is reachedggt=0 and 5rc=(37):/8)2.

However there exists another solution of the tyg+iM § andM{=0 which gives
a higher transition temperature. For this solution, the maximum temperétuo®erre-
sponds to wave vectdy, nearqg,. We obtain for

% . 2\ 14/ 5. 3/8~ 31/4'23/4
B 3 2

“aq, © \37) \q?
4 3/4~
o 1/4
37T> Y ) (8)

the transition temperature
2
( 1-2
This critical temperature is higher than that for the solutidf=MY=0. We con-
clude that the helicoidal localized state with a modulation vestgp alongz axis must
appear at the temperaturg+ 87, given by (8).

&

N

ST~ 2

The structure in the real space is
M*=M(0)cog do2)Jo(dop V28),
MY=M (0)sin(do2)Jo(dop \/2¢). ©)

The range of application of these equationg+s1/(q,y°?). At larger distances, the
magnetization decreases exponentially. Figure 2 illustrates the distribution of the magne-
tization. The specific heat jump at the transition is

ne 773 1/4 1
AC=———| =] —=—.
M%bTCO( 12) ANZyY4n 'y
4. LOCALIZED STATE NEAR A PLANAR DEFECT

Considering the case of planar defect, we choosezthgis perpendicular to the
plane. The local increase of critical temperature in the plane is described by the term
—~YM(x,y,0)8(2) in the magnetic free energy. Analysis of the system of equations
analogous td7) shows that the solution with the highest transition temperature is of the
type M}+iM3 andM =0, while the transition temperature & .= (2X y?)??and the
wave vector is directed along the& axis and turns out to be close tqq
(e=qo/gx— 1= 1/qq9V67/3). The magnetic structure of the localized state is
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FIG. 2. The magnetic structure for a lineear defect. Ztaxis is chosen along the defect, and we present the
magnetic moment for two planes. The moment is orientedyiplane and the unit along tteaxis corresponds

to y2e units in thexy plane. This means that the actual structure is obtained by a contract{@cﬂlong the

Z axis.

MY=M(0)e %lde

2 e T
\/§S|n JolZ| §+§ cogqoX),

MZ=M(0)e " %lzVe sin(goX),
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5. CONCLUSIONS

We have found the structure of the localized states for systems with helicoidal
transitions. It happens that even a small point-like local increase of the transition tem-
perature gives rise to a localized state. The very easy broadening of the helicoidal tran-
sitions may be an inherent property. Preliminary daia the specific heat in MnSi
support our conclusions. Apparently the main type of defects in MnSi are dislocations. It
may be interesting to perform neutron diffraction studies to verify the predictions con-
cerning the structurésee Eq.(8)) of such a linear-defect state. In our analysis we have
neglected fluctuations, which could influence the detailed structure of the localized state
but would not qualitatively alter our prediction based on the Landau functional approach.

We a grateful to N. Bernhoeft, J. Flouquet, Y. Leroyer, and V. Mineev for helpful
discussions and useful comments.
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Stripe motion in CuO , planes of Y ;_,Pr,Ba,Cu30; as
observed from the Cu(2) quadrupole resonance

M. A. Teplov, Yu. A. Sakhratov, A. V. Dooglav, A. V. Egorov, E. V. Krjukov,
and O. P. Zaitsev
Kazan State University, 420008 Kazan, Russia

(Submitted 24 April, 199%
Pis’'ma Zh. Kksp. Teor. Fiz65, No. 10, 782—-78725 May 1997

The NQR spectra of copper in the compounds YB&O,,
TmBa,Cu;0,, and Y, Pry 1BaCusO; at temperatures of 4.2—200 K
are investigated by a pulsed NQR technique at frequencies of 28—33
MHz. Quantitative analysis of the spectra shows that the shape of the
“plane” Cu(2) spectra is well described by using a model of 1D cor-
relations of the charge and spin distribution in the Gyanes(stripe
correlation$. In the undoped superconductors the charge—spin stripe
structure moves fast in the Cy®lanes, but doping the YB&u;O;,
lattice with praseodymium slows this motion down. I®97 Ameri-

can Institute of Physic§S0021-364(®7)01110-9

PACS numbers: 61.72.Hh, 74.72.Bk, 7480, 76.60.Gv

The hypothesis of 1D ordering of charges and spins in a particular configuration of
stripes in Cu@ planes of RBaCu;O, superconductors was suggested two years agd
was later used to explain the NMR and NQR data for TmRauOg,, and
TmBaCu,Og, but up to now it has not been corroborated directly in the shape of the
Cu(2) NQR spectra. In this paper we present such corroboration based on analysis of the
Cu(2) NQR spectra for Y_,Pr,BaCu;O; (x=0,0.1) compounds. The YB&u;,O,
(YBCO) and Y, ¢Pry 1Ba,CusO; (YPBCO) samples, prepared by the solid-state reaction
method® were kindly placed at our disposal by Xu and Luetgeméf@rschungszentrum
Juich, Germany. The critical temperatures found from susceptibility measurements at a
frequency of 1 kHz appeared to bg(onset)=92.5 and 86 K, respectively. For compari-
son, besides YBCO and YPBCO, the overdoped compound 381B&®,; (TmBCO),
with a critical temperature of 91.5 K, has also been studlidédhome-built spin-echo
coherent pulsed spectrometer was used for the copper NQR spectrum measurements.

The examples of YBCO and YBPCO spectra are shown in Fig. 1. It is §&gn
1a,0 that, except the relatively narre¥¥Cu(2) and®®*Cu(2) NQR lines, both spectra have
a broad “pedestal.” Representing these spectra on a logarithmic geiglelb,d, one
can clearly see the asymmetry of the narrow lines, i.e., these lines also have a complex
composition in the sample doped with praseodymium.

We managed to get the best fit of the YBCO spectra to six Gaussian curves, three for
each isotope: the narrow Gaussian lizg the broad one\”, and the pedestdt. The
frequenciesy; and mean square linewidthsy; of each pair of isotope lines were sup-
posed to be related by the ratio of nuclear quadrupole momerts°Q/%Q
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FIG. 1. Copper NQR spectra for YB@u;O; (a,b and Y, ¢Pry; Ba,Cu;0; (c,d) taken atT=40 K; the solid

lines are a best fitsee text and Fig.)2

(%50 =a®y;, BAv;=a®Av;, i=A",A",P). Thus the fitting function involved 10 pa-
rameters: three line frequenci®¥, , three linewidth3A v, , three line intensitie§%a

and the ratido= "%, /%%, . While fitting the YBCO spectra taken at temperatures 200—
4.2 K it was found that the pedestal linewidth (£.6.1 MHz) did not depend on tem-
perature, so its value was taken fixed at 1.5 MHz during the final fitting procéthee
results of which are shown in Fig. 1a and Fig. 23,ktleus reducing the total number of
fitting parameters to 9. It should be mentioned here that the presence of a pedestal is
typical for copper NQR spectra in 1-2-3-7 compourst not in 1-2-4-8 compounds

We observed it in the spectra of Tm1-2-3-7 and Y1-2-3-7 samples prepared in different
laboratories! in some of them the pedestal looked like several poorly resolved overlap-
ping lines and, in particular, contained the broad NQR line of twofold coordinated
“chain” ®3Cu(1), copper at a frequency of 30.1 MHz. We suppose the specRuim

arise from Cygl) and Cy2) centers which are located in areas with a partly disordered
oxygen sublattice of CuO planes and, respectively, with a red(aredi locally inhomo-
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geneoushole concentration in the Cy(lanes. Extracting the sunA(+A”) from the
observed spectrum, we obtain the spectrum of the “good” superconductor,(dree
almost free of crystal structure defects. Actually this procedure allowed us to oldfi@in

the first time, to our knowledgea quantitative description of the Q) NQR line shape

for the superconductor with the 1-2-3-7 orthorhombic structure. A comparative analysis
of spectra for YBCO(Fig. 1la and 2a,b)cand TmBCO(Ref. 4 has shown that the
lineshape is intermediate between Gaussian and Lorentzian, and for both samples the
same relation holds between the parameters describing theAlinesdA”. In particular,

in the temperature range 100—-150 K we have obtaimed= vy, Avar[Ava=2.4(1)
andaar/as = 1.645), although the linewidtha »; for TMBCO appeared to be 25-30%
larger than those for YBCO.

In order to describe the copper NQR spectra shape for YPBCO sample we used a
fitting function containing four Gaussians for each isotope: besides the pedéstal
linewidth %A v, was again taken equal to 1.5 MHzhe central lineA (since the fre-
quenciesv,: and vy are close in YBCO, we considered it possible to restrict the de-
scription of this line in YPBCO to one lineand the satellit€€ on the right-hand slope of
the spectrum, we introduced a liBelocated at a frequencyz<wv, in the spectruntthe
presence of this line is revealed by the bulging left-hand slope df@eline in Fig. 1d.

Thus the fitting function contained 12 parameters: four frequefiéigs three linewidths
83A v, , four intensitie3a; , and the intensity ratib=%%,/%%a; . The results of fitting of
YBCO spectra taken at 200—4.2 K are given in Fig. 2d,e,f. Let us point out and discuss
the main features of the copper NQR spectra for YBCO, TmBCO, and YPBCO samples.

1. The integral intensity of the pedestlis the same for YBCO and TmBCO and
equals approximately to 1/3, but for YPBCO it increases~td/2; this confirms our
assumption that the compondntof the spectra belongs to a partly disordered phase of
the compounds studied.

Other remarks pertain to the “pure” spectra of the(@UNQR, characterized by the
componentd’, A” (YBCO, TmBCO, andA, B, C (YPBCO.

2. In the spectra of YBCQFig. 2a,b,¢ and TmBCO(Ref. 4 at temperatures of
100-200 K the frequencies,: and v, are approximately equal to each other, and
var< var at T<T.. In general the difference of these frequencies is smal.@%), so
that for rough estimates it is possible to assume that the sunrit A"”) describes a single
Cu(2) NQR line in the YBCO and TmBCO samples.

3. The temperature dependence of the frequency of this line in the YBCO spectrum
is the same as the temperature dependence of thélinghe spectrum of the YPBCO
sample(cf. Figs. 2a and 2d This allows us to ascribe the lie (Fig. 2d to Cu2) nuclei
which are located far away from Pr atoms and not influenced by them. Let us call these
nuclei “remote.”

4. The main result of this paper is the temperature dependences of the parameters of
the linesA, B, andC for YPBCO (Fig. 2d,e,}.

We ascribe the lineB andC, which are absent in the YBCO spectryFig. 23, to
the “neighboring” nuclei, i.e., to those located not far from Pr atoms. Comparing the
integral intensities; of the lines at temperatures aboVg (when the spectra are free of
possible distortions due to different penetration depth of the rf fifJdnto areas with
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different local concentrations of holesve obtain the same ratio of the mean intensities,
viz., (ag):{ac)=2:1, asthat following from the model of quasi-1D ordering of charges
and spins in the CuQplanes(stripe model.! Furthermore, we have noticed that the lines
B andC are located asymmetrically with respect to the llkebut in such a way that
(vgagtvcac)/(agt+ac)=wv, (Open squares in Fig. 2dThese two facts immediately
suggest the idea that both spectra, those for the “remote” nuéleafd for the “neigh-
boring” nuclei (B+ C), belong to stripes moving in the Cy@lanes, the only difference
between them being different rates of motion: for “remote” nuclei the case of fast
motion is realized, while for the “neighboring” nuclei — slow motion. Two types of
Cu(2) centers are distinguished in the mdde} those located at the center of the stripe
(type C, the hole density on the oxygen ligands is higlnd those at the stripe bound-
aries(type B, the hole density is loyy so that at the optimal doping of the Cu@lanes

by holes and for close packing of the stripes, the number of ceBterswice as large as
that of center<. The shape of the GB) NQR spectrum in the system of moving stripes
can be described by the following function:

WeWe(wg— wc)?(1g+ 7¢) To e

[Te7c(0— wp)(w—wc)]*+[ T5(0— wp) + c(0— ) ]*

(w,Q)= D)

where W; is the probability of finding the nucleus in thah state, andr; and
w;=0+A; are the lifetime of this state and the corresponding NQR frequency, respec-
tively. Actually, since the frequenc{) is randomly distributed about the mean value
(Q)=wq (quadrupole broadening due to lattice imperfectjprise spectrum shape is
obtained by averaging Eql) with the Gaussian distribution @®:

S(w)~f I(w,Q)exd — (Q— wg)2/20?]dQ). 2)

The ®3Cu(2) NQR spectrum taken at 100 K is shown by circles in Fig. 3a, the
squares in Fig. 3b depict the spectrG¥B+ C) for the ®3Cu isotope, obtained by sub-
traction of three lines%A, 3P, and theP component for thé°Cu isotope from the
experimental spectrurtFig. 3@, and the triangles in Fig. 3c display tf%A+ B+ C)
spectrum. The solid line in Fig. 3b represents the calculated speSgug(w) obtained
at the following values of the parametelsz=—A=—27-217X10° s71, Ac=2A,
Te=71=2.9x10"% s, 75=27, wy=27-31.465<1CF s 1, =27 159x10° s 1. One
can see that the experimental spectri8g ¢ of the “neighboring” nuclei and the total
NQR spectrum $,+ Sz, ¢) are described very well in the framework of our model of
moving stripegFig. 3b,9. The spectrum of “remote” nucleidashed lines, in Fig. 39
is obtained at the samAg, A values, but when a short lifetime (<107 ) is
assumed; the frequency of the lineappears to be 0.09% highéhis corresponds to a
higher mean concentration of the hgleand the quadrupolar linewidth 25% less than the
corresponding parameters for “neighboring” nuclei. Thus far away from impurity Pr
ions the velocity of the stripes is high, and the corresponding lifetitisevery small and
cannot be evaluated in the present experiment.

Two conclusions can be inferred from the abovefakt motion of the stripes in the
CuG, planes seems to be necessary for cuprates to supercongdirt,ddping leads to
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FIG. 3. Fragments dfCu(2) NQR spectra for ¥ 4P, ;Ba,Cu;O; at T=100 K: (a) — best fit to the sum of five
Gaussian curve®(A+ B+ C+P) and®P; (b) — best fit to the®3 B+ C) contribution according to Eqg1)
and (2) with the parameterdg/27m=—217 kHz, Ac/2m=434 kHz, 7c=2.9 us, 15=27c, wy/27m=31.465
MHz, o/27=159 kHz; (c) — the same agb) with the addition of the®3A contribution, with parameters
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the pinning of the stripes, resulting in a suppression of superconductivity in
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Y1_,Pr,BaCu;O;. The 1D correlations in the charge and spin distributions remain valid
in the latter case, too, but they become static in character.

We are indebted to Dr. Y. Xu and Dr. H. Luetgemeier for the samples placed at our
disposal. Valuable discussions with V. A. Atsarkin, M. V. Eremin, and V. F. Gantmakher
are gratefully aknowledged. This work was conducted as a part of the Russian State
Program “Superconductivity”(Grant 94029 and the International Russian—German
Program “Spectroscopy of High; Superconductors.”
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Observation of stochastic resonance in a monostable
magnetic system

A. N. Grigorenko,? P. I. Nikitin, and G. V. Roshchepkin
Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia

(Submitted 26 March 1997; resubmitted 21 April 1997
Pis'ma Zh. Kksp. Teor. Fiz65, No. 10, 788—-79225 May 1997

A stochastic resonance on mixed harmonics is observed experimentally
in a monostable magnetic system. The curve of the stochastic resonance
at higher-order harmonics in systems with a weak nonlinearity is cal-
culated. ©1997 American Institute of Physics.

[S0021-364(97)01210-3

PACS numbers: 75.40.Cx, 75.30.Cr, 05-4D.

In recent years stochastic resonaf8®&), which can be defined as a noise-induced
increase in the signal-to-noise ratio, has been attracting a great deal of attention from
investigators- 1% This is due to both the fundamental character of the phenomeston
chastic resonance is a substantial advance in the theory of nonlinear suscepfibiiities
possible interesting applicatioRdJp to now SR has been observed in systems with a
threshold and in bistable systems. At the same time, the interesting possibility that a
divergent signal-to-noise ratio can exist in monostable systems of a special type has been
demonstrated in Ref. 10.

Stochastic resonance in a bistable magnetic system was proposed in Ref. 6 and
detected experimentally in Ref. 8. In this letter we report the experimental observation of
stochastic resonance at higher-order harmonics in a monostable magnetic potential. We
also shows that SR at mixed harmonics has a wider range of applications than SR at the
fundamental harmonic and can be observed in various monostable systems.

Consider a physical system subjected to harmonic modulation and a random noise
force. With weak noise and weak modulation the system moves in a linear region near the
equilibrium state and, in consequence, generates virtually no higher-order harmonics. The
application of sufficiently strong noise drives the system out of the linear into a nonlinear
region where mixing of the harmonics occurs. This increases the signal-to-noise ratio at
the higher-order harmonics, i.e., it results in a SR peak.

OBSERVATION OF SR IN A MONOSTABLE SYSTEM

As a model system for observing SR at higher-order harmonics in a monostable
potential, we chose a solitary domain wéllW) in an easy-axis iron-garnet film stabi-
lized by a gradient of an external magnetic field. For not too high frequencies, the DW
moves by jumps of local sections which interact with microdefects in the sarhjlee
DW was fixed in the monostable potential of a microdefect, and the response of the DW
to an applied harmonic and random noise magnetic fields was studied as a function of the
intensity of the noise field. The response, consisting of a change in the magnetization of

828 0021-3640/97/100828-05$10.00 © 1997 American Institute of Physics 828
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FIG. 1. Signal-to-noise ratio for a local section of a DW as a function of the magnetic-field noise intensity:
measured valued{), computer simulation@© and dotted curye and SR curvesolid line) calculated using
Egs.(6) and(7).

a 5X5x 30 um local section of the sample illuminated by a laser, was measured by a
standard magnetooptic method. The fields were applied with the aid of coils with induc-
tanceL~10 uH and conversion ratie- 10 Oe/A. The random magnetic field generator
produced noise in the frequency range up to 20 kHz. The harmonics were detected with
a selective nanovoltmeter, which was also used to determine the noise intensity. The
experimental setup and measurement procedure are described in greater detail in Ref. 12.

Figure 1 displays the stochastic resonance curve measured at the third harmonic in
the monostable potential of a defect. The curve was obtained (buBi);(FeGas0;,
film 30 wm thick, with an anisotropy of 1800 Oe, a magnetization of 80 G, a stripe period
of 25 um, and a DM mobilityu= 10> cm/Oe s. The gradient of the external magnetic
field was equal tg3=15 kOe/cm, and the internal gradient of the defect was equal to
Bo=100 kOe/cm. The modulation frequency was equal to 1.1 kHz, the amplitude was
equal to 20 mOe, and the detection frequency was equal to 3.3 kHz. The SR peak was
observed with a random noise field of intensidy,=0.018 (mO&?/Hz, which corre-
sponds to a random force of strengfh= D, =0.018 cmi/s (fuy= uHa). This
strength should be compared with the energy of the ddfiegt= uH,6=0.016 cni/s,
whereHy, is the field for breakaway of the defect afieF 0.4 Oe is the radius of influence
of the defect.

Figure 1 also displays the result of the numerical simulation of the motion of the
DW, described by the equation

dx/dt=—dU/dx+ uH cof wt+ ¢)+ uH (1), 1)
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where  H, (1) is  the random magnetic  field, which satisfies
(Hial(t1)Hrar(t2))=2Dy8(t1—ty), in the monostable potential

uBx? KB x? p( ~ 2_X2)
2 2 AT
produced by the gradient of an external magnetic field and the field of the defect. The
values of the main parameterg€10° cm/Oes, =15 kOe/cm,Bs=100 kOe/cm,
6=0.4 um, andH =50 mOg corresponded to the experimental values. The equétijon
was reduced to a dimensionless form by means of the substitukbfis:x and
uBt—t and integrated numerically by a second-order Runge—Kutta method. The time
ensemble of the DW positions obtained with a prescribed time series of the random force
was used to obtain the correlation function and the spectral ddftiséynitial dynamics
of the system during the first ten relaxation times of the system was negleGied
decrease the random error, which in our case was equall@® for the spectral density
of the signal and~20% for the signal-to-noise ratio, the spectral density was averaged
over the phase of the periodic magnetic fiel@nitial time) and also over- 700 different
time series of the noise. A standard Gaussian white noise generator was used, and the
numerical integration stepA¢ =0.005) was chosen to be small enough so that changing
it did not change the results substantially.

U(x)= @

As one can see from Fig. 1, the signal-to-noise ratio obtained by numerical integra-
tion agrees well with the measured curve.

SR AT HIGHER-ORDER HARMONICS IN A SYSTEM WITH WEAK NONLIN-
EARITY

Let us consider a system moving in a parabolic potentiglx) =ax?/2 and per-
turbed by a weak nonlinearity(x):

X=—ax—Uu’(x)+fg cog wot) + &(1), (3)

whcﬂe fo cos@ot)f a small periodic modulation and(t) is white noise with
(&(t)é(t)y=2DS(t —t). Writing the solution in the form

X(1) =Xo(t) + Xn(t) + 7(1), (4)

whereX,(t) are small oscillations produced by a periodic force in the absence of noise
and nonlinearity X, (t) is an Ornstein—Uhlenbeck process produced by the noise, and
n(t) are small corrections due to the nonlinearif). To first order inu(x), we obtain

after simple calculations

(n(t)m(t)=exp(—a(t +1)) f‘_ ft expa(7+m)K(r,ndrdr,

K(r,7)= f flu'(xou_wx_)pl(x_—xf— DU (Xo(7) +X)po(x)d X%, (5)

wherepo(x) = Va/27D exp(—ax/2D) is a stationary distribution ar;all(x_—x,r_— T) is
the transition probability for the Ornstein—Uhlenbeck process.
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For simplicity we assume thaty<a, so that the regionr—7>1/a, where
p1(X =X, 7—7)=~po(X), makes the main contribution to expressi@h Then, expand-
ing expression5) with respect toXy(t) and including noise to zeroth order, we obtain as
the final result for the signal-to-noise ratio at thih harmonic 6=2):

2¢2n
Wano

nw:2n—1(n!)2a2nDAvi

R (6)

whereA v is the detectable frequency band and

" - 2
U= f * po0um dx=\ 55 f we><"( B %) umTHe0dx, @

whereu(™(x) is thenth spatial derivative.

It is easy to see that Eq$6) and (7) imply the existence of an optimal noise
intensity for which the maximum signal-to-noise ratio obtains. In the general case, an
exponential factor expfal’/D), wherel is the effective length characterizing the poten-
tial u(x), can be separated out in the integfdl. Together with the factob in the
denominator in Eq(6), this gives the SR peak.

For the experimental system under study the conditions under which expre@ions
and (7) obtain are satisfied for noise levels greater than the energy of the défbet.
frequency 3 kHz of the external force was much lower than the relaxational frequency of
the system~15 MHz, the amplitude of the external foree=50 mOe was much lower
than the characteristic fordd,~0.4 Oe of the defect, and the potential of the defect
could be regarded as a perturbation with respect to the parabolic potential of the gradient
magnetic field at an average energy of the system greater than the energy of the defect.
A curve of the stochastic resonance at the third harmonic is displayed in Fig. 1. The curve
was calculated using expressiof® and (7) for the potential(2), whose parameters
corresponded to the experimental potentials of a magnetic defect and an external gradient
magnetic field. For high noise intensities, the curve agrees with the experimental data and
the results of numerical simulation.

As another example, let us examine the case when the nonlinearity is concentrated
near a poinig:

(X—Xg)?
ux)=e exr( — T}\Q—) )

®

Calculating the integral7), we find the signal-to-noise ratio at the second harmonic

6 _2¢4 2
TXp€e“ Ty ;{ X5

T8a\ DA, P T2

ax3\? ax
- F) ex;{ - F) . (9)

In this elementary example the stochastic-resonance peak exists oy<fay/4, i.e.,
under conditions for which the nonlinearity is sufficiently localized. Furthermore, the SR
peak for high noise intensities can actually be described by the expression

D<a\?, R,,

maxoh2e’fy
© 8D°Av

D>aN?, R,
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sz% F exp — F s
similar to the formula for a stochastic resonance at the fundamental harmonic.

The result presented makes clear the physical reason for the analogy. Indeed, the SR
signals are generated at some nonzero energy. For the pot&jtithis energy is
U0=ax(2)/2, where the nonlinearity is concentrated. The probability of finding the system
near this energy is proportional to exp(y/D). This gives the factor exp(2U,/D) for
the correlation function, which is a product of two coordinates of the system taken at
different times. The factor D" arises from the spectral noise density and the capacity of
the system to generate signals.

In summary, we have shown that stochastic resonance at higher-order harmonics
does not require bistability and can be observed in different types of monostable systems.
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