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Particle trajectories are defined as integrable dxµdpµ = 0 paths in projective space. Quantum states evolving on
such trajectories, open or closed, do not delocalize in (x, p) projection, the phase associated with the trajectories
related to the geometric (Berry) phase and the classical mechanics action. Properties at high energies of the
states evolving on particle trajectories are discussed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.65.Bz; 03.75.-b
Quantal wave-packet revival [1] is the periodic re-
assembly of a state’s localized structure along a classi-
cally stable orbit. The phenomenon has been observed
experimentally in Rydberg atoms [2], as well as in one-
atom masers [3], and prompts the question whether
such revival is also possible for states evolving on open
trajectories [4], similarly to classical point particles. It
is shown in this letter that integrable dxµdpµ = 0 trajec-
tories in projective space do provide such a context, the
aspect being related to the differential geometry prop-
erties of manifolds [5], independent of the existence of
a Hamiltonian.

The revival of quantal wave packets is connected to
the concept of geometric phase [6] introduced by
Berry. Berry [7] has shown that, in addition to a Hamil-
tonian-induced dynamic phase, a quantum state evolv-
ing in parameter space on a trajectory that returns to the
initial state acquires an extra phase termed geometric
phase. Subsequent analysis has generalized the context
in which the phenomenon occurs, lifting the restriction
of adiabaticity [8], cyclicity, and unitarity [9]. An
important step was made by the kinematic approach
[10], which demonstrated that the Hamiltonian is not
needed in defining the geometric phase and underlined
the native geometric nature of the quantity by relating
it to the Bargman invariants [11, 12]. The acquirement
of a geometric phase by quantum states evolving on
closed trajectories in parameter space has been verified
experimentally in neutron interference [13], in two-
photon states produced in spontaneous parametric
down-conversion [14], etc. The latter paper [14] also
makes the important remark that experiments related to
nonlocality vis-à-vis the Bell inequalities [15] and the
Berry phase are connected, nonlocality in quantum

1 This article was submitted by the author in English.
0021-3640/00/7211- $20.00 © 20541
mechanics being pointed out as a consequence of com-
pleteness as early as 1948 by Einstein [16].

The sole assumptions of this letter are that quantum
systems are described by a linear representation space
over C2 and that the coordinate operator xµ has a con-
jugate operator [xµ, kν]– = –igµν · 1. The latter operators
act as tangent space vectors on the manifold, and the
action is revealed by the (Weyl) translation operators

U∆x   and U∆k  :

(1)

respectively, |x〉   |x + ∆x〉  and |k〉  |k + ∆k〉 . Given
an arbitrary reference state |ψref 〉 , a set of translated
image states can be defined as [17]

(2)

with correspondingly translated state averages

(3)

The spread of the image states is identical to that of the
reference state, regardless the (∆x, ∆k) translation:

(4)

The interchange of U∆x and U∆k in the definition of the
image state |ψ(ξ, κ)〉  leads to a state corresponding in

2 To be published. In essence, it is possible to arrive at the xµ and
kµ operators and their commutation relation solely on grounds
related to separability of states and differential geometry proper-
ties of manifolds without prior knowledge of the physical equa-
tions.

=def e
+i∆xµkµ

=def e
i∆kµxµ–

U∆x
† xµU∆x xµ ∆xµ, U∆k

† kµU∆k+ kµ ∆kµ,+= =

→U∆x →U∆k
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projective space [8, 12] to the same point, the differ-
ence between the two being just a phase factor:

(5)

The situation is revealed better by the comparison of
|ψref 〉  with its transported image around the ∆x 
∆k  –∆x  –∆k quantum loop

(6)

respectively, around an arbitrary quantum loop

(7)

In both cases, the state acquires a geometric phase pro-
portional to the (x, k) area enclosed by the loop in pro-
jective space. Should this phase be zero, the anholon-
omy [9] hold preventing the realization of a proper
(x, k) coordinate system on the representation space
disappears, as will be shown in the next paragraph.
Generalizing Eq. (5) to continuous open paths

(8)

and holding the initial and final states apart at fixed dis-
placements (∆x, ∆k), a path-dependent geometric phase
for open paths can be defined, arbitrary up to a path-
independent gauge [18] field Φ(x, k):

(9)

The above relation supports a class of canonical trans-
formations (such as Q = k, K = –x) consistent with

[xµ, kν]– = –igµν · 1 and 〈x |k〉  = (2π)–2  that identi-
fies geometric phase as the classical mechanics action
[19]. Assuming that |ψref 〉  can evolve on two neighbor-
ing paths via a beam-splitter-like mechanism, the inter-
ference in the final state is destructive unless δS = 0 (for
remote trajectories δS = 2nπ), respectively, the extre-
mal action condition. Paths satisfying the extremal
action condition at each point or, equivalently, in
Eq. (6) dxµdkµ = 0, preserve constructive interference
along the path and are termed “particle trajectories.”
This is not an exclusive category, however, nonparticle
infodynamics being equally possible3 [20]. The early

3 An interesting discussion on the conditions to make semiclassical
expansions of path integrals describe quantum systems may be
found.

U∆xU∆k e
+i∆xµ∆k

µ
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U∆kU∆x⋅= = i

f

∫
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µ–
attempts to formulate quantum mechanics in terms of
(x, p) coordinates failed due to the nonzero commutator
of the coordinate and momentum operators [xµ, pν]– =
–i"gµν · 1 and are best summarized by the Heisenberg

inequality δxµ · δpν ≥ "gµν. Nonetheless, free propa-

gation of quantum systems can be approximated by
classical mechanics, as hinted at by the extremal geo-
metric phase relation above.

Establishing an (x, k) coordinate system on a mani-
fold requires that a translation with a ∆x leg followed
by one with a ∆k leg reach the same point as it would
with those operations interchanged:

(10)

This is possible nontrivially only for spaces at least 2D
in dimension, by requiring ∆xµ∆kµ = 0. The problem of
establishing an (x, k) grid on a 1D manifold is that a

translation around a quantum loop of area dx · dk = 

accumulates a phase factor π, as seen from Eq. (7). For
manifolds of greater dimension, this phase may vanish
by reciprocal phase compensation among dimensions
of opposite metric sign. For a Euclidian metric, it can
be shown that the condition is met only by trajectories
on the sphere, while for the Minkowski metric nontriv-
ial solutions of the n + 1 pairs of canonically conjugate
variables, (Q, K) plus the temporal dimension (T, H),
are allowed. To have thus a proper (x, k) coordinate sys-
tem on the manifold, two conditions must be met:

1. Necessary condition: dxµdkµ = 0|PATH.

This relation locally defines a coordinate system,
and it is better known in physics than apparent at first
glance. For example, in the case of wave-packet propa-
gation, requiring the constituent waves to move in sync
yields the condition vg = —kω, which, rewritten as vg · dk =
—kω · dk = dω, becomes

(11)

For point particles, the work–energy relation dE =
Fdx = dx · dp/dt can likewise be rewritten as

(12)

2. Sufficient condition: d2x = 0 and d2k = 0|PATH.

This relation conditions path integrability, neces-
sary for the path-independent definition of an (x, k)
coordinate system on the manifold. It is a global condi-

1
2
---

U∆x U∆k,[ ]– 1 e
i∆xµ∆k

µ–
–( )U∆xU∆k 0.= =

1
2
---

dt dω⋅ dx dk⋅– 0.=

dt dE⋅ dx dp⋅– 0.=
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tion, the standard solution4 being, up to a canonical
transformation [19],

(13)

The traditional “dynamic” character of kµ stems pre-
cisely from this solution, and less so from its more dis-
tantly related differential geometry properties on the
manifold. The inertia of the differential equations rules
out “crossover” trajectories from kµkµ > 0 to kµkµ < 0

paths, ±  being a characteristic of the trajectory. Like-
wise, trajectories on the light cone cannot “fall” onto
kµkµ > 0 or kµkµ < 0 solutions either, due to the gradient
of the differential equation parallel to the sheet of the

light cone. The kµkµ = ±  relation is also well known

in physics in the form of E = c , respec-
tively:

(14)

4 For ||dx || ≠ 0, the dxµdkµ = 0 relation requires that dk be “perpen-

dicular” to dx, respectively, dkµ = ων, where ω is an arbitrary

1-form not “parallel” to the “unit” vector nµ  dxµ/||dx|| and  =

gµν – nµnν is a tensor that selects the “perpendicular” component
to dxµ. To be integrable, dx and dk must be closed forms: d2xµ = 0

and d2kµ = d ων + dων = 0, where d  = – dnpnν –

nµdnρ . The d2k = 0 condition can be rewritten as

(A)

The left-hand side proportional to n and the right-hand side “per-

pendicular” to n imply dnµ∧ ων = 0, a condition that has the

following solutions: (i) ων = 0, (ii) dnµ = 0, and

(iii) dnµ∧ ων = antisymmetric. Solution (i) is equivalent to dk = 0,
solution (ii) restricts dn “parallel” to n—impossible in view of
nµnµ = ±1; thus, the only viable solution is (iii), ων = kC · dnν
where kC is a scalar field. From the right-hand side of Eq. (A)
equal to zero and the arbitrary orientation of dn with respect to n,
the scalar field ΛC = 2π/kC must be a constant (known as the

“Compton wavelength”). Therefore, dkµ = kC · dnν, or in

view of nµnµ = ±1, dkµ = kCdnµ and kµ = kCnµ + (const)µ. In the

eigensystem of reference of the trajectory, the dxµdkµ = 0 condi-

tion is simply d  = 0. Requiring Lorentz invariance, the constant

in the solution above must be zero and

where τ is the invariant proper time, (cdτ)2 = ±dxµdxµ. In the

track’s eigensystem of reference  = ±(kC, 0), and in the labora-

tory system of reference kµkµ = ± . The “photonic” case ||dx|| = 0

yields kµkµ = 0. Both in this and in the ||dx || ≠ 0 case, the solution
holds up to a canonical transformation [19].

C⊥
µν

=
def C⊥

µν

C⊥ ∧
µν C⊥

µν C⊥
µν C⊥

µρ

C⊥
ρν

n
µ

dnρ∧ C⊥
ρνων( ) C⊥

µν
dων n

pωρ∧ dnν–( ).=

C⊥
µν

C⊥
µν C⊥

µν

C⊥
µν

k0'

k
µ

kC n
µ⋅ kC

dx
µ

d cτ( )
-------------,⋅= =

kµ'

kC
2

kµkµ kC
2 , dxµ/ dx± kµ/kC.= =

kC
2

kC
2

m0
2c2 p2+

E/c( )2 p2– m0c( )2.=
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In summary, up to a canonical transformation [19],
particle trajectories provide a ruling of the manifold
that satisfies the

translational properties of state averages

(15)

spreadless transport of states:

(16)

x–k evolution5 equations

(17)

path-type constraints

(18)

contact condition between the physically meaning-
ful state averages and the particle trajectory ruling of
the manifold

(19)

Although no physical interpretation has been
assumed so far for k, it is evident that it corresponds to
what is more traditionally known as 4-momentum,
pµ = "kµ.

Since geometric-phase properties have been dis-
cussed mostly in the context of low-energy phenomena,
the following will refer to high-energy aspects. Quan-
tum states traveling on particle trajectories 〈kµ〉〈 kµ〉  =
const have two constants of motion:

(20)

5 Similar to the Ehrenfest theorems, based, however, on differential
geometry properties of manifolds, rather than being a conse-
quence of evolution equations (i.e., Schrödinger).

xµ〈 〉 ψ ξ κ,( ) xµ〈 〉 ref ∆xµ,+=

kµ〈 〉 ψ ξ κ,( ) kµ〈 〉 ref ∆kµ;+=

δxψ ξ κ,( )
µ δxref

µ const,= =

δkψ ξ κ,( )
µ δkref

µ const;= =

d xµ〈 〉 / d x〈 〉 kµ〈 〉 /kC,=

d xµ〈 〉 d kµ〈 〉 0,=

kµ〈 〉 xµ〈 〉d

path

∫ extremal;=

kµ〈 〉 kµ〈 〉 kC
2 ,±=

kµkµ〈 〉 kC
2 δkµδkµ;–±=

xµ〈 〉 ψ ξ κ,( ) ξµ,=

kµ〈 〉 ψ ξ κ,( ) κµ.=

m2 def
0

"
2

c2
----- kµ〈 〉 kµ〈 〉 ,=

m2 def
bare

"
2

c2
----- kµkµ〈 〉 ,=
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the rest and bare mass of the state, related to each other
by the spread of the state in k space,

, (21)

a difference that for most stable systems is negative.

The spread of  for an evolving quantum state is

(22)

where ||∆k ||  |∆kµ∆kµ|1/2 and nµ = ∆kµ/ ||∆k ||. Due to
the minimum of the expression in the vicinity of
(±m0c2, 0) for subluminous and (0, ±m0c) for supralu-
minous trajectories, the linear term in ||∆k || vanishes
and the Klein–Gordon equation holds with good
approximation:

(23)

For high boost factors γ  ∞, however, the spread in

 diverges even if ∆  = 0, the Klein–Gordon
equation losing accuracy:

(24)

as the state approaches the light cone and overlaps with

the densely bunched  paths in this region of k
space, as well as with the supraluminous states across
the light cone. This should be distinguished from see-
ing the state from a different system of reference
(Lorentz boost). The ∆mbare/mbare magnitude of the
effect is on the order of 0.2% for a 1 eV/c-wide e– state
accelerated to LEP2 energies, respectively, 4% for a
1 MeV/c-wide p state accelerated to TEVatron ener-
gies. At E . 300 GeV, a generic 1 eV/c-wide e– state
overlaps with hypothetical supraluminous6 compo-
nents of mbare as high as 0.7 GeV/c2.

6 Hypothetical supraluminous transformations connect transforma-
tions across the light cone, changing the sign of the pseudonorm.
This type of action interchanges temporal with spatial informa-
tion parallel to the direction of boost, while rendering arbitrary
information perpendicular to it. Supraluminous transformations
would hence obey Λ†GΛ = –C||G and have the form

,

where γ' = 1/  and C|| is a tensor selecting the parallel
component to the boost.

mbare
2 m0

2–
"

2

c2
-----δkµδkµ=

mbare
2

δ2 kµkµ( )〈 〉 ψ ξ κ,( ) δ2 kµkµ( )〈 〉 ref=

+ 4 ∆k δ kµkµ( )δ nµkµ( )〈 〉 ref⋅

+ 4 ∆k 2 δ2 nµkµ( )〈 〉 ref ,⋅

=def

kµkµ
 . const 1.⋅

mbare
2 mbare

ref

∆mbare

mbare

----------------  . 
" 2γ
mbarec
--------------- δ2 k0 k||–( )〈 〉 min

mbare
2

Λν
·µ γ'

1 b
b C|| 

 
 

=

β2
1–
In summary, dxµdkµ = 0 integrable trajectories have
been shown to transport quantum states nondisper-
sively in (x, k) projective space. The geometric phase
associated with the trajectories is extremal, its expres-
sion being that of the classical mechanics action. The
trajectories are described by a constant of motion

kµkµ = , more traditionally known as the “rest mass”

. Highly boosted quantum states overlap both with

higher  and negative  states.
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The near-field effect was experimentally observed in the thermal radiation of an absorbing medium in the rf
range. The radiation from a temperature-stratified aqueous medium was measured at a wavelength of 31 cm
using specially developed electrically small antennas. The effect manifests itself as a decrease in the effective
thickness of a layer in which the received radiation is formed and in the dependence of this thickness on the
receiving antenna’s size and its height above the medium surface. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 44.40.+a; 41.20.Jb
The near (quasistationary) field of thermal electro-
magnetic radiation from heated media was predicted by
S.M. Rytov as a consequence of his electrodynamic
theory of equilibrium thermal fluctuations as early as
the 1950s [1]. This field is characterized by the absence
of energy flux and by a sharp drop in the volume energy
density with distance from the surface of the radiating
medium. It was theoretically proved in [2] that the near-
field component of thermal radiation tangibly affects
the signal intensity measured by a receiver only if the
receiving antenna has small electric size D ! λ (λ is the
wavelength) and is situated at height h ! λ above the
radiating surface. These features hamper experimental
investigations, for which reason the near-field compo-
nent of thermal radiation has not been experimentally
detected so far.

As a result of the near-field effect, the effective
thickness of a layer forming the received radiation
decreases compared to the skin layer. The decrease in
the effective thickness can be observed experimentally
as a function of either the antenna’s size (near the sur-
face) or its height (for a small antenna). This was pre-
cisely the way in which the near-field component of
thermal radiation was detected in this study by the mea-
surements at a fixed wavelength.

Investigations were carried out in the decimeter
wavelength range (λ = 31 cm). The obvious advantage
of decimeter waves over the shorter radio and infrared
waves is that they place substantially less stringent
requirements on the antenna’s size and its height above
the surface, because these parameters are specified by
the wavelength scale and lie in the interval D/λ, h/λ <
0.1 [2]. The thermal radiation was detected by a radi-
ometer with operating frequency f0 = 950 GHz, fre-
quency band ∆f = 250 MHz, and fluctuation sensitivity
threshold δT ≈ 0.05 K at the integration constant τ = 1 s.

The key element of the receiving system was an
electrically small antenna of size D = 1 cm (D/λ ≈
0021-3640/00/7211- $20.00 © 20546
0.03). It consisted of two in-phase dipoles connected to
a symmetric strip line operating as a matching cavity
(a prototype of this system is described in [3]). When
the antenna was in contact with the medium (h = 0), it
was matched to the radiometer input so that the reflec-
tion coefficient averaged over the radiometer band ∆f
did not exceed 0.03. The radiation efficiency was deter-
mined from a comparison of the data of calibration
measurements at two different temperatures of a uni-
formly heated medium with the response to the radia-
tion of a matched load and was found to be η = 0.85 at
h = 0. An increase in height led to both antenna mis-
match (increase in the reflection coefficient) and
decrease in the radiation efficiency. The sensitivity
threshold to the temperature variations increased from
0.06 K at h = 0 to 1 K at the maximum height of mea-
surements hmax = 2.5 mm. Further decrease in sensitiv-
ity at h > hmax rendered the measurements at greater
heights impossible. Thus, the presence of a matched
high-efficiency antenna is a fundamental requirement
for a near-field radiometric system, in contrast to simi-
lar active-location systems, which are usually referred
to as near-field microscopes (see, e.g., [4]). Besides the
antenna described above, the measurements were also
carried out using a standard contact antenna with aper-
ture D = 4 cm, which was developed for medico-bio-
logical radiometric investigations [5].

Water was chosen as a medium for investigation
because its complex dielectric constant e = e1 + ie2 and,

hence, the skin depth d = 1/γ [γ = (4π/λ)Im( ) is the
absorption coefficient] can be calculated with a high
accuracy, e.g., from data [6], if the temperature T and
the salinity S are known. Strong dependence of the skin
depth on the salinity enables one to model the condi-
tions in various media by varying the d value in the
interval from 1 mm to 10 cm. In addition, it is compar-
atively easy to carry out contact measurements of the

e
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temperature depth profile T(z) in a fluid. For measure-
ments, a stable quasi-linear profile T(z) was formed
with the use of a heater near the surface and a cooler
near the bottom of a cylindrical vessel. The stationary
temperature gradient was as large as dT/dz ≈ 2.5 K/cm.
The radiometer measured the effective temperature
(antenna temperature) of the radiation received from
the medium filling the z ≤ 0 half-space:

(1)

i.e., the measured antenna temperature was a certain
weighted mean temperature of the medium. The kernel
of integral Eq. (1) is normalized and includes two com-
ponents:

(2)

where K1 and K2 are the contributions of the wave and
quasistationary field components, respectively. The
functions K1, 2 for a medium with a dielectric constant
uniform in depth, i.e., e(z) = e = const, are given in [2].
For a uniformly heated medium [T(z) = T0 = const],
Eqs. (1) and (2) yield Ta = T0 independently of the form
of kernel K. If the distribution T(z) is nonuniform in
depth, the Ta value is determined by the effective thick-
ness deff of a layer in which the received radiation is
formed and which is of interest to us. This thickness is
expressed through the kernel K as

(3)

The wave component of radiation in free space is
formed by plane nonuniform waves propagating under
the surface of an absorbing medium within a certain
cone with axis directed along z. If the dielectric con-
stant satisfies the conditions e1 ≈ e2 and |e | @ 1 (as is the
case of the aqueous medium under consideration), the
apex angle of this cone is small. One then has deff ≈ d
for the wave component of the field. Since the waves
propagating in an absorbing medium at angles beyond
this cone make a contribution in free space only to the
near-field component of the received radiation, one has
deff < d for this component. Thus, for the received radi-
ation including both field components, the condition
deff < d will also be fulfilled and the effective thickness
will be a function of the antenna height and size, i.e.,
deff = deff(h, D). In the case that the near-field effect on
the received radiation is negligible, i.e., with an
increase in the height or size of the antenna, the kernel
of Eq. (1) tends to its limiting form K(z, h, D)  K =
γexp(z/d), which is independent of h and D, and one has
deff  d.

Ta h D,( ) T z( )K h D z, ,( ) z,d

∞–

0

∫=

K z h D, ,( )
K1 z D,( ) K2 z h D, ,( )+( )

K1 z D,( ) K2 z h D, ,( )+[ ] zd

∞–

0

∫
----------------------------------------------------------------------,=

deff zK h D z, ,( ) z.d

∞–

0

∫=
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According to definition (3), Eq. (1) leads to a simple
exact expression for a linear profile T(z),

(4)

which was used in this work for determining the deff
value from the data of Ta measurements.

The antenna temperature Ta was measured for each
height h and antenna size D using two calibrations
against the thermal radiation of two identical vessels
with water uniformly heated to temperatures T1 and T2.
In this case,

(5)

where the readings na and n1, 2 of a radiometer detecting
device correspond to the basic and calibration measure-
ments, respectively. The error in determining the
antenna temperature with inclusion of all factors (fluc-
tuation sensitivity, time of averaging, and errors of
measuring the temperature of the standards) was equal
to 0.2 K at h = 0 and 0.5 K at h = 2.5 mm. For the tem-
perature gradient of 2.5 K/cm, the corresponding error
in determining deff varied approximately from 1 to
2 mm in this height interval.

Experiments were carried out at three different val-
ues of S: 0, 1.8 × 10–3, and 5.0 × 10–3 g/cm3 of water
salinity. The deff(h) dependences measured at S =
1.8 × 10–3 g/cm3 for antennas with D = 1 and 4 cm are
shown in Fig.1 together with the results calculated by
theory [2]. For this S value, the dielectric constant e of
water is virtually independent of temperature and it was
then that the agreement between the calculations and
measurements was the best. The fact is that the real part
of the complex dielectric constant of water depends
only slightly on temperature, so that the temperature
dependence of the skin depth is primarily determined
by the imaginary part of e. As the ion conductivity
increases with increasing salinity, the temperature
dependence typical of dielectrics is transformed to the
dependence typical of conductors; i.e., a decrease in
Im(e) with increasing temperature is transformed to its
increase. At the transition point corresponding to a
salinity of about S = 1.8 × 10–3 g/cm3, the temperature
dependence is virtually absent. In this case, the approx-
imation of a dielectrically uniform medium [2] pro-
vides the best description of the actual situation. For
other S values, the temperature dependence of the
dielectric constant e of water becomes appreciable.
Nevertheless, even in these cases, the agreement
between the calculations and the experiment is quite
satisfactory if one assumes e = e(T = Ta) in the theory
of radiation of a dielectrically uniform medium. It is
seen that the data of measurements presented in Fig. 1
agree well with the calculations by Eq. (3), while the
theoretically predicted dependences of deff on antenna’s
height and size actually take place.

Ta T z deff–=( ),=

Ta T1

na n1–( )
n2 n1–( )

--------------------- T2 T1–( ),+=
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The dependences of the effective thickness deff on
the water salinity S, as calculated and measured at h = 0
with the antenna of diameter D = 1 cm, are shown in
Fig. 2 together with the calculated d(S) dependence.
The observed difference between deff and d (the effec-
tive thickness is about half the skin depth), proved to be
very close to the theoretical value and clearly demon-
strates the near-field effect, because, as mentioned
above, deff ≈ d for the field wave component. It is also
seen that the difference between deff and d is maximum
for fresh water. For this reason, the dependence deff(h)
at S = 0 is more pronounced than in Fig. 1. In particular,
the maximum increase in deff for fresh water exceeds
7 mm in the height interval considered.

Thus, the results presented in Figs. 1 and 2 testify to
the presence of the near-field component in the thermal
radiation of medium.

In conclusion, note that further development of
these investigations may be associated with increasing
the sensitivity of the radiometric system at heights h >
hmax (in this study, hmax = 2.5 mm) and decreasing the
antenna’s size (in the range D < 1 cm). To this end, the
antenna should be matched for each height, which is
not a difficult problem. At the same time, the efficiency
of the electrically small antennas inevitably decreases
with increasing h. Indeed, high radiation efficiency
near the surface was ensured by the influence of the
absorbing medium on the antenna characteristics, but
this influence weakens with increasing h. A decrease in
the efficiency with decreasing D/λ is a property of elec-
trically small antennas and is caused by the influence of
the ohmic losses in matching circuits.

A possible solution to this problem might be the use
of materials with extremely low ohmic losses such as
high-temperature superconductors. The effectiveness
of using these materials in the miniaturization of
antenna devices was examined in [7–9]. Our prelimi-

Fig. 1. Effective thickness of the radiating layer vs. antenna
height for different aperture sizes. The circles and lines are
the measurements and the calculations, respectively.

d e
ff
 (

cm
)

nary calculations show that the near-field radiometric
measurements can be accomplished, at least in the
height interval 0 ≤ h ≤ 0.1λ and for the antenna sizes
D/λ ≥ 0.01. In this case, the effective depth of the radi-
ating layer will vary in the range 0.2d ≤ deff ≤ d. The
effect considered in this study can then be used to
develop new methods of the radiothermal diagnostics
of media. In particular, the single-wave methods pro-
posed in [2, 10] for determining the subsurface temper-
ature profile T(z) by solving integral Eq. (1) with the
use of the measured dependence of the antenna temper-
ature Ta on the antenna’s size and height above the sur-
face may be realized. These methods may become sim-
pler in implementation than the known multifrequency
methods [11–15].

In summary, the presence of a near electromagnetic
field in the thermal radiation of an absorbing medium is
experimentally demonstrated in this work. The devel-
opment of near-field radiometry will allow one to
devise new methods for medium diagnostics.

We are grateful to V.L. Vaks for assistance. This
work was supported by the Russian State Scientific–
Engineering Program “Physics of Condensed Matter,”
state contract no. 107-3 (00-II).
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A. A. Nikonov and O. E. Parfenov

Russian Research Center Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
e-mail: nikonov@isssph.kiae.ru

Received October 19, 2000

Measurements of the differential magnetic susceptibility are performed to study the changes in the magnetic
properties of La2CuO4 + x due to oxygen doping in the concentration interval 0 < x < 0.011. For crystals with
0.005 < x < 0.011, a ferromagnetic-type phase transition is observed at Tc > TN, and it occurs even in crystals
with TN ~ 0. The concentration dependence of the transition temperature Tc(x) is obtained. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 75.30.Cr; 74.72.Dn; 75.25.+z 
Among the unsolved problems of high-Tc supercon-
ductivity, the following issues attract particular atten-
tion of researchers: the mechanism of destruction of the
antiferromagnetic (AFM) order with an increase in hole
concentration, the nature of strong magnetic fluctua-
tions in the region of phase diagram where the insula-
tor–metal transition takes place, and the role of these
fluctuations in the initiation of superconductivity.

To investigate these problems, we earlier carried out
comprehensive studies of weakly oxygen-doped
La2CuO4 + x single crystals [1, 2]. A new result con-
sisted in the observation of an unusual divergence in the
temperature dependence of the differential magnetic
susceptibility χc(T) in the critical region of the antiferro-
magnetic transition. The divergence was observed only
for the transverse magnetic susceptibility χc and only in
low magnetic fields. As the magnetic field increased to
Hc ~ 100 Oe, the divergence gradually disappeared.
Such behavior of the magnetic susceptibility is charac-
teristic of the magnetic phase transition in an antiferro-
magnet with weak ferromagnetism (WFM) [3]. How-
ever, the unit cell of the Bmab orthorhombic crystal lat-
tice of La2CuO4 does not coincide with the magnetic
unit cell of the AFM lattice. In such a situation, the the-
ory of symmetry forbids the existence of WFM in zero
magnetic field [4]. At the same time, the appearance of
a WFM becomes possible in a strong magnetic field
H ~ 2 T applied along the crystal c axis [5] because of
the spin flip in a part of the AFM lattice. In this case,
owing to the field-induced change in the symmetry of
the magnetic lattice, the WFM becomes allowed.

In studying the possible correlation between the
magnetic and structural properties of La2CuO4 + x [2],
we showed that the anomalous divergence appeared
only after the introduction of excess oxygen. In addi-
tion, the height of the ferromagnetic anomaly of sus-
ceptibility was found to correlate with the degree of
orthorhombic distortion of the crystal lattice and with
the kinetics of the oxygen ordering processes. The
0021-3640/00/7211- $20.00 © 20550
height of the ferromagnetic peak was related to the
average magnetic moment and the magnetic correlation
length. The ordering contributed to the increase in the
divergence. It should be noted that we revealed the
traces of the superstructure in the crystal lattice. The
symmetry of the crystal lattice of our oxygen-doped
crystals presumably differed from the symmetry of a
simple Bmab orthorhombic lattice of stoichiometric
La2CuO4.

It is possible that the appearance of the ferromag-
netic moment in the AFM state of La2CuO4 + x was a
result of the symmetry change caused by the distortion
of the crystal, rather than magnetic, lattice. At the same
time, to change the crystal symmetry, the distortion of
the crystal lattice must be coherent of the superstruc-
ture type, rather than of a local character. This situation
is of special interest, because the introduction of the
impurity leads not only to the appearance of a new
magnetic state, but also to rapid destruction of the AFM
lattice. Therefore, as the three-dimensional AFM order
breaks, the roles of the magnetic order and the crystal
distortions in the mechanism of formation of the new
magnetic state can change.

The aim of the experiments described in this paper
was to study the behavior of the previously observed
[2] unusual weak ferromagnetism of La2CuO4 single
crystals in the course of a gradual destruction of the
antiferromagnetic order that occurs with an increase in
the level of oxygen doping.

We studied single crystals grown by the molten
solution method [6]. The characteristic feature of these
crystals is the low mobility of the excess oxygen [2],
which ensures the absence of a “macroscopic” phase
separation into phases with different oxygen concentra-
tions in the interval 0 < x < 0.03 [1, 7]. The structure of
the phase diagram of these crystals [1] is analogous to
that of the La2 – ySryCuO4 system. The temperature and
concentration dependences of the AFM and SG mag-
000 MAIK “Nauka/Interperiodica”
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netic phase transitions, which were obtained in this
study using the magnetic field H = 450 Oe, correlate
well with the data for the La2 – ySryCuO4 crystals [8] in
which the magnetism was studied using the magnetic
field H = 5 kOe.

The grown crystals had the AFM ordering tempera-
ture TN ~ 245 K. To avoid the inclusion of excess oxy-
gen lattice vacancies, annealing at a partial oxygen
pressure < 100 Torr was carried out at a temperature not
exceeding 700°C. Oxygen was introduced at a temper-
ature of 900°C under excess oxygen pressure of up to
10 atm. The magnetic properties were studied by mea-
suring the differential magnetic susceptibility in a weak
alternating field h = h0sin(wt), where h0 = 1 Oe and f =
1 kHz. A detailed description of the measuring tech-
nique can be found in [9]. Using the Vegard law for
small deviations from the stoichiometry [10], we deter-
mined the excess oxygen concentration x by the for-
mula c = 13.137 + 1.065x, where c is the lattice param-
eter measured by X-ray structural analysis.

Figure 1 shows the changes that occur in the χc(T)
dependence with varying oxygen concentration. The
dependences χc(T) were measured in both zero constant
external field and a field H = 450 Oe applied along the
c axis of the crystal. In the concentration interval 0 <
x < 0.011, the formation of a new magnetic state has the
form of a phase transition with a pronounced anisot-
ropy, and the ferromagnetic anomaly is observed only
for the transverse susceptibility χc(T) and only in the
fields H < 100 Oe. Although an increase in the excess
oxygen concentration is accompanied by a decrease in
both critical temperature Tc and divergence intensity,
the critical region of the revealed magnetic transition
spreads insignificantly. The width of the temperature
interval corresponding to the critical region does not
exceed 20 K, indicating a good spatial homogeneity of
the magnetic system. Another specific feature of the
susceptibility anomaly is the almost symmetric form of
the peak. The values of the critical indices of the transi-
tion, which are determined by the formulas χc = τ–γ and
χc = h–α, are as follows (in the concentration interval
0.005 < x < 0.011): γ = 1.9 + 0.2 and α = 0.8 + 0.2.
These values agree well with the critical indices of the
two-dimensional Ising model [11].

One of the most important new results obtained
from our study is that the long-range AFM order breaks
with increasing x faster than Tc decreases (Fig. 2).
Moreover, the new phase transition is observed in sam-
ples with TN ~ 0 exhibiting a paramagnetic state or a
two-dimensional spin liquid state at T @ TN and a spin
glass state at low temperatures, the latter state being
detected by the characteristic behavior of the magnetic
susceptibility χ(T). In the field H = 450 Oe, the depen-
dences χc(T) and χab(T) obtained for crystals with TN ~
0 exhibited no traces of the antiferromagnetic transition
in the critical region of the ferromagnetic anomaly
within the sensitivity of our measuring system. These
JETP LETTERS      Vol. 72      No. 11      2000
data suggest that, at least in the concentration interval
0.008 < x < 0.011, the presence of the long-range AFM
order plays no crucial role in the magnetism revealed in
La2CuO4 + x. Hence, in the aforementioned concentra-

Fig. 1. Changes in the transverse magnetic susceptibility of
La2CuO4 + x single crystals upon oxygen doping. The num-
bers indicate the excess oxygen concentration x. For conve-
nience, the curves are vertically shifted without changing
scale. To obtain the true picture, one has to reduce the value
of the susceptibility at 350 K to the value 3 × 10–7 CGSM/g.

Fig. 2. Phase diagram of La2CuO4 + x single crystals: Tc for
the new magnetic transition is shown by the full squares, TN
for the AFM ordering is shown by the empty circles, and SG
corresponds to the full circles. In addition, the data on the
AFM transition reported in [8] for La2 – ySryCuO4 single
crystals are presented (triangles).
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tion interval, the anomaly observed in χc(T) can be
interpreted neither as the WFM resulting from weak
noncollinearity of spins in the AFM lattice nor as the
ferrimagnetism resulting from the decompensation of
the magnetic sublattices. In view of the high value Tc >
150 K, one should reject the variant with a ferromag-
netic-type transition in the paramagnetic matrix
because of the dipole–dipole interaction in the system
of ferromagnetic clusters consisting of ordered copper
spins. Otherwise, one must assume that these regions
possess an unrealistically high magnetic moment.

Thus, we arrive at a number of questions, the
answers to which are yet unknown.

What is the order parameter of the revealed mag-
netic phase transition? Namely, is the observed phase
transition a proper magnetic transition or is it a mani-
festation of the structural phase transition whose order
parameter is related to magnetization?

What is the microscopic nature of the magnetiza-
tion? Is the revealed ferromagnetic anomaly a result of
the correlation of ferromagnetically ordered clusters
occurring in the paramagnetic matrix or is it caused by
a change in the symmetry of the crystal lattice in a uni-
form state of the magnetic system?

Since Tc weakly depends on x, it is possible that the
revealed ferromagnetism can persist at oxygen concen-
trations that are sufficient for the appearance of super-
conductivity. However, all these questions require fur-
ther investigation.

We are grateful to S.N. Barilo for supplying us with
high-quality samples grown by himself. We are also grate-
ful to A.A. Zakharov, A.N. Bazhan, E.P. Krasnoperov, and
A.A. Chernyshev for the interest taken in our study and
for valuable comments expressed in discussing the
experimental data. We acknowledge the support and
assistance of M.B. Tsetlin, M.N. Khlopkin, A.A. Shikov,
V.S. Kruglov, and P.V. Volkov.
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Low-frequency features of the conductance of a 2D electron system are considered. It is shown that, in addition
to the parameter ωτ (ω is the external frequency and τ is the elastic relaxation time), which occurs in the fre-
quency dependence of the 3D conductivity in the Drude approximation, the 2D conductance contains other
dimensionless combinations that involve the external frequency and the 2D conductivity. The notion of the
“mobility” of a 2D system as the quantity governing the deviation of the conductance of the 2D system with ac
current from its conductance under stationary conditions is introduced. Experimental data testifying to the pres-
ence of the discussed features of the 2D conductance are presented. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.50.Bk
The frequency dependence of the conductivity of
3D samples is controlled (at least in the Drude approx-
imation) by the parameter ωτ, where τ is the momen-
tum relaxation time and ω is the frequency of the exter-
nal signal. In 2D systems, the situation is different
mainly because of the Coulomb effects. In particular, in
3D samples, a uniform electric field E does not cause
any electron density perturbation δn, because δn ∝
dE/dx, where E(x) is the local electric field. By contrast,
for a uniform electric field to persist in 2D systems, the
uniformity of the electron density must be perturbed
(some details of such a comparison can be found
below). At finite frequencies, this gives rise to addi-
tional electron transport along the bias field. Hence, the
definition of the transport current must contain new
dimensionless combinations that involve the conduc-
tivity σ and compete with ωτ.

The statement concerning the necessary perturba-
tion of the 2D electron density by a bias electric field
has some exceptions which are worth mentioning. One
of them (the Dolgopolov remark) is related to the fact
that lead terminals have the form of two conducting
plates of finite area normal to the surface of the 2D sys-
tem (a parallel-plate capacitor shortened by a 2D con-
ductor). In this example, a bias field applied along the
2D system does not affect the spatial uniformity of its
density. However, at finite frequencies, a substantial
part of the conductance of the system under discussion
is represented by the capacity of a parallel-plate capac-
itor formed by the terminals. The behavior of such sys-
tems requires special consideration and will be dis-
cussed elsewhere.

The purpose of this paper is the calculation of the
conductance Σ for typical 2D charged systems with flat
terminals in the low-frequency regime. As will be
shown below, this conductance contains additional
0021-3640/00/7211- $20.00 © 20553
(i.e., in addition to ωτ) frequency-dependent parame-
ters of the 2D transport

(1)

where I is the total current and V is the voltage between
two fixed points of the 2D system. The conventional
local Ohm’s law

(1a)

where σ is the conductivity of the 2D system, holds at
finite frequencies, but the bias electric field is nonuni-
form over the sample: E = E(x). Therefore, it is more
convenient to use Ohm’s law in the form of Eq. (1).

In addition to the conductance, it is worthwhile to
introduce the “mobility” M of the 2D system at finite
frequencies. This parameter shows how effectively the
2D system adjusts to its stationary current state. For a
2D system without capacity in the dc regime, the
mobility M can be represented by the ratio

(2)

where Ix(0) is the transport current at zero frequency.

1. We begin with a Corbino disk with a given uni-
form 2D electron density ns (the control electrode is
absent). The magnetic field is zero, and the external fre-
quency is finite but low [the upper limit for this param-
eter is specified below, see inequality (7)]. The termi-
nals lie in the same plane as the 2D system and have
zero thickness.

In this case, the combination of three equations,
namely, the equations of motion and continuity and the

Ix ΣxxV ,=

j σE,=

M Ix ω( )/Ix 0( ),=
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Poisson equation, yields the following equation for the
electric potential ϕ(x):

(3)

(3a)

Here, m∗  is the effective mass of a charge carrier in the
2D system, κ is the dielectric constant of the medium,
and 2w is the size of the 2D system along the current.

Equation (3) was obtained for a quasi-one-dimen-
sional Corbino disk, i.e., for the case

(3b)

In addition, the metal terminals contacting the 2D sys-
tem are equipotential, lie in the plane of the 2D system,
and extend to ±∞.

Equation (3) taken with the zero boundary condi-
tions for the electric field at the ends of the ±w strip,

determines the natural plasma frequencies of a 2D strip
of width 2w [1]. The same equation written for an
unbounded medium with the initial excess charge dis-
tribution in the form of a δ function describes the spe-
cific “spread” of charge in 2D systems [2, 3]. The
object of interest is the conductance of the Corbino disk
at a fixed, sufficiently low frequency corresponding to
the oscillation of the bias voltage V(t) [Eq. (3a)]
between the metal terminals.

In this case, the stationary state with Ix(0) is
described as follows:

(4)

Here, δn(x) is the surface perturbation of the electron
density because of the current along the 2D system and
σxx(0) is the conductivity in the Drude approximation at
zero frequency [the explicit form of σxx(ω) is given
below, see Eq. (10)].

Evidently, Eqs. (4) are also valid for a thin (in the
sense w @ d, where d is the sample thickness) 3D con-
ducting plate. In both 2D and 3D cases, the external
electric potential distribution, which causes the pertur-
bation δn(x) given by Eq. (4), is the same. However, for
a 3D plate of finite thickness d @ dscreen, this perturba-
tion affects only the surface layer up to the vertical
screening depth dscreen (recall that the presence of a con-
stant electric field does not perturb the electron density
in the bulk of a 3D system). Therefore, the perturbation

ϕ'' x( ) iωκm* iω τ 1–+( )
2π2e

2
ns

------------------------------------------ ϕ' s( ) sd
x s–

-----------------,

w–

+w

∫=

ϕ x( )
0 ∞ x w–≤ ≤–,
V t( ) +w x +∞.≤ ≤




=

R1 R2–
R1 R2+
------------------ 2w

R1 R2+
------------------ ! 1.≡

ϕ' w±( ) 0,=

Ix 0( ) σxx 0( )V /2w, δn x( ) Vx/ w2 x2– .∝=
δn(x) [Eq. (4)] is insignificant for describing the sta-
tionary bias current state of a 3D system in the case

(5)

By contrast, the vertical screening in 2D systems is
totally absent and, hence, inequality (5) never holds.

Turning to Eq. (3) with the low-frequency region in
mind, we represent solution (2) in the form of a series

(6)

for the frequencies

(7)

where  is the minimum transverse plasma fre-
quency in a 2D strip of width 2w.

Substituting Eq. (6) in Eq. (3) and combining the
terms of the same order of magnitude in ωτσ, we obtain
the following chain of equations [the definition of τσ is
given below, see Eq. (11)]:

(8)

(9)

(10)

and so on.
According to Eqs. (8)–(10), series (6) converges

when

(11)

Combination (11) (along with ωτ) determines the
properties of the low-frequency 2D conductance.

The appearance of the additional relaxation time τσ
given by Eq. (11) is quite natural from the dimensional
point of view. However, dimensional considerations are
not always sufficient for the realization of one or
another effect. For example, the 3D conductivity σ3 is
expressed in inverse seconds, whereas the frequency
dependence σ3(ω) does not contain the parameter

. In our case, combination (11) automatically
appears in solving Eq. (4) and determines, to a great
extent, the properties of the low-frequency conduc-
tance.

d  @ dscreen.

ϕ x t,( ) E t( ) x w+( ) ϕ1 x t,( ) …,+ +=

E t( ) V t( )/2w, V t( ) V iωt( ),exp= =

ω ! ωp
min,

ωp
min

ϕ1'' x( ) iωκE

2π2σxx

---------------- w x+
w x–
-------------,ln=

ϕ1 w±( ) 0,= E V /2w,=

ϕ2'' x( ) iωκ
2π2σxx

----------------
ϕ1' s( ) sd

x s–
------------------, ϕ2 w±( )

w–

+w

∫ 0,= =

ϕ3'' x( ) iωκ
2π2σxx

----------------
ϕ2' s( ) sd

x s–
------------------, ϕ3 w±( )

w–

+w

∫ 0,= =

σxx ω( )
nse

2

m* iω τ 1–+( )
--------------------------------=

ωτσ ! 1, τσ κw/2π2σxx.=

ωσ3
1–
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Indications of the existence of time τσ can be found
among the results [2] on the “spreading” of a local per-
turbation of the electron density. In [2], it was shown
that, in a cylindrically symmetric problem, the initial δ
perturbation of electron density is spread in the radial
direction with the linear velocity ∝σ . It is clear that,
within the time R/σ, the density perturbation propa-
gates to the distance R. This fact can serve as a basis for
the introduction of the time τσ. However, e.g., in the
absence of cylindrical symmetry, the spreading of an
electron fluctuation is a more complicated process [3].
One should also mention paper [4] on the conductance
of a screened Hall sample at finite frequencies in a mag-
netic field normal to its surface in the quantum Hall
effect (QHE) regime. The QHE is a rather specific phe-
nomenon. Hence, there are no reasons to draw the anal-
ogy between the cited publication [4] and this paper,
although certain evidence of the existence of time τσ
can be found in [4] (as well as in [2, 3]).

Thus, we can conclude that result (11) correlates
well with the preceding statements and offers suffi-
ciently general grounds for its appearance among the
main parameters of the conductance.

Returning to the calculations and restricting our-
selves to the determination of the correction ϕ1(x), we
integrate Eq. (8):

(12)

(13)

The constants A and B in Eq. (13) are chosen to satisfy
the boundary conditions for Eq. (8),

which yields

(14)

Using Eqs. (8), (12), and (14), we determine the cur-
rent–voltage characteristic in the linear approximation
with respect to ωτσ:

(15)

Then, we obtain the conductance

(16)

The constants a and b are of the order of unity.

ϕ1' x( ) iωκE
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The mobility of a 2D Corbino disk without a screen
is determined by the expression

(17)

Evidently, the value of M is close to unity as long as the
conditions

(18)

are satisfied. As σxx decreases, the second of inequali-
ties (18) ensuring good mobility becomes governing.

2. Results (16) and (17) are sufficiently reliable in
the region of their validity (3b) and (18). As for the
experimental verifications, the author of this paper,
unfortunately, is not aware of any publications con-
cerned with the conductance of the Corbino disk in the
conditions discussed above. However, there are various
indirect indications of the existence of time τσ. First of
all, in paper [5] demonstrating the complex relaxation
behavior of a 2D Hall sample under the action of sharp
isolated spikes of the bias field, one of the characteristic
times (the longest) was found to be inversely propor-
tional to the conductivity of the 2D system. This obser-
vation correlates with the properties of τσ from
Eq. (11). One should also note the series of works
[6−10] with electrons at a helium surface in a magnetic
field normal to this surface. The cited papers report
considerable deviations of the magnetic-field depen-
dence of electron-gas conductivity from the theoretical
dependence σxx(H) ∝  H–2 obtained in the classical
Drude approximation. With increasing H, the depen-
dence σxx(H) becomes smoother. The existing explana-
tion of this phenomenon is based on the change of prior-
ities: the interband transitions, yielding σxx(H) ∝  H–2, are
replaced by the intraband transitions at the lowest Lan-
dau level, which are more probable at high cyclotron
energies. It seems quite possible that, by introducing
the conductance in the form of Eq. (16) in the problems
with electrons above helium, one will arrive at an alter-
native explanation for the magnetic anomalies from
[6−10], because, in this case, a decrease in the conduc-
tivity must be accompanied by a partial self-compensa-
tion of its magnetic field dependence. Finally, defini-
tion (17) of the mobility offers an explanation for the
frequency range within which the negative compress-
ibility of the 2D electron (hole) gas was observed in the
experiments [11–13]. The interpretation of these exper-
iments assumes a good mobility of the 2D channel:
M ≤ 1. A decrease in the 2D electron density, which is
involved in the technique [11–13], inevitably violates
this inequality. The competition of the aforementioned
factors determines the frequency range of their coexist-
ence.

To summarize, one can say that, at low frequencies,
the conductance of 2D charge systems exhibits interest-
ing qualitative features that deserve special consider-
ation. These features indirectly manifest themselves in
the known experiments. However, it is desirable to per-

M σxx ω( ) 1 i a b–( )ωτσ …+ +[ ] /σxx 0( ).=

ωτ  ! 1, ωτσ ! 1
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form direct measurements of the conductance under the
conditions close to those studied in calculation.

I am grateful to V.T. Dolgopolov for discussing the
results of this study and for valuable comments. This
work was supported in part by the Russian Foundation
for Basic Research (project no. 98-02-16640) and the
INTAS Network (project no. 97 1643).
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Dimerization kinetics was studied for fullerene C60 by IR spectroscopy at a pressure of 1.5 GPa in the temper-
ature range 373–473 K. The kinetic curves for the formation of a dimer (C60)2 were obtained using its analytical
IR band at 796 cm– 1. Under the assumption that pressure-induced C60 dimerization is a second-order irrevers-
ible reaction, the reaction rate constants were determined at different temperatures. The corresponding activa-
tion energy and preexponential factor were found to be 134 ± 6 kJ/mol and (1.74 ± 0.24) × 1014 s–1, respectively.
The specific features of the solid-phase C60 dimerization in simple cubic and face-centered cubic fullerite
phases are discussed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 82.35.+t; 61.48.+c; 62.50.+p
The purpose of this work consisted in direct experi-
mental determination of the kinetic parameters for the
pressure-induced polymerization of fullerene C60 and,
in particular, determination of the activation energy for
the polymerization processes occurring through the
[2+2] cycloaddition of C60 molecules [1]. The data on
these processes are scarce and rather contradictory. At
present, despite a considerable number of studies asso-
ciated with the determination of activation energy for
depolymerization of C60 polyfullerenes [2–7], we can
cite only two works that are devoted to determination of
the activation barrier to a direct polymerization reac-
tion. In the first of them [8], the activation energy for
the pressure-induced polymerization of C60 was found
to be 38.6 kJ/mol, although it was derived from the
gross characteristic of the material—its thermal con-
ductivity. In the second work [9], the molecular dynam-
ics method was used to estimate the activation energy
for dimerization (Ea(dim)) of the C60 molecules to arrive
at the 400.4 kJ/mol value. A comparison of these theo-
retical and experimental activation energies demon-
strates that the discrepancy is too great. It should be
noted that the authors of [8], when discussing the
obtained activation energy, pointed out with surprise
that it proved to be several times lower than the experi-
mentally measured activation barriers to depolymeriza-
tion of polyfullerenes. The latter are equal to 120.6,
168.8, and 183.3 kJ/mol for the C60 photopolymers [2],
dimers, and chain and linear polymers [3], respectively.
The theoretical estimates of the activation energies for
0021-3640/00/7211- $20.00 © 20557
depolymerization of, say, (C60)2 dimer yield, on the
whole, even higher values: 154.7 [4], 193–386 [5],
232 [6], 338 [7], and 273 kJ/mol [9].

In this work, an attempt is also undertaken to study
the influence of a crystal phase of fullerite on the kinet-
ics of pressure-induced polymerization. The revelation
of a “temperature threshold of photopolymerizability”
[10, 11] near the point of phase transition between the
orientationally disordered face-centered cubic (FCC)
and orientationally ordered simple cubic (SC) fullerite
phases (260 K at 1 atm [12–15]), which is indicative of
the inhibition of photopolymerization in the SC phase
because of the prevalence of C60 orientations unfavor-
able for the [2+2] cycloaddition in this phase, forced us
to carry out closer inspection of this problem from the
viewpoint of pressure-induced transformations in the
SC phase.

The pressure-induced C60 dimerization [16] was
chosen as the object of investigation, because it holds
particular interest as the elementary event of the
fullerene polymerization process. The dimerization
was studied at a pressure of 1.5 GPa. According to the
portion of the (p, T) diagram of C60 (Fig. 1) constructed
using the data of works [12–15, 17–21], one can
assume that the temperature of transition between the
fullerite SC and FCC phases at 1.5 GPa is ~423 K. Fol-
lowing this estimate, the kinetic measurements were
performed over the temperature range of 373–473 K
extending to 50 K into the domain of existence of both
SC and FCC phases. The experimental part of the work
000 MAIK “Nauka/Interperiodica”
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consisted in the synthesis of dimerized states of the sys-
tem at 1.5 GPa at temperatures 373, 383, 393, 403, 413,
423, 433, 453, and 473 K (indicated by black circles in
Fig. 1) and for times from 1 to 50 000 s; the isolation of
high-pressure states under normal conditions by pres-
sure quenching; and the analysis of these states by the
IR spectroscopic method. A fullerite powder with a C60
content of 99.9% was taken as a starting material. Syn-
thesis was conducted on high-pressure “Maxim” (of the
“piston–cylinder” type) and “Toroid” apparatus
equipped with a temperature controller allowing one to
control a predetermined heating rate (15 K/s) and main-
tain the isothermal annealing temperature with an accu-
racy of ±2 K. Other synthesis details are described in
[22]. The IR spectra of the samples as powders with
potassium bromide were recorded on a Specord M80
(Carl Zeiss) spectrometer.

A typical evolution of the IR spectra as functions of
annealing time is shown in Fig. 2 for the samples pre-
pared at 1.5 GPa and 393 K. These spectra clearly dem-
onstrate the changes in the IR intensities of the (C60)2

molecules at 796, 478 cm–1, etc. [16, 23, 24], allowing
the kinetic curves to be constructed for the dimerization
reaction. The time-dependent optical density at the
maximum of the 796 cm–1 band, chosen as an analytical
band of the dimer molecule, is shown in Fig. 3 for dif-
ferent temperatures. These curves indicate that the
mechanisms of C60 dimerization at temperatures above
and below 423 K are different. The curves at tempera-
tures below 423 K correspond, according to Fig. 1, to

Fig. 1. Phase diagram of C60. Phase boundaries between the
monomeric FCC phase and the monomeric SC phase
[13, 14] and the polymerized (Mp) states of the system [17]
are labeled 1 and 2. Line 3 is the phase boundary between
the orientationally ordered (P, H) and glassy (GS) states
[18–20]. Line 4 corresponds to the p, T parameters for
which the fraction ratio of the P and H orientations of C60 is
unity ([P]/[H] = 1) [20, 28]. Line 5 is the boundary between
the domains of existence of mixed (H, P) and H orientations
[20, 21].

GS

p (GPa)
the SC phase. They are characterized by a well-defined
induction period and are S-shaped, typical of autocata-
lytic reactions. At temperatures above 423 K corre-
sponding to the fullerite FCC phase, the induction
period is absent and (C60)2 is formed in a considerable
amount even within the first seconds of isothermal
annealing. The presence of maxima in the kinetic
curves is also noteworthy because they are evidence
that, at the indicated p, T parameters of fullerite anneal-
ing, the dimer is not a final product of transformation
on the way to the linear C60 polymers but is an interme-
diate product. The presence of linear polymers in the
samples prepared by prolonged annealing is evident
from the appearance of the IR bands at 778 and
759 cm−1 (Fig. 2) that are typical of the orthorhombic
polymerized C60 phase [16, 24].

Considering these kinetic features, the rate con-
stants were determined from the curve portions exclud-
ing the induction periods and the domains with a
detectable content of linear C60 polymers. For this rea-

Fig. 2. IR spectra of the samples prepared by treating fuller-
ite C60 at 1.5 GPa, 393 K, and by isothermal annealing for 1
to 50000 s.
JETP LETTERS      Vol. 72      No. 11      2000
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son, the data obtained at a temperature of 473 K were
fully excluded from the analysis.

The content of dimeric molecules in the samples
was determined by measuring the optical density at the
maximum of the analytical band, correcting it for the
concentration of the sample in the KBr pellet and its
thickness, and normalizing to the optical density mea-
sured for the corresponding band in a pellet containing
a known amount of pure (C60)2 dimer. The latter sample
was prepared through mechanochemical synthesis [23]
and kindly provided by Prof. K. Komatsu.

This procedure was used to determine the extent of
transformation (α) for the reaction

(1)

at different temperatures and for different times of iso-
thermal annealing. Further data processing was carried
out under the assumption that the pressure-induced
dimerization is a second-order irreversible reaction. In
this case, the integral form of the kinetic equation is

(2)

where k is the reaction rate constant and t is the anneal-
ing time.

The logarithmic rate constant calculated by Eq. (2)
for different temperatures is shown in Fig. 4 as a func-
tion of the inverse temperature. The black squares are
the experimental data and the straight lines are the
result of their least-squares processing. The preexpo-
nential factor and the activation energy for the C60
dimerization were determined using the Arrhenius
equation

(3)

In the variant when the experimental data were pro-
cessed over the entire temperature range (dashed line in
Fig. 4), these values were found to be A = (1.74 ± 0.24) ×
1014 s–1 and Ea(dim) = 134 ± 6 kJ/mol.

Although the experimental data in Fig. 4 do not give
explicit evidence of a change in the transformation
mechanism upon the transition from the SC to the FCC
phase, they were also processed separately in two tem-
perature ranges, 373–413 and 423–453 K (solid lines in
Fig. 4). The resulting activation energies for C60 dimer-
ization in the fullerite SC and FCC phases were esti-
mated at 137 ± 16 and 121 ± 22 kJ/mol, respectively.
Although the accuracy of these estimates is low
because of the narrow temperature ranges and small
number of experimental points, one can notice that,
having regard to errors of measurement, the difference
between the Ea(SC) and Ea(FCC) values is consistent with
the enthalpy of phase transition between the SC and
FCC phases at atmospheric pressure (~9 kJ/mol [25]).

A comparison with the literature data indicates that
the activation energy obtained in this work for reaction
(1) far exceeds the value of 38.6 kJ/mol found by Sol-
datov et al. in [8] for Ea of the pressure-induced C60
polymerization. Although our Ea(dim) value is still

2C60 C60( )2=

kt α / 1 α–( ),=

k A Ea/RT–( ).exp=
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appreciably lower than its theoretical estimate
400.4 kJ/mol obtained by Ozaki et al. in [9], it agrees
satisfactorily with the above-mentioned experimental
and some theoretical estimates of the activation ener-
gies for the dissociation of the dimeric molecule [2–4].

The qualitative distinctions between the dimeriza-
tion curves in the SC and FCC phases indicate that the
molecular orientation and the mobility of C60 mole-
cules in the fullerite lattice influence the pressure-
induced polymerization of C60, as well as its photopo-
lymerization. However, whereas the transition from
FCC to SC is accompanied by the inhibition of photo-
polymerization [10], the dimerization in the SC phase
upon pressure-induced transformations proceeds in the
autocatalytic regime. A plausible explanation for this

Fig. 3. Optical density at the maximum of analytical band of
the (C60)2 molecule vs. logarithm of isothermal annealing
time for the samples prepared by treating fullerite C60 at
1.5 GPa and temperatures (1) 373, (2) 393, (3) 413, (4) 423,
and (5) 453 K.

Fig. 4. Logarithmic rate constant for dimerization of C60 at
1.5 GPa vs. inverse temperature. The dashed line corre-
sponds to the variant in which the experimental data were
processed over the entire temperature range, and the solid
lines correspond to the variants in which two temperature
ranges 373–413 and 423– 453 K were processed separately.

log(t, s)

log(t, s)
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may be that the contents of two, the so-called P and H,
orientational states [26, 27] in the fullerite SC phase are
different under the conditions of pressure-induced
polymerization and photopolymerization at 1 atm.
Since the proximity and parallel arrangement of the
double carbon bonds of the neighboring C60 molecules
is the necessary topochemical condition for the [2+2]
cycloaddition reaction, it is then clear that the P orien-
tation, for which the double bond of one molecule faces
the center of the pentagonal cycle of the other, is most
unfavorable for the polymerization. The enhanced con-
tent of P orientations in the SC phase at atmospheric
pressure (~60% near the upper temperature phase
boundary and 84% near its lower boundary at 90 K
[26]) is the possible reason for the existence of a tem-
perature threshold of photopolymerizability [10, 11].
Pressure buildup increases the content of H orientations
in the SC phase, and, at pressures of ~1.5 GPa, their con-
tent becomes close to 100% [19, 20, 28, 29] (Fig. 1).
Although the H orientation is also not optimum for the
reaction, the appearance of favorable mutual molecular
orientations, owing to the random thermally activated
events, becomes much more probable in this case. The
appearance of dimeric molecules results in a local dis-
order in the SC phase and, thus, “catalyzes” the reac-
tion. Starting at a certain moment, the process becomes
similar to the dimerization in the FCC phase.

This work was supported by the Russian Foundation
for Basic Research (project no. 00-03-32600) and the
INTAS (grant no. IR-97-1015). We are grateful to
K. Komatsu for providing a pure sample of (C60)2
dimer.
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Normal Spinel CuCr1.6Sb0.4S4, a New Material
with a Giant Magnetoresistance
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A giant magnetoresistance, reaching 74% in a magnetic field of 38 T at 3 K, was observed in the CuCr1.6Sb0.4S4
semiconductor spinel. The magnetic properties point to the existence of a magnetic two-phase state in this com-
pound. The giant magnetoresistance was explained by the existence of the magnetic two-phase state due to
strong s–d exchange. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.50.Pp; 75.70.Pa
In the last decade, interest has sharply risen in mate-
rials with a giant magnetoresistance because of their
possible application in various sensor devices. In this
work, a giant magnetoresistance was found in the
CuCr1.6Sb0.4S4 compound semiconductor consisting of
a solid solution of two compounds with the normal

spinel structure: the Cu1+  antiferromagnet
with conduction of the semiconductor type [1, 2] and

the Cu2+  ferromagnet with conduction of the
metallic type [3, 4]. This is surprising, because no mag-
netoresistance was observed to within the experimental
error (0.01%) in either CuCr1.5Sb0.5S4 or CuCr2S4.

In this work, the magnetoresistance ∆ρ/ρ = (ρH –
ρH = 0)/ρH = 0, the resistivity ρ, and the magnetization M
of the CuCr1.6Sb0.4S4 compound were investigated.
A polycrystalline sample was obtained by solid-phase
synthesis. The single-phase character of the sample was
determined by X-ray powder diffraction analysis. The
sample had a spinel structure with lattice parameter a =
9.9680(1) Å and anion parameter u = 0.3820(1). The
magnetization in a constant magnetic field H ≤ 14 T
was measured by the induction method, and the resis-
tivity was measured by the four-probe method. Both a
stationary magnetic field H ≤ 10 T and a pulsed mag-
netic field H ≤ 38 T were used for measuring the mag-
netoresistance. The experimental results are presented
in Figs. 1–5. Note that the experimental error is smaller
than the size of the symbols representing experimental
points.

The dependence of lnρ on the inverse temperature T
is shown in Fig. 1. It is evident that the conduction of
the sample is of the semiconductor type. The tempera-
ture dependence of the magnetoresistance at H = 10 T

Cr1.5
3+ Sb0.5

5+ S4
2–

Cr2
3+S4

2–
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and 38 T is shown in Fig. 2. The longitudinal and trans-
verse values of the magnetoresistance for the same
value of magnetic field are equal. It is apparent in Fig. 2
that the magnetoresistance is negative and its value is
very large: ∆ρ/ρ = 74% at T = 3 K and H = 38 T. It
should be noted that saturation in the magnetoresis-
tance isotherms is still not attained in a field of 38 T. At
H = 38 T, ∆ρ/ρ monotonically decreases with decreas-
ing temperature and approaches a value of ~ 4% at 39 K
(the highest temperature at which the magnetoresis-
tance was higher than the experimental error at H =
10 T). The Néel point for this composition, TN = 42.8 K,
was determined in [5] as the temperature corresponding
to a maximum in the curve for the temperature depen-
dence of the initial magnetic susceptibility measured in
an alternating magnetic field in the frequency range
from 0.25 to 4 kHz and was virtually independent of the
frequency. In a field of 10 T, the ∆ρ/ρ(T) dependence is
nonmonotonic; however, as in a field of 38 T, the abso-
lute value of ∆ρ/ρ decreases as TN is approached and
becomes close to zero at 35 ≤ T ≤ 39 K.

Magnetization isotherms of the sample cooled to
4.2 K in the absence of a magnetic field are shown in
Fig. 3. It is evident in the figure that the M(H) curves
both above and below TN can be represented as a sum
of two parts: the magnetization linear in field and a
small spontaneous magnetization. The spontaneous
magnetization is much smaller than the magnetization
of the ferromagnetically ordered sample. It turned out
that, at T < TN, the M(H) curves obtained upon increas-
ing and decreasing the field were different. Namely, a
curve obtained upon field decrease is located higher
than the corresponding curve obtained upon field
increase. This difference is clearly seen in the M(H)
000 MAIK “Nauka/Interperiodica”
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curve obtained at 4.2 K in fields below 4 T. At T < TN,
this distinction disappears. The M(H) curves presented
in Fig. 4 were obtained at the same temperatures as in
Fig. 3; however, the sample was cooled before mea-
surements from T = 300 K to T = 4.2 K in a field of
14 T. A comparison of Figs. 3 and 4 shows that the
slope of the linear part of the M(H) curves is the same
for the same temperatures; however, the spontaneous
magnetization is higher for the sample cooled in a field.
Figure 5 demonstrates the temperature dependence of
M in a field of 10 T obtained after cooling the sample
from 300 to 4.2 K in the absence of a field (curve 1) and
in a field of 14 T (curve 2). It is evident that curve 2 runs
much higher than curve 1; a broad maximum is
observed in both curves in the region of TN.

This behavior of magnetization can be ascribed to
the existence of a magnetic two-phase state in the sam-
ple. At T < TN, this state represents an antiferromagnetic
(AFM) matrix with single-domain magnetic clusters
with spontaneous magnetization canted. The magnetic
moments of the clusters are coupled by exchange inter-
action with the antiferromagnetic matrix. Because of
this interaction, the magnetic moments of the clusters
are aligned with the antiferromagnetic vectors in the
domains of the AFM matrix. At T close to TN, when the
magnetic anisotropy of the AFM matrix is small, the
external magnetic field orients the antiferromagnetic

Fig. 1. Dependence of the natural logarithm of the resistivity
lnρ on the inverse temperature.

Fig. 2. Temperature dependence of the magnetoresistance
∆ρ/ρ(T) at two values of the magnetic field.

ln
ρ 

(Ω
 m

)

vectors of the AFM domains along its own direction.
This orientation persists on cooling down to T ! TN. On
cooling without a field from T > TN to T ! TN, the anti-
ferromagnetic vectors and the cluster magnetic
moments coupled to these vectors are oriented along
the light magnetization directions inside the domains.
When a field is applied at T < TN, the antiferromagnetic
vectors and the cluster magnetic moments rigidly
bound to these vectors are rotated together toward the
field direction. Magnetic fields necessary for the cluster
moments to be completely oriented are considerably
higher than in the case of field cooling described above.
Therefore, the spontaneous part of magnetization at the
same temperature is higher for a sample cooled in a
field than for one cooled without a field.

The fact that the moments and the number of mag-
netic clusters may depend on the temperature should
also be taken into account. This is possible, for exam-
ple, in the case of an AFM semiconductor with strong
s–d exchange, in which magnetic clusters of the ferron
or afmon type are arranged [6, 7]. Such a semiconduc-
tor is characterized by a giant magnetoresistance.
Because of strong s–d exchange, it is energetically
favorable for charge carriers in a semiconductor of this
type to be localized near impurities and to maintain a
ferromagnetic order around them. Such ferromagnetic
clusters received the name ferrons. Not only ferromag-
netic, but also some other phase can serve as a potential
well for charge carriers. It can be, for example, an AFM
phase but of a type other than that normally occurring
in the crystal. The energy of charge carriers in this other
phase must be lower than in the main AFM phase. This
quasiparticle received the name afmon. As an example,
an AFM semiconductor with a staggered AFM struc-
ture containing microregions with a layered AFM
structure was considered in [7]. It is known that the
energy of a charge carrier in a layered AFM phase is
lower than in a staggered AFM phase, and their differ-
ence may reach several tenths of an electronvolt. There-
fore, charge carriers in an AFM phase with staggered
ordering may autolocalize in microregions with layered
AFM ordering. Afmons can exist only in materials with
sufficiently high TN, where free ferrons cannot exist.
The energy of such a quasiparticle (afmon) can be fur-
ther lowered if the moments of the sublattices are
canted; however, a large sublattice cant is excluded,
because ferrons are energetically unfavorable.

The CuCr1.6Sb0.4S4 compound considered in this
work is a solid solution of two compounds: the CuCr2S4
compound, a ferromagnet with conduction of the
metallic type [3, 4], and the AFM semiconductor
CuCr1.5Sb0.5S4 with the negative paramagnetic Curie

point Θ = –156 K [1, 2]. Additions of Cu2+ S4 in

Cu1+  may be considered as doping with
divalent copper (acceptor) and the simultaneous substitu-
tion of Cr3+ ions for part of the Sb5+ ions. In this case, the
compound considered in this work has the following dis-

Cr2
3+

Cr1.5
3+ Sb0.5

5+ S4
2–
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tribution of valences: . It is evi-
dent from Figs. 3 and 4 that its magnetization isotherms
are sums of the part linear in field and a small sponta-
neous magnetization. The paramagnetic susceptibility
obeys the Curie–Weiss law. The paramagnetic Curie
temperature is equal to 130 K and is much higher than
the value Θ = –156 K for CuCr1.5Sb0.5S4 [5].

It is known that the value of Θ is determined by the
sum of exchange interactions in the crystal. Because
the paramagnetic Curie point in CuCr1.5Sb0.5S4 is nega-
tive and large in absolute value, this antiferromagnet
possibly possesses a staggered structure. It is not
improbable that this compound is characterized by a
more complicated magnetic structure in which AFM
interactions predominate. The sharp increase in Θ for

the  composition indicates that
ferromagnetic exchange interactions originating, possi-
bly, from microregions in the vicinity of Cu2+ impurity
ions make a significant contribution to Θ.

Clusters of the ferron or afmon type are undeniably
present in the given compound, because it exhibits a
giant magnetoresistance. However, it is not clear which
of the two types of clusters indicated above is present
in the sample. It should be noted that the values of
spontaneous magnetization determined by extrapolat-
ing the rectilinear portions of the M(H) curves in
Figs. 3 and 4 to the intersection with the M axis are
small. The maximum value of the spontaneous mag-
netic moment µ determined from the spontaneous mag-
netization equals 0.51 µB/(chem. unit) at 4.2 K for the
sample cooled in a field of 14 T from 300 to 4.2 K. At
higher temperatures or at 4.2 K, but upon cooling the
sample without a field, the value of µ decreases several
times. The maximum value of µ indicated above is
approximately one order of magnitude smaller than the
value of the magnetic moment that would be observed

for the  compound on complete
ferromagnetic ordering of the moments of the Cr3+ and
Cu2+ ions. The small value of µ is in agreement with the
conclusions drawn in [6], where it was shown that the
volume of the ferromagnetic phase in an impurity AFM
semiconductor composed of ferromagnetic drops (fer-
rons) arranged in an AFM matrix comprises several
percent of the entire sample volume. It is evident that
the volume of the phase with a magnetic moment will
be of the same order of magnitude or smaller in the case
when the magnetic clusters in an AFM semiconductor
are of the afmon type.

As was indicated in [7], afmons can exist in AFM
semiconductors in which free ferrons (not associated
with impurities) are energetically unfavorable. The
value TN = 42.8 K for CuCr1.6Sb0.4S4 is higher than the
limiting value TN = 15 K for the existence of free fer-
rons. However, the ferrons in the compound under con-
sideration are impure. Their formation in an impurity
AFM semiconductor is significantly facilitated,

Cu0.8
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2+ Cr1.6
3+ Sb0.4

5+ S4
2–

Cu0.8
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2+ Cr1.6
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because, in addition to s–d exchange, Coulomb attrac-
tion favors the localization of charge carriers near
impurities. Therefore, ferrons can exist in impurity
AFM semiconductors with Néel temperatures higher
than 15 K. Because of the aforesaid, it is not clear at
present which quasiparticles, ferrons or afmons, are
responsible for the giant magnetoresistance in the com-
pound under consideration.

Fig. 3. Magnetization isotherms at several temperatures
obtained after cooling the sample from 300 to 4.2 K in the
absence of a magnetic field.

Fig. 4. Magnetization isotherms at several temperatures
obtained after cooling the sample from 300 to 4.2 K in the
presence of a magnetic field of 14 T.

Fig. 5. Temperature dependence of the magnetization in a
magnetic field of 10 T obtained (curve 1) after cooling the
sample to 4.2 K in the absence of a magnetic field and
(curve 2) after cooling the sample in a field of 14 T from 300
to 4.2 K.
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It is seen in Figs. 3–5 that the spontaneous magnetic
moment is observed in the sample even at T > TN, but
its magnitude is small. For example, it does not exceed
0.33 µB/(chem. unit) at T = 77 K for the sample cooled
in a field of 14 T and decreases with increasing temper-
ature. Steps are observed in the curves M(T) in the tem-
perature ranges 80–100 K and 140–170 K for the sam-
ple cooled in the absence of a field. These steps are
smoothed at the same value H = 10 T in the curve
obtained after cooling the sample from 300 to 4.2 K in
a field of 14 T. It is quite possible that, as the tempera-
ture increases, the short-range AFM order is disturbed
in a region of 100 K. This results in breaking of the
exchange coupling between the magnetic clusters
described above and the AFM microregions that can
quite probably exist above TN. This in turn facilitates
the thermal disordering of the cluster magnetic
moments. One can assume that the process of thermal
destruction of the ferron or afmon clusters starts at the
end of the second step at T ≥ 170 K. It is seen in Fig. 1
that the magnitude of ρ in this temperature region is
small. It is smaller than 10–3 Ω m; that is, the material
actually becomes a good conductor because of the
destruction of magnetic clusters.
This work was supported by the Russian Foundation
for Basic Research (project no. 00-15-96695), the Jozef
Mianowski Foundation (Poland), and the Committee
for Scientific Research (Poland). The authors are grate-
ful to Ya.A. Kessler and D.S. Filimonov for the prepa-
ration of the sample and its analysis.
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Interaction of two localized impurity states of Si atoms at a GaAs surface was studied by scanning tunneling
microscopy and spectroscopy. The effects of a twofold “switching” on and off of the states of each of the inter-
acting atoms, the tunneling-interaction-induced mutual level pulling of these states, and the level stabilization
near EF were observed. These effects are explained in terms of the extended Anderson model. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.55.Eq; 61.16.Ch; 68.65.+g; 68.35.Bs; 73.20.Dx
With a decrease in size and dimensionality of semi-
conductor electronic systems, impurity states and their
interaction start to play the key part in electronic pro-
cesses. Such states exert a particularly strong effect on
the electronic structure of surfaces. The interaction of
the impurity states at surfaces or interfaces have been
poorly studied to date, while the effects of nonequilib-
rium interaction of such states have not been examined
at all. At the same time, modern trends in the develop-
ment of semiconductor electronics need a detailed anal-
ysis of processes of this kind, because they may
become the basis for realizing the elements of semicon-
ductor nanometer-scale electronics in the future.

In this work, the interaction of the localized impu-
rity states formed by a pair of identical impurity Si
atoms 3 nm apart at the (110) GaAs surface are studied
by scanning tunneling microscopy and spectroscopy
(STM/STS) [1]. The sample under investigation was a
GaAs single crystal doped with mutually compensating
Si and Zn impurities with concentrations 5 × 1018 and
2 × 1019 cm–3, respectively.

Measurements were made at a temperature of 4.2 K
on a scanning tunneling microscope allowing the prep-
aration of a clean surface for an in situ sample using a
cleavage mechanism [2].

The interaction of the impurity states was studied by
measuring the tunnel conductance (dI/dV)/(I/V) across
a surface area of 10 × 10 nm with a step of 0.25 nm. In
Fig. 1, the measured spatial distribution of local elec-
tron density in the vicinity of the interacting impurities
a and b is shown as a function of energies of the key
states of these interacting impurity atoms.

Figure 1.1 is the STM image of the interacting Si
atoms. The remaining panels show the spatial distribu-
tion of the normalized tunnel conductance near the
atoms vs. the tunnel bias applied to the STM tip. It
0021-3640/00/7211- $20.00 © 20565
should be noted that the contribution from other
dopands situated near the chosen interacting Si atoms
was observed only in the form of a distributed nonuni-
form Coulomb potential in the crystal. Due to this
potential, the initial state of the interacting Si pair
became asymmetric, which showed itself in the distinc-
tions between the STM/STS images of these atoms at
zero bias Vt ≈ 0 on the transition.

In the experimentally observed spatial distribution
of the local tunnel conductance, one can recognize a
twofold “switching” on and off of each of the atomic a
and b states upon changing the tunnel bias. After
switching on, the excess tunnel conductance occurs in
the vicinity of each of these atoms in a bias range of
≈0.75 V, which is much greater than the level width of
the localized state. At the same time, the transition from
one state to the other occurs upon changing bias in the
range on the order of 0.15 V, which is comparable to the
energy level width of the localized state.

The behavior of the spatial distribution of tunnel
conductance in the vicinity of the two impurity atoms
was explained using a model that is analogous to the
Anderson model [3–5] but takes into account the Cou-
lomb interaction of the localized electrons and the
influence of the tunnel bias on the positions of energy
levels of the impurity atoms.

A change in the applied bias can induce the transi-
tion of an impurity atom from the state corresponding
to the “paramagnetic” regime to the state correspond-
ing to the “magnetic” regime (the energy of electrons
with different spins and their occupation numbers are
different). The interaction of the impurity states with
the continuum spectrum is assumed to be not too weak;
namely, a change in the energy of impurity states under
the action of the Coulomb interaction of the localized
charges is determined by the mean occupation numbers
at a fixed applied bias. This situation is different from
000 MAIK “Nauka/Interperiodica”
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Fig. 1. STM images and image of the normalized tunnel conductance near the interacting impurity silicon atoms a and b. (1) STM

image of atoms at Vt = 1.5 V; (2)–(12) images of the tunnel conductance  at Vt = (2) 2.0, (3) 1.55, (4) 1.4, (5) 1.1, (6) 0.8,

(7) 0.55, (8) 0.2, (9) ≈0.0, (10) –0.2, (11) –0.4, and (12) –1.5 V.
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the effects caused by a Coulomb blockade associated
with the discreteness of the occupation numbers of
localized states [7].

Indeed, in the presence of both intra-atomic and
interatomic Coulomb interactions, Coulomb blockade
[7] gives rise to the peaks in the tunnel conductance as
a function of bias on the contact, with the peak widths
being on the order of the level width of the localized
state (and no larger than 0.1 eV).

In our model, the tunneling interaction between the
impurity atoms can redistribute the localized charge
between the atoms and lead to mutual energy-level
pulling between the localized states in a certain range
of applied bias. As a result, the following factors should
be taken into account in the analysis of the experimen-
tal data:
(1) The excess local tunnel conductance appears in
the vicinity of the impurity atom if |εa(b)(V) – EF | < Γ
(Γ is the width of the atomic localized level). If the
applied bias exceeds the level width, |eV | > Γ, then the
local tunnel conductance may increase both when the
energy of localized state passes through the Fermi level

 of the sample and when it passes through the Fermi

level  =  – eV of the tip.

(2) The Coulomb interaction of the localized elec-
trons can be described in the self-consistent mean-field
approximation of the Anderson model. This approxi-
mation applies when the energy Ua(b) of Coulomb inter-
action of the localized electrons does not strongly
exceed its critical value Ucr .

EF
S

EF
T EF

S
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As the bias on the contact changes, i.e., as the posi-

tion of a seed level (V) of an impurity atom
changes, the transition from the paramagnetic to the
magnetic regime can occur. Thus, the Coulomb interac-
tion of localized electrons in a certain range of applied
bias can give rise to two energetically different states
for electrons with opposite spins at one of the impurity
atoms. On further increase in applied bias, the reverse
transition to the paramagnetic state can occur for the
impurity atom.

(3) Due to the atomic interaction, the distribution
law for the localized charges in the area of STM contact
becomes more complex. A sizable redistribution of the
localized charge occurs between the atoms, so that the
energy levels of one of the atoms can stabilize near the
Fermi level of the sample or the tip and the mutual
energy-level pulling can take place. For example, in the
nonequilibrium situation at nonzero bias V, when the

(V) level is in the vicinity of  and lies higher than

(V), the interaction between atoms a and b brings
about charge redistribution between them and strength-
ening of the magnetic regime for the a atom and, hence,

an increase in the separation between the  and 
levels. If Vt = 0, then the interaction between the atoms
results in weakening of the magnetic regime for the a

atom and equalization of the  and  energies.

Let us analyze the experimental results using the
suggested model.

At V ≈ 0, the energy εa(0) of the localized state of

atom a is close to the Fermi level  of the sample. The
a atom manifests itself as an enhanced tunnel conduc-
tance, i.e., as a light spot in the STS image (Fig. 1.9). In
this case, the Coulomb interaction Ua of the localized
electrons does not strongly exceed the critical value Ucr

introduced in the Anderson model and the a atom is in

the paramagnetic regime,  =  and 〈 〉  = 〈 〉 .
Under these conditions, the energy εb(0) of the local-
ized state of atom b lies lower than the Fermi level so
that the b atom is not seen in the STS image of tunnel
conductance. It is assumed that the energy Ub of Cou-
lomb interaction of localized electrons is lower than Ucr

so that the b atom also occurs in the paramagnetic
regime.

As the positive tip voltage rises, the energy of atoms
a and b becomes lower due to the external field (applied
bias) and, at Vt ≈ 0.15 V, the energy εb(V) of atom b

becomes close to the tip Fermi level . As a result, the
b atom is switched on and also becomes visible as a
light spot in the STS image, while the excess tunnel con-
ductance is retained in the region of atom a (Fig. 1.8).
This is due to the fact that a small decrease in the
energy of atom a causes transition from the paramag-
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netic to the magnetic regime at an Anderson impurity,
because the energy of on-site Coulomb repulsion does
not differ strongly from the critical value. The energies
of electrons with opposite spins and their occupation
numbers become different:

As a result of such a transition, one of the occupation
numbers (V) [nσ(V) for definiteness] increases
while the other, n−σ(V), decreases. This results in a

faster decrease of (V), as compared to the case where
the dependence of energy on the occupation numbers is

not taken into account. Accordingly, (V) increases

while the (V) level stabilizes in the vicinity of the tip

Fermi energy. In addition, the difference in the (V)

and (V) energies of atoms a and b does not exceed
the summarized width of these levels and, hence, the
charge redistribution between the atoms becomes

appreciable. As the occupation numbers (V) at the b

atom decrease and the (V) numbers at the a atom

simultaneously increase, the energy of the (V, )

state increases and the energy of the (V, ) state

further decreases; i.e., the (V) and (V) levels come

even closer together. It appears as if the (V) level is

pulled into the (V) energy range, while the difference

between the energies (V) and (V) of electrons
with opposite spins increases. Thus, excess tunnel con-
ductance occurs in the vicinity of both atoms a and b,
as is indeed observed experimentally at biases ranging
from ≈0.15 to ≈0.5 V.

On further increase in Vt, the position of the  level
is mainly determined by the external field because of

the smallness of 〈 〉 . The level with energy (V)
moves away from the Fermi level, and the a atom is
switched off at Vt ≈ 0.55 V (Fig. 1.7).

With a change in bias from Vt ≈ 0.55 to Vt ≈ 0.75 V,
the excess tunnel conductance is seen only in the vicin-
ity of the b atom. The energy of the localized b state is

left in the vicinity of the tip Fermi level  up to
Vt ≈ 1.1 V (Fig. 1.5), where this atom is switched off.
Thus, the excess tunnel conductance is retained near
the b atom at biases ranging from Vt ≈ 0.2 to Vt ≈ 1 V
(Figs. 1.5–1.8), because both the Coulomb interaction
of localized electrons and the decrease in the mean
occupation number upon an increase in the applied bias

stabilize the energy of this level in the vicinity of .
At biases exceeding Vt ≈ 1 V, a change in the energy of
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the localized state of the b atom is mainly dictated by
the external field.

The a atom is again switched on at Vt ≈ 0.8 V
(Fig. 1.6). This is due to a field-induced change in the

energy  = (0) – αV + Ua〈nσ〉  of the electron with
spin –σ. The excess tunnel conductance appears in the

vicinity of the a atom when the level (V〈nσ〉) falls
within the range of width Γ in the vicinity of the Fermi

level  of the sample [i.e., the (V) level passes

through the Fermi level of the sample]. The 〈 〉  value
starts to increase, making possible a reverse transition

of the a atom to the paramagnetic regime (V) =

(V). The dependence of the energy of this localized
state on the occupation number results in the stabiliza-

tion of the  level in the vicinity of the Fermi level of
the sample at biases on the contact up to Vt ≈ 1.5 V. Note
that, at biases exceeding Vt ≈ 1.4 V (Fig. 1.4), the spatial
distribution of the tunnel conductance strongly depends
on the modification of the band structure of the semi-
conductor in the vicinity of the impurity atoms
(Figs. 1.2, 1.3) [7, 8].

At negative tip voltages, the energies  and  of
atoms a and b increase. Both atoms a and b are in the
paramagnetic state. At Vt ≈ –0.2 V, the energy level of

the b atom passes through the Fermi level  of the
sample, resulting in switching on of the b atom
(Fig. 1.10). The Coulomb interaction of the localized
electrons brings about stabilization of this level in the

vicinity of  at biases up to Vt ≈ –1 V, as in the case
of a positive bias. At Vt ≈ –0.4 V, the difference between
the energy level of the localized state of a and the Fermi
energy exceeds the width of this level. The a atom is
switched off (Fig. 1.11). As a result, the excess density
of states in the vicinity of the a atom disappears.
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At negative tip voltages, the excess tunnel conduc-
tance is simultaneously seen near both atoms only in
the bias range from Vt ≈ –0.2 to Vt ≈ –0.3 V. Note that
the expansion of the area of electron-density localiza-
tion in the vicinity of the impurity state with increasing
negative bias on the contact is caused by the fact that
the energy of the localized state approaches the band
edge.

At high negative tip voltages, Vt < –1 V, the tunnel
conductance is minimum in the vicinity of the a and b
atoms (Fig. 1.12). This is probably due to the fact that,
at contact voltages close to the conduction band edge,
the local band bending at the semiconductor surface in
the vicinity of impurity atoms substantially modifies
the tunnel characteristics of the STM transition.
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Applying the canonical transformation with the 1/λ perturbation expansion in the nonadiabatic and intermedi-
ate regime and the discrete generalization of Pekar’s continuous nonlinear equation in the extreme adiabatic
regime, we show that there are no strings in narrow-band ionic insulators due to the Fröhlich electron–phonon
interaction alone. The multipolaron system is a homogeneous state in a wide range of physically interesting
parameters, no matter how strong the correlations are. At the same time, the Fröhlich interaction allows the anti-
ferromagnetic interactions and/or short-range electron–phonon interactions to form short strings in doped anti-
ferromagnetic insulators if the static dielectric constant is large enough. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.38.+i
The electron–phonon interaction is strong in ionic
cuprates and manganites, as is established both experi-
mentally [1–4] and theoretically [5–8]. The carriers,
doped into the Mott insulator, are coupled with the anti-
ferromagnetic background as well. The antiferromag-
netic interactions are thought to give rise to spin and
charge segregation (stripes) [9, 10]. There is growing
experimental evidence [11–13] that stripes occur in
slightly doped insulators. Their theoretical studies have
been restricted so far to the repulsive strongly corre-
lated models [9, 10], or to an extreme adiabatic limit of
the electron–phonon interaction in narrow- [14, 15] and
wide-band [16, 17] polar semiconductors and poly-
mers. On the other hand, there is strong evidence that
the nonadiabatic electron–phonon interaction and small
polarons are involved in the physics of stripes [3, 12].
Also the role of the long-range Coulomb and Fröhlich
interactions remains to be properly addressed.

In this letter, we prove that the Fröhlich electron–
phonon interaction, combined with the direct Coulomb
repulsion, does not lead to charge segregation like
strings in doped narrow-band insulators, both in the
nonadiabatic and adiabatic regimes. However, this
interaction significantly reduces the Coulomb repul-
sion, which might allow much weaker antiferromag-
netic and/or short-range electron–phonon interactions
to segregate charges in the doped insulators, as sug-
gested by previous studies [9, 10, 14].

To begin with, we consider a generic Hamiltonian,
including, respectively, the kinetic energy of carriers,

1 This article was submitted by the authors in English.
0021-3640/00/7211- $20.00 © 20569
the Fröhlich electron–phonon interaction, phonon
energy, and the Coulomb repulsion as

(1)

with bare hopping integral t(m), and matrix element of
the electron–phonon interaction

(2)

Here, i = (m, s) and j = (n, s' ) include the site m, n and

the spin s, s' quantum numbers; ni = ci; ci and dq are

the electron (hole) and phonon operators, respectively;
and N is the number of sites. At large distances (or
small q), one finds

(3)

and

(4)

The phonon frequency ωq and the static and high-fre-

quency dielectric constants in κ –1 =  –  are those

of the host insulator (" = c = 1).
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One can apply the canonical transformation [18]
and the 1/λ multipolaron perturbation theory [5] to
integrate out phonons:

(5)

The result is [5, 18]

(6)

where

(7)

is the renormalized hopping integral depending on the
phonon variables, Ep = ztλ is the polaron level shift, and

(8)

is the net interaction of polarons comprising the long-
range Coulomb repulsion and the long-range attraction
due to ionic lattice deformations. Here, λ =

γ(q)2ωq/2Nzt is the dimensionless coupling con-
stant, t is the nearest neighbor hopping integral and z is
the coordination lattice number.

The extension of the deformation surrounding
(Fröhlich) polarons is large, so their deformation fields
overlap at finite density. However, taking into account
both the long-range attraction of polarons due to the lat-
tice deformations and the direct Coulomb repulsion,
the net long-range interaction is repulsive [5]. At dis-
tances larger than the lattice constant, |m – n | ≥ a ≡ 1,
this interaction is significantly reduced to

(9)

Optical phonons nearly nullify the bare Coulomb repul-
sion in ionic solids if e0 @ 1, which is normally the case
in oxides. The kinetic energy term in exact Hamiltonian
(6) involves multiphonon events generating a residual
polaron–phonon interaction [5]. Below, we show that
in the two opposite limits, the nonadiabatic (ωq ≥ t) and
the extreme adiabatic (ωq  0) regimes, there is no
charge segregation or any other instability of the
polaronic liquid due to the Fröhlich interaction in
doped insulators, but only Wigner crystallization at
very low densities.

First we consider the nonadiabatic and intermediate
regime. The properties of a single small polaron with
the Fröhlich electron–phonon interaction were dis-
cussed a long time ago [19, 20]. Exact quantum Monte
Carlo simulations [21] showed that the first-order 1/λ

S ni ui q( )dq h.c.–[ ] .
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v ij e2/e0 m n– .=
perturbation theory is numerically accurate for any
coupling if the phonon frequency is sufficiently large,
ωq > t/2. The characteristic frequency of phonons
strongly coupled with carriers is about ωq= 75 meV [2]
in cuprates, so that cuprates are in this regime. Hence,
one can replace the hopping operator in Eq. (6) by its
phonon average, reducing the problem to narrow-band
fermions with weak repulsive interaction, i.e., Eq. (9).
Next-order corrections in 1/λ increase the polaron
binding energy with little effect on the bandwidth [22].
Because the net long-range repulsion is relatively
weak, the relevant dimensionless parameter rs =
m*e2/e0(4πn/3)1/3 is not very large in doped cuprates.
Wigner crystallization appears around rs . 100 or
larger, which corresponds to the atomic density of
polarons n ≤ 10–6 with e0 = 30 and the polaronic mass
m* = 5me typical for cuprates and manganites. This
estimate shows that small polarons in cuprates and
manganites are in the homogeneous state at physically
interesting densities.

In the opposite adiabatic limit, one can apply a dis-
crete version of the continuous nonlinear equation [23]
proposed in [24] for the Holstein (molecular) model of
the electron–phonon interaction and extended to the
case of the deformation and Fröhlich interactions in
[14, 15]. Applying the Hartree approximation for the
Coulomb repulsion, the single-particle wave function
ψn (the amplitude of the Wannier state |n〉) obeys the
following equation:

(10)

The potential φn, k acting on a fermion k at the site n

is created by the polarization of the lattice  and by
the Coulomb repulsion with the other M – 1 fermions,

,

(11)

Both potentials satisfy the discrete Poisson equation as

(12)

and

(13)

with ∆φn = (φn – φn + m). Differently from [15] we

include the Coulomb interaction in Pekar’s functional J

t m( ) ψn ψn m+–[ ] eφnψn–
m 0≠
∑– Eψn.=

φn k,
l

φn k,
c

φn k, φn k,
l= φn k,

c .+

κ∆φn k,
l 4πe ψn p,

2

p 1=

M

∑=

e∞∆φn k,
c 4πe ψn p,
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p 1 p k≠,=

M
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m∑
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[23], describing the total energy, in a self-consistent
manner using the Hartree approximation, so that

(14)

If we assume, following [14], that the single-particle
function of a fermion trapped in a string of length N is a
simple exponent ψn = N–1/2exp(ikn) with periodic bound-
ary conditions, then the functional J is expressed as J =
T + U, where T = –2t(N – 1)sin(πM/N)/[Nsin(π/N)] is
the kinetic energy (for an odd number M of spinless fer-
mions)2 proportional to t and

(15)

corresponds to the polarization and the Coulomb ener-
gies. Here, the integral IN is given by

(16)

It has the following asymptotic form (figure):

(17)

which is also derived analytically at large N by the use
of the fact that sin(Nx/2)2/(2πNsin(x/2)2) can be
replaced by a δ-function. If we split the first (attractive)
term in Eq. (15) into two parts through replacing M2 by
M + M(M – 1), then it becomes clear that the net inter-
action between polarons remains repulsive in the adia-
batic regime as well, because κ > e∞. Hence, there are
no strings within the Hartree approximation for the
Coulomb interaction. Strong correlations do not change
this conclusion. Indeed, if we take the Coulomb energy
of spinless one-dimensional fermions comprising both
Hartree and exchange terms as3 

(18)

2 For an even M, the kinetic energy T = –2t(N –
1)sin(πM/N)cos(π/N)/[Nsin(π/N)].

3 This expression differs from [14, 15] by the numerical coeffi-
cients.
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the polarization and Coulomb energy per particle
becomes (for large M @ 1)

(19)

where α = 1 – e∞/e0 < 1. Minimizing this energy with
respect to the length of the string N, we find

(20)

and

(21)

Hence, the potential energy per particle increases with
the number of particles so that the energy of M well-
separated polarons is lower than the energy of polarons
trapped in a string, whether correlated or not. The
opposite conclusion of [15] originates in an incorrect
approximation of the integral IN ∝  N0.15/N. The correct
asymptotic result is IN = ln(N)/N.

One can argue [25] that a finite kinetic energy (t) can
stabilize a string of finite length. Unfortunately, this is
not correct either. We performed exact (numerical) cal-
culations of the total energy E(M, N) of M spinless fer-
mions in a string of length N including both kinetic and
potential energy with the typical values of e∞ = 5 and
e0 = 30. The local energy minima (per particle) in a
string of length 1 ≤ N ≤ 69 containing M ≤ N/2 particles
are presented in the table. Strings with the even fermion
numbers carry a finite current and, hence, the local min-
ima are found for odd M. In the extreme wide-band
regime with t as large as 1 eV, the global string energy
minimum is found at M = 3 and N = 25 (E = –2.1167 eV)
and at M = 3 and N = 13 for t = 0.5 eV (E = –1.2138 eV).
However, this is not the ground-state energy in both
cases. The energy of well-separated d ≥ 2-dimensional
polarons is well below, less than –2dt per particle (i.e.,

U
M
-----

e2M
Ne∞
---------- 0.916 M α 1.31 Nln+( )–ln+[ ] ,=

N M1/α –0.31 0.916/α+( )exp=

U/M( )min
e2

κ
----– M1 1/α– 0.31 0.916/α–( ).exp=

The polarization energy of small Fröhlich polarons trapped
in a string depends on its length as ln(N)/N. 

ln(N)
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–6 eV in the first case and –3 eV in the second one in
the three-dimensional cubic lattice and –4 eV and
−2 eV, respectively, in the two-dimensional square lat-
tice). This argument is applied for any values of e0, e∞,
and t. As a result, we have proved that strings are
impossible with the Fröhlich interaction alone, contrary
to the erroneous [15, 25].

The Fröhlich interaction is, of course, not the only
electron–phonon interaction in ionic solids. As dis-
cussed in [5], any short-range electron–phonon interac-
tion, like, e.g., the Jahn–Teller (JT) distortion, can over-
come the residual weak repulsion of Fröhlich polarons
to form small bipolarons. At large distances, small non-
adiabatic bipolarons weakly repel each other due to the
long-range Coulomb interaction, which is four times of
that of polarons, Eq. (9). Hence, they form a liquid state
[5], or bipolaronic–polaronic crystal-like structures [26],
depending on their effective mass and density. The fact
that the Fröhlich interaction almost nullifies the Cou-
lomb repulsion in oxides justifies the use of the Hol-
stein–Hubbard model [6, 27]. The ground state of the
1D Holstein–Hubbard model is a liquid of intersite
bipolarons with a significantly reduced mass (com-
pared with the on-site bipolaron), as shown recently
[28]. The bound states of three or more polarons are not
stable in this model, thus ruling out phase separation.
However, the situation might be different if the antifer-
romagnetic [9, 10] and JT interaction [29] or any short
(but finite)-range electron–phonon interactions are
strong enough. Due to long-range nature of the Cou-
lomb repulsion, the length of a string should be finite
(see also [12, 14]). One can readily estimate its length
by the use of Eq. (8) for any type of short-range elec-
tron–phonon interaction. If, e.g., we take dispersive
phonons ωq = ω + δω(cosqx + cosqy + cosqz) with a
q-independent matrix element γ(q) = γ, we obtain a
short-range polaron–polaron attraction as

(22)

where Eatt = γ2ω0/2. Taking into account the long-range
repulsion as well, Eq. (9), the potential energy of the
string with M = N polarons becomes

(23)

v att n m–( ) Eatt– δω/ω( )δ n m– 1, ,=

U
e2

e0
----N2IN

NEattδω
ω

---------------------.–=

E(M, N) for t = 1 eV and t = 0.5 eV

t = 1 eV t = 0.5 eV

M N E(M, N) N E(M, N)

1 11 –2.0328 3 –1.1919

3 25 –2.1167 13 –1.2138

5 42 –2.1166 25 –1.1840

7 61 –2.1127 40 –1.1661
Minimization of this energy yields the length of the
string as

(24)

Actually, this expression provides a fair estimate of the
string length for any kind of attraction (not only gener-
ated by phonon dispersion) and also for the antiferro-
magnetic exchange and/or JT-type of interactions.4

Due to the numerical coefficient in the exponent in
Eq. (24), one can expect only short strings (if any) with
the realistic values of Eatt (about a few hundred milli-
volts), and the static dielectric constant e0 ≤ 100.

We conclude that there are no strings in ionic doped
insulators with the Fröhlich interaction alone. Depend-
ing on their density and mass, polarons remain in a liq-
uid state or Wigner crystal. On the other hand, the
short-range electron–phonon and/or antiferromagnetic
interactions might provide a liquid bipolaronic state
and/or charge segregation (strings of a finite length),
because the long-range Fröhlich interaction signifi-
cantly reduces the Coulomb repulsion in highly polar-
izable ionic insulators.
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Tunneling contact was taken as an example to demonstrate that the interaction of electron quantum transitions
can serve as a source of low-frequency flicker fluctuations of conductivity. Estimates are made for the fluctua-
tions of tunnel conductance. The theory explains the effect of flicker noise sensitivity to the discreteness of the
electronic spectrum, as it was observed in nanocomposites. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.70.+m
1. Low-frequency flicker noise (1/f noise) is a topi-
cal problem of theoretical physics [1–5]. In electronics,
it is usually ascribed to the thermally activated fluctua-
tions, e.g., of structural disorder [1–11], while the 1/f
spectrum is constructed from Lorentzians correspond-
ing to “fluctuators” having different activation energies
[1]. However, there is some evidence that does not fit in
this theory [2, 4]. The fluctuators in hopping conduc-
tion and magnetoresistive oxides [8–12] may well be
associated with Coulomb interactions, but the theory
cannot explain the fact that the 1/f spectrum is not sat-
urated at low frequencies [8]. It appears that “1/f from
Lorentzians” is a trouble of the theory [13].

A more universal source of the 1/f noise consists in
the absence of a characteristic time scale rather than in
the summation of times. The former is typical of the
dissipative (resistive) kinetic events such as collisions
of particles and quanta [4, 14–18]. The fact that the sys-
tem forgets previous events signifies that there is no
distinct “number (probability) of events per unit time,”
because the fluctuations of (term from [19]) event den-
sity (and, hence, dissipation rate) do not bring about the
reverse reaction. As a result, the 1/f spectrum becomes
unsaturated (see reviews [4, 18]). Kinetics throws out
this “1/f from memory loss” and postulates probabili-
ties per unit time (collision integrals). However, when
going from statistical mechanics to gas kinetics without
adopting such an ansatz [15, 18], one arrives at the 1/f
fluctuations of diffusion rate and molecular mobility.
Flicker fluctuations of dissipation and light scattering
in quartz are also described by their own statistics of
kinetic events (phonon decay and fusion [16]) when it
is taken into account that the latter are entangled in time
and (phase) space.

It is shown below that the flicker noise in many-
electron systems can also be realized through entan-
0021-3640/00/7211- $20.00 © 20574
gling the kinetic events—electron transitions. Theory
can obtain it if it concerns a real duration of transitions
and, in addition, the discreteness of electronic energy
states.

Because of the finite duration of electron transition,
it becomes a fragment of a many-body process. After
cutting bosonic lines, the quantum transition amplitude
is formed under the action of time-dependent fields
associated with the other components of the process.
For example, the electron transitions through the tun-
neling contact (along with the thermal motion of a
charge at the contact edges) induce fast bias fluctua-
tions on the contact. These fluctuations randomly shift
the phases of amplitude increments for the forthcoming
transition. This situation was studied in the theory of
Coulomb blockade and low-temperature anomalies of
current–voltage characteristics [20–22]. Mathemati-
cally, analogous problems arise in the theory of mobil-
ity of strongly coupled polarons [23].

Evidently, this implies that the transport characteris-
tics, apart from their renormalization, possess specific
fluctuations. To our knowledge, this effect has not been
considered so far. Being due to the fast noise, it basi-
cally differs from the reproducible fluctuations caused
by the static disorder in a tunneling microcontact [24].
For clearness, we concentrate on an “ideal” tunneling
contact. Note that the 1/f noise in “material” contacts
[7, 25] is ordinarily assigned to structural factors, so-
called two-level systems. The possibilities of the corre-
sponding theory are analyzed in [6].

2. For a bias U < T/e (T is temperature) applied to
the tunneling contact, the average charge carried in
time ∆t and the conductance can be written as

(1)∆Q e
Ue
δE
-------∆t

τ t

-----, G
∆Q
U∆t
----------.= =
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Here, δE is the distance between the energy levels of
electrons in the edges, Ue/δE is the effective number of
“active” levels involved in the charge transport, and τt

is the mean hopping time of electrons (time of accumu-
lation of the hopping probability to a level close to
unity). Every contact has a finite capacitance C and a
finite correlation time τc = RC ≡ C/G of thermal charge
fluctuations. Let us demonstrate that tunneling is a very
long process; i.e.,

(2)

even if the Coulomb effects are weak in a trivial sense,
Ec ! T. For a flat contact with edge thicknesses w, bar-
rier thickness d, dielectric constant ~20, and standard
metallic electronic characteristics, one obtains τt/τc ≈
dw/a2, where a is the atomic scale length (on the order
of three angstroms).

Therefore, while tunneling, an electron has time to
virtually feel multiple changes u(t) in the bias on the
contact. In one-electron terms, this means that the tran-
sition probabilities are random variables. In a strict
many-body theory, the description of the corresponding
excess fluctuations of transport current would require
four-particle Green’s functions [4]. Inasmuch as the
corresponding technique is as yet not developed, we
attempt to gain insight into the problem using simple
methods of tunneling theory.

3. Let gkq ≈ g be the tunneling matrix elements,
pkq(∆t, U) be the transition probabilities from the (left)
state k to the (right) state q in time ∆t, and pk(∆t, U) ≡

 be the probability of hopping from the left
level k to any right level. According to the theory of
quantum chaos, the stochastic behavior is typical of
quantum systems, in spite of the fact that the spectrum
is discrete [26, 27]. For this reason, we will treat u(t) as
a random process. For ∆t ~ τt, perturbation theory is no
doubt valid and yields

(3)

Here, Ekq ≡  – Ek + eU (plus sign relates to the right
edge). Let us introduce the correlation function for the
random phase incursion ϕ(t), the coherence time, and
the energy “coherence band”:

(4)

τ t

τc
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e2

CδE
-----------
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δE
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------- iEkqt/"( )Z t( )exp t,d

0
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∞
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where the angular brackets stand for averaging over
u(t). The coherence time can easily be estimated when
it is considered that K(t) is the phase characteristic
function. It can straightforwardly be written at Ec ! T,
if u(t) can be approximated by the Gaussian process, to
give τcoh ~ ("/e)(C/T)1/2. At Ec ~ T, charge quantization
is essential and u(t) is approximated by a three-valued
process u = 0, ±e/C. An appropriate analysis gives
τcoh ~ τc.

Although shunting by an external circuit may
increase τcoh, it is clear that this time is much shorter
than the observation time; i.e., the Z(t) factor under the
integral in Eq. (3) acts as complex fast (“white”) noise.
Accordingly, the Akq amplitudes behave mainly as
(complex) Brownian trajectories. One can thus write

(5)

(the Malakhov angular brackets with comma inside
denote a correlator for the deviations from the mean).
Therefore, in times longer than the coherence time, the
transition probabilities become completely indetermi-
nate.

Let us consider the summarized hopping probabil-
ity. It can be presented in the form

(6)

Omitting details, we emphasize the key role of analytic
properties of the kernel Γk(τ) for the discrete spectrum.
In the case of a continuum spectrum, it would become
a function that rapidly and irreversibly tends to zero. In
reality, it is highly nonlocal and never decays, returning
from time to time to its value at zero time.

Due to discreteness, the hopping probabilities are
also random variables. At ∆E > δE, one has

(7)

The mean probabilities virtually coincide with those
adopted in standard kinetics. According to Eq. (7), a
peculiar kind of “uncertainty principle” is fulfilled:
although the fluctuations of all hopping probabilities
decrease with increasing ∆E, the energy range of their
correlation is extended. At ∆E < δE, the results depend
on the structure (commensurability) of electronic spec-
tra in the edges so that the level statistics should be
invoked. In this extreme case, the fluctuations may
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increase by one hundred percent and higher. In addi-
tion, the mean probabilities (and, hence, the current–
voltage characteristics) undergo substantial noise-
induced renormalization.

4. Let us consider the fluctuations of a charge car-
ried through a contact between the terminals of an
external circuit and assume that T @ δE. Now let ∆Q
denote a random variable. It consists of two parts, ∆Q =
∆Qth + ∆Qex, where the first term is the contribution
from the fast thermal (shot) noise. It can easily be esti-

mated to give  ≈ 2TG∆t. The second term
includes the transport excess fluctuations caused by the
fluctuations of transition probabilities. Statistically,
∆Qex should be defined as a conditional mean of ∆Q at
a fixed pkq. It is clear from thermodynamic consider-
ations that this term coincides in sign with the external
voltage U and vanishes at U = 0. Consequently, it can
be represented as a result of “excess” unidirectional
jumps:

(8)

Here, n is the random number of active levels from
which this hopping occurs. The mean n value is N ≡
eU/δE.

A “one-particle” energy distribution of active levels
is specified by Fermi statistics in both contact edges:

where f(E) is the Fermi distribution function. Averag-
ing of Eq. (8) with this distribution function leads to the
usual formula for tunnel current and to Eq. (1). A “two-
particle” (pair) distribution that is necessary for calcu-
lating the dispersion of Eq. (8) is determined by the
one-particle distribution and by the fact that two active
levels cannot coincide with each other. If the levels are
numbered in the order of increasing energy, then the
distance between the levels j > i cannot be smaller than
≈(j – i)δE. For this reason, the pair distribution function
has the form

(9)

where ϑ() is the step function.
We omit the calculations of the dispersion of Eq. (8)

and the corresponding fluctuations of conductance G =
∆Qex/U∆t. For a short coherence time (“large” contact,
∆E > δE), the results following from Eqs. (7)–(9) have
the form (at U < T/e)

(10)
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At long coherence times (“small” contacts, ∆E < δE),
the extreme situation occurs (see above) for which the
fluctuations can be sizably larger than (10), up to
δG2 ~ 1.

One can see that the discreteness generally serves as
a direct measure of conductance fluctuations. The fac-
tor ∆E characterizes the ambient noise and comes into
operation when the effective number eU/∆E of statisti-
cally independent electron tunneling (energy) channels
exceeds unity and, according to Eq. (10), the relative
fluctuations decrease approximately inversely with the
number of channels.

Note that the transparency dropped out of Eq. (10).
As for the ratio “excess transport noise/shot noise,” it is
determined by the product of the transparency and the
observation time. For this reason, the excess noise inev-
itably dominates at long times and low frequencies. At
eU ~ T, this occurs in time on the order of τt. Hence, as
regards noise, the transparency is not a small parameter
[the more so as the random phase ϕ(t) depends on it in
a complex nonperturbative manner].

5. In [25], 1/f noise was studied for Ni-Al2O3 nano-
composite films. Parameters of a typical tunneling con-
tact between the neighboring metal grains were as fol-
lows: δE ≈ 0.2 meV, EC ~ T (room temperature), R ≈
30 MΩ , τc ≈ 1.5 × 10–10 s, and τt ≈ 3 × 10–8 s. Conduc-
tance fluctuations with relative spectral density SδG(f ) ≈
α/Ngf were observed for the sample, where α ≈ 6 × 10–3

and Ng was the number of grains in the sample.

This noise corresponds to the conductance fluctua-
tions SδG(f ) ~ α/f for the elementary contact. Since ine-
quality (2) is well fulfilled, we assume that this noise is
caused by the mechanism under discussion. The rela-
tion between the dispersion and spectrum of stationary
noise includes the logarithm of the observation time,
δG2 ~ αln(∆t/τc). At ∆t ~ τt, this is equal to ~0.03. For
δE = 0.2 meV and room temperature, Eq. (10) gives
≈0.008. The agreement is good, when it is considered
that we are in the extreme situation; according to the
above estimates, ∆E in this case is on the order of δE or
smaller.

A remarkable observation made in [25] was that the
1/f noise was sensitive to the discreteness of electronic
spectra in grains. When the applied bias per elementary
contact exceeded δE/e, the noise intensity decreased
inversely with the bias, although the current–voltage
characteristic remained ohmic up to voltages higher by
a factor of T/δE ~ 100. As regards this effect, the theory
presented above fully agrees with experiment.

6. Level discreteness in nanocomposites is dictated
by the volume of metal particles. Evidently, the δE
value in a massive contact is also determined by the
volume of a region that is physically accessible to hop-
ping, i.e., by the geometry of the contact and the elec-
tron interaction and scattering in the edges. At not-too-
low temperatures, the accessible volume is bounded by
JETP LETTERS      Vol. 72      No. 11      2000
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the contact area A and the inelastic mean free path λ in
the edges (electrodes). In other words, this is a volume
where the level sparseness is on the order of level
broadening due to the inelastic relaxation (of course, it
would now be more appropriate to speak about levels in
terms of the statistics of electronic states [26, 27]).

Thus, one can write δE ~ EFa3/Aλ for the massive
metallic edges, where EF is the Fermi energy. Making
use of the relation between λ and edge conductivities,
σ ~ λ/a2R0 and R0 ≡ 2π"/e2, one derives the following
estimate from Eq. (10):

(11)

where σmin ~ (aR0)–1 is the minimum value of metallic
conductivity. In particular, let the metal be pure to an
extent that phonon relaxation prevails. Then, as is
known [28], σ ∝ (TD/T)5 so that one can expect that the
fluctuations of contact conductance at temperatures
below the Debye temperature are proportional to T4.

For the standard EF values, one has, by order of
magnitude, δG2 ~ (a2/A) (T/TD)4. Using again the rela-
tionship between the dispersion and the coefficient of
1/f and assuming T ~ TD, one arrives at the estimate
fSδG(f) ~ 10−7 for the microcontact with area 10–9 cm2

examined in [7]. This value agrees with the measure-
ments made in [7] at 260 K. A fast increase (by approx-
imately two orders of magnitude) in the noise, observed
in [7] upon elevation of the temperature from 100 to
300 K, can also be naturally explained. It appears that
two types of noise were observed: the structural noise
dominated below 100 K, while the other (considered in
this work) dominated above this temperature and pro-
vided the “residual” low-temperature 1/f component
that was also observed in [7].

7. We assumed in this work that, even in the pres-
ence of noise, the result of quantum evolution is deter-
mined by the interplay of amplitudes (rather than inter-
mediate probabilities). For this reason, the flicker char-
acter of the conductance fluctuations should be retained
in a more formal theory (it is a separate problem to
prove this statement).

This work was supported by the Ministry of Educa-
tion and Science of Ukraine (project no. 2M/71-2000)
and the Royal Academy of Sciences of Sweden.

REFERENCES

1. P. Dutta and P. Horn, Rev. Mod. Phys. 53 (3), 497 (1981).

2. F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Van-
damme, Rep. Prog. Phys. 44, 481 (1981).

δG2 EF

T
------a2

A
-----

σmin

σ
---------,∼
JETP LETTERS      Vol. 72      No. 11      2000
3. M. B. Weissman, Rev. Mod. Phys. 60, 537 (1988).

4. G. N. Bochkov and Yu. E. Kuzovlev, Usp. Fiz. Nauk 141,
151 (1983) [Sov. Phys. Usp. 26, 829 (1983)].

5. G. P. Zhigal’skiœ, Usp. Fiz. Nauk 167, 623 (1997) [Phys.
Usp. 40, 599 (1997)].

6. Yu. M. Gal’perin, V. G. Karpov, and V. I. Kozub, Zh.
Éksp. Teor. Fiz. 95, 1123 (1989) [Sov. Phys. JETP 68,
648 (1989)].

7. C. T. Rogers and R. A. Buhrman, Phys. Rev. Lett. 53,
1272 (1984).

8. V. I. Kozub, Solid State Commun. 97, 843 (1996).

9. B. Raquet, J. M. D. Coey, S. Wirth, and S. von Molnár,
Phys. Rev. B 59, 12435 (1999).

10. A. Lisauskas, S. I. Khartsev, and A. M. Grishin, J. Low.
Temp. Phys., Proceedings of MOS-99.

11. A. Lisauskas, S. I. Khartsev, et al., Mater. Res. Soc.
Symp. Proc., Spring-99 Meeting.

12. V. Podzorov, M. Uehara, M. E. Gershenson, and
S.-W. Cheong, cond-mat/9912064.

13. J. L. Tandon and H. P. Bilger, J. Appl. Phys. 47, 1697
(1976).

14. Yu. E. Kuzovlev and G. N. Bochkov, Izv. Vyssh.
Uchebn. Zaved., Radiofiz. 26, 310 (1983); 27, 1151
(1984).

15. Yu. E. Kuzovlev, Zh. Éksp. Teor. Fiz. 94 (12), 140 (1988)
[Sov. Phys. JETP 67, 2469 (1988)].

16. Yu. E. Kuzovlev, Zh. Éksp. Teor. Fiz. 111, 2086 (1997)
[JETP 84, 1138 (1997)].

17. Yu. E. Kuzovlev, Phys. Lett. A 194, 285 (1994).

18. Yu. E. Kuzovlev, cond-mat/9903350.

19. N. S. Krylov, Works on Foundation of Statistical Physics
(Akad. Nauk SSSR, Moscow, 1950).

20. Yu. V. Nazarov, Zh. Éksp. Teor. Fiz. 95, 975 (1989) [Sov.
Phys. JETP 68, 561 (1989)].

21. M. H. Devoret, D. Esteve, H. Grabert, et al., Phys. Rev.
Lett. 64, 1824 (1990).

22. S. M. Girvin, L. I. Glazman, M. Jonson, et al., Phys. Rev.
Lett. 64, 3183 (1990).

23. I. G. Lang and Yu. A. Firsov, Zh. Éksp. Teor. Fiz. 43,
1843 (1962) [Sov. Phys. JETP 16, 1301 (1963)].

24. A. van Oudenaarden, M. H. Devoret, E. H. Visscher,
et al., Phys. Rev. Lett. 78, 3539 (1997).

25. J. V. Mantese, W. I. Goldburg, D. H. Darling, et al., Solid
State Commun. 37, 353 (1981).

26. G. Casati and B. Chirikov, Fluctuations in Quantum
Chaos, Preprint, IyaF (Budker Inst. of Nuclear Physics,
Siberian Division, Russian Academy of Sciences, 1993).

27. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

28. E. M. Lifshitz and L. P. Pitaevskiœ, Physical Kinetics
(Akad. Nauk SSSR, Moscow, 1974; Pergamon, Oxford,
1981).

Translated by V. Sakun



  

JETP Letters, Vol. 72, No. 11, 2000, pp. 578–582. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 72, No. 11, 2000, pp. 838–844.
Original English Text Copyright © 2000 by Anisimov, Agayan, Gorodetski

 

œ

 

.

                                                                                                               
Scaling and Crossover to Tricriticality
in Polymer Solutions*

M. A. Anisimov1, V. A. Agayan1, and E. E. Gorodetskiœ1,2

1 Institute for Physical Science and Technology and Department of Chemical Engineering,
University of Maryland, College Park, MD 20742, USA

2 Oil and Gas Research Institute, Russian Academy of Sciences, Moscow, 117971 Russia
Received November 4, 2000

We propose a scaling description of phase separation of polymer solutions. The scaling incorporates three uni-
versal limiting regimes: the Ising limit asymptotically close to the critical point of phase separation, the “ideal
gas” limit for the pure solvent phase, and the tricritical limit for the polymer-rich phase asymptotically close to
the theta point. We have also developed a phenomenological crossover theory based on the near-tricritical-point
Landau expansion renormalized by fluctuations. This theory validates the proposed scaled representation of
experimental data and crossover to tricriticality. © 2000 MAIK “Nauka/Interperiodica”.
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Phase separation in solutions of polymers in low-
molecular-weight (monomer-like) solvents changes
dramatically with an increase in the degree of polymer-
ization (Fig. 1) [1]. As in simple binary liquids, asymp-
totically close to the critical point, the coexistence
curves obey a universal power law of the form

(1)

where φ is the volume fraction of polymer; φc is the crit-
ical volume fraction; τ = (T – Tc)/T; T is the tempera-
ture, Tc is the critical temperature; β = 0.326 ± 0.001 is
a universal 3-dimensional (3D) Ising critical exponent
[2]; and B0 is a system-dependent critical amplitude.
However, with an increase in the polymer molecular
weight, the range of validity of the symmetric parabolic-
like behavior given by Eq. (1) shrinks, yielding an
asymmetric anglelike coexistence boundary near the
theta point [3] (Fig. 1). Physically, it means that, in the
limit of infinite molecular weight (upon approaching
the theta point), the critical amplitude B0 and the range
of 3D Ising behavior vanish.

Qualitatively, the phenomenon of separation of a
polymer solution into two coexisting phases was
explained long ago by Flory [3]. According to the Flory
theory, the dependence of the critical temperature Tc

and the critical volume fraction φc of the polymer on the

degree of polymerization N is Tc = Θ/(1 + 1/ )2 and

φc = 1/(1 + ), where Θ is the theta temperature. As

φ φc– B0 τ β,±=

N

N

* This article was submitted by the authors in English.
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elucidated by Widom [4], for any value of the scaling

variable x =  (where N is assumed to be large and

τ to be small), the phase coexistence in the Flory sys-
tem can be represented in terms of a scaling form. The
concentration difference φ'' – φ', where φ'' and φ' are the
volume fractions of polymer in the concentrated and
dilute phases, respectively, is given by

(2)

Although Eq. (2) yields the anglelike coexistence in the
theta point limit (x  ∞), it violates Eq. (1) in the crit-
ical-point limit (x  0). The reason is well known:
the Flory theory is essentially a mean-field theory
which, just like the van der Waals theory of simple flu-
ids, ignores critical fluctuations. It is possible to modify
the Flory model to include critical fluctuations, which
does indeed predict both the critical and the theta point
limits correctly, as well as the crossover between them
[5]. However, restrictions implied by the Flory model
for the system-dependent parameters (even after incor-
porating the fluctuations), especially for the depen-
dence of these parameters on the degree of polymeriza-
tion, are too stringent to apply the model to real sys-
tems.

An attempt to describe the data shown in Fig. 1 by a

generalized form of Eq. (2) with  replaced by ,

 by xβ in the limit x  0, and x by (Tc – T)/(Θ – Tc)
in both limits, was made by Isumi and Miyake [6].
A practical disadvantage of this approach is that, when

1
2
---τ N

N φ'' φ'–( ) 2 6x x 0( )
3x x ∞( ).




∼

N φc
1–

x
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Tc is close to the theta temperature (large x), even small
changes in Θ (which is not a directly obtainable param-
eter) cause dramatic changes in x, making the scaling
representation extremely sensitive to the choice of Θ.

In this letter, we propose a general scaling descrip-
tion of phase separation in polymer solutions. Experi-
ments have shown that φc does not satisfy the depen-
dence on the degree of polymerization implied by the
Flory theory [7]. The description we propose is not
based on any specific molecular model and does not
incorporate any particular dependence of the critical
parameters on the degree of polymerization. Instead, it
uses experimentally well-defined variables, namely, the
reduced temperature distance to the critical point τ and
the critical volume fraction φc. Furthermore, to obtain
an explicit form of the scaling function, we have devel-
oped a crossover theory by incorporating fluctuations
into a Landau expansion near the tricritical point. Fur-
thermore, we will elucidate the physical nature of the
crossover phenomena: very close to the critical phase-
separation point, the correlation length of the concen-
tration fluctuations becomes much larger than the poly-
mer molecular size (radius of gyration) and the system
exhibits universal 3D Ising behavior. Very close to the
theta point, the radius of gyration becomes larger than
the correlation length and the system exhibits tricritical
mean-field behavior [8].

We assume that a polymer solution can be described
by a scaling function y(z) with three universal limits

(3)

where

(4)

and K = AC–β, with A and C being the system-depen-
dent coefficients. The coefficient C defines the limiting
(Mw  ∞) slope of the phase-separation boundary
(Fig. 1). The coefficient A can be obtained from a linear
correlation between the asymptotic amplitude B0 and

 (insert in Fig. 1) for high-molecular-weight poly-
mers (small φc), so that y = (φ – φc)/φc in this limit. The
coefficient A becomes a weak function of φc for lower
molecular weights and thus allows for incorporating
nonasymptotic regular effects. The Ising limit in Eq. (3)
will be perfectly universal for different systems if the
coefficient K = A/Cβ is not system-dependent. Although
there is no theoretical proof for such universality, for
the three polymer solutions we have analyzed, the com-
bination AC–β turns out to be the same.

In Fig. 2 we show coexistence-curve data obtained
by Dobashi et al. [1] for polystyrene in methylcyclo-
hexane, by Xia et al. [9] for polymethylmethacrylate in

y z( )

Kzβ z 0( )±
1
2
---z z ∞ polymer is rich phase,( )

1 z ∞ solvent is rich phase,( ),

=

y A φ φc–( )/B0φc
β, z C τ /φc,= =

φc
1 β–
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3-octanone, and by Nakata et al. [10] for polystyrene in
cyclohexane, scaled according to Eq. (3). We see that
all data points collapse onto a single master curve. In
Fig. 3, a crossover from critical Ising behavior (for
z ! 1) to the theta behavior (for z @ 1) is clearly seen.
As z increases, the volume fraction φ' of the solvent-
rich phase goes to zero (the “ideal-gas” limit), while the
volume fraction φ''/φc of the polymer-rich phase tends

to its theta limit z, indicated in Fig. 3 by the dashed

line. The slope of the dashed line on a double logarith-
mic scale corresponds to the tricritical value β = 1.

De Gennes [11] has pointed out that the theta point
in the polymer–solvent system is a tricritical point.
A tricritical point is a point which separates lines of
second-order (λ-line) and first-order transitions. The
states above the theta temperature on φ = 0 (shown by
the cogged line in Fig. 1) correspond to the critical-like
self-avoiding-walk singularities associated with the
behavior of long (N  ∞) polymer molecules at infi-
nite dilution [11, 12]. This λ-line is associated with an
n-component vector order parameter (ψ) in the limit
n  0 [11]. The field h, conjugate to the order param-
eter, is zero along the λ-line but it becomes nonzero for
finite degrees of polymerization. The correlation length
associated with the order parameter is the radius of
gyration, which diverges in the limit of infinite degree

1
2
---

Fig. 1. Phase-coexistence curves for solutions of polysty-
rene of various molecular weights Mw in methylcyclohex-
ane. Symbols indicate experimental data by Dobashi et al.
[1]. The insert shows dependence of the critical amplitude
B0 on the critical concentration. Solid curves represent the
crossover theory.
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Fig. 2. Universal scaled coexistence curve of polymer solutions: (a) the entire range and (b) the critical region. Solid line is calculated
from the crossover theory.
of polymerization (zero field). Below the theta (tricriti-
cal) point, the polymer order parameter exhibits a dis-
continuity accompanied by phase separation and by a
discontinuity in the concentration of the polymer. The
line of critical phase-separation points shown in Fig. 1
is a nonzero-field critical (“wing”) line originating
from the tricritical point. The order parameter for the
fluid–fluid phase separation, associated with the con-
centration φ, and the polymer order parameter ψ belong
to different classes of universality. Tricriticality
emerges as a result of a coupling between these two
order parameters and exhibits mean-field behavior with
small logarithmic corrections [13]. Physically, ψ is pro-
portional to the concentration of end points of the poly-
mer chain, while the concentration φ is proportional to
|ψ|2 [11]. Therefore, a proper description of the phase
separation near the tricritical point should incorporate a
crossover between Ising critical behavior and (almost)
mean-field tricritical behavior.

To obtain an explicit form of the proposed scaling
description, we start with the Landau expansion of the
critical part of the dimensionless thermodynamic

potential ∆  of a two-component system in the vicin-
ity of the tricritical point in powers of the order param-
eter ψ [14]:

(5)

where h is the ordering field;  = a(∆  + b∆ ) is the

temperature-like scaling field; ∆  = (T – Θ)/T, with Θ
being the tricritical (theta) temperature; ∆  =  – ,

with  = (µ2/v2 – µ1/v1)/RT being the reduced poly-
mer/solvent chemical potential difference, v2 and v1

the corresponding molecular volumes, and  the
value of the chemical potential at the tricritical (theta)
point; and λ = λ0∆ ; a, b, λ0, and v are system-depen-
dent parameters. The conditions h = 0 and  = 0 deter-
mine the λ-line. At the tricritical point, the coefficient λ
changes its sign, being negative along the λ-line above
Θ and positive below Θ.

The equilibrium values ψ' and ψ'' of the order

parameter are found from the conditions (∂∆ /∂ψ)T, h = 0

Ω̃

∆Ω̃ τ̃ψ2 λψ4 vψ6 hψ,–+–=

τ̃ µ̃ T̃

T̃
µ̃ µ̃ µ̃Θ

µ̃

µ̃Θ

µ̃
τ̃

Ω̃

and ∆ (ψ') = ∆ (ψ''). The concentration (volume
fraction) φ is related to the polymer order parameter ψ by

(6)

In the limit of infinite degree of polymerization (h = 0),
we find for the limiting phase-separation boundary
shown by the dashed line in Fig. 1

(7)

At nonzero h, a phase separation (wing) critical line
emerges, defined by

(8)

(9)

Asymptotically, the ratio of the slopes of the limiting
(h = 0) phase-separation boundary to the critical wing
line is universal in the Landau expansion and equal to
5/2. A comparison between the results obtained from
Landau expansion (5) and from the mean-field Flory
model at N @ 1 has shown that the ordering field h can
be identified with the degree of polymerization N as

(2h/v)–2/5 ~ . Consequently, the near-tricritical Lan-
dau model satisfies the mean-field scaling given by
Eq. (2).

The Landau theory does not include fluctuations and
does not recover the 3D Ising limit exhibited by real
polymer systems. Therefore, we have modified expan-
sion (5) using the crossover procedure based on the
renormalization group matching method (see [5] and
references therein). The details of the calculations will
be published elsewhere. The key point of the approach
amounts to representing the polymer order parameter
as a sum of a regular ψ0 and a “critical” δψ part ψ =
ψ0 + δψ and rewriting expansion (5) in terms of δψ.
The critical part is expressed in terms of the distance to
the critical temperature (at a certain field h) τ = [T –

Ω̃ Ω̃

φ ∂∆Ω̃
∂∆µ̃
----------- 

 
T h,

aψ2 λ0ψ
4.–= =
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λ0a
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Tc(h)]/T. The crossover procedure is implemented by
replacing the temperature variable τ and the order
parameter δψ in the corresponding Landau expansion
with renormalized quantities τ× and δψ×, respectively,
such that [5]

(10)

where α, γ, ν, and ∆s are universal critical exponents
with the following 3D Ising values adopted in this
work: α = 0.11, γ = 1.239, ν = 0.630, and ∆s = 0.51
[2, 5]. The crossover function Y is to be determined
from the equation

(11)

where , a normalized coupling constant roughly inde-
pendent of h, and Λ = Λ0(2h/v)2/5, a dimensionless
“cutoff” wavenumber assumed to be inversely propor-
tional to the radius of gyration RG, are two crossover
parameters. The parameter κ is inversely proportional
to the correlation length and serves as an effective dis-
tance to the critical point. In the simplest approxima-
tion,

(12)

where the parameter ct = ct0(2h/v)2/5 is associated with

the amplitude  of the mean-field correlation length

. Close to the critical point, Y  (κ/   0
and the thermodynamic properties exhibit 3D Ising
asymptotic behavior. Far away from the critical point,
Y  1 and mean-field expansion (5) is recovered. The
crossover temperature (“Ginzburg number”) τ0 ~
( Λ)2/ct = [( Λ0)2/ct0](2h/v)2/5 ~ φc vanishes at the
theta (tricritical) point. The physical origin of the cross-
over to tricriticality is a competition between the radius
of gyration RG and the correlation length ξ, since Λ/κ ~

ξ/RG, while the parameter Λ2/ct ~ ( /RG)2 defines the
crossover temperature τ0. Specific N-dependences of
the Ising critical amplitudes, predicted by de Gennes’
scaling [7, 11], can also be obtained from our theory

with the assumption (2h/v)–2/5 ~ .
We have applied the renormalized (crossover) Lan-

dau model to describe the experimental data [1, 9, 10]
on phase separation in polymer systems and obtained
excellent agreement (solid lines in Figs. 1–3). The
description of all the systems with a variety of degrees
of polymerization requires only four nonuniversal
parameters, namely a, λ0, C = λ0a/v, and the “bare”
crossover temperature ~( Λ0)2/ct0, which do not
depend on molecular weight. Moreover, the combina-
tion ( Λ0)2/ct0 and AC–β can be taken to be the same
within the available experimental resolution not only
for different molecular weight samples, but also for
different substances. This feature makes the solid

τ× τY
α /2∆s–

, δψ× δψY
2γ 3ν–( )4/∆s,= =

1 1 u–( )Y– u 1 Λ/κ( )2+[ ]1/2
Y

ν /∆s,=

u

κ2 2ctτY
2ν 1–( )/∆s,–=

ξ0

ξ u Λ )
∆s/ν

u u

ξ0

N

u

u
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curves in Figs. 2 and 3 truly universal for all systems
studied.

The universality demonstrated in Fig. 3 requires
both τ and φc to be small. In first approximation, some
nonasymptotic effects are incorporated into the univer-
sal scaling description. The slight dependence of A on
φc for moderate molecular weights (at larger φc) shown
in Fig. 1 absorbs nonasymptotic corrections to the crit-
ical limit. A nonasymptotic (at larger τ) nonlinearity of
the phase separation boundary in the tricritical (zero-
field) limit can be accounted for by a term quadratic
in τ.

Renormalization group calculations [13] have
shown the existence of logarithmic corrections to
mean-field tricriticality: the coefficients v and λ0 in
expansion (5) are renormalized, so that the critical line
has zero slope at the theta point. The resolution of the
existing experimental data is not sufficient to convinc-
ingly determine the logarithmic corrections: the
description is equally good with or without the correc-
tions.
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M.E. Fisher, S.C. Greer, A.Z. Panagiotopoulos, J.V. Sen-
gers, and B. Widom. The research at the University of
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INTRODUCTION

Despite a certain progress in elucidating the physi-
cal properties of high-temperature superconductors
(HTSC), no consistent microscopic theory has been
developed to date that would be capable of explaining
the totality of available and firmly established experi-
mental data even for a relatively narrow region of the
phase diagram corresponding to optimum-doped HTSC
materials and maximum critical temperatures Tc. A fun-
damental problem of type of superconducting interac-
tion in HTSC also remains to be solved. There is much
controversy over the symmetry of the order parameter,
the mechanisms of quasiparticle relaxation, and the
role of impurities and anisotropy in HTSC materials.
Among the experimental methods of studying these
problems are measurements of the linear microwave
response of HTSC single crystals, i.e., studies of the
temperature dependences of the surface impedance
Zs(T) = Rs(T) + iXs(T) and complex conductivity σ(T) =
σ'(T) – iσ''(T ) at microwave (MW) frequencies and low
(<0.1 Oe) amplitudes of ac field. It is known that the
precise measurements of Zs(T) in classical supercon-
ductors proved to be quite informative: the gap ∆ was
derived from the temperature dependence of surface

resistance Rs(T) ∝   at T < Tc/2, the field penetra-
tion depth λ(T) into a superconductor was derived from
the reactance Xs(T) = ωµ0λ(T ) at T < Tc, and the elec-
tron mean free path was determined by measuring
Rs(T) and Xs(T) in the normal state (T ≥ Tc). The appli-
cability of the Bardeen–Cooper–Schrieffer (BCS) the-
ory [1] to classical superconductors was clearly demon-
strated by the nonmonotonic behavior (coherence peak)
of the microwave conductivity σ'(T) at 0.8 < T/Tc ≤ 1.
However, even the early studies of the impedance and
conductivity of HTSC materials did not fit into the BCS

e
∆/kBT–
0021-3640/00/7211- $20.00 © 20583
theory: there was no coherence peak in σ'(T) and, instead
of exponential behavior at low temperatures, Zs(T) exhib-
ited power law temperature dependence. A linear depen-
dence of the penetration depth ∆λab(T) ∝  T at T < 25 K,
first observed in 1993 in [2] for the ab plane of
YBa2Cu3O6.95 single crystals, has initiated wide specu-
lation on the symmetry of the order parameter in HTSC
materials.

In this work, I will focus on the fundamentals of the
method for measuring impedance and the general prop-
erties and features of the Zs(T) and (T) curves in the
normal and superconducting states of different HTSC
crystals and discuss the phenomenological model for
the description of their microwave response. Emphasis
will be on the problems of residual surface resistance,
unusually large change ∆Xs(T) > ∆Rs(T) in some HTSC
crystals, and conductivity anisotropy.

MEASURED QUANTITIES AND SAMPLES

In the centimeter and millimeter wavelength ranges,
the surface impedance of small-sized HTSC samples
with a surface area of ~1 mm2 is measured by the so-
called hot-finger method. A sample mounted on a sap-
phire rod was placed in the center of a cylindrical cavity
made from Nb and operating at frequency f = 9.42 GHz
in the H011 mode; i.e., the sample was placed in the
maximum of a uniform microwave magnetic field Hω
[3]. The temperature of the rod and the sample was var-
ied from helium to room temperature without heating
of the cavity, which was washed from outside by liquid
helium and was always in the superconducting state. At
some steady-state temperature T, the microwave power
passed through the cavity was recorded as a function of
frequency (resonance curve), from which was derived,
in the first run, the Q factor Qs(T) and the frequency

σ̂
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fs(T) of the cavity with the sample inside and, in the
second run, Qe(T) and fe(T) of the cavity without the
sample. The accuracy of measuring the Q factor
~107 was no worse than 1%, and the accuracy of deter-
mining the resonance frequency was ~10 Hz. The tem-
perature dependences of the surface resistance Rs and
reactance Xs of the sample are found from the relation-
ships

(1)

(2)

where Γs is the geometric factor of the sample and δf is
the frequency difference between the cavity with the
sample and the cavity with an ideal conductor, identical
in shape and size, into which the magnetic field does
not penetrate. The δf value differs from the difference
between the measured resonance frequency shifts
∆fs − ∆fe = ∆f by a constant f0, which accounts both for
frequency drift caused by the ideal conductor and for
irreproducible changes in the cavity reference fre-
quency upon putting in and taking out the sample. It
follows from Eqs. (1) and (2) that, to determine the
Rs(T) and Xs(T) values from the measured Q(T) and
∆f(T) values, two quantities need to be known: Γs and
f0. The geometric factor Γs depends on the shape and
size of the crystal and on its orientation about the field
Hω in the cavity. The experimental and theoretical
methods of determining Γs are known [3]; by order of

Rs T( ) Γ s∆ 1/Q( ) Γ s Qs
1– T( ) Qe

1– T( )–[ ] ,= =

Xs T( ) 2Γ s
δf
f

-----–
2Γ s

f
-------- ∆ f s T( ) ∆ f e T( )– f 0–[ ] ,–= =

Fig. 1. Surface resistance Rs(T) in the ab plane of BSCCO
crystal no. 1 at a frequency of 9.4 GHz. Inset: ∆λab(T) and
Rs(T) dependences at low T. The residual surface resistance
Rres ≈ 120 µΩ is indicated.

BSCCO no. 1

R
s(

Ω
)

R
s(

Ω
)

magnitude, it is equal to tens of kiloohms at frequencies
~10 GHz. The f0 constant can be determined from the
measurements of the microwave response in the normal
state (see below).

This work will consider the results of measuring the
temperature-dependent impedance and conductivity of
HTSC copper oxide crystals as platelets with transverse
dimensions a ~ b ~ 1 mm and thickness c ~ 0.1 mm:
YBa2Cu3O6.95 (YBCO, Tc ≈ 93 K), Bi2Sr2CaCu2O8 + δ
(BSCCO no. 1, Tc ≈ 83 K and BSCCO no. 2, Tc ≈ 92 K),
Tl2Ba2CaCu2O8 – δ (TBCCO, Tc ≈ 112 K), and
Tl2Ba2CuO6 + δ (TBCO, Tc ≈ 90 K). Except for slightly
overdoped BSCCO crystal no. 1, whose experimental
dependences Rs(T) and ∆λab(T) = ∆Xs(T)/ωµ0 in the
ab plane are shown in Fig. 1, the compositions of all
other crystals corresponded to the optimum doping.

Problem 1. The residual surface resistance Rres =
Rs(T  0) deserves attention because it determines
the quality of a crystal. Whereas the Rres value in clas-
sical superconductors is clearly defined as a level of the
plateau in the Rs(T) curve at T < Tc/4, no such plateau
occurs in the HTSC crystals, so that by Rres is meant the
Rs(T = 0) value obtained by extrapolating the linear por-
tion of the Rs(T) curve at T ! Tc to zero temperature
(inset in Fig. 1). It was experimentally established for
classical superconductors that Rres ∝  ω2 and is deter-
mined by various defects in the surface layer of the
sample [4, 5]; based on this fact, it is usually agreed that
the smaller Rres the higher the sample quality. In HTSC
materials, the residual resistance also varies quadrati-
cally with frequency, but it exceeds the Rres value in
usual superconductors by a factor of several tens even
in the best crystals. When it is considered that the Rres

value has failed to be noticeably reduced over the last
5–7 years of developing the methods of growing HTSC
crystals and, in addition (see below), that the tempera-
ture behavior of conductivity σ'(T) in the samples of
identical chemical composition changes radically with
changing Rres, then it becomes clear that elucidation of
the nature of residual losses in HTSC materials is a
highly topical problem.

At T > 4 K, the relation between the electric field
and the current density in the normal and superconduct-
ing states of the HTSC materials has a local character:
j = E, where  is the conductivity tensor which has
only two components in a tetragonal crystal, i.e., the
conductivity σab in the CuO2 ab plane and σc across the
cuprate planes. In the hot-finger method, the compo-
nents of the  tensor can be found by measuring the
microwave response for two crystal orientations about
the direction of the Hω field: the transverse (T) Hω || c
(Fig. 2a) and the longitudinal (L) Hω ⊥  c (Fig. 2b) ori-
entations.

σ̂ σ̂

σ̂
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Fig. 2. (a) Transverse (T) crystal orientation, Hω || c. Arrows indicate the direction of high-frequency currents. (b) Longitudinal (L)
orientation, Hω ⊥  c.

Hω || c

Hω ⊥  c
ANALYSIS OF EXPERIMENTS
WITH TRANSVERSE ORIENTATION

Surface impedance. Let us first consider the T ori-
entation, for which the high-frequency currents circu-
late in the ab plane (Fig. 2a). At frequencies ~10 GHz,
the field penetrates into the HTSC sample to a skin
depth δab ~ 5 × 10–3 mm at T ≥ Tc and to a depth of
λab ~ 10–4 mm at T < Tc. Since both values are much
smaller than the crystal thickness c, one can consider

the crystal impedance  in the T orientation as a
coefficient in the Leontovich boundary condition [6] at
any temperature and use the local relationship

(3)

for the relation between the impedance and the conduc-
tivity σab. If the microwave conductivity of HTSC is
real at T ≥ Tc, then the f0 constant [see Eq. (2)] for the T
orientation can be found, according to Eq. (3), from the
condition that the imaginary and real parts of imped-
ance are equal in the normal state, i.e., by fitting the
temperature dependence Rs(T) to ∆Xs(T) at T ≥ Tc. This
expedient was used to determine the Xs(T) values for
BSCCO crystal no. 2 over the entire temperature range
(Fig. 3). It should be taken into account that the temper-
ature behavior of the reactance in the T orientation may
be noticeably affected by the thermal expansion of the
crystal. Since the resonance frequency is determined by
the volume occupied by the field, the crystal expansion
is equivalent to a decrease in the penetration depth and,
thus, leads to an additional frequency shift ∆ft in the
square brackets in Eq. (2). It is shown in [3] that,
although the contribution of ∆ft to the total frequency
shift of the cavity is negligible at low temperatures, it
becomes noticeable at T > 0.9Tc, especially for the
strongly anisotropic HTSC crystals. The Xs(T) depen-
dence in Fig. 3 is constructed with allowance made for

Zs
ab

Zs
ab Rs iXs+ iωµ0/σab( )1/2= =
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the thermal expansion of BSCCO crystal no. 2. Other-
wise, i.e., without the ∆ft term in Eq. (2), the reactance
curve coincides with the curve in Fig. 3 only up to T ≈
Tc, while its slope at T > Tc becomes smaller and at T =
150 K the discrepancy is as large as 25 mΩ .

The condition Rs(T) = Xs(T) for the normal skin
effect was experimentally proved for the BSCCO
[7−9], YBCO [7, 10–12], TBCCO [13], LaSrCuO [14],
and BaKBiO [15] crystals at T ≥ Tc in the T orientation.
All temperature dependences Rs(T) of the HTSC crys-

tals at T ≥ Tc fit the formula 2 (T)/ωµ0 = ρab(T) =Rs
2

Fig. 3. Rs(T) and Xs(T) for T-oriented BSCCO crystal no. 2
at a frequency of 9.4 GHz. Inset: λab(T) and Rs(T) depen-
dences at low temperatures.
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ρab(0) + bT well. For instance, ρab(0) ≈ 13 µΩ cm and
b ≈ 0.3 µΩ cm/K for BSCCO crystal no. 2.

Problem 2. The behavior of Zs(T) for the TBCO
[16, 17] and HgBaCuO crystals is also under debate.1

Even if one achieves coincidence between the Rs(T)
and ∆Xs(T) curves at T ≥ Tc, i.e., Rs(T) = Xs(T), the vari-
ation ∆Xs(T) of the reactance in the superconducting
state T < Tc proves to be so much larger than ∆Rs(T) that
Xs(0) becomes negative. In addition, the problem is
complicated by the lack of literature data for the ther-
mal expansion coefficients of the TBCO and HgBaCuO
crystals. If one assumes that at T > Tc the corresponding
coefficient for the cuprate planes of TBCO is the same
as in the BSCCO [18] or TBCCO [19] crystal and takes
account of the ∆ft(T) shift in Eq. (2), then the Rs(T) and
Xs(T) curves in the normal state of TBCO become
mutually parallel. However, an attempt at achieving
coincidence through satisfying the condition for the
normal skin effect leads to the Xs(0) = ωµ0λab(0) < 0
value. Therefore, the problem amounts to revealing
either the cause for the appearance of a negative incre-
ment dXs < 0 at T < Tc that must be subtracted from the
measured ∆Xs(T) curve in order to obtain the true value
Xs(T) > 0 for the reactance coinciding with Rs(T) at T >
Tc or the cause explaining the positive difference
Xs(T) – Rs(T) in the normal state of TBCO and provid-
ing a reasonable value Xs(0) > 0. In this respect, the fol-
lowing two growth and structural features of the TBCO
crystals distinguish them from BSCCO. It is known
that the so-called cleavage planes may crop out at the
surface of the TBCO crystal, whereas the surface of the
BSCCO crystal is smooth. If the traces of these planes
form ridges (valleys) in the form of extended channels
at the surface and if the sizes (height, width, spacing) of
these roughnesses exceed the penetration depth for the
field normal to the surface, then, as shown in [5], field
screening by such roughnesses gives rise to a negative
addition dXs < 0 to the measured reactance Xs(T). With
a rise in temperature, the penetration depth increases
and, at a certain T* < Tc, reaches the roughness size. For
this reason, the addition dXs to the reactance can be
ignored at T > T*. Another possible reason why the
measured Xs(T) value is larger than Rs(T) in the normal
state of TBCO is the size effect in the T orientation. The
unit cell of BSCCO contains two conducting CuO2

planes, while the unit cell of TBCO, though being of
approximately the same size, contains only one such
plane. If the high-frequency currents mainly decay in
these planes, then the screening thickness c* of the
TBCO crystal will be less than its actual thickness c and
might be comparable with the skin depth. One can
expect from the solution of the electrodynamic problem
of field distribution in a T-oriented thin plate that,

1 S. Sridhar, private communication.
owing to the size effect, the measured effective (T)

value is greater than the effective (T) at T ≥ Tc.

The conductivity σab in the superconducting state is
a complex value, and, according to Eq. (3), the real Rs
and imaginary Xs parts of the impedance are not equal
to each other:

(4)

where ϕ = 1 + (σ'/σ'' )2. Evidently, Rs(T) < Xs(T) at T <
Tc. For σ' ! σ'', which is the case in the temperature
range not too close to Tc, one has from Eq. (4)

(5)

The linear dependence of the reactance ∆Xs(T ) ∝
∆λab(T ) ∝  T and the linear dependence of the surface
resistance ∆Rs(T) ∝  T at frequencies ~10 GHz and
below are the regularities common to all HTSC crystals
at T ! Tc (see Figs. 1, 3 and reviews [3, 20–22] and ref-
erences therein). The slopes of the ∆λab(T) straight
lines at T ! Tc are different. For example, in the YBCO
crystals prepared by different methods, the slopes for
∆λab(T) may diverge by approximately an order of
magnitude [12, 23, 24]. The Zs(T) curves for the
BSCCO, TBCCO, and TBCO crystals with tetragonal
lattice also differ from those for the orthorhombic
YBCO crystals. Whereas the linear dependence
∆Rs(T) ∝  T at frequencies ~10 GHz for the first of them
may extend up to Tc/2 (Figs. 1, 3), in YBCO it termi-
nates at T < Tc/3 and gives way to a broad peak in Rs(T)
(Fig. 4). With an increase in frequency, the peak shifts
to higher temperatures and its amplitude decreases. It is
also known that the higher the quality of the YBCO
crystal the larger the peak amplitude and the lower the
temperature of its occurrence [25]. Finally, the λab(T)
[12, 23] and Rs(T) [23] curves for single crystal YBCO
show some features in the intermediate temperature
range T ~ Tc/2.

Complex conductivity. The σ'(T) and σ''(T) com-
ponents are not determined directly from the experi-
ment but can be found from Eq. (4) after measuring,
according to Eqs. (1) and (2), the Rs(T) and Xs(T) val-
ues:

(6)
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It should be emphasized that, to determine the con-
ductivity components, it is necessary to know the Rs(T)
and Xs(T) values in absolute units. At temperatures not
too close to Tc, Rs(T) ! Xs(T) for the HTSC crystals.
Consequently, the σ''(T) curves are determined solely
by the Xs(T) = ωµ0λ(T ) function and reflect the main
features of the temperature behavior of the penetration
depth, namely, its linear temperature dependence at low
temperatures for all high-quality HTSC crystals and the
features observed for YBCO in the intermediate tem-
perature range. The shape of the (T ) curve depends
on the residual surface resistance Rres. It follows from

Eq. (6) that (T ) has a maximum at T < Tc if [22]

(7)

As Rres increases, the peak in the (T ) curve shifts to
lower temperatures and disappears when Rres reaches
the value equal to the right-hand side of Eq. (7). If the
Rres value for the crystal is such that inequality (7)

breaks, the conductivity (T ) becomes a monotoni-
cally decreasing function of temperature at T < Tc. Fig-

ure 5 demonstrates both possible shapes of the (T )
curves at a frequency of 9.4 GHz, namely, the peak for
BSCCO crystal no. 1 (Fig. 5a, Rres ≈ 120 µΩ) and its
absence for BSCCO crystal no. 2 (Fig. 5b, Rres ≈
500 µΩ). The higher the crystal quality, the more pro-
nounced the conductivity peak at T < Tc. The (T )
curve in Fig. 6 corresponds to the Rs(T) dependence
obtained for the YBCO crystal at a frequency of
1.14 GHz (Fig. 4, Rres ~ 1 µΩ). Beginning with a steep

linear portion, the (T ) curve rapidly reaches its
maximum value, which always markedly exceeds the
conductivity σ'(Tc) in the normal state. As the fre-

quency increases, the peak in (T ) shifts to higher
temperatures and its amplitude decreases. At tempera-
tures close to Tc, the σ'(T) curve for the HTSC materials
is shaped like a narrow peak with width virtually coin-
ciding with the width of the superconducting transition
in the Rs(T) curve.

Modified two-fluid model (MTM). A simple way

of describing all the observed (T) and σab(T)
dependences was suggested in [15, 26] and further
developed in [3, 21, 22, 27, 28]. The idea consists in the
extension of a Gorter–Casimir (GC) two-fluid model
[29] to the HTSC materials, which are characterized by
high Tc values. In metals, the quasiparticle inelastic
scattering at such temperatures becomes essential and,
hence, the GC model should be naturally modified by
incorporating the temperature-dependent relaxation
time τ for the quasiparticles of a “normal fluid.”
Assuming that the scattering processes in this fluid are

σab'
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similar to those occurring in normal metals, we used
the Bloch–Grüneisen formula (electron–phonon scat-
tering) for the function τ(T) in the normal and super-
conducting states of HTSC and retained the tempera-
ture-independent impurity relaxation time τ(0), which
is present in the standard GC model:

(8)

where t ≡ T/Tc; κ = Θ/Tc (Θ is the Debye temperature);
and β is a numerical parameter equal, according to
Eq. (8), to τ(Tc)/[τ(0) – τ(Tc)]. Following the formal
analogy to metals, one can state that β characterizes the
“degree of purity” of HTSC material: β ≈ τ(Tc)/τ(0) ! 1
if τ(0) @ τ(Tc). It is shown in [22] that the parameter β
can be derived from the measured Rs(T) and Xs(0) val-
ues and the dRs/dT and dXs/dT slopes at T ! Tc. The Θ
temperature for HTSC is estimated at several hundred
degrees. At T < Θ/10 (κ > 10t), the second term in the
square brackets in Eq. (8) is proportional to T5 and at
T > Θ/5 (κ < 5t), it is proportional to T. Therefore, at
β < 1, the inverse relaxation time (coefficient of quasi-
particle decay) equals 1/τ(0) in the range T ! Tc and
monotonically increases with temperature following a
power law from ∝ T5 to ∝ T near Tc, thereby providing the
linear temperature dependence ∆ρab(T) ∝  1/τ(T) ∝  T at
T > Tc.

1
τ
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Fig. 4. Symbols correspond to the Rs(T) values measured in
the ab plane of YBCO crystal at different frequencies [25].
Solid lines correspond to the calculations by Eqs. (4), (8),
and (9) with κ = 9 and experimentally determined τ(Tc) =

10–13 s, β = 0.005, and ns(T)/n = σ''(T )/σ''(0). To the Rs(T)
value calculated for the upper curve (75.3 GHz) Rres =
0.3 mΩ was added.
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Fig. 5. Symbols correspond to (T ) and (inset) (T) determined for BSCCO crystal nos. 1 and 2 by Eq. (6) using the measured

Rs(T) and Xs(T) values. Solid lines correspond to the calculations by Eqs. (8) and (9) with κ = 2 for BSCCO crystal no. 1 and κ = 3

for no. 2 and experimental values Tc = 83 K, δTc = 2.5 K, ωτ(Tc) = 7 × 10–3, β = 0.3, α = 1, and Rres = 120 µΩ for BSCCO no. 1 and

Tc = 92 K, δTc = 4.5 K, ωτ(Tc) = 9 × 10–3, β = 2, α = 2, and Rres = 500 µΩ for BSCCO no. 2.
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Despite the fairly simplified form of τ(T) chosen for

HTSC materials with a complex band structure, it turns
out that all common and specific features of the Rs(T)

and (T ) curves are adequately described by the
MTM with only one fitting parameter κ in Eq. (8).
Indeed, the conductivity components are

(9)

where nn(T) and ns(T) are the densities of the normal
and superconducting carriers, respectively (both have
the same charge e and mass m); the total concentration
n = nn + ns is equal to the concentration of charge carri-
ers in the normal state and is independent of T. Making
use of the measured dependence ns(T)/n = σ''(T )/σ''(0) =
λ2(0)/λ2(T) and, hence, determining the function
nn(T)/n = 1 – ns(T)/n, one can chose the κ parameter for
the sample of interest using Eqs. (8) and (9) to describe,
first by Eq. (4), all the above-mentioned experimental
Rs(T) curves and, next by Eq. (6), the real part (T )
of the conductivity for the T-oriented HTSC crystal.
The solid lines in Figs. 4–6 are examples of a compari-
son between the experimental and MTM curves.

Here, I should enlarge upon two important points
that have not yet been discussed but were implicitly
used in the calculations. First, account was taken of the

σab'
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σab'
inhomogeneous broadening δTc of superconducting
transition near Tc. This was done using the approach
that was suggested in [21, 22] and gave rise to a maxi-
mum of the effective conductivity σ'(T) at temperature
Tm = Tc – δTc close to the critical temperature. The rel-
ative amplitude of this peak [σ'(Tm) – σ(Tc)]/σ(Tc) is
inversely proportional to the frequency and decreases
with decreasing width (δTc) of the superconducting
transition [22].

Second, when comparing with the experimentally
measured surface resistance, the temperature-indepen-
dent Rres value was taken from the same experiment and
added to the Rs(T) value calculated using general

Eq. (4). That is why the (T ) curves calculated by
Eq. (6) do not turn to zero at T  0 in Fig. 5, although
the two-fluid model assumes that the density nn = 0 at
T = 0 and, according to Eq. (9), the conductivity σ'(0) =
0. The Rres value was not taken into account when com-
paring with the data in Figs. 4 (except for the upper
curve) and 6 because the corresponding Rres/Rs(T)
ratios are very small (less than 10–3). In most HTSC
crystals, Rres/Rs(Tc) > 10–3, so that the effect of the resid-
ual surface resistance becomes noticeable at T ! Tc.
One more reason for the inclusion of Rres is that the
ratio Rres/Rs(Tc) ∝  ω3/2 increases with frequency and
becomes appreciable for the upper curve in Fig. 4.

Problem 1 (continued). The question of the nature
of the residual losses remains open for HTSC materials.
In some works (see, e.g., [30]), the origin of these
losses was explained by the presence of a certain

σab'
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amount n0 of unpaired carriers in the sample at T = 0.
The Rres value was estimated by using Eq. (5) with non-
zero conductivity σ'(0) = n0e2τ(0)/m [Eq. (9) at (ωτ)2 ! 1].
However, it can easily be shown that the Rres values thus
determined must satisfy inequality (7); otherwise, as it
may occur for the HTSC crystals (see Fig. 5b), the n0
value would exceed the total carrier concentration n. In
many works developing the traditional approach
assigning the residual resistance to various surface
imperfections, the losses were explained by the pres-
ence of weak links [31–33], twin boundaries [33, 34],
normally conducting clusters [35], etc. However, esti-
mates show that the contribution from such losses is
small compared to the Rres values measured in the
HTSC materials. In addition, the residual surface resis-
tance is approximately the same in perfect HTSC cop-
per oxide crystals prepared by different methods or
having different chemical compositions, containing
twins or not, and with a freshly cleaved surface or
as-grown surface: Rres ~ 100 µΩ at a frequency of
10 GHz. This fact indicates that the origin of residual
losses has an “intrinsic” character and is inherent in all
high-quality HTSC crystals. It is most likely associated
with the structural features of these materials, namely,
with the pronounced layered structure of these com-
pounds. In other words, the current in the surface layer
of HTSC crystals may flow in a nonsuperconducting
part of the layer possessing a finite resistivity ρn. In the
model under discussion, this additional contribution
can be taken into account as a circuit element ρ con-
nected in parallel to the two-fluid circuit characterized
by Eq. (9), i.e., as a resistance ρ = 1/σ' shunted by a
kinetic inductance l = 1/ωσ'' (parallel connection of ρ
and l corresponds to the coupling adopted between cur-
rent and field in the two-fluid model). Evidently, the
complex circuit impedance consists of the imaginary
part iXs = iωµ0λ at T < Tc and the sum of two real terms:

Rs from Eq. (5) and R0 = ω2 λ3/2ρn. At T = 0, when
Rs(0) = 0, the latter can play the role of a residual sur-
face resistance Rres proportional to ω2, as it follows
from the experiments. At a frequency of 10 GHz and for
the Rres ≈ 100 µΩ and λ(0) ≈ 0.2 µm values typical of
HTSC crystals, one obtains a typical metallic value
ρn(0) ≈ 25 µΩ cm. According to the above-mentioned
procedure of comparison with the experimental Rs(T)
curves, one must also require that R0 be independent of
temperature at T ! Tc. This is possible if ρn(T ) ∝  λ3(T );
i.e., ρn(T ) should vary linearly with temperature at T !
Tc: ρn(t) = ρn(0)(1 + 1.5αt), where α is the slope of the
σ''(t) curve at t ! 1 in this sample:

(10)

The coefficients ρn(0) and 1.5αρn(0)/Tc in BSCCO
crystal no. 2 are approximately equal to the coefficients
ρab(0) and b in the expression ρab(T ) = ρab(0) + bT for
the resistivity of this sample in the normal state; i.e.,

µ0
2

σ'' t( )/σ'' 0( ) λ2 0( )/λ2 t( ) . 1 α t–( )= .
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ρn(T ) ≈ 2R2(T )/ωµ0, where R(T) is the continuation of
the Rs(T) line at T > Tc (Fig. 3) to the superconducting
region T < Tc (down to T = 0).

It would be appropriate to close the discussion of the
MTM by writing formulas describing the experimental
data ns(T )/n = σ''(T)/σ''(0), which were used for calculat-

ing Rs(T) and (T ) in the T orientation. There are sev-
eral variants of such empirical formulas [3, 21, 22, 26, 27].
All of them have the form of Eq. (10) at T ! Tc, because

all (T) curves for HTSC single crystals are character-
ized by the linear dependence at low temperatures.

Thus, the model based on Eqs. (8)–(10) adequately
describes the general properties of the Zs(T) and σab(T)
curves for high-quality HTSC crystals. It follows from
these formulas that all curves have a linear portion at
t ! 1: σ' ∝  αt/β, because nn/n ≈ αt and τ ≈ τ(0) ≈
τ(Tc)/β; ∆σ'' ∝  –αt; Rs ∝  αt/β according to Eq. (5); and
∆Xs ∝  ∆λ ∝  αt/2. As the temperature increases, the
σ'(t) function passes through a maximum at t < 0.5 if
the residual surface resistance Rres is so small that ine-
quality (7) is fulfilled. This peak arises from the super-
position of two opposite effects: a decrease in the num-
ber of normal carriers with decreasing temperature at
t < 1 and an increase (terminating at t ~ β1/5) in the
relaxation time. If Eq. (7) is not fulfilled, σ'(t) mono-
tonically decreases with temperature elevation. This
model also describes the temperature dependences of
the surface impedance and the complex conductivity of
YBCO single crystals grown by different methods. The
postulates and consequences of the MTM are analyzed
in recent works [21, 22] from the viewpoint of modern
microscopic theories of the microwave response of
HTSC materials.

σab'

σab''

Fig. 6. (Circles) (T ) for YBCO crystal at a frequency of
1.14 GHz [25] and (solid line) the calculation by Eqs. (8)
and (9) with κ = 9, τ(Tc) = 10–13 s, β = 0.005, and δTc =
0.4 K.
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CONDUCTIVITY OF HTSC CRYSTALS
ALONG THE c AXIS

Problem 3. Let us now consider the L orientation of
a crystal with respect to the Hω field in the cavity, Hω ⊥  c
(Fig. 2b). In the superconducting state, the high-fre-
quency currents flowing in the ab planes decay at a
depth of λab, while the c-directed currents decay at a
depth of λc. At T < 0.9Tc, these values are small com-
pared to the characteristic sizes of the crystal, allowing

one to introduce the effective impedance  for the
L orientation, defined as a surface-averaged value

 . (b  + c )/(b + c), where the superscripts
on Zs indicate the directions of screening currents. By

Zs
ab c+

Zs
ab c+ Zs

ab Zs
c

Fig. 7. (Symbols) components of the conductivity tensor
 for YBCO at a frequency of 22 GHz [40] at

T < Tc. (Solid lines) calculations [28] by Eqs. (8) and (9).

σ'ˆ T( )/σ̂ Tc( )

a axis
b axis

b axis
a axis

c axis

σ'
(T

)/
σ'

(T
c)
measuring (T) in the T orientation and  in the

L orientation, one can determine the losses (T ) and

a change ∆λc(T ) = ∆ (T )/ωµ0 [8, 10, 14, 36–39]. To
determine λc(T), one is forced to invoke the results of
independent measurements of λc(0). The literature data
on the low-temperature behavior of ∆λc(T) are contro-
versial. Both linear dependence ∆λc(T) ∝  T at T < Tc/3
[36, 39] and quadratic dependence [40] were observed
even for the most extensively studied YBCO single
crystals. In BSCCO crystals, the behavior of ∆λc(T)
depends on the level of doping with oxygen: in the
crystals with maximal Tc . 90 K the linear dependence
∆λc(T) [8, 9, 38] converts into quadratic [38] as the
oxygen content increases.

In recent work [40], detailed measurements of the
impedance anisotropy were carried out and the conduc-
tivity components along the crystallographic axes were
found for the optimum-doped untwinned YBCO crys-
tals. In [28], we undertook an attempt at applying the
MTM to the totality of experimental data obtained in
[40]. For the real parts of the conductivity tensor, the
comparison is shown in Fig. 7 [28]. The peak in (T)
is absent because the temperature dependence of the
relaxation time of normal quasiparticles along the
c axis is very weak at T < Tc; i.e., τc(T) ≈ const and
βc @ 1 in Eq. (8). Moreover, since the inductive losses
due to the large λc value markedly exceed the active

losses (small  and  values), it is likely that the
microwave c-response is mainly caused by the tunnel-
ing of Cooper pairs between the CuO2 planes. Note
that, according to the measurements in [40], the surface

resistance (T) < (T ) in the range 10 < T < 65 K.
However, in all previous works, the loss measurements
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Fig. 8. Conductivity components (T) and (T) for BSCCO crystal nos. 1 and 2.σc'' σc'
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for the optimum-doped HTSC crystals gave the reverse

relation (T) @ (T ) at T < Tc.

The aforementioned approach to studying the
impedance anisotropy for HTSC crystals at T < Tc gives
no way of determining the λc(T) value from the mea-
surements of the Q factor and the resonance frequency
shift in the L orientation and, in addition, cannot be
extended to higher temperatures. The point is that the
size effect becomes significant at T > 0.9Tc in the L ori-
entation and is the cause of the divergence between the

temperature behavior of the effective (T) value

measured in the normal state and the ∆ (T) value;
as a result, the f0 constant in Eq. (2) cannot be deter-
mined, as it was done previously. Recently [9], we sug-
gested a new procedure for the determination of the f0
value in the L orientation and, hence, the conductivity
components (T ) and (T) along the c axis. The
procedure is based on the known formulas [41] allow-
ing for the size effect in the field distribution in a long
anisotropic strip with size a @ b, c (Fig. 2b). The (T )

and (T) dependences obtained for BSCCO crystal
nos. 1 and 2 using this procedure are shown in Fig. 8
[42]. The λc(0) value proved to be equal to approxi-
mately 50 µm for sample no. 1 and 150 µm for sample
no. 2, in agreement with the results of our measure-
ments of λc(0) in these crystals by other methods [43,
44]. One can see from Fig. 8 that the conductivity

(T ) in both samples grows with decreasing temper-

ature at T < Tc, despite the fact that the (T ) depen-
dences in these crystals are different (Fig. 5). The for-
mal reason for this growth is clear: the residual losses

 along the c axis of BSCCO crystal nos. 1 and 2 are
large enough so that inequality (7) breaks. At the same
time, the (T ) dependences measured for BSCCO
crystals by other techniques [45, 46] showed semicon-
ductor behavior at T < Tc.

CONCLUSION

The results of measuring the surface impedance and
the complex conductivity of the T-oriented (Hω || c)
optimum-doped samples of different chemical compo-
sition are systematized and described within the frame-
work of the MTM. The common feature of the experi-

mental (T ) and (T ) curves obtained for HTSC
single crystals is that the conductivity components

(T ) and (T ), the reactance ∆Xs(T) ∝  ∆λab(T ) ∝
T, and the surface resistance ∆Rs(T) ∝  T linearly
depend on temperature at T ! Tc. In terms of the MTM,
such behavior of the microwave response of HTSC
materials is caused by the linear decrease in the density

Rs
c Rs

ab

Rs eff,
ab c+

Xs eff,
ab c+

σc' σc''

σc'

σc''

σc'

σab'

Rres
c

σc'

Zs
ab σab

σab' σab''
JETP LETTERS      Vol. 72      No. 11      2000
ns(T ) of superconducting carriers with a rise in temper-

ature at T ! Tc. A broad peak at T < Tc in the (T)
curve is the distinctive feature of the YBCO crystals. In
the MTM, the presence or absence of this peak is gov-
erned by a change in τ(T ) in the temperature range 0 <
T < Tc: whereas the τ(Tc) ≈ 10–13 s value is approxi-
mately the same for all high-quality HTSC crystals at
T = Tc, the τ(0) value in YBCO is greater than τ(0) in
other compounds by a factor of ten and more at T ! Tc.
The reason why the change in the reactance ∆Xs(T)
exceeds the change in the surface resistance ∆Rs(T) of
TBCO crystals remains to be clarified. The origin of
residual losses in HTSC is among the hottest problems
because the behavior of real components (T) of the
conductivity tensor is governed at T < Tc by this quan-
tity. The anisotropy of high-frequency conductivity of
HTSC materials also calls for detailed study.
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