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It is shown that an allowance for the condensation of
a medium occurring on the surface of a body moving in
a gravitational field is equivalent, in particular, to both
a new definition of the drag coefficient and an increase
in its value. In the asymptotic mode, the condensation
leads to uniformly accelerated motion, with the accel-
eration being smaller than that of the free fall by at least
an order of magnitude or even more. A variational
description of the problem is presented, and reasons
and conditions making it possible to use this descrip-
tion for irreversible processes are discussed.

1. We assume that a body with a mass m(t) moves in
an external field having the potential U(z) in a two-
phase medium. The phase 1 consists of liquid droplets
with the mass m1 , which condense on the surface of the
body after the contact has occurred. The gaseous
phase 2 causes the drag. Under the assumption that the
Reynolds number Re = |v – v1|d/ν2 @ 1, the equation
describing the body motion in the direction of the exter-
nal force (–Uz > 0) has the form

(1)

Here, v, v1 , and v2 are the velocities of the body, drop-
lets, and gas, respectively; d is the equivalent body
diameter; S is the area of the body cross section; ν2 is
the kinematic viscosity of the gas; ρ2 is its density; and
λ is the drag coefficient. The indices t and z denote dif-
ferentiation with respect to the corresponding vari-
ables. In addition,

where V and V1 are volumes of the body and each drop-

let, respectively, and ρ0 and  represent their proper
densities.

We use the law of condensation kinetics in the form

(2)
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where µ < 1 is the flow coefficient associated with the
impact parameter. The modulus in (2) implies that for
v > v1, the condensation occurs at the frontal part of
the body and at v < v1 , at its rear part. Furthermore, the
natural situation v > v1, 2 is assumed to occur. Finally,

the quantity ρ1 = m1n1 = ϕ1 represents the density of
the droplet substance smeared over the volume, where
n1 is the density of the droplet number and ϕ1 is the
droplet volume fraction. The body and the droplets are
considered as balls.

For simplicity, only the capture of the droplets by
the body is considered in (2), and their evaporation and
subsequent condensation of the vapor on the body are
not taken into account. We ignore also blowing off the
liquid phase from the body, which is equivalent to a
decrease in the flow coefficient µ. Here, we digress
from the instability in the liquid film. An estimate of the
most significant restriction, i.e., the instability of the
film, is presented below.

Relations (1) and (2) yield

(3)

Thus, the condensation increases the drag as it should
be. According to (2) and the definition of m,

(4)

where it is accepted for simplicity that  = ρ0; v = zt,
and u = rt (r is the body radius). At v1 = const, this leads
to the relation

(5)

For z0 = 0, taking into account the natural condition
v0 @ v1, 2, we reduce relations (3)–(5) to the form

(6)
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Here, the quantity

represents the newly defined drag coefficient.
Let, for definiteness, the body move in the gravity

field U = –mgz. Then, substituting the definitions of m
and S into (6), we arrive at the relation

Passing according to (7) to the variable r instead of z,
we have the equation

(8)

where

For ν = const corresponding to λ/µ = const, we write
out the first and second integrals in equation (8) as

(9)

and

(10)

respectively. In the case of t @ r0/u0 or r @ r0, we obtain

which yields

(11)

where

(12)

Thus, in contrast to a constant-mass body, whose veloc-
ity under the action of the gravity force and drag force
tends to a constant value as t → ∞, a body moving in the
condensing medium has another asymptotic mode. In
this mode, acceleration of the body is constant and
smaller than the gravitational acceleration g approxi-
mately by an order of magnitude or even more. This
difference occurs because both the integral gravity
force and the drag force grow simultaneously, so that,
as always, the volume effect caused by an increase in
the body size (the gravity force) dominates the surface
effect (the drag force).

Completing the analysis of the solution to the prob-
lem under consideration, we note the exceptionally
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strong dependence m(t) occurring in the asymptotic
mode:

(13)

The simpler problem that concerns motion of a body in
the gravity field for the case of an ordinary medium
causing drag results from the solution to the problem,
which we have obtained as µ → 0.

The instability of a liquid film having viscosity η
and surface tension α is estimated below. A liquid drop-
let moving in the gravity field in the linear (Stokes) flow
mode becomes unstable at

(14)

where v is estimated from the relation

(15)

According to these formulas, the critical size of the
droplet has the order

(16)

where a* is the capillary constant. Estimate (16) is pre-

sented in [1]. In a more accurate form, relations (14)
and (15) are written out as

which leads to the estimate

(17)

In the case under consideration, expressions (14)
and (15) are replaced by

and

respectively. As a result, we obtain

(18)

where

.

Here, θ ∈ (3; 3.5), so that estimates (17) and (18) satis-
factorily coincide with each other even with an accu-
racy of their numerical coefficients. Consequently, the
critical dimension of the body is determined, as usual,
by the capillary constant, which is, seemingly, the high-
est (a
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 mm) for liquid beryllium. We note that, at
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λ ! 1, /  ! 1 , and arbitrary µ < 1, the quantity
λρ2/(µρ1) can have an arbitrary value because ϕ1 ! 1.

2. The problem under discussion admits variational
description. Indeed, equation (8), written as

(19)

has the Lagrangian

(20)

whose variation is written out as

(21)

which leads to (19). The possibility of variationally
describing irreversible processes (here, we deal with an
absolutely inelastic interaction in the processes of con-
densation and friction) is of certain interest.

The fact is that there exists a standpoint proposed
even by Lagrange and clearly formulated by Planck
(see two of his papers referred to in [2]), which is
directly related to the problem being analyzed. Accord-
ing to this standpoint, irreversible processes proceeding
with the energy change cannot be described by varia-
tional methods. In mechanics, this implies that these
processes cannot be described in the framework of the
so-called principle of least action [2].

The contradiction arising in this consideration is
removed as discussed below. Both original equation (19)
and Lagrangian (20) do not explicitly depend on the
argument t. According to the general theory (see, for
example, [3]), this leads to the integral

(22)

which, as can be easily shown, coincides with inte-
gral (9). In mechanics, with the given least action of
Lagrangian

(23)
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where m = const and U depends only on coordinates,
the quantity H has an additional meaning and corre-
sponds to the energy. Here, H is already not the energy.
It conserves its general meaning as the invariance con-
dition + with respect to the time shift and reflects the
absence of an explicit dependence of the original func-
tional on t. Therefore, when the energy is not con-
served, the principle of least action in its conventional
formulation (23) is actually ill-posed. Nevertheless, as
is shown here, the variational description of irreversible
processes is possible when the condition H = const has
only its basic sense. Evidently, the concept of the
absence of an explicit time dependence for the func-
tional is more general than that of the energy conserva-
tion. It should be kept in mind that the absence of the
explicit dependence of an original equation on an argu-
ment represents the necessary (but not sufficient) con-
dition for this property of the functional, provided that
it exists.
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The effect of dislocations on microcontact spectra
(MCS) was first reported in [1]. In this paper, it was
shown that the MCS for zinc single crystals changed
with an increase in dislocation density revealed by the
method of selective chemical etching. However, this
result should be considered as preliminary. Electron
microscopy data were needed to find out the effect of
dislocation on quasiparticle generation in the vicinity
of the point contact. Only further studies [2–4] employ-
ing transmission electron microscopy established the
qualitatively new level of these experiments.

The goal of this paper is to study the main features
of MCS in zinc single crystals related to the dislocation

network in the system (0001)〈11 0〉  formed in the con-
tact region.

The experimental problem was solved by measuring
the MCS method of single crystal zinc electrodes. The
electrode axis was strictly parallel to the [0001] direc-
tion to prevent the effect of easy dislocation glide in the
basal system at the moment when electrodes were put
into contact. The basis plane (0001) was used as the
ground for the formation of point contacts at 1.5 K. The
method of forming hexagonal dislocation networks and
the MCS measuring technique is described in [2, 5]. It
employs the dependence of the second derivative of the
I–V curves V2(E) on the bias energy at the contact.
Microcontact spectra were obtained as a result of more
than 20 reproducible experiments. The initial structural
state of single-crystalline electrodes was characterized
by the density of basal Nb = 108 m–2 and pyramidal Np =
3 × 106 m–2 dislocations.

The effect of basal dislocations upon the behavior of
V2(E) curves is illustrated in Fig. 1. It is clear that the
formation of the network of basal dislocations results in
a fundamental change in the behavior of V2(E) curves
in comparison to spectra (curve 1) typical of the initial
structural state. The main differences of spectra related
to dislocations are as follows: the anomalies at E > kT,
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E = hν0 (ν0 = 0.36 THz), the shift of the main MCS peak
toward higher energies, and a strong increase of the
background level. All these new features arise along-
side the disappearance of the spectral features charac-
teristic of the initial structural state.

The anomalies at energy E = 1.5 meV arising inde-
pendent of the contact resistance (Fig. 2) are typical of
type-2 spectra in the athermal region. Consequently,
the value E = hν0 is one of the main parameters, char-
acterizing a hexagon in the basal dislocation network
surrounding the point contact. This result demonstrates
that the dislocations form a monochromatic microwave
source. According to data [6], phonons do not penetrate
the region of the dislocation core. Meeting in their path
the dislocation scattering source, electrons and
phonons emitted by the contact and interacting with the
segments of basal dislocations seem to affect their lin-
ear tension. In its turn, the changed linear tension of a
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Fig. 1. Microcontact spectra of zinc single crystal related to
the initial structural state (1) and to the network of basal dis-
locations (2).
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dislocation can affect the reflectivity of quasiparticles
returning to the region of point contact and change the
behavior of V2(E).

The expression for a linear tension per unit disloca-
tion length has the form

(1)

where α is the coefficient characterizing interaction
between dislocations, G is the shear modulus, and b is
the Burgers vector. The force necessary to bend a dislo-
cation down to radius rk is given by the relation

(2)

If one assumes that Fc is proportional to the force of
dynamic drag, which depends on the vibration rate of
dislocations Vd, the measure of energy dissipation in this
motion can be characterized by the effective viscosity

(3)

The increase in energy supplied to the contact will
probably favor the change of both Fc and the effective
vibration motion velocity of dislocation segments near
the equilibrium state. The available experimental data
allow us to consider the possible mechanisms of energy
dissipation related to the vibrational motion of the basal
dislocation network in the field of microcontact.

We denote the value of V2 at the extremum through
Ud , and the value of E corresponding to it as E0. The
anomalies in the region of starting segments of MCS
arise owing to the network of basal dislocations, and
the change in the potential Ud is completely determined
by the dislocations; hence, Ud is nothing but the dislo-
cation potential. Taking into account the results of [7],
we can write out in the first approximation the follow-
ing expression for the dislocation potential,

(4)

where n is the density of electrons, m is the electron
mass, Ve is the electron velocity, and i is the current in
the vicinity of the point contact.

Taking into account the experimental value Ud =
10 nV, α = 0.24 [8], i = 6 × 10–3 A, we determine the
coefficient of viscous friction B = 0.65 × 10–12 MPa s.
According to theory [9], the main mechanism of the
dislocation drag in normal metals at low temperatures
is the electron viscosity, which is independent of the
temperature. The value of the electron-induced friction
coefficient calculated in [9] varies in the range B =
10−13–10–11 MPa s, depending on the value of deforma-
tion potential. A satisfactory agreement of experimen-
tal estimates with theoretical results allows us to
assume that the segments of basal dislocations in the
athermal region of the spectrum transfer the energy to
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the various excitation branches of crystal lattice owing
to the electron drag mechanism.

Thus, the main features determining the MCS
behavior are related to the changes in the dislocation
potential. These changes are caused by the interaction
of dislocations with quasiparticles emitted by the point
contact. The basal dislocations, which can be present as
high-frequency wave packets in the teraherz frequency
range, are the main source of quasiparticle drag. The
results of this paper suggest that the dislocations exhibit
soliton properties probably stemming from the features
of atomic interactions in the dislocation core. The dis-
location energy E = hν0 in the initial part of the spec-
trum is independent of temperature (Fig. 2); hence, the
dislocation can participate in the vibrational motion at
T  0. The latter fact suggests the possibility of
undamped soliton-like vibrations existing in a vibra-
tional system formed by the hexagonal network of
basal dislocations and the microcontact.

REFERENCES

1. A. G. Batrak, F. F. Lavren’ev, V. N. Nikiforenko, and
I. K. Yanson, Fiz. Nizk. Temp. 6, 1146 (1980) [Sov. J.
Low Temp. Phys. 6, 556 (1980)].

2. V. N. Nikiforenko and F. F. Lavrent’ev, Izv. Vyssh.
Uchebn. Zaved. Fiz., No. 12, 65 (1989).

3. V. N. Nikiforenko, Fiz. Nizk. Temp. 18, 1198 (1992)
[Sov. J. Low Temp. Phys. 18, 963 (1992)].

4. V. N. Nikiforenko, Inzh.-Fiz. Zh., No. 1, 23 (1997).
5. F. F. Lavrent’ev, V. N. Nikiforenko, and I. V. Tret’yak,

Dokl. Akad. Nauk SSSR 291, 599 (1986) [Sov. Phys.–
Dokl. 31, 915 (1986)].

6. I. M. Dubrovskiœ and A. S. Kovalev, Fiz. Nizk. Temp. 2,
1483 (1976) [Sov. J. Low Temp. Phys. 2, 726 (1976)].

7. E. E. Vdovin and A. Yu. Kasumov, Fiz. Tverd. Tela (Len-
ingrad) 30, 311 (1988) [Sov. Phys. Solid State 30, 180
(1988)].

8. F. F. Lavrent’ev, O. P. Salita, and P. D. Shutyaev, Fiz.
Met. Metalloved. 48, 1025 (1979).

9. M. I. Kaganov, V. Ya. Kravchenko, and V. D. Natsik,
Usp. Fiz. Nauk 111, 655 (1973) [Sov. Phys. Usp. 16, 878
(1973)].

Translated by T. Galkina

0 4 8 12 16 Rc

E0

E, meV

2

Fig. 2. Energy E versus the contact resistance Rc for the ini-
tial part of MCS.
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The necessity of developing self-consistent models
for the motion of charged-particle flows in external
electromagnetic fields is caused by practical problems
of beam and electron-ring formation and transport.
Employing the equations of an envelope is one of meth-
ods for taking into account the effect of the self-field on
the beam transverse dynamics. These equations are
known for rectilinear and circular beams of charged
particles [1–3]. In the present paper, a method for con-
structing equations of the envelope for a curvilinear
charged-particle beam propagating in a nonuniform
magnetic field is proposed. A specific example for the
occurrence of such a configuration is provided by the
electron-beam injection at a certain angle to the geo-
magnetic field. Such a statement of the problem is of
practical significance in the context of employing the
electron beam for studying the ionosphere [4].

An analytical solution to the problem of construct-
ing a self-consistent model for a curvilinear charged-
particle beam can be found for a pencil beam, when the
ratios of the beam transverse size to both the radius of
curvature and the radius of torsion are small quantities.
In this case, there exists an approximate solution to the
Euler equation for charged-particle gas in an external
magnetic field, which happens to be correct to first-
order terms with respect to the specified small parame-
ter. Here, we imply self-similar solutions to gas-
dynamic equations related to the class of gas motions
for charged-particles, velocities of which are propor-
tional to the distance to the center of symmetry [5].

Particle motion at the beam axis depends solely on
an external field. Therefore, the position of the beam
axis is determined by the trajectory Y(s) of the axial
particle, where s is the trajectory length measured from
the beam injection point. Substituting the expression
for the velocity, v = ut, into the equation of particle
motion in an external magnetic field, we obtain the cur-

Central Physics Engineering Institute,
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1028-3358/00/4507- $20.00 © 20308
vature of the trajectory Y(s):

Here, 

and t, n, and b are the vectors of the Frénet trihedron
associated with the curve Y(s).

For weak-current charged-particle beams (i.e., when
the beam current is substantially lower than the ulti-
mate Alfven current), only the lengthwise motion of
particles is relativistic. In this case, the Euler equation
for charged-particle gas in an external magnetic field is
of the form [6]

(1)

Here, e and m are the charge and mass of a particle,
respectively; p is the gas pressure determined by the
beam emittance; and E, B are the beam electromagnetic
self-field strengths.

The beam transverse dynamics is conveniently con-
sidered in the curvilinear coordinate system q1, q2,
and s:

We represent the beam gas-dynamic velocity in the
form

and find from (1) the following equation for the

k1
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function U:

(2)

where σ = 1 – k1q1 and k2 is the torsion of the curve Y(s).
It is easy to verify that only second-order terms

remain after substitution of the function U = u(σ + 1/σ)/2
into equation (2). Thus, being accurate to terms of the
first order of smallness, a possible steady-state solution
to equation (2) has the form U = u, where u is the par-
ticle velocity at the beam axis. Writing out the external
field in the vicinity of the beam axis as Bext = B0 + B1
and ignoring the second-order terms, we find from
equation (1) the following equations for the function Vi:

(3)

(4)

Here,

and the terms Fn and Fb are determined by the self-field
and emittance of the beam, respectively.

The beam self-field can be approximated by the
electromagnetic field of the uniform beam with an
elliptic cross section,

(5)

In this equation, I is the beam current; a and b are the
semiaxes of the beam cross section; H(x) is the Heavi-
side step-function; ξ = x1/a; and η = x2/b. Here, a new
system of transverse coordinates x1 , x2 associated with
the axes of symmetry for the beam cross section is
employed. It is worth noting that expression (5) satis-
fies the continuity equation if the first-order terms are
ignored. As in the case of a circular beam [3], correc-
tions to the beam self-field with allowance for the beam
curvature and nonuniformity of particle density have
the second order of smallness. As a result, in the coor-
dinate system related to the symmetry axes of the beam
cross section, the functions F1 and F2 have the form [7]:
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Here, the following notation is used: g = E/u, h =
4Ic2/IAu2γ2, E and IA = γumc2/e0 being the beam emit-
tance and the Alfven current, respectively.

Since the orientation of the beam cross section var-
ies as the beam propagates, the axes of the coordinate
system x1, x2 will be turned through an angle ψ with
respect to the unit vectors n, b:

Correspondingly, Vi should be represented in terms of
the components Λi of the gas velocity in the new coor-
dinate system:

Here, Ω = u  is the angular velocity for the rotation of
the beam as a whole with respect to the Frénet trihe-
dron. Hereafter, for brevity, differentiation with respect
to s is symbolized by a dot.

If the variable τ = t – s/u is introduced instead of t,
the derivative with respect to τ disappears from equa-
tions (3) and (4). Therefore, the τ-dependence of the
beam characteristics has a parametric nature and is
determined by the initial conditions for the injection of
the beam with the cross section under consideration. As
a result, from equations (3) and (4), we obtain the fol-
lowing equations for the functions Λi:

(6)

(7)

where

and

An internal transverse gas motion of the rotational
type can arise along with variation of the beam sizes in
the x1,x2-coordinate system while propagating the
beam in an external field. Therefore, one should pro-
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ceed from the following expressions for Λi in terms of
the previously introduced self-similar variables ξ, η:

(8)

Here, κ(s) is a function characterizing internal dis-
placements of the charged-particle gas with elliptic
streamlines.

Substitution of expressions (8) into equations (6)
and (7) makes it possible to receive a system of ordi-
nary differential equations for the functions a, b, ψ, and
κ. In particular, for a beam in a slightly nonuniform
magnetic field, under condition of applicability for the
drift approximation, the equations for the envelope are
of the form

(9)

(10)

(11)

(12)

where µ = (k3 – ) – κ2.
Equations (9)–(12) can be slightly simplified for a

beam in a uniform magnetic field when the beam axis
is a helical line. In this case, the curvature and torsion
of the beam axial line are s-independent:

Here, k = –eBext/mcuγ, and α is the angle between the
direction of the magnetic field and that of the beam
injection. For a helical beam, we can find from equation
(11) a relation between the rotation of the beam as a
whole with respect to the Frénet trihedron and the inter-
nal charged-particle gas motion:
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b
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----.+
Terms caused by the external-field gradient are
absent in equations (9)–(12) since their contribution is
of the second order of smallness. Indeed, from the con-
dition of applicability for the drift approximation
|∇ Bext|/k1Bext ~ ε, it follows that

where r is the characteristic beam transverse size. For a
nonuniform magnetic field of the focusing type, the
terms indicated appear in equations for the envelope.
For example, the magnetic field in a double-threaded
stellatron can be represented in the form [8]

where ρ = k1q1, ζ = k1q2, β = nk1s; n is an integer; and
Ci are constants. In this case, employing the proposed
method allows us to find equations for the envelope of
a corrugated circular beam.
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In the last two-three decades, the thermodynamic
calculations of phase diagrams for both binary and
multicomponent systems have been in general use (see,
e.g., [1–3]). For most systems, a thermodynamic
description of virtual phase transitions for pure compo-
nents entering a system is necessary for performing
these calculations. Thus, e.g., for calculating the Ni–Cr
phase diagram, it is necessary to know the enthalpies
and entropies of phase transitions for Ni and Cr both in
the case of the actual phase transitions [fcc  liquid
melt (L) for Ni and bcc  L for Cr] and virtual phase
transitions of metastable phases of pure Ni (bcc phase)
and Cr (fcc phase) to the liquid phase.

Studies on the relative stability of various phases for
pure components have a rather long history. Trawton,
and then Nernst and other researchers (see [4]),
assumed the entropy of evaporation to be constant
under atmospheric pressure for thermodynamically
similar substances. Later on, this hypothesis was gener-
alized by Krompton [4], who assumed the melting
entropy jumps to be equal for all chemical elements
with similar crystal structures (the “generalized Traw-
ton rule”) [5]. Later, Kaufman [5] calculated the differ-
ences in enthalpy and entropy between hcp and bcc
phases, as well as between hcp and fcc phases of tran-
sition metals, as the functions on the number of the
group in the Mendeleev periodic table of elements.
They suggested that the elements of the same group in
the periodic table have similar values for the phase tran-
sition entropy if the transition occurs between phases of
the same type. In particular, the entropy of melting for
bcc phases of elemental Zr, Hf, Nb, Ta, Mo, and W has
the same value of 2 cal/(g atom K). Comparison of these
values with recent thermodynamic experimental data [6]
shows that both the generalized Trawton rule and the
assumptions of [5] do not agree well with experiment.

Baœkov Institute of Metallurgy and Materials Science, 
Russian Academy of Sciences, Leninskiœ pr. 49, 
Moscow, 117334 Russia
1028-3358/00/4507- $20.00 © 0311
In [7], plots of the melting entropy for bcc, fcc, and hcp
phases of metals as functions of melting temperature
are presented. However, an attempt to graphically
extrapolate experimental data on the entropies of phase
transitions to zero temperature results in a finite value
of the entropy difference between the various phases.
This contradicts the third law of thermodynamics (the
vanishing of the entropy at zero temperature).

The goal of this paper is using physical models for
phases to construct the dependence of melting entro-
pies on the phase-transition temperature for both bcc
and fcc phases of most chemical elements of the peri-
odic table, which could be free of the contradictions
mentioned above.

The temperature dependence of the Gibbs free
energy for any phase of a pure component can be
described by the following formula (see, e.g., [8]):

(1)

where H(0) is the enthalpy at 0 K; S(T) is the tempera-
ture dependence for the entropy. Then, the difference in
the Gibbs free energies between α- and β-phases of the
component as a function of T has the form

(2)
Since, at the temperature of the phase transitions

α  β, the Gibbs free energies for α- and β-phases
are equal, we find from (2)

(3)

i.e., the difference between the enthalpies of α- and
β-phases of the pure component at zero temperature is
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equal to the area bounded by the ∆Sα  β(T) curve at
temperatures ranging from zero to the temperature
α  β-phase transition point Tα  β. Dividing the
integration range in the right-hand side of (2) into two
parts, from zero to Tα  β and Tα  β to T, and then
substituting (3) into (2), we find

(4)

Using the definition of specific heat, relationship (4)
can be presented in the form

(5)

All relationships (1)–(5) are exact. Then, we use con-
ventional models to describe the temperature depen-
dence of the specific heat for the phases under study,
e.g., for the α-phase,

(6)

In (6), the specific heat is considered as a sum of the lat-
tice contribution (with the anharmonism taken into
account) and the electronic contribution (with the

renormalized electron–phonon coupling constant), 
is the temperature-dependent volume coefficient of the

thermal expansion for the α-phase, and (T) is the
temperature-dependent Grüneisen parameter of the
α-phase, which can be written in the form [9]

(7)

where (T)LT is the Grüneisen parameter at low tem-

peratures and  is the Debye temperature for the

α-phase. For solid phases, (T) is described by the
Debye model.

We consider the temperature range in which T >

max( , ). The anharmonism will be described
within the framework of the quasi-harmonic theory;
i.e., we describe the lattice contribution of the specific
heat by the Debye temperature depending on the vol-
ume. The latter, in its turn, depends on temperature as
well {see formulas (67.5) and (67.6) in [10]}. It is well
known that the difference CP – CV at high temperatures
is proportional to the first power in T, and we have
CP − CV ! C [10, p. 226] for each phase. However,
when we analyze the difference between specific heats
of α- and β-phases of the pure component as a function
of temperature, the value of CP – CV at the temperature
of the phase transition can be comparable with the
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entropy jump at this temperature. For example, accord-
ing to the experimental data [6], we have for the
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; for the fcc  bcc phase
transition in Th, this ratio is equal to 2.63. The charac-
teristics considered here are presented in the table for
fcc  bcc and hcp  bcc phase transitions for
19 elements, among which the ratio of the difference of
the specific heats in various phases to the entropy of the
phase transition is on the order of unity for 17 elements.
These facts confirm our previous statement. Thus, to
describe the differences between thermodynamic func-
tions of different phases in a sufficiently wide tempera-
ture range around the phase transition, we should take
into account the difference in the specific heats of the
various phases of the elements themselves. In this case,
the entropy of the 

 

α

 

-phase as function of temperature at
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has the following form:
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Since only nine elements have the fcc  bcc phase
transition (at atmospheric pressure), the sampling for
finding the entropy jump at the fcc  bcc phase tran-
sition is not sufficiently representative. However, the
following approach can be used. We can also take into
consideration two phase transitions bcc  L and
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Parameter of nonlinearity entering into the temperature dependence for the difference in the Gibbs free energy between fcc
(hcp) and bcc phases for pure elements

Element Phase transition Tα  β, K [6] ∆Sα  β(Tα  β),
J/(mol K) [6]

,

J/(mol K) [6]
/∆Sα  β

Am fcc  bcc 1350 4.3422 1.2898 0.297

Be hcp  bcc 1527 4.4853 –1.852 –0.413

Ca fcc  bcc 716 1.2973 –1.2332 –0.951

Ce fcc  bcc 1000 2.9916 –0.1165 0.039

Fe fcc  bcc 1667.5 0.4953 2.1830 4.407

Gd hcp  bcc 1535 2.3959 –1.0745 –0.448

Hf hcp  bcc 2016 2.9069 –6.6207 –2.278

Ho hcp  bcc 1703 2.5084 –4.0963 –1.633

La fcc  bcc 1134 2.7524 4.515 1.640

Mn fcc  bcc 1411 1.3525 3.2561 2.407

Sc hcp  bcc 1608 2.4927 4.1361 1.659

Sr fcc  bcc 820 1.0207 –2.361 –2.313

Tb hcp  bcc 1562 2.8045 –0.3401 –0.1213

Th fcc  bcc 1633.2 2.2034 –5.7949 –2.630

Ti hcp  bcc 1155 3.6104 –5.0272 –1.392

Tl hcp  bcc 507 0.7097 2.0997 2.959

Y hcp  bcc 1752 2.8490 –2.453 –0.861

Yb fcc  bcc 1033 1.693 4.059 2.398

Zr hcp  bcc 1139.45 3.6011 –6.3138 –1.753

CP
α          β [ ] 

T
 

α         β CP
α         β [ ] 

T

 
α          β
fcc  L for pure elements, since the bcc  L phase
transition occurs for 39 elements, and the fcc  L
phase transition is observed for 13 elements. Then, on
the one hand, according to (7), the difference in enthal-
pies at 0 K between fcc and bcc phases is expressed in
the form

(13)

and, on the other hand, it can be expressed as the com-
bination bcc  L and fcc  L phase transition
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Thus, on one hand, the difference of enthalpies at
0 K between fcc and bcc phases of the pure component
can be expressed through the integral of the difference
of entropies for the corresponding phases, which is
defined within the range from zero temperature up to
the fcc  bcc phase transition, whereas the difference
of enthalpies at 0 K between the fcc and bcc phases of
the pure component can be expressed through the dif-
ference of two integrals. The first one is defined
through the entropy difference between the liquid and
fcc phases of the component, and the second integral is
calculated through the difference of entropies between
the liquid and bcc phases of the pure component within
the range from 0 K to the melting temperature for the
bcc phase of this component.

For describing the vibration contribution to the
entropy of the liquid phase for the pure component, we
can use the Einstein model. The anharmonism can be
introduced with the help of the Grüneisen parameter for
a liquid phase, similarly to the quasi-harmonic
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approach for solids. The Grüneisen parameter can be
defined as

In this case, the entropy of the liquid phase for the
component depends on temperature (for the case T >

) and can be presented in the form

(15)

where the temperature dependence of the Einstein tem-
perature has the form

(16)

and  and γL are, respectively, the mean volume coef-
ficient of thermal expansion and the coefficient charac-
terizing the electron specific heat for the liquid phase of
the pure component. In this case, the difference
between the entropies of solid, e.g., α-phase, and the
liquid phase of the pure component as a function of
temperature is written as:

(17)
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Fig. 1. Comparison of the melting entropy jump for pure
components with the fcc structure as a function of melting
temperature [relationship (20)] with the corresponding
experimental data [6].
                     

Thus, according to relationship (17), the tempera-
ture dependence for the difference between the entro-
pies of liquid and solid phases, e.g., of the bcc phase,
also has a linear form, however, with a different free
term and a temperature slope compared to the temper-
ature dependence of the entropy difference between
solid phases. As a rule, the Einstein temperature, the
Grüneisen parameter, and the coefficient of the elec-
tronic specific heat for the liquid phase of pure compo-
nents are unknown. We present dependence (17) for
bcc  L and fcc  L phase transitions only in a
functional form as relationships (18) and (19) with
unknown coefficients, which we determine based on
the experimental data:

(18)

(19)

Using the available reference data on the thermal prop-
erties for all bcc metals undergoing the bcc  L
phase transitions [6], we calculate the coefficients in
dependence (19), employing the χ2 criterion (the gener-
alized least-squares method) [11]. As a result, we get

(20)

The calculated dependence (20) is compared in Fig. 1
with the experimental data for bcc  L phase transi-
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 Comparison of the calculating melting-entropy jump
for pure components with bcc structure as a function of
melting temperature [relationship (21)] and the relevant
experimental data [6].
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tions in 13 pure elements. Using a similar procedure,
we processed the experimental data on fcc  L phase
transitions in all 39 elements [6]. The results are pre-
sented in the form of the following relationship,

(21)

and are compared with the experimental data in Fig. 2.
The accuracy of relationships (20) and (21) can be ver-
ified by comparing the calculated difference of the
entropies for phase transitions between bcc and fcc
phases as a function of the bcc  fcc phase-transition
temperature of the elements,

(22)

with the corresponding experimental data.
Substituting the derived relationships (20) and (21)

into (22), we obtain

(23)

In Fig. 3, the results of calculation based on (23) are
compared with the experimental data of [6] for the
fcc  bcc phase transition in pure elements Ca, Ce,
La, Mn, Sr, Th, and Yb. The phase transition in Fe is not
included since the bcc  fcc transition here occurs
twice due to the effect of ferromagnetism on the bcc
phase. Figure 3 demonstrates satisfactory agreement of
the experimental data with a fit made according to (23).
When the temperature tends to zero, the entropy differ-
ence between the solid phases below the Debye temper-
ature also tends to zero as

(24)

where θav = (θbcc + θfcc)/2 is the mean Debye tempera-
ture and ∆θ = (θfcc – θbcc)/2. Therefore, in the first
approximation the temperature dependence of the
entropy difference between the bcc and fcc phases can
be written as

(25)

i.e., within the temperature range from zero up to the

mean Debye temperature, this difference ∆Sfcc  bcc(T)
is approximately taken to be zero [see (24)], and above
θav, it is taken in the form of a linear dependence
according to relationship (12). It follows from (23) and
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(25) that the ratio afcc  bcc/bfcc  bcc = θav. Thus, as it

follows from (25), ∆Sfcc  bcc(T) = 0 at T = θav. Using
the values of coefficients in (23), we find that θav =
375.8 K. Relationships (14), (20), and (21) obtained in
this paper allow us, in particular, to evaluate the melting
entropy for the metastable bcc phase of Ni [it equals
5.032 J/(mol K)] and the energy difference at 0 K
between the fcc and bcc phases of Ni (3200 J/mol), if

we take into account that, according to [6],  =
1318 K. These results agree well with ab initio calcula-

tions [12], according to which ∆ (0 ä) =
3 kJ/mol, and also with the value of 3536 J/mol
reported in [6] without details of the estimation
method.
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1. The essence of the problem. Thin electric
dipoles have been widely applied both as antennas in
their own right and as components of complex antenna
systems. As a rule, the design of a thin electric dipole is
based on solving an integral equation describing the
current distribution in the dipole. By now, the Pockling-
ton and Harrington integrodifferential equations and
also the Hullen integral equation are known [1–4]. The
kernels of these equations are of the Fredholm type, and
the form of these kernels stems from using the integral
relations for the vector electrodynamic potential. The
kernel in the formula for the latter is the Green’s func-
tion for an inhomogeneous Helmholtz equation written
in a spherical coordinate system. Most often, integral
equations are solved by the method of moments [1–3].
In essence, this method reduces to transforming of the
aforementioned equations into a system of linear alge-
braic equations for N unknowns. Typically, the latter
are the coefficients in the expansion for current in a cer-
tain appropriate system of basis functions. Depending
on the choice of the basis and weighting functions,
there exists a fairly great diversity of specific imple-
mentations for the integral-equation method: the Galer-
kin method, sewing at discrete points, matching the
responses, etc. In our opinion, the main drawback of
such an approach consists in the fact that the aforemen-
tioned integral equations with the Fredholm kernel
belong to the integral equations of the first kind; finding
a solution to these equations is an ill-posed problem
[5]. As a result, the question of how to check whether
the solution is proper and establish its adequacy to the
physical problem under consideration remains open.

2. Integral equation of the first kind. In this paper,
we consider an approach to the analysis of a thin elec-
tric dipole. This approach is unconventional from the
standpoint of antenna-related problems (Fig. 1). The
first special feature consists in rejecting the use of vec-
tor electrodynamic potentials. Consideration is directly
based on the use of Maxwell equations written out in a
cylindrical coordinate system which makes it possible

Near-Volga Institute of Computer Science, Radio 
Engineering, and Communications, 
ul. Tolstogo 23, Samara, 443010 Russia
1028-3358/00/4507- $20.00 © 20317
to obtain an integral equation. In contrast, the use of
vector potentials results in integrodifferential equations
(the Pocklington and Harrington equations). The sec-
ond feature is related to using the mathematical tools of
the theory of singular integral equations. These tools
were developed for strip–slot structures for microwave
and extremely high frequencies [6, 7].

We consider a thin conductor with a length of 2l and
a radius of a, which is excited by a high-frequency gen-
erator at the discontinuity point l0 (Fig. 1). In deriving
a system of algebraic equations, we use the generally
accepted model of a thin dipole (a ! l, λ) [1–4].
According to this model, the electric-current density
along with the equivalent magnetic-current density in
the gap are replaced by the longitudinal electric-current
density ηz(z) at the surface of a cylinder with a radius a.
This current is considered to be continuous in the gap

z

l

l0 + b
l0

l0 – b

– l

2a

Fig. 1. Schematic representation of an electric dipole.
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region and vanishes at the dipole ends. The ends’ cur-
rents are not taken into account. The electric-field vec-
tor component Ez generated by the current line vanishes
at the cylinder surface ρ = a(z ∈  [–l, l]) everywhere
except for the gap region 2b, where it is made equal to
the extraneous field Eext(z).

In the context of the adopted physical model, the
Maxwell equations and the boundary conditions at the
dipole surface were used to derive the integral equation
of the first kind

(1)

where

(2)

for the unknown function  = . In formulas (1)

and (2), we introduce the following notation: (x)

and (x) are the Hankel functions of the second kind
of the zero and first orders, respectively; γ2 = k2ε0εµ; k =
ω/c is the wave number; ε and µ are the relative permit-
tivity and permeability, respectively; and ε0 is the per-
mittivity of free space.

3. Singular integral equation. We now find the
asymptotic behavior of the function g(h) for |h|  ∞.
In view of the properties of the Hankel functions of
imaginary argument and the known relation [8]

(3)

where

it is easy to verify that

(4)

Thus, the kernel G(z', z) in integral equation (1) con-
tains implicitly a singularity of the Cauchy type; there-
fore, equation (1) is singular.

We now isolate the singularity in equation (1). To
this end, we add and subtract the term eih(z' – z) in
integral expression (2) for the kernel G(z', z). On per-
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forming simple transformations, we obtain the follow-
ing singular integral equation:

(5)

Here,

(6)

Formula (5) represents a singular integral equation
of the first kind. It can be used to determine the
unknown current density ηz and has no analogues in
available publications. Solving the singular integral
equation of the first kind relates to the class of well-
posed problems [9] (in contrast to the Fredholm inte-
gral equations of the first kind). The integrand in the
kernel K(z', z) tends to zero ∆g(h)  0 as |h|  ∞.

4. Solution of singular integral equation. Numer-
ical results. In the course of numerical simulation, we
considered a symmetric dipole with l0 = 0. While solv-
ing the system of singular integral equations (5), we
performed a passage to the new variables u and v as
z = lu and 

 

z

 

' = 

 

l

 

v

 

 and transformed kernel (6) to the form
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 in the form given by (7), we
used the known expansions in series of an exponential
in terms of the Chebyshev polynomials [10]
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. As can be
easily seen, the result of this operation is that kernel (7)
of singular integral equation (5) becomes degenerate.
Searching for a solution to a singular integral equa-
tion with a degenerate kernel presents no special
problems [9].
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The method suggested was used to calculate the sur-
face current density for various dipole lengths l. Figures 2
and 3 show the representative plots of distributions for
the real [Re(η z)] and imaginary [Im(η z)] components
of the surface current. The calculation results were in
good agreement with the data reported in [4]. Studies of
the intrinsic convergence of numerical results showed
that the method features rather rapid convergence and
high exactness. In expansion (7), it is sufficient to
restrict the consideration to N = 10 in order to attain a
relative error of less than 1%.

5. Thus, the suggested approach based on abandon-
ing the conventional use of the vector electrodynamic
potentials and on using the tools of the theory of singu-
lar integral equations made it possible to approach in
the mathematically correct form the analysis of a thin
electric dipole. The obtained singular integral equation
for determining the unknown current density in the
dipole has no analogues in scientific literature. It is not
difficult to generalize the suggested approach to the
case of coupled vibrators in free space as well as to the
case of vibrators above the conducting surfaces.
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As was shown in [1–4], biological tissue in its
excited state features not only capacitance, but sizable
inductance as well.

The goal of the present study is to elucidate the role
of the inductance in simulating an equivalent electric
generator for the heart in its norm and to solve a direct
diagnostic problem under these conditions.

The current-dipole model is traditionally used as an
electric model for myocardium excitation. Therefore,
we consider the operation of a heart equivalent dipole
electric generator (HEDEG) during an electric systole.
The heart is considered to have the resistance R, the
inductance L, and the capacitance C. Variations in pro-
jections of a heart integral electric vector (IEV) (i.e.,
the dipole moment of the electric-current dipole) onto
certain planes are routinely studied in heart diagnostics
[5]. Therefore, three mutually perpendicular circuits
located in the frontal, horizontal, and sagittal planes are
considered as a model for the HEDEG (see Fig. 1).
Electric-current sources with the electromotive force E
are identical for all the circuits. The variation of the cur-
rents for these sources accounts for pacemaker opera-
tion. For ventricles, the atrioventricular node is the
immediate pacemaker.

We now analyze the operation of a particular circuit.
To simplify the notation, indices at the electric charac-
teristics are omitted. The Kirchhoff equation for instan-
taneous values of the voltage in a circuit has the form

(1)

Here, on the left-hand side of the equation, there is the
sum of voltages across the corresponding resistances.
Employing the well-known relations between these

UR UL UC+ + E.=
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voltages and the electric current i, we find

(2)

The active resistance of myocardium is determined
primarily by the resistance of cytoplasm and intercellu-
lar liquid. Therefore, it can be considered to be a con-
stant in the course of a cardiac cycle. The inductance of
the excitable membrane exists only during the time of
its excitation and is associated with the spiral motion of
ions along ionic channels [4]. Therefore, it is difficult to
assume that the active-regulation mechanism for the
inductance could be formed evolutionary. The heart
inductance is considered to be constant as well.

After a simple transformation of (2), we have

(3)

where ω0 = 1/(LC)1/2 is the natural frequency of the cur-
rent oscillations in the HEDEG.
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Fig. 1. Electric model for the heart equivalent electric dipole
generator.
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Equation (3) describes parametric oscillations of an
oscillator [6], since the natural frequency of the heart
oscillations can vary with changing its capacitance C.

We seek the solution to equation (3) by multiplying
it by a function f(t), which must obey the condition [7]

(4)

We introduce a new variable according to the for-
mula

(5)

The function f(t) has the dimension of the reciprocal
cyclic frequency. Therefore, we denote it by f(t) = 1/ωd.

We multiply equation (3) by the value of the dis-
tance between the source and the sink of the HEDEG
and rewrite it in the new notation:

(6)

Here, D = il is the dipole moment of the integral electric
vector. The function θ, in accordance with (5), is the
rotation angle for the HEDEG vector rotating with the
cyclic frequency ωd.

In line with (4) and taking into consideration that R
and L are constants, we have the following form for the
time dependence of ωd:

(7)

where  is the cyclic rotation frequency for the
HEDEG vector at the time moment t0 . Dependence (7)
is supported by the observation that the ratio of the ven-
tricle polarization and depolarization cycles falls
between 1.3 and 2.7 [5]. This indicates a decrease of the
angular velocity for the HEDEG-vector rotation.

The time dependence for the vector-rotation angle
can be found from the formula

(8)

Here, Q0 = L/R is the equivalent-circuit Q-factor at
the time moment t0 and ϕ is the angle at which the prin-
cipal axis of the QRS loop (electric axis of the heart;
see, below, Fig. 3) is directed.

According to [5], the drop in the potential of the
pacemaker (consisting of atypical myocardial fibers)

and, consequently, in  within the Q–T interval fol-

lows the exponential law. Therefore, we can assume the
left-hand side of (6) to be nearly constant. We denote it
by C1 and also take into account that dθ = ωddt.
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Furthermore, it is natural to assume that in the
course of evolution, myocardium electric parameters
had been developed in such a manner that the natural
frequency ω0 became equal to the rotation frequency ωd
for the dipole-moment vector D of the HEDEG. Then,
equation (6) takes the form

(9)d2D

dθ2
---------- D+ C1.=

2
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Fig. 2. Analysis of QRST-complex formation in the electro-
cardiogram. (1) Dipole moment of the heart integral electric
vector D; (2) the potential U in the model electrocardio-
gram; (3) cosθ.
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Fig. 3. Vector-electrocardiogram for the QRST complex
constructed in polar coordinates D(θ). EA is the electric
axis.
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The solution to this equation yields the dependence
of the dipole-moment vector D on the rotation angle
and time. This solution can be conveniently expressed
in the form

(10)

where A and B are integration constants, so that C1 =
(A + B)/2.

A linear electrocardiogram can be constructed from
the formula

(11)

where R and T are the amplitudes of electrocardiogram
spikes and k is a constant.
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Fig. 4. Diagram for determining the Q-factor (Q0) of the
heart dipole equivalent electric generator in the course of
ventricle depolarization according to the parameters of the
patient electrocardiogram.
The time dependences for the dipole moment D,
cosθ, and the linear electrocardiogram constructed
from formulas (8), (10), and (11) for R = 1.5 mV, T =
0.5 mV, Q0 = 4.4, and R/L = 9 s–1 are shown in Fig. 2.
ϕ = 0 was also taken (i.e., the heart electric axis coin-
cides with the abduction line, which is the most typical
for the norm of second standard abduction). As is seen
from the curves, positive values of R and T for the
spikes are determined by the identical signs of D and
cosθ, whereas their different signs correspond to the
negative values of Q and S for the spikes. The parame-
ters were fitted in such a way that the electrocardiogram
corresponds to the norm. Since for t = t0, θ = –ϕ in
accordance with (8), we have from (11) that U = R.
Consequently, t0 is the time for which the maximum R
of the spike is attained.

Figure 3 shows the projection of the QRS and T
loops onto a certain plane constructed for B = 2.0 ×

10−5 A m [5], A =  = 0.67 × 10–5 A m, and ϕ =

−2.3 rad (B and A are the principal axes of the loops).

Determining electrocardiogram interval characteris-
tics independent of the angle ϕ of the heart electric axis
is of interest. As our analysis has shown, there are two
such characteristics, namely, the duration QRS∆tQRS of
the QRS-complex and duration ∆tQT of an electric
systole.

Equalizing D in (10) [or the bracketed expression
in (11)] to zero and separately finding the initial and
final instants for the QRS complex, we obtain after cer-
tain transformations

(12)
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The ratio ∆tQT/∆tQRS is independent of the value of
L/R and, as was already mentioned, of the direction of
the heart electric axis. Thus, the ratio R/T of the inter-
vals and amplitudes of the corresponding spikes, which
are easily measured according to an electrocardiogram,
allows one to find the value of the electric Q-factor for
a heart at the maximum of the R spike.

In Fig. 4, the plots for ∆tQT/∆tQRS versus the ratio R/T
for the amplitudes of the corresponding spikes are
shown for various values of Q0 . In the norm, the Q-fac-
tor varies within the range from 3.9 to 4.4.

Clinical experience shows that, frequently, a patho-
logical process that has gone too far is not reflected in
the monitored parameters of an electrocardiogram,
whereas the value of the heart Q-factor can change in
this case, because it is a cumulative parameter depend-
ing on basic heart characteristics: capacitance, induc-
tance, and resistance. Therefore, by monitoring the ten-
dency of the variation in the heart Q-factor with time
and detecting, e.g., its decline based on Fig. 4, we can
infer the development of a pathological process, even
though the other parameters of the electrocardiogram
remain within the normal range.

The ratio R/L can also be estimated from the corre-
sponding electrocardiogram. Both the terminal Q and
initial S points of the spike (see Fig. 2) correspond to
cosθ = 0. Therefore, between these points of the elec-
trocardiogram, the turning angle of the integral electric
vector is equal to π. Consequently,  = π/∆tR, whereωt0
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∆tR is the time separation between the points indicated,
which is measured in the electrocardiogram. Taking
into account the relation Q0 = L/R, we find that

R/L = π/(∆tRQ0). The value Q0 of the Q-factor can be
found from the plot in Fig. 4 or, to be more precise, can
be calculated from the ratio ∆tQT/∆tQRS on the basis of
formulas (12) and (13).

We can consider the circular frequencies for the
three mutually perpendicular circuits as vectors
directed perpendicular to these circuits (Fig. 1), which
vary in the course of a cardiac cycle. If we add up these
vectors in space, then a three-dimensional analysis for
heart electric genesis can be performed employing a
position of the spatial oscillation circuit, which varies
in the course of an electric systole.

ωt0
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It is well known that aluminum alloys exhibit very
high values of relative extension in the course of their
superplastic deformation (SPD) at temperatures close
to those of the solidus [1, 2]. In available publications,
we cannot find a consistent explanation for the mechan-
ical behavior of aluminum alloys at premelting temper-
atures. This is associated with the fact that there are
only a few studies of the mechanism concerning “sub-
solidus” superplasticity.

The goal of this paper is to investigate the phenom-
enology and mechanisms of subsolidus superplasticity
in the 5083 alloy with a modified chemical composition
(Al–4.7%Mg–1.6%Mn–0.2%Zr).

A uniform microstructure with a grain mean size of
6.2 µm was formed by a special thermomechanical pro-
cessing of this alloy. An elevated specific volume of
secondary phases Al6Mn, Al3Cr, and Al3Zn, whose size
was ranged from 20 nm to 0.3 µm, provided a high sta-
bility of the microstructure at subsolidus temperatures.

The study of mechanical behavior of the 5083 alloy
in the temperature range 500–580°C shows that the
SPD optimum-rate range extends toward lower defor-
mation rates almost by two orders of magnitude
(Figs. 1 and 2) at subsolidus temperatures. For exam-
ple, the SPD optimum range is located within 1.6 ×
10−3–4 × 10–2 s–1 at 550°C and within 2.8 × 10–5–1.6 ×
10–2 s–1 at 570°C. The highest value (1150%) of relative
extension is attained at T = 570°C and at a deformation
rate of 2.8 × 10–3 s–1. The coefficient m of the rate sen-
sitivity increases up to 0.61.

Such unusual mechanical behavior of the 5083 alloy
is caused by the absence of threshold stresses at sub-
solidus temperatures. Figure 3 shows the dependence
of threshold stresses on deformation temperature. The
threshold stresses were found by the graphical method
proposed in [3]. In the temperature range 500–550°C,
the values of threshold stresses clearly decrease almost
linearly with the increase in the deformation tempera-
ture. At T = 570°C, the threshold stresses vanish. For
SPD, the values of threshold stresses are specified by a
binding force between the grain-boundary dislocations

Institute of Problems of Metal Superplasticity, 
Russian Academy of Sciences, ul. Khalturina 39, 
Ufa, Bashkortostan, 450001 Russia
28-3358/00/4507- $20.00 © 0324
and by the doping-element atoms [4]. Therefore, we
can assume that an increase in temperature from 550 to
570°C leads to expelling the grain-boundary disloca-
tions from the doping-atom atmospheres. The disloca-
tion acquires the ability to move at arbitrary applied
stresses. This fact results in the threshold stresses, the
disappearance of which is the cause of the SPD opti-
mum rate range spreading toward low deformation
rates.

The values of true activation energy Qc of deforma-
tion are presented in Table 1. The analysis of obtained
results show that the Qc value increases with the SPD
temperature. Within the temperature range T = 500–
525°C, the Qc value is close to the activation energy of
the grain-boundary diffusion in aluminum (84 kJ/mol).
In the temperature region T = 525–570°C, the Qc values
rise linearly with a decrease in the applied stresses and
become close to the activation energy (142 kJ/mol) of

101

10– 3

Stress, MPa

100

10–1
10–5 10–4 10– 2 10– 1

T = 570°C

T = 550°C

Deformation rate, s– 1

Fig. 1. Yield stress of the 5083 alloy as a function of the
deformation rate.
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diffusion for magnesium atoms in aluminum at T =
550–570°C. Thus, the SPD at subsolidus temperatures
are not controlled by the grain-boundary diffusion, and
its rate is governed by the viscous sliding rate of lattice
dislocations. This statement agrees well with the results
of [5], in which it was shown that, for an AMg4 alloy
with a composition approximately similar to that of the
5083 alloy, the intragrain dislocation sliding provides a
significant contribution to the total strain for subsolidus
temperatures.

A special feature of the subsolidus SPD mechanism
is an intense grain-boundary slip between individual
grains. At T ≤ 550°C, the cooperative grain-boundary
slip of large groups of grains prevails in the slip
observed for the conventional SPD [6, 7]. At 570°C, we
observe the relative rotations of individual grains
(Fig. 4).

An increase in the uniformity of grain-boundary
sliding facilitates the strain accommodation owing to
the intragrain dislocation sliding. This fact leads to a
considerable decrease in pore formation at T ≥ 550°C
(Table 2).

Summing up, we can conclude that a specific sub-
solidus SPD is observed in the 5083 alloy at premelting
temperatures higher than 550°C.

We can indicate three characteristic features of the
subsolidus SPD in the 5083 alloy:

(1) The absence of threshold stresses;

(2) The broadening of the optimum range of SPD up
to the region of lower diffusion rates;

1200

10–2

Extension to failure, %

10–4 10–3 10–1

Deformation rate, s–1

1000

800

600

400

200

0

m = 0.61

m = 0.5

T = 570°C
T = 550°C

Fig. 2. Extension to failure as a function of the deformation
rate for the 5083 alloy.
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(3) The values of the activation energies for the sub-
solidus SPD and for the viscous sliding of dislocations
being close to each other.

This type of superplasticity differs from the conven-
tional SPD by the mechanisms of deformation acting at
both the mesoscopic and microscopic level. The key
feature of the microscopic mechanism underlying the
subsolidus SPD is the detachment of the grain-bound-
ary diffusion from the atmospheres of impurities and,
as a consequence, the acceleration of the grain-bound-

1

0

Stress, MPa

Temperature, °C

2

575550525500

Fig. 3. Threshold stresses in the 5083 alloy as a function of
deformation temperature.

Table 1.  Dependence of the true activation energy Qc for de-
formation of the 5083 alloy on deformation temperature

T, °C 500 525 550 570 580

Qc, kJ/mol 82 114 141 151 186

Table 2.  Porosity of the 5083 alloy after SPD and before
fracture at various temperatures (at a deformation rate equal
to 2.8 × 10–3 s–1)

T, °C Porosity, % Degree of deformation, %

500 1.8/1.5 200

525 2.1/1.7 290

550 6.5/5.0 500

570 3.0/1.8 1150

580 0.5/0.5 280

Note: We indicate the values measured along the deformation axis
in the numerator and those measured across the deformation
axis in the denominator.
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ary sliding. The viscous sliding of lattice dislocations
becomes the slowest deformation process that controls
the subsolidus SPD rate in the 5083 alloy. The special
feature of the subsolidus SPD mesoscopic mechanism
is the transition from the cooperative grain-boundary
sliding to the sliding between the individual grains.
This is the cause of a negligible pore formation in the
process of the subsolidus SPD.

10 µm

Fig. 4. Microstructure of the 5083 alloy after 100% defor-
mation at temperature of 570°C and for the deformation rate
of 2.8 × 10–3 s–1.
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1. We study the interaction of spin waves and elastic
waves in a YBa2Cu3O6 crystal taken in the tetragonal
phase and having an antiferromagnetic long-range
order. In the absence of an external magnetic field, the
ground state of the antiferromagnetic subsystem for the
crystal under consideration is determined by eight com-
pensated magnetic sublattices. Therefore, taking into
account the crystal structure of the compound, we can
consider a magnetic cluster to be composed of two
physically equivalent subclusters, each being formed
by four sublattices.

We start from the Hamiltonian involving the ener-
gies HM and HU of the magnetic and elastic subsystems,
respectively, as well as of their interaction (HMU):

(1)

(1.1)

(1.2)

(1.3)

Here,  and  are the tensors of the homoge-
neous and inhomogeneous exchange interactions,

respectively;  is the anisotropy tensor; Λijmn is the

elasticity tensor;  is the magnetostriction tensor;

H HM HU HMU,+ +=

HM
1
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umn is the deformation tensor; Mα is the lattice magne-
tization; α, β = 1, …, 8; and i, j, m, n = x, y, z.

Experiments on inelastic neutron scattering yield the
following values for the constants of the intraplane and
interplane exchange interactions: I = (120 ± 20) meV
and σ' = 8 meV, respectively. In addition, σ'' = (0.04 ±
0.01) meV [1, 2].

2. We write out Hamiltonian (1) in the secondary-
quantization representation and consider the magnetic
subsystem. The sublattice magnetizations Mα can be
expressed in terms of the Holstein–Primakoff opera-
tors as

(2)

where  is the equilibrium magnetization of the αth
sublattice; µ = gµB (g is the Landé factor), and µB =
e"/(2mec) is the Bohr magneton.

Substituting (2) into (1.1) and passing to the Fourier
representation for operators, we obtain

(3)

Let the external magnetic homogeneous field H0 be
directed along the second-order axis OZ. In the absence
of the field, magnetic moments are aligned within the

Mα M0 µaα
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α µM0 e⊥
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XOY basis plane of the tetragonal elementary cell. In
the fields H0 < Hδ applied, all the moments turn through
the angle of π/2 – θα, with cosθα = H0/Hδ. When H0 =
Hδ, the sublattices collapse.

Using the canonical Bogolyubov u,v transforma-
tion, we can rewrite Hamiltonian (3) in terms of the

magnon operators ckγ = , γ = 1, …, 8. The diagonal-
ized operator has the standard form

(4)

where  is the spin-wave spectrum,

Dγ are expressed in a similar manner in terms of the
B-matrix components.

3. We now consider the elastic subsystem. The elas-
tic-displacement vector for atoms can be represented in
the form [3]

(5)

where  and bks are, respectively, the creation and
destruction operators for phonons having the momen-
tum k and polarization s = (l, t1, t2), with l and t1 , t2
being the longitudinal and transverse polarizations,

respectively;  and  are the energy and the unit
polarization vector for phonons, respectively.

Then, substituting (5) into (1.2), we obtain

(6)

Similarly, taking into account (2) and (5), we can
rewrite Hamiltonian (1.3) in the form

(7)

Applying the Bogolyubov u,v-transformation to the
Hamiltonian (7), we arrive at the conclusion that,
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within the approximation used, only two spin-wave
branches do interact with sound waves,

(8)

with the magnetoelastic-interaction parameter being
given in the form

.

The magnetostriction constants have the form

We now find the spectrum of the coupled magne-
toelastic waves.

In order to diagonalize total Hamiltonian (4), (6)–(8),
we apply the Bogolyubov u,v-transformation. This
provides the following dispersion equation that governs
the spectrum E of coupled magnetoelastic vibrations:
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The spectrum of coupled magnetoelastic waves in
the vicinity of the corresponding resonances exhibits
the form

The interaction between the magnetic and elastic sub-
systems affects the spectrum of those branches that
have the nonzero coupling coefficient.

4. We assume that the phonon-polarization unit vec-
tors el, ,  represent the right-hand triplet. Next, we
consider the parameters of the magnetoelastic interac-
tion for various directions of the coupled-wave propa-
gation. Here, the zero-coupling (within our approxima-
tion) parameters are omitted.

(i) k || Z0 ,

The coupling of the second spin branch with the first
transverse-phonon branch is enhanced by a factor of I1/2

owing to the existence of the exchange interaction. This
effect has been observed for the first time in [4], while
studying a two-sublattice single-axis antiferromagnetic
substance (see also [5, 6]).

(ii) k || Y0 ,

Ekγ,  ks 
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Here, the exchange amplification affects the coefficient
of the first spin-branch coupling with the second trans-
verse phonon branch.

(iii) k || X0 ,

In this case, the exchange enhances the coupling of the
first and the second spin branches with the t1 and t2
transverse phonon branches, respectively.

Thus, in the crystal under study, which is taken in
the phase featuring the antiferromagnetic long-range
order, there exist new quasi-particles, i.e., strongly cou-
pled phonons and magnons. The enhanced coupling of
certain spin and phonon modes is caused by the
exchange interaction between the localized magnetic
moments of the antiferromagnetic sublattices.
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Relations of the ideal-plasticity theory under the
condition of complete plasticity were considered
in [1, 2]. In what follows, statically definable relations
of this theory are examined in the case when all stress
components σij depend on two coordinates x, y. A two-
dimensional strain is the particular case of the relations
under discussion.

We consider the condition of complete plasticity

(1)

where σi are the components of the principal stresses
and κ is the shear yield stress.

With constraints (1), we can write out

(2)

Here, σx, τxy, … are the components of the stress in the
Cartesian coordinate system xyz, n1 = cosϕ1, n2 =
cosϕ2, and n3 = cosϕ3 are the direction cosines defining
the orientation of the third principal stress σ3 in the xyz-
coordinate system.

The following relation holds true:

(3)

It follows from formulas (2) and (3) that

σ1 σ2, σ3 σ1 2κ , κ+ const,= = =

σx σ 2κ
3

------ 2κn1
2, τ xy+– 2κn1n2,= =

σy σ 2κ
3

------– 2κn2
2, τ yz+ 2κn2n3,= =

σz σ 2κ
3

------ 2κn3
2, τ xz+– 2κn1n3,= =

σ 1
3
--- σx σy σz+ +( ).=

n1
2 n2

2 n3
2+ + 1.=

σx σ 2κ
3

------–
τ xyτ xz

τ yz

-------------,+=
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(4)

(5)

According to (2), relation (5) is equivalent to (3) and
can be rewritten in the form

(6)

We put

(7)

From (6) and (7), we obtain

(8)

The case of two-dimensional strain takes place for

(9)

In this case, from (8) and (9), it follows that

(10)

Henceforth, we allow for the upper sign in (8) and
(10), whereas the lower sign is discarded.

We find from (4), (7), and (8) that

 

 

    (11)

σy σ 2κ
3

------–
τ xyτ yz

τ xz

-------------,+=

σz σ 2κ
3

------–
τ xzτ yz

τ xy

-------------,+=

τ xyτ xz

τ yz

-------------
τ xyτ yz

τ xz

-------------
τ xzτ yz

τ xy

-------------+ + 2κ .=

τ xz
2 τ yz

2+( )τ xy
2 2κ τ xzτ yz( )τ xy– τ xzτ yz( )2+ 0.=

τ xz κT ϕ , τ yzcos κT ϕ ,sin= =

τ xz
2 τ yz

2+ κT( )2.=

τ xy κ 1 1 T2–±( ) ϕ ϕ .cossin=

τ xz τ yz T 0.= = =

τ xy κ 1 1±( ) ϕ ϕ .cossin=

σx σ 2κ
3

------ κ 1 1 T2–+( ) ϕ ,cos
2

+–=

σy σ 2κ
3

------– κ 1 1 T2–+( ) ϕ ,sin
2

+=

σz σ 2κ
3

------–
κT2

1 1 T2–+
----------------------------,+=

τ xy κ 1 1 T2–+( ) ϕ ϕ ,cossin=

τ xz κT ϕ ,cos=
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According to (8), the absolute value of T may vary
within the limits |T| ≤ 1. Furthermore, we consider

(12)

According to (12), relations (11) take the form

(13)

We have from (13)

(14)

According to (12), in the case of two-dimensional
strain (9), the relation θ = 0 holds, and relation (14)
takes the form

(15)

We consider the equations of equilibrium

(16)

We assume that all the stress components (13)
depend on the variables x, y and are independent of the
z-coordinate:

(17)

Substituting relations (13) into equations (16) under
assumptions (17), we arrive at the system of three equa-
tions with respect to three unknowns σ, ϕ, and θ:

τ yz κT ϕ .sin=

T θ.sin=

σx σ 2κ
3

------– κ 1 θcos+( ) ϕ ,cos
2

+=

σy σ 2κ
3

------– κ 1 θcos+( ) ϕ ,sin
2

+=

σz σ 2κ
3

------– κ 1 θcos–( ),+=

τ xy κ 1 θcos+( ) ϕ ϕ ,cossin=

τ xz κ θ ϕ ,cossin=

τ yz κ θ ϕ .sinsin=

σx σy–( )2 4τ xy
2+ κ2 1 θcos+( )2.=

σx σy–( )2 4τ xy
2+ 4κ2.=

∂σx

∂x
--------

∂τ xy

∂y
---------

∂τ xz

∂z
---------+ + 0,=

∂τ xy

∂x
---------

∂σy

∂y
--------

∂τ yz

∂z
---------+ + 0,=

∂τ xz

∂x
---------

∂τ yz

∂y
---------

∂σz

∂z
--------+ + 0.=

σ σ x y,( ), θ θ x y,( ), ϕ ϕ x y,( ).= = =

x∂
∂σ κ 1 θcos+( ) 2ϕ

x∂
∂ϕ

sin κ 1 θcos+( ) 2ϕ
y∂

∂ϕ
cos+–

– κ θ ϕ
x∂

∂θ
cos

2 κ
2
--- θ 2ϕ

y∂
∂θ

sinsin–sin 0,=
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To determine characteristics of the system of equa-
tions (18) and relations true along the characteristics,
we adjoin the following relations to system (18):

(19)

Considering system of equations (18) and (19) as an
algebraic one with respect to the components

(20)

we can define

(21)

Here, ∆ and ∆i are determined by the Cramer’s rule.
In the characteristics, the relations

(22)

must be simultaneously fulfilled.
Two characteristic families and relations that are

true along them can be found from the conditions ∆ =
∆1 = 0. The equations for the characteristics are the fol-
lowing:

(23)

and the relations (23) true along the characteristics are

(24)

It is worth noting that in the case of the two-
dimensional strain θ = 0, cosθ = 1, and µ = 0, charac-

y∂
∂σ κ 1 θcos+( ) 2ϕ

x∂
∂ϕ κ 1 θcos+( ) 2ϕ

y∂
∂ϕ

sin+cos+

–
κ
2
--- θ 2ϕ

x∂
∂θ κ θ ϕ

y∂
∂θ

sin
2

sin–sinsin 0,=

θ ϕ
x∂

∂ϕ θ ϕ
y∂

∂ϕ
cossin–sinsin

– θ ϕ
x∂

∂θ θ ϕ
y∂

∂θ
sincos–coscos 0.=

x∂
∂σ

dx
y∂

∂σ
dy+ dσ,=

x∂
∂ϕ

dx
y∂

∂ϕ
dy+ dϕ ,=

x∂
∂θ

dx
y∂

∂θ
dy+ dθ.=

x∂
∂σ

,
y∂

∂σ
,

x∂
∂ϕ

,
y∂

∂ϕ
,

x∂
∂θ

,
y∂

∂θ
,

x∂
∂σ ∆1

∆
-----,

y∂
∂σ ∆2

∆
-----,

x∂
∂ϕ ∆3

∆
-----,= = =

y∂
∂ϕ ∆4

∆
-----,

x∂
∂θ ∆5

∆
-----,

y∂
∂θ ∆6

∆
-----.= = =

∆ ∆i 0, i 1 2 … 6, , ,= = =

xd
dy

 
 

1 2,
ϕ π

4
--- µ+ 

 ± , 2µtantan
1 θcos–

2 θcos
--------------------.= =

dσ κ 1 θcos+( )
θcos

-----------------------------dϕ± 0.=
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teristics (23) become orthogonal, and relations (24)
transform into Hencky relationships [1].

In the general case for θ ≠ 0, the third characteristic
determined from the relation ∆ = ∆6 = 0 exists, with the
equation for it being

(25)

The relation true along characteristic (25) is

(26)

Formulas (23)–(26) define the stress for the case of
a general two-dimensional problem in the theory of an
ideally plastic body. The consideration of other cases
brings about no new characteristics.

xd
dy ϕ .tan=

θsin
1 θcos+
--------------------- 

  dσ κ θ 2ϕdϕ κdθ+sinsin+ 0.=
It should be noted that for a two-dimensional strain,
i.e., θ = 0, relation (26) degenerates.

From (13), it follows that

(27)

According to (27), (23), and (25), the third charac-
teristic (25) is aligned with the bisector of the angle
formed by characteristics (23).
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The usual formulations of the Irwin’s and Griffith’s
criteria allow us to determine the critical load, i.e., the
load initiating the growth of cracks. Both of these crite-
ria lead to the same result. The well-known attempts to
refine the formulation of these criteria (see [1, 2] for
both the force and [3, 4] energy criteria) require the
involvement of variational inequalities making it possi-
ble to take into account interactions between cracks and
to analyze their elongation as a function of the timelike
loading parameter. The goal of this paper is to compare
predictions concerning the evolution of a set of cracks
on the basis of these two criteria.

Let Ω be a two-dimensional isotropic body weak-
ened by the set M1, …, MJ of segmentlike cracks. We
denote the tips of cracks located within Ω as P1, …, PN

(an edge crack has only one tip, i.e., N ≤ 2J). Having the
intention of applying the Irwin’s criterion, we assume
that the cracks grow along straight lines, their tips cor-
respond to the normal discontinuity, and the shear
modes, if any, are negligibly small. Such a stressed
state is possible, e.g., for cracks located in the same
straight line or for several such rows lying apart from
each other. The load pτ = p0 + τp1 is applied to the outer
surface Γ. Here, τ ∈ [0, τ0) is the timelike loading
parameter (for simplicity, we ignore the bulk forces).
We allow polar coordinate system (rn, ϕn) to correspond
with each point Pn, where rn = |x – Pn| and |ϕn| < π. We
denote also stress-intensity coefficients (SICs) at

(immovable!) tips Pn generated by forces pτ as  =

 + τ , n = 1, …, N. If the load pτ gives rise to the
growth of the crack set {Mj(τ): j = 1, …, J}, then the val-
ues Kn(τ) of the SIC corresponding to displaced tips

Pn(τ) differ, in general, from . Assuming that the

cracks are open and do not close [in other words,  > 0
and hn(τ) = |Pn – Pn(τ)| ≥ 0], we introduce the functions
to be determined below:

(1)

Kn
τ

Kn
0 Kn'

Kn
τ

Kn
0

Hn τ( ) Kn
0hn τ( ) 0, n> 1 … N ., ,= =
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Further calculations are based on a number of asymp-
totic relationships for the body’s stressed state Ω(τ) =
Ω\{M1(τ) ∪ … ∪ MJ(τ)} under an arbitrary (but small)
variation of crack lengths. These relationships involve
the parameters characteristic of the initial crack posi-
tions, which can be used as the aforementioned varia-
tional inequalities. Namely, we need to know the coef-
ficients in the expansions of solutions u0 and u' to the
elasticity theory problem for Ω(0) under the loads p0

and p', respectively,

(2)

Here, ln is the linear vector function, cn' is a constant,

and  is the lowest SIC (it does not generate stress sin-
gularities, but affects the crack propagation [1, 5]). In
addition, we need to know the weight functions ζn with
singularities in Pn [6, 7], i.e., energy-independent solu-
tions to the uniform problem in Ω(0), which can be rep-
resented as

(3)

Here, cmn are constants, and Ψ1 , Φ1, and Φ3 are the
known angular parts (see, e.g., [8], in which all neces-
sary renormalizations are performed). In (3), coeffi-
cients Amn play the role of SICs, and they can be repre-
sented in the form of the N × N matrix A, which turns
out to be symmetric [5, 8]. One of the asymptotic for-
mulas mentioned above has the form

(4)

where α = (λ + 2µ)[2µ(λ + µ)]–1, λ and µ are the Lamé
constants, and h(τ) = max{h1(τ), …, hN(τ)} is the max-
imum elongation. The three-term asymptotic behavior
of the potential energy used by the Griffith’s criterion is
calculated based on (2) and (3) with the same data set

u0 x( ) ln x( ) Kn
0rn

1/2Φ1 ϕn( ) kn
0rn

3/2Φ3 ϕn( ) O rn
2( ),+ + +=

u' x( ) cn' Kn' rn
1/2Φ1 ϕn( ) O rn( ), rn        0.+ +=

kn
0

ζn x( ) rn
1/2– Ψ1 ϕn( ) cnn Annrn

1/2Φ1 ϕn( ) O rn( ),+ + +=

ζn x( ) cmn Amnrm
1/2Φ1 ϕm( ) O rm( ), m n.≠+ +=

Kn τ( ) Kn
0 τKn'

1
2
---hn τ( )kn

0+ +=

+ α AnmHm τ( ) O τ2 h τ( )2+( ),+
m 1=

N

∑
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(see, for example, [8]). Below, we use asymptotic rep-
resentations similar to (4) omitting the residuals O(…).
In other words, we consider small values of the param-
eter τ and small elongations of cracks.

We now turn to Irwin’s criterion, which, in accor-
dance with [1, 2], can be written out in the form

(5)

where K1c is the critical value for the SIC. Both rela-
tionships in (5) imply that at any time moment τ, we
have equilibrium cracks, and the tip propagation is pos-
sible only at the critical SIC value. Following the con-
ventional formalism (see, for example, [9]), we find
that conditions (5) are transformed into the following
variational inequality, allowing us to determine the col-
umn H(τ) ∈ (R+)N with the components (1):

(6)

The latter inclusion implies that all components of the
column X are nonnegative. Here, B is the diagonal N ×
N matrix, symbol 〈 , 〉 corresponds to the scalar product
in RN, t denotes the transposition, and

(7)

The variational inequality of the same type is equiv-
alent to the minimization problem for the total energy
(Griffith’s criterion). However, the right-hand part is
calculated using a new formula containing surface-
energy density γ:

(8)

Inequalities stemming from the Irwin’s and Griffith’s
criteria are denoted as (6)I and (6)G, respectively, and
their solutions, as HI(τ) and HG(τ).

If the solution is found, then equalities (1) allow us
to reproduce elongations h1(τ), …, hN(τ) as functions of
τ ∈ [0, τ0). This refutes the opinion of Sih and Leibow-
itz (see [10], p. 175), who claimed that the Griffith’s
criterion is insufficient for determining the configura-
tion of the free-surface increment. (The concept of the
energy-liberation rate put forward in [10] is a neces-
sary consequence of this criterion but by no means
replaces it.)

Statement 1. (i) If matrix αA + B is negative
definite, then there exists a single solution H(τ) to equa-

hn τ( ) 0 Kn τ( ) K1c,≤⇒=

hn τ( ) 0 Kn τ( )⇒> K1c,=

α AH τ( ) H τ( ) X–,〈 〉 BH τ( ) H τ( ) X–,〈 〉+

≥ F τ( ) H τ( ) X–,〈 〉  X R+( )N
.∈∀

B diag B1 …,BN,{ } , FI τ( ) F1
I τ( ) … FN

I τ( ), ,( )t
,= =

Bn 2Kn
0( ) 1–

kn
0, Fn

I τ( ) K1c Kn
0 τKn' .––= =

FG τ( ) F1
G τ( ) … FN

G τ( ), ,( )t
,=

Fn
G τ( ) 2γ αKn

0( ) 1–
2 1– Kn

0 τKn' .––=
tion (6) and the following estimate holds true:

(9)

the parameter c > 0 being independent of F(τ) and H(τ);
t± = 2–1(|t| ± t).

(ii) If matrix αA + B is positive definite, problem (6)
has no solution.

Situations (i) and (ii) are interpreted as a stable
(quasi-static) and avalanche crack growth (of course,
Statement 1 contains only sufficient conditions). It is
natural to take the moment τ = 0 as a reference point for

which at least one SIC  coincides with K1c. We draw
attention to the effect caused by the interaction of

cracks: Not only nonequilibrium cracks (  = K1c,

 > 0) are set in motion but also those with their SICs
being close to critical [by virtue of (9), equality Hn(τ) = 0
is valid for certain only in the case when Fn(τ)+ > |F(τ)−|,
i.e., at  ! K1c]. If , …,  < 0, then H(τ) = 0 and
the cracks do not move.

Since α  = 2γ and 0 <  ≤ K1c, we can find rela-
tionships making it possible to compare solutions HI(τ)
and HG(τ):

(10)

Statement 2. Let αA + B be a negative-definite
matrix.

(a) If off-diagonal elements of the matrix A are non-

negative, then (τ) ≥ (τ) for all n = 1, …, N.

(b) Let (τ) = (τ) for n corresponding to the

inequality  < K1c. Then, we have HI(τ) = HG(τ).

Thus, in the formulation used, the force criterion
predicts larger elongations of cracks than the energy
criterion, and the results undoubtedly coincide only for
initially nonequilibrium cracks (this is observed, in par-
ticular, for noninteracting cracks). The reason is that we
use formulas having the same asymptotic accuracy but
different actual errors. The estimate

following from (10) and (6) demonstrates that the
divergence between the results increases when we pre-

dict the propagation of cracks with an SIC  that sig-
nificantly deviates from the critical value. In these
problems, bifurcations are especially sensitive to per-
turbations. Therefore, variational inequalities (6)I and
(6)G discussed above can lead to qualitatively different
patterns for developing sets of cracks in the case of the

c H τ( ) 2 F τ( )+ H τ( ),〈 〉+ F τ( )– H τ( ),〈 〉≤
≤ F τ( )– H τ( ) ,×

Kn
0

Kn
0

Kn'

Kn
1 K1' KN'

K1c
2 Kn

0

Fn
G τ( ) 2Kn

0( ) 1–
K1c Kn

0–( )2
Fn

I τ( ) Fn
I τ( ),≥+=

n 1 … N ., ,=

Hn
I Hn

G

Hn
I Hn

G

Kn
0

HI τ( ) HG τ( )–
2

Cmax K1c Kn
0–( )2

hn
I τ( ) hn

G τ( )–( ){ }≤

Kn
0
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unstable quasi-static growth of cracks. For Irwin’s crite-
rion, the bifurcation phenomena were studied in [1, 11].

The conditions imposed on A by Statements 2(a) are
met for interior cracks located along the same straight
line far away from the outer boundary Γ. We now con-
sider the simplest example of an isolated crack with the
tips P1 and P2 . If its length is much shorter than the dis-
tance to Γ, then we have, approximately,

Let forces P0 and P' be such that at small κ,

Under condition b > 2 ensuring the existence of unique
solution to problems (6)I and (6)G, we have

Until the time moment τ = T, only the P1 tip propagates.
Furthermore, the crack grows at both ends. However,
according to the Griffith’s criterion, the P2 tip begins to
propagate later than predicted by the Irwin’s criterion:
TG = (1 + κ/2)TI. Nevertheless, the accuracy on the
order of O(κ2) in the calculations of T is in agreement

A
1

4αa
---------- 1– 2

2 1– 
 
 

.=

K1
0 K2

0 1 κ+( ) K1c, k1
0 k2

0 1 κ+( ),= = =

K1' K2' , b 1 2akn
0 Kn

0( ) 1–
.–= =

H1 τ( ) τcb 1– , H2 τ( ) 0 at τ T ,≤= =

H1 τ( ) τc
b 2–
-----------

8aδ
b2 4–
--------------, H2 τ( )– τc

b 2–
----------- 4baδ

b2 4–
--------------–= =

at τ T ,≥

c 4aK1' , T
bδ

b 2+
------------ K1'( ) 1–

,= =

δI
κ

1 κ+
------------K1c, δG

2 κ+
1 κ+
------------κ

2
---K1c.= =
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with the accuracy O(τ2) of the models under discussion
[see (4)]. In both cases, the P2 tip starts to move at a

moment before the hypothetical SIC  =  + τ
has attained the critical value.
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In spite of the fact that the new class of random pro-
cesses, the so-called fractal Brownian motion, has been
successfully used for 30 years in stochastic hydrology,
there is no answer to the central problem of the theory:
What fundamental laws of nature and, first of all, the
conservation laws for momentum, heat, and matter, are
responsible for the Hurst phenomenon [1]? In this
paper, we construct a simple model of the water perco-
lation in soil illustrating this phenomenon.

1. Fractal Brownian motion. A continuous random
process X = (Xt)t ≥ 0 is referred to as fractal Brownian
motion with the Hurst exponent H [2] if it has the fol-
lowing properties:

(1) X0 = 0, EXt = 0 for all t ≥ 0.
(2) Xt has time-independent increments

Law(Xt + s – Xs) = Law(Xt), s, t ≥ 0.

(3) Xt is the Gaussian process, E  = |t|H, t ≥ 0, 0 <
H ≤ 1.

(4) Xt has continuous trajectories.
If H = 0.5, the fractal Brownian motion is simply the

conventional Wiener process (as is well known, the
increments of the Wiener process form “white noise”);
for 0.5 < H < 1, the increments are also referred to as
“black noise.”

In physics, these processes correspond to the fol-
lowing types of diffusion. At H = 0.5, it is the “normal”
Fick diffusion, while all cases with H ≠ 0.5 can be
classed to the Levy diffusion: At H > 0.5, we have
enhanced diffusion, and at H < 0.5, diffusion with geo-
metric constraints.

The aforementioned processes first considered by
Kolmogorov in 1940 [3] were called Wiener spirals. In
1968, Mandelbrot and van Ness introduced the term
“fractal Brownian motion” [2]. In mid-1960s, Mandel-
brot put forward an ingenious interpretation of the
Hurst phenomenon, which, in his opinion, can explain

Xt
2
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not only the phenomenon itself but also two other
effects characteristic of many hydrologic processes:
exceptionally large outbursts and exceptionally long
runs of positive or negative deviations of the process
from its average value. For example, the drop in the
Caspian Sea level over 48 years (1930–1978) and its
rise over the last 20 years are illustrations of these
effects. Mandelbrot introduced the term “a process with
infinite memory” and, hence, with infinite growth of the
spectral density at a frequency tending to zero but with-
out any nonintegrable singularity. The spectral density
of such a process is proportional to a fractional power
of the frequency, and Mandelbrot called them “frac-
tional noises.”

The covariance function and the spectrum of fractal
noise have the following form:

In the vicinity of ω = 0, the spectral density can be writ-
ten as

Thus, the spectrum of black noise (0.5 < H < 1)
fH(ω)  ∞ at ω  0.

Using a large number of observations concerning
the average annual runoff of the Nile during the period
of 622–1469 (847 years), Hurst found that H = 0.7 [1].
The Hurst exponents are equal to 0.836, 0.662, 0.772,
and 0.673 for the Volga, the Dnieper, the Danube, and
the Neman, respectively. Here, we construct an exam-
ple of a hydrological process exhibiting the Hurst phe-
nomenon.

2. Stochastic model of rains. We assume that the
number of rains during the time interval [t0, t0 + T]

RH n( )
1
2
--- n 1+

2H
n 1– 2H 2 n 2H–+( ),=

f H ω( )
HΓ 2H( ) Hπ( )sin

π
-----------------------------------------=

× eiω 1–
2 1

ω 2πk+
2H 1+

----------------------------------,
k ∞–=

∞

∑
ω π.≤

f H ω( )
HΓ 2H( ) Hπ( )sin

π
------------------------------------------ 1

ω 2H 1–
------------------.=
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obeys the Poisson law

for arbitrary k = 0, 1, 2, …, P is the probability of k rain-
falls during period T at a given value of λ (an average
number of rainfalls per day, which is the characteristic
of the meteorological situation for a river basin). The
time intervals between rainfalls (sequential events of
the Poissonian flow) are independent random variables
with the similar exponential distributions characterized
by parameter λ. The probability of the event when the
drought period tk + 1 – tk = ∆k is shorter than t is equal to
P{∆k < t} = 1 – e–λt.

In the case when a rainfall duration is much smaller
than a drought period, the formation of a precipitation
layer can be presented as the pulsed process:

where q is the precipitation layer per rainfall, and δ(t)
is the delta function. The average value of the process
is p(t) = qλ, the correlation function is R(τ) = q2λδ(τ),
and the spectrum is f(ω) = 2q2λ. Thus, the “memory”
time for a rainfall process is zero, and the process spec-
trum is constant in the whole frequency range; i.e.,
there is no Hurst phenomenon in this process.

3. Dynamics of the moisture content in soil. Fol-
lowing rainfall, the moisture content per unit volume in
the soil sharply increases. Owing to the percolation
processes, a certain fraction of this moisture moves to
the subsoil water level, another evaporates, and the
third forms the surface runoff. The percolation factor
(the ratio of percolated moisture and the total amount of
precipitates) exceeds 0.6 for most drainage basins of
main Russian rivers (for example, these coefficients are
equal to 0.85, 0.79, and 0.66 for the basins of the Oka,
the Moskva, and the Pechora, respectively). Thus, ana-
lyzing percolation processes is very important for
understanding the mechanisms underlying river runoff.

We now write the equation of water balance for the
upper soil layer:

(1)

where W, Wp, and Ww are the soil moisture content, the
porosity, and the moisture content corresponding to the
wilting, respectively; Q is the filtration coefficient for
water in the moisture-saturated soil; ε is the ratio of
evaporation (transpiration) and percolation rates; and n
is the power exponent in the substantially nonlinear
(power-law) dependence of the moisture conduction

P k( )
λT( )k

k!
--------------e λT–=

p t( ) q δ t tk–( ),
k 0=

∞

∑=

dW
dt

-------- q δ t tk–( )
k 0=

∞

∑=

– Q
W Ww–
Wp Ww–
--------------------- 

 
n

εQ
W Ww–
Wp Ww–
--------------------- 

  ,–
DOKLADY PHYSICS      Vol. 45      No. 7      2000
coefficient on the moisture content (n = 3–5) [4, 5]. The
filtration rate substantially depends on the viscosity of
water and the porosity of the upper soil layer.

Numerous measurements of the evaporation (tran-
spiration) rate demonstrated its linear dependence on
the moisture content (see Fig. 242 in [6], where this
dependence is presented for the soddy podzolic loamy
soil when sowing winter rye, wheat, and timothy).

The integration of (1) leads to the following pulse
process:

(2)

where

for t ∈  [tk, tk + 1) and ϕ(t – tk) = 0 if t ∉  [tk, tk + 1) is the
function of the pulse shape. The process amplitudes
θk = , δ > 0 are found from the solution to

the nonlinear discrete stochastic equation

where

If ε = 0 [the percolation rate far exceeds the evapo-
ration (transpiration) rate], the spectral density of pro-
cess (2) diverges at low frequencies. This phenomenon
is explained by a strong power-law dependence of the
moisture conduction on moisture content, which is why
we have very slow postrainfall relaxation of the mois-
ture content to its equilibrium value with the power-law
time dependence. For small ε, there is a fairly wide fre-
quency range where the frequency dependence of the
process spectrum has the form f(ω) ~ ω–α (for several
cases, the calculations yield α = 0.72; hence, the Hurst

exponent is H =  = 0.86). In Fig. 1, we show the

characteristic realization of random process (2) found
by simulating the Poisson distribution. In Fig. 2, we
show the histogram of amplitudes for the pulsed pro-
cess corresponding to the variation of the moisture con-
tent in soil, the correlation function is plotted in Fig. 3,
and the spectral density for the characteristic realiza-
tion of random process (2) close to zero is presented
in Fig. 4.

Thus, the Hurst phenomenon is explained by a slow
(power-law) relaxation characteristic of a viscous fluid
in a porous medium. The relaxation takes place from a
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m ε+( )e
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state with a high potential energy (at the moment of
rainfall) to a state with a lower potential energy (the
moment of water reaching the locking section of the
river basin).

Note that the importance of the phenomenological
approach to the evolution of nonlinear dissipative sys-
tems was emphasized in [7].
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Fig. 1. Realization of the random process of temporal vari-
ation in the soil moisture content, which is found by numer-
ical simulations.

1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100 120 140 160 180 200

Time, days

Correlation

Fig. 3. Correlation function for the random process of the
variation of the moisture content in soil.
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Fig. 2. Probability density for amplitudes of a pulsed pro-
cess of moisture-content variations in soil, which is con-
structed according to the characteristic realization.
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Information on the mechanical properties of a mate-
rial in the region of stress concentration is of funda-
mental importance for revealing the onset of macro-
scopic damage (i.e., crack formation) and its subse-
quent evolution, leading eventually to the decay of
load-carrying capacity and to the failure of a structural
element. The strength and plasticity criteria used for
this purpose are based on finding the correlation
between local stresses in the region of their concentra-
tion and the mechanical properties of the material. The
latter are determined using the results of conventional
tests of the samples.

At the same time, a large amount of experimental
data [1–8] clearly indicates the significant difference
between the mechanical properties of a material in the
region of stress concentration and the usual properties
determined for a uniform stressed state. In this connec-
tion, there exists a problem of evaluating local mechan-
ical properties of the material. The problem is solved in
this paper on the basis of the gradient approach to cal-
culating strength. The approach is developed by the
authors of [8–11].

According to the conventional approach, the
strength is defined by the following condition:

(1)

where σe = f(σij) and σ0 = const. The equivalent stress
σe characterizes the internal stressed state of the mate-
rial and, in the general case, is a function of stress ten-
sor components σij. The ultimate stress σ0 characterizes
averaged mechanical properties of the material and is
assumed to be a fixed parameter. Since σ0 characterizes
a uniform stressed state, the applicability of the conven-
tional approach is limited to cases where the size of a
stress inhomogeneity is large enough to put σ0 = const
there. The essence of the gradient approach as com-

σe σ0,<
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pared to the conventional approach is the following.
The mechanical properties are attributed not to the
material itself, but to a certain deformed region of finite
size. This approach is more consistent with the concept
of mechanical strength. Here, the ultimate stress is not
a fixed parameter. It depends on the size of the stress
inhomogeneity. We denote the characteristic size of the
deformed region as Le; if it is sufficiently large com-
pared to the size of structural components of the mate-
rial including the possible structural defects (i.e., the
conditions of averaging the mechanical properties are
certainly met), the value of the local strength differs
only slightly from σ0. On the contrary, if Le is compara-
ble to the sizes of structural elements, their effect on the
local strength becomes noticeable. In this case, the
smaller the size Le with respect to a characteristic size
of the material structure L0, the more pronounced this
effect. Thus, the local strength of material should not
depend simply on the characteristic size Le of the
deformed region but on the ratio L0/Le . Taking this into
account, the condition for the local strength can be writ-
ten as

(2)

To determine the form of the function f(σ0, L0/Le),
we need to formulate additional conditions that reflect
a specific nature of the problem under study. The
requirements for f(σ0, L0/Le) for the stress concentra-
tion are formulated as follows:

Allowance for stress gradients (gradient hypothe-
sis),

(3)

The relation to the traditional criteria

(4)

The constraints on the critical stresses

(5)

σe f σ0 L0/Le,( ).<

f σ0 L0/Le,( ) σ0 1 f * σij σi j k,,( )+[ ] ,=

f * σij σi j k,,( ) inv;=

f σ0,0( ) σ0;=

f σ0 L0/Le,( )
Kt

-------------------------------         const, K t         ∞ .     
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Here, f*(σij , σij, k) is a dimensionless function of the
stress-tensor components and of the stress-gradient ten-
sor, this function being invariant with respect to trans-
formations of the coordinate system; Kt is the coeffi-
cient characterizing the stress concentration.

Requirement (3) has the following implications.
Under conditions of stress concentration, the character-
istic size of the deformed region is determined by the
size of the stress inhomogeneity rather than of the body
as a whole. This size depends on the features of the
stress distribution; therefore, according to the gradient
hypothesis, the onset of the limiting state is caused by
both the values of the stress itself and its gradients at the
point under study.

Requirement (4) provides the transformation of gra-
dient criterion (2) into the conventional criterion (1) in
the case of the uniform stressed state.

6
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2
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σ0
*/σ0

|grad σe|/σe, mm–1

Fig. 1. Local strength of epoxy fiber glass as a function of
the relative gradient of equivalent stress under tension.
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Fig. 2. Local strength of gypsum as a function of the relative
gradient of equivalent stress under compression.
                     

Requirement (5) reflects a well-known experimental
fact: At any sharpness of a notch and the value of the
theoretical coefficient for the stress concentration, the
fracture of a material occurs under a finite load [12].
For sharp concentrators, its value depends only on the
notch length. Requirement (5), in fact, provides the
relation of the gradient criterion (2) to the linear
mechanics of fracture.

Taking into account requirements (3)–(5), the func-
tion of the local strength has the form [8, 9]

(6)

(7)

It is shown in [11] that function (6) meeting require-
ments (3)–(5) also provides for physically consistent
behavior of the critical defect size as a function of the
stress concentration coefficient if the latter can be pre-

sented in the form Kt = 1 + α , where α is a numer-
ical coefficient dependent on the body dimensions, a is
the defect (concentrator) size, and ρ is the radius of cur-
vature for the concentrator at a dangerous point.

We now consider several examples of using expres-
sion (6) in estimating the local mechanical properties of
various materials.

Local strength of a plate with side notches under
tension. The experimental data on the local strength

 of plates made of epoxy fiber glass with side
U-shaped notches are reported in [7]. The plates were
tested for uniaxial tension. Both the depth of the notch
and the curvature radius of the notch tip were varied.
All the samples were brittle-broken by a rupture at the
minimum cross section. The experimental data (dots) in
Fig. 1 are fitted by function (6) of the local strength
(solid curve). The stress σ0 is the tensile strength of a
smooth sample. The size Le was determined based
on (7), and the largest normal stress was considered as
the equivalent one. The calculated curve agrees well
with the experimental data.

The local strength under compression for a plate
with a central hole. The experimental data on the shear
fracture in the region of the compressing stress concen-
tration in plates made of gypsum with central circular
and elliptic holes, which were subjected to uniaxial
compression, are reported in [2]. The diameter of a cir-
cular hole or the size of an elliptic hole at a dangerous
cross section was varied. At the moment of the crack
formation, the applied pressure was fixed. In Fig. 2,
experimental data (points) are fitted by function (6)
(solid curve). The material was assumed to obey the
Coulomb strength condition, and, in this case, σ0 is the
material shear strength. The calculated curve also
agrees well with the experimental data.
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Local yield under tension of a plate with a central
hole. Plates made of a low-carbon steel with central cir-
cular and elliptical holes were subjected to uniaxial ten-
sion [8]. The size of the hole and curvature radius in its
top were varied. The moment of the onset of the local
yield was revealed on the basis of the holographic inter-
ferometry by means of analyzing the interference pat-
tern in the regions of tensile-stress concentration. The
experimental data (dots) are approximated by func-
tion (6) (solid curve) (Fig. 3). It was assumed that the
material obeyed the Mises plasticity condition, and in
this case, σ0 is the yield stress of the material. Similar
to the previous examples, the calculated curve agrees
well with the experimental data.

Thus, the mechanical properties of a material in the
stress concentration region that characterize the forma-
tion of macroscopic damage in the form of a crack or of
a local region of plasticity depend on the inhomogene-
ity of the stress field and can be determined according
to (6) using the gradient approach. The examples pre-
sented above show that the regularities revealed have a

|grad σe|/σe, mm–1

σ0
*/σ0

2

1

0 2 4 6

Fig. 3. Local yield stress of low-carbon steel versus relative
gradient of equivalent stress under tension.
DOKLADY PHYSICS      Vol. 45      No. 7      2000
rather general nature and are inherent to various mate-
rials differing in chemical composition, structure, and
preparation technology. Despite the different physical
mechanisms underlying the deformation processes and
the damage accumulation in these materials, the onset
of the ultimate state at the macromechanical level
obeys the same scaling law that describes variations in
the mechanical properties of the material.
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We consider the problem of the localization of a
vibration process by a set of plane parallel cavities
(cracks) described by the Griffith theory [1]. These
types of heterogeneities are the most widespread
objects accompanying stratified inhomogeneous geo-
logical structures including an imitator of breaks. They
are widespread imperfections in materials with defects
and also the main precursors of strength loss in struc-
tures, thus determining the onset of their brittle rupture.

In this study, we have found the general relation-
ships providing the localization of a wave process in an
elastic medium by objects of such a type.

These investigations open up possibilities for a prin-
cipally new method of vibrational excitation of zones
containing heterogeneities on the energy-preserving
resonance basis when directional seismic antennas are
submitted to supplementary requirements dictated by
the conditions of localization [2].

We attempt to improve the classification of such
objects, previously called vibration-strength viruses.
The basis of this classification is the potentialities of the
mathematical formalism developed and used to investi-
gate these viruses [3, 4].

Studies in this field of mechanics were initiated by
the original theoretical investigations of Academician
Vorovich [5, 6] and, on the other hand, by theoretical
and experimental investigations of mathematicians and
geophysicists from the Siberian Division of the Russian
Academy of Sciences.

The discovered high-frequency resonance in semi-
bounded deformable media with heterogeneities [7]
made it possible to approach from an unexpected side
the investigation of wave processes in complex media
as opposed to linear-acoustic ones. As is well known,
there is no concept of static strains in linearly acoustical
media, and the objects localizing the wave processes
are termed open cavities. To avoid, by this and other
reasons, calling our objects open cavities, we used the
term vibration-strength viruses, which have been
explained in more detail in [4].

Kuban State University,
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1028-3358/00/4507- $20.00 © 20342
1. We consider an elastic space divided by parallel
horizontal cross sections into L + 1 layers, the upper
and lower of them being half-spaces.

Aligning the x1Ox2 plane in parallel to the plane of
heterogeneities, we arrive at a problem in which in the
cross section x3 = hl inside the elastic space, there are
cavities (cracks) with carriers Sl, l = 1, 2, …, L. The set
representing an association of carriers in the cross sec-
tion x3 = hl can be that of simply connected or multiply
connected domains.

According to the notation of [4], such a set of heter-
ogeneities was called a virus and denoted as

We refine this notation as applied to the problem under
investigation.

We introduce the following definition:
Definition. A virus composed of L parallel cracks in

an elastic space is called a class-2 virus or an L-level
virus of the S-type, denoted as

(1)

If a certain Sk is an unbounded plane, it is denoted in
formulas by the sign ∞.

This definition presumes that, for a certain l = k, the
set Sk can be the entire plane. In this case, we use the
sign ∞ instead of Sk in the denotation of virus (1); i.e.,
the space is divided into two parts by this set. Thus, for
describing the upper or lower half-spaces with one hor-
izontal crack, it is necessary to use the respective nota-
tion

V(2/0; ∞/h1; S1), h1 > 0 or h1 < 0.

This is a two-level virus.
If we take a layer with one crack instead of a half-

space, this is a three-level virus, which can be written
out in the following form:

V(2/0; ∞/h1; S1/h2; ∞), h1 > 0.

The definition presumes that the description of the
set Sl in the cross sections hl or the requirements for the
regions of the medium in which they are sought must be
given additionally.

It should be noted that the vibration-strength virus
formed by rigid planar inclusions belongs to class 1 and
is denoted in a similar manner.

V Sl( ), l L.<

V 2/h1; S1/…/hL; SL( ).
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We now formulate two types of problems in the the-
ory of vibration-strength viruses. Below, the medium-
vibration frequency ω (0 ≤ ω < ∞) (the static case is also
included), mechanical, and physical characteristics of
the medium, as well as external actions on the system,
are referred to the concept of the problem parameters.

Direct problem. A vibration-strength virus of a cer-
tain class with fixed sets hl and Sl is given. It is neces-
sary to find the values of the remaining problem param-
eters including also the external actions that provide the
localization of the wave process by the virus.

First inverse problem. For a virus of a certain class
with a given hl and other problem parameters including
also the external actions, it is necessary to find the sets
Sl for which the wave process is localized by the virus.

Second inverse problem. For a virus of a certain
class with given problem parameters including also the
external actions, it is necessary to find the sets hl and Sl

for which the wave process is localized by the virus.
The case of a static problem and an increase in

strains within a certain zone are appreciated as a zero-
frequency wave process and as the localization, respec-
tively.

We demonstrate here one of the results of investigat-
ing the direct problem in the theory of vibration-
strength viruses.

Below, we consider an elastic layer with L cracks,
i.e., the case when the (L + 2)-level virus of the class 2
is given:

(2)

The problem consists in clarifying conditions which
the problem parameters must obey in order for the virus
to localize a wave process in its neighborhood.

2. To investigate our problem, we use the method
developed in [2, chapter XI] preserving the notation
accepted in this study.

We will consider the stresses with amplitudes wls; l,
s = 1, 2, 3 and with a frequency ω acting at crack
boundaries. We denote the Fourier two-dimensional
transform by capital letters and assume that

where αk and k = 1, 2, 3 are the parameters of the Fou-
rier transform.

Repeating the manipulations of [2], we arrive at a
set of integral equations and consider a widespread case
of the type

V 2/0; ∞/h1; S1/…/hL; SL/hL 1+ ; ∞( ), h1 0.>

Qls α1 α2,( ) qls ξ1 ξ2,( )e
i α1ξ1 α2ξ2+( )

ξ1d ξ2,d

Sl

∫∫=

e
i α1x1 α2x2+( )–

Pls
1– α1 α2,( )D 1– u( )

Γ2

∫
Γ1

∫
s 1=

3

∑
l 1=

L

∑
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(3)

.

Here, we take the following notation:

(4)

Passing to the vector representation in equation (3),
we can write out the set of equations in the operator
form:

(5)

Here, D(u) is the integral function. K(u) is the matrix-
valued function, whose elements are Kls(α1, α2) blocks.
Elements of the matrix-valued function are integral
functions, the following asymptotic estimates being
valid for the main ones: u[1 + O(u–1)]D(u). Q(α1, α2) is
the multidimensional vector, whose components are the
elements Qls arranged in a certain sequence. In the same
sequence, the vector f(x1, x2) composed of the compo-
nents wnq is formed.

Furthermore, we introduce the vector space Q =

{ql ⊂ }, which is the direct sum of the Sobolev
spaces [8], assuming that the boundaries of the domains
Sl satisfy the necessary conditions of smoothness:

We determine (5) as an operator acting from  in L2 .

The following theorem is valid.
Theorem 1. Operator equation (5) is equivalent to

the equation of the second kind with an entirely contin-

uous operator in .

3. For a given frequency ω, we denote real zeros of
the functions D(u) and DetK(u) as ζm and zm, respec-
tively, m = 1, 2, …, M. In the case of discrepancy in the
number of real zeros, we add up to the number M the
complex zeros nearest to the real axis.

We construct the function

(6)

For the matrix-valued function K(u), we construct
the representation

(7)

× Kls α1 α2,( )Pls α1 α2,( )Qlsdα1dα2 wpn x1 x2,( ),=

u
2 α1

2 α2
2,+=

x1 x2 Sp, n⊂, 1 2 3, p, , 1 2 … L, , ,= =

uls
+ ul 1s+

–– qls.=

KQ α1 α2,( ) e
i α1x1 α2x2+( )–

P 1– α1 α2,( )D 1– u( ),

Γ2

∫
Γ1

∫=

K u( )P α1 α2,( )Q α1 α2,( )dα1dα2 f x1 x2,( ),=

x1 x2 S.⊂,

H0
1

ql{ } H0
1⊂ ⊕ H0

1 Sl( ).
l 1=

L

∑=

H0
1

H0
1

D1 u( ) u ζm–( ), D0 u( )
m 1=

N

∏ D u( )D1
1– u( ).= =

K u( ) K0 u( )K1 u( ).=
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Here, the matrix-valued function K1(u) is polynomial,
and, for zeros, its determinant has the values zm, m = 1,
2, …, M.

The elements of the matrix-valued function K0(u)
are the integral functions, and their determinant has no
real zeros.

Various methods for constructing representation (7)
are described in [9, 10] and in the references cited in
these studies.

The matrix-valued function P(α1, α2) is a polyno-
mial with a constant determinant.

We now consider the set of integral equations of
type (5) in which K(u) and D(u)are replaced by K0(u)
and D0(u), and a new unknown quantity Q0(α1, α2) is
also introduced. The set is denoted in the form

(8)

The set of integral equations (8) is similar to integral
equations of mixed static problems in the elasticity the-
ory. For investigating this set, it is possible to use meth-
ods developed in [2, 9, 10] and other studies in which
the static mixed problems are analyzed.

In the case when the complex zeros are also taken as
ζm and zm along with the real ones, i.e., M is high, set (8)
can be solved by the asymptotic methods and an
approximate solution can be constructed.

Having constructed the inverse operator , we
can write out the solution to the operator equation in the
form

The key result of this investigation, which can be
found by analogy with the case of one heterogeneity, is
given by the following theorem.

Theorem 2. Let the sizes for the domains S, the
mechanical and physical characteristics of elastic
layer, and the parameters hk for the chosen frequency
ω ≥ 0 be such that the following equality takes place:

In this case, the virus localizes the wave process in its
neighborhood.

The cases of solving certain inverse problems of this
theory are given in [8].

K0Q0 α1 α2,( ) f x1 x2,( ).=

K0
1–

Q0 α1 α2,( ) K0
1– f x1 x2,( ).=

Q0 α1 α2,( ) 0, α1
2 α2

2+ zm, m 1 2 … M., , ,= = =
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We consider a nonlinear game problem of reorient-
ing an asymmetric body under uncontrolled perturba-
tions, when the moments of inertia are inaccurately
specified and only their estimates are given. A given
“geometric” constraint is imposed on the possible con-
trol. We develop a method for solving this problem on
the basis of the “equivalent” linearization of nonlinear
systems with conflicting control factors [1–6] and
methods of the linear theory of games [7]. This approach
is related to the concepts of decomposition [8] in nonlin-
ear controlled systems and employs the control meth-
ods [9] based on solving auxiliary problems of control
with respect to part of variables [9, 10].

We find direct estimates of the admissible range for
perturbations. The estimates are found taking into
account the constraints imposed on the control, initial
positions of the body, and tolerances for the principal
central moments of inertia. Within the limits of these
estimates, we develop a constructive method allowing
us to determine the positional controls and an upper
estimate for the time of guaranteed reorientation.

1. The formulation of the problem. We consider
the Euler dynamic equations

(1.1)

governing the angular motion of a body with respect to
its center of mass. (Here, only one of three equations is
written; two others are obtained by cyclical permuta-
tions of subscripts 1, 2, 3.)

In (1.1), xi and ui are the components of angular
velocity and the controlling moment along the principal
central axes of inertia, respectively, and Ai are the prin-
cipal central moments of inertia. The moments vi char-
acterize external forces and uncontrolled perturbations.
Hereafter, i = 1, 2, and 3, and the summation over i from
1 to 3 is implied. We denote as x, u, and v the vectors
involving xi , ui, and vi, respectively.

A1 ẋ1 A2 A3–( )x2x3 u1 v 1 123( ),+ +=

Ural State Technical University, 
Nizhniœ Tagil Branch, Krasnogvardeœskaya ul. 59, 
Nizhniœ Tagil, 622006 Russia
1028-3358/00/4507- $20.00 © 20345
The moments of inertia are constant and are speci-
fied by the estimates

(1.2)

where  and  are given numbers. The values of

∆Ai =  –  are not assumed to be small; hence, Ai

can vary within a wide range.
In addition to (1.1), we consider the kinematic equa-

tions with the Rodrigue–Hamilton variables governing
the body orientation:

(1.3)

Variables λ0 , λi forming vector l obey the relation-
ship

(1.4)

We choose control u ∈ K belonging to the class of
piecewise functions u = u(x, l, x0, l0) (x0 and l0 are ini-
tial values of x and l, respectively), such that

(1.5)

Inequality (1.5) defines an ellipsoidal range for
admissible controls.

The perturbations v ∈ K1 can have the form of arbi-
trary piecewise functions v[t] satisfying the constraint

(1.6)

Problem 1. The problem is to find for arbitrary v ∈
K1 and arbitrary Ai satisfying conditions (1.2) the con-
trols u ∈  K that transfer the body from the initial state
l(t0) = l0 to the given state l(t1) = l1 during a finite

Ai
–

Ai Ai
+
,≤ ≤

Ai
–

Ai
+

Ai
+

Ai
–

2λ̇0 xiλ i( ),∑–=

2λ̇1 x1λ0 x3λ2 x2λ3 123( ).–+=

λ0
2 λ i

2∑+ 1.=

ui Ai
–

( )
1–

[ ]
2

∑
 
 
  1 2/

α≤ const= 0.>

v i Ai
–

( )
1–

[ ]
2

∑
 
 
  1 2/

β≤ const 0.>=
000 MAIK “Nauka/Interperiodica”
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time. Both these states are states of rest: x(t0) = x0 =
x(t1) = x1 = 0. The time instant t1 > t0 is not fixed.

Without any loss of generality, we assume below
that l1 = (1, 0, 0, 0).

Remarks. (1) Problem 1 is related to control prob-
lems for a set of systems (but not for a single system) in
which a desired result is guaranteed at any, even most
adverse, perturbations. Such a formulation of the prob-
lem is typical of the game theory. (2) Other problems
and methods of control over mechanical systems under
poorly determined conditions were considered, for
example, in [8, 11–15].

2. An auxiliary linear system with conflicting
control parameters. Following [2–4], we differentiate

with respect to time both sides of the equations for 
in (1.3), substituting  by their expressions from (1.1).
After some transformations, we obtain the equalities

(2.1)

Quantities fi and ϕi were treated in [2–4] as auxiliary
controls and perturbations, respectively. In such an
approach, the “initial” controls ui depend explicitly
on Ai . In the case of (1.2), this approach leads to ill-
defined ui.

Within the framework of the equivalent lineariza-
tion method, this difficulty can be settled in the follow-
ing manner.

According to (1.2), we have Ai =  + δi , where

δi is an arbitrary number in the given range δi ∈ [0, ],

with  = ( )  – 1. In many technical prob-
lems, δi  ranges between 0.1 and 0.4, so that the toler-
ances for Ai are about 10–40%.

Using the equalities (which can be easily verified)

we rewrite expressions (2.1) in the form

(2.2)

λ̇ i

ẋi

λ̇̇ i f i l u,( ) ϕ i l v x, ,( ),+=

f 1
1
2
--- λ0u1A1

1– λ2u3A3
1–
 – λ3u2A2

1–
+( ),=

ϕ1
1
2
--- λ0 v 1 M1+( )A1

1– λ2 v 3 M3+( )A3
1–

+[=

– λ3 v 2 M2+( )A2
1– ] 1

4
---λ1 xi

2
,∑–

M1 A2 A3–( )x2x3 123( ).=

Ai
–

Ai
–

δi
+

δi
+

Ai
+

Ai
–( )

1–

Ai
1–

Ai
–

1 δi+( )[ ]
1–

Ai
–( )

1–
1 δi

*–( ),= =

δi
* δi 1 δi+( ) 1–

,=

λ̇̇ i f i
* l u,( ) ϕ i

* l u v x, , ,( ),+=
where

and the expressions for  are derived from those for

 with ϕi = 0 and  =  =  = 1.

We will treat  and  as the auxiliary controls

 and perturbations , respectively. As a result,
expressions (2.2) can describe the system with conflict-
ing control parameters

(2.3)

In this case, the “initial” controls ui take the form

(2.4)

To estimate the auxiliary perturbations , we put
forward the principle of assignment and subsequent
confirmation of their upper bounds on the set of states
for linear system (2.3).

We will solve initial nonlinear Problem 1 on the
basis of the corresponding game problems for linear
system (2.3). As a result, equation (2.4) can be treated
as a general form of the controls in Problem 1. Param-

eters of this form, namely, the auxiliary controls , are
determined by solving the corresponding linear game
problems.

3. An auxiliary linear game problem and algo-
rithm for solving Problem 1. We now solve a problem
on the fastest transfer of system (2.3) to the position

(3.1)

for any admissible .

We treat this problem as a differential game. For this

problem to be solvable, admissible upper bounds of 

have to be higher than those of . We assume that the
corresponding constraints take the form

In contrast to the constraints imposed on ui, the form

of those imposed on  and  is due to purely math-
ematical features of the item; namely, the most accept-
able solution to Problem 1 is to be sought within the
framework of the approach under consideration.

ϕ1
* ϕ1

1
2
--- λ0δ1

*u1 A1
–( )

1–
λ2δ3

*u3 A3
–( )

1–
  –+  [  –=

–  λ 3 δ 2 * u 2 A 2
– ( ) 

1–
 ] 123 ( ) ,

f i
*

ϕ i
* δ1

* δ2
* δ3

*

f i
* ϕ i

*

ui
* v i

*

λ̇̇ i ui
* v i

*.+=

u1

2A1
–

λ0
--------- λ0

2 λ1
2

+( )u1
* λ1λ2 λ0λ3+( )u2

*+[=

+ λ1λ3 λ0λ2–( )u3
* ] 123( ).

v i
*

ui
*

λ i λ̇ i 0= =

v i
*

ui
*

v i
*

ui
* α i

*, v i
* βi

*≤≤ ρiα i
*, 0 ρi 1.< <=

ui
* v i

*
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For given  and  (such that  > ), the game
problem described above for system (2.3) is reduced
(see [7]) to the problem on the optimum fast response
for the system

(3.2)

The boundary conditions are the same as those for

system (2.3). System (3.2) is reduced to (2.3) if  =

−ρi . These “worst”  are the optimum controls for
an “enemy.”

The problem of finding the response rate for system
(3.2) has the following solution [8]:

(3.3)

Here, ψi = –  – [2 (1 – ρi)]–1λi |λi | are the switching
functions.

Owing to the conditions  =  = 0 (they follow
from the equalities x0 = x1 = 0), the quantity

(3.4)

is the minimum guaranteed time of control in the linear
game problem for system (2.3). In this case, the quan-
tity τ gives the guaranteed time of reorientation in Prob-
lem 1.

The iteration method of solving Problem 1 involves
the following stages [2–4]:

(1) Assignment of  and preliminary choice of

τ = τi. This procedure predetermines the values of 
and ρi in (3.3).

(2) Check of actual validity for the inequalities

 ≤  and constraint (1.5) on the set S of states for
system (2.3) and (3.3).

This algorithm will be specified in Section 5.
Remarks. (1) Controls taking form (2.4) lead for-

mally to the “singularity” λ0 = 0. However, in the course

of the control, λ0 ∈ [ , 1]. (2) If l1 ≠ (1, 0, 0, 0) or 
is small, it is sufficient to consider controls (2.4) with
permuted indices.

4. Estimation of the admissible range for uncon-
trolled perturbations. We find a sufficient condition

for α, β, , and δi  that ensures the possibility of solv-
ing Problem 1 on the basis of the proposed approach.

Let δ* = max( ).

α i
* βi

* α i
* βi

*

λ̇̇ i 1 ρi–( )ui
*, ui

* α i
*.≤=

v i
*

ui
* v i

*

ui
* λ i λ̇ i,( )

α i
* ψi λ i λ̇ i,( ), ψi 0≠sgn

α i
* λ isgn α i

* λ̇ i, ψisgn– 0.= =

=

λ̇ i α i
*

λ̇ i

0
λ̇ i

1

τ max τ i( ), τ i 2 λ i
0 α i

* 1 ρi–( )[ ]
1–

 
 
  1 2/

= =

βi
*

α i
*

v i
* βi

*

λ0
0 λ0

0

λ0
0

δi
*
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Theorem 1. Let the admissible range for the pertur-
bations vi be estimated by the inequality

(4.1)

Then, Problem 1 can be solved by controls (2.4) and
(3.3) satisfying given constraint (1.5).

We prove Theorem 1 in three stages.
(i) We obtain estimates for ui on the set S with the

help of the equalities

(4.2)

On the set S, the relationship  ≥ ( )
2
 holds [1–4].

Therefore, using (4.2) and the Cauchy–Bunya-
kovskiœ inequality, we have

(4.3)

(ii) We then estimate  on the set S. Using the

Cauchy–Bunyakovskiœ inequality and |x1x2 | ≤ 

(123), we can estimate expressions (2.2) for  as

To estimate , we solve the set of equations for

 in (1.3) as algebraic equations in xi. As a result, we
obtain the relationships

(4.4)

Using (4.4), we obtain the inequality

β 3
3

------- λ0
0 δ*– 

  α .<

ui Ai
–( )

1–
[ ]

2

∑ 4 λ0
2– λ iui*∑

2

ui*
2∑+

 
 
 

.=

λ0
2 λ0

0

1
4
--- ui Ai

–( ) 1–[ ]
2

λ0
2– λ i

2
ui*

2∑∑ ui*
2∑+≤∑

=  λ0
2– λ i

2∑ 1+ 
  ui*

2∑ λ0
2–
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*2 λ0

0( )
2–

ui*
2.∑≤∑=

v i*

1
2
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2∑
v i*

v 1* β*
1
2
---δ* ui Ai
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1–

[ ]
2

∑
 
 
  1 2/

+≤

+
1
4
--- λ0r1 λ2r3 λ3r2– λ1–+ xi

2∑

≤ β* δ* λ0
0 1–

ui
*2∑

1 2/ 1
4
---L xi

2
,∑+ +

β*
1
2
---β, L 1 ri

2∑+ 
 

1 2/

,= =

r1 A1
+

A3
–

–( ) A2
–( )

1–
123( ).=

xi
2∑

λ̇ i

x1 2λ0
1– λ0

2 λ1
2

+( )λ̇1 λ1λ2 λ0λ3+( )λ̇2+[=
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The estimates for  on the set S take the form [5]

As a result, we have

(4.5)

(iii) Finally, we use estimates (4.3) and (4.5) to
prove the theorem. We prove that, provided that condi-

tion (4.1) is satisfied, there exist numbers  and 

such that  >  and inequalities

(4.6)

confirming the assigned upper bounds  of the auxil-

iary perturbations , and (1.5) hold on set S.

Taking (4.1) into account, we assume that

(4.7)

where ε > ε1 > 0 are arbitrarily small numbers.

For (4.7), we have  >  at an arbitrarily small
positive fixed number ε > 0. Hence, the auxiliary game
problem for linear system (2.3) is solvable [7].

We now prove that, for sufficiently small ε > 0, ine-
qualities (4.6) are satisfied on the set S. Indeed, in this
case, the values of ϕ in (4.5) differ arbitrarily little from

α. Taking (4.7) into account, we hence have

 ≤  on the set S.

We then prove that, for sufficiently small ε > 0, con-
straint (1.5) holds on the set S. Indeed, taking (4.3) and
(4.7) into account, we have

Thus, by choosing a sufficiently small ε > 0, we can
ensure that, provided condition (4.1) holds on the set S,

λ̇ i

2

λ̇ i

2
λ̇ i

+( )
2

≤ λ i
0 α i*( )

1–
α i*( )

2
β*( )2

– .=

v i* ϕ ,≤

ϕ β* δ* λ0
0 1–

α i*
2∑

1 2/

+=

+ λ0
0( )

2–
L λ i

0 α i*( )
1–

α i*( )
2

βi*( )
2

–
 
 
 

.∑

α i* βi*

α i* βi*

v i* βi*,≤

βi*

v i*

β*
1
2
--- 3

3
------- λ0

0 δ*– 
  α ε,–=

α i* α*
3

6
------- λ0

0 α , βi*
3

6
------- λ0

0 α ε1,–= = =

α i* βi*

3
6

------- λ0
0

v i* βi*

ui Ai
–( )

1–
[ ]

2

∑ 4 λ0
0( )

2–
α i*

2∑≤

=  12 λ0
0( )

2– 3
6

------- λ0
0 α

2

α 2
.=
the assigned upper bounds of  are confirmed and
estimate (1.5) for controls (2.4) and (3.3) is valid. The
theorem is proved.

Remarks. (I) Inequality (4.1) is a sufficient condi-
tion because it was derived with the use of more restric-
tive inequalities. 

(II) Condition (4.1) makes it possible to solve Prob-
lem 1 with the use of controls (2.3) and (3.3) for a
sufficiently large (although finite) value of τ. If condi-
tion (4.1) is confidently satisfied, the algorithm given
in Section 3, which will be described more accurately
in Section 5, can be employed to find the guaranteed
time τ of reorientation.

(III) Inequality (4.1) is applicable if  – 3δ* > 0.
Without any loss of generality, we can assume that

 ≥ 1/2; hence, the values of δi vary within the range

0 ≤ δi < (6 – )
–1

 = 0.4051 and can exceed unity

if 1 >  > 1/2. 

(IV) When δi = 0, condition (4.1) is reduced to the
estimate that was previously obtained [6] for the toler-
ance range for perturbations, provided Ai are exactly
known.

(V) Taking into account the results of [5], an esti-
mate similar to (4.1) can be obtained in the case of con-
straints imposed on each component ui.

5. Algorithm of solving Problem 1 and evaluation
of the guaranteed reorientation time. Let the values
of α and δi be given and estimate (4.1) be satisfied for
certain, i.e.,

(5.1)

where ∆ > 0 is a given number. In this case, we can use
the following iteration method to find τ:

(a) According to (4.7), we set  = α* to ensure the
validity of inequality (1.5).

(b) We then choose a test value τ of τi in order to pre-

determine, by virtue of (3.4), the values of .

(c) Finally, using estimates (4.5), we check the

validity of the inequalities  ≤ . If these inequal-
ities are not satisfied (or satisfied for certain), the value
of τ should be increased or decreased, respectively.

It is possible to estimate directly the upper bound
of τ.

v i*

3 λ0
0

λ0
0

3 3

λ0
0

β 3
3

------- λ0
0 δ*– 

  α ∆,–=

α i*

βi*

v i* βi*
DOKLADY PHYSICS      Vol. 45      No. 7      2000



A NONLINEAR GAME PROBLEM ON THE REORIENTATION 349
Theorem 2. If equality (5.1) holds, then

(5.2)

6. Example. We consider the reorientation of a body
(space vehicle) from the position x0 = 0 and l0 = (0.701,
0.353, 0.434, 0.432) to the position x1 = 0 and l1 =

(1, 0, 0, 0), with , , and  equal to 4 × 104,
8 × 104, and 5 × 104 kgm2, respectively.

Let α = 11.2 × 10–3 s–2 and δi = 0.1. Estimate (4.1)
takes the form β < 3.5147 × 10–3 s–2. Assuming that ∆ =
2 × 10–3 s–2, we find from (5.1) that β = 1.5147 × 10–3 s–2.

In accordance with (4.7), we set  = α*. Employ-
ing the algorithm described in Section 5, we find that
τ = 117.45 s, provided the reorientation is due to con-

trols (2.4) and (3.3) in which  = 2.2661 × 10–3 s–2,
ρ1 = 0.9548, ρ2 = 0.9444, and ρ3 = 0.9447. In this case,
constraint (1.5) is satisfied.

Note, for comparison, that direct estimate (5.1)
yields τ* = 119.75 s.
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Numerous experimental investigations have estab-
lished not only the possibility of using the Darcy rule
but also limits of its applicability [1, 2]. In the process
of these investigations, the Darcy rule was shown to be
valid for both isotropic and anisotropic media, but it is
fulfilled merely within a certain range of filtration rates.
Thus, the upper and lower boundaries for the applica-
bility of the Darcy rule can be indicated. The upper
boundary is caused by the manifestation of inertial
forces at high filtration rates, while the lower one, by
physicochemical effects for interaction of a fluid with a
solid skeleton and by non-Newtonian rheological prop-
erties of the fluid. In this study, we consider the gener-
alizations of the Darcy rule with isotropic filtration
properties at high filtration rates.

A number of papers [3, 4] are devoted to construct-
ing nonlinear constitutive equations of the filtration
theory at high filtration rates. However, in these inves-
tigations, methods of the theory of nonlinear tensor
functions and those of crystal physics [5, 6] were hardly
used. Using the theories indicated makes it possible not
only to develop general methods of constructing non-
linear constitutive equations but also to find possible
effects. Analysis of nonlinear filtration laws generaliz-
ing the Darcy rule with isotropic filtration properties
showed that nonlinear filtration properties can be aniso-
tropic and, moreover, manifest asymmetry; i.e., they
have different filtration properties in the case of flow
along the same straight line in different directions.

The basic law of the filtration theory (Darcy rule) rep-
resents the linear relation between two effective vector
fields, namely, the filtration-pressure gradient ∇ ip and
the filtration rate wi . The presence of this relation is
experimental fact. On the other hand, the Darcy rule
can be derived by averaging the Navier–Stokes equa-
tions for the case of the fluid flow in a periodic lattice
[7]. Thus, the Darcy rule represents the differential
form of the momentum-conservation law for a specific
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continuous medium that represents a composite mate-
rial consisting of solid skeleton and a fluid. Therefore,
in the Darcy rule, both fluid properties and void-space
properties of the solid skeleton are given and specified.
In the case of filtration of a Newtonian viscous fluid, it
turns out that these properties can be separated. The
fluid properties are specified only by the viscosity coef-
ficient µ, while the void-space properties are deter-
mined by its symmetry and can be given by the penetra-
bility-coefficient tensor kij or by the tensor rij for the fil-
tration-resistance coefficients. The last argument makes
the Darcy rule similar to constitutive relationships like
Ohm’s or Fick’s laws. This is associated with the fact
that one more property of the fluid motion is introduced
by the Darcy rule.

In the context of constitutive relationships, the prin-
cipal equation of the filtration theory postulates, in the
general case, a relation of the form

(1)

where ρ is the fluid density, χα are the invariant scalar
parameters describing a porous medium and possibly
the fluid, and Tα are the material tensors specifying and
setting the properties of the void space for the solid
skeleton. Assumption of the linearity for relation (1)
leads to the Darcy rule. The simplest variant for gener-
alizing the Darcy rule, which corresponds to equation
(1), implies the subsequent expansion of the function fi

into the Taylor series in terms of powers of wi:

(2)

Here, rij , rijk, and rijkl are the material tensors setting the
filtration resistance. In equality (2) and below, we con-
sider the problem in the Cartesian coordinate system
and assume, for simplicity, that the summation is car-
ried out with respect to the repeated subscripts. The
explicit forms of the tensors rij , rijk, and rijkl depend on
the class (group) of symmetry of the void space [5, 6].

∇ i p f i wi ρ µ χα Tα, , , ,( ),=

1
µ
--- ∇ i p –rijw j rijkwiwk– rijklw jwkwl.–=
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For an isotropic porous medium, relationship (2) yields
the filtration law in the form

(3)

where ri are the scalar coefficients and w is the modulus
of the filtration-rate vector. Relationship (3) differs
from the Forchheimer law [4], commonly used in
underground hydromechanics, in which the nonlinear-
ity is given by a term of the form r2wwi. It is necessary
to note that the result presented by relationship (3) was
found previously in [8] as the solution to the Ozeen and
Navier–Stokes equations. To substantiate the Forchhe-
imer formula and obtain a more general representation
for relations (1), it is necessary to use the more rigorous
results of [9, 10]. According to these studies, relations (1)
can be represented in the form of the expansion in terms
of the basis tensors and their combinations [10], whose
multipliers are functions of the invariants (the general-
ized Hamilton–Cayley formulas). In this case, the rep-
resentation of the most general form of the nonlinear
filtration law for isotropic porous media is given by the
relationship [9]

(4)

where f is the function of w and gij is the metric tensor.
The construction of filtration law (4), i.e., the definition
of the explicit form of f(w) for a particular isotropic
porous medium can be realized by processing only one
experimental curve representing the dependence of the
gradient-pressure modulus on the modulus of the filtra-
tion-rate vector. Indeed, it follows from relationship (4)
that f(w) = ∇ p/µw. Thus, the approximation of the
experimental dependence of ∇ p on w determines the
form of f(w) and, therefore, the nonlinear filtration law.
In the framework of a similar approach, the one-term
and two-term representations of the nonlinear filtration
law [4] differ only by the choice of the class of func-
tions used for the approximation. However, the isotro-
pic filtration properties in the Darcy rule are manifested
also by anisotropic porous media with the cubic sym-
metry of the effective void space [6]. Porous media
with a cubic symmetry of the effective void space have
the following generalized representations for the non-
linear laws accurate to the cubic terms in the filtration-
rate expansion [10]:

(5)

(6)

where fi and ϕi are the functions of the principal vector
invariants formed by convolutions of basis tensors with

1
µ
--- ∇ i p –r1wi r2w2wi,–=

1
µ
--- ∇ i p f gijw j,=

1
µ
--- ∇ i p – f 1gijw j f 2O h( )ijklw jwkwl,–=

1
µ
--- ∇ i p –ϕ1gijw j ϕ2T d( )ijkw jwk–=

– ϕ3O h( )ijklw jwkwl,
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the filtration-rate vector, gij , T(d)ijk, and O(h)ijkl are the
basis tensors [10]. Equality (5) yields the filtration law

for the groups (classes) of symmetry /4, /4, /2,

and equality (6), 3/  and 3/2 (the notation for the sym-
metry groups is given according to Shubnikov). The
analysis of relationships (4)–(6) shows that they all rep-
resent the Darcy rule with isotropic filtration properties
in the case when f, f1 , and ϕ1 are constant and f2 = 0,
ϕ2 = 0, and ϕ3 = 0. However, while passing to the non-
linear filtration law, the filtration properties substan-
tially differ. The nonlinear filtration resistances speci-
fied by the relationship r(ni) = –∇ ipni/µw have the fol-
lowing form for filtration laws (4), (5), and (6),
respectively:

(7)

where ni are the components of the basis vector deter-
mining the direction of the filtration-rate vector with
respect to the crystallographic axes [10]. Analysis of
expressions (7) shows that the filtration properties in
laws (5) and (6) are direction-dependent and, moreover,
they manifest an asymmetry in law (6) along the direc-
tion for which n1n2n3 ≠ 0. Thus, a change in the symme-
try of filtration properties is possible while passing
from the linear to the nonlinear filtration law. It is nec-
essary to take this fact into account in the experimental
determination of these laws. Therefore, when con-
structing the nonlinear filtration laws, we need to carry
out complex experimental investigations even for
media manifesting isotropic properties in the Darcy
rule.

The procedure of experimentally determining non-
linear filtration properties for actual rocks containing
hydrocarbon row material must include determination
of both the effective symmetry of the void space and the
explicit form of the functions fi and ϕi. One variant for
complex investigations can involve determination of
elastic and hydrodynamic effective properties. Using
the elastic characteristics of a core, it is possible to
determine the symmetry of elastic properties, which
coincides with the symmetry of the fourth-rank tensor
in representations (2), (5), and (6), and to establish the
directions of crystallographic axes [11, 12]. After the
elastic symmetry and positions of principal axes have
been determined, it is necessary to cut several smaller
cores from the primary one for subsequent hydrody-
namic studies. In the case of cubic symmetry, the min-
imum number of cores can be two for relationships (5)
and three for relationships (6). However, since the elas-
tic symmetry of cubic crystals is given by the tensor
O(h)ijkl for all symmetry groups, it is impossible to deter-
mine the type of the nonlinear filtration law after estab-
lishing only elastic symmetry. Therefore, it is necessary

6 3 6

4

r f w( ), r f 1 f 2 n1
4 n2

4 n3
4+ +( )w2,+= =

r ϕ1 6ϕ2n1n2n3w ϕ3 n1
4 n2

4 n3
4+ +( )w2,+ +=
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to prepare three cores. The optimum directions of the
core symmetry axes are the following:

As is easy to establish for the directions found, the
vectors wi and ∇ ip are located on one straight line and,
as a result of experimental investigations, the plots of

the dependences ∆p/L = F(w, ) are obtained, where
∆p is the difference of pressures or the Leibenzon func-
tions on the core in the course of the fluid and gas filtra-
tion, respectively. Furthermore, L is the core length,
and w is the filtration rate for the fluid filtration or the
mass-flow rate for the gas filtration. Expressing experi-
mental data in the form

we find the values of the filtration resistances r( )
along the corresponding directions. As has been noted,
in the general case, the desired expressions for fi and ϕi

are the functions of the invariants formed by convolu-
tions of the rate vector with the basis tensors. However,
the assumption that f2, ϕ2, and ϕ3 depend on the invari-
ants increases the exponent for the rate in the represen-
tation of the filtration resistances (7). This considerably
complicates the representation for these dependences,
whereas all the known experimental data are well pro-
cessed using two or three constants in the polynomial
representation of the filtration law. Therefore, remain-
ing within the framework of the classical representation
of the nonlinear filtration law, we can assume that f1 =
ϕ1 = a + bw, ϕ2 = c, f2 = ϕ3 = d, where a, b, c, and d are
certain constants to be found experimentally. In this
case, the linear combinations of the filtration resis-

tances r( ) for the directions  and  make it
possible to determine d

(8)

and a + bw,

(9)

The representation of the constant c in filtration
law (6) is obtained from the measurements for the third

core along the positive +  and the negative –

ni
1( ) 1 0 0, ,( ), ni

2( ) 2
2

------- 2
2

------- 0, , 
  ,= =

ni
3( ) 3

3
------- 3

3
------- 3

3
-------, , 

  .=

ni
α( )

∆p
µwL
-----------

F w ni
α( ),( )

µw
-----------------------,=

ni
α( )

ni
α( ) ni

1( ) ni
2( )

r ni
1( )( ) r ni

2( )( )– 0.5dw2,=

2r ni
2( )( ) r ni

1( )( )– a bw.+=

ni
3( ) ni

3( )
directions:

(10)

Carrying out the experimental investigations
according to the scheme proposed and processing the
experimental data on the basis of relationships (8)–(10)
make it possible to find the nonlinear filtration law gen-
eralizing the Darcy rule with isotropic filtration proper-
ties. In this case, feasible effects associated with mani-
festation of the anisotropy and asymmetry in filtration
properties are taken into account.

The analysis of constructing nonlinear filtration
laws for media manifesting transversal-isotropic and
orthotropic filtration properties in the Darcy rule is
related to even greater “structuring” of both the filtra-
tion properties and filtration laws and presents an object
for additional study.
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1. INTRODUCTION

The hysteresis in transition between the regular and
Mach reflections of steady-state shock waves, which
was recently revealed by numerical [1] and experimen-
tal [2] methods, stimulated widespread interest in this
classical problem of gas dynamics. As is known [3], for
strong shock waves (when the incident-flow Mach
number M > M* ≈ 2.2 and the adiabatic index of the gas
γ = 1.4), theory predicts the range of angles of inci-
dence αN < α < αd in which both regular and Mach
reflections are possible. Here, αN is the angle deter-
mined from the so-called Neumann criterion and giving
a theoretical lower boundary for the existence of the
Mach reflection. Angle αd corresponds to the criterion
of the maximum flow deflection, according to which, at
angles exceeding αd, regular shock-wave reflection is
impossible. Existence of this double solution range
(with an angular width equal to 6.5° at M = 4 and
exceeding 10° at M = 6) suggests that the smooth vari-
ation of the angle of incidence can be accompanied by
hysteresis behavior in the change of the reflection type.
Namely, it was supposed [4] that regular reflection
must be observed up to α = αd. After that, the jumplike
transition to the Mach configuration with a finite height
of the Mach pedestal should occur. According to the
same conjecture, the subsequent smooth decrease in the
angle retains the Mach configuration throughout the
entire double-solution range, where the height of the
Mach pedestal should gradually decrease and eventually
vanish at α = αN. This is the picture of transition actually
revealed by recent numerical calculations [1, 5, 6].

The experimental results are less definite. In the
experiments carried out in closed-jet wind tunnels
[7, 8], both transitions (direct and reverse) occur at
practically the same values of the angle very close to
αN. At the same time, studies using the free-jet facilities
[2, 9] confirm the existence of hysteresis. However, the
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angle of transition to the Mach reflection observed
there does not agree with the theoretical predictions. In
these experiments, the transition to the Mach reflection
occurs within the double-solution range. For nearly
two-dimensional flows, the angles of the transition are
by 3°–4° larger than αN but much smaller than αd. The
reverse transition was again observed at α = αN.

We argue that the following hypothesis can explain
all these results. In the double-solution range, both reg-
ular and Mach configurations are steady-state and, thus,
are stable with respect to small perturbations. Finite-
amplitude perturbations can cause transition between
these states. We note that the possibility of nonunique
solutions to the time-independent Euler equations is
well known [10]. Moreover, in the double-solution
range, the stability of the regular reflection with respect
to infinitely small perturbations of the incident flow
was proved by analytical methods [11].

It seems rather plausible that the threshold ampli-
tude of perturbation initiating the transition to the Mach
reflection should decrease with the growth of the inci-
dence angle and vanish at α = αd. On the contrary, ampli-
tude of perturbation causing the reverse transition must
fall with decreasing α and tend to zero as α  αN.
Then, the above results can be explained by the fact
that, in free-jet wind tunnels, perturbations initiating
the transition are less intense than those arising in
closed-jet wind tunnels, while the numerical calcula-
tions completely ignore these perturbations. Note that
the difference between the aforementioned types of
wind tunnels can be associated with the existence of
acoustic waves in those with closed jet. The waves are
generated by a turbulent boundary layer formed at the
walls of the working chamber.

To confirm or refute the stated hypothesis, investiga-
tions of the effect produced by perturbations of differ-
ent nature on the transition are needed. Numerical sim-
ulations of the effect of short-time but intense perturba-
tions of the incident flow considerably increasing or
decreasing its velocity during a certain time interval
were carried out in [12, 13]. It was shown that such per-
turbations could cause transitions between regular and
000 MAIK “Nauka/Interperiodica”
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Mach reflections in both directions. Nevertheless, it
was rather difficult to analyze them, because they gave
rise to a system of three moving gas-dynamic disconti-
nuities that interacted with the steady-state shock-wave
configuration in a rather complicated manner. In this
paper, we study the effect of local perturbations intro-
duced as density variations in a gas stream flowing
toward the point of shockwave reflection at fixed values
of velocity and pressure. An advantage of these pertur-
bations is related to the fact that the region with
changed density is separated from the surrounding gas
by a contact discontinuity and is simply carried away
by the flow, while the major part of the flow remains
unperturbed. At the same time, we believe that such
perturbations are not the main cause of the earlier tran-
sition to the Mach reflection in wind tunnels compared
to that predicted by the numerical calculations. This
point calls for further detailed analysis.

In this paper, using these perturbations as a conve-
nient tool, we want to show that in the problem under
consideration, two steady states actually arise in the
system and the transition between them can be caused
by finite-amplitude perturbations. Moreover, our pur-
pose is to investigate how the feasibility of such a tran-
sition depends on the amplitude of the imposed pertur-
bation.

2. FORMULATION OF THE PROBLEM 
AND METHOD FOR SOLVING IT

The effect of local density perturbations on the
change of the types of reflection of a steady-state shock-
wave was studied by numerical solution of the two-
dimensional time-dependent Euler equations describing
the flow of the ideal gas with a constant specific heat and
adiabatic index γ = 1.4. We used the high-order total
variation diminishing scheme. To calculate flows on the
faces of the calculation cells, we solved approximately
the problem of the decay of a discontinuity that sepa-
rates states occurring at both sides of a face, by the
Harten–Lax–van Leer–Einfeldt (HLLE) method. This
method is highly reliable for flows with strong shock
waves and/or low-density regions. Except for the cells
situated both near gas-dynamic discontinuities and
points of local extremum of the solution, the parame-
ters at the faces were reconstructed from their averages
over the cell volume by using formulas accurate to the
fourth order. Other details of the numerical method are
presented in [14].

A wedge acting as a shock-wave generator was
placed inside a rectangular calculation region. Simi-
larly to experiments [8], it had the shape of a right tri-
angle with a front-edge angle equal to 15°. Variation in
the angle of the generated wave was performed by rota-
tion of the wedge about the trailing edge (Figs. 1 and 2).
A distance between this edge of the wedge and the
lower boundary of the calculation region was g =
0.56w, where w is the length of the wedge hypotenuse.
A supersonic influent stream was specified at the left
boundary of the region. The lower boundary was
treated as a symmetry line. This corresponds to the
actual geometry of the experiment, where the interac-
tion of two shock waves generated by symmetric
wedges is usually studied. This is done to eliminate the
effect of the boundary layer that would occur in the
case of wave reflection from a rigid wall. The right
boundary was situated sufficiently far from both the
wedge and the point of shockwave reflection in order to
ensure the flow to be supersonic everywhere within the
cell. We used a multiblock structured computational net
with the total number of cells equal to 84000.

The calculations were carried out in a way described
below. First, for a certain α belonging to the double-
solution range, we calculated a steady-state shockwave
configuration by the method of temporal relaxation.
Then, perturbation was introduced at the left boundary
of the region. For this purpose, we varied the density of
the stream inflowing through it by ∆ρ. Such variation of
boundary conditions was performed in several cells,
being the closest to the lower boundary. The changed
boundary conditions were kept constant for a certain
time T. Then, the perturbation was switched off; and the
unperturbed density ρ∞ was again specified in all of the
cells at the left boundary.

3. RESULTS OF THE CALCULATIONS

In all calculations, the Mach number of the unper-
turbed incident flow was M = 4. For this value of the
Mach number, we had the angle αN = 33.4° and
αd = 39.2°.

Figure 1 illustrates the transition from the regular
reflection to the Mach configuration under the effect of
local density variations. The angle α = 36° of the wave
incidence corresponded approximately to the middle of
the double-solution range. The density was decreased
by 25% in the lower ten calculation cells belonging to
the left boundary of the region. The duration of the per-
turbation was T = 0.6w/a∞, where a∞ is the sound veloc-
ity in the unperturbed incident flow. A steady-state reg-
ular configuration represented the initial conditions for
the calculations. Figure 1 shows a flow field (density
isolines) at the time point t = 0.7w/a∞ after the pertur-
bation has been introduced. By this time, which corre-
sponds to beginning of formation of the Mach pedestal
in the flow, the perturbation has already been switched
off. A region of the reduced density is clearly seen in
the plot as a narrow strip belonging to the lower part of
the calculation region. Further on, the height of the
Mach pedestal continued to grow until the eventual for-
mation of the steady-state Mach configuration shown in
Fig. 1 was formed at the time moment t = 6.0w/a∞.

The results concerning the simulation of the reverse
transition (from the Mach reflection to the regular con-
figuration) are presented in Fig. 2. The calculation was
carried out for the same angle of the wave incidence
α = 36°. To place the triple point of the Mach configu-
DOKLADY PHYSICS      Vol. 45      No. 7      2000
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t = 0.7w/a∞

t = 6.0w/a∞

Fig. 1. Transition from the regular reflection to the Mach one under the action of a local density perturbation.
ration inside a zone of increased density, the density
was enhanced in calculations by 50% in 20 calculation
cells. As compared to the first case, the duration of per-
turbation was much longer: T = 2.5w/a∞.

When the perturbation and the triple shock-wave
configuration began to interact, the height of the Mach
pedestal decreased, and finally, at the time point t =
2.6w/a∞, the pedestal disappeared (Fig. 2). If we switch
off the perturbation after that, the formed regular reflec-
tion survives. At t = 6.0w/a∞, the calculated final regu-
lar configuration is also shown in Fig. 2.

In the both cases, the mechanism underlying the
change of the reflection type is the same. Entering a
zone with the changed density, the incident shock-wave
is refracted. As a result, it reaches the lower boundary
or the triple point at the angle different from that corre-
sponding to the perturbation-free conditions. At a cer-
tain decrease in the density, this angle becomes larger
than the critical angle αd calculated for parameters of
the perturbed incident flow. This makes the transition to
the Mach reflection inevitable. Similarly, at a certain
DY PHYSICS      Vol. 45      No. 7      2000
increase in the density, the angle under which the inci-
dent shockwave reaches the triple point becomes
smaller than αN. As a result, transition to regular reflec-
tion occurs.

The angle of the refracted shockwave αrs can be cal-
culated by using a self-similar solution to the classical
problem, which considers interaction of a shock wave
with a contact discontinuity [10]. For the three values
of the angle of incidence α = 34°, 36°, and 38°, the
results of these calculations are shown in Fig. 3.

The plot presented allows us to easily estimate the
threshold perturbation amplitude changing the type of
the reflection. For example, to cause the transition to
the Mach configuration at the wave incidence angle
α = 36°, it is necessary to decrease the density approx-
imately by 21%. At α = 38°, the same result is attained
at the density decrease by 8.5%. The numerical simula-
tion completely confirms the results of this simple the-
oretical analysis.

There are two reasons according to which the tran-
sition from the regular reflection to the Mach one
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Fig. 2. Transition from the Mach reflection to the regular one under the action of a local density perturbation.
occurs much easier than the reverse transition. Firstly,
varying the flux density, we change the Mach number
as well, which, in turn, causes variation of both αN and
αd. This produces only a slight effect on the transition
to the Mach reflection, because αd depends weakly on
the Mach number. At the same time, αN can be essen-
tially decreased by an increase in the Mach number. As
a result, the threshold amplitude of the perturbation
causing the transition to the regular reflection grows
considerably.

Secondly, even a perturbation localized within a
very small region can cause transition to the Mach
reflection. To initiate transition to regular reflection, the
perturbation must be much longer than the former in
both space and time. Its spatial dimension must exceed
a height of the Mach pedestal, and its duration must be
such that the rather slow process of decreasing the
height of the Mach pedestal would have time to be
completed. According to these reasons, in the double-
solution range, the Mach shock-wave configuration, in
a certain sense, is more stable than that of the regular
reflection. This conclusion agrees completely with
experimental results, because the transition to regular
reflection is always observed at angles rather close to
αN and slightly exceeding it.
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Fig. 3. Angles of refraction of a shock wave and the criteria
for the transition αN and αd as functions of an amplitude of
the density perturbation.
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4. CONCLUSIONS
By means of numerical simulation, we have shown

that in the case when the angle of incidence of a shock
wave lies within the double-solution range, local varia-
tions in the density of the incident flow can cause tran-
sition between regular and Mach shock-wave configu-
rations. The threshold amplitude of the perturbations
causing such a transition can be determined by means
of simple theoretical analysis. As compared to the
reverse transition, the transition to the Mach reflection
can be initiated much more easily. As a result, in the
double-solution range, the Mach configuration can be
considered to be more stable than that of the regular
reflection. This fact is in complete agreement with
available experimental data.
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