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The photoproduction of a neutrino pair on a nucleus, γ + Ze  Ze + γ + ν + , is investigated in a strong
magnetic field. It is shown that taking account of the photon dispersion in a strong field reduces appreciably the
catalyzing effect of the latter on the process. Therefore, at any field magnitude, neutrino photoproduction cannot
compete with the Urca processes. This conclusion contradicts a recent statement in the literature. © 2002 MAIK
“Nauka/Interperiodica”.
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Strong magnetic fields arising in astrophysical cata-
clysms such as supernova explosions or a coalescence
of neutron stars have an active effect on the quantum
processes by opening or considerably enhancing reac-
tions which are kinematically forbidden or strongly
suppressed in vacuum. However, this field effect is sub-
stantial only when the field is sufficiently strong. The

so-called critical or Schwinger value Be = /e .

4.41 × 1013 G serves as the natural scale of magnetic
field intensity.1 There are grounds to expect that fields
on this and even larger scale can arise in astrophysical
objects. For example, there is a class of stars, so-called
magnetars, which are neutron stars with magnetic fields
of ~4 × 1014 G [1, 2]. The models of astrophysical pro-
cesses and objects with magnetic fields up to 1017–
1018 G are discussed in [3–6]. Thus, the physics of
quantum processes in strong external fields is an inter-
esting and important direction of investigations both
from the fundamental viewpoint and in the light of pos-
sible astrophysical applications.

Of special interest are the loop quantum processes
whose initial and final states involve only electrically
neutral particles such as neutrinos and photons. The
action of an external field on these processes is caused,
first, by the sensitivity of charged virtual fermions to
the field. In this case, an electron as a particle with the
maximum specific charge e/me plays the dominant role.
Second, a strong magnetic field gives rise to a consider-
able change in the dispersion properties of photons and,
therefore, in their kinematics.

In recent work [7], the contribution of the loop pro-
cess of neutrino-pair photoproduction on a nucleus

γ + Ze  Ze + γ + ν + (1)

1 We use the natural system of units c = " = 1, and e > 0 is the ele-
mentary charge.

me
2

ν
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in a strong external magnetic field to the cooling of
stars was studied and it was concluded that this contri-
bution can compete with the contribution from Urca
processes. Therefore, process (1), as one more channel
of neutrino energy loss, would be taken into account
when describing the cooling of strongly magnetized
neutron stars.

In this paper, we reexamine the neutrino pair photo-
production on a nucleus and demonstrate that the cata-
lyzing effect of a strong magnetic field on process (1)
decreases considerably if the photon dispersion in the
field is taken into account. Since this effect was ignored
in [7], the contribution of the loop process was overes-
timated by many orders of magnitude.

The amplitude of neutrino pair photoproduction on
a nucleus, Eq. (1), can be derived from the amplitude of
interaction between three photons and a neutrino pair,
e.g.,

γ + γ + γ  ν + , (2)

whose Feynman diagram is shown in Fig. 1. As is
known (see, e.g., [8]), three-photon processes (2) in a
strong magnetic field are more intense than the corre-
sponding two-photon processes, because the amplitude

ν

Fig. 1. Feynman diagram for the γ + γ + γ  ν +  pro-
cess.
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of processes (2) with the vector-axial neutrino current
increases linearly with the field, whereas the amplitude
of the γγ  ν  processes with such a neutrino current
is independent of the field. In [9], we analyzed the non-
standard case of effective scalar neutrino current in the
γγ  ν  process, where the amplitude also increases
linearly with the field.

The amplitude of process (2) in a strong magnetic
field can be represented in the covariant form [8]

(3)

Here, CV = ±1/2 + 2sin2θW and CA = ±1/2 are the vector
and axial constants of the effective ννee Lagrangian,
respectively (the upper signs correspond to electron
neutrino and the lower signs correspond to muon and
tan neutrinos); ε1, 2, 3 and k1, 2, 3 are the polarization 4-
vectors and photon 4-momenta, respectively; jα =
[ ] is the Fourier transform of
the neutrino current; k4 = q1 + q2 is the 4-momentum of

a neutrino pair;  = /B is the dimensionless dual

tensor of the external magnetic field, where  =

; and the tensor subscripts of 4-vectors and

tensors in the parentheses are supposed to be sequen-
tially contracted, e.g., ( ) = aα .

The form factor I(k1, k2, k3) has the form of the fol-
lowing triple integral with respect to the Feynman vari-
ables:

(4)

Here,

(5)

(6)

(7)

ν

ν

}
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where the scalar products (kikj) are the contractions
(ki kj).

For low photon energies, i.e., for ω1, 2, 3 ! me, inte-
gral (4) is easily calculated to give

(8)

In this case, amplitude (3), in view of Eq. (8), corre-
sponds to the effective local γγγν  Lagrangian

(9)

The γγγν  interaction at low energies was previously
studied in [8], where the Lagrangian was overestimated
by a factor of two.

An analysis of the dimensionality of amplitude (3)
for the limiting values of the characteristic photon
energy |k1| ~ |k2| ~ |k3| ~ ω indicates that the amplitude
increases as ~ω5 at low energies and decreases as ~ω–3

at high energies.
When calculating the amplitude of process (1) on a

nucleus in the local limit of effective γγγν  interaction
(9), it is necessary to take into account the effect of
strong magnetic field on the dispersion properties of
real and virtual photons. We will demonstrate that this
effect is of crucial importance. We recall that process
(1) in a strong magnetic field involves photons of only
one of the two possible polarizations. According to
Adler [10], this polarization is “transverse.”

For a virtual photon, it is necessary to use, instead of
the vacuum propagator ~q–2, the propagator including
vacuum polarization in a magnetic field:

(10)

where,  =  – ,  =  + , q2 =  –  (the

magnetic field is directed along the z axis), and P( )
is the photon polarization operator in the field. For the

strong field B @ Be and in the approximation  !

, this operator takes the simple form [11]

(11)

It is convenient to introduce the following dimension-
less parameter that specifies the field effect in all subse-
quent expressions:

(12)
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The parameter β is equal to 0.77 and 7.7 for fields 103Be

and 104Be, respectively; i.e., it is not small. Taking into
account Eqs. (11) and (12) and that q0 = 0 for the virtual
photon connected with a fixed nucleus, we can repre-
sent propagator (10) in the form

(13)

At the same time, the strong magnetic field also acts
on the real photons involved in process (1) and, hence,
renormalizes the wave functions:

(14)

In view of Eq. (11), the renormalization factor ] takes
the form

(15)

In addition, the kinematic properties of photons change
substantially. Taking into account Eqs. (11) and (12),
one can represent the photon dispersion relation k2 –

P( ) = 0 as ω2 = k2(1 + βcos2θ)/(1 + β) and the ele-
ment of the momentum space in the form

where θ and ϕ are the polar and azimuthal angles,
respectively.

Using effective Lagrangian (9), taking into account
the effect of the magnetic field on photon properties
(10)–(15), and substituting the polarization vectors of
real photons

(16)

we represent the amplitude of process (1) in the form

(17)

where mN is the nuclear mass, q is the momentum trans-
fer to the nucleus, and qα = (0, q). This expression for
the amplitude differs considerably from that obtained in
[7], where the effect of a strong magnetic field on the
dispersion properties of photons was ignored.

The energy carried away by neutrinos from the star
volume unit per time unit is an important quantity in
astrophysical applications. It is defined in terms of the
amplitude of process (1) as
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where nN is the nuclear concentration, ε1 and ε2 are the
energies of neutrino and antineutrino, respectively, and
f(ω) = [exp(ω/T) – 1]–1 is the distribution function for
the equilibrium photon gas at temperature T.

Substitution of amplitude (17) into Eq. (18) leads to
the following expression for the volume density of radi-
ation power:

(19)

The dependence on field parameter (12) is determined
by the integral

(20)

where

(21)

and the constants  = 0.93 and  = 0.75 are
obtained by summing over all neutrino production
channels for the νe, νµ, and ντ neutrinos.

The numerically calculated integral (20) is shown in
Fig. 2. It is seen that taking account of the effect of a
strong magnetic field on photon dispersion changes
fundamentally the dependence of the neutrino energy
loss power on the field magnitude: the quadratic depen-
dence gives way to a constant. Taking this behavior into
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account, we obtain an upper limit for Qν in the asymp-
totically strong field:

, (22)

where Z and A are the charge and mass numbers of the
nucleus, the averaging goes over all nuclei, ρ0 = 2.8 ×
1014 g/cm3 is the characteristic nuclear density, and ρ is
the average density of the star. An analysis of Eq. (22)
indicates that the conclusion made in [7] about the com-
petition of process (1) with the Urca processes at mag-
netic fields B ~ 103Be – 104Be is erroneous. The cause is
that the large numerical factor arising in Eq. (19) and
similar formulas in [7] originates from the integral with
respect to the energy ω1 (x = ω1/T) of the initial photon:

(23)

The main contribution to integral (23) comes from x ~
10–20 (i.e., ω1 ~ (10–20)T). Therefore, since amplitude
(17) of the process is obtained in the approximation

Qν  & 2.3 1027 T
me

------ 
  14 Z2

A
----- ρ
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----- 
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xx13d

ex 1–
-------------

0

∞

∫ 13!ζ 14( ) 2π( )14

24
---------------  . 6.2 109.×= =

Fig. 2. (1) Function J(β) [Eq. (20)] vs. field parameter β;
(2) asymptotic behavior of J(β)  8 × 10–5 at large β;
(3) ~β2 dependence obtained disregarding the magnetic
field effect on the photon dispersion.
ω & me, the corresponding expression for the neutrino
energy loss power is valid for the photon gas tempera-
tures T & (1/10)me and is inapplicable at temperatures
T ~ me. Thus, the assumption made in [7] that the factor
(T/me)14 can be taken to be on the order of unity is erro-
neous. Taking into account the above applicability
range, we obtain (T/me)14 & 10–14.

In summary, the neutrino photoproduction on nuclei
cannot compete with Urca processes in strong magnetic
fields.
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It is shown that the introduction of the resonance phase for two quasistationary states with the same spin and
opposite parities allows one to gain agreement between the theory and the observed signs of P-odd and P-even
effects in neutron reactions. The joint description of these effects makes it possible to determine the unknown
(free) parameters of the theory from the experimental data. © 2002 MAIK “Nauka/Interperiodica”.
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As was shown in [1], the introduction of the reso-
nance phase for two quasistationary states (s and p res-
onances) with the same spin and opposite parities pro-
vides agreement between the theory and the observed
signs of P-odd effects (parity violating effects) in neu-
tron reactions. It was also pointed out that taking
account of the resonance phase enables one to remove
the discrepancy in the joint description of P-even
effects (conserving parity) in the p-wave resonances of
the 113Cd and 117Sn nuclei [2–5].

Recall that P-odd effects (correlations) arise
because weak interaction mixes s and p resonances, i.e.,
nuclear levels situated in continuum (compound reso-
nances) near the binding energy of a neutron in the
nucleus. The P-even effects are due to the overlap of the
wave functions of the same s and p resonances (P-even
mixing). As will be demonstrated below, the joint
description of P-odd and P-even correlations [6] makes
it possible to determine or refine certain unknown (free)
parameters of the theory.

Angular and polarization correlations in the interac-
tions of neutrons with nuclei were considered in [7].
Among the 17 possible correlations, we will consider
only 4 correlations, for which experimental data are
available. The angular distribution of γ-ray photons
from the (n, γ) reactions on nuclei is written as

(1)

where σn and kn are the neutron spin and momentum,
respectively, and kγ is the momentum of emitted γ-ray
photon. The coefficients Aγ and Ptot are due to the weak
interaction and describe, respectively, the P-odd angu-
lar asymmetry of photons and the asymmetry arising in
the total cross section upon passing longitudinally
polarized neutrons with opposite helicities through a

W θ ϕ,( ) 1 Aγσn kγ Ptotσn kn⋅+⋅+∼
+ FBkn kγ LRσn kn kγ×[ ] ,⋅+⋅
0021-3640/02/7509- $22.00 © 20445
sample. The coefficients FB and LR are due to the P-
even mixing and describe the forward-backward and
left-right asymmetries of photons, respectively.

The coefficients of correlations in Eq. (1) can be
expressed in terms of three basic reaction amplitudes
[7]. The amplitude f1 describes neutron capture to an s
compound state of nucleus A and the decay of this state
into an A + 1 nucleus with the emission of, e.g., an M1
photon. The amplitude f2 describes neutron capture to a
p state with the emission of an E1 photon. The ampli-
tude f3 describes neutron capture into the s state, popu-
lation of the p state owing to weak interaction, and its
decay with the emission of an E1 photon. In this case,
the correlation coefficients in Eq. (1) are expressed as1 

(2)

(3)

(4)

(5)

Here, x = , y = , and (x2 + y2 = 1)

are the channel-mixing parameters, where  and

 are the partial neutron widths of the p resonance
in the channels with the neutron total angular momenta

j = 1/2 and 3/2, respectively, and  is the total neutron
width of the p resonance.

As was mentioned in [1], to describe the signs of
correlations consistent with the experimental data, one
should include the resonance phase in Eqs. (2)–(5).

1 The amplitude f4 is ignored because it is small compared to f3.

Aγ 2Re f 1 f 3
*⋅( ),∼

Ptot 2xRe f 2 f 3
*⋅( ),–∼

FB 2 x– y/ 2+( )Re f 1 f 2*⋅( ),∼

LR 2 x y/ 23+( )Im f 1 f 2*⋅( ).∼

Γ p1/2
n /Γ p

n Γ p3/2
n /Γ p

n

Γ p1/2
n

Γ p3/2
n

Γ p
n
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According to [8, 9], the resonance phase φres arises
as a result of the diagonalization of the Green’s function
for the compound nuclear state. We introduce  in

the general form φres = , where the parameters
b and a are defined below. In this case,

(6)

where the resonance phase is defined on the interval
−π/2 ≤ φres ≤ +π/2. However, one can introduce the res-
onance phase

(7)

defined on the interval 0 ≤  ≤ π. Substituting the
parameters b = E – Es + iΓs/2 and a = E – Ep + iΓp/2
from [8] into Eq. (7), one obtains the following expres-
sion for the resonance phase in terms of the s- and p-
resonance parameters:

(8)

Here, Es, p and Γs, p are the energies and total widths of
the s and p resonance, respectively.

Let us take into account the resonance phase for
each of correlations (2)–(5) by introducing the total
phase φΣ. Consider the Aγ correlation. The amplitude f3

involves the phase shift –π/2 (e–iπ/2 = –i) of the p-wave
free motion relative to the s wave, which is compen-
sated by the purely imaginary matrix element of weak

interaction. The same is true for the amplitude 

entering into Eq. (2). Therefore, φΣ =  for Aγ.

As compared to Eq. (2), Eq. (3) for the Ptot correla-
tion involves an extra p wave associated with f2. For this
reason, the phase difference for the capture to p and s
resonances must be taken into account along with the
phase of the p-wave free motion. According to [8], this
difference is φp – φs = mπ. Taking m = 1, we obtain the

total phase shift φΣ =  – π/2 + π for the Ptot correla-
tion.

Formulas (4) and (5) involve the complex conjugate

amplitude . Therefore, the total phase shift is φΣ =

 + π/2 – π for the FB correlation and φΣ =  +
π/2 – π for the LR correlation.

The expressions for the total phase shift can be sim-
plified by introducing the phase dependence for each
correlation. Taking into account that the first three cor-
relations depend on the real part of the product of
amplitudes, whereas the fourth correlation depends on
the corresponding imaginary part, one obtains

(9)

(10)

φres

b/a( )arg

φres Im b/a( )/Re b/a( )[ ] ,arctan=

φres' Re b/a( )/Im b/a( )[ ]arccot=

φres'

φres' E( )
E Es–( ) E Ep–( ) Γ sΓ p/4+

E Ep–( )Γ s/2 E Es–( )Γ p/2–
---------------------------------------------------------------------.arccot=

f 3
*

φres'

φres'

f 2
*

φres' φres

Aγφ φres' , Ptotφcos φres' ,sin–= =

FBφ φres' , LRφsin φres.cos–= =
In fact, one additional parameter (resonance phase)
is introduced in Eqs. (9) and (10). As will be shown
below, this parameter allows the reproduction of the
experimental signs of correlations (2)–(5). The problem
of correct introduction of the resonance phase into Eqs.
(2)–(5) still remains to be solved.

Let us discuss the experimental data. The P-even
correlations FB and LR in p resonances were investi-
gated for the 113Cd [2, 3] and 117Sn [3–5] nuclei prima-
rily with the aim of determining the channel-mixing
parameters x and y appearing in Eqs. (4) and (5).

Let us consider the 113Cd(n, γ)114Cd reaction in more
detail. The spin and parity of the ground state of the
113Cd nucleus are Jπ = 1/2+. The neutron capture is
accompanied by the excitation of the s resonance with
Es = 0.18 eV and Jπ = 1+ and the p resonance with Ep =
7 eV Jπ = 1–. Experimentally, the asymmetry in the
angular distribution of the M1 and E1 γ-ray photons
from the decay of resonances to the 0+ ground state of
the 114Cd nucleus is detected. Using Eq. (4) and data on
the FB correlation, the authors of [2] obtained the fol-
lowing two sets of parameters x and y:

x = 0.975, y = 0.222, (11)

x = 0.100, y = –0.995. (12)

Both sets were used to describe the measurements of
LR correlation and did not provide agreement with the
experiments. Set (11) reproduced the positive LR sign
but overestimated the magnitude of the effect. Set (12)
reproduced the magnitude but gave the opposite sign.
Let us take set (12). In this case, the channel-mixing

coefficients are determined as FBch = –x + y/  = –0.8

and LRch = x + y/2  = –0.25. With allowance for
phase dependence (10), the sign of the FB correlation is
determined by the product

(13)

Here, FBe is the energy dependence of the correlation
presented in an explicit form in [10]. Let us consider the
signs of factors in Eq. (13) for the neutron energy slightly
below the 7-eV p resonance. Then, the FB and LR signs
are determined as (–)(–)(+) = (+) and (+)(–)(−) = (+),
respectively. Both signs agree with the experiment [2, 3].

The addition of the resonance phase only slightly
changes the energy dependence of correlations (2)–(4)
near the resonance, but leads to a more rapid decrease
in the effect outside the resonances. Nevertheless, the
introduction of this resonance phase is of fundamental
importance, because it removes divergences caused by
the contributions from far s resonances.2 

2  I am grateful to Prof. V. V. Flambaum who, at the workshop at
ECT* (Trento, June 5–16, 2000), pointed out that the divergence
problem is important for the explanation of the Ptot sign in the
232Th nucleus [11].

2

2

FB FBe FBch FBφ.⋅ ⋅=
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For correlation (5), inclusion of the resonance phase
changes considerably the energy dependence and splits
the peak of left-right asymmetry in the resonance. The
figure shows the energy dependence of the LR correla-
tion for the 113Cd(n, γ) reaction. The calculation was
carried out using the formula

(14)

This splitting of the LR peak does not contradict the
existing experimental data [2, 3] and can be observed
experimentally. The magnitude of LR correlation near
the p resonance is close to unity. However, its measure-
ment is a difficult experimental problem, because it is
necessary to ensure good energy resolution both in the
time-of-flight measurement of neutron energy and in
the detection of the direct γ transition to the nuclear
ground state. The pulsed source of polarized neutrons
and the experimental setup at LANSCE satisfy these
requirements. The observation of the splitting of the LR
peak would be direct evidence of the correctness of the
above approach.

Let us analyze the 117Sn(n, γ)118Sn reaction, whose
spin structure is similar to that for the reaction dis-
cussed above. The correlations in this reaction arise due
to the mixing of the 1.3-eV p resonance and the sub-
threshold s resonance with energy Es = –29.2 eV. In this
case, the following two sets of parameters x and y were
obtained from the LR measurements [3–5]:

(15)

(16)

Both sets were used to describe the measurements of
the FB correlation. Set (15) properly reproduced the
correlation sign, but overestimated the magnitude of the
effect, especially near the p resonance. Set (16) prop-
erly reproduced the FB magnitude but gave the oppo-
site sign. Let us choose set (16). In this case, the chan-
nel-mixing coefficients are determined as FBch = 0.7
and LRch = 0.36 for the 117Sn nucleus. Then, the FB and
LR signs are determined, according to Eq. (13), as
(−)(+)(+) = (–) and (+)(+)(–) = (–), respectively. The
negative signs of FB and LR are inconsistent with the
experiments [4, 5]. This is due to the fact that the mix-
ing in the 117Sn(n, γ) reaction involves the subthreshold
s resonance.

The problem of reproducing signs of the P-odd
effects in the presence of a subthreshold s resonance is
well known [11] and can be illustrated by the example
of the Ptot correlation. The inclusion of resonance phase
(9) leads to the following simple sign rule that is con-
sistent with the experiment. The sign of the effect is
positive (negative) for the nuclei whose s resonance is
situated above (below) the p resonance. However, for
the subthreshold s resonance lying below the latter, the
sign of the effect is positive (see figure in [11]). In other

LR E( )
10 2– E Es–( )Γ p E Ep–( )Γ s–[ ] φrescos

E Ep–( )2 Γ p
2 /4+

-------------------------------------------------------------------------------------------.=

x 0.53 0.04, y± 0.81– 0.03,±= =

x 0.01 0.01, y± 1.00 0.02.±= =
JETP LETTERS      Vol. 75      No. 9      2002
words, according to the sign of the effect, the sub-
threshold s resonance behaves as the above-threshold s
resonance lying above the p resonance at a distance of
Ep + |Es|. This model of subthreshold s resonance can be
used to describe the experiment.

It is physically more reasonable to assign the sub-
threshold s resonance the capture phase shift different
from that for the usual s resonance. Let us take φp – φs =
0 for the subthreshold s resonance. In this case, all signs
in the last three phase dependences in Eqs. (9) and (10)
must be altered.

The inclusion of the subthreshold s resonance in the
117Sn(n, γ) reaction brings about coincidence of the
signs of the FB and LR correlations with the experimen-
tal data.

Above, the dependence of the signs of correlations
on nuclear properties such as the position, spin, and
parity of resonances, resonance phase, etc., is consid-
ered in rather close detail. However, correlations (2)–
(5) depend also on the amplitudes of neutron capture to
s and p resonances and their decay to the final state. In
notation [7], these correlations are expressed as

(17)

(18)

(19)

Recall that the difference in the phases of neutron cap-
ture to s and p resonances is explicitly taken into
account in Eqs. (18) and (19) by including them in the

Aγw

p Hw s〈 〉 f γ Hem p,〈 〉
f γ Hem s,〈 〉

-----------------------------------------------------,=

Ptotw

p Hw s〈 〉 s Hs n〈 〉
p Hs n〈 〉

-------------------------------------------,=

Peven

f γ Hem p,〈 〉 p Hs n〈 〉
f γ Hem s,〈 〉 s Hs n〈 〉

-----------------------------------------------------.=

Energy dependence of the LR correlation for the 113Cd(n, γ)
reaction near the 7-eV p resonance, as calculated by
Eq. (14) with the parameters Es = 0.18 eV, Γs = 0.11 eV,

g  = 3.1 × 10–3 eV,  = 2.8 × 10–4 eV, Ep = 7 eV, Γp =

0.18 eV, g  = 3.1 × 10–7 eV, and  = 4.5 × 10–3 eV.

Γ s
n Γ s

γ1

Γ p
n Γ p

γ1
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total phase. Taking this fact into account, one can con-
clude that the experimental data testify to the negative
sign of expressions (17) and (18) for all nuclei.3 This
fact was confirmed for many nuclei, e.g., considered in
[11]. Expression (19) for P-even correlations has a pos-
itive sign and does not contradict the above-discussed
experimental data for the 113Cd and 117Sn nuclei.

A perfect correlation of the signs of amplitudes in
Eqs. (17)–(19) is a surprising experimental fact, which
has to be explained within the framework of nuclear
theory.

Let us discuss (and not prove) this regularity. The
following symmetry of Eqs. (17)–(19) is noteworthy:
each quantity—wave functions of the |s〉 , |p〉 , and |f, γ〉
states, as well as the operators of the strong Hs and elec-
tromagnetic Hem interactions—always enters in dupli-
cate. Only the operator Hw of weak interaction is alone.
Therefore, the negative sign in Eqs. (17) and (18) must,
apparently, be assigned to its contribution.

Recall that the same (negative) sign was observed
for the Ptot correlation in the semileptonic weak pro-
cesses of interaction of the longitudinally polarized
electrons with deuterium [12]. Such processes, in con-
trast to the above-discussed nonleptonic weak pro-
cesses without changing strangeness, are directly cal-
culated in the parton model. In our case, the transition
from the quark level of describing the weak interaction
to the nucleon level and, then, to the nuclear level is a
serious theoretical problem [13], which cannot be cor-
rectly solved at present. The above results solve this
problem in part.

I am grateful to V.M. Lobashev, V.A. Nazarenko,
and A.N. Pirozhkov for their stimulating interest and

3 The sign of expressions (17) and (18) is negative if the matrix ele-
ment of weak interaction is defined as Wsp ≡ 〈p–|Hw |s+〉 , where ±
are the parities of resonances.
support of this direction of research. This work was
supported by the State Program “Fundamental Nuclear
Physics” (project no. 134-08).
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The measurement of the φ  π0e+e– conversion decay probability on the SND detector at the VEPP-2M e+e–

collider gave the value Br(φ  π0e+e–) = (1.01 ± 0.28 ± 0.29) × 10–5. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.25.Jx; 14.40.Cs
1. Since the conversion decays V  Pe+e– of vec-
tor mesons (V) into pseudoscalar mesons (P) proceed
through an intermediate state Pγ* with a virtual photon
γ*, they are closely related to the corresponding radia-
tive decays V  Pγ. The probability of emission of a
virtual photon with 4-momentum q is determined by
the structure of electromagnetic V–P transition, which
is described by the corresponding electromagnetic tran-
sition form factor. The effect of the transition form fac-
tor is primarily manifested in the hard part of the spec-
trum of e+e– invariant masses, whereas the total decay
probability is determined by the invariant mass region

near the threshold q2 = 4  (me is electron mass),
where the transition form factor differs negligibly from
unity. The probability of conversion decay is on the
order of ~10−2 of the probability of the corresponding
radiative decay.

In this paper, we study the decay

φ  π0e+e–, π0  γγ, (1)

whose branching ratio should be equal to 1.3 × 10–5,
according to formulas given in [1]. This decay proba-
bility was measured on a KMD-2 detector [2].

2. The SND detector [3] is a universal nonmagnetic
detector, whose basic unit is a three-layer electromag-
netic calorimeter consisting of 1632 NaI(Tl) crystals.
The calorimeter provides energy resolution for photons

σE/E = 4.2%/  and an angular resolution of
about 1.5°. The solid angle of the calorimeter is 90% of
4π. The angles of charged particles are measured by a
system of two drift chambers. The accuracy of mea-

me
2

E GeV( )4
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surements of the azimuthal and polar angles is about
0.5° and 2°, respectively. The solid angle of the drift
chamber system is 95% of 4π.

In this paper, we used the statistics accumulated in
the experiments on scanning the region of φ-meson res-
onance in 1996 and 1998 [4]. The data recorded in the
c.m. energy range 2E0 = 1016–1024 MeV with an inte-
grated luminosity of 8.8 pb–1 corresponding to 2.0 × 107

φ-meson decays were processed.

3. Most events of the process in question are charac-
terized by a small diverging angle of the electron–
positron pair. Since the SND detector has no magnetic
field, such a e+e– pair is detected in drift chambers as a
single charged particle.

We sampled the events satisfying the following con-
ditions:

One charged track and two photons with energies
above 50 MeV are found in an event.

A track is spaced from the beam axis in the R–φ
plane by R < 0.5 cm, and the z coordinate of the point
closest to the axis of beams is limited by |Z | < 10 cm.

The polar angle of all particles lies in the range
36° < θ < 144°.

The total normalized energy release in the calorim-
eter is limited by the condition Etot/2E0 > 0.8.

The total normalized momentum is limited by the
constraint Ptot/Etot < 0.15.

The kinematic reconstruction parameter describing
the accuracy of energy and momentum conservation in
an event is χ2 < 15.
002 MAIK “Nauka/Interperiodica”
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However, among events satisfying the above sam-
pling conditions, there are events not only of process
(1) but also of the background processes

e+e–  π+π–π0, (2)

(3)

(the latter with photon conversion on a substance).

e+e– π0γ, π0 2γ

Fig. 1. Distribution of the simulated events in the squared

photon-pair recoil mass, Mre , and the e+e–-pair energy

release, /Ebeam, normalized to the beam energy: the

process in question (gray points) and the background from
the e+e–  π+π–π0 process (squares) with the use of all
sampling conditions (circles) with weaker sampling condi-
tions (χ2 < 50). The line shows the chosen sampling condi-
tion.

cγγ
2

E
e

+
e

–

Fig. 2. Photon-pair invariant mass distribution: (points)
experimental data, (histogram) calculated background from
the φ  ηγ, η  e+e–γ decay and QED processes, and
(line) the approximation of the experimental points by the
sum of Gaussian and linear functions. In this case, the num-
ber of events in the peak was one of the approximation
parameters.
To suppress the background coming from process
(2), a two-dimensional distribution of simulated events
was plotted against the squared photon-pair recoil mass
and the e+e–-pair energy release (Fig. 1). As a result, we
introduced an additional sampling condition shown in
Fig. 1. After the use of this condition, the number of
background events of process (2) was calculated by
simulation to obtain N3π = 1 ± 1. To estimate the error
of simulating nuclear interaction of pions, the experi-
mental spectra of energy release by charged pions were
compared with the corresponding simulated spectra. It
was concluded that the experimental background from
process (2) differed from the simulated background by
no more than a factor of 3. For this reason, the value
N3π = 3 ± 3 was used as an estimate for the background.

For the events satisfying all sampling conditions, the
distribution of photon-pair invariant mass was con-
structed (Fig. 2). The spectrum has a peak near the π0

mass. The number of events in the peak was determined
through approximating the spectrum by the sum of a
Gaussian and a linear function and was found to be
equal to Nexp = 89 ± 12.

The events of process (3) can satisfy the sampling
conditions because of the conversion of photons on a
substance ahead of the drift chamber. The conversion of
photons in the detector substance was studied in [5],
where it was demonstrated that the simulation of con-
version closely reproduced the experimental data. For
this reason, the number of background events of pro-
cess (3) was determined by simulation and found to be
Ncon = 34 ± 6.

The analysis of the energy dependence of the cross
section for the e+e–  π0γ process similar to the pro-
cess under consideration, indicates that the amplitudes
of the e+e–  π0γ transition through ρ and ω mesons
contribute to the cross section in the φ-meson region.
However, it is impossible to obtain the energy depen-
dence for the e+e–  π0e+e– process because of low
statistics. For this reason, the probability of the φ 
π0e+e– process was calculated by using the coefficient K
which took into account the transition amplitudes
through the ρ and ω mesons. This coefficient was cal-
culated on the basis of the measured cross section for
the e+e–  π0γ process [6]:

(4)

where σ(Ei) is the Born cross section for the e+e– 
π0γ process at each energy point Ei, δ(Ei) is the radiative
correction, L(Ei) is the integrated luminosity, and Nφ is
the number of φ mesons detected on this interval. The
resulting correction coefficient is K = 1.42 ± 0.12. The
error is primarily determined by the accuracy of the
cross section measured for the e+e–  π0γ process.

K

σ Ei( )δ Ei( )L Ei( )
i

∑
NφBr φ π0γ( )

-----------------------------------------------,=
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The detection efficiency was determined by simula-
tion and found to be e = (17.8 ± 0.2)% (statistical error).
The branching ratio of decay (1) was calculated by the
formula

(5)

yielding Br(φ  π0e+e–) = (1.01 ± 0.28 ± 0.29) × 10–5.
The error is statistical and includes the errors of Nexp
and N3pi.

The systematic error was calculated by taking into
account the following sources: error in the number of φ
mesons (3%); limited statistics of simulating process
(1) (1%); errors in the determination of detection effi-
ciency (5%); error in the determination of the correc-
tion coefficient K (10%); statistical error in the number
of photons converted on the substance ahead of the drift
chamber (17%); error in the amount of the substance
ahead of the drift chamber (5%); and errors in the φ 
π0γ decay probabilities (8%). The resulting error was
equal to 27%.

Br γ π0e+e–( )
Nexp N3 pi–( )/K Ncon–

NφeBr π0 2γ( )
------------------------------------------------------,=
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4. Within two standard deviations, the measured
branching ratio B(φ  π0e+e–) = (1.01 ± 0.28 ± 0.29) ×
10–5 agrees with the calculation (1.3 × 10–5 [1]) and
with the previous experiment on the SMD-2 detector,
B(φ  π0e+e–) = (1.22 ± 0.34 ± 0.21) × 10–5 [2].
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A process of pair production by a circularly polarized photon in the field of an unpolarized atomic electron was
considered in the Weizaecker–Williams approximation. The degree of longitudinal polarization of a positron
and an electron was calculated. An exclusive cross section, as well as a spectral distribution, were obtained. We
estimate the accuracy of our calculations at the level of a few percent. We show the identity of the positron
polarization for the considered process and for the process of pair production in the screened Coulomb field of
a nucleus. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.40.-f; 13.88.+e; 14.60.Cd
1 In this paper, we consider the process γ(k) +
e−(p)  e–(q–) + e+(q+) + e–(p') in the high-energy
limit where the polarization states of initial photon and
production particles e+, e– are helical. The differential
cross section for an electron–positron pair photopro-
duction on a free electron in the Born approximation is
described by eight Feynman diagrams (FD) [1], which
are shown in Fig. 1 and Fig. 2. In the high-energy limit
(for a photon energy of 54 MeV in lab system), only the
subsets of the two Bethe–Heitler (BH) diagrams (see
Fig. 1) are relevant for the level of accuracy m2/s ~ 10–2;
m is the electron mass, and s is s = 2kp = 2mω, where ω
is the photon energy at the laboratory frame, whereas
the contributions we examine are on the order of s/m2 ~
200 @ 1. We also do not consider nonlogarithmic terms
because of their smallness, ~10–1, in comparison with
logarithmic terms, 2ln(s/m2) ~ 10. Further calculations
will be performed in the Weizaecker–Williams (WW)
approximation [2].

The differential cross section for triplet photopro-
duction in the Born approximation for the nonpolarized
case was calculated numerically in [3, 4] by Monte
Carlo simulation of all eight FD contribution. The
closed analytic expression is very cumbersome and was
first obtained in a complete form in works [5]. A detailed
analysis of the expressions of Haug’s work reveals that
the interference terms of the BH matrix elements with
the other three gauge-invariant subsets (which take into
account the bremsstrahlung mechanism of pair creation
and Fermi statistics for fermions) turn out to be on the
order of a few percent for s > 50–60 m2.

The differential cross section for electron–positron
pair production by linearly polarized photons was

1 This article was submitted by the authors in English.
0021-3640/02/7509- $22.00 © 0452
derived in a series of papers [6–8] (see also [9] and ref-
erences therein). In [10], Monte Carlo simulation was
performed for the process under consideration, in
which all eight lowest order diagrams can be numeri-
cally treated without approximation. There, it was
shown that one might consider only the two leading
graphs in a wide range of photon energies from 50 to
550 MeV. Note that this observation was made earlier
for the nonpolarized case in the works of Kopylov et al.
[3] and Haug [5] (who presented his results in explicit
analytic form).

The process of the polarized pair production by a
polarized photon in the screened Coulomb field of a
nucleus was considered in the high-energy limit in
works [11, 12]. Here, the degree of longitudinal polar-
ization of an electron was calculated.

From papers [3, 5] it follows that (1) the contribu-
tion of FD (see Fig. 2), as well as interference of its
amplitude with the amplitude of (see Fig. 1), can be
neglected within an accuracy of 3% as compared with
the contribution of (see Fig. 1), starting with photon
energies of ω > 30 MeV in laboratory frame; (2) one
can use the asymptotic formulas at a very high photon-
energy contribution of Bethe–Heitler FD (see Fig. 1)
within an accuracy of 5% starting with energies on the
order of ω > 100 MeV. Taking into account that the non-
polarized cross section dominates those depending on
particle polarization, we estimate the accuracy of WW
(logarithmical approximation) at the level of 10%.

Our paper is organized as follows. Using the Suda-
kov technique, we calculate the differential cross sec-
tion and the degree of longitudinal polarization of an
electron and positron in the process of pair production
by a circularly polarized photon on electron. In conclu-
sion, we discuss different schemes of production of lon-
2002 MAIK “Nauka/Interperiodica”
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gitudinally polarized positrons in experimental setups.
The method described here is one of the most promis-
ing ones. It is our motivation for investigation. In the
Appendix, we give, in the Born approximation, the dif-
ferential cross section for the triplet production process
for the case where polarization states of all particles are
helical by using the crossing transformation of the cor-
responding differential cross section for the Möller
bremsstrahlung process in the ultrarelativistic (mass-
less) limit. The corresponding formulas for the degree
of longitudinal polarization of the positron in terms of
the kinematical invariant and helicity of the initial pho-
ton are given for the case of high-energy large-angle
scattering.

The cross section for the process. The cross sec-
tion for the process is proved in the following form:

(1)

where p', ε' is four-momentum and energy of a scattered
electron; q± and ε± are four-momentum and the energy
of an electron and positron, correspondingly. We accept
here the Sudakov form [2] of the peripheric process. Let
us determine the basis vectors in the Sudakov represen-
tation of kinematics: the vector of momentum transfer

q = p – p' and the light-like vector  = p – k , a  =

0 (k is the 4-momentum of impact photon). The Suda-
kov representation of four-momenta are

(2)

The quantities β± can be interpreted as the energy frac-
tion of pair components of photon energy, β+ + β– = 1.
The conservation law of transverse momenta is q⊥  =
q⊥ + + q⊥ –. Momentum components along  are small.
Using the mass-shell conditions of pair components
and the scattered electron leads to

(3)

(4)

dσ 4πα( )3

4 2π( )5s
-------------------ΣM2d3q–

2ε–
----------

d3q+

2ε+
----------d3 p'

2ε'
----------=

× δ4 p k q+– q–– p'–+( ),

p̃
m2

s
------ p̃2

q α p̃ βk q⊥ , q±+ + α± p̃ β±k q⊥± ,+ += =

a⊥ k a⊥ p̃ 0.= =

p̃

sα± ρ±/β±,=

sβ 1 α–( ) q2– m2α ,–=

Fig. 1. Types of relevant Feynman diagrams.
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(5)

where we use the two-dimensional Euclidean vectors

, . The Sudakov parameter α can
be related to the invariant mass of the created pair

(6)

Using conditions of mass-shell and smallness of Suda-
kov parameter α, the momentum transfer to the target
square can be written in the following form:

(7)

We see that q2 < 0 is negative and has nonzero magni-
tude. Using the Sudakov representation of the momen-
tum phase volume of the particle

, (8)

we perform the phase volume of the final state:

(9)

Let us now consider the matrix element

By using the Gribov decomposition of the metric tensor
and omitting the terms of the order m2/s compared to
the terms of the order of unity

(10)

one can obtain the matrix element in the following
form:

(11)

ρ± q±
2 m2,+=

q⊥
2 q2–= q⊥±

2 q±
2–=

s1 q+ q–+( )2, sα s1 q2.+= =

q2 q2– m2 s1/s( )2.–=

d4q
s
2
---dαdβa2q⊥=

dΓ
d3q–

2ε–
----------

d3q+

2ε+
----------d3 p'

2ε'
----------δ4 p k q+– q–– p'–+( )=

=  
1
2s
-----

dβ–

β–β+
-----------d2q–d2q.

M u p'( )γµu p( )
1

q2
-----eρ k( )u q–( )Oρνv q+( )gµν.=

gµν gµν
⊥ 2

s
--- p̃µkν p̃νkµ+( )+

2
s
--- p̃νkµ,≈=

M
–2sN p

q2 m2 s1/s( )2+
----------------------------------eρ k( )u q–( )Vρv q+( ),=

Vρ 1
s
---Oρν p̃ν, N p

1
s
---u p'( )k̂u p( ), N p 1.= = =

Fig. 2. Types of irrelevant Feynman diagrams.
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Using the mass-shell conditions we can express the
matrix 4-vector Vρ as

(12)

One can see that the quantity Vρ is proportional to
|q⊥ | at small |q⊥ |. The WW approximation corresponds
to the logarithmical enhancement factor:

(13)

The polarization matrix of density  for e± particles
have the following form:

(14)

We will express the particle spin vectors s± in terms of
the 4-momenta q± and ,

(15)

The circular polarization vector eλ of a photon with
4-momentum k is conveniently defined by using the
4-vectors q+, q–, and k [13]:

Performing the angular averaging on d2q and extracting
the WW factor, we write down the differential cross
sections in the form (in the WW approximation, we can
put ρ+ = ρ– = ρ):

(16)

In the case where the initial electron is polarized, the
formula given above is not changed. The corresponding
effects are on the order m2/s. Performing the summation
over the polarization of the electron in Eq. (16), we get

Vρ β+β–
1
ρ–
----- 1

ρ+
-----– 

  γρ
β+

ρ+
----- p̃q̂γρ

β–

ρ–
-----γρq̂ p̃.–+= ˆ ˆ

q2q2
d

q2 m2 s1/s( )2+( )2
-----------------------------------------∫ 2

s
s1
----.ln≈

τ±
δ±

τ±
δ± 1

2
--- q̂± m+−( ) 1 δ±γ5ŝ±–( ),=

γ5ŝ±τ±
δ± δ±τ±

δ±.=

p̃

s±
q±+−
m

--------
2m p̃
sβ±

-----------, s±q±± 0, s±
2 1.–= = =

eµ
λ q–k( ) q+( )µ q+k( ) q–( )µ iλεµνρσq+

νq–
ρkσ+–

2z
---------------------------------------------------------------------------------------------------,=

z – q–k( )q+ q+k( )q–+( )2 ρ2 ρ m2–( )
4β+

2β–
2

--------------------------.= =

dσ
dq–

2dβ–

------------------
2α3

ρ2
--------- s

m2
------ 1 2β+β––

4m2

ρ2
--------- ρ m2–( )β+β–+ln=

+ λδ+ β+ β––
4m2

ρ2
--------- ρ m2–( )β–+ 

 

+ λδ– β+ β––
4m2

ρ2
--------- ρ m2–( )β++ 

 

+ δ+δ– –6β+β–
ρ m2–

m2
---------------

4m2

ρ2
--------- ρ m2–( ) 1 3β+β––( )–+ 

  .
the differential cross sections for creating a polarized
positron,

(17)

and an analogous expression for the cross section for
creating a polarized electron, 

(18)

From Eqs. (17) and (18) we have the degree of lon-
gitudinal polarization of the electron (positron) when
the polarization of the positron (electron) is not regis-
tered:

(19)

The result (21) is in agreement with the one given in
more general form in [12] [see Eq. (19.8)]. Performing
the integration over transverse momenta of the pair, we
obtain for the spectral distribution

(20)

Here, we use, in the WW approximation, |q+| = |q–|; ρ =

ρ+ = ρ– =  + m2; and λ is the degree of circular polar-
ization of the initial photon. The degree of longitudinal
polarization of the created e± particles has the form

(21)

We see from Eq. (21) that, in the limit β+  1(β–  1),
the degree of longitudinal polarization of the positron
(electron) equals the degree of circular polarization of
the initial photon (see Fig. 3).

Let us compare the result obtained with the calcula-
tions of longitudinal positron polarization from the
pair-production process in the screened Coulomb field

dσ+

dq–
2dβ–

------------------
4α3

ρ2
--------- s

m2
------ln=

× 1 2β+β––
4m2

ρ2
--------- ρ m2–( )β+β–+

+ λδ+ β+ β––
4m2

ρ2
--------- ρ m2–( )β–+ 

  ,

dσ–

dq–
2dβ–

------------------
4α3

ρ2
--------- s

m2
------ln=

× 1 2β+β––
4m2

ρ2
--------- ρ m2–( )β+β–+

+ λδ– β+ β––
4m2

ρ2
--------- ρ m2–( )β++ 

  .

δ±
f λ

β+ β–– 4m2/ρ2( ) ρ m2–( )β+−±
1 2β+β–– 4m2/ρ2( ) ρ m2–( )β+β–+
-------------------------------------------------------------------------------------.=

dσ+

dβ–
--------- 4αr0

2 s

m2
------ 1

4
3
---β+β–– λδ+ 1

4
3
---β–– 

 + .ln=

q–
2

δ±
f λ 1

4
3
---β+−– 

  / 1
4
3
---β+β–– 

  .=
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of a nucleus [11]. With the same accuracy as before, we
can write (see [14])

(22)

Keeping in mind that β– = 1 – β+, one can obtain the
same result from (21).

Several schemes of creating polarized positrons for
electron-positron colliders were proposed in [15]. Lon-
gitudinally polarized positrons are produced in the pair-
production process by a circularly polarized photon
with energy an >10 MeV. A circularly polarized γ beam
is formed due to undulator radiation of electrons with
energy E ~ 102 GeV in a helical undulator [16] or due
to the Compton backscattering process of the circularly
polarized laser photons by an electron beam with
energy >1 GeV [17]. In both cases, only the process of
pair production in the screened Coulomb field of the
nucleus was considered as a source of polarized
positrons. The process of triplet production was consid-
ered as a background process [14]. The obtained results
allow one to develop a correct Monte Carlo code for
receiving positron polarization in the real experimental
situation with allowance for both processes of pair pro-
duction in an amorphous target [18].

In recent experiment [19], the authors measured the
circular polarization of γ-ray quanta with energy
>20 MeV using the magnetized iron polarimeter. The
thickness of the iron substance was too large (7 cm), so
the correct estimate of the analyzing power should have
been done using the Monte Carlo technique. In this case,
the polarization characteristics of all reaction particles
should be taken into account, and our results cover the
existing deficiency.

APPENDIX

The differential cross section for the triplet produc-
tion process can easily be calculated with the help of the
crossing transformation of the expression for squared
amplitudes of the Möller bremsstrahlung process

(23)

which corresponds to eight Feynman diagrams. In [13],
the differential cross section for this reaction was calcu-
lated in the case where all fermions were massless

(  = 0, where i = 1, 2, 3, 4), taking into account the
polarization of initial electrons and the emitted photon.
Let us introduce invariant variables:

(24)

δ+
f

4
3
---β+

1
3
---–

β+
2 β–

2
+( ) 2

3
---β+β–+

-------------------------------------------λ .≈

e– p1( ) e– p2( ) e– p3( ) e– p4( ) γ k( ),+ ++

pi
2

s1 p1 p2+( )2, t1 p1 p3–( )2,= =

u1 p1 p4–( )2,=

s2 p3 p4+( )2, t2 p2 p4–( )2,= =

u2 p2 p3–( )2,=
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helicities δ1 and δ2 for initial electrons with momenta p1
and p2 respectively, and λ for the helicity of the emitted
photon. The differential cross section for reaction (23)
in the case of helically polarized initial electrons and a
photon has the following form [13]:

(25)

Expressions for AMB and WM are [13]

(26)

(27)

Photoproduction diagrams for the triplet

(28)

are different from the ones for the Möller bremsstrahl-
ung process (23) with the exchange

(29)

Both processes (23) and (28) are two crossing chan-
nels with the same (generalized) reaction. After the

dσM
α3

2π2s
-----------AMWMdΓ M, AM

AMB

t1t2u1u2
-------------------,= =

dΓ M

d3p3

2 p30
-----------

d3p4

2 p40
-----------d3k

2ω
--------δ p1 p2 p3– p4– k–+( ).=

AMB 1 δ1δ2+( ) 1 δ1λ+( )s1s2s2
2 1 δ1λ–( )s1s2s1

2+[ ]=

+ 1 δ1δ2–( ) 1 δ2λ+( ) t1t2t1
2 u1u2u1

2+( )[

+ 1 δ2λ–( ) t1t2t2
2 u1u2u2

2+( ) ] ,

WM

p1

p1k
--------

p2

p2k
--------

p3

p3k
--------–

p4

p4k
--------–+ 

  2

.–=

γ k( ) e– p( ) e– q–( ) e+ q+( ) e– p'( )+ + +

p1 p, p2 q+, p3 p', p4 q–,–

k k, λ λ , δ1 δ1, δ2 δ+– .––

Fig. 3. The degree of longitudinal polarization of positron

 (21) versus β+.δ+
f
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change (29) of invariant variables (24), they take the
from

(30)

Since the squared amplitude for process (28) after the
change of variables (29) is similar to the one for process
(23), one can then obtain, after summing the initial
electron polarization in reaction (28) from (25), the fol-
lowing formula for triplet production taking into
account the polarization of the initial photon and the
scattered positron:

(31)

(32)

where s = (p + k)2 and dΓ are defined by Eq. (9). Then,
for the degree of longitudinal polarization of the pro-

duced positron  = , we have the expression

This formula is valid only when the squared invariant
mass of any particle pair is greater than the squared
electron mass.
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A field-theoretical description of the behavior of homogeneous, elastically isotropic, compressible systems
characterized by two order parameters at the bicritical and tetracritical points is presented. For three-dimen-
sional Ising-like systems, a similar description is performed in the two-loop approximation in three dimensions
with the use of the Padé–Borel summation technique. The renormalization group equations are analyzed, and
fixed points corresponding to different types of multicritical behavior are determined. It is shown that the effect
of elastic strains causes a change from a bicritical behavior to a tetracritical one and leads to the appearance of
a wide variety of multicritical points. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.60.Kw; 64.60.Ak
Earlier, it was shown [1] that, because of striction
effects, elastic strains lead to the appearance of multi-
critical points that are absent in the phase diagrams of
corresponding incompressible substances.

The subject of this paper is the study of the influence
of striction effects on systems whose phase diagrams
already contain multicritical points of the bicritical or
tricritical type. In the first case, a multicritical point cor-
responds to the intersection of two lines of second-
order phase transitions and one line of first-order phase
transitions, and in the second case, it corresponds to the
intersection of four lines of second-order phase transi-
tions. In the immediate vicinity of a multicritical point,
the system exhibits a specific critical behavior charac-
terized by the competition between different types of
ordering. As a result, at a bicritical point, one critical
parameter is displaced by another. A tetracritical point
allows the existence of a mixed phase with the coexist-
ence of different types of ordering. Such systems [2]
can be described by introducing two order parameters
that are transformed according to two irreducible repre-
sentations.

In structural phase transitions that occur in the
absence of the piezoelectric effect in the paraphase,
elastic strains act as a secondary order parameter whose
fluctuations are not critical in most cases [3]. Since, in
the critical region, the main contribution to the striction
effects comes from the dependence of the exchange
integral on the distance, only elastically isotropic sys-
tems are considered in this paper.
0021-3640/02/7509- $22.00 © 20457
The model Hamiltonian of the system has the form

(1)

Here, Φ(x) and Ψ(x) are the fluctuating order parame-
ters; u01 and u02 are positive constants; τ1 ~ |T – Tc1|/Tc1
and τ2 ~ |T – Tc2|/Tc2, where Tc1 and Tc2 are the phase
transition temperatures for the first- and second-order
parameters, respectively; y(x) = , where
uαβ is the strain tensor; g1 and g2 are the quadratic stric-
tion parameters; β is a constant characterizing the elas-
tic properties of the crystal; and D is the space dimen-
sion. In this Hamiltonian, integration with respect to the
components that depend on the nonfluctuating vari-
ables, which do not interact with the order parameters,
has already been already performed.

Changing to the Fourier transforms of the variables
in Eq. (1), one obtains the Hamiltonian of the system in
the form

H0 xD 1
2
--- τ1 ∇ 2+( )Φ x( )2 1

2
--- τ1 ∇ 2+( )Ψ x( )2+d∫=

+
u10

4!
------- Φ x( )2( )2 u20

4!
------- Ψ x( )2( )2 2u30

4!
---------- Φ x( )Ψ x( )( )2+ +

---+ g1y x( )Φ x( )2 g2y x( )Ψ x( )2 βy x( )2+ + .

uαα x( )α 1=
3∑

H0
1
2
--- qD τ1 q2+( )ΦqΦ q–d∫=

+
1
2
--- qD τ2 q2+( )ΨqΨ q–d∫

+
u01

4!
------- qD

i Φq1Φq2( ) Φq3Φ–q1 q2– q3–( )d∫
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(2)

Here, the components y0 describing uniform strains are
separated. According to [1], such a separation is neces-
sary, because the nonuniform strains yq are responsible
for the acoustic phonon exchange and lead to long-
range interactions, which are absent for uniform
strains.

Let us determine the effective Hamiltonian that
depends on only the strongly fluctuating order parame-
ters Φ and Ψ of the system as follows:

(3)

If the experiment is performed at constant volume, the
quantity y0 is a constant, and the integration in Eq. (3)
only goes over the nonuniform strains, while the uni-
form strains do not contribute to the effective Hamilto-
nian. In an experiment at constant pressure, the term
PΩ is added to the Hamiltonian, with the volume being
represented in terms of the strain tensor components in
the form

(4)

and the integration in Eq. (3) also performed over the
uniform strains. According to [4], the inclusion of qua-
dratic terms in Eq. (4) may be important at high pres-
sures and for crystals with strong striction effects. As a
result, one obtains

+
u02

4!
------- qD

i Ψq1Ψq2( ) Ψq3Ψ–q1 q2– q3–( )d∫
+

2u03

4!
---------- qD

i Φq1Φq2( ) Ψq3Ψ–q1 q2– q3–( )d∫
+ g1 qyq1Φq2Φ–q1 q2–

Dd∫

+ g2 qyq1Ψq2Ψ–q1 q2–
D g1

2

Ω
-----y0 qΦqΦ q–

Dd∫+d∫

+
g2

0

Ω
-----y0 qΨqΨ q–

Dd∫ 2β qyqy q–
D 2

β0

Ω
-----y0

2.+d∫+

H Φ Ψ,[ ]–{ }exp

=  B H0 Φ Ψ y, ,[ ]–{ } yq.d∏exp∫

Ω Ω0 1 uαα

α 1=

∑ uαα uββ

α β≠
∑ O u3( )+ + +=

H
1
2
--- q τ1 q2+( )ΦqΦ q–

D
d∫=

+
1
2
--- q τ2 q2+( )ΨqΨ q–

D
d∫

+
v 01

4!
-------- qD

i Φq1Φq2( ) Φq3Φ–q1 q2– q3–( )d∫

+
v 02

4!
-------- qD

i Ψq1Ψq2( ) Ψq3Ψ–q1 q2– q3–( )d∫
(5)

This Hamiltonian leads to a wide variety of multicriti-
cal points. As for incompressible systems, both tetrac-
ritical

and bicritical

behaviors are possible. In addition, the striction effects
may give rise to multicritical points of higher orders.

In the framework of the field-theoretical approach
[5], the asymptotic critical behavior and the structure of
the phase diagram in the fluctuation region are deter-
mined by the Callan–Symanzik renormalization group
equation for the vertex parts of the irreducible Green’s
functions. To calculate the β and γ functions as func-
tions involved in the Callan–Symanzik equation for

renormalized interaction vertices u1, u2, u3, g1, g2, ,

and  or complex vertices z1, z2, w1, w2, v 1, v 2, and
v 3, which are more convenient for the determination of
the multicritical behavior, a standard method based on
the Feynman diagram technique and on the renormal-
ization procedure was used [6]. As a result, the follow-
ing expressions were obtained for the β functions in the
two-loop approximation:

+
2v 03

4!
----------- qD

i Φq1Φq2( ) Ψq3Ψ–q1 q2– q3–( )d∫

+
z1

2 w1
2–

2
---------------- qD

i Φq1Φ–q1( ) Φq2Φ–q2( )d∫

+
z2

2 w2
2–

2
---------------- qD

i Ψq1Ψ–q1( ) Ψq2Ψ–q2( )d∫
+ z1z2 w1w2–( ) qi Φq1Φ q1–( )D Ψq2Ψ q2–( ),d∫

v 01 u01 12z1
2, v 02– u02 12z2

2,–= =

v 03 u03 12z1z2,–=

z1

g1

β
-------, z2

g2

β
-------, w1

g1
0

β0

---------, w2
g2

0

β0

---------= = = = .

v 3 12 z1z2 w1w2–( )+( )2

< v 1 12 z1
2 w1

2–( )+( ) v 2 12 z2
2 w2

2–( )+( )

v 3 12 z1z2 w1w2–( )+( )2

≥ v 1 12 z1
2 w1

2–( )+( ) v 2 12 z2
2 w2

2–( )+( )

g1
0( )

g2
0( )

βv 1 –v 1
n 8+

6
------------v 1

2 m
6
----v 3

2+ +=

–
41n 190+

243
------------------------v 1

3 23m
243
----------v 1v 3

2–
2m
27
-------v 3

3,–

βv 2 –v 2
m 8+

6
-------------v 2

2 n
6
---v 3
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(6)

It is well known that the perturbative series expan-
sions are asymptotic and the vertices of the interactions
of the order parameter fluctuations in the fluctuation
region are sufficiently large for Eqs. (6) to be directly
applied. Therefore, to extract the necessary physical
information from the expressions derived above, the
Padé–Borel method generalized to the multiparameter
case was used. The corresponding direct and inverse
Borel transformations have the form

(7)
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For the analytic continuation of the Borel transform of
a function, a series in an auxiliary variable θ is intro-
duced:

(9)

and the [L/M] Padé approximation is applied to this
series at the point θ = 1. This approach was proposed
and tested in [7] for describing the critical behavior of
systems characterized by several vertices of interaction
of the order-parameter fluctuations. The property of the
system retaining its symmetry when using the Padé
approximants in variable θ is essential for the descrip-
tion of multivertex models.

In the two-loop approximation, the β functions were
calculated using the [2/1] approximant. The character
of critical behavior is determined by the existence of a
stable fixed point satisfying the set of equations

(10)

The requirement that the fixed point be stable is
reduced to the condition that the eigenvalues bi of the
matrix

(11)

lie in the right complex half-plane.
The resulting set of resummed β functions contains

a wide variety of fixed points lying in the physical
region of the vertex values with v i ≥ 0.

A complete analysis of the fixed points, each of
them corresponding to the critical behavior of a single
order parameter, was presented in our recent publica-
tion [8]. Now, I consider the combined critical behavior
of two order parameters.

The analysis of the values and stability of the fixed
points offers a number of conclusions. The bicritical
fixed point of an incompressible system (v 1 =
0.934982, v 2 = 0.934982, v 3 = 0.934982, z1 = 0, z2 = 0,
w1 = 0, w2 = 0) is unstable under the effect of uniform
strains (b1 = 0.090, b2 = 0.523, b3 = 0.667, b4 = 0.521,
b5 = 0.002, b6 = 0.521, b7 = 0.002). The striction effects
lead to the stabilization of the tetracritical fixed point of
a compressible system (v 1 = 0.934982, v 2 = 0.934982,
v 3 = 0.934982, z1 = 0, z2 = 0, w1 = 0, w2 = 0, b1 = 0.090,
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b2 = 0.523, b3 = 0.667, b4 = 2.144, b5 = 0.267, b6 =
5.223, b7 = 0.882).

The stability of other multicritical points cannot be
investigated in terms of the described model, because
the calculations lead to a degenerate set of equations.
The degeneracy is eliminated by considering the
Hamiltonian with allowance for the terms of higher
orders in both the strain tensor components and the
fluctuating order parameters.

Thus, the striction-caused interaction of the fluctuat-
ing order parameters with elastic strains leads to the
transition from the bicritical behavior to the tetracritical
one and also to the appearance of new multicritical
points with their own types of critical behavior in the
phase diagram of the substance.
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A new surface-sensitive method of time-resolved optical studies is proposed. The method consists in the inde-
pendent excitation of several surface electromagnetic waves (SEW) by two laser femtosecond pulse beams with
varied time delay ∆τ and distance ∆r between corresponding excitation regions on the surface. To fulfill the
phase-matching condition for plasmon–photon coupling, metal grating is used. Due to nonlinear plasmon inter-
action, the optical radiation with ω1 + ω2 and 2ω1 – ω2 (where ω1, ω2 are corresponding laser beam frequencies)
is generated. The intensity of this nonlinear response versus ∆τ and ∆r are studied. The direct measurements of
the SEW temporal properties are presented. Experiments of this type are important for the development of fem-
tosecond surface plasmon optics. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Ky; 42.65.Hw; 73.20.Mf
1 The surface electromagnetic wave (SEW) is an
effective tool for interface studies [1–4]. SEWs have
various applications in matter diagnostics, nonlinear
optics and spectroscopy. Many optical effects are diffi-
cult to observe, because of a weak nonlinear response
or small amount of substance. To avoid this difficulty,
one can concentrate laser radiation energy in space and
time. The advantage of using SEW is the concentration
of light energy near the interface. Special experimental
geometry can be used to fulfill phase-matching condi-
tion for effective SEW excitation [1]. We use metal
grating for this purpose. It is essential for nonlinear pro-
cesses to have a high peak intensity, but the average
field must be moderated, otherwise the sample will be
damaged. Femtosecond laser pulses fit these require-
ments.

In this work, we suggest a new surface-sensitive
method of time-resolved studies based on the use of an
interacting SEW excited by two femtosecond laser
beams with varying time delay and distance between
corresponding excitation regions on the surface. This
interaction leads to the generation of optical waves at a
frequency equal to the second harmonic or the sum of
frequencies of the incoming beams. The four-wave
mixing (FWM) process 2ω1 – ω2 is also investigated.
We are mainly interested in the temporal behavior to
demonstrate that time-resolved studies on a grating sur-
face can potentially have temporal resolution of up to a
few femtosecond. The sensitivity and selectivity to the
properties of the surface are achieved with the second-

1 This article was submitted by the authors in English.
0021-3640/02/7509- $22.00 © 20461
harmonic (SHG) and sum-frequency generation (SFG)
processes, because these processes are forbidden in the
bulk of the isotropic medium [5, 6]. The results show
that our method, based on the interaction of a noncol-
linear SEW, has femtosecond time resolution and many
more possibilities for experimental realization in com-
parison with other surface-sensitive optical techniques
[7–11].

We carried out experiments in the different geome-
tries of incoming beams. A collinear scheme was used
in the case of degenerate SFG. We demonstrated the
possibility of noncollinear experiments by the example
of degenerate and nondegenerate SFG and FWM.

The SEW is generated according to the relation

 + niq = , where i = 1, 2 denote the beam
number, q = 2π/d is the reciprocal lattice vector, d is the
grating period, kt, i = kisinθi is the laser radiation wave-
vector projection on the grating plane, θi is the angle of
incidence of the laser beam relative to the normal of the

grating, and ni is the diffraction order.  is the
SEW wave vector (see Fig. 1).

The generated SEW waves radiate waves at the
combination optical frequency if phase-matching con-
ditions for optical waves at frequencies ω1 and ω2 are
satisfied simultaneously with the relation between the

interacting SEW wave vectors:  +  +

n3q =  for nondegenerate SFG and 2  –

 ± q =  for the FWM process. Figure 1
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002 MAIK “Nauka/Interperiodica”



 

462

        

LOZOVIK 

 

et al

 

.

                                                                  
depicts the vectorial layout for degenerate noncollinear
(Fig. 1a) and nondegenerate collinear SFG (Fig. 1b).
Note that in Fig. 1 the angle ϕ represents the angle
between the optical wave vector and the reciprocal lat-
tice vector of grating. Figure 1b demonstrates that
proper choice of angles ϕ and θ leads to simultaneous
satisfaction of the phase-matching condition of surface
plasmon excitation and the nonlinear process. We high-
light that, when ϕ is equal to 90 degrees (symmetric

case), excitation of two SEWs with wave vectors  +

q and  – q, respectively, takes place simultaneously.

First, we describe the case of interaction of a two
collinear plasmon in the symmetric scheme (ϕ = 90°)
with ω1 = ω2 = ω. We measure the emission of the sig-
nal at frequency 2ω and compare it with the autocorre-
lation function (ACF) of the fundamental beams. The
results are presented in Fig. 2a. Each beam at the fun-
damental frequency radiates at the frequency 2ω via the
SHG process and, as a consequence, the recorded sig-
nal is nonzero for large delay between pulses. When
spatial and temporal overlap of the pulses occurs, the
degenerate collinear SFG wave is radiated in the spec-

kt
ω

kt
ω

Fig. 1. (a) Wave vector arrangement at grating surface for
SFG. Simultaneous excitation of two SEWs of one fre-
quency (degenerate) in different directions (noncollinear).
The sets of angles are ϕ = 83°, θ1 = 42°, θ1 = 59°.
(b) Arrangement of wave vectors at grating surface. Simul-
taneous excitation of several SEWs of two frequencies
(nondegenerate) in symmetric geometry in different direc-
tions (noncollinear). Angle values are ϕ = ±90°, θ1 = 66°,
θ1 = 52°.
ular direction. The SFG is recorded as a function of
delay (plasmon correlation function PCF). This experi-
mental scheme is the same as for an autocorrelator.

We performed the same experiment in a noncol-
linear geometry, and the results are presented in Fig. 2b.
In this geometry, the SHG from each beam and the
degenerate SFG occur. SFG wave-vector projection on

the surface is  =  + , and then the
SFG signal emission occurs in the direction θ3 ≈ (θ1 +
θ2)/2 [10] different from θ1 and θ2. The recorded signal
is then background-free. The angles of the grating
groove orientation are chosen to be the same for both
beams, ϕ1 = ϕ2 = 83°, and all incident and reflected

kt 3,
2ω KSEW 1,

ω KSEW 2,
ω

Fig. 2. Correlation functions of SFG enhanced by SEW.
(a) Autocorrelation function for laser radiation ACF (λ =
760 nm) and plasmon correlation function PCF for the
degenerate symmetric case. (b) The same as (a) for the
degenerate noncollinear nonsymmetrical case. (c) Cross-
correlation function for laser radiations CCF (λ1 = 690 nm
and λ2 = 812 nm) and plasmon correlation function for the
SFG PCF2 and FWM-PCF nondegenerate symmetric case:
ϕ = ±90°, θ1 = 66°, θ1 = 52°.
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beams lie in the incidence plane. The value of θ1 and θ2
are set in such a way so as to excite simultaneously two
SEWs according to our grating parameters (Fig. 1a).

We also realized noncollinear nondegenerate SFG
and FWM with two synchronized femtosecond laser
beams with different frequencies. The symmetric
scheme was used for both beams with frequencies ω1
and ω2, as in the degenerate collinear scheme. Beams
had different incidence angles, as in the degenerate
noncollinear scheme. To characterize laser pulses, we
used the cross-correlation function (CCF) of beam 1
and beam 2 pulses.

Note that, for the described experiments, the charac-
teristic length of the SEW path is of the same order as
radii of the excitation spot (15 µm) on the surface. The
SEW propagation length lpl and lifetime τpl are coupled
through plasmon velocity v  = 0.9c, where c is the speed
of light.

For SEW excitation, we observe four nonlinear sig-
nals 2ω1, 2ω2, ω1 + ω2, 2ω1 – ω2 separated in frequen-
cies and in the radiation emission angle (see Fig. 3).
Note that the 2ω1 – ω2 process is of a different nature;
it is a third-order nonlinear process, and its efficiency is
determined by χ(3) and not by χ(2), where χ(2) and χ(3) are
the corresponding nonlinear susceptibility tensors. The
properties such as the spectral width, pulse duration,
and the polarization direction for FWM proved to be
different from the second-order processes—SHG,
SFG—under our experimental conditions. Frequency
combination is the same as in the well-known CARS
(coherent anti-stokes Raman scattering) process.
Although we do not have resonance with media at the
frequency ω1 – ω2 in our case, the signal intensity is
rather high. Indeed, the absolute FWM intensity is
higher than for SFG or SHG. This can occur because
the χ(3) electric-dipole tensor has nonzero components
in the bulk, in contrast to χ(2). The results of measure-
ments are shown in Fig. 2c as PCF 2 for SFG and PCF
3 for FWM process. Note that the duration of ACF is

 times larger than the pulse duration. For the FWM

process, however, the duration of PCF 3 is  times
less than the pulse duration, because of the difference in
the order of the process. The PCF signal is the cross
correlation of SEW1 and SEW2 fields. In turn, the SEW
field is a convolution of the plasmon lifetime τpl and
laser pulse duration. From the comparison of ACF and
PCF duration, it is possible to obtain the plasmon life-
time. In the symmetric (collinear and degenerate) SFG
case (Fig. 2a), the measured SEW lifetime was found to
be 70 fs. For the nonsymmetrical case (noncollinear
and degenerate) (Fig. 2b), this lifetime decreases to
20 fs. For the nondegenerate symmetric noncollinear
case, the SEW lifetime (60 fs) is smaller than in the
degenerate symmetric case, due to higher SEW absorp-
tion at frequency ω2. However, it is greater than in the
nonsymmetrical case. As seen from Fig. 2b, the traces

2

3/2
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overlap in the case of noncollinear and degenerated
SFG, demonstrating that the lifetime is much shorter
than in the other case of interaction. This increase in the
SEW lifetime in the symmetric case can be connected
with the modification of SEW properties due to the
Bragg reflection of SEW from the grating grooves.

The nonlinear signal intensity distribution vs. reflec-
tion angle θ is presented in Fig. 3b for the nondegener-
ate geometry. All beams lie in the incidence plane. The
angle of nonlinear signal radiation defined by the
phase-matching condition agrees well with the experi-
mental data.

As plasmon propagates on the metal surface, it
exponentially decays (in time and space) through sev-
eral channels: ohmic losses, radiation damping, and
Landau damping.

Besides the fact that the metal is also in the nonequi-
librium state after SEW excitation and absorption, the
electron relaxation can manifest itself in measured val-
ues [11–13].

In principle, in time-resolved SEW experiments it is
possible to observe not only the SEW lifetime, but also
the interface relaxation time through the processes
described above if a parameter of the nonlinear process
depends essentially on the temperature or distribution
of metal electrons. With our experimental conditions,
we did not observe the influence of medium tempera-
ture on χ(2) within a relative accuracy of 5%.

Fig. 3. (a) Wave-vector arrangement in the incidence plane
for the nondegenerate symmetric case. (b) Angle distribu-
tion of nonlinear signal radiation in the incidence plane. 
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For the wavelength of 780 nm in gold, the SEW
maximal propagation length restricted by ohmic losses
is only 40 µm, which would correspond to a SEW life-
time of 130 fs. At the sum frequency, the same param-
eters are, accordingly, 1.3 µm and 3 fs. However, for the
difference frequency generation (DFG) (mid and far
IR), the propagation length can be much larger (500 µm
for λ = 10 µm). The suggested method allows the DFG
enhancement by SEW, which can be useful for IR sur-
face time-resolved spectroscopy.

In conclusion, the method of femtosecond surface-
plasmon spectroscopy has been suggested and experi-
mentally demonstrated. It is based on the resonance
excitation of several surface SEWs by femtosecond
synchronized laser beams. These SEWs interact at the
surface, allowing one to enhance various nonlinear
optical effects sensitive to the surface properties. This
was demonstrated in this work by the sum-frequency
generation and four-wave mixing process. The nonlin-
ear optical response originating from the interacting
SEWs reflects the spatial and temporal behavior of
these SEWs. As an example, we measured the SEW
lifetime at the surface of gold grating, which proved to
be 60 fs for the symmetric case and less than 20 fs for
the nonsymmetrical case. For the first time, we
observed simultaneously SHG, SFG, and FWM
enhanced by the SEW on grating. The described exper-
iments open up the practical possibility for the develop-
ment of time-resolved femtosecond surface plasmon
optics and spectroscopy.

We thank Yu.P. Strelnikov for the fabrication of grat-
ings and A.V. Balakin and I.O. Ozherelov for assistance
in the experiments. The work was supported by the
Russian Foundation for Basic Research.
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Specific features of the induction excitation of 2D electron systems at the Hall plateaus are discussed. The cor-
responding kinetics is shown to have several frequency regimes. In the region ω @ ωD, where ωD is the fre-
quency characteristic of the kinetics at the Hall plateaus, an induction-caused variation of electron density fol-
lows the magnetic-field variation with time. For the frequencies ω ≤ ωD, a noticeable relaxation of the electron
disturbance appears, and the induction polarization of 2D samples at the Hall plateaus noticeably decreases as
compared to the maximum possible polarization. Finally, in the limit ω ≤ ωslow, where ωslow corresponds to
another characteristic time of the quantum Hall effect, the so-called adiabatic approximation takes place with
the 2D system responding to the derivative of magnetic field dH/dt rather than to the magnetic field itself H(t).
The results of calculations are compared with the experimental data reported in the literature. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.10.Pm; 73.43.Cd
Induction effects in an alternating magnetic field
oriented normally to the plane of a 2D electron system
are usually parasitic and require considerable (and not
always successful) efforts for their elimination. How-
ever, recently, the induction effects were found to be
useful for testing some fundamental concepts of the
theory of the quantum Hall effect (QHE). It has been
shown [1–3] that the QHE can also occur without the
participation of the edge states. In the cited papers, it
was also noted that, as in the case of the resistivity in the
QHE regime, the magnetic-field dependence of the
conductivity tensor exhibits characteristic quantum pla-
teaus. Experiments [4] were carried out to test the
Laughlin adiabatic hypothesis [5]. The problem of the
induction states at the Hall plateaus is of interest by
itself, because practically all measurements connected
with the determination of the behavior of 2D systems in
a magnetic field deal with the induction-caused excita-
tion of the 2D system, while no comprehensive descrip-
tion of the consequences of this excitation is yet avail-
able. Below, this problem is considered for a single,
infinitely long strip of width 2w in a magnetic field.
Besides being interesting by itself (as was mentioned
above), the model under consideration gives insight
into the properties of a Corbino ring in the conditions

(1)

where R2 and R1 are the outer and inner radii of the ring.

1. Let us first consider the auxiliary problem of a 2D
heterostructure in the form of a strip of width 2w with
the separation 2d between the conducting system and
the donor layer of density nd in the absence of a mag-

R2 R1/ R2 R1+( ) ! 1, R2– R1– 2w,=
0021-3640/02/7509- $22.00 © 20465
netic field. The electron density in this system has the
form

(2)

(3)

(4)

The constant C is determined from condition (4). The
general form of δn(x) is shown in the figure.

The profile of δn(x) varies as a function of the mag-
netic field oriented normally to the plane of the hetero-
structure and remains symmetric about the plate center
under the condition that the average density of the 2D
system is assumed to be equilibrium. The sensitivity to
the magnetic field grows with decreasing ratio T/"ωc

(where T is the temperature and ωc is the cyclotron fre-
quency), while the diagonal conductivity along the 2D
system simultaneously decreases exponentially. As a
result, the electron density distortion due to the induc-
tion effect (which is always present in conducting sys-
tems with a time-dependent magnetic field) ceases
being compensated by the diagonal component of the
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current, and the aforementioned symmetry of the 2D
system is violated. In practice, attempts are usually
undertaken to avoid this parasitic effect, e.g., by reduc-
ing the size of the 2D samples (see [6]) or by using an
additional tunneling channel to provide the relaxation
of the perturbed density at its equilibrium value [7, 8].
However, in recent years, a trend has been shown
toward special studies of the induction phenomena at
the Hall plateaus [1–4, 9].

2. For definiteness, let us consider the interesting
publication [9], where a weak periodic induction-
caused perturbation of an unscreened Corbino ring,
together with a constant magnetic-field component that
provides the appearance of quantum states give rise to
a measurable oscillating charge between the ring edges
at the Hall plateau. The presence of this charge is not
unexpected. For example, a successful attempt to excite
inductively the transverse magnetoplasmons in a sys-
tem of parallel strips was reported in [10]. However, the
experiment [9] mentioned above deserves special atten-
tion for the following reasons. Firstly, in a wide range
of low (compared to the plasma) frequencies, the volt-
age measured between the ring edges does not depend
on the induction excitation frequency. In addition, in
the region ω ≤ ωD [ωD ~ 100 Hz, and the formal defini-
tion of ωD is given below; see Eq. (13)], this voltage
monotonically decreases with decreasing excitation
frequency. Both these facts require a self-consistent
interpretation.

The first effect can be explained within the frame-
work of the phenomenological approach proposed by
the authors of the cited publication [9] if we assume
that the voltage between the ring edges is proportional
to the degree of its charge polarization (Coulomb dipole

Distribution δn(x) from Eq. (2) near one of the edges of a
heterostructure with d/w = (1) 0.05, (2) 0.25, and (3) 0.01.
moment) under the effect of induction forces {see
Eq. (3) in [9]}. These authors correctly assume (as in
[1–5]) that, at the plateau, the dipole moment of the ring
is formed by the induction component of the radial cur-
rent excited by the alternating magnetic field and does
not contain a dissipative part of this component, which
partially restores the homogeneity of the 2D system.
Taking into account the explicit form of ac magnetic-
field-induced electron-density variation δni(t) along the
integer part of the plate under the conditions σxx  0
(see [1–4]),

(5)

and the necessity of retaining the total number of
“shifted” electrons [see condition (4)], the total distri-
bution of δno in our model should be chosen to have a
Γ shape:

(6)

where the edge width a has a characteristic scale d and
varies within narrow limits about its own geometric
value (see figure). For definiteness, we assume that the
maximum of δno is at the right end of the plate. In
Eq. (5), l is an integer and δH(t) is the magnetic-field
variation measured from the onset of the cutoff situa-
tion σxx  0. We also assume that the conductivity
σxy, whose explicit form is used in Eq. (5), remains con-
stant over the whole interval of magnetic-field variation
within the Hall plateau region.

Evidently, the charge distribution defined by Eq. (6)
(as well as the voltage measured between the ring
edges) possesses a dipole moment that is independent
of the frequency of the exciting signal. This property of
distribution (6) accounts for the absence of sensitivity
to the frequency of measured signal [9] over a wide fre-
quency range (102–104 Hz).

It is worthy of note that the density variation given
by Eq. (5) does not disturb the filling factor δν in the
main part of the ring (plate). This follows from the def-
inition of ν:

(7)

Thus, the induction-caused perturbation of the 2D sys-
tem does not affect its integer state (in its main part
away from the boundaries).

3. The induction density disturbance (6) constructed
“by hand” inevitably contains a spatial inhomogeneity,
and the 2D system tends to smooth it out in all possible
ways. One of these possibilities is associated with vor-

δni t( ) σxyδH t( )/ec– elδH t( )/hc,–= =

l 1 2 3 …,, , ,=

δno x( )
δni, w x +w a–< <––

+δniw a– /a, +w a x +w,< <–



=

ν π no δni+( )lH
2 , lH

2 2c"/e Ho δH+( ),= =

ν ν l 1 δH/Ho+( ) 1 δH/Ho+( ) 1– ν l,≡=

ν l

noch
eHo

----------- l l 1 2 3, ,=( ).= =
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tex currents generating their own magnetic field.
Knowing the vortex electric field produced by the field

, the value of σxy, and the inductance of the ring, one
can easily estimate the scale of the additional magnetic
flux ΦJ through the disk opening. Divided by the initial
flux Φo, this flux has the scale

Clearly, this channel of “smoothing out” the density
gradients is insignificant, at least, for the parameters
2w ≤ 1 cm and ω ≤ 104 Hz used in [9].

The electric potential ϕ(x) is absent in distribution
(6). To estimate its role in the behavior of δn(x), it is
necessary to analyze the continuity equation with the
boundary condition of no current through the bound-
aries of the strip.

In the equation itself, it is convenient to separate the
vortex part:

(8)

Here, µ is the electrochemical potential of the 2D elec-
tron gas in a magnetic field

(9)

where

(10)

and ϕ(x) is the electric potential. Expressions (9) and
(10) originate from the common relation between the
electron density and the electrochemical potential µ
(see, e.g., [11]) for a spinless ideal 2D electron system
in a magnetic field at nonzero temperatures (to avoid
the problems with a fractional QHE). If, in this case, the
general formula involving the summation over all Lan-
dau levels is restricted to the two first terms (the ground
level and the first excited level), it will be possible to
invert the expression of the form

[f(z) is the Fermi function] with respect to the function
µ(x), as is accomplished in definitions (9) and (10). The
expression –TlnS(H, T, ν) as a function of ν contains a
jump "ωc in the vicinity of ν = 1, and the sharpness of
this jump increases with decreasing temperature.

In view of the aforesaid, one can conclude that, near
the integer filling factors (specifically, near ν = 1), the

Ḣ

Φs/Φo α iωw
2πc
---------- ! 1, α e2/ "c( ) 1/137.= = =

e∂n/∂t σxyc
1– ∂H/∂t– ∂ jx/∂x+ 0,=

e jx σxx∂µ/∂x,=

σxx . σxx
peak

"ωc/2T–( ), σxx
peakexp e2/2π".=

µ x( ) eϕ x( ) T Sln H T ν x( ), ,( ),–=

2S H T ν, ,( ) 1
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  1
ν
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major contribution to ∇µ  comes from the “chemical
component” TlnS(ν). In fact, one has

(11)

In the vicinity of ν  1, with allowance for relation
(10), Eq. (11) is reduced to

(11a)

According to Eq. (11a), at the Hall plateaus the second
(diffusion) term exponentially (when e  0) predom-
inates over the first term. In view of this fact, Eq. (8) can
be recast as follows:

(12)

or

(12a)

In Eq. (12), not only is the field term ignored [by virtue
of Eq. (11a)], but also the exponents are cancelled; one
of them, exp(–"ωc/2T), is involved in the definition of
σxx at the Hall plateaus and the other appears in calcu-
lations (11), (11a) of the derivative ∂lnS/∂ν. As a result
of the exponent cancellation, the diffusion coefficient
(12a) proves to depend on T according to a power law.

For a strip of width 2w ~ 0.1 cm at the temperature
T ≤ 0.3 K in a magnetic field ~10 T, the characteristic
time is

(13)

This time correlates with the characteristic scales of the
transition region observed in [9] (see the discussion
below).

The analysis of Eq. (12), in combination with the
boundary condition of no current through the strip
boundaries, allows one to determine more precisely the
situation near the boundary with an increased electron
density. Pursuing only qualitative inferences, we limit
our consideration to one (e.g., right) edge of the ring. It
is also convenient to separate the inhomogeneous part
δni(t) in the general solution:

(14)

The remaining problem is reduced to the determination
of δn(x, t) from the equation

(15)

with the boundary conditions

(16)
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The solution to the problem given by Eqs. (15) and
(16) has the form

(17)

(18)

where δni is determined by Eq. (5) and –∞ < x ≤ 0.

Expression (18) yields the level of Coulomb polar-
ization of the sample in the transition region. As the fre-
quency increases, when λ–1 ≤ a, asymptotic behavior of
(18) takes the form of Eq. (6).

4. Definitions (18), (13), and (12a) do not exhaust
the specific features of kinetics of a 2D system at the
Hall plateaus. When ω  0, one more transition
region is formed with the characteristic time τslow, in
which the response of the 2D system is proportional to
H/t rather than to H(t). Its presence is easily revealed in
the induction kinetics of the normal 2D state and is
transferred, by analogy, to the case of QHE.

In the “normal” region in the presence of an induc-
tion-caused perturbation, Eq. (8) takes the form

(19)

Let us first assume that the induction perturbation is
stationary (∂H/∂t = const; this type of excitation is used
in [1–4]). In this case, Eq. (19) has a stationary solution,
which follows from the relation

(20)

and means that the 2D system, while being distorted,
completely shunts the induction effect (divj = 0).

Relation (20) is (with allowance for the Poisson
equation) an integral equation with respect to the distri-
bution δnstat providing the stationary character of the
problem. Clearly, this distribution is proportional to

∂H/∂t ≡  rather than to H(t):

(21)

At finite but relatively low frequencies ω ! ωfast, the
distribution δnstat adiabatically retains its meaning of
main density disturbance. Indeed, assuming that

(22)

and substituting this series in Eq. (19), one obtains the
following relations for δn1:

(23)
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Ḣ
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ξ x/w.=

δn δnstat δn1 …+ +=

e∂nstat

∂t
-------------- +

σxx
peak∂ϕ1' x( )

∂x
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2e
κ
------

δn1 s( ) sd
s x–

--------------------.

w–

+w

∫= =
For the addition δn1, one has δn1 ! δnstat if

(24)

Similar considerations are valid for the Hall pla-
teaus. In this case, the steady-state adiabatic solution is
determined by the equation

(25)

It is established at frequencies

(26)

The time τslow corresponds to the interpretation of the
low-frequency boundary in [9] and has the characteris-

tic scale τslow ~ w/σxx, where σxx . exp(–"ωc/2T).
When "ωc/2T ≤ 100, this time is τslow @ τD.

Thus, the induction dynamics of 2D systems at the
Hall plateaus under the conditions σxx  0 is accom-
panied by the relaxation processes that smooth out the
induction-caused spatial inhomogeneity of the 2D sys-
tem. The specific diffusion kinetics that occurs at fre-
quencies ωslow ! ω ≤ ωD, for which the oscillating
charge is proportional to ∝ H(t), is characterized by the
relaxation time τD (13) depending on T according to the
power law. The scale of this time qualitatively corre-
lates with the transition frequency region observed in
the experiment [9]. In the region ω ≤ ωslow, the behavior
of a 2D electron system perturbed by induction forces
follows the adiabatic scenario. In this case, the mea-

sured signal is proportional to ∝ , and the quantity
ωslow, being inversely proportional to the relaxation
time according to Eqs. (26), is exponentially small.
Such a regime at the Hall plateaus has not yet been
observed. However, for a normal 2D system, the corre-
sponding adiabatic induction kinetics with the charac-
teristic time τfast given by Eqs. (24) manifests itself in
the experiment [1–4].
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A magnetic field applied to a size-quantized system causes persistent equilibrium currents nonuniformly dis-
tributed across this system. For a quantum film and a two-dimensional strip, the distributions of the dia- and
paramagnetic currents and magnetic field are determined. The possibility of observing field distribution by
NMR is discussed. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Ak; 75.20.En
The magnetization of a normal metal in a magnetic
field is associated with the dia- and paramagnetic cur-
rents flowing at its surface. These currents are distrib-
uted within the surface layer, where the magnetic field
is inhomogeneous. Since the diamagnetism is rather
weak, the corrections to the magnetic field are small
and, hence, are usually ignored in considering the
kinetic phenomena.

However, even very small magnetic-field variations
can be significant in quantum systems. For example, a
magnetic field acting on an atomic nucleus is partially
screened by the electron shells [1]. As a result, the
NMR frequency shifts and becomes too dependent on
the chemical environment of the atom. This shift can be
measured experimentally, because the NMR line is
rather narrow as compared to the typical inverse elec-
tron relaxation time.

In an artificial size-quantized system, diamagnetic
electron currents also screen the external magnetic field
and cause changes in the magnetic field acting on the
nuclei. The state of the electron subsystem affects the
magnetic field strength. In particular, an electric modu-
lation of electrons by a field-effect electrode provides a
possibility to electrically act on the nuclei. The charac-
teristic scale of inhomogeneity of the diamagnetic cur-
rent and magnetic field distributions can be equal to the
transverse dimension of the system. Then, different
nuclei are in magnetic fields of different strength.

The purpose of this paper is the determination of
magnetic field distribution in different size-quantized
systems, specifically, in a quantum film and quantum
strip.

The orbital magnetism in systems with spatial quan-
tization was considered in a number of papers (see, e.g.,
[2–4]). However, these papers deal with the total mag-
netization of small systems. Unlike previous studies,
0021-3640/02/7509- $22.00 © 20470
we concentrate on the spatial distribution of a magnetic
field.

Diamagnetic contribution. Let us consider an elec-
tron gas confined in a film with the coordinates 0 < x <
Lx, 0 < y < Ly, and 0 < z < d, where d ! Lx, Ly . Let a mag-
netic field B be directed along the x axis in the plane of
the film, i.e., in the (x, y) plane. The field obeys the
Maxwell equation

The diamagnetic current density j has only a y compo-
nent. Since the diamagnetism is weak, we ignore the
corrections to the uniform external field in the expres-
sion for the diamagnetic current. The equilibrium cur-
rent density can be derived from the expression

(1)

where  = (  + eA/c)2/2m + U(z) is the Hamiltonian
of an electron in the magnetic field, A = (0, –B0z, 0) is
the vector potential of the external magnetic field B0,

U(z) is the bounding potential,  = –e{ , δ(z –

)}/S is the operator of orbital current density,  =
(  + eA/c)/m is the operator of electron velocity, the
braces {…} represent the symmetrization operation,
f(E) = (exp((E – µ)/T) + 1)–1 is the Fermi distribution
function (where µ and T are the chemical potential and
the temperature), and S = LxLy is the area of the system.
Here and below, " = 1.

We consider the current using the linear approxima-
tion in an external field. Expanding the current density

∂B/∂z 4πj z( )/c.=

jy z( ) Sp ĵy z( ) f *̂( )( )=

=  E f E( )Sp ĵy z( )δ E *̂–( )( ),d
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in powers of the magnetic field, we obtain

(2)

Here,  = /2m + U(z) is the Hamiltonian in the

absence of a magnetic field. For the operator δ(E – ),
the following expansion is valid:

(3)

where  = (E –  ± iη)–1, η  +0. Using the per-

turbation  = –(e/m)B0z  of the Hamiltonian in the
magnetic field and calculating the trace in Eq. (2) in the
zero-field states representation, we obtain with the help
of Eq. (3) 

(4)

Here, ϕn(z) represents the transverse wave functions in
the absence of a magnetic field, p is the longitudinal
momentum, En, p = En + p2/2m is the electron energy in
the nth subband of the transverse quantization, and
fn, p ≡ f (En, p).

In the rectangular quantum-well model (a potential
with hard walls: U(z) = 0 within the interval 0 < z < d
and U(z) = ∞ for z < 0 and z > d), Eq. (4) at T = 0 is
reduced to the form

(5)

Here, EF = /2m = µ(T = 0) is the Fermi energy and
En = π2n2/2md2.

The expression for the current at nonzero tempera-
ture can be derived from Eq. (5) by using the relation

(6)

jy z( )
e

mS
-------Sp δ z ẑ–( ) e
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Figure 1a shows the distribution of current in a film
with hard walls. The current density is antisymmetric
about the middle of the well and decreases in an oscil-
latory manner with the distance from the boundaries.
Oscillations are the manifestation of the Friedel effect,
namely, the susceptibility singularity at the wave vector
2kF. The current density has an alternating sign, so that,
strictly speaking, the term “diamagnetic” refers to the
total surface current only.

In the low-temperature limit, the decay of current
into the depth of the well is slow. The asymptotic behav-
ior of the surface current density in the limit kFd/π @ 1
for z ! d can be found by replacing the sum over n in

Fig. 1. Evolution of the (a) current density and (b) magnetic
field at T = 0 with increase in the quantum film thickness.
The values of kFd/π are indicated in the plots (the integral
part of kFd/π gives the number of populated subbands). For
kFd/π = 2, 10, and 30, the Fermi energy coincides with the
subband bottom, while for kFd/π = 10.5, it lies between the
10th and 11th subbands.
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Eq. (5) by an integral with the use of the Euler–Maclau-
rin summation formula

(7)

As a result, we obtain

(8)

Here, χL = –e2kF/12π2mc2 is the Landau magnetic sus-
ceptibility at T = 0 and x = 2kFz. The first terms in
Eqs.(8) represent the asymptotic behavior in the region
z @ π/kF. In particular, the constant contribution to
δB/B0 exactly yields the Landau magnetic susceptibil-
ity. In the region d – z ! d, the quantities jy and δB/B0
exhibit a similar behavior.

At nonzero temperature, we obtain for kFz @ 1

(9)

where lT = kF/2πmT is the characteristic decay length.
Note that the impurity scattering also leads to the decay
of δB(z) within the mean free path from the surface.

Expressions (8) and (9) for the surface current and
magnetic field are also valid in the bulk normal-metal
limit, where d  ∞. In this case, the ratio between the
mean free path and the sample thickness is unimpor-
tant. Note that, since our consideration is performed in
the weak magnetic-field limit, we implicitly use small
parameters, namely, the ratios of the characteristic
lengths of the problem to the cyclotron radius. For a
finite magnetic field in the bulk normal-metal limit,
Eqs. (8) and (9) remain valid up to distances on the
order of cyclotron radius from the boundary.

In Fig. 1a, in addition to the surface current oscillat-
ing with the coordinate, one can see a small regular
component of the current density, which linearly
depends on the transverse coordinate. Asymptotically,
when kFd/π @ 1, this contribution has the form

(10)

Here, the square brackets denote the integral part of a
number. The linear component is smaller than the
surface current by a factor of kFd. The coefficient (1 +
6ζ(ζ – 1)) multiplying the linear term oscillates with
chemical potential in such a way that, when averaged
over kF or over the thickness, it becomes zero (in the
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bulk metal limit, such an averaging may correspond to
the averaging over an ensemble of samples with an
inevitable variation in thickness).

At nonzero temperature, the linear term has the form

(11)

where θ = EF(πkFd)–1 is the characteristic temperature
above which the linear term exponentially decreases.

The corrections to the magnetic field are shown in
Fig. 1b. The linear dependence of jy on the coordinate
causes a contribution to the magnetic field that is para-
bolic in the coordinate and sensitive to the parameter ζ.

Note that the linear component of the current den-
sity and the parabolic contribution to the magnetic field
are associated with the orbital magnetism. In a quantum
film, the orbital contribution to the magnetic suscepti-
bility exhibits a fluctuating growth with a width propor-
tional to kFd, which corresponds to the increase in the
parabolic contribution to the magnetic field.

Two-dimensional strip. Let us consider 2D elec-
trons whose motion is confined within the strip 0 < y <
Ly, 0 < z < d, where d ! Ly. This case corresponds to the
elimination of the x coordinate from the formulas of the
previous section. Let the magnetic field B also be
directed along the x axis. Expression (4) for the current
density remains valid if we retain only the summation
over n and over the momentum py. In the linear approx-
imation in B0 we obtain, for the rectangular potential
well model at zero temperature, the following expres-
sion instead of Eq. (5):

(12)

Figure 2 shows the distribution of the current den-
sity in the strip at T = 0. By analogy with Eq. (8), for the
surface current density in the limit kFd/π @ 1 when z !
d, we obtain

(13)

Here,  = –e2/12πmc2 is the Landau magnetic sus-
ceptibility for the 2D electron gas at T = 0 and J2(t) is
the Bessel function.
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Expression (13) for the current density has the fol-
lowing asymptotic behaviors:

(14)

The decay of the Friedel oscillations far away from
the boundary proves to be slower than in the 3D case.

At nonzero temperature, we obtain for kFz @ 1 

(15)

Paramagnetic current. In addition to the diamag-
netic current, a paramagnetic current related to electron
spin is also present in the system. This contribution can
also be found from Eq. (1) with allowance for the spin-
related component of the Hamiltonian, −gµBB0σx/2,
and the spin-related components of the current density

operator,  = cgµB∇ (sδ(z – ))/S. Here, g is the
electron g factor, µB is the Bohr magneton, and σi rep-
resents the Pauli matrices. In the linear approximation
in B0, we obtain, after simple mathematics, the follow-
ing expression for the paramagnetic current density:

(16)

where n(z) is the 2D or 3D local electron concentration.
This current and the corresponding magnetic field must
be added to the diamagnetic contributions considered in
the preceding sections. The ratio between the diamag-
netic and paramagnetic contributions depends on the g
factor and, in principle, can widely vary for different
materials.

In the specific case of a 3D quantum film with hard
walls at T = 0, one has

(17)

For a 2D strip, the paramagnetic current density has the
form

(18)

Consider a thought experiment on the excitation of
nuclear spin transitions by an alternating gate voltage.
Let a quantum film with a vertical gate be placed in a
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magnetic field with the z and x components. In an infi-
nite film, the normal field component remains
unscreened. The longitudinal component of the mag-
netic field depends on the number of electrons and on
their states and, hence, can be controlled by acting on
the electron subsystem. In particular, an alternating
voltage applied to the gate will modulate the magnetic
field and induce NMR transitions. The resonance can
be detected by the frequency (or magnetic-field) depen-
dence of the gate impedance.

In addition to the excitation of nuclear transitions by
an alternating magnetic field, the quadrupolar nuclei
are also affected by the nonuniform electric field pro-
duced by the gate electrode. However, this effect is
absent for nuclei with spin 1/2 for which only the NMR
takes place.
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Fig. 2. Current density in a 2D strip at T = 0 in units of
e2B0kF/mc; kFd/π = 10 and 10.5. The dotted curve is pre-
sented for comparison and corresponds to the dimension-
less current density in the quantum film at kFd/π = 10. One
can see that, in the 2D case, the oscillations of the current
density are damped much slower than in the 3D case.
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The dynamics of a particle interacting with a random classical field in a two-well potential is studied by the
functional integration method. The probability of particle localization in either of the wells is studied in detail.
Certain field-averaged correlation functions for quantum-mechanical probabilities and the distribution function
for the probabilities of final states (which can be considered as random variables in the presence of a random
field) are calculated. The calculated correlators are used to discuss the dependence of the final state on the initial
state. One of the main results of this work is that, although the off-diagonal elements of the density matrix dis-
appear with time, a particle in the system is localized incompletely (wave-packet reduction does not occur), and
the distribution function for the probability of finding particle in one of the wells is a constant at infinite time.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.65.Ta; 03.65.Yz
The standard interpretation of quantum mechanics
includes the concept of the wave-packet reduction
(WPR) in the act of measurement [1]. The question of
the WPR mechanism either remains beyond the theory
or is postulated. In [2], it was suggested that the reser-
voir be regarded as a WPR source. In this work, we
used a two-level system as an example to study in detail
the influence of the reservoir degrees of freedom
(which were modeled by a random classical field) on
the localization process.

The decoherence concept, which was developed
over the past 20 years, leaves the WPR problem open
[3]. Researchers are typically interested in the evolution
of the density matrix of a quantum system interacting
with the surrounding medium. With such an approach,
much information on the dynamics of the system is lost
after averaging over the medium degrees of freedom,
rendering the WPR problem unresolved. In [2], it was
suggested that the WPR be considered in terms of quan-
tities other than the density matrix.

In this work, we used the simple two-level system as
an example to demonstrate the method for and the
results of calculating the quantities of this sort.

Let us consider a particle interacting with a random
classical field in a double-well potential. The problem
of interest is as follows: the particle is held in the left
well until t = 0, whereupon it is released. In what fol-
lows, we are interested in the quantities averaged over
the medium degrees of freedom. Since, after averaging,
the probability of finding a particle in the left well does
not carry full information about the dynamics [2], we
will be interested not only in the medium-averaged
probability 〈PL → L(t)〉  of finding a particle in the left
0021-3640/02/7509- $22.00 © 20474
well (the first and second indices denote the initial and
final states, respectively), but also in the correlators of
the form

〈PL → L(t)PL → R(t)〉 , (1)

where the parentheses stand for the averaging over the
degrees of freedom of the reservoir. The necessity for
calculating the correlators of this type follows from the
fact that the probabilities given by the density matrix
are the result of both quantum-mechanical averaging
and averaging over the medium degrees of freedom.
For instance, 〈PL → L(t = ∞)〉  can become equal to 1/2 by
various ways. A situation is possible for which, depend-
ing on the reservoir state, either PL → L(t = ∞) = 1 or
PL → L(t = ∞) = 0, while 1/2 is obtained only after aver-
aging. In this case, the WPR occurs in the model con-
sidered, and the zero value of correlator (1) is unambig-
uous evidence of this fact. In the more general case,
there is a certain probability density PL → L(t) of the res-
ervoir states for which the particle occurs in the right
well with the probability PL → L(t). If all correlators of
the form 〈PL → L(t)n〉  are known, one can determine the
quantity P(PL → L(t)).

Let us formulate the model in more detail. Assume
that the wells are symmetric, so that the ground level is
degenerate in the absence of tunneling. Under certain
conditions [4], the Hilbert space of particle states can
be thought of as being two-dimensional.

The states for which the particle coordinate takes the
definite values ±q0/2 are chosen as the basis set. In the
002 MAIK “Nauka/Interperiodica”



        

DYNAMICS OF A TWO-LEVEL SYSTEM INTERACTING 475

                                                                                       
presence of tunneling, the Hamiltonian of a particle not
interacting with the field has the form

Here, σx is the Pauli matrix, and the basis is chosen so
that the eigenvalue +1(–1) of the matrix σz corresponds
to the particle localized in the right(left) well. The inter-
action of the field with a particle is taken into account
by adding to the Hamiltonian the term qϕ(t), which is
linear in the field. In this model, the random field is
determined by the external medium. We assume that the
probability distribution for the field ϕ(t) is Gaussian
and the field correlator has the white-noise form

(2)

In this case, the averaging is carried out over the
degrees of freedom of the surrounding medium, which
induces the uncontrolled field deviations from zero.
The Hamiltonian of the particle is

(3)

This model is equivalent to the spin 1/2 in a magnetic
field, whose x component is fixed, while the component
along the z axis is random.

Making use of the influence functional [5], one can
write the probability 〈PL → L(t)〉  as a double functional
path integral:

(4)

where the integral is taken over all paths for which
q1(0) = q2(0) = q1(t) = q2(t) = –q0/2, and A[q(τ)] is the
amplitude for the path q(τ) in the absence of a random
field; F[q1(τ1), q2(τ2)] is the influence functional that is
equal, for the random Gaussian potential with correla-
tor (2), to [5]

(5)

At any instant of time, the pair of paths [q1, q2] is in
one of the four states [–, –], [–, +], [+, –], and [+, +],
which will be denoted as A, B, C, and D. We introduce

H0
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the notation ξ(t) = (q1(t) – q2(t)). Then, the influence
functional is recast as

(6)

(7)

Following the formalism described in [4], we
expand 〈PL → L(t)〉  in powers of i∆/2. This multiplier
(except for the sign) appears at every jump between the
wells. We will describe each state [q1, q2] at every
instant of time as a four-dimensional vector Ei, where
i = {1, 2, 3, 4} corresponds to the {A, B, C, D} states.
The matrix of possible jumps has the form (the sign
corresponds to the sign of transition amplitude)

(8)

Let us introduce the matrix allowing for the path
weights due to the influence functional:

(9)

Then 〈PL → L(t)〉  can be written as

(10)

where S = i∆/2Λ; t1, …, tn are the hopping times; and
the vector E1 = {1, 0, 0, 0}Tcorresponds to the state A.
Applying the Laplace transform to 〈PL → L(t)〉 ,

and changing the integration variables in Eq. (10), one
obtains

(11)
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where U(λ) is the Laplace transform of U(t):

(12)

Therefore, the calculation of 〈PL → L(t)〉  amounts to the
evaluation of the matrix element of the inverse of a
4 × 4 matrix and to the taking of inverse Laplace trans-
form. The result is

To find 〈PL → L(t = ∞)〉 , it suffices to know only the res-
idue of 〈PL → L(λ)〉  at λ = 0, which is equal to the inverse
Laplace transform at t = ∞. The quantity 〈PL → L(t)〉  can
be exactly calculated to give

(13)

One can see that 〈PL → L(t = ∞)〉  = 1/2 for nonzero Γ; at
Γ = 2∆, the damping oscillations give way to relax-
ation.

In the limit Γ @ ∆, two relaxation times appear in
the system. One of them, τ1 = Γ–1, is considerably
shorter than the other, τ2 = Γ/∆2.

The off-diagonal elements 〈ΨL(t)*ΨR(t)〉  of the den-
sity matrix can be calculated in a similar way. The
result

(14)
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2 Γ2 4∆2–
-----------------------------------------------------------------------
also has two characteristic times, with 〈ΨL(∞)*ΨR(∞)〉 =
0. In the limit Γ @ ∆, the maximum magnitude ∆/2Γ is
reached in a time on the order of τ1.

1 

To calculate the quantity 〈PL → L(t)PL → L(t)〉 , one can
also use the formalism developed above. In this case,
the path integral is taken over four trajectories and the
system state is described at every instant by a 16-
dimensional vector. After introducing for each pair of

trajectories their own variables ξ1(t) = (q1(t) – q2(t))

and ξ2(t) = (q3(t) – q4(t)), the four-point influence
functional can be written, similarly to Eq. (6), as

(15)

Introducing, by analogy with Eqs. (8) and (12), the 16-
dimensional matrices S2(t) and U2(t) (we do not give
here their explicit form), one arrives at the formula
analogous to Eq. (11):

(16)

where the vector E1 corresponds to the state [–, –, –, –]
of the paths [q1, q2, q3, q4].

Calculation gives

(17)

For the infinite time, one has 〈PL → L(t = ∞)2〉  = 1/3. In
the limit Γ @ ∆, this correlator also has two character-
istic times, which are determined by the real parts of the

poles of . For the first nonvanishing terms,
the relaxation times in Eq. (17) are equal to τ1, τ1, τ1/4,
τ2, and τ2/3.

1 Note that, since the particle in our problem (or “spin” in the
equivalent problem) interacts with the classical field, it is for-
mally described by a pure density matrix. This is natural, because
the particle cannot act on the classical field, so that the entangled
quantum states do not appear. Nevertheless, from the practical
viewpoint, the distinction between the presence of a “real” reser-
voir and the random classical field is insignificant, because, to
prove that the particle is in a pure state, one must conduct a set of
measurements. For example, to obtain the definite result in a sin-
gle measurement, one must know exact data on the magnitude of
fluctuating classical field ϕ(t), whose monitoring at the exact
“spin” location is highly conjectural. Moreover, the temporal
dynamics of the probabilities 〈PL → L(t)〉  are identical in both
cases.
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For the remaining second-order correlators, similar
calculations give

(18)

Thus, although the off-diagonal elements of
the     density matrix vanish with time,

 ≠ 0, so that the particle
localization (wave-packet reduction) in the system does
not occur.

It is straightforward to generalize the above compu-
tational procedure to the case of 〈PL → L(t)n〉 , although
the sizes of the corresponding matrices rapidly
increase. Numerical computations show that

(19)

Thus, we assume (although we have not succeeded
in obtaining the general proof) in our model that the
probability density P(PL → L(∞)) of the reservoir states
for which the particle may be found in the left well with
the probability PL → L(∞) in an infinite time is unity on
the interval (0, 1). Indeed, in this case,

(20)

which is fully consistent with our previous results. The

correlators of the form  are equal to

(21)

Using the symmetry of matrices in Eq. (11), one can
establish the following symmetry about the permuta-
tion of the initial and final states:

(22)

Let us now consider how the final state depends on
the initial state if the latter has the form

(23)

Using Eqs. (21) and (23), one obtains

(24)

Therefore, in the model considered, the distribution
function for the probabilities in the final state is inde-
pendent of the initial state after a very long time.
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Nevertheless, the final state depends on the initial
state in every particular case. The sensitivity to the ini-
tial state can be determined by calculating the follow-
ing correlator:

(25)

where |S ' 〉  = a ' |ΨL〉  + b' |ΨR〉 .
Consider, as an example, the case for which a = b =

1/  for one initial (ground) state |S 〉  and a' = b' =

1/  for the other (excited) state |S ' 〉 . Then,

 = 1/3. Note that the value 1/
obtained for the mean difference in the final probabili-
ties is larger than the average probability 1/2.

We are now in position to discuss the sensitivity of
the final state to the variations in the external field. We
formulate the problem in terms of a spin in an external
magnetic field. Consider the correlator of the form
〈(PL{H(t)} – PL{H(t) + δHz(t)})2〉 . In the general form,
the problem is complicated by the fact that the Hamil-
tonian H(t)s does not commute with itself at different
instants of time. However, we can consider a particular
case of the field δHz(t) acting during a short time inter-
val (such that the spin rotation about the x axis can be
ignored because of the smallness of Hxσx) at the very
beginning of state evolution. In this case, the problem
reduces to the previous problem if the state |S ' 〉  =
a ' |ΨL〉  + b' |ΨR〉  is defined as

(26)

The new state (a', b') is determined by the relative

phase incursion 2δΦ = (2/")  for a and b. If

the field pulse is applied at nonzero time, we can refor-
mulate the problem starting with a certain fixed state
(a0, b0) at time t0. In this case, one obtains, after
averaging, l

(27)

We note in conclusion that, in our opinion, the local-
ization in a double-well potential will occur at long
times if a quantum reservoir is added to the classical
reservoir. Qualitatively, this process can be imagined as
follows: at every instant of time, the energy levels in the
wells are different due to the classical field, the differ-
ence being sufficiently large for the instantaneous
eigenstates of the Hamiltonian to be localized in either
of the wells, while the transition to the lowest (local-
ized) state occurs due to the photon emission.

PS L→ PS' L→–( )2〈 〉 ab' a'b– 2

3
-------------------------,=

2

2

PS L→ PS' L→–( )2〈 〉 3

S'| 〉 i
"
--- tδHz t( )σzd∫ a ΨL| 〉 b ΨR| 〉+[ ] .exp=

δHz t( ) td∫

PL H t( ){ } PL H t( ) δHz t( )+{ }–( )2〈 〉 t ∞=

=  PL t0( )PR t0( )( )〈 〉 4 δΦ( )sin
2

3
-------------------------.
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The invariant relation in the eigenvalue problem is found for a one-dimensional nonlinear integrodifferential
operator acting on the normalized eigenfunctions. The invariance of the obtained relationship follows, in par-
ticular, from the fact that it is independent of the detailed form of the operator. This problem arises in the physics
of a two-dimensional electron system near the semiconductor boundary, where the potential well is formed, on
the one hand, by a high potential barrier at the boundary and, on the other, by the intrinsic electric field screened
by two-dimensional electrons filling the well. The invariant relates the energy of the size-quantization level to
the average size of electron wave function in the well. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.20.Dp; 73.40.Kp
The problem analyzed in this work was solved
numerically over more than thirty years (see review
[1]). It arises in the calculation of electron energy levels
and wave functions in one-dimensional potential wells
near flat interfaces between a semiconductor and an
isolator or between two semiconductors with different
energy gaps. In the case considered in this work, the
interface corresponds to the infinitely high potential
step at z = 0 (the z axis is perpendicular to the interface;
see figure). Electrons with charge e and effective mass
m are held against the interface by an external electric
field E0 created by the charges in the z < 0 half-space.
All charges are assumed to be uniformly distributed
along the planes parallel to the semiconductor bound-
ary. The potential well is typically narrow, so that the
quantization of electron motion along the z axis gives
rise to discrete size-quantization levels (bottoms of the
subbands corresponding to the free electron motion
along the semiconductor surface). The problem is non-
linear because of the screening of the electric field by
electrons with surface density ns. The basic equation for
this problem can be written at z ≥ 0 in the form [1]

(1)

Here, ε0 is the energy of the lowest level, χ is the dielec-
tric constant of the semiconductor, and f(z) is the E0-
and ns-independent potential created by the charges
bound in the region z > 0. Other limitations on this
potential will be discussed below. The eigenfunction

–
"

2

2m
-------

d2Ψ0 z( )

dz2
------------------ Ψ0 z( )e –E0z

2πens

χ
--------------z ∫++

+
4πens

χ
-------------- Ψ0 u( )( )2 u z–( ) u f z( )+d

0

z

∫ ε0Ψ0 z( ).=
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Ψ0(z) of the problem satisfies the boundary conditions
Ψ0(z = 0) = Ψ0(z = ∞) = 0 and is normalized:

(2)

The main goal of this work is to demonstrate that the
solutions to Eqs. (1) and (2) satisfy the relationship

(3)

where

(4)

is the mean value of coordinate z in the state with the
wave function Ψ0(z).

Ψ0 z( )( )2 zd

0

∞

∫ 1.=

∂ε0

∂E0
--------- ez0

2πe2ns

χ
----------------

∂z0

∂E0
---------– ens

∂z0

∂ns

--------+ + 0,=

z0 Ψ0 z( )( )2z zd

0

∞

∫=

Schematic dependence of the electron potential energy eφ
(e < 0) on the coordinate z; the z axis is perpendicular to the
semiconductor surface. The solid and dashed lines corre-
spond to two different functions f (z) satisfying Eq. (3).
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Relationship (3) is proved by the evaluation of the
partial derivatives appearing in it followed by the sub-
stitution of the resulting expressions in Eq. (3). The
derivatives are calculated by linearizing Eq. (1) with
respect to the increments ∆E0, ∆ns, and ∆ε0 and to the
variation ∆Ψ0(z) of function Ψ0(z). As in the standard
perturbation theory, the variation ∆Ψ0(z) is expanded in
the orthonormalized basis set of eigenfunctions Φi(z) (i
is an integer), which, in the case of nonlinear Eq. (1),
satisfy the equation

(5)

This is the ordinary Schrödinger equation with a given
potential. For the proof given below, it is sufficient to
require that all eigenvalues λi of Eq. (5) constitute a dis-
crete spectrum. This imposes certain restrictions on the
possible form of function f (z), though it is quite proba-
ble that the restrictions on the function f (z) satisfying
basic relationship (3) may be weaker. Note that the
function Ψ0(z) = Φ0(z) also appears in the chosen
orthonormalized set of functions Φi(z). Due to normal-
ization condition (2), the variation ∆Ψ0(z) is orthogonal
to Ψ0(z), so that

(6)

Here, αi are the expansion coefficients. The equation
obtained by the linearization of Eq. (1) and substitution
of Eq. (6) for ∆Ψ0(z) is then multiplied by the functions
Φk(z) (k ≠ 0) and Ψ0(z) and integrated with respect to z.
As a result, the problem is reduced, respectively, to an
inhomogeneous set of linear equations for the parame-
ters αi and to an expression for ∆ε0. In calculating the
derivatives with respect to E0 and ns, the corresponding
sets of equations have the form

(7)

(8)

Here,

(9)
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(10)

(11)

When proving relationship (3), the equalities bik =
bki and

(12)

were used, which can easily be verified by changing the
order of integration in the corresponding double inte-
grals. It turns out that, to prove Eq. (3), there is no need
to know the detailed expressions for the solutions to the
set of linear Eqs. (7) and (8). It suffices to write these
solutions in a rather general form,

(13)

, (14)

and use the symmetry property cik = cki of the coeffi-
cients cik, as follows from the symmetry of coefficients
bik. The validity of Eq. (3) can be checked by substitut-
ing into it the following expressions obtained for the
partial derivatives using Eq. (12) in accordance with the
scheme described above:

(15)

(16)

(17)

When checking, the symmetry of coefficients cik should
be taken into account.

From the mathematical point of view, the invariance
of Eq. (3) primarily follows from the fact that it is inde-
pendent of the form of function f (z) (as long as this
function satisfies the conditions discussed above) and
parameter m. This expression is also valid for all solu-
tions to Eqs. (1) and (2) and not just for the solution cor-
responding to the lowest energy ε0 among the eigenval-
ues of Eq. (1). The latter of these statements is evident
from the fact that, while proving, no restriction was
imposed on ε0.
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It is quite probable that relationship (3) reflects the
important intrinsic symmetry of the problem. This is
indicated, in particular, by the fact that condition (3) is
fulfilled not only for the solutions to Eqs. (1) and (2),
but also for any normalized one-parametric function
with the parameter chosen so as to minimize the func-
tional, whose minimization, generally, results in
Eq. (1). In this case, ε0 is the mean electron energy
(kinetic and potential) in the state described by the cho-
sen one-parametric wave function in the potential
entering Eq. (1).

The physical meaning of relationship (3) is clear: it
relates the size z0 of the electron localization region in
the potential well to the energy of size-quantization
level. Note that, if one sets ns = 0 in Eq. (3), then one
obtains the well-known relation [1] for the triangular
potential well, which arises in Eq. (1) if f (z) = 0. More-
over, in the triangular well, the obtained relationship is
valid for all energy levels. The distinguishing feature of
the physical problem with ns ≠ 0 is that, in the case of
filling higher size-quantized subbands, initial Eq. (1)
should be replaced by the set of equations for the elec-
tron wave functions in different subbands. So, for ns ≠
0, condition (3) is only met if electrons fill the lowest
size-quantized subband with the bottom at ε0.

By way of illustration of the above general
statement about one-parametric functions, one can
easily verify that Eq. (3) is fulfilled, in particular,
for  the  Fang–Howard variational function ξ(z) =
(b3/2)1/2zexp(–bz/2), which is widely used in the analy-
sis of quasi-two-dimensional electron systems near the
semiconductor surface [1]. One has for this function
z0 = 3/b, and the expression for the subband bottom
energy can be taken in the form [1] ε0 = "2b2/8m +
12πe2Ndepl/χb + 33πe2ns/4χb (Ndepl is the surface den-
sity of charged impurities in a depleted layer lying at
z @ z0), with Ndepl = –χE0/4πe – ns/2. The value of bmin
minimizing the total energy of the electron system is [1]

(18)bmin 48πme2N∗ /χ"
2( )1/3

,=
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where N* = Ndepl + (11/32)ns.
The form of invariant (3) changes if additional terms

depending on E0, ns, or Ψ0(z) appear in Eq. (1). In this
connection, it is worthwhile to give an expression for
the invariant corresponding to the equation obtained by
the minimization of the energy functional that is more
appropriate to the experimental situation. This equation
differs from Eq. (1) by the additional term

(19)

The invariant for this equation is obtained in perfect
analogy to Eq. (3):

(20)

Note in conclusion that the existence and the form of
Eqs. (3) and (20) were “guessed” when analyzing our
experimental results, which will be published in the
immediate future.
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The organization of inclusions nucleated in free standing films of smectic C (SmC) liquid crystal is investigated
using polarized light microscopy. Anchoring on the inclusion boundaries induces distortions of the in-plane ori-
entational order of the SmC phase, which drive the elastic interactions between inclusions. Such interactions
show a quadrupolar character. At low concentration, the inclusions self-organize in linear or branched chain
structures, while at high concentrations two-dimensional patterns appear in the film. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 61.30.Jf; 68.55.Ln
1 The collective behavior of dispersions of particles in
a host fluid has been the subject of great interest over
the past decade for science and technology [1–3]. In
recent years, liquid crystals have become model objects
for those investigations. The first reason is that, in liq-
uid crystals, effective interaction between the particles
is realized via distortions of molecular ordering. The
second reason is that the inclusions and the resulting
elastic deformation of the director field can be easily
visualized optically with a polarizing microscope. In
the field of liquid-crystal emulsion (i.e., water or sili-
cone oil droplets dispersed in a nematic host phase), the
investigations give evidence of long-range attraction
and short-range repulsion between droplets, which lead
to the formation of linear chains [1, 4–6].

Most of the previous investigations have been
devoted to systems in which the director configuration
around a particle is homeotropic, i.e., perpendicular
anchoring of the molecules at a particle surface. It was
shown that, if the particle is placed into a uniformly
aligned director field, a topological defect is created in
the film in order to compensate the topological charge
of the particle [7]. The particle and its associated defect
form a topological dipole which drives long-range
attraction between particles. Dipolar interactions
between droplet-defect pairs lead to the formation of
linear chains of droplets separated by point topological
defects. Such chains were first observed in nematic (N)
liquid-crystal emulsion [1, 4–6] and, recently, in two-
dimensional chiral smectic (SmC*) free-standing films
[8, 9]. In the former, the preferred direction of the align-
ment of molecules is specified by the unit-vector field n
called the director. In smectic C (SmC) phase, each
layer is a two-dimensional anisotropic liquid with rod-

1 This article was submitted by the authors in English.
0021-3640/02/7509- $22.00 © 20482
like molecules tilted in a given direction, the in-plane
orientational order of the molecules in the smectic lay-
ers being specified by the so-called c director (projec-
tion of the average direction of the long molecular axis
onto the layer plane).

In this paper, we present an investigation of particles
in nonchiral smectic films with another type of interpar-
ticle interaction. These particles exhibit planar anchor-
ing of the c director, i.e., parallel to the particle’s sur-
face. We observed the formation of both linear struc-
tures and a two-dimensional periodic lattice. The liquid
crystal studied in our experiments was decyl oxyben-
zoic acid (DOBA), which exhibits the following phase
sequence: crystal–SmC–N–I [10]. We used a material
slightly doped with ethyldecyloxybenzoate both to
decrease the temperature of nucleation of the inclusions
and to increase the temperature range of stability of the
inclusions in the films. In a bulk sample of this mixture,
the SmC–N phase transition ranges from 114°C to
117°C. In thick free-standing films, the nucleation of
inclusions begins just above 114°C. Free-standing films
were prepared by drawing a small amount of liquid
crystal in the SmC phase across a 4-mm hole in a glass
plate. The experiments were carried out on films with a
thickness from 1 to 3 µm. The temperature was con-
trolled to within ±10 mK. Microscopic observations
were performed in reflected light between crossed
polarizers, and the texture varied from dark to bright
according to the position of the c director with respect
to the polarizers. A video camera enabled dynamic
observations. The determination of the film thickness
and the direction of the c-director field was obtained
from the reflection spectrum measurements.

Figure 1 presents pictures of the droplets between
crossed polarizers. Observations for two orientations of
the film [the c director at 45° (Fig. 1a) and parallel
002 MAIK “Nauka/Interperiodica”
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(Fig. 1b) to the polarization of incident light] provide
more information about the distribution of the c direc-
tor-field deformation near the droplets. In dark regions
in Fig. 1a and in bright ones in Fig. 1b, the c director is
rotated by about 45° with respect to its direction at long
distances from the inclusion. Careful observation of
Fig. 1b reveals that the deformation of the c director
field around the inclusion is not equivalent along the
vertical and horizontal directions. Two peculiarities are
attached on the left and right sides of the droplet bound-
ary. Note that the orientation of the symmetry axis con-
necting these antipodal points is parallel to the c-direc-
tor field in the film.

The analysis of the process of nucleation and growth
of droplets showed that the boundary of a droplet is a
defect line with a tangential boundary condition. Drop-
lets nucleate inside a short double line and two parts of
the defect line become the droplet boundary forming a
loop. The director configuration around particle is
homogeneous. There is only a breaking in the direction
of tangential anchoring at the opposite points of the
droplet boundary, in which the ends of two line defects
surrounding the droplet are connected. The dependence
of surface droplet energy, defect line tension, and elas-
tic energy on the inclusion dimension leads to a change
of the droplet shape. Small droplets (less than 15 µm)
can have a slightly elliptical form with the long axis ori-
ented along the c director. Large droplets (above
15 µm) are almost ideally circular (Fig. 1b). It is worth
mentioning that the droplet in Fig. 1a also has a circular
shape. However, it appears elliptical because the dark-
ened regions occupy areas inside the droplet as well as
outside. Circular inclusions may be conceived as oblate
spheroids with the short axis slightly larger than the
film thickness. The deformation of the film at the place
of inclusion is visible by observing the interference
fringes in monochromatic light. Concerning the nature
of the inclusions, both the temperature of nucleation
and the spheroid shape of the inclusions strongly sug-
gest that the local order in the inclusion is nematic. In
the case of smectic order in the inclusion, we would
obtain a circular island of greater thickness than the
background film [9]. Such an island exhibits a flat sur-
face instead of a spheroid shape. The stability of the
film is ensured by smectic layers surrounding the inclu-
sion. Indeed, the air–liquid crystal interface is known to
promote the smectic order.

Figure 2a schematically describes the director field
around the droplet with planar anchoring on the particle
surface. The distortion near the singular points (M and
N) is drawn in Fig. 2b. The distribution of the director
field near these points corresponds to a topological
defect with a strength equal to 1/2. Note that the sym-
metry of the c director in the SmC phase does not per-
mit the isolated 1/2 defect in the bulk of the liquid crys-
tal. However, such defects can exist when attached to a
surface—in our case, to the inclusion boundary. The
presence of a pair of singularities on the particle bound-
ary preserves the zero topological charge of the film.
JETP LETTERS      Vol. 75      No. 9      2002
Zones with a small distortion of the director field
near each droplet are well seen in Fig. 1b: (i) two acute
zones starting from the opposite point defects; (ii) two
larger zones in the orthogonal direction. As mentioned
above, strong distortion of the c-director field is mostly
located in dark regions in Fig. 1a and in bright regions
in Fig. 1b. These directions are expected to be the direc-
tions of attraction between neighboring inclusions.
Spatial ordering of inclusions at the equilibrium dis-
tance should minimize the c-director deformation with
respect to two isolated inclusions. Indeed, if several
particles are nucleated, they generally form chains
(Fig. 3). The formation of chains from spherical parti-
cles with planar anchoring was already observed in
inverted emulsion (water droplets suspended in nematic
liquid crystals) [4]. However, in chains, water droplets
come into contact with one another, which quickly
leads to droplet coalescence. In smectic films, chains
can be stable for a long time. Distortion of the director
field is easily observed near the chains (Fig. 3). A sche-
matic drawing of the director field is given in Fig. 2c.
The chains form an angle of about 40° with the c direc-
tor. Between the inclusions, the c-director field has
approximately the same direction coinciding with the

(‡)

(b)

Fig. 1. Microscope picture of a single inclusion in the SmC
free-standing film observed under crossed polarizers (hori-
zontal and vertical); (a) and (b) figures correspond to the
c director, respectively, at 45° and parallel to the polariza-
tion of the incident light. T = 114.2°C. The horizontal size
of each image is about 130 µm.
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direction of planar anchoring at the inclusion boundary.
Such organization of inclusions minimizes the defor-
mation of director field in the film.

Interaction between particles with planar anchoring
is of the quadrapolar type [11]. This type of interaction
leads to a higher possibility of structural organization
than the dipolar type. In this latter case, the attraction is
maximal along the axis of the topological dipole, i.e.,
along the c-director orientation at a long distance [1, 8,
9]. The formation of linear chains is then a consequence
of dipolar symmetry. The positions of two particles on
both sides of a third one (central) are equivalent if the
particles are located along a straight line. In the case of
quadrupolar interaction, there are two directions and,
respectively, four positions of particles along which
neighboring particles may be located. Figure 4a shows
bent chains. They appear when one of the particles is
located in a nonequivalent position. Figure 4b shows
two adjoint chains. The distances between particles in a
chain and between the chains are practically identical.

Fig. 2. Schematic representation of the distortion of the
director field induced by inclusions; (a) and (b) figures cor-
respond to the c-director configuration, respectively, near
the single inclusion and near point disclinations. Two sur-
face defects (M and N) are induced at the surface of the
inclusion; (c) c-director field configuration induced by a
chain of inclusions.
At high droplet density, a two-dimensional, spatially
oriented structure is built (Fig. 5a, inclusions have a
slightly oblong shape). Such a degree of organization
can only be achieved if all particles exhibit approxi-
mately the same size. These structures exhibit spatial
ordering of the c-director configuration in the film and
orientational ordering of inclusions: lines connecting
singular points at the inclusion boundary are oriented in
a specific direction (the vertical direction in Fig. 5a). A
part of the film with two-dimensional ordering of circu-
lar particles is shown in Fig. 5b. Generally, the nucle-
ation of large particles leads to a distribution of the par-
ticle size which prevents the formation of a large-scale
well-organized structure. The different orientations of
the c-director field between droplets are clearly visual-
ized upon the observation between crossed polarizers
(Fig. 5). A schematic representation of the director field
between the particles is given in Fig. 5c. Regions with
nearly parallel orientation of the c director are located
between the nearest particles (dark regions in Fig. 5a)
and on the diagonals (dark regions in Fig. 5b). How-
ever, these regions have different orientations of the
c director. This means that the c director does not keep
the average direction over the whole area of the film.
The presence of neighboring inclusions disturbs the
pair interactions. As a consequence, binary interaction
between inclusions, usually used for modeling, is insuf-

(‡)

(b)

Fig. 3. Microscope picture of a chain of four inclusions.
Polarization of the insident light is along the horizontal axis.
T = 115.5°C. The horizontal size of each picture is about
130 µm.
JETP LETTERS      Vol. 75      No. 9      2002
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ficient for describing two-dimensional spatial and ori-
entational ordering of inclusions.

In this paper, we have studied the behavior of nem-
atic inclusions nucleated at the SmC-N transition in
two-dimensional ordered free-standing films. After the
nucleation process, spatially inhomogeneous inclusion
distribution is achieved due to both long-range attrac-
tive and short-range repulsive interactions between par-
ticles. Such interactions result from the elastic defor-
mation of the c-director field induced by the tangential
c-director anchoring at the inclusions boundary. It
should be noted that, in theoretical work [7], simula-
tions of radial and tangential anchoring are treated and
both lead to a –1 hyperbolic point defect associated
with the inclusion. As a result, the inclusion defect pairs
always exhibit the dipolar symmetry, and the radial and
tangential anchoring only differ by the orientation of
the topological dipole, respectively, parallel or normal
to the c-director field far from the inclusion. In our
experiments, we observed two 1/2 defects attached to
the surface of the inclusion. The structural organization

(‡)

(b)

Fig. 4. Microscope picture, between crossed polarizers, of
complex structures formed by inclusions. Due to the qua-
drupolar character of the interactions, the particles can have
different positions with respect to the next neighboring par-
ticle. T = 116.1°C. The horizontal size is about 130 µm.
JETP LETTERS      Vol. 75      No. 9      2002
shows a quadrupolar interaction, which drives the for-
mation of more complex structures than in the dipolar
case. According to the inclusion densities, different
types of structure can be achieved: at a low inclusion
density, linear and bent chains are built, while, at high
density, we observe two-dimensional pattern resulting
from positional and orientational ordering of the inclu-
sions. This study underlines the influence of anchoring
conditions at the inclusion boundary on the type of
interaction. The dynamics of self-organization and a
model of interactions between inclusions are under
investigation. The confrontation of the quadrupolar and
dipolar interaction in free-standing films provides an
important basis for a more general understanding of the
behavior of colloidal inclusions in membranes and two-
dimensional films, such as Langmuir films or biological
phospholipid bilayers.

We thank L. Lejcek and P. Poulin for helpful discus-
sions. V.D. is grateful to the University of Lille I and
their Laboratoire de Dynamique et Structure des Mate-
riaux Moleculaires for the hospitality. This work was
supported by the Russian Foundation for Basic
Research, project no. 01-02-16507 (V.D.).

(‡)

(b) (c)

Fig. 5. (a) Two-dimensional ordering structure formed by
inclusions. The structure is formed by slightly oblong inclu-
sions. The square gives the unit pattern of the structure. The
horizontal size is about 90 µm. (b) Part of the two-dimen-
sional structure formed by circular inclusions. T = 116.6°C.
The horizontal size is about 50 µm. The polarizer is (a) at
45° with respect to the horizontal axis and (b) along the hor-
izontal axis. Schematic representation of the c-director field
for a two-dimensional structure (c). 
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Ultrafast Faraday Effect and the Dynamics
of the Antiferromagnet–Paramagnet Phase Transition in FeBO3
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The optical pump–probe technique using ultrashort laser pulses with a photon energy of 1.55 eV was used to
study the dynamics of the antiferromagnet–paramagnet phase transition in FeBO3. The Faraday magneto-opti-
cal effect was measured with a time resolution of 100 fs, and signal transients were observed as functions of
sample temperature. The rate of photoinduced phase transition was shown to be limited by the phonon–magnon
relaxation rate with a characteristic time of 700 ps. The subpicosecond dynamics of Faraday rotation is not
associated with the destruction of magnetic order but is caused by electron photoexcitation and recombination.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Kz; 42.65.Re; 78.20.Ls; 71.36.+c; 75.50.Ee 
The invention of lasers generating pulses with a
duration of 100 fs and shorter gave impetus to the study
of ultrafast processes in the electron, phonon, and spin
subsystems of solids. Over a long period of time, the
methods of ultrafast spectroscopy were successfully
exploited to study the dynamics of photoinduced mag-
netization and other nonequilibrium processes in semi-
conductors [1]. However, works on the ultrafast dynam-
ics of nonequilibrium processes in magnetically
ordered media, where photoexcitation can change or
even destroy the magnetic order, have been initiated
only recently and are, as yet, few in number. One of the
first works in which the rate of magnetic order destruc-
tion was considered was devoted to the study of ferro-
magnetic nickel [2]. In that work, the conclusion was
drawn that the characteristic heating time of a spin sub-
system is much longer than 10 ps. However, it was
claimed shortly afterwards that the magnetic order in
Ni can be controlled on the subpicosecond time scale
[3, 4], and the assumption was made that there is an
efficient energy-exchange channel between electrons
and magnons [3]. Subsequent studies both confirmed
the possibility of demagnetization on the subpicosec-
ond time scale and argued against this phenomenon [7,
8]. These contradictions can be resolved only by con-
tinuing the studies of demagnetization dynamics in
other groups of materials where this phenomenon has
not yet been investigated. The promising objects for
these studies can be provided by antiferromagnetic
dielectrics, where the demagnetization processes have
not been studied so far. Theoretical works predict that
the demagnetization times in these materials may be
shorter than 100 fs. Estimates were made for the anti-
ferromagnetic nickel oxide dielectric NiO [9]; however,
0021-3640/02/7509- $22.00 © 20487
the experimental study of this material is hampered
because of the complexity of its domain structure and
the absence of linear magneto-optical effects.

To overcome these technical and, to some extent,
fundamental difficulties, the antiferromagnetic iron
borate dielectric was chosen in our investigations. This
compound crystallizes in the calcite structure with

space group  and has a Néel temperature TN =
348.35 K [10]. Its antiferromagnetic state is character-
ized by a weak ferromagnetic moment arising because
of a spin disorientation by an angle of 1° in the (111)
plane. Due to this moment, the sample can be brought
to a single-domain state by a weak external magnetic
field. Consequently, the magnetic order in such an
uncompensated antiferromagnet can be probed using
linear magneto-optical effects.

The optical properties of FeBO3 in the visible range
are determined by the localized d states of the Fe3+ ion
in the crystal field (Fig. 1a). In the free Fe3+ ion, five d
electrons constitute a high-spin ground state 6S (L = 0
and S = 5/2), i.e., orbital singlet and spin sextet. The 4G
state is the nearest excited state. In the octahedral crys-

tal field, the excited state splits into two triplets  and

, a  doublet, and a  singlet. The spin degen-
eracy is removed by the spin–orbit and exchange inter-

actions. The electric dipole transitions   

and    from the ground to excited states are
forbidden due to the parity and spin selection rules.
Nevertheless, four strong lines are observed in the
absorption spectrum at 20 K in the region of the first d–d
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Fig. 1. (a) Energy levels of the Fe3+ ion in FeBO3 and (b) absorption spectrum of FeBO3 at (solid line) room temperature and (dotted
line) 20 K.
transition (Fig. 1b). At higher temperatures, this split-
ting smears because of a strong electron–phonon inter-
action and electron–phonon transitions.

A 300-µm-thick platelet-shaped iron borate sample
with the basal plane perpendicular to the optical axis
was used in our study. Measurements were made by the
optical pump–probe technique using the amplified
pulses from a titanium–sapphire laser with a photon
energy of 1.55 eV, a pulse duration on the order of

Fig. 2. Scheme of the experimental setup.
100 fs, and a repetition rate of 1 kHz (Fig. 2). The pump
and probe beams were linearly polarized and focused
onto the same area of the sample so that the ratio of
their intensities was 10 : 1. The spatial radiant exposure
per pump pulse was about 30 mJ/cm2. The angles of
incidence for the pump and probe beams were 0° and
20°, respectively. In this geometry, the probe beam after
passing through the sample should exhibit the linear
magneto-optical Faraday effect, i.e., rotation of the
polarization plane by the angle

(1)

where V is the Verdet constant, M is the sample magne-
tization, L is the geometrical optical path in the sample,
and θ is the angle between the magnetization and the
light wave vector in the sample. The dynamics of anti-
ferromagnetic order destruction in FeBO3 was studied
by measuring the Faraday rotation as a function of the
delay time between the pulse and probe pulses. The
sample was placed in an ac magnetic field with an
amplitude of about 100 Oe and a frequency of 194 Hz.
The rotation of the polarization plane was measured at
this frequency with a sensitivity no worse than 0.2 mrad
using a two-photodiode balanced detector and the lock-
in detection technique. Provision was made for varying
the sample temperature Tbias using a heater. The absorp-
tion of pump light brought about static local superheat-
ing of the sample by 10 K, which was taken into
account by introducing the appropriate correction.

As known, optical pumping can alter not only the
magnetic but also optical properties of solids. In study-
ing the dynamics of Faraday rotation, it is necessary to
measure the photoinduced variations in the sample
transmission and use these data for calibration. The
transmission transients were measured using a single-

αF VML θ,cos=
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Fig. 3. (a) Photodetector signal as a function of time on a time interval of 1 ps and (b) time behavior of the photoinduced differential
transmission.
photodiode scheme with amplitude modulation of the
probe beam.

The short-time behavior of the magneto-optical sig-
nal is shown in Fig. 3a. The signal drops dramatically
when the pump and probe pulses overlap, whereupon it
is rapidly restored. For a time delay of about 900 fs, the
signal tends to saturation at a level 2–3% lower than
before the photoexcitation. Such a behavior of the mag-
neto-optical effect was already observed for the
Sr2FeMoO6 ferrimagnet [5] and interpreted as ultrafast
medium demagnetization. After supplementary studies,
we established that this behavior is caused not by the
magnetization dynamics but by the photoinduced
changes in transmission (Fig. 3b) and by the fact that
the signal from the balanced detector linearly depends
on intensity. After the transmission dynamics is taken
into account in the calibration, the stepwise contribu-
tion disappears, while the peak corresponding to the
overlap of the pump and probe pulses is retained. In this
work, the peak was measured as a function of intensity.
Such an ultrafast response in the Faraday effect is pro-
portional to the spatial radiant exposure with a coeffi-
cient of (8 ± 0.6) × 10–5 rad cm2/mJ.

The long-time behavior of Faraday rotation is
shown in Fig. 4 for various temperatures gradually
approaching the Néel point. The closer the sample tem-
perature to the Néel point, the more pronounced the
dynamic variations in the Faraday rotation. At Tbias =
346.5 K, the signal sharply drops within 500 ps, after
which it becomes zero.

The temperature dependence of Faraday rotation for
the negative delay time is shown in Fig. 5. Considering
that the Faraday rotation is proportional to the order
JETP LETTERS      Vol. 75      No. 9      2002
parameter, the temperature dependence of the magneto-
optical signal can be approximated by the function

(2)

where TN is the Néel temperature, β is the critical expo-
nent, and Ts is the magnon temperature, which deter-
mines the magnitude of the order parameter. The fitting
procedure gave TN = 347.0 ± 0.1 K and β = 0.36 ± 0.01.
These results are in good agreement with the values
TN = 348.35 K and β = 0.354 reported in [10]. A small
distinction in the Néel temperatures can be attributed to
the static heating of the sample by the probe beam. The
result of the fitting procedure is shown in Fig. 5 by the
solid line.

The temperature dependence of the Faraday rotation
for zero delay time is shown in Fig. 5 by empty circles.
The experimental data were approximated by Eq. (2)
using the β and TN values given above. The result of this
approximation is shown in Fig. 5 by the dotted line. The
fact that the temperature dependences of Faraday rota-
tion are similar for the negative and zero delay times
indicates that the overlap peak is not associated with the
destruction of magnetic order, but is caused by the tran-
sition of Fe3+ ions to the low-spin state S = 3/2 and by
the photoinduced change in the Verdet constant [11,
12].

The difference between the magneto-optical signals
with delay times of –20 and 500 ps is shown in the same
graph. One can see that this difference increases as the
Néel temperature is approached. Qualitatively, it repro-
duces the derivative of the Faraday rotation or order
parameter with respect to temperature. These factors
taken together indicate that the photoinduced change in
the magneto-optical signal is due to the rise in magnon
temperature. Consequently, for the sample temperature

αF T( ) α0 1 Ts/T N–( )β,=
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Fig. 4. Long-time behavior of the Faraday rotation.

Fig. 5. Faraday rotation as a function of temperature Tbias

for the [black dots; ] negative and [empty dots; ]

zero delay times, and the result of fitting Eq. (2) to the
experimental data (solid and dotted lines, respectively). The

difference between the magnitudes  and  of

the Faraday rotation for – 20 and 500 ps is shown by the
rhombi together with the calculated curve (dashed line).

αF
0( ) αF

20–( )

αF
20–( ) αF

500( )
TN = 346.5 K and a delay time of 500 ps, the magnon
temperature achieves the Néel temperature and the anti-
ferromagnetic order is destroyed.

The transient magnon temperature Ts(t) can be rep-
resented as the sum of static temperature Tbias and the
dynamic component ∆Ts(t). Therefore, each of the mag-
neto-optical signal transients can be represented as the
dynamic temperature ∆Ts(t). In the range of tempera-
tures Tbias studied, the dependences ∆Ts(t) were identi-
cal to within experimental error. All ∆Ts(t) dependences
were averaged, and the result is shown by the black dots
in Fig. 6. Inasmuch as the averaged dynamic compo-
nent increased monotonically, these data were approxi-
mated by the formula

(3)

where Tms is the amplitude of the dynamic component
and τT is the heating rate. When fitting, all parameters
were taken to be variable, and the result for Tms = 1.4 K
and τT = 700 ps is shown in Fig. 6 by the solid line.

Making use of the resulting parameters Tms, τT, and
α0, one can determine the difference between the mag-
neto-optical signals for –20 and 500 ps. This difference
is shown as a function of temperature by the dashed line
in Fig. 5. The experimental data agree well with the cal-
culation. This justifies the statement that the relaxation
of the magneto-optical signal is caused by the increase
in magnon temperature.

The absorption spectrum of FeBO3 indicates that
photons with an energy of 1.55 eV mainly induce the

   transition. As a result of this excitation,
the iron ions undergo a transition to the low-spin state
S = 3/2 and the electron potential energy increases, on
average, by 1.4 eV. The remaining of photon energy is
transferred to the lattice and to the magnetic system as
a result of the electron–phonon and electron–magnon
interactions. From the line width near 1.4 eV in the
room-temperature absorption spectrum of FeBO3, one
can see that the lifetime of the Fe3+ ions in the low-spin
state S = 3/2 does not exceed 100 fs. The electron relax-
ation to the ground high-spin state S = 5/2 may be both
radiative and nonradiative. As a result of the latter pro-
cess, the electron energy dissipates to the lattice.

As a rule, the electron–phonon transitions are more
intense than the electron–magnon transitions [13].
Consequently, the phonon temperature after photoexci-
tation is higher than the magnon temperature, so that
the equilibrium is disturbed. Thereupon the difference
starts to decrease gradually, while the magnon temper-
ature increases with the phonon–magnon relaxation
rate.

The previous investigations of magnetization rever-
sal in iron borate using microwave pulses have shown
that the FeBO3 lattice is isolated from the magnetic sub-

∆Ts t( ) Tms 1 t
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system during 16 ns after the excitation [14]. This value
is 20 times as large as the phonon–magnon relaxation
time observed in our experiments (τT = 700 ps). A dif-
ference as large as this may be due to the fact that the
phonon–magnon interaction depends on the magnon
wave vector. In the microwave experiments, magnons
with only small or zero wave vectors are involved,
whereas, in our experiment, the energy exchange with
the lattice occurs throughout the entire magnon spec-
trum. Therefore, the phonon–magnon relaxation rates
determined by these two methods may markedly differ
from each other.

In this work, the dynamics of photoinduced antifer-
romagnet– paramagnet phase transition in FeBO3 was
studied using ultrafast magneto-optical spectroscopy.
Contrary to the previously studied metallic nickel and
semimetallic strontium molybdate, the photoexcitation
of iron borate does not result in the heating of the elec-
tron subsystem, but leads to an increase in the phonon
temperature as a result of the most intense electron–
phonon transitions. The photoinduced destruction of
the magnetic order is caused by the increase in magnon
temperature as a result of energy exchange with the
photoexcited phonon subsystem, and the phase transi-
tion rate is limited by the phonon–magnon relaxation

Fig. 6. Time-dependent dynamic component ∆TS of the mag-
non temperature. Solid line is the approximation by Eq. (3).
JETP LETTERS      Vol. 75      No. 9      2002
rate. Analysis of the temperature dependences has
shown that the subpicosecond dynamics of the mag-
neto-optical effect is not associated with the destruction
of magnetic order but is caused by the transitions of
Fe3+ ions to the excited low-spin state S = 3/2 and the
recombination into the ground high-spin state S = 5/2 in
a time shorter than 100 fs.

We are grateful to V.N. Gridnev, V.V. Pavlov, F. Ben-
tivegna, A. van Etteger, and H.J. Weber for helpful dis-
cussions. This work was supported by the Russian
Foundation for Basic Research and the programs of the
Ministry of Industry and Science.
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The structures containing networks of one-dimensional quantum wires were obtained through self-formation
in the course of electrochemical etching of multilayer heteroepitaxial structures with a two-dimensional charge-
carrier gas in InGaAs layers. The fact that the dimensionality of the electron–hole subsystem is reduced and the
charge-carrier energy spectrum transforms from two-dimensional to quasi-one-dimensional was demonstrated
by the shift and narrowing of resonance lines in the photoluminescence spectrum. © 2002 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 81.07.Vb; 68.65.Cd; 78.55.Cr
In recent years, interest has been shown in porous
systems which can be used as matrices for the forma-
tion of new objects with reduced dimensionality [1].
One such idea is aimed at the formation of quantum
wire networks through filling the voids in a porous
dielectric matrix with a substance of different chemical
composition having either a metallic (Bi [2]) or semi-
conducting (PbTe [1]) type of conduction. It has
recently been suggested that the starting matrices may
be fabricated not only from dielectric materials but also
from porous undoped semiconductor materials, which
are most often used in micro- and nanoelectronic
devices. Since the dielectric properties of a skeletal
matrix forming wire network play a crucial role in the
transport phenomena, preference in choosing the
matrix for experiment will, probably, be given to broad-
gap semiconductors of the Si, GaAs, and InP type.
However, attempts at the practical implementation of
this idea face problems caused by considerable difficul-
ties associated with the growth, inside the pores of the
initial crystal, of conducting semiconductor wires with
perfect crystal structure and, correspondingly, high-
quality electric characteristics. The interpretation of the
measurement results also offers problems because of
the necessity of taking into account the influence of
charged states at the well-developed surface of the
porous structure on the characteristics of filling mate-
rial.

In this work, we discuss an alternative method of
fabricating quantum wire networks. The method is
based on wire self-formation in the course of electro-
lytic etching of multilayer heteroepitaxial structures
containing nanometer-thick layers with a two-dimen-
sional electron gas. Heteroepitaxial multilayer quantum
structures GaAs/InGaAs grown in the (100) plane and
studied in detail in [3] were chosen as the starting crys-
0021-3640/02/7509- $22.00 © 20492
tal matrix. Electrolytic etching of this structure mainly
goes on along the inclined planes of the {111} type [4]
to form, at their intersections with the InGaAs layers,
the network of wires with a high-mobility electron gas,
whose dimensionality depends on the width of inter-
secting planes. Evidently, for certain etching regimes
and rates, one can obtain networks of quasi-one-
dimensional InGaAs quantum wires in the bulk of the
GaAs matrix. The study of such structures is of interest
because of the specific optical and transport properties
[5] of the objects under discussion. At the same time,
the method of testing the fabricated structures is quite
important, because there must eventually be no ques-
tion that the etching process results in the structure con-
taining one-dimensional quantum conductors (may be,
of a rather complex configuration).

The changes in the optical and, in particular, photo-
luminescence spectra and their analysis can serve as a
configuration-independent criterion for the formation
of a system of quantum wires in the plane of a two-
dimensional InGaAs layer. This criterion was success-
fully applied in testing other low-dimensional objects.
A luminescence line due to the recombination of two-
dimensional charge carriers in the layers of the semi-
conductor structure is clearly seen at liquid nitrogen
temperature. A change in its position and width can be
used to trace the possible transformation of the electron
spectrum upon reducing the dimensionality of the sys-
tem during the course of electrochemical etching.

A periodic InxGa1 – xAs/GaAs structure grown by
MOCVD and containing double quantum wells of
total thickness d1 = 2dqw + db = (2 × 5 + 5) nm in the
InxGa1 – xAs layers with an indium content (x) of about
25 at. % was chosen as a starting sample for investiga-
tion. The double quantum wells in the GaAs matrix
were approximately 0.07 µm apart. The superlattice
002 MAIK “Nauka/Interperiodica”
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contained a total of ten periods and had the electronic
type of conduction. The initial photoluminescence
spectrum of the quantum-sized InGaAs layers excited
at temperature T = 77 K by a helium–neon laser is
shown in Fig. 1 (curve 1). The subsequent procedure of
generating inclined planes, whose intersections with
the planes of InGaAs layers should form a system of
conducting quantum wires, consisted of the standard
electrochemical etching in a solution of hydrofluoric
acid and ethylene at current densities of 20–40 mA/cm2

under UV illumination. Evidently, the pores develop
progressively during the course of etching, so that the
cross partitions become more and more thinner. This
should be accompanied by the transformation of the
electron spectrum and, in particular, by the reduction of
its dimensionality because of the additional spatial con-
finement of two-dimensional electrons and holes in the
(100) plane. In the photoluminescence spectra, the tran-
sition from a two-dimensional to an one-dimensional
system must be accompanied by the corresponding
transformation of the spectral lines. First of all, one
should expect that the emission line will undergo a
high-energy shift and its width will decrease because of
an increase in the density of electronic states in the
energy bands.

Typical spectral curves recorded before and after
etching the sample for 60 min are presented in Fig. 1,
where the above-mentioned transformations of the pho-
toluminescence line are quite pronounced. The emis-
sion peak from the two-dimensional InGaAs layers
undergoes a sizable shift to the short-wavelength region
of the spectrum. The dependence of the line shift on the
etching time is shown in Fig. 2a. Assuming that the wire
cross-section is rectangular and using the simplest for-
mula for the electron (hole) energy spectrum in the wire

E(n, k, pz) = Eg0 + /2me(h) + {π2"2/2me(h)}{(n +

1/2)  + (k + 1/2) }, one obtains the following
expression for the additional line shift caused by the
additional spatial constraint (d2) introduced in the (100)

plane by etching: ∆E = ∆Ee + ∆Eh = π2"2/2 (1/me +
1/mh), where me(h) = 0.06(0.4)m0 is the effective elec-
tron(hole) mass. The line shift ∆E ≈ 30 meV corre-
sponds to the wire width d2 ≈ 15 nm.

The etching of a sample with strained InGaAs layers
can, in principle, relieve a portion of elastic energy
accumulated in the sample, thereby shifting the lumi-
nescence line to the long-wavelength region of the
spectrum and, hence, slightly underestimating the wire
width. However, X-ray diffraction measurements
before and after the etching suggest that the elastic
strain accumulated in the sample remains virtually
unchanged; i.e., the layer deformation in the single
crystal and in the porous structure remains at approxi-
mately the same level and has virtually the same effect
on the characteristics of the electron energy spectrum in
both systems.

pz
2

d1
2

d2
2

d2
2
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The reduction of the dimensionality of the charge-
carrier spectrum in a semiconductor and, in particular,
the transition from a two-dimensional to a quasi-one-
dimensional system should alter the density of energy
states. In the structure with a two-dimensional electron
gas, the energy dependence of the density of states is
given by the expression ρ(E) ~ (E – En)1/2. As the
dimensionality of the electron spectrum is reduced by
unity during the formation of the quantum wire net-

Fig. 1. Photoluminescence spectra recorded for the initial
CP InGaAs/GaAs sample at T = 77 K (1) before and (2)
after etching for 60 min.

Fig. 2. (a) Position E0 of the photoluminescence line maxi-
mum and (a) FWHM W of the line as functions of etching
time.
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work in the layers, the energy dependence of the den-
sity of states acquires the one-dimensional character
and becomes steeper, namely, ρ(E) ~ (E – Enk)–1/2. Here,
En and Enk are the subband edges in the quantum layer
and quantum wire, respectively. The increase in the
density of states near the band edges should bring about
narrowing of luminescence lines, on the one hand, and
an increase in the emission intensity, on the other, as is
the case with quantum dots.

The line FWHM as a function of etching time is pre-
sented for the structure under study in Fig. 2b. It is wor-
thy of note that a rather broad (~27 meV) initial reso-
nance line 1 in Fig. 1 is Gaussian with a high accuracy.
This suggests that the line width is caused not by the
electronic processes but solely by the scatter of struc-
ture parameters (e.g., thickness of quantum well within
one or several periods of the superlattice). The electro-
chemical etching of the sample and the formation of
pores (generally, of various diameter) should enhance
thickness inhomogeneity for the nanoobjects formed.
This, in turn, should inevitably bring about additional
broadening of the spectral lines. However, when etch-
ing the sample, we observed a monotonic decrease in
the line width from 27 to 21 meV. This fact indicates
that the influence of the additional spatial confinement
caused by the formation of intersecting quantum wires

Fig. 3. Integrated photoluminescence line intensity vs. etch-
ing time.
in the sample is more pronounced than the influence of
inhomogeneities that also appear upon etching.

The integrated photoluminescence line intensity as a
function of etching time is shown in Fig. 3. The behav-
ior of this curve is determined by two factors. On the
one hand, the etching-induced deterioration of the sur-
face mirror characteristics should depress the reflected
laser signal and, as a result, enhance the fraction of
absorbed power in the sample, thereby increasing the
photoluminescence intensity [4]. On the other hand, a
decrease in the volume of the active light-emitting layer
because of its etching should reduce the emission inten-
sity, as was observed in our case (Fig. 3).

In summary, the study of the photoluminescence
spectra of the electrochemically etched multilayer het-
eroepitaxial InGaAs/GaAs structures with quantum
wells has demonstrated that a network of quasi-one-
dimensional conducting objects with the properties of
quantum wires can arise through self-formation in the
planes of InGaAs layers.
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