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It is shown that the contribution of instantons to the fragmentation of quarks leads to the appearance of an imag-
inary part in diagrams of quark–quark scattering at large transferred momentum. The imaginary part comes
from the analytical continuation of the instanton amplitudes from Euclidean to Minkowsky space–time and
reflects the quasiclassical origin of the instanton solution of QCD equations of motion. This phenomenon and
instanton-induced quark spin-flip give a new nonperturbative mechanism for the observed anomalous single-
spin asymmetries in hadron–hadron and lepton–hadron interactions. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The explanation of the large observed single-spin
asymmetries (SSA) at large energies and transferred
momenta in many inclusive and exclusive processes is
one of the most longstanding and outstanding problems
in QCD [1, 2]. From a naive point of view, one can
expect that with increasing energy and transferred
momentum the role of quark spin in strong interactions
should become smaller. At the same time, the experi-
mental data on spin-dependent cross sections reveal the
opposite tendency: the spin asymmetries do not disap-
pear at large energy, showing in fact an anomalous
growth with increasing transferred momentum.

Apart from our understanding of the origin of the
large spin effects in QCD, the investigation of the fun-
damental mechanism which is responsible for SSA is
also very important in view of future spin measure-
ments at Brookhaven (RHIC-Spin Collaboration),
CERN (COMPASS), and DESY (HERA-N).

Within leading order of perturbative QCD, it is
impossible to obtain large SSA, because their values
should be proportional to the current quark masses and
should decrease with energy and momentum transfer [3].
Additional suppression factors are those related to the
loop integration generating the imaginary part of the
amplitude and an extra power of αs.

Several attempts to explain the observed SSA have
been undertaken. In [4], it was mentioned that the twist-3
contribution can be important to explain this puzzle.
Recently in [5], the convolution formula for single-spin
asymmetry which includes a twist-3 quark–gluon cor-
relation function has been obtained and the single-spin

1 This article was submitted by the author in English.
0021-3640/00/7210- $20.00 © 20481
asymmetries for the pion production have been esti-
mated. The main problem of this approach is unknown
spin-dependent twist-3 distribution functions, which in
general are the functions of two variables and present
the nonperturbative part of the convolution formula,
together with rather well-known twist-2 distribution
functions of the partons in nonpolarized nucleons.
These twist-3 distribution functions should be either
extracted from other experiments or calculated within
some nonperturbative approach.

There are several phenomenological approaches
which also take into account the nonperturbative effects
on single-spin asymmetries [6]. Some of them use
assumptions about quark transverse momenta in the
distribution function (Sivers effect [7]) or in the quark
fragmentation function (Collins effect [8]). In [9], an
attempt to combine these two mechanisms for SSA was
made.

However, all of these approaches are based on the
phenomenological ways of introducing nonperturba-
tive effects into the SSA problem. The most of the
parameters of these models were obtained from the fit
of the available SSA experimental data; therefore the
predictable power of such models is rather low.

In this Letter, a new mechanism for single-spin
asymmetries in strong interactions is suggested.

This mechanism is based on the existence, in the
QCD vacuum, of the strong nonperturbative fluctua-
tions of gluon fields, so-called instantons (see recent
review [10]). The instanton model of QCD vacuum not
only describes very well the main properties of the vac-
uum state, e.g., the values of the different quark and
gluon condensates, but it is also rather successful in the
description of hadron spectroscopy (see recent review
[10] and references therein). Recent results of the lat-
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tice QCD [11] confirm the importance of the instantons
in QCD vacuum.

The importance of instantons for spin physics is
related to their specific role in the chiral structure of
QCD vacuum. Thus, the instantons describe subbarrier
transitions between various classical minima of the
QCD potential, which correspond to different values of
the axial vector charge. The changing of the value of the
axial vector charge due to instanton transition leads
simultaneously to the quark chirality flip. In [12], it was
mentioned that the quark chirality flip induced by
instantons may give a natural explanation of the anom-
alous spin effects in strong interactions. In particular,
the instanton solution of the famous “spin crisis” [13]
was suggested [14].

We will show below that the instanton leads to a pre-
cise behavior of effective quark–instanton vertices as
functions of the incoming quark virtualities, which will
be responsible for the magnitude of the SSA. More spe-
cifically, an imaginary part arises for timelike virtuali-
ties of the quark in the diagrams induced by instantons,
which is not suppressed at high energy and whose con-
tribution significantly enhances the SSA.

2. SINGLE-SPIN ASYMMETRIES IN π-MESON 
PRODUCTION AND INSTANTONS

Let us estimate the instanton contribution to the
SSA for hadron production in quark–quark scattering.
For definiteness, we study π+-meson production in the
scattering of two u-quarks, one of them transversely
polarized. Our goal is to explain the large SSA in the
fragmentation region of the polarized quark at high
energies. In this kinematic regime, only the diagrams of
Fig. 1 can contribute significantly.2 The method for cal-
culating these diagrams is standard (see, for example,
[15]). The single-spin asymmetry can be written in the
following form [16]:

(1)

where we neglected the contribution coming from dou-
ble spin-flip amplitudes Φ2 and Φ4, which are suppressed

by the factor (mq/ ) with respect to the leading contri-
butions; mq is the quark mass and S = (p1 + p2)2. The
helicity amplitudes entering Eq. (1) are

(2)

By using for the gluon polarization tensor in Fig. 1 its
high-energy limit [15]

(3)

2 We assume that the instanton-induced quark–quark interaction
determines the strength of the πqq vertex. This is one of the
important consequences of the instanton model (see [10] and ref-
erences therein).

A
2Im Φ5* Φ1 Φ3+( )( )
Φ1

2 Φ3
2 4 Φ5

2+ +
---------------------------------------------------,=

S

Φ1 = M+ +; + +,, , Φ3 = M+ –, ; + –, , Φ5 = M++; –+.

Dµν g⊥
µν 2

S
--- p1

µ p2
ν p1

ν p2
µ+( ) 2

S
--- p1

µ p2
ν p1

ν p2
µ+( ),≈+=
the matrix element of the reaction

(4)

is given by

(5)

where gs is the strong-coupling constant,  is the

π−-quark coupling constant due to the instanton, and

(6)

In order to obtain Eq. (6), the equations of motion are
used. In Eq. (6), F(k2) is a form factor related to the
finite size of the instanton and d1, 2 are quark propaga-
tors in Fig. 1, namely,

(7)

In principle, Eq. (5) should include an integral of the
density of instantons n(ρ) over the instanton size ρ.
However, for estimating the SSA, here we use the sim-
ple version of the instanton liquid model, n(ρ) =
n0δ(ρ − ρc), with fixed instanton size ρc = 1.6 GeV–1.
This model gives a good description of the hadronic
properties and is very suitable for obtaining estimates
[10]. In Eq. (1), the density of the instantons is in the
numerator and the denominator. Therefore, in the ratio
it cancels. The structure in color space of all the helicity
amplitudes in Eq. (1) is the same. Therefore, we can
omit all global factors of Eq. (5) in the ratio as well.
Thus, it is enough to consider the matrix element

(8)

In the high-energy limit, it is very suitable to use Suda-
kov variables

(9)

where

(10)

and  =   0 at S @ . In this limit, in the bot-
tom part of the diagrams in Fig. 1, due to Eq. (8), we
have conservation of quark helicity
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Fig. 1. The contribution of the instanton to the amplitude for π+ production in the fragmentation region of the polarized quark in the
scattering of two u-quarks. The label I denotes instanton.
and, therefore, for the helicity amplitude we have

(12)

where the current conservation condition for the quark
current in the top line in Fig. 1, q.J1 = 0, is used and

(13)

By using the on-shell conditions for outcoming quarks,

 =  = , and neglecting the mass of the pion,
l2 = 0, one can easily obtain the following expressions
for the quark propagators, d1, 2, and quark virtualities in
the intermediate states, k1, 2, of Fig. 1:

(14)

(15)

By using the identity

, (16)

one can write
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The matrix elements of operators in Eq. (17) for the dif-
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Therefore, the final result for helicity amplitudes in
Eq. (1) is

(19)

The main feature of the instanton-induced form factor
F(k2) in Eq. (19) is its nontrivial dependence on the vir-
tualities of the incoming quarks into the instanton ver-
tex. In the general case of the on-shell pion and off-

shell quarks with virtualities  and , the effective
quark–pion vertex has the following form3: 

(20)

where  is related to the Fourier transform of the
quark zero-mode in the instanton field in a singular
gauge (see [10]),

(21)

where x = /2.
The instanton is a classical solution of the QCD

equations of motion in Euclidean space–time, which is
characterized by its size ρ in this space–time. Therefore
to obtain the result for the cross section, the analytical
continuation of instanton amplitudes to the physical
Minkowsky space–time should be done. This continua-
tion should be performed in a careful way, because the
instanton-induced amplitudes have a cut at the quark
virtuality k2 = 0 (see below). It is this cut which is
responsible for the appearance of the imaginary part
which is needed for SSA.

3 The origin of the effective quark–pion vertex within the instanton
model is the famous t’Hooft’s four-quark interaction related to the
quark zero-modes in instanton field [17].
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To eliminate the imaginary part, it is more suitable
to use a good approximation for this form factor, which
gives the correct behavior for the quark zero-mode at
k2  ∞:

(22)

For a spacelike value of the quark virtuality in the inter-

mediate state in Fig. 1a, we have  < 0 and, therefore,
in Minkowsky space–time, the form factor becomes

(23)

At the same time, for timelike virtuality in Fig. 1b,

 > 0 in Minkowsky space–time, one obtains an imag-
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2

Fig. 2. The instanton contribution to the single-spin asym-
metry for pion production as a function of xF .

Fig. 3. The instanton contribution to the single-spin asym-
metry for pion production as a function of xF and pt = |l⊥ |.
Solid line is for xF = 0.9, dashed line is for xF = 0.6, and dot-
ted line is for xF = 0.3.

xF

pt
inary part in the form factor:

(24)

It is well known that, to get significant single-spin
asymmetry, one must have both quark-spin flip and a
large imaginary part in the amplitude.4 Equations (19)
and (24) show that the instanton-induced diagrams
have both these components. The SSA is proportional
to the interference of the diagrams in Fig. 1. One can
interpret the contribution from the first diagram
(Fig. 1a) as a Sivers effect [7] in the quark distribution
function and the contribution from the second diagram
(Fig. 1b) as a contribution to the quark fragmentation
function, the so-called Collins effect [8].

To obtain the final result for the asymmetry, one
should integrate in Eq. (1) the numerator and the
denominator over q⊥  and regularize, in some way, the
gluon propagator at small q2. The usual procedure (see,
for example, [15]) is to substitute in the gluon propaga-

tor, q2  –(  + µ2), where we use for the infrared
regulator µ ≈ ΛQCD ≈ mq ≈ 0.35 GeV. The value of mq =
0.35 GeV is the constituent quark mass within the
instanton liquid model [10].

The result of the calculation of the SSA is presented
in Fig. 2 as a function of xF and in Fig. 3 as a function
of both xF and p⊥ . The value of the asymmetry is rather
large, A ≈ 30%, in the large xF and p⊥  region. The mag-
nitude and sign of the asymmetry of π+-mesons is in
qualitative agreement with the experimental data [1].
At the same time, the negative and smaller polarization
of d-quark in comparison with u-quark polarization in
protons should lead to the negative and small positive
SSA for the π–- and π0-meson production, respectively.
This feature also was observed by the E704 Collabora-
tion. For a more detailed comparison with the total set
of data, one should include in the calculation the u- and
d-quark distribution functions in the polarized and
unpolarized nucleon and take the modern result for the
density of instantons from lattice calculations [11].
This will be the subject of a forthcoming paper.

We should stress that the instantons give large SSA
at large transferred momentum. The scale of the trans-
ferred momentum, where one can expect the large SSA
in the instanton approach, is determined by the average
size of the instanton in QCD vacuum. This size is much
smaller than the confinement size. Therefore, the topi-
cal values of the transferred momentum in instanton-
induced quark fragmentation to hadrons are substan-
tially larger than the usual value p⊥  ≈ 0.2 GeV related
to the confinement scale. It is this pt dependence of SSA

4 It is interesting that only the nonspin-flip amplitude in Eq. (19) is
proportional to the quark mass. In the pQCD approach [3], we
have the opposite situation, e.g., the spin-flip amplitude is propor-
tional to the quark mass. The difference comes from the addi-
tional quark spin-flip at the quark–pion vertex in Fig. 1.
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3
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2
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that poses one of the main problems in most attempts to
explain the phenomena. One can also easily understand
the origin of the observed enhancement of the SSA in
large xF region. Indeed, the value of SSA is determined
by a product of the imaginary part of the diagram in
Fig. 1b and the real part of the diagram in Fig. 1a. The
imaginary part of diagram in Fig. 1b is proportional to
the actuality of the quark in Fig. 1b coming into the

instanton vertex (24). This virtuality is  ≈ /xF(1 – xF).
At the same time, the real part of the diagram in Fig. 1a

is small at low xF due to form factor F( ), where  ≈

– /xF . As a result, the instanton approach predicts a
large SSA only in large xF region. This prediction is
confirmed by the data [1].

It should be mentioned that the instanton (anti-
instanton) transition defines the particular time direc-
tion5 and, therefore, the possible connection of the
instanton mechanism of the SSA with T-odd fragmen-
tation functions [18] should be clarified. Recently, a
large azimuthal asymmetry in semi-inclusive polarized
electroproduction of pions was observed at HERMES
[19]. It can be shown that the instanton mechanism for
single-spin asymmetries suggested in our paper allows
the explanation of these data [20] as well.

In summary, the instanton-induced contribution to
the quark–quark-scattering amplitude leads to a large
quark single-spin asymmetry at high energy and large
transferred momentum. The origin of SSA is in the
large imaginary part of the instanton-induced ampli-
tudes in the timelike region of quark virtuality. This is
related to the quasiclassical origin of the instanton,
which stems from the fact that it is a solitonlike solution
of the QCD classical equation of motion in Euclidean
space–time. We should also emphasize that the appear-
ance of the imaginary part in the quark–quark-scatter-
ing amplitudes, which include the quark lines with
time-like momenta, is the common feature of the
instanton-induced processes. The consideration of the
different manifestations of this phenomenon in polar-
ized and unpolarized lepton–hadron and hadron–had-
ron interactions will be the subject of forthcoming
papers.

5 The instanton describes the subbarrier transition in time from –∞
to +∞, while the anti-instanton is the transition in the opposite
direction.
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Observation of a Narrow Feature at 1545 MeV
in the System of Two KS Mesons
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Preliminary results of examining the system of two KS mesons in the region of comparatively high transferred
momenta are reported. The events were observed in the π–p interactions at an energy of 40 GeV on the ITEP
6-m magnetic spectrometer with a neutral trigger. At transferred momenta |t | > 0.5 GeV2, a maximum with
width Γ . 10 MeV was observed in the KSKS system at a mass of 1545 MeV with statistical significance of no
less than 6 standard deviations. This phenomenon can be interpreted as the manifestation of a resonance with
the indicated parameters. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.40.Ev
The overwhelming majority of the known mesons
are quark–antiquark ( ) bound states fitting neatly
into the SU(3) multiplets. However, the modern theory
of strong interactions (QCD) also predicts the existence
of mesons whose structure is inconsistent with the 
composition. These particles, with evidently exotic
combinations of quantum numbers such as the charge
Q, the strangeness S, and the isospin I or the spin S, the
parity P, and the charge parity C, are referred to as
exotic states of the first and the second kind, respec-
tively. To the third-kind exotic states, one refers those
mesons whose quantum numbers are consistent with
the  composition but which have some properties
that are different from the properties of ordinary
mesons: nonstandard proportion between the decay
channels, anomalously small widths, unusual forma-
tion mechanism, etc.

The X(1545) resonance, whose observation is
reported in this work, has a width of ~10 MeV and is
produced at rather large transferred momenta. This fea-
ture was found in studies of the mass spectrum of the
KSKS system. Experimental data were obtained in
1985–1990 on the ITEP 6-m spectrometer mounted in
a 40-GeV beam from the IHEP U-70 accelerator
(Protvino, Russia). In the exposures whose data are
examined in this study, a liquid hydrogen target was
used. The system of two KS mesons was mainly pro-
duced in the reaction

(1)

The 6-m spectrometer was described in detail in
[1, 2]. The spectrometer detects, with high efficiency,
forward flying KS mesons that decay into two charged

qq

qq

qq

π– p KSKSn.
0021-3640/00/7210- $20.00 © 20486
π mesons. A large magnetic-field volume filled with
track detectors makes it possible to measure the KSKS

mass with an accuracy of several megaelectronvolts.
Reaction (1) was identified by a trigger device, whose
basic elements were veto counters surrounding the liq-
uid hydrogen target. The counters formed a double pro-
tective layer around the target. To suppress gamma
quanta emitted from the target, lead converters were
placed between the counters.

Because of the imperfect trigger operation, the setup
detected a fraction of events from the reactions

(2)

The majority of such events can easily be omitted by
analyzing the missing mass of the system of two KS

mesons. However, in this study, the events from both
reactions (1) and (2) were taken into account, because
the feature under discussion was produced in both pro-
cesses.

In the identification of narrow resonances (with a
width of the order of several megaelectronvolts), both
the instrumental resolution and the method of data pro-
cessing are important. Fitting of the parameters mea-
sured for the KS-meson forks considerably improves
the accuracy of calculation of various physical quanti-
ties, including the KSKS effective mass.

The fitting was carried out independently for each of
the two forks. The following requirements were
imposed: the effective mass of two pions forming the
fork must be equal to the tabular mass of the KS meson,
and their tracks must intersect at a single point. Figure 1
illustrates the effect of this procedure on the refinement
of the measured quantities (minimum distance between

π– p KSKS n mπ0+ p π–+ …, ,( ).+
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Fig. 1. The distributions of events (a) in minimal distance D between the trajectories of KS mesons and (b) in the X coordinate of the
vertices. Vertical dashed lines are the boundaries of the target. Light and dark circles are the fitted and the unfitted events, respec-
tively.
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the kaon trajectories and the distribution in the X coor-
dinate of reaction vertices) of the system of two KS
mesons. The X axis is aligned with the momentum of
the beam π meson, the Z axis is aligned with the mag-
netic field of the spectrometer, and the Y axis forms a
right-handed system with these two axes.

The distribution of events in distance D between the
trajectories of KS mesons at the point of their closest
approach is shown in Fig. 1a. The dark and light circles
are the data obtained before and after fitting, respec-
tively. It is seen that the distribution width reduces after
fitting by a factor of about 1.5. For one-half of the
events, the distance between the trajectories of KS

mesons is ≤1.5 mm. Knowledge of the dispersion of the
D value allows one to obtain the upper estimate for the
error in measuring the effective mass of the KSKS sys-
tem. Indeed, the D value is a sum of two factors: spatial
displacement of the trajectories and their rotation.
However, only the rotation influences the error of effec-
tive mass. That is why this estimate provides only the
upper limit for the error in measuring the angle between
the momenta of the KS mesons. To a first approxima-
tion, the angular error is proportional to the parameter
D divided by the distance from the fork vertex to the
midpoint of the measured part of the trajectory. In our
case, the corresponding value is ~0.2 mrad. When
recalculated to the effective mass of two KS mesons,
this yields an error no greater than 5 MeV, in agreement
with the estimate obtained from the dispersion of the
distributions of effective masses of the π+ and π–

mesons, into which the KS mesons decay. Note that
these estimates are also not at variance with the widths
of narrow features observed previously on the 6-m
spectrometer (see, e.g. [3–5]).

As a result of fitting, the X coordinate of event ver-
tices is also refined. The distribution of events in the X
coordinate is shown in Fig. 1b. The coordinates of the
beginning and the end of the target region are equal to
35 and 75 cm, respectively. The nonuniformity of the
JETP LETTERS      Vol. 72      No. 10      2000
distribution over the target length is caused by the fact
that the detection efficiency for events occurring in the
beginning part of the target is suppressed by the neutral
trigger more strongly than for the events occurring in
the end part of the target. Data fitting results in a 25%
increase in the number of events occurring within the
target region.

Figure 2 demonstrates a portion of the mass spec-
trum at 1485–1610 MeV before (Fig. 2a) and after
(Fig. 2b) the KS-meson fork fitting. Note that in both
cases the sampling criteria were identical (see below).
The curves are the approximations of the experimental
data by a constant and a Breit–Wigner function. One
can see that the fitting procedure reduces the width of
the resonance feature by approximately one half.

Figure 3 shows the distributions of events over the
effective mass of two KS mesons with a step of 20 MeV
(a) without sampling of the modulus of the 4-momen-
tum t transferred from a beam π– meson to two KS

mesons and (b) with |t | > 0.5 GeV2 sampling. These
events were obtained by the following standard sam-
plings: the effective mass of the forks (465–530 MeV)
and the X, Y, and Z coordinates of the event vertex. For
the 40-cm-long liquid hydrogen target, the sampling
interval for the X coordinate was 60 cm. The sampling
of the Y and Z coordinates cuts a 1.2 × 3.2-cm rectangle
corresponding to the profile of a beam focused onto the
target region. After this sampling, up to 40% of events
were omitted. The sampling of the missing mass was
rather mild: –0.7 < MM2 < 12 GeV2. After this sam-
pling, the fraction of events of reactions (2) was ~30%.

A statistically significant signal (44 events against
the expected background level of 16 events) is seen in
Fig. 3b near 1550 MeV. This signal is shown in Fig. 2
in a smaller mass scale.

In order to determine the parameters of the observed
resonance feature and its statistical significance, the
experimental data were fitted by the maximum likeli-
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Fig. 2. Mass spectrum of the KSKS system in the interval 1485–1610 MeV for the |t | > 0.5 GeV2 sampling of the transferred momen-
tum with a step of 5 MeV: (a) unfitted and (b) fitted events.

Fig. 3. The distributions of events over the effective mass of the KSKS system with a step of 20 MeV: (a) all events and (b) events

with the |t | > 0.5 GeV2 sampling of the transferred momentum.
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hood method (MLM) in the KSKS mass interval 1400–
1700 MeV. There are 189 events in this interval. The
main advantage of the MLM, as compared to the histo-
gram method, is that the mass and angles are not aver-
aged over the bin width in the fitting procedure and the
result is independent of the choice of reference point
and number of steps into which the mass interval is
divided.

Experimental data are described using the probabil-
ity density function F(P; Ω), where P are the parame-
ters and the elements of phase space Ω are the effective
mass of two KS mesons, the cosine of the Gottfried–
Jackson angle θ, and the Treiman–Yang angle φ. These
angles are defined in the rest frame of two KS mesons
(θ is the angle between the momenta of one of the KS

mesons and of a beam π– meson, and φ is the angle
between the normal to the production plane and the
normal to the decay plane of two KS mesons). The mass
dependence is specified by a second-degree polynomial
and a relativistic Breit–Wigner function. The angular
dependences are expressed through the squares of the
S-, D0-, D+-, G0-, and G+-wave amplitudes and have the
form

(3)S2 1/4π,=
(4)

(5)

(6)

(7)

Then the functional

(8)

is minimized, where L = , e is the
detection efficiency, and N is the number of events. In
the indicated mass interval, the efficiency depends only
on the cosine of the Gottfried–Jackson angle θ. The χ2

value is calculated by formula

(9)

The constant is chosen so that the χ2 value obtained
without inclusion of the Breit–Wigner function is equal
to 100. The angular distributions of the background are

D0
2 5 3 θcos

2
1–( )

2
/16π,=

D+
2 15 2θ φsinsin( )2/4π,=

G0
2 9 35 θcos

4
30 θcos

2
– 3+( )

2
/256π,=

G+
2 45 θsin

2 θcos
2

7 θcos
2

3–( )
2

φ/sin
2

32π.=

eF P; Ω( ) Ω Lln–d

Ω
∫

F P; Ωi( )
i 1=
N∏

χ2 2 L const.+ln–=
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Table

Background waves, Nevents Resonance waves, Nevents Resonance parameters, MeV
χ2 – Ndf 

S D0 D+ S D0 D+ G– M ± ∆M Γ ± ∆Γ

1 62 49 82 – – – – – – 100

2 51 38 70 12 8 14 – 1544.6 ± 3.5 10.4 ± 3.3 77

3 60 47 51 – – 37 – 1544.7 ± 3.0 10.3 ± 3.0 56

4 66 37 58 – – – 32 1545.8 ± 3.0 10.0 ± 3.0 60

5 68 39 47 – – 23 16 1545.1 ± 3.1 11.0 ± 3.0 52
described using only the S, D0, and D+ waves. The con-
tribution from the other waves is negligibly small.

The minimization showed that, of the studied
waves, only two, D+ and G+, contributed to the χ2 value
by at least 20 units less than did any other wave. The
results of five minimization variants are presented in
the table, where the following data are given: the num-
ber of events from each wave of the background and
resonance and the central values of mass and resonance
width. The last column gives the χ2 values with regard
to the number of degrees of freedom Ndf.

It follows from the table that the statistical signifi-
cance of observation of the X(1545) resonance with the
indicated parameters is no less than six standard devia-
tions. Another indirect corroboration of the fact that
this feature is not a statistical outlier is that it was
observed in all three runs in which the experimental
data were collected.

The χ2 values obtained upon data fitting by the D–
wave (third variant of minimization) and G+ wave
(fourth variant) are so close to each other that neither of
them may be preferred. At the same time, the descrip-
tion of the resonance feature by the sum of these two
waves (fifth variant) does not provide any substantial
advantage over the D+ wave: the inclusion of the G+

wave changes the χ2 value by only four units. The
approximation of the angular distribution by the set of
background waves (second variant) yields a χ2 value
that is considerably worse than that given by the vari-
ants with D+ or G+ waves.

The product σ·BR(KSKS) of the cross section for
production of the X(1545) resonance into the branching
ratio is estimated at ~6 nb.
JETP LETTERS      Vol. 72      No. 10      2000
The results of this study are the following. With a
statistical significance of no less than six standard devi-
ations, evidence is obtained of the existence of a
1545-MeV feature with a width of .10 MeV. Because
this resonance decays into two identical bosons, its
angular momentum and parity can only be the follow-
ing: JP = 0+, 2+, 4+, 6+ …. The values 0+ and 6+ can be
omitted with a high degree of certainty. Note that the
resonance cannot be described by the set of waves that
is appropriate for the neighboring mass regions. The
restricted available statistics gives no way of deciding
between the 2+ or 4+ states. The spin projection of the
resonance onto the quantization axis is ±1.

We are grateful to the staff of the IHEP U-70 accel-
erator and the personnel of the ITEP 6-m spectrometer
for collecting the statistical data. This work was sup-
ported by the Russian Foundation for Basic Research,
project no. 99-02-18540.
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Dynamics of turbulent mixing due to the Rayleigh–Taylor instability is considered. The mixing layer consists
of a single horizontal array of large-scale structures. The characteristics of these structures are studied by the
spectral and statistical methods. Mixing stimulation by long-wavelength noise is studied. It is demonstrated
that, for typical homogeneous unscaled noise, self-similarity h ∝  t2 is retained. The threshold amplitude of ran-
dom broadband noise is determined, below which this noise can be ignored. The mixing deceleration by the
side boundaries is studied. The stimulation and deceleration effects sizably influence the mixing coefficient α+,
increasing and decreasing it, respectively. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.20.Bp; 47.20.Ma; 47.27.Eq
In this work, the instability of an interface between
a heavy substance and a light substance positioned
underneath (Rayleigh–Taylor instability; see reviews
[1–5]) is considered. The instability is of importance in
astrophysics, e.g., in the problem of supernova frag-
mentation [6], in high energy density physics in the
problems of pulsed magnetohydrodynamic generators
[5], inertial fusion [2, 4], etc. The results of the theoret-
ical analysis of numerous computing experiments
“tracking” turbulence development on detailed compu-
tational grids are presented. A great body of calcula-
tions are analyzed, in which the grid sizes Nx × Nz, the
density ratio µ = ρl/ρh of the contacting light and heavy
substances, the initial conditions, the Mach number,
and other parameters influencing the mixing process
were varied. The computing experiment is based on the
mathematical model of a compressible nonviscous
multicomponent medium. The conservation laws (com-
plete set of Euler equations) are modeled [7–10]. The
computations are carried out using the large-particle
method [7, 8] and the quasi-monotonic hybrid grid-
characteristics method [8–10], which are traditionally
invoked for modeling hydrodynamic instabilities.

The topical problem of turbulent mixing is investi-
gated in a series of works [11–22]. As a rule, prime
attention has been given to the vertical profile  =
〈ρ〉 ⊥  averaged over the transverse coordinates (⊥  sign).
It is used to determine the mixing coefficient α+ and the

ρ z( )
0021-3640/00/7210- $20.00 © 20490
asymmetry coefficient As = α+/α–.1 The transverse
averaging nullifies the important numerical informa-
tion about the dominant structures that are responsible
for the mixing dynamics. The authors of the works
devoted to the spectra and the transverse structure
restrict themselves, first, to the statement that these
structures enlarge2 and, second, to the study of the
small-scale asymptotic behavior of the spectrum. In the
present state of the art, qualitative statements are not suf-
ficient. In this work, first, a new approach is suggested
which allows the qualitative description of the structure
enlargement. It amounts to the use of numerical data for
constructing the spectra of quantities f = {ρ, u, w, p} in

the self-similar variables , where ρ, u, w, and p are
the density, the horizontal and vertical velocities, and
the pressure, respectively. Second, the study of small-

1 A mixing layer in an incompressible medium quiescent at infinity
is bounded from above and below by the mixing fronts or bound-
aries that spread in the heavy and light fluids, respectively. Full
thickness h of the layer is the sum h+ + h– of displacements of the
upper (+) and lower (–) fronts from the plane of the unperturbed
interface. In the self-similarity case, one has h± = α±Atgt2, where
At = (1 – µ)/(1 + µ) and g is the acceleration. This defines the
coefficients α+ and As.

2 This phenomenon was theoretically predicted in [13, 23]. In [23],

the self-similarity formula  ~ t2 was deduced for the transverse
length scale of the dominant structures governing the acceleration
of the upper front.

λ

f̃ n̂
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Fig. 1. Typical structures (density) of a mixing layer for different instants of time. Black color corresponds to the heavy substance
and white color, to the light substance. Gravitational force is directed downward.
scale asymptotic behavior, which is essential for eluci-
dating the problems of mixing fineness (dispersivity)
and Kolmogorov dissipation, is complemented by
studying the long-wavelength domain. This is a very
important problem, because it is the long-wavelength
amplitudes which determine the spreading rate of the
mixing layer and, hence, the α± coefficients.

The mixing layer has a well-defined horizontal
structure (Fig. 1). The neighboring columns of heavy
and light substances (spikes and bubbles) are seen. The
heavy columns are darker. The extent of grayness is
proportional to the density. The direction of movement
is, for the most part, vertical. The heavy substance
mainly goes down, while the light substance floats up.

In the variant shown in Fig. 1, the grid consists of
Nx × Ny = 600 × 1500 points and square meshes. The
length of the calculated domain L⊥  = 2π, the accelera-
tion g = 1, and the density ratio µ = 0.1. The small-scale
perturbation was specified at t = 0 in the form of a near-
surface velocity field:

(1)
v ∇ ϕ , ϕ– ϕn,∑= =

ϕn z an
0 nx bn

0 nxsin+cos( ) n z–( )/n,expsgn=
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where n is the number of the harmonic (n = 50–100).

The transient stage is completed at t = 2–3/  and
gives way to the self-similarity regime. The presence of
the transient stage is caused by the non-self-similarity
of the initial conditions.

In the self-similarity regime, both vertical and hori-
zontal sizes are proportional to t2 and change in a simi-
lar way. The photographs in Fig. 1 are scaled with
regard to this similarity. For this reason, the structures
in all pictures in Fig. 1 have approximately the same
geometric sizes. This allows one to leave aside the
mesh enlargement and concentrate on the revelation of
the typical meshes and their substructure. The phase
component is renewed from photograph to photograph,
because the structure sizes increase substantially in the
corresponding time interval. The upper picture in Fig. 1
(t = 3) is taken as the starting point. For each instant of
time (i.e., each picture), the h+ value is determined from
the bubble top with the greatest vertical coordinate.
Next, the sizes of each subsequent picture of the com-
putational field at t = k (k = 4, 5, 6, 7) are demagnified
by a factor of h+(t = k)/h+(t = 3). Second, each compu-
tational domain is repeated along the horizontal axis

At
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Fig. 2. The spectra of (a, b) |wn | and (c, d) |Hn| for the initial perturbation and at time t = 5.
many times so as to make the horizontal dimensions of
the pictures identical.3 

A structure comprising several bubbles and spikes is
rather typical. This is ordinarily a block or a cluster of
several relatively small bubbles and spikes and a rather
large bubble. In Fig. 1, the evolution is traced for two
bubbles (indicated by numbers) that grow to the largest
size to the end of the simulation.

Figure 2 shows the spectra of the vertical velocity
w(x, z = 0, t = 5) and the mass H(x, t = 5) of the column.
For an arbitrary function f(x, …), its spectrum fn(…) is
calculated as

3 On the side boundaries of the computational domain, the periodic
boundary conditions were used, and the impenetrability condi-
tions were used on the upper and lower boundaries.

f n an
2 bn

2+ , an π 1– f nxcos x,d

0

2π

∫= =

bn π 1– f nxsin x,d

0

2π

∫=

f x …,( ) an nxcos bn nxsin+( ).∑=
H(x, t) = dz/(ρh – ρl) is the mass of a vertical

column, where the integration goes from the “bottom”
z = –hdown to the “top” z = htop of the box. Since the ini-
tial perturbation applies only to the velocity, |Hn | = 0 at
t = 0. With time, the dominant structures grow, resulting
in a gradual shift of the spectral distribution toward the
left of the wavenumber axis.

An example of a self-similar spectrum calculated
for the vertical velocity component at the z = 0 section
is presented in Fig. 3. The self-similar spectrum is cal-
culated by expressions of the form

(2)

One may say that these expressions are obtained from
the formulas of self-similar substitution in the coordi-

nate representation via division by , with  ∝  1/t2.
This is caused by the delta correlation of the Fourier
transforms of the modeled functions (their computer
representations are discrete) and by the special proce-
dure used for the integration of such delta-correlated
functions (replacement of the linear differential dk by

ρ x z t, ,( )∫

ρ̃n̂ ẑ( )
ρn z t,( )

ρht
----------------, w̃n̂ ẑ( )

wn z t,( )

t2
-----------------,= =

p̃n̂ ẑ( )
pn z t,( )

ρht3
----------------, H̃n̂

Hn t( )

t3
------------.= =

n n
JETP LETTERS      Vol. 72      No. 10      2000



JETP L

ON THE SPECTRAL AND STATISTICAL PROPERTIES 493
Fig. 3. Self-similar spectra of  at times t = (a) 1, (b) 3, and (c) 6.w̃n̂
its root ; see [3, 4]). Relationships (2) are quite
important. For instance, they lead to the nontrivial con-
clusion that the maximum spectral amplitude of pres-
sure fluctuations grows in proportion to t3. In represen-
tation (2), the spectra are universal at the self-similarity
stage of evolution.4 Recall that the self-similarity stage

is established at t = 2–3/  (for the grid density cho-
sen), while the deceleration becomes noticeable after

t = 6–7/  (weakly depends on the grid point spac-
ing). Figures 3b and 3c refer to the self-similarity stage
of evolution. The shapes (maxima and widths) of the
corresponding spectra are stationary in the self-similar
variables, and the number of harmonics in the self-sim-
ilar distribution decreases with time. Figure 3a corre-
sponds to the (earlier) instant of time of the transient
evolution. The corresponding spectrum is shifted to the
longer wavelengths, as compared to the self-similar
spectrum.

The calculations of a great many variants were used
to study mixing stimulation by the long-wavelength
perturbations.5 The initial perturbation was applied to
the velocity and had the form of a sum of small-scale
and broadband perturbations. The broadband perturba-

4 The results presented in Figs. 1–3 are obtained by the quasi-
monotonic hybrid grid-characteristics method [10]. Notice that
the alternative numerical approach (large-particle method) gives
the same universal spectrum.

5 These calculations were carried out by A.Yu. Dem’yanov using
the large-particle method [7].

dk

At

At
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tion, being uniform in wavenumber, does not introduce
any characteristic scale and, hence, retains quadratic
self-similarity (probably, with different coefficients
α±). Let us also represent the initial broadband pertur-
bation as harmonic expansion (1). Let

(3)

where ξn and  are independent random numbers uni-
formly distributed in the interval [–1, 1]. The initial
field (1) and (3) is specified by three factors. First, the

saturation velocity (wsat)n = F , where F ≈
0.6 for the two-dimensional case and is of the order of
1 for three dimensions (see [24]); second, the random
multipliers; and, third, the dimensionless parameter
εwb . This perturbation does not define any characteristic
scale. It is specified by a single parameter, namely, by
the amplitude εwb of the random broadband noise. Fig-
ure 4 is a compilation of the computational results
obtained for different εwb values. One can see that the
stimulation can tangibly enhance the mixing coefficient
α–. These calculations give evidence for the occurrence
of a threshold (εwb)thr of about 10‰. At below-threshold
amplitudes, the mixing occurs spontaneously and
the  noise effect can be ignored. At above-threshold
amplitudes, the flow undergoes reconstruction. The
spectral hump shifts to the long-wavelength side. This
reflects the strengthening of subharmonics. The
strengthening of the long-wavelength wing implies
mixing intensification, which manifests itself as an

an
0 wsat( )nξnεwb, bn

0 wsat( )nξn' εwb,= =

ξn'

1 µ–( )g/n
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increase in the coefficient α–. Whereas the subharmon-
ics in the spontaneous process are genetically associ-
ated with the central hump in the spectrum, a portion of
subharmonics in the stimulation is “borrowed” from
the broadband noise that is present from the outset. The
threshold amplitude is appreciable and is of practical
importance. For instance, it would make no sense to
reduce the noise amplitude below its threshold level by
virtue of any expensive technological manipulations
(e.g., polishing).

The side boundaries of the computational domain
limit the horizontal size of large structures (clusters)
and hamper mixing and thereby reduce the coefficient
of turbulent mixing. In our computations, this “con-
straint” effect is particularly pronounced when model-
ing the evolution of small-scale perturbations after

achieving time t = 6–7/ . One of us (N.A.I.) analyt-
ically solved the problem of asymptotic long-time
behavior of the Rayleigh–Taylor mixing in the
extended computational domains. The constrained
asymptotic expression was found to be h+ ∝  t2/5 instead
of its free form h+ ∝  t2. We assume that the time t =

6−7/  in our computations characterizes the onset
of deceleration by the side boundaries and the flow
reconstruction from the free to the constrained asymp-
totic regime.

We are grateful to S.I. Anisimov and O.M. Belotser-
kovskiœ for helpful discussions. This work was sup-
ported by the Russian Foundation for Basic Research,
project nos. 99-02-16666 and 00-01-00250.
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The vector Maxwell equations for the first- and second-harmonic planar beams are solved with allowance made
for the nonlinear diffraction that weakens quadratic nonlinearity. The structure of the transverse and longitudi-
nal components of the electromagnetic field of a parametric soliton is calculated for different values of the wave
vector and phase mismatch. Exact analytic expressions are obtained for the self-similar profiles of extremally
narrow solitons, and it is shown that the width has a fundamental limit of the order of a wavelength in a linear
medium. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Tg
The purpose of this work was to develop the theory
of spatial parametric solitons whose widths are compa-
rable to the emission wavelength. Parametric solitons
resulting from the three-wave interaction were pre-
dicted in [1] and, after the experimental proof of their
existence in optics [2], have been much investigated in
recent years [3–6]. Trapping of ultranarrow solitons
allows one to achieve the highest possible degree of
energy localization. Until recently, the theory of spatial
solitons was mainly developed for wide beams within
the framework of the nonlinear Schrödinger equations.
Description of the properties of the narrow wave beams
requires an alternative approach that is based on the rig-
orous solution of the Maxwell equations. Such a pro-
gram was implemented in [7–9] in the analysis of dif-
fraction in cubic media and, more recently, initiated for
the case of ultranarrow beam trapping into a parametric
soliton in a quadratic medium. For instance, the inter-
action between the first- and second-harmonic two-
dimensional localized waves polarized in the diffrac-
tion plane was analyzed in [10] to demonstrate that the
longitudinal components give rise to nonlinear diffrac-
tion that weakens the parametric self-action. In this
work, one more type of interaction between the first-
harmonic ordinary wave and the second-harmonic
extraordinary wave is considered, with nonlinear dif-
fraction being executed only by the first harmonic. In
addition to the numerical calculations, we obtain the
exact analytic expressions for the fundamental limiting
widths and self-similar profiles of all components of
parametric solitons. It is revealed that, on passing from
paraxial to ultranarrow beams, the dispersion form
changes and, simultaneously, weakening of the nonlin-
ear coupling becomes operative.
0021-3640/00/7210- $20.00 © 20495
Let us consider two waves propagating along the Z
axis and undergoing two-dimensional diffraction in the
(YZ) plane. The electric field of the waves can be writ-
ten as

where ωj (j = 1 and 2) is the frequency and ω2 = 2ω1. It
follows from the Maxwell equations, as applied to the
diffraction of a TE wave, that the transverse electric-
field component Ejx normal to the diffraction plane
obeys the equation

(1a)

while the transverse component Djy of the electric dis-
placement vector lying in the diffraction plane (TM wave)
obeys the equation

(1b)

where εjl is the dielectric constant of the linear medium.
The electric displacement and electric field vectors are
related by the quadratic susceptibility tensor as

(2a)

(2b)

Equation (1b) includes the second derivative of dis-
placement Dj, which contains a nonlinear part [cf.
Eqs. (2)]. As a result, the diffraction generally becomes
nonlinear, which should manifest itself in ultranarrow
beams.

E j
1
2
--- E j y z,( ) iωjt( ) c.c.,+exp∑=

∂2E jx

∂y2
------------

∂2E jx

∂z
2
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------D jx+ + 0,=
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∂y2
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∂2E jy
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Let us consider the interacting localized waves
propagating in a crystal whose principal optical axis
(X) is oriented normal to the waveguide plane. We seek
the solution corresponding to the spatial solitons, i.e.,
cw beams with plane phase fronts,

(3)

In the phase-matching regime, one has for the nonlinear
wave vectors k2 = 2k1. After inserting Eq. (3) into
Eqs. (1) and replacing E1 = D1/(ε1 + 4πχ2E2), the non-
linear diffraction effects are concentrated in the terms
allowing for the weakening of the interaction. The
resultant equations for the envelopes of a parametric
soliton are as follows:

(4)

where u = 8π χ2D1x/b  is the normalized
electric displacement of the fundamental wave; v =
4πχ2E2y/bε1 is the normalized second-harmonic elec-

tric field; Y = yk1l  is the dimensionless

transverse coordinate; kjl = ω/c is the wave number

in the linear medium; α = (4  – )/(  – ) is the
parameter of relative phase mismatch (for the linear

phase matching, k2l = 2k1l and α = 4); and b = 1 – /
is the parameter responsible both for the nonlinear
phase mismatch and for the weakening (saturation) of
the interaction (b > 0). Set (4) is driven by the Hamilto-
nian

In the absence of a resonance with linear waves
(α > 0), we will seek the solution of Eqs. (4) in the form
of bright solitons with symmetric bell-shaped profiles,
by analogy with the low-intensity case [1]. Although
such solutions can only be obtained numerically, one
can use the self-focusing condition u, v > 0, the sym-
metry properties u '(0) = v '(0) = 0, and the fact that the
curvatures of profiles are negative at their maxima
u ''(0) = v ''(0) < 0 to arrive, for H = 0, at the following
analytic estimate for the amplitude maxima um = u(0)
and vm = v(0):

(5)

It is seen from Eq. (5) that the soliton may exist if b =

1 – /  < 1. This implies that the wave vector of the

E j E j y( ) ik jz–( ).exp=

d2u

dY2
--------- u– uv

1 bv+
----------------+ 0,=

d2v

dY2
--------- αv u2

2 1 bv+( )2
---------------------------+– 0,=

1 b–( ) ε1
2

b/ 1 b–( )
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k1
2 k2l
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– αv 2 u2v / 1 bv+( ).+
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< 4 3b 1 8b++( )/ 1 12b 1 8b++ +( ),

um vm α 1 bvm+( )/ vm 1 b–( ) 1–[ ] .=
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2 k1

2

soliton k1 > k1l and, hence, it moves slower than the lin-
ear wave. As the beam width decreases, the wave num-
ber k1 increases and b  1. For wide beams with b ! 1,

one has 1 < vm < 2 and um >  [6], and for the extre-
mally narrow beams, one has 1 < (1 – b)vm < 3/2 and

um > (1 – b)–3/2.
The paraxial approximation for the weak fields of

wide beams is realized in Eq. (4) by setting b ! 1. In
this limit, the saturation effect becomes insignificant,
because, according to Eq. (5), bvm ! 1; i.e., 4πχ2E2y !
ε1 and D1x ≈ ε1E1x, and the soliton dispersion is greatly
simplified because of a small nonlinear change in the

wave vectors:  –  ≅  2kjl(kj – kjl), k1 ≅  k1l(1 + b/2),
and α ≅  2(2k1 – k2l)/(k1 – k1l). In this approximation,
Eq. (4) takes the standard form corresponding to the
envelopes of spatial quadratic solitons [1]. In particular,

the profiles of wide solitons have the form u = v =

 at α = 1 [1]. The properties of such

solitons were numerically analyzed in [5, 6].
In strong fields such as 4πχ2E2x ≥ ε1, the nonlinear-

ity weakens and a peculiar kind of saturation mecha-
nism is switched on. As a result, the properties of the
narrow beams differ from those of the wide beams. Let
us consider the strong saturation regime bvm @ 1,
which occurs, according to Eq. (5), if b  1. In this
case, Eqs. (4) for the soliton core take the form

(6a)

(6b)

We will seek the asymptotic solution at (1 – b)  0 in
the self-similar form. To first order in the small param-
eter, Eq. (6b) is replaced by the algebraic relationship
2αv3 = u2 (by analogy with the cascade nonlinearity),
whereupon Eq. (6a) can easily be solved to yield the
analytic expression for the core of an extremally nar-
row soliton localized in the |k1ly | < 3π/2 region:

(7)

where the peak amplitudes are um = (1 – b)–3/2(27α/4)1/2

and vm = (1 – b)–1 and k1ly = Y(1 – b)1/2b–1/2. Interest-

ingly, the limiting profiles and their widths are indepen-
dent of the phase-mismatch parameter α, whose value
tends to 4 as b  1. At |k1ly | < 3π/2, the envelopes of
the normalized transverse electric-field components of
the fundamental harmonic in the soliton core are
E1y = (um/vm)cos(k1yy/3) and H1x = n1l(1 – b)–1/2E1y. The
Maxwell equations can be used to find the remaining com-

ponents in the form E1z = ium cos2(k1yy/3)sin(k1yy/3),
H2y = n2l(1 – b)–1/2E2x, and H2z = in1lumsin(2k1yy/3). The
envelopes of the transverse components are bell-
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shaped, while the longitudinal components have a two-
humped shape; the magnetic fields greatly exceed the
electric fields.

Using Eq. (7), it is straightforward to find the fol-
lowing fundamental values for the smallest attainable
soliton widths at the e–1 level of electric-field ampli-
tude:

(8)

Therefore, fundamental limit (8) for the full width of a
spatial parametric soliton is on the order of a wave-
length in the linear medium.

We solved the complete set of Eqs. (4) numerically
by the relaxation method [11] for the phase-matching
regime (α = 4) and the normalized soliton wave num-
bers k1/k1l ranging from 1 to 10; this corresponds to the
variation of the saturation parameter b in the range
0−0.99. The profiles of the transverse and longitudinal
electric-field components of the extremally narrow
soliton calculated numerically for k1/k1l = 10 (b = 0.99)
and analytically by Eqs. (7) are presented in Fig. 1.
Both profiles nicely coincide in the soliton core.
A decrease in the soliton width with increasing wave
number is illustrated in Fig. 2. The thin lines at the left
of the figure indicate the transverse dimensions calcu-
lated within the framework of the classical theory of
wide solitons [1–6]. The calculations were carried out
upon setting u = k1l(k1 – k1l)–1(4πχ2E1y/ε1), v = k1l(k1 –

k1l)–1(2πχ2E2x/ε1), Y = y , and b = 0 in
Eqs. (4). Then the following expressions for the enve-

lopes can be used: u ≈ 4.07  and v ≈
1.68 , where p ≈ 1.47 [12]. A comparison of

w1 6k1l
1– e 1–( ) 1.14λ1l,≈arccos=

w2 6k1l
1– e 1/2–( ) 0.878λ1l.≈arccos=

2k1l k1 k1l–( )

Y / p( )sech
p

Y / p( )sech
2

Fig. 1. Electric-field distribution over the cross section of an
extremally narrow quadratic soliton with parameters α = 4
and b = 0.99: (solid line) the transverse E1y and (dash–dot-
ted line) the longitudinal E1z components of the fundamen-
tal wave and (dashed line) the transverse E2x component of
the second harmonic. The symbols n, s, and h denote the
amplitudes of the self-similar profile calculated by Eq. (7).
JETP LETTERS      Vol. 72      No. 10      2000
the curves in Fig. 2 shows that the paraxial approxima-
tion applies well to the wide spatial quadratic solitons
up to k1 ≈ 1.12k1l or b ≈ 0.2, where the width w ≈ 1.5λ1

and the amplitude E2xm ≈ 0.4ε2 . On further narrow-
ing of the beam, the nonlinear diffraction mechanism
becomes operative and the widths tend to their funda-
mental limits (8), which are indicated in Fig. 2 by the
thin horizontal lines. The smallest width is, practically,
established at k1 ≈ 2k1l. The normalized peak ampli-
tudes of the transverse and longitudinal components are
shown in Fig. 3 as functions of the wave number. The
departure from the paraxial approximation (thin lines)
becomes appreciable slightly later than for the beam
width (cf. Fig. 2), namely, at k1 ≈ 1.3k1l or b ≈ 0.4. The
longitudinal component is negligibly small for the wide
beams but monotonically increases with the narrowing

χ2
1–

Fig. 2. Normalized (to the wavelength) widths of the enve-
lopes calculated for the transverse electric-field components
of (solid line) the fundamental wave E1y and (dashed line)
the second harmonic E2x as functions of the nonlinear wave
number for α = 4. Thin lines indicate the asymptotic values
corresponding to the (left) wide and (right) extremally nar-
row beams.

Fig. 3. Normalized peak amplitudes EjmN = 4πχ2Ejm/εj of
the three electric-field components of a quadratic soliton vs.
the nonlinear wave number k1/k1l of the fundamental wave.
Notations are as in Fig. 2.
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of the soliton and becomes larger than the transverse
components at k1/k1l > 2.5.

In summary, the theory of extremally narrow para-
metric solitons has been developed in this work. The
equations derived for the envelopes of the transverse
and longitudinal electric- and magnetic-field compo-
nents of two harmonics allow for the weakening of the
interaction by virtue of nonlinear diffraction. The soli-
ton profiles are calculated for various phase-mismatch
and saturation parameters. The transition from the
paraxial approximation to the theory of ultranarrow
beams is traced. Exact analytic solutions of the asymp-
totic equations are obtained for the extremally narrow
solitons, and the fundamental limiting width is deter-
mined for a quadratic soliton.

This work was supported in part by the Russian
Foundation for Basic Research (project no. 99-02-
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grams “Leading Scientific Schools” (grant no. 00-15-
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High-order Raman parametric generation was excited in the visible and near-IR regions on the Stokes and anti-
Stokes lines of Y3Al5O12 single crystals and nanocrystalline ceramics. All generation components, as well as
the χ(3)-active vibrational modes of these materials, were identified. In connection with the extensive use of the
Nd3+- and Yb3+-doped Y3Al5O12 crystals and, in recent years, nanocrystalline Y3Al5O12 : Nd3+ ceramics in laser
physics and quantum electronics, the applied aspect of the observed nonlinear properties of these materials is
outlined. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Dr; 42.70.-a
1. Crystal compounds with the garnet cubic struc-

ture (space group -Ia3d, no. 230) form the most
representative class of active media among the known
solid-state media generating stimulated emission.
Among these, Y3Al5O12 : Nd3+ crystals are most popu-
lar [1, 2]. On their base, world industry has developed
to date more than a million various types of lasers for
scientific, civil, and military purposes, as well as for
medicine. The preparation of laser nanocrystalline
Y3Al5O12 : Nd3+ ceramics [3, 4] possessing a series of
advantages over single crystals is one of the latest
impressive advances in materials science and technol-
ogy [5]. In spite of the fact that the spectroscopic, las-
ing, and other characteristics of these materials (in par-
ticular, crystals) have been extensively studied to date
[6–9], their nonlinear optical properties associated with
cubic nonlinear susceptibility χ(3) have escaped the
attention of researchers. In light of a wide and long-
term use of pico- and femtosecond Nd3+:Y3Al5O12 and,
in recent years, Yb3+:Y3Al5O12 lasers, this fact looked,
in a way, like a curious phenomenon. In particular, int-
racavity ultrastrong light fields are, in principle, capa-
ble of self-modifying the spectroscopic purity of gener-
ation and making its mode structure more complex.
Some other unwanted manifestations of the nonlinear

Oh
10
0021-3640/00/7210- $20.00 © 20499
interactions can also occur in these lasers [8]. At the
same time, the χ(3) processes in active media may be
useful in developing powerful sources of coherent
emission at new wavelengths (see, e.g., [10–12]).

2. In this work, we report the observation of stimu-
lated Raman scattering (SRS) both in rated “pure” sin-
gle crystals and nanocrystalline ceramics Y3Al5O12 and
in their analogues activated with laser ions Nd3+ and
Yb3+. We determined the type and energy of the
SRS-active vibrational modes of these new χ(3)-nonlin-
ear materials and identified all experimentally detected
Stokes and anti-Stokes components of the parametri-
cally excited generation.

3. Single crystals of yttrium aluminum garnet were
grown by the usual Czochralski method in Pt crucibles.
The SRS experiments were accomplished with rods
6−8 mm in diameter and up to 90 mm in length (along
the crystallographic 〈111〉  direction) and with commer-
cial (Litton–Aitron Inc.) Y3Al5O12 : Nd3+ laser crystals
(CNd ≈ 0.9 at. %) ≈120 mm in length. Optically trans-
parent nanocrystalline ceramics were prepared by the
modified urea precipitation method using (NH4)2SO4
urea and other additions that are necessary for this tech-
nique [4, 9]. The corresponding experimental samples
were bars 40 mm in length with cross section
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Scheme of steady-state SRS in Y3Al5O12 : Nd3+ single crystal (CNd ≈ 1 at. %, l = 50 mm) at 300 K. Pumping is at λp1 =
1.06415 µm (the line is asterisked) and recording is along the crystallographic 〈111〉  direction; E-vector of the pump emission is
oriented perpendicularly to 〈111〉 . Line intensities are not recalculated to the spectral sensitivity of the Si-CCD detector (see inset)
of the CSMA complex. The interrelation between the SRS-active lattice mode with frequency ωSRS ≈ 370 cm–1 and the Stokes and

anti-Stokes generation components is indicated by brackets. Line wavelengths are given in µm, and frequency spacings are in cm–1.

Y3Al5O12 : Nd3+
10 × 10 mm. Electron microscopy suggested that the
pore volume concentration in these samples was
≈1 ppm (≈10–4%) and the average size of Y3Al5O12
grains was about 1 µm. Scattering losses in the visible
region were estimated at ≈0.009 cm–1. Comparative
measurements and the use of the well-known Rayleigh
formula d6/λ4 for the scattering intensity (d and λ are
the scatterer size and the emission wavelength, respec-
tively) showed that the average size of grain faces in the
ceramics was less than 1 µm. Note also that the plane-
parallel (≈20″) ends of the single-crystal and the
nanocrystalline samples were not coated with an antire-
flection layer at this step of measurements.

4. The SRS experiments were carried out using a
cavity-free single-pass pump circuit and a powerful
picosecond Nd3+:Y3Al5O12 laser with two amplifier
stages. The laser was capable of generating pulses with
a repetition rate of 1 Hz both on its fundamental
4F3/2  4I11/2 transition with λp1 = 1.06415 µm (τp1 ≈
110 ps) and output of up to 10 mJ and using an external
efficient (≈25%) frequency doubler (KTiOPO4) with
λp2 = 0.53207 µm (τp2 = 80 ps). Pump emission with
Gaussian intensity distribution over the beam cross section
was focused onto the sample by a lens with focal dis-
tance adjusted so that the SRS transformation was max-
imum. This was usually achieved when the diameter of
the pump beam waist in the sample was 50–75 µm. Note,
in advance, that these experimental conditions provided
the steady-state regime for the SRS. The spectral com-
position of a multifrequency parametric generation
excited at 300 K in the nanocrystalline Y3Al5O12 and
Y3Al5O12 : Nd3+ (CNd ≈ 1%) ceramics and the Y3Al5O12,
Y3Al5O12 : Nd3+ (CNd ≈ 1%), and Y3Al5O12:Yb3+ (CYb ≈
5%) single crystals was studied with a spectrometric
CSMA complex based on a grating monochromator
(McPherson-218, Czerny-Turner arrangement) and a
Si-CCD matrix (Hamamatsu S3423-1024Q) with max-
imum sensitivity in the red spectral region (see inset in
Fig. 1). Some of the SRS spectra, together with the
results of identification of the Stokes and anti-Stokes
components, are presented in Figs. 1 and 2. One can see
that the frequencies of the SRS-active vibrational
modes in the single crystal and the nanocrystalline
ceramics, to experimental accuracy, coincide and are
equal to ωSRS ≈ 370 cm–1.

5. The unit cell of Y3Al5O12 contains eight formula
units, with Al3+ cations occupying sites of two types
with different oxygen coordination environments: 16
JETP LETTERS      Vol. 72      No. 10      2000
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Fig. 2. Steady-state SRS spectra of the nanocrystalline ceramic of Y3Al5O12 (l = 40 mm) recorded at 300 K upon pumping in the
near-IR (λp1 = 1.06415 µm) and visible (λp2 = 0.53207 µm) regions. Notations as in Fig. 1. Pump line is asterisked.
a-octahedral (local symmetry C3i) and 24 d-tetrahedral
(S4) sites. The Y3+ cations and their Nd3+ (Yb3+) substit-
uents are positioned in 24 dodecahedral c sites (D2).
The O2– anions occupy 96 general positions h (C1).
Eighty atoms of the unit cell of Y3Al5O12 have 3N = 240
degrees of freedom, which, according to factor group
analysis [3, 4] and symmetry degeneracy, give rise to
98 vibrational modes belonging to the following irre-
ducible representations at k = 0 (center of Brillouin
zone):

Of these, the A1g , Eg, and F2g modes should appear in
the spontaneous Raman (SR) spectrum and the F1u

mode should appear in the IR absorption and reflection
spectra [15].

The SR spectra shown in Fig. 3 give an indication
of the spectral distribution of optical modes in the
media. They were recorded in the “back reflection”
geometry using a Raman spectrometer based on an
MD-1000 grating monochromator (Koken-Kogyo)
equipped with a C5410 photon counter (Hamamatsu
E1341). In these experiments, the SRS was excited by
a high-stability cw Nd3+:Y3Al5O12 JUNO532-100S
laser (second harmonic). An analysis of the SR spectra
of the Y3Al5O12 single crystals suggests (see, e.g.,
[13, 14]) that the line at ≈370 cm–1 may be due to the
Ag1(ν1) and F2g(ν3) internal vibrations whose frequen-

Γ N 3A1g 8Eg 14F2g 5A1u 5A2u+ + + +=

+ 5A2g 10Eu 14F1g 16F2u 18F1u.+ + + +
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cies coincide for the tetrahedral Al  and octahedral
Al  ion groups. Considering that the spontaneous
and the stimulated Raman spectra of single crystals and
nanocrystalline ceramics of Y3Al5O12 are virtually
identical, as are also the other physical properties of
these materials [3–5], we concluded that their SRS-
active modes with frequency ωSRS ≈ 370 cm–1 are of the
same nature.

6. From comparative measurements with the known
χ(3)- active PbWO4 and KY(WO4)2 crystals [16], we
have determined, with a satisfactory accuracy, the gain
coefficient (gss) for the steady-state SRS in our
Y3Al5O12 materials. The steady-state χ(3)-generation
regime was provided well by the experimental condi-
tions, because, in all these media, τp @ T2 = 1/π∆νR ≈
2 ps, where T2 and ∆νR are the phonon relaxation time
and the width of the corresponding spontaneous Raman
line, respectively. We measured the peak pump (thresh-
old) power Pthr , at which the generation of the first
Stokes component (λSt1 = 1.1078 µm) began to be reli-
ably detected. Next, by using the well-known approxi-
mate expression [17] for the gain increment gssPthrlR ≈
30 (lR is the SRS-active length of a medium), we calcu-
lated the gss coefficient. For the Y3Al5O12 crystals and
ceramics, this value was found to be gss = 0.1 ±
0.05 cm/GW. We also managed to estimate the total
efficiency of the nonlinear χ(3) transformation for one-
micrometer picosecond pumping of all Stokes and anti-
Stokes components in Y3Al5O12. For instance, at a

O4
5–

O6
9–
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pump power density of about 1.5 GW/cm2, this effi-
ciency for the single crystals and the nanocrystalline
ceramics was as high as 10%. It should also be noted
that, for the pump power density close to its “break-
down” value, the χ(3)-generation spectra of the
Y3Al5O12 single crystals represented a broad contin-
uum with the Stokes and anti-Stokes lines “superim-
posed” on it. We assign the onset of continuum genera-
tion to the formation of self-focusing fibers in the gen-
erating crystals. The bandwidth of the anti-Stokes
continuum wing was as large as ≈6000 cm–1.

7. In summary, we have discovered new χ(3)-nonlin-
ear properties of the Y3Al5O12-based crystalline materi-
als that are most popular in laser physics and quantum
electronics and excited the multifrequency SRS by
picosecond pumping at 300 K. In spite of the relatively
low Raman gain in these materials, one should consider
this phenomenon as a possible stray effect when devel-
oping lasers for generating ultrashort pulses. At the
same time, the observed SRS seems to be intense
enough for developing new SRS lasers in themselves.

Fig. 3. SRS spectra of the single crystal and the nanocrystal-
line ceramic of Y3Al5O12 at 300 K. Raman energies of the
most intense lines are given in cm–1. The spectra are
recorded in the geometry close to the geometry of the SRS
experiments with these media.
Fabrication of fiber single-crystalline Y3Al5O12 Raman
laser-frequency converters also seems to be tempting.

8. The presented study was greatly promoted by the
cooperation of the authors at the Joint Open Laboratory
“Laser Crystals and Precision Laser Systems.” This
work was supported in part (A.A.K. and S.N.B.) by the
Russian Foundation for Basic Research and the State
Programs “Fundamental Metrology,” “Fundamental
Spectroscopy,” and “Optics: Laser Physics.”
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The classical Hall effect in inhomogeneous systems is considered for the case of one-dimensional inhomoge-
neity. For a certain geometry of the problem and for the magnetic field linearly depending on the coordinate,
the distribution of current density corresponds to the skin-effect. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.15.Gd
The behavior of 2D electrons in a spatially nonuni-
form magnetic field is of interest in various aspects.
The simplest situation is a one-dimensional inhomoge-
neity when the normal component of the magnetic field
Bz varies in only one direction, say Bz(y). Müller [1]
considered the ballistic regime of a 2D electronic sys-
tem for the special case Bz(y) = B0ky and for the geom-
etry when the current flows in the x direction perpen-
dicularly to the magnetic-field gradient. Numerical
solution of the Schrödinger equation carried out in [1]
gives the current distribution in the y direction jx(y).
Nonzero values of jx(y) (without electric field) arise
because the Landau degeneracy is removed in the inho-
mogeneous magnetic field and the eigenstates become
current-carrying. Of course, the total current J =

(y)dy equals zero in the absence of the electric field

(the case with electric field was not considered in [1]).

In the present paper, I will consider the classical
magnetotransport, for which the local relation between
the current density j and the electric field E is valid,

(1)

where α, β label the Cartesian components of the mag-
netoconductivity tensor . The inhomogeneity is
assumed to be one-dimensional (in the y direction), but
both possible geometries of the experiments (j || y and
j ⊥  y) will be considered. In the geometry of [1] j ⊥  y,
the exact analytic (and quite simple) solution is possi-
ble for an arbitrary dependence (y), including the
case of a nonuniform magnetic field. In the other geom-
etry j || y, the exact analytic (and rather unexpected)
result is obtained for the Müller model Bz = B0ky: there

jx∫

jα σαβ y( )Eβ,=

σ̂

σ̂

1 This article was submitted by the author in English.
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exists a specific static skin-effect when the current den-
sity exponentially depends on the transverse coordinate x.

In both cases, I will consider a specimen in the form
of a strip of finite width and infinite length. The total
current J is fixed (measured by ammeter), while the
electric-field components Ex and Ey are to be found
from Eqs. (1) and

(2)

In such a positioning of the problem one does not need
to solve the Poisson equation.

Current perpendicular to the direction of inho-
mogeneity. The system of Eqs. (1) and (2), written in
the components, reads

(3)

where σ0 = σxx = σyy , σ1 = σxy.
Look for the solution with jy ≡ 0. Strictly speaking,

one needs the solution with jy(y = 0) = jy(y = L) = 0,
where L is the width of the strip. However, due to the
evident uniquity of the solution, the assumption made
does not violate the generality. Then we have

(4)

where ραβ is the magnetoresistance tensor ρ0 = ρxx. Fur-
ther,

(5)

div j 0, curlE 0.= =

jx σ0Ex σ1Ey, jy+ σ1Ex– σ0Ey,+= =

∂ jx

∂x
-------

∂ jy

∂y
-------+ 0;

∂Ex

∂y
---------

∂Ey

∂x
---------– 0,= =

Ey = 
σ1

σ0
-----Ex = k y( )Ex, jx = σ0

σ1
2

σ0
-----+ 

  Ex = q y( )Ex,

k
σ1

σ0
-----, q

σ0
2 σ1

2+
σ0

-----------------≡≡ 1
ρ0
-----,=

div j
∂ jx

∂x
------- q y( )

∂Ex

∂x
--------- q y( )∂

2Φ
∂x2
----------– 0,= = = =
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with E = –—Φ(x, y).
The general solution of Eq. (5) has the form

(6)

It follows from Eq. (4) that

(7)

Hence,

(8)

The fixed total current determines the value A:

(9)

and the problem is solved. The Hall voltage, defined as
Φ(x, 0) – Φ(x, L), equals

, (10)

and one gets the following expression for the effective
Hall resistance:

(11)

where the brackets mean averaging over y:

(12)

The diagonal component of  is

(13)

which simply corresponds to the parallel connection of
the conducting filaments stretched along the current
direction.

Equations (8) and (10) are valid for any kind of one-
dimensional inhomogeneity (e.g., carrier concentra-
tion, magnetic field, and the density of scatterers). If the
specimen is homogeneous and only the magnetic field
depends on y, the following relations hold between σ0
and σ1:

(14)

following from the classical Drude kinetic theory; σ is

the Drude conductivity for B = 0. Then  = 〈ρ1〉 ,
which corresponds to the sequential connection of the
Hall voltages created by the magnetic field in each con-

Φ A y( )x B y( ).+=

∂A
∂y
------x

∂B
∂y
------+ k y( )A y( ).=

A const, B A k y'( ) y'.d

y0

y

∫= =

J jx yd

0

L

∫ A q y'( ) y',d

0

L

∫–= =

VH A k y'( ) y'd

0

L

∫ J k y'( ) y'/ q y'( ) y'd

0

L

∫d

0

L

∫–= =

ρ1
eff ρ1

ρ0
----- /

1
ρ0
----- ,=

u〈 〉 1
L
--- u y( ) y.d

0

L

∫≡

ραβ
eff

ρ0
eff 1

ρ0
-----

1–
,=

σ1

σ0
----- = λB y( ), λ  = const,

σ0
2 σ1

2+
σ0

----------------- σ≡  = const,

ρ1
eff
ducting filament parallel to Ox. Thus, in the geometry
considered in this section, for a homogeneous speci-
men and inhomogeneous magnetic field, the results are
quite trivial:

(15)

Note that for an inhomogeneous specimen, a more
complicated result (8) is valid instead of the second
relation of Eq. (15).

Current parallel to the magnetic field gradient.
Consider now a strip parallel to y and look for the solu-
tion with jx(y) ≡ 0. The specimen is assumed to be
homogeneous, and the local values σ0(y) and σ1(y) are
determined by the classical kinetic theory:

(16)

Then, from Eqs. (3) with jx = 0, one can easily obtain

(17)

where the last relation in Eq. (17) follows again from
jx = 0. Hence,

(18)

and for the Müller model B(y) = B0ky the solution has
the form

(19)

From Eq. (19) one obtains

(20)

where the constant C can be found via the total current

(21)

The Hall voltage is

(22)

and the Hall resistance at the point y is

(23)

where ρ = 1/σ, τ is the relaxation time, and ωc(y) is the
local value of the cyclotron frequency ωc(y)τ = λB(y).
The most remarkable feature of the obtained solution is
the exponential distribution of the current density along

ρ0
eff 1

ρ0
-----

1–
, ρ1

eff ρ1〈 〉 .==

σ0
σ

1 λB( )2+
-----------------------, σ1

σλB

1 λB( )2+
-----------------------, B B y( ).= = =

jy σEy,
∂2Φ
∂y2
---------- 0, Ex λB y( )Ey,–= = =

Φ = C1 x( )y C2 x( ),+

∂C1

∂x
---------y

∂C2

∂x
---------+ λB y( )C1 x( ),–=

C1 Ce
λ B0kx–

, C2 0, Φ≡ Cye
λkxB0–

.= =

Ex Cλ B0kye
λ B0kx–

, Ey Ce
λ B0kx–

,–= =

jy σCe
λ B0kx–

,–=

J jy xd

0

L

∫ σC
λ B0k
------------ 1 e

λ B0kL–
–( ).–= =

Φ x 0 y,=( ) Φ x L y,=( )– y
Jλ B0k

σ
---------------,=

ρH
y( ) λ B0ky

σ
--------------- ρωc y( )τ ,= =
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the x direction [see Eq. (20)]. This can be called the
static skin-effect. Depending on the signs of J, B0, and
k, the current in the y direction is concentrated either at
the left (x = 0) or at the right (x = L) edge of the strip.
The depth of skin layer ls is defined by the magnetic-
field gradient: ls = 1/kωc0τ, where ωc0 is the cyclotron
frequency for B = B0. The electric field also depends
exponentially on the transverse coordinate. Hence,
when measuring the Hall voltage VH between the left
edge of the strip x = 0 and some variable point x (for the
same y) inside the strip, one will find the exponential
dependence VH(x), which would be experimental evi-
dence of the skin-effect.

Alternating electric field. The results obtained
above can easily be extended to the case of finite fre-
quency ω of the electric field, if ω ! 1/τM, where τM is
the Maxwell relaxation time. For the 3D situation,
1/τM = 4πσ3D, and for 2D, 1/τM = 2πσ2D/L. The param-
eter ωτ can be of an arbitrary magnitude. By making
use of the well-known formulas for σαβ(B) allowing for
the dispersion, one can easily see that it is necessary
just to substitute

in all preceeding formulas. For example, the Hall volt-
age between the points (o, y) and (x, y) reads

(24)

σ σ
1 iωτ–
------------------

VH o x; y,( )

=  CyRe 1
kx–( )ωc0τ 1 iωτ+( )

1 ω2τ2+
------------------------------------------------exp– e iωt–

 
 
 

.
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Thus, the voltage and the current density decay with
oscillations when the distance from the strip edge
increases.

How to realize the linearly nonuniform magnetic
field. Here, I consider only the case of a 2D system.
Since 2D electrons “feel” only the normal component
of the magnetic field Bn, the inhomogeneity of Bn can
be achieved for a thin conducting film bent to a proper
shape and placed in a uniform field B(0, 0, B). The
dependence Bn(y) = B0ky is realized for the cylindrical
surface z = F(y), where

(25)

In conclusion, the exact analytic solutions are
obtained for the classical Hall effect in inhomogeneous
systems. If the current flows perpendicularly to the
inhomogeneity, the solution is possible in a quite gen-
eral form. For parallel orientation of the current and
magnetic-field gradient, the analytic solution is found
for the linearly inhomogeneous magnetic field. In the
latter case, the static skin-effect occurs for a specimen
in the form of a long strip.

This work was supported by the Russian Foundation
for Basic Research (project no. 99-02-17127) and by
the NWO.
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A description is proposed for a low-density 2D electron system in which, according to the experimental data, a
metal–insulator transition occurs with varying carrier density. In such a system, the correlation effects due to
the interaction between the charge carriers can play a significant role. The system is assumed to possess a short-
wavelength soft mode, which models the effect of the aforementioned interaction. The conductivity of the sys-
tem (the metallic state is considered) depends not only on the common impurity scattering of the charge carri-
ers, but also on the scattering of the Bose excitations (the soft mode), which leads to an additional dissipation
of the momentum of the system. The number of Bose excitations varies with temperature, which causes a tem-
perature dependence of the conductivity. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.27.+a; 71.30.+h
Recent experiments revealed a kind of metal–insu-
lator transition in 2D systems (electron or hole ones) in
zero magnetic field. The effect was observed on high-
mobility samples whose resistance was found to drop
sharply with decreasing temperature when the carrier
concentration exceeded some critical value, whereas
samples with lower concentrations exhibited an
increase in their resistance. This phenomenon was
interpreted as the metal–insulator transition (see [1–3]).

The results of these studies contradict the well-
known statement that, in disordered 2D systems, all
single-particle (electron or hole) states are localized
[4]; i.e., the metallic state in such systems is impossi-
ble.

At the same time, in a system with strong interaction
between the charge carriers, the single-particle states
are considerably distorted by this interaction and the
aforementioned statements may fail. According to the
estimates, for the concentrations used in the experi-
ments, the Coulomb interaction between the carriers
exceeds the Fermi energy and, hence, can strongly
affect the properties of single-particle excitations.
Therefore, the conclusions concerning the localization
of the latter can be different.

Such an idea was put forward in a number of publi-
cations, which presented arguments in support of the
existence of the metallic state in the case of strong
interaction between the carriers (see, e.g., [3]). Leaving
aside the fundamental justification and proceeding only
from the fact that the experiments provide direct evi-
dence in favor of this idea, I will investigate the cause
of the sharp temperature dependence of the resistivity.
Attempts were made to explain this effect on the basis
of the single-particle approach (see, e.g., [5, 6]). With-
out denying the significance of various single-particle
0021-3640/00/7210- $20.00 © 20506
effects, it would be desirable to determine a single
cause for both the metallic state and the temperature
dependence of the resistivity observed in the experi-
ment, i.e., the strong interaction and the correlation
effects, so that no contributions of any other factors
should be taken into account.

This paper presents a model in which a qualitatively
new characteristic describing the role of the correlation
effects is explicitly introduced. Namely, it is assumed
that, in addition to the conventional Fermi excitations,
a short-wavelength soft mode, which corresponds to
Bose-type excitations with low energy and finite
momenta, is present in the system.

The soft mode is a precursor of the phase transition.
In the case of a crystallization-type transition, the cor-
responding feature should occur in the density–density
correlator and the aforementioned Bose excitations
should have a zero spin. Such an assumption was used
in the theory of liquid–crystal transition in He3 [7]. It is
also possible that a similar feature occurs in the spin
density–spin density correlator, as was assumed in the
theory [8] developed for describing liquid He3 with
allowance made for the interaction between the Fermi
excitations and the soft mode. In this case, one can con-
sider Bose excitations with spin 1. In the cited paper
[8], these excitations were strongly damped, because
they were characterized by the momenta <2pF (pF is the
Fermi momentum) and could decay into a pair of Fermi
excitations (otherwise, they would be “good” quasipar-
ticles). In both papers cited above [7, 8], the momenta
corresponding to the soft mode were finite.

For the problems considered in this paper and for
the approach used below, the origin of these Bose exci-
tations and type of their spin are of no importance.
However, they can be significant in studying other
000 MAIK “Nauka/Interperiodica”
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properties (e.g., in a magnetic field). Let us consider
more closely the type of soft mode.

In an ideal Fermi gas, correlations occur between
the particles with identical spins because of the Pauli
principle, whereas the particles with opposite spins do
not correlate at all. Let us assume that a weak interac-
tion (repulsion) occurs in the system. For simplicity, a
short-range interaction of the delta-function type is
considered. This interaction does not affect (to a first
approximation) the correlations between the particles
with identical spins, but it leads to the correlations
between the particles with opposite spins. As a result,
each particle tends to a position between the particles
with opposite spins. As the repulsion grows stronger,
this tendency is enhanced, and, in the case of a strong
interaction (for a Coulomb interaction, one has the so-
called Wigner liquid), every particle has particles with
opposite spins as its nearest neighbors; i.e., an antifer-
romagnetic short-range order is formed in the system.
As a result, the appearance of an antiferromagnetic-
type soft mode is possible, which means the maximum
spin susceptibility at low frequencies and finite
momenta. This is the precursor of the transition to the
state with a spin-density wave. Thus, apparently, the
presence of an antiferromagnetic-type soft mode is not
a specific feature of He3, as one might infer from [8],
but a general property of Fermi systems with a strong
interaction.

The aforesaid is true for systems without spin polar-
ization. In a completely spin-polarized system (in a
magnetic field parallel to its plane), another type of soft
mode is possible [7].

Let us now describe the model and the method of
solving the problem under discussion. A 2D electron
(hole) system with a strong interaction is considered. In
addition to the conventional Fermi excitations, this sys-
tem contains Bose-type excitations with the spectrum

(1)

It is assumed that Ω0 ! eF, as it must be for the soft
mode (eF is the Fermi energy), although, in systems
with hole conductivity, this condition is presumably not
fully satisfied. The velocity is v0 ~ vF (vF is the Fermi
velocity). As for the momentum q0 corresponding to the
minimal energy of a Bose excitation (this excitation
will be called a magnon, in accordance with the above
considerations), one only can state that q0 ~ pF . In [8],
it was assumed that q0 < 2pF , and, hence, this excitation
was strongly damped. It is possible that, in the 2D case
with a type of interaction other than in He3, the situa-
tion will be different:

q0 > 2pF . (2)

In any case, the latter assumption considerably simpli-
fies the analysis. Therefore, it will be assumed that
Eq. (2) is valid and one deals with good, weakly
damped excitations with spin 1 (magnons).

Ωq
2 Ω0

2 v 0
2 q q0–( )2

.+=
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Thus, the system under study contains two types of
elementary excitations: Fermi excitations (called elec-
trons) and Bose excitations (magnons). Both of them
are scattered by the impurities, and the system loses its
momentum through these two channels. One can
assume that, at low temperatures, as usual, the contribu-
tion made by the electrons is temperature-independent.
This is not the case with the magnons because of the
dependence of their number on temperature (if for no
other reason). It is the aim of this work to determine the
magnon contribution to the friction of the system under
study. This problem will be considered using its sim-
plest possible formulation and some simplifications,
which will be specified below.

The main simplification is as follows: it is assumed
that the scattering by the impurities is sufficiently small
for the two subsystems (electrons and magnons) to be
in thermal equilibrium with each other at temperature
T. Then, the state of the system is completely character-
ized by the velocity of its motion u. In this case, the
excitation energy varies in a known way; namely, for a
magnon, one has

Ωq  Ωq + qu. (3)

This quantity will be involved in the energy conserva-
tion law. The equilibrium distribution function for the
magnons, Nq, has the form of the standard Bose distri-
bution

(4)

To calculate the variation per unit time in the
momentum of the system because of the magnon scat-
tering, (dP/dt)m, the Fermi golden rule is used. As a
result, one obtains

(5)

Here, Wq', q is the matrix element corresponding to the
impurity scattering of a magnon from the state with the
momentum q to the state with the momentum q'. The
bar over the squared absolute value of the matrix ele-
ment means averaging over the impurity positions.

Here and below, for simplicity, all formulas are writ-
ten as if there is a single nondegenerate soft mode (as
for spin 0). Degeneracy (spin 1) would lead to changes
in some constants, which, in the best case, are known
within an order of magnitude. The dependences
obtained for both cases are identical (for spinless impu-
rities).

Let us analyze the right-hand side of Eq. (5).
Because of the factor (q' – q), the contribution qua-
dratic in the magnon filling factors disappears and the

Nq
1

Ωq/T( )exp 1–
------------------------------------.=

dP
dt
------- 

 
m

2π Wq' q,
2δ Ωq qu Ωq'– q'u–+( )

q q',
∑=

× Nq 1 Nq'+( ) q' q–( ).
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linear contribution can be transformed by applying the
substitution

In the approximation linear in u, one can neglect the
terms with u involved in the argument of the delta func-
tion. Then, instead of Eq. (5), one obtains

(6)

Near the minimum of the spectrum, one has q' ≈ q ≈ q0.
Integrating with respect to the angles on the assumption

that  is constant, one obtains the following
expression instead of Eq. (6):

(7)

The interaction with impurities will be described in
the simplest way by specifying the corresponding oper-
ator:

(8)

where the summation is over the impurities (Rν is the
radius vector of the νth impurity) and over the
momenta, and the operator Bq is determined as

(9)

Here, (bq) is the operator of the creation (annihila-
tion) of a magnon with momentum q and g is the cou-
pling constant (g > 0, which corresponds to the case of
repulsion; otherwise, it would be necessary to take into
account the bound magnon states at the impurities); this
expression also involves a usual factor that contains the
magnon energy (as in the case of an oscillator). Equa-
tion (9) corresponds to a magnon with a zero spin pro-
jection; evidently, for other projections, the results will
be the same (spinless impurities). Note that, for a zero-
spin excitation, one would also have a contribution lin-
ear in the operators.

The matrix element involved in Eq. (7) has the form

Nq
1
2
--- Nq Nq'–( ) 1

2
---

dNq

dΩq
---------- q' q–( )u.≈

dP
dt
------- 

 
m

π Wq' q,
2δ Ωq Ωq'–( )

q q',
∑≈

×
dNq

dΩq
---------- q' q–( ) q' q–( )u( ).

Wq' q,
2

dP
dt
------- 

 
m

π Wq' q,
2δ Ωq Ωq'–( )

dNq

dΩq
----------q0

2u.
q q',
∑≈

Ŵ
g

2V
------- i q q'–( )Rν( )BqB q'– ,exp

q q' ν, ,
∑=

Bq
bq b q–

++

Ωq

-------------------.=

bq
+

Wq q',
g
V
--- 1

ΩqΩq'

------------------- i q q'–( )Rν( )exp
ν
∑=
[see Eqs. (8) and (9)]. After averaging over the impurity
positions, one obtains for the squared absolute value of
the matrix element

where ni is the impurity concentration.
Passing from sums to integrals in Eq. (7) and intro-

ducing the magnon relaxation time τm, instead of
Eq. (7), one obtains the expression

(10)

where n and m are the concentration and the mass of
carriers and τm is determined by the formula

(11)

Here, the quantity g is replaced by , which corre-
sponds to the renormalized interaction with impurities.
The point is that, in the case under study, one cannot
restrict oneself to the first order of perturbation theory
because of the divergence of the integral at the lower
limit; such a divergence and the need for renormaliza-
tion occur because of the form of spectrum (1).

To determine , it is necessary to consider the
scattering by a single impurity and to perform the sum-
mation of the series of perturbation theory [the interac-
tion with the impurities is determined by Eqs. (8) and
(9)]. This can be done by applying the diagram tech-
nique. Here, the calculations are omitted; they can be
found in the books on quantum mechanics (see, e.g.,
[9], §43, where the calculations are performed without
using the diagrammatic technique). The result is

(12)

(δ determines the path around the pole, δ  +0).
From this expression, one can see that, for Ω  Ω0,
the corrections to the interaction are truly significant
and the interaction becomes equal to zero, which elim-
inates the difficulty related to the divergence of the inte-
gral in Eq. (11).

For the analysis of Eq. (11), different variants are
possible, depending on the value of g. Only one of them
will be considered, which seems to be the most proba-
ble. The quantities q0 and v0 are of the same order of
magnitude as the corresponding Fermi quantities [see
note after Eq. (1)], whereas Ω and Ω0 are much smaller
than the Fermi energy. Therefore, if g is not too small

Wq' q,
2 g2

V
----- 1

ΩqΩq'
--------------ni,=

dP
dt
------- 

 
m

1
τm

-----P,
P
V
---– nmu,= =

1
τm

-----
ni

n
----

q0
4

πmv 0
2

-------------- g̃ Ω( ) 2 Ωd

Ω2 Ω0
2–

------------------------ Nd
Ωd

-------.

Ω0

∞

∫–=

g̃ Ω( )

g̃ Ω( )

g̃ Ω( ) g 1
2g
V
------ 1

Ω iδ+( )2 Ωk
2–

-----------------------------------
k

∑–

1–

=

g 1 ig
q0

v 0
------ 1

Ω2 Ω0
2–

-----------------------+
1–
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(on the same scale), one can neglect unity in the
denominator in Eq. (12). Then, instead of Eq. (12), one
obtains

(13)

In this limit, the constant g, which characterizes the
interaction with the impurity, totally disappears.

Calculating the integral in Eq. (11) by using Eq. (13)
for , one gets

(14)

The conductivity σ is expressed through the relaxation
time τ in the usual way:

(15)

where τe is the electron relaxation time (which is
assumed to be constant).

The resistivity ρ = 1/σ at temperature T < Ω0 can be
represented in the form

(16)

(the relation of ρ0 and ρ1 to the parameters of the model
can be obtained from comparison with the expressions
given above). In some experiments [10, 11], it is this
type of temperature dependence that is obtained for
sufficiently low temperatures. In terms of the model
under consideration, one can reveal the meaning of the
constant T0 involved in the experimental dependence
[10, 11] [instead of Ω0 in Eq. (16)]: T0 corresponds to
the minimal magnon energy Ω0. The experiments [10,
11] show that this quantity decreases as the density
becomes lower, which is quite natural for such a quan-
tity: the role of the correlation effects increases with
decreasing density, and this leads to softening of the
soft mode. However, at high temperatures, one obtains
a dependence that is not likely to be observed in reality:

Possibly, this can be explained by the temperature
dependence of spectrum (1) (such a dependence was
not considered in this paper): since, with increasing
temperature, one seemingly moves away from the tran-

sition, one should expect that  increases according
to the law

as it must near the minimum (α is a constant factor).
Then, with increasing temperature, the resistivity
should tend to saturation, which qualitatively agrees

g̃ Ω( ) i
v 0

q0
------ Ω2 Ω0

2– .–≈

g̃ Ω( )

1
τm

-----
ni

n
----

q0
2

πm
-------N Ω0( ),≈

N Ω0( ) Ω0/T( ) 1–exp[ ] 1– .=

σ ne2τ
m

-----------,
1
τ
--- 1

τe

----
1
τm

-----,+= =

ρ ρ0 ρ1 Ω0/T–( )exp+≈

ρ ρ0 ρ1
T
Ω0
------ T  @ Ω0( ).+≈

Ω0
2

Ω0
2 Ω0

2 αT2,+
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with the experiment. However, currently there are no
computational results in support of this hypothesis. An
alternative explanation is as follows: for the aforemen-
tioned experiments [10, 11], the condition T @ Ω0
means that the temperature becomes of the order of the
Fermi energy, and, in this case, there is little of the soft
mode left.

In closing, it should be noted that the origin of the
observed metal–insulator transition is still not deter-
mined. In connection with the main idea described
above, one may present the following considerations.
Even for repulsive impurities, a bound magnon state at
the system of impurities, or, more precisely, at the fluc-
tuations of the impurity concentration, is possible in the
regions where the local impurity concentration is below
its average value. Because of the specific properties of
the magnon spectrum, such a bound state is possible for
an attractive potential as low as one likes, and this
effective attraction occurs just in this kind of region. It
is also possible that, with a decrease in Ω0, i.e., with a
decrease in the carrier concentration, the energy of the
bound state (with allowance for the positive Ω0) can
approach zero (or even become negative). Then, at the
absolute zero of temperature, this state will be filled,
not with a single magnon but with a finite number of
magnons (as far as the anharmonicities allow); i.e., a
kind of local Bose condensate of magnons will be
formed. In other words, in the attraction region, a small
crystallite of a different phase—the phase with the spin
density wave—can be formed. One can expect that
such regions should noticeably affect the conductivity
of the system, namely, lead to its decrease. At finite
temperatures, the Bose condensate fails (one can say
that the crystallites melt), which can lead to an increase
in the conductivity. This effect was observed on the
insulator side of the transition in the systems under
study. Thus, the mechanism responsible for the transi-
tion from the metallic state to the insulating one can be
the formation of crystalline fragments in the metallic
phase. All this (and the question concerning the effect
of the bound states on the conductivity in the metallic
phase) requires special consideration.
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the Russian Foundation for Basic Research (project no.
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The formation of bound states in the case of a direct Coulomb repulsion between two holes whose reciprocal
effective mass tensor has principal values of opposite signs is considered as a possible mechanism of high-TC
superconductivity. The study of the specific features of the scattering amplitude shows that, under certain con-
ditions, in addition to the quasi-stationary states, states with a negative attenuation are possible, which corre-
sponds to the tendency toward the formation of a hole pair condensate. The coexistence of the quasi-stationary
states and the condensate qualitatively agrees with the phase diagram of p-type doped high-TC superconducting
cuprates. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.-z
The specific features of the electronic structure of
p-type doped high-TC superconducting compounds,
such as the quasi-two-dimensional character of elec-
tronic states, the Fermi contour with nesting features,
and the presence of a saddle point of the electronic dis-
persion law near the Fermi level [1], provide the possi-
bility for the formation of bound states of quasiparticle
(electron or hole) pairs with a quasi-momentum K ≠ 0
[2]. The Fermi contour (or its considerable part)
belongs to the k-space region with a hyperbolic metric:
in the vicinity of the saddle point, the principal values
of the 2D tensor of the reciprocal effective masses have
opposite signs. As a result, the character of the electron
interaction, which contributes to the correlation energy,
is changed: the actual repulsion of like charges can give
way to an effective attraction [3, 4]. The filling of the
states inside the Fermi contour leads to the following
situation: for each quasi-momentum of a pair, there
exists a certain 2D Brillouin zone region to which the
quasi-momenta k± = K/2 ± k of the two quasiparticles
forming the pair belong (here, k is the quasi-momen-
tum of the relative motion). This accounts for the weak-
ening of the correlations in the electron subsystem of a
metal. Therefore, the interaction energy for two quasi-
particles can be approximately represented as

ΞKa2 ·  [2], where ΞK is the area of the region of
the quasi-momenta k±, a is the interatomic distance, and

 = 4πe2(k2 + )
–1

 is the Fourier transform of the
energy of the screened Coulomb interaction with the

screening parameter  = 4πe2gF; here, gF is the density
of states at the Fermi level. Figure 1a shows the Fermi

Ũ k( )

Ũ k( ) k0
2

k0
2

0021-3640/00/7210- $20.00 © 20511
contour typical of p-doped high-TC superconducting
compounds. The contour exhibits a nesting feature in
the [100] direction; the Fermi momentum along this
direction is denoted by kF. The region ΞK for the vector
K < 2kF , which is also directed along [100], is shown in
Fig. 1a by hatching. One can see that the region ΞK con-

sists of two parts: the inner part  corresponding to

the electron pairs and the outer part  correspond-
ing to the hole pairs, as shown in Fig. 1b (if K > 2kF , the
whole region ΞK corresponds to the hole-type excita-
tions). Because of the specific features of the electronic
spectrum of high-TC cuprates in the vicinity of the sad-
dle point (the flat-band extended saddle point [1]), the
region with a hyperbolic metric occupies a consider-
able part of the 2D Brillouin zone. An increase in the
p-type doping level causes the Fermi level to approach
the saddle points, whereas, in the case of n-type doping
(the hole concentration is below the half-filling),
an  increase in the electron concentration causes the
Fermi contour to move away from the saddle points.
This fact (and the related asymmetry in the determina-

tion of  and ) can be one of the factors respon-
sible for the electron–hole asymmetry observed in
high-TC cuprates [1].

To perform a qualitative study of the correlation
effects which may give rise to the formation of the
bound states of quasiparticle pairs, we can use the
effective-mass approximation by representing the

ΞK
e( )( )

ΞK
h( )( )

ΞK
e( ) ΞK

h( )
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equivalent Hamiltonian of the relative pair motion in
the form [2]

(1)

Here, the pair energy is measured relative to the value
2ε(K/2); m is the dimensional parameter of mass; and
the dimensionless coefficient ν ! 1, which character-
izes the degree of anisotropy of the dispersion law near
the point K/2 and, on average, takes into account the
deviations of the constant-energy lines from the ideal
nesting direction within the region ΞK, can be estimated
as ν ≈ (∆k/ lK)2, where lK and ∆k are the length and the

width of the region , respectively, (Fig. 1). Thus,
the effective hole mass along the direction of the vector
K (the k2 axis) is negative, whereas, in the direction per-
pendicular to K (the k1 axis), it is positive and large due
to nesting.

All eigenfunctions of Hamiltonian (1) belong to a
continuum spectrum. Therefore, it would be natural to
seek them in the form of the sum of the incident wave
with quasi-momentum q and the scattered wave

 representing the solution to the integral equa-
tion [5]

(2)

ĤK
"

2

2m
------- νk1

2 k2
2–( ) ΞKa2 Ũ k1 k2,( ).⋅+=

ΞK
e( )

χ̃Kq k( )

"
2

2m
------- ω k2–( )χ̃Kq k( ) ΞKa2 Ũ k q–( )⋅=

+ ΞKa2 Ũ k k'–( )χ̃Kq k'( )
k'2d

2π( )2
-------------.⋅

ΞK( )
∫

Fig. 1. Fermi contour (EF) typical of p-type doped high-TC
cuprates. The 2D Brillouin zone is centered at the point
(π, π) corresponding to the minimum (m) of the hole band;
the maximum of the hole band is denoted by M, and the sad-
dle points are denoted by SP. The region ΞK corresponding
to the vector K < 2kF along the [100] nesting direction is
shown (a) by hatching and (b) separately with its compo-

nents  and  corresponding to the electron-type and

hole-type excitations.

ΞK
e( ) ΞK

h( )
Here, ω = q2 and k2 = ν  – . The zero-current state
is described by a linear combination of such wave func-
tions with the crystallographically equivalent vectors K
which transform according to one of the irreducible
representations of the crystal symmetry group [2]. Note
that Eq. (2) coincides with the equation for the t-matrix
considered in [6] in connection with the problem of
instability of the normal state with respect to the forma-
tion of bound states of electron pairs. Since the integra-
tion in Eq. (2) goes over the region ΞK, which is small
compared to the Brillouin zone, the integral term can be

estimated by setting (k – k') ≈ . In this case, the
solution to Eq. (2) takes the form [2]

(3)

where wK = (4π/k0a*)ΞKa2, a* = \2/me2, and the
signum function provides the condition that is neces-
sary for solution (3) to represent a diverging wave. The
function BK(ω) is determined by the expression

(4)

For real values of ω, the functions BK1(ω) and BK2(ω)
have the form

(5)

If we assume that ω =  – iΓK is the solution to

the equation 1 + wKBK(ω) = 0 and that ΓK ! , then,

for ΓK > 0, the quantity  can be considered [7] as
the energy of a quasi-stationary state (QSS) that is
determined as the solution to the equation

(6)

The attenuation of the QSS has the form ΓK =

wKBK2( )/ ( ), where  ≡ dBK1/dω.

Assuming that the region ΞK has approximately the
form of a rectangular strip with length lK along the k1

k1
2 k2
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-------------------------------- 1
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axis and width ∆k along the k2 axis, for BK2(ω) we
obtain the expression

(7)

where ω* = max{–ω; 0}, ω* = min{ω1 – ω; ω–1}, ω–1 =

(∆k/2)2, and ω1 = ν /4; with allowance made for the
relation ν ≈ (∆k/lK)2, we have ω–1 = ω1. For ω ≤ –ω–1
and ω ≥ ω1, we have BK2(ω) = 0. The plot of function
(7) is shown in Fig. 2.

The function BK1(ω) in the same approximation is
determined by the integral

(8)

for which the expression through the tabulated special
functions is unknown. The plot of function (8) is sche-
matically represented in Fig. 2. At the points ω = ±ω1,
the function BK1(ω) has logarithmic singularities, and
at ω = 0 it has a first-order discontinuity. For ν ! 1, we

have BK1(+0) ≈ –1/4  and BK1(–0) ≈ 1/π2 . When
|ω|  ∞, the asymptotic behavior of function (8) has
the form BK1(ω) ~ –ΞK/4π2ω. Since BK1(ω) = 0 at ∆k =
0, the quasi-momentum of a pair, K, cannot be equal
to 2kF .

It should be noted that, in a Cooper pairing channel
(K = 0), the energy of the relative motion of a pair is
totally insensitive to the signs of the effective masses
for small ∆k: the approximation linear in k – kF proves
to be sufficient, so that the pair energy is determined by
the quasiparticle velocity νF at the Fermi contour rather
than by the effective masses. For a Cooper channel, the
function BK1(ω) has the form

(9)

where ωc = 2kF∆k; the role of the region Ξ0 is in this
case played by the zone of width ∆k adjacent to the
whole closed Fermi contour, independently of its shape
(for simplicity, in Eq. (9), the Fermi contour is assumed
to be circular). In the BCS theory [8], the quantity ωc

plays the role of the cutoff parameter, because the width
∆k of the zone within which the states with opposite
quasi-momenta are characterized by effective attraction
is determined from the condition that the energy differ-
ence ε(kF + ∆k) – ε(kF) is of the same order as the char-
acteristic phonon energy. When the quasi-momentum
of a pair is nonzero, the Cooper channel is suppressed
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because of the sharp decrease in the area of the corre-
sponding region ΞK; the Cooper effect proves to be
impossible when \K ≥ ∆0/νF , where ∆0 is the supercon-
ducting energy gap at K = 0 [9]. The exchange field
existing in a weak ferromagnet pushes apart the Fermi
surfaces corresponding to electrons with opposite
spins, which provides the possibility for pairing when
K ≠ 0 [10, 11]. Such a pairing is energetically advanta-
geous when the Fermi surfaces are pushed apart by a
distance of the order of the superconducting energy gap
in the corresponding nonferromagnetic superconduc-
tor; the quasi-momentum of the pairs formed in this
case is about ∆0/νF ! "kF .

In the case of pairing at K ≈ 2kF , the attenuation ΓK
is positive for –ω–1 ≤ ω < 0 and for ω ≥ ω1. Hence, if the
solution to Eq. (6) falls within one of these energy inter-
vals (the first interval, when the dominant type of hole–
hole interaction is attraction, wK < 0, and the second
interval in the case of repulsion, wK > 0), it will corre-
spond to the QSS. When ω ≥ ω1, the QSS is character-
ized by a sufficiently long lifetime and, hence, can be
considered as a special kind of elementary excitation of
the electron subsystem of the crystal. For the energies
ω < –ω–1 and 0 < ω < ω1, the attenuation is ΓK < 0,
which may testify to the instability of the electron sub-
system with respect to the formation of the pair conden-
sate; in this case, the position of the pole of the scatter-
ing amplitude is directly related to the energy-gap
parameter [9]. Generally speaking, Eq. (6) has two
solutions for both wK < 0 and wK > 0, as one can see
from Fig. 2. In the first case, as in the case of the Cooper
pairing, an unstable solution (ΓK < 0) occurs at any
interaction intensity, and this solution corresponds to a
greater (in magnitude) energy value. The solution in the
form of the QSS appears only when the interaction is

relatively weak, ; this solution is char-
acterized by a fairly high attenuation. Therefore, in the
case of attraction between the quasiparticles, the con-

wK
1– BK1 0–( )>

Fig. 2. Plots of the functions BK1(ω) and BK2(ω) (shaded).
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densation of pairs should occur without the stage of
QSS formation. By contrast, in the case of repulsion, a
stable solution in the form of the QSS with a low atten-
uation [2] is obtained at any wK > 0, and the unstable
solution appears only beginning at a certain value of the
interaction intensity (in the course of its decrease, when

 > |BK1(+0)|). The corresponding energy proves to
be lower than the energy of the long-lived QSS, allow-
ing the coexistence of the condensate and the QSS of
the quasiparticle pairs. It should be noted that the
energy interval (–ω–1, ω1) belongs to the continuum
spectrum; therefore, the solution with ΓK < 0 corre-
sponding to the interval 0 < ω < ω1 must lead to a rear-
rangement of the continuum spectrum and, hence, to a
decrease in the energy of the electron system as a result
of the decrease in the kinetic energy [12] rather than
due to the sign of the interaction energy, as in the BCS
theory.

The possibility of the coexistence of the QSS and
the condensate of quasiparticle pairs qualitatively
agrees with the known phase diagram of high-TC

cuprates (Fig. 3), with the condition that both the con-
densate and the QSS are determined by the same repul-

sive interaction. In fact,  is an increasing func-

tion of hole concentration, because  ~ k0 ~ , and
the 2D density of states has a logarithmic singularity in
the vicinity of the saddle point. Therefore, we have
gF ~ ln(ω0/ |ωSP – ωF |), where ωF is the Fermi energy,
ωSP is the hole energy at the saddle point, and ω0 is the
cutoff parameter. As the doping level increases, the dif-
ference ωSP – ωF decreases, leading to an increase in

 with increasing concentration.

wK
1–

wK
1– p( )

wK
1– gF

1/2

wK
1–

Fig. 3. Typical phase diagram of p-type doped high-TC
cuprates (schematic representation): AF is the region of
antiferromagnetic ordering (TN is the Néel temperature); SC
corresponds to the superconducting phase (TC is the super-
conducting transition temperature); NM is the normal metal
phase (T* is the temperature corresponding to the appear-
ance of the pseudogap); and p is the hole concentration (the
doping level).

pp
*

Let us assume that, up to some concentration 

determined from the condition 1 + wK( ) × BK1(+0) =
0, we only have the solution in the form of the QSS. The
appearance of each QSS eliminates a pair of holes from
the play and, hence, leads to a decrease in the density of
states, which can be interpreted as the appearance of a
pseudogap in the spectrum of single-particle excita-
tions [2]. The energy of the QSS can be considered as
the characteristic scale of the pseudogap width. When
p >  and T = 0, coexistence of the QSS and the hole
pair condensate takes place (Fig. 3). From Fig. 2, one
can see that, as the hole concentration increases, the
stable and unstable solutions of Eq. (5) approach each
other and, finally, become logarithmically close. In
fact, this means the coincidence of the characteristic
scales that determine the superconducting gap and the
pseudogap. Thus, in the underdoped regime, coexist-
ence of the condensate and the QSS of quasiparticle
pairs takes place, whereas, with the transition to the
superconducting state in the overdoped regime, the for-
mation of a pair will be accompanied by its immediate
precipitation into the condensate.

Experimental data [13–15] testify that, in under-
doped high-TC cuprates, the superconducting gap and
the pseudogap are undoubtedly related to each other;
they have the same symmetry and the same energy
scale, and they exhibit a universal dependence on the
doping level for different cuprates. These features of
p-type doped high-TC cuprates are interpreted [13] in
the sense that the energy scale of the superconducting
gap and the pseudogap represents the fundamental
scale of the pairing interaction. Such an interaction can
be a direct Coulomb repulsion between holes with a
hyperbolic dispersion law [2].

One of the authors (Yu.V. Kopaev) acknowledges
the support of the Federal Program “Integratsiya”
(project nos. A0133 and A0155).
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Direct Experimental Verification of the Isomorphism Hypothesis 
for Critical Phenomena
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The heat capacity at constant volume of a mixture of methane and 0.0345 mole fractions of heptane is experi-
mentally studied over a wide range of densities and temperatures. In the case when the transition from a three-
phase state takes place in the presence of a noncritical liquid phase, it is found that the behavior of the heat
capacity in the vicinity of the upper end critical point is fully isomorphic with the behavior of the heat capacity
in the vicinity of the liquid–vapor critical point of one-component fluid. It is shown that the measured quantity
in this experiment is the heat capacity at constant volume and constant chemical potential µ of the heavy impu-
rity component Cv, µ. Thus, it has been confirmed by direct measurements that the anomaly of this heat capacity
completely coincides in character with the anomaly of the heat capacity at constant volume in the vicinity of
the liquid–vapor critical point of one-component fluids. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 05.70.Jk; 65.20.+w
In accordance with the universality concept and the
isomorphism hypothesis for critical phenomena, the
singular part of the thermodynamic potential of solu-
tions in the vicinity of their critical points written in
terms of field variables (temperature and chemical
potentials of solution components) coincides with the
singular part of the thermodynamic potential of one-
component fluids in the vicinity of the liquid–vapor
critical point. In this case, the dependence of the singu-
lar part of the thermodynamic potential of a solution on
the reduced chemical potential µ, equal to the differ-
ence of the chemical potentials of the components in
the solution, is solely due to the dependence of the crit-
ical parameters on this variable. In particular, from here
it follows that, in binary systems, the anomaly of the
heat capacity at constant volume and constant chemical
potential Cv, µ in the vicinity of the liquid–vapor critical
point of the solution coincides in character with the
anomaly of the heat capacity Cv in the vicinity of the
liquid–vapor critical point of one-component fluids:
Cv, µ ~ t(µ)–α. Here, t(µ) ≡ |(T – Tc(µ))/Tc(µ)|, and the crit-
ical component α coincides with the component of the
heat capacity at constant volume Cv of pure substances.

In the subsequent discussion, we will consider mea-
surements of the heat capacity at fixed volume of the
calorimetric cell and fixed average concentration of the
solution. However, the nature of the heat capacity that is
measured in this case depends on the phase diagram of
the solution. In the case when a three-phase equilibrium
in the system under study is absent, the constancy of the
0021-3640/00/7210- $20.00 © 20516
volume and the average concentration of the mixture
means that the experimentally measured quantity is the
heat capacity at constant volume Cv, x. It was shown in
[1, 2] that the critical component of the heat capacity α
in this path is renormalized: α  –α /(1 – α). There-
fore, as the critical point is approached, a finite peak
rather than infinite growth is observed experimentally
in the heat capacity [3]. However, the renormalization
of the critical component α is rather difficult to verify
experimentally because of the complex crossover
behavior of the heat capacity in the vicinity of the crit-
ical point of the solution. At the same time, the isomor-
phic heat capacity Cv, µ cannot be measured in such sys-
tems, since this would require the concentration of the
sample to be varied during the experiment continuously
and in a certain way.

In the case when a liquid–liquid–vapor three-phase
equilibrium occurs in the system, the character of the
measured heat capacity depends on which two of the
three coexisting phases are in fact critical. If the liquids
are the critical phases, that is, when the case in point is
the critical demixing point (a large number of works are
devoted to studying such systems [4]), the constancy of
the volume and the average concentration of the solu-
tion nevertheless means that the heat capacity Cp, x

rather than Cv, x is measured. This is due to the fact that,
first, the variation of the saturation vapor pressure over
the critical liquid phases within the temperature range
under study is insignificant and, second, the amount of
substance in the vapor phase is small and cannot
000 MAIK “Nauka/Interperiodica”
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change the concentration of the liquid phases to an
appreciable degree.

A similar situation could take place when the criti-
cal phases are the vapor and one of the coexisting liquid
phases. Actually, in this case, the chemical potential of
the heavy component in the vicinity of the liquid–vapor
critical point is determined by the noncritical liquid
phase and varies insignificantly within the temperature
range in which the critical phenomena are studied. That
is, the heat capacity will be measured in the path for
which µ = const. The volume of the calorimetric cell is
constant; therefore, the volume of the critical phases
will remain constant as well, because the variation of
the volume of the noncritical liquid phase is insignifi-
cant. Hence, the measured heat capacity must be the iso-
morphic heat capacity Cv, µ. That is, if the universality
principle for critical phenomena and the isomorphism
hypothesis are true, an anomaly should be observed
experimentally that is fully analogous to the anomaly of
the heat capacity at constant volume in the vicinity of
the liquid–vapor critical point of one-component fluids.

In order to verify this statement, we selected a meth-
ane–heptane (C1 + C7) binary mixture. It is known [5]
that there is a temperature region where three phases
(liquid + liquid + vapor) coexist in this mixture. The
heat capacity was measured at constant volume and
constant average concentration of the mixture. It was
found that the transition of the system from a three-
phase state to a two-phase one is accompanied by infi-
nite power growth of the heat capacity with an expo-
nent that coincides with the critical component of the
heat capacity at constant volume α for a one-compo-
nent fluid. At the same time, the transition to a one-
phase state is not accompanied by any appreciable
growth of the heat capacity in the dew-bubble curve.

EXPERIMENTAL

The enthalpy and the heat capacity at constant vol-
ume were measured on an adiabatic scanning calorim-
eter with a cell volume of 14.6 cm3. The cell was con-
nected by a thin capillary with a strain sensor, which
served to measure the pressure, and with a system for
filling the cell with a mixture under investigation. The
calorimeter design did not significantly differ from the
microcalorimeter design described in [6]. In order to
maintain the adiabatic measurement conditions, the cell
was surrounded by two copper isothermal screens
whose temperature strictly followed the cell tempera-
ture. In order to avoid heat supply through the capillary,
the capillary was connected by a heating conduit with a
copper isothermal ring whose temperature was kept
equal to the cell temperature. The upper part of the cap-
illary was kept ≈1 K higher to exclude the condensation
of the mixture inside it. The temperature was measured
by a platinum thermometer with a nominal resistance
of 100 Ω placed inside the cell. The sample was stirred
JETP LETTERS      Vol. 72      No. 10      2000
with a magnetic stirrer activated by a solenoid with a
period of 10 s.

The measurement of the enthalpy (the amount of
heat supplied to the cell) was described in detail in [7]
and was performed and controlled by a computer sys-
tem. Simultaneously with the enthalpy, the temperature
and the pressure in the cell were measured. The heat
capacity was calculated by numerically differentiating
the enthalpy with respect to temperature. The measure-
ments were performed for 20 isochores over the density
range from 0.39 to 0.05 g/cm3.

RESULTS AND DISCUSSION

The temperature dependence of the specific heat capac-
ity at constant volume Cv, x of a (C1 + 0.0345 mole fractions
of C7) binary mixture is presented in Fig. 1 for two high
densities ρ = 0.391 g/cm3 (curve 1) and ρ = 0.367 g/cm3

(curve 2). Two singularities are pronounced in both
curves: a jump and a sharp peak. Each of these singu-
larities in the heat capacity behavior corresponds to a
phase transition. At temperatures below the tempera-
ture of the heat capacity jump at T ≈ 159 K in curve 1,
three phases are in equilibrium: the solid phase s1, the
liquid phase l2, and the vapor phase g2 (subscript 1 cor-
responds to the phase enriched with heptane, and sub-
script 2 relates to the phases enriched with methane).
The heat capacity jump corresponds to the liquid–vapor

Fig. 1. Temperature dependence of the specific heat capac-
ity at constant volume of a (C1 + 0.0345 mole fractions of

C7) mixture for two densities: (1) ρ = 0.391 g/cm3 and

(2) ρ = 0.367 g/cm3. The heat capacity peak at T ≈ 169 K
corresponds to the melting of the phase enriched with hep-
tane. The jumps at T ≈ 159 and T ≈ 172.5 K correspond to
the liquid–vapor transition between the phases enriched
with methane in the presence of the phase enriched with
heptane.

C
v,

 x



 

518

        

VORONOV, GORODETSKIŒ

                    
transition (l2 – g2) in the presence of the third solid
phase (s1) with the resulting formation of a two-phase
solid–vapor (s1 + g2) equilibrium. The sharp peak of the
heat capacity at T ≈ 169 K corresponds to the melting
of the solid phase (s1) (melting point of pure heptane
Tm = 182.54 K). Note that, when the solid phase melts,
the mixture with this density transits directly from a
two-phase equilibrium (s1 + g2) to a one-phase state.

For the density ρ = 0.367 g/cm3 (curve 2), the heat
capacity peak corresponding to the melting of the solid
phase is positioned at the same temperature as in
curve 1. This is quite natural, because the melting point
of the solid phase depends only on the concentration.
The liquid–vapor (l2 – g2) transition between the phases
enriched with methane, which corresponds to the heat
capacity jump at T = 172.5 K, takes place in this case
only in the presence of the liquid phase l1. At T ≈ 183 K,
the mixture transits to a one-phase state (this transition
accompanied by a small jump of the heat capacity is
designated by an arrow in Fig. 1). Thus, it may be
argued that a three-phase liquid–liquid–vapor (l1 + l2 +
g2) equilibrium occurs at the density ρ = 0.367 g/cm3 in
the temperature range from the melting point (T ≈
169 K) to the temperature of the heat capacity jump
(T = 172.5 K).

Fig. 2. Temperature dependence of the specific heat capac-
ity at constant volume of a (C1 + 0.0345 mole fractions of

C7) mixture in the isochore ρ* = 0.223 g/cm3 passing
through the end point of the three-phase equilibrium line.
The heat capacity anomaly at T = 192.91 K corresponds to
the upper end liquid–vapor critical point in the presence of
the liquid phase enriched with heptane (inset shows the
behavior of the heat capacity in the vicinity of the upper end
critical point). The heat capacity jump at T ≈ 292 K corre-
sponds to the transition of the mixture to a one-phase state.

C
v,

 x

As the average density of the mixture decreases, the

heat capacity anomaly corresponding to the (l2 – g2)
transition becomes larger and the three-phase equilib-
rium region extends, attaining its maximum value at the
density ρ = ρ* = 0.223 g/cm3. In the P–T coordinates,
this isochore passes through the end point of the three-
phase equilibrium line (P* = 4.855 ± 0.004 MPa, T* =
192.91 ± 0.02 K), which is the upper end critical point
in the line of liquid–vapor critical points of the meth-
ane–heptane mixture. A specific feature of this experi-
ment is that the liquid–vapor phase transition at the
upper end critical point takes place in the presence of
the noncritical liquid phase l1.

The temperature dependence of the specific heat
capacity at constant volume for the density ρ = ρ* =
0.223 g/cm3 in the vicinity of the upper critical end
point is shown in Fig. 2. It is evident that the λ-like
behavior of the heat capacity is similar to the anomaly
of the heat capacity at constant volume in the vicinity
of the liquid–vapor critical point of a pure substance.

The temperature dependence of the (∂P/∂T)v, x

derivative is presented in Fig. 3 for densities close to
ρ*. For ρ1 > ρ* and ρ2 < ρ*, the (∂P/∂T)v, x derivatives
undergo jumps of opposite sign in going from the three-
phase equilibrium to the two-phase (l1 + g2) one. At ρ =
ρ*, a jump in the (∂P/∂T)v, x derivative is absent, as well
as in the critical isochore of a one-component fluid.

As the mixture changes to the one-phase state, the
heat capacity exhibits no anomaly in its behavior for
any of the isochores studied (this transition corresponds
to the jump at T ≈ 292 K in Fig. 2). The jump of the heat
capacity at constant volume grows smoothly with
decreasing density.

In order to check that the anomaly of the heat capac-
ity at constant volume in the vicinity of the upper criti-
cal end point found in this work actually behaves in the
same way as at the liquid–vapor critical point of a pure
substance, we compared experimental data for the
enthalpy H with the enthalpy calculated by the equation

(1)

where the limits of integration t0 = |T0/Tc – 1| and t cor-
respond to the temperature range of experimental data
processing and the specific heat capacity at constant vol-
ume has the conventional scaling form

(2)

The plus and minus superscripts in Eq. (2) designate
the heat capacity branches for T > Tc and T < Tc, respec-
tively. The second term represents the nonasymptotic
Wegner correction with the fixed value ∆ = 0.5. The last
three terms describe the regular part of the heat capac-

Hcal C t,d

t0

t

∫=

C A±t α– B±t∆ α– C± Dt Et2.+ + + +=
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Coefficients for the specific heat capacity at constant volume (ρ = ρ* = 0.223 g/cm3) of a (C1 + 0.0345 mole fractions of C7)
mixture in Eq. (2)

A– A+ α Tc B– B+ C– C+ D E

51.0 27.37 0.115 192.923 –8.86 (0) 22.87 (0) 54.3 –204

±0.5 ±0.1 ±0.002 ±0.001 ±2 – ±0.8 – ±0.9 ±12
ity with equal coefficients for T < Tc and T > Tc in the
linear and quadratic terms.

All the parameters in Eq. (2), the critical component α
and the critical temperature Tc included, were deter-
mined by processing the experimental data using the
least-squares method. In the case when all the parame-
ters in Eq. (2) were adjustable, the coefficients B+ and
C+ turned out to be insignificant and, therefore, were set
equal to zero in the subsequent data treatment. The
results of the simultaneous processing of enthalpy for
T < Tc and T > Tc are given in the table. The values
obtained for the critical component α and the universal
ratio of the critical specific heat capacity amplitudes
A−/A+ = 1.86 are in good agreement with the theoretical
values for one-component fluids, which were con-
firmed by numerous experiments [4].

Thus, we may state that the behavior of the heat
capacity at constant volume of the (C1 + 0.0345 mole
fractions of C7) mixture measured in this work in the
vicinity of the upper critical end point in the presence
of the third liquid phase is isomorphic to the behavior
of the heat capacity at constant volume in the vicinity
of the liquid–vapor critical point of a pure substance.
The noncritical liquid phase ensures the fulfillment of
the condition µ = const, and, therefore, the heat capac-
ity measured in this experiment in the vicinity of the
upper end critical point is the heat capacity at constant
volume and constant chemical potential Cv, µ.

In conclusion, we will show that, if the noncritical
liquid phase fixing the chemical potential of heptane in
the phases enriched with methane were absent, the heat
capacity at constant volume measured in the vicinity of
the upper critical end point would be finite. As was
already mentioned at the beginning of this work, the
critical component of the heat capacity α in this path is
renormalized: α  –α /(1 – α). The temperature range
τ in which the renormalization of the component α is
observed is determined by the equation [1, 2]

At XA ! 1, the renormalization region is very narrow,
and the measured heat capacity must be close to the
heat capacity at constant volume in the vicinity of the
liquid–vapor critical point of a one-component fluid.
However, it is easy to understand that the heat capacity
anomaly observed in the methane–heptane mixture
cannot be associated with this effect, because exactly

τ XA
1 α⁄ , XA A–x 1 x–( )

1
Tc

-----
dTc

dx
--------- 

 
2

.= =
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the opposite condition XA > 1 is fulfilled for this mix-
ture. Though it is rather difficult to estimate the value of
XA for the methane–heptane mixture directly from our
experiment, it is known [5] that this value ≈1.5 for a
methane–hexane mixture and it can only increase in
going to the methane–heptane system. Therefore, it
would be impossible to observe the anomaly of the heat
capacity at constant volume in the vicinity of the upper
critical end point in the methane–heptane mixture if the
noncritical liquid phase were absent. That is, fixing the
chemical potential of the heavy component in the vicin-
ity of the liquid–vapor critical point in the phases
enriched with methane actually leads to singular behav-
ior of the heat capacity similar to its behavior in one-
component fluids.

Thus, we have carried out direct experimental veri-
fication of isomorphism between the heat capacity Cv, µ
of a solution and the heat capacity at constant volume
Cv of one-component fluids.

The authors are grateful to V. Kulikov and V. Podnek
for useful discussions and critical comments. This work

Fig. 3. Temperature dependence of the (∂P/∂T)v, x derivative
of a (C1 + 0.0345 mole fractions of C7) mixture in the vicin-
ity of the upper end liquid–vapor critical point for various
densities: critical density ρ* = 0.223 g/cm3, ρ1 = 0.244 g/cm3,

and ρ2 = 0.203 g/cm3.
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Invariant Spin Coherent States and the Theory of the Quantum 
Antiferromagnet in a Paramagnetic Phase1
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A consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with short-range anti-
ferromagnetic order was developed on the basis of the path integral for the spin coherent states. We presented
the Lagrangian of the theory in the form that is explicitly invariant under rotations and found natural variables
in terms of which one can construct a perturbation theory. The short-wavelength spin fluctuations are similar to
the ones in spin-wave theory, and the long-wavelength spin fluctuations are governed by the nonlinear sigma
model. We also demonstrated that the short-wavelength spin fluctuations should be considered accurately in the
framework of the discrete version in time of the path integral. In the framework of our approach, we obtained
the response function for the spin fluctuations for the whole region of the frequency ω and the wave vector k
and calculated the free energy of the system. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Jm; 75.50.Ee
The theory of the two-dimensional Heisenberg anti-
ferromagnet (AF) has attracted great interest during the
last several years in connection with the problem of AF
fluctuations in copper oxides [1–3]. The approach of
these papers was based on the sigma model, which
describes the long-wavelength fluctuations of the
Heisenberg AF in the paramagnetic phase with a short-
range antiferromagnetic order. The sigma model is the
continuum model for the unit vector n(t, r), n2 = 1 in the
1 + 2 time and space dimensions [4, 5]. As a long-wave-
length theory, the sigma model can make a lot of phys-
ical predictions, such as the structure of the long-wave-
length fluctuations and the magnitude of the correlation
length [2, 3, 6]. But, up to now, a consistent theory of
the spin fluctuations for the quantum AF (QAF) with
short-range AF order was absent. This is just the topic
of this paper.

Our approach to the description of the QAF is based
on the functional integral for the generalized partition
function in terms of spin coherent states. We introduce
the concept of invariant spin coherent states and, on this
basis, we formulate the theory.

We define the invariant spin coherent states (SCS)
with the help of relation

(1)n; m| 〉 iϕ Ŝz–( ) iθŜy–( ) iψŜz–( ) ss| 〉 .expexpexp=

1 This article was submitted by the authors in English.
0021-3640/00/7210- $20.00 © 20521
Here, the state |ss〉  is the state of spin s with the maxi-
mal spin projection s. The unit vectors n and m are
orthogonal: n2 = 1, m2 = 1, n · m = 0; θ, ϕ are the Euler
angles of the unit vector n = (cosϕ sinθ, sinϕ sinθ,
cosθ). The dependence on the vector m is included in
the angle ψ only, which, in fact determines only the
phase factor in the SCS (1). We can choose the angle ψ
in some special manner, which distinguishes this defi-
nition from the standard one [7]: ψ = –kz/mz, where the
vector k = [n × m]. This choice has a clear geometrical
interpretation. The transformation (1) rotates the refer-
ence coherent state that is characterized by the vectors
n0 = (0, 0, 1) and m0 = (1, 0, 0), into the SCS (1). From
this geometric interpretation, it is obvious that, upon
changing SCS by some rotation , we have  =

|n; m〉  without the phase factor, which was intro-
duced and discussed by Perelomov [8]. In this way, the
scalar product 〈n'; m' |n; m〉  is an invariant, and the

matrix element 〈n'; m' | |n; m〉  is a vector under rota-
tions. It seems that the vector m is an artificial one.
However, for the problem of the QAF, it has some real
meaning.

We consider the spin system which is described by
the Heisenberg Hamiltonian with an interaction of near-

est neighbors, (l, l') = J  · ,  ·  = s(s + 1),

where  are the spin operators; the index l runs over a
two-dimensional square lattice; the index l' runs over

â ân; âm| 〉
Û â( )

Ŝ

ĤHei Ŝl Ŝl ' Ŝl Ŝl

Ŝl
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the nearest neighbors of the site l; J > 0 is the exchange
constant which, since it is positive, corresponds to the
AF spin interaction; and s is the spin magnitude. The
most efficient method of dealing with a spin system is
based on the representation of the generalized partition
function Z or the generating functional of the spin

Green functions Z = Tr[exp(–β )] in the form of a
functional integral over spin coherent states:

(2)

(3)

where T = 1/β is the temperature, τ is the imaginary
time, and A(n) is the action of the system. In the contin-
uum approximation, which is valid in the leading order
in 1/2s, the expression of the action A(n) is simplified:

(4)

(5)

where +kin(τ, l) = Ba + Bb and Ba, b are the Berry phases
for the sublattice p = a, b. The idea of the short-range
AF order was used in Eqs. (1)–(5), and we split our
square lattice into two AF sublattices a and b. For the
kinetic part of the action +kin (which is highly nonlin-
ear), we use the concept of invariant coherent states
parametrized by arbitrary vectors ma, b.

In our case, we can define these vectors ma, b in the
following manner: ma, b = (nb, a – xna, b)/(1 – x2)1/2, x =
(na · nb). As a result, the invariant coherent states have
a clear meaning. Substituting these expressions for
ma, b into Eq. (5), we have invariant forms for the Berry
phases Bp, which depend on both vectors na, b for each
sublattice a, b. For +kin, we have an invariant form
under rotations:

(6)

Ĥ

Z … Dµ na nb,( ) A na nb,( )( ),exp

∞–

∞

∫
∞–

∞

∫=

Dµ na nb,( )

=  
2s 1+

2π
--------------δ np

2 τ l,( ) 1–( )dnp τ l,( ),
p a b; τ l,,=

∏

A na nb,( ) +tot τ l,( )
l

∑ τ ,d

0

β

∫–=

+tot τ l,( ) +kin τ l,( ) * τ l,( ),+=

* τ l,( ) Js2 na τ l,( ) nb τ l',( ),⋅
l ' l〈 〉=

∑=

Bp τ l,( ) np; mp〈 | τ∂
∂

np; mp| 〉 ,=

+kin
is

1 naτ l nbτ l⋅–
------------------------------ ṅaτ l ṅbτ l–( ) naτ l nbτ l×[ ] .⋅=
Now we can introduce new, more convenient vari-
ables W(τ, l) and M(τ, l), which realize the stereo-
graphic mapping of a sphere:

(7)

In terms of these variables, the total Lagrangian +ΩM =
+kin + * has the final form

(8)

where W ≡ Wτl, W' ≡ Wτl ', M ≡ Mτl, M' ≡ Mτl '. After this
change of variables, the measure of integration Dµ(n)
(7) becomes

(9)

where the product in Eq. (9) is performed over the AF
(doubled) lattice cells.

The variable W is responsible for the AF fluctua-
tions, and the variable M for the ferromagnetic ones.
The ferromagnetic fluctuations are small according to
the parameter 1/2s, and, therefore, one can expand the
Lagrangian +ΩM (8) in M. The vector of the ferromag-
netic fluctuations M plays the role (to the factor 2s) of
the canonical momentum conjugate to the canonical
coordinate W . The term of first order in M coincides
(after a change of variables) with previous results [1, 3].

From Eq. (1) one can easily extract the quadratic
part of the total Lagrangian in the variables W and M,
+quad:

(10)

The Lagrangian +quad (10) is very simple, but the
measure Dµ (9) is not simple due to the presence of two
delta functions. Therefore, we cannot simply perform
the Gaussian integration over the fields W and M. To
solve this problem, we shall use the method of the
Lagrange multiplier λ together with the saddle point
approximation [4, 5] to eliminate δ(W2 – 1). As a result,
we shall have an additional integration over λ with the

na b,
W 1 M2/4–( ) W M×[ ]–±

1 M2/4+
--------------------------------------------------------------,=

W2 1, W M⋅ 0.= =

+kin
2isẆ M⋅
1 M2/4+
-----------------------,=

* Js2=

× W W' 1 M2/4–( ) 1 M'2/4–( ) M M'⋅–[ ]⋅{
l ' l〈 〉=

∑
+ W M'W' M⋅⋅ } 1 M2/4+( ) 1–

1 M'2/4+( ) 1–
,

Dµ n( )
2s 1+( )2 1 M2/4–( )
2π2 1 M2/4+( )3

------------------------------------------------
τ l

∏=

× δ W2 1–( )δ W M⋅( )dWdM,

+quad 2is M Ẇ⋅( )=

+ Js2 W2 W W'⋅ M2 M+ + M'⋅–[ ] .
l' l〈 〉∈
∑
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additional Lagrangian +λ(τ, l) = [iλ(τ, l) +

/2(][W2(τ, l) – 1], where µ0 is the primary mass of
the Ω field and ( = Jsz.

To eliminate δ(W · M), we shall use some kind of
Faddev–Popov trick [5]. As a result of this trick, (1) the
factor δ(W · M) disappears from the measure (9);
(2) M  Mtr = M – W(W · M) in the Lagrangian (8);
(3) an additional contribution to the action appears, the
Lagrangian of which, +ga, can be chosen in the form

+ga = Js2  + (W · M)((W' · M')], which
kills the strongest interaction between the W and M
fields in the Lagrangian (10) that appears due to the
substitution M  Mtr; and (4) in the measure of the

integration in Eq. (9), the additional factor (det( ))
1/2

arises, where the operator  is just the operator in the
quadratic form in the variable (W · M) for +ga. In this
way, Eq. (10) for +quad is valid in the leading order with
respect to 1/2s. The final expression for the total qua-
dratic Lagrangian is +tqu = +quad + +ga + +λquad.

Now, from the quadratic part of the total Lagrangian
+tot one can find the Green functions of the W and M
fields in q = (ω, k) representation:

(11)

where the momentum k runs over the AF Brillouin
zone, a is the lattice constant, ω = 2πjT, and j is an inte-
ger number.

From Eq. (11), one can calculate the parameter of

spin-wave nonlinearity of the theory,  =
(1/2s)CM(T), where CM(T) = 0.65075 for T ! ( and
CM(T) = 1.48491T/( for T ≥ (.

We also have the saddle point condition for the λ
field  = 1, which is the most important constraint
of the theory which determines its phase state:

(12)

µ0
2

W M⋅( )2[
l ' l〈 〉∈∑

B̂ga

B̂ga

ĜqXq*
Gq

Ω, Gq
d

Gq
u, Gq

M
 
 
 
  Wq*

Mq* 
 
 

≡ 1
2sLq

-----------
Qk, ω–

ω, Pk' 
 
 

,=

Lq ω2 ω0k
2 ,+=

ω0k
2 Pk' Qk 1 γk

2–( )(2
1 γk+( )µ0

2/2,+= =

Qk Pk,( ) ( 1 γk±( ),=

γk 1/2( ) kxa( )cos kya( )cos+( ),=

Mtr
2〈 〉

W2〈 〉

1 W2〈 〉 N Gq
Ω

q

∑= =

=  
NT
2s
--------

Qk

ω2 ω0k
2+

---------------------
ω k,
∑ N

2s
-----

Qk

2ω0k
------------ 1 2n0k+( ),

k

∑=
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where N = 3 and n0k = (exp(ω0k/T) – 1)–1 is the Planck
function. The right-hand side of Eq. (12) contains two
terms. The first term Qk/2ω0k is responsible for the
quantum fluctuations of the Ω fields. The second term
Qkn0k/ω0k is responsible for the classical thermal fluc-
tuations of the Ω fields. The role of these two terms is
quite different. The quantum fluctuations are small
according to the parameter of perturbation theory 1/2s
and, for the basic approximation, they can be neglected.
The thermal fluctuations can be considered in the contin-
uum approximation, which leads to the well-known [1–3]
zero-order expression for µ0 , µ0 = Texp[–2πJs2/(TN)],
and ξ = "cs/µ, where ξ is the correlation length. From
this expression for µ0 an important conclusion follows:
in the regime of weak coupling the correlation length ξ
is much larger than the lattice constant a.

To close the theory, it is helpful to define the polar-
ization operator Π(q) of the W field Aλquad =

− Π(q)λ(q), and the Green function of the λ

field is Π(q)–1. In the lowest approximation, Π(q) is

simply a loop from two Green functions  =

2NT GΩ(q – q '). The main contribution in
1/2s for Π0(q) comes from the thermal fluctuations
even at low temperatures T, because the integral
strength of such fluctuations is fixed by the saddle point
condition (12) and does not depend on the temperature.
The explicit form for Π0(q) can be obtained in two lim-

iting cases, "q @ T and "q ! T, where q2 = w2 + k2.
In the first case, the momentum q ' ~ T/cs ! q, and we
can separate summation and integration over q' and put
q' = 0 in GΩ(q – q ') in Eq. (14). The result is extremely
simple:

(13)

Notice that it exceeds the quantum contribution in
Eq. (14), Π0(q) = N/4q, by a large parameter 16s(/Nq.
For small q ! cs/a and q ! kT, our results coincide
with [3].

The dynamical spin susceptibility χij(ω, k) for all
values of ω and k can be calculated. In the lowest order
in 1/2s, we can use the lowest order relation
n(W(τ, l), M(τ, l), τ, l) . exp(ial) · qAFW(τ, l) –
[W(τ, l) × M(τ, l)], where qAF = (π/a, π/a) is the AF
vector (7). Calculating the average of two vectors n, we
get the dynamical spin susceptibility as a sum of two
terms χij(ω, k) = δij[χA(ω, k) + χF(ω, k)]. The spin sus-
ceptibility χA(ω, k) is responsible for the AF fluctua-

tions. It is proportional to the Green function  ana-
lytically continued to imaginary ω and shifted by the

1
2
--- λ∗ q( )

q∑

GΩΠ0 q( )

GΩ q'( )
q'∑

cs
2

Π0 q( ) 4GΩ q( )
2( 1 γk+( )

s ω2 ω0k
2+( )

---------------------------,= =

q @ kT , kT T /cs.=

Gq
Ω
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AF vector qAF. For the ferromagnetic spin susceptibility
χF(ω, k), we have a loop expression which can be cal-
culated on the basis of thermal fluctuation domination:
χF(ω, k) . –(2s2/N)GM(q) for q ≥ kT. As a result, we
have

(14)

where k* = k – qAF.
The theory of spin fluctuations in the disordered

QAF at sufficiently low temperature T ! ( allows one
to perform the scale separation. In this case, kT ! π/a,
the thermal fluctuations can be considered in a “renor-
malized classical” manner [2]. The magnitude of the
quantum fluctuations at q ≤ kT is small as compared
with the classical fluctuations. In this situation, the
parameters of the effective long-wavelength, low-fre-
quency sigma model are renormalized by the quantum
fluctuations. This renormalization is performed with
respect to the parameter 1/2s, but the interaction of the
thermal fluctuations with the scales |k | ≤ kT and ω ≤ T
is over parameter 1/N, where N is the number of com-
ponents of the n field of the long-wavelength, low-fre-
quency nonlinear sigma model. This picture follows
directly from the approach of this paper.

Unfortunately, the continuum approximation in
time does not work when we calculate corrections to
the basic approximation. The reason for this observa-
tion is in the canonical structure of the Lagrangian (8)
and the Green function (11): the sums over ω including
this Green function are ambiguous and must be defined
at the final time step ∆. Instead of Eq. (4) for the action
A(n), we shall use a more accurate expression for A(n),
in which the integral over τ is changed to the sum over
τ = j∆, j = 0, 1, …, Nτ – 1, where ∆Nτ = β. Now +kin( j, l)
is not Berry phase and consists of two parts, +kin =
+mod + +pha. The first term is purely real and the second
term is purely imaginary:

(15)

χA ω k,( )
Js2z 1 γk∗+( )

2 ω2 ω0k∗
2 iωδ+–( )

----------------------------------------------,–=

χF ω k,( )
Js2z 1 γk–( )

N ω2 ω0k
2 iωδ+–( )

----------------------------------------------,–=

+mod
s
∆
--- 1 np np⋅+( )/2[ ] ,ln

p a b,=

∑–=

+pha
s

2∆
-------

RpRp
*

Rp*Rp

------------- 
  .ln

p a b,=

∑–=
Here, the quantity Rp =  · (mp + ikp) for p = a, b; vec-
tors n, m, k were defined in the introduction of the
SCS; the underlined quantities n, m, k correspond to
the time ∆( j + 1), and the usual ones correspond to the
time ∆j. Notice that the Lagrangian +mod can be
expressed in terms of vectors na, b only, but +pha cannot.

The Hamiltonian *(n) can be obtained on the basis
of the following relation for the matrix element of the

spin operator :  = 6666( , n) , where the

vector 6666( , n) = (  + n – i[  × n])/(1 +  · n). If we
substitute them into the matrix element of the Heisen-
berg Hamiltonian, we obtain

(16)

It was assumed that all vectors np , ma , kp for p = a, b
entering into Eqs. (15)–(16) are functions of the
dynamical variables W and M according to Eq. (7). For
example, expansion of +pha in the vector M has a rather
complicated form, but one can prove that it is regular
and contains only odd powers of M.

By expanding the Lagrangians +mod, +pha (15) and
the Hamiltonian (16) in the vector M up to second
order, we get +quad = (+kin + *)|quad:

(17)

According to the analysis performed above, it is neces-
sary to add to the Lagrangian +quad (17) the quadratic
part of the Lagrangian +λ and the gauge Lagrangian
+ga generalizing for the case of finite time step,

which also kills the strongest interaction between the W
and M fields. The total quadratic Lagrangian is +tqu =
+quad + +ga + +λquad. The Green function for this
case is

np

Ŝ n〈 |Ŝ n| 〉 n n n〈 〉
n n n n

* n( ) Js2
6666 n n,( ) 6666 n' n',( ).⋅

l' l〈 〉∈
∑=

∆+quad s 1 W W⋅ M2 M M⋅–+–[=

+ i W M⋅ W M⋅–( ) ] ∆Js2 W W⋅ W W'⋅–[
l' l〈 〉∈
∑+

+ M M⋅ M M' i W M⋅ W M⋅–( )–⋅+ ] .

+ga s/∆( ) W M⋅( )2 W M⋅( ) W M⋅( )–[ ]=

+ Js2 W M⋅( ) W M⋅( ) W M⋅( ) W' M'⋅( )+[ ] ,
l' l〈 〉∈
∑

(18)
Ĝq

1
2sL q( )
----------------

1 cω– ∆( cω γk+( )+ sω 1 ∆(–( )–

sω 1 ∆(–( ) 1 cω– ∆( cω γk–( ) ∆µ0
2/2(+ + 

 
 
 

,=

L q( ) . 1 ∆( ∆µ0
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Here, cω = cos(ω∆) and sω = sin(ω∆); the quantities Qk,
, and the bare frequency ω0k were defined in

Eq. (11). At ∆ω ! 1, this Green function Gq transforms
into Eq. (11), to the normalization factor 1/∆. The
Green function (18) is well defined in the sense that the
summation over ω in the expressions including it must
be performed in the limits –π/∆ ≤ ω ≤ π/∆. The result of
such averaging depends crucially on the contribution at
large ω . π/∆. For example, we have 〈MiMj〉  =
(1/4s)δij(1 + c0 – c1),  = (1/4s)δij(c0 – c1). We
see that the average 〈M2〉  discussed above, in fact, cor-
responds to the average  but the average 〈M2〉
is different.

The free energy of QAF in the paramagnetic state
has three contributions, FAF = –Tln(Z) = FΩM + Fλ + Fga,
Z = ZΩMZλZga. In the lowest approximation in 1/2s, ZΩM,
Zλ, and Zga are powers of determinants. The explicit
form of these determinants leads to

(19)

One can verify that FΩM has a finite limit at ∆  0,
∆Nτ = β. Fga and Fλ do not have a finite limit at ∆  0,
∆Nτ = β separately, but their sum has a finite limit. After
some transformation, the free energy FQAF of QAF in
the lowest order in 1/2s can be presented in the form
FQAF = ((N – 1)/N)FΩM + Fλl, where

(20)

Here, 2Ns is the number of lattice sites, and the polar-
ization operator Π0(q)was defined above. The tempera-
ture-dependent part of free energy (20) at low tempera-
tures T ! ( is proportional to FAF ≈ NsT 3/(. Such a
contribution has two origins: one from FΩM and another
one from Fλl.

Now, we present the result of the calculation of cor-
rections to the mass operators of the W and M fields. In
the lowest order in 1/2s, these corrections can be pre-
sented as renormalization of the initial quadratic
Lagrangian (17). It is necessary to have the Lagrangian

Pk'

MiM j〈 〉

M M⋅〈 〉

FΩM

TNNs

2
-------------- L q( )[ ] ,ln

ωk
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Fga

T Ns

2
---------- 2sQ q( )[ ] ,ln

ωk

∑–=

Fλ
T Ns

2
---------- s2Π0 q( )[ ] .ln

ωk

∑=

FΩM Ns(–=

+ 2Ns ω0k/2 T 1 ω– 0k/T( )exp–[ ]ln+{ } ,
k

∑

Fλ l

T Ns

2
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s ω2 ω0k
2+( )Π0 q( )

2( 1 γk+( )
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+mod and the Hamiltonian * up to the fourth order in
field M, and the Lagrangian +pha up to the third order.

The effective Lagrangian +eff in the first 1/2s
approximation is

(21)

where the constants a0, …, e2 are ai =  + gαi, bi =

 + gβi, ei =  + gγi, where g = (N – 1)/4s, i = 0, 1, 2, 3.

The constants , ,  follow from Eq. (17). The
explicit form of the constants αi, βi, γi will be presented
in the complete version of this paper.

We shall give the explicit result for the correlation
radius in this order in 1/2s on the basis of Eq. (12). The
contribution of different frequencies ω and momenta k
in this constraint relation can be separated into two
parts. The first part is the high frequency and momen-
tum part. To calculate this contribution it is sufficient to
take the Green function GΩ(q) in bare approximation
(18), because this contribution, is of the order of 1/2s.
The second contribution, which is proportional to the
distribution function nk, can be considered in the con-
tinuum approximation, but with 1/2s corrections taken

into account: GΩ(q) . 1/[2a2χ⊥ ∆(ω2 + ), χ⊥  = / ,

 = k2 + µ2. Here,  = Js2a23;  =

a23b1234(2a2/z, where a23 = a2 + a3, b1234 = b1 + b2 +
b3 + b4. Now, instead of Eq. (12), we have

(N/4s )  = R, R = 1 – g(1 + c0 + c1). The
factor R includes in itself the direct short-wavelength
renormalizations. Performing the integration, we have
µ = Texp[–2πρs/TN], ρs = R, ξ = "cs/µ. The actual
temperature dependence is changed in the preexponent
factor (T  () if we take into account the long-wave-
length fluctuations in the next order in 1/N approxima-
tion [3].
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is demonstrated by the simple example of a convection problem. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 44.25.+f; 47.27.Te
In recent years, some paradoxical experimental
facts were reported in the geophysical literature [1, 2]:
“Readings of instruments lowered into a well (in the
Antarctic ice shelf, L.I.) revealed an unexpected para-
dox: temperature of seawater under ice is higher in win-
ter than in summer” [2]. In other words, one may speak,
in a sense, about the negative heat capacity of this geo-
physical medium.

In this letter, the simplest example of convection in
a nonequilibrium stratified medium is considered to
demonstrate that such effects are possible when both
the temperature and the impurity (salt) concentration
make contributions (of opposite signs) to density strat-
ification.

Let us consider an infinite volume of a solution
whose density ρ, as it is customarily accepted [3–5],
linearly depends on temperature T and impurity con-
centration s:

(1)

Here, α is the thermal expansion coefficient of the
medium and β is the corresponding coefficient for the
impurity concentration (in oceanology, it is called the
coefficient of compression salinity). The zero index
denotes constant (“reference”) values of the corre-
sponding quantities. In the simplest models of stratified
media, it is assumed that the temperature, impurity con-
centration, and density linearly depend on the vertical
coordinate z (the z axis is in opposition to the gravita-
tional force):

(2)

where the constant gradients1 γT = d /dz and γs =
d /dz; the bars denote the corresponding “background”

1 If the γT and γs gradients are constant, then the problem may arise
of unlimited increase or decrease in the temperature, impurity
concentration, and density at z  ±∞. This formal difficulty is
insignificant, because, in reality, one deals, of course, with layers
of finite thickness.

ρ ρ0 1 α T T0–( )– β s s0–( )+[ ] .=

ρ z( ) ρ0 1 αγT– βγs+( )z+[ ] ,=

T
s
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values (in order to differentiate them from the perturba-
tions introduced by heat release; see below).

For simplicity, let us restrict ourselves to the situa-
tion where the density stratification is neutral (the tem-
perature and the impurity concentration stratifications
cancel each other in the density field):

(3)

In addition, it is sufficient to consider in this work the
convection from a heat source of a certain simple form.
Let us consider an instantaneous source uniformly dis-
tributed along the vertical z axis:

(4)

where δ symbolizes the delta function, r is the distance
from the z axis, and Q0 has the meaning of a source
amplitude. Since the source does not depend on the z
coordinate, the solution can also be sought in the z-
independent form. The substantiation and the limits of
applicability of such a “one-dimensional” convection
regime are discussed, e.g., in [6, 7].

The set of equations of hydrodynamics and heat and
impurity transport is written in the approximation that
is ordinarily used in the convection problems, i.e., in
the Boussinesq or free-convection approximation
[3−5]. In this approximation, the compressibility of the
medium is ignored but the dependence of its density on
the temperature and impurity concentration is taken
into account. The continuity equation in this approxi-
mation is written as divv = 0, where v is the velocity
vector. It then follows, in conjunction with ∂/∂z = 0, that
the radial (perpendicular to the z axis) motion is absent.
In this case, the above-mentioned set of equations takes
the form (a more detailed deduction for the case of a
single-component medium is given, e.g., in [7])

(5)

(6)

αγT– βγs+ 0; ρ z( ) ρ0 const.= = =

Q r t,( ) Q0δ r( )δ t( )/2πr,=

∂w
∂t
------- ∇ ν∇ w( ) g αT ' βs'–( ),+=

∂T'
∂t
-------- γTw+ ∇ κ∇ T '( ) Q,+=
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(7)

Here, w is the velocity z-component (the remaining
components in this problem are zero), t is time, and the
deviations from the background state are primed. It
should be emphasized that the complete set of equa-
tions of hydrothermodynamics and impurity transport
is reduced to a rather simple (linear, if the exchange
coefficients ν, κ, and χ are independent of the velocity
and other unknowns) set of Eqs. (5)–(7) owing solely to
the symmetry of the problem, i.e., without any assump-
tions about the smallness of the perturbation ampli-
tudes.

The boundary conditions are, first of all, formulated
as a perturbation decay far from the source (at r  ∞).
In addition, the symmetry considerations give for t > 0

(8)

The posed problem can easily be solved if the
exchange coefficients are constant and equal to each
other in different substances, i.e., if ν = κ = χ = K =
const (this simplification is commonly accepted in geo-
physical applications when dealing with the effective
coefficients of turbulent exchange). Let us multiply
Eq. (6) by α and Eq. (7) by β and subtract the latter
from the former. Making use of Eq. (3), one obtains the

∂s'
∂t
------ γsw+ ∇ χ∇ s'( ).=

∂w
∂r
------- ∂T '

∂r
-------- ∂s'

∂r
------ 0, r 0.= = = =

Time evolution of temperature perturbation on the r = 0 axis.
Temperature is normalized to Q0(αgγT)1/2/4πK and time is

normalized to (αgγT)–1/2. The dashed line illustrates a simi-
lar curve for a nonstratified medium.
following equation for the dimensionless buoyancy b =
αT ' – βs':

(9)

This is the standard diffusion (heat conduction) equa-
tion, whose solution for instantaneous source (4) has
the form

(10)

To a constant multiplier, b has the meaning of a source
in Eq. (5). One can readily verify that the solution of the
latter can be expressed as

(11)

Let us now find the temperature perturbation. With
regard to Eq. (11), Eq. (6) can be recast as

(12)

The solution of this equation can be represented as a
sum of two terms corresponding to two sources on the
right-hand side of Eq. (12). One of these terms corre-
sponds to the source Q; this is the well-known Green
function of the heat equation. It is straightforward to
verify that the second source(–gγTtb = –γTw) makes the

– gγTt2b = – γTtw contribution to the solution. As a

result, the temperature perturbation caused by heat
release has the form

(13)

The expression for the impurity concentration pertur-
bation can be obtained in a similar manner [of the two
terms in Eq. (13), the corresponding expression con-
tains only an analogue of the second term].

The first term in Eq. (13) needs no comment
because it allows for the diffusion of heat released on
the z axis at t = 0. The second term describes the tem-
perature changes induced by thermal advection, i.e.,
heat transfer caused by the vertical convective motions
in the stratified medium. A peculiarity of the second
term is, first, that its amplitude increases rather than
decreases (as does the first term) with time. The pres-
ence of an increasing response to an infinitesimal initial
perturbation is an indication of system instability. In
this respect, one may speak about a new (apparently,
not discussed before) type of instability.

Another specific feature of the second term in
Eq. (13) is that it may be opposite in sign (at γT > 0) to
the initial heat release.

∂b
∂t
------

K
r
---- ∂

∂r
-----r

∂b
∂r
------ αQ.+=

b
αQ0

4πKt
------------- r2/4Kt–( ).exp=

w gtb
αgQ0

4πK
------------- r2/4Kt–( ).exp= =

∂T '
∂t

--------
K
r
---- ∂

∂r
-----r

∂T '
∂r

-------- gγTtb– Q.+=

1
2
--- 1

2
---

T '
Q0

4πKt
------------- r2/4Kt–( )exp

1
2
---

αgγTtQ0

4πK
--------------------- r2/4Kt–( )exp–=

=  
Q0

4πKt
------------- r2/4Kt–( ) 1

1
2
---αγTt2– 

  .exp
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The time evolution of the temperature perturbation
on the z axis is displayed in the figure for γT > 0. For
short times, the first term in Eq. (13) dominates; i.e., the
usual “diffusional spreading” of the released heat takes
place. However, subsequently, the perturbation temper-
ature changes sign; i.e., in response to the released heat,
the negative deviation of temperature increases in the
system (a colder fluid is admitted from below). In this
respect, one may speak about the effective negative
heat capacity of the medium.

The example of the convection problem considered
above (a heat source of infinite length in an infinite
medium) may appear to be quite specific and artificial.
Nevertheless, this example was taken only for simplic-
ity and with the aim of obtaining an exact analytic solu-
tion. One can easily verify that, in “doubly nonequilib-
rium” media (e.g., media with stratified temperature
and impurity concentration), a similar result can be
obtained for the other well-known convection forms as
well. For instance, the models of convective jets and
“thermics” described in monograph [4] can readily be
generalized to the case of a binary mixture, where, in
addition to the temperature stratification, the density
stratification is also governed by the vertical depen-
dence of impurity concentration. In the simplest situa-
tion, where the overall density stratification is neutral
while the temperature stratification is stable, results
similar to the ones presented above can easily be
obtained for jets and thermics. Indeed, after receiving
JETP LETTERS      Vol. 72      No. 10      2000
extra heat, the corresponding volume of a medium, evi-
dently, floats up. It is then quite possible that this vol-
ume becomes colder than the ambient medium (since it
transfers up a colder fluid) but continues to float up (by
virtue of the contribution from the negative impurity
concentration perturbation to the buoyancy). Thus, in
response to the extra heat received by the fluid, the neg-
ative deviation of temperature rises! This result is phys-
ically explicable but, at the same time, is, in a sense,
unexpected.
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A variational method is developed in order to investigate the nonlinear dynamics and stability of plasma using
hydrodynamic plasma models, namely, the one-fluid, Hall, and electron MHD models. The key idea of the
method is to adequately take into account variational symmetries and the associated conservation laws inherent
in these hydrodynamic models. This approach is applied to derive variational criteria for the stability of a
steadily moving plasma and to propose a variational method of the adiabatic separation of fast and slow
motions, which makes it possible to simplify (reduce) the basic hydrodynamic models. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.30.-q; 52.55.Dy
1. INTRODUCTION

Numerous processes in a magnetized plasma can be
adequately described using various MHD models.
Thus, the equations of an ideal one-fluid MHD model
describe the steady states and the macroscopic dynam-
ics of the plasma, as well as a wide variety of plasma
oscillations and waves, among which fast ideal MHD
instabilities are usually the most dangerous and
destructive for both laboratory and space plasmas. In
order to provide a more adequate description of the
plasma dynamics, along with the one-fluid MHD
model, one can use multifluid plasma models, in partic-
ular, the Hall MHD (HMHD) and electron MHD
(EMHD) two-fluid models. Dynamic problems that
involve a small parameter can often be solved using
simpler (reduced) models.

Since there is a wide variety of MHD models
describing numerous dynamic plasma processes, it is
necessary to develop fairly general and efficient meth-
ods for their theoretical analysis. In this way, it should
be kept in mind that, under the conditions prevailing in
space plasmas and magnetically confined high-temper-
ature plasmas, the dissipative processes associated with
Coulomb collisions are much slower than the dynamic
processes. In this case, the dynamic processes
described by an ideal (dissipation-free) model should
play a governing role, while the dissipative processes
are responsible for the slow evolution of the invariants
of the “ideal” motion (in particular, bifurcations of the
dynamic state of the system).

Lagrangian methods used in the mechanics of con-
tinuous media (primarily, variational methods) seem to
be most appropriate for the analysis of ideal MHD
models. We emphasize that, in contrast to the widely
held opinion, applying variational methods to ideal
0021-3640/00/7210- $20.00 © 20530
MHD systems does not reduce merely to the derivation
of the integral criteria, such as the so-called “energy
principle” [1], which makes it possible to investigate
the linear stability of the steady equilibrium states. One
of the most important steps in studying Lagrangian sys-
tems (to which all of the ideal MHD models are related)
is a search for variational symmetries, because, accord-
ing to Noether’s theorem, any variational symmetry
(i.e., such a transformation of independent variables in
the Lagrangian under which the action is conserved)
generates a certain dynamic conservation law. How-
ever, the form of the law and its very existence are far
from being a priori clear. Of course, the existence of
conservation laws imposes certain restrictions on vari-
ations of the physical quantities, which qualitatively
affects the stability and nonlinear dynamics of the sys-
tem. For example, a system possessing relabeling sym-
metry may have solutions corresponding not only to a
static equilibrium state but also a dynamic state with
steady flows. The method of the adiabatic separation of
fast and slow motions in Lagrangian systems is concep-
tually very similar to the search for variational symme-
tries and makes it possible to construct the above-men-
tioned reduced MHD models without violating the
variational symmetries of the basic model.

The effectiveness of variational methods is most
strongly manifested when analyzing the stability of a
complex continual system, in which case the powerful
mathematical apparatus of the Lyapunov stability the-
ory may be employed in full measure. Unlike the
energy principle, the methods of the Lyapunov theory
make it possible to derive sufficient conditions for both
linear and nonlinear stabilities and can also be used to
treat the problems inherent in multifluid models and
investigate the stability of states with steady flows. In
000 MAIK “Nauka/Interperiodica”
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the latter case, in constructing the Lyapunov functional,
it is very important to take into account all of the con-
servation laws in order to minimize the freedom in the
functions to be varied and to derive a sufficient stability
condition that is as close to the necessary condition as
possible (or even to arrive at the necessary and suffi-
cient stability criterion).

In this paper, we briefly review recent results con-
cerning the application of variational methods to the
problems of the stability and nonlinear dynamics of
plasmas described by different ideal MHD models. We
focus on the original results obtained in studies sup-
ported by the Russian Foundation for Basic Research
(under project nos. 97-02-17238 and 97-02-17730). In
Section 2, we briefly describe the formalism for seek-
ing the variational symmetries and relevant conserva-
tion laws. In Section 3, we consider the variational
symmetries and conservation laws inherent in the most
familiar MHD models. In Section 4, we outline the fun-
damentals of the variational method of the adiabatic
separation of fast and slow motions in Lagrangian sys-
tems. As an illustration, we employ this method to
derive an improved version of the reduced Kadomtsev–
Pogutse–Strauss equations. In Section 5, we obtain
variational criteria for the MHD models under analysis.
In Section 6, we briefly discuss the results obtained.

2. VARIATIONAL SYMMETRIES

Here, we describe the formalism for seeking varia-
tional symmetries with the help of Noether’s theorem.
Only a brief and somewhat mathematized discussion of
this issue is given here, because the variational formal-
ism is described in detail in textbooks (see, e.g., [2, 3]).
For brevity, we introduce the following notation, which
will be used only in this section: x is a complete set of
independent variables {xi} (including time and spatial
coordinates in a certain volume Γ), u = u(x) is a depen-
dent vector function, and the subscripts denote differ-
entiation with respect to x. When varying the
Lagrangian density L = L(x, u, ui , uij…), we use the
symbol ∂ for the partial derivative with respect to the
corresponding argument, while the symbol di stands for
the total derivative with respect to the independent vari-
able xi.

Let us analyze the infinitesimal transformation
u(x)  u(x) + δu, which leads to the following varia-
tion of the action integral:

(1)

= 

δS δ L xd

Γ
∫ δL xd

Γ
∫= =

=  
∂L
∂u
------δu

∂L
∂ui

-------δui …+ + 
  xd

Γ
∫

E L[ ]δu di Wi L[ ]δu( )+( )dx.

Γ
∫
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Here,

(2)

is the so-called Euler operator and the flux in Eq. (1)
has the form

.

Up to this point, we used no boundary conditions.
First, we consider variations that vanish at the

boundary, δu |∂Γ = 0. Hamilton’s principle, which
implies that the action integral has an extremum at the
real motion, yields the equations of motion in the form

(3)

Note that, if the transformation at hand is a variational
symmetry, or, in other words, ensures the equality

(4)

then the following conservation law holds for real
motion:

(5)

(here, we took into account that E[diΛi] ≡ 0 ∀Λ i). This
assertion, which follows directly from Eqs. (1) and (4),
is the essence of Noether’s theorem in Boyer’s formu-
lation. Note that, following Boyer [4], we varied only
the dependent functions u(x). It is also important to
note that, for any conservation law, there exists at least
one variational symmetry generating this law in the
sense of Noether’s theorem [5]. Since any variational
symmetry maps a motion into a motion, it is, at the
same time, the Lie–Bäcklund symmetry for the Euler–
Lagrange equations E[L] = 0. The converse is not
always true. Hence, the variational symmetries can be
sought for only in the class of Lie–Bäcklund symme-
tries by applying the well-developed mathematical
technique.

A transformation δu that depends on x, u, ,

, …, , generates the nth order Lie–Bäcklund
symmetry if and only if the condition

(6)

is valid for any u satisfying Eq. (3). Here, m is the larg-
est order of the derivative of the function u in the Euler
operator (2), which is regarded as a function of x, u, ,

, …, , and U(m) is the extended infinitesimal
generator, which is equal, by definition, to

E L[ ] ∂L
∂u
------ di

∂L
∂ui

------- did j
∂L
∂uij

-------- …–+–=

Wi L[ ] ∂L
∂ui

------- d j
∂L
∂uij

--------– …+=

E L[ ] 0.=

δS diΛ
i xd

Γ
∫+ 0,=

di Wi L[ ]δu Λ i+( ) 0=

ui1

ui1i2
ui1…in

U m( )E L[ ] 0≡

ui1

ui1i2
ui1…in

U m( ) δu
∂

∂u
------ δui

∂
∂ui

------- … δui1…im

∂
∂ui1…im

----------------,+ + +=
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where δui = diδu, …, δ  = δ . The ≡ sign
in Eq. (6) indicates that all coefficients in front of x, u,

, , … should vanish. In terms of the extended
infinitesimal generator, the variational symmetries sat-
isfy the equation

(7)

They can be sought for only in the class of solutions to
Eq. (6).

Note that Eq. (6) is the equation E[L] = 0 linearized
in the vicinity of an arbitrary motion.

3. HYDRODYNAMIC MODELS AND THEIR 
SYMMETRIES

To construct a Lagrangian for a particular set of
hydrodynamic equations is not a trivial matter. The
main difficulty in this method usually lies in the choice
of an adequate set of variables that could be regarded as
being independent. The physical quantities entering the
desired set of equations are not independent variables,
because they are just related by these equations.

Below, we will follow the Euler method for intro-
ducing the labels of volume fluid elements (Lagrangian
coordinates). The motivation for the use of this
approach to constructing Lagrangians can be found in
[6], where other approaches are also outlined. Here, we
only note that the continuity equations, “frozen-in”
equations, etc., which are usually exploited in hydrody-

namic models and can be written as ∂t  + Lv  = 0

(where  is a frozen-in quantity and Lv is the Lie deriv-
ative relative to the vector field v), are integrable in
Lagrangian coordinates, so that the Lagrangian is con-
structed exclusively for the equation of motion. Of
course, for a dissipative system, these equations are
generally nonintegrable. However, if the dissipation is
sufficiently low, the structure of the hydrodynamic
motion is governed by the “ideal” Lagrangian, while
the dissipation manifests itself merely in the evolution
of both the quasi-equilibrium parameters of the system
and the invariants of the ideal motion.

The Lagrangian coordinate grid is formally intro-
duced by the three independent functions {αi(t, r)} with
a nonvanishing Jacobian J = ∇α 1 · [∇α 2 × ∇α 3] ≠ 0. The
independent functions should be frozen in the fluid:

(8)

The related covariant and contravariant bases are
defined as

(9)

where εimn is a completely antisymmetric unit tensor.
The Jacobian J satisfies the continuity equation ∂tJ +
divJv = 0. Consequently, if the Jacobian J is every-

ui1…im
dim

ui1…im 1–

ui1
ui1i2

U m( )L diΛ
i 0.≡+

T̂ T̂

T̂

∂tα
i v—α i+ 0, i 1 2 3., ,= =

ei —α i, ei
1

2J
------eimnem en,×= =
where nonzero at the initial instant, it does not vanish
for any sufficiently smooth vector field v(t, r), J(t, r) ≠
0, so that the Lagrangian grid is nondegenerate. An
important point is that all of the components of the

invariant tensor  in bases (9) are functions of the
Lagrangian coordinates solely [6].

The dynamic equations for the basis vectors follow
immediately from definitions (8) and (9):

(10)

The desired infinitesimal transformation x (x = ξiei) of
the independent functions {αi(t, r)} can be introduced
by the relationships αi  αi + δαi, where δαi = –ξi.
The variations of the density ρ and entropy η, which are
described by the conventional continuity and adiabatic
equations, and the variation of the velocity have the
form

(11)

where the superior dot denotes the partial derivative
(∂t)|r. The expression for the variation of the electro-
magnetic field depends on the specific hydrodynamic
models.

Below, we will find variational symmetries and the
related explicit conservation laws inherent in the most
widely used hydrodynamic model.

3.1. One-Fluid Magnetohydrodynamics

In the one-fluid MHD model, the magnetic field B is
assumed to be frozen in the fluid:

(12)

The variation of the magnetic field has the form

(13)

The adiabatic equation (∂t + (v—))η = 0 is often written
for the entropy function s(η) = p/ργ, where γ is the adi-
abatic index, in which case the Lagrangian with the
density

(14)

yields the following MHD equation of motion [7]:

(15)

We pass over from Λi to the temporal and spatial
components Λ0 and L in order to rewrite condition (7)
for the existence of variational symmetry in explicit

T̂

δtei ei—( )v v—( )ei, ∂te
i– — v ei⋅( ).–= =

δρ div ρx( ), δη– x∇ η ,–= =

δv ẋ v∇( )x x∇( )v,–+=

∂tB curl v B×[ ] divB 0≡( ).=

δB curl x B×[ ] .=

L
ρv2

2
-------- p

γ 1–
----------- B2

2
------––=

ρv̇ ρ v∇( )v ∇ p B curlB×[ ]+ + + 0.=
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form. Specifically, if there exist x, Λ0, and L satisfying
the equation

(16)

for any αi satisfying Eq. (15), then the set of MHD
equations possesses conservation law (5), which can be
written as

(17)

If, in addition, the last term on the right-hand side is
equal to div(vΛ0), then the quantity (Λ0 + ρxv) is an
Eulerian invariant (i.e., it is proportional to J, the pro-
portionality coefficient being dependent only on the
Lagrangian coordinates).

In the works reviewed here, a study was made, in
particular, of all of the first-order Lie–Bäucklund sym-
metries for the equations of the one-fluid MHD model.
Omitting a fairly involved procedure for seeking these
symmetries, we present one of the final results: the per-
missible symmetries can only be linear functions of the
derivatives of the coordinate functions {αi}; i.e., they
are represented as

(18)

where the scalars , , and ξ*i depend solely on
(t, r, {αj}).

As expected, the family of permissible symmetries
contains variational symmetries and scale transforma-
tions (scalings). Discarding the scalings, we arrive at
the following general variational symmetries for the
one-fluid MHD equations:

(19)

where b0 is a constant and b1–b3 are constant vectors.
Special attention should be paid to the transformation
x = x*. The contravariant components ξ*i depend only
on the labels of fluid elements and thus describe the
relabeling transformations [8]. These transformations
are peculiar in that they do not change the velocity. We
can readily show that if the relabeling transformations
also do not change the magnetic field, density, and pres-
sure, then they satisfy Eq. (16) and thus are variational
symmetries. The conservation laws (17) that refer to the
symmetries parameterized by the quantities b0, b1, and
b2 in expression (19) are the local conservation laws for

∂tΛ
0 divL v 2

2
------div ρx( ) ρv ẋ v∇( )x x∇( )v–+( )+–+

– Bcurl x B×[ ] 1
γ 1–
----------- x∇ p γpdivx+( )+ 0=

∂t ρxv Λ0+( ) div ρv xv( )( )+

+ div x B2 γp
γ 1–
----------- ρv2

2
--------–+ 

  B xB( )– L+ 
  0.=

x ξ iei≡ ck
i α̇ k

ck
ij— jα

k ξ*i
+ +[ ]ei,=

ck
i ck

ij

x b0v
i b1 b2 r× b3t+ +( )—α i ξ*i α j{ }( ) ]ei+ +[=

=  b0v b1 b2 r× b3t x* i.+ + + +
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the energy, momentum components, and angular
momentum:

(20)

(21)

(22)

The parameter b3 in expression (19) corresponds to the
conservation law, which reduces to Eq. (21).

In contrast to the widely held opinion, the conserva-
tion law generated by the relabeling symmetry,

(23)

has a certain physical meaning: it determines additional
[in comparison with the conservation laws (20)–(22)]
relationships between the physical quantities and gov-
erns the structure of the steady motion and its very
existence. The specific form of this conservation law is
directly related to the magnetic field topology, which
does not change with time in the ideal MHD model. For
an arbitrary magnetic field, this law indicates conserva-
tion of the cross-helicity,

, (24)

provided that the entropy is constant along the mag-
netic field lines. In the important case of magnetic con-
figurations with an omnigenous topology of the toroi-
dal magnetic flux surfaces ψ = const, we arrive at an
additional conservation law:

(25)

∂t
1
2
---ρv2 p

γ 1–
-----------

1
2
---B2+ + 

 

+ div v
1
2
---ρv2 γp

γ 1–
----------- B2+ + 

  B vB( )–
 
 
 

0,=

∂t ρ b1v( )[ ]

+ div ρv b1v( ) b1 p
1
2
---B2+ 

  B b1B( )–+
 
 
 

0,=

∂t ρ b2 r×[ ]v( )[ ] div ρv b2 r×[ ]v( )




+

+ b2 r×[ ] p
1
2
---B2+ 

  B b2 r×[ ]B( )–




0.=

∂t ρx*v( ) div ρv x*v( )




+

+ x* B2 γp
γ 1–
----------- ρv2

2
--------–+ 

  B x*B( )–




 = 0,

∂t vB( ) div v vB( ) B
γ

γ 1–
----------- p

ρ
--- 1

2
---v2– 

 +
 
 
 

+ 0=

∂t vD( )

+ div v vD( ) D B2

ρ
------

γ
γ 1–
----------- p

ρ
--- 1

2
---v2–+ 

  B
ρ
---- DB( )–+

 
 
 

 = 0,



534 ILGISONIS, PASTUKHOV
where the divergence-free vector D satisfies the frozen-
in equation (12), is tangential to the flux surfaces ψ =
const, and is linearly independent of B. The way to con-
struct the vector D is described in detail in [9]. The con-
servation law (25) was first derived by Hameiri [10].
Later, we independently arrived at this law and used it
to obtain the variational stability criterion [9].

We emphasize that, by construction, the variational
relabeling symmetries determine the structure of the
steady plasma motions (flows), because they are the
only symmetry transformations that do not change the
physical parameters of the system, which are therefore
also invariant under finite relabeling transformations.
In particular, for an omnigenous topology of the toroi-
dal magnetic flux surfaces, the structure of the steady
MHD flows has the form

(26)

where κ and η are the flux-surface functions used to
parameterize the flows (26).

In the one-fluid MHD model, Eqs. (20)–(23)
exhaust the full family of conservation laws referring to
first-order Lie–Bäucklund symmetries.

3.2. Hall Magnetohydrodynamics

In the HMHD model, the continuity and adiabatic
equations, as well as the equation of motion, coincide
with those in the one-fluid MHD model, while Eq. (12)
for the magnetic field is replaced by the following equa-
tion, which implies that the magnetic field is frozen in the

electron plasma component ve = v – curl B :

(27)

where a = e/m is the specific ion charge and the sub-
script e refers to the electron quantities. Although the
HMHD equations are similar in form to one-fluid equa-
tions, the HMHD model is a particular case of the two-
fluid hydrodynamic model with inertialess (me  0)
cold (pe  0) electrons, which serve merely as a neu-
tralizing background for the ions. In the formal limit
a  ∞, the HMHD equations transform into the one-
fluid MHD equations.

In the HMHD model, the Lagrangian density can be
written as [6]

(28)

where ρ and η are specified on the ion Lagrangian grid
(8) with bases (9) and the vector potential A defined by
B = curlA is specified on the electron Lagrangian grid,

(29)

V κ ψ( )B/ρ η ψ( )D/ρ,+=


 1

aρ
------ 



∂tB curl v
1

aρ
------curlB– 

  B× ,=

LHMHD
ρv2

2
-------- p

γ 1–
----------- aρ v ve–( )A

curlA( )2

2
--------------------,–+–=

A Ai α e
j{ }( )ee

i .=
Straightforward differentiation makes it possible to see
that the curl of the vector potential (29) indeed satisfies
Eq. (27).

The variations of the electron coordinates { } are
not completely independent, because the quasineutral-
ity condition

(30)

relates the electron and ion displacements:

(31)

where c is an arbitrary vector.
Varying Lagrangian density (28) with respect to x

and c, we arrive at Eqs. (15) and (27), which serve as
the Euler equations for the HMHD Lagrangian. If there
exist x, c, Λ0, and L satisfying the variational symme-
try condition dtΛ0 + divL + δLHMHD = 0, then the related
conservation law has the form

(32)

Of course, the structure of the one-fluid MHD vari-
ational symmetries survives in the two-fluid HMHD
model. However, in the HMHD model, additional free-
dom associated with the electron component can in
principle lead to new variational symmetries. For
example, under the transformation

(33)

which determines the general relabeling symmetry of
the electron fluid, the conservation law (32) passes over
to

(34)

In particular, the choice  = Ai leads to the conserva-
tion law for the magnetic cross-helicity A · B. For any
relabeling transformation (33), conservation law (34)
holds automatically and reflects the fact that, as is
expected, the quantity A · curlc*/ρ is a passive scalar.
Consequently, conservation law (34) does not intro-
duce additional restrictions if the vector potential A is
already written in the form (29). In contrast, the relabel-

α e
j
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


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j{ }( )ee

i , x 0, Λ i 0,= = = =

∂t A curlc*⋅( ) div v
1

aρ
------curlB– 

  A curlc*⋅ 
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ing of the ion fluid generates the nontrivial conserva-
tion law

(35)

where u = v + aA and K = v2/2 + γp/ρ(γ – 1) + aA · ve

is the Bernoulli function.

3.3. Electron Magnetohydrodynamics

The EMHD model describes another limiting case
of motion, specifically, a quasineutral plasma motion
on time scales short enough for the motion of the rela-
tively heavy ions to be neglected in comparison with
the fast electron motion [11]. The EMHD equations can
be derived by varying the Lagrangian density

with respect to both the vector potential A of the mag-
netic field and the vector potential c of the electron
fluid displacement, which is restricted by the quasineu-
trality condition (30): since the ions are immobile, we
have ∂tρe = 0 and divρexe = 0, so that

which agrees with Eq. (31) when x = 0.
Following the above procedure, we can show that

the EMHD equations

(36)

(37)

where, for brevity, we introduce the notation

(38)

possess the conservation law

(39)

For the EMHD model, the class of general first-order
Lie–Bäcklund symmetries and the variational symme-
tries for this class were investigated in [12]. It was
found that the permissible displacements xe and the
associated conservation laws are similar in structure to
those described by formulas (19) and (20)–(22) in the
one-fluid MHD model. When —η = 0, the relabeling

transformation xe =  and δA = 0 is the variational
symmetry, which generates the conservation law

(40)

Using this law, we can integrate two components of ue:

u2, 3 = ({ }), where the coordinate  is chosen

∂t ρx* u⋅( )
+ div ρv x* u⋅( ) ρx* v u⋅ K–( )–[ ] 0,=

LEMHD
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2
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∂t ue curlc⋅( ) div ve ue curlc⋅( ) B δA×+{+

+ ∂tue ve W×– — ueve( ) Te—ηe–+( ) c× } 0.=

xe*

xe*

∂t ue curlce*⋅( ) div ve ue curlce*⋅( )( )+ 0.=

u2 3,* α e
i α e

1

JETP LETTERS      Vol. 72      No. 10      2000
to be aligned with the gradient of the entropy ηe. This
circumstance is important, in particular, because it
makes the EMHD model simpler than the ideal MHD
model, in which such local integration cannot be car-
ried out [9].

We stress that all of the variational symmetries
found in this section belong to the class of point and
contact transformations, in which case we can antici-
pate that there will be no other symmetries of the same
or higher orders, because, in the opposite case, the
Olver theorem [13] implies an infinite family of non-
trivial symmetries.

4. ADIABATIC SEPARATION OF MOTIONS
AND REDUCED MHD MODELS

The method of the adiabatic separation of weakly
coupled fast and slow motions is widely applied in clas-
sical mechanics. The method is based on revealing rap-
idly oscillating stable degrees of freedom in the
dynamic system under analysis. The characteristic
oscillation period Tf of the fast motion should satisfy
the condition Tf /τs ~ ε ! 1, where τs is the characteristic
time of slow motions. Further analysis of the fast
degree of freedom involves the construction of an adia-
batic invariant, i.e., an approximate integral of motion,
which remains unchanged during a slow evolution (on
a time scale of about τs) of the system. This slow evo-
lution can be described by adiabatic equations of
motion that are derived from the complete set of basic
equations under the assumption that the adiabatic
invariant is an exact integral of motion of the system.

For continuous media, the method of the adiabatic
separation of motions was developed by Pastukhov
[14, 15], who drew an analogy with the search for vari-
ational relabeling symmetries. The essence of the
method can be briefly described as follows (the logical
development of the method is described in detail in
[15]). Let us consider a Lagrangian system with
motions on significantly different characteristic time
scales, whose ratio ε is small (ε ! 1). In the case, the
expression for the perturbed potential energy usually
contains terms on the order of unity and ε2, which cor-
respond to structurally different classes of motions.
Following the procedure of searching for a symmetry
transformation (see Sections 2, 3), we seek an infinites-
imal transformation δaαi(r, t) that does not change the
Lagrangian of the system through both the leading and
first orders in ε. In other words, we are interested in the
transformation satisfying the condition

(41)

If an “adiabatic” transformation of this sort does indeed
exist, then, in accordance with Section 2, it plays a role
of an approximate symmetry transformation for fast
motion. The reason for this is that the equations
describing the dynamics of fast motion on time scales

δa L( α i{ } , ∂tα
i{ } , ∇ α i{ } , ε)d3r

Γ
∫ O ε2( ).=
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shorter than τs can be derived from Hamilton’s princi-
ple by neglecting terms on the order of ε2 in the varia-
tion of the Lagrangian.

If the functions δaαi satisfying condition (41)
depend only on the generalized coordinates αi(r, t) and
slow time (i.e., δaαi = f i({αj}, εt)), then the functions
δaαi play the role of relabeling transformation for fast
motion (see Section 3). To continue drawing an analogy
with relabeling transformations, we introduce an adia-
batic field of the generalized velocities that has the
same functional structure as the transformation δaαi.
For fast motions, the adiabatic velocity field plays the
role of the steady-state (neutral) flows discussed in Sec-
tion 3.

Since the transformation δaαi is a subset of the ini-
tial set of arbitrary variations of the generalized coordi-
nates, the functions δaαi depend on a smaller number of
independent “adiabatic” generalized coordinates and
can be obtained from a smaller number of equations,
which can be derived from Hamilton’s principle in the
absence of fast motion by driving to zero the coeffi-
cients in front of the independent variations of the adi-
abatic generalized coordinates in the variation of the
action integral (1) taken with δαi = δaαi. The equations
constructed in this fashion describe the dynamics of
slow motion when no fast stable motions are excited.
Since the symmetry transformations that do not change
the Lagrangian are a subset of the set of the adiabatic
transformations δaαi just due to the way in which the
latter are constructed, the adiabatic equations of motion
possess all of the symmetry properties of the basic
equations. In particular, the adiabatic equations admit
solutions describing states with steady plasma flows
that are consistent with the basic equations of motion.
We emphasize that, if no fast motions are excited at the
initial state (this corresponds to a zero adiabatic invari-
ant of fast motions) and if fast motions remain stable
during the development of the adiabatic flows, then the
evolution of the system is approximately described by
the adiabatic equations on arbitrarily long time scales.

This procedure was applied by Pastukhov [14] to
derive an improved (adiabatic) version of the reduced
Kadomtsev–Pogutse–Strauss MHD equations [16–21],
which describe the dynamics of a tokamak plasma.
Under the condition β ≡ 2p/B2 ! 1, which is character-
istic of tokamaks, the most interesting dynamic pro-
cesses are associated with perturbations that are very
stretched out along the magnetic field (|∇ ||| ! |∇ ⊥ |) and
have characteristic frequencies peculiar to Alfvén
waves, ω ~ cA |∇ ||| (where cA is the Alfvén speed), or
lower. Since, in such processes, fast stable magneto-
sonic (compressional Alfvén) waves with the character-
istic frequencies ω ~ cA |∇ ⊥ | remain essentially unper-
turbed, we can exclude them from consideration with
the help of the procedure proposed for the adiabatic
separation of motions. In this case, the role of the small
parameter is played by the inverse aspect ratio ε =
Bp/BT ~ a/R, where a and R are the minor and major
radii of the toroidal plasma column. We also assume
that the transverse and longitudinal gradients of the per-
turbed quantities satisfy the condition |∇ ||| ≤ ε |∇ ⊥ | and
that β ~ ε2a |∇ ⊥ |.

We consider the variation of the standard
Lagrangian density (14) in the one-fluid MHD model.
According to [14, 15], the transformation under which
the dominant terms B · δB and ρv · δv in the Lagrangian
density variation become as small as ε2 can be repre-
sented in the form of the infinitesimal adiabatic dis-
placement

(42)

where δaα and δaζ are arbitrary functions of the
pseudo-Lagrangian coordinates and slow time and ζ is
a pseudo-Lagrangian function, which, by definition,
satisfies the equation ∂tζ + (v – V) · ∇ζ  = 0 and, in a
steady state, coincides with the traditional toroidal
angle ϕ. The remaining terms in the Lagrangian density
variation are also equal in order of magnitude to ε2.
Consequently, adiabatic transformation (42) can be,
roughly speaking, regarded as the relabeling transfor-
mation for magnetosonic waves. The adiabatic velocity
field corresponding to transformation (42) can be rep-
resented as

(43)

where φ has the meaning of the electric potential and hv
is the cross-helicity. We can readily see that the velocity
field va describes, in particular, steady flows (26),
because, for φ = φ0(ψ) and hv = V · B, we have va = V.

In order to switch from the basic one-fluid MHD
model to the adiabatic MHD model, we must use the
adiabatic (rather than arbitrary) velocity field (43). In
this case, the structure of the frozen-in, continuity, and
adiabatic equations, which are valid for an arbitrary
velocity field, remains unchanged correct to the
replacement of v by va. This replacement is most
strongly manifested in the frozen-in equation

(44)

In velocity field (43), the functions φ and hv are deter-
mined from the adiabatic equations of motion, which
follow from Hamilton’s principle. Driving to zero the
coefficient of δζ in the variation of the action integral
and taking into account the pseudo-Lagrangian charac-
ter of the functions ρ/(B · ∇ζ ) and p/ργ = s(ψ), we arrive

xa
1

B ∇ ζ⋅( )
-------------------- ∇ ζ ∇ δaα×[ ] Bδaζ–( ),=

va
1

B2
----- B ∇ φ ∇ ζ B ∇ φ⋅( )

B ∇ ζ⋅( )
---------------------– 

 × B
hv

B2
-----,+=

∂tB ∇ ζ ∇ B ∇ φ⋅( )
B ∇ ζ⋅( )
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at the following differential conservation law for the
cross-helicity:

(45)

which is also valid for the basic (unreduced) MHD
equations [see Eq. (24)]. Equating the coefficient of δα
to zero, we arrive at the second dynamic equation of the
adiabatic MHD model in the form of the conservation
law for the generalized momentum Pα, which is canon-
ically conjugate to the adiabatic coordinate α:

(46)

This equation can also be derived directly from the
unreduced vector equation of motion.

When solving particular problems associated with
the processes occurring on relatively short time scales,
some of the higher order terms in Eqs. (43)–(46) can be
omitted. It should be noted, however, that special care
is needed in doing this in order not to break the self-
consistent character of the resulting set of equations
and their symmetry properties. An example of such
simplification was considered in [15]. Along with rela-
tively universal small parameters, such as the ratio
Bp/BT in tokamaks and β, many plasma-related prob-
lems may contain additional small parameters associ-
ated, e.g., with the closeness to the instability threshold
for MHD modes. The additional parameters also pro-
vide the possibility of separating the motions adiabati-
cally, in which case the role of slow motions is played
by the most dangerous modes, for which the stability
condition can be violated. As an example, we can men-
tion the adiabatic equations that were derived in [15]
for modeling two-dimensional MHD plasma convec-
tion near the threshold for flute instability in systems of
the compact torus type.
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5. VARIATIONAL PRINCIPLES
FOR STABILITY

The standard variational method for stability studies
is based on the Lyapunov theory. The main difficulties
in applying the Lyapunov theory to continual systems
are associated not only with the construction of the
Lyapunov functional itself, but also with the choice of
an adequate set of independent variables with respect to
which the variations should be made. In isolated sys-
tems, the “natural candidate” for the Lyapunov func-
tional is the total energy (the Hamiltonian). On the
other hand, how to choose a correct set of independent
variables is less obvious, because the physical quanti-
ties contained in the Hamiltonian can be interdependent
due to the system dynamics. Such a dependence can be
reflected by the corresponding conservation laws. Of
course, even with an unjustifiably large set of physical
quantities to be varied, we will arrive at a sufficient
Lyapunov stability condition. However, this sufficient
condition seems to be of little physical importance,
because neglecting (partially or wholly) the relation-
ships between the physical quantities substantially
reduces the class of steady states admitted by the basic
equations and makes the stability criterion more strin-
gent compared to the expected one (i.e., far wider than
the necessity criterion) and even impossible to satisfy.

In connection with this, we can mention the follow-
ing well-known example. In ideal magnetohydrody-
namics, the stability of static (V = 0) plasma equilibria
can be studied using the energy principle [1], which
gives necessary and sufficient conditions (the criterion)
for MHD stability. (A proof of necessity of the criterion
is given in, e.g., [22]. In [23], it was proved that this cri-
terion is valid in the nonlinear case.) However, this
approach turned out to be inapplicable for describing
steady states with plasma flows. Even the linear stabil-
ity criterion derived by Frieman and Rotenberg [24] is
too stringent: it always fails to hold for plasma flows
whose equilibrium velocity V is not parallel to the mag-
netic field B. The reason is that, in [24], the functions to
be varied have an excessive freedom, i.e., without
allowance for certain conservation laws that character-
ize the real dynamics of the system.

There is a widespread opinion that an adequate
Lyapunov functional can be constructed using the
“Hamiltonian + family of Casimirs” scheme, i.e., the
Hamiltonian and the full family of kinematic invariants
of motion (see, e.g., [25]). Since a hydrodynamic sys-
tem is characterized by an infinite family of Casimirs
and the Casimirs can be nontrivially multiplied, only a
small family of Casimirs is usually utilized in practice.
However, as was mentioned above, the results obtained
with this approach are often of minor physical impor-
tance (see, e.g., [26], where even an equilibrium config-
uration is subject to restrictions). On the other hand,
choosing the Lagrangian coordinates as independent
functions automatically enables us to cover the full infi-
nite family of Casimirs [6] and the only meaningful
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conservation laws are those that reflect the dynamics of
the system and, in particular, are consistent with rela-
beling symmetries. It is this point in which the
“Hamiltonian + family of Casimirs” scheme differs
from the approach developed by Arnold [27], who took
into account the conservation of helicity in conven-
tional hydrodynamics, in which this conservation law is
dynamic in character. In ideal magnetohydrodynamics,
conservation laws (24) and (25) are also dynamic in
character; in [9, 28], these laws were taken into
account, which made it possible to substantially
improve the criterion derived in [24].

5.1. Variational Stability Criterion
in Hall Magnetohydrodynamics

Based on the above considerations, we derive the
variational stability criterion for the HMHD model.
Conservation law (35) implies the invariance of the
integral

(47)

where the velocity V of the steady ion flow is to be
determined and u = v + aA. Taking the Legendre trans-
formation of Lagrangian (28) and using integral (47),
we construct the Lyapunov functional

(48)

where the velocities are expressed in terms of the
canonical momenta P = –ρu and Pe = aρA.

We can easily see that the first variation of (48)
determines the general equilibria for the HMHD model
and the second variation can be minimized by the
choice δP = –ρδ(V + aA) + P(δρ/ρ) + δP1, where the
term δP1(x) should ensure that conservation law (35)
holds for the first and second variations. As a result, we
arrive at the stability criterion [29]
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Recall that δρ = –divρx, δV = (V∇ )x – (x∇ )V, and
δB = curlδA = curl δ(Pe/aρ) and that the variations are
made with respect to the independent variables x and c.
For simplicity, we have omitted the total spatial diver-
gences in order to illustrate the most important “vol-
ume” part of the criterion.

The only difference between expression (50) and
the related expression obtained in [9] from the ideal
MHD model is that the magnetic field has the form B =
curl[xe × B] and, accordingly, also depends on c. The
one-fluid MHD model corresponds to the limiting tran-
sition Ve  V, curlc  0, and δ2*1  0. The
question of how to choose the term δP1 was discussed
in detail in [9]; the choice δP1 = 0 refers to the criterion
derived in [24].

5.2. Variational Stability Criterion
in Electron Magnetohydrodynamics

For simplicity, we restrict ourselves to considering a
barotropic electron fluid Te = Te(η), in which case we
can integrate the three components of ue, because the
last term drops out of Eq. (36). The stability criterion
can be derived by varying the Lyapunov functional

(52)

with respect to the independent variables A and c:

(53)

For convenience, we have introduced the notation Bu =
W/ae and Au = u/ae. Making the first variation of func-
tional (52) leads to Eqs. (36) and (37), and minimizing
the second variation with respect to δA yields the
desired criterion:
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where δBu is defined in (53) and
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Criterion (54) was obtained and discussed in [30]. In
the limit ae  ∞, we have δBu  δB, so that crite-
rion (54) passes over to the familiar energy principle
[1], in which either the plasma pressure or the plasma
compressibility is neglected (the immobile ion approx-
imation).

In our previous studies, the approach described in
this section was also applied to derive variational stabil-
ity criteria for an anisotropic plasma (in the Chew–
Goldberger–Low approximation) [31] and for the case
of an “adiabatic” version [32] of the familiar energy
principle [1].

However, we must keep in mind that all of the above
stability criteria, being derived with allowance for the
corresponding conservation laws, are merely sufficient
conditions and, in particular situations, can be far wider
than the necessity criteria. This may stem from several
reasons.

(i) The necessary constraints that eliminate exces-
sive freedom in the variations of the momenta and dis-
placements are nonlocal and can, e.g., depend explic-
itly on time. Thus, it may be that the necessary and suf-
ficient variational stability criterion is in principle
impossible to derive.

(ii) The required constraints stem from nonlocal
conservation laws, which requires to take into account,
along with Lie–Bäucklund symmetries, nonlocal varia-
tional symmetries.

(iii) In Section 5, the stability criteria were indeed
derived using the integral consequences [like integral
(47)] of the conservation laws [like Eqs. (24) and (25)],
which are local in nature and, accordingly, should be
accounted for more accurately.

We think that taking into account the known conser-
vation laws (see Section 3) in more detail would be
fruitful to further improve the variational stability crite-
ria.

6. CONCLUSION

We have shown that variational methods can be suc-
cessfully used to analyze various problems of nonlinear
plasma dynamics described by different MHD models.
We mean, first of all, searching for variational symme-
tries and the related conservation laws, the construction
of variational stability criteria, the adiabatic separation
of motions, and the development of reduced MHD
models. In applying variational methods, we have dem-
onstrated that knowing the Lagrangian structure of
hydrodynamic plasma models allows us to derive gen-
eral expressions for the conservation laws inherent in
these models.

For the hydrodynamic models under investigation,
we have derived the equations for variational symme-
tries and the explicit conservation laws. An analysis of
the one-fluid MHD model and the EMHD model has
revealed the complete set of variational symmetries in
the class of the first-order Lie–Bäucklund symmetries.
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An important feature of all MHD models is that, along
with the well-known symmetries generating the conser-
vation laws for energy, momentum, and total angular
momentum, they admit the relabeling symmetries of
the volume fluid elements in three-dimensional geome-
try. The relabeling symmetries, in turn, generate the
conservation laws that provide more detailed informa-
tion about the invariance of the generalized momentum
components of the system under consideration. There-
fore, contrary to the previously accepted views, these
conservation laws are meaningful. Moreover, since
these symmetries (and the related conservation laws)
are very sensitive to the topology of the system and/or
to the particular initial distributions of plasma parame-
ters, it is the symmetries themselves (rather than an infi-
nite family of Casimirs, which is covered by introduc-
ing the Lagrangian coordinate grid) that lead to the
most important constraints on the permissible varia-
tions of the dynamic variables.

In our opinion, another important and promising
approach to investigating nonlinear MHD system is to
construct adiabatic MHD models, which make it possi-
ble to discard fast stable collective degrees of freedom
and thus to substantially simplify a description of the
dynamics of the system under analysis. The variational
method proposed here for the adiabatic separation of
fast and slow motions in Lagrangian systems is based
on the search for approximate relabeling symmetry
transformations for fast motion and provides a fairly
systematic and efficient approach to constructing adia-
batic MHD models. It is important to note that the
method of adiabatic separation preserves the symmetry
properties of the original dynamic system. The method
not only serves to derive the adiabatic version of the
reduced Kadomtsev–Pogutse–Strauss equations (which
has been done here for illustration), but can also find
many other applications.
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