
  

Doklady Physics, Vol. 47, No. 4, 2002, pp. 261–266. Translated from Doklady Akademii Nauk, Vol. 383, No. 4, 2002, pp. 472–477.
Original Russian Text Copyright © 2002 by Zubarev, Ivanov.

                             

PHYSICS

    
Fractal Structure of a Colloidal Aggregate
A. Yu. Zubarev and A. O. Ivanov

Presented by Academician V.P. Scripov October 30, 2001

Received November 19, 2001
Colloid systems are common in nature and are
actively used in current technologies. Over the last cen-
tury, aggregate stability and aggregation kinetics have
been among the fundamental subjects in studies of col-
loids. Traditional approaches to the theoretical analysis
of aggregation processes date back to Smoluchowski’s
pioneering study [1] and are based on solving the set of
kinetic equations of coagulation. A large number of
studies (see, e.g., [2, 3] and the references cited therein)
were devoted to the analytical and numerical study of
the set of Smoluchowski kinetic equations. Exact solu-
tions were found for constant kinetic coefficients; and
the self-similar behavior of solutions was investigated
for various dependences of these coefficients on the
sizes of aggregates, including behavior under the con-
ditions of sedimentation and in shear flows.

At the same time, special features of the internal
structure of aggregates that appeared received insuffi-
cient attention in these approaches. Similar processes
of clusterization are also observed in molecular sys-
tems, e.g., chemical deposition in supersaturated solu-
tions, the growth of crystals in supercooled melts, etc.
In certain cases, the resulting aggregates have a branch-
ing treelike structure characterized by spatial self-simi-
larity. These objects were named fractal clusters. The
developed methods of computer simulation [4–8] made
it possible to reveal the main regularity of the fractal
structure of these clusters: the total number N of parti-
cles (molecules) involved in the cluster depends on its

dimension Σ by the power law N(Σ) ~ . The expo-
nent df was named the fractal dimension of the cluster,
and its determination is the prime objective of numer-
ous theoretical and computer investigations.

Until now, information about the structure of fractal
clusters has been primarily acquired by computer sim-
ulation. The configurations of a system of particles with
a specified mechanism of motion (Brownian or free-
molecular), the type of particle interaction, and the
kinetics of particle coalescence are reproduced by
numerical methods. When time evolution is simulated
by the multiple step-by-step variation of the configura-
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tion, the distribution of particles inside clusters is
obtained in the form of a highly branching structure.
Statistical averaging over the ensemble of clusters
makes it possible to determine their fractal dimension
depending on the mechanism of particle motion and the
type of coagulation kinetics. The concept of this
method dates from the model of diffusion-limited
aggregation (DLA) [5], which considers the alternate
motion of solitary particles and their addition to a clus-
ter that has already been formed. Later, this approach
was generalized to more complicated types of aggrega-
tion (see, e.g., [4, 6–8]. The main result of this approach
is the fundamental conclusion that the fractal dimen-
sion is a universal characteristic whose value depends
on the space dimension: df ≈ 2.5 for three-dimensional
bulk structures and df ≈ 1.7 for two-dimensional surface
formations. The available theoretical models are
applied to describe the features of the fractal structure
of computer-designed clusters with an a priori speci-
fied fractal branching structure. At the same time, the
application of computer simulation results to particular
types of aggregates, e.g., colloid aggregates, faces a
number of problems, primarily because a computer
experiment cannot actually reproduce the simultaneous
diffusion motion of a large number of particles in a col-
loid system. Moreover, it is very difficult to trace the
effect of particular physical and chemical conditions
realized in a colloid on the internal structure of aggre-
gates by computer methods. For this reason, it is impor-
tant to develop analytical models of the aggregation of
colloid dispersions. These models combine the abilities
to acquire information about the internal structure of
colloid aggregates and to determine the regularities of
the evolution of an ensemble of aggregates.

This study is devoted to developing the correspond-
ing model of the growth of an individual colloid aggre-
gate formed due to the attachment of solitary particles.
Contrary to the above theories, our model involves no
prior assumptions on the internal structure of the clus-
ter. The model also takes into account that the diffusion
motion of particles inside the cluster occurs in con-
strained conditions, and combination and recombina-
tion are complicated due to the presence of an excluded
volume formed by the particles of the aggregate frame.
Since the diffusion motion of colloid particles is rather
slow, we analyzed the case where the growth of an
2002 MAIK “Nauka/Interperiodica”
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aggregate was limited by the rates of the diffusion sup-
ply of particles to its boundaries. Under these condi-
tions, the attachment of free particles and the detach-
ment of frame particles can be internally balanced. A
fundamentally new physical result is that the growing
aggregate is characterized at this dynamic balance by a
power (!) dependence of the concentration of bound
particles on a spatial coordinate that is a basic property
of the fractal cluster. The fractal-dimension value of
df = 2.5 obtained analytically is independent of the par-
ticular physical and chemical parameters of the colloid
system and coincides with experimental data [9–13]
and computer results for three-dimensional clusters in
the classical DLA mode.

The distributed model of the growth of a colloid
aggregate is based on using an aggregated-particle con-
centration ϕ averaged over angles. This concentration
depends on time t and distance r from the formal center
of the aggregate. For three-dimensional fractal clusters,
this concentration depends on the coordinate according

to the power law ϕ(r) ~ . This function carries
incomplete information about the degree of aggregate
branching. However, a nonuniform distribution ϕ(t, r)
points to the looseness of the aggregate and discloses
the regularities of the evolution of its internal structure
in the course of its growth. Therefore, the model can be
formulated on the basis of the concept of coexisting
interpenetrating continua [14] under the following sim-
plifying assumptions.

(i) Colloid particles can be divided into three
classes: particles bound in the aggregate frame and free
particles inside and outside the aggregate. The structure
of the cluster is described by the volume concentration
ϕ(t, r) of aggregated particles coexisting with solitary
particles of concentration n(t, r) inside the cluster
(Fig. 1). Outside the aggregate, there are only solitary
particles whose concentration is σ(t, r). For close inter-
particle bonds, the hydrodynamic mobility of aggre-

r
df 3–

Fig. 1. Colloid fractal aggregate. The black, gray, and white
circles are aggregate-frame particles, free n-class particles,
and free σ-class particles, respectively. The dashed line is
the boundary of the aggregate.
gated particles can be neglected compared to the mobil-
ity of solitary particles. Since we consider quantities
averaged over angular variables, all the densities
depend only on time and the radial coordinate r.

(ii) The aggregate occupies a spherical spatial
region of radius Σ(t) corresponding to the bound parti-
cle most distant from the center (Fig. 1). The motion of
the formal boundary Σ(t) is determined by the balance
between the rate of diffusion supply of solitary σ parti-
cles from the system bulk to the cluster surface and the
rate of their attachment to outer aggregated particles,
i.e., the rate of transition of particles from class σ to
class ϕ at the surface r = Σ(t).

(iii) We consider a loosely concentrated colloid sys-
tem; therefore, the interaction between solitary σ parti-
cles can be neglected. The evolution of the structure of
a randomly formed cluster is determined by the kinetics
of the attachment of solitary n particles to ϕ particles of
the aggregate frame, i.e., the transition of particles from
class n to class ϕ inside the aggregate region r < Σ(t).
The probability of this transition is proportional to the
product of the densities ϕn and is much higher than the
probability of the coagulation of solitary n and σ parti-
cles. Therefore, the formation of doublets, triplets, etc.
of free particles can be neglected. The aggregation is
assumed to be reversible; therefore, the detachment of
particles from the aggregate frame is also taken into
account. The probability of the reverse transition from
class ϕ to classes n and σ can be very low, but this pro-
cess always takes place in real systems.

(iv) Inside a cluster, solitary and bound particles are
considered as interpenetrating coexisting continua.
Therefore, it is convenient to describe the n  ϕ
(combination) and ϕ  n (recombination) transitions
by mass-exchange terms in the diffusion equations.

According to general thermodynamic principles, the
diffusion flow of solitary n particles inside the aggre-
gate region is determined by the degree of inhomogene-
ity of their chemical potential µ:

(1)

where β is the hydrodynamic mobility of solitary col-
loid particles. This form of the chemical potential µ
implies that the combination of particles is associated
with the presence of a deep, narrow minimum in the
energy of interparticle interaction. Since this potential
well is narrow, we can ignore the interparticle interac-
tion when particles are not in contact. When they come
in contact, a solitary particle can be attached to the
aggregate frame with a certain probability. The attach-
ment probability depends naturally on the parameters
of the energy barrier between particles. On the other
hand, the aggregated particles in a certain representa-
tive volume occupy a part that is inaccessible to solitary
n particles. Therefore, the chemical potential µ must
include these constrained conditions. Relationship (1)
has the form of the simplest van der Waals approxima-

j βn∇µ , µ kT
n

1 ϕ /ϕm–
--------------------- 

  ,ln= =
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tion, and ϕm ≈ 0.4–0.6 is the concentration of a random
close packing.

The equation of the diffusion of free particles inside
the aggregate region has the form

(2)

where D = βkT is the diffusivity of colloid particles and
the last term on the right-hand side corresponds to the
mass exchange between free and frame particles (n  
ϕ transitions). These transitions depend naturally on the
local probabilities for the particles to overcome the
energy barriers and on densities n and ϕ:

(3)

The local kinetic coefficients a and b of attachment and
detachment, respectively, are determined by the real
physical and chemical properties of the colloid system.
The structure of the last term in Eq. (3) (recombination)
is particularly remarkable. The number of particles
detached per unit time in a local representative volume
must be proportional to the number of aggregate-frame
particles in this volume; therefore, the intensity of the
ϕ  n transition must be proportional to the concen-
tration ϕ. On the other hand, the probability of detach-
ment must be a decreasing function of the number of
bonds between ϕ particles and must depend on a frac-
tion of the free space in the local neighborhood of every
aggregated particle. In the region of close packing
where ϕ ≈ ϕm, the recombination process is impossible.
Relationship (3) uses the simplest dependence in which
the number of particles locally detached from the
aggregate is proportional to the product ϕ(ϕm – ϕ).

In the space outside an aggregate, the distribution of
the solitary-particle concentration is described by the
ordinary diffusion equation with the natural boundary
condition of inexhaustibility of the system (for r  ∞):

(4)

The following conditions must be satisfied at the
aggregate boundary r = Σ(t):

(i) chemical-potential continuity for solitary par-
ticles

(5)

n∂
t∂

----- –divj
ϕ∂
t∂

------–=

=  D∇ 1 ϕ
ϕm

------– 
  ∇ n

1 ϕ /ϕm–
--------------------- 

  ϕ∂
t∂

------, 0 r Σ t( ),<≤–

→←

ϕ∂
t∂

------ anϕ bϕ ϕ m ϕ–( ), a b, const,≈–=

0 r Σ t( ).<≤

σ∂
t∂

------ D∆σ, r Σ t( ), σ ∞( )> σ∞.= =

n
1 ϕ /ϕm–
--------------------- 

 ln σ, rln Σ t( );= =
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(ii) the balance of diffusion flows of particles

(6)

(iii) the equation of boundary motion

(7)

where the boundary Σ(t) is assumed to be displaced due
to attaching (detaching) particles by a value equal to ν
(measured in centimeter) on average. This value can be
considered as being approximately equal to the particle
radius. Conditions (6) and (7) indicate that the aggre-
gate growth (an increase in the value Σ with time) is
determined by the balance between the diffusion supply
of particles to the boundary [Eq. (6)] and the kinetics of
their attachment to outer particles of the aggregate
[Eq. (7)].

Thus, the model under consideration reduces to a
system of coupled nonlinear equations with an
unknown moving boundary. The model involves three
natural time scales. The evolution of the internal struc-
ture of the aggregate is determined by Eq. (3) and is

characterized by the aggregation time τa = . The solu-

tions of diffusion equations (2) and (4) relax at the time

τD =  of establishing the steady-state density profile.

Finally, the motion of the boundary is characterized by

a growth time of τΣ = . The general theory of

problems with a mobile boundary [15] indicates that
the time relaxation of a solution is primarily determined
by the growth time τΣ. For sufficiently large and slow-
growing aggregates, the inequality τa , τD ! τΣ is valid.

In other words, it is possible to set  ≈ 0 and  ≈ 0

in Eqs. (3) and (4). This property means that combina-
tion and recombination are dynamically balanced
inside an aggregate, and the distribution of the solitary-
particle concentration outside the cluster can be consid-
ered in the quasistationary approximation.

For further analysis, it is convenient to introduce the

function ρ =  corresponding to the concentra-

tion of solitary n particles that is determined for a repre-
sentative-volume fraction free of aggregate-frame parti-
cles. Furthermore, the boundary condition ϕ(t, 0) = ϕm

at the center of an aggregate (r  0) is quite reason-
able and natural. This condition implies that the aggre-
gate begins to grow from a small randomly formed,
quasi-dense nucleus with the concentration ϕm of ran-

D
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dom close packing. Under the above assumptions, the
model includes the following equations and conditions:

(8)

(9)

(10)

(11)

(12)

(13)

It is easy to note that principal kinetic equation (9)
has the homogeneous solution

(14)

for which diffusion equation (8) reduces to the identity.
This means that, after a quasi-dense nucleus has been
formed, the aggregate grows like a liquid drop in a super-
saturated vapor. Inside the aggregate space, there are
only bound particles and therefore the n-particle concen-
tration vanishes. Consequently, the function ρ remains a
constant found from boundary conditions (11)–(13):

(15)

The above assumption τa ! τΣ concerning the time
scales is evidently satisfied:

because the lowest value of the aggregate dimension Σ
cannot be less than the particle radius ν and a weakly
concentrated system is considered. The second condi-
tion τD ! τΣ is also satisfied. Homogeneous drop-
shaped aggregates are formed during phase stratifica-
tion of colloids as a result of violating thermodynamic
stability [2].

∂
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aΣ
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νDσ∞

Σ D aνϕmΣ+( )
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Using the standard approaches of the theory of sta-
bility to small perturbations, we obtain

(16)

from which it follows that there is a region of sizes 0 <
Σ < R0 where solution (14), (15) is stable because the
increment α of increasing perturbations is negative. For
large sizes Σ > R0 , the homogeneous solution becomes
unstable (α > 0). A critical value R0 is determined from
the condition α = 0 and is equal to

(17)

Of course, this value is meaningful only for σ∞ > K,
because growth of the aggregate is possible only in a
system whose concentration σ∞ exceeds the concentra-
tion K for dynamic balance between combination and
recombination. Correspondingly, the difference σ∞ – K
plays the role of supersaturation of the medium.

From the structure of kinetic equation (9), it follows
that there is one more solution,

(18)

for which Eq. (8) also reduces to the identity. In this
case, the particle concentration in the aggregate
depends only on the spatial coordinate. The explicit
form of this function is found from Eqs. (10)–(13):

(19)

In this case, the condition of internal dynamic equi-
librium is evidently satisfied:

For Σ = R0, the growth rates (15) and (19) coincide
with each other in both modes. For Σ < R0, solution (18),
(19) is meaningless, because ϕ(r) > ϕm. For Σ > R0, the

cluster-growth rate  (19) is higher than rate (15) (see

Fig. 2). Therefore, homogeneous solution (14), (15)
becomes unstable at the point Σ = R0 and goes over to
inhomogeneous solution (18), (19). The latter solution
is characterized by a higher velocity of the boundary
and is stable, which corresponds completely to the gen-
eral theory of the stability of solutions of parabolic
problems with a mobile boundary.

ϕ t r,( ) ϕm ϕ1 r( ) α t( ),exp–=

α aϕm K ρ Σ( )–[ ]=

=  
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ν
Σ
---

R0

Σ
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dΣ
dt
------
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It should be noted that the boundary value of the sol-
itary-particle concentration σ(Σ) also continuously
goes over from solution (15) to dependence (18) at the
point Σ = R0 (see Fig. 3).

An analysis of the internal structure of a cluster for
Σ > R0 leads to the conclusion that the center is occu-
pied by a homogeneous dense nucleus with size R0 (see
Fig. 4). In the region around this nucleus, the aggregate
becomes looser. In this region, the concentration of

FS

HN

dt

0 R0 Σ

dΣ

Fig. 2. The rate  of aggregate growth vs. its size Σ. For

0 < Σ < R0 , solution (15) corresponding to the homoge-
neous nucleus (HN) of the aggregate is stable. For Σ > R0 ,
solution (19) corresponding to the fractal structure (FS) is
stable. The dashed line is the unstable HN solution.

dΣ
dt
------

HN

FS

0 R0

K

Σ

σ(Σ)

σ∞

Fig. 3. The boundary concentration σ(Σ) of solitary parti-
cles vs. the size Σ of an aggregate.

ΣR00

ϕ(r)

ϕm

r

FS

HN

Fig. 4. The concentration ϕ of aggregated particles as a
function of the distance r from the cluster center. For 0 < r <
R0 , there is a quasi-dense homogeneous nucleus (HN). For
R0 < r < Σ, the function ϕ(r) is defined by Eq. (20) corre-
sponding to the fractal structure (FS) of an aggregate.
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aggregated particles decreases according to a power
law (!):

(20)

In other words, the aggregate in this region is character-
ized by a fractal structure. As the aggregate grows, the
total number of particles N in it also increases by a
power law:

(21)

Thus, the value df = 2.5 analytically determined for the
fractal dimension of an aggregate is universal and inde-
pendent of the particular physical and chemical condi-
tions in a colloid system, which are specified by the
parameters a, b, D, ϕm, σ∞ , and ν. This value is
extremely close to the known experimental data: df =
2.56 ± 0.03 [9] for aggregates of the immunoglobulin-
type proteins IgG, 2.52 ± 0.05 [10] and 2.4 ± 0.1 [11]
for aggregates of colloid quartz, 2.32 ± 0.05 [12] for
particles of calcium carbonate, and 2.5 [13] for porphy-
rin aggregates. In addition, this result virtually coin-
cides with the fractal dimension for three-dimensional
DLA clusters: df = 2.51 ± 0.06 [5, 6] and 2.495 ± 0.005
[7]. The last circumstance is nontrivial, because the
DLA mode does not imply internal dynamic balance
between combination and recombination.

It should be noted that the proposed quasiequilib-
rium self-similar solution is valid not only under the
condition of dynamic equilibrium τa ! τΣ, but also
under the condition of slow growth τD ! τΣ. Therefore,
this solution can be considered as being asymptotically
valid in the zero order with respect to the small value

 =  ! 1 corresponding to the relative rate of

cluster growth. In principle, it is possible to obtain the
solutions in the next orders of perturbation theory by
using asymptotic methods. This will likely lead to small
deviations of the fractal dimension from df = 2.5.
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In the classic Ginzburg study dated 1960 [1], appli-
cability limits of the Landau theory for second-order
phase transitions were determined. In fact, it was shown
that, on the basis of the ratio between the correlation
energy and the volume energy, a temperature region
near a critical point may be indicated where the role of
fluctuations cannot be disregarded. In this region, clas-
sical theories of the Landau type (van der Waals theory
for liquids, Weiss theory for magnets, and Bragg–Will-
iams theory for binary alloys) no longer adequately
describe the situation. At present, it is well known that,
as the system being considered approaches a critical
point, its classical (mean-field) behavior gives way to
an Ising-type renormalization-group (RG) fluctuation
behavior. The position of such a transition, if it exists,
is specified by the Ginzburg criterion [1]. Thus, such a
transition (it is often referred to as a crossover) from the
classical type of behavior to the Ising-type behavior
divides the region near the critical point into two parts.
For the reasons substantiated in the analysis given
below, we will call it the first crossover.

The history of studying critical phenomena and sec-
ond-order phase transitions goes back about 200 years.
During the last 40 years, the main efforts of both theo-
rists and experimentalists were primarily aimed at com-
prehensively investigating singularities in the behavior
of matter in the region of fully developed large-scale
fluctuations near a critical point. As is well known,
these efforts culminated in the formulation of the mod-
ern theory of critical phenomena by K. Wilson, who
was awarded a Nobel prize for this in 1982. Despite
these considerable achievements, there remain as-yet-
unresolved problems first indicated by Ginzburg about
30 years ago (see, e.g., [2]). These problems are associ-
ated with the behavior of systems whose inhomogene-
ities are caused by the presence of walls, flows, external
fields, etc. From the most general standpoint, we can
state that, in this case, we are dealing with critical
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phenomena in nonideal systems or in systems affected
by the action of various physical fields.1 

The first question to be answered in this connection
is whether the behavior of an real system changes (and
if it does change, what is the character of these changes)
as it moves deeply into the fluctuation region. The goal
of the present study is to demonstrate that there is a pos-
itive answer to this question, but this answer is quite
paradoxical.

It is well known that, as the system approaches a
critical point, the development of large-scale fluctua-
tions is accompanied by a continuous increase in the
susceptibilities of the critical system, in particular, sus-
ceptibilities to various external perturbations. On this
basis, we can assume that, eventually, the effect of var-
ious disturbing factors (fields), which are insignificant
under the usual conditions, will lead, in the presence of
continuously and indefinitely growing system suscepti-
bility, to a deformation (suppression) of fluctuations.
As a consequence of this fact, the mean-field (classical)
behavior in the system [3] must be restored. We call this
transition, which occurs in the inverse direction, i.e.,
from the Ising-type of behavior to the classical type, the
second crossover.

In this paper, we present certain results obtained
from our comparative analysis of available experimen-
tal and theoretical investigations that support the above
concept [4]. As far back as the mid-1970s, we per-
formed a precision pρT experiment with pure SF6
(99.9995% purity) in the immediate vicinity of the crit-
ical point. In the conditions of the same experiment, we
found for the first time a trend of three static critical
exponents, namely, β for the coexistence curve, γ for
the isothermal compressibility in the single-phase
region, and δ for the critical-isotherm, towards their
classical values (see, e.g., [5–7]). In these papers, the
changes found were for the first time attributed to grav-
ity. The determination accuracy for the state parameters
(including critical parameters) in those studies, per-

1 By a field, we imply here all possible additional disturbances,
such as the gravitational and Coulomb fields, surface forces,
shear stresses, turbulence, and the presence of boundaries.
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Fig. 1. Behavior of the critical exponent for the coexistence

curve near a critical point (τ = ): experimental points

(d) are plotted according to data of [5]; the piezometer
height is 8 mm, and the displayed data correspond only to
the liquid branch; experimental points (,) are plotted
according to data of [8]; the piezometer height is 30 mm,
and the displayed data correspond to both branches.
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Fig. 2. Variation of critical exponents for the isothermal
compressibility in the single-phase region, at the approach
to a critical point. The experimental points (d) and (,) are
plotted according to data of [7, 15] and [9]; and piezometer
heights are 8 and 30 mm, respectively.
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Fig. 3. Variation of the critical exponent for the critical iso-
therm in the single-phase region at the approach to the crit-
ical point in the density scale. The experimental points (d)
and (,) plotted according to data of [6] (the piezometer
height is 8 mm; the displayed data correspond only to the
liquid branch) and [8] (the piezometer height is 30 mm; the
displayed data correspond to both branches).
formed at a unique setup in the laboratory headed by
I.P. Krichevskiœ, was at a metrological level. It was ±2 ×
10–4 K in the proper temperature scale, ±0.001% in the
pressure scale, and ±0.02% in the density scale. The
critical parameters were determined independently by
visually observing the appearance and disappearance of
the two-phase state of matter in a piezometer of a con-
stant–variable volume [5, 6]. About 800 experimental
points obtained were concentrated in a narrow temper-
ature range (–0.3 < T – Tc < 1.3 K, where Tc is the crit-
ical temperature) and density range (|∆ρ*| ≤ 0.15,

where ∆ρ* = , with ρc being the critical density)

near the critical point. As a result, it was established [5–7]
that, within the ranges under investigation, there are
own “far” and “near” regions. In the “far” region, the
critical exponents β, γ, and δ had values close to the
Ising ones, whereas in the “near” region, they again
acquired values characteristic of the mean-field (classi-
cal) behavior (Figs. 1–3). For a long time, these papers
were the only studies in the world scientific literature
where such behavior was found and attributed to the
effect of gravity. Now, the situation has substantially
changed.

In study [8], which appeared in 1992, the immediate
vicinity of the SF6 critical point was investigated anew
with the help of a completely automated, specially
designed high-precision pρT setup. In that study, our
results and their interpretation [5–7] were at last inde-
pendently corroborated. Later, in addition to SF6 [5–9],
the fact that, in the immediate vicinity of the critical
point, the critical exponents change towards their clas-
sical values under the effect of gravity was also
observed for CO2 [9]. The investigations of the critical
behavior in the presence of shear flows, which were
performed in [10, 11], led to conceptually the same
result as in our experiments with a pure liquid in the
presence of gravity. Indeed, the critical exponents also
changed from the Ising values to the mean-field ones.
This was shown theoretically in the fundamental study
[10] based on the RG approach and experimentally for
an aniline–cyclohexane binary mixture in study [11],
which was published simultaneously with [10]. In [12],
in which the intrinsic gravitational effect had been stud-
ied theoretically, it was shown that, near a critical point,
gravity changes the local properties of a liquid, thereby
modifying the very nature of a phase transition. Using
light scattering, it was shown in [13] that, in a guaiacol–
glycerin solution with the addition of a small amount of
water, the critical exponent ν of the correlation radius
changes from nearly RG values to values characteristic
of the mean-field behavior as the system approaches the
double critical point. The Monte Carlo simulation per-
formed in [14] revealed that, upon taking into account
dimensional effects within the two-dimensional Ising
model, the critical exponent β takes the RG value

ρ ρc–
ρc

--------------
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β = 1/8 far from the critical point and the classical value
β = 1/2 near the critical point.

In our opinion, the above results can be considered
weighty arguments in favor of the basic idea of this
study. The fact that the mean-field critical behavior in
the immediate vicinity of a critical point (second cross-
over) is observed for a broad range of systems sub-
jected to perturbations of various physical origins indi-
cates that this phenomenon is quite universal. This
behavior was discovered by the author and his cowork-
ers in 1974 for the case of gravity.

We now dwell on the data displayed in Figs. 1–4,
where all the dependences illustrating the behavior of
various critical exponents in the second-crossover
region were plotted on the basis of our data and data
available from studies of other authors. From Figs. 1
and 2, we can see that the position of the second cross-
over for the critical exponents β and γ depends on the
height of the piezometer used. This is an additional
confirmation of the gravitational nature of these
changes. By comparing the two figures in question, we
also notice that the positions of this crossover for the
exponents β and γ, in terms of the relative proximity to
the critical point in the temperature scale, differ by
approximately two orders of magnitude. The observed
isothermal compressibility is more sensitive to the
effects of various perturbations (in particular, to the
effect of gravity). This seems to be quite natural from
the physical standpoint. It is worth noting that, appar-
ently, the positions of the first crossover can differ sig-
nificantly for different thermodynamic properties of the
same system, although the Ginzburg criterion based on
the anomaly in the heat capacity does not suggest this
a priori [1]. Figure 3 demonstrates that, in real systems,
a transition to classical values of the critical exponents
can occur as the systems approach a critical point not
only in the temperature scale, but also in the density
scale. In the author’s opinion, the second crossover in
the behavior of the critical exponents β, γ, and δ
(Figs. 1–3) is due to the intrinsic gravitational effect.
A specific reason for the variation of the exponent ν
(Fig. 4) was not established in [13]. By analogy with
the effect of the gravitational field (Figs. 1–3), we may
assume that the Coulomb field of water dipoles played
the role of a disturbing factor in that experiment.
In any case, the evolution of the critical exponent of
the correlation radius is such that it fits well into the
proposed pattern. Thus, we have grounds to believe
that such behavior is inherent not only in static critical
exponents [7], but represents a universal property of
the immediate vicinity for a critical point of real sys-
tems [3, 4].

Thus, we can conclude that, in the general case, the
universal behavior of real nonidealized systems near a
critical point is the following. In addition to the first
crossover (its position is determined by the Ginzburg
criterion) from the mean-field behavior to the Ising one,
the universal behavior can also include the second
DOKLADY PHYSICS      Vol. 47      No. 4      2002
crossover in the immediate vicinity of the critical point.
The second crossover proceeds in the inverse direction,
namely, from the RG type of behavior to the classical
type. Therefore, the immediate vicinity of a critical
point again becomes the region of the mean-field type
of behavior [3, 4].

In conclusion, the following comment is worth not-
ing. It is usually assumed that the gravitational field has
an adverse effect upon experiments in the immediate
vicinity of a critical point, for example, by distorting
the shapes of the curves and values of the critical expo-
nents so that they cease to be true ones. However, all the
aforesaid suggests that the existence of an additional
factor in the form of an effect of the gravitational field
or another arbitrary field is not, in fact, adversarial. On
the contrary, this makes it possible to reveal new fea-
tures in the critical behavior. It is only necessary to
adopt a different point of view. Specifically, it should be
assumed that the values of the critical exponents are not
distorted by the effect of these fields but in fact are
obtained in the presence of these fields, i.e., that they
are valid just for these conditions. In the author’s opin-
ion, such an approach radically changes the situation,
making it possible to obtain deeper insights into the
nature of critical phenomena.
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The nonequilibrium self-modulation in composition
[1, 2] and/or the nonequilibrium atomic ordering [2]
that arise in the process of epitaxy of SiGe and ternary
III–V compounds are of interest not only for applica-
tions (e.g., in nanoelectronics), but also (as we hope to
show) for understanding the general laws of self-orga-
nization. These semiconductor alloys are characterized
by a positive mixing energy [2]. Atomic ordering arises
because the mixing energy changes sign at the crystal
surface due to surface reconstruction. This hypothesis
is corroborated by correlations between the parameters
of reconstruction and atomic ordering [2]. Self-modu-
lation is explained by the fact that the mixing energy at
the crystal surface remains positive [3–7]. The contra-
diction between the models of ordering and self-modu-
lation is especially substantial when both structures
coexist in the same bulk of a material [8–10].

To explain self-modulation, three models have been
proposed. According to the first model, where this phe-
nomenon is attributed to the minimization of elastic
energy [4], the direction of modulation coincides with
an in-plane direction 〈001〉 of the highest elastic com-
pliance [4] (lateral phase separation [2]). The model is
supported by numerous results [2]. In the second the-
ory, which explains self-modulation by a specific fit of
atoms of components into surface steps, the direction of
modulation coincides with the growth direction and the
periodicity is equal to the height of these steps [5]. This
type of modulation (vertical phase separation [2]) was
revealed for II–VI compounds [5] and for SiGe [6].

In numerous cases, modulation cannot be explained
in the framework of the above models, since (1) its
direction is out of the substrate plane [1, 2] and,
coinciding with the growth direction, can differ from
〈001〉  [10, 11], and (2) the modulation period can attain
100 nm [1, 9, 11]. Self-modulation with anomalous
parameters is explained only in the autocatalysis model
in which it is caused exclusively by the energy of inter-
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atomic interactions (mixing energy) [3, 7, 13]. If the
mixing energy is positive, a surface enriched with
atoms of a certain species adsorbs mainly atoms of the
same species (autocatalysis). In the diffusion autoca-
talysis model, modulation can appear under the condi-
tions [7]

 and 

Here, qi is the adsorption coefficient of the ith compo-
nent and η = (C1 – C2)/(C1 + C2), where Ci is the con-
centration of the ith component at the growth surface.

Although this model explains self-modulation with
anomalous parameters, it involves a number of contro-
versial points and contradicts the models of self-organi-
zation epitaxial growth, which are considered as being
approved [2].

First, the mechanism is developed as a kinetic one:
it is associated with the transport of components, and
the key moment in this transport is the transfer of the
atoms of components from the mother phase onto the
crystal surface; i.e., the model is realized in spatially
inhomogeneous media, but it has not been substantiated
energetically and the problem of producing entropy has
not been investigated [14].

Second, the mixing energy is thought to give rise to
and sustain the phenomenon. Stratification in composi-
tion arises when a minimum of the Gibbs potential cor-
responds to a homogeneous solid solution. However,
the mixing energy is only one of the components of the
Gibbs potential. Therefore, the statement that one of the
terms of the Gibbs potential under certain conditions is
responsible for the formation of structures that do not
correspond to the minimum of the Gibbs potential
should be substantiated.

Third, the model is applicable under the following
conditions [13]: (1) desorption can be neglected,
(2) adsorption-induced variations in composition of the
surface layer of the mother phase are not compensated
by diffusion, and (3) the coefficient βi of the term
responsible for adsorption depending on composition
exceeds the coefficient αi of the term characterizing

qi α i βiη±= α i βi .<
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Fig. 1. Autocatalysis-model results for (a) the composition ηc of a crystal vs. the parent-phase composition ηp near the point F,
(b) the composition gradient near the boundary when passing from a Y-enriched stratum to an X-enriched stratum, and (c) the com-
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adsorption independent of composition. However, the
realizability of these conditions in real epitaxial pro-
cesses is not evident.

Fourth, in the first and second models, the phenom-
enon is attributed to factors that are independent of the
mixing energy. Therefore, it is not inconceivable that
these models can be made to agree with the reconstruc-
tion model of atomic ordering, but the autocatalysis
model cannot be made to agree with the reconstruction
model.

Fifth, according to data available in published
papers, self-organization arises when at least three
components participate in a reaction [15] and the coef-
ficients of autocatalysis are nonlinear [3, 15]. However,
in the model under discussion, self-organization arises
when a process involves only two reactants and the
adsorption coefficients depend linearly on surface com-
position. These contradictions are possibly illusory,
since the model is realized in a spatially inhomoge-
neous medium where nonlinearity is caused by discon-
tinuities of functions at the growth surface [8]. Never-
theless, this possibility should be confirmed.

Several efforts have been made to prove the validity
of the autocatalysis model [13, 15]. Here, the following
two conclusions are of interest [13]: (1) the modulation
amplitude is independent of the composition, and the
mean composition of an epitaxial layer is provided by
variations in the thickness of the composition strata;
and (2) variations in composition have a number of fea-
tures explained below in Fig. 1.

Let us consider the features of self-modulation in a
binary alloy X–Y. The crystal composition as a function
of the parent-phase composition has a certain point F
near which there is a region of several-valued (sigmoid)
dependence [7, 13]. Let the parent-phase composition
be set by a point A (e.g., the X component dominates).
When an X-enriched stratum is formed, the composi-
tion of this phase changes from the composition speci-
fied by the point A to the composition specified by the
point B and the effect of diffusion on the surface-layer
composition is the converse of the effect of adsorption.
For the same parent-phase composition and the forma-
tion of a Y-enriched stratum, the parent-phase composi-
tion varies from the point C to the point D and all the
processes modify the composition of the surface layer
in one direction [13]. Therefore, the interfaces between
strata have different structures. In the growth direction,
the interfaces between X- and Y- enriched strata are vir-
tually stepwise. In the direction from Y-enriched strata
to X-enriched strata, regions where the composition
varies rapidly precede stepwise interfaces (Fig. 1).
Observation of these interfaces proves that the autoca-
talysis model fits the process adequately.

If electron images are obtained from an object
inclined in such a way that the electrons are sequen-
tially scattered from volumes having different compo-
sitions (lattice parameters), intensity distribution in the
images is determined by the interference of waves scat-
tered on each of the interfaced volumes. Depending on
the structure of the boundaries between strata, four
types of images are possible [15]. When the composi-
tion changes only on boundaries and only stepwise, a
superposition of two intensity oscillations, displace-
ment fringes and moiré fringe, is observed. When con-
tinuous variation in composition precedes a stepwise
boundary, only the moiré fringe appears. When the
main portion of variations in composition are continu-
ous, the boundary can be observed as a single light or
dark fringe. When the strata are separated by a region
where composition varies continuously, the boundary
may be invisible.

In this study, the autocatalysis model is verified by
using the boundary images lying on each side of the
point F. We used foils with the (110) plane and self-
modulated GaAs1 – xPx/(001)GaAs samples that were
obtained by chloride–hydride vapor-phase epitaxy
DOKLADY PHYSICS      Vol. 47      No. 4      2002
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technology [1] where x varied continuously from 0.4 to
0.52. To obtain interference patterns, we applied [211]
projections. Figure 2 shows an intensity profile corre-

sponding to a microphotograph for a  reflection
where the growth direction is from left to right.

With a rise in the GaP content, the extent of the AB
strata increases, which makes it possible to determine
the dominant component in them and the types of
boundaries. Boundaries between GaAs- and GaP-
enriched strata are labeled by the letter A and opposite
boundaries, by the letter B. In the left and central
regions of the profile, an interference oscillation
labeled by (,) is observed on the A images. The oscil-
lation has a moiré nature, since its period is indepen-
dent of variations in diffraction conditions. The period
is also independent of the parent-phase composition.
Simultaneously with variations in the extent of the AB
and BA strata, the intensity of the B images increases,
whereas the interference oscillation on the A images
weakens. On the right side of the photograph, the char-
acter of the images changes: the A** image has no
interference oscillation; however, intensity oscillations
labeled (e) appear on the B* image. The oscillation on
the B* image is characterized by a virtually constant
amplitude, whereas the amplitude of the oscillation on
an A* image decreases from right to left. The characters
of weakening of the oscillations are different because
the excitation errors change in different directions
when passing through the boundaries. The localization
of the point F within the section A*B* is corroborated
by the extent of the section. The changes in boundary
images when passing the point F can be explained only
by variations in their structures, since these images are
observed under the same diffraction conditions. They
fully correspond to the autocatalysis model, which is
therefore corroborated.

The self-modulation under investigation arises in
GaAsP [1], GaInP [2, 11], InAsSb [8], InGaAs [2, 9],
and GaAlAs [2, 11] in vapor- [1, 2] and liquid-phase
[11] epitaxy and in the MOS hydride process [2, 8–10].
Therefore, it cannot be stimulated by the particular con-
ditions of processes. Epitaxy is characterized by step-
flow growth attributed to the motion of surface steps.
However, the characteristic lifetime of a step for the
growth rates in use is less than the oscillation times in
the composition of the surface layer by several orders of
magnitude. The only cause of modulation is the energy
balance of interatomic interactions at the crystal–par-
ent-phase interface. This balance is characterized by
the mixing energy. The mixing energy can stimulate the
appearance of structures that do not correspond to the
minimum of the Gibbs potential.

There are only indirect reasons for the realizability
of condition |αi | < |βi |. The relative contribution of the
mixing energy to the Gibbs potential increases with a
decrease in temperature. We can assume that the differ-
ence |βi | – |αi | also increases with a decrease in temper-
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ature, i.e., with an increase in its nonequilibrium. In
equilibrium, the rates of direct and inverse processes
are identical. Therefore, the complete exclusion of des-
orption and the restricted role of diffusion mean that the
model under discussion corresponds to substantial
deviations from the conditions of equilibrium crystalli-
zation. In the model proposed in [5, 6], the segregation
of identical atoms is equilibrium at the surface of a
crystal, but it is not equilibrium in the bulk of the crys-
tal. The model developed in [4] corresponds to small
deviations from equilibrium. The validity of the models
proposed in [2, 5, 6] and the model under discussion
makes it possible to conclude that there are different
ways of self-organization caused by variations in fluc-
tuations from the equilibrium state.

The validity of the autocatalysis model testifies to
the inapplicability of the Hanusse theorem and to the
possibility of self-organization when the absorption
coefficients depend linearly on the surface composition
in spatially inhomogeneous media. Self-organization
caused exclusively by the positive mixing energy when
only two components participate in a reaction and the
dependence of the adsorption coefficients is linear was
possibly of considerable importance in the appearance
of living matter, since this self-organization promotes
the segregation of compounds that were the elementary
units of this matter.
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1. Within the last 35–40 years, a few tens of events
were recorded by large-scale cosmic ray (CR) detec-
tors, which testified to the presence in the CR flux of
particles with macroscopic energies (higher than 5 ×
1019 eV ≈ 8 J), so-called ultrahigh-energy cosmic rays
(UHECR) [1]. The existence of such particles is incon-
sistent with the CR-spectrum cutoff caused by the Gre-
isen–Zatsepin–Kuz’min (GZK) effect [2, 3]. This dis-
crepancy has posed a number of fundamental questions
concerning the sources of such particles and the mech-
anisms of their production and propagation [1–3]. To
explain the presence of UHECR, there is a need either
to change the traditional concepts of astrophysical
sources of ultrahigh-energy particles or to assume the
existence of supermassive particles whose decays result
in the appearance of UHECR [4] (see also references
in [1]). The most radical assumption is associated with
a possible deviation from the standard special relativity
theory at very high values of Lorentz factors [5]. In
order to thoroughly investigate UHECR and verify var-
ious models proposed for their explanation, both the
amount of statistical data and the measured energy
range should be considerably increased. However, the
UHECR flux is extremely low: it is at the level of one
particle per km2 per century for E ~ 1020 eV. Thus, to
obtain a statistically significant sampling of events
within a reasonable time, dedicated large-scale detec-
tors with a huge aperture are required. Currently, such
detectors are planned or are even under construction.
They are oriented to the detection of either charged
(shower) particles or photons (fluorescent light) pro-
duced in extensive air showers (EAS) initiated by
UHECR in the atmosphere. The size of the observation
area is expected to be 6000 km2 for the ground-based
“Auger observatory” and about 105 km2 for the detec-
tion of fluorescent light from a satellite.

In [6, 7], the possibility of detecting UHECR using
satellite-based radio antennas was indicated. It is
assumed that suitable receivers will detect radio emis-

Lebedev Institute of Physics, Russian Academy of Sciences,
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sion from nearly horizontal EAS initiated by UHECR
in the Earth’s atmosphere. In this paper, we present
comprehensive quantitative estimates concerning a
radio signal of an EAS at large distances from it and
compare this signal with the radio noise in the satellite’s
orbit. Our analysis shows the feasibility of satellite-
based detection of UHECR by the radio method.

Radio emission from electromagnetic showers in a
medium was predicted by Askaryan in 1961 [8], and
Jelly in 1965 [9] was the first to experimentally observe
radio pulses correlated with an EAS. Later on, experi-
ments in this field were carried out in many laboratories
and radio pulses were detected in a wide frequency
range from a few megahertz to a few hundred mega-
hertz. In particular, the possibility of dealing with only
radio antennas (without coincidence with shower
arrays or optical arrays intended for EAS detection)
was demonstrated. Nevertheless, up to now, the radio
method has not been as efficiently used for detecting
EAS as the method of recording optical Cherenkov
radiation. The main reason is evidently the following.
An intense radio signal that can be reliably detected is
generated only by the highest-energy EAS. However,
the flux of such EAS is too low, and in order to detect
them, we must observe a very large area. As is shown
below, the problem of radio detection of EAS can be
solved by observing them from space. In this case, the
possibility arises of receiving EAS signals from more
than one million km2 of atmosphere surface area. Thus,
detection of EAS with EEAS ≥ 1020 eV becomes statisti-
cally possible. As we show in the next sections, signals
from such ultrahigh-energy EAS are sufficiently
intense that they can be detected at large distances from
satellites and reliably separated from the background.

2. Two mechanisms are mainly responsible for the
coherent radio emission by EAS. One of them is related
to the excess negative charge produced as a result of
shower-particle interactions with atomic electrons:

γ eat
– γ e–, e+ eat

– e+ e–,+→+ +→+

e+ eat
– γ γ, e– eat

– e– e–.+→++→+
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The relative magnitude of the excess η =  is

estimated as η = 0.1–0.2 [8]. Here, N+ and N– are the
numbers of positively and negatively charged particles
in an EAS. The other source of radiation is related to the
separation of positively and negatively charged parti-
cles in an EAS caused by the geomagnetic field. As a
result of this separation, a transverse electric-dipole
moment (and a transverse current) arises. The motion
of this dipole (and current) through the atmosphere
generates Cherenkov-type radiation even in the absence
of the excess charge [10].

Initially, we consider radiation caused by excess
charge and use the long-wave approximation and the
usual relations of radiation theory for a system of mov-
ing charges. Then we write out the following expres-
sions for the Fourier components of the magnetic Hω
and electric Eω fields of a volume charge at large (i.e.,
much longer than the characteristic dimensions of an
EAS) distances R at an angle θ to the EAS axis:

Here, ν is the radiation frequency, c is the speed of
light, e is the electron charge, and Lω(θ) is the four-
dimensional Fourier component of the particle-current
density (of the electron excess):

In this formula, k =  is the radiation wave vector in

the direction n and the integration is carried out over
both the volume of the EAS and the entire time of its
existence.

The current density has the following form:

Here, n(r) and v(r, t) are the density (normalized to
unity) of particles and their velocity in the EAS disk,
respectively, and N–(t) ≡ Ne is the number of particles
(corresponding to the electron excess) in the EAS.

For qualitative estimates, the function v(r, t) can be
considered to be constant:

|v(r, t)| ≈ |v | ≈ c.

Under this assumption, the EAS disk moves as a
whole with a constant velocity v, i.e., r ≈ r' + vt. Here,
r' is a radius vector with respect to the EAS-disk center.
Then, |Lω(θ)| acquires the form of a product of the total
track length L– for all particles of the electron excess in

N– N+–
N– N++
-------------------

Hω Eω
2πeν

c2
-------------

Lω θ( )
R

----------------.= =

Lω θ( ) t r nj– r t,( )[ ] iωt ikr–( ).expd∫∫∫d∫=

nω
c

-------

j– r t,( ) N– t( )v r t,( )n r( ).=
the EAS and two form factors Ft and F, both of which
tend to unity in the limit of very long wavelengths:

In the long-wave approximation, the Fourier com-
ponent of the radiation field is proportional to the fre-
quency ν and to the total track length L– of electron-

excess particles in an EAS, i.e., |Hω| Z νsinθ . The

field shape for shorter wavelengths is determined by the
form factors F(k) and Ft(ω[1 – βcosθ]). The spatial
form factor F(k) cuts the radiation spectrum at wave-
lengths on the order of the projection length l⊥  of the
EAS disk onto the radiation direction. For the time-
dependent form factor Ft(ω[1 – βcosθ]), the analogous
parameter is on the order of

where tEAS is the EAS development time. It is worth
noting that these standard formulas are related only to
distances R that are much longer than the EAS develop-
ment length v tEAS, so that v tEAS @ l⊥ .

As a simplest model for the EAS space–time shape,
we consider the Gaussian distribution

(1)

(2)

Here, ρ and z are the transverse and longitudinal coor-
dinates of the EAS disk. The EAS parameters σ⊥ , σ||,
and σt only slightly depend on the EAS energy and
are known reasonably well from experiments. Thus,
we find

To take into account the Cherenkov radiation, we
should substitute β by βna, where na = 1.0003 is the

Lω θ( ) L– θ Ft ω 1 β θcos–[ ]( )F k( ) ,sin=

L– v tN– t( ),d∫=

L–Ft ω 1 β θcos–[ ]( )

=  v tN– t( ) iωt 1 β θcos–[ ]( ),expd∫
F k( ) rn r( ) ikr–( ).expd∫∫∫=

L–

R
-----

lt v tEAS 1 β θcos–[ ] ,≈

n r( )
–

ρ2

σ⊥
------ z2

σ||
-----– 

 exp

σ⊥ σ||
1/2π3/2

------------------------------------,=

N– t( ) Nmax
v 2 t tmax–( )2

σt
-----------------------------–

 
 
 

.exp=

L– Nmax πσt( )1/2, F Ft×
k2σθ

4
-----------– 

  ,exp= =

σθ σ⊥ θsin
2 σ|| θcos

2 σt 1 β θcos–[ ] 2.+ +=
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atmospheric refractive index. It is worth noting that the
results obtained with the Gaussian parametrization are
in good agreement with those obtained with the stan-
dard Gaisser–Hillas parametrization for longitudinal
EAS development.

We now estimate the quantities that enter into the
above formulas.

(i) For definiteness, we consider an EAS with an
energy E ~ 1020 eV and assume that η = 0.2. Then, the
number of excess negatively charged particles in the
EAS is Nmax ≈ 2 × 1010. It is worth noting that, in gen-
eral, η depends on time and coordinates taken within
the EAS disk and only the product j−(r, t) = η(r, t)j(r, t)
enters into all the above formulas, where j(r, t) is the
current density for all particles in the EAS. Approxima-
tion expressions (1) and (2) corresponding to this prod-
uct describe reasonably well the results of Monte Carlo
calculations for the electron-excess distribution in the
EAS. With allowance for this remark, we will speak, for
brevity, about a distribution of all particles in the EAS,
bearing in mind that only a certain constant part η of
these particles contributes to the radiation field.

(ii) The parameter σt that determines the temporal
development of an EAS slightly depends on the energy:
σt ≈ 4λradv tmax, where λrad is the radiation length (in air
and under normal conditions, λrad ≈ 0.35 km). The dis-
tance to the maximum of EAS development v tmax =

lmax ≈ 2.3λrad  [10]. Then, in the context of

this model, for E ~ 1020 eV,  ≈ 10λrad ≈ 3.5 km and
lmax ≈ 30λrad ≈ 10 km. Correspondingly, L− ≈

N−max(πσt)1/2 ≈ η  × 18λrad ≈ 1.3 km 

(in air).

(iii) The disk dimensions are reasonably well known
from experiments and slightly depend on the age of an

EAS. We assume that  = 40 m and  = 4 m.

(iv) Typical electron energies in an EAS are on the
order of 100 MeV, so that the Lorentz factor is γ =
(1 − β2)–1/2 ≈ 200.

The frequency dependence for the magnitude of the
electric-field Fourier component, which is calculated
with the above-specified parameters, is shown in Fig. 1
by dashed lines. The results correspond to the energy
E = 1020 eV; to the observation angles θ = 0.03, 0.1, and
0.5; and to the distance R = 1000 km. Owing to the stan-
dard relativistic factor (1 – βcosθ) with β ≈ 1, the

space–time EAS “dimension”  sharply increases
with the emission angle. This results in a rapid decrease
in the maximum radiation frequency. Since emission
angles are chosen to be rather small, such a radiation

E

108 eV
---------------- 

 ln

σt
1/2

E

109 eV
---------------- 

  E

109 eV
---------------- 

 

σ⊥
1/2 σ||

1/2

σθ
1/2
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spectrum can be observed in the atmosphere from sat-
ellites only for EAS that are close to the horizon.

Next, we take into account the radiation caused by
the EAS dipole moment [10], i.e., by a shift of the neg-
atively charged part of the EAS disk with respect to the
positively charged one by a fixed distance d along one
of the transverse axes (e.g., x-axis). Then, the term

exp  should be substituted by

In this case, the following extra multiplier appears in
the form factor F(k):

x2

σ⊥
------– 

 

0.5 1 1
η
---+ 
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d
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---+ 

  2
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  2
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-------------------– .exp

Fd k( ) 0.5 1 1
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  ikx
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  +ikx
d
2
--- 
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Fig. 1. Frequency dependence for the Fourier component of
the electric-field intensity in different models. The distance
from the EAS is 1000 km; the energy E = 1020 eV; and the
emission angles θ = 0.03, 0.1, and 0.5. Solid and dashed
lines correspond to the cases with and without the dipole-
charge separation taken into account, respectively (for a
shower disk with a Gaussian shape). Dashed-dotted and
dotted lines correspond to the cases with and without dipole
separation taken into account, respectively (for a shower
disk with a central core).
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From experimental data, it follows that the charge
shift can be as large as the EAS-disk dimension itself
[10]. For illustration, the results of the calculations with
this separation taken into account are shown in Fig.1 by
solid lines. Here, it was assumed that d = 50 m, η = 0.2,
and the separation takes place in the observation plane.
(It is worth noting that in actual experiments, informa-
tion on the separation direction can be obtained using
measurements of the direction of radiation polariza-
tion.) From Fig. 1, it is seen that the contribution of the
induced dipole moment is rather noticeable.

The smooth Gaussian shape of the charge distribu-
tion, which was chosen above, results in an exponen-
tially rapid drop of the curves in the high-frequency
region. At the same time, it is well known that there is
a dense core near the EAS axis. Qualitatively, this core

10–11

100

W, W/(m2 MHz)

ν, MHz

101 10210–1

10–12

10–13

10–14

10–15

10–17

10–16 0.5 0.1

0.03

101

0

τ, µs

θ, deg

100

10–2

0.1 0.2 0.3 0.4 0.5

10–1

Fig. 2. Spectral density of the radio-emission power flux
from an EAS with E = 1020 eV at a distance of 1000 km for
the same emission angles as in Fig. 1 with (solid line) and
without (dashed line) the dipole separation taken into
account.

Fig. 3. Angular dependence of the radio-pulse duration for
an EAS.
can be described (without introducing new parameters)
with the help of substituting expression (1) by

(3)

Then,

F|Ft | = ,

where 

σs = σ⊥ sin2θ + σ||cos2θ.

Results of the calculations for the same parameters
as above but with relationship (3) taken instead of (1)
are shown in Fig. 1 by dashed-dotted and dotted lines.

The duration of the radio pulse from an EAS is on

the order of . Therefore, the power density is

The power-flux spectral density for the same values
of the parameters (E = 1020 eV, R = 1000 km) is shown
in Fig. 2. In the small-angle region (θ ≤ 0.1), within the
frequency interval ν ≈ 30–50 MHz, the power-flux den-

sity is  ≈ 10–11–10–13 W/(m2 MHz). Radio pulses

of such magnitude can be easily detected by modern
radio receivers. [For comparison, typical magnitudes of
signals detected in radio astronomy are as low as 1 Jan-
sky = 10–20 W/(m2 MHz).]

It is seen from Figs. 1 and 2 that the radiation inten-
sity is strongly dependent on the emission angle θ with
respect to the EAS axis. To reconstruct the EAS energy
from the measured value of Eω or W, we need to know
the radiation emission angle θ with respect to the EAS
axis. This angle can be found by measuring the radio-
pulse duration related to θ by the dependence shown in
Fig. 3 (or by detection in the stereo mode by a couple
of receivers installed aboard satellites). The distance
between an EAS and the satellite can be found from the
geometry of the horizontal-EAS detection and the orbit
altitude with an accuracy of about 10%. It should also
be emphasized that direct calibration of the radio-pulse
detector installed aboard a satellite can be done using a
proton beam from a high-energy proton accelerator,

n r( )

8ρ2

σ⊥
-------- 8z2

σ||
-------+ 

 
1/2

–
 
 
 

exp

σ⊥ σ||
1/28 1/2– π

-----------------------------------------------------.=

k2σt

4
----------– 

 exp

1
k2σs

8
----------+ 

 
2

----------------------------

1
νmax
---------

dW2

dSdν
------------- νmax

d2E
dSdν
-------------≈ c

2π
------νmax Eω

2.=

dW2

dSdν
-------------
DOKLADY PHYSICS      Vol. 47      No. 4      2002



ON SATELLITE-BASED DETECTION OF ULTRAHIGH-ENERGY COSMIC RAYS 279
which is sent into the atmosphere toward the satellite.
Bunches of the accelerator beam will produce showers
in the atmosphere, whereas their radio pulses will imi-
tate radio pulses from EAS of ultrahigh energies. In this
case, E ≈ NEp, where N is the number of protons in a
bunch and Ep is the energy of an individual accelerated
proton. This procedure is similar to that used in the
recent SLAC experiment with radio waves generated
by electron beams in a solid target [11].

We note that the frequency range ν ≈ 30–50 MHz is
the most appropriate for EAS-pulse detection by a sat-
ellite receiver. This range is determined by the lower
boundary of the atmosphere’s transparency to radio
waves. (This boundary is determined by the reflection
of waves with λ ≥ 15–20 m from the ionosphere.) On
the other hand, a sharp decrease in the signal amplitude
arises at frequencies ν ≥ 100 MHz, which is caused by
the loss of coherence.

3. The extraction of the desired signal from the
background is one of the key problems in EAS detec-
tion by the radio method. The background can be of
both natural origin (radio emission of the atmosphere
and ionosphere, the “radio-sky” radiation) and man-
made origin.

Natural terrestrial radio pulses can be generated by
both instabilities of the ionosphere and wave distur-
bances coming from the Earth’s surface, which, as a
rule, are associated with lightning discharges. It is
important that all terrestrial natural types of radiation
lie mainly in the low-frequency region (1 Hz–1 kHz)
and are inessential within the range of interest ν ≈
30−50 MHz. The Sun is the brightest source in the
radio sky. Within the frequency range 30–50 MHz, the
quiet Sun produces a background flux on the order of
10–16 W/(m2 MHz), whereas the perturbed Sun can
radiate as much as 10–12 W/(m2 MHz). Thus, the
expected signal from an ultrahigh-energy EAS will
exceed the background from the quiet Sun by a few
orders of magnitude. On the other hand, operation in
periods of solar perturbations is hampered. The charac-
teristic short duration of the EAS signal (10–7–10–6 s)
and signal-polarization measurements can be used for
background suppression.

The highest background is produced by man-made
sources, mainly due to operations of broadcasting sta-
tions. To estimate this background, we used the results
of an analysis of the “global radio pollution” present in
circumterrestrial space [12] and a compilation of radio-
noise data measured with satellites [13]. From this
comparison, we can conclude that the expected signal
for E ≥ 1020 eV and small emission angles θ ≤ 0.1 (even
without allowance for the antenna gain) exceeds the
background level for radio-loud regions by two or three
orders of magnitude. [For example, in the Southern
Hemisphere above an ocean area, the background level
is ≤10–14 W/(m2 MHz).]
DOKLADY PHYSICS      Vol. 47      No. 4      2002
4. We now estimate the expected detection rate for
useful events:

Here, J is the UHECR flux on the order of 10–2 events
per km2 per year for E ≥ 1020 eV, S is the effective area
of the atmospheric surface from which (horizontal)
UHECR can be detected at a given satellite position,
and ∆Ω is an available solid angle of UHECR inci-
dence. We assume that the radio waves are focused onto
the antenna by a parabolic reflecting surface [14]. In
this case, the signal can be received for all azimuth
directions from a circular atmospheric layer with a
width L ≈ (2Rh)1/2 and a radius R1 ≈ (2RH)1/2. Here, R is
the Earth’s radius, H is the satellite-orbit altitude, and h
is the effective thickness of the atmosphere. Taking R =
6000 km, H = 500 km, and h = 10 km, we find

S = 5 × 106 km2.

Assuming that the signal can be extracted from the
background for θ ≤ 0.1, we find the following estimate

for the event-detection rate:  ≈ 4 events per day for

E ≥ 1020 eV.

Thus, for an annual operation, more than 1500
UHECR events can be collected (which exceeds the
total existing UHECR statistics by about two orders of
magnitude) and the measured energy interval can be
extended by one or two orders of magnitude.

5. We now summarize the basic conclusions:

Radio signals produced in the atmosphere by
UHECR are sufficiently high for their reliable detection
at distances on the order of 1000 km and can be
detected by a satellite-based detector.

The background hampering this detection is lower
than the expected signal in the case of the quiet Sun and
for radio-quiet regions and does not prevent signal
detection.

Simultaneous measurements of the signal amplitude
and pulse duration make it possible to determine the
EAS (i.e., UHECR) energy.

The observed area of the atmospheric surface when
employing the radio method is expected to be as high as
a few million square kilometers. Thus, the correspond-
ing event detection rate could be as high as a few events
per day at E ≥ 1020 eV.

The proposed method provides an opportunity for both
considerably increasing the accuracy of UHECR-spec-
trum measurements and approaching higher energies.

dN
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------- JS∆Ω.=

dN
dt
-------
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The problem of the thermal stability of a nanocrys-
talline state in the sense of crystallization upon uniform
or local heating is interesting and important for theory
and applications. Under the conditions of rather low
heat transfer, self-acceleration of the crystallization
process is possible. The latent heat of the transition is
intensely released at the phase interface and heats a
crystallization front, which takes the shape of a thermal
domain moving with a velocity of up to several tens of
meters per second. In this case, the liquid phase can arise
at the crystallization front. This crystallization of a sam-
ple is usually called explosive crystallization [1, 2].

The character of the instabilities appearing at the
phase interface upon crystallization depends on the pro-
cess conditions. When the crystallization-front velocity
is low and heat transfer is ideal, the crystallization front
will be smooth. In the case of a steady-state growth of
a crystalline needle in a supercooled melt, any bulge
formed at the crystallization front should disappear,
which ensures front smoothness. In the case of
unsteady-state growth, an increase in the supercooling
degree results in the appearance of instabilities at the
smooth front of crystallization. These instabilities are
characteristic of crystallization from a melt: small sinu-
soidal disturbances of the Mullins–Sekerka type, den-
dritic instabilities, cellular structure of the front, and
fractal clusters described by the Witten–Sander model.
The mechanisms of the formation of various instabili-
ties upon crystal growth were considered in [3]. Explo-
sive crystallization in Dy–Co, Pr–Ni, and Fe amor-
phous films exposed to an electron beam was reported
in [4, 5]. As a result of crystallization, dendritic struc-
tures were formed.

In this paper, explosive crystallization initiated in
nanocrystalline iron–carbon films by an electron beam
from a transmission electron microscope is studied.
The parameters of a macrostructure formed upon
explosive crystallization are analyzed as functions of
the velocity of propagating crystallization. Earlier, den-
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dritic structures formed as a result of the vacuum ther-
mal annealing of films obtained by the same technology
were studied [6, 7]. The fractal oxidation of such films
exposed to pulsed laser radiation in air was reported [8].

The microstructure and phase composition of the
films were studied with a PREM-200 transmission
electron microscope. Iron–carbon films 20–50-nm
thick with ~20 at. % carbon content were prepared by
pulsed plasma sputtering onto various substrates (NaCl,
MgO, LiF) in 1.33 × 10–4 Pa vacuum [7]. The films
were separated from the substrates in water or in a
hydrofluoric acid solution and were placed onto the
object-supporting grids for electron microscopy. Crys-
tallization in the films was initiated by an electron beam
from the transmission electron microscope under an
accelerating voltage of 125 kV and a beam current of
50–75 µA.

In the initial state, the iron–carbon films had a
nanocrystalline structure. Diffraction reflexes in the
electron diffraction patterns obtained from such films
are diffuse halos. Only one strongly broadened reflex
was observed in the X-ray diffraction spectra. The
dimension size of the particles composing the films in
the initial state was determined from the broadening of
the X-ray reflex and was 3.5 nm [9]. Explosive crystal-
lization was observed in some nanocrystalline films
exposed to an electron beam. It should be noted that this
crystallization was observed under the conventional
conditions of electron microscopy investigations. The
crystallization velocity that was determined visually
differed from one sample to another and was up to
1 cm/s. A typical electron microscopy image of a film
after such crystallization is presented in Fig. 1. The
crystallization process occurred as follows: first, a crys-
tallization center appeared; then, branches with a den-
dritic structure emerged on different sides from this
center. These branches, in turn, initiated the appearance
of new crystallization centers. The branch-propagation
velocity for the structure shown in Fig. 1 was
~0.25 cm/s. As a result of crystallization, a fraction of
the film is covered by dendritic structures. The electron
diffraction pattern obtained by the method of microdif-
fraction from one dendritic branch is given in the insert
in Fig. 1. The electron diffraction pattern has a spotted
002 MAIK “Nauka/Interperiodica”
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1 µm

Fig. 1. Electron microscopy image of the dendritic crystal formed in the initial nanocrystalline iron–carbon film exposed to an elec-
tron beam. In the insert, the electron diffraction pattern obtained by the method of microdiffraction from a dendritic branch.
form and does not correspond to any known structure of
either pure iron or iron–carbon compounds. The
reflexes in the electron diffraction patterns obtained
from the uncrystallized regions of the film are diffused
and have halo shape.

When explosive crystallization was unsuccessful in
the films in the initial state, they were annealed in vac-
uum at Tann = 100–150°C for 30 min. The electron dif-
fraction patterns obtained from the films after anneal-
ing did not differ from those for the initial state. Such
films were again exposed to an electron beam and, as a
rule, crystallization was observed. The electron micros-
copy image of the films after crystallization is pre-
sented in Fig. 2. The crystallization process occurred as
follows: first, cells (primary instabilities) grew with a
velocity of ~0.01 cm/s in the structureless film (Fig. 2,
left part). The electron diffraction pattern obtained by
the method of microdiffraction from one cell is also
shown in Fig. 2. Then, secondary dendritic-type insta-
bilities appeared and developed. As a result, a fraction
of the film was covered by dendritic structures (Fig. 2,
right part). The cellular structure was further decom-
posed due to the growth of secondary dendritic-type
instabilities. A similar dendritic structure was observed
in the Fe–Ni films upon crystallization from a melt [10].

The form of the dendritic (Fig. 1) and cellular-den-
dritic (Fig. 2) structures observed upon the crystalliza-
tion of nanocrystalline iron–carbon films corresponds
to the growth of crystals in a supercooled melt [3, 11].
As was mentioned above, a liquid zone moving in front
of the crystallization front can arise upon explosive
crystallization [2, 4]. The presence of the liquid zone
allows the appearance of various instabilities, including
dendritic and cellular instabilities, which are character-
istic of crystallization from a melt. The existence of a
liquid zone moving in front of the crystallization front
implies that the crystallization process will be similar to
crystallization in a supercooled melt. As was shown in
[12], a paraboloid of revolution is the steady-state
shape of a crystalline needle growing in a supercooled
melt in the case of an isothermal surface. For a noniso-
thermal needle surface, the paraboloid of revolution is
not a steady-state shape. In analyzing this case, Temkin
[13] showed that the needle’s velocity of motion will be
maximum for a certain curvature radius r = r0 of the
needle tip. With an increase in supercooling Tk, ∞ – T0,
where Tk, ∞ is the needle’s surface temperature and T0 is
the melt temperature (T0 < Tk, ∞), an increase in growth
velocity and a decrease in needle thickness is observed.
In the sense of shape stability, a needle that has a tip
curvature radius r0 and moves with the maximum pos-
sible velocity umax at given supercooling (Tk, ∞ – T0) will
be most stable. Indeed, if the bulge appears at the tip of
such a needle, since its growth velocity is always less
than umax , it gradually disappears and the needle retains
its initial shape. The most probable shape of the needle
DOKLADY PHYSICS      Vol. 47      No. 4      2002
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0.5 µm

Fig. 2. Electron microscopy image of the cellular–dendritic structure formed in the iron–carbon film that was exposed to an electron
beam and annealed (Tann = 100°C) in vacuum. In the insert, the electron diffraction pattern obtained by the method of microdiffrac-
tion from a dendritic cell.
is expected to be a shape that ensures the maximum
growth velocity [13].

Based on Ivantsov and Temkin’s equations, Langer
[3] calculated the growth velocity as a function of the
tip curvature radius of a needle growing in a super-
cooled melt. This velocity is shown in Fig. 3. Instead of
the term crystalline needle, we will use the terms den-
dritic branch and cell. From the experimental data
obtained in this study of the explosive crystallization of
nanocrystalline iron–carbon films, one can estimate the
dimensionless velocity V of dendritic or cellular growth
and the dimensionless curvature radius R of the den-
dritic branch or cell tip:

where v  is the growth velocity (cm/s) of the dendritic
branch or cell, d0 is the capillary length (~10–8 cm), D
is the diffusion coefficient (~10–5 cm2 s–1), and r is the
curvature radius (cm) of the dendritic branch or cell tip.
The lines shown in Fig. 3 are plotted for the dimension-
less supercooling

where ímelt is the melting temperature, í is the temper-
ature of the supercooled melt, Cp is the specific heat,

V
v d0

2D
--------- R, r

d0
-----,= =

∆ Tmelt T–( )
Cp

L
------ 0.05,= =
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and L is the latent heat. By calculating V and R corre-
sponding to our experiment and indicating the values in
Fig. 3, one can verify if the equations describing the

Fig. 3. Dimensionless crystal-growth velocity V = 

in a supercooled melt vs. the tip curvature radius of a crys-

talline needle  [3]. Circles 1 and 2 correspond to

the structures that were studied in iron–carbon films and are
shown in Figs. 1 and 2, respectively.
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crystallization processes in the supercooled melt are
adequate for a description of crystallization processes
in the films studied.

The dendritic structure shown in Fig. 1 is character-
ized by a growth velocity of ~0.25 cm/s of the dendritic
branches and a curvature radius of 15–25 nm for the
dendritic branch tips. The cellular structure shown in
Fig. 2 is characterized by a growth velocity of
~0.01 cm/s and curvature radius of 100–160 nm for the
cell tips. For the dendritic structure shown in Fig.1, we
have r = 2.5 × 10–6 cm, R = 250, and V = 1.25 × 10–4 for
the maximum curvature radius of the dendritic branch
tip (point 1 in Fig. 3). For the cellular structure shown
in Fig. 2, we have r = 1.6 × 10–4 cm, R = 1600, and V =
5 × 10–6 for the maximum curvature radius of the cell
tip (point 2 in Fig. 3).

It is seen that the experimental values reported in
this paper (Fig. 3) agree qualitatively both with the
Ivantsov curve and with the spherical approximation.
Thus, the relation between the growth velocity and cur-
vature radius of the dendritic branch (or cell) tips upon
the explosive crystallization of the films under study
can be qualitatively described by the relations for crys-
talline-needle growth in a supercooled melt. In fact, the
Ivantsov equation hardly corresponds exactly to the
case in hand, because it implies that the crystalline-nee-
dle surface is isothermal, which is unlikely to be valid
in this case. More likely, the Temkin dependence or the
spherical approximation is more adequate for the
description of the observed processes. However, in
order to plot the dependences really corresponding to
our experiment, one has to know the exact values of the
quantities entering into the equations (capillary length,
diffusion coefficient, supecooling degree, specific heat,
latent heat, etc.). The exact determination of the values
listed above was not the aim of this study and is a sep-
arate difficult problem.

An estimation indicated that the local temperature
of the films, which is provided by the electron beam ini-
tiating explosive crystallization in nanocrystalline
iron–carbon films, was no higher than 200–250°C.
From the fact that similar structures were formed upon
annealing the films in vacuum at Tann = 300°C [6, 7, 9]
and under mechanical action, it follows that the energy
required for initiating explosive crystallization in the
films under study is much less than the energy neces-
sary for film melting. On the other hand, qualitative
agreement of the experimental results with those char-
acteristic of crystal growth in a supercooled melt and
the shape of structures formed as a result of crystalliza-
tion indicate that these structures can appear only upon
crystallization in a supercooled melt. Consequently, the
presence of a liquid zone at the crystallization front is
an obligatory condition for the appearance of dendritic
and cellular instabilities. Since the liquid zone could
not have appeared as a result of an external action, one
can assume that it appeared due to the release of energy
stored in the initial state of the film. As a minimum, this
energy should be sufficient for melting (or quasi-melt-
ing) of nanocrystalline particles composing the film.
The mechanism of explosive crystallization in the films
under study is assumed to be as follows. An electron
beam initiates the appearance of the crystallization cen-
ters. A liquid zone appears at the crystallization front,
and afterwards, self-maintained crystallization propa-
gates along the film. Crystallization-front motion is
self-maintained because crystallization at the interface
between liquid and solid phase is accompanied by the
release of the energy stored in the film. In the process
of explosive crystallization, particles melting at the
edges are built onto one another and form dendritic and
cellular structures. Since these structures are not trans-
lationally symmetric, they are scaling-invariant and
provide spotted electron diffraction patterns. Only this
crystallization model can explain how dendritic (or cel-
lular) structures responsible for spotted electron dif-
fraction patterns similar to those from single crystals
are formed from a structurally disordered nanocrystal-
line state in such a short time interval.

It is shown in [14] that the films are characterized by
high oriented and unoriented stresses, which some-
times exceed the ultimate strength of a material in the
bulk state by an order of magnitude. The ultimate
strength of metal films is usually determined by the
presence of numerous defects in the structure and can
be several times higher than the ultimate strength of the
corresponding bulk materials. It is known [15] that the
energetically metastable regions in amorphous and
nanocrystalline samples differ in energy from the nor-
mal (thermodynamically equilibrium) state by “stress
energy” with characteristic values of 5–20 kJ/mol. This
energy is sufficient to cause the appearance of the liquid
zone in the process of structural rearrangement upon
explosive crystallization. It can be expected that
approximately the same energy is accumulated in the
nanocrystalline iron–carbon films studied in this paper.

It is known that the crystal growth velocity in a
supercooled melt depends directly on the degree of
supecooling [13]. In turn, the degree of supercooling in
this case will be defined by the energy accumulated in
the film. In films where high energy was accumulated
due to the technology of their preparation, explosive
crystallization is obviously accompanied by the forma-
tion of dendritic structures, propagates with higher
velocity, and requires less energy for initiation. In films
accumulating less energy, larger energy is required to
initiate crystallization that propagates with lower veloc-
ity and is accompanied by the formation of cellular
structures. In relatively equilibrium samples, explosive
crystallization is not initiated by an electron beam.

In summary, this study demonstrated that an elec-
tron beam induces explosive crystallization that propa-
gates with a velocity up to 1 cm/s in nanocrystalline
iron–carbon films and is accompanied by the formation
of dendritic or cellular–dendritic structures. The elec-
tron diffraction patterns obtained after explosive crys-
DOKLADY PHYSICS      Vol. 47      No. 4      2002
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tallization have a spotted form and are not consistent
with any known structure of either pure iron or iron–
carbon compounds. The relation between the growth
velocity of dendritic branches (or cells) upon explosive
crystallization and the curvature radius of dendritic
branch (or cell) tips can be qualitatively described by
the equations for crystal growth in a supercooled melt.
The following dependence characteristic of crystalliza-
tion in a supercooled melt is observed: the higher the
growth velocity, the less the curvature radius of den-
dritic branch (or cell) tips. It is shown that explosive
crystallization in the films under study proceeds with
the formation of a liquid zone at the crystallization
front. In this case, the liquid zone is formed not due to
an external action but to the energy accumulated in the
nanocrystalline state of the film.
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The problem of quantum chaos in relativistic
dynamical systems is investigated by solving the Dirac
equation for a periodically disturbed rotator, which is
the simplest model for studying quantum chaos in
dynamical systems. To analyze rotator evolution in
classical mechanics, one usually applies the equations
in moment coordinates or in the action–angle phase
space. These equations provide the mappings of equa-
tions that coincide with so-called standard mappings [1].

The evolution of a disturbed quantum rotator can
also be described by (quantum) mappings that are
obtained from the wave equation and describe the evo-
lution of a wave function. In this paper, we analyze the
quantum dynamics of a periodically disturbed rotator
of spin 1/2. Although quantum chaos dynamics has
been successfully developed over the last three
decades, quantum chaos has primarily been studied for
nonrelativistic systems. Nevertheless, many actual
physical systems, such as a relativistic atom in a mono-
chromatic field, the so-called quark–antiquark system
(quasiatomic meson) that are disturbed by a periodic
field, and some other systems, can be simulated by a
relativistic quantum rotator that is periodically dis-
turbed.

To solve the problem of the relativistic disturbed
rotator, we should know the eigenvalues and eigenfunc-
tions of the free rotator.

Many rotating systems, such as molecules,
deformed nuclei, and some cosmological objects, can
be simulated by the free rotator, whose properties are
well studied in both classical and quantum cases and
are available in any textbook of classical and quantum
mechanics (e.g., [4–6, 8]). For this reason, the rotator is
a convenient model for studying dynamical chaos in
periodically disturbed systems [1, 9–11].

First, we solve the following Dirac equation for the
free rotator:

(1)ap β+( )ψ Eψ,=

Heat Physics Department, Academy of Sciences 
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where αθ =  and β =  are the ordi-

nary Dirac matrices, p = i  (hereafter, we set m = " =

c = 1), and ψ = . The components ϕ and χ satisfy

the equations

(2)

Expressing χ in terms of ϕ, we obtain

(3)

The substitution of Eq. (3) into the first of Eqs. (2) gives

(4)

or

(5)

Using the relationship [5, 8]

(6)

we arrive at the equation

(7)

or

(8)

where

(9)

This equation coincides formally with the Schrödinger
equation for the free rotator [5–8]

(10)

and has the solution

(11)
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Therefore, the energy eigenvalues of the relativistic
quantum rotator have the form

(12)

Taking into account that

, (13)

we obtain the small component in the form

(14)

Thus, the wave functions of a free relativistic quantum
rotator of spin 1/2 have the form

(15)

As is seen from Eqs. (13) and (15), the energy and the
wave function in the nonrelativistic limit (n ! 1) coin-
cide with the respective nonrelativistic expressions.

From the normalization condition

, (16)

we obtain the normalization constant

(17)

Thus, we solve the Dirac equation for the free rotator.
Then, we use the above results to solve the problem of
the relativistic quantum disturbed rotator, for which the
Dirac equation has the form

(18)
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where

(19)

We solve this equation by the method used in [13]. For
this aim, we decompose the wave functions Φ(θ, t) of
the disturbed rotator into the eigenfunctions of the free
relativistic rotator [1, 13]; i.e.,

(20)

For any time T different from the points where the
Dirac delta function is nonzero, the coefficients An(t)
evolve as [13]

(21)

In an infinitesimal time interval around a point where
the Dirac delta function is nonzero, Eq. (18) takes the
form

(22)

Integration of this equation over the infinitesimal inter-
val (before and after the point where the Dirac delta
function is nonzero) from (t + T) to (t + T+) gives

(23)

Decomposing both sides of this equation into the free-
rotator eigenfunctions, we obtain

(24)

Here, we used the expression

(25)

where

(26)

with the Bessel functions Js .

Multiplying both sides of Eq. (24) by ψ* and taking
into account that

(27)
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we arrive at the relativistic quantum mapping

(28)

which coincides, in the nonrelativistic limit (n, r ! 1),
with the nonrelativistic mapping from [13].

Thus, by solving the Dirac equation for a periodi-
cally excited rotator, we derive the relativistic quantum
mapping for spin 1/2. This mapping is one of the first
steps in the investigation of quantum chaos in relativis-
tic systems. The above results can be used to describe
various periodically excited relativistic systems, such
as heavy relativistic atoms or relativistic molecules in a
laser field, so-called quasiatomic mesons in a mono-
chromatic field, etc.
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Observational data concerning radio-wave emission
from extragalactic sources form, in large part, modern
concepts of physical processes proceeding in certain
regions of the Universe, as well as of its geometric and
evolutionary characteristics [1–5]. A radio-wave radia-
tion incident on the Earth partially interacts with its
atmosphere. The basic characteristics of the atmo-
sphere related to the transmission of radio waves
through it, namely, the refractive index and the absorp-
tion coefficient, have been well studied. The refractive
index decreases with distance from the Earth’s surface
following a nearly exponential law [6]. Therefore, the
atmosphere represents a focusing spherical layer. Thus,
it should be expected that radio waves from an extraga-
lactic source, after passing through this layer, would be
focused in the Earth’s geometric shadow.

In this paper, we estimate the position, altitude, and
structure of the field-intensity maxima formed in this
case as applied to the millimeter-wave region.

The geometry of the problem is illustrated in Fig. 1.
Let a plane radio wave from an extragalactic source be
incident on the Earth surrounded by the atmosphere
with the characteristic thickness ∆‡. The incident direc-
tion is determined by the wave vector k0 . The ring-
shaped part of the wave front, with inner radius RE and
width ∆‡, passes through the atmosphere, undergoes
refraction and partial absorption in it, and forms a field
in the Earth’s geometric shadow. In order to describe
radio-wave propagation in the atmosphere, we intro-
duce the cylindrical coordinate system with the z-axis
directed along the vector k0 and passing through the
Earth’s center (the point O). The coordinate z is counted
off from the point O; therefore, the field intensity for an
incident plane wave at its entry into the atmosphere is
specified by the condition

(1)E ρ; ϕ ; RE ∆‡+( )–( ) 1.=
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Wave propagation in the atmosphere is described by
the Helmholtz equation for the complex-valued field
amplitude E:

(2)

Here, r is the radius vector; k = k0(n + ini) is the wave
number; and n and ni ! n are the real and imaginary
parts of the complex refractive index for the medium,
respectively. The dependence of the quantity n on the
altitude h with respect to the Earth’s surface is
described by the formula corresponding to the conven-
tional radio model of the atmosphere [6]:

(3)

Relation (3) allows us to consider the problem of
evaluating the amplitude E as an axially symmetric one.
We write out the amplitude E(r) in the form

(4)

where A(r) is a complex-valued (in contrast to, for
example, the suggestion of [7, 8]) amplitude function
and ψ(r) is a real-valued function. Taking into account

that the equality n2(r) – (r) = n2(r) is satisfied with
high accuracy, we obtain, instead of Eq. (2), the rela-
tionship

(5)

We choose the function ψ(r) such that it satisfies the
equation

(6)

In this case, the quantity ψ(r) is defined as an eikonal
and is expressed in terms of a curvilinear integral along
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Fig. 1. Geometry of the problem.

z  – z'
a ray r(s) (s is the ray length). The trajectory of this ray
is described by the equation [7]

(7)

where s0 is the unit vector tangent to the curve r(s).

Together with the coordinate system (ρ, ϕ, z), we
introduce the orthogonal, axially symmetric, curvilin-
ear coordinate system (Φ, ϕ, ψ) with its origin at the
point B (see Fig. 1). In this case, the coordinate lines are
the rays r(s), along which Φ = const and ϕ = const, and
the lines orthogonal to them, along which ϕ = const and
ψ = const. These lines are referred to as front lines. The
coordinate ϕ coincides with the cylindrical coordinates
introduced above and therefore needs no comment. In
the newly introduced coordinate system, the vector s0 is
a unit vector along the rays, while the unit vector
directed along the front lines is denoted as f0. There-
fore, the coordinates ψ and Φ of an arbitrary point
M(Φ, ϕ, ψ) in the plane ϕ = const are the value of the
eikonal at this point and the value of Φ for the ray pass-
ing through it, respectively. For z = zB, a plane wave
incident on the Earth coincides with the coordinate sur-
face ψ = 0. In the coordinates (Φ, ϕ, ψ), the ψ-depen-
dent terms entering into Eq. (5) take the form

(8)

(9)

In these equations, g11 and g33 are the metric tensor
components being determined in orthogonal coordi-

d ns0( )
ds

---------------- ∇ n r( ),=

∇ψ 1

g33

-----------s0, 2ik0∇ψ ∇ A× 2ik0n
1

g33

----------- ∂A
∂ψ
-------;= =

∇ 2ψ n
R
---

n
ρ
---s0grad ρ s0 grad n.+ +=
nates by the relation

(10)

Here, δl is the distance (in the cylindrical coordinates)
between two close spatial points; δΦ, δϕ, and δψ are
the coordinate differences for these points; δφ =
δl |ϕ, ψ = const; and δs = δl |Φ, ϕ = const . According to Eq. (6),

g33 = . In order to find the quantity g11 at a point

(Φ, ϕ, ψ) on the wave front, the distance δl from this
point to a close point (Φ + δΦ, ϕ, ψ) should be evalu-

ated in the cylindrical coordinates with g11 = . In

Eq. (9), the radius of curvature for an element
δφ(Φ, ϕ, ψ) in the plane ϕ = const is denoted by R. This
radius is determined by the relationship R =

2g11 .

Substituting Eqs. (8) and (9) into (5) and taking into
account that the problem is axially symmetric and that
the angle of refraction in the Earth’s atmosphere does
not exceed ~2.4 × 10–2 [6] and ∆‡ ! 2RE , we arrive at
the parabolic equation for the complex amplitude func-
tion in the coordinates (Φ, ϕ, ψ):

(11)

δl( )2 δφ( )2 ρ2 δϕ( )2 δs( )2+ +=

=  g11 δΦ( )2 ρ2 δϕ( )2 g33 δψ( )2.+ +

1

n2
-----

δl
δΦ
------- 

 
2

g33

∂g11

∂ψ
---------- 

 
1–

2ik0nρ g11
∂A
∂ψ
------- ∂

∂Φ
------- ρ

n g11

-------------- ∂A
∂Φ
------- 

  ik0ρ g11–=

× n
R
---

n
ρ
---s0 grad ρ s0 grad n γ+ + + A,
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where γ = 2k0nni is the absorption coefficient. Accord-
ing to Eq. (1), the amplitude function for the plane inci-
dent wave front (which is perpendicular to the z-axis
and passes through the point B) is given by the relation
A(Φ, ϕ, 0) = 1. The upper Φ = Φmax and lower Φ = Φmin

limits of integration over Φ are determined by the ray
trajectories originating at points of the initial front,
which bound the interval of values of Φ for ψ = 0. In
this case, we choose the boundaries such that, at z = 0,
the upper boundary passes through the mesopause and
the lower one is tangent to the Earth’s surface. The fol-
lowing boundary conditions are imposed:

(12)

(13)

In condition (13), we denote the attenuation factor due
to wave refraction [6] and the optical depth of the atmo-
sphere for the lower ray as X and τ, respectively, both
quantities being functions of the ray length. For rays
passing through the atmosphere close to the Earth’s sur-
face, the values of τ for millimeter waves amount to
several tens or even hundreds depending on the partic-
ular value of λ.

Each evaluation step over ψ involved three stages.
Initially, a successive front line was constructed using
Eqs. (6) and (7). Then, the amplitude A was evaluated
from this front and Eq. (11). Finally, the front was cor-
rected so that the equiphase condition was satisfied on
it. The solution to Eq. (11) was found by the Crank–
Nicholson scheme [9].

In the region behind the Earth, i.e., for z ≥ RE + ∆‡,
where n = 1, k = k0, and γ = 0, the following integral for-
mula describes the solution to Eq. (2):

(14)

Here, S is the integration surface, t0 is the outer normal

to S, G =  is the Green’s function for Eq. (2) at

n = 1, l = |l |, and l is the vector going out from the point
(ρ', ϕ', z') on the surface S to the observation point (ρ, ϕ,
z). It is natural to take the equiphase wave front as the
surface of integration in Eq. (14). This surface is found
by solving the problem of the passage of a plane wave
through the atmosphere. Therefore, the field intensity
and its normal derivatives are known for this surface,
with t0 = –s0 .

A Φmax; ϕ ; ψ( ) 1;=

A Φmin; ϕ ; ψ( )

=  X Φmin; ϕ ; ψ( )
τ Φmin; ϕ ; ψ( )–

2
------------------------------------- 

  .exp

E ρ; ϕ ; z( ) 1
4π
------ G

∂E
∂t
------ E

∂G
∂t
-------– 

  S.d

S

∫=

e
ik0l

l
--------
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After expanding the derivatives entering into the
integrand in Eq. (14), we reduce it to the form

(15)

When integrating over ϕ ', we represent the modulus of
the vector l in the form [10]

(16)

where R0 =  and sinθ = . Under the

condition

, (17)

the following expansions are valid [r0 = ]:

(18)

. (19)

In addition,

(20)

where ∆z' = z – z' and α is the angle between the unit
vector s0 and the z-axis. Substituting relationships (18)–
(20) into Eq. (15) and integrating it over ϕ', we arrive at
the final expression for the field intensity in the Earth’s
geometric shadow:

(21)

E ρ; ϕ ; z( ) e
ik0ψ'

4π
----------- dΦ' g11ρ' e

ik0l 1
l
--- ∂A

∂ψ
-------



0

2π

∫
Φmin

Φmax

∫–=

+ A
ik0

l
------

ik0l 1–

l3
----------------- s0 l⋅( )+ 

 

 dϕ'.

l R0 1
ρ'
R0
----- 

  2

2
ρ'
R0
----- θ ϕ'cossin–+ 

  1/2

,=

z z'–( )2 ρ2+
ρ
R0
-----

2ρ'
R0
------- θ ! 1sin

R0
2 ρ'( )2+

l = r0
ρρ' ϕ'cos

r0
----------------------– …, 1

l
--- 1

r0
----= ρρ' ϕ'cos

r0
3

---------------------- …;–+ +

ik0l 1–

l3
-----------------

ik0r0 1–

r0
3

--------------------
3 2ik0r0–

r0
5

------------------------ρρ' ϕ' …+cos–=

s0l ∆z' αcos ρ' αsin– ρ α ϕ ',cossin+=

E ρ; ϕ ; z( ) e
ik0ψ'

2
----------- dΦ' g11

e
ik0r0

r0
----------ρ'

Φmin

Φmax

∫=

× ∂A
∂ψ
------- J0

k0ρρ'
r0

------------- 
  i

k0ρρ'
r0

-------------J1

k0ρρ'
r0

------------- 
 –

+ A
ik0r0 1–

r0
2

-------------------- ∆z' αcos ρ' αsin–( ) ik0+ 
  J0

k0ρρ'
r0

------------- 
 

+ i
ik0r0 1–

r0
2

--------------------ρ αsin i
k0ρρ'

r0
2

-------------
3 2ik0r0–

r0
4

------------------------–+


---× ∆z' αcos ρ' αsin–( )ρ'ρ
   

 × J1

k0ρρ'
r0

------------- 
  3 2ik0r0–

r0
4

------------------------ρ'ρ2 αsin–
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The diffraction pattern of the field in the shadow
region is basically determined by the radiation wave-

× J0

k0ρρ'
r0

------------- 
  J2

k0ρρ'
r0

------------- 
 – .

1

0

1

ρ, m

1

0

1

1 2 3
z, 106 km

(a)

(b)

Fig. 2. Relative radiation energy-flux density in the Earth’s
geometric shadow (a) with and (b) without allowance for
the absorption in ozone (λ = 2.109 mm and ∆‡ = 100 km).
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Fig. 3. Relative radiation energy-flux density along the
z-axis (2) with and (1) without allowance for ozone absorp-
tion (λ = 2.109 mm).
length λ and the altitude dependences for both the
refractive index and the atmospheric absorption coeffi-
cient. The effect of the latter on the focusing phenome-
non is briefly considered below for the wavelength λ =
2.109 mm, which corresponds to the absorption reso-
nance of ozone. The altitude dependence of γ is deter-
mined by the absorption in oxygen, water vapor, and
ozone, with ozone absorption prevailing for h ≥ ~15 km
[11]. A shift of only ±0.005 mm in the wavelength λ
does not significantly affect the absorption coefficients
for O2 and H2O but results in a frequency shift out of the
resonance region occupied by the O3 line. Therefore,
the altitude dependence of γ varies significantly [11].
The densities |A|2 of the relative radiation-energy flux,
which were evaluated by means of Eq. (21), are shown
in Fig. 2 for a spatial region in the neighborhood of the
z-axis. The quantity |A|2 attains a maximum |Amax|2 at the
point zmax marked by the cross. In the central darkest
region, the values of |A|2 range from 0.1 to 0.25 of
|Amax|2. The regions corresponding to decreasing

degrees of darkness correspond to ratios of 

within the ranges 0.25–0.01, 0.01–0.0025, 0.0025–
0.0001, and 0.0001–0. A typical interference pattern is
observed in the vicinity of the symmetry axis. Indeed,
spatial regions in which the values of |A |2 are several
tens (or even hundreds) of thousands of times larger
than those in the incident wave alternate with regions in
which |A |2 is close to zero. The region in which the
quantity |A |2 attains its maximum is similar to a certain
cord coinciding with the z-axis. The diameter of the
cord is only about 10–30 cm, while its length amounts
to several million kilometers. The focusing effect
becomes pronounced at a certain distance from the
Earth (see Fig. 3). The lack of atmospheric absorption
at altitudes exceeding about 15 km most significantly
affects the field characteristics in the vicinity of the
z-axis. Indeed, the values of |Amax|2 corresponding to
Fig. 2a and Fig. 2b, respectively, are equal to 9.52 × 104

(zmax = 7.3 × 105 km) and 4.94 × 105 (zmax = 8.0 ×
105 km). In the latter case, both the transverse and lon-
gitudinal cord sizes are doubled.

Thus, the estimates obtained substantiate the hypo-
thesis on strong focusing of millimeter-wavelength
extragalactic radiation in the Earth’s geometric shadow.
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1. Recently, a series of so-called alternative toroidal
systems has been suggested [1–3]. In contrast to classi-
cal toroidal systems, such as tokamaks and stellarators,
whose magnetohydrodynamic (MHD) stability is cal-
culated on the basis of the well-known Mercier stability
criterion (see, e.g., [4, chapters 7–9]), the alternative
systems are assumed to be stable if a stability criterion
of the type [5]

(1)

is satisfied. Here, p is the equilibrium plasma pressure,

γ0 is the adiabatic exponent, U = , B is the equilib-

rium magnetic field, and dl is the length element of a
magnetic-field line. The magnetic-field lines are

assumed to be closed so that  implies the integral

along the entire field line.

The assumption of closure of the field lines for a tor-
oidal system is an evident idealization associated with
ignoring the magnetic-field shear. A rejection of this
idealization is, to a certain extent, a rejection of the idea
of alternativeness of the corresponding systems. Then,
generally speaking, such systems turn out to be nothing
but some varieties of stellarators. In this case, it seems
to be of practical importance to know whether toroidal
systems satisfying a condition of type (1) have any
additional advantages over systems that satisfy the
Mercier stability criterion but do not satisfy a condition
of type (1). Thus, in connection with the development
of a program of studies of alternative toroidal systems,
it is necessary to clarify the question of the most impor-
tant stability criterion. Is it the Mercier stability crite-
rion or a criterion of type (1)? The goal of the present
paper is to find an approach to solving this dilemma.

2. At first glance, we may think that this dilemma is
being solved trivially and the answer is that the Mercier

∇ p ∇ U×–
γ0 p ∇ U( )2

U
------------------------- 0≥+

dl
B
-----∫°–

∫°
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stability criterion is more important. Such a standpoint
has a rather reasonable foundation, the essence of
which is the following. According to the well-known
results of the theory of MHD plasma instabilities (see,
e.g., [6, chapter 12] and references therein), the Mercier
stability criterion characterizes the so-called most dan-
gerous modes. In other words, it predicts the lowest
thresholds for exciting instabilities. It follows from this
fact that, if the Mercier stability criterion is violated, the
plasma is unstable regardless of whether a stability cri-
terion of type (1) is satisfied or violated.

Meanwhile, the importance of the instabilities is
determined not only by their excitation thresholds, but
also by their growth rates. It is evident that, all other
conditions being equal, the most important instabilities
are those with the largest growth rates. In addition, we
should keep in mind that instabilities with sufficiently
small growth rates, predicted by the ideal magnetohy-
drodynamics, may be absent in reality. This is a result
of their suppression by effects lying beyond the scope
of ideal magnetohydrodynamics, such as drift effects or
effects of finite plasma resistivity (cf. [4, chapters 21,
22] for details). For this reason, the Mercier stability
criterion cannot be a priori considered as the most
important one.

Consequently, in order to solve the above-formu-
lated dilemma, analysis of the growth rates of the insta-
bilities is necessary. From the mathematical standpoint,
such an analysis is a much more complicated problem
than deriving the stability criteria. This is clear from the
fact that when deriving a stability criterion, we are deal-
ing with mode equations which are simplified by ignor-
ing terms with the mode growth rates. At the same time,
analysis of the growth rates implies extracting the nec-
essary information from nonsimplified equations.
Development of an approach to studying such equa-
tions is one more goal of the present paper.

3. Initially, we consider the problem of interest
using the plasma cylinder model, and then we explain
how this problem should be solved in the general case
of toroidal systems.

We now make use of the explanations given in [4]
(see chapter 4 of this book) with allowance for effects
important for deriving both the Mercier stability crite-
002 MAIK “Nauka/Interperiodica”
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rion and the criterion of type (1). With their help, we
find that, for finite growth rates, the MHD modes are
described by the equation for small oscillations of the
form

(2)

Here, ξ is the perturbed radial displacement of plasma
and x is a dimensionless variable that characterizes the
distance from the “rational” magnetic surface (in which
the magnetic-field lines are closed). Furthermore, xA =

 and xs =  are dimensionless quantities charac-

terizing the so-called Alfvén and sound length scales,
respectively; γ is the growth rate; Ls is the so-called
shear length, i.e., a distance characterizing the shear of
the magnetic field; and cA and cs are the Alfvén and
sound speeds, respectively. The parameters U0 and Uc

are defined by formulas

(3)

(4)

Here, R is the radius of curvature for the field lines; the
prime corresponds to the radial derivative.

The parameter U0 characterizes the magnetic well
(for U0 > 0) or the magnetic hill (for U0 < 0). Physically,
it means the same as the first term on the left-hand side
of inequality (1). In terms of U0 , the Mercier stability
criterion is written as

(5)

The term  on the left-hand side of this inequality char-

acterizes the stabilizing effect of the shear.
The parameter Uc describes the plasma-compress-

ibility effect characterized by the second term on the
left-hand side of inequality (1). In terms of U0 and Uc ,
this inequality implies that

(6)

The essence of the approach to solving Eq. (2),
which is developed in the present paper, is the follow-
ing. The space x is divided into three regions: x @ xs,
x ≈ xs, x ≈ xA. In each of these regions, Eq. (2) has an
exact analytical solution. In the region x @ xs and in the
regions x ≈ xs, x ≈ xA, such a solution is expressed in
terms of Bessel functions and hypergeometric func-

d
dx
------x2dξ

dx
------ x2ξ– xA

2 d2ξ
dx2
--------+

– U0
Uc

1 x2/xs
2+

--------------------- xA
2+ + 

  ξ 0.=

γLs

cA

--------
γLs

cs

--------

U0

2Ls
2 p'

γ0Rp
-------------

cs
2

cA
2

-----,=

Uc

4Ls
2

R2
---------

cs
2

cA
2

-----.=

1
4
--- U0+ 0.>

1
4
---

U0 Uc+ 0.>
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tions, respectively. The solution found for the region
x ≈ xs is sewn at large x with the solution found for the
region x @ xs . For small x, it is sewn with the solution
found for the region x ≈ xA . Details of such a sewing
procedure can be found by turning to [4, Section 5.1.1].
As a result of the above procedure, we find a dispersion
relation containing all desired information on the mode
growth rates.

We have analyzed this information with an accent
on solving the dilemma formulated above. Further-
more, it has been determined that if, on the one hand,
the Mercier stability criterion (5) is violated, i.e.,

(7)

and, on the other hand, an inequality of type (6), which
is complemented by the term with the shear, is satisfied,
i.e.,

(8)

then only the sound modes with the growth rate

(9)

are unstable. Under above conditions, Alfvén modes
are not excited. At the same time, if the stability crite-
rion (8) is violated, these modes will be excited with

growth rates on the order of γ ≈ , which are consid-

erably larger than those for sound modes (9) by a fac-

tor of .

Thus, our analysis shows that the stability criterion
of type (1) [to be more precise, of type (8)], but not the
Mercier stability criterion, is more important. Hence, it
follows that the above-mentioned alternative toroidal
systems have certain advantages over the traditional
stellarators.

We note that, from heuristic positions, stability cri-
terion (8) was initially proposed in [7]. Therefore, it can
be called the Trubnikov stability criterion. Stability cri-
terion (1) goes back to [8]. The importance of the sta-
bility criterion of type (1) was initially emphasized in
[9], then in [5], and in a series of other papers by the
same author. In this connection, the stability criterion of
type (1) can be called the Bernstein–Kadomtsev stabil-
ity criterion. 

4. According to [10], MHD stability in arbitrary tor-
oidal systems is determined by the parameters E, F, G,
H, K introduced therein. In addition, an approach to cal-
culating these parameters was given in [10]. In this con-
nection, they can be called Glasser parameters.

1
4
--- U0+ 0,<

1
4
--- U0 Uc+ + 0,>

γ
cs

Ls

-----≈

cA

Ls

-----




cA

cs

----- 
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Turning to [10], we can find that, in terms of the
Glasser parameters, the equation for the MHD modes
of an ideal plasma can be represented in the form

(10)

The expressions for xA and xs entering into this equation
can be restored by turning to [10]. It follows from (10)
that the parameters U0 and Uc entering into the Mercier
and BKT stability criteria, i.e., into (5) and (8), are
related to the Glasser parameters by the relationships

(11)

(12)

Using (11), (12), we can determine the importance of
these criteria for a certain specified toroidal system in
the same manner as for a plasma cylinder. In addition,
to identify the compression trend as a whole, stability
criterion (8) can be called the Bernstein–Kadomtsev–
Trubnikov (BKT) stability criterion.
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1. SYSTEMS FOR SUPERHIGH-SPEED 
INFORMATION PROCESSING IN MICROWAVE 

AND EXTREMELY HIGH FREQUENCY RANGES

One of the fundamental problems at the modern stage
of the development of human society is the necessity of
systems for superhigh-speed information processing
(SSIP) that are highly efficient, technologically effective,
and relatively inexpensive in mass production [1]. It is
also required that these SSIP have a high operating
speed; be reliable while receiving, storing, and trans-
mitting information; and have low mass and small size,
high technological effectiveness, low cost, etc. Personal
computers, which have become very popular through-
out the world, are now produced on a large scale.

Modern personal computers are based on large-scale
integrated (LSI) and superlarge-scale integrated (SLSI)
circuits with a clock frequency fm ~ 50–300 MHz. How-
ever, an increase in the clock frequency even by a factor
of 10, and especially of 102 to 103, meets certain funda-
mental difficulties [2, 3].

The alternative to this direction are SSIP in which
information processing proceeds immediately within
microwave and extremely high (EHF) frequency ranges
at clock frequencies of 10 to 100–500 GHz. The real-
ization of this method of information processing is pos-
sible on the basis of three-dimensional integrated cir-
cuits (3D IC), which were proposed and partly mas-
tered in Russia more than 20 years ago [1, 4–6]. These
IC have many remarkable properties. For example,
their mass and size parameters are better by one to three
orders of magnitude. The operating speed of micro-
wave and/or EHF SSIP modules is also improved by
two to four orders of magnitude, etc. [7–10].

In this paper, we consider possibilities for a regime
of highest wave types in certain kinds of transmission
lines used in microwave 3D IC and EHF 3D IC.
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2. A GENERALIZED DOUBLE-SLOTTED 
WAVEGUIDE: SETTING THE PROBLEM 

AND METHOD OF SOLVING

One of the basic types of transmission lines for
microwave and EHF 3D IC is a generalized double-
slotted waveguide (DSW) whose cross section is shown
in Fig. 1. The electrodynamic theory of a generalized
DSW was developed in [13], where attention was
mainly attracted to the single-wave regime. Here we
consider as a basic generalized-DSW model its closed
version with imaginary (virtual) electric and/or mag-
netic walls spaced at a distance b (Fig. 2).

To analyze the structure presented in Fig. 2, we
employ one of the most efficient methods of computa-
tional electrodynamics, namely, the method of partial
domains [6, 11–14]. In this method, the electric and
magnetic fields in the domains 1–3 (Fig. 2) are written
in the form of infinite series for the eigenfunctions of
the Helmholtz equation. The application of boundary
conditions for tangents composing the electromagnetic
field leads to a system of equations that link Fourier
transforms of the electric-field tangent components in

y

w2

εr

ε2

w1
s

x

h
d

h

b

ε1

Fig. 1. Cross section of a generalized double-slotted
waveguide (almost open transmission line).
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slot apertures with Fourier transforms of the electric-
current density in the metal that forms the slots:

(1)

Here,  are the Green’s function elements of the
waveguide structure (Fig. 2) [13].

We use the Galerkin method to algebraize relation-
ship (1). In this method, the aperture distribution of the
tangential components of the electric field is represented
in the form of an expansion in terms of the first- and sec-
ond-kind Chebyshev polynomials with allowance for the
behavior of the field components near the edge:

(2)

Here, Tk(·) and Un(·) are the first- and second-kind Che-
byshev polynomials of the kth and nth orders, respec-
tively, and i is the slot ordering number.

As a result of employing the Galerkin method to
relationship (1) and after the truncation (reduction) of
series (2), we arrive at a homogeneous system of linear
algebraic equations (SLAE) with respect to unknown
coefficients in the expansion of aperture fields [13]:

(3)

J̃ y

J̃z

G̃yy G̃yz

G̃zy G̃zz

Ẽy
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Fig. 2. Closed model of a generalized double-slotted
waveguide.

s

The condition for the solution of homogeneous
SLAE (3) to be nontrivial results in the dispersion equa-
tion for the waveguide structure:

(4)

This equation can be solved with respect to the longitu-
dinal wave number on the basis of a certain numerical
method (e.g., Newton’s method) using a computer.

3. RESULTS

In accordance with the method developed and
described in the preceding section (see also [13, 14]),
thorough numerical and numerical-analytical investiga-
tions were carried out. In them, wave characteristics for
several types of transmission lines that are most inter-
esting for SSIP based on 3D IC, preferably in the EHF
range, were determined. We begin our analysis with a
DSW that presents a baseline in our further consider-
ation.

3.1. Double-slotted waveguide (w1 = w2 , s = 0, see
Fig. 2). This type of DSW is widely used in 3D IC of
the EHF range. In our study, basic attention was
attached to the highest fast-wave types. Previously, the
behavior and properties of the lowest wave types,
namely, H1 quasi-waves, were thoroughly investigated
in [5, 15]. In particular, it was shown that in order to
realize the single-wave regime intrinsic to planar IC,

the conditions d <  and h1 = h2 = d  had to be ful-

filled. We are interested in a more general case of the
multiwave regime where several half-waves λ0 can be

contained within the length d . The relationship

(5)

(where p is a complex-valued parameter such that
|p| ! 1) is the condition for the existence of a resonance
between the plates composing a DSW. This condition is
well known in the theory of open cavities, as well as in
the theory of microstrip lines and resonators based on
them.

Condition (5) implies that an almost integer number
of half-waves lie within the gap d between the metallic
plates.

The concept of the behavior of slowing-down η =

 for several wave types in a DSW as a function of the

normalized distance  =  between the metallic

plates at a constant distance between screening metal
layers makes it possible to obtain the numerical data
given in Fig. 3. In Fig. 3 (as in Fig. 4), curves related to
a DSW are plotted by solid lines. Curves (dashed lines)
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for a planar waveguide w1 = w2 = ∞,  ≡ 0  with a

dielectric plate of the same thickness d are also shown
in the same figures. The regions η > 1 and η < 1 corre-
spond to the slow and fast waveguide waves, respec-
tively. In accordance with relationship (5), there are

characteristic resonance points  = , q = 1, 2, … on

the abscissa axis. The resonance points are character-
ized by the existence of certain minima on the curves
for DSW waves. These minima coincide with flattened
segments for slowing-down curves corresponding to a
planar waveguide containing a dielectric plate. Thus, in
the case of a resonance between the plates forming the
DSW, slowing down of fast waves is basically deter-
mined by the parameters of the dielectric layer. This
corresponds to the concepts developed for waves of the
highest types (see, e.g., [5]) in microstrip lines when
resonance-type impedance boundary conditions can be

put at the boundaries for x = w and x = , and y ∈

(h, h + d). In this case, the field of the wave propagating
along the transmission line barely penetrates into the
space between the metallic DSW plates.

The physical mechanism underlying the appearance
of local minima in the dependence of the slowing-down
coefficients for DSW waves on the thickness of the
dielectric plate was very attentively studied in the
course of analysis of the electromagnetic field distribu-
tion for DSW proper waves in the transmission-line
cross section.

In the case of a thin dielectric substrate (Fig. 3), the
propagation of four types of waves is possible. By anal-
ogy with waves corresponding to the dielectric plate,
these waves can be classified as LM1, LM2, LM3, and
LM4 quasi-waves. The last two waves are conditionally
related to LM3, and LM4 quasi-waves, since, as the cor-
responding waves of a planar dielectric waveguide,
they have the predominant component of the electric
field, which is parallel to the plate plane. In addition,
they have variations of the field direction along the nor-
mal to the dielectric plane, where the number of these
variations corresponds to the accepted classification.
However, this number of field-direction variations is by
no means associated with the maintenance of the wave
by the dielectric layer, especially for the LM4 quasi-
wave, since for a given geometry of the directing struc-
ture, the corresponding wave of the planar dielectric
waveguide is cut off. In fact, these variations are
explained by the possibility of propagating the H1 wave
of a planar waveguide, which is composed of a screen
and a metal layer forming the slot aperture (regions 1
and 3 in Fig. 2). The main part of the energy transmitted
by these waves is concentrated in hollow rectangular
b × h1 and b × h2 waveguides (see insert in Fig. 3).
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In the connection region for the H1 wave of the pla-
nar waveguide and the LM3 wave of the screened
dielectric layer, the slowing-down curve of the LM3
wave has a local minimum. Here, the transformation of
DSW-wave types occurs. Immediately at the critical
point d = 0.5, the H1 wave of a planar waveguide filled
with a dielectric is disconnected from the LM3 wave of
this waveguide, whereas the effect of the H1 wave of the
planar dielectric waveguide on the LM3 wave is already
weakened. Therefore, at this point, the energy loss of
the LM3 quasi-wave, which is caused by the transfor-
mation of the wave energy into other wave types, exhib-

its a minimum. After the value of  has exceeded its
critical value, the mechanism of wave-energy mainte-
nance is basically determined by the dielectric layer.
Thus, in this case, the diffraction loss increases due to
the connection of the LM3 wave of the planar dielectric
waveguide and the H1 wave of the hollow planar
waveguide.

Near the critical thickness, for the LM2 wave of the
screened planar dielectric waveguide, the possibility of
the propagation of an actual LM4 quasi-wave appears in
the DSW. With increasing thickness of the dielectric
plate, the slowing-down curves for the wave pass the
coupling region for the LM4 wave of the planar dielec-
tric waveguide and the H1 wave of the hollow planar
waveguide.

The propagation mechanism for the LM4 wave in a

DSW immediately at the critical point  = 1.0 is simi-
lar to the above-described behavior of the LM3 quasi-
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Fig. 3. Slowing down of DSW proper waves (solid lines) for
a constant distance between screening metal layers and of
LMn waves for a dielectric plate (dotted lines) as a function
of the dielectric-substrate thickness. The geometric param-
eters are the same in both cases: f = 9.375 GHz, h1 + d + h2 =
4.6 cm, εr = 6.0, b = 1 cm, and w1 = w2 = 1 mm.
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wave at the point  = 0.5 with an accuracy to the formal
replacements LM3 ↔ LM4 and H1 ↔ H2 . However,
there exists one important distinction explaining the
greater depth of the local minimum for slowing down
of the LM4 quasi-wave compared to the LM3 quasi-
wave. This distinction consists in the fact that for the
LM4 quasi-wave, two significant phenomena have
approximately coincided at the same point. We imply
both the end and the onset of the cutoff for the H2 wave
of the planar waveguide filled with a dielectric and for
the H1 wave of the planar hollow waveguide, respec-
tively. This results not only in minimizing the coeffi-
cients for the transformation of the LM4 quasi-wave
into other waves of the planar dielectric waveguide and
planar waveguide filled with a dielectric, but also in the
disappearance of the energy loss caused by the transfor-
mation of the LM4 quasi-wave into the H1 wave of the
shallow planar waveguide. In other words, in the case
under consideration, the quality factor (Q-factor) for
oscillations in the regions between DSW metallic
planes increases and the impedance boundaries become

less transparent [5]. After the quantity  has exceeded
its critical value, the diffraction energy loss will
increase due to the connection of the LM4 quasi-wave of
the planar dielectric waveguide and H2 quasi-wave of
the planar waveguide.

3.2. Symmetric double slotted waveguide with
different slots (Fig. 2, s = 0, w1 ≠ w2). As a detailed
analysis has shown in the resonance case, the slowing
down of DSW proper waves of this type depends rela-
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0.4 0.8 1.2
d/λ0

λ0/λ'

h
d
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Fig. 4. Slowing down of proper waves for an inverted DSW
(solid lines) as a function of the thickness of the air layer for
a constant distance between screening metal layers and of
LMn waves (dotted lines) in a planar waveguide filled with
a dielectric with a slot. The geometry parameters are the
same in both cases: f = 9.375 GHz, h1 + d + h2 = 4.6 cm,
εr = 6.0, b = 1 cm, w1 = w2 = 1 mm.
tively weakly on the width of one of the slots, provided
that the width of the other slot remains constant. For
example, the variation of slowing-down reaches several
percent when varying w2 from w1 to w2 = 2w1 . The
physical mechanism ensuring the propagation in this
structure of wave types that exhibit a high value of the
Q-factor is similar to that described in item 3.1. How-
ever, we should mention that when interpreting the
results of numerical experiments, it is necessary to lead
the discussion in terms of LM waves for a metal layer
covered by a dielectric.

3.3. Inverted symmetric equally slotted double-
slotted waveguide (Fig. 2, s = 0, w1 = w2, h1 > hr, h2 >
hr). During the development of various basis elements
for microwave and EHF SSIP modules based on 3D IC,
inverted symmetric equally slotted (w1 = w2) and
unequally slotted (w1 ≠ w2) DSW are of interest in many
cases and find wide application.

One example of the behavior of fast and slow waves
for a symmetric inverted DSW is presented in Fig. 4.
The slowing down of waves in a DSW and waves of a

planar  ≡ 0  waveguide (filled with a dielectric

with a slot in it of the same width d as in the DSW) are
shown by solid and dotted lines, respectively. The reso-

nant behavior of the dependences η = η  is

clearly seen in Fig. 4. However, in contrast to a standard
DSW (Fig. 3), the resonance points are slightly shifted

from the points , n = 1, 2, … . As is seen, with

increasing n, the resonance points approach their stan-
dard values.

In this case, as in the case of a classical DSW (see
Section 3.1), two key structures play the principal role
in the formation of the repeated reflection of Brillouin
waves. These are a hollow waveguide composed of
metal layers that form slot apertures and a planar
waveguide composed of a metal layer that forms a slot
and the metal of a screen filled with a dielectric with
relative permittivity εr .

A local minimum of the LM5 quasi-wave near the

value  = 0.5 of the normalized thickness of the air

layer is caused by the onset of cutoff for the H2 wave of
the planar waveguide. This waveguide is composed of
a metal screen and metal forming a slot and filled with
a dielectric. The dielectric layers play the main role in
the process of maintaining the wave at this point of the
dependence under consideration. The basic energy
transferred by the electromagnetic wave is concentrated
in regions 1 and 3 (see Fig. 2), which are filled with a
dielectric with a large relative permittivity. Therefore,
the passage of the air-layer thickness through the criti-
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cal value for the H1 wave of the planar waveguide
seems to escape notice.

In the case presented in Fig. 4, the best quality reso-
nance exists for the LM4 quasi-wave in the vicinity of a

point corresponding to the critical thickness  ≈ 1.0.

This fact is explained by the approximate coincidence
of the critical thickness of the air layer for the H2 wave
of a planar waveguide filled with air and the H1 wave of
a planar waveguide filled with a dielectric.

It is worth noting that, as in the case of a standard
DSW (Fig. 3), resonance points for waves in this type
of DSW coincide with plane segments of dependences
for the corresponding waves of a planar waveguide with
a slot in the dielectric (Fig. 4).

One more feature of the proper-wave spectrum con-
firms the fact that the inverted variant of the DSW is a
rather interesting waveguide structure for 3D IC. We
imply the proximity in values of the propagation con-
stants for even and odd waves. It is well known that in
order to develop strongly connected and oppositely
directed couplers possessing a high directivity, it is nec-
essary to equalize the propagation constants for even
and odd waves. To this end, multilayer and anisotropic
substrates are applied in transmission lines with front
communication. The inverted DSW variant makes it
possible to attain the desired result without special
technological effort. This is due to the fact that quasi-
even and quasi-odd waves of the inverted DSW are
almost degenerate in the wide variation range of the air-
layer thickness. The degeneration ceases in the case of
a thin gap and in the case of a thick air layer.
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Soft magnetic materials are characterized by the fol-
lowing features: a small coercive force Hc; a large mag-
netic permeability µ and induction B; and a low total
energy loss Pt for the magnetization reversal, which is
composed of the hysteresis Ph and eddy-current Pe
components. These magnetic properties of a material
are determined by the type and sharpness of its crystal
texture; the presence of contaminations, inclusions, and
residual internal stresses in the material; and its chemi-
cal and structural heterogeneity.

In this paper, we studied the effect of structural
inhomogeneity on the energy loss Pt for anisotropic
electrical-sheet steel [Fe–Si(3 wt %) alloy with the roll-
ing edging texture (110)[001]] and the finemet
(Fe73,5Cu1Nb3Si13,5B9 alloy) as examples. In this
case, we paid most attention to the effect on Pt of the
magnetic-domain structural inhomogeneity caused by a
change in the crystal structure of the material.

Many researchers share the opinion, expressed as
far back as 1947, that the structural inhomogeneity of a
ferromagnet causes extra magnetic loss [2]. Indeed,
with increasing structural homogeneity of a material,
the quantities µ and B increase, while Hc and Ph
decrease [3]. However, in this case, magnetic domains
with an anomalously large width are formed in the
material, which results in an increase in Pe [4]. Accord-
ing to [5], the quantity Pe in a ferromagnet exceeds the
conventional eddy-current loss P0 evaluated under the
conditions of uniform µ by several times: Pe = P0 ×
1.63D/d, where d is the thickness of the ferromagnetic
sample and D is the domain width. For present-day
high-texture anisotropic electrical-sheet steels, D @ d.
Therefore, the contribution of Pe to Pt may be as much
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Yekaterinburg, 620219 Russia
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as 80% or even larger [4]. As the homogeneity of aniso-
tropic electrical-sheet steel increases, the increase in Pe
is much greater than the decrease in Ph , which leads to
the increase in Pt . Because of this, reducing the mag-
netic-domain width (fragmentation) is an important
problem in improving the properties of soft magnetic
materials.

Two methods for lowering Pt by decreasing Pe have
been developed at the Institute of Metal Physics, Ural
Division, Russian Academy of Sciences. One of them is
based on intentionally introducing local irregularities
into the magnetic-domain structure by a mechanical
method (e.g., by making scratches [6] and by local
bending at a small angle [4]) or by short-time heating
(e.g., by local laser irradiation [7]). The presence of
narrow zones of these irregularities, which are spaced
4–5 mm apart and are located across an anisotropic
electrical-sheet steel tape, can result in a decrease in Pt
of 5–10%. This effect is associated with both a decrease
in the domain width by a factor of 1.5–2 and the origi-
nation of extra wedge-shaped magnetic-reversal cen-
ters (see Fig. 1). In this case, µ and B slightly decrease,
whereas Hc and Ph increase in the material.

1

2

3

Fig. 1. Magnetic domains in anisotropic electrical-sheet
steel [6]: (1) basic strip domains and (2) tapered closure
domains, i.e., magnetic-reversal centers near (3) a scratch-
like transverse irregularity (on the left).
2002 MAIK “Nauka/Interperiodica”
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Fig. 2. Magnetic domain structure (a) on the surface and (b) in the bulk of a FeSi crystal after irradiation  by argon ions [9].
The right-hand part of the surface was screened from the irradiation. Arrows indicate the magnetization directions in the domains:
(1) labyrinth domains of the B-type, (2) basic strip domains of the A-type, and (3) dynamic magnetization-reversal centers.

110( )
The second method of lowering Pt consists in pro-
ducing a layered inhomogeneity of the tape bulk, e.g.,
in the formation of a two-layer grain structure in the
tape cross section [8], or by uniform ion-beam treat-
ment of the tape surface [9]. The latter method is more
efficient. In anisotropic electrical-sheet steels with a
two-layer grain structure (where there are two grains
rather than one grain in the tape cross section), the
decrease in Pt is only 15–16%. In the case of finemets,
the decrease in Pt reaches 35–40% after the ion-beam
surface treatment in the optimum regime (with an
argon-ion exposure dose of 1016 ion/cm2) and 20–25%
after treatment by the first method, with the quantity B
remaining essentially invariable.

The uniform ion-beam surface treatment of a ferro-
magnetic alloy leads to restructuring of the magnetic
domains in it. A magnetic structure with very narrow
DOKLADY PHYSICS      Vol. 47      No. 4      2002
transversely oriented regions is formed on the alloy sur-
face (see Fig. 2a), and the width of the basic intrabulk
domains decreases. The magnetic-flux closure scheme
for a ferromagnet with such a finely divided layered
magnetic structure is shown in Fig. 2b.

For a layered magnetic structure, a decrease in Pt is
caused by the fragmentation of basic domains and the
presence of wedge-shaped magnetic-reversal centers
(as in the case of local magnetic-domain structure irreg-
ularities), as well as by a change in the dynamics of
domain-boundary displacements in a variable magnetic
field. The latter effect leads to an additional decrease in
Pe.

1 In particular, the decrease in bending of the

1 In an alternating magnetic field, domain boundaries experience
vibrations, translations, and bending with the formation of ampli-
tude and phase shifts in the tape cross section [10]. These
dynamic features determine both the mean velocities of motion of
domain boundaries and the quantity Pe [11].
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domain-boundary planes, which is caused by their dis-
placement, is retarded by the surface magnetic struc-
ture. Moreover, in this case, the effective thickness of
the ferromagnetic sample decreases (see Fig. 3). In the
interior of the material, where ion-beam implantation
causes tensile stresses and leads to the elevation of the
uniaxial magnetic anisotropy (in much the same way as
the effect of magnetic coatings does [3]), the domain-
boundary mobility increases under magnetization
reversal. This flattening of moving domain boundary
planes results in a decrease in the intensity of the most
energy-consuming component of eddy currents, which
is parallel to the tape plane [12].

Thus, by forming irregularities of a certain size and
orientation in the crystalline and magnetic structures of
a ferromagnet, we can control its magnetic properties
and, in particular, efficiently reduce the energy loss for
magnetization reversal in it.

2

1H

+– +

+ + +

– –

– – – –

Fig. 3. Profiles of the planes of domain boundaries dislo-
cated (under the action of a magnetic field) in the cross sec-
tion of ferromagnetic tapes before (above) and after (below)
the ion-beam treatment: (1) basic strip domains and (2) lab-
yrinth domains. Dashed lines show initial positions of the
domain boundaries.
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It is well known that when the thermal effect of a
combustion reaction is small, the combustion wave in
the system sometimes does not propagate [1]. For
example, the synthesis of certain high-melting com-
pounds from simple species is weakly exothermic.
Therefore, in order to produce these compounds in the
self-propagating high-temperature synthesis (SHS)
regime, various approaches are employed, namely,
heating of the reacting batch [2], performing parallel
SHS-processes [3], and introducing various additives
[4]. The mechanical activation of solids is a well-
known approach to enhancing their reactivity [5]. It is
noted that the combustion rate, combustion tempera-
ture, and the reaction-product yield are elevated with
increasing preliminary treatment time of an SHS batch,
[6]. In a number of low-energy systems, combustion is
possible only after preliminary mechanical activation
of the system components. In this case, a change in the
reactivity of solids can be a consequence of both the
accumulation of microdistortions in crystallites and the
variation of particle sizes.

As was shown in [7] using the Ti–C (carbon black)
system as an example, the elevation of the combustion
rate on increasing the duration of the mixture treatment
is mainly associated with the mechanical activation of
the titanium powder. To determine the relation between
activation of the combustion process and structural
changes in the metal lattice, which had been observed
under mechanical treatment, measurements of exoelec-
tron emission from titanium powders were carried out.
The results obtained [7] show a direct dependence
between the exoelectron-emission intensity and the
metal chemical activity. However, it should be taken
into account that the thickness of the solid layers from
which the exoelectron emission occurred was about
100 Å [8]. Therefore, the information obtained by exo-
electron-emission methods relates only to the state of
the powder surface [7].

All-Russia Research Institute of Experimental Physics, 
Sarov, Nizhni Novgorod oblast, Russia
1028-3358/02/4704- $22.00 © 20305
In this paper, we suggest using X-ray diffraction
analysis to study and control the suitability of the SHS
batch in the process of its mechanical activation. It is
known [9] that plastic deformation of a crystal results
in the grinding of mosaic blocks, which is followed by
the appearance of microstresses. They, in turn, are a
cause of the increase in the integral line width (Ç) in the
X-ray diffraction pattern. The magnitude of B can be
used as one of the objective criteria in estimating SHS-
batch suitability.

The studies we performed also showed that in the
case of long-term mechanical treatment of initial com-
ponents, the SHS process is possible even in such low-
energy systems as Si–C and W–B.

The initial batch was prepared by mixing the initial
components in a ball mill in the nitrogen ambient.
W(PWT), B(B99A), C(P234), and Si(KR00) powders
were used to prepare the reaction mixture. The samples
intended for combustion were pressed in cylindrical
steel pots 20 mm in diameter. The combustion reaction
was initiated by a combustible compound, which, in
turn, had been ignited by a nichrome heating bridge.
The average combustion rate was determined according
to the readings of tungsten–rhenium thermocouples
pressed into the sample at a fixed distance from each
other. X-ray analysis was carried out with DRON-type
equipment.

The variation of the combustion rate U, integral line
width B, and line intensity I on the X-ray diffraction
pattern, as well as the specific surface S of the mixture
as a function of the mechanical-activation time τ, is pre-
sented in Figs. 1 and 2. At the initial stage, a progressive
increase in the specific surface of the Si–C system was
observed (Fig. 1). After 50 h of mixture treatment, the
growth rate of the specific surface significantly
decreased, which could be a result of the action of two
opposite processes. These are a decrease in particle
sizes during fracturing and the production of aggre-
gated particles [10]. The integral line width monotoni-
cally increases with the mechanical-activation time of
the preliminary mixture treatment during the entire
time period under study (Figs. 1, 2). The elevation of
the combustion rate of the Si–C mixture, which was
002 MAIK “Nauka/Interperiodica”
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observed while increasing the mechanical-activation
time to 70 h, as well as the behavior of the curves for
both the specific surface and the variation of the inte-
gral line width, show that, at the initial period of the
mechanical-activation time, the change in the reactivity
of the system is caused by an increase in the surface.
Furthermore, the growth of microstresses in the crystal
lattice can acquire a substantial significance. The data
obtained agree well with the model for the state of plas-
tic crystal flow. Plastic flow is the cause of particle
aggregation and is responsible for the intensely pro-
ceeding process of defect formation [9].

With continuous elevation of the combustion rate,
the intensity of lines on the X-ray diffraction patterns
remains almost unchanged for both the Si–C and the
W–B mixtures in the process of mechanical activation
up to 70 h for the former (Fig. 1) and up to 10 h for the
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Fig. 1. (1) Intensity of lines for silicon, (2) specific surface
of the mixture, (3) integral line width, (4) combustion rate
for the Si–C composition as a function of the mixing time τ.
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Fig. 3. Dependence of the combustion rate for the Si–C
composition on the integral line width of silicon. Solid and
dashed lines are plotted with and without allowance for
mechanochemical activation, respectively.
latter (Fig. 2). With a further increase in the activation
time of the mixtures, the line intensity decreases, the
decrease being sharper for the W–B system (Figs. 1, 2).
This fact is evidence of both amorphization of the com-
ponents and the formation of products as a result of
mechanochemical reactions. In this case, both the ini-
tial components and the reaction products can be sub-
jected to amorphization. With increasing mechanical-
activation time, the combustion rate for the Si–C sys-
tem grows linearly up to 70 h of mixture treatment,
after which the combustion rate drops (Fig. 1). This
fact, the X-ray phase analysis of slags, and additional
calorimetric measurements testify to the formation of
an amorphous product in the process of long-term
mechanical activation of the Si–C mixture (after 70 h of
treatment). For the W–B system, the combustion rate
increases, as before, under the intensely proceeding
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Fig. 2. (1) Intensity of lines for tungsten, (2) integral line
width, (3) combustion rate for the W–B composition as a
function of the mixing time τ.
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Fig. 4. Dependence of the combustion rate for the W–B
composition on the integral line width of tungsten. Solid
and dashed lines are plotted with and without allowance for
mechanochemical activation, respectively.
DOKLADY PHYSICS      Vol. 47      No. 4      2002



        

MECHANICAL ACTIVATION OF COMBUSTION PROCESSES 307

                             
amorphization of the sample (20–50 h of mechanical
activation, Fig. 2). This indicates that at this stage of
mechanical activation, mechanochemical processes
have a weaker effect than in the Si–C system within the
range of 90−100 h of treatment of the mixture. How-
ever, in the W–B system, we also note a certain slowing
down of the increase in the combustion rate at the end
of the region of its dependence on the mechanical-acti-
vation time as a possible manifestation of the effect of
development of mechanochemical processes.

Using the combustion rate as the measure of the
reactivity of the SHS-batch components, we present it
as a function of the integral line width for one of the
components (Figs. 3, 4). It is worthwhile noting that the
mechanical activation can be a cause of the change in
the SHS-batch composition as a result of the progress
of a mechanochemical reaction. In this case, dilution of
the batch by the products of mechanochemical reac-
tions promotes the reduction of the combustion rate.

Thus, if we exclude the regions corresponding to the
dependence of the combustion rate on the integral line
width (solid lines in Figs. 3 and 4) in the curves, which
correspond to mechanochemical reactions proceeding
in a condensed system as a result of mechanical activa-
tion, we arrive at a linear dependence (dashed line,
Figs. 3, 4). The employment of this dependence allows
us to predict the kinetics of solid-phase interactions of
components in the combustion regime. This also makes
it possible to determine the duration of mechanical acti-
vation necessary to stimulate the SHS process in a low-
energy system. The importance of the correlation
dependence obtained also consists in the possibility of
quality control of SHS-batch suitability at its prepara-
tion stage. As was noted above, the integral line width
is an objective criterion of SHS-batch suitability. For
example, in contrast to mechanical activation, (whose
procedure time exhibits a similar relation to the com-
DOKLADY PHYSICS      Vol. 47      No. 4      2002
bustion rate), X-ray analysis eliminates mistakes and
random errors at the mixture preparation stage.

We conclude that the magnitude of the integral line
width can serve as a quantitative measure for character-
izing the degree of mechanical activation and, corre-
spondingly, the reactivity of solids as applied to SHS
processes. However, we should remember that the lin-
ear dependences obtained relate to systems in which the
basic reaction proceeds in the condensed phase. There-
fore, the study of the dependences described in systems
that differ in their mechanism of component interaction
is very useful.
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Models of plastically incompressible materials with
a pressure-dependent yield criterion are used mainly in
the mechanics of soil and granular materials [1, 2].
However, for a group of alloys, the pressure depen-
dence of the yield criterion is also of certain importance
[3, 4]. In contrast to soil, these alloys are usually sub-
jected to plastic metal forming based on the frictional
law at sliding. In the present paper, we show that in the
case where model [2] and the maximum-friction law
are applied, the velocity field becomes singular (the
equivalent strain rate approaches infinity at the friction
surface). Note that the maximum-friction law is often
used in modeling plastic metal-forming processes [5].
In the framework of the classical plasticity model, a
similar result was obtained in [6–8]. In [6] and [7],
plane flow and three-dimensional deformation of a
material obeying an arbitrary smooth-yield criterion
independent of the mean stress, respectively, were con-
sidered. In [8], the axially symmetric deformation of a
material obeying the Tresca plastic-flow condition was
analyzed. In all of these cases, the equivalent strain rate
was shown to be inversely proportional to the square
root of the distance from the friction surface. Know-
ledge of the singular behavior of the velocity field made
it possible to improve the solutions to problems of
structural [9] and technological [10] plasticity that were
based on the upper-bound estimates. In addition, the
equivalent strain rate enters into the equations deter-
mining many physical fields and structural properties of
materials. In particular, the effect of the maximum-fric-
tion surface on the temperature field was studied
in [11]. It is also well known [12] that surface proper-
ties of a material change significantly in the deforma-
tion process. This is in qualitative agreement with the
fact that the equivalent strain rate approaches infinity at
the friction surface, although no quantitative estimates
for the effect of such behavior of the velocity field on
the structure of materials were obtained.
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Russian Academy of Sciences, 
pr. Vernadskogo 101, Moscow, 117526 Russia
1028-3358/02/4704- $22.00 © 20308
Two particular solutions based on model [2] show
that the velocity fields for such a material can also be
singular in the vicinity of the maximum-friction sur-
faces. These solutions are found in [13], where material
flow through a planar converging channel was consid-
ered, and in [14], where plane strain compression
between two parallel rough plates was studied. In the
present paper, general conditions are found whose
validity provides the singular velocity fields in the case
of plane flow of a material [2].

Following [6], we introduce a curvilinear orthogo-
nal coordinate system α, β such that the β-coordinate
lines are straight and orthogonal to the friction surface
ω (Fig. 1) for which β = 0. In this coordinate system, the
equilibrium equations have the form [6]

(1)

where σαα , σββ, ταβ are the stress-tensor components, R
is the radius of curvature for the α-coordinate line at

β = 0, and H = 1 +  is the Lamé coefficient for the

α-coordinate lines.

σαα∂
α∂

----------- H
ταβ∂
β∂

----------
2ταβ

R
-----------+ + 0,=

ταβ∂
α∂

---------- H
σββ∂
β∂

-----------
σββ σαα–

R
-----------------------+ + 0,=

β
R α( )
------------

0

β

α

ω

Coordinate system in the vicinity of the friction surface.
002 MAIK “Nauka/Interperiodica”



        

SINGULAR SOLUTIONS FOR PLANE PLASTIC FLOW 309

                                       
Under the plane-strain conditions, the model of a
material that was proposed in [2] is described by the
equations

(2)

(3)

(4)

for an arbitrary orthogonal coordinate system, includ-
ing the α, β coordinate system introduced above. Here
ξαα , ξββ, ξαβ are the strain-rate tensor components; ωαβ
is the rotation-strain tensor component; ψ is the angle
between the largest principal stress and the tangent to
the α-coordinate line; ϕ is the angle of internal friction;
and k is the cohesion coefficient. The yield criterion (2)
is satisfied by the substitution

(5)

where σ = (σαα + σββ) is the mean stress. Substitut-

ing (5) into the equilibrium equations (1), we arrive at

After certain algebraic transformations, these equa-
tions can be reduced to the form

(6)

σαα σββ+( )sinϕ σαα σββ–( )2 4ταβ
2+[ ] 1/2

+

=  2k ϕ ,cos

ξαα ξββ+ 0,=

2ψ ξαα ξββ–( ) 2 2ψξαβcos–sin

+ 2 ϕ ωαβ
dψ
dt
-------– 

 sin 0=

σαα σ k ϕcos σ ϕsin–( ) 2ψ,cos+=

σββ σ k ϕcos σ ϕsin–( ) 2ψ,cos–=

ταβ k ϕcos σ ϕsin–( ) 2ψ,sin=

1
2
---

1 ϕ 2ψcossin–( ) σ∂
α∂

------ 2 2ψ k ϕcos σ ϕsin–( ) ψ∂
α∂

-------sin–

– H ϕ 2ψ σ∂
β∂

------sinsin 2H 2ψ k ϕcos σ ϕsin–( ) ψ∂
β∂

-------cos+

+
2
R
--- 2ψ k ϕcos σ ϕsin–( )sin 0,=

– ϕ 2ψ σ∂
α∂

------sinsin 2 2ψ k ϕcos σ ϕsin–( ) ψ∂
α∂

-------cos+

+ H 1 ϕcos2ψsin+( ) σ∂
β∂

------

+ 2H 2ψ k ϕcos σ ϕsin–( ) ψ∂
β∂

-------sin

–
2
R
--- 2ψ k ϕcos σ ϕsin–( )cos 0.=

2ψcos ϕsin–( ) σ∂
α∂

------ H 2ψ σ∂
β∂

------sin+

+ 2H k ϕcos σ ϕsin–( ) ψ∂
β∂

------- 0,=
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In the chosen α, β coordinate system, the strain-rate
tensor components and the rotation-tensor components
are given by the following expressions:

(8)

Substituting these expressions into (3) and (4), we
obtain

(9)

(10)

On the friction surface, the boundary conditions
allow for the friction law and the impenetrability condi-
tion. Since the tool employed is assumed to be abso-
lutely rigid, the friction surface can be regarded as
immobile. Therefore, in the case of β = 0, the impene-
trability condition yields

. (11)

We also assume that the function v  obeys the condition

(12)

for β = 0. In classical plasticity theory, the maximum-
friction law implies that friction stress with sliding is
equal to the shear yield stress. For pressure-dependent
materials, various modifications of this law are possi-
ble. Following [13, 14] and assuming, without loss of
generality, that the direction of sliding is opposite to the
positive direction of the α-coordinate line, we consider
that

(13)

for β = 0. This law corresponds to the maximum possi-
ble friction stress.
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We now consider the behavior of the solution in the
vicinity of the surface β = 0. In accordance with (11),
an arbitrary material point located at an arbitrary instant
on the friction surface can move only along this surface.
Since condition (13) is satisfied at any point on the fric-
tion surface, we have

(14)

for any material point on this surface. Moreover, it fol-
lows from (13) that

(15)

on the friction surface. Substituting expressions (11),
(12), (14), and (15) into Eq. (10), we arrive at

(16)

for ψ =  +  (or β = 0). If  < ∞, it follows

from (16) that cosϕ  – u  = 0 for ψ =  + .

Thus, the distribution of the quantity u on the friction
surface is determined by its shape and is independent of
other reasons. It is clear that such a special distribution
of u cannot occur in most cases as, e.g., for the solutions
found in [13, 14]. Therefore, it is of interest to analyze

the case  ≠ 0. Then, it follows from Eq. (16) that

(17)

for ψ =  + . Thus, the velocity field in such solu-

tions must be singular.

We also consider the behavior of the solution in the
vicinity of the friction surface. To this end, we represent
u in the form

(18)

where γ ≥ 0 as |u| < ∞. It follows from (18) that

(19)

To satisfy (17), it is necessary to put γ < 1. Thus, we
obtain

(20)
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The expansion of the expression (cos2ψ + sinϕ) in

the Taylor series in the vicinity of the point ψ =  + 

has the form

(21)

Since the first and second terms in Eq. (16) are finite,
substituting (19) and (20) into the third term of Eq. (16)
yields

Thus, in the vicinity of the friction surface,

. (22)

It follows from expressions (20) and (22) that the

derivative  approaches infinity as β  0. In

Eq. (6), apart from this derivative, only the derivative

 can approach infinity. It is clear that

(23)

where Eq. (22) is taken into account. It follows
from (23) that

(24)

Using Eqs. (21)–(24), it is possible to evaluate the
order of each term in Eq. (7). As a result, we obtain

By virtue of condition (20), the only possibility to
compensate the term O

 

(1)

 

 in this equation is to assume
that

 

(25)

 

It follows from conditions (19) and (25) that, in the
vicinity of the maximum-friction surface, the shear
strain rate and therefore the equivalent strain rate 

 

ξ

 

eq

 

 are
given by the expressions

This result coincides with the solutions to the par-
ticular problems obtained in [13, 14] and with the
behavior of 

 

ξ

 

eq

 

 in classical plasticity [7]. In addition,
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expressions (22), (24) and (25) make it possible to find
that

It is worth noting that the solution for stresses in the
vicinity of the coordinate line β = 0 was studied in [1].
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Investigation of the formation of loops (usually
undesirable) in ropes and filaments is of considerable
practical and scientific interest. A suitable model for
theoretically studying this phenomenon is a thin elastic
rod that has ends constrained in the undeformed rod
axis and is subjected to a compressing force and a tor-
sion torque.

Previously, a simpler methodological problem of
forming a loop in a thin elastic rod with simply sup-
ported ends was investigated. The result of these studies
is briefly as follows. When such a rod is subjected to an
external force Q0 directed along the undeformed axis,
the straight rod loses its stability under certain condi-
tions and its ends approach each other. In this case, a
rod subjected to sufficiently strong forces takes a loop-
like shape (Euler elastics) and is stable against small
disturbances. However, in order for the rod to take this
configuration, the displacement of the rod ends must be
commensurable with the undeformed rod length. This
situation is rarely realized in practice. As a rule, the for-
mation of loops is attributed to twisting of the rod.
Indeed, on being additionally exposed to an external
moment M0 directed along the original axis, the rod
takes a spiral shape [1, 2]. However, as was ascertained,
the new spatial configuration is also stable against
small disturbances and loops are not formed. Previ-
ously, we showed that, in order to form a loop, the rod
ends must be forced to approach each other at a given
external moment M0 [3–6]. In this case, the spiral con-
figuration loses stability and can form a loop. Thus, to
find the conditions of loop formation, it is necessary to
consider a new mathematical problem, where the deter-
mining parameters are an external moment M0 and a
distance z0 between the rod ends.

In this study, qualitative results obtained previously
are generalized for a rod with ends constrained in the
undeformed rod axis. This problem is closer to actual
conditions.

* Moscow State Aviation Institute (Technical University), 
Volokolamskoe sh. 4, Moscow, 125080 Russia

** Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia
1028-3358/02/4704- $22.00 © 0312
Mathematically, we formulate the problem as fol-
lows. We analyze the static configuration and stability
of a thin, originally rectilinear rod that has a length L
and ends constrained in the undeformed rod axis. The
rod is subjected to a force Q0 and torque M0 acting
along the undeformed rod axis. Under certain condi-
tions, the rod takes a three-dimensional shape and the
rod ends, which remain in the undeformed rod axis and
conserve their orientation, can approach each other. We
consider the Cartesian coordinate system OXYZ whose
OZ axis is directed along the undeformed rod axis and
whose origin O coincides with the left-hand rod end.
The arc length s of the axis line is measured from the
origin. It is assumed that the rod is inextensible and axi-
symmetric and has stiffness A and density ρS per unit
length. The rotary inertia is ignored. The equations of
motion of the thin-rod axis have the form [3–6]

(1)

where t is the time, Q = (Q1, Q2, Q3) is the force vector,
å = (M1, M2, M3) is the internal moment vector, r =
(x, y, z) is the radius vector of the point s, and t =
(l11, l12, l13) is the unit tangent vector to the axis line of
the rod. Equations (1) are written in dimensionless
form, where distances, forces, moments, and times are

measured in the rod length L, Qm = , Mm = , and

Tm = , respectively.

Two types of boundary conditions are considered.

1. The classical formulation of the problem implies
that r(0, t) = 0 and t(0, t) = k, where k is the unit vector
of the OZ axis, at the left-hand end of the rod and
r(1, t) × k = 0 and t(1, t) = k at the right-hand end
(s = 1) of the rod. The force Q3(1, t) = Q0 and moment
M3(1, t) = M0 acting along the undeformed rod (OZ
axis) are given external parameters.

∂Q
∂s
-------

∂2r

∂t2
--------,

∂M
∂s

-------- Q t×[ ] ,= =

∂t
∂s
------ M t×[ ] , t ∂r

∂s
-----,= =

A

L2
----- A

L
---

ρSL4

A
--------- 

 
1/2
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A solution to the problem is the static configuration
of the rod r(s), including the distance z0 between the rod
ends and the tie responses Q1(0), Q2(0), M1(0), and
M2(0) at the s = 0 end and –Q1(1), −Q2(1), –M1(1), and
–M2(1) at the s = 1 end, as well as the stability of this
configuration. We note that Q = (Q1, Q2, Q3) = const in
any section s in static configurations.

2. The second formulation of the problem implies
that the s = 1 end of the rod is fixed and r(1, t) = z0k is
taken instead of r(1, t) × k = 0. In this case, the distance
z0 between the rod ends and the moment value
M3(1, t) = M0 (acting along the undeformed rod axis)
are given external parameters. In this case, the force
value Q3(1) = Q0 is determined as the response of the
ties when numerically solving the problem by minimiz-
ing the residual function. The other boundary condi-
tions remain unchanged.

First, we consider the case of the absence of the
torque M3(1) = M0 = 0. In this case, the static configu-
ration is plane. Let a solution be in the OXZ plane.
Then, we have l12 ≡ 0, M1 ≡ 0, and Q2 = 0.

In this case, the set of equations (1) has the form

(2)

where the force Q0 acting on the rod end is a known

(given) quantity, whereas the responses Q1 and  =
M2(0) of the ties are unknown constants to be deter-
mined in the numerical solution.

The boundary conditions have the form

(3)

The boundary value problem was solved by the
shooting method. The conditions at s = 0 are specified,
whereas the conditions at s = 1 are satisfied by choosing

the constants Q1 and  that minimize the residual
function

N1(Q1, ) = x(1)2 + x'(1)2 

with respect to two variables.
When integrating the equation of moments, we have

M2(s) = Q0x – Q1z + const, 

where const = M2(0), because x(0) = 0 and z(0) = 0. For
symmetric forms, the equality M2(0) = M2(1) should be
satisfied and therefore Q1 = 0. Figure 1 shows the
numerical solution of the problem, i.e., Eqs. (2) and (3),

d2x

ds2
-------- Q0x Q1z– M2

0+( )l13,=

dz
ds
----- l13, l13 1

dx
ds
------ 

 
2

– ,= =

M2
0

x 0( ) 0, z 0( ) 0, x' 0( ) 0,= = =

x 1( ) 0, x' 1( ) 0.= =

M2
0

M2
0
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for increasing the force (Q0 < 0) acting on the end. As
in the classical Euler problem of the stability of a rod
with simply supported ends, nontrivial solutions are
possible for Q0 < –4π2 (analogs of the Euler elastics)
[7]. The plotted lines correspond to the parameters Q0 =

–47, –70, and –90 and  = 7.5105, 14.1079, and
17.43374, respectively. In this case, the rod ends
approach each other, the dependence of z(1) on Q0 is
monotonic, and the transfer from the first formulation
to the second formulation of the problem is elementary.

Now, we consider the three-dimensional case where
M3(1) = M0 ≠ 0. Let the rod take an arclike shape
(Fig. 1) under the action of the force Q0 = –47 and be in
a stressed–strained state. We fix the distance z(1) = z0

(z0 = 0.6866) between the supports and increase the
torque M0 . The case of simply supported ends was sim-
ilarly studied in [3–6].

The set of equations for determining the static con-
figurations of the rod axis has the form

(4)

For a configuration in which l13(s) changes sign, the
differential equation is more convenient.

The boundary conditions have the form

(5)

M2
0

d2x

ds2
-------- Q0x Q1z– M2

0+( )l13=   –   Q 1 y Q 2 x – M 
0 + ( ) 

dy
ds

 ------,

d2y

ds2
-------- Q1y Q2x– M0+( )dx

ds
------  –   Q 2 z Q 

0 y – M 1
0 + ( ) l 13 ,=

dz
dz
----- l13,=

l13 1
dx
ds
------ 

 
2

–
dy
ds
------ 

 
2

– .=

x 0( ) y 0( ) z 0( ) 0,= = =

x' 0( ) y' 0( ) 0,= =

x 1( ) y 1( ) 0, x' 1( ) y' 1( ) 0,= = = =

z 1( ) z0.=

Fig. 1. Elastics x(z).
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The equations are independent of rotation of the
coordinate system about the OZ axis, and therefore
solutions of these equations are determined up to an
arbitrary angle of rotation about this axis. For definite-
ness, we suppose that the form x(z) is symmetric about

the point  and therefore Q2 = 0. In this case, only

three parameters, Q1, , and , should be calcu-
lated.

In the classical formulation, the external conditions
are the force Q0 and the torque M0 . In this case, the
right-end conditions x(1) = y(1) = x'(1) = y'(1) = 0 are

satisfied by choosing the constants Q1, , and 

z0

2
----

M1
0 M2

0

M1
0 M2

0

Fig. 2. Left-hand panels: functions (solid lines) x(z) and
(dashed lines) y(z); right-hand panels: the function x(y).
Corresponding results of calculations are presented in the
table.
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0
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0
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0.8
z

0 y
0

0.2

0.4

0

0.2

0.4

0

0.2

0.4
x

0.4

Table

Fig. 2 M0 Q0 Q1

a 1 –39.29 12.272969 –5.8864194 4.2133142

b 8 19.38 14.072554 0.5219528 4.8311114

c 12.35 86.87 3.3498208 1.1300019 1.1499947

M1
0 M2

0

that minimize the residual function

It is easy to prove that the residual function is also
invariant under rotation of the coordinate system about
the OZ axis. Therefore, three constants are enough to
find the minimum of this function.

In the second formulation, the external conditions
are the torque å0 and the distance z0 between the sup-
ports and we have the problem specified by Eqs. (4) and
(5). In this case, the force Q0 is the response of the ties
and is found by minimizing the complicated residual
function

Because of symmetry, we have

and therefore

 and 

A solution of Eqs. (4) and (5) is represented by the
functions x(s), y(s), and z(s). Figure 2 shows the func-
tions x(z) and y(z) varying with increasing torque
M3(1) = M0 . The solid and dashed lines in the left-hand
panels are the projections x(z) and y(z) of the rod shape
onto the OXZ and OYZ planes, respectively; the right-
hand panels show the projection y(x) of the rod shape
onto the OXY plane. Note that the change in the rod
shape with increasing torque M0 for a given distance
between the ends is in general similar to the change
found in [3–6]. As is seen, the rod shape varies from a
smooth spiral (Fig. 2a) to the characteristic preloop

shape at M0 =  (Fig. 2c). The equations of small
oscillations about the resulting equilibrium states are
analyzed by the method proposed in [8].

We also calculated the dependence Q0(M0). This
function is many-valued, and the function M0(Q0) has

an extremum  at a certain value Q0 = . Thus,

there are no static solutions for M0 > . This fact
indicates that stability is lost in this case and the forma-
tion of a loop becomes possible. A similar pattern of
loop formation was observed for a rod with simply sup-
ported ends [3–6].

Calculations were performed for various z0 values in
the interval 0.6 < z0 < 1. An analysis of the data showed
that the character of variation in rod shape in the transi-
tion to the preloop state is the same for different z0

values.
In summary, we formulated a procedure for deter-

mining the region of external parameters for which the

N2 Q1 M1
0 M2

0, ,( ) x 1( )2 y 1( )2 x' 1( )2 y' 1( )2.+ + +=

N3 Q0 Q1 M1
0 M2

0, , ,( )

=  x 1( )2 y 1( )2 x' 1( )2 y' 1( )2 z 1( ) z0–( )2
.+ + + +

M1 0( )2 M2 0( )2+ M1 1( )2 M2 1( )2,+=

M2 0( )
Q1z0

2
-----------= M2 1( )

Q1z0

2
-----------.–=

Mcr
0

Mcr
0 Qcr

0

Mcr
0
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formation of a loop in a rod is possible. An important
feature of this procedure is the necessity of solving a
new boundary value problem, where the distance
between the ends of the deformed rod is a priori speci-
fied. It was shown that the formation of the loop in the
rod is determined by two factors: a variation in the dis-
tance between the rod ends and the presence of a
torque.
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1. Let two Cartesian coordinate systems with the
common origin O be set in Rn. One of them (Oxi) with
the unit vectors ei, i = 1, 2, …, n, is fixed, while the other

(O ) with the unit vectors  is referred to an n-dimen-
sional, perfectly rigid body. The point O is fixed when
the rigid body moves in Rn.

The components of any tensor D{m} of rank m,
which is representable in the above bases in the form

(1)

are transformed as1 

(2)

where G{2}(t) is the orthogonal transition matrix
(ei = Γij ). In view of the orthogonality of this matrix,
the tensor

(3)

is antisymmetric (see, e.g., [1]). Therefore, by differen-
tiating Eq. (2) with respect to t, we can easily obtain the
relation between the absolute

(4)

and relative (local)

(5)

1 Below, the summation with respect to the known indices repeated
in a monomial is from 1 to n. Free indices also range from 1 to n.
There is no summation with respect to the repeated Greek indi-
ces.

xi' ei'

D m{ } Di1…im
ei1

… eim
⊗ ⊗=

=  Di1…im
' ei1

' … eim
' ,⊗ ⊗

Di1…im
Γ i1 j1

…Γ im jm
D j1… jm

' ,=

e j'

X 2{ } Ġ
2{ }

G 2{ }( ) 1–⋅ Ξijei e j⊗ Ξ ij' ei' e j'⊗= = =

dD m{ }

dt
-------------- Ḋi1…im

ei1
… eim

⊗ ⊗=

δD m{ }

δt
-------------- Ḋi1…im

' ei1
' … eim

'⊗ ⊗=
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derivatives of the tensor D{m} with respect to time:

(6)

or, by contracting both sides with the polyade  ⊗
… ⊗  , we obtain

(7)

Expression (7) is known as the rule of differentiating a
tensor of the mth rank with respect to time.

When D{m} is the radius vector r = xiei = , i.e.,

m = 1 and  =  ≡ 0, Eq. (6) yields

(8)

On the other hand, we have the generalized Euler’s
kinematic formula

(9)

where  and ωki are the fixed-basis components

of the angular-velocity tensor W{n – 2} and dual angular-
velocity tensor w{2}, respectively [2]. These tensors are
antisymmetric in any pair of their indices and have

n(n – 1) = N independent components. A comparison

of Eqs. (8) and (9) provides

(10)
2. Previously [2], we introduced the angular-

momentum tensor K{n – 2} =  ⊗   and its

dual tensor k{2} =  ⊗   in Rn:

(11)

Ḋi1…im
Γ i1 j1

…Γ im jm
Ḋ j1… jm

'=

+ Ξi1 j1
D j1i2…im

Ξim jm
Di1…im 1– jm

,+

ei1

eim

dD m{ }

dt
--------------

δD m( )

δt
-------------=

+ Ξi1 j1
D j1i2…im

Ξim jm
Di1…im 1– jm

+( )ei1
… eim

.⊗ ⊗

xi'ei'

Ḋi' ẋi'

ẋi Ξij x j.=

ẋi e j1… jn 2– kiΩ j1… jn 2–
xk ωkixk,= =

Ω j1… jn 2–

1
2
---

X 2{ } w 2{ } .–=

Ki1…in 2–
' ei1

' ein 2–
'

kij' ei' e j'

Ki1…in 2–
' δi1…in 2– kl

j1… jn 2– ml
Ω j1… jn 2–

' bkm'=

=  
1

n 2–
----------- Jikl' Ωi1…ik 1– lik 1+ …in 2–

' ,
k 1=

n 2–

∑
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(12)

Here,  is the generalized 2n-index Kronecker
delta,

(13)

where ρ(r) is the density of an n-dimensional body
occupying a volume V and the components  of the
symmetric inertia tensor J{2} characterizing the mass
geometry are constant in the movable basis.

Let an (n – 2)-rank tensor M{n – 2} be the moment of
external forces with respect to the point O. Let us write
the relationship

(14)

generalizing the classical law of angular-momentum
variation. In order to deal with second-rank objects for
any n value, it is convenient to represent Eq. (14) in
terms of dual tensors k{2} and m{2}:

(15)

It is generally difficult to write this expression in the
operator form. For example, when a four-dimensional
rigid body subjected to the moment of external forces
moves around a fixed point, Eq. (15) [or Eq. (14)] takes
the form (cf. [3–5])

(16)

where Λ = diag{λ1, λ2, λ3, λ4}; λ1 = (–I1 + I2 + I3 +

I4), …, λ4 = (I1 + I2 + I3 – I4); the moment M of the

external forces acting on the body in R4 is projected on
the “natural axes” in SO(4); [·, ·] is the commutator in
SO(4); I1, …, I4 are the principal moments of inertia;
and Ω ∈  SO(4) is the “angular velocity” of the body.
Equation (16) on the SO(3) group takes a similar form,
but it is usually written in R3, since R3 . SO(3).

Transforming the left-hand side of Eq. (15) accord-
ing to Eq. (7) and taking Eq. (10) into account, we write
this law for each component in the movable basis:

(17)

Substituting Eq. (12), which specifies the relation
between k{2} and w{2} , into Eq. (17), we arrive at the
equations of motion of a rigid body with a fixed point
in Rn:

kij' n 2–( )! bim' ωmj' b jm' ωmi'–( ).=

δi1…in

j1… jn

bkm' ρxk' xm' V ,d

V

∫=

Jij' n 2–( )! bkk' δij n 2–( )bij'–[ ] ,=

Jij'

K n 2–{ }d
dt

------------------- M n 2–{ }=

dk 2{ }

dt
------------- m 2{ } .=

Ω̇Λ ΛΩ̇ Ω ΩΛ ΛΩ+,[ ]+ + M,=

1
2
---

1
2
---

k̇ij' ωik' kkj' ωjk' kki'+– mij' .=
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(18)

If (O ) are the principal inertia axes, we have

 =  = 0,  = Bα > 0, and

(19)

As is seen from Eq. (19), the tensor J{2} for n ≥ 4 is not
necessarily positive-definite. However, there is no con-
tradiction here, since we showed [2] that the kinetic
energy T of a body is evaluated by the formulas

(20)

or

(21)

and is always nonnegative. Substituting the expressions 

(22)

into Eq. (18), we obtain the generalized Euler’s equa-
tions:

(23)

It is easy to show that these equations can be rewritten
in one of the two forms

(24)

(25)

For example, for a four-dimensional rigid body
(N = 6) moving in a resisting medium, i.e., in a certain
particular field of forces [5], Eqs. (24) and (25) take the
form (ef., [6, 7])

(26)

bim' ω̇mj' b jm' ω̇mi' bkm' ωmi' ωjk' ωmj' ωik'–( )+–

+ bmj' ωik' bmi' ωjk'–( )ωmk' mij' .=

xi'

bαβ' Jαβ' bαα'

Jαα' n 2–( )! Bβ n 2–( )Bα–
β 1=

n

∑ 
 
 

.=

T
1
2
---JklΩi1…in 3– kΩi1…in 3– l, n 3≥=

T
1
2
---bkl' ωki' ωli'=

bim' Bαδα iδαm

α 1=

n

∑=

Bα ω̇α j' δα i ω̇α i' δα j–( )[
α 1=

n

∑
+ ωik' δα j ωjk' δα i–( )ωαk' ] mij' .=

Bα Bβ+( )ω̇αβ' Bα Bβ–( )ωαk' ωβk'– mαβ' ,=

α β, 1 2 … n,, , ,=

Bα Bβ+( )ω̇αβ' Bα Bβ–( ) ω2( )αβ'+ mαβ' ,=

α β, 1 2 … n., , ,=

λ4 λ3+( )ω̇1 λ3 λ4–( ) ω3ω5 ω2ω4+( )+ 0,=

λ2 λ4+( )ω̇2 λ2 λ4–( ) ω3ω6 ω1ω4–( )+ 0,=

λ4 λ1+( )ω̇3 λ4 λ1–( ) ω2ω6 ω1ω5+( )+ X4LS,=

λ3 λ2+( )ω̇4 λ2 λ3–( ) ω5ω6 ω1ω2+( )+ 0,=

λ1 λ3+( )ω̇5 λ3 λ1–( ) ω4ω6 ω1ω3+( )+ X3LS,–=

λ1 λ2+( )ω̇6 λ1 λ2–( ) ω4ω5 ω2ω3+( )+ X2LS,=
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where, according to the traditional notation [5],

(27)

Ω is the angular-velocity matrix, S is the resistance
force magnitude, and L = (0, X2L, X3L, X4L) is its point of
application.

System (23) [or (24) and (25)] contains N indepen-
dent equations with respect to N components  of the

antisymmetric tensor w{2}. If the moments  of exter-

nal forces depend only on t and  and are indepen-
dent of the generalized Euler’s angles ϕ1, …, ϕN [5, 7],
this system is closed and, to be integrated, must be

complemented by the initial conditions (0) = . In
the three-dimensional case, in terms of the traditional
notation  =  = p,  =  = q,  =  = r,
B2 + B3 = A, B3 + B1 = B, and B1 + B2 = C, Eqs. (24)
reduce to the three (N = 3) classical Euler’s equations.

3. Now we consider in more detail the generalized
Euler’s case where the moments of external forces are
absent (see, [8–10]). Taking  = 0 in Eq. (24), we
have

(28)

System (28) has a number of first integrals. To obtain
them, each of N equations (28) must be multiplied by
F(α; β; M) , where

(29)

and M is an arbitrary nonnegative integer, and summed

up. Since 2(Bα – Bβ)F(α; β; M) =  –  and

(30)

we obtain the denumerable set of the first integrals for
Eq. (28):

(31)

(i) M = 0. According to Eq. (29), F(α; β; 0) = 1 and
Eq. (31) is the energy integral:

(32)

SO 3( ) Ω

0 ω6– ω5 ω4–

ω6 0 ω4– ω2

ω5– ω4 0 ω1–

ω3 ω2– ω1 0 
 
 
 
 
 
 

,=∈

ωij'

mij'

ωkl'

ωij' ωij
0

ω23' Ω1' ω31' Ω2' ω12' Ω3'

mαβ'

Bα Bβ+( )ω̇αβ' Bα Bβ–( )ωαk' ωβk'– 0.=

ωαβ'

2F α ; β; M( )

=  Bα
M Bα

M 1– Bβ … Bα Bβ
M 1– Bβ

M,++ + +

Bα
M 1+ Bβ

M 1+

Bα
M 1+ Bβ

M 1+–( )ωαk' ωβk' ωαβ'
β 1=

n

∑
α 1=

n

∑ 0,=

Bα Bβ+( )F α ; β; M( )ωαβ'2

β 1=

n

∑
α 1=

n

∑ CM
2 ,=

CM const.=

Bα ββ+( )ωαβ'2

β 1=

n

∑
α 1=

n

∑ C0
2.=
Indeed, it follows from Eq. (21) that the left-hand side
of Eq. (32) is the quadruplicate kinetic energy of a
body. This result can be obtained by multiplying homo-
geneous equations (23) by  and summing with
respect to i and j.

(ii) M = 1 and F(α; β; 1) = Bα + Bβ. Using Eq. (31),
we obtain a first integral known as the integral of
moments in the three-dimensional case:

(33)

In the n-dimensional case, the left-hand side of Eq. (33)
up to a factor is also the sum of the squares of all com-
ponents  [see Eqs. (11), (12)]; i.e., Eq. (33) can

be written in the form  =  as well.

(iii) The first n – 1 first integrals of Eq. (31) (i.e., for
M = 0, 1, …, n – 2) are linearly independent in Rn.
Thus, the number of independent first integrals in the
Euler’s case is less than the number of the angular-

velocity components by (n – 2)(n – 1).
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MECHANICS
Stress Characteristic Relations 
for the Three-Dimensional Problem 

of the Full Limit Equilibrium of a Soil Continuum
D. D. Ivlev*, Academician A. Yu. Ishlinskiœ**, and R. I. Nepershin***

Received December 18, 2001
We present the characteristic relationships for
stresses in the three-dimensional problem for a soil
continuum under the full limit equilibrium according to
the Coulomb criterion. These relationships involve the
limiting cases of the plane and axisymmetric problems
of the limit equilibrium. We considered the problem of
the limit equilibrium of a half-space subjected to the
pressure of a smooth flat die with an elliptic contour in
plan.

Let us consider the three-dimensional limit equilib-
rium of a soil continuum satisfying the Coulomb crite-
rion

(1)

where k is the cohesion, ρ is the angle of internal fric-
tion, and τn and σn are the tangential and normal
stresses in areas along which a material slips in the
limit-equilibrium case. The positive sign is assigned to
compressive normal stresses.

Criterion (1) can be represented by a hexahedral
pyramid in the principal-stress space. For ρ = 0, this
pyramid degenerates into the Tresca prism in the case
of a perfectly plastic body. The three-dimensional slip
under criterion (1) is possible only at the Coulomb-pyr-
amid edges [1, 2]. The stressed state corresponding to
the Coulomb-pyramid edges is referred to as the state of
the full limit equilibrium for which the principal
stresses satisfy the relationships

, or (2)

For the full limit equilibrium, the three-dimensional
problem of a soil continuum is statically definable and
hyperbolic [3, 4]. The axis of the characteristic cone

max τn k σn ρ,tan+=

σ1 σ2, σ3 σ1>= σ3 σ1.<
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coincides with the direction of the stress σ3 . The slip
surfaces are tangent to the characteristic cone and
inclined to the σ3 direction at the angle

(3)

We specify the direction of the stress σ3 in the Car-
tesian coordinates {x, y, z} by the unit vector n:

(4)

where ϕ is the angle between the x-axis and the vector
n, whereas θ is the angle between the z-axis and the
component of the vector n in the {y, z} plane. The unit
vectors of the directions of the stresses σ1 and σ2 are
denoted as l and m, and the surface orthogonal to the
vector m is considered. The characteristic cone inter-
sects this surface along the directions of slip lines α and
β forming the angles ±µ with the vector n. The unit vec-
tors a and b of the slip lines are defined from the scalar
products

(5)

(6)

which specify the slip surfaces for known directions of
principal stresses.

Following [5], we introduce the reduced average
pressure σ equal to the distance from the center of the
Mohr’s circle to the Coulomb-pyramid vertex in the
stress plane {σn, τn}:

(7)

The center and radius of the Mohr’s circle are defined
by the relationships

(8)

where λ = +1 if σ3 > σ1 and λ = –1 if σ3 < σ1 , from

µ π
4
---

ρ
2
---.–=

n1 = ϕ , n2cos  = ϕ θ, n3sin  = ϕ θ,cossinsin

a n⋅ µ, acos l⋅ µ, asin m⋅ 0;= = =

b n⋅ µ, bcos l⋅ µ, bsin– m⋅ 0,= = =

σ 1
2
--- σ1 σ3+( ) h, h+ k ρ.cot= =

1
2
--- σ1 σ3+( ) σ h,

1
2
--- σ3 σ1–( )– λσ ρ,sin= =
002 MAIK “Nauka/Interperiodica”
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which we find the principal stresses

(9)

We introduce the local orthogonal system of coordi-
nates {1, 2, 3} so that line 3 is directed along the unit
vector m of the stress σ2 and the direction of line 2 is
opposite to the direction of the principal normal to
line 3 (Fig. 1). The principal normals to coordinate
lines 1 and 2 are directed along the vector –m. The
direction cosines of the principal stresses in the coordi-
nates {1, 2, 3} have the form

(10)

where ψ is the angle between the vector n and line 1.

From Eqs. (9) and (10), we find the components of
the stress tensor in the coordinates {1, 2, 3}: 

(11)

We consider the equilibrium of an element of the
continuum in the coordinates {1, 2, 3} with allowance
for the body force F. We take the angles ξi between tan-
gents and lines 1, 2, and 3 as curvilinear coordinates.
The differentials of the arcs of the coordinate lines are
related to the radii of curvature Ri as

(12)

σ1 σ2 σ 1 λ ρsin–( ) h,–= =

σ3 σ 1 λ ρsin+( ) h.–=

n1 ψ, n2cos ψ, n3sin 0,= = =

l1 ψ, l2sin– ψ, l3cos 0,= = =

m1 0, m2 0, m3 1,= = =

σ11 σ 1 λ ρ 2ψcossin+( ) h,–=

σ22 σ 1 λ ρ 2ψcossin–( ) h,–=

τ12 λσ ρ 2ψ, σ33sinsin σ 1 λ ρsin–( ) h.–= =

dS1 R1dξ1, dS2 R2dξ2, dS3 R3dξ3,= = =

~
~

1

β
ψ

α

3

m

l

R3

µ
µ

2

n

Fig. 1. Curvilinear coordinates and slip lines at the surface
orthogonal to the stress σ2 . 
which shows that the radii of curvature Ri are the Lamé
parameters. The equilibrium equations in the coordi-
nates ξi have the form

(13)

(14)

(15)

where F1, F2, and F3 are the projections of the vector F
onto directions 1, 2, and 3.

The radii of curvature of coordinate lines 1, 2, 3 sat-
isfy the relationships

(16)

which make it possible to represent equilibrium equa-
tions (13)–(15) in the form

(17)

(18)

(19)

If coordinate lines 1, 2, and 3 are straight and the
body-force vector lies in the plane {1, 2}, Eqs. (17) and
(18) go over into the limit-equilibrium equations for a
soil continuum under plane strain with differential rela-
tionships for σ and ψ along the slip lines [5]. If only
lines 1 and 2 are straight, all the planes {1, 2} pass
through axis 1, and F3 = 0, we obtain the equations of
the full limit equilibrium for axisymmetric strain with
the differential relationships along the slip lines, which
were presented in [6]. In these cases, it follows from
Eq. (19) that σ33 = σ2 = const along the normal to the
plane {1, 2}.

We write the characteristic relationships [5, 6] for σ
and ψ along the slip lines α and β in the following form
convenient for calculations in the planes {1, 2} of the
three-dimensional problem:

(20)

∂σ11

∂S1
----------

∂τ12

∂S2
--------- σ11 σ22–( )

∂ R2ln
∂S1

--------------+ +

+ σ11 σ33–( )
∂ R3ln
∂S1

-------------- τ12 2
∂ R1ln
∂S2

--------------
∂ R3ln
∂S2

--------------+ 
 +  = F1,

∂τ12

∂S1
---------

∂σ22

∂S2
---------- σ22 σ11–( )

∂ R1ln
∂S2

--------------+ +

+ σ22 σ33–( )
∂ R3ln
∂S2

-------------- τ12 2
∂ R2ln
∂S1

--------------
∂ R3ln
∂S1

--------------+ 
 +  = F2,

∂σ33

∂S3
---------- σ33 σ11–( )

∂ R1ln
∂S3

-------------- + σ33 σ22–( )
∂ R2ln
∂S3

-------------- = F3,+

∂R1

∂S2
--------- = 

∂R2

∂S1
--------- = 

∂R3

∂S1
--------- = 0,

∂R1

∂S3
--------- = 

∂R2

∂S3
--------- = 

∂R3

∂S2
--------- = 1,

∂σ11

∂S1
----------

∂τ12

∂S2
---------

τ12

R3
------+ + F1,=

∂τ12

∂S1
---------

∂σ22

∂S2
----------

σ22 σ33–
R3

---------------------+ + F2,=

∂σ33

∂S3
---------- F3 σ11 σ33–( ) 1

R1
----- σ22 σ33–( ) 1

R2
-----.+ +=

ρdσcos 2σ ρdψ  =   A F A 3 + ( ) dS α sin+

along  the  α   line,               
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(21)

where dSα and dSβ are the differentials of the arcs of the
slip line, and the coefficients A and B are determined in
terms of the body force and the curvature of coordinate
line 3 as

(22)

Equations (11) and (19) provide the following relation-
ship along the normal to the surface {1, 2}:

(23)

If the surface {1, 2} has small curvature  ≈ 0

and  ≈ 0  and F3 = 0, it follows from Eq. (23) that

σ ≈ const and Eqs. (20) and (21), together with the dif-
ferential equations of the slip lines, form a closed set
with respect to σ and ψ and to the coordinates of the
slip-line points. In a number of important applied prob-
lems, the surface {1, 2} can be plane or nearly plane. In
this case, the three-dimensional problem is solved as a
sequence of two-dimensional problems at known sur-
faces {1, 2} by using Eq. (23) for checking the calcula-
tion errors.

The general case of the three-dimensional problem
with determination of the unknown surfaces {1, 2}
requires further investigation, because Eqs. (20)–(23)

involve unknown curvatures , , and . A simi-

lar situation arises in the three-dimensional problem for
a perfectly plastic body under conditions of perfect
plasticity [7].

We consider the problem of the full limit equilib-
rium for the x ≥ 0 half-space subjected to the pressure
of a flat smooth die with an elliptic contour in plan with
allowance for gravity along the x-axis.

We take the length of the small ellipse semiaxis
directed along the z-axis as the characteristic size
H = 1. The length of the large semiaxis directed along
the y-axis is designated as b. We consider the half-space
in the region y ≥ 0 and z ≥ 0. At the boundary x = 0
ahead of the die contour, we specify the normal pres-

ρdσcos  – 2σ ρdψ  =   B F B 3 + ( ) dS β sin

along  the  β  line,

AF F2 ψ µ–( )cos F1 ψ µ–( ),sin–=

BF F1 ψ µ+( )sin F2 ψ µ+( ),cos–=

A3
σ ρsin
2R3

--------------- ψ µ+( )cos λ ψ µ–( )cos–[ ] ,=

B3
σ ρsin
2R3

--------------- ψ µ–( )cos λ ψ µ+( )cos–[ ] .–=

∂σ
∂S3
-------- 1 λ ρsin–( )

=  F 3   + ρ 
1 2 ψ

 
cos+

 
R

 
1

 ------------------------- 1 2 ψ
 

cos–
 

R
 

2
 -------------------------+ .sin

1
R1
-----



1
R2
----- 



1
R1
----- 1

R2
----- 1

R3
-----
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sure p. The quantity γH = 1, where γ is the volume
weight of the soil continuum, is taken as the character-
istic stress.

When the die is indented along the x-axis, the high-
est compressive stress σ3 in the surface layer in front of
the die is directed along the normal to the die boundary.
Under the condition σ2 = σ1 = p of full limit equilibrium
in this layer, σ1 is directed along the normal to the half-
space boundary, σ3 > σ1 and λ = +1. Taking these con-
ditions into account, we suppose that the surfaces
{1, 2} are planes that are orthogonal to the die contour
and parallel to the x-axis. Due to the symmetry of the
problem, this assumption is valid in the planes y = 0 and
z = 0 and in the region in front of the die.

We write the parametric equation of the die bound-
ary in the plane 

 

x

 

 = 0:

 

(24)

 

The radius of curvature 

 

R

 

 of the die boundary and the
angle 

 
θ

 
 between the 

 
z

 
-axis and the plane {

 
1

 
, 

 
2

 
} passing

through the point ( z 0 ,  y 0 ) are determined as  

(25)

 

The plane {

 

1

 

, 

 

2

 

} intersects the 

 

y

 

-axis at a distance 

 

d

 

from the die boundary

 

(26)

 

In the plane {

 

1

 

, 

 

2

 

}, we choose the Cartesian coordi-
nates {

 

x

 

1

 

, 

 

x

 

2

 

} for which the origin is at the point of
intersection of this plane with the 

 

y

 

-axis and the 

 

x

 

1

 

-axis
is parallel to the 

 

x

 

-axis of the basic system of coordi-
nates {

 

x

 

, 

 

y

 

, 

 

z

 

}. The radius of curvature of coordinate
line 

 

3

 

 normal to the plane {

 

1

 

, 

 

2

 

} is defined as

 

(27)

 

The body-force vector has the components 

 

F

 

1

 

 = 1, 

 

F

 

2

 

 =

 

F

 

3

 

 = 0. The angle 

 

ψ

 

 coincides with the angle 

 

ϕ

 

 of the
basic system of coordinates, and the differential equa-
tions of the slip lines in the plane {

 

x

 

1

 

, 

 

x

 

2

 

} have the form

for the

 

 

 

α

 

 

 

line,

 

(28)

 

 

for the

 

 

 

β

 

 

 

line. 

 

(29)

 

Figure 2 shows the slip-line field in the plane 

 

θ

 

 =
const under the assumption that the material can slip
along the smooth die boundary OA when the limit equi-
librium is reached. The boundary AB is free of tangen-
tial stresses and is loaded by the pressure p = σ11 .

z0 ξ , y0cos b ξ , 0sin ξ π
2
---.≤ ≤= =

R
1
b
--- ξsin

2
b2 ξcos

2
+( )

3/2
, θtan

ξtan
b

-----------.= =

d
1
b
--- ξsin

2
b2 ξcos

2
+ .=

R3 R d– x2.+=

dx2

dx1
-------- ψ µ+( )tan=

dx2

dx1
-------- ψ µ–( )tan=
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At this boundary, the direction σ3 defining the angle

ψ =  is known. From the first of Eqs. (11), we find

(30)

At the boundary OA, the stress σ3 is directed along the
x1-axis and τ12 = 0. From the third of Eqs. (11), we find

(31)

At point A, which is a degenerate slip α line, the angle ψ

changes from 0 to  according to conditions (30) and

(31). Integrating Eq. (20) for dSα = 0 with allowance for
condition (30), we find

(32)

at point A.

π
2
---

σ p h+
1 ρsin–
--------------------, ψ π

2
---,= =

x1 0, x2 d at AB.≥=

ψ 0, x1 0, x2 d at OA.≤= =

π
2
---

σ p h+
1 ρsin–
-------------------- ρ π 2ψ–( )tan[ ]exp ,=

0 ψ π
2
---, x1≤ ≤ 0, x2 d= =

25.4

σ3

d = 0.79 A 1 2µ B

2.64 x2

α

α

α
C

D

β
µ

x1

0.5

p α

Fig. 2. Slip lines and the distribution of pressure over the
boundary of the contact between the elliptic die and the
half-space in the plane θ = 0.245 for b = 2 and p = 0.1.

1

2

x

3.06

1

2
1

2

3.44

z

0

y

Fig. 3. Limit slip surface in the region z ≥ 0 and y ≥ 0 for the
elliptic die pressure upon the half-space.

24.4

0

β

β

Boundary conditions (30)–(32), equations (28),
(29), and relationships (20)–(22) determine the slip-
line field in the region ABC from the solution to the
Cauchy problem with conditions (30) at AB. In the
region ACD, this field is determined by solving the
Goursat problem with σ, ψ, x1, and x2 values specified
at AC and at point A. In the region AOD, this field is
found by solving the mixed problem for σ, ψ, x1, and x2
values specified at AD and conditions (31) at OA. The
unknown length L of the boundary AB must satisfy the
functional equation

at point O, (33)

because the boundary of the limit-equilibrium region
ODCB is unambiguously determined when the
sequence of the above-indicated boundary value prob-
lems is solved.

Equations (28), (29) with allowance for relation-
ships (20)–(22) are numerically solved by replacing
differentials and unknown functions by finite differ-
ences and by average values of the functions, respec-
tively. The length L of the boundary AB is found via
solving Eq. (33) by Newton’s method.

Executing similar calculations for the sequence of
the planes {x1, x2} defined by Eqs. (24), (25), we find
slip surfaces and the pressure distribution over the die–
half-space contact. The average pressure on the die can
be found by integrating the contact-pressure distribu-
tion:

(34)

The principal stresses in the plane {x1, x2} are found
from Eqs. (9). We find the vector n in the basic system
of coordinates {x, y, z} from Eqs. (4) for ϕ = ψ. The
components of the vector m are m1 = 0, m2 = –cosθ, and
m3 = sinθ. The vector l is found from the vector product
l = m × n: l1 = –sinϕ, l2 = −cosϕ sinθ, and l3 = sinθ.
From the known principal stresses, we find the compo-
nents of the stress tensor in the coordinates {x, y, z},
which are related to the coordinates {x1, x2} as

(35)

To solve the problem of the limit pressure of the
elliptic die, we write a computer program. Figure 2
shows the slip-line field and the contact-pressure distri-
bution over the cross section θ = 0.245 for the elliptic
die at b = 2 and p = 0.1 and for the soil-continuum
parameters ρ = 30°, k = 0.75, and γH = 1.

For the above parameters of the problem, Fig. 3
shows the isometric projection of the α-family limit
slip surface, which passes through the plane of symme-
try z = 0. The corresponding distribution of the limit
pressure on the die is shown in Fig. 4 in the form of the
isometric projection of the surface σ3(x, y) over the
plane of the die–half-space contact. In this case, the

x2 L( ) 0=

q
4

πb
------ σ3R3dx2dθ.

0

d

∫
0

π/2

∫=

x x1, y y0 x2 d–( ) θ, zsin+ x2 θ.cos= = =
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average pressure q on the die is equal to 39.87. The
limit-equilibrium region decreases with increasing
ellipse curvature in the cross sections θ = const and

with increasing pressure on the die. The curvature  is

almost constant near the ellipse focus, and the problem

1
R
---

24.4

59.5

24.4

2.0
y

z

1.0

0

σ3

56.7

Fig. 4. Distribution of the normal pressure for a quarter of
the plane of the contact between the elliptic die and half-
space.
DOKLADY PHYSICS      Vol. 47      No. 4      2002
is close to the axially symmetric problem where the
condition σ = const is almost exactly satisfied along the
normal to the planes θ = const. In other cross sections,
the lines of the level σ = const deviate negligibly from
the normals to the planes θ = const.
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The linear problems of bending magnetoelastic
vibrations in a plate were considered in [1–3]. Nonlin-
ear modulation waves in a longitudinal field were stud-
ied in [4, 5]. These investigations were based on the
classical averaged theory of thin plates. In this study,
the three-dimensional problem of vibrations in a plate
in transverse and longitudinal magnetic fields is ana-
lyzed first for infinitely large electric conductivity and
second for finite electric conductivity. The results are
compared with those obtained in the averaged theory. It
is shown that both theories provide identical results for
large electric conductivity in a longitudinal field,
whereas these theories give quantitatively and qualita-
tively different results for a transverse field. In the
three-dimensional formulation (as well as in the aver-
aged one), the longitudinal field increases frequencies,
whereas the transverse field decreases frequencies in
the three-dimensional formulation and increases them
in the averaged formulation. In the case of finite electric
conductivity, these formulations provide different
results for both transverse and longitudinal fields.

Experiments performed in weak magnetic fields
from 0.05 to 0.5 T corroborate the results of the three-
dimensional theory.

The problems investigated in this study may be of
interest in designing setups for controlled thermonu-
clear reactions.

Since the wave problem for a plate is isotropic, it is
sufficient to consider the plane problem. Let the x-axis
be directed along the mean line of the plate along which
the wave propagates; the z-axis be directed normally to
this line; the unperturbed magnetic field H0 be directed
along the z-axis; ux and uz be the displacement compo-
nents along the x- and z-axes, respectively; and H =

Armenian State Engineering University, Goris Branch, 
ul. Avangard 4, Goris, 377830 Armenia
1028-3358/02/4704- $22.00 © 20324
H0 + h be the magnetic-field vector. The induced field
is represented as

For quasi-monochromatic waves, we assume that

(1)

In a transverse magnetic field, the basic equations in
variables (1) have the form

(2)

(3)

(4)

(5)

hx H0Hx' , hz H0Hz'.= =

ux
1
2
---Ux z( ) iτ( )exp c.c.,+=

uz
1
2
---Uz z( ) iτ( )exp c.c.,+=

Hz'
1
2
---Hz z( ) iτ( )exp c.c., τ+ kx ωt,–= =

Hx'
1
2
---Hx z( ) iτ( )exp c.c.+=

b2

a2
-----

d2Ux

dz2
------------ k2Ux–

ω2

a2
------Ux ξ ik

dUz

dz
---------+ +

=  
a1

2

a2
-----

dHx

dz
---------- ikHz– 

  ;–

ξ 1
b2

a2
-----,–=

ξ ik
dUx

dz
----------

d2Uz

dz2
-----------+

b2

a2
-----k2Uz–

ω2

a2
------Uz+ 0;=

–iωHx νmk2Hx νm

d2Hx

dz2
------------–+ iω

dUx

dz
----------;–=

–iωHz νmk2Hz νm

d2Hz

dz2
-----------–+ ωkUx.–=
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Here,  = ; a and b are the velocities of the lon-

gitudinal and transverse elastic waves, respectively; σ
is the electric conductivity; c is the speed of light; and

νm =  is the magnetic viscosity.

The solution of the three-dimensional problem can
be sought in the form [6]

(6)

where summation over the repeated indices from 1 to 3
is implied. Equations (2)–(5) provide the relations
between all constants entering into Eq. (6) via B1.2.3 by
the following formulas:

(7)

(8)

Equations (7) and (8) provide the following representa-
tion of  = ν1.2.3 in terms of ω:

(9)

For finite values of σ, all values of ν1.2.3 are also finite.
For σ = ∞, it is possible to obtain two finite values of

 = . However, for large finite values of σ, there is

a third value  =  that is defined as

(10)

when  @ 1. In order to obtain a dispersion relation

for ω(k) in the three-dimensional formulation, Eqs. (2)–
(5) should be complemented by the boundary condi-
tions σz = σxz = 0 at the plate–dielectric interfaces z =

a1
2 H0

2

4πρ
----------

c2

4πσ
----------

Uz A j ν jz, Uxcosh B j ν jz,sinh= =

Hx C j ν jz, Hzcosh D j ν jz,sinh= =

C1.2.3

iων1.2.3B1.2.3

X1.2.3
-----------------------------, D1.2.3–

ωkB1.2.3

X1.2.3
-------------------,–= =

X1.2.3 –iω νmk2 νmν1.2.3
2 ,–+=

ξ ikB1.2.3ν1.2.3 ν1.2.3
2 b2

a2
-----k2– ω2

a2
------+ 

  A1.2.3+ 0;=

b2

a2
-----ν1.2.3

2 k2– ω2

a2
------+ 

  B1.2.3 ξ ikν1.2.3A1.2.3+

=  
a1

2

a2
----- C1.2.3ν1.2.3 ikD1.2.3–( ).–

ν

b2

a2
-----ν2 k2– ω2

a2
------ ξ2 k2ν2

ν2 b2

a2
-----k2– ω2

a2
------+

----------------------------------+ +

=  –
a1

2

a2
----- ν2 k2–

1 i
k2 ν2–

ω
----------------νm+

----------------------------------.

ν2 ν1.2
2

ν2 ν3
2

i
ν3

2

ω
-----νm

a1
2

b2
----- 1+=

ω
νmk2
-----------
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 and continuity conditions of . The induced mag-

netic field in the dielectric outside the plate is written in
the form

(11)

Using the equation  +  = 0, we represent the

above boundary conditions in the form

(12)

where Eqs. (7)–(10) should be substituted. The deter-
minant equation for Eqs. (12) has the form

(13)

Here,

(14)

For finite θ =  values and small , Eq. (9) has the

solutions

(15)

h
2
---± h

h̃x
1
2
--- C1' θ( ) c.c.+exp( ),=

h̃z
1
2
--- C2' θ( ) c.c.+exp( ), θ iτ kz.+−= =

∂h̃x

∂x
-------- ∂h̃z

∂z
--------

C j ν j
h
2
---cosh kC jν j

1– ν j
h
2
---,sinh–=

B jν j ν j
h
2
---cosh ikA j ν j

h
2
---cosh+ 0,=

A jν j ν j
h
2
--- a2 2b2–

a2
-------------------ikB j ν j

h
2
---sinh+sinh 0,=

1
k
ν1
----- ν1

h
2
---tanh+

χ1
-----------------------------------

1
k
ν2
----- ν2

h
2
---tanh+

χ2
-----------------------------------

1
k
ν3
----- ν3

h
2
---tanh+

χ3
-----------------------------------

1
ξ
∆1
-----k2+ 1

ξ
∆2
-----k2+ 1

ξ
∆3
-----k2+

ν1
h
2
---tanh

ν1
--------------------Γ1

ν2
h
2
---tanh

ν2
--------------------Γ2

ν3
h
2
---tanh

ν3
--------------------Γ3

0.=

∆ j ν j
2 b2

a2
-----k2–

ω2

a2
------, χ j+ 1 i

k2 ν j
2–

ω
----------------νm,+= =

Γ j
a2 2b2–

a2
-------------------

ξν j
2

∆ j

--------.–=

iω
νm

------
a1

ω
-----

ν1
2 k2 ω2

a2
------–

a1
2k2

a2
---------- 1 ω2

a2θ
--------+ 

  a1
4k4

a2ω2ξ
---------------,–+=

ν2
2 k2 ω2

b2
------–

a1
2k2

b2
---------- 1 ω2

b2θ
--------+ 

  a1
2ω2

b4
-----------

a1
4k4

a2ω2ξ
---------------.–+ +=



326 SAFARYAN
It can be shown that the terms with  and  do not

contribute to dispersion equation (13).
In the three-dimensional formulation for σ @ 1, dis-

persion equation (13) gives ω =  + , where

(16)

For large finite σ values, Eq. (13) gives

(17)

In the case σ @ 1, we have  ≈ 1 and, since

(18)

ω2

θ
------

a1
4

ω2
------

ω1
0 iω2

0

ω1
0 h2

3
-----b2k4ξ

2a1
2k2b2

a2ξ
-------------------– , ω2

0 a1
2k2

hω1
0 2

ω1
0

νm

------

-----------------------.–==

ω2 h2

3
-----b2k4ξ

2a1
2k2b2

a2ξ
-------------------– a1

2k2
2 ν3

h
2
---tanh

ν3h
-----------------------.–=

ν3
h
2
---tanh

i
ν3

2

ω
-----νm

a1
2

b2
----- 1,+=
Eqs. (16) follow from Eq. (17).

In the case of finite θ values, we have  = ,

and Eq. (17) provides

(19)

The direct substitution of Eq. (14) into Eq. (13) leads to
the same value.

For comparison, we consider the averaged
approach, where [1–3]

(20)

By solving the equations for the plates and the dielec-
tric, we obtain

a1
2 H0

2

4πρ
----------

ω2 h2

3
-----b2k4ξ a1

2k2

1 b2

a2
-----+

ξ
--------------.–=

uz U x t,( ), ux z
∂u
∂x
------,–= =

U
1
2
--- A iτ( )exp c.c.+( ).=
  
(21)

Dk4 ρhω2– i
H0

2

4π
------–=

× k2 k2h3

12
---------- 2

λ1
2 k2–

λ1
3

----------------
λ1

h
2
--- λ1

h
2
---  –  λ 1 

h
 

2
---sinhcosh  

λ

 

1

 

h

 

2
---

 

k

 

λ

 

1

 

-----

 

λ

 

1

 

h

 

2
---sinh+cosh

--------------------------------------------------------+
 

 
 
 
 
 

ω
 

i

 

ω

 

k

 

2

 

ν

 

m

 

–
-----------------------.

              
Here, 

For σ @ 1, we have λ1  @ 1 and Eq. (21) has the solu-

tions

(22)

The  value coincides with the second of Eqs. (16),

but the  value differs qualitatively and quantitatively
from the first of Eqs. (16) for the three-dimensional

approach. Taking into account that  is small,

Dk4 h2

3
-----b2k4ξ , λ1 k2 iω

νm

------– 
  1/2

.= =

h
2
---

ω1
0( )2 1

ρh
------ Dk4 H0

2

4π
------k2h+ 

  ,=

ω2
0 H0

2k2

4π 2ν 1– ρh ω1
0( )3/2

---------------------------------------------.–=

ω2
0

ω1
0

λ1h
2

--------
Eq. (21) for finite θ value leads to

(23)

In the averaged formulation, Eq. (23) for finite θ results
in

(24)

By repeating the above calculations in the case of the
longitudinal field H0 = H0x in the three-dimensional and
averaged formulations for σ @ 1, we obtain [7]

(25)

Thus, unlike the case of the transverse field H0 =
H0z , the three-dimensional and averaged approaches
provide identical results for large σ. In the case of the

Dk4 ρhω2– ρa1
2k2h4 νm( ) 1– .=

ω1
0( )2 Dk4

ρh
---------

3
4
---a1

4k
4
h4 νm( ) 1– .–=

ω1
0( )2 h2

3
-----b2k4ξ

2a1
2k

h
-----------.+=
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longitudinal field and finite σ, the three-dimensional
approach provides

(26)

whereas the averaged approach gives

(27)

As is seen, Eqs. (26) and (27) differ from each other.

To verify the theoretical results, we carried out
experiments. Since the dispersion relation ω = ω(k) is
independent of the form of the boundary conditions at
the plate edges [2], we used cantilever plates that were
made of either aluminum or brass and were l = 34 cm
long, 6 cm wide, and 1–2 mm thick. The longitudinal
and transverse magnetic-field intensities were 0.05 and
0.5 T, respectively.

The second harmonic of a frequency of 600 Hz in
the elastic problem was resonant. In all the experi-
ments, the transverse field decreases the frequency by
3–5%, whereas the longitudinal field increases the fre-
quency by 4–5%. These results agree with Eqs. (11),
(15), and (17), which were obtained for the three-
dimensional formulation but are inconsistent with
Eqs. (14) and (16) for the averaged approach.

ω1
0( )2 h2

3
-----b2k4ξ a1

2k2 1 2b2

a2ξ
--------+ 

  ,+=

ω2 Dk4

ρh
---------

2a1
2ωkνm

1– i

2k iωνm
1– h–

-----------------------------.–=
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