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In this paper, we show that there exists a new class
of perturbations limiting the pressure of ideally stable
plasma in tokamak-type fusion reactors. Localization
of such modes involves three characteristic regions,
namely, large-scale magnetohydrodynamic (MHD),
Larmor, and sub-Larmor ones. It is suggested that these
modes can be responsible for spontaneous generation
of neoclassical tearing modes observed experimentally. 

1. Neoclassical tearing modes (NTMs) are consid-
ered to be one of the main obstacles in attaining accept-
able values of the parameter β characterizing the ratio
of the plasma pressure to the magnetic-field pressure in
fusion reactors of the tokamak type [1]. The existing
theory of NTMs [2] is based on the notion that these
modes are excited by certain types of MHD activity
such as edge-localized modes, sawtooth modes, and
fishbones. Meanwhile, the experimental data from
ASDEX Upgrade [3] and TFTR [4] facilities show that
NTMs can be generated spontaneously, i.e., in the
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absence of any MHD activity. To explain spontaneous
generation of NTMs, we should appeal to a linear insta-
bility excited when the parameter β of ideally stable
plasma exceeds a certain threshold value. However, the
existing linear theory [5] fails to predict this instability.

The need to know the nonideal instability excited
when the parameter β exceeds the threshold value is
also required for explanation of experimental data on
NTMs obtained from a series of tokamaks such as T-10
[6] with hot-electron plasma (plasma with the electron
temperature substantially higher than the ion tempera-
ture). This is associated with the fact that, after the revi-
sion of the traditional NTM theory [7], it became clear
that the polarization-current effect in such a plasma is
destabilizing. Therefore, the revised theory predicts no
threshold value of β for the NTM onset in these devices.

In principle, preceding theoretical investigations of
linear modes in tokamaks include certain indications in
favor of the existence of β-limiting instabilities. Thus,
it was shown in [8] that, for q . 1 (q is the safety factor),
an instability distorting the magnetic surfaces of toka-
mak-type toroidal systems can be excited in the case
when (cf. Eq. (3.29) of [8])

(1)

Here, βp is the poloidal β parameter, s is the shear, Lp is
the characteristic scale of the plasma-pressure gradient,
and rs is the radial coordinate of the rational magnetic
surface in which the mode is localized. According
to [8], for excitation of this instability, the existence of
a temperature gradient is necessary, which is similar to
the case of instabilities of high-pressure plasma in a
straight-line magnetic field [9].

In [8], the local approximation was used, which is
insufficient to prove the existence of eigenmodes. This
defect of [8] has been corrected in [10, 11]. The eigen-
modes found in [10, 11] have been called beta-induced
temperature-gradient (BTG) eigenmodes. The results
of experimental observation of the BTG modes in the
JET facility were reported in [12].
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It was assumed in [8, 10, 11] that the BTG modes
are excited due to the toroidal acoustic resonance, i.e.,

are governed by the condition ω* . , where ω* is the

characteristic diamagnetic drift frequency, vTi is the ion
thermal velocity, and R is the torus major radius. Such
a resonance is efficient only for sufficiently high poloi-
dal m and toroidal n mode numbers, namely, m = nq ≈

 > 1, where ρi is the ion Larmor radius. However,

for NTM theory, perturbations with m, n . 1 are
important.

The analysis performed in [8, 10, 11] was based on
the approximation that the characteristic radial scale of
the mode is sufficiently large, i.e., kxρi ! 1, kxρs ! 1.
Here, ρs is the ion Larmor radius calculated from the
electron temperature and kx is the radial projection of
the wave vector (the variable x is defined by the rela-
tionship x = r – rs). Nevertheless, in order to reveal the
eigenmodes, the authors of [10, 11] were forced to
allow for formally small terms on the order of (kxρi)2

and (kxρs)2 .

The goal of the present paper consists in the further
development of the theory of linear instabilities in toka-
maks with a finite value of βp . Then, the existence of the
perturbations covering the gap in the interpretation of
experimental data on NTMs is demonstrated.

2. In addition to the theory of BTG modes, the the-
ory of so-called semicollisional modes was developed
[5, 13, 14]. These modes differ from the standard MHD
modes by the fact that their perturbed electromagnetic
field, being essential for kxρi ! 1 and kxρs ! 1, is also
extended to sub-Larmor scales, i.e., to scales with
kxρi ≥ 1, kxρs ≥ 1. In this theory, the eigenvalues are
characterized by a dimensionless parameter ν, which,
in the particular case of plasma with the same equilib-
rium ion and electron temperatures T0i = T0e =T0 , is
given by the formula

(2)

Here, ω is the perturbation frequency; ωA =  is the

Alfven frequency; vA is the Alfven velocity; ω*e and

ω* i are the electron and ion diamagnetic drift frequen-

cies, respectively; and ky =  is the poloidal projection

of the wave vector. According to [5], the parameter ν
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satisfies the dispersion relation [see (24.33) in [5]]

(3)

Furthermore, Γ is the gamma function,

(4)

(5)

(6)

∆' is the standard parameter of the tearing-mode theory,

γR =  is the characteristic resistive decay rate, σ is

the plasma electric conductivity, and c is the speed
of light.

Until now, the analysis of dispersion relation (3) was

performed only for the particular case  ! 1. In

this case, this relation describes the semicollisional
internal kink and tearing modes [13] and the semicolli-
sional ballooning modes [14]. None of these modes
belongs to the class of pressure-limiting modes.

In contrast to [13, 14], we consider the modes with
ultimately small values of ν, ν  0. Then, we can see
that dispersion relation (3) has the exact solution

(7)

It follows from (2) and (7) that 

(8)

We call the modes described by (8) the “MHD–sub-
Larmor” modes. They have the frequencies

(9)

Here, we allow for ω*e = –ω*i = –ω* at T0e = T0i .

According to (9), in the case of sufficiently low βp,

βp ! , the mode frequencies turn out to be substan-
tially larger than both the electron and ion diamagnetic
drift frequencies. Therefore, in this case, the modes
cannot be excited by electron or ion dissipative diamag-
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netic drift effects. However, with increasing βp , mode
frequencies (9) decrease and turn out to be on the order
of ω*e or ω*i under validity of condition (1) (see

Fig. 1). For such βp, the dissipative electron/ion drift
effects can excite the modes under consideration. 

3. We now show that the dispersion relation of
type (3) can also be obtained in the case of vanishing

ion temperature   0. Similarly to Section 24.1

of [5], we start from the electric-current continuity
equation written out in the Fourier space kx and repre-
sent the contribution of the transverse current into this
equation in the form

(10)

Here, φ is the electrostatic potential, ε⊥  =  is the

transversal plasma permittivity, f = f(ω) is the toroidal
renormalization of the transverse inertia [5], j⊥  is the
perturbed electric-current density, and ∇ ⊥  is the trans-
verse gradient. Furthermore, we follow the approach
proposed in Chapter 24 of the book [5]. The essence of
this procedure consists in the fact that solutions are
sought in the regions in which kxρs ! 1, kxρs . 1, and
kxρs @ 1 (large-scale, Larmor, and sub-Larmor solu-
tions). The unified solution is then constructed by the
method of double asymptotic matching. As a result, we
arrive at dispersion relation (3) with Q(ν) of form (4),
where, in contrast to (2), (5), and (6), we now have

(11)

(12)

(13)

Then we again arrive at dispersion relation (7). How-
ever, instead of (8), we now have

(14)

Correspondingly, instead of (9), we obtain

(15)

As is seen, under condition (1), the modes propagating
towards the electron-drift direction have frequencies on
the order of electron diamagnetic-drift frequency. In
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this case, perturbations can be excited by dissipative
electron diamagnetic-drift effects.

4. Previously, in order to determine βcrit , one
appealed to the polarization-current threshold model of
NTMs [2]. As was said above, this model is inadequate
for plasma in the case of T0e @ T0i. Generally speaking,
it is possible also to appeal to the transport threshold
model of NTMs [15]. However this model contains
coefficients of the anomalous transverse transport.
Their values should be taken from experiment, which is
rather problematic. Therefore, although in the frame-
work of the transport model one can interpret experi-
mental data obtained from certain particular devices,
the possibility of satisfactorily interpreting in this man-
ner the totality of experimental data seems doubtful. In
this context, the concept of the generation of the indi-
cated MHD–sub-Larmor modes [Eq. (20)] is an alter-
native to both the polarization-current and transport
models in determining the value of βcrit .
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INTRODUCTION

The absence of a theory of the detonation of emul-
sion explosives containing hollow microspheres stimu-
lates us to write this paper. Results of calculations con-
cerning the detonation of emulsion explosives differ
considerably from the corresponding experimental
data. The obvious disagreement between theoretical
results and experimental data taken from [1] is seen in
Fig. 1.

EXPERIMENT

The experiments were carried out with an emulsion
explosive based on an aqueous solution of ammonium
nitrate with hollow microspheres as an inert admixture.
This admixture consisted of either ash microspheres
(waste of a heat and electric power plant) sorted accord-
ing to their sizes and apparent density or industrially
produced glass microspheres.

Figure 2 shows the detonation velocity D measured
for microspheres with various specific surface areas S =
nmb , where nmb is the number of microspheres per

unit charge volume and  is the initial diameter of

microspheres.

SIMPLE MODEL OF THE DETONATION
OF EMULSION EXPLOSIVES

According to the proposed model of the detonation
of the emulsion explosive, the shells of microspheres
break down behind the propagating shock front. As a
result, gas in the microspheres is adiabatically com-
pressed so that its pressure and temperature increase.
Thus, the compressed microspheres represent hot spots
for the initiation of a chemical reaction in the emulsion

dmb
2

dmb
2
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base. The reaction front propagates spherically from
each compressed microsphere as emulsion is heated.
When a sphere expands up to the radius Lch, the reaction
terminates, because emulsion includes an inert compo-
nent (water), the burning rate of combustible compo-
nents in the products of ammonium-nitrate disintegra-
tion is low, and the rate of heat transfer from the heated
gas to the emulsion is finite.

Thus, heat release behind the front of the leading
shock wave is determined by the total heat release in all
reacting spheres. It is this heat release that determines
the detonation velocity in the emulsion explosive. At a
low initial microsphere concentration, the heat release
is low and, therefore, the detonation velocity is also
low. At a sufficiently high microsphere concentration,
the detonation velocity reaches its maximum. A further
increase in the microsphere concentration leads to a
decrease in the detonation velocity, because the amount
of the emulsion base becomes insufficient for combus-
tion (combustion spheres overlap) and the porosity of
the explosive composition increases.

4

1.00.9

5

6

7

1.1 1.2 1.3
3

ρ, g/cm3

D, km/s

Fig. 1. Detonation velocity of the emulsion explosive vs. the
emulsion density. Experimental data are taken from [1] and
the line is calculated by the BKW code [1].
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A mathematical formulation of the problem is pre-
sented below. It is obvious that ρmb < ρ0 ≤ ρe , where ρe
is the emulsion-base density, ρmb is the actual micro-
sphere density, and ρ0 is the initial emulsion-explosive
density. In terms of these parameters, the weight frac-
tion of the microspheres in the emulsion and the poros-

ity are expressed as xmb =  and K = ,

respectively. Then, the Chapman–Jouguet detonation
velocity in the emulsion explosive is determined by the
formula

(1)

ρmb ρe ρ0–( )
ρ0 ρe ρmb–( )
------------------------------

ρe

ρ0
-----

D K
n 1–

2
-----------–

= 2 γ2 1–( ) 1 xmb–( )Q.

10
3.5

5.5

5.0

4.5

4.0

8642

D, km/s

S, 1/cm

Fig. 2. Detonation velocity vs. the specific surface area of
microspheres. Triangles are data for the emulsion explosive,
which has an emulsion-base density of 1.35 g/cm3 and con-
tains 125–160 µm diameter microspheres with the apparent
density of 0.39 g/cm3; circles are data taken from [1]; and
solid and dash–dotted lines are the detonation velocity cal-
culated by model (2).
According to [2], the factor multiplying the root
appears in Eq. (1) due to explosive porosity (presence
of microspheres). Here, n is a parameter. The heat
release of the reaction can be estimated as

where mmb =  is the volume fraction of the micro-

spheres in the emulsion and q is the heat release of the
reaction per unit mass of the emulsion base.

To express the detonation velocity D as a function of
the specific surface area S, we find

where α = dmb and β = .

Then, Eq. (1) takes the form

(2)

where A = 2(γ2 – 1)q .

The function D = D(S) vanishes at the points S1 = 0

and S2 =  and reaches its maximum at
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Figure 2 shows experimental data along with the
calculations by model (2).

RESULTS AND DISCUSSION

The detonation of emulsion explosives based on an
aqueous solution of ammonium nitrate with hollow
microspheres as a filler occurs through the mechanism
of hot spots. Since the calorific value of the aqueous
solution of ammonium nitrate is low, the combustion
reaction is quenched at a finite distance from the initia-
tion point. The model proposed above takes into
account the basic features of the detonation of emulsion
explosives and shows that the classical conception of
the detonation process (the Chapman–Jouguet model)
provides qualitatively incorrect results (Fig. 1). The
model ignores both the dependence of the detonation
velocity on the diameter of the cylindrical charge and
the properties of the microspheres (material, shell
thickness, etc.). In addition, a priori determination of
DOKLADY PHYSICS      Vol. 48      No. 4      2003
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the constants A and n requires further investigation.
Nevertheless, the model adequately describes the char-
acteristic behavior of the detonation velocity (existence
of its maximum, see Fig. 2) and qualitatively explains
the processes.
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Nowadays, problems related to synchronization of
self-oscillations in distributed self-oscillatory systems
of an electronic nature have become of urgent interest
from different points of view. Analysis of these prob-
lems is important from both the standpoint of funda-
mental studies of synchronization phenomena and the
applied aspects of developing microwave generators
with controlled characteristics (frequency, output
power, phase) of the output radiation. In [1–3], nonau-
tonomous phenomena in certain reference distributed
models of microwave electronics and nonlinear oscilla-
tion theory and wave theory were analyzed. We imply
an electron beam carrying a supercritical electric cur-
rent or an electron beam with a backward (counterprop-
agating) wave in cyclotron-resonance conditions [3].
Presently, such a system (a laser based on the cyclotron
resonance with a counterpropagating wave) is being
intensely investigated as a promising easily adjustable
powerful radiation source in the millimeter and submil-
limeter wavelength ranges [4].

In the present paper, we analyze the transient period
of a synchronization regime (i.e., the duration of the
transient process) in a distributed system as a function
of the phase of an external synchronizing signal. The
feasibility of the ultra-fast synchronization of self-
oscillations, which proceeds at the optimal phase of an
external electromagnetic field, is also shown.

In order to analyze processes occurring in a helical
electron beam, we consider a simple self-consistent
model [5] described by the equation of motion

(1)

and the time-dependent equation for the excitation of a

dβ
dξ
------ jµ 1 β 2–( )β– F=

Saratov State University, 
ul. Astrakhansnkaya 83, Saratov, 410026 Russia
e-mail: alkor@cas.ssu.runnet.ru; true@cas.ssu.runnet.ru; 
aeh@cas.ssu.runnet.ru
1028-3358/03/4804- $24.00 © 20166
counterpropagating wave

(2)

Here, β is the complex radius of a trajectory for elec-
trons in an ensemble with a phase initially uniformly
distributed with respect to the high-frequency electro-
magnetic field; F = F(ξ, τ) is the complex dimension-
less field amplitude, which slowly varies over the beam
cross section; and ξ and τ are the dimensionless longi-
tudinal coordinate and dimensionless time, respec-
tively. The parameter µ is called the nonisochronism
parameter, which characterizes the measure of the sys-
tem’s inertia. Equations (1) and (2) are solved with the
following initial and boundary conditions:

(3)

An external harmonic signal

F(ξ = A, τ) = FΩexp[j(Ωτ + ϕ)]

is introduced at the collector end of the system ξ = A.
Here, A is the extension of the system; FΩ is the exter-
nal-signal amplitude; ϕ is the initial phase of the exter-
nal electromagnetic field; Ω corresponds to detuning
between the external-action frequency and the fre-
quency  of the cold synchronism, which satisfies the
synchronism condition  + β0( )v || = ωc, where
β0( ) is the propagation constant of the counterpropa-
gating wave with the frequency  in a system without
an electron beam; and v || is the longitudinal (transla-
tional) velocity of the helical flow.

In this consideration, we assume that the external
action FΩexp[j(Ωτ + ϕ)] is switched on when the tran-
sient process in an autonomous system is completed,
and a steady-state generation regime is settled in it. The
initial phase ϕ of the external signal varies from 0 to 2π,
whereas the time at which the external action is

∂F
∂τ
------ ∂F

∂ξ
------–

1
2π
------ β θ0.d

0

2π

∫–=

F ξ τ, 0=( ) f 0 ξ( ) β ξ 0=( ), jθ0( ),exp= =

θ0 0 2π,[ ] .∈

ω̂
ω̂ ω̂

ω̂
ω̂
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switched on remains fixed. Thus, in fact, the question
being analyzed is the magnitude of the effect of the initial
phase difference between the steady-state generation
regime and the external action on the duration of the time
interval in which system synchronization is realized.

In Fig. 1a, the duration of the transient period T is
shown as a function of the initial phase ϕ of the original
electromagnetic field, which is characteristic of the
external synchronizing signal in different cross sections
ξ of the lamp interaction space. The following govern-
ing parameters of model (1)–(3) are chosen: A = 3.0,

µ = 2.0,  = 0.1, and  = 0. 0154; here, F0 and ω0

are the amplitude and frequency of the autonomous
oscillations, respectively.

As follows from Fig. 1a, the duration of the transient
process strongly depends on the initial phase of the
input signal and has a clearly pronounced maximum
and minimum, the maximal and minimal settling times
for the synchronization regime differing by approxi-
mately an order of magnitude. The minimal duration of
the transient process is Tmin < 20, which corresponds to
only 2–3 characteristic times τA of retardation of the
distributed feedback for the generator under study. The
characteristic time for the system reaction to an exter-
nal action is determined by the lamp length A, the group
velocity vg of the wave propagation in a waveguide
structure, and the beam translational velocity v ||. The
external field applied to the lamp input propagates in
the opposite direction to the beam and performs the
modulation of the helical electron flow. This flow, in
turn, transfers this information to the lamp input (col-
lector end) with a velocity v || exciting a counterpropa-
gating electromagnetic wave in the waveguide. The
field of this wave sums with the external field. As a
result, the characteristic time turns out to be equal to

τA ≈ A  + , which attains (in terms of dimen-

sionless variables) the value τA ≈ 6.0.

This fact implies that, in the case of the optimal
phase of the external electromagnetic field, the ultrafast
synchronization of a distributed self-oscillatory system
does occur with a counterpropagating wave, which
realizes the feedback. For maximal duration of T, the
synchronization regime settles in times T > 20τA .

Comparing the dependences T(ξ) for the duration of
the transient process, which are plotted for different cross
sections of the lamp interaction space (see Fig. 1a), we
can see that in the ultrafast synchronization regime a vir-
tually simultaneous settling of a synchronous regime in
the entire bulk of the active medium is observed. For an
external-field phase ϕ different from the maximal one, the
duration of the transient process differs for different lamp
cross sections. The most rapid transient process occurs in

the middle of the lamp interaction space: ξ = .

FΩ

F0
------ Ω

ω0
------

1
v g

------
 1

v ||
-----



A
2
---
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For a qualitative analysis of the phenomenon of self-
oscillation ultrafast synchronization in an active distrib-
uted medium, we can use the equation of phase synchro-
nization, which was first derived by Adler in [6]. This is
the equation to which the analysis of the synchronization
phenomenon in different systems is reduced:

(4)

Here, α is the phase difference between the external
signal and the signal of the nonautonomous oscillatory
system and κ is the synchronization coefficient, whose
shape is determined by the features of the system under
study. As is shown in [7], under certain assumptions,
synchronization in a helical beam interacting with a
counterpropagating wave is described by Eq. (4), the
synchronization coefficient being determined by fea-
tures of electromagnetic-field distributions in a distrib-
uted oscillatory system, and depends on the ξ coordi-
nate of the interaction space.

It is worth noting that the same equation describes
synchronization by a weak external signal of self-oscil-

α̇ κ α ω0 Ω–( )–sin+ 0.=

20
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π/30
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2π/3 π 4π/3 5π/3 ϕ
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Fig. 1. Duration of the synchronization regime settling:
(a) in an active distributed medium represented by a helical
flow and counterpropagating electromagnetic wave as a
function of the external-field phase. The curves are plotted
for different cross sections of the lamp interaction space,
and (b) in a Van der Pol generator (the nonlinearity param-
eter is ε = 0.1).
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lations in a generator described by the Van der Pol
equation [8] under the assumption that an external sig-
nal changes only the phase of the oscillations but not
their amplitude. In the latter case, under a number of

simplifying assumptions, κ = , where A is the ampli-

tude of the external action [8, 9].

The duration Tα of synchronization mode settling in
the Van der Pol generator depends on the initial phase ϕ
of the external signal and is presented in Fig. 1b. This
duration is determined from Eq. (4) by the condition
|ω0 – Ω| ≤ κ. One time unit in Fig. 1b corresponds to
one period of system oscillations. Comparing Figs. 1a
and 1b, we may conclude that the duration of the tran-
sient process as a function of the initial phase ϕ of the
governing electromagnetic field for both the self-oscil-
latory system and a distributed electron generator has a
qualitatively similar shape. In this case, in the Van der
Pol generator, an ultrafast synchronization of self-oscil-
lations during one characteristic period can also be
obtained by selecting the optimal initial phase of the
external field. Using Eq. (4), it is easy to show that the
quantity ∆ϕ, which determines the difference of phases
corresponding to the maximal and minimal settling
time of the transient process as a function of the fre-
quency of an external action in the synchronization
region with the width 2∆ω, can be written out in the
analytical form

(5)

It follows that the quantity ∆ϕ is determined only by the
frequency detuning (ω0 – Ω).

A
2
---

∆ϕ 2
ω0 Ω–

∆ω
----------------arcsin π.+=

π/3

–0.5–1 0 0.5

2π/3

π

4π/3

5π/3

1.0
0

∆ϕ

ω0 Ω–
∆ω

----------------

Fig. 2. Phase difference for the maximal and minimal set-
tling time of a transient process as a function of the relative

detuning .
ω0 Ω–

∆ω
-----------------
We now analyze the corresponding expressions

∆ϕ  for both the distributed self-oscillatory

system under investigation and the Van der Pol generator
using numerical simulation. In order to find these depen-
dences, we calculated the periods of synchronization
mode settling T(ϕ) for different frequencies of an exter-
nal action at other parameters mentioned above. In
Fig. 2, the calculated results for the quantity ∆ϕ are given
in the case of a distributed self-oscillatory system (d) and
for the Van der Pol generator (s). In the same figure, the
solid line calculated by formula (5) is also presented.

It follows from Fig. 2 that the optimal phase rela-
tionships for attaining a minimal time of synchronous
mode settling in a complicated electron self-oscillatory
medium are described by the same universal equations
obtained for a simple finite-dimensional system (Van
der Pol generator).

Apparently, we may expect that a similar behavior
of the duration of transient processes when settling syn-
chronization regimes is universal for a broad class of
linear self-oscillatory systems with both a concentrated
and a distributed nature. In this case, the nonautonomous
dynamics of these systems can be approximately
described by the synchronization equation in the
form (4). Here, the most important fact is the possibility
of ultrafast settling the synchronization regime. This set-
tling is observed for optimal phase relations between an
external governing signal and oscillations in the system.
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The growth of a crack is accompanied by prefrac-
ture processes near its tip, where structural elements
are nonlinearly deformed, attain some maximum
strain, and fail. The cracking strength of the material
is determined by processes in the tip region. Begin-
ning with [1, 2], many authors used crack models (see,
e.g., [3, 4] and references therein) in which the tip
region of a crack and various forces (cohesion forces)
between its edges were considered. The magnitude of
such forces generally depends on the crack opening
and on the properties of various structural bonds in the
material under consideration. The tip-to-crack size
ratio is important for modeling the cracking strength
and the conditions of both the ultimate equilibrium
and crack growth. Indeed, the tip region formed under
brittle fracture is much smaller than the crack, while
the tip region formed under plastic fracture can be
comparable with the crack. In order to understand the
features of the cracking strength of materials, it is
important to estimate the sizes of the tip region of the
crack with specific models for bonds (interactions)
between the crack edges and particular mechanisms of
deformation and breakage of these bonds.

In this work, we estimate the size of the tip region in
an atomistic (lattice) model of a crack. The breakage of
an interatomic bond is treated as an elementary act of
fracture.

We consider the one-dimensional atomistic model
of an opening mode crack (Fig. 1). Atoms interacting
pairwise are in the two semi-infinite (upper and lower)
chains. This interaction is nonlinear and is described in
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the bilinear approximation

(1)

Here, fj is the interaction force; yj is the displacement of
the jth atom; β is the stiffness of springs imitating cohe-
sion forces; and η and u0 are the parameters. Figure 2
shows function (1).

Interaction between atoms in one chain is simulated
by semicircular springs with bending stiffness γ. Exter-
nal transverse forces P are applied to the chain ends.

Regions (I), (II), and (III) in Figs. 1 and 2 are the
open crack zone, where cohesion forces are absent; the
tip region (cohesion zone) described by the descending
straight line in Fig. 2; and the elastic-deformation
region, respectively.

The model presented in Fig. 1 was discussed in [5–8],
where, however, only one or no interatomic bond was
introduced in cohesion zone (II).

In order to analyze the cohesion-zone length and
fracture process, it is necessary to find displacements
yj(I) (j = 0, 1, …, m – 1), yj(II) (j = 0, 1, …, s – 1), and
yj(III) (j = 0, 1, …) in the three zones, where m and s are

f j
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Fig. 1. One-dimensional model of an opening mode crack
with the cohesion zone.
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the lengths of the open crack zone and cohesion zone,
respectively. These displacements are the solutions to
the equations

(2)

where

(3)

is the deformation energy of the crack. Equation (3)
does not contain the surface energy, because this energy
is independent of yj and does not enter into the equa-
tions for yj by virtue of Eq. (2).

Specific finite-difference equations for each zone
shown in Fig. 1 follow from Eqs. (2) and (3), and their
solutions are sought in the form

yj = Cλj, (4)

where C is a constant. We find the following solutions
in the three regions:

(5a)

(5b)

(5c)
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Fig. 2. Interatomic interaction force in a material with a
crack.
The constants y0, y1, C1, C2, C3, C4, A, and B are
found from the matching conditions at the (I)–(II) and
(II)–(III) boundaries. It is easy to determine these con-
stants, but the corresponding expressions are very cum-
bersome and are not presented here.

Using Eqs. (5), we simulated fracture processes
numerically. In this case, we follow Novozhilov [9] and
treat a crack as a certain “nontrivial form of equilibrium
elastic deformation” occurring in an elastic body under
the action of external tensile loads.

The basic idea of our simulation is as follows. We
assume that each displacement y0(I) of the edge atom
that is subjected to an external force P corresponds to
the unique equilibrium state of a body with a crack. The
state is characterized by the displacements yj(I), yj(II),
and yj(III), crack length m, cohesion-zone length s, and
external force P. During simulation, we used the dimen-

sionless quantities yj ≡  and P ≡ . As y0(I)

increases monotonically, equilibrium states replace
each other. Thus, fracture is treated as a quasistatic pro-
cess.

The initial state of the simulation is taken as a per-
fect crystal, i.e., m = 0 and s = 0. Specifying the basic

parameters  and η, we calculate the parameters and

constants entering into Eqs. (5). Since the condition
y0(I) < 1 corresponds to an elastically deformed crystal
with no cracks, we then set y0(I) = 1 and find the load P.
This is the value at which the transition to a new state
with m = 0 and s = 1 occurs.

Then, we increase y0(I) and find a new P value. This
value is used to determine yj(II) and yj(III) from Eqs. (5b)
and (5c). If y0(II) > η for an atom in region (II), the atom
is treated as being in region (I). In this case, the crack
length increases by ∆m = 1 and the cohesion-zone
length decreases by ∆s = 1. Similarly, if y0(III) > 1 for
an atom in region (III), the atom is treated as being in
region (II). In this case, the cohesion-zone length
increases by ∆s = 1, and so on. The simulation provides
a dependence of P = P(m).

This dependence is shown in Fig. 3 for  = 0.1 and

η = 2. We also considered some other cases  = 1,

0.01 and η = 2, 3 . The curve in Fig. 3 is typical for all

these cases.
The dependence shown in Fig. 3 is similar to a

“dinosaur’s back” (this term was introduced in [7]).
This dependence testifies to the lattice trapping effect
[5, 6, 8, 9]. As is seen in Fig. 3, both growth and healing
of a crack beginning with a certain crack length m are
accompanied by an increase in the external load P or, in

y j
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other words, involve passage through a potential barrier
(this is the essence of the lattice trapping effect).

We determined that the cohesion-zone length is s =
0 and 1 at the ascending and descending branches of the
P(m) dependence, respectively. We found no more s

values. For  = 0.1 and η = 3, we found that s = 1 and

s = 2 at these branches, respectively. Other variants con-
sidered belong to one of the two cases. Thus, the cohe-
sion zone (tip region) is very short in the atomistic
crack model under consideration.

Our study shows that only two regimes of crack
growth are possible. If a crack is short (m ≤ 9 for the
case shown in Fig. 3), an interatomic bond being elastic

β
γ
---

0.1

10 2 3 4 5 6 7 8 9 10 11 12 13 m

0.2

0.3

0.4

0.5
P

Fig. 3. Equilibrium load as a function of the crack length.
DOKLADY PHYSICS      Vol. 48      No. 4      2003
in region (III) is torn slightly when y0(III) > 1, and the
two interacting atoms are in cohesion zone (II). Finally,
when y0(II) > η, the interatomic bond breaks down, and
the two atoms are located at the different crack edges in
open crack zone (I). The fracture regime changes for
m ≥ 10. When displacement y0(III) becomes equal to
y0(III) = 1, a pair of interacting atoms passes to zone (I),
escaping zone (II). The vertical sections in the depen-
dence P = P(m) shown in Fig. 3 correspond to such
jump transitions. The same change in the fracture
regime was also observed in other variants considered
(but the critical m values were different).
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The spherical cumulation of shock waves in solids
makes it possible to investigate the properties of a sub-
stance at ultrahigh pressures. However, the exact spher-
ical symmetry of a shock wave in a substance under
study is not a necessary condition of spherical cumula-
tion. The same pressures as at exact spherical detona-
tion can be achieved with low-symmetry (quasi-spheri-
cal) explosive generators if the shock wave generated in
the sample material becomes spherically symmetric at
a certain stage of the shock wave process, i.e., if motion
becomes self-similar. It was established in [1] that the
dodecahedral shock wave loading of metallic samples
can provide a centrosymmetric converging shock wave,
where pressure increases according to the laws of
spherical cumulation.

Investigation of noncentrosymmetric loading
schemes includes the important problem of the stability
of generated cumulation under varying initial experi-
mental conditions. The general approach is as follows.
Investigation of the behavior of model metals and
alloys with the well-studied spectrum of phase transfor-
mations under nonspherical shock wave loading reveals
the evolution features of a complex shock wave front.
The loaded material “fixes” the external action, which
makes it possible to reproduce the pattern of shock
wave motion. The perturbation of the detonation wave
(i.e., of the initial experimental conditions) gives rise to
the spatial separation of interaction traces correspond-
ing to different loading stages. As the shock wave
moves towards the cumulation point, the initial condi-
tions of the experiment are forgotten, and the symmetry
of the wave increases. Correspondingly, the geometry
of traces changes. In this work, the mechanism of the
two-stage concentration of tensile stresses at the focus-
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ing center, which is responsible for the formation of a
cavity at the cumulation point, is revealed and studied
in this approach.

Solid steel ball samples 40 mm in diameter were
subjected to the action of a quasi-spherical shock wave
with increasing pressure near the focusing center up to
200 GPa or more [1, 2]. Samples were covered with a
20-mm-thick explosive-material layer and placed in a
massive metallic shell preventing the fracture of the
ball [3]. The charge surface was equipped with 12 det-
onators, which enables us to simultaneously detonate
the explosive material at 12 points with an asynchro-
nism of no more than 0.1 µs.

The aim of the work is to study the possibility of
cumulating energy when the symmetry of the loading
scheme is broken. The symmetry was broken by turn-
ing off one of the detonators; as a result, a quasispheri-
cal perturbed converging shock wave was generated in
a sample. The sample that was studied in detail in [1, 2]
was taken as an etalon. This sample was loaded by
using all 12 initiation points, i.e., without breaking the
dodecahedral symmetry of the experiment.

It was shown in [1, 2] that dodecahedral unperturbed
explosive loading gave rise to the formation of a single
quasispherical shock wave front at distance r0 . 9 mm
from the focusing center, and pressure for r < r0 increases
according to the laws of spherical cumulation.

Figure 1 shows the diameter section of the etalon
sample after chemical etching. At a distance of half the
radius in the outer part of the ball, there are figures in
the form of arcs with the centers near the projections of
the initiation points, i.e., Altshuler figures (indicated by
the arrow). Arcs were interpreted as interfaces of the
boundaries of the contact discontinuity of Mach config-
urations arising when shock waves moving from the
neighboring initiation points interact with each other
[2]. In the process of motion, Mach waves smoothed
the complex front of shock waves propagating from
12 initiation points, and the front became spherically
symmetric. In the inner part of the ball, the shock wave
motion is one-dimensional beginning at half the radius.

At the center of the ball, a spherical cavity arose,
and two ring zones were formed around it. Investigation
003 MAIK “Nauka/Interperiodica”
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of microstructure and microhardness indicated that
melting with further crystallization and hardening to
bainite occurred in the inner zone. In the second (outer)
zone, austenite was formed with further hardening to
bainite. Thus, the remaining (after unloading) tempera-
tures at the outer boundaries of zones were equal to the
melting point of steel and austenite formation tempera-
ture, i.e., to about 1500 and 800°C, respectively. Pres-
sure at the outer boundaries of ring zones was equal to
200 and 140 GPa, respectively. The pressure at the
inner boundaries of the zones was significantly larger.

The alternation of zones of the changed microstruc-
ture around the central cavity indicates that pressure
increases as shock waves move towards the focusing
center; i.e., cumulation occurs. The absence of traces of
the original symmetry in the configuration of zones tes-
tifies to the “forgetting” of the initial conditions.

Figure 2 shows the diameter section of the sample
for the experiment with a broken symmetry. The missed
initiation point lies in the section plane. The disturbed
sample, as well as the etalon one, includes Altshuler fig-
ures, a central cavity, melting zone, and bainite-trans-
formation zone. The average sizes of these zones virtu-
ally coincide with the corresponding sizes of the etalon
sample (the cavity in the broken-symmetry sample is
somewhat smaller). Comparison between samples
(Figs. 1, 2) testifies to the presence of cumulation under
perturbation. Differences that enable one to reveal the
features of shock wave motion with a broken symmetry
are of primary interest.

The experiment with perturbation has the following
features.

(1) There is a narrow section of a changed micro-
structure state, which has the shape of an elongated tri-
angle, whose acute angle is directed to the missed initi-
ation point.

(2) The geometric centers of zones with changed
microstructure are regularly shifted towards the same
side. On the contrary, a noticeable shift of the central
cavity with respect to the geometric center of the sam-
ple is absent. Figure 3 shows the microstructure of the
central part of the broken-symmetry sample. The zone
of melting and further crystallization with the dendrite
structure is located around the central cavity. The
arrows indicate the boundary of this zone. The shift of
the melting zone with respect to the cavity is pro-
nounced.

The presence of the triangle section of the changed
microstructure state (Figs. 2, 4) indicates that pressure
and temperature increase locally near the line joining
the focusing center and missed initiation point. A
change in the microstructure in this region is associated
with interaction between waves moving from five initi-
ation points neighboring to the missed point. Two such
waves are schematically shown by arcs in Fig. 2. Waves
form a pyramid whose base is a regular pentagon and
whose vertex is directed to the missed initiation point.
Interacting waves, the lateral faces of the pyramid,
DOKLADY PHYSICS      Vol. 48      No. 4      2003
move towards the center of the ball, and the pyramid
thus decreases gradually in size. Since interacting
waves are not plane waves (Huygens construction pro-
vides quite a complex surface), as the pyramid
decreases in size, the angle α between the lateral face
and height increases and reaches the critical value αcr at

Fig. 1. Diameter section of the sample loaded with 12 initi-
ation points (etalon experiment). The arrow points to
Altshuler figures.

40°

Fig. 2. Diameter section of the sample in the experiment
with perturbation. The arcs are the moving waves, lateral
faces of the pyramid, forming the Mach configuration.
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a certain instant (Fig. 2). Then, a Mach shock wave and
associated narrow cumulative jet arise at the vertex of
the pyramid. Thus, the triangle region is the trace of the
motion of the Mach wave and has the same nature as the
Altshuler figures observed in the experiments reported
in [2]. The difference between the intensities of the
observed effects in the cases of the narrow triangle and
the Altshuler figures can be attributed to the fact that the
analogue of the angle α in the latter case exceeds the
critical value αcr . The Mach configuration is substan-
tially more unsteady; therefore, the local increase in
pressure and remaining temperature is significantly
smaller.

The Mach wave trace that was observed in the
experiment with perturbation enables one to directly
extract the angle αcr from the experiment by making
Huygens constructions for the five-wave configuration
of the pyramid shape described above. The vertex of the
pyramid coincides with the vertex of the triangle region
corresponding to the point of originating the Mach
wave (Fig. 2). The αcr value obtained by this method is
equal to about 40°. Since the above five-wave scheme
differs only slightly from the classical cumulative crater
(a cone is considered in the classical scheme instead of
the pyramid), it can be assumed that this αcr value
remains for the conic cumulation of shock waves in
steel.

Fig. 3. Microstructure of the central part of the diameter
section of the sample in the experiment with perturbation.
The arrows indicate the boundary of the melting zone.
The shift of the ring zones of the changed micro-
structure with respect to the geometric center of the
sample indicates that the presence of perturbation leads
to the change in the position of the cumulation point.
Pressure reaches its maximum value near the melting
zone, i.e., at a distance of several millimeters from the
ball center. The noncoincidence of the central cavity
with the cumulation center means that the cavity is
formed primarily through processes that are not
directly associated with energy cumulation.

The cavity shape is disturbed in the experiment with
perturbation. As follows from Figs. 2 and 3, the cavity
is doubled, i.e., consists of two mutually penetrating
spheres of different radii. The center of the larger
sphere coincides with the geometric center of the ball,
and the center of the smaller sphere is located near the
focusing point of shock waves, which does not coincide
with the geometric center of the sample. Analyzing the
causes of the observed distortion of the cavity shape,
we can propose the hypothesis of the two-stage forma-
tion of the cavity and describe mechanisms responsible
for each stage.

The formation of the cavity is associated with the
concentration of omnidirectional tensile stresses at a
certain point of the sample. These stresses are caused
by the action of rarefaction waves and unloading. It is
known that an unloading wave overtakes a compression
shock wave moving from the sample surface. The
geometry of the unloading wave coincides with the
geometry of the compression wave. Therefore, both
waves focus at the same point. After the shock wave
that is reflected from the focusing center reaches the
free surface, a rarefaction wave accompanied by the
doubling of the mass velocity again moves to the center
of the ball [4]. At the instant of focusing of this wave,
the initial conditions of the experiment can be com-
pletely forgotten, and the concentration of tensile
stresses reaches a maximum near the geometric center
of the ball. If stresses exceed the ultimate strength, a
discontinuity arises in the sample. The basic part of the
cavity in the experiment with perturbation is formed in
just such a way; otherwise, its position at the center of
the ball could not be explained. At the same time, the
forgetting of the initial conditions implies the appear-
ance of a cavity of regular spherical shape. The pres-
ence of distortion indicates that a certain discontinuity
exists in the sample at the instant of focusing of the rar-
efaction wave reflected from the ball surface.

Let us reconstruct the shape of the central part of the
sample at the instant of the formation of the spherical
cavity at the ball center. To this end, a sphere of radius
R0 (light circle in the left part of Fig. 4) at the center is
taken so that it most closely touches the boundaries of
the cavity, and we use the mass conservation law

where r' and r are the radius vectors of an arbitrary

4
3
---πr'3 4

3
---πr3 4

3
---πR0

3,–=
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point of the sample before and after cavity formation,
respectively. Using a computer program, one can pro-
cess the photograph of the sample according to the
above formula and obtain the image of the diameter
section of the ball before the formation of the cavity
covered by the R0 sphere.

The right panel of Fig. 4 shows the sample pattern
reconstructed by the above computer method. It is seen
that a discontinuity of the almost regular spherical
shape, which excludes accidental circumstances and
corroborates the above arguments, really exists at the
focusing point of shock waves (melting-zone center).

One can conclude that the cavity is formed in two
stages. First, a discontinuity is formed at the focusing
center of the shock wave. This effect can be attributed
to the fact that the pulse duration in experiments is lim-
ited, and a rarefaction wave (pressure decrease at the
pulse tail) overtakes the shock wave. For an ideal shock
wave, with an infinite step at the cumulation center, the
only point with zero density is formed [5]. In the real
experiment, with a finite step, a rapid decrease in pres-
sure at the pulse tail increases the outflow of a sub-
stance from the cumulation center, and the point trans-
forms to a macroscopic cavity. The shock wave is then
reflected from the focusing center and moves to the
sample surface. After the shock wave arrives at the free
surface, a new rarefaction wave moves to the ball center
and gives rise to the formation of the second, larger, dis-
continuity (as follows from Fig. 4). In symmetric exper-
iments, both cavities merge into one, because the focus-
ing center coincides with the geometric center of the
sample.

Thus, investigation of the features of quasi-spherical
cumulation with perturbation provides the following
conclusions. The breaking of the experimental symme-
try by missing one of the initiation points gives rise to
a shift of the focusing center with respect to the unper-
turbed position. The initial conditions are forgotten in
the process of motion of the shock wave front, and the
shock wave becomes more symmetric. The increase in
the symmetry of the shock wave front in the process of
motion enables one to follow the sequence of specific
shock wave phenomena in the sample material (origin
of Mach configurations, local changes in the micro-
structure, and discontinuities). The presence of two
DOKLADY PHYSICS      Vol. 48      No. 4      2003
stages in the formation of the central cavity is revealed
by this method.

It was established that the cumulation implemented
in the experiments is stable under small perturbations in
the initial conditions, and this does not contradict the
instability of unlimited cumulation investigated by
Academician Zababakhin [5].
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Fig. 4. Two stages of the formation of the central cavity:
(left panel) separation of the spherical cavity arising at the
second stage and (right panel) computer reconstruction of
the first stage.
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Practical applications require physical models for
estimating the adhesion characteristics of interfaces
between joint materials and the effect of crystal-struc-
ture defects in these materials on those characteristics
[1]. In [2–4], a thermodynamic model using the Gibbs
equation was proposed for estimating the variation in
the surface tension of interfaces with the content of
vacancies, dislocations, and impurities.

In this study, we developed a general model describ-
ing the effect of lattice defects on an important charac-
teristic of the interlayer-connection strength, namely,
the work wI of separation of two adjacent (crystalline)
materials. The case where such defects are vacancies is
analyzed in detail. It turns out that, as the concentration
of vacancies increases, wI passes through a maximum
(minimum) or decreases monotonically depending on
the physical conditions and properties of materials.
Generating a sufficient concentration of vacancies in
one of the materials, it is possible to make wI vanish or
even negative, which must result in the spontaneous
separation of materials. These theoretical results for the
strength properties of interfaces are important for
designing new (in particular, layered) materials with an
increased fracture strength and for estimating the dura-
bility of the joints under the action of mechanical loads
and physicochemical fields.

We consider a plane interface between two crystal-
line materials 1 and 2 with structural defects of types 1
and 2, respectively. Similar to [2–4] (see also [5]), we
consider the interface as a surface that can adsorb (des-
orb) defects from the bulk.

Let these materials be subjected to a mechanical
stress σ that is perpendicular to the interface and grad-
ually increases the gap between them up to their com-
plete separation. This stress σ = σ(δ) is a certain func-
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tion of the displacement δ of the interface walls with
respect to their position in the initial (unloaded) state.
In this case, the work wI (per unit interface area) spent
on the separation of materials is equal to

(1)

where δ = 0 corresponds to the initial state of the inter-
face and δ = δc is the minimum displacement at which
materials 1 and 2 can already be considered as sepa-
rated [i.e., σ(δc) = 0].

The wI value must depend on the character of the
separation process. In particular, the following limiting
cases can be considered (see also [6]).

(i) “Slow” separation, when equilibrium between
the interface and materials holds for constant chemical
potentials µ1 and µ2 of defects in the material bulks; i.e.,
σ = σ(δ, µ1, µ2) and wI = wI(µ1, µ2). In this case, to find
the work wI, we use the equation that is the Legendre
transform of the Gibbs equation [5] and relates the dif-
ferentials dµ1, dµ2 , and dwI = σdδ (temperature and
pressure are considered constant in the system):

(2)

where Γ1 and Γ2 are the numbers of defects 1 and 2 at
the interface, respectively, and Φ is the Helmholtz free
energy of the interface (all quantities are taken per unit

interface area). In this case, the relationships  =

− , i = 1, 2 follow from Eq. (2). Using them after the

differentiation of Eq. (1) with respect to µi , we obtain
the following system of equations:

(3)

where Γi0 is the number of ith defects per unit interface
area for δ = 0 and Γic is the Γi value for δ = δc, i.e., the
number of ith defects per unit free-surface area formed
on the ith material after separation. In this case, it is

wI σ δ( ) δd ,

0

δc

∫=

σdδ Γ1dµ1 Γ2dµ2–– d Φ µ1Γ1 µ2Γ2––( ),=

∂σ
∂µi

--------

∂Γ i

∂δ
--------

∂wI

∂µi

-------- Γ i0 µ1 µ2,( ) Γ ic µi( ), i– 1 2,= = ,
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assumed that the surface of a given material in the sep-
arated state contains only its own defects and, there-
fore, Γic = Γic(µi).

(ii) “Fast” separation, when the number Γ1 and Γ2 of
defects at the interface do not vary but µ1 and µ2 do
vary. Therefore, σ = σ(δ, Γ1, Γ2); i.e., wI = wI(Γ1, Γ2).
Immediately using the Gibbs equation [5] σdδ +

µ1dΓ1 + µ2dΓ2 = dΦ, we arrive at the relationship  =

, i = 1, 2.

Substituting these relationships into Eq. (1), differ-
entiated with respect to Γi , we obtain the following
equations for wI(Γ1, Γ2):

(4)

where µi0 and µic are the µi values for δ = 0 and δ = δc,
respectively.

Thus, if we express the quantities µi, Γi0, Γic , or Γi,
µi0, µic, in terms of the defect concentrations C1 and C2
in the bulks of the adjacent materials in a certain model,
set of equations (3) or, correspondingly, (4) makes it
possible to find the dependence for the separation work
wI(C1, C2).

We obtain and analyze the dependence wI(C1, C2)
for the slow-separation mode [Eq. (3)], when the adja-
cent materials contain nonequilibrium vacancies. The
chemical potential of these vacancies is given by the
expression [7]

(5)

where Cie are the equilibrium values of vacancy con-
centrations Ci, T is the temperature, and k is the Boltz-
mann constant.

Following [2], we will determine Γi0 as

(6)

where 0 ≤ CIi < 1 is the concentration of ith-material
vacancies in the unloaded interface, Ωi is the volume of
ith-type vacancies, and b is the interface thickness for
δ = 0. Further, we use the model according to which the
interface can be considered as a surface that can adsorb
vacancies [5]. Similar to [2], we also assume that the
vacancies are adsorbed from each material indepen-
dently, while they are desorbed only into the material
from which they are adsorbed. In this case, the kinetics
of the concentration CIi are described by the equation [2]

(7)

∂σ
∂Γ i

--------

∂µi

∂δ
--------

∂wI

∂Γ i

-------- µic Γ i( ) µi0 Γ1, Γ2( ), i– 1 2,= = ,

µi kT
Ci

Cie
-------, iln 1 2,= = ,

Γ i0

CIib
Ωi

----------,=

dCIi

dt
---------- Kai 1 CIi–( )Ci KdiCIi 1 Ci–( ),–=
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where Kai and Kdi are the constants of adsorption and
desorption for vacancies under their exchange between
the ith-material bulk and the interface. In the steady

mode  = 0 , it follows from Eqs. (6) and (7) that

(8)

Similar representations are also used to describe the
exchange of vacancies between the bulk of each mate-
rial and its free surface formed after separation. In this
case, we take into account that, since the µi values hold
in the slow-separation mode, the quantities Ci are also
conserved by virtue of Eq. (5). Therefore, we have the
following expression, similar to Eq. (8), for Γic:

(8')

where hic = ;  and  are the constants of

adsorption and desorption for vacancies on the free sur-
face of the ith material and di is the thickness of the sur-
face layer of the ith material in which these processes
occur.

Substituting Eqs. (5), (8), and (8') into Eq. (3) and
introducing the dimensionless quantity  =

wI , we find that

(9)

where

are the dimensionless parameters. Since the variables
C1 and C2 are completely separated in Eq. (9), the solu-
tion of Eq. (9) has the form

(10)

where  ≡ wI(C1e, C2e) .

For applications, it is of interest to determine the
values of parameters for which the dependence
wI(C1, C2) has an extremum (maximum or minimum)
and whether it can become negative. The latter property

dCIi

dt
----------





Γ i0

bhi

Ωi

-------
Ci

1 hi 1–( )+ Ci

--------------------------------, hi

Kai

Kdi

-------.= =

Γ ic

dihic

Ωi

-----------
Ci

1 hic 1–( )Ci+
----------------------------------,=

Kai
c( )

Kdi
c( )--------- Kai

c( ) Kdi
c( )

wI

Ω1Ω2

bkT
------------------

∂wI

∂Ci

--------
Ai

1 DiCi+
--------------------

Bi

1 EiCi+
--------------------,–=

Ai

hi Ω1Ω2

Ωi

----------------------, Bi

hicdi Ω1Ω2

bΩi

-----------------------------,= =

Di hi 1,   and   E i –  h i c 1–= =

wI C1 C2,( ) wI
0( )=

+
Ai

Di

-----
1 DiCi+
1 DiCie+
---------------------- 

  Bi

Ei

-----
1 EiCi+
1 EiCie+
--------------------- 

 ln–ln ,
i 1=

2

∑

wI
0 Ω1Ω2

bkT
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would indicate adhesion incompatibility of the materi-
als for a certain vacancy content in them.

Since Eq. (9) must be equal to zero at a possible
extremum, the values C1 =  and C2 =  at this
point are determined as

(11)

We substitute Eq. (9) into Eq. (10). It is easy to show
that 0 ≤  < 1, only if either

(12a)

or

(12b)

According to the general theory of functions of two

variables, wI(C1, C2) has an extremum at Ci =  if ∆ =

R11R22 –  > 0 for these values of Ci , where Rii =

, and R12 = . Since it follows from

Eqs. (9) and (11) that R12 = 0, while

(13)

the condition ∆ = R11R22 > 0 is satisfied when either R11
and R22 > 0 or R11 and R22 < 0. In the former case,

wI(C1, C2) has a minimum at the point ( ), and,
according to Eqs. (11) and (13), this case is realized
under conditions (12a). In the latter case, wI(C1, C2)

must have a maximum at the point ( ), and the
conditions of its existence coincide with (12b).

If ∆ = R11R22 < 0, i.e., if R11 > 0 and R22 < 0 or vice

versa, the work wI(C1, C2) has no extremum at C1 = 

and C2 =  (saddle point).

If conditions (12a) and (12b) are not satisfied, the
values  and  do not fall within the range (0, 1)
and, thus, the dependence wI(C1, C2) is monotonic
[increasing or decreasing according to the signs of
derivatives (9)] along an arbitrary beam C2 = αC1 ,
where α is a positive number.

When the dependence wI(C1, C2) is not monotoni-
cally increasing, wI (C1, C2) can decrease to zero and
even to negative values with increasing C1 and C2 under

certain conditions (it is assumed that  > 0). In the

C1
* C2

*

C1
* B1 A1–

A1E1 B1D1–
-------------------------------, C2

* B2 A2–
A2E2 B2D2–
-------------------------------.= =

Ci*

hic hi
b
di

----,
di

b
---- 1<>

hic hi
b
di

----,
di

b
---- 1> .<

C1
*

R12
2

∂2wI

∂Ci
2

----------
∂2wI

∂C1∂C2
-------------------

Rii Ci*( )
AiEi BiDi–

AiBi

---------------------------=
AiEi BiDi–

Ei Di–
--------------------------- 

 
2

,

C1
* C2

*,

C1
* C2

*,

C1
*

C2
*

C1* C2*

wI
0( )
general case, such an analysis is mathematically com-
plicated for dependence (10). For this reason, we con-
sider for simplicity the case where vacancies are in
equilibrium in one of the adjacent materials, for exam-
ple, in the second one; i.e., C2 = C2e. In this case, we
have

(14)

instead of Eq. (10). We also take

(15)

i.e., A1 . D1 . h1, and B1 . E1 . h1c.
Thereafter, equating expression (14) to zero for

 =  . 1 and solving the resulting equation, we

find that the separation work wI(C1) vanishes for

(16)

where

To obtain the condition under which 0 <  < 1,

we first estimate the quantities  =  and β in

the typical cases. To do this, we take into account that
the adhesion-separation work wI for two materials can
also be represented in the form [9]

wI = γ1 + γ2 – γ12,

where γ1, γ2 , and γ12 are the surface tensions for materi-
als 1 and 2 and at their interface, respectively. For
example, from data [8] for γ1 and γ2 values and from our
estimates [2] for γ12 values without vacancies, it follows

that  ~ 1 J/m2 for the metal–metal interfaces. Then,

taking Ω ~ 10–29 m3 and b . 2–3 Å, we obtain  .
10 in particular for room temperatures (kT . 0.025 eV);

i.e., the factor exp(– ) ~ 10–3 ! 1 in Eq. (16).

At room temperatures, C1e ~ 10–9–10–8, and if, for

example, h1C1e ! 1 and h1cC1e ! 1, β . exp(– ) ~

10–3 ! 1 in Eq. (16) and  . . In this case,

the inequality 0 <  < 1 is satisfied if  > 103 [here,

wI C1( ) wI= 0( ) A1

D1
------

1 D1C1+
1 D1C1e+
------------------------ 

 ln+

–
B1

E1
-----

1 E1C1+
1 E1C1e+
----------------------- 

 ln

Ω1 . Ω2 Ω, d1 . b, h1 @ 1, h1c @ 1,=

A1

D1
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B1

E1
-----

C1 C1
0( ) 1 β–

βh1c h1–
---------------------,= =

β
1 h1C1e+
1 h1cC1e+
------------------------

wI
0( )Ω

bkT
--------------– 

  .exp=

C1
0( )

wI
0( ) wI

0( )Ω
bkT
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wI
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wI
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wI
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0( ) h1c

h1
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we take into account that h1 @ 1 according to Eq. (15)].

If h1C1e ! 1 and h1cC1e @ 1, we have β .  ! 1

and  . ; i.e., the inequality 0 <  <

1 is possible for h1C1e < 10–3. Therefore, taking into
account the initial condition h1cC1e @ 1, we obtain
h1c/h1 @ 1, similar to the first case.

The inequality  @ 1 means that the free surface

of the material absorbs vacancies better than its inter-
face with another material. In the cases considered
above, this condition is necessary in order for the work
of the separation of joints between a given material and
another material to be reduced to zero or even to a neg-
ative value by generating a sufficient concentration of
nonequilibrium vacancies in this material. In this case,
the separated state of materials becomes thermodynam-
ically more profitable than their joint.

The previous analysis shows that a similar effect
(wI < 0) can be obtained by generating a certain concen-
tration of impurity atoms in the material.

Note. We have found an inaccuracy in our previous
work [4] when passing from Eqs. (10a) and (10b) to
Eq. (11). Correct solutions of Eqs. (10a) and (10b) are
obtained from Eqs. (12) and (15), where the coeffi-
cients of the first terms in each braces must be removed
and the sign of the second term is changed to minus.
The function γ12 is a monotonic (increasing or decreas-

10 3–

h1cC1e
---------------

C1
0( ) 10 3–

C1e
---------- h1– 

 
–1

C1
0( )

h1c

h1
-------
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ing) function of impurity concentrations. If γ12 is mono-
tonically decreasing, it can vanish and become nega-
tive, which would correspond to the thermodynamic
instability of the compound for the corresponding
impurity concentrations.
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Received November 4, 2002
Until now, the formation mechanism of single-wall
carbon nanotubes has remained not quite clear. The
numerical modeling that was performed in [1, 2] using
molecular-dynamics methods makes it possible to con-
sider processes of synthesizing these objects at the for-
mation stage of an open fullerene cup. However, in this
case, data related to estimates of both the most probable
diameter and growth time of nanotubes with formed
geometry (when the nanotube length exceeds the nano-
tube diameter) are absent.

In this paper, we analytically solve the problem of
deriving a time-dependent growth law for the average
length of a formed-geometry single-wall carbon nano-
tube with one closed end. To that end, we use the phe-
nomenological approach of [3, 4]. This approach
allows us to describe the behavior of clusters with
clearly defined collective quantum properties in sto-
chastic conservative systems. In the given case, we deal
with small carbon particles having a high characteristic
frequency νv of carbon-atom vibrations, which is asso-
ciated with a high characteristic temperature θv (cf.,
e.g., [5]) of tension vibrations of C–C chemical bonds:
2π"νv = kθv, where " is the reduced Planck constant
and k is the Boltzmann constant. 

We below assume that the increase (growth) in the
nanotube length l occurs in the process of adding nuclei
to the open end. This is stipulated by the mutual com-
pensation of free chemical bonds of both nanotube
boundary atoms and atoms of a nucleus, which occurs
as a result of their interaction. Plane formations,
namely, carbon (graphite) hexagons, are considered as
basic structure nuclei of a fullerene nanotube. The char-
acteristic size l0 of a nucleus can be, for simplicity,
determined from the equality condition for the areas of
the hexagon with the side a0 and the circle with the
radius l0 . In accordance with [3, 4], the process of the
irreversible growth of nanotubes is described by the
wave ϕ(l, t) of the density distribution in the space of
sizes l of clusters, the wave propagating with time t

Russian Federal Nuclear Center, 
All-Russia Research Institute of Experimental Physics, 
Sarov, Nizhegorodskaya oblast, 607188 Russia
e-mail: root@gdd.vnief.ru
1028-3358/03/4804- $24.00 © 20180
towards their increase. Then, the increase in the
length l, while the nanotube diameter d remains con-
stant, obeys the equation of a running wave in the space
of l:

(1)

Here, ξ = , τ = , ti is the characteristic time scale of

the nanotube–nucleus interaction and Ψ(τ) =  is

the dimensionless growth rate for the average length 〈l〉
of a nanotube. The condition of mass conservation has
the form

(2)

where Mnucl(t) and Mcl(t) are current total masses of a
nucleus and a cluster, respectively, m(l, t) is the cluster
mass, and lmax is the maximum cluster size in the sys-
tem. We now write out the expansion for the quantity ϕ
in the form of the superposition of direct and backward
waves:

These waves are responsible for the processes of cap-
turing of nuclei by clusters and cluster destruction,
respectively, as a result of random interactions of the
objects in the system. Thus, from formulas (1) and (2),
we obtain the following general form of the growth law
for the average length of a nanotube in the system orig-
inally consisting of only nuclei:

(3)

We admit that the characteristic time scale is equal to
the product of the time texc required for exciting one
nucleus by the total number N of nuclei in the nanotube:

ϕ ξ τ,( )∂
τ∂

-------------------- Ψ τ( ) ϕ ξ τ,( )∂
ξ∂

--------------------+ 0.=

l
l0
--- t

ti

---

d ξ〈 〉
dτ

------------

Mnucl t( ) Mcl t( )+ Mnucl t( )=

+ ϕ l t,( )m l t,( ) ld

0
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ϕ ξ τ,( ) F1 ξ Ψτ–( ) F2 ξ Ψτ+( ).+=

l〈 〉 l0K
t
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--- 
  Z

.=
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l0
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--------------.= =
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Here, N is determined as the ratio of the lateral-surface
area of a nanotube with diameter d and length 〈l 〉  to the
area of a circle with diameter l0 .

Using the relations for wave-packet broadening
(see [4, 6]), we obtain from formula (3) the following
expressions for the nanotube diameter and average
length:

(4)

(5)

where m0 is the nucleus mass. In analogy with quantum

mechanics (see, e.g., [7, 8]), the parameter  can be

determined as the upper limit of the diffusivity in the
space of the cluster sizes. Then, expression (5) is an
analogue of the classical diffusion solution [9] for the
growth of the new-phase particles.

We now define the parameter texc as the product of
the number n of chemical bonds in a nucleus by the

reciprocal characteristic frequency  of atomic oscil-

lations in the nucleus structure, texc = n ·  = .

Then, with allowance for the definition of the nucleus
size, we obtain from (4) the following formula:

. (6)

Here, A is the atomic mass and mu is the atomic mass
unit. Formula (6) involves only fundamental physical

d l0
2 m0

8"texc
--------------,=

l〈 〉 "t
2m0
---------,=

"
2m0
---------

νv
1–

νv
1– n2π"

kθv

-------------

d
3 3a0

2

2π"
----------------

Amukθv

π
--------------------=
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constants and parameters of chemical bonds of carbon
atoms in a nucleus and yields d = 2.2 nm for the value
of the diameter of a single-wall carbon nanotube. This
value corresponds (within an order of magnitude) to the
basic experimental data presented in [1] and lies within
the range 1–4 nm. This fact testifies to the adequacy of
the phenomenological approach developed in the
present study. From formula (5), we find that the
growth time for carbon nanotubes with the average
length 〈l 〉  = 40 nm indicated in [1] attains t = 4 × 10–6 s.
Growth law (5) obtained by us can be useful for choos-
ing parameters for synthesizing carbon nanotubes with
a given average length.
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Integrability of Centered Balanced Elastic Vibrations 
with Equal Frequencies during Free Rotation1

S. T. Sadetov
Presented by Academician V.V. Kozlov September 9, 2002

Received August 20, 2002
1 New integrable mechanical systems are discovered.
After Routh reduction, they allow the separation of
elliptic coordinates. Solutions are obtained in terms of
Riemann θ functions. The phenomenon under con-
sideration (shift of masses in rotation) occurs in engi-
neering.

1. Model example. Let a rigid body (“turbine”)
freely rotate about an immovable vertical axis OO1 . Let
the turbine contain n smooth cylindrical cavities with
rigid bodies sliding along them (Fig. 1). Let the follow-
ing five conditions be satisfied.

(i) The centers of mass of the bodies can move with
respect to the turbine along straight lines li, i = 1, 2, …,
n, passing through the OO1 axis (centrality).

(ii) Motion occurs in the vertical uniform gravity
field with acceleration g (in the absence of other
forces).

(iii) Every body is connected with the turbine by a
uniform cylinder that has the axis li , is linearly elastic
along li , and is absolutely inflexible in the transverse
direction (with one degree of freedom).

(iv) For the turbine at rest, the frequencies of oscil-
lations of bodies are equal to each other (equality of fre-
quencies).

(v) The equilibrium of the system (for the concep-
tual absence of bases of cylindrical cavities) minimizes
its moment of inertia with respect to OO1 (balance).

In this case,

(a) after the Routh reduction with respect to the
angle of rotation about OO1 , the Lagrangian of this sys-
tem has the Jacobi–Stäckel form, and the Hamilton–
Jacobi equation can be separated in elliptic coordinates
in Rn. Hence, for the initial conditions that do not allow

1 This article was submitted by the author in English.
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impacts by bases of the cylindrical cavities, the equa-
tions of motion are Liouville integrable [1];

(b) the angular velocity squared of this rotation and
the squares of the distances from bodies to the axis are
expressed in terms of rational functions of Riemann θ
functions (of n variables) and their partial derivatives of
the orders ≤n. Its argument is the linear vector function
of the new time

where τ is the input time and ( is the (variable) moment
of inertia of the system with respect to OO1 .

2. The derivation of the equations in the case
where the damping rods are weightless and the bodies

T
τd

(
-----,∫=

O

O1
ρn

An
mng

βn

Bn = 0

m1gρ1

β1

ψA1
B1

I1

In

C1

Cn

z

Fig. 1. Weightless springs for which 2ki(Ai + Bi) =
migsin2βi , and kn is the total stiffness of two (identical)
springs.
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move only translationally relative to the turbine.
According to the König theorem, the kinetic energies of
the turbine and the ith body have the form

(1)

Here, (·)' =  is the derivative with respect to the

time τ; ψ is the angle of the rotation of the turbine; Ci

and mi are the center of mass and the mass of the ith
body, respectively; IO is the moment of inertia of the
turbine relatively to OO1; and Ii is the moment of the
body relative to the axis passing through its center of
mass in parallel to OO1 .

Let ρi be the distance (including sign) from the cen-
ter of mass Ci of the ith body to the axis OO1 and βi be
the angle between OO1 and li . Then,

The potential energy of the ith body has the form

where zi is the vertical coordinate of the center of mass

Ci, 0 ≤  is the distance from Ci to the base plane

of the rod (orthogonal to li) along li , 0 ≥  is the

distance from the base plane of the rod to li ∩ OO1 along
li, and ki is the stiffness of the rod along li. In view of
the relation zi = ρi  and condition (v), this potential

energy takes the form

The Lagrangian of the turbine with oscillating bod-
ies takes the form

(2)

where I = IO + 

1
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3. Reduction of rotation about OO1. Let pψ = 

be the (constant) moment of momentum of the bundle
with respect to OO1 . Conducting the Legendre transfor-
mation with respect to ψ', one obtains

(3)

Here, ψ'  pψ denotes the expression of ψ' from the
integral of the moment of momentum.

4. Stäckel form of the Lagrangian. Let one con-
sider the equation

(4)

Its roots determine the elliptic coordinates in Rn [2–4]
(if all the angles βi, π – βi are different and are not equal
to zero, I, mi > 0). They satisfy the inequalities

The following formulas are obtained from Eq. (4) by

comparison of residues in λ at the points ai = :

(5)

(6)

(7)
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Formulas (6) and (7) are obtained by using the expres-
sions for

In Eq. (7), the expression for

is also used (cf. [6]).

Let µi =  be the momenta. The fact that the

Lagrangian has the Stäckel form [1, 2] means that the
corresponding Hamiltonian can be represented in the

form Hi(λi, µi).

5. Separation of variables [2, 3]. Let us substitute
Eqs. (5), (6), and (7) into Eq. (3) and make the Leg-

resw λ i=
w j
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-------------
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∑ , j n 1 n 1,–, ,–=
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Fig. 2. Rotating system of conical logarithmic spirals.
endre transformation in , , …, , passing to the
momenta µi in the natural Lagrangian. Substituting µi =

 into the resulting Hamiltonian, one arrives at the

Hamilton–Jacobi equation (where the coefficients of

 depend only on λi). Hence, it allows a separable

solution (λi, Fn – 1), where Fn – 1 is the energy con-

stant. One can introduce additional n – 1 arbitrary con-
stants F0, F1, …, Fn – 2 in this solution, in view of the
identity

Then, this solution is a generating function of a sym-
plectic map (3).

The passage to the Abel–Jacobi equations and inte-
gration in θ-functions follow from [2–5, 7]. The reac-
tions in two bearings acting on the axis (Fig. 1) are

polynomials of degree ≤3 in ρi, , .

6. Generalizations. Let Lagrangian (2) be extended
by means of the parameter α = const:

After the reduction, the Lagrangian  can be separated
in elliptic coordinates

(for  ≠ 0) and can be integrated in θ functions.

The Lagrangian  describes the motion of material
points over the freely rotating, inflexibly connected sys-
tem of spatial curves—conical logarithmic spirals with
a common axis (Fig. 2) (here, the condition of central-
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ity is weakened). The points interact with the curves by
means of weightless elastic filaments (stretched along
either the curves or chords).

This problem is similar to the Jacobi problem [2] of
the motion of a point over the surface of an ellipsoid.

ACKNOWLEDGMENTS

I am grateful to V.V. Kozlov for discussions and
Mathematische Institut, der Universität Bonn for
exceptional conditions for research. This work was sup-
ported by the Deutscher Akademischer Austauschdi-
enst (grant no. A/96/28670).
DOKLADY PHYSICS      Vol. 48      No. 4      2003
REFERENCES

1. V. I. Arnol’d, V. V. Kozlov, and A. I. Neistadt, Current
Problems of Mathematics. Fundamental Tendencies
(VINITI, Moscow, 1985), Vol. 3, pp. 5–304.

2. C. G. J. Jacobi, Vorlesungen über Dynamik (Druck und
Verlag von G. Reimer, Berlin, 1884; ONTI, Moscow–
Leningrad, 1936).

3. V. V. Kozlov, Prikl. Mat. Mekh. 59 (1), 3 (1995).
4. Yu. Mozer, Usp. Mat. Nauk 36 (5), 109 (1981).
5. V. V. Kozlov and Yu. N. Fedorov, Mat. Zametki 56 (3),

74 (1994).
6. S. Wojciechowcki, Phys. Lett. A 107 (3), 106 (1985).
7. B. A. Dubrovin, Usp. Mat. Nauk. 36 (2), 11 (1981).



  

Doklady Physics, Vol. 48, No. 4, 2003, pp. 186–190. From Doklady Akademii Nauk, Vol. 389, No. 5, 2003, pp. 616–620.
Original English Text Copyright © 2003 by Nepershin.

                                                                

MECHANICS

                          
Indentation of a Smooth Spherical Die
into a Perfectly Plastic Half-Space1
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1 A numerical model of an unsteady indentation of a
smooth spherical die into a perfectly plastic half-space
is given. The plastic half-space is incompressible and
satisfies the full plasticity condition according to the
Tresca yield criterion. The indentation load calculated
as a function of the plastic-impression radius, as well as
the shape of the plastic boundary near the die, agrees
reasonably well with experimental data.

The axisymmetric problem of perfect-plasticity the-
ory for the initial plastic flow of a half-space under the
pressure of smooth flat and spherical dies was solved
numerically in [1–3]. For the indentation of the smooth
spherical die, the velocity field that satisfies the condi-
tion of nonnegative energy dissipation of the plastic
flow, as well as the statically admissible continuation of
the stress field into the rigid region, was given in [3, 4].
In this paper, the unsteady axisymmetric problem of the
plastic flow is solved numerically for the indentation of
the smooth spherical die into the incompressible per-
fectly plastic half-space satisfying the full plasticity
condition according to the Tresca yield criterion. It is a
model of the hardness test of prestrained low hardening
materials by the penetration of a smooth spherical
indenter. The initial stage of the indentation of the
smooth spherical die agrees reasonably well with
experimental data [6]. As the radius of the plastic
impression increases, the experimental indentation load
exceeds the theoretically predicted value due to the
contact friction effect.

We consider the indentation of the smooth spherical
die into the perfectly plastic half-space in the cylindri-
cal coordinates {r, z, θ} associated with the die. The
coordinate origin O is located at the lower point of the
die. The die is fixed in these coordinates, while the half-
space moves along the z axis with the unit velocity V = 1.

1 This article was submitted by the author in English.
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Figure 1 shows the plastic region to the right of the
symmetry axis for the penetration of an R-radius die to
the depth h relative to the initial contact point O of the
die with the half-space. We specify the indentation
stage by the contact arc angle αA of the die with the
plastic region. During die indentation, the plastic region
increases from zero, and its size is comparable with the
die contact length. For this reason, we use the die con-
tact length as the unit reference length, RαA = 1, for cal-
culation of the plastic region at the current indentation
stage. For the whole indentation model, we use the die
radius as the unit length R = 1. In this case, the contact
arc length is αA. Stresses are made dimensionless by
dividing them by the yield stress σY of the perfectly
plastic material under uniaxial compression.

For the problem under consideration, the full plas-
ticity condition, which corresponds to the edge of the
Tresca prism in the space of the principal stresses, is
given as

(1)

The principal stresses σ1 and σ3 lie in the {r, z} plane,
and σ2 = σθ. Under condition (1), the axisymmetric
problem of perfect-plasticity theory is statically deter-
minate and hyperbolic [3]. The characteristic curves for

σ1 σ2 σ3, σ1 1.–= =

0.2

0

0.4
z

1.50.5 1.0
r

R A αA

B

Dξ

η
ηψ

ξ

βA

h

C

V = 1

Fig. 1. Slipline field in the {r, z} physical plane for the
indentation of a smooth spherical die for the parameters
αA = 0.5236, h = 0.163, RαA = 1.
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the stresses and velocities fields coincide with the sli-
plines ξ and η in the {r, z} plane:

(2)

where ϕ is the angle between the tangent to the ξ sli-
pline and r axis. Differential relations along the sli-
plines have the form

(3)

(4)

for σ =  and ϕ and

(5)

(6)

for the projections Vξ and Vη of the velocity on the sli-
plines ξ and η. The velocity projections in cylindrical
coordinates are related to Vξ and Vη as

(7)

(8)

The sliplines intersect the smooth boundary OA at

an angle of . Therefore, the boundary conditions for

Eqs. (2)–(4) at the die contact have the form

(9)

where α is the angle between the tangent to the bound-
ary OA and the r axis. The velocity component normal
to the boundary OA is equal to zero, and we have the
following boundary condition for the velocities on this
boundary:

(10)

Velocities are continuous on the rigid–plastic
boundary ODCB, because it is the slipline intersecting
the symmetry axis at the point O. In the rigid region of
the half-space, Eqs. (7) for Vr = 0 and Vz = 1 provide

(11)

The plastic material on the boundary AB is in the
uniaxial-compression state σ1 = σ2 = 0, σ3 = –1. The
boundary AB coincides with the σ3 direction. The sli-
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plines intersect this boundary at an angle of . Calcu-

lations of the velocity field of the initial plastic flow for
the indentation of the spherical die into the half-space
with a linear boundary [4] show that the velocity
increases along the boundary AB from the point B to the
point A. Owing to this increase, the material rises above
the initial undeformed boundary of the half-space, and
this behavior agrees with experiments on the penetra-
tion of a spherical indenter into a prestrained low hard-
ening material [6]. We assume that the boundary AB is
a smooth curve, where the tangent angle decreases
monotonically from the maximum value βA at the
point A to zero at the point B. The boundary conditions
for Eqs. (2)–(4) on AB have the form

(12)

The boundary AB at the current indentation stage is
formed by material points moved from the boundary AB
of the preceding indentation stage. Therefore, the kine-
matic differential relation

(13)

must be satisfied on this boundary. Here, ds is the mag-
nitude of the material-point displacement from the pre-
ceding boundary AB to the current boundary AB during
the “time” increment dh, V is the magnitude of the
velocity of the point, and dh is the increment of the
indentation depth h = zB . The volume of the spherical
segment with the height h is equal to the volume of the
plastic region above the boundary zB due to the incom-
pressibility condition. Therefore, h is related to the
equation of the boundary AB as

(14)

where rA = RsinαA and zA = R(1 – cos αA) are the coor-
dinates of the point A.

The point A is the degenerate ξ slipline with a polar
singularity with stresses and velocities varying in the
fan angle ψ of the sliplines and with the center at the
point A:

(15)

The inequality ψ > 0 defines the limiting values of the
contact angle αA and the die indentation depth h for the

π
4
---

σ 1
2
---– ϕ, π

4
--- β– 0 β βA,≤ ≤,= =

βtan
dz
dr
-----  on AB.–=

ds
V
----- dh on AB=

h
1

rB
2

----- zA rA
2 1

3
---zA

2– 
  2 zr rd

A

B

∫+ ,=

ψ π
2
--- α A βA+( ).–=
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slipline field and the plastic region mode shown in
Fig. 1. From Eqs. (3) and (12), we find

(16)

The field of stresses and velocities in the plastic
region must satisfy the condition

of nonnegative energy dissipation of the plastic flow,
where ε1, ε2, ε3 are the principal strain rates. From full
plasticity condition (1) and incompressibility condition
ε1 + ε2 + ε3 = 0 for D ≥ 0, we obtain the inequality ε3 ≤
0, which means that the dissipative function D is non-
negative if the elongation rate of the linear element
along the σ3 stress trajectory is negative. For the orthog-
onal curvilinear coordinates connected with the direc-
tions of the principal stresses σ3 and σ1, this condition
takes the form

(17)

where the velocity projections V3 and V1 on the stresses

σ3 and σ1 are related to Vξ and Vη as V3 =  and

V1 = , and dϕ is the increment of the tangent

angle to the arc element of the σ3 stress trajectory.
The indentation of the spherical die into the per-

fectly plastic half-space is simulated by numerical cal-
culations of the fields of sliplines and velocity for an
increasing sequence of the contact angles αA from zero
to a finite value satisfying the inequality ψ > 0.

The angle β values at the N nodes of the boundary
AB are specified by the parametric power function

(18)

with a constant step in λ, and the σ distribution over the
boundary OA that satisfies the boundary condition (12)
is calculated. The boundary AB is determined by the

integration of the equation  = –  from the

point A when solving the inverse Cauchy problem for
Eqs. (2)–(4) for the N nodes specified on the boundary
OA by Eqs. (9). This procedure reduces to the numeri-
cal solution of the sequence of the N nonlinear equa-
tions

(19)

where f1 denotes the numerical procedure of calculating
the σ value at a node on the boundary AB for a σ value
specified at the node on the boundary OA along the
ξ slipline. For the first node near the point A, this pro-

σ 1
2
--- ζ+ 

  ϕ,– π
4
--- βA ζ+( ),–= =

0 ζ ψ  at  the  point  A . ≤ ≤

D σ1ε1 σ2ε2 σ3ε3 0≥+ +=

ε3 dV3 V1dϕ 0,≤–=

Vξ Vη–

2
------------------

Vξ Vη+

2
------------------

β βAλn 1 λ 0,≥ ≥,=

dz
dr
----- βtan

f 1 σ( ) 1
2
---+ 0,=
 

cedure includes the solution of the Cauchy problem from
the node on the boundary 

 

OA

 

 and from the point 

 

A

 

 with

 

ζ

 

 = 

 

ψ

 

 in Eqs. (16), the solution of the Goursat problem
from the found node with specified data at the singular
point 

 

A

 

, and the solution of the inverse Cauchy prob-
lem, which determines the node of the boundary 

 
AB

 using differential relations (2) and (3) along the  ξ  sli-
pline and the angle 

 
ϕ

 

 defined by Eq. (12). The differ-
ence between the 

 

σ

 

 value found at the node on the

boundary 

 

AB

 

 and the value 

 

σ

 

 = 

 

 specified in Eq. (12)

determines the left-hand side of Eq. (19). For the next
nodes of the boundary 

 

OA

 

, the known data for the
Goursat problem on the previous 

 

ξ

 

 slipline are used in
the 

 

f

 

1

 

 procedure. The initial 

 

σ

 

 value at the node on the
boundary 

 

OA

 

 is taken to be equal to the known 

 

σ

 

 value
at the preceding node. In this case, Eq. (19) is almost
instantly solved numerically by Newton’s method with
an accuracy of 10

 

–4

 

 on a Pentium 130 computer.
When Eq. (19) is solved for the 

 

ξ

 

 slipline passing
through the points 

 

O

 

 and 

 

B

 

, the rigid–plastic boundary

 

O

 

–

 

B

 

, the boundary 

 

AB

 

, and the indentation depth 

 

h

 

 =

 

z

 

B

 

, which is a function of the angle 

 

β

 

A

 

 in Eqs. (18), are
determined. Then we calculate the integral on the right-
hand side of Eq. (14), and difference between the right-
and left-hand sides of this relation is treated as the fol-
lowing nonlinear equation for the angle 

 

β

 

A

 

:

 

(20)

 

which is solved by Newton’s method. For the initial

guess 

 

 = 0.8

 

α

 

A

 

, the rapidly convergent iterative pro-
cess provides 

 

β

 

A

 

 values with an accuracy of 10

 

–4

 

.

When the slipline field in the plastic region is calcu-
lated by using the static boundary conditions for 

 

σ

 

 and

 

ϕ

 

 and the integral incompressibility condition (14), we
calculate the velocity field by the numerical integration
of Eqs. (5) and (6) with the boundary conditions (10)
and (11). The mixed boundary value problem is solved
in the region 

 

OAD

 

, Goursat problems are solved in the
regions 

 

ADC

 

 and 

 

ACB

 

, and the velocities on the bound-
ary 

 

AB

 

 are found. Kinematic relation (13) on the
boundary 

 

AB

 

 is satisfied within an accuracy of ~10

 

–3 at
the final stage of the die indentation for αA = 0.5236
with the step ∆αA = 0.035, when n ≈ 0.75 in Eq. (18).
For small contact angles αA < 0.0785, the left- and
right-hand sides of Eqs. (13) are equal to about 10–4.

The slipline field in the {r, z} plane and the velocity
field in the {Vr, Vz} hodograph plane for αA = 0.5236
are shown in Figs. 1 and 2, respectively. Since the
velocity changes stepwise from Vz = 1 to Vz = 0 at the
point O, the velocity varies almost stepwise along the ξ
slipline nearest to the rigid–plastic boundary with the
variable discontinuity, which is determined by integrat-
ing Eq. (5). The plastic region ABC (Fig. 1) is mapped
onto the narrow segment on the velocity hodograph
(Fig. 2) with the continuous decrease in the velocity V3

1
2
---–

f 2 βA( ) 0,=

βA
0
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along the trajectory of the principal stress σ3, which
coincides with the boundary AB. The curvature of σ3
trajectories is positive (dϕ > 0) on the physical plane
(Fig. 1). The velocity projections V3 and V1 are positive,
and the velocity V3 decreases along the σ3 trajectories
(Fig. 2). Inequality (17) is satisfied in the whole plastic
region, and the dissipative function D is positive. The
statically admissible continuation of the stress field in
the rigid region for this mode of the slipline field was
given in [4].

Figure 3 shows the boundaries of the plastic region
for 15 steps of the die indentation up to the contact
angle αA = 0.5236. This figure shows that the stress-free
boundary AB for small αA angles is close to the horizon-
tal line. The slipline field in this region including the
flat die with αA = 0, as well as the distributions of the
contact normal stress, coincides with the numerical
solutions of the problem for the initial plastic flow of
the half-space with the horizontal boundary AB [1–4].
The difference of the numerical results is within the
accuracy of calculations. With an increase in the con-
tact angle αA , the fan angle ψ of the slipline field
decreases and approaches zero for  ≈ 0.835.

The normal pressure on the die boundary is equal to

the modulus of the principal stress |σ3| =  – σ. Inte-

grating the normal pressure distribution on the contact
boundary OA with the use of the relation r = Rsinα, we
determine the vertical load on the die as

(21)

The average pressures that are shared by the plastic
impression area and by the spherical contact area are
the dimensionless Meyer and Brinell hardness num-
bers, which are defined by the relations

(22)

The average plastic strain εp necessary for estimation of
the yield stress of the hardened material is determined
by the specific work in the plastic region [5]

(23)

where Vp is the plastic region volume for the indenta-
tion depth h.

The dimensionless values of the plastic-impression
radius, indentation depth, average pressures, and aver-
age plastic strain are given in the table for various die-
contact angles up to αA = 0.7854.

α A*

1
2
---

Q πR2 1
2
--- α A σ 2αsin αd

0

α A

∫–sin
2

 
 
 

.=

qM
Q

πR2 α Asin
2

-------------------------- qB, Q

2πR2 1 α Acos–( )
------------------------------------------.= =

εp
1

V p

------ Q h,d

0

h

∫=
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1

10 2

Vr

O, A

2

Vz

ODCB

A

A

Fig. 2. Velocity hodograph of the plastic region in the
{Vr, Vz} plane for αA = 0.5236.

0.1

0
0.3 0.5 0.7

0.2

0.085

A
B

Fig. 3. Boundaries of the plastic region for 15 steps of the
die loading up to αA = 0.5236.

0.5

0.40 0.2

1.0

1.5

2.0

Fig. 4. Load on the smooth spherical die versus the plastic-
impression radius for (solid line) this model and (dashed
line) model presented in [1–4]. The experimental points for
the indentation of a polished tungsten carbide ball into
work-hardened copper are taken from [6].

rA

R
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Q

σγR2
-------------

r
R
----

z
R
----



190 NEPERSHIN
The load  calculated in this model for the

indentation of the smooth spherical die as a function of
the plastic-impression radius is shown in Fig. 4 in com-
parison with both the similar dependence obtained
in [1–4] for the indentation problem with the horizontal
half-space boundary and the experimental data [6]. The
yield stress is found from the experimental dependence
σY(εp) for the low work-hardening material [6] by using

Q

σY R2
------------

Table 

αA qM qB εp

0.0000 0.0000 0.0000 0.0000 2.814 2.814 0.0000

0.0873 0.0872 0.0038 0.0025 2.742 2.736 0.0491

0.1745 0.1736 0.0152 0.0099 2.667 2.647 0.0999

0.2618 0.2588 0.0341 0.0222 2.590 2.546 0.1516

0.3491 0.3420 0.0603 0.0390 2.512 2.436 0.2037

0.4363 0.4226 0.0937 0.0601 2.432 2.318 0.2542

0.5236 0.5000 0.1340 0.0853 2.352 2.195 0.3037

0.6109 0.5736 0.1808 0.1140 2.271 2.066 0.3520

0.6981 0.6428 0.2340 0.1460 2.192 1.935 0.3984

0.7854 0.7071 0.2929 0.1807 2.112 1.803 0.4444

rA

R
-----

zA

R
-----

h
R
---
the εp values given in the table. In the range  < 0.3,

the present model results virtually coincide with exper-
imental data and numerical results [1–4]. As the radius
of the plastic impression increases, the deviation of the
experimental data from this theory increases, which can
be attributed to the contact friction effect ignored in the
present model. The dependence obtained in [1–4] also
lies above the present theoretical curve and is surpris-
ingly close to the experimental data. The horizontal
boundary of the half-space that was taken in the model
[1–4], as well as the contact friction effect, is responsi-
ble for the increase in the die pressure compared with
the present model.
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Mechanical Properties of Interface Layers 
in Polymer Matrix Composites
for Large Elastic Deformations
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Received October 24, 2002
The mechanical properties of polymer matrix com-
posites are determined not only by the characteristics of
a matrix, properties of a filler, and filler concentration
in a material but also by the features of physicochemi-
cal interaction between different components in bound-
ary (interface) layers. Owing to the characteristics of
interaction between polymer macromolecules and the
surface of the filler, interface layers have, as a rule, a
complicated microstructure.

The micromechanical properties of interface layers
significantly affect the formation of the macromechan-
ical properties of a composite. Therefore, the evaluation
of these micromechanical properties is of scientific
interest.

In the approximation of small deformations [1], we
described the micromechanical properties of an inter-
face layer formed by macromolecules each having one
end rigidly fixed (chemically bonded) to the filler sur-
face. The results of numerical model experiments
showed that the presence of a surface impermeable for
macromolecule segments, as well as the steric interac-
tion between macromolecules, which depends on their
concentration on the surface, is responsible for chang-
ing the macromolecule conformations in the interface
layer. It was assumed that this change is equivalent to
the action of a hypothetical force depending on the
properties of the surface and the physicochemical
nature of the macromolecules. As the initial conforma-
tion of the macromolecules in this approximation, we
took the conformation of the macromolecules far from
the filler surface. In this approach, it is possible to apply
the classical stress–elongation dependence, which is
used in the theory of superelasticity, to describe the
mechanical properties of the interface layer. In the frame-
work of the same approach, the dependence of the Pois-
son’s ratios of such an interface layer on the parameters
characterizing the surface effect was analyzed in [2].

Institute of Applied Mechanics, 
Russian Academy of Sciences, 
Leninskiœ pr. 32a, Moscow, 117312 Russia
1028-3358/03/4804- $24.00 © 0191
In this study, the mechanical properties of an inter-
face layer in a polymer matrix composite for large
(finite) elastic deformations are described in detail.

According to [1, 2], the stress tensor σls in the inter-
face layer is written in the form

(1)

where C =  is the analogue of the Mooney con-

stant appearing in phenomenological superelasticity
theory (T is the absolute temperature in energy units, χ
is the number of the macromolecules attached to the

surface per unit area,  is the rms distance between
the ends of a macromolecule far from the surface, N is
the number of the segments in the macromolecule, a is
the linear size of a segment, and h is the thickness of the

interface layer); λln =  (xn and  are the coordi-

nates of a point of the interface layer before and after
deformation, respectively); α(n) is the relative change in
the point coordinates in the interface layer, which is
associated with the surface effect; p is the uniform pres-

sure; δls is the Kronecker delta;  is the true stress
caused by the fictitious surface forces; summation over
repeated indices is implied; and an index standing in
parentheses excludes summation.

Relation (1) is valid for an incompressible body
under the condition

(2)
In the coordinate system where the X1 axis is per-

pendicular to the surface, the stress tensor  has the
components

(3)

 if i ≠ k.

σls 2Cλ lnλ snα n( )
2 pδls σls

0 ,––=

TχR02

2Na2h
----------------

R02

∂xl'

∂xn

-------- xl'

σls
0

α2 α3 α1

1
2
---–

.= =

σls
0

σ11
0 2C α1

2 α2
2–( ),=

σ22
0 σ33

0 0,= =

σik
0 0,=
2003 MAIK “Nauka/Interperiodica”



 

192

        

OBRAZTSOV 

 

et al

 

.

                                                                          
Using Eq. (1), we immediately find

(4)

(5)

(6)

(7)

(8)

(9)

From Eqs. (5), (8), and (9), it follows that

σ12 = σ21, σ23 = σ32, σ13 = σ31.
For tension along the X1 axis, the following conditions
are satisfied:

λ22 = λ33 = , λik = 0, if i ≠ k;

σ22 = σ33 = 0.
Using this relationship, substituting the p values from
either (6) or (7) into Eq. (4), and taking into account
Eqs. (2) and (3), we obtain the formula

(10)

If the surface effect is absent (α = 1), the relation-
ships of the theory of superelasticity for an isotropic
body follow immediately from Eq. (10).

For tension along the X2 axis, the condition σ11 =
σ33 = 0 is valid. Therefore, substituting Eqs. (4) and (7)
into this condition and using Eq. (3), we arrive at the
relation

(11)

The incompressibility condition λ11λ22λ33 = 1 and
Eq. (11) provide the following relation between λ11
and λ22:

Next, substituting p expressed from Eq. (4) into

Eq. (6), excluding  in the resulting expression, and
taking into account the last relationship, we obtain the
formula

(12)

σ11 2Cλ1nλ1nα n( )
2 p σ11

0 ,––=

σ12 2Cλ1nλ2nα n( )
2 σ12

0 ,–=

σ22 2Cλ2nλ2nα n( )
2 p σ22

0 ,––=

σ33 2Cλ3nλ3nα n( )
2 p– σ33

0 ,–=

σ13 2Cλ1nλ3nα n( )
2 σ13

0 ,–=

σ23 2Cλ2nλ3nσ n( )
2 σ23

0 .–=

λ11

1
2
---–

σ11 2C λ11
2 1–( )α2 1 1

λ11
-------– 

  1
α
---+ .=

λ33
2 λ11

2 α3 α3 1+– .=

λ11
2 1

2α3
--------- α3 1 1 α3–( )2

4
α3

λ22
2

-------++– .=

λ11
2

σ22 2C
λ22

2

α
-------

1
2
--- α2 1

α
---– 

  2

4
α

λ22
2

-------+–
 
 
 

=

+ C α2 1
α
---– 

  .
According to the symmetry of the problem,

(13)

For shear deformations, when λnm ≠ 0 (where n or m
is equal to unity), λ11 = λ22 = λ33 = 1, and the remaining
λik = 0, we have

(14)

where unm = (λnm+ λmn) and the antisymmetric part is

equal to zero, because the moments of forces acting on
a volume element of the body must be equal to zero.

When either λ23 ≠ 0 or λ32 ≠ 0 (at λ11 = λ22 = λ33 = 1
and the remaining λik = 0), we find

(15)

In accordance with Eqs. (10) and (12)–(15), the
stress-tensor components of the interface layer are
expressed in terms of the relative elongation and the
molecular and structural characteristics of the polymer
matrix as

It is seen that the stress-tensor components are equal
to zero at λik = δik . When the surface effect can be

σ33 2C
λ33

2

α
-------

1
2
--- α2 1

2
---– 

  2

4
α

λ33
2

-------+–
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 
 

=

+ C α2 1
α
---– 

  .

σnm 2C unm
1
α
--- unmα2+ 

  ,=

1
2
---

σ23 σ32 2C
1
α
--- λ23 λ32+( ).= =

σ11 2C λ11
2 1–( )α2 1 1
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---+ ,=

σ22 2C
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2
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2
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2
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α
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-------+–
 
 
 

=

+ C α2 1
α
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σ12 σ21 2C α21
2
--- λ12 λ21+( ) 1

2α
------- λ12 λ21+( )+ ,= =

σ13 σ31 2C α21
2
--- λ13 λ31+( ) 1

2α
------- λ13 λ31+( )+ ,= =

σ23 σ32 2C
1
α
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neglected (α(n) ≠ 1), these relations transform to those
known in the theory of superelasticity for an isotropic
body. However, if the surface effect is taken into
account (α(n) ≠ 1), the expressions obtained above differ
considerably not only quantitatively (modification
of C) but also qualitatively from the relations known in
the theory of superelasticity of isotropic materials,
because the surface-effect factor α(n) appears in combi-
nation with the λik elements. In this case, large deforma-
tions in the interface layer cannot be described by intro-
ducing an effective shear modulus into the theory of
superelasticity for isotropic materials, because it does
not represent the actual molecular mechanism of the
process.

To describe large uniaxial tensions (λ(nn) > 3), we
introduce the reduced relative elongations µ11 = λ11α,

µ22 = λ22 , and µ33 = λ33  and write the expression

for stress in the form

(16)

usual in the theory of superelasticity. To describe large
shear deformations, we introduce the following effec-
tive constants representing the surface effect:

which makes it possible to formally write the standard

α
1
2
---–

α
1
2
---–

σ nn( ) 2C µ nn( )
2 1

µ nn( )
----------– 

 =

C1 C α2 1
α
---+ 

  , C2 C
1
α
---,= =
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relationships

Thus, large elastic deformations of interface layers
in polymer matrix composites are described in terms of
the molecular and structural characteristics of the poly-
mer matrix. The mechanical characteristics of the inter-
face layer are essentially determined by the behavior of
macromolecules in the polymer matrix near the filler
surface, which affects the conformation of the macro-
molecules and packing density [3]. Therefore, a uni-
form quantitative description of the stress–strain behav-
ior of the structurally complicated (transversely isotro-
pic) medium considered above is possible in terms of
the material parameters C and αn , which are found
from independent numerical experiments.
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This paper deals with analysis and finding of regu-
larities in the development of discontinuities at differ-
ent stages of multiple fracture and passage to localized
fracture in metallic materials. The accumulation of
defects in the form of pores and microcracks in a metal-
lic material starts from the moment of its loading. From
the standpoint of the general lifetime, this stage has a
decisive significance: its duration often exceeds the
stage of crack propagation by an order of magnitude or
more. With growing deformation, the number and size
of defects gradually increase. The defects begin to
merge, which in turn leads to the formation of a main
crack and fracture of the material. As follows from [1],
these processes result in a change of the shape of the
cumulative curve for the size distribution of defects. We
now analyze these distributions in order to determine
the stage responsible for the initiation of merging
defects in a material as a result of the process of its
loading in conditions of creep and fatigue.

The analysis of processes occurring in a material
under deformation is performed with the use of a func-
tion that represents the dependence of the accumulated
number of defects NΣ (i.e., the number of defects with a
size not smaller than l) as a function of their current
size l. This dependence is described by a power law of
the form

NΣ = Al–b. (1)

Each of the curves obeying Eq. (1) is determined by
the angular coefficient b related to the lower branch of
the corresponding curve (NΣ – l). To find the tangents of
the inclination angles for a cumulative curve, each of its
segments was approximated by a straight line with the
least-squares method. We now consider a variation of
the exponent b in power relationship (1) with growing
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deformation in conditions of creep and fatigue for var-
ious materials presented in Table 1.

It is well known that the creep of metallic materials
is characterized by three stages: (I) unsteady, (II) station-
ary, and (III) accelerated. The most long-term stage (II)
of the stationary creep preferentially corresponds to a
unified fracture mechanism, namely, to the nucleation
and growth of separate pores and microcracks (Fig. 1,
curves 1–3). As is seen from Table 1, the inclination
angle for curves of damage accumulated at the station-
ary stage lies within the range 5.6 ≤ b ≤ 14.

In the process of the passage from the stationary
stage (II) of the creep to the accelerated one (III), the
reduction in the tangent b of the inclination angle of the
cumulative curves begins. As is demonstrated by
Table 1, this parameter decreases by a factor of 2–4
compared to its value at the stationary stage and lies
within the range 3 ≤ b ≤ 3.8. The decrease in the param-
eter b is associated with the appearance of larger

103
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1
5 50 500 l, µm

NΣ

~10d

2 31

Fig. 1. Cumulative curves for the distribution of the number
of wedge-shaped cracks as a function of the size of austen-
itic-steel (20Cr35Ni) samples [6] tested in creep conditions
at the deformation rate  = 10–4 min–1: (1) ε = 3.8%;
(2) 5.8%; (3) 8.3%; (4) 8.4, 9.9, 12.1%.

ε̇
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defects formed as a result of merging of smaller defects.
This leads to the displacement of the distribution curves
towards continuities of a larger size. At this stage, the for-
mation of the main crack becomes complete.

Merging of defects is enhanced at the accelerated
stage (III) of the creep. At this stage, the passage to
localized fracture occurs, which causes further reduc-
tion in the parameter b (Fig. 1, curve 4). This parameter
now varies within the range 0.55 ≤ b ≤ 2 (Table 1). In
certain cases (see Table 1), at the unsteady and acceler-
ated creep stages, values b of the inclination angles are
absent. This is explained by the fact that tests were not
carried through to the stage of localized fracture. Thus,
the value of the angular coefficient b on the curve
exhibiting the size distribution of the accumulated
number of defects is a quantitative measure character-
izing the passage from the stage of multiple to localized
fracture.

Figure 2 shows the variation of the parameter b in
the process of growth in the number and size of wedge-
shaped cracks in samples of austenitic steel with
enhancing deformation. As is seen from the plot, at the
accelerated creep stage (compared to the stationary
one), the parameter b is reduced by a factor of 9. Thus,
this parameter is probably quite admissible in use as a
prognostic criterion for estimation of material fracture.

Similar size distributions for the accumulated num-
ber of cracks, which are presented in Fig. 3, were
obtained for laboratory samples made of carbon steel
(0.2% carbon). These samples were tested in conditions

of cyclic loading and at different relative lifetimes 

(the ratio of the loading-cycle number n to the number
nf of cycles leading to the sample’s fracture) [7]. As is
shown in Fig. 3, the variation of the relative lifetime

n
n f

-----
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changes the shape of the curve connecting the total
number NΣ of microcracks to their size. At the initial
stages, a rapid accumulation of the number of defects
occurs (the upper plateau of curve 2 lies higher than the
similar segment of curve 1). Furthermore (at the rela-
tive lifetime of 0.85, curve 3), the increase in the num-
ber of microcracks virtually ceases. The increase in
their length due to merging of neighboring defects then
begins. The onset of microcrack coalescence can be
observed from the curve corresponding to the accumu-

lated number of defects. At the relative lifetime  =

0.85 and 0.97, this curve exhibits a break, and the incli-
nation angle decreases (see Fig. 3 and Table 1). The

reduction in the parameter b at  = 0.85  is consis-

tent with a decrease in the Zhurkov–Kuksenko concen-

n
n f

-----


 n

n f

----- 


6

0
2 4 14

ε, %

4

2

6 8 10 12

b II II III III

Fig. 2. Dependence of the parameter b on the degree of
deformation for austenitic steel (20Cr35Ni) [6] tested for
creep at the deformation rate  = 10–4 min–1.ε̇
Table 1.  Values of the exponent b in relationship (1) for different creep stages

Form of
testing

Material and
temperature of testing

Objects under observation and 
their sizes

Inclination angle b at different creep stages

References
stationary stage unsteady 

stage
accelerated 

stage

Creep Al, 25°C Aggregations, 0.4–0.8 µm 7.2; 8.2 3.8 [2]

Fe, 70°C Pores, 10–15 µm 5.6; 7.1; 8.3 [3]

Steel 304, 700°C Pores, 1–20  µm 6.7, 7.3; 6.1 3 [4]

Cu, 405°C Pores, 0.1–0.4  µm 12; 11.8; 13.9; 14 [5]

Austenitic steel 
(20Cr35Ni), 700°C,

 = 10–4 min–1

Wedge-shaped
microcracks, 100–600  µm

5.9; 5.8; 6.1 3.6 0.65 [6]

Austenitic steel 
(20Cr35Ni), 700°C,

 = 10–2 min–1

Wedge-shaped
microcracks, 100–600  µm

– 3.6 0.55 [6]

Fatigue Steel (0.2%C) Wedge-shaped
microcracks, 25–600 µm

6.7 3.3 2 [7]

ε̇

ε̇
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tration parameter [8]. This parameter can be estimated
according to the relationship

(2)

where l is the linear crack size and C is the average
number of cracks per unit volume. The onset of micro-
crack merging corresponds to the value of the concen-
tration criterion K = 6–2.5 [9]. As is clear from Table 2,

at the relative lifetime  = 0.85, K = 5.7, which cor-

responds to the onset of the process of microcrack
merging.

Curves of the accumulated damage (Figs. 1, 3), as a
rule, consist of several linear segments. We now ana-
lyze the connection of breaks in these curves to the
material structure and the critical crack size.

K
C 1/3–

l
-----------,=

n
n f

-----

100

1
0.01 0.1 0.5

NΣ

10d

10

2d

1 2l, mm

1

2

3
4

Fig. 3. Accumulated-damage curve for carbon steel [7]
tested at cyclic loading in the case of stress amplitude of

333 MPa up to values of relative lifetimes: (r)  = 0.17;

(h) 0.43; (n) 0.85; and (s) 0.97.

n
n f
-----

Table 2.  Values of the exponent b in relationship (1) and of
the concentration criterion K in Eq. (2) at different stages of
multiple fracture of carbon steel for the stress amplitude of
333 MPa

–b K = 

0.17 5.3 50

0.43 6.7 13.8

0.85 3.3 5.7

0.97 2.0 3.4

n
n f
----- C 1/3–

l
------------
The first break (2l = 0.1 mm) in the accumulated-
damage curves (which is shown by an arrow in Fig. 3)
in fatigue conditions corresponds to a preferential crack
length approximately equal to the size of two grains
(for the given steel, the grain size is 23 µm). As was
shown by metallographic studies performed in [10], the
propagation depth of fatigue microcracks on sample
surfaces approaches the size of one or two grains. The
second break (2l = 0.5 mm) in curves 3 and 4 for the
accumulated damage (shown by an arrow in Fig. 3) cor-
responds to the critical crack length. After this length
has been attained, the process of defect merging in steel
begins to occur. In the given case, the critical crack
length is approximately equal to the size of 10 grains.
This result is consistent with the conclusion of the
author of [11], where it was shown for different metal-
lic materials that fatigue cracks with a length shorter
than 10 grain sizes are structurally sensitive. At the
same time, longer cracks propagate in a material as in
a continuum and obey the laws of linear fracture
mechanics.

Similar results were also obtained in the course of
the analysis of cumulative curves under creep condi-
tions. In this case, the first break also corresponds to the
preferential crack length, approximately equal to the
size of one to two grains. As a result of metallographic
studies of fractured samples, it was established that
about 65% of wedge-shaped cracks have lengths equal
to the extension of one boundary, while the maximum
extension of microcracks usually does not exceed the
length of 8–11 grains [12]. In Fig. 1, an arrow indicates
the break in the distribution of the total number of
wedge-shaped cracks as a function of their length. This
break corresponds to a critical length of ~10 grain sizes
(for the given steel, d = 50 µm). In the conditions of the
high-temperature creep in metallic materials, pores but
not microcracks are preferentially formed. In this case,
not the size of a pore (e.g., its diameter) but the length
of a chain consisting of the pores should be considered
as a defect’s size. This is explained by the fact that the
stage of accelerated creep does not correspond to the
appearance of pores with a certain size but is associated
with their merging accompanied by the formation of a
crack causing fracture.

The effect of the reduction in the inclination angle bs

before a strong earthquake is also observed for cumula-
tive curves corresponding to the distribution of the
number N of seismic events as a function of the magni-
tude M proportional to the length or area of a break in
the Earth’s crust [1, 13]. In this case, the curves are
described by the Gutenberg–Richter formula [14], well
known in seismology. This formula connects the num-
ber of seismic events with their energy:

Here, N is the number of seismic events with an energy
equal to or higher than E, M is the magnitude, and Cs is

Nlog As bs Elog– Cs bsM.–= =
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a constant. The analysis of a multiple fracture, which
was carried out for metallic samples, promotes under-
standing of processes occurring in the Earth’s crust
before a strong event.

Thus, the process of accumulation of damages at
different structural levels (the size of a structural ele-
ment varied by four orders of magnitude, namely, from
0.1 to 600 µm) under different loading conditions obeys
unified regularities. The curves of the accumulated
number of defects are described by the power relation
NΣ = Al–b. Merging of pores and microcracks before a
macrocrack has been formed results in a reduction (in
the absolute value) of the exponent b entering into this
relation. This is a quantity that yields a qualitative char-
acteristic for the passage from the multiple-fracture
stage to the localized-fracture stage. The critical micro-
crack length at the stage of the formation of a main
crack attains, on the average, 10 grain sizes, whereas
the maximum number of cracks has the extension of
one to two grain sizes.
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1. Full-scale observations show that intense evapo-
ration of water in soils gives rise to the concentration of
salts, which disturb ecological equilibrium and are
responsible for the death of plants. The redistribution of
salts in soils was studied, e.g., in [1–4].

Macroscopic transport processes in soils are usually
described by using an approach based on the effective
equations. In this approach, soil is treated as a complex
thermodynamic system that satisfies the Onsager
hypothesis on linear relations between generalized
flows and generalized forces. Thus, description of
transport processes reduces to the experimental deter-
mination of the matrix of coefficients of gradients of the
water volume content, temperature, and other parame-
ters determining the soil state [4–6].

An alternative approach to investigation of the flow
of mixtures in porous media is based on the mechanics
of multiphase media and was developed primarily for
simulation of oil and gas deposits. In this approach, the
laws of conservation of mass, energy, and momentum,
as well as relations of equilibrium thermodynamics, are
used. This approach was applied to the problems of soil
mechanics, e.g., in [1–4]. A mathematical model of the
groundwater evaporation and the accumulation and
redistribution of a dissolved salt owing to the motion of
the phase-transition front was proposed in [3]. Numer-
ical experiments showed that intense evaporation can
provide concentrations higher than the solubility of salt
at local temperature, and mathematical description
becomes inapplicable.

A mathematical model of salt precipitation that
takes into account both the motion of the evaporation
front and convective transport of a salt is proposed in
this work. The mechanism of salt precipitation is illus-
trated for a given flow regime of the solution. The
asymptotic solution of the problem is presented. In the
plane of the basic parameters, the regions of existing
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solutions that describe impurity accumulation in the
solution and salt precipitation are presented. The pre-
cipitated salt mass is determined as a function of the fil-
tration rate and ground-surface temperature.

2. Soil is treated as a porous medium saturated with
an aqueous salt solution. Let the soil surface contact
with air, where the partial pressure of a vapor is lower
than the saturation pressure at local temperature. Under
the thermodynamically equilibrium conditions, the par-
tial pressure of the vapor over the water surface is equal
to the saturation pressure. The difference between par-
tial vapor pressures and, therefore, densities induces
diffusion flow of vapor from the water surface to the
atmosphere, which gives rise to the formation of the an
evaporation front separating the regions saturated with
the salt solution and air-water mixture. We assume that
evaporation affect neither the given velocity of water
moving towards the front nor atmospheric moisture
(concentration of the water vapor) on the ground surface.

In the region of the air–vapor mixture, the following
diffusion equation and Clapeyron equation for gases
are valid:

(1)

We assume that the impurity in the region saturated
with the salt solution is redistributed due to diffusion
and convective transport:

(2)

The heat transfer equations

(3)

are valid in both the regions of (1) the solution and
(2) the air–vapor mixture. Here, T is temperature; P is
pressure; v  is the filtration rate; m is porosity; R is the

∂
∂t
-----ν divDv gradν– 0,=

Pv ρv Rv T P, ρaRaT ν,
RaPv

Rv Pa

------------.= = =

m
∂
∂t
-----c v gradc divmDcgradc–⋅+ 0.=

∂T
∂t
------ a1 2, ∆T=
003 MAIK “Nauka/Interperiodica”



        

MATHEMATICAL MODEL OF SALT PRECIPITATION 199

                                         
gas constant; ρ is density; a is the thermal diffusivity;
c is the salt concentration in the solution; and Dc and Dv

are the diffusivities for the salt in water and vapor in air,
respectively. Subscripts w, a, v , s, and c correspond to
water, air, vapor, skeleton of the porous medium, and
salt, respectively. Thus, the solution of the problem
reduces to the solution of diffusion equations (1) and
(2) for moisture and salt concentration, respectively,
together with thermal transfer equations (3).

We assume that the following conditions of local
thermodynamic equilibrium between water and vapor
are satisfied at the evaporation front separating the
regions of the solution and air–vapor mixture:

(4)

where [7]

α is the coefficient of the increase in the evaporation
temperature with an increase in the impurity concentra-
tion, and the asterisk indicates that the value is taken at
the front.

Porosity in the vapor–air region is the volume frac-
tion filled with the mixture of the gases, which is deter-
mined as

where m0 is the porosity of soil before salt precipitation
and mc is the volume fraction filled with the precipitated
salt. In this case, the mass conservation law for water on
the evaporation surface has the form

(5)

The mass conservation law for salt with allowance
for precipitation at the evaporation front reduces to the
form

(6)

For mc = 0, Eqs. (5) and (6) provide the relations on the
evaporation surface in the absence of salt precipitation.

The analysis of evaporation for temperatures up to
350 K [3] showed that heat absorption in the phase tran-
sition is negligible compared to the convective trans-

T+ T– T* Pv *
, F T* αc–( ),= = =

ν*
Ra

Rv

------
Pv *
Pa

---------,=

F x( ) 105 7226.6 1
x
--- 1

373.16
----------------– 

 –exp=

+ 8.2 373.16
x

---------------- 0.0057 373.16 x–( )–ln ,

m– m0 mc,–=

ρw

ρa

------ 1
mc

m0
------– 

  ρv *
ρa

---------– 
  Vn

vn1

m0
-------

ρw

ρa

------ + D
v

1
mc

m0
------– 

  gradν( )n2= .

c*
mc

m0
------

ρc

ρw

------– 
  Vn

c*
m0
------vn1 Dc gradc( )n1+– 0.=
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port, because the partial pressure of the vapor is small
compared to atmospheric pressure. In this case, the
conservation law at the interface takes the form

(7)

where λ is the thermal conductivity. Relations (4)–(7)
form the complete set of relations on the evaporation
surface for determining the desired functions Vn, T*, c*,

and Pv* (or ν*).

3. The mechanism of salt precipitation can be illus-
trated for the one-dimensional nonstationary evapora-
tion process, where all quantities depend only on the
distance from the ground. Let soil with temperature T0
at the initial instant be saturated with a salt solution
with the salt concentration c0 , occupy the z > 0 half-
space, and contact air with moisture νa and temperature
Ta . If the air moisture is less than the saturation mois-
ture, an evaporation front is formed, propagates
through soil, and separates the regions of the solution
and vapor–air mixture.

We analyze the basic features of the accumulation
and precipitation of the impurity by using a simple
asymptotic solution. We assume that the initial and
boundary values of the desired functions are constant,
and that the filtration rate is a given function of the form

v  = , where U0 = const. We consider a self-similar

solution of the problem in the form [V = (t)]

Solutions of Eqs. (1)–(3) can be represented in terms of
the error functions, and a solution of the problem
reduces to analysis of the set of transcendental equa-
tions at the evaporation front, which follow from
Eqs. (4)–(7).

4. The set of transcendental equations was solved
numerically for the characteristic parameters of soil
components. Calculations that were carried out for a
wide range of parameters indicate that two basic mech-
anisms are responsible for impurity accumulation. Fig-
ure 1 shows the profiles of the salt concentration for the
following initial and boundary conditions in the prob-
lem of impurity accumulation near the front: α = 20 K,
ρc = 2165 kg/m3, T0 = 288 K, Ta = 310 K, νa = 0, c0 =
0.03, and m0 = 0.3.

It is seen that the impurity concentration, as well as
the velocity of the phase-transition front, depends
strongly on the rate of solution filtration to the evapora-
tion surface. If the velocity of flow is high, the impurity
is accumulated near the soil surface. Although the ini-
tial concentration is low (it corresponds to the salt con-
centration in seawater), the impurity concentration at

λgradT( )n1 λgradT( )n2,=

U0

t
------

Ż

T T ζ( ) ν, ν ζ( ) c, c ζ( ),= = =

ζ z

2 Dct
---------------- Z t( ), 2γ Dct.= =
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the front for relatively high filtration rates can exceed
solubility at the given temperature (line U = 2.152).
This regime corresponds to salt precipitation.

In the (c0, U) plane, Fig. 2 shows the critical curves
separating regions I and II corresponding to salt accu-
mulation and salt precipitation, respectively. Estimates
of the characteristic quantities entering into Eq. (2)

show that the parameter U =  determines the

ratio of convective-to-diffusion terms. When diffusion
is much slower than the convective transport, U @ 1,
and salts are precipitated for low initial concentrations
of the solution independently of the temperature regime
of soil and, therefore, of the velocity of the evaporation
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-----------------
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ζ

Fig. 1. Distribution of the impurity concentration accumu-
lated ahead of the evaporation front for various filtration
rates to the surface at c0 = 0.03 and νa = 0.
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Fig. 3. Volume fraction filled with the precipitated salt vs.
the rate of ground-water filtration for various initial concen-
trations.
front. For slow convective transport, the determining
factors are the initial solution concentration and the
velocity of the evaporation front, which depends
strongly on the temperature of the soil surface and
atmospheric moisture.

Figure 3 shows the volume fraction filled with the
precipitated salt as a function of the dimensionless self-
similar filtration rate U for various initial concentra-
tions. Numerical experiments show that the sharp
increase in the precipitated salt amount per unit volume
is attributed to the fact that an increase in the solution
filtration rate not only increases the convective trans-
port of the impurity to the front but also suppresses the
motion of the evaporation front with respect to immo-
bile soil. In the limit case, with an increase in the solu-
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Fig. 2. Critical curves dividing the plane into regions I and
II corresponding to accumulation of salts near the front and
salt precipitation, respectively.
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Fig. 4. Volume fraction filled with the precipitated salt vs.
the temperature of the soil surface for various filtration rates
of ground water.
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tion rate, the velocity of the front vanishes, and a solu-
tion of the formulated problem does not exist, which
corresponds to the filling of the porous space with the
precipitated salt.

The above conclusions are illustrated by Fig. 4,
which shows the temperature dependence of the precip-
itated salt amount for different values of the dimension-
less parameter U. If the convective salt transport domi-
nates (U > 1), as the surface temperature decreases, the
velocity of the evaporation front decreases, and the pre-
cipitated salt amount mc increases due to the convective
salt transport to the front. If the salt diffusion prevails
(U < 1), mc increases with ground-surface temperature
and the velocity of the evaporation front.
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