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It is well known that the spatial charge of an electron
beam that ensures a sufficiently high current and that is
injected into an equipotential cavity forms a potential
barrier within the cavity that prevents further electron
injection. In this case, some of the electrons are
reflected by the potential barrier backward to the point
of their injection, and the turning point, which can be
characterized by the infinite electron concentration in
the hydrodynamic limit, is called a virtual cathode
(VC). In recent years, electron devices with a VC have
been commonly used in vacuum high-current electron-
ics. On this basis, high-power microwave and x-ray
sources, collective ion accelerators, high-current
switches, and high-vacuum meters were proposed. The
current status of the physics and technology of VC-
based devices was reviewed in [1, 2].

At present, the general dynamics of formation and
existence of VCs in electron beams cannot be rigor-
ously analyzed, because the available methods are inap-
plicable in the case of a multivalued velocity. There-
fore, computer simulation is the basic method for the
theoretical analysis of the above systems. Unsteady
VC-formation dynamics was apparently first consid-
ered in [3]. Nevertheless, the initial stage of VC forma-
tion in vacuum can be self-consistently analyzed for
simple cases, such as a half-space [4–6], a plane equi-
potential cavity [6], and a cylindrical cavity with radial
injection [7]. It is of practical interest to consider the
features of VC-formation dynamics for the equipoten-
tial cavity filled with a certain medium. For example,
VC-formation dynamics in a dielectric medium in the
absence of both permittivity dispersion and electron
scattering was analytically analyzed in [8].

In this paper, we present the analytical self-consis-
tent solution to the problem of the initial stage of VC
formation in the case of the injection of the beam into a
half-space filled with a model medium, where electrons
are scattered. The averaged action of this scattering is
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described by the friction force that is proportional to the
electron velocity. This friction acting on electrons in the
medium is similar to the viscous friction that acts dur-
ing the motion of bodies in a liquid and that can arise
under certain conditions, for example, when free elec-
trons move in semiconductors [9, 10] and gases [11].

Thus, we consider the injection of a monoenergetic
electron beam into the half-space that is bounded by the
metallic plane z = 0 and that is filled with a medium in
which electrons are subjected to friction proportional to
their velocity. In this case, it is not important whether
the electrons are injected through the thin metallic elec-
trode that is transparent to them (in this case, a positive
image charge is induced on the electrode) or whether
the electrons penetrate into the half-space by means of
being knocked out from the surface, e.g., by an intense
photon flux (in this case, an uncompensated charge of
positive ions is left on the photoemitter surface). In both
cases, the positive charge is exactly equal to the total
charge of the electron beam at any time.

Let electrons be emitted from the surface z = 0 with
a beam density N(t) cm–2 s–1 at t = 0. Until the time t, the
electron space charge density is equal to

, (1)

and the positive surface charge is equal to |Q|. There-
fore, in accordance with [3, 5], within the injection-
time interval from τ to τ + dτ the electrons are subjected
to an electric field E(τ) whose magnitude is determined
by the charge of electrons emitted previously. There-
fore,

(2)

Relation (2) is valid only up to the time when a certain
electron layer outruns a layer injected previously.
Below, we derive the exact expression for this time. For
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Fig. 1. Electron trajectories in the (z, t) plane for k = (a) 0, (b) 1, and (c) 3.
a rectangular pulse with a density N(t) = N0Θ(t), where
Θ(t) is the Heaviside step function, we find

(3)

Then, the equation of motion for electrons in terms of
Lagrangian variables (t, τ) is written in the form

(4)

with the initial conditions

(5)

Moving on to the dimensionless variables in terms

of the time unit τ' = , the length unit v 0τ', the

E τ( ) 4πeN0τ .=

ż̇ t τ,( ) = 
e
m
----E τ( )– kż t τ,( )–  = 

4πe2N0

m
------------------τ– kż t τ,( )–

z τ τ,( ) 0, ż τ τ,( ) v 0.= =

mv 0

4πe2N0

------------------
velocity unit v 0 , the electron-density unit N0 , the elec-

tric-field unit , the potential unit , etc.

(below, primes are omitted), we transform Eqs. (4) and
(5) into the form

(6)

The solution of problem (6) is easily obtained in the
form

(7)

mv 0

eτ'
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mv 0
2
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k
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(8)

Below, the braces on the right-hand sides of formu-
las enclose the corresponding expressions for vacuum
conditions from [6]. Moreover, it is also easy to verify
that the expressions in braces are obtained in the limit

.

Figure 1 shows calculated electron trajectories in the
(z, t) plane for various parameters k. These trajectories
clarify the role of friction: the larger the parameter k,
the earlier and closer to the injection plane the VC is
formed.

The turning time tr for different electron layers (v  = 0)
is determined from the condition

(9)

where the time tp of the return of electrons to the plane
can be determined from the equation z(tp, τ) = 0 (see
Eq. (8)). This equation has two roots:

(10)

where W0(x) is the basic real branch of the Lambert
function [12] and the first and second roots correspond
to electron injection and to the return of electrons to the
z = 0 plane, respectively.

We now find the time when the velocity uniqueness
in the electron flow is violated, i.e., the time when
equality (2) becomes invalid. In the uniqueness region,
we have

(11)

This condition is fulfilled when
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In the first inequality of set (12), W–1(x) denotes the
other real branch of the Lambert function, which takes
values smaller than –1.

Relationships (9), (10), and (12) determine the elec-
tron-beam states whose regions in the (t, τ) plane are
shown in Fig. 2. The region of the forward electron
motion is bounded by straight line 1 (injection line) and
curve 2 (line of the stopping and reflection of elec-
trons), whereas the region of the backward electron
motion is bounded by curves 2 and 3 (the latter is the
line of electron incidence on the plane). The dark region
is the multivalent-velocity (multiflow) region, where
basic expression (2) for the electric field is violated and
our model is invalid. However, the boundaries of the
multiflow region and the dynamics in the uniqueness
region remain valid even after the formation of the VC
and multiflow regime.

We now determine the duration tVC of the VC-for-
mation process as the minimum of function tr(τ) (9).
Minimization yields

(13)

The VC-formation time as a function of the parameter k
is shown in Fig. 3.

In summary, the self-consistent analytical model for
the initial stage of the VC-formation process in a
medium, where electrons move with friction propor-
tional to their velocity, has been developed and ana-
lyzed. We should also note that the Lambert function

tVC = k k
2
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Fig. 2. Regions of the electron-beam states in the (t, τ) plane
for k = 1.
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used above is employed in many fields of mathematics
and physics. However, its properties are not described
in the Russian scientific literature devoted to special
functions. A comprehensive review of the properties
and usage of the Lambert function can be found in [12].

ACKNOWLEDGMENTS

I am deeply grateful to Prof. G.H. Connet (Zurich,
Switzerland), who kindly placed paper [12] at my dis-

1

10 2 3 4 5

2

3

4

k

tVC

Fig. 3. Virtual-cathode formation time tVC vs. the param-
eter k.
posal, and to Prof. A.A. Rukhadze (Moscow, Russia)
for consultations on the problems of VC dynamics.

REFERENCES

1. A. E. Dubinov and V. D. Selemir, Radiotekh. Élektron.
(Moscow) 47 (6), 645 (2002).

2. A. E. Dubinov, I. Yu. Kornilova, and V. D. Selemir, Usp.
Fiz. Nauk 172 (11), 1225 (2002).

3. A. M. Ignatov and A. A. Rukhadze, Kratk. Soobshch.
Fiz., No. 11, 13 (1977).

4. J. W. Poukey and N. Rostoker, IEEE Trans. Plasma Sci.
13 (10), 897 (1971).

5. N. D. Naumov, Dokl. Akad. Nauk 359 (3), 323 (1998)
[Dokl. Phys. 43, 154 (1998)].

6. A. E. Dubinov, Fiz. Plazmy 26 (5), 439 (2000) [Plasma
Phys. Rep. 26, 409 (2000)].

7. N. D. Naumov, Fiz. Plazmy 25 (2), 181 (1999) [Plasma
Phys. Rep. 25, 160 (1999)].

8. A. E. Dubinov and I. Yu. Kornilova, Izv. Vyssh. Uchebn.
Zaved., Fiz., No. 6, 71 (2001).

9. C. K. Birdsall and W. B. Bridges, Electron Dynamics of
Diode Regions (Academic, New York, 1966).

10. P. V. Akimov and H. Schamel, J. Appl. Phys. 92 (3), 1690
(2002).

11. R. W. Schmieder, J. Appl. Phys. 50 (2), 712 (1979).
12. R. M. Corless, G. H. Gonnet, D. E. J. Hare, et al., Adv.

Comput. Mat. 5, 329 (1996).

Translated by G. Merzon
DOKLADY PHYSICS      Vol. 49      No. 12      2004



  

Doklady Physics, Vol. 49, No. 12, 2004, pp. 701–705. Translated from Doklady Akademii Nauk, Vol. 399, No. 4, 2004, pp. 472–476.
Original Russian Text Copyright © 2004 by Ivanov.

                     

PHYSICS
Dynamics of Formation 
of the Pulsed Electrical Breakdown 
of Highly Overvoltaged Gas Gaps 

in the Subnanosecond Range
S. N. Ivanov

Presented by Academician G.A. Mesyats March 24, 2004

Received May 24, 2004
The mechanisms of the initiation of pulsed electrical
breakdown of gas gaps in the subnanosecond range are
of great interest for gas-discharge physics. Recently
developed voltage-pulse generators make it possible to
form high-voltage pulses with 200-ps-wide fronts and
to apply voltages much higher than the static-break-
down voltage to a gas gap. Under these conditions, field
emission from a cathode with the subsequent explosion
of microinhomogeneities on its surface begins to make
an increasing contribution to the initiation of break-

down [1]. Moreover, for high ratios  of the electric

field to pressure at the stage of breakdown delay and the
initial stage of commutation, the energy gained by
some free electrons per unit path can be higher than the
energy lost in inelastic collisions. This regime is called
the regime of the continuous acceleration of electrons,
and these electrons are named fast or runaway electrons
[1]. Fast electrons intensely ionize the gas medium in
the interelectrode gap, and the breakdown formation
time can decrease sharply in comparison to the classical
streamer mechanism [2]. When fast electrons are decel-
erated on an anode, x rays are emitted [3–6] and initiate
secondary electrons and new avalanches. Since these
processes are short-term and overlap in time, it is very
difficult to analyze the dynamics of the initiation of
subnanosecond gas breakdown. It is also worth noting
that the regime of the continuous acceleration of elec-
trons was analyzed primarily theoretically, because the
corresponding experiments are complicated. The exist-
ence of fast electrons has been experimentally proved
in only a few works [3–6]. Experimental data related to
the effect of continuously accelerated electrons on the
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initiation of a subnanosecond gas discharge are virtu-
ally not available.

This work is devoted to an attempt to study the
dynamics of the initiation and development of the
breakdown of highly overvoltaged gas gaps at the ini-
tial stage (for time intervals shorter than 1 ns).

EXPERIMENTS

The experiments were carried out on a setup based
on a small-voltage-pulse generator RADAN-303 [7],
which provides for the synchronous detection of sub-
nanosecond high-voltage pulses applied to a gas gap
with electron–optical chronography of luminescence
accompanying prebreakdown and breakdown pro-
cesses in the gap. High-rate electron–optical chronog-
raphy [8] is the only available method that allows for
the determination of the domain of the origin of break-
down inside the discharge gap. The arrangement of the
setup and experimental technology were described in
detail in [9, 10].

Technical nitrogen was the gas investigated in all
experiments. A high-voltage pulse (Fig. 1a) with half-
height durations 0.5–3 ns, controlled amplitudes 70–
150 kV, and voltage-increase rates 7 × 1013–6 × 1014 V/s
at the front was supplied to the gas-discharge gap. The
electrodes were made of copper. Measurements were
carried out only after the training of the electrode sur-
faces with several hundreds of high-voltage pulses.

The experiments showed that there are two mecha-
nisms of the development of gas breakdown at the ini-
tial stage.

1. In the first run of experiments, voltage pulses with
an amplitude of 70 kV, front 0.8–1 ns at levels 0.1–0.9,
and an FWHM of about 2 ns were supplied to a gas gap
(4.5 atm). In this case, the increasing voltage rate at the
pulse front is equal to 7 × 1013 V/s. Figure 1b shows the
configuration of discharge-gap electrodes and the elec-
tric field distribution in the gas gap. The electric field
distribution is calculated by the SAM interactive code
004 MAIK “Nauka/Interperiodica”
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for calculating electron guns [11]. The radius of the
cathode edge was taken to be 0.2 mm. The calculated
value of the normal component of the electric field on
the flat of the most projected part of the cathode is equal
to E1 = 285 kV/cm and E2 = 600 kV/cm near the cath-
ode edge for this run of experiments.

Figures 2a and 2b show typical streak photographs
of luminescence accompanying breakdown. They are
given in time development in the direction parallel to
the electrode plane. It is seen that the process of filling
the gap with luminescence occurs in three phases. In
the first phase, relatively soft luminescence arises in the
gas volume, begins to propagate towards the electrodes,
and reaches their surfaces in 200–400 ps. In the second
phase, the gap is spanned by a bright bridge, which is

9.6
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Fig. 1. (a) High-voltage pulse and (b) configuration of the
electrodes and equipotential contours of the electric field in
the gas gap along the Z axis of the symmetry of the cathode–
anode system.
most pronounced in Fig. 2a. The lifetime of the bright
bridge is equal to 100–200 ps. In the third phase, two
processes, called phases 3a and 3b, are simultaneously
developed. Luminescence begins to propagate from the
anode surface (section 3a of time development) and
reaches the cathode in 500 ps. Simultaneously with
phase 3a, brighter luminescence arises on the surfaces
of the electrodes and reaches the center of the gap in
800–900 ps (phase 3b). This luminescence is called
secondary luminescence.

It is worth noting that the luminescence accompany-
ing the first phase of breakdown formation can arise
either at a certain point of the gas gap (Fig. 2a) or in a
large part of the gas-gap volume (Fig. 2b). In particular,
in the photograph shown in Fig. 2a it is seen that initial
luminescence arose at point A, which was spaced from
the cathode by a distance that is 30–35% of the total
length of the interelectrode gap.

Secondary bright luminescence on the electrodes of
a gas diode arises on the anode simultaneously or with
a 100–150-ps delay with respect to the appearance of
luminescence on the cathode. However, in some photo-
graphs (several percent of the total number), it is seen
that secondary luminescence can arise first only on one
of the electrodes (Figs. 2c, 2d) and then on the second
electrode (with a delay of several hundreds of picosec-
onds). In this case, the propagation rate of intense lumi-
nescence in the gas gap from the electrode where it
arose with a delay is higher by a factor of 2–2.5. In one
photograph, secondary intense luminescence propa-
gates only from the cathode (Fig. 2e). In Figs. 2c–2e,
the first phase of breakdown formation is not observed,
and the total breakdown formation time decreases by
about 400 ps.

The experiments were repeated for pressures of 4–
10 atm. Voltage pulses that were supplied to the gas
diode had fronts with 0.5–1-ns widths at levels 0.1–0.9
and were characterized by a maximum voltage-increase
rate at the fronts of up to 2 × 1014 V/s. The electric field
on the most projected part of the cathode varied in the
range E1 = 285–600 kV/cm and, near the cathode edge,
E2 = 0.6–1.1 MV/cm. Under these conditions, the total
breakdown formation time decreased to 400–500 ps
and the velocity of filling the gap with secondary lumi-
nescence increased to (7–8) × 108 cm/s, but the dynam-
ics of the developing breakdown did not qualitatively
change.

2. Mechanisms of the initiation of gas breakdown at
pressures of several tens of atmospheres are of special
interest. As was mentioned in [12], short fronts of gen-
erated high-voltage pulses have been obtained on high-
pressure gas commutators.

Experiments were carried out in an experimental
chamber at nitrogen pressures of 30–40 atm. A volt-
age pulse with a 300–400-ps-wide front and a FWHM
of 1–2 ns was supplied to the discharge gap. The volt-
age-increase rate at the front was equal to (4–5) ×
DOKLADY PHYSICS      Vol. 49      No. 12      2004
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1014 V/s. The calculated value of the normal compo-
nent of the electric field on the cathode plane varied
within the range E1 = 0.9–1.4 MV/cm and E2 =
1.7−2.4 MV/cm near the cathode edge. Figure 2f shows
streak photographs of luminescence accompanying gas
breakdown. The development of filling the gap with
luminescence was different in this case. A relatively
soft luminescence that arose at the initial stage of
breakdown formation in preceding experimental runs
was not observed. Instead, bright luminescence quickly
filled the entire gap (in a time < 100 ps). The velocity of
filling of the gap with luminescence exceeds 1.4 ×
109 cm/s. In this case, it is impossible to observe in
detail the very beginning stage (first 100 ps) of break-
down formation in photographs, because its duration is
commensurate with the time resolution of the elec-
tron–optical camera AGAT SF3M used in the experi-
ments.

RESULTS AND DISCUSSION

First-Type Formation of Breakdown 

Initial luminescence (phase 1) arises most likely due
to the ionization of a gas under the pressure of an elec-
tron avalanche propagating in it. The avalanche can be
generated by both free electrons, which are always
present in the gas, and electrons emitted from the cath-
ode surface. Even 200–300 ps after the application of
the voltage pulse to the gas gap, the electric field near
the cathode edge exceeds 200 kV/cm. The surface even
of the trained cathode includes a sufficient number of
microbulges with a field gain of about 40–50 [13] that
are field-emission centers. Several electron avalanches
initiating breakdown can arise simultaneously. This
assumption is supported by the fact that it is often
impossible to determine a single point in the gas gap
from which breakdown starts. Several such points can
exist simultaneously. As a result, the superposition of
several avalanches and the smearing of the initial sec-
tion of the time development of breakdown are
observed in several photographs (Fig. 2b).

An electron avalanche disturbs the electric field in
the gap, which leads to the production of secondary
electrons due to gas ionization in enhanced-field
domains. Plasma structures, or cathode and anode
streamers, begin to propagate towards the cathode and
anode, respectively. The velocities of the anode and
cathode streamers are equal to 5.8 × 108 and 3.1 ×
108 cm/s, respectively (all calculations in this section
were performed for Fig. 3a). When the anode and cath-
ode streamers reach the electrode surfaces, a bright
bridge or spark channel arises between them (phase 2).
The rate of propagation of the spark channel lies in the
range (2–4) × 109 cm/s. The formation of the spark
channel induces a new ionization wave that propagates
from the anode to the cathode (phase 3a) with a veloc-
ity of 7 × 108 cm/s. Intense secondary luminescence
DOKLADY PHYSICS      Vol. 49      No. 12      2004
(phase 3b) arises most likely due to the explosions of
microinhomogeneities on the electrode surface. This
assumption is corroborated by the observation, in some
photographs, of bright luminescence that begins on
only one electrode (Figs. 2c–2e); i.e., the process is ran-
dom. Metal vapors produced in the explosions actively
ionize the gas medium. As a result, the brightness of the
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Fig. 2. Streak photographs of luminescence accompanying
breakdown of gas gaps with a width of (a−e) 3.55 and
(f) 1.42 mm at a pressure of (a–e) 4.5 and (f) 40 atm.
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luminescence accompanying breakdown increases
sharply. This luminescence propagates to the gap center
with a rate of about 2 × 108 cm/s. In our experiment, the
end of phase 3b corresponds to a current of ~1.4 kA or
higher in the gas gap.

The first phase of breakdown is not observed in
Figs. 2c–2e. One can assume that breakdown is initi-
ated in this case due primarily to field emission from
the cathode surface and the explosion of microinhomo-
geneities on the electrode surface, whereas the phase of
formation of a single electron avalanche (phase 1) is
absent.

Thus, we can conclude that the pulsed electrical
breakdown observed in the first experimental runs was
initiated by two mechanisms: ionization of the gas by
electron avalanches and the explosive emission of elec-
trons. Explosive emission processes sometimes domi-
nate.

Second-Type Formation of Breakdown 

The second type of the development of breakdown
can possibly be attributed to the appearance of a large
number of fast electrons in the discharge gap. Fast elec-
trons and corresponding bremsstrahlung ionize the gas
faster and more efficiently than recombination radia-
tion or stepwise ionization. Therefore, the breakdown
formation time can decrease abruptly. Owing to a high
penetrability of fast electrons and bremsstrahlung, the
gas far from the primary centers of ionization is also
ionized. The discharge thereby loses its compact form
and becomes diffuse or multichannel [14]. The criterion
of the transition from the streamer mechanism of gas
discharge to the continuous acceleration of electrons

was formulated in [1] as  = 3.88 × 103 , where Ec is

the critical field measured in V/(cm Torr), Z is the
atomic number of the gas, and I is the mean energy of
inelastic losses measured in electron volts. For nitro-

gen, Z = 14, I = 75–80 eV, and  = 590 V/(cm Torr).

The critical field Ec for nitrogen is equal to 17.3 MV/cm
at 40 atm. In our experiment, the electric field near the

cathode edge was equal to 1.7–2.4 MV/cm; i.e.,  =

7–10. Therefore, fast electrons must absent. However,
streak photographs show that the development of
breakdown is different from that observed in the first

run of experiments. Moreover,  = 3 for the first run

of experiments; i.e., the appearance of fast electrons
was more probable. An increase in the rate of break-
down formation to 1.4 × 109 cm/s or higher, which was
observed experimentally, can be explained as follows.
When a plasma cloud, which is formed in explosive

Ec

p
----- Z

I
---

Ec

p
-----

Ec

E
-----

Ec

E
-----
emission processes on the cathode and has a high con-
ductivity, moves from the cathode to the anode, the
electric field is redistributed in the gap. An electric field
whose strength is higher than the critical value can
appear in a certain domain of the gas gap for a very
short time (apparently no more than several tens of
picoseconds). This field is responsible for the produc-
tion of fast electrons and the reduction of the break-
down formation time. Second-type breakdown was
observed only when the front of a high-voltage pulse
applied to the gas gap was narrower than 400 ps.

CONCLUSIONS

If the rate of increasing pulsed voltage applied to the
discharge gap is lower than 2 × 1014 V/s and the electric
field near the cathode edge lies in the range 0.6–
1.1 MV/cm, the pulsed electrical breakdown observed
in the experiments was initiated by two mechanisms
simultaneously: ionization of the gas by electron ava-
lanches and due to the explosive emission of electrons.
Explosive emission processes sometimes dominate.
When the rate of increasing voltage applied to the dis-
charge gap is higher than 4 × 1014 V/s and the electric
field lies in the range 1.7–2.4 MV/cm, the mechanism
of initiating subnanosecond gas breakdown changes,
and the rate of filling of the gap with luminescence
increases sharply. In this case, the propagation of the
discharge towards the anode is likely determined by
runaway electrons. The indicated processes are of inter-
est for engineers developing generators of subnanosec-
ond voltage pulses. Involving fast electrons under opti-
mum conditions can significantly increase the rate of
breakdown formation, which will enable one to develop
new types of superfast high-pressure gas commutators.

ACKNOWLEDGMENTS

I am grateful to Corresponding Member of the RAS
V.G. Shpak, S.A. Shunaœlov, and Corresponding Mem-
ber of the RAS M.I. Yalandin for assistance in the cre-
ation of the experimental setup and useful advice.

REFERENCES
1. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed

Breakdown in Gas (Nauka, Moscow, 1991; Ural Divi-
sion of the RAS, Yekaterinburg, 1998).

2. H. Raether, Electron Avalanches and Breakdown in
Gases (Butterworths, London, 1964; Mir, Moscow,
1968].

3. L. V. Tarasova, L. N. Khudyakova, T. V. Loœko, et al.,
Zh. Tekh. Fiz. 44, 564 (1974) [Sov. Phys. Tech. Phys. 44,
351 (1974)].

4. R. C. Noggle, E. P. Kriger, and J. R. Wayland, J. Appl.
Phys. 39, 4746 (1968).

5. Yu. L. Stankevich and N. S. Kalinin, Dokl. Akad. Nauk
SSSR 177 (1), 72 (1967) [Sov. Phys. Dokl. 12, 1042
(1967)].
DOKLADY PHYSICS      Vol. 49      No. 12      2004



DYNAMICS OF FORMATION OF THE PULSED ELECTRICAL BREAKDOWN 705
6. V. V. Kremnev and Yu. A. Kurbatov, Zh. Tekh. Fiz. 42,
795 (1972) [Sov. Phys. Tech. Phys. 42, 626 (1972)].

7. V. G. Shpak, S. A. Shunaœlov, M. I. Yalandin, et al., Prib.
Tekh. Eksp., No. 1, 149 (1993).

8. M. M. Butslov, B. M. Stepanov, and S. D. Fanchenko,
Electrical-to-Optical Converters and Their Application
in Scientific Research (Nauka, Moscow, 1978) [in Rus-
sian].

9. S. N. Ivanov, V. G. Shpak, S. A. Shunaœlov, et al., Prib.
Tekh. Eksp., No. 5, 51 (2000).

10. S. N. Ivanov, V. G. Shpak, S. A. Shunailov, et al., in Pro-
ceedings of the 13th International Symposium on Gas
Discharges and Their Applications, Glasgow, 2000,
pp. 497–500.
DOKLADY PHYSICS      Vol. 49      No. 12      2004
11. M. A. Tiunov, B. M. Fomel’, and V. P. Yakovlev, Preprint
No. 89, IYaF SO AN SSSR (Institute of Nuclear Physics,
Siberian Division, Academy of Sciences of the USSR,
Novosibirsk, 1989).

12. G. A. Mesyats, Ectons. Part 3. Ectons in Electrophysical
Devices (UIF Nauka, Yekaterinburg, 1994) [in Russian].

13. M. I. Elinson and G. F. Vasil’ev, Field Emission (Fizmat-
giz, Moscow, 1958) [in Russian].

14. Yu. L. Stankevich, Zh. Tekh. Fiz. 40, 1476 (1970) [Sov.
Phys. Tech. Phys. 40, 1138 (1970)].

Translated by R. Tyapaev



  

Doklady Physics, Vol. 49, No. 12, 2004, pp. 706–709. Translated from Doklady Akademii Nauk, Vol. 399, No. 4, 2004, pp. 477–480.
Original Russian Text Copyright © 2004 by Landa.

                                                                                                       

PHYSICS
Mechanism of Stochastic Resonance
P. S. Landa

Presented by Academician A.M. Dykhne April 19, 2004

Received April 20, 2004
Stochastic resonance in an overdamped oscillator is
considered theoretically. It has been shown that a seem-
ing resonance is actually caused by a noise-induced
change in the effective stiffness and damping factor
with respect to a signal. For a certain noise intensity, the
effective stiffness is minimal, which leads to a non-
monotonic variation of the output-signal amplitude as a
function of noise intensity. It is substantial that the posi-
tion of the minimum of the effective stiffness and its
value depend strongly on the signal frequency. The
results are compared with similar processes for vibra-
tional resonance. Considerable differences between
these phenomena are indicated.

For the last 25 years, numerous phenomena of dif-
ferent origins but that are referred to as resonances have
been explored in many works. Any resonance-like non-
monotonic dependence of a variable in the system
under consideration on the intensity of an external
action or on another variable was treated as resonance.
In most cases, this resonance is not similar to the clas-
sical resonance that arises when some frequencies of
the system coincide with each other or are divisible.
Nevertheless, these phenomena are frequently observed
and are interesting both theoretically and practically. It
is worth noting that several authors have mentioned that
the term “stochastic resonance” is inadequate (see,
e.g., [1–4]).

At present, two types of resonances have been dis-
tinguished: stochastic resonance, where the maximum
of a certain variable is reached by varying the intensity
(spectral density) of noise [5, 6], and vibrational
resonance, where a similar effect is reached by varying
the amplitude of a high-frequency harmonic external
force [4]. Most theoretical and experimental works are
devoted to stochastic resonance. The first work on this
subject appeared in 1981 primarily in connection with
the necessity of explaining the alternation of Earth’s ice
ages, a cycle that is close to periodic (with a period of
about 100000 yr) [7, 8]. Vibrational resonance was dis-
covered much later [9]. However, since it is simpler
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than stochastic resonance, its rigorous theory has been
developed, and a new type of bifurcations, namely,
vibration-induced bifurcations, has been discovered
[10, 11].

Stochastic resonance is most often considered in
terms of an example involving the following equation
of motion of a light particle in a bistable potential field
perturbed by a weak periodic signal and noise:

(1)

where x is the displacement of the particle, Acosωt is
the weak periodic perturbation with frequency ω, f(x) =

 is the force acting on the particle, U(x) is the

symmetric double-well potential (the simplest potential

U(x) = –  +  will be considered), and ξ(t) is white

noise with intensity K; i.e., 〈ξ (t)ξ(t + τ)〉  = Kδ(τ).

According to [12], the spectrum of Eq. (1) contains
discrete components (odd harmonics of frequency ω)
and continuous components induced by noise. The ratio
of the amplitude B of the first harmonic of the signal at
the output of the system to the signal amplitude A at its
input is called the gain factor Q(K).

Numerical experiments show that the gain factor
Q(K) and phase shift ψ(K) between the output and input
signals are nonmonotonic functions of the noise inten-
sity K [4]. The gain factor Q reaches a maximum for a
certain K value, which increases with the signal fre-
quency. For a fixed frequency and amplitude of the sig-
nal, Q as a function of K is similar to the resonance
dependence of the amplitude of an oscillator on the fre-
quency of the driving force. Since K determines the
mean frequency of noise-induced jumps from one well
to the other, which are associated with random transi-
tions through the potential barrier, it was first assumed
that the maximum in the K dependence of Q is reached

when the signal period T =  is equal to double the

mean time of the first transition through the potential
barrier. This assumption implies that Q has a maximum
not only as a function of K but also as a function of ω.

ẋ f x( )+ A ωt ξ t( ),+cos=

dU x( )
dx

---------------

x2

2
----- x4

4
-----

2π
ω
------
004 MAIK “Nauka/Interperiodica”



        

MECHANISM OF STOCHASTIC RESONANCE 707

                                                                              
However, it is known that Q is a monotonically decreas-
ing function of ω [4]. Therefore, the above assumption
is obviously invalid.

The true cause of the resonance K dependence of Q
is a nonmonotonic noise-induced variation of the effec-
tive parameters of the system [4]. The possibility of the
noise-induced variation of the effective parameters of
the system has long been known (see, e.g., [13]). How-
ever, stochastic resonance was previously considered
from this point of view only in my works [4]. In order
to calculate the effective parameters, the solution of
Eq. (1) is represented in the form

(2)

where s(t) = 〈x(t)〉 , 〈n(t)〉  = 0, and this equation is
decomposed into two equations. One of these equations
describes quantities averaged over the statistical
ensemble, and the other equation, deviations from the
mean values. Further calculations are performed under
the assumption that the input-signal amplitude A is low.
Since all odd moments of noise mj = 〈nj〉 are equal to zero
in the absence of the signal s, we can set m3 = as +  in
the linear approximation, where a and b are unknown
coefficients that will be determined below. In this
approximation, the equations for s(t) and n(t) have the
form

(3)

(4)

where

(5)

is the effective stiffness of the system with respect to
the signal s(t). The parameters a1 and b1 are introduced
in addition to a and b in order to satisfy Eqs. (10). As
was expected, calculations showed that a1 = a and
b1 = b.

It is worth noting that such a separation of equations
is similar to the separation of motion into fast and slow
components that was proposed by Blekhman [14].
However, in the case under consideration, the motion is
separated into regular and random rather than into fast
and slow.

According to Eq. (3), the variable s(t) can oscillate
either near zero if 3m2 – 1 + a > 0 or near one of the
equilibrium positions s0 = ±(1 – 3m2 – a) if 3m2 – 1 +
a < 0. It can be shown that the second case is impo-
ssible.

To calculate the moments mj and to obtain a, b, a1,
and b1, we use the Fokker–Planck equation correspond-

x t( ) s t( ) n t( ),+=

bṡ

1 b1+( )ṡ ks s3+ + A ωt,cos=

ṅ 3s2 1–( )n n3 3n2 1– k–( )s b1ṡ–+ + + ξ t( ),=

k 3m2 1– a1+=
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ing to Langevin equation (4). In the linear approxima-
tion in s(t), it has the form

(6)

It is convenient to separate the solution of Eq. (6) in
the steady state into the following three components:

(7)

Since s(t) in the linear approximation is a harmonic sig-
nal of frequency ω, (t) = –ω2s(t). Therefore, substitut-
ing Eq. (7) into Eq. (6) and equating the corresponding
terms, we arrive at the following equations for these
components:

(8)

(9)

We note that w0(n) is an even function of n, whereas
w1(n) and w2(n) are odd functions of n. Therefore,

(10)

Solving Eq. (8), we obtain

(11)

where C is the normalization constant.
It is convenient to represent the solution of Eqs. (9)

in the form

(12)

where the functions w11(n), w12(n), w13(n), w21(n),

∂w
∂t
-------

=  
∂

∂n
------ n3 n– 3n2 1– k–( )s b1ṡ–+[ ] w{ } K

2
----∂2w

∂n2
---------.+

w n t,( ) w0 n( ) w1 n( )s t( ) w2 n( )ṡ t( ).+ +=

ṡ̇

K
2
----

∂w0

∂n
--------- n3 n–( )w0+ 0,=

w1
d

dn
------ n3 n–( )w2( ) K

2
----

d2w2

dn2
----------- b1

dw0

dn
---------,–+=

ω2
w2–

d
dn
------ n3 n–( )w1( )=

+
K
2
----

d2w1

dn2
----------- d

dn
------ 3n2 1– k–( )w0( ).+

m2 n
2
w0 n( ) n,d

∞–

∞

∫=

nw1 n( ) nd

∞–

∞

∫ 0, nw2 n( ) nd

∞–

∞

∫ 0,= =

a n
3
w1 n( ) n, bd

∞–

∞

∫ n3w2 n( ) n.d

∞–

∞

∫= =

w0 n( ) C
n

2

K
----- n4

2K
-------– 

  ,exp=

w1 n( ) w11 n( ) kw12 n( ) b1w13 n( ),+ +=

w2 n( ) w21 n( ) kw22 n( ) b1w23 n( ),+ +=
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Fig. 1. (a) k, (b) ωb, and (c) a vs. noise intensity K for ω = (1) 0.0001, (2) 0.01, (3) 0.05, and (4) 0.1 and (d) signal-frequency depen-
dence of (1) Km and (2) km.

0.10 0.2 0.3 0.4 0.5

ωb
w22(n), and w23(n) satisfy the equations

(13)

Equations (13) must be solved with zero boundary con-
ditions for n = ±∞. Moreover, the functions w11(n),
w12(n), w13(n), w21(n), w22(n), and w23(n) must vanish
for n = 0, because they are odd functions.

w11
d

dn
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2
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d2w21

dn2
-------------,+=

ω2w21–
d

dn
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K
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------------- d
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------ 3n2 1–( )w0 n( )( ),+

w12
d
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2
----

d2w22

dn2
-------------,+=

ω2w22–
d

dn
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dn2
-------------
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dn

-----------------,–+=

w13
d

dn
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2
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d2w23

dn2
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dw0 n( )
dn

-----------------,–+=

ω2w23–
d

dn
------ n

3
n–( )w13( ) K

2
----

d2w13

dn
2

-------------.+=
From Eqs. (10) and (12), the equations for the
unknowns a, b, k, and b1 follow in the form

(14)

where

Solving these equations and taking Eq. (5) into account,
we obtain

(15)

According to the above results, the effective stiff-
ness k and correction to the damping factor b depend
strongly on the signal frequency ω. Figure 1 shows k,
ωb, and a as functions of noise intensity K for some fre-
quencies ω. As is seen, the value K = Km is close to zero
for low ω values and increases with ω (Fig. 1d). 

Taking into account that the imaginary part of the
effective stiffness ci calculated numerically in [4] is
equal to ωb, we conclude that the dependences obtained
above qualitatively correspond to those presented
in [4], although there are quantitative differences.

J11 kJ12 b1J13+ + 0, J21 kJ22 b1J23+ + 0,= =

a I11 kI12 b1I13, b+ + I21 kI22 b1I23,+ += =

Jij nwij n( ) n, Iijd

0

∞

∫ n
3
wij n( ) n.d

∞–

∞

∫= =

k
J13J21 J23J11–
J12J23 J22J13–
-----------------------------------, b1

J11J22 J12J21–
J12J23 J22J13–
-----------------------------------,= =

a1 k 3m2 1,+–=

a I13b1 I12k I11, b+ + I23b1 I22k I21.+ += =
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Fig. 2. (a) Q and (b) ψ vs. noise intensity K for ω = (1) 0.0001, (2) 0.01, (3) 0.05, and (4) 0.1.
In the case under consideration, Km has a meaning
similar to the bifurcation amplitude of high-frequency
vibration for vibrational resonance, because the exist-
ence of this minimum is responsible for the observed
resonance-like dependence of the output signal ampli-
tude on noise intensity. However, since this minimum is
nonzero, it does not lead to the bifurcation of the
change in the number of equilibrium states. This cir-
cumstance is one of the significant differences between
stochastic resonance and vibrational resonance. The
second significant difference is that the correction to
the damping factor is absent for vibrational resonance
in the approximation under consideration, whereas this
correction is large for stochastic resonance.

With known k and b values, it is easy to calculate the
gain factor and phase by the formulas

(16)

Figure 2 shows Q and ψ as functions of K for ω =
0.0001, 0.01, 0.05, and 0.1. It is worth noting that the
resonance value of noise intensity for each ω value is
much higher than Km(ω). This is due to the correction
to the damping factor.

Q
B
A
--- 1

ω2 1 b+( )2 k
2

+
-------------------------------------,= =

ψ ω 1 b+( )
k

---------------------arctan .–=
PHYSICS      Vol. 49      No. 12      2004
REFERENCES
1. R. F. Fox, Phys. Rev. A 39, 4148 (1989).
2. M. I. Dykman et al., J. Stat. Phys. 70, 479 (1993).
3. Yu. L. Klimontovich, Usp. Fiz. Nauk 169, 39 (1999)

[Phys. Usp. 42, 37 (1999)].
4. P. S. Landa, Regular and Chaotic Oscillations (Springer,

Heidelberg, 2001).
5. L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni,

Rev. Mod. Phys. 70, 223 (1998).
6. V. S. Anishchenko, A. B. Neœman, F. Moss, et al., Usp.

Fiz. Nauk 169, 7 (1999) [Phys. Usp. 42, 7 (1999)].
7. R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453

(1981).
8. G. Nicolis and C. Nicolis, Tellus 33, 225 (1981).
9. P. Landa and P. V. E. McClintock, J. Phys. A 33, L433

(2000).
10. I. I. Blekhman and P. S. Landa, Izv. Vyssh. Uchebn.

Zaved., Prikl. Nelin. Dinamika 10, 44 (2002).
11. I. I. Blekhman and P. S. Landa, Int. J. Non-Linear Mech.

39, 421 (2004).
12. R. L. Stratonovich, Selected Problems of the Theory of

Fluctuations in Radio Engineering (Sovetskoe Radio,
Moscow, 1961) [in Russian].

13. A. A. Pervozvanskiœ, Random Processes in Nonlinear
Automation Systems (Fizmatgiz, Moscow, 1962) [in
Russian].

14. I. I. Blekhman, Vibrational Mechanics (Nauka, Moscow,
1994) [in Russian].

Translated by R. Tyapaev



  

Doklady Physics, Vol. 49, No. 12, 2004, pp. 710–714. Translated from Doklady Akademii Nauk, Vol. 399, No. 4, 2004, pp. 481–485.
Original Russian Text Copyright © 2004 by Smirnov.

                                                                             

PHYSICS
Features of the Excitation of 1F° Series of the Ytterbium Atom 
by Slow Electrons

Yu. M. Smirnov
Presented by Academician A.I. Leont’ev May 28, 2004

Received May 28, 2004
1. Only two decades ago, ytterbium was considered
to be an uninteresting element “about which almost
nothing can be told” [1]. Since that time, the situation
has changed, and ytterbium should undoubtedly be
referred to as an important element of modern quantum
electronics.

Coherent optical radiation was generated via transi-
tions in both the ytterbium atom and the single-charged
ytterbium ion [2, 3]. More recently, high-temperature
superconductivity was obtained in an YbBa2Cu3Ox thin
film applied by molecular beam epitaxy [4]. In addi-
tion, a very high content of ytterbium (and other rare-
earth elements) was found in the atmospheres of rap-
idly oscillating stars with anomalous chemical compo-
sitions (roAp stars), which have recently been actively
investigated [5, 6]. Thus, during the last two decades,
ytterbium, which was once considered to be an uninter-
esting element, has instead become a very interesting
element.

At the same time, investigations of the properties of
ytterbium in the gas phase (primarily the determination
of its atomic constants) are lagging far behind advances
in its application. The radiation constants of the ytter-
bium atom are more well-determined: the probabilities
of transitions for 52 spectral lines of YbI were experi-
mentally determined in [7], and lifetimes for 62 energy
levels of YbI were presented in review [8].

The collision constants of the ytterbium atom are
less well-known. The electron-impact excitation of
spectral lines of YbI was experimentally studied in [9],
where excitation cross sections for 34 spectral lines of
YbI for electron energies of 100, 200, and 300 eV, as
well as 15 optical excitation functions (OEFs), were
presented. For all the lines under investigation, the
cross sections were determined at the maximums of the
OEFs. The cross sections for the excitation of the ytter-
bium atom were previously calculated in [10] in the
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ul. Krasnokazarmennaya 14, Moscow, 111250 Russia
e-mail: smirnovYM@mpei.ru
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Born and Ochkur approximations. However, the author
of that paper presented the calculated parameters α, β,
and γ, which appear in the asymptotic relation for cal-
culating cross sections, rather than the cross sections
themselves. In the same paper, it was shown by an
example of the excitation of two P levels of the
europium atom that the calculated cross sections are
two orders of magnitude larger than the experimental
data. Almost the same discrepancy exists for the ytter-
bium atom.

The excitation of transitions in the double-charged
ytterbium ion (excitation with simultaneous double
ionization) was experimentally studied in more recent
work [11]. The difference between the theoretical and
experimental cross sections was analyzed in the same
work. It was shown that the cross sections obtained
in [11] agree well with theoretical estimates in order of
magnitude and differ from the experimental data [9] by
one or two orders of magnitude.

It is worth noting that excitation of only the S, P, and
D levels of the ytterbium atom was studied in [9, 10];
the excitation of states with higher orbital angular
momenta was not considered. The same is true for the
lifetimes of YbI presented in [8]. In this work, the exci-

tation of  levels of the ytterbium atom, as well as
two transitions from the 4f 135d6s6p 1H5 level and one
transition from the 4f 136s26p 1F3 level, are analyzed for
the first time. The parity of the two last levels coincides
with the parity of the ground state of the ytterbium
atom, 4f 14(1S)6s2 1S0, which is the initial level in the
excitation process.

2. The experiment was carried out by the method of
extended crossing beams. The basic concept of this
method and its technical realization were discussed in
detail in [12]. Therefore, it is unnecessary to discuss
them here. It is only necessary to present the basic
experimental parameters that are specific to ytterbium.

To create an atomic beam, ytterbium was evaporated
from a tantalum crucible heated by an electron beam up
to 800 K. Since ytterbium is an easily evaporated metal,
the atomic density in the overlapping domain of the

F1 °3
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Excitation cross section for the ytterbium atom

λ, nm Transition J
Elow,

cm–1

Eup,

cm–1

Q50,

10–18 cm2

Qmax, 

10–18 cm2

E(Qmax),
eV

OEF

428.210 4f145d6s 3D–4f146s8f 1F° 2–3 24751 48098 0.85 1.10 18 5

437.945 4f145d6s 3D–4f146s8f 1F° 3–3 25270 48098 5.02 6.52 18 5

454.687 4f145d6s 3D–4f146s7f 1F° 3–3 25270 47257 0.59 0.74 25 3

459.083 4f135d6s2 3H°–4f135d6s6p 1H 5–5 25859 47636 0.47 0.59 24 4

473.652 4f145d6s 3D–4f146s6f 1F° 2–3 24751 45858 0.14 0.22 24 2

489.561 4f145d6s 1D–4f146s8f 1F° 2–3 27677 48098 2.60 3.37 18 5

491.959 4f135d6s2 3H°–4f135d6s6p 1H 6–5 27314 47636 0.040 0.050 24 4

510.575 4f145d6s 1D–4f146s7f 1F° 2–3 27677 47257 9.05 11.3 25 3

539.062 4f145d6s 3D–4f146s5f 1F° 2–3 24751 43297 4.81 8.47 17 1

549.875 4f145d6s 1D–4f146s6f 1F° 2–3 27677 45858 18.7 28.8 24 2

554.581 4f145d6s 3D–4f146s5f 1F° 3–3 25270 43297 0.43 0.75 17 1

640.035 4f145d6s 1D–4f146s5f 1F° 2–3 27677 43297 69.8   123.0 17 1

792.240 4f135d6s2 3P°–4f136s26p 1F 2–3 23188 35807 2.11 – – –
atomic and electron beams reached 2.8 × 1010 cm–3

even at such a low temperature. However, any effect of
the reabsorption of spectral lines for such a density was
excluded, because none of the upper levels whose exci-
tations were investigated in this work combines with
the ground state of YbI.

The ground state of the ytterbium atom,
4f 14(1S)6s2 1S0, is an isolated level spaced from the

nearest excited 4f 14(1S)6s6p  level by an energy gap
wider than 17000 cm–1. For the low evaporation tem-
perature indicated above, the population of any excited
levels due to thermal excitation is negligibly low.
Therefore, the ground state is the only initial level for
the excitation of ytterbium in this experiment.

The current density of the electron beam in the
working energy range 0–200 eV was less than
1.0 mA/cm2. The width of the energy distribution of
beam electrons in this energy range did not exceed
1.0 eV (for 90% of electrons). The actual spectral reso-
lution of the optical system, including the time charac-
teristics of the signal-detection system, was equal to
about 0.1 nm. Since the YbI spectral lines considered in
this work are not among the intense spectral lines of the
ytterbium atom, it was impossible to increase resolu-
tion by a further decrease in the width of the slits of the
monochromator.

3. The 199–847-nm emission optical spectrum,
which arises due to collisions between ytterbium atoms

P3 °0
DOKLADY PHYSICS      Vol. 49      No. 12      2004
and 50-eV electrons, was detected. About 800 spectral
lines belonging to the YbI, YbII, and YbIII spectra were
identified on spectrograms. For most of the lines of
these three objects, OEFs were measured for electron
energies in the range 0–200 eV. In this work, we discuss
the excitation of spontaneous transitions from ytter-
bium’s atomic levels with orbital angular momenta
L ≥ 3, which have not yet been studied.

The results are given in the table, along with neces-
sary additional information on the characteristics of the
transitions. The table presents the wavelength λ; the
transition and internal quantum number J; the energies
Elow and Eup of the lower and upper levels, respectively;
the cross sections Q50 and Qmax for an electron energy
of 50 eV and at the maximum of the OEF, respectively;
and the position E(Qmax) of the maximum. The numbers
in the OEF column correspond to the numbers of the
OEFs drawn in Fig. 1. As was accepted for the repre-
sentation of atomic OEFs, the abscissa scale is logarith-
mic and the ordinate scale is linear. In order to avoid the
crossing or touching of lines, each OEF is drawn from
its individual zero. Each OEF is normalized to unity at
the maximum.

As is seen in the table, the data on transitions from
even levels are scanty, and it is premature to discuss
them. At the same time, the data on the excitation of

4f 146snf  levels are more systematic and enable one
to reveal some excitation features of these levels. It

F1 °3
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should be noted that all 1F° levels being investigated are
excited due to optically forbidden transitions, because
they are excited from the atomic ground state through
the 6s  nf transition of one of equivalent s electrons.
Thus, the measured cross sections are not as large as for
resonance transitions and do not exceed 10–16 cm2 for
any line.

Figure 2 shows the 1F° levels of YbI with the transi-
tions being studied. Only four low levels with n = 5–8
are presented, and these are all the available data on the
positions of the 1F° levels of the ytterbium atom.
According to [13], the positions of only these 1F° levels
of YbI have been determined; data on the 1F° levels are
absent in all other works. The position of the

4f 146s9f  level was also presented in [13]. However,
it was given as presumable, and no transition from this
level was indicated. In this work, such transitions were
also not observed.

As is seen in the state diagram, branching is
observed for all levels under investigation. In addition

to the completely allowed 4f 145d6s1D2–4f 146snf
transitions, intercombination transitions to the triplet
4f 145d6s3D2,3 levels occur. According to the table, exci-
tation cross sections for intercombination transitions
for levels with n = 5–7 are one or two orders of magni-
tude smaller than those for allowed transitions (those
occurring without changes in the multiple order). Two
intercombination transitions were not detected, because
their excitation cross sections were below the sensitiv-
ity of the instrument. This result is not surprising,
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Fig. 1. Optical excitation functions for the ytterbium atom.
because a similar behavior of the intensities of spectral
lines was observed in [13].

As is known (see, e.g., [14]), the excitation cross
sections Q for unperturbed spectral series are power
functions of the principal quantum number of the upper
level n:

(1)

where the constants Ai and αi are unique for each spec-
tral series. Perturbation can be manifested through
three main effects [14]: first, the deviation of depen-
dence Q = f(n) from power law (1); second, a significant
change in the shape of the OEF; and, third, a sharp
change in the branching character.
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Fig. 2. Partial state diagram for YbI with the transitions
under investigation.
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Figure 3 shows the dependence Q = f(n) drawn by
using the data taken from the table for three spectral
series of YbI. Power law (1) is represented by a straight
line in the double logarithmic scale. The slope of this
straight line to the abscissa axis determines αi , and the
extrapolation of this straight line to n = 1 gives Ai .
According to Fig. 3, the dependence Q = f(n) for any of
the three spectral series of YbI under consideration is
not an exact power law. Small deviations of the line
from the power law exist even for the most intense

allowed 4f 145d6s1D2–4f 146snf  series. The Q = f(n)
dependences for two intercombination series are very
far from the power law and are strongly nonmonotonic.
The cross section for one of intercombination transi-
tions for the n = 8 level is larger than that for the com-
petitive resonance transition. Moreover, it is seen in
Fig. 1 that the shapes of OEFs 1–3 and 5 (OEF 4 does
not correspond to 1F° levels) differ significantly from
each other. As was mentioned above, this difference is
a manifestation of the perturbation of levels.

Detailed data on the perturbation of the ytterbium-
atom levels under consideration are not available. Nev-
ertheless, it was mentioned in [13] that mixing of con-

figurations takes place for the  and  levels.
However, this statement apparently concerns primarily
triplet levels. For the levels under consideration, it was
only indicated that the basic component amounts to 63

and 95% for the 4f 146s5f  and 4f 146s6f  levels,
respectively; i.e., the latter level is almost pure. Neither
the content of the leading admixture nor its characteris-
tics were indicated. There are no data on mixing for
higher levels with n = 7 and 8. Nevertheless, according
to our data as presented in Figs. 1 and 3, mixing plays
a noticeable role for the 1F° levels of the ytterbium atom
in the range n = 5–8.

It should be noted that the perturbation of levels is
manifested in the behavior of not only excitation cross
sections, but also of the radiative lifetimes of the levels.
The effect of perturbation on the lifetimes of levels,
including ytterbium atomic levels, was analyzed theo-
retically [15]. Unfortunately, a similar analysis of exci-
tation cross sections for ytterbium or another atom is
absent.

4. Thus, the excitation cross sections for transitions
in three spectral series of YbI, which is caused by the
population of the 1F° levels that is due to collisions
between electrons and ytterbium atoms, were studied.
Perturbation was found to lead to a comparatively small
deviation of the dependence Q = f(n) from the power

law for the allowed 4f 145d6s 1D2–4f 146snf  series,
whereas its effect on the shape of the OEF and branch-
ing character is strong. The absence of data on the 1F°

F1 °3

F3 °3 F1 °3

F1 °3 F1 °3

F1 °3
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levels of YbI with n ≥ 9 is indirect evidence of the sig-
nificant perturbation of these levels.
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Tetragonalization of (Ca3 – xAx)(Zr2 – yFey)Fe3O12 
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One of the most promising matrices for burying
actinide-containing highly radioactive wastes is based
on A3B2T3O12 phases with a garnet structure (the Ia3d
space group). These have a three-dimensional frame-
work formed by the TO4 tetrahedra and BO6 octahedra
connected by common vertices. Large A cations in the
dodecahedral oxygen environment (with a coordination
number of 8) are embedded into this framework. Biva-
lent (Ca, Mn, Mg, Fe, Co, Cd) and trivalent (Y, rare-
earth) cations may occupy the A positions. The octahe-
dral B positions may be occupied by bivalent, trivalent
(Fe, Al, Ga, Cr, Mn, In, Sc, Co, V), tetravalent (Zr, Ti,
Sn, Ru), and even by pentavalent (Nb, Ta, Sb) cations.
The centers of T tetrahedra most often contain tetrava-
lent (Si, Ge, Sn) cations, but can also contain trivalent
(Al, Ga, Fe) and pentavalent (N, P, V, As) cations. In
addition, as a result of the isovalent and heterovalent
isomorphism of both natural and synthesized phases
with garnet structure, the formation of binary and mul-
ticomponent solid solutions occurs. This especially
favors mixing of different components of highly radio-
active wastes into the structure of these solid solutions.

In natural silicate garnets, the content of actinides,
uranium, and thorium does not exceed a few fractions
of a percent [1]. Therefore, in contrast to the other
potential matrices for highly radioactive wastes, e.g.,
pyrochlore, studying them does not allow us to estimate
the solubility of actinides in the garnet structure and to
choose the most appropriate compositions. This infor-
mation can be based only on experimental data. From a
crystal chemical standpoint, the occupation of B and T
positions by relatively large low-valence cations should
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favor the entrance of tetra- and trivalent actinide ele-
ments into the A position of the garnet structure. The
largest trivalent cation capable of occupying both octa-
hedral and tetrahedral positions is Fe3+. Therefore, fer-
rites are the substances with the largest framework
dimensions formed by FeO6 octahedra and FeO4 tetra-
hedra (i.e., they have the largest lattice constants) and,
hence, with the largest size of AO8 dodecahedral posi-
tions. Indeed, it turned out that, in ferrite garnets with
the compositions

(Ca2.5Th0.5)Zr2Fe3O12, (Ca2Th)(ZrFe)Fe3O12, and 
(Ca2.5 )Zr2Fe3O12,

synthesized at temperatures T = 1050°C and 1200°C
and at a pressure of 1 atm in ambient air [2], Th4+ and
Ce4+ occupy up to one-third of the A-type positions.
The ionic radii (according to Shannon and Prewitt [3]
for a coordination number of 8) for such radioactive
elements as Pu4+ (0.96 Å), Np4+ (0.98 Å), and U4+

(1.00 Å) lie within the range between the ionic radii of
Th4+ (1.05 Å) and Ce4+ (0.97 Å). Therefore, we can
expect that it is possible to obtain in the laboratory fer-
rite garnets with a high content of these elements.
Indeed, ferrite garnets with higher contents of rare-
earth elements have already been synthesized [4, 5].
This provides an opportunity to introduce into such a
structure trivalent Am and Cm with close values of
ionic radii.

For further study of the structure and properties of
synthetic garnets, we prepared several polycrystalline
samples of ferrites containing Ce, Gd, and Th. The ini-
tial components of the furnace charge (oxides and cal-
cium carbonate) were ground in an agate mortar down
to a particle size of about 20–30 µm and pressed into
tablets at 25°C and 200 MPa. Afterwards, the tablets
were sintered at 1300°C for five hours. Studies of the
reaction kinetics in experiments with different dura-
tions demonstrated that this time is sufficient to attain
the equilibrium state (the absence of phase-composi-

Ce0.5
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tion changes). Four samples with the following chemi-
cal formulas were prepared:

(1C) Ca2.5Ce0.5Zr2Fe3O12,

(2C) Ca1.5GdCe0.5ZrFeFe3O12,

(1T) Ca2.5Th0.5Zr2Fe3O12, and

(2T) Ca1.5GdTh0.5ZrFeFe3O12.

The samples were studied using a Philips PW3040/00
X’Pert MPD x-ray diffractometer (CuKα-line radiation,
40 kV voltage, 20–30 mA electric current, 2θ angular
range with θ = 3–65 angular degrees, a measurement
step of 0.01–0.02 angular degrees, and a pulse accumu-
lation time of 0.5–5 s at each point). The compositions
of the phases were determined by a JCM-5300 + Link
ISIS scanning electron microscope (25 keV, 1 nA,
1−3-µm probe diameter, 100-s pulse accumulation
time). It was found that samples with similar stoichiom-
etries have approximately the same phase composi-
tions: the 1ë and 1í samples consist of garnet and a
small amount of calcium zirconate with a perovskite-
type structure. The 2í sample seems to contain a mixed
ferrite of calcium and rare-earth elements, in addition
to the prevailing garnet phase.

A more detailed study of the structure and phase
composition of the described samples was performed
on the basis of the Mössbauer effect and the Rietveld
method. The latter is the full-profile analysis of the
x-ray diffraction spectra carried out for powder speci-
mens. An analysis of the valence and structural states of
iron atoms was performed for 57Fe nuclei in the
“absorption” geometry at room temperature using an
electrodynamic Mössbauer spectrometer in the con-
stant-acceleration mode. We used 57Fe nuclei in the Rh
matrix with an activity equal to several mCi. The exper-
imental spectra were studied by the methods of model
analysis [6]. The reconstruction of distribution func-
tions for the parameters characterizing the hyperfine
structure of partial spectra [7] was performed on the
basis of the SPECTR and DISTRI codes included into
the MSTools program package [8].

The 57Fe Mössbauer spectra nuclei in the samples
under study were of the paramagnetic type and con-
sisted of several quadrupole doublets with significantly
different values of the quadrupole displacement ε for
the spectral components and values of the Mössbauer
line isomer shift δ. Initially, to solve the problem of the
number of resonance lines and their distribution over
partial components for all observed spectra, we recon-
structed the distribution functions p(v) for the positions
of separate resonance lines. We assumed that the natu-
ral width Γτ of the Mössbauer line equals 0.097 mm/s
and that, for the radiation source, it is 0.11 mm/s
(according to its technical specifications). The analysis
of the results concerning the reconstruction of the p(v)
functions allowed us to choose rather reasonable mod-
els and initial values of the varied parameters in order
to refine the distribution functions p(ε) for each of par-
tial spectra and for further model analysis. The garnets
under study represent phases of variable composition
and relate to the so-called locally inhomogeneous sys-
tems [8]. Therefore, the model analysis of the observed
spectra was performed under the assumption of the
existence of two independent asymmetric quadrupole
doublets with components of the same intensity and for
sufficiently intense partial spectra. For the same reason,
in the course of reconstructing the distribution function
p(ε) for quadrupole displacements in these spectra, we
Table 1.  Results of the model analysis (SPECTR) and of an analysis of the reconstructed distribution functions for the pa-
rameters characterizing the hyperfine structure of the 57Fe Mössbauer spectra (DISTRI) nuclei in the garnet samples under
study (the standard deviation for statistical errors is indicated in brackets)

Sample Position
SPECTR DISTRI

I, % δ, mm/s ε, mm/s Γ1, mm/s Γ2, mm/s I, % δ, mm/s ε, mm/s Γ1, mm/s

1T T1 63.8(6) 0.248(2) 0.486(2) 0.288(3) 0.291(3) 60.0(1.5) 0.246(2) 0.474(15) 0.084(5)

T2 35.1(6) 0.243(2) 0.648(2) 0.288(3) 0.313(4) 38.8(1.9) 0.245(3) 0.626(20) 0.109(21)

T 1.1(1) 0.238(12) 0.062(12) 0.220(20) 1.6(3) 0.224(10) 0.071(12) 0.097(5)

2T T 76.2(5) 0.192(1) 0.556(1) 0.349(2) 0.374(3) 78.1(9) 0.193(9) 0.551(26) 0.195(8)

B 23.8(5) 0.404(3) 0.215(3) 0.303(5) 21.9(9) 0.396(3) 0.205(18) 0.169(10)

1C T1 61.2(6) 0.181(2) 0.468(2) 0.291(2) 0.301(3) 62.6(1.5) 0.180(4) 0.463(18) 0.096(6)

T2 30.5(5) 0.193(2) 0.686(2) 0.291(2) 0.296(4) 30.3(1.2) 0.195(6) 0.689(21) 0.086(8)

B 8.3(3) 0.439(11) 0.286(11) 0.304(3) 7.1(6) 0.451(60) 0.262(32) 0.176(36)

2C T 80.1(9) 0.201(2) 0.552(2) 0.382(3) 0.409(6) 81.5(9) 0.206(3) 0.531(29) 0.212(6)

B 19.9(9) 0.422(6) 0.231(6) 0.285(6) 0.326(12) 18.5(9) 0.404(4) 0.217(27) 0.170(12)

Note: The isomer shift δ of the Mössbauer lines is taken with respect to the position of the α-Fe line.
DOKLADY PHYSICS      Vol. 49      No. 12      2004
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Fig. 1. Results of the model analysis and of the reconstruction of the distribution functions p(v) for the positions of a separate res-
onance line and for the quadrupole displacement p(ε) of the Mössbauer spectrum of 57Fe nuclei in (Ca2.5Th0.5)Zr2Fe3O12 ferrite
garnet (1í sample).
performed a search for a linear correlation between the
quadrupole displacement ε and the isomer shift δ of the
Mössbauer line [8].

In Figs. 1 and 2, as examples, we present for com-
parison the results of all the processing stages for the
spectra of garnet samples (1T) (Ca2.5Th0.5)Zr2Fe3O12
and (2T) (Ca1.5GdTh0.5)(ZrFe)Fe3O12. For the 1T sam-
ple, the distribution function p(v ) definitely indicates
the existence of three partial spectra in the form of qua-
drupole doublets embedded in each other with nearly
the same isomer shifts δ of the Mössbauer line: two
intense doublets and one much less intense doublet
with the small quadrupole displacement ε. Similar
results corresponding to two high-intensity doublets
were also obtained for the Ce-containing 1ë sample
((Ca2.5Ce0.5)Zr2Fe3O12). For the 2í sample containing
DOKLADY PHYSICS      Vol. 49      No. 12      2004
Th and Gd, the distribution function p(v) exhibited two
clearly pronounced partial spectra with significantly
different values of intensity I, isomer shift δ, and qua-
drupole displacement ε. In this case, the more intense
quadrupole doublet is characterized by a smaller iso-
mer shift and larger quadrupole displacement ε. The
same situation was also observed for the 2ë sample
containing Gd in addition to Ce:

(Ca1.5GdCe0.5)(ZrFe)Fe3O12.

Using the reconstruction of the distribution func-
tions for quadrupole displacements in the partial spec-
tra and the subsequent model analysis, we managed to
determine the values of the relative intensity I and of the
parameters characterizing the hyperfine structure of the
spectra under study. In Table 1, we present the results of
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ferrite garnet (2í sample).
the model analysis for the spectra (isomer shift δ, qua-
drupole displacement ε, linewidths Γ1, 2 for the spectral
components, and relative intensities I for each of partial
spectra), as well as the characteristics of the recon-
structed distribution functions (average values of the

isomer shift  and of the quadrupole displacement ,
widths Γp(δ) and Γp(ε) of the distribution functions at
half-height, and the value of the linear correlation for
the parameters characterizing the hyperfine structure).
Assuming that the values of the Debye temperature
describing the vibration spectra of Mössbauer atoms at
different crystallographic positions are close to each
other, we have accepted that the ratio of the intensities
for the corresponding partial spectra is equal to that of

δ ε
the occupation numbers for Mössbauer atoms at these
positions.

The partial spectra with lower isomer shifts δ (δ ~
0.18–0.25 mm/s) and with a larger quadrupole displace-
ments ε (ε ~ 0.47–0.69 mm/s) in each observed spec-
trum (Table 1) could be attributed to trivalent iron ions
in the high-spin state at the positions with tetrahedral
surrounding (Td). Much larger isomer shift values (δ ~
0.40–0.45 mm/s) and smaller quadrupole displace-
ments (ε ~ 0.21–0.29 mm/s) for other quadrupole dou-
blets correspond to the high-spin state of Fe3+ ions at
the B position with the octahedral (Oh) oxygen coordi-
nation.

For 1í and 1ë samples, we reliably distinguish two
different tetrahedral positions for iron ions. The ratio of
DOKLADY PHYSICS      Vol. 49      No. 12      2004
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Fig. 3. Measured (solid line) and calculated (dots) x-ray diffraction spectra for the 1ë sample. The difference curve is shown in the
bottom of the figure.
intensities for the corresponding Mössbauer partial
spectra is close to two: 1.6–1.8 for the 1í sample and
2.0–2.1 for the 1ë sample. The former does not contain
iron at the octahedral position, whereas in the latter, the
amount of iron is about 8%. The low-intensity quadru-
pole doublet (I . 1%) that appears in the spectrum of
the 1í sample, could be attributed to Fe3+ ions occupy-
ing tetrahedral positions of the phase, a small amount of
which is contained in this sample.

In contrast, the 2í and 2ë samples are characterized
by a significant content of Fe3+ ions occupying octahe-
dral positions. The relative intensities of the corre-
sponding partial spectra are 22–24% for the 2í sample
and 19–20% for the 2ë sample. The linewidths for the
components of the partial spectrum and widths Γp(ε) for
the distribution functions of the quadrupole displace-
ment p(ε) for the tetrahedral position significantly
exceed those for the octahedral position (Table 1). This
could be associated with the pronounced local inhomo-
geneity in the vicinity of Fe3+ ions occupying tetrahe-
dral positions.

Thus, the data from Mössbauer spectroscopy, which
were discussed above, present definite indications for
different structural states characteristic of iron atoms in
the two groups of samples under study: 1í, 1ë and 2í,
2ë. For the first pair of samples, we deal with two tet-
rahedral positions of Fe atoms with an occupation ratio
of 2 : 1, whereas for the second pair, apart of a single
DOKLADY PHYSICS      Vol. 49      No. 12      2004
type of tetrahedral positions there is an appreciable
number of Fe atoms occupying octahedral positions.
Note that the splitting of tetrahedral positions into two
groups with an occupation ratio of 2:1 was also
observed recently via Mössbauer spectroscopy in ferrite
garnets of a similar composition with regard to Ce and
Th but without additions of rare-earth elements [11]. The
authors of [11] interpreted the unusual behavior of fer-
rite of such a composition as a result of an inhomoge-
neous local environment for two different kinds of tet-
rahedrally coordinated iron. However, it is clear that the
random distribution of atoms substituting for each other
at the A and B positions also results in randomness in
the local environment around the T positions. However,
this could cause only the line broadening of the corre-
sponding quadrupole doublet, not the splitting of the
spectra into two doublets. Such splitting implies a high
degree of short-range order that it should inevitably
stem from the long-range order in the structure under
study. Therefore, the 1í and 1ë samples from our sam-
ple set could have a crystal structure distinct from that
characteristic of the 2í and 2ë samples. These consid-
erations encouraged us to turn once again to the x-ray
diffraction technique.

After the repeated x-ray diffraction study of all four
samples with an ADP-2 automated diffractometer (Co
radiation, Fe filter), it was found that the 2C and 2T
samples correspond to the cubic structure with the lat-
tice constants a = 12.622(5) Å and 12.660(5) Å, respec-
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Fig. 4. Measured (solid line) and calculated (dots) x-ray diffraction spectra for the 1í sample. The difference curve is shown in the
bottom of the figure.
tively. On the basis of the quantitative x-ray phase anal-
ysis, the existence of small fractions with the perovskite
structure having CaZrO3 compositions of 8% in 1ë and
3% in 1í samples was confirmed. Furthermore, the
presence of some additional reflections allowed us to

Table 2.  The results of the refinement by the Rietveld meth-
od for the crystal structures of the 1C and 1T samples

Parameter 1C 1T

a, Å 12.7130(3) 12.7546(3)

b, Å 12.7130(3) 12.7546(3)

c, Å 12.7153(5) 12.7588(3)

V, Å3 2055.05(6) 2075.60(5)

Space group I41/acd I41/acd

2θ° range, angular degrees 16–149.98 16–149.98

Number of reflections K(α1 + α2) 684 684

Number of refined parameters 38 38

Rwp, % 5.14 5.34

RF, % 2.96 2.10

S* 1.17 1.07

DWD** 1.50 1.84

  * Goodness of fit.
** Statistics according to Durbin–Watson [15].
suggest a certain distortion of the cubic structure in 1C
and 1í garnets. Therefore, the x-ray diffraction spectra
of the 1C and 1í samples were recorded within the
interval 2θ = 16.00–149.98 angular degrees with a
scanning step equal to 0.02 degrees with a 20-s expo-
sure at each point. All calculations concerning the refine-
ment of the structural model were carried out using the
3.3 version of the WYRIET program package [12]. The
approximation of the peak profile was performed on the
basis of the Pearson-VII function. The refinement was
made in the approximation of isotropic thermal vibra-
tions of atoms and for several structural models: for
cubic garnet (Ia3d space group) and for two of its tet-
ragonal modifications with I41/a and I4/acd space
groups. The initial atomic coordinates for the tetragonal
modifications with I41/a and I4/acd space groups were
taken from [13] and [14], respectively. After several
refinement stages, it was found that the best agreement
between the experimental and theoretical profiles is
attained for the model of tetragonal garnet with the
I4/acd space group (Figs. 3 and 4). In Tables 2, 3, and
4, we present the basic results obtained in the course of
such a refinement: the occupation numbers for different
atomic positions, atomic coordinates, and the nearest
interatomic distances for both the 1ë and 1í samples.

For comparison, we can indicate the main refine-
ment criteria for other structural models describing the
1ë sample, which are as follows: cubic structure, Ia3d,
Rwp = 5.65%, RF = 3.14%, and S = 1.29; tetragonal
DOKLADY PHYSICS      Vol. 49      No. 12      2004
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Table 3.  Positions, temperature parameters, and interatomic distances in the structure of the 1T sample

Atom x y z Biso Occupation number

Ca1 0.1215(8) 0 0.25 2.30(7) 1.52(2)

Th1 0.1215(8) 0 0.25 2.30(7) 0.48(2)

Ca2 0 0.25 0.125 0.7(1) 0.87(2)

Th2 0 0.25 0.125 0.7(1) 0.13(2)

Zr 0 0 0 1.02(3) 1.98(2)

Fe1 0.380(1) 0 0.25 2.5(1) 1.95(2)

Fe2 0 0.25 0.375 0.9(2) 1.00(2)

O1 0.2886(8) 0.0975(8) 0.1997(8) 0.2(3) 4.00(2)

O2 0.1008(8) 0.193(1) 0.276(1) 0.5(3) 4.00(2)

O3 0.191(1) 0.2885(8) 0.092(1) 0.7(3) 4.00(2

Interatomic distances, Å

Ca1–O1 = 2.53(3) × 2 Ca2–O2 = 2.40 × 4 Zr–O1 = 2.15(3) × 2

Ca1–O1' = 2.54(3) × 2 Ca2–O3 = 2.58 × 4 Zr–O2 = 2.10(3) × 2

Ca1–O2 = 2.53(4) × 2 Average Ca–O = 2.49 Zr–O3 = 2.14(4) × 2

Ca1–O3 = 2.46(4) × 2 Average Zr–O = 2.13

Average Ca–O = 2.48

Fe1–O1 = 1.84(4) × 2 Fe2–O2 = 1.90(4) × 2

Fe1–O3 = 1.75(5) × 2   Fe2–O2' = 1.90(4) × 2

Average Fe–O = 1.82 Average Fe–O = 1.90

Table 4.  Positions, temperature parameters, and interatomic distances in the structure of the 1C sample

Atom x y z Biso Occupation number

Ca1 0.124(4) 0 0.25 1.6(1) 1.48(2)

Ce1 0.124(4) 0 0.25 1.6(1) 0.52(2)

Ca2 0 0.025 0.125 0.6(2) 0.88(2)

Ce2 0 0.025 0.125 0.6(2) 0.12(2)

Zr 0 0 0 0.6(3) 2.00(2)

Fe1 0.378(5) 0 0.25 2.1(2) 1.92(2)

Fe2 0 0.25 0.375 0.6(2) 1.00(2)

O1 0.279(6) 0.094(5) 0.192(5) 0.4(4) 4.00

O2 0.098(4) 0.194(6) 0.276(5) 0.4(4) 4.00

O3 0.197(5) 0.288(4) 0.095(5) 0.6(5) 4.00

Interatomic distances, Å

Ca1–O1 = 2.43(5) × 2 Ca2–O2 = 2.40(4) × 4 Zr–O1 = 2.15(4) × 2

Ca1–O1' = 2.50(4) × 2 Ca2–O3 = 2.58(4) × 4 Zr–O2 = 2.09(3) × 2

Ca1–O2 = 2.52(5) × 2 Average Ca–O = 2.49 Zr–O3 = 2.14(4) × 2

Ca1–O3 = 2.47(4) × 2 Average Zr–O = 2.13

Average Ca–O = 2.48

Fe1–O1 = 1.88(5) × 2 Fe2–O2 = 1.90(4) × 2

Fe1–O3 = 1.75(5) × 2 Fe2–O2' = 1.90(4) × 2

Average Fe–O = 1.82 Average Fe–O = 1.90
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structure, I41/a, Rwp = 5.29%, RF = 4.38%, and S = 1.21.
Comparing the refinement results listed in Table 2 for
this sample, we can conclude that, according to all three
accuracy criteria, the tetragonal structure with the
I4/acd space group is significantly more advantageous
than the other structures.
The idealized crystal-chemistry formulas that are
the result of the refinement of the occupation numbers
(taking into account possible errors) for different crys-
tallographic positions, namely, the two positions A1
and A2, the single position B, and the two positions T1
and T2, are the following.
1C sample: (Ca1.50Ce0.50)A1(Ca0.90Ce0.10)A2Zr2.00(Fe1.93)T1(Fe1.00)T2O12,B

1T sample: (Ca1.50Th0.50)A1(Ca0.90Th0.10)A2Zr2.00(Fe1.93)T1(Fe1.00)T2O12.B
We can see that the gross compositions of both sam-
ples slightly differ from the initial ones that were deter-
mined on the basis of the recalculated results of chem-
ical analyses. Indeed, there is a tendency toward a cer-
tain increase in the content of Ce and Th at the expense
of the atomic percentage of Ca and Fe (at the T1 tetra-
hedral position with double occupancy). These ele-
ments may be absorbed by “parasitic phases,” namely,
perovskites and oxides existing in the samples. In addi-
tion, we should emphasize that the tetravalent elements
obviously prefer position A1 over A2 and that there is
also a possible small deficiency (of about 3%) of iron at
the T1 position. In general, the atomic fraction of Ce
and Th at the A positions is as high as 30%. It probably
becomes slightly higher than in the initial furnace
charge due to the increase in the number of A-type posi-
tions in the tetragonal modification compared to the
perfect cubic structure of garnets. The absence of a tet-
ragonal distortion in 2ë and 2í samples containing the
third element at the A position, namely, trivalent Gd,
can be attributed to its intermediate character, which
facilitates the mixing of bivalent and tetravalent ele-
ments at the same position, and to an increase in the
configurational entropy (the entropy-driven stabiliza-
tion of the multicomponent mixture).
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In connection with certain physical problems, Gin-
zburg [1] noted that the physical causes of a monotonic
increase in the entropy of closed systems, as well as a
corresponding irreversibility, are not yet clearly under-
stood. A usual approach to irreversibility in quantum
mechanics is as follows. Dynamic equations, including
the Schrödinger equation, are time reversible. Based on
this circumstance, one concludes that postulated quan-
tum-mechanical schemes cannot lead to irreversibility
in closed systems. For this reason, either a transition to
open systems or a substantial change in the mathemat-
ical foundations of quantum mechanics and transition
to the equipped Hilbert space is proposed in order to
include irreversibility in quantum mechanics. Other
proposals involve the inclusion of nonlinear and com-
plex terms in the Schrödinger equation.

Space–time symmetries, which are mathematically
expressed in terms of the theory of groups, i.e., sets
with one operation where each element has an inverse
element, are responsible for exact conservation laws.
The Noether theorems establish a one-to-one corre-
spondence [2] between conservation laws and group-
theoretical requirements imposed on physical theory,
and, owing to the reversibility of equations, all propa-
gators (matrices transforming solutions from one
space–time point to another) have inverse operators.
Therefore, the satisfaction of conservation laws that
follow from reversible equations leads to group-theo-
retical requirements for propagators, in particular, to
the existence of inverse propagators; i.e., the reversibil-
ity of equations and the group-theoretical construction
of a physical theory are mutually dependent [3].

The description of a physical system that includes
irreversible equations is a sufficient condition of its
irreversible evolution. Moreover, its description by
only reversible equations is obviously a necessary con-
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dition of its reversible evolution. Is the latter condition
also a sufficient condition of reversible evolution?

The noncommutativity of operators (propagators)
transforming solutions is one of the remarkable fea-
tures of quantum mechanics. This feature is naturally
manifested in the evolution of observables. For this rea-
son, it is of interest to determine whether irreversibility
is connected with noncommutativity and, since the lat-
ter is also involved in reversible equations, whether it
can lead to the irreversibility of evolution.

This work is aimed at determining the connection of
irreversibility with noncommutativity and the condi-
tions for the reversible and irreversible evolution of a
closed physical system described only by reversible
equations. These problems are analyzed on the basis of
the existence of a commutative binary composition of
elements on noncommutative groups and the corre-
sponding possibility of a group-theoretical scheme of
quantum mechanics [4, 5].

Let the system be described by the Schrödinger
equation with a real potential depending on coordinates
and time. Expressing the wave function and its gradient
in terms of the spinor Φ = column ||Φ+, Φ– || [5], we pass
from the Schrödinger equation to two equations for Φ±,
i.e., to the spinor representation of the Schrödinger
equation

(1)

Here, the prime stands for the time derivative; k2(r, t) =

{E0 – U(r, t)}; σ0 is the identity matrix; σi, i = 1, 2, 3,

are the Pauli matrices; E0 is the energy at the point
(r0, t0); and 2m = " = 1. We use the Feynman scheme of
quantum mechanics with the stipulation that the transi-
tion amplitude along each path is a multiplicative inte-
gral [6], i.e., the limit of the product of matrix transfor-
mations, including noncommutativity, and the total
amplitude is their composition over all paths that con-
serves the group properties [4, 5]. In this scheme, we
treat u(r) in Eq. (1) as a set of unit vectors that specify

σ0∇Φ
u
2k
------ σ3 iσ2+( )Φ'+

=  ikuσ3
∇ k
2k
-------σ1

u
2k
------ k'

2k
------ σ3 iσ2+( )+ +

 
 
 

Φ.

2m

"
2
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paths from the initial to the final point and that satisfy
the condition ∇ u = 0.

Expressing the solution as Φ(r, t) = Q Φ(r0, t0), we
obtain the multiplicative derivative [6] of the matrix Q
in the form

(2)

where P is the matrix appearing in braces in Eq. (1). Its
form provides Q = exp{qs} [5], where q is a complex
vector and, therefore, Q ∈ SL(2, C).

A complete system of observables for the physical
system described by the time-dependent Schrödinger
equation has the same form as for the time-independent
case [5]. This system consists of two scalars and two
vectors, where the latter quantities are linear in the gra-
dient of the wave function. Their amplitudes are four
Hermitian forms js = Φ+σsΦ, s = 0, 1, 2, 3, with the com-

pleteness condition  =  +  + . This condition
is equivalent to the condition that the Hermitian density

matrix for pure states [7] J = Φ+ ⊗ Φ ≡ js has a

zero determinant. For the current

where ψ is the solution of the Schrödinger equation,
Eq. (1) and the Hermitian conjugate equation lead to
the usual continuity equation

where ρ = ψψ* = . This equation, obtained from

Eq. (1), is valid for all propagators Q ∈ SL(2, C) that
lead to the satisfaction of conservation laws. A partial
propagator, i.e., a propagator for one path, belongs to
the group and thereby has the inverse operator for any
path, which agrees with the reversibility of the
Schrödinger equation.

Since they are experimental facts, both irreversibil-
ity and reversibility must be defined only in terms of
observables. For this reason, following [8], we accept
that evolution is reversible if all observables in the time-
reversed process pass through the same sequence as in
the direct process but in the reverse order. Otherwise,
evolution is irreversible. Owing to the reversibility of
equations, conservation laws valid for the direct pro-
cess must obviously be satisfied in the reverse process.
Thus, all propagators for the reverse and direct pro-
cesses must belong to the same group.

When the system evolves from t0 to t, the density
matrices for pure states form a sequence J(t0), …, J(t),
and any density matrix has no inverse matrix. Let

∇ Q
u
2k
------ σ3 iσ2+( )Q'+

 
 
 

Q 1– P,=

j0
2

j1
2

j2
2

j3
2

1
2
--- σ j

s 0=

3

∑

j3 i ψ∇ψ * ψ*∇ψ–( ) Φ+σ3Φ( )u,= =

∇ j3
∂ρ
∂t
------+ 0,=

j0 j1+
2k

---------------
spinors Φ(t1) and Φ(t2), along with the corresponding
density matrices for pure states J(t1) and J(t2), exist at
the respective arbitrary times t1 and t2 from the
sequence t0…t1…t2…t. These spinors are related by the
matrix Q(t2, t1) that is determined by Eq. (2) and that
belongs to the SL(2, C) group. Density matrices for
pure states are written in the form [7]

(3)

(4)

Let the evolution of the system be described by only
one sequence of (noncommutative) propagators
Q(t0, t0)…Q(t1, t0)…Q(t2, t0)…Q(t, t0) and a correspond-
ing sequence of density matrices for the pure states
J(t0)…J(t1)…J(t2) … J(t). Under time reversal, a spinor
is transformed by inverse matrices due to the reversibil-
ity of the Schrödinger equation, and Q(t1, t2) =
Q−1(t2, t1). Since transformations of the spinor are mul-
tiplicative, the spinor is transformed in the direct and
following reverse process t1  t2  t1 as

and the density matrix for pure states is transformed as
J(t1)  J(t2)  J(t1); i.e., all observables at the end
of the process take the values that they had at the begin-
ning. Thus, if a process is completely described by one
sequence of propagators, it is reversible.

Let the evolution of the system be described by
more than one sequence of partial operators. It is suffi-
cient to consider two sequences denoted as A and B in
the t1  t2 process. The total propagator, which
includes both paths and provides for the construction of
the density matrix, is a composition of partial propaga-
tors that satisfies the same conservation laws as A and B
separately. Therefore, this propagator belongs to the
same group that contains A and B. Since both evolution
paths are equivalent, the total propagator must have not
only the group properties attributed to conservation
laws but also properties associated with discrete sym-
metries, particularly under permutations.

The reversibility of the Schrödinger equation means
that its solution is equivalent to the solution of the com-
plex conjugate equation and that the construction of the
propagator for the spinor form of the Schrödinger equa-
tion is equivalent to the construction of the propagator
for the corresponding spinor equation for the complex
conjugate Schrödinger equation. Time reversal in the
Schrödinger equation (along with the transition to com-
plex conjugate solutions) corresponds to the change
t  –t. In this case, the propagator Q is transformed
to Q–1 for the reverse process. Therefore, the propaga-

J t1( ) 1
2
--- σs Φ+ t1( )σsΦ t1( ){ } ,

s 0=

3

∑=

J t2( ) = 
1
2
--- σs Φ+ t1( )Q+ t2 t1,( )σsQ t2 t1,( )Φ t1( ){ }

s 0=

3

∑ .

Φ t1( ) Q t2 t1,( )Φ t1( ) Q t1 t2,( )Q t2 t1,( )Φ t1( )→ →

=  Q 1– t2 t1,( )Q t2 t1,( )Φ t1( ) Φ t1( ),=
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tors Q and Q–1 (both inevitably exist on the group) for
the direct and reverse process are equivalent in a man-
ner analogous to that in which ψ and ψ* are equivalent
under time reversal. This means that the total propaga-
tor either remains unchanged or changes to the inverse
propagator.

The following four compositions of propagators on
noncommutative multiplicative groups satisfy these
requirements [4, 5, 7, 9]:

(5)

(6)

If A  B, then M  M, D  D–1, T  T–1, and
T '  (T ')–1 (the proof is simple and, thus, omitted).
Since products and real powers of the elements of the
group also belong to the group, all these compositions
belong to the same group that contains A and B.1 

Expressions (5) and (6) have a geometric interpreta-
tion in spaces with nonzero Gaussian curvature [4, 5].
Expressing the matrices in Eqs. (5) and (6) in the expo-
nential form A = exp(as), etc., and mapping the vectors
a, b, m, … as geodesic vectors, one can show that the
vectors m and d are the symmetric and antisymmetric
diagonals, respectively, of the parallelogram drawn on
the adjacent vectors a and b, and that each of the vec-
tors t and t' is orthogonal to the vectors a and b and cor-
responds to the area of adjacent parallelograms.

If the vectors a and b are small, it follows from the
expansion of the exponential representation of matrices
in Eqs. (5) and (6) that

The above analysis shows that the expressions for
M, D, T, and T ' express the non-Euclidean superposi-
tion principle, which includes the noncommutativity of
propagators, leads to the satisfaction of conservation
laws due to group properties, and changes to the
Euclidean superposition principle in the small region of
the space of the logarithms of propagators.

Under time reversal, all partial propagators change
to the respective inverse propagators due to the revers-
ibility of the Schrödinger equation. It is easy to show
that the compositions M and D also change to the
inverse compositions when A  A–1 and B  B–1.
Therefore, the transformation of the spinor in the pro-
cess t1  t2  t1 by means of these propagators
leads to the initial spinor. 

For this reason, the compositions M and D describe
only the reversible component of the evolution of the
system.

Let us prove that the composition changes as T  T;
i.e., (A–1B2A–1)1/2AB–1 = (AB–2A)1/2A–1B when A  A–1

1 The permutation properties of the expressions in Eqs. (5) and (6)
are valid for noncommutative nonsingular matrices A and B of
any order, as well as for any real power of these compositions.

M AB 1–( )1/2
B{ }

2
, D AB( )1/2B 1–{ } 2

,= =

T AB 2– A( )1/2
A 1– B, T' AB2A( )1/2

A 1– B 1– .= =

m . a b, d . a b, t . i ba[ ]  . t'.––+
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and B  B–1. Multiplying this equality by B and A–1

from the right and taking the square of the resulting
equality, we obtain

The composition T ' has the same property. 
Both discrete symmetries are conserved for small a

and b. Compositions (6) can be treated as commutators
on the multiplicative group that differ from the group
theoretical expression B–1A–1BA. In this case, if the
matrices A and B are commutative, T and T' are equal to
the unit matrix. 

Thus, there are compositions of alternative propaga-
tors that ensure the satisfaction of conservation laws
and that do not change under time reversal and the cor-
responding inversion of partial propagators; i.e., they
are transformed as 1  T  T2 in the process t1 
t2  t1 . At the end of the process t1  t2  t1, the
density matrix for pure states that appears in Eq. (4) and
that is constructed by means of one such propagator
takes the form

(7)

In the general case, it does not coincide with the initial
form. Therefore, the process is irreversible.

Nevertheless, there are conditions under which such
total propagators lead to reversibility. A comparison of
Eqs. (3) and (7) shows that this is the case when

(8)

The violation of this condition can be treated as a suffi-
cient condition of irreversibility. The satisfaction of this
condition can be treated as a sufficient condition of
reversibility, which is the case when A and B are com-
mutative.

In systems described by a large number of partial
propagators, compositions of the type 

 

T

 

 for which con-
dition (8) is satisfied can coexist with compositions for
which condition (8) is violated. This means that revers-
ible processes can coexist with irreversible processes in
systems described by only reversible equations.

In connection with the above approach to irrevers-
ibility, we present two conclusions from [10]. The first
conclusion is that irreversibility expressed by the time
arrow is a statistical property. It cannot be introduced in
terms of individual paths or wave functions. Therefore,
it demands a radical withdrawal from Newtonian
mechanics or from orthodox quantum mechanics based
on concepts of the individual path or wave function.

A 1– B2A 1–

=  AB 2– A( )1/2
A 1– BA 1– AB 2– A( )1/2

A 1– BBA 1–( )

=  AB 2– A( )1/2
AB 2– A( ) 1–

AB 2– A( )1/2
A 1– B2A 1–( )

=  A 1– B2A 1– .

J̃ t1( ) 1
2
--- σs Φ+ t1( ) T2( )+σsT

2Φ t1( ){ } .
s 0=

3

∑=

T2( )+σsT
2 σs, s 0 1 2 3., , ,= =
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The second conclusion is that the main assumption that
we have introduced here is the statement that the space
with zero Gaussian curvature, similar to Minkowski
space, does not contain entropy. Both conclusions are
explained in this approach: irreversibility is absent
either if only one path exists or if the space of the loga-
rithms of the propagators has zero Gaussian curvature;
i.e., all propagators are commutative.

The noncommutativity of the propagators A and B is
manifested in the acollinearity of the geodesic vectors
a and b in non-Euclidean space, and the vector t in the
composition T corresponds to the area of a closed con-
tour, which is a parallelogram in the case under consid-
eration. Expression (7) makes it possible to treat the
vector t as an irreversibility measure. Since the area
mentioned above is related to the Berry phase, the latter
can serve as an irreversibility measure.

To determine the physical causes of irreversibility,
we analyze the expression for the matrix P in Eq. (2)
that determines the forms of the propagators. If ∇ k =
k' = 0, P and the corresponding propagators are diago-
nal and commutative. Therefore, T is equal to the iden-
tity matrix, and irreversibility is absent. If ∇ k ≠ 0 and/or
k' ≠ 0, A and B can be noncommutative, and the process
can be irreversible. For this reason interaction, in par-
ticular, collisions, should be treated as a necessary,
although insufficient, physical cause of irreversibility.
For example, if interaction is present but A = B, the
matrix T is a unit matrix and irreversibility is absent.

As a physical system where reversible and irrevers-
ible processes occur simultaneously, we consider a
gedankenexperiment with two infinitely small (point-
like) apertures at the interface between two media. In
the framework of one (reversible) composition M, this
example was considered in [5], where the satisfaction
of conservation laws was analyzed. The coexistence of
reversible and irreversible processes in such a system is
not surprising, because propagation under these condi-
tions is described on the pseudounitary group SU(1, 1),
and one of the necessary conditions of reversibility is
the unitarity of transformations, which follows from
Eq. (8). Due to symmetry, the partial propagators A and
B are obviously identical for all points on the symmet-
ric z axis (see Fig. 1 in [5]). Therefore, T = 1. We note
that this condition is also satisfied for all points on the
hyperboloids of revolution that correspond to the max-
ima of the interference pattern. Therefore, propagation
from a source to the indicated points is reversible. The
propagators A and B for all other points, as follows from
their explicit form in [5], are noncommutative in the
presence of a potential jump. Therefore, condition (8) is
  

not satisfied for them, and this process is thereby irre-
versible for them.

A joint consideration of the physical causes of irre-
versibility, i.e., interactions, as well as its geometric
causes show that the noncommutativity of propagators
leads to the existence of an observable that can serve as
an irreversibility measure in the evolution of the physi-
cal system. This is the only nonzero positively defined
eigenvalue of the density matrix for pure states and is a
functional that increases with time, is bounded, and that
rapidly reaches the limiting value with the enhance-
ment of interactions.

Since the discrete symmetries of the compositions
M, D, T, and T ' are valid for nonsingular matrices A and
B of any order, the above results are not restricted to
only the Schrödinger equation—they can be general-
ized for more complex systems.
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In spite of a long history of investigations [1–3], the
mechanism of breakdown of solid dielectrics remains
unclear up to now. One of the reasons for studies of this
phenomenon is its wide application in modern technol-
ogy [4]. The breakdown of solid dielectrics is affected
by many factors such as characteristics of the voltage
applied, properties of the dielectric, the medium in
which the breakdown occurs, etc. These factors also
include conditions under which the electrode and the
dielectric make contact. The surface of a metal elec-
trode is usually irregular [5]. On this surface, there exist
microprotrusions at which the electric field multiply
enhanced. As for cathode, by virtue of this enhance-
ment, the electric current density j of the field emission
from the microprotrusions is multiply increased. This
results in the electrical explosion of the microprotru-
sions, which is accompanied by explosion electron
emission [5]. The electron emission of this type occurs
in the form of separate short-time (10–9–10–8 s) bursts
each containing 1011–1012 electrons. The author, who
pioneered in the discovery of this phenomenon, called
these bursts ectons [6, 7]. The volume of the cathode
region in which this microexplosion occurs is close to
10–12 cm3, and the energy density prior to the microex-
plosion is about 104 J g–1. As a result of the microexplo-
sion, a plasma jet is formed that moves from the cath-
ode surface at a velocity on the order of 106 cm s–1. It
has been found that in vacuum discharge, without
doubt, all these processes take place [5].

In [8], it has been established that the microexplo-
sions at the metal surface can be initiated not only by
virtue of the field-emission current but also by the dis-
placement current. The displacement current is caused
by the surface flashover at the metal–solid-dielectric–
medium triple junction formed by the contact of a
microprotrusion with the solid dielectric. In this case,
the medium can be vacuum, gas, or liquid dielectric.

We consider the breakdown of a solid-dielectric
plate of thickness d situated between a pin electrode
and a plane electrode (Fig. 1). We assume that on the

Institute of Electrophysics, Ural Division, 
Russian Academy of Sciences, 
ul. Amundsena 106, Yekaterinburg, 620016 Russia
e-mail: mesyats@nsc.gpi.ru
1028-3358/04/4912- $26.00 © 20727
pin surface, there exists a cylindrical microprotrusion
of radius r, which holds the pin in contact with the sur-
face of the solid dielectric.

Let a pulse of high voltage U of amplitude Ua with a
perfectly steep leading edge (which corresponds to the
voltage drop Ua) be applied to the pin electrode. Let the
amplitude Ua be high enough to initiate the discharge
over the dielectric surface.

At the initial stage (t < 10–7 s), this discharge is char-
acterized by a continuous luminescence of the dis-
charge plasma [5, 9]. Later, on this surface, separate local
plasma filaments (Lichtenberg figures) are formed [9].
We now analyze just this initial stage of the process.

Radius R and area S of the luminous plasma zone is
determined by the formulas

(1)

where v  is the velocity of the plasma motion over the
dielectric surface. If R > d, then the dynamic capacity
C(t) resulting from the plasma motion is

 (2)

The generated displacement current is determined by

R v t, S πv 2t2,= =

C
πε0εv 2t2

d
----------------------.=

1

2

3
4

5

R

d

2 r

Fig. 1. Schematic disposition of electrodes for studies of the
solid-dielectric breakdown: (1) pin electrode; (2) grounded
plane electrode; (3) dielectric plate; (4) flashover plasma;
(5) microprotrusion on the electrode surface. Details of the
electrode contact with the solid-dielectric surface are shown
in the upper insert.
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the formula

 (3)

In this case, we have taken into account that U = Ua =
const. If we consider this electric current to flow in
metal through the microprotrusion end, then the electric
current density is

 (4)

It is well known the criterion for a cylindrical conductor
to be electrically exploded:

(5)

Here, td is the explosion delay time, and  is the spe-
cific action of current for the exploded conductor. For
metals, the latter quantity is on the order of  ≈
109 A2 s cm–4, whereas for graphite, it is ~108 A2 s cm–4

[5]. We should remember that formula (5) is valid only
under the condition that the heating of the microprotru-
sion occurs by virtue of the Joule heat release, whereas
the energy loss by conduction is negligible. This takes
place provided that

 (6)

where h is the microprotrusion height, ρ, λ, and c are,
respectively, the density, heat conductivity, and heat
capacity of the electrode material. For example, if h =
10–4 cm, then this relationship is fulfilled for a number
of metals and graphite as td ≤ 10–8 s.

i
dUC

dt
------------

2πUaε0εv 2t
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------------------------------.= =
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--------------------------.= =
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∫ h.=
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h2ρc
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Fig. 2. Discharge-time distribution in the case of electrical
breakdown of rock salt (NaCl) (d = 200 µm) for E =
2 MV cm–1 and the electrode area: (1) S1 = 7.1 × 10–4 cm2

and (2) S2 = 17.7 × 10–4 cm2.

100

0

90
8070
60

50
40
30

10

20

8 16 24 32 40 48 56 64 72 80

ts1
1

2

t, ns

n1/n0, %

ts2

tf
In accordance with formulas (4) and (5), the explo-
sion delay time is

(7)

where Ea =  is the average value of the electric-field

intensity in the solid dielectric and t0 =  is the time

required for the plasma to propagate for a distance
equal to the microprotrusion radius r.

Once the explosion of a microprotrusion has
occurred, a thin plasma jet is formed that penetrates
into the solid dielectric and initiates the formation of a
discharge channel in it. Therefore, the time td may be
interpreted as a statistical delay time ts for the dis-
charge. The total time ted for an electrical discharge is
determined by the relation [3]

ted = ts + tf, (8)

where tf is the discharge formation time, i.e., the time it
takes for a discharge channel to form and bridge the
cathode-anode gap. It is well known that for a large
number of breakdowns in solid (and also gaseous)
dielectrics, the statistical distribution of the discharge
delay times obeys the Laue law [3]:

 (9)

Here, n0 is the total number of dielectrics broken down,
and nt is the number of samples having the discharge
time t and longer. The average time ts is determined

from the condition  = 1.

Figure 2 shows, as an example, the statistical distri-
bution of the discharge time for a rock-salt (NaCl) sam-
ple of thickness of 0.2 mm for an average electric-field
intensity of 2 × 106 V cm–1 and for two different areas
of graphite electrodes [3]. It follows from the given
plots that the discharge formation time is tf = 7 ns. For
S = 7.1 × 10–4 and 17.1 × 10–4 cm2, we have ts = 33 and
13 ns, respectively. Hence, the average statistical break-
down delay is on the order of 10–8 s. Taking into
account the fact that in our model, td = ts, for the condi-
tions of the experiment illustrated by Fig. 2, we arrive
at the following values of the quantities in formula (7):

 ≈ 108 A2 s cm–4 (for graphite), ε ≈ 2 (NaCl), and E‡ =
2 × 106 V cm–1. In this case, in order to obtain ts ≈ 10−8 s,
it is necessary to have t0 ≈ 10–11 s. If r = 10–5 cm, then
the velocity v  must be not lower than 106 cm s–1. This
velocity is determined by the tangential component Et

of the electric-field intensity at the dielectric surface,
which increases proportionally to Ea [8]. With allow-
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ance for the large value of Ea = 2 × 106 V cm–1, we
can find that the velocity v  = 106 cm s–1 is quite attain-
able [5, 9]. Thus, in the framework of the model under
consideration, the time ts is determined by the probabil-
ity of an effective microprotrusion appearance in the
metal–dielectric contact zone rather than by the proba-
bility that an initiating electron will appear as was sup-
posed in [3].

In conclusion, it is worth making several remarks.
First, the above mechanism may take place only

provided that efforts for improving the electrode–
dielectric contact have not been taken, i.e., as one can
say, there are rims [3]. The role of these rims in the
breakdown of solid dielectrics was mentioned previ-
ously in [1–4]. However, nobody before us placed
emphasis upon their particular contribution to the
breakdown of solid dielectrics. Rims at electrode-
dielectrics contacts can be completely eliminated, e.g.,
in the case of the breakdown of NaCl, KCl, KBr, and
KI. For these dielectrics, the water electrolyte of these
salts, which fills up cylindrical depressions at two sides
of the dielectric plate can serve as an electrode. How-
ever, in this case, it is worth speaking on another break-
down mechanism.

Second. The breakdown mechanism proposed by us
implies that the discharge process occurring after the
plasma injection into the dielectric is determined by the
interaction of this plasma with the dielectric material,
which proceeds in an electric field. In the case consid-
ered above (Fig. 2), the rate v f of the discharge forma-

tion is v f =  ≈ 3 × 106 cm s–1. Analysis of the condi-

tions governing this phenomenon needs an independent
consideration.

Third, in our case, as distinct from a vacuum dis-
charge in which the breakdown always starts at the
cathode as a result of the explosion of microprotrusions
under the action of the field-emission current, the solid-
dielectric breakdown can occur from both the cathode

d
tf
---
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and the anode. This may be explained by the fact that a
dielectric flashover can take place irrespective of
whether the electrode be positive or negative, which is
observed experimentally [3]. The difference is related
to only the values of dynamic capacities.

Finally, in the fourth place, the breakdown mecha-
nism proposed by us can turn out to be extremely useful
for the explanation of the mechanism of fracturing
dielectrics and rocks by electrical discharges. In partic-
ular, this mechanism, perhaps, will make it possible to
explain the effect of the discharge penetration into a
solid dielectric immersed in liquid dielectric, provided
that the rate of the pulsed-voltage rise exceeds a certain
critical value (the so-called effect of Vorob’evs [4]).
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The physical properties of nanocrystalline materials
with an average grain size of 10–100 nm differ sig-
nificantly from the properties of coarse-grained materi-
als [1–3]. This difference is attributable not only to the
small size of nanocrystalline grains but also to changes
at other structural levels of a material, including the
atomic, nuclear, and electronic levels [3, 4]. In particu-
lar, we emphasize the role of outer-shell electrons in
metals and alloys. The collectivization of these elec-
trons is responsible for a large binding energy of mate-
rials and determines their properties.

In [5], qualitative and quantitative changes in the
energy distributions of electrons due to the formation of
the nanocrystalline structure in nickel were found by
field emission spectroscopy. Two types of distribu-
tions—classical single-peak distributions and distribu-
tions with an additional maximum—were observed for
different parts of the emitting surface of a point. The
properties of nanocrystalline tungsten were compre-
hensively studied by transmission electron microscopy,
field ion microscopy, field emission microscopy, and
field emission spectroscopy. These studies indicated
that the additional peak in the distribution of electrons
over their total energies arises when the electron emis-
sion occurs from a region with a width of about 10 nm
that lies in the vicinity of the grain boundaries [6]. This
experiment was numerically simulated in the two-
phase model [3, 4] of the nanocrystalline-material
structure. This simulation supports the assumption that
the formation of the nanocrystalline structure leads to
the appearance of current tubes with a lower work func-
tion (grain boundaries) [7, 8]. The direct determination
of the electron work function for a nanocrystalline
metal is urgent from both the fundamental and applied
points of view. The work function determines the oper-
ating efficiency of many types of electron sources.
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In this study, the work function for electrons in a
nanocrystalline metal is determined by measuring the
contact potential difference. For the comparative anal-
ysis, the work function is also measured for a coarse-
grained metal. We investigate 99.99%-purity tungsten.
Its nanocrystalline structure was obtained by severe
plastic deformation up to the true logarithmic degree
e = 7 by torsion under quasi-hydrostatic pressure using
a Bridgman anvil-type setup. The disk nanocrystalline
samples were about 10 mm in diameter and 0.1–0.2 mm
thick. The coarse-grained state was obtained by anneal-
ing a nanocrystalline sample for 20 min at a tempera-
ture of 1500°C. The sample microstructure was
checked by means of a JEM-2000EX transmission
electron microscope.

The work function was determined by electron-
beam measurements of the contact potential difference
(the Anderson method [9]). The measuring unit of the
experimental setup is a three-electrode electron-optical
system. It consists of a hot cathode, a focusing elec-
trode, an anode with a grid hole in its central area for
the ejection of a parallel electron beam into the retard-
ing region in front of the sample, and the sample on
which the external retarding potential Ur will be applied
(Fig. 1). The measuring unit was placed in the work
chamber of a VUP-4 vacuum setup. The measurements
were performed in vacuum of ≤10–3 Pa. Both the mea-
surements of the retarded current on the sample and the
data processing were controlled by means of a personal
computer connected with a CAMAC module. The hot
cathode was manufactured from a tungsten wire. The
disk samples were cut to have a diameter of about
5 mm. The retarded current being measured was ampli-
fied by a highly sensitive preamplifier and then was
transmitted to an analog-to-digital converter. The
retarding potential is applied to the cathode unit via a
digital-to-analog converter so that the cathode–grid
potential remains constant. Software employed in the
measurements ensured the recording of the retarded-
current intensity as a function of the retarding potential.

The system of the sample and cathode in the electric
contact reaches equilibrium when their electrochemical
potentials are equal to each other. In this case, the con-
tact potential difference Ur , equal to the difference of
their work functions eUr = ϕ – ϕc , arises between them.
004 MAIK “Nauka/Interperiodica”
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In the experiment, we measured the current Ir on the
sample (retarded current) as a function of the potential
difference Ur (retarding potential) between the electron
source and sample. At the initial stage, the measure-
ments were performed with a nanocrystalline tungsten
sample. Later, this sample was annealed and the mea-
surements were repeated under the same conditions.
The difference ϕNC–ϕ0 of the work functions for the
nanocrystalline and annealed samples was determined
by the relative potential shift of the Ir(Ur) curves for
these samples.

The studies with a transmission electron microscope
showed that a nanocrystalline structure with an average
grain size of about 100 nm was formed in the tungsten
samples due to severe plastic deformation. The diffuse
contrast at the grain boundaries and the extinction bend
contours inside grains testified to the nonequilibrium
state of the majority of the grain boundaries. After the
annealing of nanocrystalline samples, their microstruc-
ture was recovered, and the average size of the grains in
them increased to several microns.

Figure 2 shows the measured retarding curves (zero
in the ordinate axis is chosen conditionally). The shift
of the curves determines the difference in the tungsten
work functions in the nanocrystalline and annealed
coarse-grained states. The shift was found according to
the intersection of the approximated linear segments of
the curves with the abscissa axis. The curve for the
nanocrystalline tungsten is shifted by 0.8 V towards
lower potentials compared to the coarse-grained metal;
i.e., the work function for the nanocrystalline metal is
lower by 0.8 V.

Thus, we have found that the formation of a nanoc-
rystalline structure results in a decrease in the electron

Preamplifier

IrUr

– Uc

Ua 

+

–

– +

Anode

Cathode

Sample

Focusing electrode

Fig. 1. Electrode system of the experimental setup and the
layout of measurements.
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work function of a metal. For tungsten with a grain size
of about 100 nm, this decrease is equal to 0.8 V.
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The problem of distortion of a radio pulse in disper-
sion media was posed about a century ago [1] and, as
before, remains urgent by virtue of its importance for
practice. In this connection, the problems of the pene-
tration of radio pulses through the ionosphere are of
independent significance. Efforts performed in this
direction concern the analysis of data obtained as a
result of analytical or numerical inverse Fourier trans-
formation of the frequency spectrum of propagating
signals [2–11]. The majority of the relevant studies use
the approximation of a narrow-band signal. This makes
it possible to significantly simplify the analysis of dis-
tortions of Gaussian or rectangular pulses under condi-
tions of significant constraints imposed on the problem
parameters. In these studies, the approximation of col-
lisionless plasma also is usual. In the case of wide-band
pulses applied in communication, radar technique, and
probing of the environment, constraints of such a type
turn out to be inapplicable, so that the inverse Fourier
transformation can be performed only numerically
(see, e.g., [12, 13]).

In the present paper, we develop an approach capa-
ble of describing the propagation of radio pulses in an
ionized medium with allowance made for collisions.
The approach is based on the time representation of a
radio signal. The analytical description for the space-
time evolution of the initial envelope of a sufficiently
general form is obtained.

The propagation of a radio pulse is described by the
wave equation

(1)

where E is the electromagnetic-field intensity, c is the
speed of light, z is the pulse-propagation direction, t is
time, and P is the polarization of a unit volume of the
medium. According to the model of a medium with free
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charges [14, 15], the polarization P is described by the
equation

(2)

In Eq. (2), e and m are the electron charge and mass,
respectively; N is the electron concentration; and νe is
the effective collision frequency, which takes into
account the electron energy loss in collisions with neu-
tral molecules and ions.

At the boundary of the half-space z ≥ 0, in which a
pulse propagates, we can write out the field E in the
form

(3)

Here, ω = 2πf, f is the carrying frequency (or the filling
frequency), and A(0; t) is the pulse envelope for z = 0.

The pulse leading front always propagates at the
velocity of light in the given medium. Correspondingly,
the field E is sought in the form

(4)

where k =  =  is the wave vector.

We now replace the variables in Eqs. (1) and (2):

(5)

Then, with allowance made for expressions (4), we
obtain

(6)

(7)
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ω
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c
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We compare the first and third terms in the left-hand
side of Eq. (6) as applied to the radio pulse (with filling)
under consideration. Its characteristic duration tp obeys
the inequality ftp @ 1, whereas the pulse, in itself, occu-
pies the interval Lp = ctp @ λ in the z' axis. Thus, the esti-
mate

(8)

is valid and the first term in the left-hand side of Eq. (6)
can be ignored.

As the position and velocity of an electron cannot
vary instantaneously, at the moment of the pulse arrival
at the point z', the conditions

are fulfilled. Then, the solution to Eq. (7) is

(9)

We now substitute solution (9) into Eq. (6). With due
regard for estimate (8), the equation for the pulse enve-
lope A(z'; t') takes the form

(10)

Furthermore, using the Laplace transforms in terms of
the variable t' to expression (10), we arrive at

(11)

Here, the notation F(z'; p) = (z'; t)exp(–pt')dt';

F(p) = (0; t')exp(–pt')dt' is the Laplacian image of

the initial envelope; δ = δ(z) = ; τ = γz' is the

route optical depth; γ =  is the power absorp-

tion coefficient of plasma [6] (for νe ! ω); and it is
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assumed that A(z'; 0) = 0. The last condition is evidently
fulfilled for a pulse whose initial envelope is zero at
t = 0. Performing the inverse Laplace transform, we find

(12)

[here and below, Jk(x) is the Bessel function].

Based on expression (12), we consider distortions of
a biexponential pulse with its envelope,

(13)

This pulse is a good approximation for those with dif-
ferent slopes of the leading and trailing fronts. Substi-
tuting (13) into (12), we have

(14)

where

(15)

Performing integration in (15) by parts an infinitely
large number of times, we reduce the expression
A(z'; t'; α) to the form

(16)
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mann series), we obtain

(17)

Finally, performing integration by parts in (17) and

introducing a new variable x = , we arrive at the

final expression for the first component for the biexpo-
nential-pulse envelope [see (14)]:

(18)

The term A(z'; t'; β) is obtained from A(z'; t'; α) by sub-
stituting α for the quantity β.

Distortions of a so-called sine pulse are analyzed in
a similar manner. The initial pulse envelope is given by
the expression

(19)
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We represent envelope (19) in the form

(20)

where

and substitute (20) into formula (12). Performing oper-
ations analogous to those described above, we arrive at
the following expressions for the deformed sine pulse:

(21)

(22)

We now obtain the solution to the problem for the rect-
angular pulse shape. In this connection, we note that, in
the case of the simultaneously tending α  0 and
β  ∞, a biexponential pulse transforms into a step-
function signal with the amplitude A0 , the zero value of
A being conserved as t = 0. Using the corresponding
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transformations in (14) and (18) at t' > 0, we find the
envelope of the initial step-function signal in the form

(23)

The passage from the envelope of a step-function sig-
nal (23) to the envelope of a rectangular pulse occurs by
analogy with formula (22). The figure illustrates fea-
tures of the envelope deformation of a rectangular pulse
for the parameter values f = 2.8 MHz, tp = 0.5 ms, and
νe = 103 s–1 (see 12, 13]). The pulse weakens and delays
proportionally to the route optical depth as compared to
the hypothetical case of its propagation at the speed of
light.

A z'; t( ) = A0
δ

νe iω+
-----------------– 

  1 νe iω+( )t'–( ) ∫exp+exp

× 2δ
νe iω+
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Deformation of the envelope of a rectilinear radio pulse in
homogeneous isotropic plasma for the route optical depth
(1) τ = 0.5 and (2) 1.0.
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Finally, as t'  ∞, we obtain from (23)

(24)

The first multiplier in (24) describes a decrease in the
amplitude, whereas the second one corresponds to the
phase increment of the plane wave when it passes by
the path z' [6]. This was expected, since, with increasing
t', the problem of the incidence of a step-function signal
onto the semi-infinite homogeneous medium trans-
forms into that of the propagation of a plane wave in a
homogeneous medium.
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ESSENCE OF THE PROBLEM

The problem of the determination of electromag-
netic fields in the immediate vicinity of radio devices
(i.e., from the standpoint of the antenna-theory termi-
nology, in the antenna’s near-field zone) is associated
with studies of electromagnetic compatibility, electro-
magnetic ecology, and methods of antenna measure-
ments. Usually, the electromagnetic field generated by
an electric dipole (Fig. 1) is calculated on the basis of
the z component of the electrodynamic vector potential

 for the electric current. This component is deter-
mined in terms of the component of the electric current

Iz(z) = 2πa (z) on the dipole (  is the component of
the surface-current density on the dipole and a is the
dipole radius) [1–3]:

(1)

where

(2)

Here, R = , k =  ε and µ are the

permittivity and permeability of the dipole environ-
ment, respectively, and l is the dipole length. It is evi-
dent that G(ρ, z – z') is the free-space Green’s function
of a point source located at the point {ρ = 0, z = z'}. The
unknown electric-current distribution Iz(z) on the dipole
is usually found from either the Pocklington or Hallen
integral equations [1–3]. Based on the function Iz(z) and
employing the usual differentiation of expression (1)

Az
e

η z
e η z

e

Az
e ρ z,( ) Iz z'( )G ρ z z'–,( ) z,d

l–

l

∫=

G ρ z z'–,( ) 1
4πR
---------- ikR–{ } .exp=

z z'–( )2 ρ2+
ω

c εµ
-------------,
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with respect to the coordinates ρ and z [1–3], it is easy
to derive expressions for the components of the electro-
magnetic field generated by the dipole at any point in
space.

The reliability of the fields E and H numerically cal-
culated for the near-field zone of the electric dipole
must be verified for at least two reasons. First, the deter-
mination of the unknown electric current Iz(z) on the
dipole from the Pocklington and Hallen integral equa-
tions (Fredholm integral equations of the first kind)
leads to an ill-posed problem (see [4]). Second, the use
of Green’s function (2) to calculate the field leads to a
self-inconsistent setting of the problem, because the
passage to the limit from the near-field zone to the field
(current) on the dipole surface is absent. By the method
of singular integral equations developed in [5–7], the
problem of calculating the electric current on the dipole
is reduced to the Fredholm integral equation of the sec-
ond kind. This approach provides for a mathematically
correct determination of the surface-current density on
the dipole.

ρ

z

l0 + b

l0 – b

l

l0

–l

2a

Fig. 1. Electric dipole geometry.
004 MAIK “Nauka/Interperiodica”



        

SINGULAR INTEGRAL REPRESENTATION OF THE ELECTROMAGNETIC FIELD 737

                                                                     
In this study, which generalizes the results of [5–7],
an algorithm is described for calculating the electro-
magnetic field of a radiating structure at an arbitrary
point in space. The singular integral representations
obtained for the electromagnetic-field components
make it possible to calculate the field at any point in
space by integrating the longitudinal component of the
surface-current density on the dipole. One of the impor-
tant advantages of these relationships is that, on the
dipole surface, they take the form of a singular integral
equation [7] for determining the unknown surface-cur-
rent distribution. Then, this distribution can be used to
find the electromagnetic field of the dipole. It is worth
noting that the method of the singular integral represen-
tation of the electromagnetic field was apparently pro-
posed for the first time for solving the inner problems
of natural waves of shielded stripe-line microwave
structures [8].

SETTING OF THE PROBLEM. 
SINGULAR INTEGRAL REPRESENTATION

FOR FIELD COMPONENTS

We consider the electromagnetic field of a perfectly
conducting tubular electric dipole [7] of length 2l and
radius a, which is excited in the gap region (z ∈ [l0 – b,
l0 + b]) by a high-frequency generator (Fig. 1). Under
the assumption that the field is independent of the ϕ
coordinate, Maxwell’s equations split into two inde-
pendent sets with respect to the components {Eρ, Ez,
Hϕ} and {Eϕ, Hρ, Hz}. We start from the set of Max-
well’s equations that describes the behavior of the com-
ponents Eρ, Ez, and Hϕ . In this case, only the longitudi-
nal component of the surface-current density exists on
the dipole surface.

The initial expression required to obtain the singular
integral representation of the electromagnetic field is
relationship (1) for the z component of the electrody-

namic vector potential  for the electric current
expressed in terms of the electric current Iz(z) on the
dipole, but with the other Green’s function [9]

(3)

Here, ν = , J0(x) is the zero-order Bessel func-

tion of the first kind, and (x) is the zero-order Han-
kel function of the second kind. It is easy to show that
Green’s function (3) has a logarithmic singularity as
z  z'.

Az
e

G ρ z z'–,( )

=  
1

8πi
-------- e ih z z'–( )– J0 iaν–( )H0

2( ) iρν–( ) h.d

∞–

∞

∫

h2 k2–

H0
2( )
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Using potential (1) to separate the singularity in
Eq. (3) in explicit form, we can write the singular inte-
gral representations

(4)

These representations determine the electromagnetic
field of the electric dipole at any point in space in terms

of both the current Iz = 2πa  and its derivative J = 

with respect to the coordinate z. The Green’s functions
Gρ and Gz belong to the space of square integrable func-
tions and are integrals whose integrands decrease rap-
idly as their arguments increase. The functions S1 and S2
have the isolated singularities

(5)

For ρ = a, z ∈ [–l, l] (i.e., for the field on the dipole sur-
face), we arrive at the expressions

where δ(z – z') is the delta function. In this case, expres-
sions (4) yield the values of the electromagnetic-field
components on the dipole surface.

We now use the boundary conditions on the surface
ρ = a:

where  is the z component of the extraneous electric
field in the dipole gap. In this case, instead of the sec-
ond relation in (4), we can write the following singular

Eρ
1

iωε0ε
-------------- J z'( ) Gρ ρ z z'–,( ) S1 ρ z z'–,( )+[ ] z',d

l–

l

∫=

Ez
1

iωε0ε
-------------- J z'( ) Gz ρ z z'–,( ) S2 ρ z z'–,( )+[ ] z',d

l–

l

∫=

Hϕ – Iz z'( ) Gρ ρ z z'–,( ) S1 ρ z z'–,( )+[ ] z'.d

l–

l

∫=

η z
e dIz

dz
-------

S1 ρ z z'–,( ) 1

4π2 aρ
------------------- ρ a–

z z'–( )2 ρ a–( )2+
-------------------------------------------- ,–=

S2 ρ z z'–,( ) 1

4π2 aρ
------------------- z z'–

z z'–( )2 ρ a–( )2+
-------------------------------------------- .–=

S1
1

4πa
---------δ z z'–( ),–=

S2 a z z'–,( ) –
1

4π2a z z'–( )
----------------------------,=

Ez

0 for z l l0 b–,–[ ] ∪ l0 b l,+[ ] ,∈

Ez
ex for z l0 b l0 b+,–[ ] ,∈




=

Ez
ex



738 NEGANOV
integral equation for the determination of the unknown
function J(t) (t ∈ [–1, 1]):

(6)

where M(t – t') is the known regular kernel and σ is the

known constant. The dimensionless variables t =  and

t' =  are used in Eq. (6). We can see that Eq. (6) coin-

cides with the singular integral equation obtained in [7]
by another method.

ELECTROMAGNETIC FIELD
OF THE ELECTRIC DIPOLE 
IN THE NEAR-FIELD ZONE. 

NUMERICAL RESULTS

Singular integral representations (4) of the dipole
electromagnetic field, together with singular integral
equation (6), allow us to mathematically justify an
approach to calculating the electromagnetic field of the
electric dipole in the near-field zone. As an example,
Fig. 2 shows the distribution obtained by this method
for the modulus of the component Ez of the electric field
for dipole radiation on the surface ρ = a as a function of

the coordinate t = . The calculation was performed for

the symmetric dipole (in Fig. 1, l0 = 0) with the geomet-

ric parameters  =   =  and  =  and a

1
π
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t t'–
----------- t' J t'( )M t t'–( ) td
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1

∫+d
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Fig. 2. Product |Ez|a vs. the normalized coordinate  for

ρ = a.

z
l
--

z
l
--
voltage of 1 V across the gap. As is seen, for t ∈  [–1, 1]
(on the surface of the electric dipole), the z component
vanishes on the metallic surface; i.e., the boundary con-

dition is fulfilled. In the gap t ∈ , , the mod-

ulus of Ez is equal to the extraneous exciting function

. For |t| > 1 and near the dipole end walls, the Ez

component tends to infinity, which corresponds to the
behavior of the electromagnetic field in the vicinity of
metallic ribs [10].

The singular integral representation obtained in this
work for the electromagnetic field provides the transi-
tion to the limit from the electromagnetic field in the
near-field zone of the electric dipole to the field on the
dipole surface. For comparison, the commonly used
approach to calculating the electromagnetic field on the
basis of Green’s function (2) does not ensure this pos-
sibility. In particular, the electromagnetic field obtained
in the latter approach near metallic ribs does not satisfy
the condition on the rib [10]. The approach proposed in
our paper can be generalized for other radiating struc-
tures.
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Teflon-like films are produced by deposition from a
gas-phase of various fluorocarbons and their mixtures
or fragments of polytetrafluoroethylene (PTFE) with
various-size molecular chains (including monomers).
The flow composition and energy states of particles
being deposited are specified by the technology
employed, whereas the properties of the film to be pro-
duced essentially depend on the nature, state, and tem-
perature of the substrate. To produce teflon-like films
by deposition from a gas-phase, the following methods
are most often used: ion-beam deposition [1], electron-
beam [2] and laser-beam [3] ablations, plasma chemi-
cal processes [4], thermal destruction of PTFE with
evaporation [5], and thermal activation of gases con-
taining fluorocarbons [6]. The common feature typical
of the methods listed above is the indeterminacy of the
concentration and molecular composition of the gas
phase produced. In this paper, we studied the deposition
of thin teflon-like films from a free supersonic jet con-
sisting of products of PTFE thermal decomposition
(including the monomeric state) in a reactor. The use of
such a “gasification” of PTFE has a number of advan-
tages.

From the published data [7, 8] it is known that, at a
pressure of several Torr and at a temperature exceeding
800 K (in the case of thermodynamic equilibrium), the
thermal decomposition of PTFE results in a 97% yield
of C2F4. The gas-dynamic and kinetic properties of
C2F4 are well studied and can be employed to estimate
the flow characteristics.

In the method that we used, high-temperature
decomposition products of a polymer loaded into a
reactor in the condensed state or delivered to it in the
gas phase are expanded into a vacuum chamber through
a sonic or supersonic nozzle. Upon expanding the flow
from the sonic nozzle into immobile gas with a low
pressure Pl, a jet with a barrel-shaped shock wave is
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formed. The jet is terminated by the Mach disk located

at a known distance, namely, lM = 0.67d  from

the nozzle. Here, P0 is the stagnation pressure and d is
the nozzle diameter. Based on the recommendations
of [9], we have performed the majority of our experi-
ments in a configuration in which the substrate was sit-
uated in front of the Mach disk with P0d ≈ 50 Torr mm

and  ≈ 10 Torr, where l is the nozzle–substrate

spacing.
Under the above conditions and at the stagnation

temperature T0 ≈ 900 K, the maximum flow velocity
was higher than 100 m s–1. In the experiments, a com-
pressed layer joined to the shock wave was formed in
front of the substrate.

The experiments were carried out using a gas-
dynamic low-density setup belonging to the Institute of
Thermal Physics, Siberian Division, Russian Academy
of Sciences. It was possible to control the deposition
process and, as a consequence, to modify the structure
and properties of the film produced by varying different
parameters such as T0, P0, Pl, d, l, the nozzle shape, the
structure of the substrate surface and its temperature Ts ,
the geometric orientation of a substrate with respect to
the jet, or by using a carrier gas with a different nature
and relative concentration, as well as an external energy
action on the flow. Using a set of substrate holders, we
investigated the effect of different materials on the
structure of the film produced. For materials we used
the following: (a) polished surfaces of metals and alloys
(copper, carbon steel, stainless steel, and an aluminum
alloy); (b) surfaces of silicon, vacuum rubber, organic
glass, PTFE, nylon, and vacuum-oil films. The basic
parameters of the deposition process were the follow-
ing: P0 = 5 Torr, T0 = 620°C, Pl = 4 × 10–2 Torr, and
Ts = 50°C. In this and other cases, the morphology of
the films was examined with an LEO-420 scanning
electron microscope. The surface IR spectra were mea-
sured with an IFS-66 Fourier spectrometer. For the
above-indicated parameters of the experiment, differ-
ent-scale dendritic structures that formed a developed
surface were observed. The surface area measured by
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Fig. 1. (a) Image of a film deposited at a temperature of Ts ≈ 50–150°C for the helium carrier-gas mass fraction yHe ≈ 50% and
(b) the Fourier transform of the film IR absorption spectrum.
the method of gas sorption has shown its enlargement
by a factor of ~1500 compared to the geometric projec-
tion. Depending on the type of substrate, the size of the
primary branches d1 varied from 2 to 10 µm. It was
found that the value of d1 and the film porosity correlate
with the thermal diffusivity of the substrate material
and its chemical composition.

The effect of Ts on the properties of the films was
investigated by simultaneously depositing films onto
four polished copper plates (10 mm in diameter) that
had different surface temperatures as measured by ther-
mocouples. In accordance with the estimate of the equi-
librium expansion of C2F4 (with the adiabatic index
γ ≈ 1.1), the jet parameters at the substrate location
point are the following: the Mach number is M ≈ 4, the
Knudsen number is Kn ≈ 0.5, and the temperature is
Tf ≈ 230°C.

Similar experiments were performed with helium as
a carrier gas. The mass fraction of He in the reactor was
yHe ≈ 50%. In this case, the average relative molecular
mass of the mixture and the adiabatic index γ were 55
and ≈1.32, respectively, whereas the temperature of the
expanding mixture near the substrate was Tf ≈ 130°C.
When the carrier gas was used, a much more intense
deposition was observed.

As an example, we present here the most contrasting
structures obtained in this study. Figure 1a shows the
DOKLADY PHYSICS      Vol. 49      No. 12      2004
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Fig. 2. (a) Image of a film deposited at a temperature of Ts ≈ 290°C for the helium carrier-gas mass fraction yHe ≈ 0% and (b) the
Fourier transform of the film IR absorption spectrum.
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morphology of the film produced at low substrate tem-
peratures (in the process of deposition, the temperature
Ts varied from 50 to 150°C), in the case in which the
carrier gas was used. The IR absorption spectrum cor-
responding to this structure is shown in Fig. 1b. The
film spectrum differs from that of the initial crystalline
PTFE only by the presence of a shoulder at 1000 cm–1

and a slight absorption at 745 cm–1. These facts indicate
an elevated concentration of CF3 end groups, i.e., the
lower molecular weight of structural units compared to
the initial material. Absorption bands of the symmetric
(1155 cm–1) and asymmetric (1215 cm–1) extension of
DOKLADY PHYSICS      Vol. 49      No. 12      2004
CF2, as well as the effect of bonds in CF2 groups
(641/629 cm–1) correspond to pure crystalline PTFE
(linear molecular chains); within the range 1400–
4000 cm–1, the absorption is absent [10].

Figure 2a shows the amorphous structure obtained
at a high substrate temperature Ts ≈ 290°C without the
use of the carrier gas. The IR absorption spectrum for
this structure is presented in Fig. 2b. From a compari-
son of Figs. 1a, 1b and Figs. 2a, 2b, it follows that the
process of structural relaxation at high substrate tem-
peratures is incomplete. The additional absorption
bands in Fig. 2b testify to the presence of highly
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branched short molecules with a large number of dou-
ble bonds.

The data obtained in this study are in good agree-
ment with those of [11].

We can emphasize two key features of film deposi-
tion from a gas flow by the method described above.
First, there is a possibility of using a monomeric initial
gas with further polymerization on a substrate and, in
part, in the adiabatically expanding supersonic flow.
Second, one can realize a unique possibility of control-
ling the deposition process by varying the parameters
that determine the gas flow and the state of a substrate.
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In effluxes of submerged swirling jets into open
space, oscillation phenomena often arise. These phe-
nomena manifest themselves as strong periodic pulsa-
tions of pressure and velocity, which lead to acoustic
radiation (e.g., in air). The results of the first [1] and
later [2–6] systematic investigations in this field of
research are presented in the literature. However,
although the above effects have been known for a long
time, the origin of these periodic pulsations, as well as
their generation mechanism, have remained poorly
understood up to now. Such a state of affairs is
explained by the complicated, three-dimensional, and
unsteady character of the flows. The most widely
known hypotheses on the generation mechanism are the
precession of the entire vortex core about the vortex-
chamber symmetry axis [4], or the rotation of the vortex
core that has been twisted into a spiral after its escape
from the chamber [5]. It was also assumed that a coun-
terflow from the open space into the chamber is concen-
trated near the symmetry axis, where an immobile
(rest) point can appear due to the collision of flows
coming from inside and outside the chamber [3].

In this study, we have found a new generation mech-
anism for the oscillations. It is established that, in the
case of efflux in the form of a submerged swirling jet
through a nozzle from a vortex chamber, the vortex core
that coincides with its axis inside the chamber sharply
deviates in the nozzle, away from the symmetry axis
and towards the nozzle wall. As a result, a bend resem-
bling the end of a hockey stick is formed. The bent part
of the vortex core rotates around the symmetry axis of
the chamber. This flow structure can be explained by
the fact that, unlike in the previous concepts, the rest
point in the case of the efflux of the swirling jet into the
open space is shifted in the radial direction from the
symmetry axis. As a result, both the rest point and the
vortex bend rotate around the symmetry axis, produc-
ing periodic pulsations of the flow parameters.
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Novosibirsk, 630090 Russia
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1. Experimentally, a swirling jet can be produced as
a result of fluid outflow from a vortex chamber. Such a
formation is an imitation of typical flows that arise in
various swirling systems. A vortex chamber is a hollow
cylinder, one of whose ends is blocked off while the
other terminates in a nozzle. The profile of the nozzle
inside the chamber has the shape of a convergent
10-mm-long confuser that further smoothly passes to a
10-mm-long cylindrical hole. The chamber and the
nozzle are shown in Figs. 1, 2, and 4. A fluid is deliv-
ered into the vortex chamber tangentially to the cham-
ber surface through six identical slit channels made on
the cylindrical-chamber surface near the closed end.
The entire design has axial symmetry. The diameter of
the vortex chamber is 28 mm, and the slit widths are
2 mm. In the basic series of our experiments, the
lengths of the chamber and of the slits were 77 and
6.7 mm, respectively. The output diameter of the nozzle
was 14 mm. In this design, there is a possibility of
replacing the nozzles and varying the lengths of the tan-
gential inputs and of the chamber itself. The experi-
ments were performed in water. The vortex chamber
was installed vertically, with the nozzle directed
upward. The fluid exited this chamber into a vessel with
the shape of a rectangular parallelepiped (180 × 180 ×
300 mm3 in size), from which, in turn, the fluid exited
through drains in the upper part of the vessel. The
dimensions of the vessel were sufficiently large so that
the fluid in the regions outside the jet was virtually
immobile. In our experiments, we studied the unsteady
motion of the vortex core and the qualitative structure
of the flow near the nozzle output. The mass fluid-flow
rate was determined. From this quantity and the input-
slit areas, the input flow velocity was calculated.
Finally, based on the known flow velocity, the chamber
radius, and the kinematic viscosity, we found the Rey-
nolds number.

2. The position of the vortex core was visualized
using small air bubbles. The bubbles were introduced
into the chamber through either a small hole 0.6 mm in
diameter at the closed-end center or via tangential
inputs along with the fluid. This method is based on the
assumption that, due to the fluid rotation, the pressure
near the vortex-core axis is lowered. If the pressure is
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Air bubbles visualizing the vortex axis. The photographs correspond to different exposures: (left) with the flash lamp and
(right) with a long (2 s) exposure time.
low enough, then the bubbles are collected near the vor-
tex axis, thereby visualizing its position.

In the basic series of our experiments, we observed
the following phenomena. For Re < 6 × 103, bubbles
leave the core rather rapidly. For Re ≈ 6 × 103, a single
bubble is trapped near the output, where this bubble
then rotates around the symmetry axis. A similar pat-
tern was also observed in [1]. The number of trapped
bubbles increases with the Reynolds number, and they
align in a row. For Re > 1.4 × 104, the bubbles merge,
forming a continuous near-axial cavity. Figure 1 shows
photographs of bubbles obtained in the same conditions
Re = 7.5 × 103: the left and right pictures correspond
to exposures made with a flash lamp (exposure time ~
1−2 ms) and with a long exposure (exposure time ~
2 s), respectively. 

Figure 2 presents a photograph of the vortex that
was obtained with the flash lamp upon introducing a
colorant through the hole at the center of the closed
chamber end. It can be seen from Fig. 1 that the vortex
core undergoes a sharp bend inside the nozzle, whereas
its shape prior to and beyond the nozzle is virtually a
straight line. It is also seen that, immediately beyond
the nozzle, the core is absent, since the bubbles rather
rapidly leave this region and float upward. Thus, in this
region a sharp pressure jump takes place. This jump
serves as a barrier to the upward float of the bubbles.
The decay of a vortex immediately after the nozzle is
also seen in Fig. 2. The right photograph of Fig. 1 also
shows that, after curving (core bend), a part of the core
rotates around the symmetry axis to form a conical fig-
ure visible in the photograph. Before bending, the core
is rectilinear and virtually coincides with the rotation
axis. Using a stroboscope, we have established that the
bend rotates with a constant angular velocity. Under the
considered conditions, the rotation frequency was 17 Hz.

Fig. 2. Vortex photograph colored by an ink delivered at the
center of the vortex-chamber bottom boundary.
DOKLADY PHYSICS      Vol. 49      No. 12      2004
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In this case, core precession was not observed inside the
chamber, and the bubbles only slightly drifted along the
rotation axis (Fig. 1, right photograph). Using a hydro-
phone mounted on the nozzle exit section (immediately
near the nozzle output), the existence of pressure pulsa-
tions was established, and the frequency at which the
pulsation amplitude was maximal was determined. This
frequency coincides with the core-bend rotation fre-
quency. It was also found that this frequency does not
vary either in the presence or in the absence of bubbles.
Thus, the bubbles do not noticeably affect the flow.
With an increase in the Reynolds number (when a con-
tinuous cavity forms along the vortex axis), the pattern
remains similar to that shown in Fig. 1. The cavity that
is rectilinear inside the chamber is sharply deviated in
the nozzle, and the bend rotates with a constant angular
velocity.

3. To explain the flow features observed, it is neces-
sary to model its kinematic structure, which qualita-
tively differs from those proposed previously [3, 4]. In
the development of such a model, it was taken into
account that the bend rotates with a constant angular
velocity, and that the collision of the jet flowing out of
the chamber with the counterflow from the open space
occurs. The existence of the counterflow was known
earlier [3] and was confirmed in our experiments
described above. As a result, the instantaneous pattern
of streamlines before the vortex decay in the reference
system lying in the vortex-axis plane and rotating along
with the bend can be qualitatively presented in sche-
matic form in Fig. 3. The symmetry axis is shown by
the OO line and the rest point is a. Note that this struc-
ture is not completely immobile but executes small
oscillations in both the axial and radial directions,
which is confirmed by observations of the bubbles. In
addition, in the laboratory reference system, this pat-
tern rotates around the OO axis. As follows from Fig. 3,
the vortex core and the larger part of the fluid flowing
out of the chamber along its axis are deviated in one
direction.

To verify the flow structure presented here, we per-
formed the following experiment. A thin tube 0.6 mm
in diameter was placed along the continuation of the
chamber axis at a distance of 4 mm from the nozzle exit
section. Through this tube, a colorant was slowly intro-
duced. Figure 4 shows a photograph showing the colo-
rant outflow from the tube. The photograph was
obtained with illumination by a flash lamp. It is seen
that the colored line is deviated from the chamber axis
in one direction. In the laboratory reference system, the
line rotates around this axis and qualitatively corre-
sponds to the streamlike bc in Fig. 3. Note that, since
the precession of the vortex core before the appearance
of the bend was not observed in our experiments, this
implies that the vortex-core axis prior to the bend was
close to or coincided with the OO line. Otherwise, pre-
cession would be observed. Experiments performed
with nozzles 8 and 20 mm in diameter yield results
qualitatively similar to those presented above.
DOKLADY PHYSICS      Vol. 49      No. 12      2004
Thus, in this study, we have discovered the possibil-
ity of the existence of flows with a sharp bending of the
linear vortex that rotates at a constant angular velocity.
In order to explain the phenomenon observed, we have
proposed a flow structure in which the rest point, in the

O
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O

Fig. 3. Schematic pattern of streamlines in the plane of the
vortex axis in the rotating frame of reference.

Fig. 4. Flow at the nozzle exit section. The visualization is
made by an ink delivered to the symmetry axis. The photo-
graph was taken with the illumination by a flash lamp.
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case of the collision of a swirling jet with the counter-
flow, is not located on the symmetry axis: it is shifted
from it in the radial direction. As a result, the rest point
and the bend rotate around the axis. Note that the sym-
metry violation observed takes place even in the pres-
ence of axial symmetry of the chamber; i.e., it is a prop-
erty of the rotating flow itself. The results obtained pro-
vide qualitatively new insights into strongly swirling
flows.
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INTRODUCTION

The ability of air bubbles in a liquid to move spon-
taneously toward a decrease in the surface tension [1]
can have a significant effect on various technological
processes occurring in multicomponent media. This is
especially important under conditions when the gravi-
tational mechanisms responsible for motion are weak
or absent (for example, in microgravity) [2]. Usually,
this motion arises in nonuniformly heated liquids due to
the temperature dependence of the surface tension coef-
ficient σ. In this case, the effect is called thermocapil-
lary migration of bubbles [3]. Meanwhile, in nonuni-
form-composition media (in particular, in binary solu-
tions of liquids), the other reason for changing the
surface tension σ can exist. We imply the dependence
of surface tension on the concentration of a dissolved
substance. In such a situation, the solutocapillary
migration, i.e., motion of bubbles toward the more sur-
factant of a solution, will be observed. Experimental
examination of the phenomenon is much hampered by
both subsidiary effects associated with the presence of
gravity and difficulties in producing a stationary con-
centration gradient. It should also be noted that the
methods of measuring such gradients on the free sur-
face still remain poorly developed. Therefore, the solu-
tocapillary migration of bubbles, which is predicted
theoretically, was not previously observed in experi-
ments.

In this study, under ground-based laboratory condi-
tions, we have discovered and examined the migration
of air bubbles in inhomogeneous aqueous methanol
solutions. With this purpose in mind, we have devel-
oped a number of methods making it possible to sup-
press the action of gravitational mechanisms of motion
and produce quasisteady longitudinal concentration
gradients of a surfactant in thin horizontal layers of liq-
uid. We have measured the dependences of the migra-
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tion velocity on the bubble size, time, concentration
gradient, and parameters of liquid. It was established
that, unlike the thermocapillary effect, the solutocapil-
lary migration rather rapidly decays with time. We
assumed that this can be caused by the adsorption of a
surfactant on the free surface of a bubble.

EXPERIMENTAL METHOD

Under laboratory conditions, the motion of bubbles
is mainly hampered by the buoyancy force, which
causes bubbles to ascend in a vertical direction. There-
fore, to neutralize the effect of gravity, we used a tech-
nique similar to that applied by us previously in studies
of thermocapillary bubble migration in nonuniformly
heated liquid [4]. Small air bubbles were introduced
into a thin horizontal layer of liquid having a longitudi-
nal concentration gradient. The layer was bounded at
the top and bottom by solid surfaces. In this case, the
bubbles turned out to be pressed by the buoyancy force
to the upper boundary of the layer. Therefore, they were
able to move only horizontally toward the concentra-
tion gradient. Small bubbles with a diameter less than
the layer thickness retained their spherical shape,
whereas bubbles of a larger size take the shape of a
cylindrical pellet flattened out between the horizontal
walls of a cell.

Of course, in such a formulation of the problem, the
interaction between bubbles and the solid boundaries of
the liquid begins to play a significant role. The neces-
sary condition of bubble motion is the presence of a thin
interlayer between the bubble ends and the cell walls.
This can be attained only in the case in which the solid
surface is completely wetted by the liquid (wetting
angle is close to zero). Then, a bubble does not adhere
to the walls and acquires the ability to freely slide along
them. The existence of such a thin film was confirmed
by special interferometric experiments. Another prob-
lem in the experiments is the impossibility of maintain-
ing a given concentration gradient. This is stipulated by
the fact that the maintenance of a concentration differ-
ence assumes the introduction and, consequently,
removal of the mixture at the opposite ends of a cell,
which causes undesirable additional flows. We man-
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aged to produce only a quasi-steady concentration gra-
dient, the value of which decreases with time due to dif-
fusion. Hence, the necessity of permanently determin-
ing the concentration fields of surfactant by optical
methods follows.

The cell used in our investigations was an interfero-
metric cell made in the form of rectangular cavity with
sizes of 90 × 40 × 1.2 mm. Its walls were made of
plane-parallel glass plates with semitransparent mirror
coating. The observation was performed in reflected
light on the wide-facet side. A Fizeau laser interferom-
eter made it possible to visualize the concentration dis-
tribution within the liquid in the form of isolines of the
refractive index whose variation is proportional (in the
isothermal case) to the concentration change [5]. The
cell was filled with aqueous solutions of methanol with
concentrations of C0 between 80 and 100% (by concen-
tration, we imply the mass fraction of a surfactant dis-
solved in water). Methanol solutions were chosen after
test experiments with various liquids. Preliminary
experimental studies have shown that, in the majority of
liquids, the arisen solutocapillary flow turns out to be
too weak in order to overcome the friction forces and
cause bubble motion. At the same time, in experiments
with methanol solutions, the solutocapillary migration
of bubbles was clearly seen, owing to a very fortunate
combination of physicochemical methanol properties.
Methanol satisfies the main requirements specific for
working liquids: total wetting, transparency, nonag-
gression properties, and density close to that of water.
In addition, it is characterized by the least viscosity and
surface tension [6]. These properties characterize it as
an extremely strong surfactant with respect to water. In
combination with low viscosity, this considerably
intensifies the solutocapillary flows. Within the range
of chosen concentrations, the methanol solutions have
nearly linear concentration dependences of density, vis-
cosity, surface tension, and refractive index. All the
experiments were performed in the isothermal regime
at a temperature of (20 ± 1)°C.

5

150 30 45 t, min

10

15

20
∇ C, %/cm

1

2

Fig. 1. Time dependence of the concentration gradient at the
cell center.
The longitudinal concentration gradient in the hori-
zontal layer of the solution was produced according to
the following method [7–9]. First, the experimental cell
was installed vertically on a small facet and was half
filled with the solution. Thereafter, the lighter pure
alcohol was added from above. 10–20 s later, a distribu-
tion of the concentration stratified in density was estab-
lished in the cell (due to the gravitational force). The
distribution represented two areas of initial liquids
positioned under each other and separated by a narrow
zone of diffusion transition between them. Because of
the smallness of the diffusion coefficient, such a gravi-
tationally stable vertical concentration distribution was
able to exist for several hours. As soon as the convective
motion associated with the process of pouring the liq-
uids into the cell was completed, it was turned into the
horizontal position. As a result, there appeared a con-
siderable longitudinal density difference leading the
system of the liquids to a convective shear motion. The
intensity of this flow rapidly decreased with time by
virtue of the small layer thickness and active mixing of
alcohol and its solution in counter flows. As a result, at
the cell center, an extended area of low but rather homo-
geneous longitudinal concentration gradient was
formed. The area was bounded by narrow zones of the
initial liquids near the cell ends. The transition from
one monotonous band to the other in the interference
pattern corresponded to the variation in the alcohol
concentration by about 0.3%, which allowed us to cal-
culate the value of the concentration gradient.

Figure 1 shows the time dependences of the longitu-
dinal concentration gradient at the center of the cell in
its horizontal position. In the cases (1) and (2), the layer
of pure methanol was poured above the methanol solu-
tion with the concentration 80% and 90%, respectively.
As is seen, the curves behave similarly and virtually
merge into a single curve despite of the 10% difference
in the initial concentrations. At first, the gradient very
rapidly dropped to a certain value (approximately, to
2.5%/cm) due to convective motion. However, further,
it slowly decreased for a long period of time (tens of
minutes), which corresponded to a quasi-diffusion
regime of dissolution. It is this nearly linear quasisteady
horizontal concentration gradient that was used by us to
study the solutocapillary bubble migration. Note that,
in experiments with cells of greater thicknesses (~2 mm
and thicker), the convective-flow process was com-
pletely different and the longitudinal concentration gra-
dient was not attained. Upon turning such cells (after
they had been filled with the liquids) from the vertical
position to a horizontal one, the leaking of the lighter
layer onto the heavier layer was observed, and there
appeared a two-layer system of the liquids with vertical
concentration stratification. Thus, the small thickness
(~1 mm) of the liquid layer is proven to be one of the
main requirements for successfully performing the
experiments.
DOKLADY PHYSICS      Vol. 49      No. 12      2004
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RESULTS

Using a medical syringe, we introduced an air bub-
ble into the layer of the solution in which the horizontal
concentration gradient was produced, therewith, the
bubble took the shape of a plane disk 5–15 mm in diam-
eter. As soon as the bubble was separated from the nee-
dle, it began to move toward the higher alcohol concen-
tration. Simultaneous visual observation of the concen-
tration field and the bubble position in it made it
possible to determine the concentration gradient, diam-
eter, and bubble-migration velocity at different instants
of time. A typical interference pattern is presented in
Fig. 2. The experiments performed showed that, as in
the case of thermocapillary migration [4], the maxi-
mum velocity of the solutocapillary motion is propor-
tional to both the surface-tension gradient and bubble
diameter. The results of experiments with bubbles of
various sizes for different values of the concentration
gradient are shown in the summary plot (Fig. 3), where
the ratio of maximum migration velocity u to bubble
diameter D is plotted along the ordinate axis.

At the same time, the experiments have demon-
strated that the solutocapillary and thermocapillary
mechanisms of the bubble migration significantly dif-
fer. For example, in the uniform temperature gradient,
a bubble moved with a constant time-independent
velocity. However, in the concentration field, the bub-
ble velocity monotonously dropped to zero for 40–60 s,
in spite of the fact that the concentration gradient in the
solution surrounding the bubble remained rather high.
However, a new bubble inserted into the solution near
the bubble, which was at rest, began to move. A typical
time dependence of the migration velocity is shown in
Fig. 4 (concentration gradient is 2.5%/cm and D =
7 mm). With varying the bubble size, the situation
remained qualitatively unchanged, although the migra-
tion time and path length increased with increasing the
bubble diameter.

To explain a decrease in the migration velocity, we
can assume that, in the process of bubble motion, the
bubble surface is saturated by alcohol due to adsorption
from the solution. The bulk diffusion of the surfactant
fails to entirely counteract the adsorption in producing
a uniform concentration distribution on the free sur-
face. As a result, the surface tension on the entire
boundary of the bubble rather rapidly equalizes, regard-
less of the concentration gradient in the surrounding
liquid. Therefore, the cause responsible for the bubble
migration disappears. Hence, it follows that, in other
cases in the presence of a surfactant dissolved in liquid,
the action of the solutocapillary effects can be observed
only for a limited time determined by the rate of the
adsorption process.

In our opinion, the adsorption phenomenon is capa-
ble of explaining the well-known fact that, in liquids
containing impurities of surfactant (in particular, in
high-concentrated aqueous solutions of organic liq-
uids), the thermocapillary convection is usually not
DOKLADY PHYSICS      Vol. 49      No. 12      2004
observed [10]. For example, in our experiments [9] in
which we studied the thermocapillary migration in non-
uniformly heated aqueous solutions of methanol, even
after adding to the alcohol an insignificant amount of
water (i.e., in the 90% solution that only insignificantly

Fig. 2. Interferogram of the concentration field in the pro-
cess of the bubble migration.
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D

Fig. 3. The ratio of the solutocapillary migration velocity
normalized to the bubble diameter as a function of the meth-
anol concentration gradient.
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Fig. 4. Time dependence of bubble-motion velocity.
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differs from the pure alcohol in its physicochemical
properties), the bubble migration was not observed.
Most likely, the reason is that the thermal nonunifor-
mity of the surface tension is compensated by the redis-
tribution of surfactant on the bubble surface. Since the
typical diffusion times considerably exceed the thermal
times, the reasons responsible for motion of liquid,
namely, the nonuniformity of the surface tension, dis-
appear, as is observed in the purely concentration case.
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The complete pattern of steady flows of a viscous
incompressible fluid in a plane diffuser with a fixed
expansion angle has been determined and analyzed (the
Jeffery–Hamel problem). For Re < 0, we show that
there is a countable set of finite adjoining intervals
where the complex bifurcation of flows occurs. When
Re decreases, the number of modes increases in flows
containing inflow and outflow domains of the fluid. It is
shown that the velocity profiles of odd- and even-mode
flows are symmetric and asymmetric about the diffuser
axis, respectively. With the decrease Re  –∞ and the
corresponding increase in the interval number, the
interval length and the number of allowed flows
increase unboundedly. These results clarify the mecha-
nism of the phenomenon under consideration—the loss
of the stability of laminar diffuser flows at the initial
stage of turbulization.

1. We consider the steady flow of a viscous incom-
pressible fluid in a plane diffuser

(1)

where Ω is the flow domain, (r, θ) are the polar coordi-
nates, and β is the half-expansion angle. On the diffuser
walls, r > 0 and θ = ±β, no-slip conditions are valid, and
the flow has a source-type singularity at r = 0. For the
classical Jeffery–Hamel problem [1–3], the source
strength Q < 0 is given; i.e., the fluid rate through any
section r > 0 in the domain Ω given by Eq. (1) is fixed.

Only two dimensionless parameters—the expansion

angle 2β and the Reynolds-number analog Re =  < 0,

where ρ is the volume density and µ is the dynamic vis-
cosity of the fluid—can be introduced for the system.
These are insufficient for making the equations of
motion completely dimensionless [3–5]. However, one

Ω r θ,( ): r 0 θ β<,>{ } , 0 β π,≤<=

ρQ
µ

-------
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can construct a self-similar solution with the radial
velocity field

(2)

where V is an unknown dimensionless function. This
solution satisfies the incompressibility condition for the
arbitrary smooth function V(θ).

The Navier–Stokes equations, no-slip boundary
conditions, and the constant-rate condition provide the
constitutive relationships [1–3]

(3)

Boundary and integral conditions (3) determine the
integration constants and the constant C. The pressure
corresponding to the solution given by Eq. (2) is
expressed in terms of V and C as

(4)

The nonlinear boundary value problem given by
Eq. (3) with the additional integral condition is sym-
metric under the θ  –θ transformation. However, in
addition to symmetric flows [1–7], this problem has
multimode solutions asymmetric about the confuser
axis, as we showed for confuser (Re > 0) [8] and dif-
fuser (Re < 0) [9] flows. By introducing the unknown Z,
which characterizes the fluid rate, and differentiating
the equation for V, the boundary value problem with
integral condition (3) is reduced to the equivalent non-
linear fourth-order boundary value problem

(5)

A solution of problem (5), i.e., V, V ', V '', and Z, as
well as v(r, θ) and other kinematic and dynamic char-

v r
Q
r
----V θ( ), v θ 0≡ , r θ,( ) Ω,∈–=

V'' 4V ReV2–+ C const, θ β;<= =

V β±( ) 0, V θ( ) θd

β–

β

∫ 1.= =

p
ρQ2

2r2Re
-------------- C 4V–( ), r θ,( ) Ω.∈=

V''' 4V' 2ReVV'–+ 0,=

Z' V
1

2β
------; V β±( )– Z β±( ) 0.= = =
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acteristics of flows, must be found as functions of r, θ,
and the determining parameters β and Re for the entire
domain Ω given by Eq. (1) for Re < 0 and 0 < β ≤ π.

2. The formal analytical solution of problem (3) by
means of the first integral leads to elliptic functions and
integrals [2, 3, 6, 7]. A system of two transcendental
equations containing two parameters (β and Re) can be
obtained for determining unknown constants. This
solution is implicit, and its use for particular calcula-
tions leads to substantial calculation difficulties. These
difficulties are caused by the degenerate nature of equa-
tions for Re  ±0 and Re  ±∞, as well as for a
countable set of negative Re values. Moreover, the solu-
tion as a function of the angle β is also irregular [5].
Calculations are further complicated because the refer-
ence data for elliptic functions and integrals are insuffi-
ciently accurate. The available results are obtained by
solving the boundary value problem given by Eq. (3)
without the integral condition (the rate of the inflow or
outflow of the fluid on the diffuser or confuser axis is
given).

To solve the nonlinear boundary value problems
given by Eqs. (3) and (5), we developed a constructive
numerical–analytical method [10]. It is based on a fast-
convergence algorithm and continuation in the parame-
ters. For convenience, the normalized unknowns y and
z, the argument x, and the parameters γ and λ, which are
given by

(6)

are introduced into Eq. (3). The unknown functions and
parameters are determined by solving the following
nonlinear boundary value problem for the fixed essen-
tial parameters a = 4β and b = 2βRe:

(7)

Let the solution of the boundary value problem
given by Eq. (7) be known for a = a0 and b = b0. In this
case, the fast-convergence algorithm [10] is applicable
for a = a0 and b = b0 + δb, where δb is sufficiently small.
In this method, the unknowns γ and λ are refined by the
recursive procedure

(8)

.

y x( ) 2βV θ( ), z 2βZ , λ 8β3C,= = =

x
1
2
--- θ

β
--- 1+ 

  , 0 x 1, γ≤ ≤ y' 0( )= =

y'' a2y by2–+ λ , y 0( ) 0, y' 0( ) γ;= = =

z' y 1, z 0( )– 0;= =

y 1( ) z 1( ) 0.= =

γn 1+ γn δγn, λn 1++ λn δλn,+= =

δγn yn 1( )sn 1( ) zn 1( )hn 1( )–[ ]∆ n
1– 1( ),–=

δλn yn 1( )wn 1( ) zn 1( )gn 1( )–[ ]∆ n
1– 1( ),=

∆n x( ) yn x( )sn x( ) hn x( )wn x( ),–=

∆n 1( ) 0, n≠ 0 1 …, ,=
The functions yn(x) and zn(x) are solutions of the
Cauchy problem specified by Eq. (7) for given γ = γn

and λ = λn, and gn (wn) and hn (sn) are the sensitivity
functions of the solution yn (zn) to the parameters γ and
λ, respectively. They are obtained by high-accuracy
integration of the linear Cauchy problems

(9)

where a = a0, b = b0 + δb, and y = yn(x).
Calculations are terminated for n = n* when the

required absolute and/or relative accuracy, which is
determined by the residuals in yn(1) and zn(1), is
reached. Then, the parameter b is increased and the pro-
cedure specified by Eqs. (7)–(9) is repeated. Thus, the
curves γ(a0, b) and λ(a0, b) can be obtained, and their
properties can be analyzed in a wide range of the
parameter b (b < 0, i.e., Re < 0).

A similar successive-refinement procedure is appli-
cable to the solution for other values of the parameter
a = a0 + δa. This procedure allows for simultaneous
continuation in the parameters a and b. Along with the
residuals in the solutions yn(1) and zn(1), residuals in the
abscissas εn = 1 – ξn and µn = 1 – ηn, where ξn and ηn are
the zeros of the functions yn(x) and zn(x), respectively,
that are closest to the point x = 1, may be used to esti-
mate the error and to refine the solutions [10]. Calcula-
tions show the fast convergence and efficiency of the
algorithm, which provides for accurate operative mass
calculations (see below). These calculations for various
β (i.e., a) and b = 2βRe values provide the functions γ(b)
and λ(b). Using these functions, one can determine the
velocity profile y(x) as a solution of the Cauchy prob-
lem given by Eqs. (7), calculate all the kinematic and
dynamic characteristics of the flows, and perform a
complete qualitative analysis of flows in the diffuser,
which is similar to the previous analysis for the con-
fuser [5, 8].

3. The complete pattern of the dependence of the
parameters γ and λ on 0 < β ≤ π and b ≤ 0 is diverse and
difficult to describe in detail. Similarly to the case for
confuser flows [5], it is convenient to divide the total β
range into several intervals corresponding to different
behaviors of γ(b) and λ(b) in the procedure of continu-
ation in the parameter b < 0 (|b| ! 1):

(10)

g'' a2g 2byg–+  = 0, w' = g;

g 0( ) = w 0( ) = 0, g' 0( ) 1;=

h'' a2h 2byh–+ 1, s' h;= =

h 0( ) h' 0( ) s 0( ) 0,= = =

(1 ) 0 β π
4
---, (2 ) 

π
4
--- β π

2
---, (3 ) 

π
2
--- β β*,< <≤<≤<

(4 ) β* β 3π
4

------, (5 ) 
3π
4

------ β π;≤<≤<

β*
1
2
--- ϕ ϕ–tan( )arg 2.2467047.≈=
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The solution for b = 0 (Re = 0) does not exist for the
critical value β*, and the solution for b ≠ 0 can be con-
tinued in the parameter β for β  β*. The limiting val-

ues β  +0, β* ± 0, and β = , π are interesting for

hydrodynamics.
We found that many confuser [5] and diffuser [9]

multimode flows that are noncontinuable for Re  0,
along with solutions that are continuable in b, i.e., Re,
exist in the β range given by Eq. (10).

It is convenient to illustrate the previously unknown
pattern of the bifurcations of steady diffuser flows for
Re  –∞ for the case of slightly diverging walls,
which is of interest for hydrodynamics and various
technologies (usually β = 5°–30°). 

Figure 1 shows γ(b) and λ(b) as calculated by
Eqs. (7)–(9) for β = 10° ≈ 0.1745 rad. The behavior of
the curves γ(b) and λ(b) for 0 < β < 10° is close to the
case of β = 10°. As is seen in Fig. 1, there is a countable
set of branches γ(n)(b) and λ(n)(b) for n = 1, 2, …, N,
N + 1, …. To describe these branches, it is appropriate
to divide the entire range of the parameter b < 0 into
intervals where flows are qualitatively rearranged with
decreasing b, b  –∞.

The first domain of (b, γ) and (b, λ) was analyzed in
detail in [9] by using the known analytical solution for
b = 0 and continuing in b in the range 0 ≤ b ≤ b(1)* ≈
−21.7. It has been shown that there are single-mode

( (b) and (b)) and three-mode ( (b) and

(b)) branches for which flows are symmetric about
the diffuser axis. These flows are pure radially diverg-
ing flows [6] for the single-mode branch and diverging
in the middle (on the axis) and converging (outflow) at
the edges of the diffuser for the three-mode branch.
Below, the subscript shows the number of modes, i.e.,
inflow and outflow domains. The mode number of the
flow is determined by the number of crossings of the
abscissa axis by the corresponding plot y(x) (this is the
fluid velocity profile at an arbitrary arc as a function of
the angle within the diffuser expansion angle). The
integral of the function y(x) is equal to the normalized
source strength Q = 1. The superscript is the interval
number for the parameter b = 2βRe. The single- and

three-mode regimes exist for  ≈ –18.8 ≤ b ≤ 0 and

 ≤ b ≤ 0, respectively. In the range  < b < ,

the curves  and  are double-valued, and two
three-mode flows are therefore possible. One three-

mode flow corresponding to  and  and, as was
mentioned above, one single-mode flow exist in the

range  ≤ b < 0. In addition, two previously unknown
two-mode asymmetric flows with the inflow near one
wall and the outflow near the other wall exist in this
range.

≤
>
π
2
---

γ1
1( ) λ1

1( ) γ3
1( )

λ3
1( )

b*
1( )

b1
1( )* b1

1( )* b*
1( )

γ3
1( ) λ3

1( )

γ3
1( ) λ3

1( )

b*
1( )
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We emphasize that | | and | |, as well as | |

and | |, increase unboundedly when b  –0; i.e.,
these curves cannot be obtained by continuing in the

parameter. In particular,  ~ –103 and  ~ 104 for
b = –1. Thus, the first interval is characterized by two

critical b values. The value  is a triple point, where
the bifurcation of single-, two-, and three-mode flows

occurs. In addition,  = 0 at this point. The value b(1)*

is the turning (return) point of the curves (b) and

(b) and determines the boundaries of the first inter-
val.

The numerical–analytical procedure specified by
Eqs. (7)–(9) reveals the second interval b(2)* ≈ –80.44 ≤
b ≤ b(1)*, where three-, four-, and five-mode flows are

possible. The behavior of the curves  and  is

qualitatively similar to the behavior of the curves 

and , respectively. However, in contrast to  and

, which have finite values for b = –0,   –∞

and   ∞ for b  –0. For b  −∞, the curves
|γ(2)| and λ(2) increase much faster. In particular, for

b = –10,  ≈ –70 and  ≈ 103, whereas  ≈ –670

and  ≈ 104 (Fig. 1).

The second interval (n = 2) has two similar critical
points: b(2)* is a turning (return) point for the curves

 and  and  is a bifurcation (triple) point near
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Fig. 1. Plots γ(b) and λ(b), as well as of the bifurcation pat-
tern for steady flows with decreasing Re. The first and sec-
ond intervals are 0 < b ≤ b(1)* and b(1)* < b ≤ b(2)*, respec-
tively.
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which the three mentioned branches of steady flows

exist. In addition,  = 0 at this point. In the range

b(2)* < b <  ≈ −75.3982, the curves  and  are
double-valued, and two five-mode flows correspond to

each b value. In the range  ≤ b < 0, the curves are
single-valued; i.e., one flow of the above form is real-

ized. Four-mode flows (two for b > ) have alternat-
ing inflow and outflow domains. If the inflow exists
near one wall, the outflow exists near the other wall. A
node, i.e., a zero y value, is present at the middle of the

diffuser x = . Half the fluid rate passes through

each half of the diffuser.

According to Fig. 1, one three-mode flow corre-

sponding to the curves  and  exists in the range

 < b < b(1)*, two three-mode flows (flow corres-

ponding to  and  is added) are present for b =
b(1)*, three three-mode flows are realized in the range

b(1)* < b <  (because  and  are double-val-
ued), and two three-mode flows exist in the range

 < b < 0. Other single-, two-, and three-mode flows

are not realized in the range  < b < 0.

The velocity profiles of the flows (x) for the
first b interval were obtained and analyzed in detail
in [9]. They correspond to the above analysis. Figure 2

shows the functions (x) for b = –60 belonging to
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Fig. 2. Velocity profiles (x) and (x) for b = –60 for

the second interval.

y3 5,
2( )

y4
2( )±
the second interval. Both four-mode profiles (x)
are shown for clearness. The evolution of this family
with an increase in the parameter b to b = –10 is shown
in Fig. 3, where a strong increase in the spread of all
curves (by one order of magnitude) is seen. We note
that the area under each curve is equal to unity (normal-
ized rate).

4. We now determine the intervals b(n)* ≤ b < b(n – 1)*

and construct families of curves  and  as func-
tions of the parameter b for b(n)* ≤ b < 0, where n = 3,
4, … is the interval number and k (number of modes) is
a function of the interval number n. Figure 4 shows the
fragment of the bifurcation pattern of flows for the third
interval b(3)* ≈ –176.5 ≤ b < b(2)*. The behavior of the

family of curves  and  for k = 5, 6, 7 is similar
to the behavior analyzed above for n = 1 and 2 and k =
1, 2, 3 and 3, 4, 5, respectively. Five-, six-, and seven-
mode flows exist near the triple bifurcation point b =

 ≈ –169.5, and  = 0 for b = . The critical
value b = b(3)* is the boundary of the interval and the

turning (return) point of the curves  and . The

curves  and  tend to the vertical asymptote for
b  –0 more rapidly than the corresponding curves
for n = 1 and 2. This pattern is qualitatively similar for
any n value.

An analysis shows that the critical points  for

β  0 (0 < β & 10°), where  = 0 and the bifur-
cations (triple points) of flows occur, are distributed
according to
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(see the cases n = 1, 2, 3 above). The boundary points

b(n)* <  are shifted to the left by a small value (about
several units), which increases slightly with n. Thus,

the distance between the points  and  is
approximately equal to 6π(2n + 1), i.e., increases rap-
idly with n. The interval lengths |b(n + 1)* – b(n)*| are
approximately equal to the above value.

It was found that k-mode steady flows for k ≥ 2n + 1

may exist for b < , where modes with k ≤ 2n are
absent. This property may be responsible for the loss of
the stability of steady (laminar) flows and the beginning
of the first stage of turbulization [3, 4, 6]. In particular,
the most stable single-mode flows are impossible for

b <  ≈ –18.8 (≈6π). On the contrary, steady flows of
all modes exist for 0 > b ≥ –18.8. We emphasize that
odd k = 2n + 1 and even k = 2n modes, n = 1, 2, …, are
symmetric and asymmetric, respectively, about the dif-
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Fig. 4. Fragment of the bifurcation pattern for the flows
γ5, 6, 7 and λ5, 6, 7 for the third Re interval b(3)* ≤ b < b(2)*.
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fuser axis x =  (θ = 0). Even-mode flows exist in pairs.

The only single-mode steady flow exists in the diffuser
for 0 > b > –18.8 ≈ 6π, i.e., 0 > Re > –54 for the diffuser
expansion angle β = 10°. This flow is symmetric.
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In previous works [1–7] on the hydrodynamic the-
ory of the joint motion of fresh and salt water, it was
assumed that fresh water flows in beds, the lower part
of which is occupied by heavier salt water, whose
unperturbed surface is always horizontal. The real ini-
tial contact surface of fluids is not necessarily horizon-
tal, which is important for determining the position of
the interface. This circumstance was first mentioned
in [8], where the motion of ground water to a basin with
a vertical bank was analyzed. This analysis was further
developed in [9, 10], where the motion of water in a
semi-infinite layer to a sea, as well as the case of the
presence of a freshwater layer over the sea surface, was
considered.

In this work, we generalize the above problems to
the case of the percolation of fresh ground water in a
finite rectangular bed to the sea with the freshwater
layer over its surface. In the two types of flows under
consideration, ground-water streams arrive at the sea
from a side or from the bottom. By means of the derived
exact analytical dependences and numerical calcula-
tions, the effect of each physical parameter of the mod-
els on the geometric and percolation characteristics is
analyzed, and the features and character of percolation
are studied. The solution derived in this work provides
not only results for the above two limiting cases (for
one particular set of the unknown parameters of the
conformal mapping) but also the known results
obtained by Polubarinova-Kochina for the classical
problem of percolation in a rectangular dam [1, 2, 11].
For the case of lateral-inflow without the freshwater
layer over the sea surface, the results for both schemes
are compared for the same percolation parameters, and
the dependence of the percolation characteristics on the
initial position of the liquid interface is discussed.

1. We consider a plane flow of fresh ground water of
density ρ1 in a rectangular head bed of thickness T and
width L, located on an impenetrable layer of halite, to

State Academy of Civil Aviation,
St. Petersburg, 196210 Russia
e-mail: beres@nwgsm.ru
1028-3358/04/4912- $26.00 © 20756
the sea with salt water of density ρ2 (ρ2 > ρ1). A fresh-
water layer is located over the saltwater level in the sea
with the level t (0 < t ≤ T). Under the action of head H,
the initially vertical interface between moving fresh
water and immovable heavier salt water begins to
deform in its right lower part, shifting to the left,
towards the flow. After a certain time, the flow may
become steady [12–14]; when the brine is stabilized,
the interface becomes a streamline for fresh water, and
the motion of sea water towards land takes the shape of
a saltwater wedge (or tongue) penetrating into the
freshwater bed (Fig. 1). This phenomenon is called the
intrusion of salt water [5–7].

We assume that the flow of ground water satisfies
Darcy’s law and proceeds in the uniform isotropic soil.
The soil, as well as the fluid percolated through it, is

1 2 3 x

1

2

y

D C

H

B

L

t
A

l2

F

C'

T

l0 l1

E

z

Fig. 1. Shape of the lateral-inflow flow calculated for T =
2.4, L = 3.0, ρ = 0.01, H = 0.036, and t = 1.5861.
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treated as incompressible. The effect of capillary and
diffusion phenomena at the interface is ignored. Under
these assumptions, which are traditional for the flows
under consideration, the mathematical simulation of
the percolation process under study reduces to deter-
mining the complex potential ω(z) under the boundary
conditions

(1)

Here, ϕ and φ are the velocity potential and stream
function, respectively, that are divided by the soil
hydraulic conductivity κ, and Q is the total percolation
rate divided by κ. It is necessary to determine the posi-
tion of the interface AF and, therefore, the width l1 and
height l2 of the saltwater wedge intruded into the fresh-
water layer.

2. We introduce an auxiliary variable ζ and a func-
tion z(ζ) that conformally maps the upper ζ half-plane
onto a z region (the correspondence of the points is

shown in Fig. 2): Z =  and F = . 

Using the Polubarinova-Kochina method [1, 2, 15],
we obtain the parametric solution of the initial bound-
ary value problem in the form

(2)

Here, K(ζ) is the complete elliptic integral of the first
kind as a function of k2 = ζ, K'(ζ) = K(1 – ζ), k'2 = 1 – ζ,

AB: x L, ϕ ρ y 1–( );= =

BC: x L, ϕ 0, ρ
ρ2

ρ1
----- 1;–= = =

CD: y T , φ Q; DE: x 0, ϕ H;–= = = =

EF: y 0, φ 0; FA: ϕ ρ y 1–( ), φ 0.= = = =

dz
dζ
------ dω

dζ
-------

Z
AiK'

∆
-----------, F

Ai K ζ( ) iK' ζ( )–( )
∆

------------------------------------------,= =

∆ ζ c–( ) ζ d–( ) e ζ–( ).=
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A > 0 is a scaling constant, and c, d, and e (1 ≤ c ≤ d <
e ≤ ∞) are the parameters of the conformal mapping.
Taking representation (2) for various sections of the
boundary of the ζ region and integrating over the entire
contour of the auxiliary region, we arrive at the para-
metric equations of the corresponding sections of the
flow pattern. As a result, we obtain expressions for the
geometric and percolation characteristics. Some of
these expressions are used to find the unknown param-
eters of the conformal mapping, and others determine
the dimensions of intrusion and rates.

3. Percolation through a rectangular dam. The
Polubarinova-Kochina solution [1, 2, 11]. When
points E and F are united in the z and ζ planes, i.e., for
e = ∞, which corresponds to l0 = 0, the flow region is
mapped onto the mirror image of the motion region of
ground water in the rectangular dam. The known solu-
tion of this problem, first obtained by Polubarinova-
Kochina [Eqs. (10.19)–(10.28) on pp. 272, 273 in [1]],

follows from Eq. (2) with d = , c = , and the

replacement of c, d, L and l1, l2, t – l2, T, T – t, QAB , and

c
c 1–
----------- d

d 1–
------------

–∞ ∞1 c d e

B C D E FF A

0

ζ

Fig. 2. Domain of the auxiliary parametric variable.
Table 1.  Values l1, l2, (above the lines) Q or (below the lines) L calculated for the given values T and (above the lines) L or
(below the lines) Q. The values above and below the lines are obtained for the lateral- and bottom-inflow schemes, respectively

T l1 l2 l1 l2

1.0

1.6

2.0

2.4

3.0

Q
L
---- L

Q
---- Q

L
----

0.3333
0.4462
---------------- 0.3108

1.6826
---------------- 0.0103

0.2268
---------------- 2.000

0.024
------------- 0.6840

1.2152
---------------- 0.6430

1.9595
---------------- 0.0276

2.3861
----------------

0.6320
0.7278
---------------- 0.5743

2.1905
---------------- 0.0149

0.3548
---------------- 3.000

0.036
------------- 1.1985

1.1755
---------------- 1.0354

2.2029
---------------- 0.0192

1.2399
----------------

0.8851
0.9281
---------------- 0.7869

2.4246
---------------- 0.0173

0.4332
---------------- 4.000

0.048
------------- 1.7795

1.1529
---------------- 1.3502

2.4537
---------------- 0.0143

0.7017
----------------

1.1985
1.1461
---------------- 1.0354

2.5812
---------------- 0.0192

0.5029
---------------- 5.000

0.060
------------- 2.3814

1.1436
---------------- 1.5694

2.6491
---------------- 0.0112

0.4087
----------------

1.9072
1.5438
---------------- 1.5166

2.6465
---------------- 0.0205

0.5783
---------------- 6.000

0.072
------------- 2.8781

1.1402
---------------- 1.6962

2.7747
---------------- 0.0095

0.2518
----------------
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QBC by a, b, l, H1 – H2 – H0, H0, H1, H2, Q1 , and Q2 ,
respectively.

4. Tables 1 and 2 present the results for the effect of
determining the parameters T, L, ρ, and H on l1, l2 , and
Q for (above the lines) lateral inflow with t = T and
(below the lines) bottom inflow. In each of three blocks
of the tables, one of the above parameters varies while
the other parameters are fixed (basic variant): (lateral
inflow) T = 2.4 and L = 3.0 and (bottom inflow) ρ =
0.01, H = 0.036, and Q = 0.055. Figure 3 shows (lines 1)
l1 and (lines 2) l2 as functions of t, where 0 < t ≤ T. An

1.20.6 1.8 2.4
t

0.3

0.6

0.9

1.2
l1, l2

1

2

Fig. 3. Values l1 and l2 vs. t for T = 2.4, L = 3.0, ρ = 0.01,
and H = 0.036.
analysis of the tables and of Fig. 3 provides the follow-
ing conclusions.

An increase in the dimensions of the bed, in the den-
sity of salt water, and in its thickness in the sea, as well
as a decrease in the acting head, all increase the dimen-
sions of intrusion. In this case, the relative dimensions
of the wedge may be very large. For T = 2.4, L = 6.0, and
ρ = 0.01, we have l2 = 1.6962, and l1 = 2.1462 for T =
2.4, L = 3.0, and ρ = 0.012; i.e., the height and width of
the wedge may reach 70.6 and 71.5% of the thickness
and width of the bed, respectively. It is remarkable that
l1 ≈ l2 for small T, L, and ρ and large H, whereas l1 ≈
ml2 , where 1.1 ≤ m ≤ 1.7 for large T, L, and ρ and
small H.

The dimensions of intrusion as functions of the
thickness of the saltwater layer in the sea are of special
interest. As is seen in Fig. 3, l1 and l2 depend linearly on
t. For the basic variant, l1 = 0.44t – 0.1 and l2 = 0.4t can
be taken. In this case, the width of the wedge is larger
than its height by 8–12%. At the same time, when the

saltwater level in the sea increases, the ratio  remains

virtually unchanged (43.6%) with a tendency to a slight

decrease, whereas the ratio  decreases from 40.5%

for t = 0.6893 to 38.9% for t = T. The latter property
means that the relative dimensions of the saltwater
wedge and, therefore, the degree of intrusion increases
with the thickness of fresh water over salt water.

5. Figure 4 shows the traditional scheme of the bot-
tom inflow of fresh ground water into the sea from the
coastal head aquifer. In this case, the problem is
reduced to the determination of the function ω(z) under
boundary conditions (1), where conditions on the sec-
tions AB and BC are replaced by the conditions y = T

l1

t
---

l2

t
---
Table 2.  Values l1, l2, (above the lines) Q or (below the lines) L calculated for the given values ρ and H. The values above
and below the lines are obtained for the lateral- and bottom-inflow schemes, respectively

ρ l1 l2 H l1 l2

0.004 0.032

0.006 0.048

0.008 0.064

0.010 0.080

0.012 0.096

Q
L
---- Q

L
----

0.1237
1.0700
---------------- 0.1234

4.1026
---------------- 0.0215

0.5450
---------------- 1.6816

1.1768
---------------- 1.2991

2.4465
---------------- 0.0151

0.3568
----------------

0.3925
1.0849
---------------- 0.3852

3.4582
---------------- 0.0212

0.5362
---------------- 0.6571

1.1025
---------------- 0.6255

2.8319
---------------- 0.0276

0.9902
----------------

0.7550
1.1087
---------------- 0.7084

2.9802
---------------- 0.0205

0.5227
---------------- 0.3689

1.0928
---------------- 0.3524

3.0946
---------------- 0.0365

1.6846
----------------

1.1985
1.1461
---------------- 1.0354

2.5812
---------------- 0.0192

0.5029
---------------- 0.1930

1.0829
---------------- 0.1919

3.3484
---------------- 0.0467

2.3854
----------------

2.1462
1.2104
---------------- 1.4697

2.2121
---------------- 0.0152

0.4729
---------------- 0.0721

1.0765
---------------- 0.0720

3.5807
---------------- 0.0614

3.0879
----------------
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and ϕ = 0, and l2 is the length of the section of the inset
of fresh water into the sea bottom. The parametric solu-
tion has the form

(3)

In this case, to determine the unknown parameters,

it is necessary to solve the equation  = , along with

other equations. This equation restricts the physical
parameters Q and H and, therefore, the applicability
domain of the chosen flow scheme. For this reason, in
contrast to the lateral-inflow scheme, when performing
numerical calculations it is more convenient to specify
the rate Q, which is a key parameter in solving the last
equation, rather than the bed width L that is determined
later.

6. According to Tables 1 and 2 (data below the
lines), an increase in the thickness of the bed leads to
the increase in the dimensions of the wedge; i.e., this
dependence is similar to that in the above problem. The
dependence of the width l1 on T is qualitatively similar
to the lateral-inflow case, and l1 depends linearly on ρ
and H. However, the dependence of l2 on ρ and H
changes strongly compared to the first scheme: its
increase is caused by a decrease in the saltwater density
and an increase in the acting head and rate, which is in
turn associated with a decrease in the bed width.

Z
2A 1 ζ–arcsin

π∆
--------------------------------------– , F

Aρi
∆

---------,= =

∆ ζ 1 ζ–( ) d ζ–( ) e ζ–( ).=

K'
K
----- Q

H
----

z
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F
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1

2

y

x

l2L

C

D

l0 l1

H

Fig. 4. Shape of the bottom-inflow flow calculated for T =
2.4, ρ = 0.01, H = 0.036, and Q = 0.055.
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Calculations show that the inequalities

where the superscript indicates the scheme of calcula-
tions, are satisfied for the parameters presented in
Tables 1 and 2. The latter inequality means that l2 in the
problem for the bottom inflow is larger than the height
of the wedge in the problem for the lateral inflow by a
factor of at least 1.5.

When points D and E are united in the z and ζ
planes, which corresponds to L = ∞ and d = e, we arrive
at the flow in the semi-infinite head aquifer [9]. The
results for this case are obtained from Eq. (4) with k = 1
and k' = 0.
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In classical fluid dynamics, the duality theorem was
proven by H.A. Lorentz for slow steady-state flows of
incompressible Newtonian fluids [1]. In [2], the theo-
rem was generalized to the case of a flow of two New-
tonian fluids having different viscosities (µ1 and µ2) and
was applied for describing flows of “pure” and dis-
persed media. The theorem is formulated in the follow-
ing manner.

Theorem 1. For two different steady-state Stokes
flows of incompressible Newtonian fluid, the following
relation holds:

(1)

where S is an arbitrary closed surface drawn in the
fluid, u(1) and u(2) are the velocities of medium motion
in the flows, and ê(1) and ê(2) are the stress tensors.

For qualitative and quantitative analysis of the regu-
larities of medium flows, we derive an analog of the
generalized duality theorem in the framework of nonlo-
cal theory.

For incompressible continuum media, we consider
two flows specified as (u(1), ê(1)) and (u(2), ê(2)), which
are described by the equations

(2)

In nonlocal fluid dynamics, the quantities P(l) have the
form [3, 4]

(3)

where r is the spatial Cartesian coordinates; p(l) is pres-

µ2 ∂S
S

∫ P 1( ) u 2( )⋅ ⋅ µ1 ∂S
S

∫ P 2( ) u 1( ),⋅ ⋅=

∇ P 1( )⋅  = 
∂Pαβ

1( )

∂rα
------------

α 1=

3

∑  = 0, β = 1 2 3, l, ,  = 1 2.,

Pαβ
1( )

=  δαβ p l( )– 2 ∂r1' ∂r2' ∂r3' L l( ) r r'; α β, ,( )Eαβ
1( ) r'( ),

V

∫+
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sure; E(l) is the strain-rate tensor,

(4)

V is the volume occupied by the medium flow; and L(l)

are the kernels describing momentum transfer and tak-
ing into account nonlocal interrelations.

Further, we multiply  by , perform summa-
tion, and arrive at

(5)

Hereafter, summation over dummy indices from one to
three is implied. Performing identity transformations of
(P(1) : E(2)), we obtain

(6)

where  =  – .

Further, the formula

(7)

where the validity of relation (2) is taken into account,
is applied to relation (6). Upon bringing together for-
mulas (5)–(7), we multiply the result by ∂r1∂r2∂r3 and
integrate it over an arbitrary volume Vr contained in the
region of the flow and bounded by the surface Sr. As a
result, we have

(8)

Eαβ
l( ) 1

2
---

∂uβ
l( )

∂rα
----------

∂uα
l( )

∂rβ
----------+ 

  Eβα
l( ) ;= =

Pαβ
1( ) Eαβ

2( )

Pαβ
1( )Eαβ

2( ) P 1( ) : E 2( )=

=  2 ∂r1' ∂r2' ∂r3' L l( )Eαβ
1( ) r'( )Eαβ

2( ) r( ).

V

∫

P 1( ) : E 2( ) Pαβ
1( )∂uβ

2( )

∂rα
----------- Pαβ

1( )Ωαβ
2( ),–=

Ωαβ
l( ) ∂uβ

l( )

∂rα
---------- Eαβ

l( )

∂
∂rα
-------- Pαβ

1( )uβ
2( )( ) uβ

2( )∂Pαβ
1( )

∂rα
------------ Pαβ

1( )∂uβ
2( )

∂rα
-----------+ Pαβ

1( )∂uβ
2( )

∂rα
-----------,= =

2 ∂r1∂r2∂r3 ∂r1' ∂r2' ∂r3' L l( )Eαβ
1( ) r'( )Eαβ

2( ) r( )

V

∫
Vr

∫

+ ∂rPαβ
1( )Ωαβ

2( )

Vr

∫ ∂r
∂

∂rα
-------- Pαβ

1( )uβ
2( )( ).

Vr

∫=
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Further, the divergence theorem, in the form

(9)

is applied to the expression on the right-hand side
of (8).

Upon mutual interchanging of the superscripts 1 and
2 and dividing the result by (8), we ultimately obtain

(10)

where

The resulting formula is valid in the general case of

an asymmetric stress tensor,  ≠  (l = 1, 2). If

 =  (l = 1, 2), relation (10) reduces to the form

(11)

where

Within nonlocal fluid dynamics, relations (10) and
(11) represent the duality theorem for the cases of an
asymmetric and a symmetric stress tensor, respectively.
These relations hold for arbitrary transfer kernels, in
particular, for kernels belonging to the {L}δ class [3, 4],
which reduce to δ-functions in the “local” limit of a
Newtonian fluid.

We now suppose that L(l) ∈  {L}δ, l = 1, 2. As the
parameters characterizing the nonlocality of the inte-
gral kernels tend to zero, ε(1), ε(2)  0, formula (11)
transforms into the relation corresponding to the gener-
alized duality theorem [2], namely,

(12)

∂r1' ∂r2' ∂r3'
∂

∂rα
-------- Pαβ

1( )uβ
2( )( )

Vr

∫ ∂S P 1( ) u 2( ),⋅ ⋅
Sr

∫=

MΩ
2( ) ∂S P 1( ) u 2( )⋅ ⋅

Sr

∫ MΩ
1( ) ∂S P 2( ) u 1( ),⋅ ⋅

Sr

∫=

MΩ
1( ) 2 ∂r ∂r'L 1( )Eαβ

1( ) r'( )Eαβ
2( ) r( )

V

∫
Vr

∫ ∂rPαβ
1( )Ωαβ

2( ),

Vr

∫+=

MΩ
2( ) 2 ∂r ∂r'L 2( )Eαβ

2( ) r'( )Eαβ
1( ) r( )

V

∫
Vr

∫ ∂rPαβ
2( )Ωαβ

1( ).

Vr

∫+=

Pαβ
l( ) Pβα

l( )

Pαβ
l( ) Pβα

l( )

M 2( ) ∂S P 1( ) u 2( )⋅ ⋅
Sr

∫ M 1( ) ∂S P 2( ) u 1( ),⋅ ⋅
Sr

∫=

M 1( ) ∂r ∂r'L 1( )Eαβ
1( ) r'( )Eαβ

2( ) r( ),

V

∫
Vr

∫=

M 2( ) ∂r ∂r'L 2( )Eαβ
2( ) r'( )Eαβ

1( ) r( ).

V

∫
Vr

∫=

µ0
2( ) ∂S P0

1( ) u0
2( )⋅ ⋅

Sr

∫ µ0
1( ) ∂S P0

1( ) u0
1( ),⋅ ⋅

Sr

∫=
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where , l = 1, 2, are the coefficients of viscosity of
continuum media and zeros in the subscript labels are
the respective limiting values for Newtonian fluid.

Let us consider the corollaries from the duality
theorem.

First, we apply it to analysis of the motion of an
incompressible medium making allowance for nonlo-
cality effects. We consider a plane Poiseuille flow under
the effect of a constant pressure gradient between two
infinite parallel plates separated by the distance 2R. For
one of the flows, we take a flow of Newtonian fluid
characterized by a viscosity coefficient µ0 , while, for
the second flow, we consider a flow of a medium featur-
ing manifestations of nonlocality effects. Let Sr be the
surface of a rectangular parallelepiped formed by 1 ×
2R × 1 edges and oriented in such a way that its bases
touch the plates and that the flow is orthogonal to one
of its 1 × 2R faces. We choose the r2 axis to be aligned
along the flow at the distance R from the plates and the
r3 axis to be orthogonal to the plates. In this case, rela-
tion (11) takes the form

(13)

where Q(l) is the medium flow rate (l = 1, 2).

We denote the right-hand side of formula (13) by µP;
thus,

(14)

Here, we allow for the fact that the quantity  is

proportional to r3 and the superscript on the velocity of
the structured medium is omitted. Taking into account

the relationship between  and Q(1), we can then

write

(15)

On the basis of this formula, we conclude that µP is
the coefficient of the effective viscosity of a medium for
Poiseuille flow, this coefficient being defined as the
proportionality factor in relation (15).

µ0
l( )

∂ p 2( )

∂r2
-----------Q 1( )
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∂r2
-----------Q 2( )
----------------------

∂r3 ∂r3' L r3 r3',( )
∂u2
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∂r3'
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∂u2
1( )

∂r3
-----------

R–

R

∫
R–

R

∫

µ0 ∂r3

∂u2
2( )

∂r3
-----------

∂u2
1( )

∂r3
-----------

R–

R

∫
-----------------------------------------------------------------------,=

µP

∂r3 ∂r3' L r3 r3',( )
∂u2

∂r3'
--------r3

R–

R

∫
R–

R

∫

∂r3

∂u2

∂r3
--------r3

R–

R

∫
------------------------------------------------------------= .

∂u2
1( )

∂r3
-----------

∂ p 1( )

∂r2
-----------

Q 2( ) 2
3
--- R3

µP
------∂p 2( )

∂r2
-----------.–=
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We now consider a Couette flow between two infi-
nite parallel plates moving in opposite directions at
velocity u. By applying the duality theorem to this Cou-
ette flow in the same way as was done above for the Poi-
seuille flow, we obtain

(16)

where P(l)(R) is the value of the stress tensor at the
boundary (l = 1, 2).

Further, we denote the right-hand side of (16) by µC:

(17)

In Eq. (17), we have omitted the superscript standing
for the velocity of the structured medium and have con-

sidered that  = const.

We now rewrite Eq. (16) in the form

(18)

It can be concluded that µC is the coefficient of the
effective viscosity of a medium in the case of a Couette
flow.

Combining (14) and (17) into one expression, we
have

(19)

where m = 0 for Couette flow, m = 1 for Poiseuille flow,
and the superscript m not enclosed by parentheses
stands for a conventional power-law exponent.

P 2( ) R( )u
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---------------------
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∂r3
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∫
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∫
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∂r3
--------

R–

R

∫
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∂u2
1( )

∂r3
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R

---------.=

µ m( )

∂r3 ∂r3' L r3 r3',( )
∂u2

∂r3'
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m

R–

R

∫
R–

R

∫

∂r3

∂u2

∂r3
--------r3

m

R–

R

∫
-------------------------------------------------------------,=
By definition, µ(m) is a functional of the external-
flow velocity gradient, of the geometry of the flow
boundaries, and of the momentum-transfer kernel, this
functional taking into account nonlocality effects.
Experimental investigations performed under various
external conditions for flows of media having an inter-
nal structure confirm this conclusion. In particular, it is
known that, in experimentally determining rheological
properties of heterogeneous mixtures in viscometers of
the Couette and Poiseuille types, one obtains different
values of µ(m) for preassigned flow modes [2].

In the general case, definition (19) makes it possible,
on the basis of the constructed models of the transfer
kernels for various media featuring nonlocality effects,
to trace the effect of the above factors on the value of
the effective-viscosity coefficient for specific flow
modes.

Thus, the duality theorem has been proven here in
the framework of nonlocal fluid dynamics. It has been
shown that, in the local limit, the basic relations reduce
to the duality theorem for the motion of two Newtonian
fluids having different viscosities.

For a medium having an internal structure, the dual-
ity theorem makes it possible to introduce the effective-
viscosity coefficient as an explicit functional of the
velocity gradient, the geometry of the flow boundaries,
and the momentum-transfer kernel. A generalization of
the Hagen–Poiseuille law (Poiseuille flow) and of equa-
tions that relate the characteristics of Couette flow to
the case of fluid motions involving nonlocality effects
has been obtained as a corollary of the theorem.
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INTRODUCTION

In the presence of small perturbations of the free
flow (which are characteristic of flight conditions), the
initial stage of the laminar–turbulent transition is char-
acterized by exciting unstable modes and their
enhancement to the nonlinear phase, terminating in a
transition to the turbulent flow [1]. Stability theory and
experiments show that perturbations of the first and sec-
ond modes dominate in a hypersonic boundary layer.
The cooling of a wall, which naturally occurs on the
surface of a hypersonic aircraft with a heat-protective
coating, stabilizes the first mode [2] and destabilizes
the second mode [3].

The second mode belongs to a family of channel
acoustic modes propagating in a waveguide between
the wall and acoustic line [1]. The second mode is the
dominant instability of the boundary layer for hyper-
sonic aircrafts of a predominantly planar shape with a
sharp leading edge and large local Mach numbers
(Me > 6).

The second mode in fast flows is associated with
perturbations of a relatively high ultrasonic frequency.
It was assumed in [4] that a passive ultrasound-absorb-
ing coating (UAC) with a porous microstructure can
damp these perturbations and does not lead to a prema-
ture transition due to the roughness effect. Theoretical
analysis in the framework of the linear theory of stabil-
ity in inviscid [4] and viscous [5] approximations
showed that a relatively thin coating (with a thickness
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of about one-tenth the thickness of the boundary-layer
displacement) can strongly reduce the increment of the
second-mode growth. Those works were devoted to
analyzing the UAC in the form of a porous layer with
equidistant blind cylindrical microholes.

Experiments [6] carried out in a shock tube on a
sharp cone for Mach numbers M = 5–6 qualitatively
corroborated the theoretical conclusions. It was found
that the flow remained laminar over the entire length of
the model on the surface perforated by blind cylindrical
holes (approximately 100 holes per 1 mm2), whereas
the transition on the smooth surface occurs in the mid-
dle part of the cone. Since the characteristics of pertur-
bations in the boundary layer were not measured, the
experiments did not provide any direct evidence of the
presence of the second mode, its stabilization by the
porous coating, or its role in the transition process.

The stability of the boundary layer on the sharp cone
that had a half-angle of 7° and was coated with a UAC
with a chaotic microstructure (metallic batting) [7] was
analyzed in a T-326 wind tunnel at the Institute of The-
oretical and Applied Mechanics, Siberian Division,
Russian Academy of Sciences, for a Mach number M =
5.95. This analysis showed that the porous coating sta-
bilized the second mode and slightly destabilized the
first mode. A theoretical model of the absorption of
acoustic energy on a chaotic-structure porous wall was
developed in the framework of the classical approach.
The absorption coefficient was calculated using labora-
tory measurements on the absorption of sound by sam-
ples of the coating. Good agreement between the theo-
retical increments of the growth of perturbations and
the experimental data was achieved for two-dimen-
sional perturbations of the second mode. However, the
theoretical model was semiempirical, because direct
calculation of the acoustic properties of the coating
(without the use of experimental data) was impossible
due to its complex microstructure.

This work is focused on theoretical and experimen-
tal investigations of the stability of the boundary layer
on the surface with the regular-structure UAC. The the-
004 MAIK “Nauka/Interperiodica”
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oretical investigations are aimed at both developing a
closed model of the effect of the UAC on the develop-
ment of perturbations in the rarefied gas and acquiring
quantitative data on the characteristics of perturbations.
The experimental investigations were aimed at deter-
mining the detailed wave characteristics of perturba-
tions in order to verify the theoretical model.

POROUS COATING

The porous coating was made of a 0.45-mm-thick
stainless-steel sheet perforated by the laser-drilling
method. In the sheet closely attached to the smooth
cone surface, the pores were blind cylindrical holes that
had a diameter of 50 µm, were spaced by 100 µm, and
had a total open area (porosity) of 20%. The character-
istics of the porous coating are similar to those used in
experiments reported in [6].

EXPERIMENTS

The experiments were carried out in the T-326 wind
tunnel at the Institute of Theoretical and Applied
Mechanics, Siberian Division, Russian Academy of
Sciences. The free flow was characterized by a deceler-
ation temperature of T0 = 385–400 K and a Mach num-
ber of M∞ = 5.95; the single Reynolds number was
Re1∞ = (11.5–12.3) × 106 m–1 and the temperature sur-

face factor was  = 0.80–0.84, where Tw is the model

wall temperature.

Tw

T0
------

1000 200 300 400

f, kHz

40

80

120

160

A

1

2

Fig. 1. Amplitude–frequency spectra of mass-rate pulsa-
tions on the (1) smooth and (2) porous surfaces for Reex =

4.5 × 106.
The model under investigation was a 0.5-m-long
sharp cone with a half-angle of 7°. It was placed in a
flow at zero angle of attack. One half of the cone sur-
face (between generatrices) was coated with the UAC,
and the other half remained smooth. The leading
boundary of the UAC was located at a distance of
182 mm from the vertex of the model, and the length of
the coating area was equal to 263 mm. Artificial pertur-
bations were introduced into the flow by means of an rf
electric glow discharge initiated in a chamber placed
within the model. The perturbations penetrated into the
boundary layer through a hole that had a diameter of
0.4 mm and was spaced by 69 mm from the vertex of
the model. The average and pulsation characteristics
of the boundary layer were measured in the longitudi-
nal (X), azimuthal (Θ), and normal (Y) directions to the
cone surface by a heat loss anemometer. The results of
the measurements were subjected to Fourier analysis,
which provided the wave characteristics of the pulsa-
tions. Such a procedure had been successfully applied
to analyze the development of wave packets in hyper-
sonic boundary layers [8].

Measurements showed that the flow remained lami-
nar on both the smooth and porous surfaces. The mean
characteristics of the flow in the boundary layer (veloc-
ity profile, boundary layer thickness, etc.) and the dis-
tributions of integral pulsations of the mass rate were
close to each other on both sides of the model. There-
fore, the porous surface does not change the mean char-
acteristics of the flow or the rms pulsations of the mass
rate. The spectra of the mass-rate pulsations were mea-
sured for the Y coordinate corresponding to the maxi-
mum of pulsations. Figure 1 shows the amplitude–fre-
quency spectra of perturbations on the (1) smooth and
(2) porous surfaces in the X section corresponding to
the maximum of the second-mode amplitude on the
surface with the UAC (Reex = 4.5 × 106). It is seen that
the UAC efficiently suppresses perturbations of the sec-
ond mode (the maximum of the amplitude on the
porous wall is approximately equal to one third of the
value on the smooth wall) and virtually does not affect
the first mode.

Artificial perturbations with a frequency of 275 kHz
were generated in the boundary layer. The second mode
has its maximum amplitude at this frequency in the
spectra of natural perturbations measured on the
smooth wall. Figure 2 shows the amplitude wave spec-
tra for artificial-perturbation packets on the porous side
as functions of the transverse wavenumber β. The entire
wave packet is located in the range β = ±0.5, which
approximately corresponds to the range ±20° of the
wave-vector slope. The amplitude is maximal for plane
waves (β = 0). The dimensionless longitudinal phase
velocity Cx = 0.9 is virtually independent of any
increase in the coordinate X and is the same for the
smooth and porous surfaces. These data show that the
wave packet consists predominantly of second-mode
perturbations. Growth curves for natural and artificial
DOKLADY PHYSICS      Vol. 49      No. 12      2004
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Fig. 2. β spectra of the amplitude of artificial perturbations in an artificial wave packet on the side with the ultrasound-absorbing
coating for Reex = (1) 2.22 × 106, (2) 2.77 × 106, (3) 3.35 × 106, (4) 3.91 × 106, (5) 4.47 × 106, and (6) 5.05 × 106.
perturbations of the mass rate on the smooth and porous
walls are shown in Fig. 4 (the amplitude of artificial
perturbations corresponds to β = 0). The data are given
for a frequency of 275 kHz. The growth curves virtually
coincide on the porous wall. Therefore, natural pertur-
bations at this frequency are predominantly two-dimen-
sional waves of the second mode.

THEORY AND COMPARISON
WITH EXPERIMENT

The problem of linear stability under three-dimen-
sional perturbations in the two-dimensional boundary
layer on the porous wall is formulated in terms of the
asymptotic method of many scales [9]. The analysis
takes into account that the middle flow is nonparallel
because the boundary-layer thickness increases down-
stream. Effects associated with the curvature of the
cone surface and the cone divergence of streamlines are
ignored. In contrast to the classical problem of the sta-
bility of the boundary layer on the smooth wall, bound-
ary conditions for perturbations on the porous surface
are imposed with allowance for the acoustic conductiv-
ity of the porous coating, which depends on the micro-
structure of the UAC. As was shown in [5, 10], the
amplitude functions of wave perturbations of the form

(u, v , w, p, θ)(y)exp[i(αx + βz – iωt)]

satisfy the boundary conditions

u(0) = 0, w(0) = 0, v(0) = Ayp(0), θ(0) = 0. (1)
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Here, u, w, and v  are the amplitudes of perturbations in
the longitudinal, transverse, and normal velocity com-
ponents, respectively, divided by the middle-flow
velocity ; θ is the temperature-perturbation ampli-

tude divided by ; and p is the pressure amplitude

divided by the double velocity head . Hereinaf-
ter, the subscript e indicates parameters at the upper
boundary of the boundary layer, and the asterisk stands
for dimensional quantities. The acoustic conductivity
Ay is expressed as [5]

(2)

where φ is porosity, h is the porous-layer thickness

divided by the boundary-layer scale l = ,  is

the kinematic viscosity of the gas, and L* is the distance
from the leading edge of the model. The characteristic
impedance Z0 and propagation constant Λ are expressed

in terms of the dimensionless dynamic density  = 

and the dynamic compressibility  = γ  as

(3)

Ue*

Te*

ρe*Ue*
2

Ay
φ
Z0
----- Λh( ),tanh–=

νe*L*

Ue*
------------- νe*

ρ̃ ρ*
ρw*
------

C̃ Pw*C*

Z0
ρ̃/C̃

Me Tw

------------------, Λ
iωMe

Tw

------------- ρ̃C̃,= =
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where γ is the adiabatic index, the subscript w indicates
quantities on the pore surface, and Me is the Mach num-
ber on the boundary of the boundary layer.

For a continuum (where the mean free path in the
gas filling a pore is much less than the pore radius), the

characteristics of the porous medium  and  are
obtained from the classical solution [11] of the problem
of the propagation of perturbations in an individual
cylindrical pore [12]. However, in the experiments
under consideration, the radius of the pores is so small

ρ̃ C̃

10

100
1

2
3

2.52.0 3.0 3.5 4.0 4.5 5.0 5.5

Reex × 10–6

Fig. 4. Disturbances of the mass rate for the second mode
on the smooth and porous walls for f = 275 kHz. Experi-
mental data for (solid triangles) natural perturbations on the
porous wall, (squares) artificial perturbations on the porous
wall, and (open triangles) natural perturbations on the
smooth wall. Lines 1–3 are the respective calculations.
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Fig. 3. Real part of the characteristic impedance Z = 

(line) calculated as a function of the Knudsen number for
|ς| = 10–2 in comparison with the values calculated with the
measurement data [14] for (crosses) copper and (triangles)
iron tubes.

ρ
C̃
----
˜

that the effects of gas rarefaction are significant. These
effects were analyzed for small (but nonzero) Knudsen
numbers characterizing the ratio of the mean free path
to the pore radius. Molecular effects were assumed to
be significant only in the relatively thin Knudsen layer
on the pore surface. As in the classical case, perturba-
tions of velocity and temperature in a pore are
described by the linearized Navier–Stokes equations.
However, boundary conditions on the walls of the pore
are imposed with allowance for sliding effects and the
temperature jump [13]

(4)

Here, Kn =  is the Knudsen number, where

 =  is the average magnitude of the molec-

ular velocity, Rg is the universal gas constant per unit
mass, and  is the unperturbed temperature of the

gas; Pr is the Prandtl number; r =  is the radial coor-

dinate divided by the pore radius; Bv =  – 1, where
αv is the accommodation coefficient for the tangential

molecular momentum; and BE = , where

αE is the energy accommodation coefficient. The pore-
surface temperature is assumed to be constant.

Solving the above problem for perturbations of
velocity and temperature, we obtain the following ana-
lytical expressions for the dynamic density and com-
pressibility:

(5)

Here,

ς = , Q(ς) = , and J0, 1(ς) are the

Bessel functions. Expressions (5) for Kn = 0 become
the known expressions for a continuum (see, e.g., [12]).

To illustrate the applicability of the above expres-
sions, Fig. 3 shows the real part of the characteristic
impedance calculated as a function of the Knudsen
number for the dimensionless parameter |ς| = 10–2 (low-
frequency band, where gas-rarefaction effects are most

v w* Bv Kn
∂v *
∂r

---------- 
 

w

,–= θw* BE
Kn
Pr
------- ∂θ*

∂r
--------- 

 
w

.–=

2µ*
ρw*c*r0*
------------------

c*
8RgTw*

π
----------------

Tw*

r*
r0*
-----

2αv
1–

2γ 2αE
1– 1–( )

γ 1+
-------------------------------

ρ̃ 1
1 F Bv ς,( )–
------------------------------= , C̃ 1 γ 1–( )F BE ς Pr,( ).+=

F BE ς,( ) Q ς( )
1 0.5Bv ς2Q ς( )–
-----------------------------------------,=

F BE ς Pr,( ) Q ς Pr( )
1 0.5BE ς Pr( )2

Q ς Pr( )–
-----------------------------------------------------------------,=
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2

µw*
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2J1 ς( )
ςJ0 ς( )
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pronounced) in comparison with values calculated with
the measurement data from [14]. Since the accommo-
dation coefficients were not determined in that work,
the calculations were performed with the values αv =
αE = 0.9, which approximately correspond to the exper-
imental values for the materials and temperature inter-
vals indicated in [14]. Similar dependences were
obtained for all other parameters used in the calcula-
tions. As is seen in Fig. 3, the theory agrees well with
experiment over a much wider Knudsen-number range
(up to Kn ≈ 5) than is assumed in the theoretical model
under consideration.

Stability under two-dimensional second-mode per-
turbations (β = 0) was analyzed for the flow parameters
corresponding to the experimental data. The gas-rar-
efaction effect is shown to increase the acoustic con-
ductivity Ay of pores. In turn, this effect increases the
efficiency of the UAC.

Figure 4 shows theoretical growth curves (lines) in
comparison with experimental data (points). The exper-
imental data correspond to the maxima in distributions
similar to those shown in Fig. 2. The theoretical curves
are normalized to the experimental points in the initial
X section. Agreement with the experimental data is
good on the smooth cone surface (cf. line 1 and open
triangles). Growth curve 2 for the porous wall lies
above the experimental points (closed triangles and
squares). Under the assumption that this discrepancy is
attributable to the conic shape of the pores, growth
curve 3 was calculated for an average pore radius  =
28.5 µm. The theory with this correction agrees satis-
factorily with the experimental data.

In summary, the theoretical analysis and measure-
ments of stability on the sharp cone in the wind tunnel
for M = 6 corroborated that the hypersonic boundary
layer is stabilized by a passive porous coating with a
regular microstructure. If the roughness of the surface
decreases and the primarily two-dimensional flow
regime is ensured (in order to avoid the instability of
transverse flows), it is possible to stabilize the second
mode and thereby to ensure the laminar flow regime
over the most part of an aircraft. The theoretical and
experimental results of this work can be used to esti-

r0*
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mate the characteristics of the UAC and to design a sys-
tem for the passive laminarization of the hypersonic
boundary layer.
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We consider a plane homogeneous piezoelectric
body Ω with a straight-line crack Λ that is assumed for
definiteness to be a boundary crack. The origin of the
Cartesian x = (x1, x2) and polar (r, θ) coordinates is at
the apex 2 of the crack, and the positive semiaxis 2x1
and polar axis are directed along its continuation. For
an arbitrary anisotropy of the material, we introduce
elastic strain ε and stress σ tensors, an electric field
strength E, and an electric displacement D, which are
related as (see, e.g., [1, 2])

(1)

The tensors a, b, and c of the physical constants of the
material have the usual symmetric properties. In addi-
tion, the first two tensors are positive. Hereinafter, the
summation over the repeated indices taking values 1, 2,
and 3 is implied. However, since the problem is two-
dimensional, all quantities are independent of the x3
coordinate, whose axis is directed perpendicularly to
the (x1, x2) plane. Volume forces are absent. An external
load g and an electric displacement G are given at the
part Σ of the boundary ∂Ω , and they vanish at the faces
Λ± . The external displacements ξ and the electric
potential Ξ are specified at the remaining part Γ  =
∂Ω\ , which is far from the crack. For the simplicity
of calculations, we assume that Γ  is a nonempty arc.

The potential energy 8 accumulated in the body is
equal to % – !, where the free energy % and work !

σij aij pq, εpq bij l, El,–=

Dk bpq k, εpq ck l, El.+=

Σ
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of external forces have the form

(2.1)

(2.2)

Here, ν = (ν1, ν2, 0) is the outer normal unit vector, u =
(u1, u2, u3) is the displacement vector, and ϕ is the elec-
tric potential,

(3)

Substituting Eq. (3) into Eq. (1), we obtain a system
of equilibrium equations and an electrostatic equation
in the form

(4.1)

(4.2)

These equations, together with the boundary conditions

(5.1)

(5.2)

(5.3)

specify a formally self-adjoint boundary value problem
that has a polynomial property and is thereby elliptic [3,
Section 1]. The symmetric quadratic form

(6)

which corresponds to this problem and which is con-
structed by the standard rules, is not sign-definite due to

%
1
2
--- σijεij DkEk+( ) x,d

Ω
∫=

! gkuk Gϕ–( ) sd

Σ
∫ ν j σijξ i D jΞ–( ) s.d

Γ
∫–=

εij := εij u( ) = 
1
2
---

∂ui

∂x j

-------
∂u j

∂xi

--------+ 
  ,   E k  :=  E k ϕ( )  =  ∂ϕ

∂ 
x

 
k

 --------.–

∂
∂x j

-------aij pq,
∂up

∂xq

--------–
∂

∂x j

-------bij l,
∂ϕ
∂xl

-------– 0,=

i 1 2 3, in Ω,, ,=

∂
∂xk

--------bpq k,
∂up

∂xq

--------–
∂

∂xk

--------ck l,
∂ϕ
∂xl

-------+ 0 in Ω.=

ν jaij pq,
∂up

∂xq

-------- ν jbij l,
∂ϕ
∂xl

-------+  = gi, i = 1 2 3, on Σ,, ,

νkbpq k,
∂up

∂xq
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∂ϕ
∂xl

-------– G on Σ,=

ui ξ i, i 1 2 3, ϕ, , Ξ on Γ= = =
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Ω
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the minus sign of the second term in the integrand. Nev-
ertheless, changing unknowns (see example 1.13 in [3])
and applying the Lax–Milgram lemma, along with
Korn’s inequality, one finds that the problem specified
by Eqs. (4) and (5) in the variational formulation

(7)

with any right-hand side

(8)

has the single solution {u, ϕ} that satisfies the relation

and the estimate

where 1 is the sum of the norms of functions (8) in the
indicated spaces. Here, we use the usual notation for
Sobolev–Slobodetskiœ classes, ° indicates that homoge-

neous Dirichlet conditions (5.3) are satisfied, and  and

 are the continuations of fields ξ and Ξ, respectively,
into the domains Ω in the class H1.

The free energy %(u, ϕ) and enthalpy E(u, ϕ) =
E(u, ϕ; u, ϕ) are related as

(9)

The difference

(10)

is called the functional of the mathematical potential
energy. Here,

(11)

is the mathematical work of external forces, which dif-
fers from the physical energy !(v , ψ) (2.2). The latter

integral in Eq. (11) is treated as 2E( , ; v , ψ) for non-
smooth v  or ψ. Wrong signs appear in Eqs. (6) and (11)
because, according to the second definition in Eq. (3),
Eq. (4.2) must be multiplied by –ψ rather than ψ as was
done for the formation of identity (7).

In this paragraph, ξ = 0 and Ξ = 0 (otherwise, the
pair {u0, ϕ0} must be used instead of {u, ϕ}). The solu-

2E u ϕ ; v ψ,,( ) gkv k Gψ+( ) sd

Σ
∫=

v ψ,{ }∀ H1 Ω; Γ( )4∈ °

g G,{ } L2 Σ( )4, ξ Ξ,{ } H1/2 Γ( )4∈ ∈

u0 ψ0,{ }  := u ξ̂– ϕ Ξ̂–,{ } H1 Ω; Γ( )4∈ °

u ϕ,{ } ; H1 Ω( ) c1,≤

ξ̂
Ξ̂

% u ϕ,( ) E u ϕ,( ) Dk u ϕ,( )Ek ϕ( ) x.d

Ω
∫+=

U u ϕ,( ) E u ϕ,( ) A u ϕ,( )–=

A v ψ,( ) gkv k Gψ+( ) sd

Σ
∫=

– ν j σij v ψ,( )ξ i D j v ψ,( )Ξ+( ) s,d

Γ
∫

ξ̂ Ξ̂
DOKLADY PHYSICS      Vol. 49      No. 12      2004
tion {u, ϕ} ∈  (Ω; Γ)4 of the problem specified by
Eq. (7) or Eqs. (4) and (5) is the stationary point of the
functional of mathematical potential energy (10). It is
easy to see that this point is a saddle point and is not
generally a stationary point of the functional of the
physical potential energy. The latter has a minimum,

but it is reached on the solution {u•, ϕ•} ∈  (Ω; Γ)4 of
the split problem: bij, k = 0 is set in Eqs. (4) and (5). In
other words, for fixed elastic moduli aij, pq and dielectric
constants ck, l , the body Ω has the minimum potential
energy 8 if the piezoelectric constants bij, k are equal to
zero; i.e., elastic and electric fields do not interact.

According to Eqs. (6), (9)–(11), the functionals 8
and U calculated on the solution {u, ϕ) of the problem
specified by Eqs. (4) and (5) are related as

(12)

where AE(u, ϕ) = –!E(u, ϕ) is given by Eq. (2.2) for
g = 0 and ξ = 0, i.e., the work of external electric forces.

INCREMENT 
OF THE MATHEMATICAL ENERGY 

WITH GROWTH OF THE CRACK

According to the general results given in [4], there
are four linearly independent power solutions

(13)

of the homogeneous model problem specified by
Eqs. (4), (5.1), and (5.2) on the plane with the semi-infi-
nite cut {x: x1 ≤ 0, x2 = 0}. They generate the root singu-
larities of stresses and displacement, and other singu-
larities are absent. According to [5], the power solu-
tions in Eq. (13) can be normalized by the conditions

(14)

where n = 1, 2, 3, 4; k = 1, 2, 3; and δk, n is the Kronecker
delta, and determine the intensity coefficients of the
stresses and displacement

Owing to the results presented in [6], basis (13) pro-
vides a unique basis

(15)

H1°

H1°

8 u ϕ,( ) U u ϕ,( ) AE u ϕ,( )+=

=  U u ϕ,( ) !E
u ϕ,( ),–

Xn x( ) r1/2-n θ( ), n 1 2 3 4,, , ,= =

σ2k Xn; r 0,( ) 2πr( ) 1/2– δk n, ,=

D2 Xn; r 0,( ) 2πr( ) 1/2– δ4 n, ,=

Kk 2πr( )1/2σ2k u ϕ ; r 0, ,( ),
r +0→
lim=

K4 2πr( )1/2D2 u ϕ ; r 0, ,( ).
r +0→
lim=

Ym x( ) r 1/2– =m θ( ), m 1 2 3 4,, , ,= =
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in the lineal of power solutions of the model problem
where the exponents are equal to –1/2. The following
biorthogonality conditions are valid:

(16)

where ϒ is the simple arc that connects the surfaces of
the cut and encloses the vertex 2 and where the invari-
ant integral has the form

By definition, the weight functions Zn = {zn, ζn} are
non-energy solutions of the homogeneous problem
given by Eqs. (4) and (5) with the following prescribed
increase near the vertex 2:

They appear in the intensity coefficients in the integral
representations [6]

(17)

following from normalization conditions (16).

The derivatives  are also power solutions of the

model problem, but acquire singularities O(r–1/2) in the
crack vertex and are expanded into basis (15):

(18)

According to [7] and taking Eqs. (16) and (18) into
account, we obtain

(19)

i.e., the 4 × 4 matrix M is symmetric. In contrast to the
pure elastic problem, it is impossible to prove the posi-
tive definiteness of the matrix M (cf. [5, 7]). Moreover,
when the cross terms in Eq. (1) are small, three eigen-
values of the matrix M are positive and one eigenvalue
is negative. We note that the number of power solu-
tions (13) and the corresponding coefficients of the
stress intensity decreases to three, and the correspond-
ing 3 × 3 matrix M is positive definite when the surfaces
are in electric contact.

Q Xn Ym; ϒ,( ) δn m, , n m, 1 2 3 4,, , ,==

Q u ϕ ; v ψ; ϒ, ,( ) ν j σij u ϕ,( )v i D j u ϕ,( )ψ+{
ϒ
∫=

– σij v ψ,( )ui D j v ψ,( )ϕ– } ds.

Zn x( ) Yn x( ) O 1( ), r         +0.+=

Kn gkzk
n Gζn+( ) sd

Σ
∫=

– ν j σij Zn( )ξ i D j Zn( )Ξ+( ) sd

Γ
∫ A zn ζn,( )=

∂Xn

∂x1
---------

∂Xn

∂x1
--------- x( ) MnmYm x( ).

m 1=

4

∑–=

Mnm Q ∂1Xn Xm; ϒ,( )=

=  Q ∂1Xm Xn; ϒ,( ) Mnm,=
 

Let {

 

u

 

h

 

, 

 

ϕ

 

h

 

} be a solution of the problem given by
Eqs. (4) and (5) on the crack 

 

Λ

 

h

 

 growing by a small
length 

 

h

 

 > 0. Applying the method of matched expan-
sions by the scheme given in [5, 7, 8], we find that the
far field (approximation beyond the vicinity of the ver-
tex 

 

2

 

) has the form

 

(20)

 

Here, an ellipsis stands for minor terms, but estimates
of residuals, which require weight norms (cf. [9, 10]),
are not performed for brevity. Then, using
Eqs. (11), (17), and (20), we calculate the increment of
functional (10):

 
(21)

 

where the estimate of the residual is assured by the
papers mentioned.

INCREMENT 
OF THE PHYSICAL POTENTIAL ENERGY

Using Eqs. (12) and (21) and calculating the deriva-

tive  for 

 

h

 

 = 0 by using representation (20) (cf. [8]),

we arrive at the relation

 

(22)

 

Here,  and  are the intensity coefficients gener-
ated by the elastic and electric forces, respectively (

 

G

 

 =

 

Ξ 

 

= 0 and 

 

g

 

 = 

 

ξ

 

 

 

= 0 are step-by-step substituted into
Eq. (17)), and

 

(23)

 

is the 

 

nonlocal 

 

characteristic.
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If G = Ξ = 0 in Eq. (5), Eqs. (21) and (22) are undis-
tinguishable. However, Eq. (22) for G ≠ 0 or Ξ ≠ 0 dif-
fers strongly from the classical Griffith formula,
because, in addition to the usual combination of the
products of the intensity coefficients, it includes the
nonlocal component

which is treated as the increment of the work of external
electric forces. The latter representation in Eq. (22)
does not remove the mentioned nonlocality, because the

decomposition Km =  +  is impossible in terms of
fields near the mouth of the crack. These circumstances
lead to serious consequences. First, applying the Grif-
fith concept to piezoelectric bodies (cf. [1, Sect. 6]), we
find the crack-growth condition

(24)

where γ is the surface-energy density. The left-hand
side of Eq. (24) is not sign-definite and can be made
either positive or negative by the correlated variation of
mechanical and electric forces (control over the quasi-
static breakdown process) with constant total intensity
coefficients Km . Thus, in contrast to the pure elastic
problem, the Griffith energy criterion for the piezoelec-
tric medium is not equivalent to the generalized Irvin
and Novozhilov criterion. For the same cause (the pres-
ence of a nonlocal component), the Eshelby–
Cherepanov–Rice integral in the piezoelectric medium
(see [1, Sect. 33]) does not provide the energy-release
rate.

The above conclusions and result (24) contradict
formulas from [1, Chapter 6]. However, careful analy-
sis revealed the following errors in [1, p. 296]: an erro-
neous definition of work (an extra factor of 1/2) and an
incorrect integration by parts in the reciprocity relation.
The elimination of the above defects returns the integral
AE(uh – u, ϕh – ϕ) to Eq. (33.23) in [1].

Owing to the general results given in [7], the expres-
sion of the energy increment in terms of the intensity
coefficients, which are the characteristics of the
stressed state in the mouth of the crack, is a prerogative
of self-adjoint problems. In particular, the transition to
the non-self-adjoint realization of the piezoelectric
problem changes the key integral representations in

AE ∂huh
h 0= ∂hϕ

h
h 0=,( ),

Km
M Km

E

Km
MMmnKn

M

m n, 1=

4

∑ Km
E MmnKn

E

m n, 1=

4

∑– 4γ,=
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Eq. (17), which, according to [6], include singular solu-
tions of the adjoint problem and finally form the abnor-
mal term AE(uh – u, ϕh – ϕ) in Eq. (22). If the external
force is simple and depends linearly on no more than
four parameters τj , a good choice of these parameters
provides quantities (23) in the form of combinations of
the intensity coefficients Kn , and the difference in the
braces in Eq. (22) takes on the form Km}mn(τj)Kn .
However, the coefficients }mn(τj) cannot be treated as
the material constants, as was said about Eq. (34.48)
in [1, p. 312]. At the same time, elements (19) of the
matrix M are the material constants, which are easily
reconstructed from basis (13) of the power solutions
that satisfies normalization conditions (14).
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Modern wind-power generators (wind turbines)
often are grouped together in order to ensure an
increased operating efficiency at the expense of using
a large number of turbines in the same terrain area.
However, in this case, one or several turbines can turn
out to be in the wake beyond other turbines. As is
shown in Fig. 1, the airflow beyond a wind turbine is
represented by a system of intense rotational helical
vortices determining the dynamics of a far wake. The
wake produces a significant periodic load for the struc-
ture of a wind turbine present in the wake. This fact,
naturally, results in a reduction of the turbine in-ser-
vice time. However, as is well known, for certain oper-
ating regimes of wind turbines, the vortex wake
becomes unstable and breaks down, as is shown in
Fig. 1b. If a turbine is located in a stable vortex wake
(Fig. 1a), then the interaction with it may have signifi-
cant consequences than in the case of wake breakdown
(Fig. 1b). Therefore, analysis of stability conditions for
a vortex system simulating the vortex wake beyond
wind turbines, screws, and aerodynamic propellers is
of great practical importance.

At a sufficiently large distance behind a wind tur-
bine or an aerodynamic propeller, the vorticity is con-
centrated in N blade-tip vortices of helical shape. The
vortices are located on a cylindrical surface of radius R

and have the same azimuth shift by the angle . Let

each of the vortices have circulation Γ and a radius of
the vortex core equal to ε. In addition, let a rectilinear
vortex with the opposite total circulation –NΓ exist
along the system axis. Such an (N + 1)-vortex system

2π
N
------
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with the constant helical pitch 2πl (or, in the dimen-
sionless form, τ = l/R) is the simplest model of a wake
behind aerodynamic propellers and wind turbines [1].
In this approximation, the problem under consider-
ation is reduced to the analysis of stability of the
(N + 1)-vortex system that moves in uniform airflow
at a constant wind speed V (Fig. 2). Since the flow
behind the wind turbine has a wake-like profile, we
analyze a system of left-handed helical vortices [2]. It
is worth mentioning that the system of (N + 1) vortices
was studied previously only in the case of point vorti-
ces or rectilinear vortex filaments (the ultimate case of
helical vortices with an infinitely large pitch) for
which their instability was determined (see, e.g., [3]).
It is clear that this result obtained for the simplest par-
ticular case (τ = ∞) is inconsistent with the visualiza-
tions of wakes behind aerodynamic propellers and
wind turbines (see, e.g., [4]). In addition, the linear
analysis of stability for a simpler equilibrium con-
figuration of N helical vortices without a central
vortex, which model a pair, triplet, etc., of helical vor-
tices arising in the tornado core after the vortex break-
down [5, 6] cannot be applied for solving the problem
posed. Therefore, in the present paper, the stability
analysis for wakes behind aerodynamic propellers,
screws, and wind turbines is generalized to the case of
a system consisting of N + 1 left-handed vortices.

In accordance with the ideas of [7], outside the vor-
tex cores, the components of the velocity induced by
the system of N + 1 left-handed vortices, which moves
at constant wind speed V and additionally rotates in the
field generated by the central circulation vortex –NΓ,
can be written out in the form

ur
Γa

πl
2

------- Im

H1
1 1, r

l
-- R

l
--- χ 2πn

N
---------–, , 

 

H1
1 1, R

l
--- r

l
-- χ 2πn

N
---------–, , 

 
 
 
 
 
 
 
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,
n 1=

N

∑=
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(1)

Here, (x, y, χ) = (mx) (my)eimχ for

x ≤ y, (mx) and (my) are the modified Bessel func-

tions, and (mx) and (my) are their derivatives. In
(1), the upper and lower lines in braces correspond to
r < R and r ≥ R, respectively. The calculation of trigono-

metric Kapteyn’s series  turns out to be associated
with certain difficulties, especially as r  R. Therefore,
we use a method of singularity separation [5, 6],

(2)

where the principal part  is determined as a sum of

uθ
NΓ
2πr
---------–=

+
Γ
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simple functions
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by multiplying asymptotic expansions (9.3.9), (9.3.10),

SM
I J, λ I J,

bM 0,
I J, e

ξ iχ+

e
ξ

e
iχ

–( )
2

------------------------ bM 1,
I J, e

iχ

e
ξ

e
iχ

–
-----------------+=

+ bM 2,
I J,

1 e
ξ– iχ+

–( )ln bM 3,
I J,

Li2 e
ξ– iχ+

( )+

1
2

3

1
2

------+ bM 4,
I J, Li3 e

ξ– iχ+
( ) bM 5,

I J,
Li4 e

ξ– iχ+
( )+ ,

z
m

m
k

------
m 1=

∞

∑

e
ξ x

y
--

1 x
2

+( ) 1 1 y
2

++( )exp

1 y
2

+( ) 1 1 x
2

++( )exp
------------------------------------------------------------------;=

λ I J, 1
2
---

1 x
2

+( )
I 1/2–

1 y
2

+( )
J 1/2–

xI y–( )J
---------------------------------------------------------------------;=

b
I J,

0 0 1 α I J, βI J, γI J,

0 1 α I J, βI J, γI J,
0

1 α I J, βI J, γI J,
0 0

.=
(a) (b)

Fig. 1. Visualization of a far wake behind a wind turbine: (a) stable regime [4] and (b) unstable regime accompanied by wake insta-
bility (RISO data, Denmark).
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(9.3.13), and (9.3.14) in [8]. For points taken in a cir-

cumference of radius R x = y = , these polynomials

have a simple form, namely,

As a result, the singularities and their coefficients in
two-dimensional representation (3) of solution (1)
explicitly contain information on the torsion of helical

vortices, whereas the regular residual  in (2) can be
ignored by virtue of its smallness [5, 6].

The unperturbed system of (N + 1) helical vortices
participates in the translational motion and rotation
about the cylinder axis with the total velocity ub

directed along the binormal to vortex filaments. This
velocity is the sum of the self-induced velocity of each
individual vortex (see Section 4.1.1 of [9]) and of the
velocity induced by other vortices. By analogy with
the problem of N helical vortices [5, 6], the desired

1
1
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 1

τ
---
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1
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8
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3τ2 3
8
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0.= =

RM
I J,

V
– NΓ

Γ Γ
Γ

2πl

2ε

Fig. 2. Schematic diagram of an (N + 1) helical-vortex
system.

R

velocity ub can be written as

(4)

where ζ(3) = 1.20206 … is the Riemann zeta-function,

b =  is the dimensionless wind speed, and

ε' is the vortex-core radius normalized according to for-
mula (3.14) of [9]. Equation (4), without the last term
in square brackets, corresponds to the velocity of
motion of a system containing N helical vortices and
coincides with the results of [5, 6].

In order to analyze the stability of the system of
(N + 1) helical vortices, we exploit an analogy with the
analysis of linear stability for the equilibrium configu-
ration of N vortices [5, 6]. Thus, we pass to the helical
variables (r, χ) with the corresponding velocity compo-

nents ur, uχ = uθ +  ≡ . In other words,

the given problem is reduced to the two-dimensional
problem of the stability of the (N + 1)-vortex system
with respect to infinitely small displacements of peri-
pheral helical vortices from their equilibrium position
at a fixed position of more intense central vortex. Let

the kth vortex be displaced to the point R + rk,  +

t  + χk . Then, in the linear approximation, the per-

turbed equations of motion for the kth vortex can be
written as

4πa
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(5)

In formulas (5), the series  entering into the first
terms of the expansion of the velocity field were

replaced by their principal parts, , whereas the

small residuals  were ignored. For 0 ≤ k ≤ N – 1, fol-
lowing [10], we write the eigenfunctions of the dynam-
ical system in the form

(6)

where m is the subharmonic wave number taking inte-
ger values within the range [0, N – 1]. For m = 0, the
behavior of all vortices is the same. For other wave
numbers, the substitution of (6) into (5) shows that
solutions written out in the form (5) exist, provided that

(7)

Hence, it follows that α and β are proportional to

 and the instability of the system depends
on the sign of the product

(8)
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Here, C = 0.577215… is the Euler constant. The psi-
function ψ(·) for several arguments has the following
values: ψ(–1/2) = 0.03949…, ψ(–1/3) = 1.68177…,
ψ(−2/3) = –1.63203…, ψ(–1/4) = 2.91414…, and
ψ(−3/4) = –2.89412…. It is worth noting that, in the
limiting case, as τ  ∞, product (8) has the form
m(N–m)[m(N – m) + 2]. This form entirely coincides
with the result obtained in [3] for a system of point vor-
tices, with the first multiplier of product (8) being
always positive. Thus, if B > 0, for an arbitrary m within
the range 0 < m ≤ N – 1, then the system is unstable, i.e.,
perturbations exponentially rise with time. If B < 0 for
all m, then the system is linearly stable.

In order to apply this model for analysis of the far-
wake stability of the wind turbine, we express geomet-
ric and kinematic wake parameters (τ, V, and Γ) in
terms of the typical operating characteristics of a wind
turbine (axial interference factor a of the wind speed
and the tip speed ratio λ (i.e., the ratio between the
velocity of blade-tip motion and the wind speed)). The
parameter a in the wake can be determined as the ratio
of the axial velocity induced by wake helical vortices
and the wind speed. Ignoring the small diameter of vor-
tex cores in the wake, we obtain, as a result of calcula-
tions of the mean axial velocity according to (1), a =

 = , where G =  is the total dimension-

less circulation of tip vortices. In the following simpli-
fication of the problem based on the lifting disk theory,

we represent quantity G in the form G = .

Thus, we find τ = . To replace wind speed V,

we use its definition  =  = . As a

result, the correlation equation expressed in terms of
these parameters takes the form

+
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where ϑ(a, λ) = .
Figure 3 presents neutral stability curves for a sys-

tem of N + 1 helical vortices modeling the far wake of
wind turbines with two and three blades. The possible
variations of controlling parameters for typical operat-

+ m N m–( ) ϑ 3
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8 1 a–( )3
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ϑ 7
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N
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---------------ζ 3( ) 1+ 0,=

4 1 a
2

–( ) λ 2
+

ing regimes of a wind turbine are denoted by shaded
areas. As is seen, they lie, mainly, in the stable region.
However, in some cases, wind turbines operate in con-
ditions when the wake vortex structure becomes unsta-
ble, which is consistent with the observations in [11]. In
the operating-regime zones, the effect of the vortex-
core radius is weak and can be ignored.

We may conclude that the problem of stability for a
system with N + 1 helical vortices is investigated in the
analytical form. This system models the far wake
behind the screws, aerodynamic propellers, and wind
turbines. Typical operating regimes of a wind turbine
were compared with characteristics determining the
stability of the vortex system. As a result, we have
found that, even with a rough estimate of the system
vortex parameters in terms of turbine operating charac-
teristics, the theory developed is qualitatively consis-
tent with data from full-scale and model tests. The rep-
resentation of the correlation equation in the simple
analytical form can be considered a first step in finding
recommendations for efficient control of wind-turbine
clustered in parks, or “wind farms.”
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Fig. 3. Diagram of possible variations of wind-turbine operating parameters (shaded region) and curves of neutral stability for an
(N + 1) vortex system modeling the far wake behind the wind turbines with different numbers N of blades N and for different sub-
harmonic wavenumbers m: (a) N = 2, m = 1 (solid line); (b) N = 3, m = 1 (solid line) and m = 2 (dashed line); (c) N = 4, m = 1 (solid
line), m = 2 (dashed line), and m = 3 (dotted line); (d) effect of the vortex core radius for N = 3, ε = 0.1 (solid line), ε = 0.01 (dashed
line), and ε = 0.001 (dotted line).
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