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The effect of an external chromomagnetic field on the phase structure of the extended Nambu–Jona–Lasinio
model with two quark flavors is examined. It is shown that, depending on the relationship between the quark
coupling constants in the  and qq channels, chromomagnetic fields of certain types induce spontaneous
breaking of chiral, color, or both symmetries simultaneously. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 12.38.Mh; 12.39.Fe

qq
INTRODUCTION.

According to current QCD concepts, hadrons in the
confinement phase existing at low temperatures and
densities are elementary excitations of the ground state;
i.e. quarks do not escape and color symmetry is unbro-
ken. A nonzero chiral condensate 〈 〉  is the character-
istic feature of this phase, flagging spontaneous chiral
symmetry breaking (SCSB). It was predicted that, at
high temperatures T, a system undergoes transition to
the quark–gluon plasma state, where quarks are free
and all symmetries of the QCD Lagrangian are recov-
ered. For a sufficiently high baryon density (low T), a
new phase with color superconductivity (CS) is
expected to appear in QCD. This phase allows the for-
mation of two-quark bound states (Cooper pairs) with a
nonzero vacuum condensate 〈qq〉 , indicating spontane-
ous color symmetry breaking.

The properties of the CS phase of matter was dis-
cussed more than twenty years ago [1]. This phenome-
non was recently analyzed in [2] within the framework
of one-gluon exchange in QCD, and it was proved that
CS is, in principle, possible at the values of chemical
potential µ above 108 MeV [3]. The corresponding
baryon densities are so high that they exist neither in
nature (neutron stars) nor in laboratory conditions (the
densities in future experiments on ion–ion collisions
will only be several times higher than the density of the
ordinary nuclear matter; i.e., µ ~ 500 MeV). The possi-
bility of observing CS at intermediate baryon densities
was proved only recently on the basis of various effec-
tive theories of a low-energy QCD region, including the
Nambu–Jona–Lasinio (NJL) model (see [4–6] and the
review [7] and references therein). In these works,
allowance was made for the nonperturbative character-
istic of a real QCD vacuum, such as SCSB, i.e., nonzero
chiral condensate 〈 〉 , to show that the CS effect can
be manifested at much smaller values µ ≈ 400 MeV,
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i.e., in the near-future experiments on heavy-ion colli-
sions.

It is important that the NJL and QCD Lagrangians
have the same symmetry group. For this reason, the
NJL model is successfully used in studying the proper-
ties of a nonperturbative QCD vacuum, in particular,
under the action of external factors such as temperature
and chemical potential [8]. These investigations are
particularly important in the cases where the use of
numerical lattice methods in QCD is hampered, i.e., in
the presence of chemical potential and external mag-
netic field [9, 10]. Moreover, it was found on the basis
of the NJL theories that arbitrarily weak external mag-
netic fields induce SCSB [11]. This effect was named
magnetic catalysis of SCSB and has found application
in different fields of physics (see reviews [12]).

It is well known that the low-energy QCD vacuum
is characterized not only by the nonzero 〈 〉  ≠ 0, but
also by the nonzero gluon condensate 〈FF〉  ≡

, where  is the gluon field strength ten-
sor. Since the NJL model is free of dynamical gluons,
the gluon condensate is absent in it. To remedy the sit-
uation and describe physical processes more realisti-
cally, external color fields are usually employed as a
gluon condensate in the NJL model [13]. In particular,
it was shown in the NJL model with gluon condensate
that, similar to an ordinary magnetic field, an external
chromomagnetic field catalyzes SCSB [14].

In this work, the formation of CS is studied with
allowance for two nonperturbative characteristics of the
QCD vacuum, namely, chiral and gluon condensates.
With this aim, the phase structure of the NJL model is
considered in the presence of an external color field to
demonstrate that chromomagnetic fields of certain
types can induce color superconductivity, whose indic-
ative feature is a nonzero diquark condensate. Since the
chemical potential µ facilitates transition of the system
to the CS state, whereas the role of gluon condensate

qq
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(external chromomagnetic field) in this process has not
been adequately studied yet, it is set µ = 01 throughout
the work. 

MODEL AND ITS EFFECTIVE POTENTIAL 

Let us consider a (3 + 1)-dimensional NJL model
with the Lagrangian

(1)

Here, the quark fields q ≡ qiα form a flavor doublet (i =
1 and 2) and an SU(3)c color triplet (α = 1,2, and 3);

 is the vector potential of the classical SU(3)c

gauge field (for this reason, it is implied hereafter that
Nc = 3); G1 and G2 are the independent coupling con-

stants;2 qc = C  and  = qtC are the charge-conjugate
spinors, where C = iγ2γ0 and t denotes the transposition;
t ≡ (τ1, τ2, τ3) are the Pauli matrices in the flavor space;
λa are the Gell-Mann matrices; and (ε)ik ≡ εik (i, k = 1,
2) and (eb)αβ ≡ eαβb (α, β, b = 1, 2, 3) are the totally anti-
symmetric tensors in the flavor and color spaces,
respectively. Lagrangian (1) is obviously invariant
under the transformations of the chiral SU(2)L × SU(2)R

and color SU(3)c groups.
Models of this type successfully describe the

dynamics of mesons and diquarks, as well as the pro-
cesses involving baryons in low-energy QCD with two
quark flavors [17]. Moreover, model (1) is precisely
that which was used to demonstrate that CS exists at

 = 0 in the region of moderate values of chemical
potential µ ~ 400 MeV [6].3 

A linearized variant of model (1) with auxiliary
boson fields has the form

(2)

1  The possibility of existing CS in the absence of an external field
and at µ = 0 was considered in [15, 16].

2 In order to obtain physically acceptable estimates for the masses
of (pseudo)vector mesons and diquarks in model (1), it is neces-
sary to assume that the coupling constants are mutually indepen-
dent [17]. In what follows, G1 and G2 are free parameters of the
model.

3 Similar phase structure was also predicted in a four-fermion
model induced by the instanton structure of QCD vacuum at low
energies [4].

L qγν i∂ν gAν
a x( )

λa

2
-----+ 

  q=

+
G1

2Nc

--------- qq( )2 qiγ5tq( )2
+[ ]

+
G2

Nc

------ iqcεe
bγ5q[ ] iqεe

bγ5qc[ ] .

Aµ
a x( )

qt qc

Aµ
a x( )

L̃ qγν i∂ν gAν
a x( )

λa

2
-----+ 

  q q σ iγ5tp+( )q–=

–
3

2G1
--------- σ2 p2+( ) 3

G2
------∆∗ b∆b–

– ∆∗ b
iqtCεe

bγ5q[ ] ∆ b iqεe
bγ5Cqt[ ] .–
Lagrangians (1) and (2) are equivalent for the equations
of motion for boson fields. It follows from these equa-
tions that

(3)

It is evident that the fields σ and p are color singlets’
and the boson diquark fields ∆b, each being a singlet of
the SU(2)L × SU(2)R group, form a color antitriplet.
Since σ and ∆b are scalar fields, while p is a pseudosca-
lar field, the chiral symmetry of the model is spontane-
ously broken if 〈σ〉  ≠ 0, while 〈∆b〉  ≠ 0 points to the
dynamical color symmetry breaking.

In the one-loop approximation, the effective action
for the boson fields can be represented in terms of the
following continual integral with respect to the quark
fields:

(4)

where N' is the normalization factor. We assume that all

boson fields in Eq. (4), apart from , are independent
of the space–time points. Since the function Seff is
invariant under the chiral, color, and Lorentz transfor-
mations, there always exists a coordinate system, in
which ∆1 = ∆2 = p = 0; i.e., Seff ≡ Seff(σ, ∆) where ∆ ≡ ∆3.
We introduce next the effective potential Veff: Seff(σ, ∆) ≡
−Veff(σ, ∆) . The point of global minimum of the

effective potential determines the vacuum means of the
fields and the symmetry group of the vacuum. In partic-
ular, if ∆ ≡ 〈∆〉 ≠ 0 at this point, then the SU(3) symme-
try is spontaneously broken to SU(2) and the SC phe-
nomenon arises. (If we introduced dynamical gluon
fields in this case, three gluon fields would remain
massless, whereas the other five gluon fields would
become massive.) Now, let us represent an external uni-

form chromomagnetic field in the form Ha =  + ,

where  = (H1, H2, H3, 0, …, 0),  = (0, 0, 0, H4,
…, H8). By analogy with the ordinary superconductiv-

ity, the -type fields corresponding to massive gluons
are expected to be expelled from an SC medium
(Meissner effect). Moreover, strong fields of this type
will destroy SC. However, our physical intuition tells us

nothing about the effect of the -type external fields
on an SC medium. In what follows, it is assumed that a
field of this type acts on the system. Without loss of
generality, one can set H1 = H2 = 0 and H3 ≡ H, i.e.,
assume that the field is directed along the third spatial
axis. In this case, the field strength tensor has only the

following nonzero components:  = –  = H. Cor-
respondingly, a gluon condensate, whose effect on the
NJL model (1) is simulated by this external chromo-

∆b iqtCεe
bγ5q, σ qq, p iqγ5tq.∼∼∼

iSeff σ p ∆b ∆∗ b
Aµ

a, , , ,( )( )exp

=  N' qd[ ] qd[ ] i L̃ x4d∫( ),exp∫

Aµ
a

x4d∫

HI
a HII

a

HI
a HII

a

HII
a

HI
a

F12
3 F21

3
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magnetic field, has the value 〈FF〉  = 2H2. The vector

potential  for such an external field can be chosen
in the form

(5)

In this case, the effective potential of the model at H ≠
0 is expressed as [18]

(6)

where

(7)

Here, σ3 = diag(1, –1) is the matrix in the two-dimen-
sional color space, the operator in the first determinant
acts only in the flavor, spinor, and coordinate spaces,
while the operator in the second determinant acts, in
addition, in the two-dimensional color space corre-
sponding to the residual SU(2) vacuum symmetry.

Case H = 0. Setting Aν = 0 in Eq. (7) and using the
formula detO = exp(trlnO), one can obtain the follow-
ing expression for the effective potential: 

(8)

The singular integrals in Eq. (8) are regularized using
the compact domain of integration |k | ≤ Λ. The integra-
tion gives V0(σ, ∆, ∆*) = Λ4v 0(x, y)/π2, where

(9)

Here,

(10)

Aν
a x( )

Aν
3 x( ) 0 0 Hx1 0,, ,( );=

Aν
a x( ) 0 a 3≠( ).=

VH σ ∆,( ) 3σ2

2G1
--------- 3∆∆∗

G2
--------------

S̃ σ ∆,( )
v

-----------------,–+=

v x4 ,d∫=

iS̃ σ ∆,( )( )exp N'det i∂̂ σ–[ ]=

× det1/2 4 ∆ 2 –i∂̂ σ– gÂ
3σ3

2
-----– 

  i∂̂ σ– gÂ
3σ3

2
-----+ 

 + .

V0 σ ∆ ∆∗, ,( ) 3σ2

2G1
---------

3 ∆ 2

G2
------------+=

– 8
k3d

2π( )3
------------- σ2 4 ∆ 2 k2+ +∫

– 4
k3d

2π( )3
------------- σ2 k2+ .∫

v 0 x y,( ) 3A
2

-------x2 By2 1
2
--- 1 x2+–

x2

4
-----F x( )–+=

– 1 x2 y2+ +
x2 y2+

2
----------------F x2 y2+( ).–

x
σ
Λ
----, y

2 ∆
Λ

---------, A
π2

G1Λ
2

-------------,= = =

B
3π2

4G2Λ
2

----------------, F x( ) 1 x2+ x2 1 1 x2++
x

---------------------------.ln–= =
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The stationarity equations for the potential v 0(x, y) have
the form

(11)

(12)

It is easy to show that the function F(x) in these equations
decreases monotonically from F(0) = 1 to F(∞) = 0 on
the x ∈  (0, ∞) interval F(x) = 2/3x + o(1/x) at x  ∞.
In addition, F '(0) = 0. The function f(x), the inverse of
F(x) on the x ∈  (0, 1) interval [recall that x ≡ F(f(x))],
decreases monotonically from f(0) = +∞ [f(x) = 1/x + …
at x  0] to f(1) = 0. In this case, f '(1) = –∞. This
information is sufficient to arrive at the following con-
clusions.

There are four types of solutions to Eqs. (11) and
(12):

(I) the (0, 0) solution. It exists for all values A, B ≥ 0;
(II) the (x0, 0) solution, where x0 = f(A). It exists for

all values 0 ≤ A ≤ 1;
(III) the (0, y0) solution, where y0 = f(B). It exists for

all values 0 ≤ B ≤ 1;
(IV) the ( , ) solution. In this case, the expres-

sions in brackets in Eqs. (11) and (12) are zero. It fol-

lows from Eq. (12) that  = f(B) if 0 ≤ B ≤ 1.
Taking into account this fact, from Eq. (11) one obtains

 = f(3A – 2B) if 0 ≤ 3A – 2B ≤ 1, and

(13)

The  value must be nonnegative. Taking into account
this requirement, the monotonic decrease of the func-
tion f(x) and Eq. (13), one obtains the following limita-
tion on A and B: B ≤ A. Therefore, the type-IV solution
exists only in the ω domain where

(14)

To determine the global minimum (GM) of the poten-
tial (9), it is necessary to find its values at stationary
points of types I–IV and select the lowest of them. The
result of this procedure carried out for each fixed A, B
pair is shown in Fig. 1 as a phase portrait of the model.
In this figure, the (A, B) plane is divided into four
domains (phases), each labeled according to the sta-
tionary point, at which the GM of the potential is
located for all points (A, B) from the domains consid-
ered. Therefore, the GM for domain I is a type-I station-
ary point, and this domain corresponds to the com-
pletely symmetric phase of the theory. Domain II corre-
sponds to the GM in which 〈 〉  ≠ 0 and 〈qq〉  = 0.
Therefore, it corresponds to the SCSB phase. Domain
III is the CS phase, because the GM for all points of this
domain corresponds to nonzero diquark condensate.
Finally, domain IV coinciding with ω (14) corresponds

∂v 0 x y,( )
∂x

---------------------- x 3A F x( )– 2F x2 y2+( )–{ }≡ 0,=

∂v 0 x y,( )
∂y

---------------------- 2y B F x2 y2+( )–{ }≡ 0.=

x̃0 ỹ0

x̃0
2 ỹ0

2+

x̃0

ỹ0
2 f 2 B( ) f 2 3A 2B–( ).–=

ỹ0
2

ω A B,( ): B 0 B A 3A 2B 1≤–,≤,≥{ } .=

qq
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to the mixed phase of the model, because both conden-
sates are nonzero in this case: 〈qq〉  ≠ 0 and 〈 〉  ≠ 0.

Vanderheyden and Jackson [16] used the random
matrix method to consider the possibility of existing CS
for µ = 0 and H = 0. Using general symmetry laws, they
derived a strict limitation on the quark coupling con-
stants in the  and qq channels, for which CS is for-
bidden. In terms of model (1), it has the form B > A.
Using the phase portrait of the model (see Fig. 1), it is
easy to verify that our results are consistent with this
limitation.

Case H ≠ 0. Let us now consider the effect of an
external chromomagnetic field with vector potential (5)
on the phase structure of the model. In this case, using
the methods developed in [10], one can easily obtain
from Eqs. (6) and (7)

(15)

Potential (15) diverges in the ultraviolet limit. After
regularization, it reduces to the form

(16)

qq

qq

VH σ ∆ ∆∗, ,( ) 3σ2

2G1
---------

3 ∆ 2

G2
------------+=

+
dH

4π2
-------- sd

s2
----- s σ2 4 ∆ 2+( )–( ) gHs/2( )cothexp

0

∞

∫

– 4
k3d

2π( )3
------------- σ2 k2+ .∫

v h x y,( ) v 0 x y,( )=

–
h2

2
----- ζ' 1 z,–( )

1
2
--- z2 z–[ ] z

z2

4
----+ln–

 
 
 

,

Fig. 1. The (A, B) phase portrait of the model at H = 0. The
left and right boundaries of domain IV are the straight lines
B = A and 3A – 2B = 1, respectively.
where the same notations are used as in Eqs. (9) and
(10) and the new notations are also introduced:

(17)

In addition, ζ'(–1, x) = dζ(ν, x)/dν|ν = –1, where ζ(ν, x) is
the generalized Riemann zeta function. The stationarity
equations for potential (16) have the form

(18)

(19)

where the function F(x) is defined in Eq. (10), and

(20)

It is easy to show that the function I(z) decreases mono-
tonically from +∞ to zero on the interval z ∈  (0, ∞).
Taking into account a monotonic decrease of the func-
tion F(x), from Eqs. (18) and (19) one can obtain the
partial derivatives ∂v h(x, 0)/∂x and ∂v h(0, y)/∂y, which
are negative at small x or y values, respectively. In other
words, the potential v h(x, y) at the origin of coordinates
decreases along both the x and y axes. This simple
observation leads to a very important conclusion. For
nonzero, including arbitrarily weak, external fields (5),
the point (0, 0) cannot be the global minimum of the
effective potential; i.e., the original symmetry of the
model is necessarily spontaneously broken, irrespec-
tive of the value of the coupling constant. In particular,
if the vacuum of the model is symmetric for some G1
and G2 values, then either chiral, or color, or both sym-
metries simultaneously are broken at H ≠ 0. This phe-
nomenon is referred to as chromomagnetic catalysis of
dynamical symmetry breaking. Previously [14], it was
observed in the simplest NJL model, where the chro-
momagnetic field induced SCSB.

Using numerical methods, one can gain more
detailed information about the phase structure. In par-
ticular, Fig. 2 shows the (A, B) phase portrait of model
(1) for several values of variable h. It is seen that the
straight line 3A – 2B = 1 is the boundary between CS
phase III and mixed phase IV, while the boundary
between phase IV and SBCS phase II depends on the
parameter h. For each given h value, the left and right
boundaries of phase IV coincide with each other only
asymptotically at A, B  ∞. For all h values, mixed
phase IV lies inside the domain Ω = {(A, B): 0 < 3A –
2B < 1} and ω ⊂  Ω . One can show that, for an arbi-

VH σ ∆ ∆∗, ,( )
Λ4

π2
------v h x y,( ),=

h
gH

Λ2
-------, z

x2 y2+
h

----------------.= =

∂v h x y,( )
∂x

---------------------- x 3A F x( )–{≡

– 2F x2 y2+( ) hI z( )– } 0,=

∂v h x y,( )
∂y

---------------------- y 2B 2F x2 y2+( )– hI z( )–{ }≡ 0,=

I z( )
1
2
--- sd

s2
----- 2sz–( ) s s( ) 1–coth[ ] .exp

0

∞

∫=
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trarily fixed point (A, B) ∈ Ω , there exists a critical field
Hcr(A, B) such that the transition to phase IV occurs at
H > Hcr(A, B). Figure 3 shows the values hcr(A, B) =
gHcr(A, B)/Λ2 for some (A, B) points. In this figure, one
curve is the graph of function hcr(A, B =1.5) [the param-
eter A varies so that the point (A, B = 1.5) moves along
the straight line within Ω] and the second curve is the
function hcr(A = 1.2, B) (the arguments A and B of these
functions correspond to the same axis in Fig. 3). It is
seen that, as the point (A, B =1.5) approaches the left
boundary of the domain Ω , i.e., as A  1, the critical
field Hcr(A, B = 1.5) tends toward infinity [the left
dashed line in Fig. 3 is the vertical asymptote for the
function hcr(A, B = 1.5)]. The function hcr(A = 1.2, B)
behaves in a similar way and tends toward infinity as
B  1.8.

DISCUSSION

Comparison of the phase diagrams in Figs. 1 and 2
indicates that, under the action of an external chromo-
magnetic field (5), CS phase III expands at the sacrifice
of phase I, whereas mixed phase IV expands at the sac-
rifice of phases I and II. In this connection, the chromo-
magnetic catalysis of CS (i.e., a chromomagnetic-field-
induced dynamical color symmetry breaking and
appearance of a nonzero diquark condensate) in model
(1) has three qualitatively different singularities: (i) if a
point (A, B) is in domain I (Fig. 1) but is below the
straight line 3A – 2B = 1, then the arbitrarily weak field
H = 0+ induces color symmetry breaking. In this case,
〈 〉  = 0 and 〈qq〉  ≠ 0; (ii) if a point (A, B) is in domain
I and (A, B) ∈ Ω , then the SCSB phase with 〈 〉  ≠ 0
and 〈qq〉  = 0 is spontaneously generated at H = 0+, and,
for sufficiently high H > Hcr(A, B), the system under-
goes transition to mixed phase IV, where both conden-
sates are nonzero; (iii) if the coupling constants are
such that a point (A, B) is in domain II (Fig. 1) and (A,
B) ∈ Ω , then the external field induces transition from
the SCSB phase to mixed phase IV at sufficiently high
H > Hcr(A, B).

As in the simplest NJL model [14], this model also
allows the chromomagnetic catalysis of SCSB. Indeed,
if a point (A, B) from domain I lies above the straight
line 3A – 2B = 0, then the SCSB phase is generated at
H > 0+.

Recall that, at µ = 0 and H = 0, the formation of a
diquark condensate is impossible under some general
constraint on the quark coupling constants in the 
and qq channels [16]. We have demonstrated that, at
µ = 0 and H ≠ 0, there is an even more stringent con-
straint on the domain forbidden for the CS and mixed
phases. Indeed, the 〈qq〉  condensate is forbidden in the
domain B > A (Fig. 1) in model (1) at µ = 0 and H = 0.
However, at µ = 0 and H ≠ 0, the CS and mixed phases
cannot exist in the narrower domain 2B > 3A (Fig. 2).

qq
qq

qq
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Finally, if a point (A, B) belongs to domain II
(Fig. 1) and lies above the straight line 3A – 2B = 0,
then the system remains in the SCSB phase for all H
values. Nevertheless, the chiral condensate 〈 〉
depends on H in this case; and, as a result, the com-
monly accepted picture of CS formation can alter, at
least quantitatively, at a nonzero chemical potential.

This work was supported by the Deutsche Fors-
chungs Gesellschaft (DFG project nos. 436 RUS and
113/477/4).

qq

Fig. 2. The (A, B) phase portrait of the model for several val-
ues of h = gH/Λ2.

Fig. 3. The critical h values for the transition of the system
from the SCSB phase to the mixed phase in two cases:
(a) B = 1.5 and A variable and (b) A = 1.2 and B variable (for
more detail, see text).
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Two-neutrino double beta decay of 100Mo with half-life T1/2 = [7.2 ± 0.9(stat) ± 1.8(syst)] × 1018 yr was detected
using a liquid argon ionization chamber. With a C.L. of 68% (90%), the bounds on neutrinoless decay and decay
with majoron emission were found to be 8.4(4.9) × 1021 and 4.1(3.2) × 1020 yr, respectively. An analysis of all
available results provides the average “world” value T1/2 = (8.0 ± 0.7) × 1018 yr for the two-neutrino decay of
100Mo, and the corresponding nuclear matrix element is MGT = 0.118 ± 0.005. © 2001 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 23.40.Bw
Neutrinoless double beta decay, 2β(0ν), is being
actively searched, because it is closely related to many
fundamental concepts of the physics of elementary par-
ticles (see, e.g., reviews [1–3]): lepton-number noncon-
servation; the existence of neutrino mass and its origin;
the presence of right-handed currents in electroweak
interaction; the existence of majoron; the structure of
the Higgs sector; supersymmetry; and the existence of
leptoquarks, heavy sterile neutrinos, and composed
neutrinos.

All these problems are beyond the scope of the Stan-
dard Model of electroweak interaction. Therefore, the
detection of 2β(0ν) decay will signify the discovery of
a new physics. Of course, the principal interest in this
process is associated with the problem of neutrino
mass, because the detection of the 2β(0ν) decay will
mean, according to current concepts, that the rest mass
of at least one neutrino type is nonzero, and this is the
Majorana-type mass.1 

To date, only the lower bounds on the half-lives with
respect to the neutrinoless decay have been experimen-
tally determined for various nuclei. These bounds are
used to obtain the limits on the neutrino Majorana
mass, the right-handed current admixture parameters,
the majoron–neutrino coupling constant, and so on.
However, because of the uncertainties in the calcula-

1 The results of recent Super-Kamiokande [4] and SNO [5] experi-
ments are treated as the observation of neutrino oscillations. If
these conclusions are corroborated, this will mean that a neutrino
has nonzero mass. However, the oscillatory experiments cannot
solve the problem of the origin of neutrino mass (Dirac or Majo-
rana?) and cannot provide information about the absolute value of
mass (because the ∆m2 value is measured).
0021-3640/01/7411- $21.00 © 20529
tions of the nuclear matrix elements (NMEs), one can-
not obtain sufficiently reliable limits on these funda-
mental quantities. In this connection, of particular
importance is the detection of two-neutrino double beta
decay, 2β(2ν), because it can provide information about
the NME(2ν) values for various nuclei, which, in turn,
will aid in refining theoretical insight into 2β decay and
in improving the accuracy of calculations of NME(2ν)
and NME(0ν) (see, e.g., [6]). Moreover, the precision
investigation of this process is of interest from the
viewpoint of searching for the possible time depen-
dence of the weak interaction constant [7, 8].

The 100Mo nucleus is one of the most promising
nuclei for examining 2β decay. This is primarily due to
the sufficiently high energy (3034 keV) of the 2β tran-
sition. In addition, the 100Mo( )–100Ru( ) transi-
tion is characterized by the largest values of both
NME(2ν) (as follows from experimental data; see, e.g.,
review [9]) and NME(0ν) (according to the recent cal-
culations [2, 6, 10]). It was also pointed out in [7, 8] that
the 100Mo nucleus is a good candidate for a geochemi-
cal 2β(2ν) experiment. The subsequent comparison of
the geochemical result with the results of direct
(counter) experiments will make it possible to draw a
conclusion about the constancy of the weak interaction
constant (for more detail, see [7, 8]). In this connection,
the accurate direct measurement of the 2β(2ν) half-life
of 100Mo is of particular importance. By now, positive
results on the 2β(2ν) decay of 100Mo have already been
obtained in [11–15], where the half-life values from

[ (stat) ± 0.68(syst)] × 1018 yr [15] to  ×
1018 yr [11] were found.
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This work reports on a new independent observation
of the 2β(2ν) decay of 100Mo in an experiment with liq-
uid ionization chambers. In addition, the current aver-
age (world) value of the 100Mo half-life and the corre-
sponding value of the NME for the 2β(2ν) transition are
presented.

The experiment was carried out at the Gran Sasso
Underground Laboratory (Italy) at a depth of

Fig. 1. The total spectra of two-electron events for (a)
enriched (848.2 kg h) and (b) natural (592.9 kg h) molyb-
denum.

Fig. 2. Difference between the two-electron spectra of the
molybdenum-enriched and natural-molybdenum samples.
The curve is the calculated spectrum of the 2β(2ν) events
for 100Mo with the half-life T1/2 = 7.2 × 1018 yr.
3500 m w.e. The setup consists of a liquid-argon multi-
section ionization chamber placed in a passive shield
(15-cm lead, 1-cm boric acid, and 25-cm water), a gas
system, and electronics. The detecting part of the ion-
ization chamber is comprised of identical measuring
sections. Each such section is composed of two twin
ionization chambers with shielding grids and a com-
mon anode. Cathodes were fabricated from molybde-
num foil ~50 mg/cm2 in thickness. Eight and six cath-
odes were made from enriched (98.4% 100Mo) and nat-
ural (9.6% 100Mo) molybdenum, respectively.2 The
natural-molybdenum and molybdenum-enriched cath-
odes alternate with each other. The activity of radioac-
tive impurities in the molybdenum samples does not
exceed 0.015, 0.0015, and 0.04 Bq/kg for 214Bi, 208Tl,
and 234mPa, respectively. The total weight of 100Mo
under investigation is equal to 306 g. The chamber
includes 14 cathodes, 15 anodes, and 28 shielding
grids. An ionization signal is picked off each anode
using a charge-sensitive preamplifier, an amplifier, and
an amplitude-to-digital converter with a step of 50 ns
(15 independent electronic channels). The energy reso-
lution is 6% (FWHM) for an energy of 3 MeV. The
appearance of a signal exceeding 0.8 MeV at least in
one channel serves as a trigger. As the trigger fires,
information from all 15 channels is recorded on a mag-
netic tape. This information was processed in the off-
line regime. Two-electron events were selected (i.e.,
events with signals in neighboring channels and with a
time interval between them shorter than 0.6 µs). The
efficiency of detecting the useful events was calculated
by the Monte Carlo method. The setup and the method
of data acquisition and processing are described in
detail in [16–18].

This work presents the results obtained with 137.8
and 306 g of 100Mo (313 and 2706 h of measurements,
respectively). Figure 1 shows the total spectra of two-
electron events for (a) enriched (848.2 kg h) and (b)
natural (592.9 kg h) molybdenum. The thresholds for
the first and second electrons are 0.8 and 0.5 MeV,
respectively. The events in the sections with natural
molybdenum were used to estimate the external and
internal backgrounds.

0n decay. To reduce the background, the energy
threshold for each electron in a pair was, in this case,
taken to be 1 MeV. The energy range 2.8–3.1 MeV was
studied, where the ionization signals were additionally
selected according to the pulse shape. As a result, 6 and
4 candidate events were selected in the molybdenum-
enriched and natural-molybdenum samples, respec-
tively (5.8 events in the natural molybdenum when
recalculated to 848.2 kg h). With account taken of the
efficiency (6.9%) of detecting useful events, the follow-
ing bound on the neutrinoless 2β decay of 100Mo was

2 At the first stage of measurements, only four cathodes were man-
ufactured from enriched molybdenum (the total weight of 100Mo
was equal to 137.8 g in this case).
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obtained: T1/2 > 8.4(4.9) × 1021 yr with C.L. of
68%(90%).

0nc0 decay. The energy thresholds for electrons in
a two-electron event were taken to be 0.8 and 0.5 MeV.
The energy range 2.3–3.0 MeV was examined. A total
of 1613 and 1577 events in the molybdenum-enriched
and natural-molybdenum samples were detected,
respectively (when recalculated to 848.2 kg h). With
account taken of the efficiency (5.7%) of detecting use-
ful events, the following bound on the 2β decay of
100Mo with majoron emission was obtained: T1/2 >
4.1(3.2) × 1020 yr with a C.L. of 68%(90%).

2n decay. The events in the energy range 1.4–
2.4 MeV were analyzed, where the signal-to-back-
ground ratio is maximal. After subtraction of the back-
ground, the number of useful events was 1140 ± 146.
With the detection efficiency (2.2%) calculated for the
2β(2ν) events, the following half-life value was
obtained:

T1/2 = [7.2 × 0.9(stat) ± 1.8(syst)] × 1018 yr.

The systematic error is determined by the possible
contribution of the background events from the radio-
active impurities in the molybdenum samples. The dif-
ference between the two-electron spectra of the molyb-
denum-enriched and natural-molybdenum samples is
shown in Fig. 2. The curve in Fig. 2 is the spectrum cal-
culated for the 2β(2ν) decay of 100Mo with the half-life
T1/2 = 7.2 × 1018 yr.

The table presents all of the presently available pos-
itive results of measuring the 100Mo half-life. Only the
preliminary results obtained by M. Moe et al. [12] are
not presented, because we use their more accurate final
result from [15].3 The half-life averaged over all five
experiments is given in the lower row. The average
value was calculated using the standard procedure of
determining the average for different-accuracy mea-
surements (see, e.g., [20]), and the statistical and sys-

3 The result from [19], where the possibility of a considerable con-
tribution to the observed effect from the background processes
was not excluded, was also not used.

The 100Mo decay period through the 2β(2ν) channel

Year, reference , ×1018 yr

1991 [11]

1995 [13] 9.5 ± 0.4(stat) ± 0.9(syst)

1997 [14]

1997 [15]

2001, this work 7.2 ± 0.9(stat) ± 1.8(syst)

Average value 8.0 ± 0.7

T1/2
2ν

11.5–2.0
+3.0

7.6–1.4
+2.2

6.75–0.42 stat( )
+0.37 stat( ) 0.68 syst( )±
JETP LETTERS      Vol. 74      No. 11      2001
tematic errors were summed quadratically. Thus, the
half-life value obtained for 100Mo is one of the most
accurate values among all nuclei undergoing 2β decay.

Using the obtained average half-life and the phase-
space volume G = 8.9 × 10–18 yr–1 (for gA = 1.25) [9],
one can calculate the accurate value of NME(2ν) for the
100Mo( )–100Ru( ) transition: MGT = (0.23 ±
0.01) MeV–1 or, scaled by electron rest mass, MGT =
(0.118 ± 0.005).
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We study the SU(2) gauge theory with the interpolating gauge a la Parrinello–Jona–Lasinio–Zwanziger (PJLZ)

with the gauge-fixing functional F = . We find a strong indication of the nonanaliticity

with respect to the interpolating parameter λ at c ~ 0.8. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.15.Ha

1
2
---Tr Uxµσ3Uxµ

† σ3( )
xµ∑
1 Gauge-variant objects, i.e., Green’s functions for
gluons and/or quarks, are among the most popular
objects of study in continuum physics. A comparison of
nonperturbatively calculated Green’s functions on the
lattice with continuum (mainly, perturbative) ones can
give insight into the structure of the lattice theories and
the role of nonperturbative effects. Another important
point is that Green’s functions are supposed to contain
information about the physical “observables” which
must not depend on the gauge chosen, e.g., dynamical
gluon masses, screening masses, etc. Therefore, it is
important to disentangle gauge-dependent features
from the gauge-independent ones.

A somewhat special reason for studying the gauge,
interpolating between no-gauge and maximally Abe-
lian gauge (MAG), is associated with the fate of the so-
called Abelian dominance. Recently, Ogilvie has
shown [1] (see also [2]) that gauge fixing is unneces-
sary for Abelian projection (AP), i.e., AP without gauge
fixing yields the exact string tension of the underlying
non-Abelian theory: σAbel = σSU(2).

These observations shed new light on the problem of
Abelian dominance. Indeed, without MAG the Abelian
projection ensures the exact equality between σAbel and
σSU(2), while with MAG Abelian σAbel and full σSU(2)
string tensions are close but not equal: σAbel ≠ σSU(2), at
least, for β values used (see, e.g., [3, 4]).

The question arises of whether it is possible to inter-
polate “smoothly” from the no-gauge case to the gauge-
fixed case. The main goal of this work is to answer this
question.

Gauge-fixing procedure and algorithm. We con-
sider the pure gauge SU(2) theory with standard Wilson
action βS(U)[5]. According to the PJLZ approach [6,

1 This work was submitted by the authors in English.
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7], the average of any gauge-noninvariant functional
2(U) is given by

(1)

where  = 〈2〉Ω and

(2)

where F(U) is the gauge-fixing functional and  =

ΩxUxµ . We have chosen

(3)

In Eq. (2), the functional FU(Ω) plays the role of effec-
tive action with unitary “spins” Ωx and random bonds
described by fields Uxµ (similar to spin-glass model).

Evidently, the maximization of F(UΩ) with respect
to gauge transformations Ω defines MAG, and for the

gauge-invariant functional  = 2(U; λ).

In Eqs. (2), λ is some “interpolating” parameter
between 0 and ∞. The choice λ = 0 corresponds to the
no-gauge case and the limit λ  ∞ corresponds to the
case of the maximally Abelian gauge. Any physical,
i.e., gauge-invariant, observable (screening masses,
etc.) must not depend on λ. In general, there are no
grounds for saying that one value of λ is more physical
than the other one. However, the situation can be differ-
ent in the case of the Abelian projection if λ = 0 and
λ = ∞ belong to two different phases.

2〈 〉 1
Z
--- Ud[ ] 2̃ U; λ( )e βS U( )– ,∫=

2̃ U; λ( )

2〈 〉 Ω
1

I U; λ( )
----------------- Ωd[ ] 2 UΩ( )eλ F U

Ω( );∫=

I U; λ( ) Ωd[ ] eλ F U
Ω( ),∫=

Uxµ
Ω

Ωx µ+
†

F
1
2
---Tr Uxµσ3Uxµ

† σ3( ).
xµ
∑=

2̃ U; λ( )
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In our study, we use 2 = F(U) defined in Eq. (3) and
Fnorm(U) = F(U)/4V4. In the “strong coupling” approxi-
mation (λ ~ 0) one obtains

(4)

where V4 is the number of sites.

Definitions in Eqs. (1) and (2) presume the follow-
ing numerical algorithm [8].

(i) Generation of a set of link configurations ,

, … using a standard gauge-invariant algorithm
with Wilson action S(U) for some value of β.

(ii) Generation, for every configuration , of a

sequence of configurations , , …
weighted by the factor exp(λF(UΩ)) for some value of

λ. Therefore, one obtains the estimator for  =
〈2〉Ω

(5)

(iii) The estimator for the expectation value 〈2〉  is
obtained as

(6)

Numerical results. Most of our calculations were
performed on an 84 lattice for β = 2.4. Some calcula-
tions were done also on 64 and 104 lattices to control
finite-volume effects.

In Fig. 1, one can see the dependence of the 〈Fnorm〉
on λ at β = 2.4. The dashed line correspondes to the
lowest-order strong coupling approximation 〈F〉 strong =
λ/3. The upper dotted line corresponds to the maxi-
mally Abelian gauge. The agreement between the
numerical data and strong coupling expansion in
Eq. (4) is very good up to λ . 0.6. 〈Fnorm〉  shows a
clearly defined change in regime at λ ~ 0.8. It is inter-
esting to note that this dependence is very similar to
that occurring for another choice of the functional F =
FLG [8], which corresponds to the Lorentz (or Landau)
gauge at infinite values of the interpolating parameter.

For any {Uxµ} configuration, the “specific heat”
C(U; λ) is defined as

(7)

In Fig. 2, we show the dependence of CU(λ) on λ for
some typical configuration {Uxµ}. One can see a sharp
peak (cusp) at λc ~ 0.8. Of course, the position and size
of this peak depend on the choice of configuration.

Fnorm〈 〉 str λ /3 …,+=

Uxµ
1( ){ }

Uxµ
2( ){ }

Uxµ
i( ){ }

Ωx
1( ){ } Ω x

2( ){ }

2̃ U; λ( )

2̃ U; λ( )
1

NΩ
------- 2 UΩ j( )

( ).
j 1=

NΩ

∑=

2〈 〉 1
NU

------- 2̃ U i( ); λ( ).
i 1=

NU

∑=

CU λ( )
1

4V4
---------dF̃ U; λ( )

dλ
----------------------

F2〈 〉 Ω F〈 〉 Ω
2–

4V4
---------------------------------.= =
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However, this peak demonstrates a rather weak depen-
dence on the volume (compare 84 and 104 data).

Let us define the variance σ(F) in a standard way:

(8)

Figure 3 demonstrates the dependence σ(F) on λ for 84

lattice. For comparatively small values of λ, i.e., tail
values λ & 0.6, where the strong coupling approxima-
tion for 〈F〉  works well, this variance is practically sta-

σ2 F( )
1

NU

------- F̃i
2

i

NU

∑ 1
NU

------- F̃i

i

NU

∑ 
 
 

2

.–=

Fig. 1. The dependence of 〈Fnorm〉  on λ. Symbols are
explained in the text.

Fig. 2. The dependence of C(U; λ) on λ for some typical
configuration {Uxµ}.
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ble. However, for λ’s between 0.65 and 0.8 one can see
a drastic increase in the variance.

To summarize, we have performed an exploratory
study of the pure gauge SU(2) theory with the interpo-
lating gauge a la Parrinello–Jona–Lasinio–Zwanziger
with the gauge-fixing functional defined in Eq. (3).
Therefore, this gauge interpolates between the no-
gauge case and the maximally Abelian gauge.

Our data indicate the existence of a strong nonana-
lyticity with respect to λ (phase transition) at λc ~ 0.8.
Most probably, the mechanism of this transition is sim-
ilar to that in the spin-glass models. At the moment, it
is rather difficult to specify the order of this phase tran-
sition. It is interesting to note that the existence of a
transition with respect to the interpolating parameter λ
was also found for another choice of the functional F =

Fig. 3. The dependence of σ(F) on λ.
FLG [8], which corresponds to the Lorentz (or Landau)
gauge at infinite values of λ.

The existence of this transition makes it clear that
there is no smooth interpolation between the no-gauge
case and the case with MAG. This observation is of
importance for gauge-dependent objects (e.g., σabel),
especially taking into account that the Abelian projec-
tion {Uxµ}  {h(Uxµ)} is an (not very well controlla-
ble) approximation. We conclude that the “physics” of
Abelian projection is assumed to be different at λ = 0
(where σabel = σSU(2)) and the case with MAG.

The above conclusion needs further confirmation.
Finite-volume effects, as well as the dependence of
other observables (e.g., σabel) on λ, should be given
more attention. The corresponding work is in progress.

This work was supported in part by the INTAS
(grant no. 00-00111) and the Russian Foundation for
Basic Research (project nos. 99-01-01230 and 01-02-
17456).
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The radiation-mediated interaction of solitons in a one-dimensional nonlinear medium (optical fiber) with bire-
fringent disorder is shown to be independent of the separation between solitons. The effect produces a poten-
tially dangerous contribution to the signal lost. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Tg; 42.81.Dp
1 The propagation of a pulse through an optical fiber
with randomly varying anisotropy is usually addressed
in the context of the Polarization Mode Dispersion
(PMD). PMD is signal broadening caused by inhomo-
geneity of the medium birefringence. In the linear case,
the study of PMD was pioneered by Poole [1], who
showed that the pulse broadens as the two principal
states of polarization split under the action of the ran-
dom birefringence (see also [2]). Mollenauer et al. have
numerically studied a nonlinear model of birefringent
disorder in [3], where it was shown that a soliton,
launched into the birefringent fiber, does not split, but it
does undergo spreading [3] (see also [4]). In this letter,
we develop an analytical approach and confirm that a
single soliton does degrade due to disorder in the bire-
fringence. The degradation is observable once the soli-
ton traverses the distance zdegr ~ D–1, where D stands for
the strength of the noise in the birefringence, measured
in units of the soliton width and period (D ! 1 is
assumed, the typical case for telecommunication
fibers).

The major finding of this letter is a new phenome-
non which occurs on scales much shorter than zdegr. We
report that the interaction between solitons induced by
their combined radiation (generated by disorder) is an
important factor affecting the soliton dynamics. Ini-
tially stationary solitons experience a relative accelera-
tion, ~D. The intersoliton separation changes on the

order of the soliton width at zint ~ 1/  ! zdegr. We use
and generalize here an approach developed previously
to describe solitons interacting in an isotropic medium
with fluctuating dispersion [5]. The soliton interaction,
in the case of [5], decays algebraically. By contrast, in
the anisotropic case discussed in this letter, the interac-
tion is separation-independent. The reason is that, in

1 This work was submitted by the authors in English.

D
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this case, a different type of wave scatters from the soli-
tons. In the isotropic case, the scattering of the radiated
waves, emitted by a soliton, by another soliton is not
refracted. In the anisotropic case, radiation from one
soliton pushes (literally) the other soliton, because the
scattering potential is not transparent.

Let us briefly formulate the problem. The electric
field E, corresponding to a wave packet carrying fre-
quency ω, can be decomposed into complex compo-
nents E = 2Re[Eωexp(ik0z – iωt)], where z is the coor-
dinate along the fiber. Concomitant averaging over fast
oscillations and over the structure of fundamental mode
(a monomode regime is assumed) constitutes the
coarse-grained description for the signal envelope
described by the two-component complex field Ψα,

 = Ψ1(z)e1 + Ψ2(z)e2, where e1, 2 are unit vectors
orthogonal to each other and to the waveguide direc-
tion. The averaging results in the envelope equation
[6, 7]

(1)

Here, the wave packet is subjected to dispersion in
retarded time t and to the Kerr nonlinearity, which is
described by the last two terms on the left-hand side of

(1). The matrix  describes the differences in the
wavevectors. The matrix  describes the anisotropy in
the group velocity for the two distinct states of polariza-
tion (of the respective linear problem). The isotropy is
broken in Eq. (1), because the core of any fiber is ellip-
tic rather than circular in cross section. It is assumed in
Eq. (1) that the dispersion term and the nonlinear term
are isotropic, since in real fibers anisotropy of disper-
sion and nonlinearity is usually less important than the

Eω

i∂zΨα ∆αβΨβ– imαβ∂tΨβ– ∂t
2Ψα+

+
4
3
--- Ψ1

2 Ψ2
2+( )Ψα

2
3
--- Ψ1

2 Ψ2
2+( )Ψα*+ 0.=

∆̂
m̂

001 MAIK “Nauka/Interperiodica”



 

536

        

CHERTKOV 

 

et al

 

.

                                                                        
effects of anisotropy described by the matrices  and
. The coefficients of nonlinearity and dispersion are

rescaled to unity; i.e., t and z are already dimensionless

in Eq. (1). If the matrices  and  are zero, the full
problem is isotropic and Eq. (1) supports the constant
polarization solution, e.g., Ψ2 = 0. Then, the equation
for Ψ1 is the scalar nonlinear Shrödinger (SNLS) equa-

tion. The self-conjugate matrix  is traceless, since the
trace can be excluded by a simple phase transformation.
The (also self-conjugate) matrix  is traceless, as
Eq. (1) is written in the reference frame moving with

the mean group velocity. Both  and  may contain
regular and disordered parts. In a polarization-main-
taining fiber, at least one of the regular parts is nonzero.
If the phase change between the two polarizations

caused by a regular part (say ) becomes ~1 on a
scale zreg, an additional averaging over the distances
larger than zreg reduces Eq. (1) to [6, 7]

(2)

and analogously for Ψ2. The quantities  and  left in
Eq. (2) represent random contributions. Generically,

eigenvectors of  correspond to elliptic polariza-
tions, and the corresponding eigenvalues are complex.
The quantity ε in Eq. (2) measures the degree of ellip-
ticity, 2/3 ≤ ε ≤ 2. In the degenerate limit of linear polar-
ization (the eigenvectors are real), ε = 2/3. Subsequent

analysis is devoted to models (1) and (2) with  = 0 and
random zero mean . The anisotropy matrix  can be
written in terms of Pauli matrices as follows:  =

, where k = 1, 2, 3 and the real field hk is a

function of z only because the disorder is frozen in the
fiber. The correlation scale of the random field hj(z) is
short. (It is typically constrained by the process of fiber
pulling from a silica preform, cabling, and spooling
into a bobbin). Therefore, according to the central limit
theorem, hj(z) on the larger scales can be treated as a
Gaussian random process. The noise intensity is

described by the matrix , Dik = . One

assumes that the isotropy is restored on average, Dik ∝
δik . Then, the statistics of  is characterized by

(3)

Similarly, one assumes that  =  and

〈bi(z1)bk(z2)〉  = Dbδikδ(z1 – z2).

∆̂
m̂

∆̂ m̂

∆̂

m̂

∆̂ m̂

∆̂reg

i∂z ∂t
2 2 Ψ1

2 2ε Ψ2
2+ + +( )Ψ1

=  ∆1β im1β∂t+( )Ψβ,

∆̂ m̂

∆̂reg

∆̂
m̂ m̂

m̂

hk z( )σ̂kk∑

D̂ z hi z( )hk z'( )〈 〉d∫
m̂

hi z1( )hk z2( )〈 〉 Dδikδ z1 z2–( ).=

∆̂ bk z( )σ̂kk∑
We start with the single-soliton story. One looks for
a solution to Eq. (1) or (2) in the form

(4)

For v 1, 2 = 0, Eq. (4) represents a single-soliton solution
of the ideal,  = 0, problem. If the disorder is weak,
one can substitute Eq. (4) into Eq. (1) or (2) and linear-
ize with respect to v 1, 2 to get

(5)

where R1 = h3, R2 = h1 + ih2, Q1 = ib3, Q2 = ib1 – b2, and

 are differential (second order in t) operators of the
linear Schrödinger type with soliton-shaped (∝ 1/ )
potentials. It is convenient to expand v 1, 2 in series in

eigenfunctions of the operators . Spectra of the
operators are separated into continuous and discrete

parts, v 1, 2 =  + . The four zero modes of 
are related to variations of the soliton amplitude, posi-
tion, phase, and phase velocity. There is also a localized

eigenmode of  identified with variations of the soli-
ton polarization. In the case of model (1), the polariza-

tion eigenmode becomes a zero mode of  corre-
sponding to the free rotation of polarization axes and an
additional zero mode appears that is related to elliptic-
ity. Some localized modes are subjected to the linear,
first-order, in disorder response. Thus, the position of
the soliton y varies randomly in z: 〈y2〉  = Dz. Second-
order effects in radiation lead to variations of the soli-
ton amplitude η. From the conservation law, which
accounts for the balance of “energy” among the soliton
and the continuous radiation (v 1, 2 = 0 at z = 0 is

assumed), one derives  = 1 – η, where the

left- and right-hand sides represent, respectively, the
radiative and the soliton contributions to the energy bal-

ance, and  ~ D. The solution to the integral equation,
valid at any z, is

(6)

[Note that the single-soliton radiation in the degenerate
case of Eq. (2) with ε = 1 was studied in [8], where ana-
logues of the aforementioned integral equation were
derived. The equation was analyzed in [8] under the
assumption that zdη/dz ! 1, which led to the answer
that the soliton amplitude degradation valid at zD ! 1
only, where it coincides with Eq. (6)].

We now turn to the multisoliton case. Only scales
shorter than zdegr = 1/D are discussed, so the random
walk of y and the degradation of the soliton amplitude
can be neglected. The same argument applies to the
polarization angle φ in the case of model (2). In the iso-
tropic model case (1), the jitter of φ becomes important

Ψα δ1α iz( )exp tcosh
1–

v α .+=

m̂

∂z i L̂1 2,–( ) v 1 2,

v 1 2,* 
  R1 2,

R1 2,* 
  ttanh

tcosh
------------- Q1 2,

Q1 2,* 
  1

tcosh
-------------,+=

L̂1 2,
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L̂1 2,

v 1 2,
0( ) ṽ 1 2, L̂1

L̂2
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0

z∫
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η 1 2D̃z+( )
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at zφ ~ 1/D1/3. The effect, however, is collective: polar-
izations of different solitons rotate through the same
angle, so that the relative polarization angle is
unchanged at z ! zdegr . We consider the N-soliton solu-
tion,

of Eqs. (1) and (2). One derives (and solves) the gener-
alization of Eq. (5) and equations for the slow variables
yi, αi, and βi, keeping in the latter the terms up to the
second order in v. Direct averaging of the slow modes
over the h-statistics is the next step. At z ! zdegr, the rel-
ative phases αi – αj do not change, while the soliton
positions yj and phase velocities βi evolve according to

(7)

where U(t) is a quadratic form of , U(t) = 4  +

 +  + 2ε  for model 2. The force Fj acting
on the soliton is self-averaged at z @ 1. Therefore, we
come to a set of deterministic (like in classical mechan-
ics) equations for the soliton positions and the phase
velocities (the latter play the role of classical
momenta). The general setting is familiar from [5].
However, the dependence of the intersoliton forces on
the separation between the solitons in the polarization
problems is different: the force does not depend on the
separation. The key feature of the polarization prob-

lems is the refractive nature of , which is closely
related to the nonintegrability of the no-disorder (  =
0) problem in both of our settings (1), (2). This is in
contrast to the integrability of SNLS, which is the no-

Ψα  = iα j iβ j t y j–( )+[ ] t y j–( )cosh
1– δ1α v α+exp

j 1=

N

∑

∂zy j 2β j, ∂zβ j– F j,= =

F j tU t( ) t y j–( ) t y j–( ),cosh
2–

tanhd∫=

ṽ ṽ 1
2

ṽ 1
2 ṽ 1

*2
ṽ 2

2

L̂2

m̂

Fig. 1. Two solitons. Intersoliton force vs. degree of ellip-
ticity.
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disorder limit of the scalar problem. Due to nonzero
refraction, standing waves are formed in between the
solitons in such a way that the wave amplitude does not
depend on the intersoliton separation.

We present here quantitative results for model (2),
obtained by numerical evaluation of the integral in
Eq. (7) [with U1, 2 found via analytical integration of the
generalized version of Eq. (5) and averaged over
Eq. (3)]. A description of the calculation details will be
published elsewhere. The y-independent O(D) contri-
bution to the intersoliton force for the two-soliton pat-
tern is shown in Fig. 1. The force is independent of the
phase mismatch, α1 – α2. It is always negative (the soli-
tons repel). The minimum value of the force is achieved
at the boundary value, ε = 2/3. The separation-indepen-
dent contribution is zero at ε = 1. This corresponds to
transparent scattering, for the no-disorder limit is inte-
grable in this case [9]. The independence of the force of
the overall size of the soliton pattern persists in the mul-
tisoliton case, although a new feature—sensitivity to
the phase mismatches—emerges. The dependence of
the forces in the three-soliton pattern on the phase mis-
match, in the special case α2 = 0, α3 = –α1 = α, and e =
2/3, for various values of the relative separation, y =
(y3 – y2)/(y2 – y1), is shown in Fig. 2. In the “symmetric”
case, y = 1, F2 = 0, while F3 = –F1, and the value is twice
as large as the force acting on the second particle in the
two-soliton case. In all other y ≠ 1 situations, the forces
do depend on α. The values of the forces oscillate about
the symmetric (y = 1) values.

To conclude, we have shown that the major destruc-
tive factor for a set of well-separated pulses in random
birefrengent fibers is due to soliton–soliton interaction
mediated by radiation. Note that the analytical method
described in this paper can easily be generalized to a
variety of more complicated sources of anisotropy in
optical fibers.

Fig. 2. Three solitons. Forces vs. intersoliton phase mis-
match.



538 CHERTKOV et al.
We are grateful to G.D. Doolen, E.A. Kuznetsov, and
V.E. Zakharov for useful comments. This work was sup-
ported by the LDRD ER on “Statistical Physics of Fiber
Optics Communications” at LANL, the J. R. Oppenhe-
imer fellowship (MC), the DOE (contract W-7-405-
ENG-36) and its Program in AMS [KJ-01-01 (IG)], the
Russian Foundation for Basic Research (project
no. 00-02-17652), and the Russian Foundation for Pro-
moting Science Personal Grant (IK).

REFERENCES
1. C. D. Poole, Opt. Lett. 13, 687 (1988); 14, 523 (1989);

C. D. Poole, J. H. Winters, and J. A. Nagel, Opt. Lett. 16,
372 (1991).

2. N. Gisin and J. P. Pellaux, Opt. Commun. 89, 316
(1992).

3. L. F. Mollenauer et al., Opt. Lett. 14, 1219 (1989).
4. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, Opt. Lett.
16, 1231 (1991); 16, 1735 (1991).

5. M. Chertkov, I. Gabitov, I. Kolokolov, and V. Lebedev,
Pis’ma Zh. Éksp. Teor. Fiz. 74, 391 (2001) [JETP Lett.
74, 357 (2001)].

6. A. L. Berkhoer and V. E. Zakharov, Zh. Éksp. Teor. Fiz.
58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].

7. C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674
(1989).

8. T. I. Lakoba and D. J. Kaup, Phys. Rev. E 56, 6147
(1997); M. Matsumoto, Y. Akagi, and A. Hasegawa,
J. Lightwave Technol. 15, 584 (1997); L. F. Mollenauer
et al., in Optical Fiber Telecommunications, Ed. by
I. P. Kaminow and T. L. Koch (Academic, San Diego,
1997), Part IIIA; H. H. Chen and H. A. Haus, Opt. Lett.
25, 290 (2000).

9. S. V. Manakov, Zh. Éksp. Teor. Fiz. 65, 505 (1973) [Sov.
Phys. JETP 38, 248 (1974)].
JETP LETTERS      Vol. 74      No. 11      2001



  

JETP Letters, Vol. 74, No. 11, 2001, pp. 539–542. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 11, 2001, pp. 612–615.
Original Russian Text Copyright © 2001 by Basieva, Pukhov, Basiev.

                                                                             
Cooperative Quenching Kinetics: 
Theory and Monte-Carlo Simulation

I. T. Basieva, K. K. Pukhov*, and T. T. Basiev
Laser Materials and Technologies, Research Center of General Physics Institute, Russian Academy of Sciences,

Moscow, 119991 Russia
*e-mail: pukhov@lst.gpi.ru

Received May 29, 2001; in final form, October 31, 2001

Analytic expression is given for the static cooperative quenching kinetics in crystals with arbitrary acceptor
concentration and arbitrary multipolarity of interaction. For the quenching by two acceptors, the results of
Monte-Carlo simulation are also presented which can be approximated in the long-time domain by the nonex-
ponential law I(t) ≅  exp[–(wt)k], with k = 0.41, 0.3, and 0.25 for the multipolarities S = 6, 8, and 10, respectively.
© 2001 MAIK “Nauka/Interperiodica”.
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Cooperative effects play an important role in the
dynamic processes accompanying radiofrequency and
optical pumping of materials doped with transition and
rare-earth impurities, because these processes govern
the sensitization and excitation relaxation processes, as
well as the energy up- and down- conversion with exci-
tation summation or splitting [1, 2].

To avoid association with superradiance [3, 4], note
that in this work the term “cooperative” is related to the
phenomena caused by the elementary incoherent pro-
cesses occurring in several interacting particles (ions,
atoms, or molecules). Among these are the excitation
transfer from one donor to two acceptors (cooperative
quenching); energy transfer from two excited donors to
one acceptor (cooperative sensitization); cooperative
absorption (absorption of a single photon by two parti-
cles; etc. [2, 5, 6].

After averaging over the ensemble of randomly dis-
tributed particles, the kinetics of resonant radiationless
energy transfer from donor to acceptor becomes rather
complex and nonexponential. For the dipole–dipole
two-particle interactions, the kinetics was obtained in

[7, 8] in the root-law form ID(t) ≈ exp(– ). Later on,
it was extended to higher multipolarities [9, 10], and it
was found that ID(t) ≈ exp[–(wt)3/S], where S is the inter-
action multipolarity: S = 6, 8, and 10 for the dipole–
dipole, dipole–quadrupole, and quadrupole–quadru-
pole interactions, respectively. For crystals, where
donors and acceptors with an arbitrary concentration
are substitutional impurities, the exact solution was
obtained in [11, 12].

In this work, we seek a solution for the ensemble-
averaged kinetics of multiparticle interaction between a
donor and two-, three-, and multiparticle (cooperative)
acceptors.

wt
0021-3640/01/7411- $21.00 © 20539
The case where there is no resonance between a
donor and a single acceptor but where the multipolar
interaction is possible simultaneously with two or three
particles (cooperative acceptors) was recently observed
experimentally and examined in [13–15].

In this article, an analytic expression is given and the
results of Monte-Carlo simulation are presented for the
static cooperative quenching kinetics in crystals with an
arbitrary acceptor concentration and the multipolarity
S = 6, 8, and 10. In the long-time domain, these results
can be approximated by the nonexponential law I(t) ≅
exp[–(wt)k], with k = 0.41, 0.3, and 0.25 for S = 6, 8, and
10, respectively.

Theory. Let Wij be the excitation transition rate from
one donor simultaneously to two acceptors occupying
the ith and the jth lattice sites. The temporal excitation-
decay kinetics of a donor ensemble is given by

(1)

Here, the subscript 2 indicates the multiparticle (pair)
character of acceptors in the elementary event of coop-
erative transfer; the symbol 〈…〉  stands for the configu-
rational averaging, i.e., averaging over all possible real-
izations of acceptor distribution over the lattice sites

[11, 12]; and the symbol  signifies that the summa-
tion in Eq. (1) is taken over only the sites occupied by
acceptors. Equation (1) can be written in the form

(2)

n2 t( ) Wijt
i j<
∑–

 
 
 

exp .=

'∑

n2 t( ) 1 pi p jϕ ij t( )+[ ]
i j<
∏ ,=
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where

(3)

and pi is unity if the ith site is occupied by an acceptor
and otherwise zero.

In what follows, it will be assumed that the acceptor
distribution over the lattice sites is homogeneous:

(4)

(5)

An analogue of Eq. (1) in the well-known case of
excitation transfer from a donor to a single-particle
acceptor [7–12] is given by the expression

(6)

where

, (7)

with Wi being the transition rate from a donor to an
acceptor at the ith lattice site.

Taking into account relationships of type (5), one
can replace the average of the products in Eq. (6) by the
product of averages, i.e., perform decoupling

(8)

Using Eq. (4), one arrives at the well-known expression
[11, 12]

(9)

with the exponent

(10)

In this expression, the summation is taken over all N lat-
tice sites accessible to acceptors.

By applying a similar decoupling procedure to
Eq. (1), one obtains for n2(t) the expression analogous
to Eq. (9):

(11)

where

(12)

Equation (12) properly describes the initial (exponen-
tial) portion of the decay curve:

(13)

ϕ ij Wij– t( ) 1,–exp=

pi〈 〉 c,=

pi p j〈 〉
pi

2〈 〉 pi〈 〉 c, i j= = =

pi〈 〉 p j〈 〉 c2, i j.≠=



=

n1 t( ) 1 piϕ i t( )+[ ]
i

∏ ,=

ϕ i Wit–( )exp 1–=

n1 t( ) 1 piϕ i t( )+〈 〉
i

∏ 1 pi〈 〉ϕ i t( )+[ ] .
i

∏= =

n1 P1 t( )exp=

P1 t( ) 1 c 1 Wit–( )exp–[ ]–{ } .ln
i 1=

N

∑=

n2 P2 t( ),exp=

P2 t( ) 1 c2ϕ ij t( )+[ ] .ln
i j<
∑=

dn2 t( )
dt

-------------- 
 

t 0=
c2 Wij.

i j<
∑–=
Note also that Eq. (12) is, evidently, valid for c = 1.
However, in the general case, one cannot replace the

average of the products in Eq. (2) by the product of
averages. This becomes clear even from the fact that the
averages of the type 〈(pi pj)(pj pk)〉  = 〈pi pj pk〉  = c3 appear
in Eq. (2) for any three acceptors i, j, and k (i < j < k).
However, the decoupling of 〈(pi pj)(pj pk)〉  is equivalent
to replacing them by 〈(pi pj)〉〈 (pj pk)〉  = c4. For this rea-
son, the expansion of Eq. (12) in power series in con-
centration c does not contain terms with odd powers
of c.

To derive the expression that is more correct than
Eq. (12), let us rewrite Eq. (2) in the form

(14)

and use the approximation

(15)

Such a “partial” decoupling results in the following
expression for the kinetics of transfer to the pair coop-
erative acceptors:

(16)

(17)

For the excitation transfer to three-particle coopera-
tive acceptors, a similar procedure leads to the expres-
sion

(18)

where

(19)

, (20)

and Wijk is the transition rate simultaneously to three
acceptors occupying the ith, jth, and kth lattice sites.

n2 t( ) 1 p1 p jϕ1 j+( ) 1 p2 p jϕ2 j+( )
j 2>
∏

j 1>
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× 1 p3 p jϕ3 j+( ) …×
j 3>
∏
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∏≈
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j 3>
∏ …× .
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j i 1+=

N
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To generalize Eq. (18) to the case of energy transfer
simultaneously to m (m = 4, 5, …) acceptors, one
should use original Eqs. (16) and (18) and the following
recurrent relation. Let us write Pm(t) in the form

(21)

where  depends on the function

(22)

with  = exp[– t] – 1 and  being
the transition rate to m particles forming the acceptor
and occupying the sites i1, i2, …, im. Then Pm + 1(t) can
be represented as

(23)

where

(24)

and  is obtained from  through replacing
the function

by the function

in the expression for .

Computer simulation of kinetics in face-centered
cubic lattice. Let us consider the quenching kinetics
for a particular model of two-particle cooperative
acceptors in an fcc lattice, whose sites are randomly
occupied by the acceptor and donor ions with concen-
trations c and cD, respectively. We are interested in the
case of zero interaction between the donor ions or, what
is the same, absence of the energy migration over the
donors (static regime). This program can easily be
implemented in computer simulation by satisfying the
condition cD ! c. The cooperative energy transition rate
from one donor particle to a cooperative (two-particle)
acceptor was taken in the same form as in [6] for the
reverse process of cooperative energy summation from

Pm Pm
i1( )

t( ),
i1 1=

N m– 1+

∑=

Pm
i1( )

t( )

1 cϕ i1i2…im
t( )+[ ]ln

im im 1– 1+=

N

∑

ϕ i1i2…im
Wi1i2…im

Wi1i2…im

Pm 1+ t( ) Pm 1+
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1 c 1 P̃m
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1 cϕ i1i2…im
t( )+[ ]ln

im im 1– 1+=

N

∑
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two particles by the third particle. For definiteness, Wij

was taken in the form

(25)

where Ri is the separation between a donor and an
acceptor particle at the ith site, Rij is the separation
between the acceptor particles at sites i and j, and a is
the lattice constant.

To reduce all quantities to the dimensionless form,
the cooperative transition rate was normalized to the
transition rate W0(Rmin) for the shortest possible dis-
tances between the three particles, one of which is a
donor and the two others form a cooperative acceptor,

so that RDAi = RDAj = RAiAj = Rmin = a/ , and time was
normalized to the inverse quantity t0 = 1/W0(Rmin).

For different ion concentrations, the calculations of
decay kinetics were carried out using Eq. (16), and the
process was modeled by the Monte-Carlo method. The
model size allowed 100 widely separated donors to be
encompassed in computations. The quenching of each
donor was influenced by an environment that included
344 different possible acceptor positions (the nearest
16 spheres), and the averaging was carried out over one
hundred random configurations of the acceptor envi-
ronment.

The results can conveniently be represented as log–
log plots of intensity vs. logarithm of time.

Note that for small acceptor concentrations, c < 0.01,
the kinetic curves calculated by Eq. (16) are similar to
the computed curves but shifted relative to them by a
certain constant value along the vertical axis, which is
equivalent to multiplying by a constant factor.

To check for the correctness of the model, the simu-
lation was carried out for some concentrations with
inclusion of a larger number of spheres and 528 possi-
ble acceptor positions. The resulting curve had the
same shape as in the case of simulation with a lower
accuracy, but it was shifted along the vertical axis and
became coincident at its initial portion with the curve
calculated by Eq. (16).

The unity curve slopes in the short-time domain (t <
0.1t0) suggests that, at small t, all curves are well
described by the initial portion of exponential quench-
ing. The corresponding quenching curve can be
obtained analytically by substituting cϕij ! 1 into
Eq. (16) and subsequent first-order expansion.

At times much longer than t0 and at small concentra-
tions c, the simulated and calculated curve slopes also
coincide with each other to within 10%. For example,
one can see from the comparison of curves 1 and 2 in
the figure that (for the dipolar interaction, S = 6, and

Wij

a2SW0 Rmin( )
3 2S×

------------------------------=

× 1

Ri
SR j

S
------------

1

Rij
S

------ 1

Ri
S

----- 1

R j
S

-----+ 
 + ,
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acceptor concentration of 0.05%) the curves have the
same shape. At the long-time decay stage (t = 50t0), the
curve slope calculated by Eq. (16) is equal to 0.43,
while the simulation gives a value of 0.41. It is known
from theory that the slope in the log–log plot of the
decay curve reflects the exponent in which t enters the
exponent of the expression for the nonexponential
Förster kinetics [7]. In the standard model of quenching
by single-particle acceptors, this exponent equals 0.5,
while the kinetics has the form exp(–(wt)0.5) [7, 8].

As the concentration increases, the accuracy of
computer simulation diminishes. However, the long-
time behaviors of the curves modeled for different con-
centrations are well approximated by the straight lines
with the following slopes: 0.41 for the dipole–dipole
(S = 6) interaction (exp(–(wt)0.41]); 0.30 for the dipole–
quadrupole (S = 8) interaction (exp(–(wt)0.3)); and 0.25
for the quadrupole–quadrupole (S = 10) interaction
(exp(–(wt)0.25)).

This distinguishes them from the Förster decay
kinetics I(t) = exp(–(wt)3/S) of a traditional one-particle
quenching for an arbitrary multipolarity S [9, 10].

Excitation decay kinetics for the dipole–dipole transfer to
two acceptors with a concentration of 0.05%.
This work was supported by the CRDF, grant
no. RP2-2257.
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4T2  4A2 Transition in the Luminescence Spectra of Mn4+ Ion
in Gadolinium Gallium Garnet at Intense Laser Pumping
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The Mn4+ 4T2  4A2 transition was observed in the luminescence spectrum of Gd3Ga5O12:Mn4+ at intense
laser pumping. It is shown that the 4T2  4A2 transition becomes more intense than 2E  4A2 because of
an increase in the role of induced transitions with increasing pump power. This process is most efficient in the
region of strongest overlap between the 2E  4A2 and 4T2  4A2 bands, where it leads to strengthening of
the zero-phonon line of the latter at 694 nm. It is assumed that GGG:Mn4+ can be used as an active material in
tunable lasers. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.55.-m
The transition-metal impurities with the d3 configu-
ration of the unfilled electronic shell, such as Cr3+,
Mn4+, or V2+, have drawn the attention of researchers in
connection with the search for new materials for the
active media of solid-state lasers. Crystals with garnet
structure are promising matrices for the indicated
impurities.

The Cr3+ ion is the most thoroughly studied d3

impurity in the garnet structure [1, 2]. The lumines-
cence spectra of chromium ion show two characteristic
bands: a narrow R line (Cr3+ 2E  4A2 transition) near
695 nm in garnets and a broad band at longer wave-
lengths (4T2  4A2 transition). Depending on the crys-
tal field strength, either of these transitions may domi-
nate in the spectra [3].

The structures of unfilled electronic shells of the
Mn4+ and Cr3+ ions are similar. Although this implies
the similarity of their optical properties, the lumines-
cence and absorption spectra of the manganese ion dis-
play a number of distinctive features [4–7]. One of
them is caused by a large crystal-field parameter (Dq) of
Mn4+ in garnet crystals [8]. For instance, Dq = 1960 cm–1

for Mn3+ in gadolinium gallium garnet Gd3Ga5O12

(GGG), whereas, for the Cr3+ ion, Dq = 1585 cm–1 in
this material [4]. According to the Tanabe–Sugano dia-
gram [3], the 2E  4A2 transition in this case domi-
nates the luminescence spectra of Mn4+, while the
4T2  4A2 transition (which is typical of the chro-
mium ion in this material [2]) is virtually absent.

It will be shown in this work that, under certain con-
ditions, namely, at temperatures above 300 K and at
intense pumping, the relative intensity of the 4T2 
4A2 transition increases in the luminescence spectra of
0021-3640/01/7411- $21.00 © 20543
GGG:Mn4+. This is caused by two major factors: differ-
ence in the temperature dependences of the 4T2 
4A2- and 2E  4A2-transition probabilities and
enhancement of induced emission.

Samples and analysis of spectra at different
pumping levels and temperatures. Samples for study
were plates with ground 0.5-mm-thick plane-parallel
[111]-oriented faces ~0.5 × 1 cm in size. All samples
were transparent in the visible region and differed only
by the pale coloration of some of them because of the
uncontrolled inclusion of the so-called F-centers in the
lattice [9].

The concentration of the Mn impurity in the samples
was lower than 0.1 at.%. This allowed one to ignore the
complexation process, which could give rise to new
lines in the luminescence spectra [10, 11].

The luminescence spectra were measured on a SDL-
2 or DFS-24 spectrometer. The luminescence was
excited using a cw YAG:Nd laser with the wavelength
λ = 532 nm and an output of 200 W and a pulse-peri-
odic copper vapor laser with λ = 510.6 nm, output P =
1000 W, pulse repetition rate f = 8 kHz, and pulse dura-
tion τ = 20 ns. These lasers were chosen because their
radiation wavelengths fell within the Mn4+ absorption
band corresponding to the 4A2  4T2 transition [4].
The spectra were measured at several fixed tempera-
tures in the range from 100 to 390 K. For this purpose,
the samples were placed into a cryostat in a special
holder which provided beam incidence on the side
cleavage. Heating was provided by a tungsten heating
element, and temperature was controlled by a copper–
constantan thermocouple.

The luminescence spectra measured for all manga-
nese-doped GGG samples at a low pump power per sur-
face unit (power density PL ~ 10 W/cm2) and room tem-
001 MAIK “Nauka/Interperiodica”
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perature showed characteristic bands in the range 650–
700 nm (Fig. 1). Following [4, 12], spectrum A was
interpreted as an emission spectrum of the fourfold ion-
ized manganese ion in GGG. The 2E  4A2 transition
is clearly seen in the spectrum. It consists of the R line
at 663.5 nm [4] and a complex, presumably vibronic,
structure at longer wavelengths with a maximum at 682
nm.

At large power densities (PL > 10 kW/cm2), a new
maximum appears at a wavelength of 714 nm in the
spectra. In [4], where the Mn4+ 2E  4A2 transition
was selectively excited, this peak was not observed.
One can see from the comparison of spectra A and B in
Fig. 1 that the new peak (with a maximum at 710–
714 nm) is present in the luminescence spectrum under
ordinary conditions as well (low pumping level), but in
this case it is weak to such an extent that it cannot be
distinguished from the vibronic satellite of the R line
[4–7]. Based on the analogy with the spectrum of the
tervalent chromium ion [2, 13, 14], we assumed that
these new peaks are due to the 4T2  4A2 transition of
the Mn4+ ion in gadolinium gallium garnet. Spectrum B
of GGG:Mn4+ in Fig. 1 was obtained at the power den-
sity PL ~ 106 W/cm2. The 4T2  4A2-transition spec-
trum represents a broad wavy structure with weak equi-
distant peaks. A maximum at 694 nm, which is also
invisible at a low pumping level, was tentatively
assigned to the zero-phonon line of the 4T2  4A2
transition.

The shape analysis carried out for the GGG:Mn4+

spectra measured at different temperatures confirmed

Fig. 1. Luminescence spectrum of GGG:Mn4+ at 300 K and
power density PL ~ (A) 10 W/cm2 and (B) 106 W/cm2.
that the line with a maximum at 714 nm could be
assigned to the 4T2  4A2 transition. The lines became
broader with rise in temperature, and the integrated
intensity of the entire band decreased drastically start-
ing at 250–270 K (Fig. 2). Such a behavior of the spec-
trum cannot be explained solely by, for example, broad-
ening and splitting of the 2E  4A2 band in the pres-
ence of crystal inhomogeneities [15, 16].

A sharp drop in the integrated intensity at tempera-
tures above ~250–270 K is evidence of the thermoacti-
vated character of radiationless transitions [17]. The
temperature dependences of integrated intensities of
the 2E  4A2 and 4T2  4A2 transitions are shown in
Fig. 3. The temperature dependence of the 2E-level life-
time [5] is shown in the same figure for the comparison.
Close to room temperature, the intensities of both tran-
sitions sharply, though not synchronously, decreased.
The observed temperature behavior of the lumines-
cence in this temperature interval could be explained by
a redistribution of the intensities of the 2E  4A2 and
4T2  4A2 transitions as a result of the sample heating
due to an increase in pump power. However, tempera-
ture measurements at a high power density (PL ~
106 W/cm2) showed that this effect could not be the
only cause of the observed intensity redistribution. The
obtained dependences of integrated intensities differed
from those shown in Fig. 3 only by a shift along the
temperature axis by 21 and 19 K for the 2E  4A2 and
4T2  4A2 transitions, respectively. Moreover, a sharp
peak at 694 nm, which was assigned to the zero-phonon
line of the 4T2  4A2 transition, became more intense.

Fig. 2. Luminescence spectrum of GGG:Mn4+ at different
temperatures: (1) 100, (2) 125, (3) 150, (4) 175, (5) 200, (6)
225, (7) 250, (8) 260, (9) 270, (10) 285, (11) 300, (12) 330,
and (13) 390 K.
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The integrated intensities of the 2E  4A2 and
4T2  4A2 transitions and the peak intensity of the
4T2  4A2 zero-phonon line are shown in Fig. 4 as
functions of power density. The peak intensity of the
zero-phonon line was obtained after the approximation
and subtraction of the background level. The behavior
of the curves points to the saturation of the 4T2 
2E  4A2 channel and the intensification of the transi-
tion from the 4T2 level directly to the ground 4A2 level.
Indeed, according to [4], the 2E level is long-lived (τ =
1.2 ms at T = 77 K).

An increase in peak intensity of the zero-phonon
line and a nonlinear power dependence of the integrated
intensity of the 4T2  4A2 transition allow the assump-
tion to be made that these effects are manifestations of
the induced transitions. The 4T2  4A2 emission is
caused not only by the transitions from the same level
but also by the more intense 2E  4A2 transitions.
This becomes possible because of the strong overlap of
these bands. The overlap in the region of the 4T2 
4A2 zero-phonon line is stronger than in the longer
wavelength region, leading to the enhancement of the
induced radiation effect precisely for the zero-phonon
line.

In summary, the observation of the 4T2  4A2 tran-
sition in the luminescence spectra of GGG:Mn4+ has
been reported in this work. This transition is particu-
larly pronounced in the presence of intense laser pump-
ing. The transition was identified by comparing the

Fig. 3. Temperature dependences for the integrated intensi-
ties of optical transitions (squares) 2E  4A2 and (cir-

cles) 4T2  4A2, and (triangles; data from [4]) the same
for the 2E-level lifetime.
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luminescence spectrum of GGG:Mn4+ with the spectra
of the Cr3+ ion, for which the corresponding transition
is observed in GGG and other garnets in the wavelength
region redshifted from the R line.

It has been shown in this work that an increase in the
4T2  4A2-transition intensity in the luminescence
spectra of GGG:Mn4+ becomes possible due to the
increase in the role of induced transitions at high laser
intensity. This process is more intense in the region of
strongest overlap between the 2E  4A2 and 4T2 
4A2 transitions, which results in strengthening of the
zero-phonon line of the latter.

The observed considerable homogeneous broaden-
ing of the R line makes GGG:Mn4+ promising as an
active element of tunable lasers.
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A new phenomenon was discovered on the basis of analysis of the Interball project data. A hot plasma flow is
thermalized through the formation of “long-operating” vortex streets and local discontinuities and solitons in
a distributed region over polar cusps. Plasma percolation through the structured boundary and secondary
reconnection of fluctuating magnetic fields in a high-latitude turbulent boundary layer account for the main
part of solar wind plasma inflow into the magnetospheric trap. Unlike local shocks, the ion thermalization is
accompanied by the generation of coherent Alfvén waves on the scales ranging from ion gyroradius to the
radius of curvature of the averaged magnetic field, as well as by the generation of diamagnetic bubbles with a
demagnetized heated plasma inside. This “boiling” plasma has a frequency region where the spectrum is dif-
ferent from the Kolmogorov law (with slopes 1.2 and 2.4 instead of 5/3 or 3/2). The fluctuation self-organiza-
tion in the boundary layer (synchronization of three-wave decays) was observed on certain frequency scales.
© 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 94.30.Fk; 52.35.Ra; 94.30.Tz
This work is devoted to the experimental study of
singular regions at the high-latitude boundary of a geo-
magnetic trap, where the incoming solar plasma flow
forms a zone of strong turbulence—a turbulent bound-
ary layer (TBL). In the TBL, magnetic field fluctuations
are on the order of field magnitude, while their total
energy density (Wb) in the range from 0.1 to 1 Hz
amounts to 10–30% of the density of ion thermal
energy Eth [1]. The possible formation of TBL was pre-
dicted by Haerendel in [2]. More recently, a number of
groups continued studying the region of the outer polar
cusp in a high-latitude region of the magnetic-field
minimum at the boundary between the nightside and
dayside magnetic field lines. However, much of the
effort was focused on the reconnection of field lines at
low latitudes. In [3], it was shown that the TBL is virtu-
ally constantly present and that its fluctuations have an
0021-3640/01/7411- $21.00 © 0547
essentially nonlinear character. It is the purpose of this
work to discuss the properties and nature of fluctuations
in the TBL on the basis of the Interball-1 satellite data,

Turbulent boundary layer at April 2, 1996. A typ-
ical exit of the Interball-1 satellite from the polar cusp
and its entry into the magnetosheath (MSH) between
the collisionless shock in the solar wind and the magne-
topause (MP) which occurred April 2, 1996, is shown
in Fig. 1 (see also Fig. 4). The MP manifests itself by a
transition of the magnetic field component Bx from
large negative values to small (on average) values and
by the predominance of Eth over the magnetic pressure
B2/8π in the TBL and MSH. The region of transition to
the plasma flow (PF), where Eth ~ Ekin (ion kinetic
energy density), is separated from the MP by the zone
of enhanced turbulence (i.e., TBL), which is shown by
black shadowing under the trace of the total energy
2001 MAIK “Nauka/Interperiodica”
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density Wb of magnetic field fluctuations. The Wb quan-
tity includes the variations of field magnitude and its
angular oscillations. A comparison of Wb with the fluc-
tuation energy δ|B | of the absolute value of magnetic
field in the same energy range and with Eth indicates
that, in this zone, Wb attains 3.5δ|B | and 0.1Eth (i.e.,
incompressible oscillations dominate). In this zone, the

Fig. 1. The Interball-1 exit from the cusp and its entry into
the MSH at April 2, 1996 (for details, see text). From top to
bottom: (1) Bx is the magnetic field component, (2) ion and
magnetic field energy densities, (3) ion and electron temper-
atures, (4) magnetic fluctuation power, (5) wavelet spec-
trum of Bx, and (6) wavelet bi-spectrum of Bx.
ion temperature Ti increases by a factor of 2.2 and the
electron temperature Te increases by a factor of 1.3,
while the magnetic energy density B2/8π drops to low
values corresponding to “diamagnetic bubbles” (DB;
see [1, 3]). One can see in the lower left corner of the
lower panel in Fig. 2 that |B | ~ 1 nT inside DB; i.e., the
magnetic field is expelled by hot plasma. The structure
of the PF boundary differs substantially from the shock
by the presence of a magnetic barrier with B2/8π ~ Eth ~
Ekin at its maximum in the MSH. This magnetic barrier
is a soliton with scale ~130 km (on the order of the ion
gyroradius in the MSH) along the direction of minimal
magnetic variations (normal to the front) and trapped
gyrotropic ions with energy <300 eV (this region is sep-
arated by vertical lines in the upper panel of Fig. 2). As
for the ions with the gyroradius exceeding barrier size
(>170 km), they freely overcome it. The scale was esti-
mated from the delay between the satellite and the sub-
satellite; the estimate gave a value of ~12 km/s for the
plasma velocity along the normal in the satellite coor-
dinate system. Figure 3a shows the ion velocity
hodograph (Vx, Vy) in the Sun–Earth ecliptic coordinate
system for the transition from TBL to MSH. The veloc-
ity vector has a constant direction in the MSH, and the
transition is characterized by a decrease in velocity
from (–175; 75) to (−60; 0) km/s and the appearance of
“loops,” which are most naturally explained by the
presence of a vortex street in the TBL (cf. [2, 1]). The
maximal vortex scale, as estimated from the delay
between the satellite and subsatellite transverse to the
PF boundary, equals several thousand kilometers, while
the estimation from the mean loop velocity (i.e., along
the PF) gives ~10 000 km. For the smallest velocity
vortices, the scale is ~1000 km. In Fig. 3b, the magnetic
field vector at the PF barrier also displays vortex-like
transition on a mean scale of 1000 km, together with the
presence of small vortices with a size of ~100 km.
High-resolution data suggest that the turbulent cascade
in the TBL extends to several kilometers (to the elec-
tron inertial length). This indicates that field-line freez-
ing in the TBL is broken. However, a considerably
weaker electron heating is an indicator of the most
intense energy dissipation in the ion gyroradius region
(Figs. 2 and 3a). The wavelet spectrogram (see [3]) in
Fig. 1 (panel 5) demonstrates a cascade-like develop-
ment of the perturbations in the TBL; mutually related
spectral maxima appear at several frequencies, and the
transitions are observed both from low to high frequen-
cies (direct cascade) and in the opposite direction
(reverse cascade). Attention should also be given to the
maximum at ~1.5 mHz, which is seen both in the TBL
and in the MSH and cusp; judging from its intensity, it
appears in the TBL near the MP. The cascade-like per-
turbations correspond to a slope of 1.18 for the Bx

power spectrum at frequencies 1–45 mHz and to 2.4 at
0.05–0.4 Hz. Both are different from the slopes of the
Kolmogorov spectra of hydrodynamic or Alfvén turbu-
lence (5/3 or 3/2; see [4]). A slope of 1.18 is typical of
JETP LETTERS      Vol. 74      No. 11      2001
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Fig. 2. Structure of the PF boundary; (top) energy distribution per a charge of ions flying from the Sun and (bottom) |B |.
a current layer in the critical self-organization state [5].
The detection of fluctuations with different properties
indicates the presence of a two-phase (in the statistical
meaning) plasma in the TBL; the DB inclusions are
analogous to the formation of air bubbles in a boiling
fluid.

Influence of turbulence properties on the trans-
port processes. The process of plasma flow (double
thick arrows) past the region of geomagnetic field-line
divergence (thin lines with arrows) in the vicinity of the
polar cusp is schematically illustrated in Fig. 4. The
magnetopause MP is concave in this region (thick black
line); the solar wind field lines (marked squares) are
deformed and run along the MP; at April 2, 1996, the
Interball-1 orbit passed over approximately along the
diagonal from the bottom right to the top left; the
boundary of regular flow is shown by thick dashes. In
more than 80% of the cases (of ~400 crossings from
1995 to 2000), the magnetic field and the plasma flows
inside the PF were irregular and display the features of
vortex cascades [1, 3]. The TBL is adjacent to the MP
(shown by vertical hatching). As in Fig. 1, the PF at the
center of the region of interest is usually separated from
the TBL by the region with reduced Wb and irregular
plasma velocity. The average field direction in the TBL
is controlled by the interplanetary magnetic field
(IMF). Inside the MP, the field is controlled by the
Earth dipole, whereas plasma enters the MP (into the
cusp; shown by horizontal hatching in Fig. 4) with a
slight decrease in Eth and an increase in Ti; i.e., the
boundary is, in actuality, transparent with clearly seen
current layers (cf. Bx in Fig. 1). This picture depends
weakly on the IMF, which is important for the penetra-
tion of plasma inside the “foreign” magnetic field. The
reconnection of the antiparallel field lines at the smooth
laminar MP was assumed to be the major mechanism of
plasma penetration inside the MP. However, the weak
dependence of the cusp and TBL on the IMF direction
and the observation of strong perturbations up to the
electron inertial length indicate that there may also be
different mechanisms. The author of [2] has assumed
JETP LETTERS      Vol. 74      No. 11      2001
that the flow into the MSH is broken by an obstacle in
the form of a step at the MP to form the TBL, where the
ion kinetic energy transforms into heat. Indeed, on the
large scales shown in Fig. 1 (for example, at 0430 and

Fig. 3. (a) Ion velocity for the TBL and (b) magnetic-field
hodograph for the PF.
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0500 UT), Eth + Ekin ~ const, with Eth @ Ekin inside the
PF. Near the PF the flow is locally accelerated to the
energies Ekin higher than in the MSH. This can really be
explained by the acceleration due to the reconnected
magnetic-field tension. The reconnection is possible
both near the geomagnetic equator and in the cusp
locality (an example of reconnection is illustrated in
Fig. 4 by the field-line loop with squares). The small-
scale fluctuating fields are reconnected efficiently in the
TBL as well, as is evident from the breakdown of field-
line freezing-in (by virtue of fluctuations on the elec-
tron inertial length scale). This allows plasma to pene-
trate inside the MP and provides efficient magnetic-flux
transfer from the dayside of the magnetosphere to its
nightside. Nevertheless, we assume that, in the essen-
tially nonlinear situation occurring in the TBL, plasma
percolation through the structured boundary makes the
main contribution to the local mass transfer inside the
MP. Taking the appropriate estimate of diffusion coef-
ficient from [6], one obtains Dp ~ 0.66 (δB/B0)ρiΩi ~
(5–10) × 109 m2/s for the typical MP parameters, where
δB/B0 is the ratio of the perturbed magnetic field to its
average value, and ρi and Ωi are the ion gyroradius and
gyrofrequency, respectively. The resulting value; of (1–
2) × 1027 particles/s obtained for the flow through the
northern and southern TBL is sufficient for filling the
magnetosphere with solar plasma.

Let us now turn to the nature of oscillations in TBL.
Phase velocity is one of the properties that allows the
low-frequency perturbations to be identified with the
kinetic Alfvén waves (KAWs). We used the Interball-1
and Polar satellite data on the electric (E) and magnetic

Fig. 4. Scheme of plasma flow along the high-latitude MP
over the cusp (for details, see text).
(B) fields in the TBL at August 26, 1995, May 5, 1996,
June 19, 1998, and June 23, 1998 to verify that (a) like
on April 2, 1996, the magnetic spectrum has two char-
acteristic slopes and (b) the low-frequency phase veloc-
ity Vph = E/B is close to the Alfvén velocity VA and
shows, on the average, a tendency toward the frequency
dependence characteristic of the satellite flight through
the KAW spatial structures, up to a frequency of several
hertz (which is several times lower than the hybrid
frequency). This dependence is expressed by the for-
mula [3]

(1)

where ω is the frequency, V is the velocity of KAW
structures relative to the satellite, and (ρiω/V)2 is the
kinetic addition allowing for the finiteness of the ion
gyroradius (KAW takes its name precisely from this
fact). In most cases, the asymptotic behavior of (E/B)
had the form ~ω, i.e., corresponded to Eq. (1). This,
however, cannot be distinguished from the detection of
waves with a constant wave vector k, because the Fou-
rier transform of plane waves obeys the Maxwell equa-
tion kE ~ ωB. Therefore, Eq. (1) does not allow the
identification of KAW in the asymptotic region. The
TBL is also characterized by the three-wave decay pro-
cesses satisfying the condition f = fL + fK (for more
detail, see [3]). In the frequency range of interest, the
products of the appropriate three amplitudes show max-
ima up to 40% at frequencies fL ~ 1.5, 5, and 15 mHz
(vertical axis in the lower panel for the wavelet bi-spec-
trum in Fig. 1) and over a continuous range of 1.5–
80  mHz for fK. This signifies that the phase–frequency
relations are fulfilled for the three-wave process (if the
higher-order nonlinear processes are ignored) and the
structures with the indicated frequencies fL decay in a
broad range of frequencies fK and f. That is, the pro-
cesses at these frequencies (on the vertical axis) syn-
chronize cascades in a broad frequency range (along
the horizontal axis). A well-defined maximum at (fL, fK)
~ (15, 50) mHz indicates that the reverse cascade can be
pumped at high KAW frequencies. We thus assume that
the inhomogeneities in the incoming flow interact with
the current layer of MP to generate KAWs, a part of
which are reflected back, focused by the concave MP,
and interact with the incoming flow. As a result, a num-
ber of cascades synchronized at the above-mentioned
frequencies fL arise self-consistently. If the estimate of
the upper limit of the characteristic scale at 1.5 mHz is
carried out using VA, then L ~ VA/fL ~ (3–7)RE (Earth
radii) is comparable with the TBL length, and L is also
on the order of the radius of curvature of the unper-
turbed MP or the MSH thickness at the dayside. On the
other hand, the presence of a maximum at 1.5 mHz both
in the MSH and in the cusp inside the MP (Fig. 1) also
suggests that the observed process is global. To under-
stand the nature of this resonance in more detail, it is
necessary to carry out additional measurements at sev-
eral points and at distances of both several thousand

E/B( )2 V A
2 1 ρiω/V( )2+( )∼
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kilometers and several Earth radii. We used the magne-
tosonic Mach number Mm in MSH, the Alfvén number,
for either the ion velocity projection normal to the PF
(MAn ~ Mm ~ 1.2) or the total velocity (MA ~ 3.5) to
compare the ion heating in the TBL with the Rankine–
Hugoniot relations at the shock and arrived, respectively,
at the following results: Ti/TMSH ~ 1 + (γ – 1)M2 ~ 1.6
or ~5 for the adiabatic exponent γ ~ 5/3 (remembering
that Eth @ Ekin in the TBL). The observed ion heating in
the TBL (~2.2) is greater than at the oblique shock and
considerably less than its maximum possible value.
Therefore, the observed process of energy transforma-
tion differs substantially from the one in the collision-
less shock; the entire perturbed region (Fig. 4) should
be considered as a whole with long-operating KAW
cascades and vortex streets, as well as with local dis-
continuities and solitons (MP and PF).

To conclude, we would like to note that the investi-
gation into the role and properties of turbulence at the
critical point of a geomagnetic trap (turbulent boundary
layer) allows the revelation of the key role of turbulent
microprocesses accompanying the interaction of
plasma flows with magnetic obstacles, be it the fields of
planers, starts, black holes, or laboratory traps, and
JETP LETTERS      Vol. 74      No. 11      2001
demonstrates real mechanisms of energy transforma-
tion in collisionless plasmas.
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The relaxed configurations of yttria-stabilised zirconia (YSZ) between 3 and 10 mol % of Y2O3 were modeled
using the pseudopotential technique. In the displacive limit of a double-well potential model, the vibrational
mode corresponding to the soft phonon in pure c-ZrO2 was calculated for each Y2O3 composition. These anhar-
monic vibrations, associated with the stabilization of YSZ, were investigated within the self-consistent phonon
approximation making obtainable the fine structure in spectral density. In studying the phonon dynamics, we
use the displacement probability density, which can quantify very accurately the transition temperature neces-
sary for stabilizing the YSZ cubic phase. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 63.20.-e; 64.70.Kb
1 Yttria stabilized zirconia (YSZ), formed by the
addition of Y2O3 to ZrO2, is a property controlling
material with numerous commercial applications [1].
Pure ZrO2 exhibits three polymorphous modifications:
the monoclinic (m) phase, the tetragonal (t) phase
between 1170°C and 2370°C, and the high-temperature
cubic (c) phase, which exists up to the melting point.
Y2O3 has a large solid solubility range in ZrO2 and can
be used to stabilize the t phase of (Y2O3)x(ZrO2)1 – x
over the composition range 0.02 < x < 0.09 and the c
phase with 0.04 < x < 0.4. In pure c- and t-ZrO2, the
Zr4+ ions are located in perfect and distorted 8-fold
coordination environments, respectively, while, in m-
ZrO2, Zr4+ is found in 7-fold coordination. In YSZ, the
trivalent dopant cations Y3+ substitute for some of the
Zr4+ ions and, in order to maintain charge neutrality,
one O vacancy (h) must be created for each pair of
dopant cations. The presence of hs reduces the average
cation coordination number to a value between 7 and 8,
depending on the dopant concentration. YSZ contains
relaxed defects such as hs and Y substituted atoms,
which make the local atomic enviroments of the stabi-
lized crystals rather different from the corresponding
stoichiometric phases.

Figure 1 shows the arrangement of atoms around the
vacant O site before structural relaxation. The large
cube in Fig. 1 is the conventional fluorite unit cell with
a side of length a. It is divided into eight octants, and it
is clear that the four 7-fold coordinated cations NN to
the h occupy the centers of alternate octants to create a
tetrathedral arrangement around the vacancy. The t dis-
tortion of the metal sublattice (~1.03) has little effect on
the relaxation process [2] and, therefore, it can he
neglected. The anion sites nearest neighbouring (NN)

1  This work was submitted by the authors in English.
0021-3640/01/7411- $21.00 © 20552
to the h are located at the face centers of the fluorite
cube, while the next nearest neighbouring (NNN)
anions are positioned at the middle of each edge of the
cube, and the third nearest (NNNN) anions are at the
corners. Figure 1 shows the initial t distortion of the O
sublattice with alternate columns of O displaced up and
down by 0.06a along the unique direction defined as
[001].

To date, no full quantitative description of the stabi-
lization mechanism of YSZ has been reported. The
X-ray absorption findings [3] confirm that dopant cat-
ions do not take an active part in stabilization. Using the
ab initio technique to relax the c cell, Stapper et al. [4]
have reported that the cation sites NNN to vacancy,

Fig. 1. Unrelaxed arrangements of atoms in pure t-ZrO2
near the vacant fluorite O site shown as a small empty box
at the center. The big circles, which form a tetrahedron,
denote the ideal cation NN sites, while the smaller circles
denote the O NN (black), NNN (grey), and NNNN (light).
The O atoms NN to the h are labelled.
001 MAIK “Nauka/Interperiodica”
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rather than NN sites, are favored for Y. Placing Y in the
NNN positions allows the coordination of Zr atoms in
the sites NN to the h to be similar to the arrangement in
the m phase, while Y remains 8-fold coordinated. If the
vacancies associate with host Zr ions, it may support a
coordination-driven ordering model of stabilization in
YSZ, which argues that increasing covalency lowers
the coordination of Zr.

In recent neutron diffraction experiments it has been
reported that, at low concentrations of Y2O3, there are
regions ~15–20 Å in size which contain isolated O h

and hs arranged in pairs on the NN anion sites in the
[111] fluorite direction, with the cation site located
between them occupied by Zr [5]. Modeling the long-
range ordered Zr3Y4O12 structure, Bogicevic et al. [6]
have also reported that the h pair along 〈111〉  and the 6-
fold coordinated Zr appear in the most energetically
favorable relaxed compositions. Electrostatic consider-
ations suggest that hs should repel. From this point of
view, the di-h configuration along 〈111〉  would be
favorable against those along 〈100〉  or 〈110〉 . Because
of the small size of Zr 4+, the electrostatic arguments
place ZrO2 on the border between the 8-fold coordi-
nated fluorite and 6-fold coordinated structures [7]. The
presence of the larger Y atoms, which possess the
longer Y–O bond, compared to the Zr–O bond, appears
to shift this balance in favor of 7-fold and 6-fold coor-
dination for Zr, resulting in the local m- and brookite-
type [8] bonds, respectively.

As for doped ZrO2, no microscopic mechanism for
the phase transitions has been proposed up to now. In
pure ZrO2, a zone-boundary soft phonon, -, which
breaks the c symmetry of the O sublattice, displacing
the O atoms toward their positions in the t phase, might
be responsible for the c  t transformation. The pre-
vious calculations of the -phonon frequency within
the harmonic approximation [2, 9] yield an imaginary
frequency of 5.2–5.5 THz. This simply indicates that
the c-ZrO2 is unstable at low temperatures. At high tem-
peratures, the effects of anharmonicity might stabilize
the c phase. Unfortunately, in YSZ, the experimental
data [10] are not fully clarified for this soft mode
because of the static disorders in the O sublattice. Thus,
our theoretical investigation of the YSZ vibration
mode, which corresponds to the  phonon, would be
useful in understanding the role of the atomic vibra-
tions in this material. We believe that the allowance for
anharmonicity can give a quantitative criterion for the
microscopic mechanism of stability. In this approach,
the “frozen-phonon” method [11] and self-consistent
phonon approximation [12] are used to calculate the
phonon frequency and its temperature dependence,
respectively.

The plane-wave, pseudopotential-based free-energy
molecular dynamics technique [13] is used to relax the
positions of atoms in the (96-y)-atom YSZ supercells

X2
–

X2
–

X2
–
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(y = 1, 2, 3), allowing one to calculate the  phonon
in VSZ between the 3 and 10 mol % Y2O3 composition.
The 95-atom cell corresponds to 3.2 mol % Y2O3-ZrO2.
Starting with the c configuration of O and the experi-
mental value of the unit cell volume, we make the static
optimization allowing the coordinates of all atoms to be
relaxed. Experimentally, 3 mol % Y2O3-ZrO2 can exist
indefinitely in the t form. The effect of starting relax-
ation with the O atoms in the t geometry was investi-
gated as well, showing that the total energies are
reduced by ~ 1 eV/cell relative to the relaxed c config-
urations. The h strongly prefers Y in NN sites before
relaxation, but, after relaxation, a configuration with
two Y NNN shows the lowest energy. The energy dif-
ferences between the different Zr/Y NNN configura-
tions are only ~ 1 meV/cation, so that all are likely to
coexist in this material at room temperature.

The 94- and 93-atom cells model 6.7 and 10.4 mol %
Y2O3-ZrO2. Placing Y not closer than NNN site to each
h, an optimum configuration was obtained. In the low-
est energy configuration of the divacancy cell, the hs
are along the fluorite [111] direction and separated by
the 6-fold coordinated Zr. This brookite-type Zr–O
motif sometimes can appear in the low-energy configu-
rations of the high Y2O3 compositions. Figure 2, panel
(a), shows the difference in energy between the most
stable c and t configurations. The energy is given in
Kelvins per cation to show the temperature required. In
the mono- and di-h cells, the t configurations are more
stable while, for 3-hs, the c configuration is marginally
more stable. Experimentally, the same change in stabil-
ity is observed.

X2
–

Fig. 2. Difference in the relaxed energy between the t and c
configurations of YSZ, shown in panel (a). In panel (b), a
decay of the double-well potential, with yttria doping, is
shown as a change in energy plotted vs. the t displacements
of the O sublattice for each concentration of Y2O3.
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The experimental electron energy-loss near-edge
shapes (ELNES), which depend on the crystal struc-
tures and the Y2O3 composition, can be a characteriza-
tion probe of these doped oxides. Ab initio calculations
[8] were performed to obtain the O K-edge ELNES in
the relaxed YSZ, demonstrating that relaxation of
defects plays an important role. Good agreement
between calculated and measured ELNES data were
obtained with respect to the number of maxima, the
intensity ratios, and energy positions of the peaks [8].
This agreement shows that our modeling can reflect the
realities of YSZ.

Within the “frozen phonon” method, the effective
phonon potential can be calculated as the difference in
energy between the perfect and distorted lattices for var-
ious amplitudes of atomic displacements according to
the symmetry of the phonon considered. In doped ZrO2,
the intrinsic defects break the translational symmetry,
and, therefore, one has to deal with the renormalized
phonon, whose attenuation is due to the scattering by
these defects [14]. Figure 2, panel (b), displays the
effective potential U, calculated as a function of the O t
displacements, r/a, along the z axis. The U’s were
shifted to the common zero energy at r = 0 to illustrate
the development of a double-well shape. In 10 mol %
Y2O3, U has a single minimum at r = 0. With decreasing
Y2O3 content, U develops two minima; i.e., its form
becomes similar to that of the  phonon in pure c-
ZrO2. The relative temperature units used give an idea
of the temperature changes of the c–t interface. In fact,
for practical calculations, the U’s should be normalised
per fluorite (4-cation) unit cell.

The modified pseudoharmonic approximation [12]
was developed to calculate anharmonic dynamics of the
quasi-local mode associated with the low-frequency

X2
–

Fig. 3. Spectrum of the soft-phonon mode in pure c-ZrO2 at
different temperatures, plotted in panel (a), and its changes
in YSZ with yttria doping, which are shown in panel (b).
vibrations of the defect atoms. This model was applied
recently to study the structure instability in pure Fe [15]
and Zr [16]. In this work, we consider the one-phonon
inelastic neutron scattering spectrum, whose peak posi-
tion and width determine the phonon frequency and
lifetime. The spectral intensity can be calculated via the
imaginary part of the one-phonon Green’s function,
spectral density gq(ω, T) [14]:

(1)

where  is the renormalized frequency and Γ(ωq,
T) is the phonon attenuation due to various scattering
processes. For the latter, we restricted ourselves to the
defect-dependent attenuation: Γ(ω, E) = Axω(E), with
Ax = 0.1, 0.15, 0.2, and 0.25 for each x = 0, 1, 2, and 3
concentration of Y2O3. The random variable E, which is
the energy averaged over a characteristic period of
oscillations, can be introduced [12] with its mean value
〈E〉  = T and equilibrium distribution function ρ(E) =
exp(–E/T)/T. The characteristic time of E variation is
τE ~ 1/Γ @ 1/ωq; i.e., this variable is slow, as compared
to the oscillation period, which allows us to calculate
the frequency for each E within the pseudoharmonic
approximation [12]. The partial density gq(ω) can be
obtained by averaging Eq. (1) (where the substitution of
E for T is made) with distribution function ρ(E).

The result might be summarized as follows: at all
temperatures, there is an occasion to find (i) the basic
(b) vibrations localized near minima of U, with the fre-

quencies b close to the principal frequency ω0 (m  =

∂2U(r)/ ), and (ii) the excited (e) overbarrier
vibrations with ωe . ω0/2. With increasing temperature,
the portion of the b vibrations diminishes, cb = 1 –
exp(−Ec/T) (Ec is the “local transition” energy [12]),
while the share of e vibrations increases, ce = 1 – cb.
New harmonics therewith arise, which lead to a shift of
the peaks and some changes of their anharmonic broad-
ening. The basic vibration peak moves toward the low-
frequency range, while the e peak moves toward the
high-frequency range. These findings are in qualitative
agreement with previous numerical results [17], which
describe the anharmonic mode dynamics using the
arbitrary potential and oscillator attenuation.

In pure ZrO2, the gq(ω) plotted in panel (a) of Fig. 3
shows the b peak at room temperature, as it would be in
the t phase. At intermediate temperatures, the b peak
and e peak are clearly resolved. With increasing tem-
perature, the intensity of the b peak drops, and, finally,
at T = 3000 K the cubic-like e vibrations become dom-
inant. In pure material, the calculated ωe of ~10 THz is
a rather reasonable value compared to the acoustic
phonon branches observed in this point of the Brillouin
zone [10]. Figure 3, panel (b), shows the gq(ω)s at
T = 1000 K. At this temperature, the b vibrations are

Iq ω T,( ) gq ω T,( )∼  = 
1
π
---

Γ ωq T,( )

ω ω̃q T( )–( )2 Γ2 ωq T,( )+
------------------------------------------------------------,

ω̃q T( )

ω0
2

∂r2
r rmin=
JETP LETTERS      Vol. 74      No. 11      2001



MICROSCOPIC MECHANISM OF STABILITY IN YTTRIA-DOPED ZIRCONIA 555
dominant in pure ZrO2 exclusively. In YSZ, the gq(ω)s,
shown in this panel for each defective cell, illustrate the
evolution in shape with increasing Y2O3. This fine
structure in the gq(ω) shape of the soft phonon, respon-
sible for the c  t-phase transition in YSZ, indicates
that both these phases may coexist at intermediate tem-
peratures.

Since, within the framework of the method used, the
arbitrary parameter Γ(ω, E) cannot be estimated, it
would be desirable to consider a Γ(ω, E)-independent
function other than gq(Γ). It might be the displacement
probability density [18] (DPD):

(2)

where

(3)

and C(E) = mω2(E)/kBE. In panel (a) of Fig. 4, the DPD,
plotted for pure and defect zirconias, displays a change
in the P(r) shape at room temperature. In pure ZrO2 and
single-vacancy YSZ, the DPD shows a peak in the
region of the b vibrations, which illustrates the room-
temperature instability of the c configuration. The tem-
perature dependence of DPD at r = 0 is shown in panel
(b). In the di- and tri-h cells, the log10P vs. log10T at
r = 0 is almost linear showing the decreasing trend with
increasing temperature. In pure ZrO2 and 3 mol %
ZrO2-Y2O3, there is a low-temperature peak of
log10Pr = 0 and then, with increasing temperature, the
linear behavior against log10T appears. In ZrO2, such a
form of DPD starts at ~2500 K, i.e., close to the t 
c-transition temperature observed, whereas the 3 mol %

P r( ) Pharm r E,( )ρ E( ) Ed∫ ,=

Pharm r E,( ) C E( )
2π

-----------
r r0 E( )–[ ] 2mω2 E( )–

2kBE
--------------------------------------------------

 
 
 

,exp=

Fig. 4. The displacement probability densities P(T, r): the
room-temperature Ps ranging between 0 and 10 mol %
Y2O3, which are plotted in panel (a), and the zero-coordi-
nate Ps, shown in panel (b).
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Y2O3 shows the room temperature characteristic value.
Note that, at this point, the lattice dynamics become
unchangeable with variation of U(r) near its bottom
(T @ Eb).

In summary, the calculated DPD features of YSZ are
in very good agreement with experiment. This fact sug-
gests that the zero-coordinate DPD, Pr = 0(T), can be
used as a quantitative criterion for stability in zirconia-
stabilized materials. This report can be considered as a
first attempt to get some insight into whether the t and
c phases can coexist in YSZ. It would be worthwhile to
apply this model to investigate the low-temperature sta-
bility in other doped metal oxides.

We thank Mike Finnis, Alan Craven, and Ali Alavi
for their interest in this work. This work was supported
in part (E.S.) by the Russian Foundation for Basic
Research (project nos. 01-02-96463 and 00-02-17426).
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Polaron Hopping Conduction in La0.85Sr0.15MnO3 Single Crystal
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Temperature dependences of electrical resistance and thermopower of a La0.85Sr0.15MnO3 single crystal were
measured in the paramagnetic and ferromagnetic dielectric phases. It was shown that charge transfer in both
phases is due to the variable-range polaron hopping over the localized states. The activation energies in both
phases linearly depend on T3/4 but differ from each other by a constant which is approximately equal to the
exchange energy kTc. The results obtained are in compliance with the concept of percolation character of metal–
insulator transition in manganites. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.15.Jf; 72.20.Ee; 71.38.-k
Electrical conduction in the dielectric phase of lan-
thanum manganites above the Curie temperature is
explained either by the activation of charge carriers to
the mobility edge [ρ ~ exp(ε/kT)] [1] or by hopping of
small adiabatic polarons between the localized states
[ρ ~ T*exp(ε/kT)] [2] or variable-range polaron hop-
ping [ρ ~ exp(T0/T)1/4] [3]. In all cases, the conclusions
about the conduction mechanism are customarily justi-
fied by the possibility of the linear extrapolation of the
logarithmic dependence of resistance on T –1 or T –1/4.
However, such a procedure of processing experimental
results is not always unambiguous, because the temper-
ature interval of activated conduction changes by only
1.5–2 times, while the resistance usually changes by
less than an order of magnitude. For example, the
experimental dependence ρ(T) discussed below can be
satisfactorily approximated at T = 360–280 K by a lin-
ear function of both T –1 and T –1/4.

This work reports the results of studying the con-
duction mechanism at the portions of the temperature
curve for electrical resistance above and below the
Curie temperature of a La0.85Sr0.15MnO3 single crystal,
which is compositionally at the dielectric border of the
metal–insulator transition in this system. This crystal is
paramagnetic dielectric (PMD) above the Curie tem-
perature and ferromagnetic dielectric (FMD) below it.
The resistance was measured over the temperature
range 4.2–420 K using a four-probe scheme. While
measuring thermopower at 100–420 K, the sample was
in a vacuum; the temperature was measured by copper–
constantan thermocouples, and the emf was measured
between their copper terminals. Indium leads were sol-
dered to the sample using an ultrasonic solderer.

The temperature dependences of resistivity (ρ) and
thermopower (S), and the Curie (Tc) and charge-order-
ing (Tco) temperatures were determined for the sample
0021-3640/01/7411- $21.00 © 20556
from the magnetometric and neutron diffraction data [4]
and are shown in Fig. 1. Hysteresis at T = 360–380 K
corresponds to the transition from the high-temperature
rhombohedral phase to the low-temperature orthor-
hombic phase.

Let us first analyze the temperature dependences
ρ(T) and S(T) in the temperature interval between the
structural transition and the Curie temperature, i.e., in
the PMD phase. Assuming that the charge transfer is
accomplished by small-radius polarons in the adiabatic
regime, we use the expression ρ ~ ATexp(ερ/kT) for
ρ(T) and S = k/exp(εs/kT + B) for the thermopower. Fig-
ure 2 shows the temperature dependences ερ(T) and
εs(T) calculated as ερ = d(ln(ρ/T))/d(T–1) and εs =
dS/d(T–1) from the experimental data. One can see,
first, that the activation energies determining the behav-

Fig. 1. Temperature dependences of electrical resistivity
and thermopower for La0.85Sr0.15MnO3. Tc is the Curie
temperature, and Tco is the charge-ordering temperature.
001 MAIK “Nauka/Interperiodica”
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ior of the thermopower and resistivity differ by more
than a factor of three and, second, that the activation
energy ερ decreases monotonically with temperature,
while εs remains constant in the same temperature
interval. It is known [5] that, in the case of carrier acti-
vation from the localized states to the mobility edge, ερ
does not depend on temperature and εs = ερ, while, for
the polaron hopping conduction, ερ = εs + W, where W
is the energy necessary for the polaron jump. For this
reason, the experimental data presented in Fig. 2 imply
that the conduction of La0.85Sr0.15MnO3 in this temper-
ature interval is due to the variable-range polaron hop-
ping over the localized states (VRH mechanism).

Next, let us consider the temperature dependence of
resistivity in the FMD phase at 4.2–130 K. Contrary to
the activated conduction at T > Tc, where temperature
varies only ~1.5-fold, while the resistivity varies
~5-fold, the temperature in this interval changes by
approximately a factor of 40, and the resistivity of the
sample increases by three orders of magnitude. There-
fore, a clearly defined linear dependence of lnρ(T0/T)1/4

unambiguously points to the VRH conduction in this
temperature interval. Nevertheless, to analyze the acti-
vation energy, we determined ερ(T) in the same manner
as was done above at T > Tc. Inasmuch as the VRH acti-
vation energy depends on temperature as [6]

, (1)

where N(εF) is the density of states at the Fermi level
and a is the radius of localized state, the experimentally
measured ερ is plotted in Fig. 3 as a function of T3/4 for
both temperature intervals of activated conduction. In
accordance with Eq. (1), ερ depends linearly on T3/4,
with the slopes of straight lines being virtually the same
for the PMD and FMD phases and corresponding to
N(εF)a3 = 0.2 eV–1, while the temperature-independent
difference between them is ~24 meV, i.e., approxi-
mately equal to the exchange energy kTc = 20 meV. This
suggests that the conduction mechanism and the den-
sity of localized states near the Fermi level are the same
in both PMD and FMD phases. A constant difference in
activation energies (~24 meV) indicates that both lat-
tice and magnetic interactions are involved in the
polaron formation. In the ferromagnetic phase, the
polaron hops between the centers with the same direc-
tion of magnetic moment. Because of this, the activa-
tion energy in this phase is lower than in the paramag-
netic phase by a value approximately equal to the
exchange energy.

On the whole, the temperature dependence of elec-
trical conduction of La0.85Sr0.15MnO3 in the orthorhom-
bic phase can be described as follows. As the tempera-
ture decreases, the charge transfer obeys the VRH
mechanism immediately after the structure transition to
the PMD phase, and the activation energy depends on

εa T( ) kT( )3/4

N εF( )a3( )3/4
-----------------------------=
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both lattice and magnetic interactions. Near the Curie
temperature, the resistance of the sample sharply drops
because of the formation of metallic clusters. The clus-
tering is caused by the inhomogeneous distribution of
strontium in the sample, as is evident from the neutron
diffraction data. A superstructural reflection observed
in the neutron diffraction pattern near Tco corresponds
to the charge ordering in the composition with x =
0.125, although the stoichiometric value is x = 0.15 [6].
This signifies that the strontium-deficient domains exist
in the sample in an amount sufficient for the appearance
of the superstructural reflection; hence, the domains
with x > 0.15, where metallic conduction appears, are
also present in the sample. However, the growth of the
metallic phase is not completed in the formation of a
singly connected metallic cluster. For this reason, after

Fig. 2. Temperature dependences of activation energies
derived from the electrical resistivity (ερ) and thermopower
(εs) for the paramagnetic dielectric phase.

Fig. 3. Temperature dependences of activation energies ερ
for the paramagnetic and ferromagnetic dielectric phases.
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the metallization process is terminated upon further
decrease in temperature, the temperature dependence
of resistance is determined by the dielectric ferromag-
netic phase, because the resistance of the metallic phase
is virtually independent of temperature [7]. In this
phase, the charge carriers and the conduction mecha-
nism are the same as in the paramagnetic phase, but the
activation energy is lower by a value equal to approxi-
mately kTc.

We are grateful to A.S. Moskvin for discussing the
experimental results and to A.V. Korolev for measuring
Curie temperature on a SQUID magnetometer. This
work was supported by the Russian Foundation for
Basic Research, project no. 99-02-16280.
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A model is proposed for a one-dimensional dielectric or elastic superlattice (SL) that relatively simply describes
the frequency spectrum of electromagnetic or acoustic waves. The band frequency spectrum is reduced to mini-
bands contracting with increasing frequency. A procedure is suggested for obtaining local states near a defect
in a SL, and the simplest of these states is described. Conditions for the initiation of Bloch oscillations of a wave
packet in a SR are discussed. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.70.Qs; 63.20.Dj
1. By a photonic crystal is meant a macroscopic
periodic structure composed of two spatially alternat-
ing dielectrics differing in dielectric constants (veloci-
ties of electromagnetic waves) [1]. Analogously, by a
phononic crystal or acoustic superlattice (SL) is meant
a periodic structure composed of two alternating elastic
materials differing in elastic moduli and velocities of
sound (the general acoustics theory of layered media is
expounded in [2], and a useful bibliography on acoustic
SLs is given in one of the last publications [3]). A great
number of publications are devoted to studying the fre-
quency spectrum of SLs. It is clear that, in the general
case, this spectrum is extremely complicated and con-
tains a system consisting of both a great number of
eigenfrequency bands and gaps corresponding to for-
bidden frequencies of eigenmodes. In order to charac-
terize such spectra qualitatively and to illustrate their
main quantitative features, it would be appropriate to
use simple models that allow for these features. The
well-known 1D Kronig–Penney model [4] may serve as
an example of such a model in the electronic theory of
crystals. In this work, a model of a SL is proposed that
provides an analytical description of the high-fre-
quency part of its spectrum and suggests a possible
implementation of an interesting acoustic SL.

Consider a SL in the form of alternating plane-par-
allel layers of two materials differing in either elastic or
dielectric (depending on the implementation of inter-
est) characteristics. Denote the layer thicknesses by d1

and d2; then, the SL period equals d = d1 + d2. The elas-
tic or electromagnetic field inside each material, which
is assumed to be isotropic, is described by the wave
equation

(1)∂2uα

∂t2
----------- cα

2 ∂2uα

∂x2
-----------– 0, α 1 2,,= =
0021-3640/01/7411- $21.00 © 20559
where cα is the wave velocity in the layer of the α type.

The velocity of light in a dielectric equals cα = c/
(c is the velocity of light in free space), and that in an

elastic medium equals cα = ; εα, µα and ρα (α =
1, 2) are dielectric constants,1 elastic moduli, and mass
densities, respectively.

Consider a wave propagating along the X axis per-
pendicular to the layers. In this case, waves of two pos-
sible polarizations do not interact, and it is possible to
study scalar fields u (α) (α = 1, 2).

The standard boundary conditions will be formu-
lated as applied to the acoustic problem. The displace-
ments u (α) and stresses σα = µα(∂u(α))/∂x at the layer
boundaries will be considered continuous. It is known
that, by virtue of the periodicity of a structure with a
period of d, eigenmodes can be characterized by a
quasi-wave number k, considering that the field in a unit
cell with the number n takes the form

(2)

The dispersion equations in this problem were obtained
by Rytov for both the electromagnetic field [5] and
acoustics [6]

(3)

where k1 = ω/c1 and k2 = ω/c2 (ω is frequency). Equa-
tion (3) determines the frequency as an implicit func-
tion of the quasi-wave number. It allows the spectrum
of long-wavelength vibrations (kd ! 1) to be described
readily, for which a sound spectrum with averaged elas-

1 Because I am interested mainly in narrow frequency bands, the
frequency dispersion of ε can be neglected, and ε can be related
to the corresponding frequencies.

εα

µα /ρα

un x( ) u0 x nd–( )eiknd.=

kdcos k1d1 k2d2coscos=

–
1
2
---

k1

k2
----

k2

k1
----+ 

  k1d1 k2d2,sinsin
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tic moduli 〈µ〉  and density 〈ρ〉  is naturally obtained. It
was shown [6] that

(4)

The relationship for 〈µ〉 , which contains only dα/µα
ratios, is curious. A limiting case that is commonly of no
interest in the dynamics of a quantum particle can be
considered based on this relationship. Consider the limit
d2  0 and µ2  0 at d2/µ2 = P = const.2 In this case,

d1  d and k2d2 = ωd2/c2 = ω   0;
therefore, Eq. (3) is reduced to the following equation:

(5)

It is useful to note that the dispersion law (Eq. 5) corre-
sponds to an elastic SL composed of a chain of regu-
larly repeating elements of length d with parameters µ1
and c1. The following boundary conditions are fulfilled
at their joints: (1) continuity of the normal stresses

 = 0, which is equivalent to  = 0 and (2)
occurrence of a jump of displacements at a soft inter-
layer determined by the stresses at the joint

(6)

where M = P(ρ1/ρ2). A set of such boundary conditions
at a fixed M is used in describing capillary phenomena
in solids [7] or planar defects in crystals [8]. If the
parameter M is small, the system at hand is reduced to
a periodic sequence of elastic sections weakly bound
together. A chain of piezoelectric sections bound
together by thin vacuum interlayers may serve, for
example, as a possible implementation of such a sys-

2 A more general case, i.e., d2  0 and c2  0 at d2/c2 =
const, could be considered; however, no new results arise in this
case.

ρ〈 〉 d ρ1d1 ρ2d2;
d
µ〈 〉

---------+
d1

µ1
-----

d2

µ2
-----.+= =

ρ2d2 d2µ2

kdcos k1d
1
2
---P

ρ2µ1

ρ1D
----------- k1d( ) 

  k1d .sin–cos=

σ[ ] –
+ ∂u/∂x[ ] –

+

u[ ] –
+ Mσ µ1M

∂u
∂x
------ 

  ,≡=

Fig. 1. Graphical solution of Eq. (7). Eigenfrequency bands
are shown in heavy lines on the z axis.
tem. Then, the coupling of elastic vibrations in neigh-
boring sections would be accomplished through elec-
tromagnetic oscillations in vacuum gaps.

To illustrate the distribution of roots ω = ω(k) of
Eq. (5), this equation will be represented in the form

(7)

where z = k1d = ωd/c1 and Q = P(ρ2µ1/2ρ1d). Consider
the graphical construction in Fig. 1. The figure shows a
plot of the right-hand side of Eq. (7). When it runs over
values between ±1, the roots of the equation run over
values within intervals marked off on the abscissa axis.

Note that the allowed frequencies are localized in
contracting intervals at values k1d = ±mπ, where m is a
large integer, as z increases.3 Under the condition that
m2Q @ 1, the dispersion laws in these intervals take the
form

(8)

where ω0 = πc/d and Ω = c/πQd. It is clear that Eq. (8)
gives the size quantization phonon spectrum in a layer
of thickness d, whose levels are split into minibands
because of low “transparency” of interlayer boundaries.
An attempt to analyze the character of the SL band
spectrum was made in [9], where the dispersion relation
(Eq. (3)) was derived once again. However, their analy-
sis is not satisfactory in a limiting case close to that con-
sidered in this work, because it leads to the conclusion
that the miniband widths do not vary with increasing
frequency.

Consider Eq. (8) from another point of view: Eq. (8)
describes the spectrum of a pseudo-quantum particle
for which the Schrödinger equation within the tight-
binding model takes the form (for m = 2p + 1)

(9)

or (for m = 2p)

(9a)

Actually, Eqs. (9) and (9a) are equations for the envelop
curve of SL vibrations taken at discrete points (at
joints). As usual, the order of the derivative with respect
to time decreases in such equations. These equations
describe analytically the dynamics of a wave packet
corresponding to the allowable high frequencies. Using
the explicit form of the dispersion laws (Eq. (6)) and
simple Eqs. (7) and (8), the passage of wave packets
through the system under study can be described
readily, and explicit relationships can be proposed for
comparison with possible experimental results.

3 The contraction of bands with increasing frequency was also
noted previously; in particular, this was mentioned in [3].

kdcos z Qz z,sin–cos=

ω mω0
2Ω
m

-------
kd/2( )sin

2
, m 2 p 1;+=

kd/2( )cos
2

, m 2 p,=



+=

i
∂ψn

∂t
--------- mω0ψn

Ω
m
---- 2ψn ψn 1+ ψn 1–––( )–=

i
∂ψn

∂t
--------- mω0ψn

Ω
2m
------- 2ψn ψn 1+ ψn 1–+ +( ).+=
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Nonlinear effects in optical SLs associated with the
dependence of the refraction coefficient (that is, the
velocity of light c and the parameter ω0) or the charac-
teristic of joints Q on the field strength ψn can be readily
taken into account using Eqs. (9) and (9a), as was done
in [10] when describing optical solitons in such SLs.

The frequencies of forbidden bands correspond to

displacements of the type un ~  (when k = iκ) or

un ~ (–1)n  (when k = iκ + π), which drop (grow)
with increasing displacement number n. The frequency
dependence of the parameter κ for solutions of the first
type can be found from the relationship

(10)

and, for solutions of the second type, from the relation-
ship

(10a)

It is clear that such states have a physical meaning only
in the x semiaxis under the condition that a solution
vanishing at infinity and corresponding to certain
boundary conditions at the origin is selected. Solutions
of the first and the second types correspond to frequen-
cies in the intervals (2p – 1)π < z < 2pπ and 2pπ < z <
(2p + 1)π, respectively, (see Fig. 1). The necessity of
using exponentially decreasing solutions arises in
describing displacements in the vicinity of a local SL
defect.

2. We assume that the boundary conditions at one of
the joints (let its number n = 0) differ from those
described above; or, more specifically, these conditions
differ in the parameter M: M* ≠ M. The local vibration
frequency is essentially determined by the difference
M* – M = ξM. Calculations show that the boundary
condition at the defect leads to the relationship

(11)

which, along with Eq. (10) or (10a) (depending on the
sign of ξ) gives the local vibration frequency. The local
frequencies are determined by the intersection points of
plots of the right-hand sides of Eqs. (10) and (10a) with

the plot of the function f(z) =  = [1 +
(ξQz)2sin2z]1/2, which is determined by Eq. (11).
Because κ > 0, the solutions correspond to the frequen-
cies (values of z) determined by the equation (see
Fig. 2)

(12)

The local vibration frequencies corresponding to differ-
ent signs of ξ are located in alternating intervals
between z = 2pπ and z = (2p + 1)π (p = 0, 1, 2, …):
ω = ωs, s = 1, 2, 3, …. The corresponding solutions
can be presented in the standard form un(x, t) =

e κnd+−

e κnd+−

κdcosh zcos Qz z 1,>sin–=

κdcosh– zcos Qz z 1.–<sin–=

κdsinh ξQz z,sin=

1 zsinh
2

+

z Qz zsin–cos

=  ξQz zsin{ } 1 ξQz( )2 zsin
2

+ .sgn
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wn(x)exp{−iωt}, where wn(x) is an odd function
(w−n(−x) = wn(x)) of the following form (see Fig. 3):

(13)

where θs is the constant phase corresponding to the
eigenfrequency ωs. The function w1(ξ) depends har-
monically on the argument and can easily be found.

In this case, the local vibrations for which (2p – 1)π <
z < 2pπ (points z2 and z4 in Fig. 2) are described by a
monotonic function decreasing with increasing number
of the unit cell, and the vibrations with frequencies
2pπ < z < (2p + 1)π ((points z1 and z3 in Fig. 2) are
described by a function proportional to (–1)ne–κnd. It is
essential that a local vibration may arise at any sign of
the perturbation ξ.

A local vibration with an even eigenfunction cannot
arise at a defect localized at one boundary at any sign
of ξ. Assume that this is a joint with n = 0; at this joint,

 = 0 and σ0 = 0; therefore, an excitation in the form
of a standing wave with an even dependence on the x
coordinate is not sensitive to the value of the parameter
Q at the joint n = 0 and does not differ from the vibra-
tion of the free SL boundary passing along this joint.
The free SL boundary corresponds to a section through
the joint n = 0. This is equivalent to the condition σ0 = 0,
which is obtained in the given model at ξ = ∞ (M* = ∞).
It follows from Eq. (13) that only uniform vibrations
(κ = 0) are possible in this case at frequencies ω =
(c/d)πm, m = 0, 1, 2, …. Hence, no localized wave
exists at the free SL end. This means that vibrations of
the even type are impossible if the defect is lumped at
one joint. Such localized excitations arise upon varia-
tion (perturbation) of the parameter M at least at two
neighboring joints. As in the case of an odd solution,

w0
s( ) x( ) a0 k1

s( )x θs–( ), 0 x d;< <cos=

wn
s( ) x( ) a1 k1

s( )x θs–( )e κnd– ,cos=

nd x n 1+( )d , n 1;≥< <

u[ ] –
+

Fig. 2. Determining a series of roots of Eq. (12) graphically:
roots z0, z2, … and z1, z3, … correspond to two types of
vibrations.
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the regions of occurrence of such local vibrations with
in-phase and antiphase displacements of neighboring
unit cells alternate, depending on the sign of ξ, with the
period ∆z = π.

3. It is interesting to discuss the possibility of occur-
rence and experimental observation of Bloch oscilla-
tions of a wave packet in the SL under consideration.
Bloch oscillations of an optical pulse in a different sit-
uation were described and observed experimentally
[11, 12]. Therefore, this discussion is not groundless.

We assume that the physical characteristics of the
constituent SL elements weakly depend on the number
n, for example, c = c0 + ∆c = c0{1 + δc/c0}, where ∆c is
a small change in the wave velocity in passing from one
element to the next one (in the experiments [10, 11],
such a nonuniformity was created by a temperature gra-
dient using the temperature dependence of the refrac-
tion coefficient of the dielectric). Then, the parameter

Fig. 3. Coordinate dependence of displacements of a SL in
the vicinity of a defect for two types of vibrations consistent
with roots in Fig. 2: (a) corresponds to z0, z2, … roots
(antiphase vibrations of unit cells) and (b) corresponds to z1,
z3, … roots (in-phase vibrations of unit cells).
ω0 in Eqs. (8), (9), and (9a) should be changed as fol-
lows:

(14)

where η is a small gradient of the fundamental fre-
quency. In the case of m = 2p + 1 (the case of m = 2p is
analyzed in a similar way), this results in the
Schrödinger equation in a uniform field

(15)

and the expression given by Eq. (8) is transformed to
the Hamiltonian of the particle under consideration
determined as a function of n and k. Actually, Eq. (15),
as well as (9), determines the envelop function of vibra-
tions at the fundamental frequency.

We introduce an operator of the site number, which
takes the form n = i/d ∂/∂k in the one-band model.4

Then, Eq. (15) in the k representation takes the form
consistent with the above Hamiltonian

(16)

where the designation q = kd is used. A particle gov-
erned by Eq. (15) or (16) is subjected to so-called
dynamic localization [14], which is manifested in a
peculiar kind of oscillation with a frequency that can be
determined from the following considerations. The
time and the wave number enter into Eq. (16) for the
stationary states as the combination q + ηt. Because the
stationary eigenfunction in this case is a periodic func-
tion q with a period of 2π, it corresponds to an equidis-
tant frequency spectrum with the characteristic fre-
quency

(17)

This is just the Bloch oscillation frequency of the wave
packet in the SL.

An analysis of the evolution of a wave packet expe-
riencing Bloch oscillations is outlined, for example, in
the reviews [15, 16]. The character of Bloch oscilla-
tions depends essentially on the packet width. A packet
with a very narrow Fourier k spectrum (with well-
defined k) behaves as a particle whose Hamiltonian

4 One own band of frequencies corresponds to each m. The ques-
tion of the role of interband transitions in the theory of Bloch
oscillations was discussed in the literature [13]. Only one fre-
quency participates in the model of the tight-binding type consid-
ered in this work. The occurrence of interband interactions in the
similar model of a nonlinear optical SL was taken into account
when the stability of autolocalized vibrations of the band-gap
(solitons) was analyzed [10].

mω0 Ωn Ω0 ηnd ,+≡=

i
∂ψn

∂t
--------- = Ω0ψn ηndψn+

+
Ω

2m
------- 2ψn ψn 1+– ψn 1––( ),

i
∂ψ q( )

∂t
-------------- Ω0ψ q( )=

+ iη∂ψ q( )
∂q

-------------- 2Ω
m

------- q/2( )sin
2 ψ q( ),+

ωB η m∆ω0 mω0
∆c
c

------ m πc/d( )∆c
c

------.= = = =
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coincides with the right-hand side of Eq. (8) given
Eq. (14). The center of gravity of the packet executes
vibrations with the frequency ωB and the amplitude A =
Ωd/mη. If the initial packet (t = 0) is very narrow in the
x space (for example, is localized at one site n = 0), its
dynamics is different: with increasing time, the excita-
tion propagates in both directions from n = 0; however,
when reaching the distance A, it stops and “rolls” back,
assembling into the initial pulse at the instant t = 2π/ωB,
that is, in the period of Bloch oscillations.

It is likely that the estimations of the Bloch fre-
quency ωB ~ m(c/d)(∆c/c) and the amplitude A ~
d(m2Q∆c/c)–1 leave room for their observation in acous-
tic SLs.

The author is grateful to Vladimir Al’shits, Andreas
Mayer, and Él’ Ganapol’skiœ for useful discussions, to
Marina Mamaluœ and Vladimir Grishaev for help with
calculations and preparation of figures, and to the Max
Planck Institute for the Physics of Complex Systems
(Dresden) for hospitality and beautiful working condi-
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Experimental data are reported on studying cyclotron resonance in a two-dimensional electron system with an
artificial random scattering potential generated by an array of self-organized AlInAs quantum islands formed
in the plane of an AlGaAs/GaAs heterojunction. A sharp narrowing of the cyclotron resonance line is observed
as the magnetic field increases, which is explained by the specific features of carrier scattering in this potential.
The results obtained point to the formation of a strongly correlated electron state in strong magnetic fields at
carrier concentrations smaller than the concentration of antidots. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.40.+b
1. In spite of the fact that cyclotron resonance (CR)
is one of the most powerful experimental techniques for
studying charge carrier systems in semiconductors, its
application to observing effects due to electron–elec-
tron interactions is rather limited, because CR in a
translationally invariant and uniform system is associ-
ated with the motion of the center of inertia, and both
the position and the shape of the CR line do not depend
on the relative coordinates of carriers [1].

However, the conditions of the Kohn theorem in
each real system are, to a greater or lesser extent, not
fulfilled, and collective effects can become “apparent”
in the CR spectra because of the violation of transla-
tional symmetry due to the occurrence of a random
potential [2] and by virtue of the finite nonparabolicity
of the energy spectrum. A sufficiently small concentra-
tion of carriers ns is another condition for observing
correlation effects in CR, because the ratio of the poten-
tial energy associated with electron–electron interac-
tions to the kinetic energy of an electron in a two-

dimensional system grows as  with decreasing car-
rier concentration.

In this work, we present the results of studying CR
in a two-dimensional (2D) system of carriers with an
artificial random potential due to self-organized quan-
tum “islands” formed in the plane of the 2D system of
carriers. The results obtained point to the decisive role
of electron–electron interactions in the formation of the
CR spectrum.

2. Samples used in the experiment consist of an
inverted single AlGaAs/GaAs heterojunction with an
array of self-organized quantum AlInAs islands formed

ns
–1/2
0021-3640/01/7411- $21.00 © 20564
in the junction plane at the AlGaAs surface. The posi-
tion of the conduction band bottom in AlInAs is higher
in energy than that in GaAs; therefore, the “islands”
serve as antidots, creating a short-range repulsive
potential for electrons in GaAs. STM and AFM data
indicate that the “islands” are shaped in cross section
like a circle from 6 to 12 nm in diameter and ~1 nm in
height in the direction of growth. Their concentration
exceeds 1011 cm–2, and the average distance between
them is ~ 10 nm.

The given samples differ from similar samples
studied previously [4–6]. The main difference is that
AlInAs antidots contain no electrons and, therefore,
are electrically neutral, which determines the short-
range character of the random potential generated by
these antidots. Another important feature is that the
distance between neighboring antidots is of the order
of the antidot diameter. Hence, the given system can
actually be considered as a heterojunction with artifi-
cially introduced interface roughness, which generates
a random scattering potential with a correlation radius
of ~10 nm. The measurements of CR were carried out
using a Fourier spectrometer in the Faraday geometry
at a temperature of 2.1 K. The electron concentration
was estimated from the CR spectra and was varied
using both a gate and a short-time exposure to a red
photodiode.

3. A typical series of CR spectra is displayed in
Fig. 1. Each curve was obtained at its own fixed mag-
netic field, and the difference between the field values
corresponding to neighboring curves comprises 0.35 T.
The most pronounced feature of the series of spectra
presented here is a sharp narrowing of the CR line in
001 MAIK “Nauka/Interperiodica”
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strong magnetic fields. At a magnetic field of 12 T, the
half-width of the CR line is only 0.5 cm–1. Such narrow
CR lines were observed previously only in top-quality
and very pure GaAs/AlGaAs heterojunctions [7]. The
concentration and transport mobility of electrons
obtained from an analysis of Shubnikov–de Haas
oscillations in the structures investigated in this work
are equal to ns = 0.85 × 1011 cm–2 and µT = 9.3 ×
104 cm2 V–1 s–1, respectively. The low mobility, coupled
with the fact that the spin splitting in magnetic fields
corresponding to odd filling factors (except for ν = 1) is
not allowed in SHO, points to the occurrence of strong
disordering in the system [8]. Under these conditions,
such a strong (more than an order of magnitude) nar-
rowing of the CR line is indicative of the suppression of
the pulse relaxation of carriers in a strong magnetic
field.

“Switching” in the range of magnetic fields 1–3 T
from the CR mode to another mode with a higher fre-
quency shifted by a certain value ω0 with respect to the
cyclotron mode is another specific feature of CR spec-
tra (Fig. 2).

Fig. 1. Cyclotron resonance spectra in magnetic fields for a
sample with the electron concentration ns = 0.85 × 1011 cm–2.
Inset: the half-width of the cyclotron resonance line as a
function of the magnetic field.
JETP LETTERS      Vol. 74      No. 11      2001
Note that these features are absent in the structure
identical in composition and grown under similar con-
ditions but containing no array of antidots.

The main features of the CR spectra in the given sys-
tem strongly depend on the carrier concentration. The
characteristic carrier concentration Ns ~ 1011 cm–2 that
corresponds to the concentration of antidots can be
determined based on the obtained experimental data.
The behavior of CR sharply changes when the carrier
concentration becomes smaller than Ns. In this case, ω0
depends on the carrier concentration (Fig. 3); on the
contrary, the magnetic field Bs corresponding to the sat-
uration of the half-width of the CR line does not depend
on the concentration and equals approximately 4.5 T
for ns < 1011 cm–2.

Quite the reverse picture is observed for ns >
1011 cm–2: now, ω0 does not depend on the carrier con-
centration, and Bs exhibits notable correlations with the
filling factor.

4. The potential acting on a particular electron is
summed up from the random potential of ionized
donors separated from the plane of the 2D electron sys-
tem by a spacer with D = 20 nm, the potential created
by the other electrons, and the random potential created

Fig. 2. Switching of the cyclotron resonance line to a higher
energy mode for a sample with the electron concentration
ns = 0.85 × 1011 cm–2.
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by antidots. Taking into account the fact that the con-
centration of ionized donors N = ns and suggesting that
the positive charge of donors is distributed uniformly
(with the density σ = Ne) in a plane parallel to the plane
of 2D electrons, one can estimate the random potential
of antidots by the order of magnitude at

where 〈z〉  is the characteristic “height” of quantum anti-
dots in the direction of growth, and e is the dielectric
constant of the material. The estimation gives the value
W ~ 1–2 meV, which is considerably higher than kT =
0.0172 meV (2 K) but lower than the cyclotron energy
at already moderate magnetic fields (H > 2 T).

In the case of weak magnetic fields, when the char-
acteristic size of the wave function

~λH = ("c/eH)1/2 @ L,

where L is the correlation radius of the random poten-
tial, the CR line experiences homogeneous broaden-
ing determined by the relaxation time of the longitu-
dinal component of the electron quasi-momentum. As
the magnetic field increases when the magnetic length
λH becomes smaller than L, the carriers start to “feel”
the local potential. In this case, the absorption fre-
quency differs from the cyclotron one. For simplicity,
it may be suggested that the local potential minimum
is parabolic in shape with the characteristic size R.
Hence,

(1)

where ω0 = "/m*R2. Because the values of R have a
spread, the CR line is broadened, and the broadening is
inhomogeneous in this situation. As the magnetic field

W 4πe2ns z〈 〉 /e,∼

ωres
ωc

2
------

ωc

2
------ 

 
2

ω0( )2+ ,+=

Fig. 3. Position of the absorption line as a function of the
electron concentration.
increases, the broadening of the CR line changes in
character. The CR line width determined by the given
mechanism decreases with increasing magnetic field,
because only the harmonics of the random potential
with wave vectors k > 1/λH can affect the CR peak
width essentially [9]. Under the suggestion that the size
distribution of antidots is of Gaussian character, the
amplitude of such harmonics drops exponentially with
decreasing λH.

The nonmonotonic character of the resonance fre-
quency as a function of the carrier concentration is of
special interest. In the region of small concentrations
when ns is lower than the density of minima of the cha-
otic potential of antidots, the CR line shifts toward high
frequencies as the concentration grows (Fig. 3). This
shift cannot be explained by the occurrence of nonpar-
abolicity. The given effect may indicate that the effec-
tive potential acting on a particular electron is deter-
mined by electron–electron interactions rather than the
potential of antidots. In other words, a strongly corre-
lated state of the Wigner crystal type can form under
these conditions [10].

Previously, a narrowing and a shift of the CR line
were observed in inversion layers at the Si surface in a
number of works [11–14]. The results obtained were
interpreted by invoking models that also involve elec-
tron–electron interactions such as charge density wave
pinning [11], Wigner crystal [12], and Wigner glass
[13]. Apparently, the effects observed in these works
were due to the occurrence of a random scattering
potential arising because of the strong roughness of the
SiO2 surface at the interface with Si.

In conclusion, we would like to emphasize that the
results presented in this work point to the formation
of a strongly correlated electron state. This state can
be observed experimentally because of the occur-
rence of a random potential (in the given case, the
potential of antidots) violating the conditions of the
Kohn theorem. A more comprehensive analysis of
this state and of the role of such parameters as the
electron concentration and the random potential
amplitude and correlation length will be presented in
further publications.

This work was supported by the Russian Foundation
for Basic Research, INTAS (project no. 99-01146), and
the program Physics of Solid-State Nanostructures.
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