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Solving many problems of plasma physics requires
rather precise information on optical properties of
plasma in a wide range of temperatures and densities.
Theoretical models of plasmas, which were developed
over the past few years, provide a way of calculating
spectral absorption coefficients for the electromagnetic
radiation and ranges according to Planck and Rosse-
land. The accuracy of such calculations depends upon
specific physical approximations laying in the base of
one or another model [1]. However, the problem of
allowance for an entire abundance of spectral lines is
common to all the models, even for light substances
with a relatively low nuclear charge Z. For high Z val-
ues, the number of the lines can exceed 108 making the
calculations impossible even with most advanced mod-
ern computers [2]. Such a great number of spectral lines
is a consequence of the abundance of various kinds of
ions, each having low concentration, which are con-
tained in hot dense plasma along with highly concen-
trated atoms and ions. It is worth noting that spectral
lines of low-concentration ions are often very close to
the lines of high-concentration ones. If these lines
merge, the resulting profile is determined not only by
the Doppler and Stark effects, but also by the distribu-
tion of low-concentration ions. This fact is of particular
importance in the cases of determining the plasma den-
sity by the broadening of spectral lines, when experi-
mentally measured line widths are compared with
results of calculations based on a certain model. To
overcome these difficulties, along with the conven-
tional mechanisms for the broadening of spectral lines,
an approach is proposed in this paper, which we call the
additional broadening. Parameters of this broadening
are determined by the distribution of low-concentration
ions. The subsequent discussion is based on the ionic
model for a substance [1].

We consider plasma consisting of atoms and ions of
a substance with the nuclear charge Z, the atomic num-
ber A, temperature Θ, and the density ρ (g/cm3).
A spherical atomic cell of the radius r0 with a nucleus
1028-3358/00/4501- $20.00 © 20001
located at the cell center is used as a subsystem of the
Gibbs statistics. The subsystems differ from one

another by sets of occupation numbers { } for elec-
tron quantum states belonging to the discrete spectrum.

Here,  is the number of bound electrons of the sub-
system j, which are in a state with the principal quan-
tum number n and the orbital quantum number l. In
addition to the bound electrons localized nearby the
nucleus, the subsystem contains electrons belonging to
continuum, which move in the resulting field of both
the nucleus and other electrons. Quantum states of each
subsystem are interpreted as those of plasma atoms and
ions. A set of equations for the self-consistent field
describing states for an ensemble of plasma atoms and
ions can be derived by the density-functional method.
We restrict ourselves to the case of the Schrödinger
equation for the single-electron radial wave functions.
Then, the set of equations can be represented in the
form

The boundary conditions are imposed as

The normalization conditions are written out in the
form

The quantity r0 is given by the formula

where a0 = 5.292 × 10–9 cm, NA = 6.02 × 1023 is the
Avogadro’s number. Henceforth, the atomic system of
units is used. The potential Vj(r) is written out in the

form Vj(r) = (r) + (r), where
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The exchange interaction is approximated by the for-
mula

We represent the electron density in the form ρj(r) =

(r) + (r), where the electron density for the dis-
crete spectrum is written out as

For the continuum electron spectrum, we use the quasi-
classic approximation

The chemical potential µ can be determined from
the electroneutrality condition

where

is the total number of electrons in the jth subsystem.
The concentration Wj of atoms or ions corresponding to
this subsystem is determined by the Gibbs distribution

Here, Ej is the total energy, gj =  is the statistical

weight, and gl = 2(2l + 1).
Evidently, the above set of equations cannot be

solved for all plasma atoms and ions, if all possible

electron configurations { } are taken into consider-
ation. However, this set of equations can be solved for
a group of atoms and ions having the highest concentra-
tions (the so-called basic ions). For low-concentration
atoms and ions, the perturbation theory can be used. If
the set of equations is solved for a group of basic ions
at j = 1, 2, …, K, this yields K sets for the wave func-

tions { (r)} and the energy levels { }. Hence, K
samples of the perturbation theory can be constructed.
Let, for example, we need to calculate characteristics of
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an ion with a set of the occupation numbers { }, the

concentration  of such ions being known to be low.
Then, we can find among the basic ions those with the

electron configuration { } being the closest to the

configuration { }. Let Wk be also the concentration

of these ions, and { } be the set of the single-elec-

tron energy levels. Then, the concentration  can be
found from the formula

where

The above formulas are presented for the simple case of

the { } configuration being different from the { }
configuration only by the occupation numbers n1l1 of a
single shell. These formulas can be generalized to a
more complex case. For sufficiently large values of gl ,
the binomial distribution transforms to the normal
(Gaussian) distribution. Therefore,

for  ≈  ! 1, where  = .

On the other hand, the spectral-line shift corre-
sponding to the transition (nαlα  nβlβ) for an ion

with the configuration { } with respect to the posi-

tion of this line for an ion with the configuration { }
is given by the well-known formula of the perturbation
theory

Consequently, the probability distribution function for
the spectral-line shift (nαlα  nβlβ) has the form
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with the variance defined by the formula

Here, the summation is performed over all configura-
tions of low-concentration ions reasonably close to the

{ } ion configuration.

We now consider the shape of the spectral lines,
which is associated with the Doppler effect. According
to [3], this shape is determined by the expression

where δωαβ = ω – ;  =  –  is the spectral-
line position of an ion having the electron configuration

{ }. For essentially imperfect plasma, the line shape
determined by the Stark effect is of the form [4]

We consider ϕ(δωαβ), IDoppler(δωαβ), and IStark(δωαβ) as
distribution functions that present probabilities of a
deviation from the spectral-line center owing to fluctu-
ations of the occupation numbers, to the Doppler effect,
and to the Stark effect, respectively. This leads us to a
problem of the distribution of the total deviation caused
by all these processes taken together. The solution to
this problem is provided by the well-known theorem of
the probability theory. According to this theorem, such
a distribution will be normal provided that all three
quantities have also normal distributions. As a result,
we arrive at the distribution, that can be approximately
considered as the line shape, for which all the three
mentioned effects are taken into account:

An additional term  in the second formula can be
treated as a result of a certain additional broadening
with respect to that caused by the Doppler and Stark
effects.

We now pass to the comparison of the theoretical
and experimental data. Figure 1 shows the spectral
absorption coefficient k(E) (cm2/g) as a function of the
photon energy E, which is calculated for germanium
plasma, initially with, only the Doppler and Stark
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effects taken into account, and then, with inclusion of
the additional broadening. The natural and electron
broadening were also taken into account, but their
effects turned out to be negligibly small. The theoreti-
cal and experimental data are compared in Fig. 2. The
function

with ρd = 1.6 × 10–4 g/cm2 was measured in the exper-
iment [5]. The same function was calculated by the
above-described procedure with the additional broad-
ening taken into account. As is seen, the procedure pro-
posed provides a reasonable agreement with experi-
mental data, whereas allowance for only the Doppler
and Stark effects results in a considerable disagreement
with the experimental data. Indeed, in this case, the
absorption coefficient is as much as 105 to 106 (see
Fig. 1). As a result, the function N(E) becomes zero in
certain segments of the energy interval under consider-
ation.

T E( ) k E( )ρd–[ ] ,exp=

1200 1400 1600

E, eV

102

103

104

105

106

107
k(E), cm2/g

Fig. 1. Spectral absorption coefficient k(E) calculated for
germanium plasma having temperature of 76 eV and the
density ρ = 5 × 10–2 g/cm3 as a function of the photon
energy E with allowance for only the Doppler and Stark
broadening (thin line), as well as with the additional broad-
ening (thick line) taken into account.
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Fig. 2. Measured [5] (thick line) and calculated (thin line)
function T(E) for germanium plasma having temperature of
76 eV and the density ρ = 5 × 10–2 g/cm3 according to the
ionic model with the additional broadening taken into
account.
The procedure proposed may essentially facilitate
the calculations when the number of spectral lines is so
large that it is impossible to take into account individual
profiles for all the lines. The effect of the additional
broadening must be taken into consideration if the
plasma density is determined from the broadening of
spectral lines.
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The end of the twentieth century was marked by
promising achievements of mesoscopic researches,
which gave impetus to an intensive development of
nanotechnology. New nanostructures with desired elec-
tric properties are being purposefully synthesized in
laboratories. Among such structures, nanoclusters and
nanowires are of particular interest as prototypes of
one-electron transistors [1–3], commutators, and tun-
nel diodes [4]. In molecular electronics, quantum trans-
port properties must manifest themselves more fully in
researching unsteady processes that occur in real time
of electron transmission through nanoclusters. The
characteristic tunneling time scale is in the femtosec-
ond range. Therefore, for this purpose, electronic exci-
tation and current control have to be performed by
methods of the femtosecond spectroscopy. The optics
of extra-short pulses also allows us to solve more com-
plicated problems of optimizing quantum motions [5].
In particular, the aforesaid is applicable to nanoclusters
in mesoscopy when the motion of an electron wave
packet need be traced for investigating the electron
affinity. Studying unsteady transport processes is also
interesting from the viewpoint of the conventional Lan-
dauer’s approach, because the packet dynamics
involves exhaustive information on the tunneling-elec-
tron spectrum.

In this paper, we study the electron packet transmis-
sion through a two-dimensional double barrier. The
wave packet can be formed by, for example, a extra-
short laser pulse, that excites localized electrons of
impurity centers into the conductivity zone. We con-
sider a well (which an electron tunnels into) with a
cylindrically symmetrical potential, which is a simpli-
fied model of carbon nanotubes referring to fullerenes.1

The electron dynamics is described by the Schrödinger
equation

i
∂Ψ
∂t

-------- HΨ, H –
1
2
---∆ V x y,( ).+= =

Moscow State University, Vorob’evy gory, 
Moscow, 119899 Russia

1 Carbon nanotubes are characterized by an additional spiral sym-
metry of the arrangement of their walls and potential.
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Here, ∆ is the two-dimensional Laplacian, and V(x, y)
is a potential in the atomic units. A numerical solution
can be found by the Trotter’s method:

For small τ = t/N, the operator exponent is represented,
with an accuracy of O(τ2), in the form

Each expansion factor is evaluated in its own diagonal
representation [6]. The operators of the potential and
kinetic energies are diagonal in the coordinate and
momentum representations, respectively. The coordi-
nate representation transforms to the momentum one
by the two-dimensional fast Fourier transformation.
The electron dynamics was visualized with the time
step τ ~ 10 as on the torus with the dimensions 5.3 ×
10−9 cm × 5.3 × 10–9 cm, which was covered by the net
of 256 × 256 nodes. The initial state was taken as a
wave packet of the Gaussian form with the wave vector
k = (kx, ky), at the point ξ0 = (x0, y0), and with the vari-
ance dξ:

The potential V(x, y) with the barrier height V0 was
taken in the form

Here, r = (x2 + y2)1/2 is the radial coordinate, 2(D + R)
is the barrier width, and R is the interior radius of the
cylindrical well.

Inside the cylinder, the wave function takes the form
of a nonuniform cluster, that reflects at the walls and is
focused in accordance with the ray optics. The results
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Fig. 1. Electron distributions at various moments t: (a) t = 34, (b) 60, (c) 40, and (d) 100. The following initial parameters of the
packet are used: the variance d = 6, the momentum k = 0.7 (the energy E = 0.245), and the position ξ0 = (0, –30). The barrier with
the height V0 = 0.6 is along the lines y = ±12. The packet scatters by the barrier and tunnels into the cylindrical well with the radius
R = 10.
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(c) (d)
of the numerical solution of the equation are shown in
figure for various moments. At the moment T = 60, the
first focus is at the distance R/2 from the distant bound-
ary of the well, while, according to the paraxial approx-
imation, the second focus is at the distance 5R/4. The
focusing is unaffected by varying the height and width
of the barrier and the angle of incidence of the packet.
For a fixed electron wavelength, the focal point spreads
with decreasing the well radius. At the oblique inci-
dence, the focuses shift along a circle and form an
unclosed trajectory. It is worth noting that tunneling
rather than above-barrier electrons are focused in this
case. To make sure that such is the case, it is sufficient
to carry out the spectral analysis of the solution. For the
barrier with the height V0 = 0.6, there are 27 eigenstates
of the (quasi-)discrete spectrum, which the packet wave
function can be expanded in. This set consists of three
eigenstates with zero angular momentum (their radial
quantum numbers are equal to 0, 1, and 2) and 12 pairs,
degenerate in angular momentum, of the eigenstates
with the following radial and azimuthal quantum num-
bers: (0, 1–7), (1, 1–3), (2, 2), and (2, 4). For the
unsteady electron tunneling inside the well, the inter-
ference of these eigenstates is small.

The programmable optics allows a wave packet to
be localized at a chosen point inside the well at a given
moment. To do this, the initial distribution must be pre-
pared so that the spatial harmonics compensate for the
effects of quantum dispersion and scattering. A similar
idea [7] has been discussed from the viewpoint of both
acquiring the femtosecond coherence of electron states
and the theorem of reversibility. Without going into
details, we present only the final formula for the opti-
mum packet at the initial moment:

This packet has the maximum overlap with the delta-
function kernel at the point ξf at the moment tf . Here,
〈ξ f | and |ξ〉 are the bra- and cket-vectors at the point of
localization and at a moving coordinate, respectively.
The normalizing parameter λ acts as a Lagrange multi-
plier in the functional of quantum control.

The above results are applicable for an arbitrary
potential and hold for the focusing of an electron wave
packet when it tunnels through nanoclusters. The
packet localization occurs together with the opalescent
scattering (which is the well-known quantum-mechan-
ical and optical effect) and with the shining outside the
cluster. It is worth noting once again that this quantum
process is reversible. The scattered waves can be local-

Ψ ξ 0,( )
ξ f iHtf( )exp ξ〈 〉

λ
-----------------------------------------.=
DOKLADY PHYSICS      Vol. 45      No. 1      2000



A MODEL OF UNSTEADY TWO-DIMENSIONAL ELECTRON TUNNELING 13
ized at a chosen point by optimizing the phase modula-
tion of the initial state. The incident wave packet must
contain the spatial harmonics that are conjugate in
phase with respect to the scattered waves. The inversion
of the electron wave front is a necessary condition for
the localization.

Studying the tunneling dynamics is of interest due
to a number of reasons. First of all, it stimulates the
development of the scanning tunneling microscopy,
spectroscopy, and defectoscopy with the space-time
resolution inside clusters. Further development of both
the theory and experiment in the direction outlined will
allow us to understand the character of the electron
affinity in clusters and to trace the formation of anions,
the reorganization of molecular structures, and the
relaxation processes inside clusters.
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Nowadays, there are two basic methods for obtain-
ing Carbyne, i.e., the allotropic form of carbon with sp1

hybridization of atomic orbitals [1]. These methods are
dehydrohalogenation of certain halogen-containing
polymers (chemical method) and carbon precipitation
from the gaseous phase. The first method usually
results in obtaining the amorphous substance with high
impurity content exceeding 10%. The precipitation
from the gaseous phase allows thin films ordered in two
dimensions and having the maximum thickness of
~10 µm to be obtained. However, in most cases, only
sufficiently large Carbyne crystals (of no less than sub-
millimeter dimensions) can be of interest for practice.

It seems to be natural to make an attempt of Carbyne
synthesizing based on a thermodynamic approach, i.e.,
to use a method similar to that realized while synthesiz-
ing artificial diamonds from graphite. In this case, it is
necessary to choose such pressures and temperatures at
which the direct graphite–Carbyne phase transition
could be realized. For both these values being suffi-
ciently close to the line of graphite–Carbyne equilib-
rium and a sufficiently long duration of the process, we
would expect formation of relatively large Carbyne
crystals with well-ordered structure.

Previously, A.G. Whittaker [2], and R.B. Heœmann
et al. [3] made attempts of synthesizing Carbyne using
compression or thermal action. Heating a graphite sam-
ple up to temperature of 2600–2800 K by direct action
of electric current, Whittaker [2] has succeeded in
obtaining a certain (seemingly, small) amount of Car-
byne.

The authors of [3] used graphite preliminarily
heated up to temperature of 2900 K for shock com-
pressing at pressures up to 15–25 GPa. They discovered
Carbyne traces conserved in the samples.

Recently, we took part in an attempt to synthesize
Carbyne from graphite by using a laser-induced shock.
The results of the experiments are published in part
elsewhere [4]. The laser-pulse duration was ~600 ps,
and the maximum pressure in the graphite varied within
the range 12 to 32 GPa. Carbyne crystals, whose
1028-3358/00/4501- $20.00 © 20014
dimensions varied within the limits from 1 to 30 µm,
were found both in the focal spot and around it. Car-
byne structure was essentially different in these two
regions. Therefore, it was assumed that in the focal
spot, Carbyne was formed in the cycle of compression,
while outside this spot, its formation occurred owing to
precipitation of the carbon that had vaporized during
the irradiation. In the region subjected to the action of
the laser beam, surface temperature of the sample mate-
rial is estimated to be higher than 3800 K.

The data presented above justify an assumption that,
at certain temperatures and pressures, crystalline Car-
byne can be obtained directly from graphite. However,
data available are insufficient to optimize the dynamic
synthesis (i.e., to determine conditions of the maximum
Carbyne yield) and to estimate a possibility of static
Carbyne synthesizing.

The goal of this study is to refine the conditions (i.e.,
pressure and temperature) of dynamic Carbyne synthe-
sis from graphite and searching for technological
approaches to commercial synthesis of crystalline Car-
byne.

The MGP-RD-60 graphite with the density of
2.20  ± 0.05 g/cm3 and of the monochromator quality
was used in the experiments. The impurity content was
lower than 0.5 at. %. Figure 1a shows a diffraction pat-
tern of the original sample.

In the shock-wave experiments, we applied a plane
steel recovery ampoule that had been described in
detail in [5]. A graphite sample was placed into the
ampoule between two 2 mm-thick disks each 10 mm in
diameter, which were made of copper or Teflon. The
assembly was subjected to impacts of a 10 mm-thick
aluminum plate 90 mm in diameter, which was acceler-
ated up to 2.5 km/s as a result of detonation of an explo-
sive. The shock wave propagated in the direction of the
graphite c-axis. The shock pressure in the sample was
attained in the course of several wave circulations
between steel walls of the ampoule and amounted to
~35 GPa.

We have realized two variants of the experiment
with the impact loading. In the first of them, graphite
foils 10 to 15 µm thick and with characteristic dimen-
sions of 5 to 7 mm were placed between copper disks.
In the second variant, the graphite foils were fixed
between the Teflon disks. According to our estimates,
duration of the loading was such, that the foils and the
000 MAIK “Nauka/Interperiodica”
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Fig. 1. X-ray pattern for (a) the original graphite film and (b) the material conserved after the impact loading. Letters t, α, β, and g
correspond to Teflon, α-Carbyne, β-Carbyne, and graphite, respectively (the numbers in parentheses correspond to Miller indices;
Θ is the Bragg angle).
disks had enough time to turn out in a state close to the
thermal equilibrium. In addition, we carried out similar
experiments with massive (~1 mm thick) graphite
samples.

The structure of the conserved samples was investi-
gated by the method of X-ray diffractometry with the
help of the DRON-3M setup using CuKα emission line.
Carbyne was not found in the samples of the first group
(i.e., after loading in the copper container). The major
part of graphite crystals retained its original orientation.
We detected a small number of fine-grained cubic dia-
monds as well. The results of the experiment, as a whole,
coincide with the data obtained previously in the experi-
ments with massive samples of the MGP-RD-60 graph-
ite [5].

Figure 1b shows the diffraction spectrum of graph-
ite subjected to shock compression in the Teflon con-
tainer. Although the film with the original diffraction
pattern contains only diffraction lines intrinsic to
graphite, the diffraction spectrum of the material after
the impact loading includes, in addition to these lines,
diffraction maxima corresponding to α- and β-Carbyne
and Teflon. Low intensity of these lines is explained by
DOKLADY PHYSICS      Vol. 45      No. 1      2000
rather small surface area of the fragments under inves-
tigation.

Comparing intensities of the recorded Carbyne dif-
fraction lines obtained with the corresponding maxima
of the crystalline α-Carbyne reference sample [6], we
may conclude that, after the impact loading, the major
part of Carbyne is in the crystalline state. For different
fragments of the sample, the bulk content of crystalline
Carbyne should be estimated as 60 to 80 vol. %. This
value is uniquely high for the direct graphite–Carbyne
synthesis. The amount of crystalline graphite does not
exceed 5%.

The enhanced (with respect to the standard level)
intensity of the (220) and (440) lines of α-Carbyne
reveals the existence of a preferable orientation of
α-Carbyne crystals synthesized in the experiment. The
c-axes of the α-Carbyne crystals are preferably parallel
to the basal plane of the original graphite. This fact
agrees with the assumption that, in our experiments,
Carbyne is formed via single bond opening in the
graphite basal plane [7].

While loading massive graphite samples in the
Teflon container, Carbyne formed there only in a thin
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near-surface layer. After loading, the middle part of the
sample consisted only of original graphite.

Figure 2 shows pressure profiles calculated for the
graphite foil fixed between two Teflon (curve 1) and
copper (curve 2) disks. For comparison, the same figure
presents pressure profiles in the middle parts of the
2 mm-thick massive graphite samples during their
loading in the Teflon (curve 3) and copper (curve 4)
containers. The calculations were carried out in the
one-dimensional hydrodynamic approximation. To
describe thermodynamic properties of the substances,
we used wide-range equations of state presented in [8]
(for Teflon), [9] (for Al, Fe, and Cu), and [10] (for
graphite).

We think that it is the higher temperature of the sam-
ple (compared to its values in other our experiments)
that can be one of possible reasons for appearance of
crystalline Carbyne when the Teflon container is used
for impact loading the thin graphite film.

Over the entire pressure range realized in our exper-
iments, the temperature of single shock compression of
Teflon [11] exceeds essentially those of graphite [10]
and copper [12]. For example, temperatures arising

0 2 4 6 8 10

t, µs

0

20

30

10

40

P, GPa

1 3 2 4

Fig. 2. Profiles for pressures in the container material while
shock loading: (1) Teflon container and (2) copper container
(at the surface of the graphite foil); (3) Teflon container and
(4) copper container (in the middle parts of massive graphite
samples).

Table

Parameters

Graphite in the 
Teflon container

Graphite in the
copper container

Teflon graphite copper graphite

P1, GPa 11.9 15.3 36.0 16.4

T1, K 645 470 515 485

Tmax, K 730 495 515 520
when single shock compressing Teflon, graphite, and
copper up to 10 GPa attain 570, 380, and 335 K, respec-
tively. At a pressure of 40 GPa, they are 1960, 960, and
570 K. Being placed in the recovery ampoule, both the
container and the sample are subjected to stepwise
compression during which the maximum pressure in
the sample is attained after several motions of a shock
wave inside the container. Under such conditions, the
temperature is determined mainly by heating the sub-
stance in the first shock. Pressures P1 and temperatures
T1 in the first shock wave, as well as the maximum tem-
perature Tmax attained for various materials of the sam-
ple and container are presented in the table.

The maximum temperature of the graphite shock
compression was calculated directly from the equation
of state [10]. When the copper plates are used for fixing
graphite during its shock compression, the maximum
temperature Tmax = T1 ≈ 515 K of the container material
is attained in the first shock. The Teflon container is
heated additionally by the repeated-compression
waves, so that Tmax = T1 + ∆T. An increment of Teflon
temperature can be estimated as ∆T ≈ ∆ET/CV . Here,
∆ET is an increment of the thermal part of the specific
internal energy during repeated compressions, which is
calculated by the equation of state taken from [8], and
CV is the specific heat at a constant volume. For the
given temperature range, the specific heat of Teflon CV

satisfies the inequality 0.65 < CV/(3Rn/µ) < 1 (see [11]),
where R = 8.31 J/(mol K), µ = 50.01 g/mol is the mole
mass of the (–CF2–) monomer, n = 3 is the number of
monomer atoms, and the value 0.65 corresponds to the
standard conditions of environment. As a result, we
have 71 < ∆T < 109 K, and the maximum temperature
of the Teflon container is estimated to be Tmax ≈ 730 ±
20 K.

In the conditions of our experiments, it is the tem-
perature of a container that determines temperature of
the graphite foil. Thus, being loaded in the Teflon con-
tainer, the 10-µm-thick graphite sample has tempera-
ture exceeding approximately by 200 K that of graphite
in other our experiments. Therefore, the graphite–Car-
byne transformation can be realized via shock com-
pression at a pressure of ~35 GPa and the temperature
~730 K. In this case, the transformation efficiency can
reach 80%.

Figure 3 shows the equilibrium diagram for carbon,
which corresponds to [13]. The known data concerning
conditions, for which synthesis of Carbyne from graph-
ite occurs, occupy two regions in this diagram. The
temperatures taken from [3, 4] are close to the temper-
ature range that, in Whittaker’s opinion [2], bounds a
zone of Carbyne thermodynamic stability. The param-
eters of dynamic synthesis of Carbyne, which are
obtained by us, correspond to the temperature interval
in which crystallization of amorphous Carbyne at
atmospheric pressure was observed [6, 14].
DOKLADY PHYSICS      Vol. 45      No. 1      2000
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We assume that mechanisms of Carbyne formation
are different for high and low temperatures.

At 3000–4000 K, the basic mechanism governing
the Carbyne formation, most likely, is the precipitation
of carbon clusters, which occurs from the gaseous
phase formed in the course of the experiment.

In the experiments described in this paper, Carbyne
formation, in our opinion, occurs via opening a single
bond in the graphite basal plane. Dynamic compression
of graphite up to pressures exceeding ~20 GPa [13]
causes decomposition of the graphite crystal lattice,
changes the type of electron bonds in carbon atoms, and
leads to formation of nucleation centers of Carbyne crys-
tals. Annealing at the temperature of ~730 K causes the
formation of sufficiently stable Carbyne crystals [6, 14]
capable of surviving after both removal of the excess
pressure and lowering the temperature.

In our experiments, graphite was heated up to tem-
perature exceeding that of its shock compression due to
the heat flux coming from the hotter Teflon disks. Evi-
dently, this way allows only thin Carbyne samples to be
obtained. For synthesizing massive polycrystalline
samples, apparently, it is advisable to heat previously a

0 1000 2000 3000 4000 5000 6000

Temperature, K

10

20

30

40

50

Pressure, GPa

Diamond

D

carbon

C

F

E

B A
Graphite

Liquid

Fig. 3. Equilibrium diagram for carbon according to [13].
Zones denoted by letters correspond to: (A) the Carbyne
thermodynamic stability [2] and (B) amorphous-Carbyne
crystallization [6, 14]. Zones (C) [3], (D) [4], and ⊗  (this
study) correspond to the parameters of synthesizing crystal-
line Carbyne from graphite. Zones (E) and (F) relate to cat-
alytic synthesizing diamonds [13] and the lower boundary
for the parameters of the dynamic synthesizing cubic dia-
monds [13].
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massive graphite sample up to temperature of ~600 K
at standard pressure. Then, in the course of subsequent
impact loading and heating, the sample temperature
can attain the value required for a sufficiently high-
level transformation. From the industrial standpoint,
such a technology of the polycrystalline– Carbyne pro-
duction seems to be quite realizable.

The data obtained raise hopes of finding conditions
for static Carbyne synthesis, which is necessary for
obtaining large Carbyne crystals. Comparing condi-
tions for shock-induced and static syntheses of artificial
diamonds, we hope that, in the case of Carbyne, ther-
modynamic parameters of the static synthesis will also
be much lower than those at which the phase transition
occurs during the shock compression.
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1. Nanosecond pulse generators with the pulse
recurrence frequency as high as 1 kHz and the resource
up to 1010–1011 pulses and electron accelerators with
such generators [1, 2], which are of considerable prom-
ise for technological applications [3, 4], have been
developed on the basis of semiconductor current
switches. In connection with this, the problem of creat-
ing simple, inexpensive, and high-resource cathodes
with high and stable emissivity in the course of the
exploitation becomes urgent. Metal–dielectrics–metal
cathodes [5], in which electrons are emitted from
plasma arising at a point of contact of special electrodes
with ceramics (triple points), most fully conform to
these requirements. Among disadvantages of these
cathodes are a complexity of the structure and limited
number of emitting points. This causes the erosion of
igniting electrodes and the ceramics under them, a
inhomogeneity in the current distribution at the output
foil of a vacuum diode, and a reasonably high imped-
ance of the diode for small dimensions of the cathode
unit.

For creating plasma, we propose to use a metal-
ceramic cathode, which consists in ceramics with
metallic particles uniformly distributed over the cath-
ode volume. The first results of investigating the emis-
sive characteristics of such cathodes are presented in
this study.

2. Experimental procedure. We used the fre-
quency nanosecond electron accelerator URT-0.5 [6]
with the accelerating voltage U ≤ 500 kV, the pulse
half-width tp = 50 ns, the voltage-pulse rise time
tf 0.1−0.9 = 40 ns, the response frequency f ≤ 200 Hz, and
the maximum pulse power W ≤ 130 MW.

In experiments, we measured the accelerating volt-
age Ua across the vacuum diode by means of a potenti-
ometer-type voltage divider, the total current ID and the
anode current IA in the vacuum diode by means of cur-
rent transformers, and the power of the absorbed dose
of bremsstrahlung by means of the pin-diode SKD1-02.
The shape and the current distribution of the electron
1028-3358/00/4501- $20.00 © 20018
beam were detected by dosimetric films of the TsDP-2-
F2 type [7], which were tightly superimposed on the
output foil of the diode and processed after the expo-
sure using the densitometer IFO-463.

As a cathode, we used ceramic plates prepared in
the Institute of Electrophysics, Ural Division of the
Russian Academy of Sciences on the basis of Al2O3
powders with spherical 12Kh18N10T-steel particles
26 µm in diameter, which were uniformly distributed
over the plate’s volume. The density of these particles
on the surface was ~4300 cm–2, the plate thickness was
2 mm, and the diameter was 12.2 mm. The plate edge
was polished, and the plate was glued by a paste (cyat-
ine) to the cathode holder (see Fig. 1), h = 10 mm.

3. The principal experimental results. The pro-
cessing of the oscillograms obtained (Fig. 2) enabled us
to establish the following features.

There is a time delay td between the arrival time of
the voltage pulse and the onset of the current pulse. It
was established that td does not vary with the cathode–
anode separation over the range d = 30–90 mm and
amounts to ~20 ns.

∅3
0

d h

3

2

1

2

Fig. 1. Structure of a metal-ceramic cathode (two projec-
tions): (1) cathode holder; (2) ceramic plate; (3) anode.
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Fig. 2. Voltage U across the vacuum diode; the anode current I‡ in the vacuum diode and the power P of the absorbed dose of
bremsstrahlung for various values of the anode–cathode separation d for the metal-ceramic cathode.
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The application of the metal-ceramic cathode leads
to increasing the rate of rise of the electron-beam cur-
rent and the output power P of the accelerator. It was
also established that, for a constant voltage-rise rate

 ~ 5 × 1012 V/s,  attains the value 3 × 1010 A/s in

the region of the maximum power for the X-ray radia-
tion, d = 30 mm (Fig. 3), and the rate of rise for the elec-

tron-beam power amounts to  ~ 2 × 1015 W/s in this

case, whereas we did not obtain  > 5 × 109 A/s and

 > 2.5 × 1013 W/s [8] with the metal–dielectrics–

metal cathodes.
The voltage corresponding to the onset of the cur-

rent is virtually independent of the cathode–anode sep-
aration over the range d = 30–90 mm and amounts to
U ~ 250 kV.

From comparing the dependencies of the diode
impedance and the accelerator power corresponding to
the moment of the maximum current (Fig. 3), it is pos-
sible to conclude that the emissivity of the cathode does
not restrict the output power of the accelerator: in the
region d = 30 mm, the accelerator power attains its
maximum, and the current continues to grow for
smaller d owing to a proportional decreasing the volt-
age, while the power remains virtually unaltered
(within a certain region of d values).

The shape of the beam imprint on the detector is an
ellipse (the ratio of the axes is ~5 : 7), whose longer axis
lies in the plane of the metal-ceramic plate. The distri-
bution of the anode current (along the short axis, see
Fig. 4) shows that, even for relatively small d, the beam
is distributed unexpectedly uniformly; this fact invokes

dU
dt
------- di

dt
-----

dP
dt
-------

di
dt
-----

dP
dt
-------
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no explanations until now. For d = 10 mm, the current
density at the anode amounts to 24.3 ± 8% A/cm2. The
uniformity increases with d. A reasonably sharp bound-
ary of the beam and its large dimension with respect to
those of the cathode also engage our attention.

4. Discussion of the results. We estimate the elec-
tric-field intensity near the metallic particles embedded
into the dielectrics. On the basis of the geometry of the
diode and the cathode unit presented in Fig. 1, it is felt
that, in our case, the field strength E1 in the ceramics
lies in the range between the corresponding values for
a dielectric ball in an external uniform field and a per-
pendicular dielectric cylinder [9, 10]:

(1)

Here, ε is the relative dielectric constant of the metal-

3
2ε 1+
--------------- U

d h+
------------ E1

2
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------------.> >
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Fig. 3. Impedance R, output power W, and bremsstrahlung-
dose power P for various separations d.
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ceramic plate, and U is the voltage across the diode.
The dimensions of the metallic particles are ~10–3 cm,
the surface density of these particles is 4.3 × 103 cm–2;
consequently, a mean separation between the particles
is ~10–2 cm. It follows from these estimates that the par-
ticles are electrostatically independent. The field near a
particle can be estimated [9, 10] as

(2)

where θ is the angle between the direction of E1 and
that of the radius vector drawn from the particle center.

As can be seen from the oscillograms for the voltage
and the current, a sharp current rise lags behind the
voltage rise. The delay time is ~3 × 10–8 s. At this stage,
the current is small and can stem from the bias currents
in the metal-ceramic plate owing to a reasonably high
voltage-rise rate. A sharp rise of the current implies that
a conducting medium (plasma) is generated on the sur-
face of the metal-ceramic plate, and the plasma pro-
vides a high emissivity of the cathode.

The bias currents can not provide decomposition of
condensed media, a metal or dielectrics, to the plasma
state because the bias-current density is

(3)

The thermionic field emission from metallic particles
on the surface of the metal-ceramic plate is also impos-
sible because the metallic particles are electrically insu-
lated with respect to the charge.

E2 3E1 θ,cos=

j1 4π( ) 1– dE3

dt
---------=

=  
6π
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Fig. 4. Integral distribution of the electron-beam current at
the anode for various separations d.
In this situation, it is natural to assume that plasma
is generated as a result of developing a gas discharge in
micropores between the dielectrics and the metal, sim-
ilarly to that proposed in studies [11, 12]. This conclu-
sion is suggested by both the similarity of the voltage–
current characteristics found from our oscillograms to
the characteristics taken from the studies [11, 12], and
the electric-field intensity E3 = εE2 in the micropores
and its dependence on d (the so-called total-voltage
effect) found from our data to that found from the study
[11] for the moment of the onset of the sharp current
rise. The plasma generated in the micropores, that
emerge at the surface of the metal-ceramic plate, can
provide the necessary electron emission and the electric
contact with a metallic cathode holder.

The micropores can arise during the process of pre-
paring the metal-ceramic plates owing to a difference in
the temperature coefficients of linear expansion (the
temperature coefficients of linear expansion are equal
to 23 K–1 at 1300 K and 17.6 K–1 at 373 K for the
12Kh18N10T steel, and 9.8 × 10–6 K–1 at 1400 K and
8.1 K–1 at 400 K for Al2O3 [14]). When a sintered cer-
met material is cooled, micropores arise between the
metallic particles and the ceramics; these micropores
are filled by a gas, which is just the working substance
for generating plasma once the necessary electric-field
intensity has been attained on the surface of metallic
particles. On the basis of the numerical data presented
above, we can estimate the cross dimensions of the
micropores as 10–6
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. A characteristic of the discharge develop-
ment can be determined to a large degree by the pro-
cesses at electrodes (micropores) and has the properties
of the high-frequency discharge. We are not familiar
with any results of a comprehensive studying such
types of gas discharges. It seems likely that the pur-
poseful work along this line will be necessary. It is not
improbable also that, in our case, a certain role is
played by a release of the Joule heat caused by the fluc-
tuation electromagnetic field [15].

 

5. 

 

Thus, the type of the cathode tested has a number
of attractive characteristics (the power sharpening, the
uniform current distribution, and a high emissivity),
which show that further investigations are required.
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The problem on electron motion under the action of
finite electric dipole ranked among classic problems of
nonrelativistic quantum mechanics. It has applications
in the theory of mesomolecules and in the physics of
polar molecules. The energy levels and other character-
istics of the nonrelativistic electron–dipole system have
been investigated by a number of authors analytically
[1], as well as numerically [2, 4–6]. It is well known [1–
3, 5] that a certain critical value of the dipole moment,
dc = Zr, exists, below which an electron lacks bound
states in the field of a dipole, i.e., the electron cannot
be  held by the dipole field, when the separations
between the poles of the dipole are less than rc = dc /Z =
0.64 au. Solving the corresponding relativistic problem
(i.e., the problem on a relativistic electron motion in the
field of a finite dipole) presents a complicated mathe-
matical problem, because variables in the Dirac equa-
tion with the two-center potential cannot be separated
(in distinction to the Schrödinger equation) in any
orthogonal coordinates. In this paper, the energy term
close to the continuum is calculated analytically by
sewing together the logarithmic derivatives of the
asymptotic solution. This method has earlier been suc-
cessfully employed by V.S. Popov for solving the Dirac
equation for the symmetrical problem of two Coulomb
centers with equal values and signs of the center’s
charges.

In this paper, we generalize the results of [1], where
the problem on nonrelativistic electron motion in the
field of a finite electric dipole has been solved, to the
relativistic case. In doing so, we employ the above-
mentioned method of sewing together the asymptotics.
This method has been employed in [7, 10] for solving
the Coulomb two-center problem with the center’s
charges being equal both in the value and the sign.

We consider the motion of relativistic electron in the
field of finite electric dipole consisting of the charges
1028-3358/00/4501- $20.00 © 20022
+Zα and –Zα, which are spaced at the distance R. The
potential of such a system has the form

(1)

where ri is the spacing between the electron and the ith
particle, α = 1/137 (hereafter, we use the system of
units " = me = c = 1). The electron motion is described
by the stationary Dirac equation:

(2)

Here, H = ap + β + V is the Dirac Hamiltonian, ε is the
electron energy, and α and β are the Dirac matrixes.

For the subsequent studying the motion of this elec-
tron, we employ the squared Dirac equation, which can
be expressed in the spinor representation in terms of the

components ψ1 and ψ2 of the bispinor ψ = :

(3)

(4)

Here, s is the Pauli matrixes.

Away from the dipole, the terms V 2 and is—V can
be neglected in comparison with the term V.

Then, for each of the components, we obtain the
equation:

(5)

This equation can be treated as the Schrödinger
equation with the potential εV and the energy (ε2 – 1)/2.
Asymptotic properties of such an equation have been
studied in detail in [1]; therefore, below, we employ the
results of this paper.

Thus, away from the dipole, the wave function can
be represented in the separated form [1]:

(6)

Here, ξ, η, and ϕ are elongated spheroidal coordinates

V
Zα
r1

-------
Zα
r2

-------,–=

Hψ εψ.=

ψ1

ψ2
 
 

ε V–( )2 ∆ is—V 1–+ +[ ]ψ 1 0,=

ε V–( )2 ∆ is—V– 1–+[ ]ψ 2 0.=

∆ 2εV– ε2 1–+[ ]ψ 0.=

ψ U ξ( )
ξ2 1–( )1/2

------------------------ V η( )
1 η2–( )1/2

------------------------ imϕ( ).exp=
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determined in [1] as: 

Here, y and x are Cartesian coordinates, and R is the
spacing between the charges. On substitution into (5),
the radial and angular distributions take the form [1]:

(7)

(8)

Here, p2 = – (ε2 – 1), D = 2|ε|RZα, A is the separation

constant, and m is the azimuth quantum number. U''(ξ)
and V''(η) are the second derivatives of the radial and
the angular functions, respectively. Boundedness of the
wave function ψ results in the boundary conditions for
the functions U and V [1, 6]:

U(1) = 0,   U(ξ)ξ       ∞  0,   V(±1) = 0. (9)

These equations have been analyzed in detail in [1].
Hence, using the results of [1], we can represent the
asymptotics of the wave-function at large separations
from the dipole in the form (at m = 0):

(10)

Nearby the dipole (at R ! 1), the asymptotics of the
wave function can be written out as:

(11)

where

At small η

ψ1 ~ ξ2β. (12)

For |ε| ≈ 1, the above asymptotics of the wave func-
tions, both away from the dipole and nearby it, overlap
each other on the interval 1 ! ξ ! 1/p. Equating the
logarithmic derivatives of functions (12) and (10) on

ξ r1 r2+( )R 1– , η r1 r2–( )R 1– ,= =

and   ϕ y / x ( ) .arctan=

U'' ξ( ) p2 A

ξ2 1–
-------------- 1 m2–

ξ2 1–( )2
--------------------+ +– U ξ( )+ 0,=

V'' η( ) p2 Dη A–

1 η2–
------------------ 1 m2–

1 η2–( )2
---------------------+ +– V η( )+ 0.=

R2

4
-----

ψ π
ν πνsinh
---------------------

1/2

pξ( )1/2 ξ2 1–( ) 1/2–∼

× ν 2
pξ
------ Γ 1 iν+( )arg+ln 

  .sin

ψ1 ξ2 η2
–( )

β
∼ ,

β
γ 1 (Z 137)<–

1 (Z 137).>



=
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this interval and taking into account that here the rela-

tion ln

 

 

 

≈ 

 

ln  holds, we obtain

 
(13)

 

where

 

(14)

 

is the critical value of the dipole moment. At 

 

D

 

 = 

 

D

 

cr

 

,
the term 

 

ε

 

(

 

R

 

)

 

 reaches the continuum boundary.
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 137, solving this equation yields the energy
term:
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As it is well known, the nonrelativistic limit is
reached near the upper continuum, where
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. Hence, to evaluate
the nonrelativistic limit for our formula, it is necessary
to perform the following changings: 

 

γ

 

  1,
arccot  

 

π

 

. Then, we obtain in the nonrelativistic
limit (after subtraction of the rest mass):

 

(16)

 

This formula coincides with the one obtained earlier
in [1] for the energy term of nonrelativistic electron–
dipole system. We would like to note that nonrelativis-
tic limit for our formula can be reached only over a
small region of center-to-center separations close to the
critical distance. Really, expanding the arccotangent
into series,
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This results in the nonrelativistic limit taking place at

Rcr ! R ! 

For example, for Z = 1, this can be written as either
Rcr ! R ! Rcr + 182, or Rcr ! R ! 3Rcr (as in the system
of units where m = h = c = 1, Rcr = 88.3). 

At Z > 137, we obtain:

(19)

It should be noted that the formulas evaluated are
relevant only for the ground state. Nevertheless, the
same method could be applied for calculating the
energy term for any excited state, using the expression
for D from [1] relevant for excited states.

Thus, we have evaluated analytic formulas for the
energy levels nearby the continuum for a relativistic
electron moving in the field of a finite electric dipole.
The analytic formulas obtained could be useful for fur-
ther numerical calculations in the nonasymptotic
region.

Rcr
4 4γ 3–( )

3Zα
-----------------------.+

ε± 1
2

R2
----- Γ2 1/4( )

π 4ZαR 2Dcr–( )1/2
----------------------------------------------–exp+−±≈

× 5Γ2 1/4( )
4π 4ZαR 2Dcr–( )1/2
------------------------------------------------- π–arccot

 
 
 

.
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Microlensing (gravitational focusing) of stellar radia-
tion is actively investigated during last few years [1, 2].
A principal and most important result consists in the
fact that a short-term (of about several tens days)
enhancement in the stellar brightness for a number of
stars, which is caused by gravitational fields, is estab-
lished by observations and as a result of theoretical
analysis. The goal of this paper is to draw attention to
interference features of the focused-radiation field.

The conventional procedure for calculating ray tra-
jectories is shown schematically in the figure. The rela-
tion between transverse coordinates (ρ, r) of light rays
in the plane (D) of a gravitational lens and the observa-
tion plane (O) has the form

(1)

where θ(ρ) is the angle of the ray deviation by the grav-
itational lens, L1 = DS, and L2 = OD. In the case of a
spherically symmetric point lens, we can assume that

(2)

Here, M and rg are the mass and gravitational radius of
the lens, respectively; G is the gravitation constant.
Equality (1) is a quadratic equation with respect to ρ,
and its roots are

(3)

Using relations (3), we can calculate illumination E(r)
of the plane O, which is proportional to

 [the sum over roots (3)]. It is easy to
show that E(r) is described by formulas

(4)

(5)

The parameter r0 determines the effective width ∆E(r)

ρL
L1
------ θ ρ( )L2– r, L L1 L2,+= =

θ ρ( )
2rg

ρ
-------, rg

2GM

c2
-------------.= =

ρ1 2,
r r2 r0

2+±[ ] L1

2L
--------------------------------------, r0

2 8rgLL2

L1
-----------------.= =

L1
2– ρdρ/rdr∑

E r( ) L 2– ∆E r( ),+=

∆E r( )
r0

4

2L2r r2 r0
2+ r2 r0

2+ r+[ ]
2

------------------------------------------------------------------.=
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as a function of r. For rg = 0, we have ∆E(r) = 0, i.e., the
term 1/L2 in formula (4) corresponds to the illumination
in the absence of gravitational focusing. The function
∆E(r) > 0 determines the illumination enhancement
produced by the gravitational lens (in the domain of
small angles r/L). For r = 0, an integrable singularity
inherent in geometric-optic calculation for a point-
source model takes place. Integrating ∆E(r) with
respect to r, we find the corresponding light flux:

(6)

The coherent properties of the telescopic image for
a star, whose radiation had passed through a gravita-
tional lens, were considered in [3]. We now examine
interference properties of the illumination distribution
in the O-plane, which is a quantity proportional to the
total light flux entering the telescope lens. We consider
the interference of waves propagating from two imagi-
nary light sources S1 and S2 (see figure). Due to the
spherical symmetry of the lens, the elements of the
fringe pattern observed in the O-plane have the form of
concentric rings. The contrast of fringes is determined
by the ratio between the intensities of interfering rays.
Let E1 and E2 be contributions to E(r) from S1 and S2 ,
respectively. It is easy to show that E1 + E2 = 1/L2 + 2E2,
i.e., both rays equally contribute to ∆E(r). Therefore,
fringes have the unit contrast with respect to the vari-
able part of the fringe pattern. Thus, the distribution of

∆Φ 2π ∆E r( )r rd

0

∞

∫ 2π
r0

2L
------ 

 
2

.= =

r

O

ϕ

θ(ρ)

ρ

L2

L1

S2

S1

S
D

Figure.
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the illumination in the O-plane can be written out in the
form

(7)

The difference in the ray path lengths for the rays out-
going from S1 and S2 is

(8)

where integrals are taken along the rays from S2 and S1;
n(R) and R is the effective refractive index [4] depend-
ing on the gravitation field and the distance from the
point mass to the ray, respectively. Evaluating ∆(r), it is
possible to approximate the rays by segments of
straight lines and then to arrive at the equality

(9)

Here, the first term in square brackets and the logarith-
mic term are stipulated by the unity in expression (8)
for n(R) and the term rg/R, respectively. It is seen from
relation (5) that a noticeable enhancement in illumina-
tion caused by microlensing takes place provided that
η ! 1 (e.g., ∆E = 4L–2 at η = 0.1). In such conditions
important from the standpoint of practice, it follows
from formula (9) that

(10)

We now write out basic characteristics of the inter-
ference pattern, The order m of a fringe can be approx-
imately represented in the form

(11)

The fringe period δr is determined by the expression

(12)

where RE is the Einstein radius. The words related to the
contrast hold true for the point light source as well. The
finiteness of angular dimensions θS of the star S does not
decrease the contrast if the period is δr > θSLL2/L1, i.e.,

(13)

We recall that the observation of fringes on the order of
m requires for the radiation monochromaticity to be
λ/∆λ ≥ m (∆λ is the spectral width).

Note also that the fringe order m is determined by
the ratio of two principal parameters of gravitational
and electromagnetic fields. According to expression (12),

E r( ) L 2– ∆E r( ) 1
2π∆ r( )
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 
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 ----------- ≡< λ
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approximately m fringes lie in the enhanced-illumina-
tion domain of the width r. The feasibility to observe
the interference is dependent on the values of m and
θS cr, which, in turn, are determined by the values of λ
and the mass M of a gravitational lens:

Numerical values for basic quantities are presented
below for λ = 10–4 cm, λ = 10 cm, M = M( (mass of the
Sun), and M = 10–6M(:

The values of M chosen correspond to the present
concepts of a wide mass range for the dark matter,
which is able to realize microlensing. In addition, it was
taken that L1 = L2, L = 10 kpc = 3 × 1022 cm, η = r/

 

r

 

0

 

 =
10

 

–2

 

. As is seen from the data represented above, in the
short-wave region and for relatively massive lenses, the
observation of the interference is hampered by the
requirements for the radiation to be monochromatic
and for the star dimensions to be finite (e.g., the angular
dimension of a star with the Sun’s radius and removed
from us by a distance of 10 kpc must be 

 

θ

 

S

 

 

 

= 5 

 

×

 

10

 

−

 

12

 

 rad). Conditions for observations in a long-wave
(decimeter) region are more favorable, especially as the
highly monochromatic radiation of space masers are
known in this region [5]. It is also evident that the
observation of interference phenomena is more proba-
ble for small-mass lenses.

The described interference pattern corresponds to
the case of a spherically symmetric compact lens. In
other cases, the interference pattern also exists, but its
shape and characteristics are, naturally, different.
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We have investigated the discontinuous decomposi-
tion of 09Kh20AG19 steel containing 0.09, 19.5, 18.6,
and 0.6 wt % of C, Cr, Mn, and N, respectively. Before-
hand, the steel was subjected to three-stage processing
such as (i) quenching from 1323 K in water (isothermal
soaking for 2 h); (ii) quenching from 1323 K with sub-
sequent shock-wave loading; and (iii) heating up to
1323 K with subsequent soaking (without cooling
down to the room temperature 293 K) in a furnace with
a temperature of 1073 K. The decomposition occurred
at 1073 K with different soaking time (up to 30 h). The
decomposition temperature is chosen at which the dis-
continuous decomposition of the investigated hardened
steel is the most intense. At this temperature (1073 K),
the discontinuous decomposition was observed in
steels with close composition as well [1, 2]. A sample
was loaded by shock waves at a pressure P equal to 40
or 100 GPa, which was exerted to sample end faces or
arose at a place of superposition of primary shock
waves, respectively, [3].

In papers [4–6], the effect of shock-wave loading on
decomposition of a supersaturated solid solution was
investigated for the continuous aging mechanism. The
goal of this study is to investigate discontinuous aging
of the austenitic nitrogenized steel that had been sub-
jected to the shock-wave loading.

After aging of the hardened steel for 1 h at 1073 K,
its discontinuous decomposition was noticed only at
certain segments of grain boundaries. The degree of the
decomposition (the ratio between the area of a section
that has undergone discontinuous decomposition and
the total area) is 0.04–0.05. The degree of the decom-
position R grows monotonically with increasing the
aging time τ and attains the value R ≈ 0.5 at τ = 15 h.
The further increase of the soaking time almost does
not vary the degree of the decomposition (see Fig. 1,
1028-3358/00/4501- $20.00 © 0027
curve 2). In the austenitic steel, the maximum degree of
the discontinuous decomposition is determined by the
nitrogen content in the solid solution.

The shock-wave loading intensifies essentially the
discontinuous decomposition. For example, after soak-
ing the sample subjected to such a loading at constant
temperature (T = 1073 K) for 1 h, the degree of the
decomposition is the same as after quenching the sam-
ple and soaking it at constant temperature for 15 h. For
the sample that has been subjected to the shock-wave
loading, an excess of the soaking time over 1 h affects
negligibly the degree of the decomposition (Fig. 1,
curve 1). It should be noted that the shock-wave load-
ing, in itself, did not lead to the discontinuous decom-
position.

We have also found that at 923 K, the discontinuous
decomposition of the hardened steel does not develop.
However, after the shock-wave loading, the discontinu-
ous decomposition occurs intensely at this temperature.

0.1 0.2 0.5 1 2 5 10 20 50

τc, h

0

0.2

0.4

0.6
R

1

2 3

Fig. 1. Degree of the discontinuous decomposition as a
function of soaking time at a constant temperature (1073 K)
in the case of different preliminary processing: (1) shock-
wave loading, (2) quenching in water, (3) heating up to
1323 K with subsequent soaking in another furnace at
1073 K.
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Fig. 2. Discontinuous decomposition after shock-wave
loading, 1073 K, 1 h. A picture obtained with the use of an
electron microscope, ×40000.

(a)

(b)

Fig. 3. (a) Microstructure of cells in the case of the discon-
tinuous decomposition in hardened steel (1073 K, 30 h) and
(b) decomposition after shock-wave loading (1073 K, 1 h),
×880.
In 5 h, the degree of the decomposition attained is the
same as in 1 h at 1073 K.

It is known that the discontinuous decomposition of
austenitic nitrogenized steels occurs with precipitation
of chrome nitride (Cr2N) particles [1, 2]. We have dem-
onstrated that these particles have the shape of thin
plates either flat or curved. The plates consist of sepa-
rate short parts and can be, sometimes, displaced with
respect to each other. The orientation of Cr2N particles
situated in cells of the discontinuous decomposition is
related to austenite: the basal plane of the hexagonal
chrome-nitride lattice (a = 0.275 nm, c = 0.445 nm) is
approximately parallel to the {111}-type austenite
plane.

For close-packed directions in the Cr2N (0001)
planes and austenite {111} planes, a mismatch param-
eter was determined in the standard way as

where aγ = 0.362 nm is the austenite-lattice spacing.
The mismatch parameter turns out to be high and equal
to 7.4%. Owing to its high value, considerable elastic
distortions arise in cells of the discontinuous decompo-
sition. These distortions play an important role for both
originating and growing the cells. They cause bending
and fracturing the Cr2N plates, their cleavage, forma-
tion of new boundaries in the cell’s austenite, and
nucleation of dislocations. The shock-wave loading
causes additional generation of dislocations, stacking
faults, and deformation twins [3]. This results in strong
deforming the Cr2N plates in certain cells of the discon-
tinuous decomposition (Fig. 2). Extinction contours
occurring inside the plates testify to the extremely
small plane thickness and a high degree of their local
bending. The growth of the discontinuous-decomposi-
tion cells becomes slower or completely ceases at
boundaries of annealing twins and on slip planes deco-
rated by the precipitation phase. Therefore, boundaries
of cellular-decomposition aggregates formed as a result
of shock-wave loading, sometimes have acute-angle
shape and consist of short rectilinear segments.

After the shock-wave loading, cell dimensions and
interplate distances turn out to be much smaller than
they are after quenching the sample (Fig. 3). Micro-
structure photographs were used to determine kinetic
parameters of the discontinuous decomposition in
steels subjected to both quenching and shock-wave
loading. The data obtained are brought together in the
table. After the shock-wave loading, the number of
growth centers (the number of cells) per grain (average
grain dimension is 200 µm) increases three times. The
actual increase is possibly still further, because we can-
not always resolve in photographs cell boundaries after
their merging in steels subjected to the shock-wave
loading. Due to the shock-wave loading, new growth
centers arise both at boundaries of initial grains and

a
aγ 2

2
------------– 

  aγ 2
2

------------ 
 

–1

,
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inside them. The maximum cell size in the direction of
their growth decreases approximately three times,
seemingly, because their collisions in the growth pro-
cess. The average growth rate G calculated according to
the total duration of the decomposition, increases by
the order of magnitude after the shock-wave loading,
while the distance S between the plates decreases
approximately twice.

The discontinuous decomposition process in steels
under investigation is governed by the chrome diffusion
in boundary grains [7, 8]. We now estimate the coeffi-
cient of boundary chrome diffusion by the relation Db =
GS2/λ, where λ is the boundary thickness [8]. Usually,
λ = 0.5 nm is accepted [9]. Values of both the average
growth rate G and distance S between the plates are pre-
sented in the table. Our calculations show that, after the
shock-wave loading, the coefficient of boundary
chrome diffusion increases nearly three times.

It is well known that, at grain boundaries, the diffu-
sion mechanism for substitutional atoms is of vacancy
nature [9]. Since the diffusion coefficient is propor-
tional to the vacancy concentration Cv, we can conclude
that, after the shock-wave loading, the value of Cv
increases three times. In actual situations, an increase
in Cv can be even more, because vacancies tend rapidly
to move towards grain boundaries, to dislocations and
their aggregates.

Special experiments were carried out in order to
additionally confirm the explanation proposed for pro-
moting the discontinuous-precipitation kinetics by
shock-wave loading. Steel samples were heated up to
1323 K. Then, instead of being quenched in water, they
were placed in another furnace, then were soaked there
for some time at a constant temperature of 1073 K, and,
hereupon, were subjected to cooling in the air ambient.
According to [7], such a processing method decreases
the number of vacancies in the matrix. As a result,
kinetics of the discontinuous decomposition is deceler-
ated, which is proven by comparison of curves 2 and 3
plotted in Fig. 1.

Thus, we can summarize the results obtained. In the
austenitic nitrogenized steels subjected to shock-wave
loading under pressure exceeding or equal to 40 GPa,
the discontinuous decomposition becomes by the factor
of ten (or larger) more rapid than that occurring in hard-
DOKLADY PHYSICS      Vol. 45      No. 1      2000
ened steel. The growth rate of the decomposition cells
increases by the order of magnitude, the number of
decomposition centers increases approximately three
times, while the distance between the plates decreases
twice. The observed promotion of the discontinuous
decomposition reaction is explained by an increase in
vacancy concentration and, therefore, by the triple
increase in the coefficient of the chrome boundary dif-
fusion.
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Table

Initial 
state

Number
of centers 
per grain

Maximum 
cell dimen-

sion, µm

G,
µm/h S, µm Db, 

108 cm2/s

Quench-
ing

3.5 102 3.4 1.1 2.3

Shock-
wave 
loading

11 33 33 0.6 6.6
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Unsteady plane yielding of an ideally rigid-plastic
medium is considered below.

1. For a plane problem of the ideal-plasticity theory,
the condition of plasticity can be written as

(1.1)

where σx, σy , and τxy are the stress components in the
Cartesian coordinate system, and κ is the shear yield
stress.

We assume that a plastic half-space of an ideal rigid-
plastic material contains the FOF' wedge as a rigid
inclusion. A wedge position is asymmetric with respect
to the CC' free boundary and determined by both the
distance from it PO = h and the angles α and β (see
Fig. 1).

A zone of plastic straining is bounded by the BOB'
triangle, and a stressed state occurring there is uniform:
σx = 2κ and σy = τxy = 0. The lines BO and B'O along
which tangential stress is maximum (τmax = κ) are the
slip lines. Therefore, tangential velocity components
discontinue there [1, 2]. We assume that, in the CBOF
region, the rigid material moves with the velocity V
along OF, while, in the C'B'OF' region, its motion
occurs with the velocity V' along OF'. According to our
further assumptions, when the material yields, vertical
velocity components of the rigid material are equal to
each other, that is, Vcosα = V'cosβ, and displacements
of the BC and B'C' half-lines along the y-axis are paral-
lel. We denote projections of the velocities V and V'
onto the normal lines to the BO and B'O characteristic
lines as Vn and , respectively, (Fig. 1):

(1.2)

The velocity U characterizing motion in the zone of
plastic straining is defined as a sum vector of the veloc-
ities Vn and  (Fig. 1).

At the final moment of yielding, the A point reaches
the A1 position, which coincides with the O point

σx σy–( )2 4τ xy
2+ 4κ3, κ  =  const,=

Vn'

Vn V
π
4
--- α– 

  , Vn'cos V' π
4
--- β– 

  .cos= =

Vn'
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(Fig. 1). Simultaneously, the points B and B
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 and , respectively, so that zones occu-
pied by the deformed material coincide with 
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1
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.

The angle of inclination  µ  that the velocity  U  has
with respect to the 

 

y

 

-axis is determined by the relation

 

(1.3)

 

Dimensions of a cup formed in the final yield state
are calculated with the use of the relations
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The cup depth is determined by the relation
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the straight lines 
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 (see Fig. 1) are fixed and
the deformation occurs via penetration of the 
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indenter.

 

2. 

 

We consider stretching the strip along the 

 

x

 

-axis
under the condition that symmetric local isolated
straining regions form. In the first quadrant, such a
region of plastic straining is bounded by the 

 

OACM

 

zone (see Fig. 2). A similar situation occurs in the other
quadrants. An intermediate position of the deformed
free boundary is presented by the open polygons
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 (Fig. 2).

In the first quadrant, the material is deformed in the
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 region. A similar situation occurs in
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Fig. 2.
the other quadrants. We assume that the rigid-material
velocity, which is directed along the x-axis, is equal to
unity. Initially, the slip occurs along the characteristic
lines AD, AD', BC, and BC'. In an intermediate state, the
KC12EN region is rigid. Simultaneously, velocity of the

material in the KA11A12L region is equal to /2 and
directed along A11K. The A11 point shifts along the
y-axis with velocity equal to unity. Tangential velocity
components have a discontinuity along the KC12 slip
line. The line of velocity discontinuity moves; KC12

shifts along the x-axis with velocity equal to unity. Dur-
ing straining, the initially undistorted zone of the plas-
tic material ACMO turns into a zone bounded by the
A11A12C12ENO open polygon. At the final moment of
straining, the points O, A21, and B21 coincide with each
other.

2
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The zone of plastic straining that forms finally in the
first quadrant is bounded by the OA22GP open polygon.
The relation  = 1/5 holds, where ν is the angle of
inclination of the A22G boundary of the deformed mate-
rial with respect to the x-axis.

For a crack propagating in a rigid ideally plastic
material, formation of a one-sided local isolated strain-
ing region has been considered in [3].

3. We consider yielding a strip of the width h when
it rotates round the O point (see Fig. 3). The zone of
plastic straining coincides with the BOB' triangle in
which σx = 2κ and σy = τxy = 0. The bending moment
has the form M = κh2/2.

We denote the angular velocity as ω and define lin-
ear velocities in the BOB' zone as

(3.1)

νtan

u ωx, ν ωy.–= =
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O

Stream lines of the flow described by (3.1) represent
the hyperbolas xy = const. The characteristic lines BO
and B'O are free from velocity discontinuities. We
assume that an intermediate position of the free bound-
ary is presented by the KK' line and use the notation
KO = r. Rotation of the rigid zone by the angle dϕ turns
the MK elementary segment into the NL segment (see
Fig. 3). Since dr = KN = KL, we obtain that

(3.2)

At ϕ = 0, r = BO = h. Then, relation (3.2) yields

(3.3)

Figure 3 shows a position of the strip at the moment
when each of its halves has turned by the angle π/2.

dr rdϕ , r– Cexp ϕ–( ).= =

2

r 2hexp ϕ–( ).=
Then, A1O = hexp . A zone of plastic straining of

the material is shaded.
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1. Methods for solving the problem. Numerically
solving the Laval-nozzle direct problem for viscous gas
in the framework of the steady-state Navier–Stokes
equations is hampered by a necessity to determine, in
the course of solving, the critical gas-flow rate. Another
difficulty consists in the fact that, in the case of high
Reynolds numbers, these equations are of a mixed
elliptic-hyperbolic type [1, 2]. Therefore, the basic
numerical method for solving the direct problem in the
framework of the Navier–Stokes equations is the relax-
ation method [3–5]. Besides an increase in the dimen-
sion of the problem under consideration, the disadvan-
tage of this method is the slow (requiring several hun-
dreds time steps) flow relaxation caused by a weak
attenuation of wave processes in the subsonic part of
nozzles.

Methods based on different simplified forms of the
Navier–Stokes equations [2, 6], which are valid at cer-
tain restrictions imposed on the nozzle contour and the
character of the flow, are sufficiently more efficient
These simplified equations are of the evolution type
with respect to the longitudinal coordinate (along the
main flow direction) and, therefore, can be integrated
by the use of rapid marching algorithms. For example,
the marching calculation method based on the slender-
duct approximation allows us to calculate the entire
flow field in a nozzle with small inclinations  of
the contour to the main flow direction and a small
dimensionless duct curvature Kw [2, 7].

The smooth-duct approximation [8–12] based on
using an orthogonal coordinate system adapted to the
duct geometry provides a better accuracy. This approx-
imation accounts for the transverse pressure gradient
associated with the centrifugal force. The accuracy of
the method is determined by deviations of directions
and curvatures of streamlines and longitudinal lines of
the coordinate network used. The smooth-duct approx-
imation makes it possible to calculate with an accept-

θtan
1028-3358/00/4501- $20.00 © 0033
able accuracy viscous flow in nozzles with moderate
values of  ≤ 1 and Kw ≤ 0.5 [9, 11].

Below, we propose an improved modification of the
smooth-duct model. It well describes the entire field of
viscous flow in nozzles with a considerable duct curva-
ture (Kw ≤ 2) and thus, covers all requirements of prac-
tice. In contrast to both the parabolic slender-duct
model and smooth-duct model, the set of equations
describing the new model is elliptic in the subsonic
zones and hyperbolic in supersonic ones.

For numerically solving the direct problem in the
framework of these equations, an efficient marching
method was developed. This method is based on the
global iteration along streamlines and the longitudinal
component of the pressure gradient. The method makes
it possible to calculate, by a unified manner, viscous
flow in the subsonic and supersonic zones. It is by
orders of magnitude more efficient with respect to time
consumed and computer memory required compared to
the relaxation methods. Two global iterations are suffi-
cient to determine within the accuracy of 0.01% such
integral characteristics as the critical flow rate and the
nozzle thrust.

2. The flow model. We consider the steady laminar
flow of viscous gas in a plane or axial-symmetric Laval
nozzle. The system of the simplified Navier–Stokes
equations in terms of the adapted (ξ, η) coordinate sys-
tem [8, 9, 11] and natural variables has the following
form.

The ξ-projection of the momentum equation is

(1)

θtan
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The energy equation is

(2)

The η-component of the momentum equation is

(3)

Finally, the continuity equation is

(4)

Here, Hξ, Hη are the Lamé parameters of the orthogonal
(ξ, η)-coordinate system, ξ- and η-coordinates being
longitudinal and transversal ones, respectively; Kξ, Kη
are curvatures of coordinate lines ξ = const and η =
const, respectively; x, y are the Cartesian (the plane
flow, ν = 0) or cylindrical (axial-symmetric flow, ν = 1)
coordinates; y = yw(x) is the contour of the nozzle wall;
u and θ are the velocity-vector projection onto the line
η = const and the angle between the vector and this line,
respectively; p and T are static pressure and tempera-
ture of the gas; µ and λ are the dynamic viscosity
coefficient and thermal conductivity, respectively.
Equation (1)–(4) are written out with allowance for the
equation of state of perfect gas ρ = γp/T, where ρ is the
density. We use dimensionless variables, the following
values being taken as scales: ρ0 and T0 are values of cor-
responding variables on the axis in the inlet nozzle

cross section; u0 is the sound velocity , where R

is the gas constant; p0 = ρ0 , r0 is the radius of the crit-

ical nozzle cross section. The following dimensionless
expressions are also used: Rer = ρ0u0r0/µ0 (the Rey-
nolds number), γ = cp0/cν0 (the adiabatic exponent), Pr =
µ0cp0/λ0 (the Prandtl number).

The system of equations (1)–(4) differs from that of
the smooth-duct model by additional terms appearing in
the equation (3) for the transverse momentum [8–12].
From the mechanical standpoint, this difference reflects
the following fact: In the smooth-duct model, the cen-
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trifugal force is calculated under the assumption that
gas moves along the longitudinal network coordinate
lines, whereas in the new model—with allowance for
the gas motion along actual flow lines. From the math-
ematical standpoint, additional terms in equation (3)
change the form of the set of equations in subsonic-
flow domains from parabolic to elliptic one.

Equations (1)–(4) are first-order evolution ones with
respect to the longitudinal ξ-coordinate; equations (1),
(2), and (3), (4) are of the second order and of the first
order, respectively, in terms of the transverse η-coordi-
nate. The mathematical type of these equations deter-
mines their properties, the method of their solving, and
the formulation of boundary conditions as well.

The calculation domain was bounded from below,
from above, from the left, and from the right by the
symmetry axis η = 0, the hard curvilinear wall η = 1,
the inlet cross section, and the outlet cross section,
respectively.

For evolution equations (1)–(4), transverse profiles
u/ua (ua is the velocity on the axis), , T, and, also,
the pressure pa on the axis are specified in the inlet cross
section related to the subsonic zone. The velocity value
on the axis, pressure distribution in this cross section,
and the gas flow rate are determined in the process of
solving the problem. In the outlet cross section, the soft

boundary condition  = 0 is posed, which corre-

sponds to the expected regime of the supersonic out-
flow from the nozzle [4].

θtan
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Fig. 1. Maximum deviation of streamlines from longitudinal
coordinate ones. Ciphers indicate the number of a global
iteration. Zero iteration step corresponds to the smooth-duct
approximation [8–12].
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The following boundary conditions are defined for
equations (1), (2): the no-slip condition for the longitu-

dinal velocity u; the heat-insulation condition  = 0 on

the wall; and the symmetry conditions  =  = 0. For

equations (3), (4), it is assumed that  = 0 on the
both wall and axis. This implies that the wall and the
axis are the streamlines.

3. Numerical method. The system of equations (1)–
(4) is elliptic in subsonic zones. Therefore, it is impos-
sible to construct a purely evolutional method with
respect to the longitudinal coordinate. Global iterations
are required [6, 13] with fixing at each step evolutional
derivatives responsible for the upstream-perturbation
propagation in the subsonic-flow zones. There, such
derivatives are the longitudinal pressure gradient in
equation (1) and the longitudinal gradient of  in
equation (3). The solution is found by iterations, each
of them including two steps.

At the first step, we take streamline directions given
by the  field. Then, we calculate for them the val-
ues of the critical flow rate, the velocity field, tempera-
ture, and pressure. To do this, the parabolic system of
kinematic and energy equations (1)–(3) is solved by the
marching method [12]. The mass-balance equation in
the nozzle

(5)

that follows from continuity equation (4) with the
boundary conditions taken into account for  on
both the wall and axis, serves as the boundary condition
for pressure on the axis.

The streamline directions are refined at the second
step. For this purpose, the system of equations (1)–(4)
regularized according to Vigneron [6] is integrated by
the marching method [12]. The regularization consists
in the replacement of the longitudinal pressure gradient
in equation (1) by

(6)

where Mξ is the local Mach number determined by the

longitudinal velocity component,  is the longitu-

dinal pressure gradient calculated at the first step. As a
result, the system of equations (1)–(4) becomes hyper-
bolic in subsonic zones and can be integrated by the
marching method. In the course of computations, the
safety factor σ was taken to be σ = 0.95.
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The upstream-perturbation propagation was effi-
ciently taken into account by smoothing [13] values of

 and  along longitudinal coordinate lines

before performing algorithm first and second steps,
respectively.

The finite-difference scheme used in integrating at
the first and second steps has the fourth and second
orders of accuracy with respect to the η- and ξ-coordi-
nates, respectively. A nonuniform network, concen-
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(b) 1.6. Calculation results and experimental data are shown
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trated towards both the wall and critical nozzle section,
was used in the calculations.

The convergence rate of the global iterations is illus-
trated in Fig. 1 by the example for the distribution of

 along that longitudinal-coordinate line near
which maximum values of  are attained in each
nozzle cross section. As is seen, two to four iteration
steps are sufficient to find the solution. In this case, two
iteration steps are sufficient for calculating such char-
acteristics as the flow rate and the nozzle thrust to
within the accuracy of 0.01%.

4. The results. The accuracy of the model proposed
is illustrated in Fig. 2 by comparing the calculated and
experimental distributions of Mach-number isolines
[14, 15] in the zone of the nozzle throat. Figure 2a cor-
responds to the air flow with Rer = 104 in a conic nozzle
with the opening half-angles of 30° for the narrowing
and broadening cones and the throat curvature Kw = 1.0.
Figure 2b relates to air flow with Rer = 106 in a conic
nozzle with opening half-angles of 45° and 15° for nar-
rowing and broadening cones, respectively, and the
throat curvature Kw = 1.6. It is seen that the results of
computations and experimental data are in the excellent
agreement.

Thus, in the case of structureless viscous flows, the
accuracy of the improved (elliptic) smooth-duct model
is not worse than for the exact Navier–Stokes equa-
tions. The iterating-marching algorithm proposed
reduces the computer time required for solving the
Laval-nozzle direct problem by the factor of several
tens, and for flows of chemically reacting mixtures—by
the factor of several hundreds.
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1. It is well known that solutions to the boundary
value problems of the elliptic type and, in particular, to
equations of linear elasticity theory have the following
asymptotic representation in a neighborhood of bound-
ary corner points [1]:

(or a more complicated representation with logarithmic
terms in the case of multiple spectrum points γk). Here,
r, Kk, and fk are the distance to the vertex, intensity coef-
ficients, and functions defining the angular distribution
of the stress field t in the neighborhood of the vertex,
respectively. In the two-dimensional and three-dimen-
sional cases, the functions fk depend on one polar angu-
lar variable ϕ, c = 1, and two variables ϕ, ψ, c = 2/3,
respectively.

In the two-dimensional case, the characteristics of
the stress concentration [the values of the singularity
indices γk and the form of the functions fk(ϕ)] at corner
points of linear-elastic bodies, including those of differ-
ent-modulus joints, are investigated almost exhaus-
tively. However, the problem of extracting singular
components of the solution in the neighborhood of the
vertex of polyhedral angles remains urgent. In contrast
to the two-dimensional case, the characteristic equa-
tions for the determination of indices γk (the spectrum
points of corresponding boundary value problems) and
the functions fk(ϕ, ψ) (fundamental solutions) cannot
be written here in an explicit form. For their determina-
tion, numerical approaches are used that imply the dig-
itization in a certain way of the initial boundary value

t Kkf kr
γk–

, r 0,→
k

∑∼

c Reγ1 Reγ2 … Reγk …>> >>>
1028-3358/00/4501- $20.00 © 20037
problem. In accordance with the number of variables
needed for discretization, these approaches can be
divided into three following groups:

(i) the direct approximation by the finite-element
methods (FEM) (three variables);

(ii) the boundary-element method (BEM) [2], as
well as approaches based on isolating the factor rγ in the
explicit form (in fact, it is equivalent to application of
the Melline transform to the initial three-dimensional
boundary value problem) with a subsequent discretiza-
tion with respect to two angular variables of a local
spherical coordinate system [3–5]. This approach con-
sisting in iterative refinement of the singularity charac-
teristics, while approaching a vertex [6], is also two-
dimensional;

(iii) the reduction of initial two-dimensional bound-
ary integral equations (BIE) to one-dimensional inte-
gral equations by application of the Melline transform
[7–12].

Mathematically, the first approach is simple but
leads to large-scale systems of linear algebraic equa-
tions (on the order of 10000–20000 and higher) due to
the necessity to refine a calculation net as the vertex is
approached. Therefore, solving these systems calls for
large computational expenditures. In the second case,
we deal with systems on the order of 500–2000 that
implies the use of middle-power computers. Concrete
characteristics of singularities known at the present
time are relatively sparse and were obtained, mainly,
with making use of the second approach. In the first
turn, these are the singularity indices for convex [3],
and not only rectangular but also oblique trihedrons [6]
and cracks reaching the surface [4, 5]. In connection
with this, it is worth mentioning that in [2], numerical
estimates of singularity indices for two coupled differ-
ent-modulus trihedrons were obtained by analyzing the
slope of characteristics for the stress field. Such trihe-
drons are considered in the present paper.

The third approach for determining the singularity
of contact stresses at the vertex of a wedge-shaped
press tool was put forward by V. A. Babeshko [7] and
generalized later to the cases of wedge-shaped fractures
[8], cracks reaching the surface [9], and arbitrary poly-
000 MAIK “Nauka/Interperiodica”
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hedral angles [10]. This approach implies the applica-
tion of a sufficiently complicated mathematical tech-
nique, but leads to almost explicit formulas convenient
for calculations, which do not call for a considerable
computational expenditures even in the case of using a
personal computer. The general scheme of the method
is described in detail in [11]. The key element providing
the efficient use of this method is the representation of
elements of the matrix-kernel for BIE in the form of
series with isolated radial and angular variables, which
considerably facilitates the application of the Melline
transform and the subsequent discretization according
to the Galerkin scheme. We note that the acceleration of
the convergence of the series attained by isolating in the
explicit form and summing up terms describing the
asymptotic behavior at infinity, in fact, eliminate the
computational expenditures for the system formation.
In addition, a proper choice of basis functions ensuring
the correct description of the behavior on edges, i.e., at
the ends of intervals of the polar-angle variations on
each of the faces, is of great importance.

The latter argument is essential for the convergence
of the method, especially in the case when the solutions
also have singularities on edges. For example, this takes
place while changing the type of boundary conditions
in the case when one face of a polyhedron is fixed or
cemented to the face of another one. In the preceding
papers [7–11], the orthogonal Jacobi polynomials with
the weight ensuring the required behavior on edges
were used as a basis. One of distinctive features of the
approach [12] most close to that developed by us is the
use as a basis of step splines ignoring the solution’s
behavior on edges.

The acceleration of the convergence of the series
and the proper choice of coordinate functions provide
more than raising the efficiency of the method. The
computational practice shows that without them, we
cannot manage in obtaining true results. For example,
the plots for the dependence of the singularity indices
at the vertex of a trihedral pyramid on the angle open-
ing, which are presented in [10, 11], were determined
in that time with too large error. Only initial and final
values coinciding with those in particular cases of a
press tool and a dihedral angle were correct. Unfortu-
nately, this was not revealed appropriately due to the
lack of independent results for intermediate values. In
addition, extra roots corresponding to removable singu-
larities are shown in the plots presented in [10, 11].

The modified scheme for the determination of a sin-
gularity in the vertex of a convex polyhedron was
developed, which made it possible, for the first time
within this approach, to obtain stable and exact results
for not only homogeneous bodies but composite bodies
as well. The reliability and accuracy of calculations
were verified by the systematic comparison with the
results obtained by the BEM. In this paper, we present
both a brief description of principal distinctions for this
new scheme and results of numerical analysis.
2. Previously [10, 11], the system of BIE for the
neighborhood of the vertex of a polyhedral angle was
derived on the basis of the superposition of integral rep-
resentations of auxiliary solutions for half-spaces
bounded by surfaces that coincide with the faces. In this
paper, the classical approach based on the Betti–Somil-
iagno formula for the displacement field u(x) in an elas-
tic body was used:

(1)

Here tm and um are the stress vector and displacement
vector on the body surface (in our case, on the wedge
faces Sm of a M-hedral angle); Gm and Hm are well-
known matrix integral operators acting on tm and um .
Their kernels are expressed in terms of the matrix for
fundamental solutions to Lamé equations.

Passing to the limit as x  x ∈  S = ∪ Sm and trans-
ferring terms with the given tm or um to the right-hand
side reduce (1) to BIE with respect to unknown surface
displacements and/or stresses on faces. However, in
contrast to the standard derivation of BIE, the Fourier
transforms of their kernels (with respect to coordinates
lying in the face planes) rather than the explicit form is
used in the approach proposed. This saves from the
necessity to deal with the kernel hypersingularity. On
the other hand, this is a key point that allows us, as in
[10, 11], to express the kernel elements in the form of
series with isolated angular and radial variables. As was
noted above, such a representation ensures the efficient
realization of the method. Now, the degree of singular-
ity of the kernel affects only the behavior of its Fourier
image at infinity, or, what is the same, the degree of the
convergence for the series. The procedure being used
for the acceleration of their convergence is, in fact,
equivalent to the kernel regularization.

For composed bodies, representation (1) is written
out independently for each of polyhedrons in their own
local coordinate systems. The matching conditions for
displacements and stresses on common faces are added
to this system of equations. For example, if two faces

(S3 and ) of a trihedron are cemented together, then
the BIE take the form

(2)

with the contact conditions

(3)

u x( ) Gmtm Hmum–[ ] x( ).
m 1=

M

∑=

Ŝ3

un Hm
n um( ) G3

nt3–
m 1=

3

∑+ bn, x Sn,∈=

ûn Ĥm
n

ûm( ) Ĝ3
nt3–

m 1=

3

∑+ b̂n, x̂ Ŝn,∈=

n 1 2 3,, ,=

u3 x( ) Pû3 x̂( ),=

t3 x( ) Pt̂3 x̂( ), x S3, x̂ Ŝ3.∈∈–=
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Henceforth, quantities referring to the second trihedron

are denoted by the cap superscript, ,  and ,

 correspond to the integral operators on the faces Sn,

 (i.e., at x ∈ Sn and  ∈  ) for the first and second
trihedrons, respectively;

Here, P is the matrix of the transfer between local coor-
dinate systems.

The following stage consists in the application of
the Melline transform Ms (with respect to the parame-
ter r) to equations (2), (3) obtained:

As a result, we reduce them to one-dimensional integral
equations with respect to the Melline transform of
unknown displacements Um(s, ϕm) = Ms[um] and

stresses T3(s + 1, ϕ3) = Ms + 1[t] (  and  are deter-
mined in a similar manner). Here ϕm and  are the

polar angles on faces Sm and , respectively. In the
case of stresses, the shift of the transform parameters
s  + 1 is a consequence of the different homogeneity
degree of the Fourier images for the operators Hm and
Gm: Gm(tα) = t–1Gm(α), while Hm(tα) = Hm(α).

The principal distinction of the approach proposed
from that developed in [10, 11] is the necessity to
approximate not only Tm but also Um . While the Jacobi
polynomials with the weight ensuring the desired
behavior on edges,

are the perfect basis for the expansion of stresses Tm , a
sole set of such functions does not ensure the proper
description of the behavior of the displacements Um .
This is explained by the fact that although the behavior

Hm
n Gm

n Ĥm
n

Ĝm
n

Ŝn x̂ Ŝn

bn Gm
n tm, b̂n Ĝm

n t̂m.
m 1=

2

∑=
m 1=

2

∑=

Ms f[ ] f r( )rs 1– rd

0

∞

∫ F s( ).= =

Ûm T̂3

ϕ̂m

Ŝm

pk t( ) 1 t–( )α 1 t+( )βPk
α β,( ) t( ), ϕ at b,+==

t 1 1,–[ ] ,∈
DOKLADY PHYSICS      Vol. 45      No. 1      2000
of the derivatives of  with respect to ϕ is similar to
that of stress components (i.e., can possess a weak sin-
gularity), the displacements themselves are bounded
and, moreover, in contrast to stresses, they are continu-
ous on edges. It is evident that the Jacobi polynomials
cannot satisfy all these requirements simultaneously. It
should be noted that the expansion of Um in terms of
two sets of Jacobi polynomials, such that the weight of
one of which provides the required continuity on edges
(the Legendre polynomials), while the other ensures the
singularity of derivatives, leads to the numerical insta-
bility. The rapid and stable convergence of the method
was attained only when the specific system of basis
functions qm, k(ϕ), which satisfies all the requirements
mentioned above, was constructed.

The expansion of unknowns in terms of basis func-

tions  and , i = 1, 2, 3, being the
number of the vector components, has the form

(4)

,  are expanded similarly and the subsequent pro-
jection, in accordance with the Galerkin scheme for the
BIE residual, onto the system of the Legendre polyno-
mials, Pl(ϕn), l = 1, 2, 3, …, N lead, in our case, to the
following linear algebraic system in unknown coeffi-
cients of the expansion cm, k, :

(5)

Here, ck = (c1, k, c2, k, c3, k, c4, k, , ) are the

18-component vectors; cm, k = ( , , )

[unknown vectors ,  corresponding to the face

 are eliminated with the use of condition (3)];
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Qn, n = 1, 2, 3, are diagonal matrices arising while dis-

cretizing terms Un and  that stand outside the inte-

gral, [see (1)]. The matrix components , , ,
etc. are expressed in terms of the series In(p1, p2). In the
whole, the structure of series In remains the same [9–11];
the differences consist only in constants d1(m, k)
depending on the form of basis functions. The wavy

Ûn

Hm
n G3

n Ĥm
n

Table

E
ν

0.1 0.2 0.3 0.4 0.5

2 0.016 0.034 0.049 0.062 0.074

2.5 0.029 0.056 0.079 0.098 0.115

3 0.042 0.076 0.105 0.129 0.150

4 0.062 0.109 0.147 0.178 0.203

5 0.078 0.134 0.178 0.213 0.241

7 0.102 0.170 0.220 0.260 0.291

10 0.125 0.202 0.258 0.302 0.339

20 0.159 0.248 0.311 0.359 0.398

40 0.180 0.275 0.342 0.386 0.432

80 0.191 0.290 0.358 0.412 0.451

160 0.197 0.297 0.367 0.421 0.460

320 0.201 0.301 0.371 0.425 0.465

640 0.202 0.303 0.373 0.427 0.468
                                             

superscript above 

 

, , 

 

 indicates the fact that
transformations performed, in accordance with
contact conditions (3), are taken into account, while

eliminating unknowns 

 

,

 

  in the matrices 
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Being the poles of the Melline transform 
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the desired indices 

 

γ

 

k

 

 of the stress singularities are
approximated, with allowance for the shift of the argu-
ment 

 

s

 

 + 1

 

, by the quantities 

 

s

 

k

 

 + 1, where 

 

sk are the
zeros of the determinant of system (5). The intensity
coefficients and angular functions are the residua at
these poles [11]. These functions, with the accuracy to
a constant factor, are expressed in terms of eigenvectors
of the matrix A(sk) of system (5).

In order to verify the reliability of the method devel-
oped and evaluate its efficiency, numerical calculations
for two rectangular parallelepipeds cemented together
were performed simultaneously by this method and by
that of boundary elements (the BEASY package). The
comparison of the results obtained has shown that, for
N = 5 (the total system dimension is 90 × 90), to within
±0.001, the indices coincide with each other. Some of
calculated values of γ1 are shown in the table for differ-
ent ratios of Young’s moduli E = E2/E1 and equal Pois-
son’s ratios ν1 = ν2 = ν. At E = ∞ (a cube is cemented to
a nondeformable base), the index γ1 agrees exactly with
values given in [6] for ν1 = 0; 0.1; 0.2; 0.3; 0.4. In the
case of a different-modulus joint, our results also agree
with those obtained in [2] by the BEM.

H̃3
n

G̃3
n

Q̃3

ĉ3 k, ĉ4 k, Ĥ3

Ĝ3
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Plots of angular functions (ϕ) and (ϕ) nor-

malized according to the condition (45°) = 1 are
shown in Figs. 1 and 2, respectively, for the stress com-
ponents τxz and σz in the contact zone S3 in the case of
ν1 = ν2 = 0.3, E = 2, 7, ∞ (lines 1, 2, 3, respectively).
Dots correspond to the values obtained by the BEM.

For a long time, the weak point of this method was
the presence, apart of γ1 , of additional singularities,
which were not revealed by other authors. For example,
in the case of the cube vertex with one fixed face, three
singular roots of the characteristic equation detA(s) = 0
are obtained. For ν = 0.3, these roots are γk = 0.376;
0.426; 0.597; and only the first of them can be found by
the BEM. The analysis of the solution c(s) to system (5)
as a function of s has shown that, apart from poles s2, s3,
there are zeros z2, z3 located very closely to the poles,
which suppress them as a result of merging as N  ∞.
It is interesting to note that, in this case, the removable
(in this problem) pole corresponding to the index γ3 =
0.597 and its values for all other values of ν agree with
the principal singularity index for the Fichera vertex [12]
(The Fichera vertex corresponds to the entire space
with exception of 1/8 part with faces free of stresses.
Thus, from the geometry standpoint, this is a medium
complementary to the rectangular trihedron that was
under consideration in this paper).
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We investigate the dynamics of a flat linkage mov-
ing over a rough horizontal plane under the action of
both internal controlling torques applied in the hinges
and the forces of dry friction between the linkage and
the plane. We elaborated the modes of motion provid-
ing an arbitrary preset displacement of the linkage as a
whole: the longitudinal and lateral motions and the on-
the-spot turn. A velocity of these motions was esti-
mated. The forms of motions found can serve as a
model of the movement of snakes and certain other ani-
mals and also can be useful in designing mobile robots.

1. We consider a flat linkage, which is on a horizon-
tal plane and is actuated by controlling torques applied
in its hinges. The example of snakes and some other
animals shows that such a system can very efficiently
move over a plane by bending and using the forces of
friction on the plane. Various aspects of the biomechan-
ics of snakes and also the problems of mechanics of
robots, which use the principles of movement of
snakes, were discussed in [1–3]. Here, we propose a
simple mechanical model of this manner of motion.

A flat three-link linkage O1C1C2O2 consists of a cen-
tral link C1C2 with length 2a and two links O1C1 and
O2C2 of length l each (see Fig. 1). For simplicity, we
take that the links are absolutely solid and impondera-
ble rods, and the total mass of this three-link linkage is
concentrated at the points O1, C1, C2 , and O2 . The mass
of the points O1 and O2 is equal to m0 each, and that of
the points C1 and C2 is equal to m1 each. Thus, the total
mass of the linkage is equal to m = 2(m0 + m1). We refer
to the link C1C2 together with the masses concentrated
in the hinges C1 and C2 as a body, and to the links O1C1
and O2C2 together with the end masses as the end links.

The linkage can move over an immobile rough hor-
izontal plane on which the Cartesian system of coordi-
nates Oxy is introduced. The Cartesian coordinates of
the center of the body are denoted by x and y, while the
angles of inclination of the links O1C1, C1C2 , and C2O2
with respect to the x-axis are designated as θ1, θ, and
θ2 , respectively. We set θi = θ + αi (i = 1, 2), where αi
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are the angles between the body and the end links OiCi,
respectively.

The forces of dry friction, obeying the Coulomb
law, act between the points Oi, Ci (i = 1, 2) and the
plane. At rest, the forces of friction do not exceed migk,
where mi is the mass of a point, g is the gravity acceler-
ation, and k is the friction coefficient. During the
motion of the point, this force is equal to migk and is in
opposition to the velocity of the point.

In the hinges C1 and C2, the controlling torques M1
and M2 act; these torques can be varied in an arbitrary
preset way.

2. In order to obtain an arbitrary preset displacement
of the linkage over a plane, it is sufficient to construct
its motion along the linkage itself (the longitudinal
motion) and transverse to this direction (the lateral
motion), and also to build the on-the-spot rotation. We
form these motions from simpler motions, which are
termed elementary. Every elementary motion starts
from and terminates at a state of rest. Initial and final
values of the angles αi for every elementary motion are

denoted by  and , respectively, i = 1, 2. These
motions are classified as slow and fast.

In slow motions, one or both end links rotate, while
the body remains immobile. We take that the angular
velocity of the end links  (i = 1, 2) does not alter the
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sign for the slow motion, and the following relation-
ships are valid:

(1)

Here, t is the time, T is the duration of the slow motion,
and ω0 and ε0 are constants. If both of the end links are
involved in the slow motion, they rotate synchronously
either in the same directions or in the opposite ones, so
that

(2)

where β is a constant. It can be shown that, in order for
the body be immobile during the slow motion of one or
both end links, it is sufficient that the following condi-
tions be fulfilled:

(3)

If the end links have an opposite sense of rotation,
i.e., there is a minus sign in (2), it is sufficient that,
instead of (3), the following conditions be fulfilled:

(4)

If the end links rotate reasonably slow, i.e., ω0 and
ε0 are sufficiently small in (1), inequality (4) will
always be fulfilled, whereas inequality (3) will be ful-
filled for m0l < m1a.

In fast motions, the angular velocities and accelera-
tions are reasonably high, and the time of motion is
small as compared with the time of slow motions. In
this case, the controlling torques M1 and M2 are much
higher than the moments of forces of friction, which are
equal to µgkL, where µ = max(m0, m1) and L =
max(l, a). Thus, the forces of friction can be ignored.
Here, condition (2) is fulfilled as before, with one of the
three cases taking place:

(1) α2(t) = –α1(t) + β and, moreover, either  = 0,

or  = 0;
(2) α2(t) = –α1(t);
(3) α2(t) = α1(t).
These cases will be referred to as the fast motions of

the types 1–3, respectively. The law of variation of
angular velocities is inessential for the fast motions.

Using the laws of conservation of momentum and
angular momentum, it can be shown that the incre-
ments of the variables x, y, and θ for the fast motion of
the type 1 are equal to 

(5)

ω t( ) ε0t, t 0 T /2,[ ] ,∈=

ω t( ) ε0 T t–( ), t T /2 T,[ ] ,∈=

ω α̇ i , ∆α i α i
1 α i

0,–= =

∆α i ω0T /2, i 1 2, ω0, ε0T /2.= = =

α2 t( ) α1 t( ) β, t 0 T,[ ] ,∈+±=

m0l 2 ω0
4 ε0

2+( )1/2 ε0l gk+( )a 1–+[ ] m1gk.≤

m0l ω0
4 ε0

2+( )1/2
m1gk.≤

α1
0

α2
0

∆x 4m0m 1– l β/2( )sin
2

,+−=

∆y 2m0m 1– l β, ∆θsin± 0.= =
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Here, the upper and lower signs correspond to the cases

 = 0 and  = 0, respectively. For motion of the
type 2, we obtain

(6)

For motion of the type 3, we have ∆x = ∆y = 0, ∆θ ≠ 0,
an explicit expression having been found for ∆θ.

Let us pass to forming the longitudinal, lateral, and
rotary motions of a linkage from elementary motions.

3. Longitudinal motion. We assume that at the ini-
tial moment a linkage is of a rectilinear shape (θ = α1 =
α2 = 0) and is at rest (the state 0 in Fig. 2). The follow-
ing motions will be executed:

(1) A slow motion by rotating the link O1C1 through
an angle β. The other links remain immobile. The link-
age passes into the state 1 in Fig. 2, in which α1 = β and
α2 = 0.

(2) A fast motion of the type 1, as a result of which
α1 and α2 vary from β to 0 and from 0 to β, respectively.
The linkage passes into the state 2 in Fig. 2.

(3) A slow motion such that the angles α1 and α2
vary from 0 to –β and from β to 0, respectively. The
linkage passes into the state 3 in Fig. 2.

(4) A fast motion of the type 1 such that the angles
α1 and α2 vary from –β to 0 and from 0 to –β, respec-
tively. The linkage passes into the state 4 in Fig. 2.

(5) A slow motion such that the angles α1 and α2
vary from 0 to β and from –β to 0, respectively. The
linkage passes into the state 5 in Fig. 2.

The state 5 is identical to the state 1. The described
cycle of two fast and two slow motions can be repeated
an arbitrary number of times. In order to transfer the
linkage from the state 5 to the rectilinear state 0 at the
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end of the motion, it is necessary to execute a slow
motion by varying α1 from β to 0.

Let us calculate the total displacement of the linkage

in one cycle of the motion. Because  = 0 for the both
fast motions of the cycle, it is necessary to take the
lower signs in formulae (5), with β having opposite
signs for these motions. For the total displacement, we
obtain

A mean velocity of the longitudinal motion v1 =
∆0x(2T)–1, where the time T of slow motion and the
angle β must satisfy the inequality

which follows from (1) and (3).

α2
0

∆0x 8m0m 1– lsin2 β/2( ), m 2 m0 m1+( ),= =

∆0y ∆0θ 0.= =

m0l 4 2β β2
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1/2
T 2–[

+ 4βlT 2– gk+( )a 1– ] m1gk,≤
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4. Lateral motion. We start the motion once again
from the state of rest (the state 0 in Fig. 3) and execute
the following motions:

(1) A slow motion by varying the angles α1 and α2
from 0 to –β and from 0 to β, respectively. The linkage
passes into the state 1 in Fig. 3.

(2) A fast motion by varying the angles α1 and α2
from –β to β and from β to –β, respectively. The linkage
passes into the state 2 in Fig. 3.

(3) A slow motion by varying the angles α1 and α2
from β to –β and from –β to β, respectively. The linkage
passes into the state 3 in Fig. 3.

The state 3 is identical to the state 1. The cycle
involving the fast and slow motions can be repeated. In
order to bring the linkage from the state 3 to the initial
state 0 at the end of the motion, it is sufficient to execute
the slow motion by varying the angles α1 and α2 from
–β to 0 and from β to 0, respectively.

The total displacement of the linkage in the cycle is
determined employing formulas (6). We have

The mean velocity of the lateral motion v2 = ∆0yT−1,
where the time T of the slow motion and the angle β
must satisfy the inequality

which follows from (1) and (4).
5. Turn. In order to turn the linkage, which is ini-

tially at the state 0 in Fig. 4, we execute the following
motions (here always, α1 ≡ α2).

(1) By means of the slow motion, we vary α1 = α2

from 0 to α0 . The linkage passes into the state 1 in
Fig. 4.

(2) By means of the fast motion of the type 3, we
vary α1 = α2 from α0 to α1 . In this case, the body turns
through the angle ∆θ, and the linkage passes into the
state 2 in Fig. 4.

These motions can be repeated. In order to bring the
linkage from the state 2 to the rectilinear state, it is nec-
essary to execute a slow motion by varying α1 = α2

from α1 to 0. As a result, the linkage turns on-the-spot
through an angle ∆θ.

6. As an example, we take numerical values for the
parameters: β = 30°, k = 0.3, g = 9.81 m s–2, m0 = 0.5 kg,
m1 = 0.7 kg, a = l = 0.1 m, and T = 1 s. It can be shown
that all the conditions imposed are fulfilled in this case,
and the mean velocities of the longitudinal and lateral
motions are equal to v1 = 0.5 cm s–1 and v2 = 2 cm s–1,
respectively. For realizing these motions, the torques
M1 and M2, developed by the motors, must be of the
order of 0.1 N m.

7. It is shown that the flat linkage can move over a
rough horizontal plane in an arbitrary direction and turn

∆0x 0, ∆0y 4m0m 1– l β, ∆0θsin 0.= = =

8m0lβ 4β2 1+( )1/2
T

2–
m1gk,≤
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under the action of internal controlling torques applied
to its hinges. Simple constructional ways for realizing
these motions are proposed, sufficient conditions of
their feasibility are given, and displacements and veloc-
ities are estimated.

A computer simulation, with all the factors taken
into account more accurately and completely, con-
firmed a feasibility of the motions described for the
linkage. 

The distinguishing features of this manner of
motion as compared with other ways of displacing
vehicles and animals using wheels, legs, or caterpillar
tracks are noteworthy.

(1) The motions under consideration occur in a hor-
izontal plane exceptionally; a body contacts with the
plane all the time by the same points. All the points of
the body move parallel to this plane, while the control-
ling torques are perpendicular to it. Therefore, the ver-
tical dimensions of the body (the height of a vehicle)
can be small. As to the height of a wheel or stepping
vehicle, it is bounded from below by dimensions of the
wheels or legs.

(2) For realizing arbitrary motions, it is sufficient to
have two independent motors mounted in hinges (for a
DOKLADY PHYSICS      Vol. 45      No. 1      2000
stepping vehicle, it is necessary to have no less than two
motors for each leg).

(3) The design of the vehicle and the mode of its
motion are very simple.

These features can be useful in designing small-
dimension mobile robots.
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In recent years, a possibility to control combustion
processes, while exciting vibrational degrees of free-
dom in molecules was subjected to sufficiently wide
discussions in literature [1–4]. It was shown that the
excitation of vibrations in H2, O2, and even N2 results
in both intensifying formation of active O, H, and OH
centers and accelerating the combustion of the H2 + air
mixture. In this study, we investigate another aspect of
the problem, which is associated with the effect of
exciting molecular vibrations of initial reagents on the
self-ignition threshold.

First, we show for the general case that the selective
excitation of molecular vibrational degrees of freedom
in the case of the chain mechanism of the process must
result in reducing the self-ignition threshold. We will
assume that the thermodynamic equilibrium exists
between the rotational and translational molecular
degrees of freedom, while a local Boltzmann distribu-
tion with its proper vibrational temperature Tξ (ξ = 1,
…, n) is established very rapidly in each ξth mode.

The simplest scheme of reactions describing the ini-
tiation (the appearance of an active radical), propaga-
tion, and the break of a chain has the form:

(I) 

(II) 

(III) 

Here, A is an initial reagent, whose decomposition
leads to the formation of an active radical; r; C, D, and
r2 are reaction products; l = 1 and l = 2, 3 correspond to
a nonramified and ramified chain reactions, respec-
tively; k1, k2, and k3 are the reaction-rate constants for
the corresponding process. The equations specifying

A        r D ,+ 
k
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r A+          C lr ,+ 
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3                                                             
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the formation of active radicals r in the processes I–III
can be represented in the form:

(1)

(2)

We seek the solution for [r] in the form [5]:

(3)

Here, [A] and [r] are the concentrations of molecules
for the mixture components A and r, and y(t) is a certain
continuous function of time.

Substituting (3) into (2), we obtain

In the general case, k1, k2 , and k3 depend on the gas tem-
perature T, while k1 and k2 depend also on the vibra-
tional temperature TV for the molecule excited mode of
the component A. The values of T, TV , and [A] vary in
the process of combusting the mixture. However,
within the range [0, τin], where τin is the induction
period, we may assume that T
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for t = 0, then

(5)

As t  ∞, it follows from (5) that [r(t)] = Z1/2k3 .
For l = 1 (a nonramified chain reaction),

For t > ,  = (2a)–1, the value [r] tends to its ultimate

value [ ] = . In the case of a ramified

chain reaction (l > 1), [A]0/k1k3 @ 1, and the maxi-
mum concentration of active radicals (furthermore, we
denote it by the subscript l) is defined by the expression
[ ]l = (l – 1)k2[A]0/2k3 . Since k2 > k1 , then [ ]l > [ ].

The self-ignition regime is realized if [ ] > [rign],
where [rign] is the critical concentration of active radi-
cals for which the chain mechanism develops steadily
[6]. The value of [rign] depends on [A]0 , on the rates of
formation and disintegration of active radicals, and on
the rate of their diffusion or convective outflow from
the reaction zone. The quantity [A]0 determines the
concentration threshold for the self-ignition, while the
relationship between k1, k2 , and k3 determines the tem-
perature threshold. The chemical-reaction rate constant
for Tξ ≠ T can be presented in the form

(6)

where (T) is the reaction-rate constant for the qth
reaction at Tξ = T, and ϕq(T, Tξ) is the nonequilibrium-
state factor. For determining a particular form of ϕq(T,
Tξ), we use the theoretical results of [7]:

(7)

Here, θj is the characteristic vibrational temperature for
the jth vibration, and gj is the multiplicity of its degen-

r t( )[ ]
Z1Z2 e

Z1t
e

Z2t
–( )

2k3 Z2e
Z1t

Z1e
Z2t

–( )
-----------------------------------------------.=

r t( )[ ] 1 e 2at––

1 e 2at–+
-------------------
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----------------.=
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0 T( ),=
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∏
----------------------------------------------------------=

×
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2
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∑
---------------------–

 
 
 
 
 
 
 

.exp
eration; βqj are the expansion coefficients for the qth
reaction in coordinates of normal vibrations; bq is the

number of modes participating in the qth reaction; 
is the energy corresponding to a certain vibrational
level, being as though a “narrow neck” in the case of
passing vibrationally excited molecules to the quasi-
continuous (with respect to the energy) continuum in
the qth reaction.

Let only one type of vibrations (Tξ = TV) be excited
in molecules A. With allowance for (6) and (7), it is
convenient to present the expressions for [ ] and [ ]l

in the form

Here, [ ] is the maximum concentration of active
radicals at TV = T and l = 1, while for l ≥ 1, ([ ] =

; [ ]l = (l – 1) [A]0/2 ).

In the case of excitation of the component A (TV >
T0) ϕ1(T, TV) > 1 and ϕ2(T, TV) > 1. Therefore, [ ] >

[ ] and [ ]l > [ ]l. We assume that [ ]l < [rign]
for the given [A]0 and T0; i.e., no regime of self-ignition
is realized for both nonramified and ramified chain
reactions. Exciting vibrations of molecules A to a cer-
tain value TV, it is possible to make the condition
[ ]l > [ ] > [rign] fulfilled, i.e., to reduce both the tem-
perature threshold and concentration threshold of the
self-ignition. A relative increase in the concentration of
active radicals  = [ ]/[ ] for l = 1 depends on

 = TV/T and  = /T, while for l > 1,  =

[ ]l/[ ]l depends on  and  = /T ( , and

 are the values of  for the reactions of initiation
and chain ramification).

In Figs. 1a and 1b, we show  as a function of 

and  and  as a function of  and  for l = 2,
respectively. In the same figures, we show in the ordi-
nate axis certain values rign = [rign]/[ ]l > 1 for l = 1
and l = 2; i.e., for the values [A]0 and T0 corresponding
to [ ]l , no self-ignition occurs. As is seen, the higher

is  for l = 1 or  for l = 2, the lower is the degree
of excitation for which the regime of the self-ignition
(  ≥ rign) is realized. It is natural that the degree of
excitation must be lower in a ramified chain reaction for
equal  and .

We illustrate the results obtained by the example for
the H2 + O2 mixture. We consider the ignition of the
mixed mixture in a certain region with the radius Ra . In
this case, the time for active radicals to escape from the

Eq*

r* r*

r*[ ] r*0[ ] ϕ1 T TV,( ), r*[ ] l r*0[ ] lϕ2 T TV,( ).= =

r*0
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k1
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0 k3
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Fig. 1. Relative increase in the number of active radicals as a function of  for (a) nonramified reaction with  equal to: (1) 20;

(2) 60; (3) 100; and (4) 140 and (b) ramified reaction (l = 2) with  equal to: (1) 10; (2) 20; (3) 30; and (4) 40.

TV' EV1'

EV2'

TV'
reaction zone corresponds to the time of diffusion  =

min{ }, and  = Ra/Dik , where Dik is the coefficient
of the multicomponent diffusion occurring between the
ith and kth components. The formation of active radi-

cals is specified by the time  of the chemical reac-

tion. If  > , no self-ignition occurs. For the H2 +

O2 mixture,  corresponds to the diffusion time ( )
for hydrogen atoms.

To describe the process of self-ignition in a vibra-

tionally nonequilibrium reacting gas for t < , the set
of equations is valid, which involves the equation for
energy, the kinetic equations for concentrations of com-
ponents and for the mean content of vibrational quanta
in each mode participating in the reactions of mole-
cules [2]. The analysis performed has shown that, for
describing the low-temperature initiation of combus-
tion in H2 + O2 mixtures, it is necessary to use the
kinetic scheme including chemical reactions with par-
ticipation of not only H2, O2, H2O, OH, O, and H, but
also HO2, H2O2, and O3:

(1C) H2O + M = OH + H + M,

(2C) H2 + M = 2H + M,

(3C) O2 + M = 2O + M,

(4C) H + O + M = OH + M,

(5C) H2 + O = OH + H,

(6C) O2 + H = OH + O,

(7C) H2O + O = 2OH,

(8C) H2O + H = OH + H2,

τ i
D

τ ik
D τ ik

D

τ i
ch

τ i
ch τ i

D

τ i
D τH

D

τH
D
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(9C) H2 + O2 = 2OH,

(10C) HO2 + M = H + O2 + M, 

(11C) H2 + O2 = H + HO2,

(12C) H2O + O = H + HO2,

(13C) H2O + O2 = OH + HO2,

(14C) H2O + OH = H2 + HO2,

(15C) 2OH = H + HO2,

(16C) OH + O2 = O + HO2,

(17C) H2O2 + M = OH + OH + M,

(18C) H + H2O2 = HO2 + H2,

(19C) H + H2O2 = H2O + OH,

(20C) 2HO2 = H2O2 + O2,

(21C) HO2 + H2O = H2O2 + OH,

(22C) OH + HO2 = H2O2 + O,

(23C) H2O + O2 = H2O2 + O,

(24C) O3 + M = O2 + O + M,

(25C) O3 + H = OH + O2,

(26C) O3 + O = O2 + O2,

(27C) O3 + OH = HO2 + O2,

(28C) O3 + H2 = HO2 + OH,

(29C) O3 + HO2 = OH + O2 + O2.
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In addition to the reactions indicated, we included
into the kinetic model the processes of the vibrational-
vibrational (V–V') exchange between the symmetric,

10–5

300 400 500 600 700 800 900 T0, K

10–4

10–3

10–2

10–1

100

τH
D, τin, s

1

2

3

Fig. 2. Dependences (for the 2H2 + O2 mixture at a pressure
P0 = 10 kPa) τin(T0) in the absence of the preliminary exci-

tation of initial reagents (solid line) and (T0) with the

preliminary excitation of vibrations in H2 (dashed lines).
T40 = (1) 1000; (2) 2000; and (3) 3000 K.

τH
D

deformational, and asymmetric modes of H2O and O3

molecules and modes of H2, O2, and OH molecules. We
also included processes of the vibrational-translational
(V–T) relaxation of the deformational modes for H2O
and O3 and modes of the H2, O2, and OH molecules. It
was assumed that the vibrational energy released into
modes of the HO2 and H2O2 molecules when proceed-
ing chemical reactions relaxes very rapidly into the
translational degrees of freedom. (As estimates have
shown, the rates of the V–V' and V–T processes for
these molecules are higher than the rates of processes
of the vibrational energy exchange in H2O.) The tem-

perature dependences (T), Wξ, p(T), and Wξ, 0(T) for
the chemical-reaction rate constants and for the V–V'
and V–T exchange processes, respectively, are taken
from [4]. For the processes O3(100, 001) + M =
O3(020) + M and O3(010) + M = O3(000) + M, the val-
ues of the reaction-rate constants are known only at T =
300 K (they are 5 × 10–14 cm3/s and 2 × 10–14 cm3/s,
respectively) [8]. The temperature dependences for
these processes were determined in accordance with
the SSH theory [9]. The values of  and the energy Er

released into vibrational degrees of freedom, while
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forming a molecule in the rth chemical reaction, were
calculated in the same manner as in [4].

At low temperatures (T0 ≤ 600 K), there are marked
differences in the mechanism of the combustion initia-
tion of the H2 + O2 mixture as compared to higher val-
ues of T0 even in the case of the absence of the prelim-
inary excitation of the H2 or O2 molecules. At the initial
stage, as for high values of T0 , the principal reaction
initiating the formation of active OH radicals is the
(9C) reaction. Furthermore, OH radicals dissociate [the
(4C) reverse reaction] and also react with H2, which is
accompanied by the formation of H2O molecules and H
atoms [the (8C) reverse reaction]. These products par-
ticipate in two different processes. The former of them
results in formation of O atoms [the (6C) reaction] and
initiates the chain-combustion mechanism. The latter
process results in the disappearance of H atoms and for-
mation of HO2 radicals [the (10C) reverse reaction]. At
T ≥ 800 K, the rate of the former process becomes
higher than that of the latter one, but the situation alters
to the opposite one at T ≤ 600 K. At T ≤ 600 K, an impor-
tant source of O atoms is the dissociation of O3 [the
reaction (24C)], which is preliminary formed as a result
of the interaction between HO2 and O2 [the (27C)
reverse reaction]. The rate of the (24C) reaction is com-
parable to that of formation of O atoms in the reaction
of the chain initiation. The (5C) reaction closes the
chain mechanism for the combustion of H2 + O2 mix-
tures.

The preliminary excitation of H2 or O2 molecules
significantly change the mechanism of the combustion
initiation and results in decreasing τin at the same T0. In
Fig. 2, we show the dependences τin(T0) in the case of
the absence (Tξ0 = T0) and of the presence of the excita-
tion of H2 for various vibrational temperatures T40 in H2

and the dependence (T0) for Ra = 0.1 m. As is seen,

the condition τin >  is realized at lower T0 in the case
of the excitation of the H2 molecules. Thus, at T40 =
1000 K, the self-ignition is possible at T0 = 500 K,
while at T40 = T0—only at T0 = 550 K. For a significant
excitation of H2 (T40 ≥ 2000 K), the character of the
dependence τin(T0) changes in the range T0 = 600–
300 K; namely, the value of τin decreases with the
reduction of T0. In the case of a strong excitation of H2
molecules, variation in the form of the dependence
τin(T0) is caused by a change in the mechanisms of pro-
duction of O and H atoms, as well as OH radicals com-
pared to unexcited gas. This is illustrated in Fig. 3 in
which we show the variation of the OH, H, and O for-
mation rates in the process of combustion of the hydro-
gen–oxygen mixture with and without the excitation of
H2 at T0 = 600 K. It is seen that the excitation of H2
leads primarily to a significant increase in the forma-
tion rate for OH radicals in the (9C) reaction and H
atoms in the (8C) reverse reaction. In this case, an effi-

τH
D

τH
D
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cient source of H atoms becomes the reaction of disso-
ciation of OH and H2 [the (4C) and (2C) reactions,
respectively]. An increase in the concentration of H
atoms results in accelerating the formation of HO2 rad-
icals in the (10C) reaction. This process initiates
increasing the rate of the (15C) reverse reaction, the
growth in the concentration of OH radicals and, as a
consequence, of H and O atoms as well.

With decreasing T0 from 600 to 300 K, the forma-
tion rate for HO2 radicals in the (10C) recombination
reaction increases. This fact, as was already noted
above, results in increasing the concentration of OH
radicals and H and O atoms, and thus, in intensifying
the chain mechanism of the process and in reducing the
period of induction. This can be clearly seen from
Fig. 4, in which the dependences γi(t), i = OH, H, O,
HO2, H2 and O2 are shown for T0 = 600 and 300 K.

The results obtained indicate a possibility of a sig-
nificant (by the factor of two or higher) reducing the
ignition threshold for combustible mixtures when
exciting the molecular vibrations in initial reagents. In
the case of the low-temperature initiation of combus-
tion by means of a selective excitation of vibrational
degrees of freedom in the reacting molecules, new
mechanisms of formation of active atoms and radicals
appear. These mechanisms can lead to a qualitative
change in the dependence for the induction period on
the initial temperature of a mixture.
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Fig. 4. Variation in concentrations for the OH, O, H, HO2,
H2, and O2 components with time in the case of combustion
of the 2H2 + O2 mixture at P0 = 10 kPa, T0 = 600 and 300 K
(solid and dashed lines) in the case of exciting molecular
vibrations in H2 (T40 = 3000 K).
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