QUANTUM LIQUIDS

Peculiarities of acoustic energy transmission from liquid helium to metals: A Review
K. N. Zinov’eva

P. Kapitza Institute of Physical Problems, Russian Academy of Sciences, 117334 Moscow) Russia
(Submitted November 18, 1996
Fiz. Nizk. Temp.23, 485—-498(May—June 199y

Experimental and theoretical studies of the coefficierdf phonon energy transmission from

liquid helium to cubic-symmetry metalsungsten, copper, and aluminum single crystals

and gold polycrysta)sare reviewed briefly. It is shown that the transmission coefficients for single
crystals with a perfect surface are correctly described by the theory of acoustic impedance
mismatch model, taking into account absorption of phonons by conduction electrons. Andreev’s
theory of electron resonant absorption of a Rayleigh wave by the surface of single crystal

with «a~1 is confirmed. In a strongly anisotropic copper single crystal, a resonant pseudo-
surface wave absorption peak is also observed. It is shown for aluminum that phonon
dissipation decreases sharply upon a transition from the normal to superconducting state, and the
height of the Rayleigh peak decreases accordingly. It is found that the main mechanism of
phonon scattering in a polycrystal is the Rayleigh scattering at grain boundaries, which is
proportional tow* and is much stronger than scattering at electrons. The form of angular
dependence of the absorption coefficied{d) changes significantly. €997 American Institute

of Physics[S1063-777X97)00105-9

INTRODUCTION the interface at an anglé. (Henceforth, instead oiv(w, 6)

_ o we shall consider the quantity(w, #) =w(w, #)cos6).
In this paper, the latest publications by the author and |, thermal equilibrium, counter fluxes of phonons are

her group devoted to the problem of the Kapitza boundangy a1, and the resultant thermal flux is equal to zero. If the

thermal resistance are reviewed briefly. equilibrium is disturbed, the emerging resultant heat flux is
Kapitzd discovered a temperature gradiexiT emerg- given by

ing at the boundary between two media with a thermal flux
though the contact and proportional to the flux dens§ty 47° pc  T*

with the proportionality factoRy , which is called the ther- “ 15D m':
mal resistance of the boundary and which changes with tem- t

(), (3

perature in proportion td 3 wherep and D are the densities of liquid helium and the
, solid, respectivelyg, andc; are the velocities of longitudinal
AT=RkQ. (1) and transverse waves in the solig=c, /c,, andF(75)~1 is

o ) the function of elastic constants for the solid. In the case of
In order to explain this effect, Khalatnikbv proposed @  gmall AT. we obtain

theory known as the acoustic mismatch mo@eViM ). Ac-
cording to this theory, heat transfer is executed by phonons 167° pc  T3AT
that are incident at the interface at both sides. Heat transfer is “15 D 3
. L (27hecy)
strongly suppressed due to mismatch of acoustic impedances

F(7), 4

of the mediawhich differ by a factor of 18) and the small- 15 DT-3
ness of the critical angle of incidence for phonons in liquid R¢= = (2mhc)3F Y p). (5)
helium, starting from which total internal reflection takes 16m> pC
place. . .
The heat flux from helium to a solid can be written in the In the notation used by Khalatnikov, we have
form* 1D/c,| (=2 _
F= 5; < f w(6)cosf sin 6dO=F(n)+F,(7n),
0
. h o how 3 w2 (6)
Q|_,S=—2f n ? w dwf w
(2mc)"Jo 0 where F,(7) determines the contribution from volume
X (w,#)cos 6 sin 6d 6. (2)  waves(longitudinal and transverséo the energy flux, and

F.(#n) is the contribution from surface waves. Khalatnikov
Here n is the Planck functionc the velocity of light in  calculated the value oF, under the assumption that the
helium, andw(w, 6) is the transmission coefficient for a pho- energy of a Rayleigh wave is absorbed by the solid com-
non having a frequency and incident from liquid helium to pletely, andF;~F,.
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It has been established relialisee reviews in Refs. 5,6 tropic medium, a solution of the wave equation for such an
that Khalatnikov’'s acoustic theory is valid for the interface interface does not exists. Nevertheless, the problem can be
between liquid helium and a perfect crystal with an idealsolved numerically on a computer.
surface. The theory correctly describes the experimental data In our publications, we used the following general algo-
for T<0.3— 0.4 K. Above this temperature, a large set ofrithm of calculatinge(w, 6,¢):
values of the Kapitza resistance differing from the value
calculated aT=1 K by more than two orders of magnitude
is observed. This can be explained by the f?‘:t that, in thzg) the boundary conditions for a plane boundary of the
case of thermal contact between real media, there exi S ; . . o

. . L semi-infinite anisotropic medium were written;

energy-exchange channels associated with phonon dissipas . . : .
i . . . ) on the basis of the obtained solutions, a system of linear
tion and disregarded in the theory, such as the scattering ; o o i

. ; ; . equations satisfying the boundary conditions was writ-
phonons at conduction electrons in metals, scattering at grain ten
boundaries in polycrystals, scattering in the surface layer at
roughnesses, at impurities, at crystal lattice defects and at tHeet us consider the main stages of calculations based on such
edges of the crystal. Energy dissipation due to scatteringn algorithm.
changes the acoustic transmission coefficier{ty), and 1. For an elastically deformed anisotropic medi(erys-
hence the Kapitza resistance. tal), the dependence of the stress tensgron the strain

This was noted for the first time by Andrédvwho  tensoru,, has the forn?
proved that scattering of phonons at conduction electrons in
metals leads to resonant absorption of the surface way for the ~ 0ij = Ajjki Uki » (7)

supercritical Rayleigh anglég with the energy transmission _ _ ) .
where;jy is the tensor of elastic moduli. Crystals belonging

coefficienta~1 for a resonant peak width of the order of an . :
angular minute. The contribution of Rayleigh waves to thel® the cubic symmetry group have only three nonzero inde-

heat flux is approximately equal to the contribution from pe_ndent moduh_o_f ek_iSt'C'tyMlll’MlZZ' and A yz15. The
volume waves. Later, some authdt® obtained a similar anisotropy coefficient is defined as

pattern for transmission of acoustic phonons by introducing o\

absorption of sound in the bulk of the solid into the phenom- ;= _ fri1z 8
enological theory of acoustic mismatching. The energy of a M1111~ N2

Rayleigh wave is localized near the surface of the solid in a . . .
. O L ; We assume that an elastic monochromatic wave with
layer of thickness ®; in the case of dissipation, this energy o
frequency w, wave vector k, and polarization X;(u;

is transferred to the bulk either by phonons or by conduction X, exi(kx — wt)] propagates in an infinite medium with

electro_ns._ In th_e absen_ce .Of d|$_$|pat|on, the energy stored Icri1ensityD and elastic modulh;j, . The wave equation has
the solid is emitted to liquid helium.

The phenomenological theory, taking into account pho-the form

S(1) the wave equation of an infinite anisotropic medium was
written and solved,;

non d|SS|pat|qn ina s_olld, is known as thg dissipative theory (Kik i — Dwzajk)xkzo. )
of acoustic mismatching. The results of this theory were used
in our investigations. This equation establishes the relation betweesk, and

This review contains the results of theoretical and ex-X,. Since the right-hand side of E¢9) is equal to zero,
perimental studies of the coefficient of phonon transmis- nontrivial solutionsX, exist only when the determinant is
sion from liquid “He to metals with cubic symmetriung- equal to zero:
sten, copper and aluminum single crystals and gold

pOlnyyStaB. de( ki kl)\ijkl -D (1)25“() =0. (10
Before describing the results, let us consider briefly the ) ) o
methods of calculations and experimental technique. This equation can be regarded as a sixth-degree equation in
the wave vector modulys| for a fixed frequency» with the
2. CALCULATION OF TRANSMISSION COEFFICIENTS parameten=Kk/|k| corresponding to the direction of propa-

gation of the wave in the crystal. The equation has three
pairs of roots|k|™(w,n) corresponding to the one quasi-
longitudinal and two quasi-transverse modes. Generally
speaking, three different phase velocities of elastic waves
correspond to an arbitrary directionin the crystal.

Sincea(w, #) determines the value of heat flux through
the interface betweetHe and a solidand hence the Kapitza
resistancg it is important to compare the experimental val-
ues of transmission coefficient obtained by us with the theo
retical values. Analytical formulas derived in Refs. 2—-4 and 5 | ot us consider an anisotropic medium with a plane

7-10 describe the interface betwetide and an isotropic o ngary. We direct the-axis at right angles to the bound-
solid whose parameters are usually unknown. For this €83y (liquid helium is over the medium in the positive half-

son, we made measurements on crystals. However, Crystalg, s and thex-axis to the sagittal plane. In this case,
are acoustically anisotropic. In the general case of the

helium—crystql interface, the transmission coefficient for a Kk c=w sin 6, ky=0, koC=w cos¥, (1)
monochromatic plane wave depends on the plane along

which the crystal is cut, the polar angbeof incidence, and where#d is the angle of incidence of sound aadhe velocity
the directione of wave propagatiofh! In contrast to an iso- of sound in helium.
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The boundary conditions at the interface are reduced to 2,0

the conservation of the tangential component of wave vector Al IW

(Snell's law) and of the phonon frequency, as well as to the

continuity equation. 15
For a wave incident on the interface from the side of '

liquid helium, we have

k=K, k=K, w=o" (12) 1,0

o, 1072

In this case, the-component of the wave vector of the re-
flected wave is equal to the-component of the incident
wave and has the opposite sign:

Kb = — k&, (13

zrefl ™

Cu Au

05

Al
Cu
Au
while the z-component of waves transmitted through the
. nsm w \ ! .
crystal are determined from E¢LO) which is regarded as a 0 2 . 8 12
sixth-degree polynomial irk,. From the six roots of Eq. 0
(10)'-We choose three roots havmg a physical meaning: It 2 IG. 1. Energy transmission coefficient for a plane acoustic wave propagat-
root is real-valued, the group yglouty r_nUSt be dlr,ec_ted t_o th ng from liquid “He to tungsten, gold, copper and aluminum single crystals.
bulk of the metakmust be positivi but if the root is imagi-  The cut is made along the pla@ol), the azimuthal angle of propagation
nary, the wave must attenuate during its propagation to the=0°, anda(6g)=1 (the absorption parameter=6-10"*).
bulk of the metalithe imaginary component is negatjve
The continuity equation is reduced to the equality of the
normal displacement and stress on both sides of the interfader 6= 6. Elastic constants for aluminum, copper, and gold
and to the absence of tangential stress at low temperatures were taken from the handbdakd for
3. These conditions lead to a system of linear equationgungsten from Ref. 14at room temperatuye
from which the amplitude of the reflected wave can be cal-
culated. The ratio of.the.: amplitude qf the reflected'wave 10 MEASURING TECHNIQUE
the amplitude of the incident wave gives the reflection coef-
ficient for amplitude, while the square of its modulus gives  The method of measurements of angular spectra of the
the energy reflection coefficient,;. In this case, the trans- energy transmission coefficient for a plane monochromatic
mission coefficienta(6,9)=1—a,e. We assume that ab- acoustic waves propagating from liguithe to metals is de-
sorption of sound in liquid helium is equal to zero. The ab-scribed in detail in Refs. 15 and 16.
sorption in the solid was taken into account by introducing a ~ The measurements were made ofHe—*He dilution
small imaginary component to the elastic tensor of the merefrigerator with a minimum temperature25 mK, in which
dium \jj in the wave equatiol9), namely, by multiplying  the measuring chamber filled wittHe and containing the
the initial tensor\;j, by the constant (+ 2pi). The dimen-  sample and a piezoelectric quartz emitter was cooled.
sionless absorption paramefecan be expressed in terms of The setup was mounted in a screened room. At a stabi-
the coefficientsy, ; of bulk absorption of acoustic energy: lized liquid helium temperatur@vith a stabilization level up
to 1 uK), the overheating of the samples by phonons inci-
Pl (= Y1 Cl /20= L (14)  dent from“He on the crystal surface at various angles was
’ U 4l measured with the help of sensitive semiconducting ther-
where vy, .= (1/x) In Jo/J, N, is the acoustic wave length Mometers fixed to the sample with a conducting adhesive at
and|, , the characteristic length for energy absorptigne  the shadow side. The dependences of sample overheating
distance over which the intensiydecreases by a factor of AT 0n the angle of incidencé were recorded at fixed fre-
e). quencies. The recording time varied from 30 min to 1.5 h.
The algorithm described above was used to develop a 1he method allowed us to measure small energy trans-
program for calculating angular dependences of energiSsion coefficients~0.003—-0.005 with an angular resolu-
transmission for a plane monochromatic acoustic wave at theon Up to 1" at temperatures 60—400 mK under saturated
interface between liquid helium and various single crystals/aPor pressures at frequencies 10—300 MHz for the signal-
of cubic symmetry. By way of an example, Fig. 1 shows theto-noise ratio of the order' of 190 with a high reprodu0|b|llty.
results of calculations for tungsten, copper, aluminum, and 1 he Sample overheatingT is connected with the acous-
gold crystals cut in th€¢001) plane for an azimuthal angle of tiC €nergy transmitted through the sample through the fol-
wave propagationp=0°. lowing relation:
The coefficient «(6#) vanishes for the angles Sexp
0,=arcsin€/c)) and #,=arcsin€/c;), and the Rayleigh peak AT= S,
corresponds to the angl@;=arcsin€/cg), wherecg is the _
velocity of a Rayleigh wave at the free surface of the metalwhereQ is the energy density of the acoustic flux incident at
The results of calculations presented in Fig. 1 are obthe anglef to the surfaceq(w, 6) is the energy transmission
tained for the absorption parameter=6-10 %, and a~1 coefficient,S,, the area of the sample surface on which the

Rea(w,0)Q, (15)

ample
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sound is incidentS,,ypiethe total surface of the sample, and b
Rk the Kapitza boundary resistance. Relati@b) leads to

(0, ) = 1 Ssample (16) §)(00]
RKQ Se><p a
In our experiments, we determined only the relative
value of a(w,#). The absolute value of transmission coeffi- 0.4
cient can be obtained either by measuring all the parameters 0.2 Ty =
appearing in(16), or by comparing the experimental value of "1U=80mV

0

a(w, ) with the theoretical dependence. 0 -
While developing the method of measurements, we ,_"o:?)Es 33626\'/( ;
found that the following factors are most significant: < U=70m ——
) o . . 0.8tTs=0,21K 3

(1) helium temperature stabilization in the interval 0.3 U=53m\ ]

S ONSON S N &
o(6), 10

3-107°-10°° K; T)=0.21K

(2) measurement of the anglewith an error smaller than Ot : .
1/; 1 L N 1 4 A i 1 1

(3) simultaneous measurement of the temperature of helium —16-12-8 -4 g. 4 8 12 16

and the crystal with sensitive semiconducting thermom-
et,ers whose Slgnals were supphed to Iow-tempera.ture aIE:IG. 2. (a)Experimental recording of the angular dependence of acoustic
bridges and were recorded from the output of the instruenergy transmission coefficient ¢) (right scal@ in tungsten single crystal

ments in the real time by a computer. for f=30 MHz and three different temperatures; the left scale corresponds
to sample overheatind T by sound. The lower curve is recorded tempera-
ture of liquid helium andU is the voltage applied to quartzb) Two-
dimensional theoretical spectrum af 8,¢) for the interface betweefHe

4. DISCUSSION OF RESULTS and tungsten in the angle of incidengéen the sagittal plane vs. the radius
4.1. Tungsten Single Crystal r;¢ is the azimuthal angle between the ap@91] and the sagittal plane.

Among metals with cubic symmetry, tungsten is the
most isotropic crystal in the acoustic seriflee anisotropy
coefficient =0.995). The absence of anisotropy simplifies

an analysis of theoretical dependences considerably. ) . C .
: ) ) normal for both frequencies under investigation and at dif-
The high-purity tungsten single crystalR{y/R,> s )
. : . . ferent temperatures, and lie in the angular interval corre-
=64000) had the shape of a circular disk of diameter . ) . ; .
. sponding to total internal reflection, their formation can be
8.6 mm and thickness 1.5 mm. The normal to the electro:

lytically polished face surface of the disk formed the anglesassouated with an increase in energy transmission due to

23° and 30° with the axd4.00] and[101], respectively. The absorpt_|on. of the Raylglgh surche wave excited re.sonantly
- - . by the incident acoustic wave, i.e., the effect predicted by
roughnesses and deviations from the plane were Wlth"l\ndreev
0.3 pm. . The following two peculiarities of experimental curves
Measurements were made at frequencies 10 and . L
i . 15-1831  are worth noting. The first is that the peaks formed-alg
30 MHz in the temperature interval 60 mK—0.41K® . i o .
- . and + 6 have different heights, which is apparently associ-
The angle of incidence® of a plane acoustic wave on the . ) ) o .
. o o ated with the nonuniformity of radiation emitted by quartz.
sample varied from-20° to +20°.

The characteristic curves for 30 MHz are presented inezJoh?;;(;%ngt?ﬁgﬂjvrggt 'tsetr:eeF:;?jfensceTﬁLs”(;zlll(sp(:‘?:z:;
Fig. 2a. Here, the sample overheatihd (in mK) relative to P : P

L . . . : to an increase in energy incident at the interface due to mul-
liquid helium is plotted along the ordinate axis to the left, . . .

) . . . . " tiple reflection of the plane wave between the quartz emitter
while the acoustic energy transmission coefficient

a(0)=w(0)cod is plotted along the ordinate axis to the and the sample._ o
. S R . These peculiarities were subsequently observed for other
right. (For the angle of incidence 6°, the difference between . P

) samples(copper and aluminujnalso. The peaks af=0
a andw amounts to less than 0.5%The magnitude of the were studied by us in detail for a copper sinale crvstal
angle «(6) was calculated from the value &fT after nor- y PP 9 ystal.

malization at zero angle at which, according to the acoustic L‘?‘ us compare the experlm_ental results obtained for
theory, the value ofr was assumed to be a(6) in tungsten with the theoretical dependence presented

in Fig. 1. The spectrum in the figure correctly describes the
4pcDy, 4pc - observede(6) dependence. However, the critical angles for

a(0)=————=~p ~1410 5, (17 longitudinal and transverse waves could not be observed,

) ! apparently, in view of imperfection of the plane wave emit-

It can be seen from Fig. 2a that sound passes from helium ted by quartz.

tungsten only in a narrow angular interval close to the nor-  Figure 2b shows a two-dimensional theoretical spectrum

mal incidence. Fo#= +6°, sharp peaks of sample overheat-of a( 6, ¢) for the interface between liquitHe and tungsten.

ing are observed. The intensity of gray color corresponds to the valueaof

Since the peaks are formed symmetrically relative to the
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(white background correspondsdc=0, while black regions
correspond tax=0.005).

An attempt to choose the theoretical peaks correspond-
ing to the experimental Rayleigh peakBig. 29 both in
height and width proved futile mainly due to the fact that
theoretical peaks have extended tails making a contribution
to the integral of transmitted energy up to 30% beyond the
critical angle. Such contributions are not observed in experi-
ments.

It should be borne in mind that the theoretical analysis
was carried out under the assumptions that the plane inter-
face is infinitely large and the plane wave is perfect, which,
strictly speaking, do not correspond to our experimental con-
ditions. In actual practice, the sample has a size of the order
of the characteristic length for 30 MHz, and according to
calculations, diffraction broadening D of acoustic beam in ¥
helium was 6 and 2for 10 and 30 MHz, respectively. L e s

The minimum width of the experimental Rayleigh peak -8 & ¢ £ 8
for 30 MHz was 25. The reason behind additional peak
broadening beyond the diffraction broadening could be thé&!G. 3. The result of theoretical calculation of acoustic energy transmission

; ; ; hrough the interface between liquftHe and a copper single crystal cut
imperfection of the emitter as well as wavy roughness of théé1|0ng the plane€01) (a), (010 (b). and(11) (¢). The wo components of

eleCtrOCh.em'Ca"y pol|s.hed sample surface. ) the angle of incidence of sound at the interface are plotted along the coor-
In spite of a considerabléby an order of magnitude dinate axes. The calculations are made for the absorption parameter

broadening of the acoustic beam as compared to diffractioﬁ:5;10’4- Bold Iings show t_he d_irection of sca_nning in experiments, while
broadening, we can compare the experimental results Witw]e lines show equivalent directions for a cubic crystal.

the dissipative acoustic theory by using the invariability of

the integral of transmitted energy and estimate the absorption

parametep (andy) corresponding to the given sample.

An estimate of the integrglgf’Ra(a)da for experimental  corresponding to frequency 500 MHz was weak.

0,02 0,03 0,04

and theoretical values of(6) was obtained for 10 and The sample surface was smooth to within it over a
30 MHz at different temperatures. The experimental curvesength of 100 mm.
were preliminarily normalized a#=0°. Copper is an acoustically strongly anisotropic crystal

The absorption parameters determined in this way varyith the anisotropy coefficieny=3.2. The form of angular
from (1.0-1.25-10 4 for 10 MHz to (2-6)-10 % for  absorption spectra is determined by the shape of constant-
30 MHz, which is in satisfactory agreement with the mea-frequency surfaces of the crystal in the space of wave vectors
sured value for the bulk acoustic absorption coefficientk. For a strongly anisotropic crystal, constant-frequency sur-
(p=3-10"%).2% The integral of the total energy for experi- faces differ from the spherical surface both for the longitu-
mental values is twice as large as the energy integral up tdinal and for two transverse modes. The constant-frequency
the critical angle, which is in accord with calculations madesurface for the slowest transverse mode is not convex, and
by Khalatnikov and Andreev. hence a transition is made from conventional surface waves
to generalized wavesg.

Figure 3 shows the results of calculation of acoustic en-

Experiment$2%2lwere made on a copper single crystal ergy transmission through the three principal planes of the
whose properties can be described correctly by the free elecopper single crystal in the form of two-dimensional pat-
tron theory. terns. The following peculiarities of two-dimensional spectra

The sample of diameter 10 mm and thickness 1.4 mmare worth mentioning. A region of transmission of longitudi-
was cut from a single crystal by the electric-spark method smal sound is observed at the center, for angles close to the
that the surface under investigation coincided with the basatormal. As a result of anisotropy, the shape of this region
plane(001). The sample was polished mechanically by dia-differs from circular. The region of longitudinal sound is
mond paste and then etched electrochemically. The removeskparated from the region of transverse sound by a band with
layer of copper of thickness 18m was several times larger zero transmission coefficient. In the region of transverse
than the grain size of the coarsest diamond paste. It can beaves, the transmission coefficient is slightly larger than in
assumed that the obtained surface contained no mechanidak region of longitudinal waves as in the case of an isotropic
stresses. medium.

Investigations on a Linnik interference microscope Narrow black bands framing the continuous spectrum
proved that the main part of the surface is smooth to withincorrespond to sharp peaks of resonant transmission of sound
100 nm; scratches of depth up to 200—500 nm were presernit) the case of excitation of a surface Rayleigh wave.
their density being approximately 1 scratch/mm. Thus, scat- The distinction of the spectrum of an anisotropic crystal
tering at defects for ultrasonic waves of length up tarh  (coppe¥ from that of an isotropic crystal lies in the forma-

4.2. Copper Single Crystal
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(~10 mm), which leads to multiple reflections of ultrasound
between these two surfaces.

As a result of multiple reflections, the spectrum of trans-
mission coefficient for angleggz/n(n is an odd number
acquires additional resonant peaks associated with excitation
of surface Rayleigh waves; as a result, the transmission en-
ergy increases in the regiorr2°. This is confirmed by
calculations! Thus, the theoretical and experimental values
of « in a specific geometry coincide in the central region
also.

The pattern asymmetry relative #=0°, which is no-
ticeable in Fig. 4, is due to the fact that the scanning in the
given directions is carried out not exactly through the center
(#=0°). Thedeviations measured for six azimuthal angles

®

a, 10

- O 00 O N O

a, 102

E

8

6 lie within 20—40. As a result, the pattern to the left and right
=4 of #=0° corresponds to slightly different azimuthal angles,

4 3 which was taken into account in the calculation of theoretical

2 dependences.

0 An analysis of the experimental curves in Fig. 4 shows

that the overheating of the single copper crystal by sound is
observed only in the range of allowed ang|@#$<7° as in
FIG. 4. (a) Experimental spectra of phonon transmission to a copper singlej[he case Of, tungsten. In_ F:ontrast to tungsidn,a shqrpgr .
crystal((001) plane along various azimuthal directions=0, 10, 22, 29, 37,  Interface exists for the critical cone of energy transmission in
and 45° at temperatuf®= 140 mK and frequency=39 MHz. Dotted lines  copper, and(2) the resonant peaks for surface waves are
corres_pond to the r_esults of calculations. The arrows indicate the tops gfych sharper and higher. The maximum Rayleigh peak had
experimental Rayleigh and pseudo-surface peaks. the amplitudex~0.1 (see Fig. 4a The observation of such
sharp and high peaks confirms the predictions of Andreev’s
theory’

Along with purely surface Rayleigh peaks, Fig. 4 also
tion of additional resonant peaks in the continuous spectradhows pseudo-surface peaks. Excellent agreement with the
region, which correspond to pseudo-surface waveBhe theory should be noted as regards the angleer which
term “pseudo-surface waves” is usually applied to wavesresonant peaks are excited as well as the shape of these peaks
which are localized at the surface incompletely, but argheight and width The suppression of Rayleigh peaks can
coupled only slightly with bulk mode. be clearly seen as we approagh-45° ([110] direction. In

In Fig. 3, pseudo-surface peaks in the form of narrowthe directions¢=37 and 45°, resolved peaks have ampli-
black bands can be seen in 1) plane in the vicinity of tudes amounting only to 1/100 of the maximum amplitude.
the [110] direction. In the same directions, the intensity of It should be noted that in the region of continuous spec-
transmission of Rayleigh waves vanishes. Pseudo-Rayleigium (/6| <6°), minima separating longitudinal| €] <3°)
peaks can also be seen in ttie 1) plane and are absent in and transverse (32|6|<6°) modes were observed for the
the (011) plane. The velocity of Rayleigh waves is smaller first time. A minimum between transverse and Rayleigh
than the velocities of the longitudinal and two transversewaves was also observéthe critical angle was 6—6.5°). In
modes in the crystal; for this reason, Rayleigh peaks alwaythe absence of dampingp40), the transmission coefficient
lie at the edges of the spectrum. a=0 at the minimap; and 9,, i.e., total internal reflection of

Solid curves in Fig. 4 present the results of measurelongitudinal and transverse waves takes place. This is an
ments of the acoustic energy transmission coefficient in additional evidence in favor of the validity of the acoustic
copper single crystal for thé001) plane and azimuthal di- theory for the description of heat-transfer processes.
rections ¢=0, 10, 22, 29, 37 and 45°. These results were  The temperature and frequency dependences are illus-
obtained during measurements at temperature 140 mK artcated in Fig. 5. The spectra are repeated exactly both for
frequency 39 MHz. The dashed lines in same figures corretemperature and for frequency. The attenuation of the signal
spond to theoretical dependened®) calculated for a plane upon an increase in temperature is due to absorption of ul-
wave. It can be clearly seen that the experimental and thedrasound in helium, which is proportional tT*, while the
retical dependences are in excellent agreement and repeat thigenuation with increasing frequency is due to the deterio-
finest details everywhere except the central region of anglesation of the emitter quality for small wave lengths.
+2°. Such an agreement was reached for the first time in the The theoretical dependence of the transmitted energy in-
present publication. tegrall = [«(#)d6 on the azimuthal angle° on the(001)

In the central regiong(#) has additional resonant peaks surface for various values of the absorption paramptés
at 0r/3,0r/5,0r/7, etc. These peaks are larger in absoluteshown in Fig. 6. For purely surface Rayleigh wauésft
value than the theoretical valug0)=5-10"2 by a factor of  curves, the integral transmission decreases abruptly in the
2-3. This is due to close spacing of the sample and quartegion ¢~30°, vanishing for the directiop=45°. As we
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b The aluminum single crystal was grown from a high-
purity metal melt R3q0/R4,=40 000). The sample had the
shape of a disk of diameter 18 mm and thickness 2 mm,
whose free surface was close to the basal p(@04) of the
crystal. Thg100] axis was on the free surface, and t6&0
plane formed an angle approximately equal to 2° with the
normal to the surface.
As usual, the sample was first mechanically polished on
a buffing machindthe grain size in the polishing paste was
approximately lum). Then the sample was subjected to
electrochemical polishing as a result of which a layer of
572MHz - thickness 15um was removed. After such a treatment, the
sample acquired the mirror surface without scratches and
with a surface defect size smaller than Quim.
FIG. 5. (a) Experimental spectra of transmission of ultrasound to a copper ~ Since the effect of anisotropy was studied in detail ear-
single crystal ((001) plang: in the direction ¢=29° at a frequency lier for the copper single crystal, and anisotropy of aluminum
39 MHz at various temperaturég) and ¢ =37° atT=140 mK for various 5 smg||, the transmission coefficient for phonons through the
frequenciesb). basal plang001]) in the given sample was studied only for
sound propagating along tfi#00] axis (the azimuthal angle
approachp=45°, the Rayleigh peak becomes infinitely nar- ¢=0°).
row (for a~1), the magnitude of integral transmissiog We were mainly interested in analyzing of the effect of
decreasing simultaneously with decreasing peak width. Sincée superconducting phase transition in aluminum on the
the transverse componeRt of the wave vector is real- transmission coefficient.
valued in this case, there is no localization, the wave pen- In order to transform the sample to the normal state
etrates the crystal to a large depth and becomes purely vo{Tc=1.19 K, H;=100 Oe), the magnetic field

ume wave forp=45°, H~1 kOe>H, of a solenoid was applied in the direction
The integral transmission of a pseudo-surface waveerpendicular to the surface under investigationéer0°.
(right curves in Fig. Bin the directionsp=30-42° does not The transmission coefficient was measured in the tem-

depend on absorption since the radiation emission into thperature range 100—300 mK at frequencies varying from 13
solid in this angular interval exceeds the radiation emissiorio 91 MHz!823

into the liquid. In the angular range 42—-43°js a function The results of measurements ®f6) in the normal and
of dissipation if its magnitude is smaller than the radiationsuperconducting states at two frequenci@® and 65 MHz)

emission into the liquid, but larger than the radiation emis-at T=140 mK and the theoretical dependences are presented

sion into the crystal. in Fig. 7.
It can be clearly seen that as for the tungsten and copper
4.3. Aluminum Single Crystal single crystals investigated earlier, sound propagates in alu-

minum inside a narrow con@vith the angle approximately
equal to+=5°). Theregion of continuous spectrurfangle
+4.3°) with a minimum between the longitudinal and trans-
verse waves for the critical angle of incident@° for lon-
gitudinal waves is clearly outlined. Sharp peaks associated
with resonant absorption of Rayleigh waves excited by the
incident sound lie on both sides of the critical angle. It
should be noted that experimental curves exactly coincide
with calculated theoretical dependences.

As in the previous experiments with tungsten and cop-
per, the region corresponding to transmission to longitudinal
10 P modes (6|<2°) contains additional peaks at angles
fr/n(n is an odd numberassociated with the excitation of
Rayleigh waves by the sound experiencing multiple reflec-
tions between the surfaces of the sample and the quartz emit-
ter (the separation between these objects was approximately
10 mm.

In the normal state of aluminum, the principal Rayleigh
peaks forg ~=* 4.5° attain the amplituder=~0.18 for a
FIQ. 6. Dependence of the integral energy tr_ansmislﬁeﬁa(f))d@ on the. width approximately equal to 3Qwhile the absorption pa-
azimuthal anglep_on the(001) surface for various vqlues of the absorption rametemp=(5-8)- 10—3, which coincides with the results of
parametep. The integral for a purely surface wave is shown on the left and |’
for a pseudo-surface wave on the right. The dashed line shows averadi€Ct measurementS. The absolute values of(¢) were
integral transmission for volume wavésngitudinal and transverse determined by normalization of the experimental dependence

Aluminum is an acoustically weakly anisotropic crystal
with the absorption coefficieny=1.22.
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FIG. 7. Angular spectrum for the phonon transmission coefficigf#t) to

aluminum for the normafa,g and superconductin@,d states at frequen-

cies 39 and 65 MHz af =140 mK. Solid curves correspond to experiments

and dotted curves to the theory. The arrows indicate the tops of experiment
Rayleigh peaks.

FIG. 8. Angular oscillations of the transmission coefficietiy) for super-

conducting aluminum, associated with interference of waves in a finite-

thickness plateT =195 mK. The solid curves correspond to experiments,
d dotted curves to the theorf=or both frequenciesy=0 on the left of

the Rayleigh peak.

. mal state is the dominating dissipation mechanism. In the
Quperconducting state, absorption decrease abruptly and is
associated with different scattering mechanistmzainly,

with the scattering at the sample edges, periodic nonunifor-
mities and roughnessedn this case, the absorption param-
eter can be a function of the frequency of incident sound,
which was actually observed in experiments at low frequen-
ties.

The abrupt decrease in absorption during the transition
to the superconducting state leads to an increase in the
ei{apitza resistancéapproximately two-folgl
A comparison of experimental angular speci@) for
three metals investigated by (tsngsten, copper, and
aluminum shows that the transmission coefficients for ideal
monocrystalline samples with a perfect surface are close and

re correctly described by the dissipative acoustic theory.
he values ofp~3-10 4-5-10"3 obtained for tungsten,
copper, and aluminum coincide with the results of direct
dmeasurements on sound absorption. It should be noted that

tlpns of the _quantltya(a) (“crest ) are observe_d n the re- AndreeVv’s theory gives narrower resonant peaks derl
gion of continuous spectruifsee Fig. 8 the oscillation fre- (of width 4—30) corresponding to smaller parameters
guency increasing in proportion to the frequency of sound.

The oscillations otx(8) emerge due to the finite width of the
plate. The sound transmitted in the plate and reflected mu
tiply between its parallel plates interferes in the metal The analysis of single crystals with perfect surfaces,
analogy with the Fabry—Perot interferomgtefhe calcu- which confirmed the validity of the dissipative acoustic
lated interference pattern for both frequendidstted curve theory, provoked the natural question as to what will be the
in Fig. 8 coincides to a considerable extent with the experi-transmission coefficientsy(w,8) for acoustic energy in
mental curve. In the normal state, no oscillations are obpolycrystals?
served in view of much stronger absorption of sound in the  Remarkably, the acoustic properties of the interface be-
metal. tween*He and a polycrystal have not been investigated until
Thus, it has been proved experimentally that the absorprecently in spite of the fact that most of measurements of
tion of a Rayleigh wave by conduction electrons in the nor-Kapitza resistance were made on polycrystalline samples.

the transverse modevhich does not contain distortions as-
sociated with secondary Rayleigh peraland the absorption
parameterp was determined from a comparison of the nor-
malized experimental curve with the theoretical one.

Thus, experiments with aluminum confirm the validity
of Andreev’s theory once again. The experimental angula
spectra for aluminum in the superconducting staee Figs.
7b and 74 differ considerably from thex(6) spectra in the
normal state. The Rayleigh peaks become much narrow
(their width amounts approximately td' )5 and their height
exceeds that in the continuous spectrum region only slightl){he
(for high frequencies

The absorption parametgr for the superconducting
state is smaller by a factor of 60—70 than for the normal
state, and the contribution of Rayleigh peaks to the therm
flux is virtually equal to zero.

Besides, in the superconducting state, angular oscill

r}.4. Gold Polycrystal
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We investigated the helium—polycrystal interface for
high-purity polycrystalline gold Rzq9/R4,=36 000) pre-
pared from melf® The sample was in the shape of a paral-
lelepiped of the size 1810X1.9 mm. In the process of 0,004
manufacturing, the sample was rolled through rollers, lev-
elled under a press with polished quartz plates, and then
annealed in vacuum. The quality of the surface was con- 0,003
trolled by a Linnik interference microscope; the size of
roughnesses and deviations from the plane did not exceed
0.5 um. 0,002

According to rings on the Laue diffraction patterns re-
corded from two different points of the samtee lines are
continuous and have the same thicknes® could estimate 0,001
the average size of crystallites=10 um. In addition, after
the experiments the surface was subjected to fine mechanical
polishing and etching and was investigated under a micro- L
scope with a large magnification. A typical size of grains 0 02 ¢ 0.4 0.6
formed as a result of recrystallization and annealing was 5— - o
10 um. Each crystallite was a single crystal with strongly FIG. 9. Normalized experimentak(6) curves for a gold polycrystal:
anisotropic acoustic properties. The anisotropy coefficienf=13 MHz,T=150 mK (curve 1), f=39 MHz,T=200 mK (curve 2), and
for gold is 7=2.85. Figure 1 shows the(6) spectrum fora | 0> MHzT=150 mK(curve3).
gold single crystal in the directio@=0°. It is assumed that
crystallites in a polycrystal are oriented at random, as a result
of which the acoustic properties of the polycrystal becomenstrument did not allow us to investigate the spectra for
isotropic. angles of incidence>30-40°.

The polycrystalline gold sample described above was The form of thea(#) spectra in Fig. 9 indicates strong
studied by us twicé>?® The first experiments did not lead  absorption of sound in the gold polycrystal. The sound ab-
to positive results. Only subsequent measuremi@itisthe  sorption parameterp can be determined by comparing the
same sample, using a more perfect measuring techniqueansmitted energy integralg)°a(6)dé for theoretical and
made it possible to obtain a stable pattern of angular deperxperimental dependencése assume that the integral of
dencea(w,d) for a plane monochromatic wave for three transmitted energy is conseryed’he shape of the experi-
frequencies in the range 13—65 MHz. mental «(6) curve can differ from that of the theoretical

The main distinguishing feature of the spectra for transcurve mainly due to the expansion of the interval of angles of
mission coefficientr(w, #) in a gold polycrystal was that the incidence on a rough surface.
overheatingAT for the gold polycrystal by sound was very It was found that as the frequency changes from 13 to
small relative to*He. For the same acoustic flow rate, the 65 MHz, the parametgy changes from 210" to 0.15, i. e.
overheating for the gold polycrystal was smaller than forstrongly depends on frequency. For the frequencies 39 and
single crystals by a factor of #610°, which indicated a 65 MHz, it is one or two orders of magnitude larger than the
small Kapitza resistance in the polycrystalline sampleelectron absorption parametgr 10"%).2" The increase of
Rough estimates obtained on the basis of our experiment§e tails in thea(6) spectrum with frequency beyond the
give RcT3~80cnfK*W, which is close to the value critical cone also confirms this statement.

Rk T3=46 cn?K*/W obtained by Folinsbee and Anderébn Such a strong sound absorption in the gold polycrystal
for a mechanically polished annealed gold foil of thicknessand its increase with frequency are due to scattering of sound
0.6 mm atT~40-300 K. at grain boundaries.

Figure 9 shows the experimental curveé6) normal- It was proved in the theoretical works by Lifshits and
ized (by coincidence a#=0) for frequencies 13, 39, and Parkhomovskif® Papadaki$} and Kaganova and
65 MHz in the region of positive angleg. For §=0, we Maradudiri® that scattering takes place at nonuniformities of
have aeo= 2.13 107 2. the elastic medium in view of random orientation of crystal-

The form of thea(w, 8) spectra for a polycrystal differs lites each of which is a strongly anisotropic single crystal. At
from typical angular spectra for single crystals. For polycrys-high frequencies, this absorption mechanism becomes pre-
tals, we do not observe sharp and high peaks of resonafieminant.
absorption of a Rayleigh wave at the spectral edges, deep Papadak® proved that absorption of sound depends on
minima separating the regions of longitudinal and transverséhe average grain size:y=V{*S for low frequencies
surface waves, and resolved secondary Rayleigh peaks ne@dy>a, Rayleigh scatteringand y=af?S for high frequen-
zero angle of incidence. The spectra are asymmetric, all sircies (\<a), whereV and a are the average volume and
gularities are strongly blurred, and resonant peaks are broatiameter of a grain, an& and X, are constant coefficients
and low. characterizing the material and varying insignificantly from

Beyond the critical con®.=12°, the functione(6) de-  sample to sample. The boundary between the two regions is
creases very slowly, tending to zero. The construction of theletermined by the condition,=27a. In our case\ =90,

0,005
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FIG. 10. Experimental values of absorption for a Rayleigh wave in a gold
polycrystal =13,39,65 MHz) and the theoretical straight lige= Vf4S?°
for the grain size fum.

30, and 18um, i.e., we are in the intermediate region for the
grain sizea=5 um. o

Figure 10 shows the theoretical straight lie=Vf4S
for the grain sizea=5 um. The values ofS are borrowed
from Ref. 29. The same figure shows the points obtained
from a comparison of¢,, andl e, The error in the evalu-
ation of integrals is approximately 100%. The maximum er-
ror is observed in the range of parametprérom 10 3 to
10", in which the integral varies only by 10%. It can be
seen from the figure that satisfactory agreement is observed
between the experimental values ¢fand the theoretical
straight limey=V{4s.2®

A virtually complete absorption of sound even at the
frequencyf =65 MHz explains the considerable increase in
the integral contribution of phonons to the thermal flux
through the boundary of the polycrystal. It increases due to
the tail extending from the critical angle t&/2, which is in
accord with the dissipative acoustic theory. From this point
of view, the small value of the Kapitza resistance for poly-
crystalline gold is obvious.

The following peculiarities of thex(6) spectra of the
polycrystal are worth noting.

(1) The overheating of the gold polycrystal by sound rela-
tive to liquid helium is 2—3 orders of magnitude weaker
than that of single crystals, which corresponds to a large
absorption parametgr and a small Kapitza resistance.

(2) Thea(#6) curves do not exhibit a complete angular sym-
metry in view of anisotropy of the polycrystal due to
residual preferred orientation after rolling. Individual
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peaks on thex(6) curves are rather due to absorption of
a Rayleigh wave by groups of crystallites with close ori-
entation of principal axes.

The height of the gently sloping Rayleigh absorption
peak atf. increases with frequency, which is typical of
spectra for whichp is a function of frequency. The
maximum transmissiona(~1) for polycrystalline gold
apparently corresponds to the frequency region
f>65 MHz.

Rayleigh peaks have a larger angular width, which can
be explained not only by large values jpf but also by
the blurring of the incident beam due to imperfections of
the surface formed by individual grairisingle crystals
oriented at different angles to the surface.

5. CONCLUSION

The main results can be formulated as follows.

Resonant absorption of sound by the surface of a tung-
sten single crystal for a Rayleigh supercritical angle of
incidence was observed and investigated for the first
time at frequencies 10 and 30 MHZ;1"*!thus confirm-

ing Andreev’s theory:® It was established experimen-
tally that only bulk longitudinal and transverse waves
with small (~10"3) and virtually constant transmission
coefficients depending weakly on absorption are excited
in the critical cone in an acoustically isotropic single
crystal. Outside the critical cone, a sharp peak of reso-
nant absorption of a Rayleigh wave with the width
~30" and with «a~0.01 is observed. The width and
height of the peak are determined by the absorption of
sound in the single crystal, which is equal to attenuation
at electrons and holes in the bulk. It is shown that Ray-
leigh waves make approximately the same contribution
to the transmitted energy flux as the bulk waves in the
subcritical angular range.

The coefficient of acoustic energy transmission through
the (001 plane in a copper single crystal is investigated
experimentally at frequencies 10—300 MHz and theoreti-
cally (by computer calculations methods using the
acoustic dissipative theoryor various azimuthal direc-
tions of propagatioh®2%2|t is shown that two resonant
modes are excited on tH801) and(111) surfaces in an
acoustically anisotropic single crystal: A Rayleigh sur-
face wave and a pseudo-surface wave witk 0.1 and
with peak widths 10—20 At the (011) surface, only a
Rayleigh wave is excited. Good agreement between the
experimental spectra and those calculated according to
dissipative acoustic thedty~1°with a phenomenologi-
cal absorption parametgy~10 *-10 2 was attained
for the first time. The width of Rayleigh peaks was in-
dependent of temperature and virtually independent of
frequency. We managed to observe for the first time two
symmetric minima corresponding to critical angles for
longitudinal and transverse waves. For angles of inci-
dence close to zero, numerous peaks of lower intensity
were observed; these are Rayleigh peaks associated with
the incidence of ultrasound multiply reflected between
the sample and the emitter.
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In this paper we discuss sonf@nd only a small fractionof the interesting properties of
superfluid ®He at the low-temperature limit. We concentrate on the unique behavior and
applications of the very dilute excitation gas at the lowest temperatures. This gas has

been used for among other things, the probing ofAké8 phase interface, the detection of low-
energy particle events and in the simulation of the creation of cosmic stringd.993

American Institute of Physic§S1063-777X97)00205-3

INTRODUCTION maintain the correct symmetry the pair angular momentum
must be odd and in fact in the ground state is 1. Therefore,
We can think of the classes of quantum fluids as existinghe Cooper pairs comprising the condensate are characterized
in a distinct hierarchy of complexity. The simplest is super-by mass, nuclear spin and orbital angular momentum. This a
fluid “He. Here the starting material of the condensate, thenakes for a much richer structure andaiows us to exam-
“He atoms are bosons. They have no spin, no charge and are the very essence of the superfluidity by providing us with
spherically symmetrical, filled-shell, noble gas atoms. In thea window into the internal structure of the condensate itself
condensate they offer no labels other than their mass. Thusy NMR.
the superfluid component in liquitHe has a wave function
which gives information only on the distribution and motion
of the mass in the system. A distortion of_the wave functlon_THE LOW TEMPERATURE REGIME
may therefore generate a response only in terms of mass, in
this case a mass superflow. Experimentalists working with quantum fluids generally
The next most complex system in our hierarchy is thethink about the subject in terms of the two-fluid model, the
superconducting electron gas in a conventional superconnterplay between the normal fluid and superfluid compo-
ductor. Here the component particles, the electrons, are fefents being one of the characteristic features of these unique
mions and may only contribute to a boson condensate bgystems. However, near zero temperature we have a new
coupling in Cooper pairs. Here we have the possibility ofregime. The normal fluid density is negligible and we are left
more structure since a pair may have orbital and spin angulagith ‘pure’ superfluid. In the case of superfluide this turns
momentum. However, in conventional superconductors aput to be a very rewarding region since the condensate itself
least, the Cooper pairs choose the simple solution and coupleas such a rich structure. In fact, the behavior turns out to be
with spins opposed. The total spin is thus zero, and to mainincreasingly interesting as the disturbing interference of the
tain the correct symmetry the orbital angular momenturmormal fluid is removed with falling temperature.
must be even, and also takes the value zero. The Cooper Some of the most arresting properties of the quantum
pairs in a superconductor are thus also very simple. Thefluids remain the persistent phenomena, persistent mass flow
carry mass, and more importantly charge. Therefore, a disn superfluid*He and persistent currents in the superconduct-
tortion of the wave function can lead to a supercuri@né  ors. In superfluid*He the normal fluid and superfluid com-
associated mass current is unimportant in compayision  ponents are coupled together via the mechanism known as
more exotic forms of superconductivity, where the pairs maymutual friction. Since the normal fluid flow is dissipative,
have nonzero spin, the situation could in principle be muchthis coupling acts, in general, to prevent persistent flow in
more complex. The fact that the Cooper pairs carry a chargthe superfluid(The process is mediated by vortices which
couples the condensate into electromagnetism, yielding aliarry a circulation of z of wave function phase around the
the exotic quantum-electrical properties for which the supervortex axis. If a vortex can cross the path of the superflow,
conductors are valued. Further, on the mundane practicahen 2r of phase is either added or removed from the phase
level, this means that we can examine superconductivity bgradient, thus mediating the decay of the flpWo see real,
including the superconducting element under examination ipersistent flow phenomena in superfliide, we must either
a simple electric circuit. Our measurement of the current andestrict the discussion to low flow velocities or make experi-
voltage then allows us to infer what is happening inside thenents in very restricted geometries, which inhibit the flow of
superconductor. Direct observation of the superconductingortices. In the superconductors, on the other hand, the nor-
behaviorin situ is much more difficult. mal and supercurrents are almost completely decoupled and
The third class in our hierarchy is exemplified by super-persistent currents in loops can be maintained for very long
fluid ®He. Here the starting particles are again fermions, theperiods. Which of us has not been impressed when, as stu-
3He atoms which carry a nuclear spin. However, in this caselents, we learned for the first time that currents could be
the coupling of the pairs yields, not zero spin, but spin 1. Tomaintained circulating in loops for periods of many years?
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The properties characteristic of, and unique to, superties of the superfluid. In this context, we have been examin-
fluid He at the very lowest temperatures are associated witing the thermal behavior of the superfluid which we believe
the magnetic behavior of the nuclear spins and with the dican be used as a very sensitive particle detector. Finally,
lute gas of residual thermal excitations. Unfortunately, magjointly with CRTBT, Grenoble, we have been exploiting the
netic interactions are long range and during dynamic motiorparticle absorption techniques developed earlier for studying
of the spin system, say after an NMR pulse, the magnetizathe simulation of cosmic string creation, via the Kibble
tions associated with the normal and superfluid componentfiechanism, by looking at the formation of vortices after a
are very tightly coupled. Under certain circumstances thessudden crossing of the superfluid transition.
can be separatédyut this is the exception. The possibility of
persistent magnetic phenomena is very interesting. The only
straightforward means to observe such behavior is to resoftHE EXCITATION GAS
to very Iovy tgmperatures where the q|§s|patlve effgct of the We start by considering the properties of the very low-
normal fluid is so weak as to be negligible on the time scaletem

. . . perature excitation gas. This is one of the few in nature in
of an experiment. We cannot reach this regime yet, but we ", . : . . .
) . wth|ch an entire assembly of particles with non-Newtonian
have approached close enough that persistent behavior 8 o : o
. - ... dynamics is completely accessible. There are similar en-
several minutes can be observed, giving us a tantalizing NSembles of excitations in condensed matter physics, but al
sight into what might lie in store for us at lower tempera- pnysICs,

tures. At temperatures close to zero, the quasiparticle excite({:po?]stgi?]lé;rgnfra?npzdS'S Zrﬁtt;[:jcec.o;jgnes:t)écIt\i‘/tr:(i)cnh %‘;‘f rlﬁost
tions above the ground state form a fascinating dilute 9as.  chanical Zr 0ses cpan be treated as a’ vacuum. and the
Since the excitation dispersion curve is of the “double mini-. purpose Y ! .
mum” BCS type, the dynamics of the particles is very unlikemdependent dynamics of the excitations can be studied. This

) . o ) is especially the case at low temperatures, where the low
that of a conventional “Newtonian” gas where the disper- = =" . iy
. ) o 5 . excitation density ensures that collisions are rare and the ex-
sion curve is the familiale = p“/2m, parabola. This leads to

I . . citations behave entirely ballistically.
many non-intuitive properties, as we discuss below. The unusual behavior of the quasiparticle excitation gas
These two low-temperature properties of superffiki d b 9

are those which have attracted most of our interest at Lang’ia rle S#Eigfézrevgoi:bliig'g'?:gﬂ?;%?;ﬂﬁg f\lu;ﬁérs];?]wna'_n
caster. In collaboration with Yuri Bunkov, formerly of the 9. L. N b

Kapitza Institute and currently working in Grenoble, we haveraboIal in having the energy minimum not at zero momentum

been studying the magnetic properties of the condensate byt at the Fermi momentum. Furthermore, this leads to two

the very lowest temperatures through NMR. However, Wha?lfferent types of excitation: quasiparticles with group veloc-

o . . . |]1y and momentum parallel and quasiholes with group veloc-
we are concerned with in this paper is the unique behavior o :
ity and momentum opposed. The gas has rather different

the extremely dilute gas of the quasiparticle excitations. This roperties in the two phases of superfidide. However, in

gas not o_nly has very ur_wusual properties in .Its own right, bu he B-phase the excitation curve is virtually isotropic and the
also provides a convenient probe for studying other proper- o o . .

energy gap to the excitation energy minimum is the same in
all directions. The curve in Fig. 1 holds also for the A-phase,

but in this case the gap is dependent on the direction relative

>
9 - —
[]
&
_> 3
ha Observer's motion
- P <4am
0 Momentum —
FIG. 1. The excitation dispersion curve in superfléiite. The minimum on 0 Momentum —*>

the curve occurs not at zero momentum, as for a conventional Newtonian

object, but rather at the Fermi momentum. This means that there are twBIG. 2. When observed in a moving frame, the dispersion curve in Fig. 1 is
classes of excitation; quasiparticléiled circles with momentum and ve- seen to be canted. Excitations with momenta directed toward the moving
locity in the same direction and quasihol@pen circley with momentum observer have higher energies in this frame and those with momenta di-
and velocity in the opposite direction. rected away have lower energies.
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to the direction of the Cooper pair angular momentum, with
two polar nodes of zero gap and a maximum gap around the
equator.

In the B-phase the energy gap to the minimum excitation
energy implies at low temperatures an excitation density
dominated by the gap Boltzmann factor exp@A/kT). At the
lowest accessible temperatur@bout 100uK at zero pres-
sure the density of excitations is vanishingly small, the
number of unpairedHe atoms being of the order of 1 in
10’. The mean free paths of the excitations are therefore
very long, orders of magnitude longer than any experimental
dimension. Thus we may carry out experiments with beams
of excitations.

Near the minimum in the dispersion curve it can be seen
that an excitation may have its group velocity reversed for a
negligible change in momentum. This is the so-called An-
dreev reflection, in which a quasiparti¢iguasiholg¢ incident
on a region of increasing gap is reflected as a quasiloola-
siparticle. This process was first discussed by Andreev in
the context of electron reflection at a normal- of detection is unlikely to be very effective. Paradoxically,
superconducting interface. However, in the superfflitt  quasiparticle excitations produce a very large mechanical ef-
context such reflection processes have a very strong inflifect on such a resonator. First, from the shape of the disper-
ence on the dynamical properties, since they permit an excsion curve, the excitations have very large momenta for their
tation to be reflected with virtually no change of momentum.energies compared to ‘conventional’ excitations. Further-

A further interesting aspect of the dispersion curve inmore, when the wire is moving through the excitation gas the
Fig. 1 is the fact that it is not invariant but may be changeddispersion curve in the frame of the wire becomes canted, as
When we move relative to the superfluiiie, in contrast discussed above. This has a large effect on the dynamics of
with a normal gas, the excitation dispersion curve in ourthe response of the gas to the motion of the wire. The situa-
frame of reference assumes a different shape. While weon is illustrated schematically in Fig. 4. The canted disper-
move, excitations with momenta approaching are seen tsion curve has the effect that for quasiholes approaching the
have increased energies and those with momenta recedingre from the forward side there are no outgoing hole states
have decreased energies. For a Newtonian particle this simwvith similar energies and the quasiholes must be reflected by
ply translates the energy/momentum parabola. In the supeAndreev processes and thus exchange negligible momentum
fluid *He case, however, the excitation dispersion curve bewith the wire. Similarly quasiparticles approaching from the
comes canted, as shown in Fig. 2. The effective gap forear must also be Andreev reflected. This has the effect that
approaching excitations increases and that for receding excéven at modest velocities normally scattering processes are
tations decreases.

> 1y exp (iot)
Vy exp (iot)

FIG. 3. A vibrating wire resonator.

THE VIBRATING WIRE RESONATOR Motion

We can make use of these properties of the dispersion
curve to create a very sensitive mechanical quasiparticle de-
tector. The device we use is a vibrating wire resonator which
is a simple semicircle of very fine superconducting wire, as
shown in Fig. 3. The loop has a mechanical resonance in
which the wire moves perpendicularly to the plane by the
flexure of the wire legs. If the loop is placed in a magnetic
field, as shown, then a current at the appropriate frequency
through the wire will set it into oscillation from the Lorentz
force on the current. The motion of the loop through the field
sets up a voltage across the lo@mm the cutting of the field
lines) which we can monitor to infer the velocity. From this
simple device we can infer the behavior of the excitation ga$!G. 4. A schematic diagram of an object moving through superfluid
from its damping effect on the motion of the resonator. We3He-B. For simplicity, a tennis racket is used as the representative object

. sipce it can be assumed that it does not displace the condensate, but onl
sweep the frequency through the mechanical resonance ;éff] P Y

X . i lects the excitations. In the rest frame of the moving rac¢ketvhich
the wire loop and measure the width at half-height of thescattering is elastjowe see that for excitations approaching from the front
in-phase signalAf,. only quasiparticleqfilled circles may be normally reflected. Quasiholes

: : o must be Andreev reflected with virtually no exchange of momentum with
Since the denSIty of the excitation gas at the lowest ac he racket. The converse holds on the opposite side. This multiplies the force

cessible temperatures_ is comparable to that of a_mOderate the racket by several orders of magnitude over that expected for a similar
good vacuum, one might assume that a mechanical methodonventional” excitation gas.
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FIG. 6. The frequency widthAf,, of a vibrating wire resonator plotted as

a function of temperature, as measured by Pt NMR. These very old data are
rather poor at the lower temperatures, where the damping becomes very
small and we have to measure for many hours in order to determine the
frequency width. More modern resonators are made of much thinner wire,

giving a larger damping, which is much easier to measure.

FIG. 5. The measured force velocity-curve for an object moving in the
excitation gas. The velocity-independent force above a velocityv of
= kT/pg is quite apparent.

biased to give a preponderance of quasiparticle scatterings on
the forward side and quasihole scatterings on the rear sidevith a small hole in one wall, as shown in Fig. 7. Inside the
Both these processes impede the motion of the wire. box are two vibrating wire resonators. One acts as a ther-

This has two effects, first the resistive force opposing themometer to measure the temperat(oe quasiparticle den-
motion of the wire becomes a constant, independent of vesity). The other acts as a heater and makes use of the follow-
locity, above a velocity of v = kT/pg, which is quite unlike  ing principle. If a resonator is driven at high enough velocity,
the behavior in conventional gases. This can be seen in Fighe liquid can be locally accelerated above the Landau criti-
5, where we plot a typical force-velocity curdeFurther-  cal velocity for pair-breaking. Beyond this velocity the mov-
more, at more modest velocities there remains the imbalandag wire can create a shower of excitations, both quasiparti-
of scattering processes of the quasiparticles and quasiholedes and quasiholes. In other words we can use a heavily
which amplifies the damping effect of the excitations on thedriven resonator as a heater. Such a heater has the great
wire by many orders of magnitude over the effect of a con-advantage that the heat is generated directly in the liquid.
ventional gas of particles with similar energfe¥aking all  This is important, since at the lowest temperatures the
these factors into account, we find that the density of quasiKapitza conductance between the superfluid and solid heater
particle excitations in the superfluid is very easy to detect bys so poor that thermal contact is too weak for a well-defined
mechanical methods even at the lowest temperatures. guantity of heat to be emitted into the liquid.

At low velocities, if we do the full calculatiof,the The blackbody radiator is thus a small enclosure of
damping turns out to be proportional to the gap Boltzmanrabout 0.1 cr volume containing a heater and thermometer.
factor, exp(— A/KT). This means that we can simply calculate
the width from the known properties of the wire resonator

and the temperature. However, we have measured the damp- Vibrating wire Vibrating wire
ing against an NMR temperature scale, as shown in Fig. 6. heater detector
This measurement was made many year$ agd confirmed

the exp(— A/KT) dependence of the damping. This variation :

of damping with temperature provides us with a very accu- —T_ 3

rate thermometer for the lower temperature regions, since

exp(— A/KT) changes very rapidly with temperature. For ex- ~5mm

ample, there is a change of a factor of 16 between AKO0

and 120uK for the B-phase at zero pressure. __L

QUASIPARTICLE BEAMS

In recent years we have extended our interest to exam-
ining the behavior of quasiparticle beams. To do this, we
need a spectrometer which has a quasiparticle beam source e
and a quasiparticle beam detector. The device we currently Beam of excitations
use was developed by S. N. Fisher at Lancabtehis is FIG. 7. A quasiparticle blackbody radiator. The box contains a heater and

e$sentially a blaCkbOdy. radiator fqr quaSipartiCIe.S- The defhermometer vibrating wire resonator. When heated, a beam of thermal ex-
vice consists of a box immersed in the superfluid B-phaseitations(quasiparticles and quasiholds emitted from the small hole.
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The device can be used in the detector or emitter mode. | SmmID |
When used as a detector, the flux of excitations incident on I‘ ‘I
the hole can be deduced from the temperature rise inside the
enclosure. In emitter mode heat is introduced into the liquid
in the enclosure by the heater. This generates a flux of exci- [
tations leaving the small hole. The flux of excitations leaving

the hole is determined by the temperature insileand is
given by

n=AKT exp(—A/KT),

whereA is a constant(For simplicity in presenting the ar-
gument here, we assume that the temperature of the super-
fluid outside the enclosure is zerdSince the excitations
emerge with a thermal distribution of energies, the mean G
B

energy is simplyA+kT, and the energy flux can thus be =32 mT Heating and measuring vibrating-wire
written as follows: resonators inside excitation “furnace”

Black-body
“radiator” orifice

Oscillating paddle
facing orifice

W=AKT(A+KT)exp(A/KT). (1) FIG. 8. The experiment for direct observation of the Andreev reflection. An
. . . . oscillating paddle faces the blackbody radiator beam hole. When the paddle
To calibrate the radiator as a quasiparticle source We moved, the velocity field around it causes the Andreev reflection of exci-

need to determine the value Af This we do by applying a tations back into the radiator and the temperature inside thus rises.
steady energy input to the liquid via the heater resonator and

observing the temperature inside. If we plot the values for

Eq. (1) for such a calibration we find that the experimental fit _ o

is linear over many orders of magnitude of input heaterplot of the fraction of excitations Andreev reflected as a
power. Furthermore, the lowest detectable power is of thdunction of paddle velocity is shown in Fig. 10 along with a
order of 10 16 watts or be|0v\f, which means, as we shall see calculation of the eXpeCted behaViOI’, as discussed in Ref. 6.

beIOW, that these devices can be used as partic|e detectors-l_—his eXperiment ConStituted the fiI’St direCt Observation of
Andreev reflection in superfluidHe and provided a much
BEAM EXPERIMENTS: DIRECT OBSERVATION OF less equivocal result than similar experiments made in super-

ANDREEV REFLECTION conductors.

We have made a number of experiments with such de-
vices. The two easiest to understand are those designed to
allow the direct observation of Andreev reflection and that
designed to probe thB—A phase interface, since these ex-
periments need only a source radiator. For the observation of
Andreev reflection we set up a radiator which had a small
paddle in front of the hole from which the thermal beam is
emitted. The setifiis shown in Fig. 8. If we move the paddle
towards the hole, then the backflow around the paddle en-
sures that the quasiparticles leaving the radiator find that

7

statgs near the padd_le have thew energies decre(gsmda . ‘//% Z .
the liguid is approaching the emitted beamvhile quasiholes i | =
find their energies increased. This means that quasiholes in 7

the beam are Andreev reflected by the velocity gradient and Z T~
are returned along the line of the beam back into the radiator. Z oy

(A feature of Andreev reflection is the almost perfect rever-
sal of the group velocity of the excitation so reflecjethe
situation is illustrated in Fig. 9. Since a fraction of the emit-
ted beam is thereby returned to the radiator, the excitation
density inside is increased above the density observed when
the paddle is stationary and there is no Andreev reflection.
From the temperature rise we can, in principle, calculate the
fraction of the beam Andreev reflected. In practice, the Radiator enclosure e

paddle cannot be moved steadily toward the radiator indefi-  wall Moving paddle

nitely but must be oscillated back and forth. The fraction

reflected must therefore be integrated over a comp|ete Cyc@G. 9. A schematic diagram of the Andreev experiment. The flow around
the paddle causes the Andreev reflection of excitatigmghe case illus-

of the motion of the paddle. When this is done, the rise Intrated the quasiholes are reflecgteSince the Andreev reflection is an accu-

te.mperat.ure inside the bOX. is found to be in good agreemerﬂ&te retroreflection process, the reflected excitations return to the radiator
with a simple one-dimensional model of the behafidk.  enclosure.

AN
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BEAM EXPERIMENTS; PROBING THE A—B PHASE Magnetic field, mT

INTERFACE . .
FIG. 12. The A- and B-phase gaps, as measured if\th phase interface

For the experiment to probe the phase interface betweegxperimentsee text
the two superfluid phases, tiephase and thé&-phase, we
stabilized a small region oA-phase liquid by applying a

very localized magnetic fieléiThe region was arranged to be excitation is thereby returned to the radiator which raises its

directly in front of the beam hole of a blackbody radiator, astemperature. A measuremept .Of the temperaturg in the radla-
shown in Fig. 11. In this case the actual gaps in the liquid aréOr as a function of magpehc field along the trajectory.glve.s
changed by the magnetic field. In tigphase the gap is us the value of the maximum gap along the beam. Since in

decreased along the direction of a magnetic field, but ththe B-phase the gap change depends on the spin value we

excitation spectrum is split according to whether the spin is%a\/e o split the calculation into two parts for tBephase

parallel or antiparallel to the field. The parallel gap in thepalrt of the problem. Thus we can measure both the maxi-

A-phase is 15% larger than the undisturbed gap in thénumB—phase gap as a function of field and thephase gap
B-phase. We can measure these gaps since we have set th'grﬁhe same experiment again by exploiting the unique prop-
: X o : rties of Andreev reflection. The measured gaps, as shown in
up along the beam trajectory. Excitations approaching th ig. 12 turn out to be in good agreement vsitkﬁ) the accepted
region of increasing gap must be Andreev_ reflected when th\(?all.Jes. However, the maximum gaps in an excitation spec-
effective gap becomes equal to the excitation energy. Th?rum have not been readily measurable earlier. In usual spec-
troscopic methods the minimum gap tends to dominate the

response of the system to any input radiation. The present

Thermometer

VWR

Heater

Ag-sinter
coated Cu

method opens up a new range of experiments where quasi-
particles are used as probes. This pilot experiment on the
A-B interface indicates that the method will work and fur-

VWR refrigerant ther sophistication can now be considered. It is of course
Black-body plates important to remember that the—B interface in superfluid
radiator beam Black-body 3He is unique in that it is a high symmetry interface between
hole behind radiator box two very different but also high-symmetry Bose condensates.

solenoid

_5mm__ Solenoid

' B

Solenoid
heat sink

This is the most complex high-symmetry interface to which
we currently have experimental access.

PARTICLE DETECTION IN SUPERFLUID 3He

The work with the calibration of the blackbody radiator,
with its very high energy resolution, led us to think that this
device might provide a possible particle detector. We had
suggested long afahat superfluid®He would provide an

FIG. 11. The experiment used to probe the superfitid A-B phase inter- | . . . .
face. A blackbody radiator has a small solenoid that encloses the beam hollé:.ieaI Work'ng material for the detection of |0W'energy recoil

It can be used to a create a phase interface across the (seartext interactions. The “working fluid” is simple, consisting only
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ing energies of only 500 eV. This is rather a good perfor-
a mance for a device which was neither optimized nor in-

50 tended for these experiments. With various improvements
we are convinced that we could improve the performance by
many orders of magnitude and have proposed a dark matter

0 detector based on this principle.
100 b

SIMULATION OF COSMIC STRING CREATION

An interesting further application of the blackbody ra-
diator has been in the simulation of the creation of cosmic
0 e strings via the Kibble mechanism. This mechanism was first
proposed by Kibb¥ to describe the creation of topological

30 ¢ defects during the series of phase transitions which the Uni-
verse is thought to have undergone shortly after the big bang.
S There are profound analogies between the structure of

0 500 1000 1500 2000 superfluid®He and the structure of the metric of the Uni-
Energy , keV verse. Because of the spin and orbital angular momentum

properties,®He shows a superposition of broken spin rota-

FIG. 13. Spectra of particle events measured in a blackbody radiator irfion broken orbital rotation and broken gauge symmetries
superfluid®He. The top spectrum is that taken with a neutron source, the ' !

middle is that taken with a gamma-ray source, and the bottom is a backWhiCh provide a close approximation to the superposition of
ground spectrum. The large peak in the neutron spectrum can be seen roken rotational and gauge symmetries used to describe the
about 800 keV, which represents the neutron capture prgsesstext Universe. Similar types of linear defedtsortices, point de-
fects (monopole and textures may be generated in super-
fluid *He, by analogy with the various types of defects which
of the superfluid ground state and the dilute gas of excitamay have been creatédome of which may survive to the
tions. The excitations have energies comparable to that of thgresent in the structure of the Universe.
superfluid energy gapy = 1.4 10™ 7 eV, which is virtually The background of this experiméhtlepended on a cer-
the lowest which we can currently utilize. Finally, the only tain level of serendipity. Fisher, working with Bunkov and
significant impurity in superfluidHe is *He. Extrapolation Godfrin in Grenoble, built an experiment similar to that used
of the known high-temperature solubility 8He in liquid  in Lancaster for the detection of neutrohahich described
3He to 100K suggests thatHe is only soluble to one part above. However, the hole in the enclosure was made much
in 107°%°. The purity of the working fluid is thus absolute. smaller than that used in the Lancaster experiment. The
Our first attempt at such an experiment was to take themaller hole made this experiment less effective as a particle
blackbody radiator used for the Andreev reflection experi-detector but allowed a much more accurate energy calibra-
ment described above and monitor the temperature inside th®n to be made since the time constant of the system was
enclosure while exposing the cryostat to the output of armuch longer than that of the earlier version.
AmBe neutron source. What we would expect to see would  When a neutron interacts inside the blackbody enclosure
be as follows: a particle interacts inside the box, heats thef the Grenoble experiment via the exothermic neutron cap-
liquid (i.e., increases the excitation dengitgausing a sud- ture process, the better calibration allows us to ascertain that
den fall in the amplitude of the thermometer resonator. Thehe energy taken up by the superfluid as thermal excitations
excess excitations in the radiator enclosure so-produced suls significantly lower than 764 keV, which is known to be
sequently diffuse out of the hole and the amplitude recoverseleased by this process. We know that some of this energy is
exponentially. The time constant for the quasiparticles taeleased as ultraviolet photons which are lost to the helium.
leak out of the box is governed by the geometry and the holélowever, even after this fraction is taken into account there
size and in a typical experiment is a few tenths of a second as still a significant “missing energy.” We found that this
the lowest temperatures. energy has gone into producing topological defects in the
The size of the jumps in the thermometer trace can bdiquid, in this case, vortices. The defects are formed when the
calibrated in terms of deposited energy by the application ofiquid cools through the superfluid transition. The interaction
a short known pulse of heating to the heater wire in theof a neutron with a®He atom in the cold superfluid leads
enclosure. When exposed to a source, the events can thus ib&ially to the creation of a very energetic proton and tritium
calibrated and presented as a spectrum in the usual wawucleus. These particles rapidly lose this energy to create a
Figure 13 shows spectra for a gamma source, a neutrosmall volume of the liquida few microns in extentwhich is
source, and a background spectrum for comparison taken imeated above the transition temperature of 0.94 mK. As the
this way® The neutron spectrum shows a very prominentliquid cools back through the transition, fluctuations in the
peak at about- 800 keV, which arises from low-energy neu- temperature mean that many regions of the cooling “fire-
trons undergoing the nuclear reactior 3He—p + SH. This  ball” independently become superfluid and since these re-
process releases an energy of 764 keV into the liquid. gions of superfluid are nucleated independently, the order
When we used the device to monitor the backgroundparameter is random. As the regions grow and coalesce,
radiation level, we found that we could resolve events releasgrain boundaries in the order parameter are formed. These
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POSTAMBLE

~~

Much interest in the quantum fluids has been directed
toward the behavior at higher temperatures, where the order
parameter is rapidly changing with temperature and the prop-
.......... erties are dominated by the interaction between normal and
superfluid components. For the “structureless” superfluids
------------------ B such as liquid*He and the conventional superconducting

N electron gas the low-temperature regime might be thought of
Y as of lesser interest since the condensate is very simple. Cer-
tainly in the case of superfluitHe the very low-temperature
regime reveals many interesting properties which have many
implications for other areas of physics.
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Neutron scattering study of liquid helium. Analysis of new data
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A new analysis of neutron scattering data obtained earlier for lifjdiglis presented. The
experiments were made on the time-of- flight spectrometer DIN-2PI in the pulsed reactor IBR-2.
The results are analyzed by using a consistent data processing technique including the
representation of the dynamic structural facgf, ) with a constant wave vect@. The one-
phonon component d8(Q, w) is approximated by using the damped harmonic oscillator

function taking into account the instrumental resolution. It is shown that the experimental values
of S(Q,w) are in good agreement with the fitting model, i.e., have a simple one-

component structure. The presented results indicate a peculiarity in the temperature dependence
of S(Q,w) for liquid helium in the wave vector region 0.5-0.8" A Various explanations

of such a peculiarity are discussed. 1897 American Institute of Physics.
[S1063-777X%97)00305-9

INTRODUCTION the experimental spectra obtained earlier. The data process-
ing is carried out for several typical values of the transferred
The results of analysis of liquid helium by using the momentum, for which a complete set of data required for the
inelastic neutron scattering method were reported by uspplication of the data processing method described below is
earlier! The experiments were carried out on the time-of-available.
flight direct geometry spectrometer DIP-2Rieactor IBR-2,
Dubna. An important feature of the method used is that the
measurements are made at a constant scattering anglle, L EYPERIMENTAL DATA PROCESSING
under the conditions when the transferred momentum is not
strictly constant within the measuring spectrum. In Ref. 1,  The basic microscopic parameter of a substance, which
we made an attempt to obtain preliminary qualitative resultgan be extracted from neutron experiments, is the dynamic
on the structure of the helium excitation spectrum withoutstructural factofor scattering lawS(Q, w) which is directly
taking into account these changes in the momentum. In viewonnected with the fundamental parameters of the system
of inaccuracies emerging in this case, we approximated theuch as the dynamic susceptibility function and the radial
spectrum of scattered neutrons by using the simplest fittinglistribution function. Using model concepts, we can obtain
model in which the helium excitation lines and resolutionfrom S(Q,w) the information on the structure of the excita-
functions have the Gaussian shape. Under these assumptiotien spectrum of the system and on relaxation characteristics
the excitation spectrum of liquid helium acquired a complexof excitations. The dynamic structural factsfQ, w) can be
structure. Such an approach made it possible to analyze @resented as a superposition of the one-phonon part of the
large body of experimental data in the range of the wavescattering law, which corresponds to scattering of a neutron
vector Q from 0.08 to 1.6 A'! for initial energies of neu- accompanied by the generation of an excitation, and the mul-
tronsEy=2.08, 2.45, and 3.5 meV at liquid helium tempera-tiphonon part corresponding to neutron scattering with the
tures ranging from 0.44 to 2.25 KThe spectral structure generation of two or more excitations in helium. In this com-
obtained as a result of such an analysis did not contradict theunication, we analyze the one-phonon par@®,»). The
semiphenomenological thed®/predicting a complex struc- separation of these components of the scattering law is a
ture of the excitation spectrum for liquid helium. complicated problem involving a number of assumptions and
As the simplified method of spectral analysis leads toconjectures. The doubly differential scattering cross section
considerable errors, we carried out a new, more consistettsed in experiments is connected wifQ,w) through the
experimental data processing taking into account the pecwell-known relation
liarities of the time-of-flight techniquéransition of spectra d2o K
to the scale withQ=const, taking into account momentum ———=N—7—5(Q,w),
indeterminacy, etg¢.and using the real resolution function dQde At ki
and a physically substantiated fitting model for the oneawhereN is the number of atoms in the system,the cross
phonon component 08(Q,w) (the so-called damped har- section of scattering at a bound nucleus, knandk; are the
monic oscillator function values of the wave vectors of the incident and scattered neu-
In this paper, we report on the results of new analysis otrons, respectively.
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FIG. 1. The dependence of the half-width of resolution function on the
transferred momentur®, taking into account the indeterminadg in the
wave vector transfer@®) and without it(solid curve; light circles corre-
spond to the values of experimental peak widtil at0.44 K.

In order to obtain the dynamic structural factor
S(Q,w) for liquid helium from experimental spectra mea-
sured on the time-of-flight scale at a constant scattering angle
0, we carried out the following standard operations. First, the 0.8 1:0

2 0,8 1,0 1,2
scattering lawS(,t)|y—const @t @ constant angle and on the o, meV

time-of-flight scale was transformed to the representation

S(8, )] g=const S€CON, the phonon component was takerFiG. 2. Comparison of the shape of resolution function calculated by the
into account, for which we used the procedure of backgroundionte Carlo method @) with the experimental dependencéQ, ) re-

subtraction in accordance with the expression corded at liquid helium temperatuiie=0.44 K(O) for three values of the
wave vectorQ. The solid curve describes the result of approximation of
I=(ls—1lot)—=B(lg—Io), (1) calculated and experimental valuesS{Q,w) by a Gaussian function.

wherelg andl, are the flux-normalized spectra of neutrons

scattered by the container with and without helium, r€SPEC,argv-momentum relation for eneray excitations in liquid
tively, 1o; is the time-independent background of fast neu- gy gy q

trons, andB the correction for container screening by he- helium. Eor systems with a strong dispersion, the resolution
lium ’Third the spectra o8(6, )|, were transformed fur_1ct|on is usually determined not only by the energy reso-
by iﬁterpoletion o the scatte;ing ?é&fg )o- with a lution of th_e spectrometer, but also by the momentum- trans-

7/ 1Q=const fer resolutiondQ which depends on the energy—momentum
constant transfer of wave vector.

The experimental spect®(Q. ) obtained in this way relation E(Q) for the scattere?. The scale of this contribu-

were approximated by convolution of the model d namiCtion to the resolution function in our case, when the sub-
PP y y stance under investigation is liquid helium, is clearly seen

structural factor for liquid helium with the spectrometer reso- : A .
from a comparison of the curves in Fig. 1 showing the values

lution functionR(Eo, ©): of the half-width of theoretical resolution functions, taking
S(Q,w)=S,(Q,w)®R(Eg,w). (2) into accound Q and without it. It can be seen from the figure

For the model of the one-phonon component of the dy_that this contribution is close to zero in the maxon region,

namic structural factor for liquid helium, we chose the funC_\(l:\;?aetirgngsra;naéQb:eger;E 2 t;]itl‘aicztilstigcrxlea?f:rlse?ﬁjrsslgwnal?gre\i(el
tion of an attenuating harmonic oscillator ' 9 9

ues ofQ upon an increase in the dispersion of excitations.
[(Um)Zg][ng(w)+1]dwwelg The correctness of the values of resolution function cal-
Si(Qw)=——— 2721 20l 2 (3 culated by the Monte Carlo method can be verified by com-
[0 (0q TR +[2eT ] paring them with the real neutron scattering spectrum for

whereZg, is the intensity of one-phonon scatterifg, the  helium at a low experimental temperature for which the in-
peak half-width at half-height pointsyg the excitation en- trinsic excitation line width in helium can be neglected as
ergy, o the transferred energy, amg(w) the Bose factor.  compared to the resolution function width. Such a compari-
The spectrometer resolution function was calculated byson was carried out for the lowest temperature 0.44 K at-
using the Monte Carlo method, taking into account thetained in our experiments, at which the intrinsic excitation
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FIG. 3. Experimental spectra &{(Q,w)|q—constfOr liquid helium at various temperatures. Solid curve describes the result of approximation of spectra by
formula (2) for the values of wave vecta@=0.37 (a), 1.00(b), and 1.50 A (c) (the spectra are in relative unitand forQ=0.55 A~! (the spectra are
normalized in area

width is apparently smaller than geV >’ while the resolu- For an analysis of experimental spectra recorded at higher
tion function width in the region of elastic scattering temperatures, a superposition of two Gaussian functions
amounts to~120 ueV (Fig. 2. The solid curve in the fig- Wwere used as an adequate representation of the resolution
ure corresponds to the Gaussian approximation of the thedunction taking into account its asymmetry.

retical and experimental curves. It can be seen that for a
wave vector transfer of 0.37 &, the Gaussian function
correctly describes both dependences. For large values o
wave vector transfer, the low-energy parts of the curves de- Figures 3a—3d show tH&(Q, w) spectra for liquid He in
viate considerably from the Gaussian curves in both caseshe temperature interval 1.41-2.21 K for the wave vector

SULTS
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FIG. 4. Temperature dependence of the one-phonon peak width for several O, meVv

values of wave vecto® (light symbol$. Solid curve describes the approxi-

mation of experimental values f@=0.37,0.55, and 1.00 & by an ex- . ) .
ponential function. Dark symbols correspond to the results obtained by othelilGafﬁei??ga:;(:grﬁ;éfg?&nleg t:é dzﬁpleggg cEIossséa;)an?b:aar:te?eb\)//a?sés-
authors(in Ref. 8 (W) and in Ref. 9(dark triangley for close values of 9 p o p u ues:

P e 8
wave vectors. The dashed curve is the Landau—Khalatnikov theoreticacfurresults Q)_and _the results obta|_ned by Ander_ ral-’ (@). The spec- .
curve for rotons. tra are normalized in area. The solid curve describes the results of approxi-

mation of our results by formulé).

valuesQ=0.37,0.55,1.0, and 1.5 & for characteristic re- values of wave vectofFig. 5. It can be seen that the main
gions on the dispersion curve for liquid helium. It can bepart of multiphonon scattering at temperatures 1.3-1.45 K
seen that experimental one-phonon peaks are described caorresponds to higher values of energy than the one-phonon
rectly by expressiof2). Thus, the above approach to experi- peak and the observed singularity. The additional contribu-
mental data processing does not suggest a complex structutien to intensity observed in our experiments corresponds to
of the one-phonon component of the dynamic structural facthe energy range 1.2-1.4 meV and exhibits a strong tem-
tor S(Q,w) following from the results of earlier analysis. perature dependence. It should be noted that our data are in
Figure 4 shows the temperature dependence of the ongood agreement with the results obtained in Refs. 8 and 9,
phonon peak width. It can be seen that the peak width inespecially aff=2.05 and 2.21 K, for which the results ob-
creases exponentially with temperature for all values of theained in Refs. 8 and 9 are presented after the procedure of
wave vector. The obtained results are in good agreemerisimple subtraction of multiphonon component3SM).2 It
with the data obtained by other authddark symbols The  should be emphasized that our data and the results in Refs. 8
excitation energy weakly depends on temperature to withiand 9 were obtained on different spectrometers and for dif-
the experimental error in the entire range of temperature urferent initial energies. This allows us to suggest that the sin-
der investigation, including then-transition region. The gularity observed irS(Q,») has a physical origin.
high-energy wing of the peak d=1.73 K contains an ad- It is difficult to propose an unambiguous explanation of
ditional low-intensity contribution, which is observed for all the observed phenomenon on the basis of the available ex-
values of wave vector exce@=1.5 A 1. This additional perimental data at present. We shall indicate some of the
contribution is manifested most clearly f@=0.55 A1, possible interpretations of the effect.
i.e., in the transition region between the phonon and maxon The additional contribution to intensity can be associated
regions on the dispersion curve. The effect is observed awith interference between one-phonon and multiphonon
T=1.45 K, has the maximum intensity at 2.05 K, and isscattering. According to the predictions of the theory, the
preserved alf=2.21 K, i.e., above the temperature corre-contribution to scattering associated with these processes be-
sponding to thex-transition. comes significant foQ=0.5 A~1.! It should also be ob-

Let us consider this effect in greater detail by comparingserved that such a contribution should be manifested starting
our data with the results obtained in Refs. 8 and 9 for thesérom the energy of one-phonon excitation.
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Structure and superfluidity of ~ “He films on plated graphite
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The results of an experimental study using torsional oscillators of the superfluidityeofims
adsorbed on hydrogen plated graphite are reported. The evolution of superfluidity with the
growth of the film shows considerable structure arising from the atomic layering of the film. There
is evidence that the superfluidity of a single fluid layer is strongly suppressed, possibly due

to the influence of the periodic potential arising from the underlying solid layer. The behavior of
two fluid layers is quite distinct, but shows similarities to that of thicker films on
heterogeneous substrates; we suggest that the usual theory of the superfluidity of two-
dimensional*He should be extended to account for superfluid onset temperatures in such a film.
© 1997 American Institute of Physid$1063-777X97)00405-2

DEDICATION cal frequency in the range 0.5-2 kHz outside that of most

In this paper we give a brief review of one aspect of theV|brat|onal noise on a typical cryostat. This technique al-

results of a research collaboration between scientists frorJr%)W(a(j the resol_u_tlon_ of thg sma!l period shifts due to the
the B. I. Verkin Institute for Low Temperature Physics and Superfluid transmonl in the filntypically of the order of ns,
Engineering, Kharkov and Royal Holloway University of compared o a period of the order of 1 )nas well as a

London. This has been made possible by the support of th%r;]argl-cterist.ic dissipatiog .peak atdt.he jtgperflujd transitir(])n.
Royal Society(London), and the Engineering and Physical | "€ discontinuous period jump predicted by KT is somewhat

Sciences Research CounclUnited Kingdom. The low- rounded by the finite frequency at which the superfluid re-

temperature experiments reported here were cooled usingSRPONSe is measured. However, it was possﬂgle to cgnﬂrm the
cryogenic cycle, sorption pumped, dilution refrigerator of theUniversal relation for the jumpg(Tc)/Tc=2mkg/mA". A

type pioneered by Professor Eselson and his group. This wg9mparison of the resuits with the dynamic KT theory can be
initially constructed in Kharkov, modified and developed at’ound in Agnolet, McQueeney and ReppyMR)."

Royal Holloway, and provided an excellent low mechanical ~ 1he mylar substrate used in this early work is extremely
noise environment for these studies involving Sensitiveheterogeneous, i.e., the substrate is disordered due to atomic

high-Q, mechanical oscillators. Further developments ancc@le roughness. One consequence of this is that up to some
the commercialization of this refrigerator technique are dethreshold coverage the helium film is localized and no super-
scribed elsewhere in this volume. This paper is intended as #id transition is observed. This threshold coverage is com-
tribute to the memory of Professor Eselson and the traditioonly known as the “dead layer” or “inert layer.” It has

of low-temperature helium research at Kharkov, to which h?€en suggested that superfluid onset, as a function of cover-
contributed so significantly. age atT=0, may be regarded as a transition between an

insulating, disordere@Bose glassphase and the superfluid.
Recently, attention has turned to the study'de films
adsorbed on the basal plane of graphite using these sensitive
The superfluid transition of a thifHe film on a planar torsional oscillator methods. The first such study of superflu-
surface is understood in terms of a Kosterlitz—Thou(@&sg)  idity in this system was performed by Crowell and Reppy
two-dimensional phase transitidrAbove some critical tem- (CR),® while Mohandaset al.” concentrated on submono-
perature, vortex-antivortex pairs become unbound, the filmayer films and found no evidence for superfluidity in them.
cannot support a superflow and the superfluid density dropExfoliated graphite substrates were used to provide a suffi-
discontinuously to zero. Clear confirmation of these ideasiently large surface area to allow measurements of adequate
was primarily due to the experiments of Reppy and co-sensitivity. It is well established that this substrate consists of
workers, at Cornelf. They adsorbed the helium film on a atomically flat crystallites of typical dimension a few hun-
sheet of mylar which was contained inside a torsional oscildred angstroms and thus provides a homogeneous binding
lator. Associated with the superfluid transition of the film is apotential for the adsorbate. Residual heterogeneity, at the
shift in the period of the oscillator, resulting from the drop in crystallite edges, localizes about 2% of the first helium layer,
its effective moment of inertia as the film decouples from theand so is a relatively weak effect. The important point is that
substrate. This method was a development of a method firghe film on this substrate is atomically layered; clear periodic
used by Andronikashvilito determine the superfluid density structure has been seen in the compressibility of the film, as
of bulk liquid “He. The key features of the Cornell torsional determined from vapor pressure adsorption isothérms,
oscillators were their high-quality facta@=10°, and a typi-  well as in the heat capacfty and third sound velocit§ Lay-

1. INTRODUCTION
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ering of the film is also seen in first principles calculations ofgives a value of about 0.95, depending on the prepldteg
film structure!® Thus, in contrast with heterogeneous sub-Sec. 3.4 for more detailsHowever, although thesefactors
strates, the structure of the film is, in principle, well defined.are relatively close to unity, tending to reduce the observed
This structure turns out to have a profound influence on theeriod shifts due to superfluidity, this is compensated for by
development of superfluidity. Exfoliated graphite substrateshe large specific surface area of the substrate.
have been widely used in the study of adsorbed gHsks. A broad overview of the growth of helium films on
principle, it is possible to modify the surface binding poten-graphite is as follows. The submonolayer film has a rich
tial, in a reasonably controlled and well characterized wayphase diagram that has been characterized by heat cdpacity
by preplating with either an inert gas or hydrogen. The ob-and neutron scattering measureméntat the coverage at
jective is to coat the graphite with an integral number ofwhich a second layer begins to for(eecond layer promo-
atomic layers of the preplating gas and to provide a compogion) the first layer consists of an incommensurate solid on a
ite substrate of weaker binding potential. This binding potentriangular lattice?® At third layer promotion the second layer
tial can be varied from that of bare graphite to that of theis also solid at sufficiently low temperaturéSubsequent
preplating material for a sufficiently thick film, so long as it layers are fluid; thus only two layers solidify on bare graph-
wets the graphite surface. This is the method used by us. Wige. In the present work we have preplated the graphite by a
have plated the graphite with a bilayer and a trilayer of HD.bilayer and a trilayer of HD. In contrast to bare graphite, it
Here we used HD rather than,tér D, because of the ab- appears that in this case only one helium layer solidifies due
sence of any ortho-para conversion and associated heatingtatthe weaker binding potential of the preplated graphite sur-
ultralow temperatures. face. Note that, as previously mentioned, it is believed that
Our use of hydrogen plating has also been motivated, ifior a bulk hydrogen surface the binding potential is weak
part, by previous studies of the superfluidity e on hy-  enough to prevent solidification of the first helium lager.
drogen films. The expected advantage of using a thick hy- A further important detail concerns the evolution of the
drogen film as a substrate was to avoid solidification of thefluid layers. Consider the second layer on bare graphite,
first “He layer, offering the prospect of observing superflu-which at low densities is fluidthe layer begins to solidify at
idity in a submonolayefHe film. Brissonet all? studied about 5.5 nm?). Theory predicts that, at sufficiently low
third sound propagation in helium films adsorbed ontemperatures, this fluid is self conden&edith a density of
hydrogen-plated glass, while Mochel and co-workéragd- roughly 4 nmi2, which is supported by measurements of the
ams and Parfit have investigated helium on metallic surfacesheat capacity.On cooling, at second layer coverages of less
plated with thick hydrogen films using third sound and tor-than 4 nm?, it is therefore expected that the second layer
sional oscillators, respectively. These last two studies indeefiuid first phase will separate into a low density “gas” and a
give evidence of submonolayer superfluidity of fitée film.  high density “fluid”. (At T=0 the density of the “gas”
In addition, Mochel and Chéffound evidence for a second component vanishes and that of the fluid is of the order of
transition below the superfluid transition and also observed nm 2.) Following phase separation, the superfluid transi-
two third sound modes under certain conditions. Althoughtion subsequently occurs in the high density liquid compo-
these experiments rely on the formation of a uniform hydro-nent. Thus, superfluid onset in this case is controlled by the
gen film, it is in fact not clear that hydrogen wets metallic intersection in the temperature-coverage plane of the bound-
substrates. Indeed, there is some clear experimental evidenagy of the 2D gas-liquid coexistence region and the line of
to the contrary’® Thus, the philosophy behind the presentsuperfluid transitions of a uniform fluid filf#:24 Intrigu-
experiment was to start with well characterized thin hydro-ingly, Clementset al?® found such a coexistence region in
gen films, up to three atomic layers, adsorbed on graphiteeach of the first three fluid layers on bare graphite, or layer
The structure of such films has been investigated by neutroby layer condensation. The possible interplay between such
scattering and their density determinédt was established phase transitions in the film and its superfluidity is an impor-
that they wet the surface. The goal to grow a thick hydrogenant factor in the interpretation of these experiments.
film on graphite remains a challenge for the future. The first The organization of this paper is as follows. A brief
study of the superfluidity ofHe on hydrogen-plated graphite description of the experimental method is given in Sec. 2,
was the third sound measurements of Zimmerli, Mistura, andncluding details of the torsional oscillator, tlre situ pres-
Charf (ZMC). Heat capacity measurements have also beesure gauge for sample characterization and the method of
performed by Vilches and co-worketsproviding valuable data collection. Section 3 contains the main experimental
insights into the structure of tHtHe film. results together with their interpretation. Although the ob-
One disadvantage of the exfoliated graphite substrate iserved behavior is rich in detail, we believe the systematics
that, on length scales greater than of the order pfhiitis  of the interplay between superfluidity and film structure
extremely disordered. This results in a tendency for the suemerge quite clearly. For clarity this section is split into a
perfluid film to be entrained by the oscillator, so that the fullnumber of subsections dealing witifr the method adopted to
period shift due to the onset of superfluidity is not observedpreplate the graphite with a bilayer or trilayer of H@) the
This effect is parameterized by a quantity, conventionallycharacterization of the growth of tiéle film on these pre-
referred to as the factor, which reflects the fraction of the plated substrates by vapor pressure adsorption isotherms.
superfluid which does not decouple from the surface. FoNext is the longest subsectigii ) which describes the evo-
mylar* y~0.14, while for Grafoil CR y=0.989, which re- lution of the superfluidity in the first two fluid layers. These
flects the poor connectivity of the surface. The present workesults appear to show that a periodic potential strongly sup-
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presses superfluidity and that the superfluid transition of twaur case it was pumped by a graphite cryopump attached to
fluid layers is no longer described by Kosterlitz-Thoulessthe 1-K po}. The gauge was calibrated against the vapor
theory in its simplest form. In subsectigiv) we discuss our pressure of liquidHe (actually a thick*He film of 20 layers
determination of they factor of the substrate. A number of in the torsional oscillatgr in the temperature range 0.75—
further interesting experimental observations are collected ii.25 K. This gauge was used for vapor pressure adsorption
(v), including features which may signify the layer by layer isotherms to characterize the growth of the HD preplating
condensation in the film, the observation of periodicity of thefilm and the*He film. In addition, the in situ gauge moni-
third sound speed and a coverage dependence of the vorteored the vapor pressure of the film during collection of pe-
dynamics. Section 4 summarizes the main conclusions of theod data, enabling corrections to be made to the oscillator

paper, with suggestions for future work. period due to desorption of the film at higher temperatures.
The system was also equipped with a room-temperature Pa-
2. EXPERIMENTAL METHOD roscientific pressure gaug&The cell fill line was equipped

The torsional oscillator is of conventional design, Con_wi'[h a series of heaters, which were used for preplating the

sisting of a stycast 1266 shell, with internal diameter 18 mmgraphite with hydrogen during the performance of isotherms

and height 12 mm, packed with Grafoil and mounted on a(at 12 K and 10 K and when cooling the cell to 4.2 K, to

hollow BeCu torsion rod. The torsion mode or floppy modeENsure that the cell is the .COldeS_t p_oint, thus ayoiding the
are driven and detected capacitatively. The frequencies arfgrmatlon of bulk hydrogen in the fill line. The period of the

1056 and 605 Hz, respectively. The device is operated in 5orsional oscillator, which effectively acts as a microbalance,
self-resonant oscillator circuit, at constant drive voltage, with'> an extremely sensitive detector of any unwanted loss of

the torsional oscillator as the frequency determining elemen{.1ydrogen from the cell.
The period of the oscillator is measured with a HP5335A
counter. The response of the oscillator is preamplified, and- RESULTS
then lock-in detected. The oscillation amplitude is propor-  3.1. Preplating with HD
tional to the quality factor of the oscillator, and is calibrated Measurements ofHe films were made with preplatings
by observing the ring down of the oscillator on removing theof a bilayer and a trilayer of HD. The procedure for deter-
drive. The Grafoil sample is in the form of disks 0.15 mm in mining these preplatings is as follows. The surface area of
thickness, providing a total surface area of 65t was  the sample is determined by a 4.2%Kle isotherm, taking
baked in vacuum at 1100 °C to remove impurities, beforepoint B'® as the indicator of first layer promotion. We use
loading it in the cell. It is necessary to measure the backthis as the reference for all surface densities in this paper.
ground period and dissipatiotboth are smooth with no The density of H and D, films on graphite(one, two and
anomalous featurg®f the oscillator as a function of tem- three layers has been measured by neutron scatteling.
perature between 12 K and 20 mK. When the adsorbed filnwith this information and the bulk molar volume, we gener-
is not superfluid, the torsional oscillator simply acts as aate the density per layer as a function of the reciprocal num-
sensitive microbalance, with a period shift proportional tober of layers. These data can be interpolated to estimate the
the coveragémass of the adsorbed film. For our oscillator values for HD films, with a precision of about 248.3 and
the sensitivity with respect to the areal density of fitee  27.1 nm 2 for bilayer and trilayer, respectivelyScaling the
film is 26 nsnn?. dose for*He monolayer completion by the ratio of these
The cell is attached via a massive vibration isolator to adensities and the neutron scattering density of a completed
cell plate, which in turn is connected to the mixing chamber*He monolaye®® (11.25 nm'?), gives the required estimated
of a cryogenic-cycle, sorption-pumped dilution refrigerdtor dose for a bilayer or trilayer of HD. Further, we have ob-
via a weak thermal link. This enables the temperature of théained a HD vapor pressure isotherm at 12 K and 10 K and
cell to be swept slowly, using a heater attached to the ceflound compressibility minima in good agreement with these
plate, to accumulate period and dissipation data. The sweegstimategcorresponding to densities 18.9 and 27.2 Rrfor
rate is such that there is negligible hysteresis between dathe bilayer and trilaygr The preplating coverages which we
taken on warming and cooling. The temperature is measurechose were those corresponding to these compressibility
by a 470€) Speer resistor and a GaAs chip resifocali-  minima Following these procedures, we can be confident
brated by a®*He melting curve thermometer between 0.05that the chosen preplatings are very close to exactly two and
and 0.8 K and by a calibrated germanium resistance thetthree layers.
mometer between 0.3 and 4 K. 3.2. Characterization ofHe film
An in situ pressure gauge similar in design to that used  For each HD preplating case a helium isotherm was used
by Zimmerl?® and Crowelt was connected to the cell and to characterize the growth of the film, locating the layer pro-
mounted on the cell plate. The deflection of the gold-platednotions. Results for the bilayer and trilayer preplating of
kapton membrane was detected capacitatively and yieldediaotherms at 940 mK are shown in Fig. 1. Layer promotions
pressure resolution of 5 nbar. The reference volume of thisvere determined from compressibility minima, and'tde
gauge was connected by a capillary to room temperature fatoverage scale was defined. These coverages are referred to
rough evacuation, a small graphite pelletplaced inside théhe 4.2 K*He isotherm on bare graphite, for which first layer
reference volume ensured a good vacuum at low tempergromotion is taken as 11.4 nra For the bilayer preplating
tures and provided a better reference pressure than simptilese promotions occur at 7.3, 12.5, 18.7 and 25.2°0m
connecting one side of the diaphragm to the vacuum(tan The last three values are 20% smaller than those obtained by
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FIG. 1. “He vapor pressure isotherms, taken at 940 mK, for graphite plated _80 . 0'2 * 0'4 ! 016 ! 0l8 - 1{0 t 1.2
with a bilayer(open circlesand trilayer(closed circlesof HD. Inset shows ) : : ) :
detall for bilayer preplating, near first layer promotion. Structure is believed Temperature, K

to arise from solidification of film, followed by promotion at 7.3 nfn
FIG. 2. Period shift due to superfluid transition for trilayer preplating. Cov-
erages; 7.02, 7.50, 8.15, 8.47, 9.11, 9.35, 9.61, 9.74, 10.16, 10.60, 11.71,
12.58, and 13.11 ni.

ZMC for “He on graphite preplated by a bilayer of hydrogen.

Thus, our coverage scales are consistent within a constant

scaling factor. For the trilayer preplating we found shiftednarrow, with the temperature half-width of about 30 mK. For
compressibility minima at 5.65, 10.3, 16.7, 24.0 TMMOSt  each coverage these data allow us to determine the total pe-
of the coverage offset between these two isotherms for diffiog shift due to the onset of superfluidity P(0). This
ferent preplatings is attributable to a significantly lower de”'quantity is the difference between the estimated0 limit

sity of the first*He layer for the trilayer preplating. For both of the period and the period immediately above the super-
preplatings no superfluid signature is observed from the first

“He layer fluid, at lower coverages. This layer is believed to
be solid on completion. The low density of second layer
promotion for the trilayer preplating may arise from a regis-
tered structure which resists compression. In the following
we assume that the first layer is solid; the second and third 2001

18

1 ....._JL

layers are thus the first and second fluid layers. The devel-
opment of superfluidity in these fluid layers is discussed in 175k
the next subsection. da o0
We should note that CR detected superfluidity in the —— S
second layer ofHe on bare graphite prior to solidification; 1501
the period shifts associated with superfluidity have an /\\ J

£

2 H

anomalous temperature dependence. According to the phase "
0

soe

diagram of Greywalf, these superfluid transitions occur 1%

when the film is a coexistence of gas and liquid. This may be & oy oy ] ﬁ
responsible for the anomalous behavior observed. For the "o 100f -
present case of HD preplated substrates we currently believe . J\
that the observation of superfluidity in the fifdde layer is < 75l o

precluded by the solidification of the film, which in this case m
occurs at lower second layer coverages. On the basis of ex-

periments or*He films on a HD bilayer preplated graphite 501 o A
substrate, we expect to enter a commensurate solid-fluid co- as
existence region at 4.8 nf, in the low-temperature limit: 2L A_
3.3. Evolution of superfluidity in the first two fluid layers e —
The results for the period shift due to the superfluid tran- —
sition and the associated dissipation peak are shown in Figs. 1]l s Y Bonas s st WY S S SHRNT R
2 and 3 for a selection of lower coverages for the trilayer 0 02 04 06 08 10 12
preplating®? The temperature dependence of the period shift Temperature, K

for the three highest coverages, after formation of the seconlt_j] S : . I

. . .. G. 3. Dissipation peaks at the superfluid transition, with trilayer preplat-
ﬂ_U|d_ Iay_er, are most CharaCter_'St'c of a KT_ _tran_smon. Theing. Coverages are the same as for Fig. 2. Data we displaced for clarity. The
dissipation peak associated with the transition is relativelyinset shows data for the first four coverages on an enlarged scale.
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! ' : : } ZMC8 on H, plated graphite, which also find superfluidity in
- Lo | i | the secondHe layer.
0 METER XS B R | A B Recent heat capacity measurements on this system,
4 8 1216 2 20 24 with preplatings slightly in excess of exact bilayer and trilay-

*He coverage, nm’ ers of hydrogen, also provide evidence of such a layer con-
) ) ) densation, with a critical temperature of 0.8 K. From our
FIG. 4. Total period shift as a function of coverage. Upper dlten  yaiq for poth preplatings, we estimate the minimum density
circles; bilayer preplating. Lower plotfilled circles; trilayer preplating. . . . .
Vertical dashed lines indicate coverages of layer promotions, inferred fronPf the second layer fluid, at which a uniform fluid is stable to
vapor pressure isotherms. Dotted line is a linear fit to period shift data in thd =0, to ben,=4+0.5 nnt, where the error largely comes
third layer (second fluid layer from uncertainties in the precise density of the first solid
layer. This is in reasonable agreement with thedr.
Examination of the period shift curves for the four coverages
studied below the break for the trilayer preplatitf§ig. 2
fluid transition, after applying the vapor pressure correctionshows that “superfluid onset,” now defined as the tempera-
These data are plotted as a function of the téith# coverage ture at which a shift in period is first resolved, occurs at the
in Fig. 4. The values of ¢, here defined as the temperature same temperature; 0.4 K, at each coverage. Similar behav-
of the dissipation maximum, are shown in Fig. 5. ior is seen for the bilayer preplating. This observation sup-
a) First fluid layer ports the model of a superfluid transition occurring in
It can be seen that the behavior is rather similar for thepuddles of condensed liquid, whose density remains constant
two preplatings, apart from a coverage shift referred to earas a function of coverage. Note that the value§ oplotted
lier, and is attributed to difference in densities of the firstin Fig. 5 are the temperatures of the dissipation maxima,
solid layer. The behavior in the secofide layer(first fluid ~ which show a coverage dependence in this regime. This is
layer is very similar to that observed in the third layegain  clearly attributable to changes in the temperature width of
first fluid laye) by CR on bare graphite. We interpret the the superfluid transition. The decrease in width of the transi-
break in the coverage dependenceA®(0) and T, part tion as the coverage is increased may be associated with the
through filling of the fluid layer as due to the two- increasing size of the puddles or with the effects of percolat-
dimensional condensatioff‘puddling”) of that layer at ing superflow between puddles.
lower coverages, as previously proposed by CR. Thus, up to We cannot be sure of the morphology of these superfluid
a total coverage 10.8(9.3) nrhfor the bilayer(trilayer) pre-  puddles but our results suggest that they decouple from the
plating, the fluid layer separates on cooling into a low-substrate. Either the high-density component forms in a
density “gas” and high-density “liquid.” The superfluid single patch, perhaps at the edge of a Grafoil platelet or it is
transition observed is that of the high-density “liquid” com- not necessary for superfluid patches to percolate in order to
ponent. The break then corresponds to the point in thelip relative to the surface. Thus, while it is clear that perco-
T—n plane at which a line of superfluid transitions emergedation is necessary for dc superfluid mass transport, it might
from the two phase coexistence regime. These results alee expected that a torsional oscillator will continue to detect
broadly consistent with the third sound measurements o$uperfluidity, even if the liquid separates into a set of non-
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T increase ofT . with coverage is significantly faster than the
e KT line, T,=0.156n(K-nn¥?). This relation assumés
ps(T.)=0.8204(0). It also assumes the bare mass of the
“He atom. The width of the dissipation peak temperature at
the superfluid transition also decreases rapidly with increas-
ing coverage. The origin of this strong suppression of super-
; fluidity and the rapid increase iR, with increasing coverage
m rl;o"c ng i3 rema_ins an open quest_ion. It may arise from residual hgter(_)—
geneity of the surface; however, the observed behavior is
FIG. 6. Schematic diagram to illustrate proposed interaction of superfluidiSimilar for the two preplatings reported here and for bare
and 2D condensation phenomena. Layer promotions oceyr,at,, ns. At graphite. The observations may indicate that the periodic po-
nllftréir{gzasl?éefrluﬁj So'gjs- ch?eTi;Q:cgcéhe nsgcnontflejasy:croﬁgngsésr i‘;faa tential of the underlying solid layer influences the superfluid
Eiiform fluid. After pro?notion to a third Iagfer at, 2the third layer f)lluid is Onset[' The rapid increase T, m<_';1y stem from the fact that
also self condensed, as suggested in Ref. 25. The critical temperature of boii€ film become more delocalized normal to the surface;
gas-liquid coexistence regionsTg, probably of the order of 0.8 K. Aline  theory suggesfé that such an effect can occur at a coverage
of superfluid transition temperatur@s is also shownT is constant in the significantly lower than that of the layer promotion.

coexistence region and on entering the uniform fluid phase increases with - : .
coverage faster than the KT slope, extrapolating to zer, dtead layer. Note that, although we refer to this fluid layer as being

There is a break in the coverage dependencémét promotion,n=n,. uniform, we expect on the basis of Monte Carlo SimUIat_ions
of a*He monolayer on hydrogéhthat the local density will
percolating patches. show structure arising from the periodic surface potential.

At higher fluid layer coverages above the break in theThese simulations show an effectifele mass up to twice
regime where we expect a uniform fluid layer, there is athat of the bare mass and a 20% suppression in the superfluid
rapid increase ifT, and AP(0). Forboth preplatings, this density, as well as condensation below 4.6 Am
continues until the formation of a second fluid layer. At this  From the above discussion, it appears that there is over-
point (the third layer promotiop there is a second break in all consistency between this and previous experiments, with
the coverage dependence. Similar behavior was seen on batgidence for a strong suppression of superfluidity in a single
graphite by CF. We interpret this data immediately before fluid layer at lower coverages. In the present case this sup-
the third layer promotioriformation of second fluid laygms  Pression is small at third layer promotion, when a second
follows. If in Fig. 4 the line of period shiftgfollowing the  fluid layer forms[see more detailed discussion in the follow-
break indicating emergence from the coexistence regin ing section(b)]. In our opinion, theoretical work on the in-
extrapolated to zero, this determines the density at which thBuence of the periodic potential on the superfluidity of a
onset of superfluidity might be expected for a uniform fluid single fluid layer, taking into account the delocalization of
layer. The line of transition temperatures extrapolates to eghe film normal to the substrate, would be of great interest.
sentially the same coverage. They are 10.5 finand b) Two fluid layers
8.5 nmi 2 for the bilayer and trilayer, respectively, and we At a coverage of 12.5(10.3) nfA the third layer forms
interpret them as the “dead layer” prior to the third layer for the bilayer(trilayer) preplating. We now have two fluid
promotion. Clearly, superfluid onset as a function of coverlayers above a solidHe layer above the preplated graphite
age is not directly observable because of the intervention osubstrate. The coverage dependence of Ggtand AP(0)
2D condensation. This is schematically illustrated in Fig. 6.show a sharp break at this third layer promotion for both
We believe that this suggests that superfluidity is suppresse@replatings. As the third layésecond fluid laygrgrows, the
in the uniform two dimensional fluid. For both preplatings total period shiftA P(0) increases linearly with coverage to a
the extrapolated fluid density, which corresponds to thegood level of accuracy. The quantifyP(0) is a measure of
“dead layer” coverage, is 3 nit. the mass of the film participating in the superfluidity in the

This value is comparable to that obtained from third T=0 limit. A linear fit to this period data in this coverage
sound measurements on(mominally) thick hydrogen film  range extrapolates to zero at a coverage of 6.7 (4.8)°nm
by Shirron and Mochéf (this gives a dead layer of for the bilayer(trilayer) preplating. In both cases this value is
3.9 nm'?, after scaling their surface densities by a factorclose to, but slightly smaller than, the coverage at which
1.67, as suggested by Chergal®). Torsional oscillator second layer promotion was observed: 7.3 (5.65) him
measurements on a thick flim** give a dead layer of about This is powerful evidence that in the low-temperature limit,
1/2 “layer.” Note that in the present experiment we have athe film now consists of two superfluid layers above a solid
high degree of confidence in the quality of the surface. In théHe layer. All of the fluid participates in the superfluidity;
present measurement, for the bilayer and trilayer preplatingshe “dead” layer is merely the first solid layer. This con-
the apparent inert layer corresponds to about 0.6 of the derrasts with the nontrivial dead layer we have argued for in the
sity of the fluid layer at promotion plus the first solid layer. first fluid layer and is clear evidence for a shift in the density
One might call the fluid component of this inert layer as theof the inert layer as a function of the coverage of the film.
“nontrivial” component. The results of CR on bare graphite If a line of transitions with the KT slope is drawn in Fig.
are consistent with these observations. 5, Tc=0.156 (N1 —Ngead With Ngeaq=6.7 (4.8) Nm? for the

In the coverage range under consideration, which correbilayer (trilayer) preplating, the transition temperature is
sponds to a uniform fluid layer before the promotion, theclosest to that observed just at third layer promotion, as the
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second fluid layer forms. Indeed, for the trilayer preplating
the line almost coincides with the data at this point. This
suggests, therefore, that at third layer promotion the first
fluid layer is completely superfluid, in marked contrast with
the situation at slightly lower coverages. The behavior of
“He on bare graphite as a second fluid layer foferre-
sponding to fourth layer promotion in that systeis: some-
what more complex(Clearly, in comparing the evolution of
superfluidity in the two systems it is the number of fluid
layers that is important: it i—2 for bare graphite and

| -1 for preplated graphite, wheleis the total number of
layers) The results of CR foil . and AP show a plateau in
the vicinity of third layer promotion, which is possibly at-
tributable to a reconstruction of the film. We see a similar
feature at fourth layer promotion for the bilayer preplating

Period - 947 ns

H H 1 1 z 1 N [ L i L L i 1
[see section .3.5. The absence of s_uch an effect in thg 0 4 8 516 20 24
present experiment as the second fluid layer forms simplifies 4 2
the interpretation. He coverage, nm

It, Is interesting to co;npare the cor\zlirage _dependence CHIG. 7. Determination of they factor. “He filling curve at 940 mK(for
T¢ with that observed fofHe on mylar:™ In this case the ijayer preplating, showing change in the period as a function of coverage.

“dead layer” is typically in the range 25—3@mol-m~2. A Circles; nonsuperfluid coverages. Squares; superfluid coverages. Linear fit
simple picture is that this is in the form of an amorphousto each of these sets of data are shown. The results in the vicinity of a
coating of the substrate, which screens the heterogeneofe’®"Muid transition are omitted from analysis.

substrate potential in such a way that additiottdé atoms

are delocalized. These fluid atoms Undergo a Superﬂuid trara'ge there iS a Strong Suppression Of both the Superﬂuid tran-
sition via the KT mechanism; the data of Bishop and Réppy sition temperature and the superfluid density, possibly be-
show a lineafT —n dependence, which is well described by cause of the influence of the periodic potential due to the
the KT relationT=0.1561 (K-nnv). AMR* report data over  solid underlayer. These results challenge our understanding

a wider coverage range. In this case the dead layer igf superfluidity in helium films and hopefully will stimulate
28 umol-m~2 the initial T—n relation is again reasonably more theoretical work.

consistent with the KT line. However, at about 3.4. Determination of the factor
40 wmol-m~?, which corresponds to a fluid density of Let us now discuss measurements of thfactor of the
7nm?, the slope of theT—n line decreases. Above surface. It is obtained from an isotherm of the oscillator pe-
40 pmol-m~2 AMR found the slope of th& —n line to be  riod as a function of coverage, taken at the same time as the
0.071 Knnf. This behavior is reminiscent of the sharp de-vapour pressure isotherm. This filling curve data refers to
crease indT;/dn as a result of formation of a second fluid fully annealed films; this procedure was possible because of
layer in the present hydrogen preplated graphite experimenthe good long-term stability of the cell periotAn alterna-
In all cases this occurs a~0.8 K. Itis intriguing, and we tive is to fill the cell at a constant temperature, which can
believe significant, that for both preplatings we have invesiead to nonuniform coveragesThe results for the trilayer
tigated T, increases linearly with coverage as the secondre given in Fig. 7. In this case the superfluid transition tem-
fluid layer fills with a slope quite close to that seen on mylarperature at the temperature of the measurement is about
(0.084 Knm? and 0.060 Knm? for trilayer and bilayer pre- 12 nnm 2. A linear fit to data below 11 nii? (normal film at
plating, respectively This suggests that the transition in be- this temperaturegives a mass sensitivity of 26.01-ns.
havior is a direct result of the formation of two fluid layers. For coverages above 13 nf for which the film is super-
According to this view, the coverage dependenceTef fluid, a linear fit gives a slope of 25.014 -msr?. This gives
above promotion is an intrinsic feature of the superfluid tran-a y factor of 0.9617. For the bilayer preplating we obtain a
sition in two coupled fluid layers. On the mylar substrate thenormal mass sensitivity of 26.00 msr?, in excellent agree-
film is not so highly layered. Therefore, in this case a sharpment with the trilayer result. In this case thefactor is
kink in the T—n curve is not observed. Rather a more 0.9519. With this data the expected slopes of the
gradual but still pronounced change in slope occurs. AP(0)-vsn lines after third layer promotion are 1.25
In contrast, below this feature, for just one fluid layer, (0.995) nsnn? for the bilayer (trilayer) preplating. These
the behavior is entirely different for the two substrates. Thevalues compare quite well with those obtained from Fig. 4,
mylar substrate, which is screened by thée inert layer, 1.176 (0.949) nswn?. It is possible that the superfluid frac-
provides a disordered potential. There is ®» @ondensation tion atT=0 is suppressed in these films, but this cannot be
of the fluid, and the transition temperature follows the KT measured directly since it cannot be separated from the ef-
line. In contrast, the atomically flat plated graphite substratdéects represented by the factor. CR report gy factor of
provides a periodic potential. At fluid coverages below 0f0.989 for*He on bare graphite. For our Grafoil sample with
about 4 nm? the uniform fluid is unstable at sufficiently low no preplating we findy=0.956, a result obtained from a
temperatures and 2D condensation occurs. Above this covefilling curve on bare graphite in the same cell following the
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1000 in the same cell. The velocity data comes from a cleaved
HOPG (highly oriented pyrolytic graphitecrystal, while that

for the vapor pressure is dominated by the graphite foam
ballast in the same cell. Above fourth layer promotidor-
mation of the third fluid layer the bilayer preplating period
shift data show a plateau of width 2.5 nfn Additional
“He atoms added to the film appear not to contribute to the
superfluidity. This most likely arises from a reconstruction of
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| the film, which involves an increase in the density of the first
|
|
!
I
|
I
|
|

600

solid layer. A similar plateau of comparable width was seen
by CR, also at fourth layer promotion, which in this case
corresponds to the formation of the second fluid layer. These
authors suggested a number of possible explanations for such
a structure in the period shift isotherms, including that of
film reconstruction just mentioned. It seems that the absence
N of a plateau in these data above third layer promotion should
12 14 16 18 20 impose additional constraints on the possible explanation of
4He coverage, nm2 such features. On the one hand, it appears to favor less
strongly the model of Zimanyet al,*® who calculated the
FIG. 8. Locus inT—n plane of the features in the oscillatemall period  superfluid density in Bose—Hubbard model. On the other
step, sha_rp peak in dissipatjotentatively associated with puddling transi- hand, we do not believe that the plateau can arise from pud-
tion in third layer. . e .
dling, one of the possibilities suggested in Ref. 6 and by
Clementset al,? since we observed a linear dependence of

same procedures. It seems, therefore, that the preplating dog_éD on coverage in the seco_nd fluid layer. Puddl!ng 'S pre-
not have a big effect on the factor. It is likely that most of icted n this Iaye_r, and as dlscussed,_ we have signatures in
the difference between our result and that of CR stems frorﬁhe_torsmnal ascillator response, which can tentatively be
the substrate quality or from the effects of different heat"’ltt”bmed to thg _onset of puddiing. . -
treatments. Another striking feature of the evolution of superfluidity

3.5. Other experimental features concerns the width of_ _the dissipation peak at _superfluid.on-

In the third layer(second fluid layerfor bilayer preplat- set. It should be.sensmve to the vortex dynarmc; in the film.
ing we find a set of small steps in the period data, which aré:Or both prep]atlngs the dgta show a rather similar coverage
associated with small, sharp peaks in the dissipation. BeerendencéFlg. 9. FOIIO\.ng the end of the S?’Cond layer
cause we have studied a large number of closely spaced co%dd“ng’ the peak_half-W|dth decrease_s dramat_|cally through
erages, we can follow the evolution of this feature. The Iocu%_ ird Iayer_ promotion. A.‘S. the next fluid layethird layep )
in the T—n plane, shown in Fig. 8, is suggestive of that of a_|Ils, the dissipation eXthItS a minimum, near (_).3 layer fill-
two-phase coexistence region or layer-by-layer fluid condenJ fol!owed py a maximum, near 0.7 layer filling for. both
sation, as predicted by Clemergtsal 2> Thus, in this region p_rgplatmgs. Since as the third layer fills the sqperflwd tran-
the second layer would be a uniform fluid and the third Iayel’s'tIon tempera.ltur.e exce(—?‘ds 0.8 K above the critical t.empe_ra—
is puddled. The width of the coexistence region is 4 Am ture for gas-liquid 'coeX|ste.nce, the secqnd and third fluid
and the critical temperature of 0.8 K is close to that foundIayers should be uniform fluids at super.flwd onset, gnq thgre-
from the heat capacity measurements in the second layer. V\;gre there should be no effect of puddling on the dissipation
emphasize that this attribution is extremely tentative. we1ear the onset.
should point out that in this coverage regime the period shift
and amplitude data suffer from contamination by third sound" CONCLUSIONS
resonance® They could be eliminated in an oscillator with The present experiment and the previous results of
a lower operating frequency. Driving the oscillator in its Crowell and Reppy reveal a wealth of new phenomena in
floppy mode helps separate out third sound resonanceatomically layered superfluitHe films on graphite. Varying
However, we can exploit the observed mode crossingshe substrate potential by preplating has proved to be a valu-
whose most pronounced signature is a dramatic decrease able tool to extract “universal” features of the behavior of
the Q factor of the torsion mode, to trace the evolution of thethis system.
third sound velocity. For the bilayer preplating the tempera-  On the hydrogen bilayer and trilayer preplated surfaces
ture of the mode crossing exhibits a maximum atwe have studied there is no evidence for superfluidity in the
16.7 nm'%; this arises from a compressibility minimum in first *He layer. The second layer appears to condense into a
perfect agreement with that determined from the vapor pres2D liquid at sufficiently low temperatures for a layer filling
sure isotherm that locates the third layer promotion, as exbelow 4 nm2. At higher coverages in this layer we believe
pected. In contrast, the measurements of 2MBBow a cov- it to be a uniform fluid. There is a rapid increase in the
erage offset between the maxima in the third sound velocitpuperfluid signal and . with coverage, much faster than that
and the compressibility minima. This may arise because thexpected from KT theory. This may indicate a strong influ-
measurements are dominated from different graphite surfacesnce of the periodic substrate potential on superfluidity,
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Quantum nucleation of cavities in a liquid helium at low temperatures
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The rate of the quantum cavitation in normal flfide and superfluidHe at temperatures down

to absolute zero has been studied. The effect of energy dissipation due to viscosity and the
effect of the finite compressibility of a fluid are incorporated into the calculation of the quantum
cavitation rate. Because of the dissipative processes, the kinetics of the quantum cavitation

in 3He and*He proves to be qualitatively different. In norn#le it corresponds to the dissipative
tunneling through a potential barrier. In contrast, in superffitié the effect of dissipation

is of minor importance. In both liquids the role of the compressibility of a fluid enhances
significantly for the small critical nuclei, which have several interatomic distances and can
provide us the nucleation rates sufficient for the experimental observation of the homogeneous
cavitation in the quantum regime. @997 American Institute of Physics.
[S1063-777X97)00505-7

1. INTRODUCTION sumed to be absolutely incompressible or, in other words,

) ) ) ] sound velocity in the liquid is infinite. Clearly, a more real-
Considerable theoretical discussion on the Macroscopigic theory of the quantum cavitation should involve the

quantum nucleation has recently been focused on the loWstract of the finite compressibility, especially in the closest

temperature cavitation in liquid helium —at negative y;siniry of the instability point at which the sound velocity
pressures™* Some intriguing problems, such as the tens'levanishes

strength of liquid helium, i.e., the magnitude of the negative As follows from the recent studies involving the effect

pressure required to produce nucleation of cavities, and thgf finite compressibility on the quantum decay rate of a

crmc_al pressure at whlch liquid hellum_ becomes .thermOdy'metastable phase, the ratio of the nucleus growth Rate
namically unstable against the density fluctuations, hav

L . o . e sound velocity is a physical parameter which governs
aroused special interest. Various cavitation experiments hay, . R
7 the magnitude of the compressibility in the case of three-
also been performet.

According to the first estimat®of the rates at which d!mens!onal nucleatioff. Intumn, for _the decay of low-
: L . dimensional metastable systems the involvement of nonzero
bubbles nucleate in a liquitHe, it is expected that quantum

: . . Ocompressibility of a medium in the calculation of the decay
nucleation should dominate over the thermally activate rate is of principal importance since the approximation of an
nucleation at temperatures below0.3 K and that in this P P P pp

temperature range the pressure providing the noticeabl'gcompres'S't.)Ie medium has no aPpép%hcablﬁhEurthermore,
nucleation rate or the tensile strength should be alfout compgred with thg standqrd thgo ; .based on the modgls

— 15 atm. Later, Maris and Xiofigoointed out the possibil- of an incompressible medium, in which the decay kinetics of
ity that béfore this pressure can be attained, the lidtielis a metastable phase has a dissipationless character, the sound

unstable against the long-wavelength fluctuations of densi ete:jrdatmn dul(.a‘t tt(') thehflnlte vt_alo;l]ty of sotund gropagatlr:)_nh
since the square of the sound velocity becomes negative. T goduces quall ?Lvle c anlges n N ethqu?jr_l um t.ecay, Wt'C
extrapolations of the sound velocity into the negative pres: ecomes complietely analogous 1o the dissipative guantum

sure range and some numerical calculations suggest that t}t]lénnelmg .thrc.)ugh. a potenpal barr!er. The mgchamsm of en-
sound velocity at pressuf@ goes to zero as ergy dissipation is associated with the emission of sound

during the growth of the stable phase. On the whole, this
c(P)x(P—Py)". (1) leads to the time nonlocality of the effective Euclidean action
and, as a result, to the appearance of the explicit temperature
Here the exponent is close from 1/3 to 1/4. The critical dependence for the nucleation rate in the quantum tunneling
pressureP., i.e., the pressure at the lability point, is esti- regime.
mated to beP.=—(8—9) atm at absolute zero. For liquid The examination of the compressibility effect on the
3He, it is expected thaP.= —(2—3) atm? quantum nucleation of cavities in a metastable liquid, which
In order to find the tensile strength, one needs a theorjas not been made yet, is the main topic considered in this
on the nucleation of cavities in the liquid. So far all the paper. In order to investigate quantum-mechanical tunneling
calculations of the nucleation rate and tensile strength in thbetween the metastable and stable states of a condensed me-
region of the quantum tunneling regime have been perdium and to calculate the rate at which cavities nucleate, we
formed within the framework of the Lifshitz—Kagan thedry employ the formalism based on the use of the finite-action
of first-order phase transitions. However, in this well-knownsolutions (instantong of equations continued to the imagi-
theory there were several assumptions that reduced its genary time. (For review see, for example, Ref. 13This
eral validity. In particular, metastable liquid phase was asapproach**® for describing quantum-mechanical tunneling
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in the systems with macroscopic number of degrees of free- Next, one possible way to obtain the growth equation is
dom was used for incorporating the influence of energy disto use the conservation of the momentum density flux across
sipation in a metastable, condensed medium on the quantuthe boundary at =R(t):

kinetics of first-order phase transitions at low

: 2
temperature$-*® P(R)+ 7 (R)+ - =0. 4

Here P(R) is the pressure, and,(R) is the radial compo-
2. DYNAMICS OF A THIN-WALL BUBBLE IN THE LIQUID nent of the viscous stress tensor at the surface of the bubble.

The viscous stress tensot, is defined by the standard
The growth of a bubble in the liquid, as well as the expressiol’ as

formation of a bubble, is a very complex process. The
growth of a bubble occurs in a condensed medium represent-
ing a system of many particles. As a result, the growth of a

bubble is accompanied by nondissipative and dissipative prq- . . - :
cesses, including the nonhomogeneous outflow of the quuic(i]'ere77 and{ are the viscosity coefficients, and the subscripts
' k andl run over the values of 1, 2, and 3 corresponding to

from the bubble, the viscosity, the heat conduction, andﬂ’1 s of th di tor. The last t .
sound emission due to the compressibility of the liquid. e components of the radius vector. The last term in(8.

Thus, even for a spherical bubble that expands uniformly ir{akes into account the existence of the Laplace pressure due
’ to the curvature of the surface.

all directions, the derivation of the general growth equation, - . . .
which is valid for an arbitrary expansion rate, is a complex The boundary conditiot) is essentially an equation of
problem. We therefore start from a number of simplifying the b.ubble growth. We .must express the _presﬁ(rlé) a_nq
assumptions. the viscous stress, (R) |.n terms of the vanableg describing
Let us consider a normal fluid, saHe held at arbitrary the growth of a bubble, i.eR(t) andR(t). For this purpose
pressureP, either positive or negative. As the next step, we®n€ should employ two equations which govern the motion
assume that a spherical bubble of radR(s) has been pro- of a fluid. The first is the equation of continuity
duced and that its radius is growing at certain Rf€). For ap
simplicity, we disregard the possible presence of the helium -+ +V-(pv)=0 (6)
vapor inside the bubble, since the density of the vapor is
much smaller compared to that of the bulk liquid. We canand the second is the Navier—Stokes equafion
then consider the bubble within a thin-wall approximation
assuming that the bubble has an abrupt boundary between a
void and the liquid surrounding the bubble. In other words,
we will describe the liquid-vacuum interface in the terms of  \ya are now in the position to calculate the unknown
the surface energy coefficieat Of course, this is reasonable quantitiesP(R) and 7, (R), using Eqs(6) and (7), and the
or}Iy if the bubble radius is much larger than the imerfaceboundary conditior(3). However, the derivation of the gen-
thickness. _ eral analytic solution for an arbitrary dependence of the
The total energy of the system will then be growth rateR on timet is unfeasible and we restrict the

(?Ui F7l)k 2 (?U| (90|
-Z5 {6 (5)

Tik:_n&_xk ﬁ_x, 3 ikﬁ_xl_ ika_xly

v ) U
p|op +(VV)V|=—VP+ V24| (+ 2| V(V-v). (D)

1 analysis to the limit of sufficiently low growth rateR— 0.
8=f d3r[§ p(VZ(r)+p(r)e(p(r)) In what follows, only the quantities of the order not smaller
=R thanR/c<1 will be kept, wherec is the sound velocity. The
+4maR(1), (2)  time derivatives oR(t) to third order are also retained. Each

) ) o ] term of the decomposition has its own physical meaning and,
where the velocity and density of the liquid at pom&re iy aqdition, its relative contribution to the bubble growth

v(r) andp(r), respectively. The first bulk term represents ayjnetics depends on several factors, including the bubble ra-
sum of the kinetic and internal energies of the liquid, &l iys growth rate, temperature, and kinetic properties of the
the internal energy per unit mass. The second term is thﬁquid near the bubble.

surface energy of the bubble. To make the further simplifi- * Ag usual, to solve Eq<6) and (7), it is convenient to
cation of the bubble growth, we disregard all the heat effect§ioquce the velocity potentia(rt) according to

which, in general, can accompany the growth of a bubble.

For this purpose, one should ignore the possible temperature v=Ve.

dependence in the coefficient of surface enesiggnd the
heat transfer due to the viscosity of the medium.

Let us now turn to the derivation of the equation which
the growth of a bubble obeys. First of all, we note that,
according to the conservation of the mass flux across the ¢ (413 p+¢ _,.
boundary of a bubble, we have an equality between the fluid Vip— o2 + 72_ Veip=0. ®
velocity and the growth rate at=R(t), i.e.,

) The general solution for the sound that propagates from the
v(R)=R(t1). 3 bubble and vanishes at infinity can be represented as

In the above approximations the motion of a fluid me-
dium can be reduced to the linear equation corresponding to
the propagation of sound under damping
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* dw g it The second term with the first derivative represents the
e(rt)= f

o e — P(w), drag force, which hinders the growth of a bubble and which
is completely analogous to the Stokes force, which is propor-
w ¢\ 49l3+¢ tional to the growth rate
AwZE(l—ZI’ywa , ’waW wz, (9) X .
w1 (R)IR=1677RR (15)

wherey,, is the sound absorption coefficient due to the vis-

cosity of a fluid. The unknown functio®(t) must be deter- It is obvious that the drag force governs the evolution of a

mined from the boundary conditiorf3) setting de/dr bubble at sufficiently small growth rate when the other terms

:R(t) atr=R(t). The involvement of first-order time de- Which depend on the temporal derivatives, can be disre-

rivative alone is sufficient in our approximation; i.e., garded. As we shall see below, such situation for the quan-
. tum cavitation is possible provided the critical si2g of a
V(1) 4 bubble is large enough or, identically, in the limit of small

PO~=7 VO=75 R(Y), 10 hegative pressurd$|— 0.

) i ) We would like to make an important remark concerning
whereV(t) is the volume of an expanding bubble. Using the,q penavior of the friction coefficient(R) as a function of
usual relation for the pressure in a fluid the bubble radius and temperature. The point is that in the

_ (Ve)2 (4 course of deriving the Rayleigh—Plesset equatibh) we
P(rt)=P=—pe—p ——+|3 7+ §) Vo employed the Navier—Stokes equation with the viscous stress
tensor(5) in the form of the expansion in the gradients of the
and Eq.(5) for the viscous stress tensor, we obtain for thefluid velocity. This implies, however, that the hydrodynamic
equation of the bubble growth approximation is satisfied; i.e., the bubble radius should be
: much larger compared with the mean free pgfh) of exci-
+P+4n5+p(Rh+§ RZ)—LV(RH...:O, tations in the medium surrounding the bubble. Since the
R 2 4mc mean free path increases rapidly at low temperatures, in par-
(1D ticular, I(T)1/T? for ®He, the crossover from the hydrody-

whereP is the external pressure. In the absence of the sud@micR>| regime to the ballistic or Knudsen regime Rf

face, viscous, and sound terms the equation for the radiaf! should occur at a certain temperatdigR).

growth of a bubble was derived for the first time by Lord In the ballistic regime the friction coefficient is governed

Rayleigh. Later, the growth equation was generalized by mby the interaction of excitations with the surface of a bubble

Plesset with allowance for the surface tension. and is proportional to the area of the bubble surface. The
For further analysis, let us rewrite the growth equation ingeneral expression for the friction coefficien{(R) can be

a more general form. Multiplying Eq11) by 47R? we represented a8

2a

R

obtain
p1(R) =167 nRE(RI),
, : - 1R,
U'(R)+ u1(RIR+ uo(R) R+ 5 R%| — u3(R) 1, if x>1
2 pa(R) B
f(x) . (16)
, " /2 ax, if x<1.
v §+§M3(R) RR-I—E Mg(R)_ 137 (R) " 3
2 u3(R) 2 \ uz(R) ZME(R) Here f(x) is a dimensionless function of the ratio of the
4 -0 12 bubble radius to the mean free path of excitations in the

liquid. The numerical factoa is of the order of unity and
The expression which we derived essentia"y represents g_epends on the particular features of the interaction of exci-
genera| form for lowest terms of the expansion of the equatations with the bubble surface. It should be noted that in the
tion of bubble growth in a series in the slowness of variationballistic regime the friction coefficient,(R) is independent

of the bubble radiufR(t) in time; i.e., expressioiil2) is a  Of the mean free path(T) since 7~ pcl.

low-frequency expansion. The terms with the second derivative and with the square
The termU’ (R) which remains finite aR=0 originates of the first derivative in Eq(12) are standard terms and can
from be described in terms of the variable mass of a bubble:
4 R)=4mpR. 1
UR)= = PR+ 4maR?. (13 ua(R)=4mp 17

These terms can be attributed to the kinetic energy of the
Accordingly, U(R) can be treated as a potential energy offluid that flows away from the bubble.
the bubble. Note that for negative pressures the bubbles with The other third-order terms are associated mainly with

radii exceeding the critical size the finite velocity of the propagation of sound in a medium.
R,=3al|P| (14) The corresponding coefficiept;(R) is given by
i itati 47
prove _to be energetically favorable and cavitation becomes a(R) = p R4 (18)
unavoidable. c
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Clearly, the smaller the sound velocity, the larger the effect 1 BhI2

of this term on the growth of a bubble and on the cavitation Ry f f drd7'[y1(R;)
L — BhI2

kinetics.

To gain further physical insight, we represent the growth ) (7T)?
equation in terms of the bubble energy dissipated per unit —71(Ry)] AZ S 7T (7—1)Ih
time,

1 BhI2 dy3(R,
d 1 - R ——ff deT{L)
at U(R)+§M2(R)R _Ms(R)RR_Eﬂs(R)R A — phil2 ar
0 RT/ 2 aT 2
B ., _3’3(/) 2.() @
=—u(RIR?— — V2, (19 ar 12 sirt 7 T(r—7')lh

47rC

—T1; i
As one can see, the right-hand side of Etp) is described where S=T" " is the inverse temperature. The paRir)

by the dissipative function. The first term of the dissipativeWhICh is defined in imaginary time satisfies the periodic

function corresponds to the standard ohmic dissipation Wiﬂpounhdar_y got';d'flonfﬁ(_ﬁmz)j R(ﬂ?ﬁ)' 2‘ SPOUId tpe
the variable friction coefficient. The second term is exactlyernp asized that afl the parameters ot the efiective action are

equal to the total intensity of the sound emission as the Volgssomated unambiguously with the corresponding param-

ume of the body immersed in the fluid chardsthe wave- eters in the classical equation of growfl®). The correspon-

length\ of the sound emitted is much larger than the size c)fdence can readily be settled with the analytic continuation

the body; i.e.A>R. In our case the latter is identical to the (Jon| — —iw) of the Euler-LagrangedSe/dR,=0) equa-
inequality R<c. tion for the effective action to real time, which entails the

In conclusion, we would like to emphasize two impor- classical equation of growth. The substitutiofw{|—
tant points. First, the growth equati¢h2) has a limited re- i) of the Matsubara frequencies with the real frgquenaes
gion of applicability, which is restricted by the low growth must be performed in the frequency representation of the

: orresponding equations.
rates so that the growth time of a bubble would be IongeF ; . .
than the characteristic times of the relaxation processes in the .It is clear that the .f'rSt two.terr.ns n E‘#Zl) can be
medium surrounding the bubble. Second, the kinetic Coeﬁigttrlbuted to the potential and kinetic energies of a bubble.

cientsu,(R), in general, are different in various media, for g_he_ o;?g:] tedrm_s, n(?[ELoczl kl)nblgme}oar; dlfl_eheto tf;(reasqrz;gy
example, in the normal or superfluid liquid. Issipatl uring u growtn. P rs

v1(R) and y3(R) are determined by the kinetic coefficients

©1(R) and w3(R), respectively,
3. QUANTUM NUCLEATION RATE

. _ (am ))2 ( 73<R>)2

In this section we shall estimate the thermal-quantum  u.(R)= . ma(R)= . (22
. dR JR

crossover temperature and calculate the rate at which a

bubble nucleates at zero temperature. The quantum cavit®epending on whether the hydrodynamic or ballistic regime

tion problem is treated within the approach elaborated fotakes place, as it follows from E@l6), we obtain

describing the decay of a metastable state in the presence of 5

energy dissipatiolf"'®>and used for the analysis of the quan- = J1677R¥2  if R>l

tum nucleation processes during first-order phase (R)= 3

transitions'® This approach is based on finding the extre- 1 1 ,

mum values of the effective Euclidean action determined in 2 Vi6mazy/IR®, if R<l.

imaginary time and on using one-to-one correspondence be- ) ] o )

tween the classical equation of growth in real time and the _Similar effective actions have been studied in the appli-

Euler-Lagrange equation for the effective action due to thé&@tion to the general theory of the quantum kinetics of first-
principle of the analytic continuation|d,|— —iw) into  Order phase transitions. However, the various aufrr$

imaginary time. used the kinetic terms separately. It is interesting to note that,
The rate of the quantum nucleation can be written as in contrast to the term with the ohmic dissipation which is
related to the dissipative function proportional to the square
F(T)=To(T)exp(—S(T)/4), (20) of the first-order time derivative, the contribution due to the
where the preexponential factby, is the rate of cavitation finite compressibility of a fluid to the effective action is
per unit volume and unit time. According to the genera|nega.tive. The latter results in enhanCing the quantum nucle-
theory of the nucleation kinetics, the facos can be evalu- ation rate compared with the one calculated in the framework
ated approximately as the attempt frequengynultiplied by ~ of the Lifshitz—Kagan model of an incompressible fluid.
the number of centers at which the independent cavitatio®ome hints for such conclusion can be seen from the fact that

events can occur. the finiteness of the velocity of the sound restricts the region
In turn, the exponens is the extremum value of the of the bubble environment that can be disturbed and set in
effective Euclidean action motion. The size of this region is approximately=cr,
s 1 4R\ 2 whereris gtypical growth time. In_ a sense, one can say that
SeilR |:J' d7 U(R,)+ = ua(R )(_) } the totql kinetic energy of the fluid rowmg_away from the
) T2 “\dr expanding bubble becomes smaller than in the case of an
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incompressible fluid where the perturbation induced by theamaximum U, of the potential energy13) and yields the
formation of the bubble extends instantaneously to infinity. actionS=#U/T resulting in the standard Arrhenius law for
To be closer to what can actually be observed in low-the nucleation rate,

temperature experiment, we consider only the case of the

ballistic R.>1 regime, when the critical radius is much =T exp(—Ug/T); Up=—=r=rr
larger than the mean free path of excitations. In fact, at low 3|P|
tempgratures‘,l’<1 K, the mean free path increases drasti- We begin the study of the low-temperature quantum be-
cally in the normaPHe and in the sfuperflluﬁHe. Hence, the  navior of the nucleation rate by analyzing the classical
opposite case of the hydrodynamic regime requires large vaR( ) =R, extremum path with respect to small oscillations

ues for the critical bubble radius, which increases progresspout the maximum of the potential energy. For this purpose,
sively as the temperature decreases. In addition, the largge represent an arbitrary path as

critical radius of a bubble results in such negligible nucle-
ation rates that the homogeneous cavitation becomes unob- R(7)=Rg+r(7).

servable on the scale of the reasonable experimental times. |,y e expand the effective acti@{R(n)] in a series in
the quantitative manner, the impossibility of the hydrody- -\ powers of deviation of (7). Truncating a series in

namic quantum regime is exprgssed by the inequality o (7) at second order and turning to the Fourier representa-
T(R)>To(R.), where To(R;) is the thermal-quantum tion

crossover temperature.
Eventually, it is convenient to represent the effective ac- T 2 ,
tion in the following way: r(n)=% 2, T eXp(— wn7),

16ma?
(25

rr'=r_n; w,=27Tn/h, n=0,21,*2,..,

#I2T N ) amn
SeHl R,]= dr] 3 PR +4maR:+27pRIR:
—hl2T

we obtain after some calculations the expression

il I R AU T
T an f f,m A7 3 Y AR Ser=—+ 57 2 aalrl® (26
~ AR, ]2 4Zc [V(RT) Here the coefficients, are given by
" 3 2 47TPRS 3
()2 an=U0+l677puR€|wn|+4ﬂ'pROwn— |l

(23

_V(Rf’)]z} RZSIE aT(7— )k 27

As the temperature is lowered, the coefficients; van-

_ 2 3
whereA=47R" is the area of the surface, aht=47R"/3 ish first atT=T,, which is determined by the equation

is the volume of a bubble. The quantity- %/pl is approxi-

mately the characteristic velocity of excitations in a medium. =54 hw

O 2 . 2 3 2P0 3 1
For a normal liquid like®He, the order of magnitude of the —at4puRow +pRywy— = 01=0, Ti=5—.
velocity u is the Fermi velocity and the possible temperature (28)

corrections to the zero temperature are associated with the ]

quantities of about T/Tg)2, whereTg is the degeneration Below the temperaturd, the classical pathR(r)=R, be-

temperature of the Fermi-like excitations. comes absolutely unstable against the oscillations of mode
In the superfluidHe where the energy dissipation of the +1- ) _

ohmic type is due to the presence of the normal component Deépending on the type of the quantum-classical path

alone, we have a different behavior of the quantity transition® the genuine thermal-quantum crossover tem-
peraturel , coincides with the temperatufg if the effective
u(T)=cp,(T)/p. (24) action matches smoothly the exponent of the Arrhenius law

or lies at a temperature slightly higher than the temperature
Here p,(T) is the density of the normal component and atT; if the quantum-classical path transition has a discontinu-
low temperature§ < 0.5 K the normal density is determined ous, jump-like character, i.€T,p;=<T;. Although the action

mainly by phonon¥ (23) we are concerned with refers to the last case and al-
though the crossover temperaturg should be found from
2m? T4 S(Ty)=hUy/Ty, the approximate estimate ofg~T; is
Po(T)= 75 735 fully sufficient for our purpose.

According to Eq.(28), in the limit of sufficiently large
It should be noted that sinae~c ™4, the relative role of this radiusR,— or, correspondingly, small negative pressures
ohmic term increases in the vicinity of the lability point be- |P|—0 we obtain the following estimate of the crossover
cause of the reduction of the sound velocity. temperature:
First, we consider the high-temperature region in which 5
there is only a classical extremum path. The path which sat- To~ @

= P2 (29
isfies the conditionR(7)=R,=2R./3 goes through the 8mpuRy 32mapu
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For the above formula to be correct, it is necessary that theriginates from the dissipative ohmic term which is nonlocal
growth rateR be smaller than the velocity of excitations and in time. The other two kinetic terms can therefore be treated
the sound velocity. Since the characteristic time of the unas perturbations. Accordingly, for temperatiire 0 we have

derbarrier evolution of a bubble is {&v,) "1, we have approximately
2w Ry T a u ( @ )2}
= < T=0)~47puR| 1+ ——=— — —
u 2pu2R0<1' (30) S )~4mpuR; 2pu?R;  9c | pu?R,
Obviously, this inequality restricts the magnitude of the pres- «|P| 4. (36)
sure

This result represents the decomposition of the effective ac-
|P|<pu?, (31D  tion in R/u<1 if we take into account that the typical time

for which our approximations hold true. If the strong in- of the bubble growth or, identice_llly, the transit time along
equality (30) breaks down, in Eq28) we must use terms of the extremum underbarrier path is about

higher orders inw;, and the estimat€29) of the thermal- puRg

guantum crossover temperature ceases to be valid. ST, (37
In contrast with normafHe, in superfluid*He the den-

S|ty of the normal Componemn(T) vahishes ag —0 and In contract with the diSSipationleSS k|neﬁ€§ the en-

therefore the contribution of the ohmic term in Eg8) de-  €rgy dissipation during the bubble growth leads to the effec-
creases. In order to analyze all the facts of the case, let &€ action in which the kinetic terms depend on temperature

rewrite Eq.(28) for temperaturd |, taking into account Eq. in an explicit form. It is natural therefore to expect a
(24) for p,(T) temperature-dependent behavior of the nucleation rate in the

guantum tunneling regime below the crossover temperature
To. We thus can expet

AS(T)=S(T)—S(0)~—S(0)(T/Ty)%. (39)

Of course, the conditiom;Ro/c<1 is assumed to be satis- It is obvious that the temperature correction affects essen-

fied. . . ; _
o . : . tially the nucleation rate, whileAS(T)|>%. Introducing the
As one can see, the dissipative ohmic term lineawin temperatureT, at which|AS(T,)|~7, i.e.,

has no significant influence on the thermal-quantum cross-

2 4
0 PRy
—a+mﬁw?+png§—Twi=O. (32

over temperaturd, provided thatR,>R, where the radius a [ f \¥
is gi 2~ |\ g *P% (39
R, is given by R\ 4mpu
R - h2a®  \VL 33 Ve obtain a noticeable range of temperatufes< T<T,,
* | 8100m%c8p® for which the enhancement of nucleation r&t€T) follows

the law of logI'(T)/T'(0)]e<T2.

Let us turn now to the case of the cavitation in a super-
d *He. In contrast to a normal fluid, where the density of
excitations remains finite down to zero temperature, the den-

For the radiukp>R, , the thermal-quantum crossover tem-
perature is found to be approximately the same, as it foIIow?Iui
from the nondissipative model of the quantum cavitdtfbn

o [a & |P]PR sity of the normal component in superfluftie vanishes at
To%ﬂ p_RS_ETp' (34  zero temperature and the nucleation kinetics is governed

mainly by the well-known nondissipative term, which is re-
To satisfy the approximation of the low growth ratgR, lated to the kinetic energy of the liquidf:° Using the correc-
<c, we must impose a restriction on the radRigor on the  tion due to the finite velocity of the sound propagation, we

negative pressure: can describe the effective action 0 approximately by
Ro> 7 offP|<pc? 35 =0y~ 227 (i 1 2 2]
0> 7 or|P|<pc®. (35 S(T=0)~—75— (ap) "R 1-5¢ Vg |- (40

Numerically, if the physical parameters tfle are measured The order of magnitude of the second term is a ratio of the
at zero pressure®=0, we find thatR, ~a/pc?. Since underbarrier growth rate to the sound velocity. On the whole,
alpc?~0.5 A, the validity of the estimaté84) is connected the model of an incompressible liqud,as one can see un-
with the applicability of the macroscopic description, which derrates the cavitation rate in the quantum regime. As the
is correct for large bubble radii compared with the interfacepressure decreases, the underestimate of the cavitation rate
thickness. Note that the conditidB5) can be satisfied only increases due to the reduction of the critical radius and the
in the range of pressures far enough from the lability point asound velocity. For large critical radii, although the relative
which the sound velocity vanishes. correction to the quantum nucleation rate is small, the abso-
Let us now focus our attention on the low-temperaturelute value of the correction is very large because of an ex-
T<T, behavior of the nucleation rate. First, we consider theponential dependence of the nucleation rate on the effective
case ofu(T)=const, which corresponds to the normible.  action.
Since we should remain within the approximation of the low  To conclude the section, we shall analyze the [dw
growth rate, the main contribution to the effective action<T, temperature behavior of the nucleation rate. The
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temperature-dependent behavior for the nucleation rate is eA- SUMMARY
tirely due to the terms in the effective acti@B3), which are
nonlocal in time and which describe the energy dissipatio
processes occurring in the superfldide during the bubble

In this paper we have examined the effect of the dissi-
rbative processes and finite compressibility on the rate at
growth which bubbles can nucleate via quantum tunneling in the

The t ‘ tion from the ohmic dissipati normal ®He and superfluidHe at negative pressures and
€ temperature correction from the ohmic dissipa Ionsufficiently low temperatures. In conclusion, we would like

term is governed, initially by the temperature behavior of theto emphasize several important points common and distinct

normal densitypn(T)*® for the kinetics of the quantum cavitation in the normal and
ASypd T) =47 pu(T)RE=4mcp,(T)RE. superfluid liquids.
The common feature of quantum kinetics is that the dis-
This contribution reduces the nucleation rate. In contrast, thgipaﬁve processes, which are associated with the viscosity of
temperature correction resulting from the sound emissioR fluid, hinder the quantum nucleation of bubbles. The vis-
term has a negative sign and increases the nucleatiol? ratecous phenomena have an origin entirely in the spatially non-

2R9 [T\ 4 uniform flow of the fluid which has to spread in the radial
AS(T)~ P e (_> directions away from the expanding bubble.
Ca \A In contrast, the finite compressibility of a fluid facilitates

The temperature dependence of the correction is the same ¥ quantum nucleation of the bubbles since it is easier to

for p,(T). The total temperature correction is determined byPush the fluid out from the cavity if the medium surrounding
a sum it is light-compressible. This phenomenon is accompanied by

the excitation and emission of the sound waves induced by
Rﬁ' T\* an expanding sphere.
?( ) - (4D This effect is essential for the negative pressures of
about several atmospheres when the critical sizes of the
Note that at least in the immediate vicinity of the lability pyphles should be approximately equal to several interatomic
point, whenP— P. andc(P)—0, the correction associated gjstances and the rate of tunneling is comparable with the
with the existence of the normal component will dominategqoyngd velocity. On the whole, these two processes result in
over the sound emission mechanism. In contrast, in the rangge appearance of the explicit temperature-dependent behav-

8w  p°R3
h

AS(T)=S(T)—S(O)~(4—5C3— o

of the small negative pressurespf —3a/R, orlarge criti-  jor of the cavitation rate in the quantum regime.
cal radii, On the other hand, it is the dissipative processes that
873 af \15 make the quantum cavitation kinetics diverse in the normal
RC>R*~(4—5 ;ng) , (42 and superfluid liquids. In the normal flufHe, where the

density of excitations does not vanish at low temperatures,
the sound emission mechanism governs the temperature b&€ quantum cavitation kinetics corresponds entirely to the
havior of the nucleation rate. If we take the parameters oflissipative tunneling through a potential barrier in the over-

“He at zero pressure, the numerical estimate gives the valu@@mped regime. Compared with the calculatidifs’ per-

of about 2.4 A for radiuR, , which is comparable with the formed on the basis of the dissipationless models of quantum
interatomic distance. In the whole region of the macro- cavitation, the quantum cavitation rate for the bubbles of the
scopicR.>a approximation the contribution from the ohmic large critical sizes proves to be significantly smaller and,

dissipation is therefore negligible and the nucleation ratecorrespondingly, the tensile strength should be also some-

I'(T) should increase with increasing temperature. what smaller.

Let us now evaluate the temperatuFg at which the In addition, the temperature necessary for observing the
temperature correction for the exponent becomes significanguantum tunneling regime instead of thermal activation de-
i.e., if |[AS(T,)|~#. Using Eq.(41), we obtain creases and should be below about 70 mK. The

log ['(T)/T'(0)<T ? behavior for the nucleation rate is ex-
(43) pected in the low-temperature limit.
In contrast with the normafHe, in superfluid“He,

Y the t " . ller than the t " where all excitations are frozen out as the temperature tends
owever, the temperatur, is smaller than the temperature , jqq) e zero, the dissipative processes do not play an

T, of the thermal-quantum crossover only for the SUfﬁCie”tlyessential role with the exception of the range of small nega-
large critical radii which exceed a certain radiRg

hac)lm

To~ti| s
2 (szg

tive pressures. This range of pressures of albout—1 atm

A (167hc) 13 refers to the sufficiently large critical sizes of the bubbles

Re>Ry~ —- ( 30 ) (44)  which have an astronomically large lifetime and thereby do
not determine the tensile strength“®fe under ordinary ex-

The estimate for pressuréB®|~0 yields R,~40 A. Thus, perimental conditions.

only for macroscopically large bubbles of radRg>a there Although the compressibility and sound excitation ef-

is a noticeable range of temperatur€s<T<T, where fects during the nucleation must undoubtedly be involved in

|[AS(T)|>%. For R.<R,, the scale of the lo§(T)/T'(0) the cavitation kinetics of the bubbles of small critical sizes,

«T* variation is not large. Note that the radiRs decreases the quantum cavitation ratE(T) and therefore the tensile

near the lability pointc(P.)=0. strength of*He remain, as in the case of the incompressible
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Through a treatment of three-phonon processes, the wide-angle scattering rates and the
absorption rates of phonons, which characterize viscosity and ultrasonic attenuation, respectively,
are calculated fofHe below 0.6 K. These rates are obtained from the collision matrix

which is constructed approximately from an integral eigenvalue equation for the collision operator.
The sequence of the lowest eigenvalues of the collision matrix as the angular momentum
quantum numberl] increases shows a saturated behavior which has not been reported before.
The calculated viscosity and ultrasonic attenuation are compared with previous theoretical

and experimental results. @997 American Institute of Physid$$1063-777X97)00605-]

1. INTRODUCTION trial wave functions were used. The effects of these rough

Since the anomalous phonon energy spectrun ke gpproxmatlons in both theories can be shown in the behav-

was proposediits transport properties have been studied oriOr of th_e sequence of the :\‘Z"V‘?sf elr?egﬁ\;zlhues W.Ith Increasing
the basis of that spectruf® For the case of the anomalous ' &t & 9iven temperature. Maris's the OWs Increasing

phonon spectrum, the lowest-order phonon processes afgnavior of the sequence witf i.e., no saturation, and in
three-phonon processéPP, while for the case of the nor- Benin’s variational theory this increasing behavior is more

mal spectrum they are four-phonon procesd&P. Thus, in  S€Vere. _ _
order to investigate the properties of superfifiide at low In general, ad increases, the angular distanég be-
temperatures, we must completely understand 3PP. tween the maximum point and minimum point of the varia-

Maris® explained the temperature dependence of the vistion of the phonon distribution from an equilibrium value
cosity of“He below 0.6 K in terms of the eigenvalues of the decreases inversely with(6,, = =/I). Roughly speaking,
3PP collision operator. Later, using a variational calculationWhen 6/2 becomes smaller than the average value of the
Benirf obtained similar results. Their fundamental idea isscattering angle of 3PP at a given temperature, the lowest
that the relaxation rate characterizing the viscosity is the eitelaxation rates may be constant, which shows a saturated
genvalue of the 3PP collision operator with angular momenbehavior. We provide our numerical results showing this
tum quantum numbdr= 2. Although their results provide a Saturated behavior in Sec. 3.
good explanation for viscosity experimental data,the de- For the eigenvalues of the 3PP collision operator, Maris
velopment of their theories oversimplified approximationsobtained a discrete spectrum. According to our calculation,
were used for simplicity of the numerical calculation. Maris, the spectrum of the eigenvalues with= 2 is a continuous
for example, used only the linear term in the expression fospectrum with a finite positive minimum value. This continu-
the anomalous phonon energy spectrum in the matrix elesus property of the eigenvalue spectrum seems to be in ac-
ment calculation, and for the procedure of transforming arcordance with the theoretical work of Bdatbout the relax-
integral eigenvalue problem into a matrix form he dividedation rate spectrum of phonons. For the first-sound
the range of the integral into a relatively small number ofattenuation in*He, a shoulder observed by Roaehall°
summing points(10—2Q. In Benin’s theory, rather rough was found to be the result of the restriction of 3PP, which
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means that the zero-temperature spectrum depends on 1

pressuré?! lspe(@) =5 > 2al(a’,q"[Vs|Q)|28(e1— i) [NgNg(1
In this paper we obtain, using a similar method to Maris, a’.q”

the integral expression of the eigenvalue problem and con- +ng) —Ng(1+ng)(1+ng)]

vert it into a matrix form. From this collision matrix we

calculate the eigenvalues and phonon viscosity*fée be- + E 27(q' |Vslaq”)|28(e— &) [Ny (1

low 0.6 K. From the diagonal elements of the collision ma- q.q" e

trix, we also give a natural explanation for the shoulder of
the ultrasonic attenuation. In Sec. 2 the collision matrix for
3PP is constructed. The numerical analysis of the eigenvalyheres; and s are the phonon energies of the initial and
ues for the matrix is given in Sec. 3. In Sec. 4 we evaluatginal states, respectively, and, is the distribution of
the viscosity and ultrasonic attenuation, and compare therghonons with momenturg. In Eq. (2.7), the first term rep-
with available experimental data. Conclusions are given irtesents the procesg=q’ + g’ and the second term the pro-

+Nng)(1+ng) —NgNgr(1+ng) ], (2.7

Sec. 5. cess)'=qg+q".
If the phonons are in their equilibrium state, i.@q
2 COLLISION MATRIX FOR THREE-PHONON PROCESSES = ng, Whereng is the equilibrium phonon distribution, the

o _ _ ~ collision integral vanishes by detailed balance. If we con-
In the long-wavelength limit the interaction for 3PP is sijder a small variation from the equilibrium as

given by

Ng=ng+dng, (2.9
V3=Jdr[§ MaVs(r)pa(1)Vs(r) then the collision integral can be rewritten to first order in
5 ong as
1 9 [mys 3
+gm(n—)P4(f) } 2.0 1 ,
i Ispp(q)=—mf dq'dQq:a'*T(a,9",9") 8z
wherem, is the*He mass, and(r) andp(r) are the local )
superfluid velocity and local density variation #fle from —&)[ong(1+ ”8'+”g")_ 5nq,(ng”_ng)

equilibrium densityn,, which are small quantities. These
small variations can be expanded within a voluvha terms 0 o 1 J , '
of phonon annihilation and creation operat(br@andb+ , as — Ongr(ng —Ng)] = (2m)? (z)dq dQqq"°T

qZn4 1/2 . . < Ay —e)[é 0 _ .0
pa(r)=2>, (—> (b€ +bg e i), (2.2 (0.9".9") 8(e—&i)[ ng(Ng— Ny

@ | 2MawqV 0, 0 0_ 0
and —ong/(1+ng+ nq,,)+ 5nq~(nq—nq,)]. (2.9
112 Because of the momentum conservatigh= q — q' in the
_ wWq A i et —iger L 0 . .
V(=2 (2 V) G(by€d +bleian), (2.3 firstintegraland)” = q’ — qinthe second integral, which are
q MmNy denoted by(1) and(2), respectively, in Eq(2.9).
Wherewq iS the energy Of a phonon Wlth momentLq'nWe The variation of the distribution function from the equi'

can then obtain the matrix element for 3PP by a straightforlibrium state can be expanded by spherical harmonics as
ward calculation as

_ 0
o T(q.q'.q")| 12 5nq—qnq|2m P1n(@) Yim(Qq), (2.10
<q q |V3|q>: T 5q’+q”,qr (2-4)
where for simplicity we define
where o
an
1/2 ~O0_ q
1Ay — WqWqg - nq:_ (211)
T(a,q.9") 8m4n4) ( o ) 9'g-q Jwg
oo | 12 o o) 12 Yim(£g) is a spherical harmonic, ard, is the solid angle
Il q’) Q"E{'(AIHL( @’ q") qq’ of g. Using the addition theorem, we transform the spherical
W Wq harmonics forg’ andqg” to those forq as follows:
r At 2
i+ 2(2u—1) —9 9 12} . @25 Yin(Qq1) = Pi(c0S 6)Yin(Q2g), (212
(wqwaqu)
Yim(Qgr)—Pi(cos0")Ym(Qq), (2.13

andu is the Gruneisen constant defined by
whereP, is the Legendre polynomial, arfland ' are the

=E£, (2.6)  angles between momenta,§’) and momentad,q"), re-
S Ny spectively.
with a value of? 2.84. After performing the angular integration, we obtain the
The collision integral due to the 3PP is given by collision integral as
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l3pe(@) = —qﬁ;”% Yim(Qg)

1 f T(9,9',9") 0
X dqg’ ’2ﬁ 1+n_,
[2<2w> 399 B |
'n?
0 q’ 0
) (@)~ 3 (0
//_e
_no p 9)P o q nq" 0
Ng)Pi(cos 0)Pim(q’) W—(nqr
—nS)P|(cosﬂ’)<D|m(q”)}
T(q,q’,q”)[ 0
4 ry’2 n°,
27 Ji2) B(a,9',9") (Ng
q'ng
) Pin(A) ~ o (140G
a it
+ 0 P Y ' +q nq" 0
g Pi(€08.0)Pin(a') + <525 (n
—ng)Pi(cos 0" )®i(q") [ (2.19

whereB(q,q’,q"), which originates from the delta function
representing energy conservation through® is defined by

der—ej)
d cos

B(0,9'.9")= . (2.15

If we represent the collision integral in terms of the re-

laxation timer i.e.,

Yim(2q)Pim(q)
l3pd Q)= — ﬁg% 'q—'q,

7|

(2.16

we can then obtain the eigenvalue equation for dadBe-

cause the different values of do not change the form of the

eigenvalue equation, we can suppress the imdex
The eigenvalue equation for a givérbecomes

1 f T(9,9',9") 0,0
d 'q'2 57 ~ 7 v 1+n ,+n ” CI)
202m J, 999 Bla.q,q) | (e ) @
O o
4Ny o 0 / _q Ny o
qn? (Ngr—Ng)Pi(cos )@ (q") qn? (Ngs

—ng)Py(cos6’)P(q")

1 J T(9,9',9")
t5= dq’ 2 Y
27 Jio) a4 B(q,9'.9")

A0
q nQ’ 0 0 ’
BT (1+ngtng)Pi(cos )P (q’)
q

{(ngﬂ—ng,)@'(q)

q//ﬁe
+ —5 (ng—ng,)Py(cos 8")P(q")

qne =N®(q),

(2.17)

where the eigenvalug = 7,7 L.
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Since this integral eigenvalue equation cannot be solved
analytically, we use a numerical method. If we replace the
integral on the left-hand side by a sum over a finite set of
points, we obtain a matrix eigenvalue equation

M|(D|:)\|(D|, (218)
where M, denotes the collision matrix with a givdnsym-
bolically. The diagonal elements of the mathi come from
the terms containingP,(q) in Eq. (2.17), while the terms
containing®,(q’) or ®,(g") give the off-diagonal elements.
The number of eigenfunctions and eigenvalues will then be

equal to the matrix sizg,,, the number of points to be
summed over.

3. NUMERICAL ANALYSIS OF THE EIGENVALUES
A. Phonon energy spectrum

In order to perform numerical calculations we should
choose an anomalous phonon energy spectrum to use. As
will be seen below, the wide-angle scattering rate depends
sensitively on the phonon energy spectrum. Among the vari-
ous spectra proposed by many authors, we take two forms,
one suggested by GreywHlland another by Mari$.The
phonon energy spectrum suggested by Greywall is

0q=SO(1+ ax0%+ a,q*+ aeq®), 3.9
where
s=237.0 m/s forP=0 atm,
$=298.9 m/s forP=10 atm,
a,=1.30-0.065 P,
ay=—10.250,+108.55,/s—1)—28.44s5/s—1),
ag=25.00,—434.4s4/5—1)+177.8s5/s—1),
S,=247.0+2.86 P,
S5=242.0+2.20 P.

Heres is the velocity of first sound, anB is the pressure.
Since this spectrum has pressure dependence, it is available
under arbitrary pressure. Another spectrum given by Maris is

1—(p/pa)?
_ 2
wg=sp| 1+yp 1+ (pipg)?)’ (3.2
where
$=238.3 m/s,

y=10x10%" cgs units,
palh=0.542 A1
pg/h=0.332 AL

Let us test the properties of the above two spectra. Fig-
ure 1 shows the phase velocities of the two spectra and the
group velocity of Greywall's spectrum & = 0 atm. The
phase velocity of Greywall's spectrumBt= 10 atm is also
presented. It is shown that the phase velocities are consistent
with neutron scattering experimerfsFor the case ofP
= 0atm, the maximum positions of the phase velocities,
vp, of the two spectra are almost the same at almput
= 0.3 A1, while the maximum value of Greywall’'s spec-
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FIG. 2. The allowed range of 3PP for Greywall's spectr(sulid lines at
FIG. 1. Phase and group velocitiestat= 0 atm andP = 10 atm. The solid  p — 0 atm andP = 10 atm and that of Maris’s spectruiashed lines The
lines are the phase velocities of Greywall's spectrum: the upper curve is fofertical arrows indicate the cutoff momenta. The lower part(q’) denotes
P = 10 atm and the lower curve féf = 0 atm. The dashed line is Maris's e gllowed range of the first process and the upper part{q) that of the
phase velocity. The phase velocities of both spectra are consistent witBecond process.
neutron scattering experimerifsThe dotted line represents Greywall's
group velocity.

distribution of the 3PP scattering angle of the first process,
i.e., the angle betweeg and q’, is shown in Fig. 3. The
maximum scattering angle for Greywall's spectrum is 23.8°,
which is larger than 19.6° for Maris’s spectrum.

trum is larger than that of Maris’'s spectrum. Fé&
= 10 atm, the range of ,/s is reduced considerably com-
pared to the case &f = 0 atm, which is related closely to the
cutoff momentumg., above which 3PP do not occur.
For the above spectra we obtain the allowed range for
3PP and 3PP scattering angle, using conditions of energy and
momentum conservation. Since the 3PP do not change the
total momentum and total energy, the momentum and energy
of the initial state equal those of the final state. For conveB: Numerical calculation of the eigenvalue

nience, we denotg = q' + g" as the first process and = q The eigenvalues of the 3PP collision matrix witk 2,
+ Q" as the second process. For the case of the first procesg, are the relaxation rates characterizing the viscosity, be-
for example, the energy and momentum conserve as cause they are related to the phonon momentum transfer in
g=q9'+q", (3.3  the perpendicular direction. We note that the eigenvalues de-
pend on the matrix siz¢,,. As we can see in Fig. 4, the
Wq= 0gr+ g 34 eigenvalue spectrum becomes densej aincreases. Such

Using the above equations, we can determine the allowelehavior of the eigenvalues indicates that the eigenvalue
range for 3PP in theq’-plane, which is shown in Fig. 2. spectrum at infinitgj,, is continuous, in contrast with the
The lower part of the diagonal line in Fig. 2 is the region in result of Maris® in which a discrete eigenvalue spectrum is
which the first process is allowed, and the upper part correpptained. Only the lowest eigenvalue has physical impor-
sponds to the second process. The allowed regions haygnce hecause the corresponding eigenfunction, which has
symmetry about the diagonal line, i.e., under exchangg of \\, oge is appreciable in the range of momenta considered,

, .
andq’, as expected. The chapges of the range with PressulBiiie the eigenfunctions corresponding to the eigenvalues
also are shown. As pressure increases, the allowed range for

3PP becomes smaller, which can be expected from the béqSt above the lowest _on_e are negligible except_ for a very
small momentum. A similar argument for the eigenvalues

havior of the phase velocity with pressure in Fig. 1. We can, . )

see the cutoff momenturag, for 3PP, which is represented With | =1 was given by M"_"”_g' _

by a vertical arrow in Fig. 2. We note that the allowed range ~ 1he temperature variation of the lowest eigenvalue

for 3PP and cutoff momentum from Maris's spectrum areh2(T) with jn, is shown in Fig. 5. We see that(T) con-

larger than those of Greywall's spectrum. verges with increasing,,. This fact is different from Maris’s
From the conditions of momentum and energy conservaargument that foj,, = 15\ ,(T) is independent of the details

tion we also obtain the 3PP scattering angle distribution. Thef the mesh to better than 1%.

400 Low Temp. Phys. 23 (5-6), May—June 1997 Um et al. 400



10
o
e i
[= ]
D
©
- 8r
2
o
[ =4 L
[ ©
g 2 s}
s @
b= Q L
5 4
o
w L
2%
| —
0 | 1 1 1 1 1 i 1
20 40 60 80 100

Jem

FIG. 4. Several eigenvalues, including the lowest one, plotted as matrix size
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than those of Maris. This can be understood from the fact
that the maximum value of the 3PP scattering angle distribu-
tion for Greywall’s spectrum is greater than that of Maris’s
spectrum. Using Greywall's spectrum with= 10 atm, we
obtain a smallek,(T) than for the cas® = 0 atm, which is

a trivial result, because the cutoff momentum and 3PP scat-
tering angle become smaller as a pressure increases.

FIG. 3. 3PP scattering angle distribution of the first procesgeSreywall’s
spectrum. b Maris’s spectrum.

We also obtain the lowest eigenvalues for sevéras 107
shown in Fig. 6. A saturated behavior appears when we set
jm = 100, which means that the phonons relax sufficiently in
one collision time. At higher temperatures this saturated be-
havior may begin to appear at smallersince the typical
3PP scattering angle increases due to the higher average
value of momentumFig. 3). Figure 6 shows this behavior
correctly. On the other hand, the results obtained by Maris 108
and Benifi have no saturated behavior. Their results are very -
similar to the casg,, = 10 in our calculation. Buf,, = 10 is @
too small to reveal the properties of the anomalous spectrum
correctly. Therefore, we guess that their results with no satu- <<
ration are due to the rough approximations in their numerical
calculations.

Using both spectra presented before, we calculate the 5
lowest eigenvaluek, as a function of temperature by taking 10
jm = 300 and the upper bound of the integral of E217),

Om = 0.45 A% ie., A, = 0.0015 A™1. This value ofg, is L

enough to cover the effective range of the integral, because 0.4 (%_.5 K 0.6 0.7
the cutoff momentunt, at P = 0 atm is about 0.4 A, as ’

shown in Fig. 2. Th_e results are shown in Fig. 7. Whengig. 5. convergence of the lowest eigenvalues)(as a function of matrix
Greywall's spectrum is used, the values)a T) are larger sizej,,.
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4. VISCOSITY AND ULTRASONIC ATTENUATION

A. Viscosity

The viscosity is written in terms of the phonon mean free

path, which characterizes the visco3ias

7= 2 Ppr{vg)A, (4.2)

wherep, is the phonon mass density defined by

108

P=10 atm

0.4 05 0.6
T.K

0.3 0.7

FIG. 7. Lowest eigenvalues\g) as a function ofT. a Greywall's spec-
trum, b) Maris’s spectrum. The cage = 10 atm from Greywall's spectrum
is also shown.
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FIG. 8. Phonon mean free path resulting from 3PP. The solid line represents
the result using Greywall's spectrum, and the dotted line that using Maris'’s
spectrum. The open circles and the triangular marks indicate the experimen-
tal data on thermal conductivity by Greywdlland Whitworth! respec-
tively. ;Ee dashed line shows the theory of Landau and Khalatnikov based
on 4PP:

9% dng

Ea_a)q, (4.2)

Pph= — 2
q

and(vg) is the average of the phonon group velocity

1 q° &ng dag

(vg)=— 3 Go, g 4.3

Pph ¢
The mean free path for 3PP is related to the eigenvalues of
the collision matrix as
A2

The results forA are shown in Fig. 8. The dashed line
denotes the mean free path due to 4PP calculated by Landau
and Khalatnikovs® which has aT~° dependence. AP
= 0 atm, the mean free path from Maris’s spectrum, drawn
by the dotted line, shows good agreement with the experi-
ment performed on thermal conductivity by GreywAdlThe
mean free path from Greywall's spectrum appears to be
lower than the experimental data. It can be well deduced, at
least qualitatively, from the higher maximum value of the
3PP scattering angle in Fig. 3 and the larger phase velocity in
Fig. 1.

(4.9

B. Ultrasonic attenuation

At low pressures, the temperature dependence of the
high-frequency ultrasonic attenuatide) is approximately
described by a&* law as under vapor pressure, whereas at
higher pressure&=10 atm the «(T) curve is significantly
changed, and a shoulder occlitRoachet all® suggested
that the shoulder might indicate the existence of a new re-
laxation mechanism. However, ckde and Keht' showed
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TABLE I. Phonon spectrum parameters used in the calculation of the sound
100 - Phono
attenuation aP = 16.4 atm.

Sy(m/s) a2:(A2) EY4,(A4) aGY(AG) amv(degree) SqC/kB! (K)

332.4 0.0454 -8.3 22.35 0.83 1.59

b = Fa(q). 4.7

. 2s

Therefore, if we know the phonon energy spectrum under
pressure, the attenuation of first sound can be obtained. Fig-
ure 9 shows the results for the attenuation of ultrasonic
sound. For temperatures below 0.6 K the results show good
agreement with experimental data. The parameters of the
phonon energy spectrum used in this calculation are listed in
Table I. The maximum scattering anghg, and cutoff mo-
mentumgq calculated by these parameters are also listed in
Table I. We find that for the case of attenuation of sound, the
processgy + q"—q’ is dominant. This means that the sound
phonons are absorbed by thermal phonons. The scattering in
this case is almost linear since the maximum scattering angle
is 6, = 0.83°, and only very long-wavelength phonons,
0.01 | < 0.0625 A1, take part in the scattering. The cutoff mo-
01 ' — 0‘.5‘ — ‘1 mentum obtained here shoyvs_remarkable agreement with the
T, K result of Jakle and Kehekwithin 1%). The rapidly increas-
ing behavior at high temperatur&, > 0.6 K, can be ex-
FIG. 9. Ultrasonic attenuation at 15 MHz and 105 MHz under pressure oflained by considering the existence of rotdhsnd so for
16.4 atm. The solid points are the experimental data of Reacth® this temperature range the contribution of rotons is essential.

-
|

Attenuation, dB/cm

e
b
T

5. CONCLUSIONS

that the formation of the shoulder im(T) is explained by We obtained the wide-angle scattering rates and the ab-
assuming that the 3PP is allowed only for very long-sorption rates of phonons fiiHe below 0.6 K by solving the
wavelength phonong'partially allowed 3PP’) due to defor-  eigenvalue equation for the 3PP collision matrix. The se-
mation of the phonon spectrum under pressure. guence of the lowest eigenvalues of the collision matrix

Let us now consider the appearance of the shoulder ustlongl shows a saturated behavior, which is different from
ing the collision matrix introduced in the previous section.the results given by Maris and Benin. Using Maris and Grey-
The ultrasonic sound mens very long-wavelength phonongyall’s phonon spectra, we calculated the viscosity mean free
which are injected from outside of the system. We can aspaths and compared them with experimental data, where the
sume, therefore, that thermal phonons are in equilibrium, anaris’s spectrum seems to be in better agreement. For the
only very long-wavelength phonons have variation fromresult of ultrasonic attenuation, the phonon spectrum param-
equilibrium due to the injected sound phonons. eters atP = 16.4 atm are obtained from a fit, and the cutoff

Let the momentum of sound phonons dpeFor thermal momentum calculated from the parameters is in excellent
phonons with momenta’ andg” in the equilibrium state we agreement with Ref. 11.

have Since the 3PP are an important phonon-phonon mecha-
nism in dilute*®He—*He mixtures at low temperatures, it is
®,(q')=0, (4.5 possible to apply this theory to such mixtures. This study is
in progress.
®,(q")=0 (4.6)
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Orbital anisotropy of magnetically distorted superfluid %He-B
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The orbital anisotropy of the magnetized superflBighase of liquid®He is investigated
theoretically for arbitrary fields and temperatures. The behavior of freely rotBtiplgase under
the action of magnetic field is considered. 197 American Institute of Physics.
[S1063-777X%97)00705-9

1. INTRODUCTION =(A, —A)/A, is small (§g<1). On the other hand, the mag-
netic distortion of theB-phase is very pronounced near the

Ultralow-temperature superfluid phases of liqéide are B to A transition (at low pressurgs whereA <A, (when
ordered states of a Fermi system which have lost the series ¢ie transformation is close to a continuous transformation
symmetries appropriate to the normal statétéé. The order In this region there is still a gap in the detailed theoretical
parameters of superfluid- and B-phases are complicated description of the behavior of thi#e-B. One of the goals of
multidimensional objects with nontrivial topological struc- this study is the elaboration of the theoretical background for
tures that generate rich properties of the Bose-condensate thfe interpretation of the properties of strongly distortég (
Cooper pairs with spin§=1 and internal orbital moments =<1) B-phase of superfluidHe. In Sec. 2 we consider the
L=1 (Ref. 1). Along with the amplitudes that characterize anisotropy of the superfluid density of the magnetized
the amount of the Bose-condensation energy, the order pdHe-B in the (T, H) plane. The results are used to construct
rameters of the superfluid phases’se depend on the Gold- T andH dependences of the dipolar velocity, in Sec. 3.
stone variablegoverall phase and various angles specifyingThe effect of the magnetic-field-dependent orbital anisotropy
orientation of spin and orbital degrees of freedom of Coopepn the behavior of the freely rotatirirphase is analyzed in
pairs. Sec. 4.

The external magnetic field has a strong influence on the
properties of superfluid phases. Especially susceptible in this
respect is the initially isotropiB-phase, which is unablén f/i:g&i?rzi%P;HOF THE SUPERFLUID DENSITY OF

) . . e-B

contrast to theA-phase to adjust to the applied magnetic
field at the expense of the reorientation of the Goldstone Uniaxial orbital anisotropy ofHe-B in the flow effects
degrees of freedom, thereby saving the condensation energyanifests itself, in the first place, in the tensorial character of
Instead, theB-phase exhibits strong distortion even at mod-superfluid density¥below we drop the subscript &):
erately high magnetic fields that lose part of the condensation (S_ (S°T (s ~n
energy(at a given temperature and pressuits longitudinal pij =pi lilj+p” (5= 1ily), 2.1
((gap) A, along the direction of the field is suppres$8dnd  so that in the presence of a superflow with the veloeigan

the superfluid state acquires magnetic anisotropy. It is impor-gependent contribution in the kinetic energy density ap-
tant that because of the relative spin-orbit coherence of thgegrs:

B-phase, the appearance of the magnetic anisotropyhaxis

(along the direction of the fieltl) generates uniaxial anisot- plan _ 1 S (s>(|AV )2

ropy of the orbital properties of the magnetizéde-B along flow™ — 3 OPan Vsl

the axislg=hR, whereR is the matrix of D rotations of the (S _ (S_ (S

<Di . . . pan=prL — P - (2.2

pin space with respect to the orbital space. In particular, the

energy spectrum of fermionic excitations becomes aniso- Anisotropic contribution(2.2) was extensively used to

tropic so that the normdlas well as superfluddcomponent interpret peculiar properties of the rotating magnetized

density exhibits tensor character. SHe-B.” In the vortex-free state, which can be easily
At present, there is a considerable amount of experimerachieved before the formation of an equilibrium vortex lat-

tal information concerning diverse properties of stronglytice, large counterflows of normal and superfluid components

magnetizedB-phase. Acoustic measurements allowed us tdhave a pronounced influence on théeld texture through

observe directly the suppression &f by the external mag- the anisotropic interactiof®.2). After the equilibrium vortex

netic field"® and to investigate orbital anisotropy of the mag- state is established large counterflows are eliminated but the

netized stationary and rotatiritie-B.® The anisotropic na- anisotropic interaction still survives due to the presence of

ture of magnetically distorteB-phase was observed also by superflows that circulate around individual, quantized, singu-

means of the NMR technique$and by measuring the ion lar vortices(see, for example, Ref. 10

mobility.° Anisotropic part of the superfluid densiﬁp(aﬁ)(T,H) of
There is satisfactory understanding of the properties ofnagnetically distortedB-phase is an even function of the

%He-B in the case where the anisotropy paramefyr  applied magnetic field and in the low field limit is propor-
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tional to H2. On the other hand, in the case where the mag-

netic field strongly deformsHe-B order parametefespe-
cially near theB— A phase transition at low pressureme
should expect to observe a pronounced deviatiorﬁﬁ)

from linearity inH2. At the same time, the temperature de-
pendence of5p{Y) for the strong field case must be estab-

lished.
Since 5p(s) is an equilibrium property of magnetized

B-phase, its {,H)-behavior is completely determined by the

structure of the excitation spectruis,, of quasiparticles
with momentumk and spin projection (1/2)= *=(1/2)) (of

course, the Fermi-liquid effects must be incorporated in aS

proper way.

We start with a standard expression for the normal com-

ponent density tensofdisregarding for the moment the
Fermi liquid corrections

(n)_

P! kE kikj(— a1 9E,) = pYij(T), 2.3

wheref(E) is the Fermi distribution and
Yii(T)=3(kik; (ki T)) (2.4

with the generalized Yosida function
~ 1 o
YkT)=5 X f dé(— 1 9E,)

dé
e cosﬁ(EkUIZT)

=57 2 (2.5

In (2.4) the angle brackets denote averaging over the

position on the Fermi surface and 2.5 &=
—k2)/2m.
Using (2.3), we conclude that

(K2

i"=p"1p

a3 [l i

We now must use the explicit form d&,, for the magne-

an)/P (p

3(kl)2—1
cost(E,/2T) /" 2.8

|A(K)[?= A2(k1)2+ A2 (kx1)2=A%[1- 55(2— )

x(k1)2]. (2.9

Inspection of the second and third lines (&8 shows
that the influence of the Zeeman slitting on the quasipatrticle
spectrum is twofold: the presence ef, renormalizes the
Fermi energyvia the first term and changes the character of
the dispersion relatiortvia the last termn Of course,wg,
appears implicitly in|A|? through the anisotropy parameter

= g(wg). In the low field limit 8g is proportional to
0/A2 whereA(T) denotes the energy gap in the excitation
pectrum of the zero-field isotropi-phase.

Since in all practical casesy<<ef, the field renormal-
ization of the Fermi energy is negligible. If in additia,
<T, we can use a simple BCS-type dispersion relation,

=&2+|Ak)|? (2.10

with an anisotropic gap given bi2.9).
In Ref. 7, 5p) was estimated in the low field limit
(wg<€Ay, 6g<<1) using the approximate expressi¢h.10
for E,,. As we have seen above, this consideration is justi-
fiable for the case wit\;<T. More generally, an exact
dispersion relatior(2.8) should be considered. For the low
field case the expansion &f(k;T) to the lowest order in
8z and w3 gives
Y(k;T)=Y(T)+a(T)(kl)?, (2.11)

where the anisotropic contribution is described by

a(T)=8pZ(T) + (w/A2)Z(T) (2.12
with
= tanh(EY2T)dé,

— 2
Z(M)=(ag2T)? | cosR(EVZTIED” (2.13
- 1 = 3tanEY2T)—1 [ T d&

_ 4 | =
2(M)=7 (Ad/2D) Lo cosH(EQ/2T) (EE) Ep’

and EEZ \/§2k+A02. Finally, from (2.3 and (2.4) it follows

tized *He-B. The order parameter of this superfluid state isthat in the low magnetic fields

described by the bivectoh ;=
uniaxial “gap” tensor is

A

AR, exp(®), where the

MV:A\\h;LhV+AL(5MV_h#hV)- (27)

The (T,H)-dependence oA, and A, was extensively
studied theoreticalf® using the set of Gorkov equations for
the spin-tripletp-wave superfluid. The fermions excitation
spectrum of the magnetizé®tphase is given by

2
E§0=(x/§k+A2(kl)2 10’(00) +A%(kx1)2

2
+]A(K) |2+ owo( VEE+ A2(KI)2

wherewo=gH is the Larmor frequency ofHe nuclear mag-
netic moments, and

1
= |§k|+§(7wo
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<5>/p—— [85Z(T)+ (w2 ADZ(T)]. (2.14

When using the dispersion relation2.10 the
Z-contribution to 5p% is lost. Although nearT (A,<T)
this term is negligible Z<Z), on lowering the temperature
it becomes increasingly important. This fact was noticed in
Ref. 8, Whereﬁp(s) was calculated for the low field limit for
the magnetic energy density

1
A3

X,WH H,, (2.19
where XY is the tensor of the magnetic susceptibility of
3He-B in the presence of superflow with velocity. Be-
cause of above-mentioned spin-orbit coherencéHé-B,

the presence of preferred direction in orbital space atong
=vsl/vg induces a uniaxial magnetic anisotropy:
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(S =

X,uv X\\S>§M§V+X(LS)(5;41/_%;/,%1/)1 (216)
wheresﬂzRMrﬁsi. As a result, an anisotropy contribution
appears inf2.15:

1 A N
Fimg= — 5 Xan (8H)?=— 3 <5X<S>H2)(h#Rmvsi>2,
(2.17
with 6x3=x{¥—x{®. One the other hand, conceptually

the same contrlbutlon to the spin-orbit anisotropy energy

density is contained in Eq2.2), from which

(an

Fflow= (5/)(8) 2)(h RMIUSI) (2.18
Equation(2.17) and(2.18, we find the relation
8pd=(Hv2)6x, (2.19

which is an alternative way to calcula&»gﬁ) . Using(2.19,
it can be showr(see Ref. Bthat in the lowest order ihi?

1| w? 32 3 6
spSl =—(—°) (1———5)(2 S )+— z
Pan p 2 A(Z) 5 Z3 3 2 5 5 5
5
—247) (2.20
where
n—-1
0
Z,(T) ng (@7 AT (2.20)

In (2.20 we have dropped the Fermi-liquid corrections
for simplicity of presentation. The sum i(2.2]) is taken
over({odd)) Matsubara frequencies. It can be shoigee the
Appendiy that Eq.(2.20 is completely equivalent to our
expression(2.14). The result(2.20 can be obtained by using
the expressions fou{® andp!® given in Ref. 11.

Returning to the general expressith6) for 6p$) and
using E,, from (2.8, we calculate numerically the
(T,H)-dependence Otﬁp(s) for arbitrary magnetic fields and
arbitrary temperatures.

In order to take into account the Fermi-liquid effects we
must introduce the Landau molecular fields in a standard

way. We will therefore use the following expression for
SpN(TH):

(1+13FD(Y,—Y))

(S
OPan!P= 1S ) (15 IS, (2.2
where
1 1 (= 3(ki)2
=3 2 4T ), fk< cosH(EkUIZT)>’
1 1 (= 3/2(1— (ki)?)
2 20: 47 wd§k< cosi‘?(Ek(,/ZT)> ' (2.23

To take into account the Landau exchange parameter

g it is enough to make a substitutiany— @,, where the
renormalized Larmor frequendyj, is defined by the equa-
tion
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FIG. 1. Temperature dependenc
the magnetic fieldin kGs).

(9 at P=0 bar for various values of

wo

wo=

: (2.24)

1+F§ 2
Tro3z*3
where Y(T,w,) is the field-dependent Yosida functidim-
troduction of higher-order exchange parameter requires a
more complicated procedifje

In Figs. 1 and 2 some results fép{>(T,H) are shown.

Y(T wo)

3. DIPOLAR VELOCITY OF THE MAGNETIZED °He-B

In addition to the anisotropic part of the flow energy
(2.2), the dipole-dipole potential also contains terms which
depend on the orbital anisotropy axis Starting from the
expression of the dipolar energy density

0.10
T/Te=0.7
0.08
T/Te=0.4
§ 0.06
[72)
Q_%
© 0.04f
0.02-
1 } ]
0 2 4 2 6 8
H

FIG. 2. Field dependence afp{d at P=0 bar for various values of
T/T, . Deviation from linearity inH? is clearly seen aT/T,=0,7.
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1 - A~ 0.18
Fo=15 xe(Qe/0)?Ag {[TrAP+ THATA}Y (3D
and using an explicit form of the order parameter of the 0.16
magnetized-phase, it can be shown thaip to a constant
term) .» 014
~
2 . E
Fo=1z Xa(Qs/9)%(A, /AB)2|—5B(2—6B)Ih € o012
, =
! L 0.10
+||2cosh+ |+ gl s—Ih . (3.2 :
2 2
_In (3.2 ¢ denotes the angle appearing in the mafix 0.08

=R(6,n) of the relative spin-orbit rotation about the axis 0.06

; fh— i P . ] I 1 1
n. At the f|>§ed va!ue oth=cos g the minimum of the dipo 04 05 06 07 08 0.
lar energy is realized at /T,

COS fp=— E [1+ 8g(1—2cospB)]. (3.3 FIG. 3. Temperature dependence of the dipolar velocitfat0 bar for
4 various values ofi (in kGs).

Combining (3.2) with the flow contribution(2.2), we
obtain an expression for the anisotropic part of the bulk en-
ergy density of the magnetically distortéHe-B: Using the definition(3.6), we have calculated numeri-
cally the dipolar velocitw, for various fields and tempera-

4 ~n tures. Some of the results are presented in Fig. 3.
FE"=Fp(0=00) +Fiim=— gA(H){Ih P g

1 ~.
+ = (vS/vD)Z(IvS)2], (3.4 4. ANGULAR MOMENTUM OF THE ROTATING,
2 MAGNETIZED, VORTEX-FREE 3He-B

where The amount of the orbital anisotropy dfie-B depends

1 on the strength of the applied magnetic field. This can be
A(H)= 3 8a(2— 8p) xs(Qs/9)%(A, IAR)? (3.5 explored, in particular, in experiments with a freely rotating
vessel. Since the angular momentunof the rotating mag-
and the dipolar velocity is defined by netizedB-phase in the vortex-free state strongly depends on
the magnetic fieldsee below; it would be possible to ob-
vp =53p4 14A. (3.6)  serve the variation in the angular velocify of the freely
At the low fields (5B§1=5B“H2) we concludeA(H) rotating sample when chanditg (due to the conservation of

’ ) AR o L). In the case of the vortex-free rotation the angular mo-
=aH* and recalling thatl =cos#y+(1—cos6y)(nh)-, we

. . e -~ mentum of a superfluid liquid is
can write the anisotropy energy density in a conventional

form: L:anf (RxJ,) AR, 4.1
an 2 A an
Fg=—aH?{ (Ah)?+ 5 (vS/vD)Z(h#Rm(6?0,n)vsi)2 where the mass current of the normal component is
\]n:;;nvna (4.2

+ const. 3.7 R
_ . wherev,,= QX R=(Qr)¢. Herer is the radial coordinate in
In Ref. 6, an attempt to measuvg, at high fields was  the plane perpendicular to the angular velodityand ¢ is

made using an ultrasonic probe. When the rotating vessehe unit vector in the circular direction. It is clear that
with strongly magnetize®-phase was slowly accelerated in

the vortex-free Landau state, a critical angular velo€ky I=Qn)[pM e+ (pi" = p™)(1)1]. 4.3
signaling a textural transition was observed. Singalefines Setting

a characteristic velocity above which the superfluid counter- A . R .

flow takes over in the competition with the magnetic anisot- ~ |=C0s3z+sin B(cos ar +sin a¢)=cos Sz

ropy (of the dipole-dipole origin it was concluded that the . o -

experimentally observed critical velocity,= Q. R, (where sin leogat g)xtsin(at o)yl “.49
R, is the radius of the cylindrical containes directly con- — and considering a circular cylindrical vessel in the magnetic
nected tovp . Although an accurate interpretation of, in field oriented along the symmetry axis, we easily see that in
terms ofv. needs a detailed knowledge of the textural dis-the case of an axially symmetrictexture [a=«a(r), B
tribution, as a rough estimate we can sgt=v... =pB(r)] Ly=Ly=0 and
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whereQ.=vp /Ry, as in Sec. 3. Since we are dealing with a
LZ/QZZWJ {p"+(p{" vortex-free rotation ofHe-B, his consideration is valid for
O<vy/Ry, wherev, is the critical velocity of the vortex
—pM)sin2a(r)sin28(r)}r3drdz (4.5  nucleation.

This result is quite transparerit, depends on the degree
of the orbital anisotropy of the magnetiz&dphase, but in ACKNOWLEDGMENTS
the region wheré has no circular componenwr&0) only
the transverse papt" of the density tensor is probed.

Introducing the moment of inertig? = 1/2pR2V of the
normal state’He liquid that fills a cylindrical container of

radiusR, (and of volumeV), Eg. (4.5 can be rewritten as

This work is a part of the ROTA Project. We are sin-
cerely grateful to P. Hakonen, M. Krusius, E. Thuneberg,
and G. Volovik for many useful discussions. The authors are
greatly indebted to Prof. Olli Lounasmaa for continuous sup-
port and to the scientific staff of the Low-Temperature Labo-
L,/Q=19F, (4.6) irtf;lltory of the Helsinki University of Technology for hospital-

where

1 APPENDIX
F=4J {pM1p+L(p|" , . .
0 Starting from thew-sum representation of the Fermi dis-

—pi”))/p]sinz a(x)sir? B(x)}x3dx, 4.7 tribution f(E), which gives
2 2
with x= r/RO. For the isotropigB-phase(reaIized in zero IfIOE=T, E2 w2 5, (A1)
magnetic field F=p,(T)/p, as it should be for the case of o (0°+E%)
vortex-free rotation. For the magnetizedHe-B F and using the identity
=F(T,H,Q) and the()-dependence appears through the tex- _ )
tural distribution which is sensitive to the superfluid counter- 1| E°— n i 3 }_ E*—¢E(JE/9€)
flow orienting effects. 2| (E?+w?)?  dé |\ w’+E?]| (w?+E?»?
Using (4.6) and referring to the conservation of the an- (A2)

gular momentum of an isolated system for the case of freelyye gbtain the useful formula

rotating magnetizedHe-B, we conclude that due to the )

field-dependent orbital anisotropy one should observe the def“ (= of10E)dE=1-2TS f“ de E“—EE(JIE/3§)
pendence of the angular velocity of rotatidd on the —w o J-o (0*+E?)

strength of the applied field. In particular, if we start with a (A3)
freely rotating state a@ =€, andH=0 and then apply the o (A3) follows the w-sum representation for the Yosida
magnetic fieldH, the final state will be characterized by an ¢,ntion

angular velocity

L+ [pn(T)/p]B s Ykm-1-1S 3 [ ag
1+F(T,H,Q)B ' 7o

EZ,— &Exo( 9Eko9E))
(0®+E,)?

Q(H)=

(A4)

whereB is the ratio of moments of inertia of the normal Taking into account that for the spectrugy, given by (2.8)

3He liquid and of the container. It is to be remembered that

the above-mentioned results refer to the case of a metastable, &k 1 0wo

vortex-free rotation. When an equilibrium number of vorti- e ( + 2 (§2+Az(ﬁ)z)uz>

ces fill the vessel, the anisotropy is washed out and the an- _ “ _ o b

gular momentum in this case is=1{2Q (on the average ~ and explandingA4) with respect todg and wg/Aj, we con-
In order to calculaté (T,H,Q) we must know the tex- clude that in the low field limit

tural distripqtiqn across the rotating vesse!. For a crude gsti— Y(ﬁ;T)zY(T)+a(T)(I2?)2,

mate ofF it is instructive to use an approximate description

(A5)

with where
R 3 3w} 5
i a=1, a(T)=268g| Zs— = Zs +——§(25——z7 . (A6
2 2 A2 4
1, Qr<UD ,
cos fB= 2 (4.9 As a final step we must express the anisotropy parameter
(UD/Qr) , Qr>UD. . . .
dg=(A, —A))/A, interms ofZ,(T). Using the equations
Substituting(4.9) into (4.7), we easily find for A, andA,, it can be shown that in the low field limit
m, <0 5 wj 32
PL ¢ 5B(T,H)z——§(1———5). (A7)
F=4 p"p=L(p{" = p{™)/p](Qe/Q)*(L+4 IN(Q/Q)), 84517 574
Q>Q., Insertion of (A7) into (A6) restores the resul(2.20 for

410 op%).
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Zero-temperature relaxation in spin-polarized Fermi systems
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The effect of zero-temperature attenuation, which has been recently observed in spin dynamics
of Fermi liquids, on various processes in helium and ferromagnetic systems is described.

A brief review of theoretical and experimental data on zero-temperature attenuation in transverse
spin dynamics of helium systems is followed by a discussion of coupling between

longitudinal and transverse processes, the Castaing instabifftgérand*He—“*He mixtures, and
applications to pure ferromagnetic metals. 197 American Institute of Physics.
[S1063-777X97)00805-0

1. INTRODUCTION neously tipped spinseven atT = 0. Mathematically, the

One of the recent developments in physics of Fermi qu_zero—temperature attenuation can be described by a pole con-

. ) ) tribution in the transverse component of the interaction func-
uids was a discovery of peculiar zero-temperature attenug:

o ; ; X . .~ Tion, and is, in this sense, similar to the Landau damping in
tion in transverse spin dynamics of spin-polarized Fermi “q'collisionless plasmé

uids. In contrast to all other dissipative processes in pure . : . . .
Fermi liquids, the transverse relaxation time and the co- Below we will bn_efly describe theoretlcr_:ll and Eexperi-
efficient of transverse spin diffusidd, do not increase with mental aspects Of. this phen_omenon, apd discuss its conse-
decreasing temperature agd/ but saturate and remain fi- guences. We are interested in both helium and electron sys-
nite even atT—0. By fransverse dvnamics we mean thetems. In spin-polarized helium Fermi liquids, the zero-

- oY y temperature transverse attenuation can affect other dynamic

dynamics of components of magnetization perpendicular to . - . . X

) o L rocesses via the magnetic dipole-dipole interaction and non-

its equilibrium direction. The transverse processes are ex: ; A :
. ; A .~ linear coupling. Electron Fermi liquids with large degree of

cited, for example, by inhomogeneous tipping of spins in

NMR experiments. Lonaitudinal brocesses in exchande s spin polarization exist in ferromagnetic metals. In itinerant
P ) 9 P 9 y%{erromagnets, the manifestations of the zero-temperature

tems{ .€., processes Wh.'Ch do not change the d|rect|or_1 Yransverse attenuation are similar to those in helium systems
polarization, do not exhibit any zero-temperature attenuanon(,With spin-lattice coupling to longitudinal modesn Heisen-
irrespective of spin polarization. P ping 9

The zero-temperature attenuation in transverse dynami berg ferromagnetic metals, the analogy is less direct: the
b y %—Sermi—liquid, zero-temperature, transverse attenuation affects

was predicted first on th% bagis of gfan.eral conservr?\tion Ia‘4‘Verromagnetic properties only via exchange coupling of lo-
and symmetry arguments. This prediction was confirmed calized ferromagnetic spins to spins of conduction electrons.

by direct transport calculations for degenerate Fermi gases In the next section we give a simple theory of the zero-

and, later, dense Fermi liquidisThe temperature saturation temperature transverse attenuation. In Sec. 3 we highlight

of transverse diffusion and relaxation has been observed in : : ; .
experimental aspects of this phenomenon in helium systems.

low-temperature spin dynamics experiments in spin- . .
polarized liquid®He! (Ref. 7) and®Hel —*He mixtures? Then, in Sec. 4, we describe the transfer of the zero

. . .temperature attenuation into longitudinal channels by means
The transverse zero-temperature relaxation time 'df magnetic dipole interaction. Sec. 5 deals with Castain
7. (T = 0) ~ (Nvgo) }(Te/BH)? for a system of fermions g P ' ' 9

. . i : instability in spin dynamics in an inhomogeneous setting.
with Fermi velocity (temperaturg ve(Tg), magnetic mo- . i L :
: . L The last section contains applications to pure ferromagnetic
ment B, effective cross section, and densityN in the ex-

ternal magnetic fieldH. Since the usual temperature-driven metals.
relaxation timeis-, (H = 0) ~ (Nvgo) "Y(Tg/T)?, the tran-
sition from the temperature-driven to polarization-driven
transverse attenuation occurs at the temperafyre- gH Usually, the conservation laws restrict all low-energy re-
when the phase space between the spin-up and spin-dovlexation processes in Fermi liquids to a thin lay®ith a
Fermi spheres is comparable to the thermal smearing of theelative thicknessT/Tg) near the Fermi sphere, where the
Fermi spheres. occupation numbers change gradually from 1 to 0. Every-
The reason for such an unusual behavior is that the transvhere else there are either no particles “initial” states
verse relaxation and spin diffusion at low temperatures ar@e;,, or all states are completely occupiétb space for “fi-
determined by collisionless decay of magnons. Spin polarpal” statesny,). The probability of relaxation scattering pro-
ization of the Fermi liquid opens phase space between theesses for the fermions, which is proportional ng(1
spin-up and spin-down Fermi spheres necessary to allow ng,), acquires the factorT/Tg)? and is very small. As a
these decay processes for magnons with fikifmhomoge-  result, the relaxation time increases at low temperatures as

2. THEORY
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(Te/T)2. In spin-polarized Fermi systems the situation isthe equations fofsmall) transverse components of slightly
different: if the collision flips the spin of spin-up particle in tilted spins, have the form of two separate equations for tilted
the region between spin-up and spin-down Fermi spherespin-ups and spin-downs with different molecular fields. It is
this particle can easily change its energy since all spin-dowmnot clear how these equations translate into macroscopic

states in this area are unoccupied. equations of spin dynamics, and what are the necessary
Mathematically, this means that the collision integral of modifications of the Leggett equation of macroscopic spin
the form dynamics.
The Leggett equation of Fermi-liquid spin dynamics is a
f d3p,d3p,d3psdPp,Wo(€; + €, €5— e4—hr closed equation in macroscopic magnetic momdntThis
equation in its original form cannot be applied to highly

polarized Fermi liquids: the molecular field term in the ef-

—2B.H)8(p1+pPr—pP3— n 1-n3:)(1
BiH) &(P1t P2~ Pa— Pa)l NNz ( 31 fective magnetic field inevitably involves integration of the

—Ng)+ N3Ny (1—n3)(1—ny))] (1)  magnetization distributiomn with the Fermi-liquid interac-
) o tion function f between spin-up and spin-down Fermi
does not go to zero &—0 as (T/Tg)*, but remains finite spheres

and is proportional, at small polarizatioBH/Tg, to

(BH/TF)z- f ’ ' (0) a7\ _ ~(0)fnr 3.7 3
This mechanism of zero-temperature attenuation re- fp.pIM(pOLNT(p") =N 7(p)Jd*p /(2mh)". (2)

quires a spin flip during collision and exists in exchange|niegral(2) can be written via the macroscopic magnetic mo-
systems only in transverse spin channel, i.e., for processggant

with changes in direction of magnetization such as spin
waves, spin echo, and other NMR effects. The attenuation
for exchange longitudinal processes-processes without
changes in direction of magnetization-involves similar colli-

sion integrals, but with equal numbers of up and down ar'spheres. This is true either for dilute Fermi gdses as in

M:fmm')[n%‘”(p')—n1°><p'>]d3p'/(2wﬁ>3 3

only if the interaction function is constant between the Fermi

1-n{—nj;

2
MZMO

(1+ u®M3 cog 6)In(h(ty))+ 5

rows, and vanishes dt—0 as (r/TF)Z'_ o o the original Leggett derivation, at very low polarization
In general,' t.her.e should be no dissipative coII|S|0n§ alyhen the Eermi spheres almost coincide.
T = 0. In Fermi liquids afl = 0 all incoherent processes, in-
cluding the transverse ones, should disappear, and the inter-
action should be described by the Landau interaction funcd- EXPERIMENT
tion, i.e., coherent molecular field. This seems to contradict Recent experiments at Nottingh&fhave used the tech-
the existence of zero-temperature attenuation. This contrayiques of pulsed nuclear magnetic resonance to measure both
diction is resolved if one notes that the microscopic equationransverse and longitudinal spin diffusion in a saturdted
for the transverse component of the Landau interaction func=6.4%) solution of 3He in “He. The active region of the
tion contains the integrals of the form experimental cell consisted of a 1-mm-diameter Stycast tube,
3 20 mm in length, around which an rf ca-mm radius, two
o "’f dp turns of 0.6-mm-diameter Cu wirevas positioned. A main
(2m)* | p?+pi—p'?—p;°—i0signp’ —pg,) field of 8.8 T and a uniform gradient of 80 mT/m were ap-
plied to the cell, in a direction normal to the axis of the tube.
P> 1 - ,2} The polarization of the saturated solution in such a field was
PT+pi—pP =Py a few percent and the Leggett spin rotation parametdr,
. . . . . had a value of about 4 at the lowest temperatures.
The imaginary(pole) part of this interaction function repro- In order to measure the transverse spin diffusion coeffi-
duces the integre(tL). Thergfore, the zero—temperatyre trans-Cient a0 — t, — 180° rf pulse sequence was applied to the
Verse attenugUon can be mte_rpreted as the imagireole) 3He spin system resulting in a spin-echo at ting.2The
part of the mteractpn fqnctlon.. In this sense, the zero resence of transverse spin diffusion causes this echo signal
temperature attenuation is a direct analog of the Landa decay with interpulse timg . The height and phase of
dampi_ng in Colligionless plasma. Needl_ess. to say, this p_OIﬂwe spin-echo was fitted to the Leggett-Rice equations
part disappears in the absence of polarization or for longitu-
dinal processes. . 5
The above simple theory is directly applicable to low- sir? 6(h*(ty)—1)
density Fermi liquids such as théHe component of
3Hel —*He mixtures, or to dense Fermi liquids at low spin ~ _ 2 262D 13
polarization. The situation in dense, highly polarized Fermi 3 Y L
liquids is more complicated. Here the molecular fields acting
on slightly tilted spin-ups and spin-downs are different be-#~ ~ #Mo €0s 6 In(h(ty))
cause of the large distance between spin-up and spin-dowo obtain values for the spin-rotation parameieM,, and
Fermi surfaces(This effect is analogous to the well-known the transverse spin diffusion coefficielt, .
particle-hole anisotropy away from the Fermi surfadéhen Longitudinal spin diffusion was measured using a tech-
the microscopic equations of transverse spin dynamics, i.enique similar to that used by Nunes all® By applying a
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ing to inquire whether this dissipation mechanism is coupled

to and affects longitudinal Fermi-liquid processes.

There are two general mechanisms that couple longitu-
dinal and transverse processes in helium: the magnetic
dipole-dipole interaction and the nonlinearity of equations of
motion. We will look only at dipole coupling, which is quite
strong in highly polarized system$although the nonlinear
coupling also leads to interesting effects, especially near the
spin-wave(Castaing instability.

The dipole interaction transfers the zero-temperature
transverse attenuation into the longitudinal channel by two
different mechanism&: First, in spin-polarized systems with
magnetic dipole-dipole interaction the spin-flip processes of
the type(1) with dipole vertexW are allowed in the longi-
tudinal channel and enter the collision integral directly. Sec-
ond, the dipole interaction couples the longitudinal modes to

0.01 1 1 P N T T (attenuating transverse spin waves. Then the collision inte-
10 T mk 0 100 gral (1) enters the longitudinal processes with transverse ex-
' change verteXV and dipole interaction in the coupling con-

FIG. 1. Temperature dependence of transveécieles and longitudinal stant.

(diamonds diffusion coefficientsD, andD, . As a result of direct and indirect dipole processes, the
effective zero-temperature attenuation in the longitudinal
channelr(T = 0) should differ fromr, (T = 0) by an extra

0 = 180° rf pulse we can invert the magnetization in the accoupling factor Eq /TF)Z, where the characteristic dipole

tive region of the cell. A longitudinal magnetization gradient energy iSB222m3/2T'3;/2/ﬁ3, and Z is the microscopic param-

is thus set up between this region and the remainder of th@ter which describes the difference between(MQ terms

cell, which results in the diffusion of spins into this region to for) Fermi ||qu|d5 and gases. The transition from

recover equilibrium. The recovery of the magnetization canemperature-driven to polarization-driven zero-temperature
be characterized by harmonics in the wave number of thgound attenuation should occur for longitudinal sound in

' 2 -1
DL' D",cm.s

spin currentk, as subuK region, i.e., at considerably lower temperature than
) the recently observed anisotropy temperaflige at which
MfinaI_Mz(t)zzk cre DIk the transverse attenuation loses it2Hependence(For

liquid 3He 1 this corresponds to the temperatures below the

The magnetization is sampled at timésafter the applica- superfluid transition when the theory of normal Fermi liquids
tion of the initial 180° pulse using a 231 ms—180° pulse cannot be applied directly. Thus the unmodified results can
sequence. The resulting recovery profile can then be used tmly be applied to liquidHe] — “He mixtures)
find the longitudinal spin diffusion curren, . In order to avoid separate independent calculations of

The measured transverse and longitudinal spin diffusiorattenuation for different hydrodynamic and high-frequency
coefficients are plotted on the same graph in Fig. 1. A cleafongitudinal modes ir*He| and 3Hel—“He mixtures, we
deviation ofD, from D, can be seen at temperatures belowcalculated(zero) sound attenuation in a generic polarized
about 30 mK. The longitudinal spin diffusion follows the Fermi liquid. This allowed us to extract the effective, mode-
expectedT~% dependence of a degenerate Fermi liquidindependent, zero-temperature relaxation tigg€T = 0) and
(Te=417 mK for a 6.4% solution ofHe in “He), whereas  viscosityn (T = 0) = pvires(1 + FP/3)/5. The effective re-
the transverse spin diffusion approaches a constant value ggcation time could be used in conjunction with standard
T—0 K. The results foD, have been fitted to the theSrin hydrodynamic anchf equation$* for polarized®He] and
the low spin polarization approximation. A value for the an-3He| —*He mixtures, giving the attenuation of all sound and
isotropy temperature of ,=(19+3) mK was obtained. A fit  hf modes in terms of effectiveyer and e
of the theory to earlier measurements of the transverse spin Although the effective zero-temperature longitudinal re-
diffusion coefficient in arx; = 3.8% mixture yields a value |axation parameters are quite small because of the weakness
of T,=(13+2) mK for this concentration. of dipole interaction, these parameters provide the real zero-

Similar results in puréHe have been obtained by Wei temperature cutoffs for longitudinal relaxation and transport.
etal’ using the same pulsed NMR spin echo technique. Insince liquid helium, in contrast to electron systems, does not
this case, the anisotropy temperatiie=16 mK. have any impurities, one may expect to observe these limit-

ing cut-offs at ultra-low temperatures in highly polarized

3 3 _ 4 H
4. DIPOLE EFFECTS AND LONGITUDINAL ATTENUATION Hef or “Hel—"He mixtures.

. . . A. Dipole collision integral and sound attenuation
Since the transverse attenuation is the only zero- P 9

temperature relaxation mechanism in pure exchange Fermi Dipole interaction leads to spin-flip collisions even for
liquids for low-frequency low-wave processes, it is interest-longitudinal processes such as sound propagation. As a re-
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1 the mixed spin component of the density matnix is pro-
b vided by magnetic dipole-dipole interaction with the
Hamiltoniart*1®

50
4 3(o-q)(0’-0q)
a2 (o0, g=p—p’. (5
40} 3 q
1 This Hamiltonian is responsible for two effects. First, it
30+ s=2 causes demagnetizing factors which, in an elliptical sample,

are equivalent to the demagnetizing fidtg. The integra-
tion of dipolar interaction, necessary for the calculation of
demagnetizing field, is not trivial because of the divergence
at small wave vectors. It is possible to sH8W?® that the
demagnetizing field in spherical samples is, with good accu-

racy,
HM-H) M
Hd=4w<T— 3) z2,
FIG. 2. I(s,x) as a function o = cos#, Eq. (4), for four values ofs, s M Z(BIZ)TI‘GJ ondr. (6)
= 2;3;3.47;5.

This equation foH, includes both the equilibrium contribu-
tion with My and the non-equilibrium part withM.
sult, one can find zero-temperature terms with the spin struc- Second, the dipole interaction changes the effective Lan-
ture (1) in the collision integral with the scattering probabil- dau interaction functioimolecular field:

ity 3(04, Q) (Tus Q)
2

4
N — 2 2
pl—ps)f(pl—psh Ol ap,yo(P.P") = 3 mZ°pB

W(p1,p2.p p)—(E)T a
Lt Tk (p1—p3)*
(P1—Pa)2(P1—Pa) + (057 0as) | 0
_ e ,

(P~ Pa) where Z is the usual renormalization coefficient in the pole
where thez axis is chosen along the magnetic figkbin  part of the single-particle Green’s function for Fermi liquids.
polarization, and the dipole energy is [Note, that Eq(7) contains only one of the diagrams for the

E :ﬁzzzmg/z.rg/z/ﬁg vertexI'®. The other diagram is already included in the term
d F ' with 6M in the demagnetizing fielti (6).] Substitution of
The resulting sound attenuatiort'is the dipole termg6) and(7) into the commutator in the equa-
| Eﬁ gH 2| , tions of motion,
M o= 16507, | 7, (5 C0s0) “ [A,e],  €ay=€—Bo,, oHy
wheres = w/kvg is the(dimensionlesssound velocity, and
the functionl (s cosé) is plotted in Fig. 2 for several values + | fapys(Pp") SN5edDY, 8

of s.
results in coupling of longitudinal and transverse equations.
As a result of this coupling, the sound waves acquire the

. . zero-temperature attenuat?én
B. Coupling between sound and spin waves P

Longitudinal and transverse processes are decoupled in _ h?(kvg)? FE)S) ? Eﬁ kz k?— kz
Fermi liquids with exchange interaction between particles. m o= 327t |F-FQ@ TE\K K2 T1(s)
Weak magnetic dipole-dipole interaction couples longitudi- 4 02 4
nal and transverse processes. As a result, the zero- 4k, —3k°k; +k r g
temperature attenuation in transverse channels can lead to * 3k* 2(s) ©)
zero-temperature dissipation even for ordinary longitudinal
processes. where

In spin-polarized Fermi liquids, sound propagation in the w(s2—3)—1/3[ w(3s2—1)—1
absence of dipole interaction is described by a set of twq™,(s)=2s%(s>—1) ) [ @
coupled equations for densities and n; of spin-up and w(s ) 1+Fg
spin-down particles. The coupling of longitudinal dynamic 7
equations fon; , n, to the transverse equation of motion for +s%—3w(s?—1)%— 5},
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w(s?+3)—1/3 2 1 depends on the angle between the velocity gradikhtafd
[y(s)=2s%(s*~1) WE=1)=1 w(s*—1)— 375 the direction of polarizatiorz. This anisotropy of the fluid
dynamics in spin-polarized systems with dipole interaction is
(10 quite natural.

s s+1
w(s)= In ——1,
s—1 5. CASTAING INSTABILITY
and in the single-harmonic approximatimgs) = 1/ng) . A. Castaing instability in spin dynamics

The most important difference from4) is the
k?-dependence of the attenuati®), which originates from
thek - v factor in the coupling coefficient. The calculation
was performed for low frequencida; < 4. At higher fre-
quencies, the factork{)? should be substituted by the
square of the Larmor frequendy,.

Studies of instabilities and nonlinear effects help further
understanding of spin dynamics in Fermi liquids. One of the
most important spin-wave instabilities—the so-called Casta-
ing instability—occurs in spin dynamics of spin-polarized
Fermi liquids in the presence of a gradient of magnetic field
and/or polarization.

At low spin polarization, the transverse spin dynamics in

polarized Fermi liquids is governed by the Leggett equation
C. Effective relaxation and viscosity (see, e.g., review artic71}3

The above expressions for sound attenuation allow us tgp, D, M IM
obtain the values of effective relaxation time and V|sc03|ty7+[yB><M]— W ﬁx ,u[ v ”
Comparing Eqgs(4) and(9) with the standard expressions for K k 16
(zeroy sound attenuation in Fermi liquids, we immediately (16
obtain! If the magnetization gradients are small, the last term can be
) ) linearized in small deviations from equilibriundM as
1 Ime B BH\ " I(s cosd) 11y Mo X 98M/dx], and the spin excitations are weakly at-
Tt £(S)  16mhTe &s) tenuated by circularly polarized spin waves with the spec-
WA 1)(382+ 1)+ 2w(s?— 1)~ 1 frum
§s)=s w(s—1)—1 ’ - D,k
0=wot 1+ u2M2 (i—uMy). 17
s s+1 0
w(s)= 2 In —— s—1 -1 Castaing® noticed that if the gradient in the magnetization
) VM is not negligible, the linearized last term in E46) is
for direct processes, and ulMg X aM/ax,] + u[8M X VM,], and the excitation
1 #2(kp)? ng) 2 2 (kz K2— k2 F s spectrum changes frofl7) to
= 2 GO _Fr@ 2 1(S
rer 32 H(S) [ Fo"Fg “ 0= oot gz (- aMo) (€= ke VM), (1)

AKS— 3K2K2-+ K 1tu
ST a— (S)> (12 For a sufficiently large gradiertor sufficiently smallk), the

o last bracket and, therefore, the imaginary part of the spec-
for indirect processes. trum change sign. Instead of attenuation, the perturbation

The high-frequency attenuation can be obtained by thehcreases with time resulting in instability starting from
method similar to that used in calculation of sound attenua-

tion in Fermi liquids'® The analysis of the nonvanishing ke=pn-VM,  n=k/k. (19)
collision operator of the typ€l), atT = O shows that this The nonlinearity of the Leggett equation of spin dynam-
integral is similar to those studied in Refs. 3, 6, and 19 andcs, which is responsible for the Castaing instability, leads to
that it should reduce to the form a highly inhomogeneous final stationary distribution of mag-
o |2 netization (magnetic domainseven in slightly inhomoge-
il 1+ Q /2) ) (13 neous magnetic fieltf Under certain conditions, the domain

wall could become very wid#& The difference between lon-

(in dense Fermi liquids the Larmor frequen€y, experi- gitudinal and transverse relaxation will then disappear, and
ences the usual Fermi-liquid renormalizajiowherey,; de-  the total relaxation is determined by the shortest of the two,
termines the low-frequency sound attenuation in Fermi lig-.e., by the field-driven, zero-temperature transverse attenua-

uids, tion.

o &)

Yie=Im k= STefUF (14 B. Observation of the spin-wave instability

The effective field-driven viscosity dt = 0 This instability is very general, and can be observed in

helium systems in different configurations. We will illustrate
! it usi imefit PHe—*

_ 2 (s) it using the example of experiment saturated”He—"He
== + :

e =g PUETeil( 1+ F17/3), 19 ixtures.
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FIG. 3. The ringing signals observed aftef & 105° pulse. FIG. 4. The frequency shift as a function of the tipping angle. The line is a

fit 5f = A(cos#—cosé,).

We observed an oscillating signal that could be induced _ o o
by the application of a single rf tipping pulse of angle gates in the opposite direction, away from the receiving
applied to a small region of the helium in the middle of a NMR coil. "

1-mm tube?® Large magnetization gradients were induced in_ Similar instabilities have been observed by Nufiesd

the helium at the edges of this small region. We approximatdMmitriev et al™ The ringing continued for extremely long
these gradients a8 M| ~ M(1 — cos6)/Ax, whereAxisthe ~ tUMES, leading to conclusions about the existence of a meta-

distance over which they extend. A typical NMR signal pro- stable statdprecessing spin domaiy$ after the instability
duced by & = 105° pulse is plotted in Fig. 3. develops. In our experiment we did not see such a long-time

This long-lived ringing, which we interpret as a sign of behavi.or QUe to the different setup. iny a small fraction'of
instability, was observed only when the tipping angle ex-th€ spins in the lower chamber was tipped and the longitu-
ceeded some critical valug, = 70°. The frequencies of the dinal spin diffusion coefficienD, was large, so that the in-
oscillations were determined by Fourier transforming the sigStability was quickly suppressed by diffusion of up-spins into
nals; the frequency shifiw away from the Larmor frequency the coil.
increased with tipping angle. By substituting the expression
for the magnetization gradient into the spectrliEy. (18)],
we find that the frequencyw = o — wq, depends upon tip-
ping angle asw = cosé — cosé., whered, is the critical The nonlinear coupling between longitudinal and trans-
angle, i.e., the angle for which the last bracket of the specverse channels is enhanced close to the instability in spin
trum is equal to zerd@Fig. 4). Our estimate gives the value dynamics (see, e.g., Ref. 23 and the bibliography cited
k. ~ 600 cm L. This implies that the large magnetization gra- therg. We analyzet! the dipole effects near the onset of
dient is over a distance of the order of 0.05 cm, consisten€astaing instability. Without the dipole effects, the instabil-
with the scale of our experimental setup. ity occurs atk. [Eq. (19)]. The dipole interaction makes the

These ringing signals possess several features whicinstability anisotropic by adding terms of the forlkﬁ,
support an explanation in terms of an instability. There is guk,V,M, (xVM)?, and (wV,M)? to Eq. (19). However,
cutoff in tipping angled., below which no signals were these terms contain a small factg/Te (we will not give
observed. This circumstance, together with the fact that therbere the cumbersome coefficienthese anisotropic correc-
was no ringing signal at higher temperatures wheM, is  tions do not have any fixed sign so that it is impossible to say
small, confirms the threshold nature of the phenomenon. Thehether the onset of instability occurs earlier in certain di-
long-time scale of the signals and the initial increase in amrections.
plitude (Fig. 3) are also characteristic of an instability. The Although this instability exists in transverse spin dynam-
frequencies of the oscillations scale as the cosine of the tipics, one of its features is thatin Eq. (19) is proportional not
ping angle, co® — cosé.. The presence of two frequency to the transverse relaxation time , but to the longitudinal
peaks on the Fourier analysis of the spectrum suggests thane 7, u = Q;7,/M. Sincer, = 1/T?, the onset of instability
the signals are coming from regions on either side of the rk? = uk;V;M occurs with decreasing temperature at larger
coil where the magnetization gradients are slightly differentand larger wave vectors. The usual derivation of the instabil-
No such signals were observed during experiments on soldty condition assumes that the gradient of the longitudinal
tions with lower 3He concentrations. HeraM, is of the = magnetization leads to a large longitudinal diffusion current
same magnitude but negative, so that the instability propaand not to longitudinal oscillations, i.e., thatrl/> kvg.

C. Dipole effects in Castaing instability
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These two conditions, taken together, limit the temperaturenargin resulting in different molecular fieldsandau—Fermi
range in which the instability can be observed to liquid functiong for quasiparticles near these Fermi surfaces.
This means that the frequencies of inhomogeneous preces-

1/4;,,1/3
Te>T>Te(aa/L) T, (20 sion in the effective field for tipped spin-up and spin-down
where « is the degree of spin polarizatiow, is the molar  particles are different.
density of the Fermi liquid, and is the spatial scale of the In general, the transfer of the microscopic equafions
polarization gradient. from Fermi liquids polarized by an external magnetic field to

The dipole coupling between longitudinal and transverseerromagnetic Fermi liquids is rather straightforward, and we
channels leads to a substitution gf by 74 and lifts this  will not dwell on this matter here. Instead, we will mention
temperature limitation. At zero temperature, the instabilityanother interesting aspect of microscopic equations. The
occurs ak? = ek ViM, we = Qi7e/M under the condition  spin-up—spin-down anisotropy of the effective field can give
1/7e > kvg. The compatibility of these equations requires credence and microscopic justificatférto the concept of

high polarization with small gradient, reaction field suggested by Onsa§eior ferroelectric sys-
E>Te(aladl)Y ;[re]:r;z(fthlzsgconcept for ferromagnetic systems was discussed

As a result, the instability exists even at zero temperature,
but occurs at extremely small values lof

B. Heisenberg systems
6. APPLICATION TO PURE FERROMAGNETIC METALS

F i tal b hi ted into t The above zero-temperature dissipation mechanism is
erromagnetic metals can be rougnly separated Into Wo, o ot 1o Fermi liquids and, in its original form, does not

grm:_ps: |t||netrant ferrc&magtmlets V\t"r:hf ferromagntgztlsm d Of. Con"e_|xist in a solid-state magnetic system of localized spins with
aue 'OT © elc r%nsi art1 meuz[athW{ et:romggtne |ctlor _ﬁ?ng ° eisenberg interactiod. However, this unique Fermi-liquid
inner, localized electronéwi eisenberg interactionThe dissipation mechanism should lead to some residual attenu-

zero-temperatu're' transver;e attenuation in .the. former SY3ition of magnons in pure ferromagnetic metals with Heisen-
tems seems similar to hefium systems, while in the IatteE)erg interaction. We want to emphasize that in this section

group such effects appear only as a res_ult of exchange e are interested not in itinerant magnetism, for which the
pling between the localized ferromagnetic electrons and thﬁwanifestation of Fermi-liquid effects is natural, but in an

Fermi liquid of conduction electrons. In addition, the spin- exchange magnetic system of localized electrons.

lattice relaxation, absent in helium, presents a strong cou- This fairly straightforward effect is based on exchange
pling mechanism between Iongitudinal and transverse Charl:’oupling of localized ferromagnetic spifes.g., i electrons
nels for both types of ferromagnetic systems. to conduction(e.g., 4) electrons. This exchange coupling
A. Itinerant magnetism results in small polarizatiofinot to exceed several percgnt
The theory of transverse spin dynamics in electron FermOf conduction electr_ons of the orddy(S)/ T, whereJl IS

the exchange coupling constant between localized ferromag-

liquid in itinerant ferromagnets should be similar to that in ~ . . ; . .
) . . o netic electrons with spinS and spins of conduction electrons
spin-polarized helium. To a large extent this is correct, espe-

; " o. Polarization of spins of conduction electrons ensures the
cially well below the transition temperature. Close to the . . . : : NP
- S S propagation of Silin spin waves in this system with finite
transition temperature the Fermi-liquid description is not ap_zero-tem erature attenuation (T=0)~(No o)
plicable (see, e.g., Ref. 35It is knowrf® that the spin wave P 7L VT

2 i -
spectrum in ferromagnetic metals is similar to the spectrum>< (Te/Jy(S))". The exchange coupling between these at

- . . N . tenuating Silin spin waves and ferromagnetic Heisenberg
of Silin spin waves in Fermi liquid. Careful analysis of the .
5 . : magnons transfers the zero-temperature attenuation to the
spectrur®® shows that this spectrum contains the zero-

i . .magnon system resulting in the effective relaxation tirie
temperature attenuation: the expression for the spectrum in- (J,/J)2. The competing processes that lead to the mag-
cludes the integral between the spin-up and spin-down Fermi Tl . beting p . : . 9

non attenuation are, obviously, scattering on impurities and

spheres, spin-lattice processes studied long agee, e.g., Ref. 30

_n1dr The former processes are small in pure metals, while the
[ny—n,]dT, latter are suppressed at low temperatures.

which, as any integral not localized near the Fermi surfaceformThe equilibrium energy of conduction electrons has the

should contain a large imaginary part. However, this integra-

tion deep into the Fermi spheres makes the deriv&tinat ef=g—BSay-H—J,0,-(9)/2, (21

self-consistent; a consistent-derivation should be based on o ) )

the microscopic equatiorfs. while the Hamiltonian of localized electrons is

Apart from the zero-temperature attenuation, these equa- 1
tions have another interesting feature, namely, the spin-up— &l=—p8'S-H- > Jo(o)- S —J>, (S:a+Sia
spin-down asymmetry. This effect is similar to a well-known a " ’
particle-hole asymmetry in Fermi liquids away from the +S..)-S. (22)
Fermi sphere. In itinerant ferromagnets the radii of the Fermi z
spheres for spin-up and spin-down particles differ by a largé'he effective parameters for conduction electrons are already
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renormalized by their Fermi-liquid interactiog; = B°/(1  cally. After introducing the usual cutoff, we obtain the fol-

+ F@), 3, = Jo/(1 + FP), while the averages lowing renormalization of the bare interaction:
Te(1+F®)
<S> E SNIY JO t2 1 87Tt2V|: In BeH+t2<SZ>/2 y

wherevg is the density of states on the Fermi surface. As a
(0)=2 aim=pem(BSH+1/2J(S)/7*h%  (23)  result of this large logarithmic enhancement of the interac-
tion, J, can reach several hundred K and the polarization of

The Fermi-liquid term in the energy of conduction electronsconduction electrons can exceed one percent. Then the zero-

has the usual form, temperature attenuation for conduction electranscan be-
1 come shorter than 16° sec, andr* can reach 107 sec.
e _
Oetp=—5 Joup 6S
7. CONCLUSIONS
+f Fagarp (P.P") Mg, (p7)T, (24 The zero-temperature transverse attenuation in spin-

polarized Fermi liquids, which was observed recently in spin

with the Landau Fermi-liquid function dynamics offHe| and®Hel-*He mixtures, is the only low-

PeM , © , @ frequency dissipative process in Fermi liquiddat 0. This
pra fopar g (P,P)=F(P,p") 8,564 5 +F effect can have much broader implications than a simple
low-temperature saturation of transverse transport param-
X(P,P ) O O g (25) eters in polarized helium systems. We highlighted several of

. : such effects.
Often, in ferromagnetic systendg(S,) > Jo(0o,), BH, ; : Lo
and Q, > wy. In this approximation, the analysis of the The dipole coupling between longitudinal and transverse

coupled equations of motion for localized and delocalizeo\Spin dynamics processes in spin-polarized Fermi liquids
up q i o . eads to the transfer of zero-temperature transverse attenua-
spinsS and o with the Hamiltonian(21)—(25) yields, after

. . . jon into longitudinal channels. This transfer is responsible
some algebra, the following expression for the attenuation o? . -
ferromagnetic magnori: or the. zerlo—temperailture dlpqle _contr|bu.t|on to the sound.at—
tenuation in a generic Fermi liquid described by the effective
B'H (o) kZUEH(H Fga>)(1+ |:<1a>/3) [I_nr?de-infcifepgndent longitudinal r'ec:axatioln time and visco?ity'.
- a N2 ese effective parameters provide the low-temperature limit
630(S2) (S 1+[7 Qo(1+F/3)/(1+Fg™)] for dissipation olfavarious hygrodynamic and higrr)l-frequency
This equation is valid only foB'H > J(S,)k?a? and formally ~ modes in helium systems.
yields zero aH = 0. In smaller fields the attenuation does not The zero-temperature attenuation processes have inter-
vanish, but becomes proportional k8, in accordance with esting implications for ferromagnetic metals. Of course, the
the general resuf direct manifestations of this Fermi-liquid anomaly can be
The strength of the effect depends on the exchange inebserved in itinerant ferromagnets. Here the most interesting
teractionJ,S- o between spins of ferromagnetic and conduc-effect is, probably, not the zero-temperature attenuation it-
tion electrons. In free atoms the-d exchange is of the self, but a pronounced spin-up—spin-down asymmetry of
scale of 1 eV. In metals, screening weakens this exchange bifie effective field which could manifest itself in the forma-
about one or two orders of magnitude. There is also an ertion of a peculiar Onsager reaction field.
hancement factor, which is related to the Kondo-like loga-  In metals with ferromagnetism of localized Heisenberg
rithmic divergence of the effective field. The localized elec-spins, the effects of the zero-temperature Fermi-liquid inter-
trons create thegtransversg coherent exchange field for action are indirect. In this case, the exchange coupling of

Im w=

conduction electron® localized and conduction electrons results in low residual
) polarization of spins of conduction electrons. This, in turn,
| rs . oy . . _
Looi= T [6S,(n,—n))— so(S)HN]| 4t, leads to the propagat[on qf Silin spin waves with smgll zero
temperature attenuation in the system of conduction elec-
d30’ trons. The coupling of these spin waves to the spin waves in
p 1 2 . .
+fm =] P (2Ntty+t5(n;—n, the system of localized Heisenberg electrons transfers the

zero-temperature attenuation to ferromagnetic magnons. This

mechanism is responsible for the residual attenuation of fer-

+N))}- romagnetic magnons in pure ferromagnetic metals.
Another important peculiarity of spin dynamics in spin-

The exchange field for localized electrons is similar. Herepolarized Fermi liquids is the spin-wave instability in inho-
t, andt, are the bare direct and exchange interaction conmogeneous settin¢Castaing instability We presented and
stants, andN is the density of localized spins. If the polar- analyzed experimental data confirming the existence of this
ization of conduction electrons is low, the direct interactioninstability, and discussed some further experimental options.
t, disappears from the results. The above integral, as otheks a result of dipole transfer of zero-temperature attenuation
similar integrals in the theory of metals, diverges logarithmi-into longitudinal channels, the Castaing instability does not
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Finite temperature effects in the Fermi liquid theory of the diffusion of “He in %He
H. H. Hjort, T. G. Culman, D. O. Edwards, and Jizhong He

Physics Department, The Ohio State University, Columbus, Ohio, USA 43210
(Submitted October 24, 1996
Fiz. Nizk. Temp.23, 564-573(May—June 199y

The diffusion coefficienD and the thermal diffusion ratik; for dilute *He in liquid *He are
calculated from Fermi liquid theory. The collision integral assumes a scattering amplitude
a®* expanded in scalar combinations of the quasiparticle momentd.-A8, D varies as 1/T and
kt/c, wherec is the concentration, approaches a constant. As shown previously, the limits
for DT andky/c are determined by thermodynamic properties,4He effective mass and partial
volume, and properties of puféle. We have decreaséd/c by a few percent, by

including the effect oW T on the®He distribution function. The temperature dependencB ©f
andky/c is linear and related to the coefficients in the expansioa®4f Two coefficients

can be found from thermodynamics. A conjecture about the remainder sugge$dS thady have
a maximum between 0 and 0.5 K. @&997 American Institute of Physics.
[S1063-777X97)00905-5

1. INTRODUCTION pends on pressure, can be calculated frojn andv; and

_ o L from known properties of pure liquidHe. The limit for
In this paper we calculate the diffusion coefficiEhtand DT is unchanged.

the thermal diffusion raticky for very dilute solutions of Equation (1.2) implies a “He collision time? t
4 . - - . 3 .y . y
He in normal(nonsuperfluid liquid *He. The quantitie® =3m,D/(2kgT), that varies as TP. For Fermi liquid

and kr are defined by the eq_uatmn for the impurity mass theory to be valid, the energies of thide quasiparticle states

currentl in terms of the gradients of thftHe mass concen- must be well defined; this implieg/t<ksT, which is

tration, ¢=N,m, /(Nsms+Nymy), and the temperature: equivalent toD>2#/(3m,). This criterion is well satisfied
i=—pD[Vc+(k{/T)VT]. (1.1)  provided T<Tg.

As noted in Ref. 4, a measurementlgf/c or a com-
parison between measurements of the limit BoF and Eq.
(1.2 would provide a stringent test of the underlying Fermi
liquid theory. In this respectHe in 3He is qualitatively dif-
ferent from other applications of the theory. For example, to
relate the kinetic coefficients to the thermodynamic proper-
ties in pure®He or ®He in liquid *He, some assumptions
about the dependence of tRde—°He scattering amplitude
on the momentum transfer are necessafgr “He in °He at
low T, because théHe is dilute, only*He—He collisions
need to be considered. Since thée obeys Boltzmann sta-
tistics, the*He momentum and energy are small compared to
the Fermi momentum and energy. In addition, the Pauli prin-

When the total mass currepv is zero,i is simply the*He
mass current; otherwisethe “He current ispcv+i and the
3He current is (+c)pv—i. When there are no currents,
(Ve)le=—k¢/c(VT)IT.

The low temperature behavior Bf andk is determined
by Fermi liquid theory from the Boltzmann transport equa-
tion of Zharkov and Silirf. In the dilute limit, the diffusion
coefficient D is proportional to 1/T andk;/c tends to a
constant wheim—0. As shown in Ref. 4k+/c andDT tend
to values determined solely by the=0 forward scattering
amplitud€® a3*, which can be obtained from thermody-
namic measurements. The limit forT is*

A omji [vg)? ciple excludes large energy or momentum transfer from the
DT=Do — (v—*) Te; Do=0.4461.... (1.2  3He. Therefore, ag —0, the 3He is restricted to forward
4 scattering, which is determined kag*.
Heremj andm} are the*He and®He quasiparticle effective Although measuremerft8 of D and k/c have been

masses, and ¢ is the ®He Fermi temperature, given by made above 0.5 K, experiments to test the theory must be
keTe=p&/2m% . Equation(1.2) uses the relation between made at temperatures where pdige obeys Fermi liquid
a3’ and thermodynamic properties derived by Saam angheory, which is below 0.1 K and above tRile superfluid
Laheurte®® transition. Here the solubilitg¥{(P,T) is very small'® less
3_, % than 500 ppm below 0.1 K. The thermodynamic guantities in
3 = (v3/vg)/v(0). 13 e expression fob, v} , andm} can be obtained by ana-
In (1.2) and (1.3, v} is the partial volume of 4He atom  lyzing measurements @®{P,T). Solubility data by Naka-
dissolved in liquid®He. The®He atomic volume iw; and mura etall® below 0.1 K and a preliminary
v(0)=3/(2v3kgTE) is the3He density of states. measuremeht?? of D indicate that such experimental tests
The limit for k1 /c was given as 0.3823 in Ref. 4, but we are feasible.
find a value a few percent smaller. We include the effect of  In the present paper we find the solution of thde
the temperature gradient on tHéle distribution function Boltzmann equation with a momentum-dependent scattering
which was neglected in Ref. 4. The correction, which de-amplitude. We prove the assertion, made in Ref. 4, that the
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momentum dependence produces termsDifi and ky/c dau function differ because the latter includes successive or
which are of the order of /T, so that onlya3* appears in multiple scattering events. Saam’s equations, which are
the limiting values ofDT andky/c. Since the Fermi tem- analogous to a similar set for tiele—*He amplitudé link
peratureTg of liquid 3He is approximately 1.77 K at zero the two functions through the coefficients of their expansions
pressuré?® terms of orderT/Tg are expected to be small in Legendre polynomials gb-q,
below 0.1 K, where Fermi liquid theory is valid. However, in Y _ e3a s
Sec. 7 we show that the temperature dependenc®f @ (k=0 ={f"h/[1+F/(21+ 1)]. (24
could be measurable. In Sec. 2 we deal with the symmetrfhe F} are the symmetric Fermi liquid factdfsfor pure
and parametrization of the scattering amplitude; the solutiotiquid 3He.
to the Boltzmann equation is given in Secs. 3-6. In Secs. 6 Using Galilean invariancé and invariance with respect
and 7 we give the numerical results, and in Sec. 7 we sunmto the reference systenf;'® some properties of the Landau
marize the paper. function 34 have been directly related to thermodynamic
As in Ref. 4, we assume that tHEle quasiparticle spec- quantities such as} andm} . As a result, we find the fol-
trum has the conventional, particle-like forlE=—E,; lowing relations betweelf:lg4 and «; and the corresponding
+q%/2mj , rather than the alternative, roton-like, “bubble known coefficientsf3*, a;, andaj in a similar expansion
spectrum” (Ref. 2 E=—E 3+ (q—qo)%/2m} . HereE,zis  for 3*in Ref. 15

the binding energy of onéHe atom in liquid®He in the (34 N 5
ground state. A microscopic calculatidnshows that the sa___ 0 _ Y4 _ 2 Kk *
. . . ao 5 BIFVZ .
conventional spectrum is correct, with} /m,~1.21 at zero (1+Fp wvar(0) 3
pressure. In Ref. 15, a fit to theg?(P, T) data of Nakamura 3a) p v m
et al*® gave m}/m,=(1.1+0.4/-0.1). __ T PR _gZ3 (% 2
e “TEIF) a3t Toi\T o omp) 29

_ & pi_3uvgmy 1 dlog(mj)

o Y .
2. MOMENTUM DEPENDENT SCATTERING AMPLITUDE ST(14FY) a3 20% mk (1+F3) d log(vg)

In general, the scattering amplitude dependp@ndq, The first relation is the same 4%.3). Since (1+ F3)~10.6
the initial momenta of théHe and*He quasiparticles, and in liquid He at zero pressuré,and sinc&***m,~m? , both
the momentum transféde=p’ —p=qg—q’. It is also true that «, anday are smaller than one. The rest of theare unde-
the inverse collision must have the same amplitude to withinermined. In Sec. 7 we find that thek? term ina3* has the
a phase factot® largest effect on the temperature dependence®f and

ks/c.
|a*(p, a, k)| =]a*(p’, q", —K)|. 2.9 T

This symmetry has a simpler form wheri* is written as a
function of the mean momenta,=q—k/2 and p,=p 3. THE *“He BOLTZMANN EQUATION

+k/2
In setting up and solving the Boltzmann equation, we

|a%(Pm,dm . K)| =% (P , O, — k). (2.2 follow the work of Zharkov and Silif, Leggett and ter
Haar? Dandacheet al,'® and Geilikman and Chechetkif.
The notation is nearly the same as in Ref. 4. According to
harkov and Silin, the linearizetHe Boltzmann equation in
he dilute limit (negligible “He—*He scattering for small
emperature and concentration gradients a&rd has the

We expanda®® in terms of the lowest-order scalar functions
of dm, Pm, andk, using the symmetry in2.2). Keeping

terms up to and including the second power in the smal
momentag,, andk, the results are equivalent to expandingt

34.
|a™: form
2 2
|a34|:agA[1+al P 1|4, Py, I Nio(a/my)-[(Ve)/c-+(q?/2m; keT—3/2(VT)/T]=Ji¢(q).
Pe Pe Pe (3.0
(P ) K2 (pm-K)2 } Here n;o is the equilibrium“He quasiparticle occupation
tay— =+ F+as = tag yi number:
PE PE Pe

Nio=(pc/my) (2mh/mj kgT)%?2 exp(— g2/2mi kg T),
(3.2
.. . 34
The real coefficientsy;, like a;", depend on the pressure. \here yc/m, is the*He number density. The collision inte-
We shall find thateg only produces terms of higher order gral i$18
thanT/Tg, so that it does not appear in our resultsEoF or
ky/c.

The forward scattering amplitude corresponds aft
with zero momentum transfek. In this casep,=p and o e 6 ,
Om=g. Saam derived a relatidrbetween the forward scat- ¢r)o(e+E—e’—E")(2/h°dpdq’). 8.3
tering amplitude and the thermodynamic Landau interactiohe factor of 2 multiplyingdp allows for the sum over the
function f3*, The forward scattering amplitude and the Lan-initial 3He spin states. In Refs. 18 and 19 we have a factor of

(2.3

Jif(Q):(ZTF/ﬁ)J [a®1%ngo(1—Nfo)Nio( 3 — ¥ + ¢
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4, which implies that théHe quasiparticle may change its
spin orientation during &He—He collision. As explained in

Ref. 4, we think this is incorrect. Our equation agrees withchoose

the original formulation by Zharkov and Silin.
In the collision integralp’ is related to the other mo-
menta by conservation of momentum:

p'—p=9g—q’'=k. (3.9

The Fermi function®;, andn;, are the equilibrium occupa-
tion numbers for the initial and findHe states which have
energiese ande’. The initial and final*He energies ar&
and E’, so that the delta functiod(¢+E—¢c'—E') en-
forces conservation of energy.

In (3.3, the quantities ¢s=—35n;/n;g and ¢ =

— én//n{, are the negatives of the small fractional deviations

from the equilibriunt*He distribution function. Because they

Since|a®Y in (2.3) is written in terms ooy, 0y, andk, we
transform the integral i1t4.2) by replacingdp by dp,,,. We
an axis along k and write dpp,
= pfnd pPnd cosé,de,,. The ¢,=0 plane contains the vector
Um-

The integration with respect te,, is elementary and
performed first. Using

e’ =e=kpy, cos 6,,/m} (4.9

in the delta function, we integrate over cégs.

J(an'):Znglkf (122 Nn¢o(Sm—A/2)[ 1 nto(Sn

+A/2)1Pmd Prm - (4.5

are linear in the concentration and temperature gradients,

¢ and ¢ depend org andq’ according to the equatién

Yi(q)=ac(q)q-Vc+ar(q)g-VT. (3.5

The functionsa.(q) and a;(q) are found by solving the
“He Boltzmann equatiofB.1).

The deviations from equilibrium of théHe occupation
number are related tap; and ¢; in (3.3 by on;=
—@ikgTonsg/de. They are determined from the known
solutior! of the Boltzmann equation for a temperature gradi-
ent in pure®He. The effect of théHe on ¢; is negligible,
because in the dilute limit the number %fle at the Fermi
surface and available for scattering is much larger than th
number of*He. WhenVT=0, as in the calculation of the
diffusion coefficient,p; and ¢; are negligible. In previous
studied'®194¢ and ¢; were incorrectly omitted in the cal-
culation ofkr .

We divide the collision integral3.3) into two contribu-
tions. The first,J;(q), is from the term proportional toy;

— ), the deviations from equilibrium in théHe distribu-
tion function. The second)¢(q), is from the term in ¢

— 1)
4. CALCULATION OF THE COLLISION INTEGRAL J;(q)

We first evaluateJ;(q). This is all that is needed to
calculate the diffusion coefficierd. We setVT=0 and,
using (3.5, J;(q) becomes

Ji(q)=C~f[qac(q)—q’ac(q’)]J(q,q’)dq’, (4.2)

where

J(q,q’)=f |a*}?nso(1—nip) 8(e +E~&’' —E')dp
(4.2)
and
C=(87%/h")n,xVe. 4.3

To calculatek;/c, we setVc=0 andJ;(q) has the same
form as(4.1) except thag, is replaced bya; and the vector
C hasVT instead ofVc.

In J(9,9') the energy transfeE—E’' =(q—q’'?)/2mj
and momentum transfde=q—q’ are fixed byq andq’.

422 Low Temp. Phys. 23 (5-6), May—June 1997

Here(|a%4?) is |a®4? averaged over all values ¢f,,. The
Fermi functionngo(s) is (e5+1)~ %, ands,=&,/kgT. The
mean energys = (p3+ k?/4—pZ)/2m% is measured from
the Fermi energy. To orddr, the Fermi energy is the same
as the®He chemical potential. Note that=(E—E')/kgT
does not depend op,,,. The integration over the delta func-
tion gives co9,, a definite value that depends pp,:

coS O, =m3(E—E")/(pmk). (4.6
Ihus, the factors off,cos 6, in (|a®{?) are simply functions
of g andq’.

The right-hand side of4.6) is of the order ofg/p or
(T/Tg) Y2 This means that the momentum trand€arsually
is very nearly perpendicular tp and p,,. From (4.6), the
condition — 1=<cos#,=<1 gives the lower limit fop,, in the
integral (4.5):

pm>|m§(E_E’)/k|:|(m§/mZ)Qm'k|- 4.7
When T<Tg, so thatq andk are small compared tpg.
Replacing this lower limit by zero has an exponentially small
effect on the integral, of order exp{T/T). Therefore, we
evaluateJ(q,q’) using the relation

fo Nio(Sm— A/2)[1—Nso(Smt Al2)]ds,=A/(1—e 4).
(4.8

As in Ref. 4, the replacement of the lower lintit.7) by
zero is the crucial approximation in finding the collision in-
tegral. Since the integrand .5 is always positive, by
usingp,=0 (or s,,;= —x) instead of(4.7), we have overes-
timated the effect of collisions with large. Becauseq is
small at lowT (due to the Boltzmann distributipnlarge k
corresponds to large negative valuesApfand thereforey’
must be large ik is large. The collision rate, which is pro-
portional to (4.8), is very small whenA<—1, so the ap-
proximation is self-consistent.

The final result forJ(q,q’), to second order im and
q’,is
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TABLE 1. The functionsg;(x,y) andh;(x,y) in Eq. (4.14), and the integral; (x—y)[1—€¥"*]g;(x,y)dy for P;(x) in Eq. (5.4). The Riemann zeta function

{(3)=1.2020...
y<X y=X
i (xIy)"gi(x,y) (x/y)"hi(x,y) gi(x.y) hi(x,y) JXx=y)[1-e]gi(x,y)dy
0 1 y/3x 1 1/3 w26
1 x+y/3 —y/3+y?/15x y+x/3 —y/3+x/15 27(3)+2w2x/9
2 x+5y/3 y+ 3y?/5x y+5x/3 y+3x/5 2L(3)+47xI9
3 x—y y—y?Ix y—X y—X 2{(3)
A (q—q’')? 5. SOLUTION OF THE BOLTZMANN EQUATION
J(a,9")=2m(mjag") kg T Kl—e® |1t —(02—
(1-e%) Pr After substituting(4.12) in (3.1) we obtain a dimension-
., (q+q')2 , (qz_q/z)z} @9 IVe:T,_szfgrm of the Boltzmann equation for the case in which
Y *(a-a")%pz)’ ' ’
where fo F(x,y)dy=1. (5.9
y1=2a5— ay/2, Equation (5.1) is a one-dimensional integral equation for
w24 At o218 f(x)=cCsac(q).
V2= aglet aylat asls, In the same way the integral equation for the situation
whereVc=0 becomes
ya=(MEIME) apl2— a,l4— a5/8. (4.10

As noted in Sec. 2¢¢ does not appear it¥.10); it does not
affectDT or ky/c to orderT/Tg.

From symmetry, the vector integral (4.1 is parallel to
g. Therefore, we choose a new axis aloggso that the
collision integral(4.1) becomes

Ji(q)=C-€J [aac(q)
—q’ cos6'ac(q’)13(q,q')q'%dqg’'d cos 6'de’,
(4.12)

where §’ is the angle betweeq andq’.

After integrating overp’ and then co#’, and introduc-
ing the dimensionless variablex=qg?/(2mikgT), vy
=q'?/(2m}kgT), we obtain

\]i(Q):niO(q/mZ)'(VC)/CJOwF(XvY)dY: (4.12

where

3
F(x,y>=Fo<x,y>+<mz/m§>(T/TF>i§1 yiFi(x,y),
(4.13
Filx,y)=(x=y)/(1—& [ gi(x,y)f(X)
-h(x,y)f(y)]; i=0,...,3. (4.19

The function f(x) is a dimensionless form ofa.(q)
=f(x)/cC;, where the constarg; is
Ci=(mimikgTadh2/(2m%47). (4.15

The quantitiegy;(x,y) andh;(x,y) are the simple algebraic
functions ofx andy, shown in Table I.

423 Low Temp. Phys. 23 (5-6), May—June 1997

fo F(x,y)dy=x—3/2—bs(x). (5.2
In this case,f(x)=TC;ar(q). The “driving” terms, X
—3/2 and 1 on the right-hand sides &.2) and(5.1) come
from the left side of the Boltzmann equation. The additional
driving termbgs(x) in (5.2) is the dimensionless form of the
collision integralJ;(q). The calculation ofJ;(q) and the
derivation ofbs(x) are described in Sec. 6.

The numerical solution of the integral equatiofsl)
and(5.2) at T=0, disregarding the term ibng(x), is given in
Ref. 4. AtT=0, substitution from4.13 and(4.14 in (5.1
gives

f(X)Po(X)_fO Mo(x,y)f(y)dy=1, (5.9
where we have defined the functions
Pi(X)Ef —a—x gi(x,y)dy,
0o 1-¢ )
i=0,...,3 (5.4

‘-
M (x,y)= T Pi(xY).

In Ref. 4, Eq.(5.3 and the similar one foNc=0 were
solved in terms of the variabldgsandt’ defined byt=exp
(—x/g), t' =exp(-y/g), whereg~ 3 is a dimensionless scale
factor. The equations were discretized over a one-
dimensional lattice ofN points evenly spaced ih. As a
result,f andP, became vectors ard ; a square matrix. The
integral for P, from y=0 to x was evaluated numerically.
The other part, frony=x to infinity, is listed in Table I, with
the companion formulas foP,, P,, and P;. Rather than
inverting M, the equations were more efficiently solved by
iteration. An approximate form was used fity), giving a
new estimate forf (x), and so on. Accurate solutions were
obtained withN=100 or 200, iterating up to fifteen times.
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At all temperatures, the impurity currentand thus the
diffusion coefficientD and thermal diffusion ratié/c, are
found from the appropriate integration over thée occupa-
tion number. As explained in Ref. 4, we calculateom the
“He particle current:

i=m4f Sni(q/mj )dg/h3, (5.5
In this equationg/mj =V (E is the*He quasiparticle veloc-
ity. Previous authofs'® have used= [ &n;qdg/h®, the mo-
mentum density associated with thide. The two formulas
differ by a factor ofm,/mj . Using (5.5 and(3.2), the ex-
pression forDy in (1.2) in terms of the functionf(x) for
VT=0is

Do=16/37%?) f i f(x)x¥%e *dx. (5.6)
0

If the f(x) for Vc=0 is calledf{(x), thenky/c is given by

kT/c=f fT(x)x3’2ede/f f(x)x¥%eXdx. (5.7)
0 0

To obtainDy andky/c at finite temperature, we use the
fact that (n}/m3)(T/Tg) in (4.13 is a small quantity.
Therefore, the solutions to the integral equatidhs) and
(5.2 may be expanded in the form

f(x)=fO(x)+ (mF/mi)(T/T)fL(x)+... . (5.9

Here f9(x) is the solution of the integral equation &t=0.
The term inf! gives the finite temperature correctionffbto
order T/Tg. As a result of(5.8, we may write theF; in
(4.19 as

Fi(x,y)=F2(x,y)+(mi/m3) (TITE)F xy) +... ,
(5.9

where F°(x,y) means F2(x,y)=(x—y)/(1—& %)
X[gi(x,y) fO(x) —hi(x,y)f°(y)], etc. Substituting in(5.1)
and retaining terms up td/T gives the following expres-
sion forVT=0:

Fa(X,y)

f: |F8(X,y)+(mﬁ/m§)(T/TF)

3
+ 2 ’YIFlo(X!y)

(5.10

]dy=1.

The integral equation for the situation whe¥e=0 is the
same ag5.10, except that the driving function on the right
side is x—3/2—bg(x).

When the solution foifT=0 is subtracted from5.10),
the result is

fo
From this equation we see thét(x) is the sum of three
contributions, each linearly proportional to one of the

dy=0. (5.1)

3
Fé(x,y>+i§l yiF2(x,y)

3
P100=2 %flx). (5.12
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Using the functions defined if5.4), the f(x) are the solu-
tions of the three integral equations

F(x) Pg(x) - fo Mo(x,y)FX(y)dy

=—f°(x)Pi(x)+J: M, (x,y)f(y)dy; i=1,2,3.

(5.13

These equations differ from thE=0 equation[Eg. (5.3)]
only in the driving term on the right side. This is obtained
from the T=0 solution. We have solve.13 numerically
by the method used fofr=0 in Ref. 4. The results are given
in Sec. 7.

6. CALCULATION OF THE COLLISION INTEGRAL J«(q)

In this section we evaluaté;(q), the part of the colli-
sion integral produced by the temperature gradient in the
solvent®He and equal to the term proportional 9 ¢') in
(3.3). J;(q) is needed to calculate the driving termbs(x)
on the right side of théHe Boltzmann equatiofb.2):

Jf(Q):(ZW/ﬁ)f |a%2n4o(1—nNfo)Nio( @ — @f) (e

(6.9

Using the notation of the review paper by Baym and
Pethick! we find ¢;=— 7V (s)(p-VT)/(m3T), wheres is

the reduced energy/kgT, ande is measured from théHe
chemical potential. The quantity is a characteristic relax-
ation time, defined more precisely below. The dimensionless
function ¥ (s) is odd in s, ¥(s)=—¥(-s). Although it
may be calculated exactly from an infinite seri®$,it is
simpler to use the approximate expression due to Emery and

Cheng’?

W (s)=2s/(m?+s?)+ 156\ /(3—N\)/(272).

+E—¢’'—E’)2dpdq’/h®.

(6.2

This formula is accurate enougftto give the®He thermal
conductivity to about 1%. The pressure-dependent number
Nk in (6.2) is a measure of the angular dependence of the
SHe—*He scattering amplitudeFor s-wave scatteringh i is
unity:

)\Kz(WYlf d cos 8deW( 6, ¢)(1

+2 cos#)/cog 6/2),

(W)= J d cos 8deW(8,p)/cog 6/2). (6.3
Here W(#0,¢) is the 3He—°He scattering probability at the
Fermi surface averaged over spithe angled is between

the initial quasiparticle momenta and, because of conserva-
tion of momentum, between the final momenta as well. The
collision rotates the plane containing the momentapbyhe
characteristic relaxation time is determined by the mean
scattering probabilityf W):
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FIG. 1. Plot of the dimensionless factog and the productT?, whereris
the characteristiéHe—"He relaxation time, versus pressure in ptife. The
dot-dot-dashed curve sy, the solid curve isrT? calculated from Grey-
wall's thermal conductivity data and the dashed curve is fromsthand
p-wave approximation.

FIG. 2. Plot of the predicted thermal diffusion factor e in liquid
3He, ky/c, versus pressure d—0. The solid curve is calculated using the
3He—"He relaxation timer from the thermal conductivity data of Greywall,
while the less accurate dashed curve usksm thes- andp-wave approxi-
mation.

8m/h® bs)=ca(P) | | npo(1—nig) (W' —w)(1

P — (6.4) 3(X)=c3(P) Nto(1—Ngo)( )
m3 (W) (kgT)? 0 Jaso

—AIX)YHA/x)dAds,, 6.6

Thes- andp-wave approximatioff gives\k in terms of ) A dAdSy ©6

the Landau parameters. The valuerotan also be fourrd ~ Where

from this model; however, the exact equatigh.113aand 47 m* |a34|2
(1.2.113¢ in Baym and Pethickrelate r to the thermal con- c3(P)= W —i \(/)V . (6.7
ductivity and\« . Figure 1 shows$ ¢ and the productT? in m3 (W)

the s- and p-wave approximation, as well asT2 calculated  The “He—*He scattering amplitude is weak compared to the
from Greywall's thermal conductivity dafd.The 7T? from  3He-3He amplitude. Consequentlgs(P) is much smaller
thes- andp- wave approximation agrees quite well with the than one. At zero pressure;(P)~0.03.

exact formula. The Landau parametens; , vs, and the To calculatebs(x), we integrated6.6) numerically, us-
specific heat, needed in these calculations were taken froing the Emery-Cheng¥(s). The Emery-Cheng formula
the review article by Halperin and Varoquatix. (6.2) is the sum of two terms; the first terms, which does not

In integrating(6.1) we neglected the momentum depen-depend on\y, and the second term, which is linear in
dence of the®He-*He scattering amplitudéa®y| and re- A\, /(3—\y). Sincef(x) in the integral equatior(5.2) is
placed it Witha84. This simplification is justifiable because linear in the driving terms, the effect of each term was evalu-
the effect ofb;(x) onky/c turns out to be small, a decrease ated separately. The results give the correction toTte®
of agout 0.01 or 2.5% dkr/c. The momentum dependence value ofk;/c as

4 .

\c/)\;‘eacox\gstlg Ereogd"lé]ci:slgn effect of the order ®f T, which (kr/C)7_o=0.3823- C5(P)[0.1045+ 0.39]2\K/(3—>\K)]é i

To integratel;(q), we replacedp by dp,, and choose an ©.8
axis alongk with VT in thexz plane. The integral ovep,, is The result of using6.7) to calculateky/c at T=0 as a
done first and then the integral over agjs The delta func- function of pressure is shown in Fig. 2. The functios(P)
tion causes co8,, to be replaced byn% (E—E’)/(pmk), as is uncertain because it contains, andv} , which are not
in (4.6). Using the same arguments as in Sec. 4, the lowe@ccurately known, especially at high pressures. Based on an
limit for s,=e,/KgT is replaced by—. The result is analysig® of the data of Nakamurat al., we assumed in Fig.

2 thatm} ~m,. Laheurte’s resulf§ for v} at T=0 were
extrapolated above 15 atm.
3i(@) = (87*/1h®)|agh?niorms f (VkgT)-kngo(1
Nl (W —W)(E—E")/kds,dq . 6.5 7. RESULTS AND CONCLUSIONS
The finite temperature correction @Twas calculated
Defining a new axis alongq, and replacingdq’ by by solving(5.13 forfi(x), f%(x) andfé(x). The results are
q'%dq’d cos#'de’, one can integrate ovep’ and cosy’ shown in Fig. 3b as a function of the reductide momen-
analytically. We write the final result in terms efby(x) on  tum x*2. The physically important parts of these functions
the right side of(5.2): are in the region where the Maxwell distributiore™*,
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careful measurement in order to extrapol&dto T=0.
Moreover, terms higher thalV T would probably be appre-
ciable at 0.1 K.

We note that a large positive value af is plausible
because it would indicate that* increases at large momen-
tum transferk toward the much largetHe—*He amplitude.
With a positiveag, DT decreases with temperature toward
the measurements &f T by Vvedenski and Peshkbwat 0.5
K. They are~5 times smaller than th& =0 Fermi liquid
predictions?

On the other hand, we may compaa* to the
3He—"He interaction in dilute solutions diHe in superfluid
“He. The original ‘BBP” interactior™ has the formV(k)
=—V, coskdlt) with the lengthd~3.16 A. The quantity
V, is similar in magnitude t@3*, although the interactions
are opposite in sigry,~60 K cnt/mol as compared ta3*
~30 K cn/mol, both at zero pressure. #* had the same
dependence ok asV(k), expanding the cosine would give
as=—(ppdlh)?2~—3.1. If ag were this negative, the
T/Tg term would increas®T by 30% between 0.05 and 0.1
K. Since the measurements BfT by Vvedenski and Pesh-
kov at 0.5 K are smaller than the=0 Fermi liquid predic-
tions, there would be a maximum DT between 0 and 0.5
K. This effect would be measurable.

Similar conclusions apply to the temperature variation of
kr/c in the Fermi liquid region. The results fof°(x),
f1(x), f3(x), andf3(x), whenVc=0 are shown in Fig. 3c.
When used to calculate;/c, the result is

kr/c=(kr/C)r—o—(m3/m})(T/Te)[2.194y,
+1.057y,— 0.055y], (7.2

FIG. 3. (a) The equilibrium Maxwell-Boltzmann distributioxe™*, plotted
against the reducetHe quasiparticle momentum®?=q/(2m; kg T)*2 (b)
The solutions to the integral equatiort5.3) and (5.13. The function

Oy 3 - ) - o _ ) _
f (x) is theT=0 solution qf the redgceﬂﬂe Boltzmgnn equat|10f6.3) for where the value aT=0 is given in(6.8) and illustrated in
an isothermal concentration gradient. The functldrisx), f3(x), and

fé(x) give the corrections t6°(x) at finite temperaturéc) The same ag), Flg. 2. The _numerlcal coeff|C|ents_ n th—_é/TF term wer_e
but for a temperature gradient at constant concentration. calculated without the-b3(x) term in the integral equation
for f9(x). This means that they are subject to a small
pressure-dependent error 612.5%.
o ) The dominant effect in th&/Tg term in (7.2) is, again,
shown in Fig. 3a, is large. From tﬁé(x) and(5.6), (5.8,  due toas andy,. We expect a decrease kg /c with tem-
and (5.12, the diffusion coefficient in the Fermi liquid re- herature ifes is positive. The thermal diffusion ratio has

gion below 0.1 K is given by been measured by Dandache and Lahéum¢ween 0.6 to 2
K. This value is well outside the Fermi liquid region but
DT=(h/m}) Te(vs/v3)40.4461m3/my) — (T/Te) kr/c is negative, about-10 for c~2%, consistent with a
X[2.127y;+ 1.479,+0.337%3]}, (7.0 positive @5 or a maximum inky/c between 0 and 0.6 K.
Using arguments from irreversible thermodynamics, Dan-
where they; are defined in terms of the; in (4.10. As  dache and Laheurte have linked the negaliyéc at high
noted in Sec. 2g, and a3 are smaller than 1. The most  temperatures with the dependence of the thermal conductiv-

likely to be important isas, the coefficient ofk? in [a®4. ity on the*He concentration.
This also has by far the largest coefficien{hl): it appears In summary, solutions ofHe in liquid 3He have a
as 2w in yy. simple relation between the low-temperature limits for the

If |a®) is regarded as the Fourier transform of akinetic coefficientsD andk; and the thermodynamic prop-
distance-dependent potentigr), a plausible length scale in ertiesv; andmj . The limit for DT and its finite tempera-
v(r) would be~7#/pg. This implies anag of ~1. Setting  ture corrections are given if¥.1), while k; is predicted in
as=1in (7.1) gives a decrease IDT of about 15% between (6.8) and(7.2), and shown in Fig. 2. If one can overcome the
0.05 and 0.1 K. Such a small variation would be quite diffi-experimental difficulties in making measurements at suffi-
cult to measure. On the other hand, if the length scale wereiently low temperatures, where the solubility tfle ap-
as large as 24/pg, as would be 472. The T dependence proaches a few parts per millidfi1>1%2¢ these results
of DT below 0.1 K would then be so large as to requirepresent a unique opportunity to test Fermi liquid theory.
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Diffusion in liquid and solid solutions  3He—*He
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An exact expression for diffusion time, which depends on the interaction rates for particles of
not only different, but also of the same species, has been derived from the system of

kinetic equations. The result is valid for particles with arbitrary statistics and energy—momentum
relations. The derived general relations are valid for investigating diffusion in liquid and

solid ®He—*He mixtures. The contribution of interaction between quasiparticles of the same type
to the diffusion coefficient and effective thermal conductivity of superfluid solutions is

analyzed. The calculated values are compared with experimental data. The calculated diffusion
coefficient of*He—*He solid solutions differs from the previous theoretical results. A

comparison of the obtained diffusion coefficient with experimental data makes it possible to
determine the numerical value of the energy band width for impurity quasiparticlesl99@
American Institute of Physic§S1063-777X97)01005-0

INTRODUCTION For example, for a gas of thermal excitations whose chemi-
o o o . cal potential is zero, this situation is realized by creating a

The determination of diffusion coefficient is a traditional ;gnstant temperature gradient.
problem for mixture of classical gases and condensed media |, the state under investigation, the existing steady-state

for which the quasiparticle description is applicable. In Ordergradients of partial pressures of the components lead to qua-
to calculate the diffusion coefficient, we must solve the sysxjnarticle fluxes

tem of kinetic equations by using various approximations in
view of the complexity of this system. As a result, the diffu- . Px B
sion coefficient is usually a function of the time of interac- 1k~ _|:2a,5 P haV P, (k=a.B), @
tion between particles of different species only and does not

contain the equilibrium stabilization time in the solution Where

components. The method developed here makes it possible

to obtain a compact exact solution for the problem formu- jk=f pkfdly (2
lated above. The expressions for diffusion coefficient ob-

tained by us depend on the time of interaction between paiis the flux density for thé&th component of the mixture,

ticles of the same and different species. The inclusion of the 1

latter particles affects significantly the value of diffusion co- P== f p-vf,dl, 3
efficient in some cases. The obtained general expression is 3

valid for particles with an arbitrary statistics and energy—the partial pressure of quasiparticles,

momentum relation. This allows us to use the obtained re-
sults for mixtures of classical gases as well as for quantum-
mechanical quasiparticle systems.

In this research, the general relations are used for ar}1 .
the density of the kth component, p=p,+pg,

analysis of diffusion in liquid and solid solutions of helium £/— 9f [ 9e. is the derivai f1h distribution f
isotopes. The theory of quantum diffusion in crystals was _k_[? k/d#(1S the derivative of the energy distribution func-

constructed by Andreev and LifshitQuantum diffusion in t'o_n’ d/l“k tthhe leIeTen;[ of _thet_ Iphasfth "0'“”?9' land
3He—He solid solutions was observed for the first time byV'_aS' Jp the velocity of quasiparticies of triespecies. In
, 2-4 the steady state, the suR),+ P, of the partial pressures is
Esel’'sonet al: B i
assumed to be constant. It should be noted that expressions
(3) and (4) are universal for a gas of thermal excitations as
well as for quasiparticles with a nonzero chemical potential.
1. SOLUTION OF KINETIC EQUATIONS For quasiparticles with arbitrary energy—momentum rela-
tions and chemical potentials, formul&?) and (4) lead to
Let us consider a stationary nonequilibrium state of twothe generally accepted relations.
componentsy and B of a gas mixture in which the number A relation between the matrix of diffusion timely, and

densities of quasiparticles are functions of the coordimate diffusion coefficientsD can be derived by comparing for-

1 2¢7
P="3 J pefedly (4)
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mula (1) with definitions of diffusion coefficients. These o .
definitions are different for different physical systems and  Jkk#(Pw) = f Wi Pic» Pl Pk ") Fo(P{ L1 = For(Pi) }
will be considered below for various cases.
The diffusion coefficient for all existing physical sys- X{L= fo(P) HL = For(P" ) Hgr(pr) + ¢(p”)
tems can be written in the form ' a1
—(p) — ¢(p)pdldl’ydl™.

2

D=tp7o, © The plus and minus signs correspond to bosons and fermi-
where up is the characteristic velocity whose analytic ex- ons, respectively. According %8), the partial pressure gra-
pression is determined by the energy—momentum relation fadlient for quasiparticles with a nonzero chemical potential is
particles in the mixture and by their statistics, anglis the  given by
characteristic diffusion time. It will be shown below that the
latter quantity can be written in the general form for gases
with arbitrary statistics, energy-momentum relations, and
chemical potentials.

According to formulag1) and (2), the expression for a

VP =nV (10)

T,M|'

It is convenient to write systerf®) in a compact matrix
form

diffusion coefficient can be obtained from the solution of the D Py -
system of kinetic equations, which can be written for a sta- 8 [P E‘J|g>’ (12)
tionary state in the form
y where
Vi &—rkz :E Ja(fie, £1), (6) vanzt\ ] 0\
1=ap |‘Pa>_ 0 vl(P,B>_ Uﬁznil ,

where J,(f,f|) is the collision integral, which is a func- b
tional of the distribution function. 01

For definiteness, we consider below the diffusion in a 9= gz>' (12

system with a conserved number of particles. A generalizaére wo-dimensional ket vectors. and
tion to the case of excitations will be made at the end of this '
section. . _ J=S+1 (13
We seek the solution of syste(8) in the form _ . _ .
is the operator matrix which can be conveniently presented

fi=fox+ ofk, (7)  as the sum of the matrix
wheref, is the locally equilibrium distribution function for A 0
thekth component whose chemical potentigl is a function s:( “ ) (14
of the coordinate, and 6f is a small correction which can 0 Jps
be represented in the form of collision operators for particles of the same type and the
St =—f 0 - (8) ~ matrix
Linearizing the system of equatiori6), we obtain the ~ [Jap Jap
X ’ . ; . | = . (15
following system of linear integral equations in the sought Jsa Jpa

uantitiesgy : - . .
q G of collision operators for particles of different types.

m 3 ey N The scalar product of arbitrary two-dimensional bra vec-
Vi T, kB (Gt 1) tor (] = (¥.(P.); ¥5(Ps)| and ket vectory) is defined as
kl=a,8; k#I. 9)

Who= 3 smdxor=— S [ viudadr
Heren, is the number density of particles of théh species k=a.p k=a.p
and J,, are the linearized collision operators for particles of (16)
the same componenk€1) and of different componentk( where the subscript “1” on the vector indicates that it has
# |). The action of these operators on the arbitrary functioronly one component.
of momentumi(py ) is determined by the form of the col- System(11) is a system of nonhomogeneous linear inte-
lision integral. For a binary collision integral with the tran- gral equations. The sought solutipg) must be orthogonal
sition probability densityw,,(px,pi|px.p/), for k # | we  to the solution of the system of corresponding homogeneous
have equations:

J|e1)=0. 17)

The solution of systenil7) normalized to unity can be writ-
X{1+fodp} 1= faP)H{1xfo(p))}  tenin the form

X{lp(pl’d)—(/r(pk’|)}df‘|dF{(dF|'; log)= i
for k=1, we have 1 Jp

Jkllﬁ(ka):JWkl(pk,pl|pﬁap|’)f0|(l3l)

paz>_ 18
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The vector¢,) corresponds to the momentum of a two- the definition(16) of scalar product. In the complete system
component system of quasiparticles. The physical meaningf vectors constructed in this way, the exact solution for
of solution (18) boils down to conservation of the total mo-
mentum of the two-component system of colliding quasipar- S -1 25)
ticles. It should be noted that the role of a solution of Eq. b (1+9S) -

(17) can be played by other vectors corresponding to laws of

conservation: of the number of quasiparticlesth a non-  can be reduced to the form

zero chemical potentigl of energy, and of thex- and o 1
y-components of the momentum. However, these vectors can - _ _ Tis-1
be disregarded since, according(fd), the sought solution o {lzz n,nzr:3 an({1+S) )nnrlan] ' o
|g) contains only the-components of the vectq. - o~

It is convenient to write the formal solution of system Here the square matricésandS contain the matrix elements

(11) so that the orthogonality condition

(T)nn’zlnn’ ; (g)nn’zsnn’ ) (27)
(9le1)=0 19
i ] _ _ _ where
be contained in the expression of the solution. For this pur- . ~
pose, we introduce the projector operatéyto the subspace Lo =(@nlllen); S ={@n|S @n)- (28

orthogonal to the vectdrp,): : - . .
g oepa) While deriving expressiori26), we took into account rela-

Pn=1-7, where 7:=|¢1){ 1. (200 tion (17).
Matrices(27) are infinite-dimensional and nondiagonal.

Then the formal solution of Eq.11) can be written in the .
Consequently, the exact soluti@g@6) does not lead to an

form
explicit analytic expression forp. However, solution26)
o _ dPy makes it possible to analyze various limiting cases, to find
=9 -1y _ !
19)=7n(3 )f”kg,ﬁ L iz’ @1 the minimum @p min) and maximum §¢p . values of

7o, t0 obtain correct interpolation formulas, and to carry out
computer calculations for specific physical problems.

For example, in the case of rapid stabilization of equi-
librium between particles of the same species, when the in-

Substituting solutiori21) into expressiori2) for flux density,

taking into account relation&) and(8), and comparing the
obtained result with definitioril), we obtain the following
expression for the diffusion time matrix:

equalities
daa:? ™, daﬁzdﬁa:_TD; dﬁﬁ:% D> (22) Snn/>|nn' ! (29)
a B
where are satisfied, from relatio(26) we obtain
A7 1 _ _
7o=—(¢2l3 Yl ¢z) @ romrg e o=l A 30
is the characteristic diffusion time and
where
1 p,B Paz
0 s Pa Pa: 4 A=l kl=ap kL. (31)
the diffusion vector orthogonal to the vectas,). Here and below, the normalized mean value of an arbitrary

For the sake of definiteness, all calculations were mad@PeratorR is denoted by
for quasiparticles with a nonzero chemical potentiaSimi- 1
lar calculations for the diffusion component of flyk) for (R)=— 1(pPidRIP)1; k=a,B.
quasiparticles with an arbitrary chemical potentia=0 or Pk
wn # 0) give the same result22)—(24). Thus, formulagl)  According to the momentum conservation law, for collisions
and (22)—(24) for the diffusion component of flux are valid we can write
for quasiparticles with any statistics and any chemical poten-

tial. -1_Pg -1
=, (32
[¢3

2. EXACT AND LIMITING EXPRESSIONS FOR DIFFUSION Pr.o.ceedlng from _the faqt .that the operatérand| are her-
TIME mitian and negative definite, we can prove that

In order to obtain an exact expression for the matrix 0= 7D min- (33
element(23), we introduce the complete system of orthonor- | the opposite limiting case of slow stabilization of

mal two-dimensional vectorkp,) (heren=123,..). We  gquilibrium between particles of the same species
take (18) as the first vector an@24) as the second vector. (g  _.0), 7, attains its maximum value

The remaining vectors can be constructed by using the stan- )

dard procedurésee, for example, Ref)%aking into account 0 max={ @21 " ¢2). (39
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In the case when the number density of theomponent is (07 _ 41 39
. . . . Tk =t k- (39
relatively low (p,<pg) and the time of interaction between

particlesa is large J,,—0), we obtain from(26) The correctness of theapproximation(38) ensures the ful-
() filment of the momentum conservation law in collisions,
70l05= T » (35 according to which
where
o . Ik Prz)1=0.
Tap ™ (e (36) Relation(38) contains only the-component of the momen-

It should be noted that we average frequency(3t) and tum since, according ti1), the sought solutiofg) contains

time in (36). According to the Cauchy—Buniakowski in- only thez-component of the vectqp.

equality, the time defined b§81) is always smaller than the The diagonal elements in matriz5) can be replaced by

time defined by(36) for any momentum dependence of the corresponding frequencies of collisions of partickes

Jap-In th(e)cas(eo)wheﬂaﬁ does not depend on the momen- With particlesl:

tump,, To4=Tep, While 7p=7p min. If, however, the op- S PR — . n

eratord, 4 léeper'leds om,, the stabilization of equilibrium Ja="ta (P kl=a,f; k2l (40

between particles of different species depends on the rate of The functionst,'(p,) andt,*(p,) are defined by the

equilibrium stabilization between patrticles of the same speeperators),, andJy,, respectively. The following definition

cies. In this case, the situation is similar to that in a phonon-of collision frequency fok # | andk=1 is most convenient:

impuriton system of superfluid solutions of helium isotdbes

and in phonon systems of solids. tat(p)=—+—— 7Y,
In these systems, a two-stage mechanism of relaxation (Vi)

between particles of different species operates. At the firsfhere,,(p,) is the transport collision frequency which can

stage, particle@ mainly interact only with those particles  pe written in the standard way by using the collision integral.
for whose momenta the operatdy; assumes the maximum for example, for a binary collision we have

value. At the second stage, the stabilization of equilibrium in ,
the mixture is determined by the interaction between par- B PPy 1
ticles a. This is due to the fact that it is more advantageous Vk'(pk)_f (1 PKPK Wt (L= o P} L
for particles a for which the value ofJ,; is minimal to ) , ) ,

interact not with particlegs, but with those particlea which = fok(P)I[1 = foi(py) 1dlydldTy (42)

are already in equilibrium with Egﬁ-fomponenp It should be noted that the relaxation time approximation
~_Asarule, the calculation of ;5 doeS)not involve any  gescribes all the limiting cas¢80), (34), (35), and(37) fol-
d|ﬁ|cyltles. As regards. the evaluatlon'ef}g, we must de- lowing from the general solutiorf26) only with such a
termine the operator inverse to the integral operatgy, choice of collision frequency41).
which can be done only by using certain approximations. For The nondiagonal operators of matiik5) acting on the
example, in the case of a Lorentz dashen particles3 are  functions of momenta of particles of the same species give
stationary, and the scattering of particlesis elastic, the  fynctions of momenta of particles of the other type. In con-
action of the operatal, 4 is reduced to the multiplication by  trast to relation(40), this does not allow us to replace the
the expression nondiagonal operators of matrid5) by multiplication op-
Joap="— |Va|0'tn/3 , (37) erators. . .

) . ) We propose here the following model expression for

where o is the transport cross section of scattering of 3nondiagonal collision operators:

particle « by a particleB. Approximation(37) makes subse-
quent calculations trivial. Ju=t (P P 1px 7l 1 Prtic (P (43

Relations(40) and (43) for the operator matrix15) give

_va(Pe) (o)1 1)

R _tfl t—l -1_(0) t—l
3. RELAXATION TIME APPROXIMATION -, L L [Puz) 1P f“fl(pf”' P
) ) . tﬁa|pﬁzlpﬁ T(Bezl<paz‘taﬁ _t,Ba/
The exact expressiof26) makes it possible to propose a (449

model form of th_e o_peraf[oﬂ Ieading_to an in_terpolation It should be noted that expressiof@8) and (44) for the
formula for the diffusion time(23), which contains the re-  gperator matrix(13) satisfy the total momentum conserva-
sults for all of the known limiting cases. tion law (17) for collisions of particles in the mixture.

Fpr the collision integral, for_ particles of the same The model expression8) and (44) for the operator
species, we propose the following model of a correctyagrix (13) allow us to obtain the diffusion timep, as a
7-approximation, taking into account the momentum depensynction of the times of interaction between quasiparticles in
dence of the interaction timg,=tiu(p«) between the par- he mixture proceeding from definitiof23). Carrying out

ticles of typek: calculations similar to those presented in Ref. 9, we obtain
—1, .1 -1/ 0 —1/2—1
Jie= e H o APk 1T Pd ok Pt (39) P () Pa (0)
Where TO=1Tp min+7(7’al3_ Taﬁ)+7(7-ﬁa_7— al (45)
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where parameters. It should be emphasized that the basic concepts

ra=(R+ (R t_1>2(R t‘lt_l)‘l' of the theory! and a number.of its results remain vaIi_d even
KITATR/K T AT Kk /KA Kk T 7k today. They formed the basis of subsequent theoretical pub-

Re=(tgd+tgh) % (46) lications.

I © _ For example, Baym and Ebrérdeveloped a kinetic

N contrast tory”, the timer,, depends on the frequency heory ofSHe-*He solutions in the low temperature region,

ti of interaction between particles of tyjge According to iy which the roton contribution can be neglected. This theory

(45), such a dependence can only increase the diffusion timgiq not take into account the interaction between phonons,

7p. This becomes obvious if we write relatida6) in the 514 jts results described experimental data only for concen-

form trated solutions.
Ta= 1O+ ((1— 70t 2R _Subff_qlgent experimental and  theoretical  investi-
gation§’ made it possible to describe kinetic phenomena
(1= 7t H Rt A Rt t i - (47)  in the phonon—impuriton system of superflfide—*He so-

lutions to a high degree of accuracy. The kinetic theory of
solutions was developed further in Refs. 9 and 17, where
relaxation processes in a three-component gas of quasiparti-
cles (phonons, rotons, and impuritoneere investigated.

In this section, we shall derive expressions for diffusion
coefficients and effective thermal conductivity of superfluid
3He—*He solutions proceeding from the general relatitbhs
(22) and(45), compare the theoretical values with those ob-
To=(Ry)at (Rt ARt 1, (48 served in the entire experimental temperature range, and ana-
lyze the contributions from interaction of quasiparticles of
the same type to the diffusion coefficients of superfluid
*He—*He solutions.

_ (Ra) o For further analysis, it is convenient to single out three
TD_(Rat;1>a' (49 temperature regions in which the physical processes deter-

h ¢ | i h | . . mining diffusion in the solution are different. In the low-
Thus, formula(45) generalizes the result obtained in temperature regionT(< 0.6 K), in which the contribution of

Refs. 6 and 7 and leads to the expression following from the g can be neglected, the thermal conductivity of solu-
exact solution(26) in all the limiting cases. tions is determined by diffusion in the phonon—impuriton

system. According to the results obtained in Ref. 1, the ef-
4. DIFFUSION AND EFFECTIVE THERMAL CONDUCTIVITY fective thermal conductivity in this temperature range is
OF SUPERFLUID SOLUTIONS 3He-*He given by

Expression45) leads to all the limiting case80), (34)
and(35) considered above. If the tintg; is independent of
momentum, relation (45, as well as (26), gives
7D~ 7D min-

In the limit of low density of one of the components
(e.9.,po<pp), formula (45) leads to the following expres-
sion corresponding to the approximation used in Ref. 7:

If t,, is independent of momentum, ang;—0, formula
(45) leads to the result obtained in Ref. 6:

According to the Landau—Pomeranchuk thettthe ki-
netic properties of superfluid solutioisle—*He are deter-
mined by a three-component gas of weakly interacting qua- ~ eff~ Diph( Sph
siparticles: phonons, rotongthermal excitations and

impuritons (°we quasiparticles in the solution Here D;,, is the diffusion coefficient of impuritons in the
Khalatnikov and Zharko¥ formulated the fundamentals iph 5 ’
of the theory of solutions in 1957. At the time when the phonon ga nthe entropy of the phono.n 9a%n andp, are
1 y i i he densities of the phonon and impuriton gases defined by
theory*! was constructed, the required set of experimenta 4), n, the number density GtHe atoms in the solution, and

. - 4
data on superfluid solutior$le- He had not bee.n accumu- -, the thermal conductivity of the impuriton gas. The expres-
lated, and some of the results available at that time proved tg. /¢ . . follows from relations(1) and (22), and the
ip ’

be incorrect. For example, the f|_rst results on the EEﬁem'v('%:lefinition of the diffusion coefficient for a superfluid solution
mass of a roton and the assumption concerning the nondec?g/ee for example, Refs. 18 and)19

nature of the phonon spectrum of solutions were erroneous. ’ '
For this reason, the thediydid not provide, for example, the
time of three-particle phonon processes ensuring rapid lon- . _zi Weill) Pph (phi)
gitudinal relaxation in the phonon system, and the diffusion iph™3 m; 1(1|1), ppnt Pi ™
coefficient for a solution was determined in the Lorentz gas

approximation(37). In this case, rotons were regarded aSwheres; = p?/2m; is the kinetic energy of an impuriton, and
stationary particles. However, subsequent experiments de,(Dpri) is defined by formula45) in which the subscripts
voted to an analysis of the roton spectfdrproved that the and 8 must be replaced by the subscripts’** (impuriton)

average thermal velocity of rotons is even higher than thgnq “ph” (phonon. For nondegenerate solutions, we have
thermal velocity of impuritons. For this reason, the agree-

ment between the theoretical and experimental values in the 2 1
first theory! constructed in analogy with the kinetics of rar- £ 1(&il1) _
efied gases was attained by introducing a number of fiting 3 1(1/1)1

21
E+Ki. (50)

PonT pi
Pph

(51)
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fective thermal conductivity from diffusion in the impuriton—phon@uarve

1), roton—phonor{curve 2), and impuriton—rotor{curve 3) systems. Curve

4 corresponds to the effective thermal conductivity values calculated by

takin_g intc_) account contributions from all quasiparticles; experimental datgr|g, 2. Temperature dependence of the effective thermal conductivity of a

obtained in Ref. 22 are presented by solution with different concentrations=1.39 10" * (curve 1), 1.32 1073
(curve2), and 1.3610 2 (curve 3). The results of calculations taking into
account the contributions from all types of quasiparticles are depicted by
solid and dashed curves. The latter correspond to calculations in the instan-

Let us consider the relation between the times appearingnneous relaxation approximation in the solution components; experimental
in (45). According to Refs. 13 and 20, the phonon—impuritonresults obtained in Refs. 22 and 23 are presentediand ©.

interaction time is defined as
tori = 13.60,/CX Py, (52

wherex = n;/(n; + n,) is the solution concentration, arwd

10 10
<
»
§ <
5 10 7
o £
v L
D
‘ (@)
10 1 1 *
05 1,0 T.K 1,5 2,0
FIG. 1. Temperature dependence of the effective thermal conductivity of a
solution with the concentration=1.39 10" 4. The contributions to the ef- 1031 | |
0

1
S5 1,0 T.K 15 2,0

phonon systentsolid curve$. In this case, the solid curves
are in better agreement with experimental data. It should be

"’_‘ndlpph are the Ve||OCIty and mome?tL_Jm ofa phr?nor;], reSPECHoted that the reduced results in the temperature range under
tively. A noticeable dependence of tint82) on the phonon . estigation are in accord with the results of calculations

momentum necessitates the inclusion of the time of interacénd conclusions drawn in Refs. 6. 15. and 16.

tion between quasiparticles of the same type. The impuriton— In the region of intermediate temperatures

impuriton interaction timé; ~ x~* and is much smaller than (0.7 K<T<1K), in which the impuriton contribution is

iph) 21 - ian i i ;
7hii-2* For this reason, relaxation in the impuriton SysteMgmall, the effective thermal conductivity is mainly deter-

can be regarded as instantaneous, and the second term jfi,qq by diffusion in the gas of thermal excitations. Diffu-

expressior(45) can be omitted. The decay phonon spectrum;g, in 4 two-component phonon—roton gas was investigated

permits three-particle phonon processes, ensuring relatively, ihe first time in Ref. 24. Subsequently, it was proted

rgpld s’gablllgatlor? of eql,!lhbnum for phonons moving in a {yat this process leads to heat transfer in view of the differ-

given direction with the time ence between the energy—momentum relations for phonons
toh pi=15p 4CH (U + 1)2T4pph, (53 and rqto_ns. An ana_lysis based on formulds (22) and(45)

and similar to that in Ref. 19 gives

2
. . . ~ M_ i (rph)
The relation between the tim&82) and (53) is deter- Keft™ Kp T pont pr | Pon Pr ™ -
mined by the solution concentration and temperature. Figure
1 shows the values of effective thermal conductivity of aHereS; andp, are the entropy and the density of the roton
solution withx=1.39 10"* calculated by formulg50) and  9as, and5 P is defined by formula4s) in which the indi-
measured in Ref. 22. The contribution mffor such a solu- cesa and B should be replaced by “r'(roton) and ‘ph”
tion can be neglected. In this case," virtually coincided  (Phonon. Expression(54) is transformed to the result ob-
with 78PM " which indicates rapid relaxation in the phonon tained in Ref. 19 if we make the timeg, ; andt, in (45)
system of the solution. As the concentration increases, thi€nd to zero.
time (52) decreases, and the finiteness of the tif® be- In analogy with(52), the phonon-roton collision fre-
comes significant. quencyt,;hlr depends strongly on the phonon moment§m:
Figure 2 shows the observed and calculated values of t=1_ph
effective thermal conductivity for solutions with different i~ Pon-
concentrations. It can be seen from Fig. 2 that as the concen- However, the characteristic phonon—phonon interaction
tration increases in the temperature range under investigatiaime defined by (53) is considerably smaller than the
(T<0.6 K), the values ofxet With 74 PV=7P" (dashed phonon-roton interaction time in the given temperature
curves deviate from the values calculated by formu#b) range. Hence we can neglect the contribution from the sec-
taking into account the finiteness of the relaxation time in theond term in(45).

where p, is the density of*He in the solution, andi,

= padclcp,. oy _ L _PorPr (54)
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According to Khalatniko® the phonon—roton collision contributions of the second and third terms(86) can be
frequencytghlr is assumed to be independent of the rotonneglected. The inclusion of finiteness of the timgsand
momentum, which allows us to omit the last term (#b)  t,, increases the calculated value by approximately 10%,
also. As a result, the phonon-roton diffusion tin‘@hr) is  thus improving the agreement between the theory and ex-

determined by its minimum value perimental results. It should be noted that a relatively small
. (ir) @ir) _
(o) _ (o) _ (01, 01 55 difference betweerr;, and 7, iS due to a weak depen.
™ = Tomin= (Tpir Teph ) - ( dence of frequency58) on momentum. Dashed curves in

Curve2 in Fig. 1 is the result of calculations based on Fig- 2 correspond to the results of calculations with
formula (54), which indicates the existence of a wide tem- 0= Tomin, While solid curves correspond to the values of

perature region in which{ P must be taken into account, 7o calculated by formuld4s). _ _
In this region, the value 0f<(Dr PN determines the effective It would be undoubtedly interesting to measure the dif-

. . . . 4 . . .
thermal conductivity completely. This proves that diffusion fusion coefficient for superfluidHe—*He solutions with dif-

between thermal excitations must be taken into Consideratiop_?rent concentrations up to very high values for which the

in an analysis of thermal conductivity of condensed media. IMe Tii becomes comparable o . A comparison of such
At high temperaturesT(>1 K), the kinetic properties of experimental data with the results presented here would lead

superfluid solutions are mainly determined by rotons and im{© the dependence af, on the relaxation rate in the impu-

puritons. According to Khalatnikotf the effective thermal 'ton gas.
conductivity in this region is given by
prtpil2 1 5. DIFFUSION IN 3He—“He SOLID SOLUTIONS
Keft=Dir (Sr ) —+ kit K, (56) . e
pr n; A phenomenological theory of quantum diffusion of

where k, is the thermal conductivity of the roton gas. Pro- *He impurity atoms in solid solutions of helium isotopes was
ceeding from relationgl) and(22), and the definition of the proposed for the f|_rst tlme by Andreev and L_|fskﬁt§'hes_e )
diffusion coefficient of a superfluid solutiofsee, for ex- authors regarded impurity atoms as delocalized quasiparti-

ample, Ref. 1§ for the diffusion coefficient of an impuriton cles which move virtually freely through the crystal. Thus,
in a roton gas we have quantum diffusion of impuritons iAHe—*He solid solutions

was predicted in Ref. 1. Subsequent theoretical investiga-
e T tions were carried out in Refs. 26—30, in which special at-
o, m O (57 tention was paid to an analysis of the phonon-impuriton
interaction. This interaction leads to a strong temperature
dependence T °) of diffusion coefficient. Such a depen-
dence was observed for the first time in Refs. 2—4 and made
it possible to carry out a quantitative comparison with the
theory.

In this section, we calculate the diffusion coefficient for
solid solutions proceeding from the general technique de-
scribed in Sec. 1. The expressions obtained for diffusion co-
efficient differ in form from the results of previous publica-

o wv? -1 tions and contain parameters that can be determined from
ti’rl(pi):AZnr ( f exp( - F) dvr) other experiments. The method proposed in Secs. 1-3 makes

0 it possible to compare the parameters determined from dif-
2

m wo?\ (11 u ferent experiments.
XJ' exp| — ZT) f > Sir? 6 > (v,—v;)? Let us consider a stationary nonequlibrium state of a
0 -1 He-*He solid solution in which the number; andn, of

where the timerl") is defined by(45) in which the indicesy
and B8 must be replaced by the indices™ and ““ r"’, re-
spectively.

Relation(57) is transformed into the result obtained in
Ref. 19 if we make the timefs; andt,, in (45) tend to zero.

According to the results obtained in Ref. 25 and defini-
tion (41), the frequency of impuriton—roton collisions can be
written in the form

Pi2 _ 12 impuritons with different spin projections per unit volume
+ o sir? 0) d cosédv,, (59 are functions of the coordinate In this case, the total num-
! ber densityn=n; +n, and temperature are constant.
whereA is the amplitude of impuriton—roton scattering. By definition?? the diffusion coefficienD for impuri-

In the temperature and concentration ranges under invesens with the given spin projectioh is defined by the rela-
tigation the relaxation time obeys limiting expressions whichtion
are determined by the absence of equilibrium in the impuri-

ton gad?' (m;>t;;) and by rapid relaxation in the roton UTZ—Dsm' (60)
gas''8(r,,<t,;). Under these conditions, the general expres- Ny
sion (45) gives where

T(IDir)zTgmax=<tir>i- (59) UT:ijT_l (61)

The results of calculations of effective thermal conduc-is the average rate of diffusion flow of impuritons with the
tivity for solutions with x=1.39-10"% on the basis of for- spin T,j the diffusion flux density, whose function depen-
mula (57) are presented in Fig. (curve 3). In this case, the dence orf, is defined by formuld2) with k=1, andp, the
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normal density of impuritons with the spihy which is de- First, the finite energy band width for impuritons in a
fined by the general expressidd). The relation between solid solution leads to the replacement of by A for
D, and the matrix of diffusion times is defined by formula A<T.
(1) in which the indicesee and 8 must be replaced by the Second, expression (51) contains the factor
indices and |, and we must take into account the fact thatpyn/(ppntpi), Which determines the temperature depen-
Vn,=-Vn,. dence ofD; ,, to a considerable extent. Such a factor can be
At a constant temperature and in the absence of a depedue to dissipative flow of phonons directed towards the dif-
dence of interaction of quasiparticles on the direction of spinfusion flow of impuritons so that the total momentum is
the phonon system is in the equilibrium state. Consequentlygqual to zero.
in order to find the diffusion coefficierd, as a function of Third, in contrast tor%, in (69), the timer{ P in (45)
impuriton—impuriton and impuriton—phonon collision fre- is a function of the frequency of collisions between particles
quencies, we must solve the system of only two kinetic equaef the same typét;; andt, o). The difference in the contri-
tions. This system can be obtained from equati¢k® by  butions from the impuriton—phonon interaction to the mass
introducing the terms describing collisions of impuritonsand spin diffusion coefficients of liquid solutiorisle—*He
with equilibrium phonons into the right-hand sides of equa-was described for the first time in Ref. 19.

tions(11). As a result of solution of this system of equations
according to the algorithm proposed in Secs. 1 and 2, for th
diffusion coefficient of an impuriton with the spin we have

1<8||1>1
T3, m S

Hereeg;=p; 2/2m; is the kinetic energy of the impuriton, and
75 is defined by relatior§25) in which

(62

I+ Jion

s (It oh . 63
Jiph I+ dipen

. (3 O

= . 4

SN ©

Considering that phonons interact identically with impuri-

Let us consider the temperature dependence of the dif-

éusion coefficieniDl(Sgh For this purpose using the momen-

tum conservation law, we write{%) i ph iN the form

7'i(pr)1: Tphi Pi /Pph- (70)
According to the general expressiof), we have here
2 A
pPi= 5 T nym;, (71)
2w T4
Por= 15 5 (72

whereu is the averaged velocity of longitudinal and trans-
verse sounds in solid helium. Substitutit®) and(71) into
(69), we obtain

tons having different spin projections and assuming that the

momentum dependence of the frequency of collisions be-

tween impuritons is weak, we obtain

T

(0)~

7s= [Tn + Tiph (65

where

= (=) (66)
is the frequency of collisions between impuritons and

|ph —(Jrpn 1= = (Jpw (67)

the frequency of collisions of impuritons with phonons.

For dilute solutions in the region of relatively high tem-
peratures, the impuriton—impuriton collision frequenzr{y1
in (65 can be neglected. In this cade, is mainly deter-
mined by the diffusion of impuritons in the gas of phonons
with the coefficient

1<8||1>1
<1|l>l i
While calculating the scalar products appearing 68)

and(68), we evaluate the integrals within the impuriton band
width A<T. Ultimately, relation(68) gives

2 A )

§m o

(0)
h.

(68)

— 7

(s) _

iph= (69)

This result differs from the diffusion coefficie®1) for
the phonon— impuriton system of liquitHe—*He solutions.
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e 73
The time Tg%? has the dependence * typical of Ray-

leigh scattering, whilg, is proportional toT* in accordance
with 9(72) Ultimately, according to(73), we have D%,
~T77

Such a strong temperature dependence was obtained for
the first time in Ref. 1 proceeding from phenomenological
considerations. According t¢69), the temperature depen-
dence ofD{%), is determined only by}, It follows from
(70)—(73) that in this case eight powers of temperature are
associated with phononghe normal phonon densrtyjph
~ T*and the frequency of collisions of phonons with impu-

rrtonsTf)%i) ~ T%), and one power is associated with the nor-
mal density of impuritong71).

Expressiong69) and (73) differ in the form of notation
from the results presented in Ref. 1 and 26—30. Reld#@n
contains parameters which can be determined experimen-
tally.

For example, the trme( / appearing in(73) can be de-
termined from the thermal conductrvrty data for solid solu-
tions *He—*He 3! The contribution of the phonon—impuriton
interaction to the effective thermal conductivity is deter-
mined by the first term on the right-hand side of equality
(50). According to(45), for dilute solutions withx<10"3,
the time rp=7{{) in (50). Using the experimental results
obtained in Ref. 31, we have
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fusion coefficient to the effective thermal conductivity is de-
termined by taking into account intrinsic times over in the
entire temperature range for which experimental data are
available. The theoretical results are compared with experi-
a mental datasee Figs. 1 and)2

10-6" The general results obtained in Secs. 1-3 made it pos-
sible to calculate the diffusion coefficient féide—*He solid

o solutions. The obtained expressitfB) differs in form from

the results of previous theories and contains parameters that
can be found from other experiments. A comparison of the
theoretical results with experimental dataallowed us to
determine the numerical value of the impuriton energy band.

D,, cm2/s

107L 1 1
0, 1,0 T" K" 1.5 2,0 The authors are grateful to V. N. Grigor'ev for fruitful
' discussions of a number of problems associated with diffu-
FIG. 3. Dependence of the diffusion coefficidd on reciprocal tempera-  SION in solid solutions of helium isotopes.
ture for a solution with the concentration=6-10"5; the experimental re-

sults obtained in Refs. 2—4 are represented_hythe solid curve is calcu-
lated on the basis of relatiortg2)—(77).
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QUANTUM CRYSTALS

The properties of vacancies in solid  “He as studied by pressure measurements
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The temperature dependence of the pressure at a constant volume ifHsolinl the low-density

hcp phase has been measured. The measurements are analyzed in terms of a localized

vacancy model and the free Bose gas model of vacancies in solid helium. The results agree
better with the free Bose gas model. On the basis of this model the effective mass of the vacancies
was determined to be 3-5 times the bare mass“4ieatom, which corresponds to a

bandwidth of 1.3-2.1 K. ©1997 American Institute of Physid$§1063-777X97)01105-3

1. INTRODUCTION mally activated vacancies. Although the existence of these

. . . .vacancies is clear, their properties are not. A large collection
There has always been much interest in vacancies in

. .~ of experiments has been carried out, involving charge
both solid ®He and“He. Because of the large zero point or ex 711 10 13-15 .16
motion in helium, a vacancy or free lattice site will have a?nodbl'(%n q aﬁgﬁﬁ;&%ﬁggg&gggts Lahrezt dcizcr;)?ec'g]/ﬁcies
high probability of tunneling to adjacent lattice sites. This ~_. o ge discrep ;
distinguishes helium from other solids in which the vacan-eX'St between the vacancy densities and activation energies

cies are localized at low temperature. When the energy Oglat are extracted from the various experiments, although

18
formation of a vacancy is positive, the vacancies are ther- urns et al. showgd that better agreement can_be found

. ‘ . . when the data are interpreted under the assumption that the
mally activated and will vanish exponentially at low tem-

perature. vacancies occupy a wide energy baficke boson model

. . - . instead of a narrow band.
Theoretical studies suggest the possibility that in quan- We have measured the pressure of stk as a func-

tum solids, vacancies may still exist at absolute zero. . .
s . __tion of temperature for samples with molar volumes in the
temperaturé.Because of the large mobility of the vacancies,
. . : range of 20.908 chand 20.981 crhand temperatures be-
they will not have a single energy of formation but occupy a

i L tween 0.3 K and the melting temperature of the crystals.
band of energy states; the energy of formation is in the CentelErom the data we were able to establish the existence of
of the band. The lower limit of the band can become nega: . : -

Ehermally activated vacancies and we could, within the

tive, which results in a nonzero vacancy concentration a .
: ramework of the free Bose gas model, extract the effective
zero temperature. IAHe, these so-called zero-point vacan- o :
mass and the activation energy of the vacancies.

cies behave like bosons and are expected to Bose condense,

thus giving the crystal superfluid-like properties.

_ Most experlmerjts seeklng evidence for Bose condens. F THEORETICAL MODELS ON VACANCIES IN “He

tion of the zero-point vacancies concentrated on superflui

mass flow?~® No positive proof of vacancy flow was found. We will give an overview of two common models that

This has mainly been attributed to an extremely low criticalhave been proposed to describe the vacancies. The first

speed or a very lowW . model presented treats the vacancies as localized phenomena
Van de Haaret al® made an attempt to find the zero- or classical lattice defects with an activation enefigyThe

point vacancies without depending on the critical velocity bysecond model describes the opposite case of completely de-

measuring the pressure between 1.5 mK and 120 mK. Thecalized vacancies. In this case, the vacancies will behave

vacancies, which are expected to behave as an interactinge a free Bose gas with effective mass. Finally, the

Bose gas will contribute to the pressure in the solid anctontribution of the phonons to the pressure will be discussed.

reveal themselves by a finit#®P/JT value at very low tem- _ )

peratures. A superfluid transition would be observed by £t Localized vacancies

kink in the pressure. An upper limit to the zero-point va- When looking at vacancies from a classical point of

cancy concentrationx,,, <6x 107, was determined and view, we can visualize them as being static crystal defects

no sharp kinks were found, indicatingTg lower than 1.5 which are localized in the lattice. THeonfigurational en-

mK, the lowest temperature obtained during the experimentropy will then be given by the possible configurations of
In this work we concentrate on the properties of ther-puttingn vacancies in a lattice dfl “He atoms,
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(N+ n! large compared to the temperature, the vacancies will behave
Sc=kg:-In ) (1) like a free Bose gas. The great canonical partition function is
given by
which can be simplified by using Stirling’s formula -
N+n N+n 2= g #N=EWrkeT 9
S.=Kkg- n-In( +N-In ) 2 Z 2 ©

The dispersion relation in the cade> T is equal to the dis-
persion relation of free bosons with an activation enetgy
and is given by

F=Fo+tn-f-T-S., (3 72K

whereF is the free energy of the lattice without vacancies, Ey=d+ oM ° (10

andf is the free energy of a single vacancy. Using the fact
thatN is of the order of Avogadro’s constant and< N, we Here the vacancy activation energy is sometimes called

The equilibrium number of vacancies can be found by mini-
mizing the free energy of this system.

find the gap of the energy band, aMl is the effective mass of
the vacancies. The sum over klivalues in the great canoni-
Y= 1 o flkgT @) cal partition function may be replaced by an integral over
e*eT—1 ' E. Using the density of states
wherex = n/N is the vacancy concentration, and the last sim- Vo [2M\%? s
plification is true only for temperatures which are low com- p(E)= (2m)? (F (E— @)™ 1D

pared to the free energy of the vacancy. With further defini-
tion of

f=p-T-s 5) X:NkB J _fk—eEp(BT)ldE
wheres is the entropy change of the crystal due to the intro-
duction of a single vacancy, the vacancy creation energy or \V; 32
activation energyp has been related to the vacancy concen- =N (W) (kgT)¥ g (e P/keT) (12
trationx. In practice, this nonconfigurational entropyurns
out to be rather smalf meaning thaf and® are virtually ~ and for the pressure due to the vacancies
equivalent. 2 (= Ep(E)
Since in our experiments we measure pressure as a func- P= o 3V o FRT—1 dE
tion of temperature, it is necessary to know the pressure con-
tribution of the vacancies. The total pressure of a system is

M 3/2
given by = ( ﬁ) (kgT)>gs e P/keT), (13

we then find for the vacancy concentration

P=— (0F) (6) where the polylog functiony, is defined as

Y o1

In our case we can calculate the vacancy part of the pressure 9.(2)= T(o) J' —Tg_ 1 (14)

by using the vacancy free energy partFaf which yields
5 . P As one can see, the model provides direct access to the ef-
S

p _ =—n-(—) =—N-(——T _) e PlkgT fective massM and the activation energ®. In the tight-
vacancies N/ N oV binding approximation, the effective mass is directly corre-
« &k 0 lated with the band width of the energy spectrum by

2

The volume dependence of the activation energy has been M= i
studied by Lenguat all’ From their data one can calculate a‘A
for the molar volumes of interest here that wherea is the atomic distance. If the activation energy is
ID large compared to the temperature and the band widith (

N- (_ ~—45X10¢ Pa. (8 > kgT,A), the free Bose gas model with the effective mass

N replaced by the band width, according to Eq. 15, becomes

Consequently, this model provides a means of determlnlngqUIva|ent to a narrow band model, as described by various

the activation energy and the vacancy formation entropy. authors!®?

(15

2.2. The free Bose gas model 2.3. The phonon contribution

The large quantum behavior 8ifle has the consequence In order to be able to study the vacancy contribution to
that the tunneling probability for a vacancy to hop to anthe pressure, it is necessary to calculate the magnitude and
adjacent site is large. This mobility will lead to a band of temperature dependence of the phonon background pressure.
energy states. In the case that the width of the bidndis  The thermodynamic properties of sofile have been exten-
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FIG. 1. The constant-volume cell placed on the copper platform. The post- TK

and capillary heaters can be seen near the top.
FIG. 2. The*He melting curve. The inset shows the region of the minimum.
The temperature at which this minimum occurs is 780 mK and the depth is
approximately 800 Pa.

sively studied by Gardneet all® and we will use their re-

sults to make an estimate of the phonon contribution to the . _

pressure. They found that the constant volume heat capacigpld plate using Vespel SP21 rotswith a heat leak of less

C, can be described with very good approximation by athan 2.5uW to the mixing chamber, with the platform held

DebyeT?2 term supplemented by &’ term. at a temperature of 1 K.
The Grineisen parametey links the heat capacity to the A thermal link was provided by means of a carefully
pressure by calculated copper wirégz2.0 mm, length 45 mm, standard
electrolytic quality which was connected between the plat-
a B (16) form and the mixing chamber cold-plate. It was chosen in
C, YV such a way that 5 mW of heating power would maintain a
) ] o ) temperature ©1 K on the platform.
where_a is the expansion coefficienB is the bulk modulus, The constant-volume cell, shown in Fig. 1, was made as
andV is the volume. _ rigid as possible. To obtain this rigidity, the body was made
Using the reciprocity theorem, we obtain of a 1-cm-thick stainless-steel cylinder. The low end was
9P oV V"1 closed with a copper cap containing the silver sinter. The
(ﬁ) = _(ﬁ> (ﬁ) =5 (17) stainless-steel top cap contained_ the_Straty-Adams pressure
v P T gauge. The*He volume formed in this manner measured

@2 cm X 4 cm, 12 cm. The cell was clamped onto the cop-
per plate with a brass nut.
P C, v 5 . The sinter was made with 7.6 grams XRP-5 powdef
o7 Ty Ty (ATHCT ). (18)  which the surface area is estimated t6%@76 n?.
v A Straty—Adam$&* strain gauge was incorporated into

In the low-temperature limitT < O, where Op the cell to measure pressure. The thin stainless-steel top wall
= 27K for *He) the Grineisen parameter is only slightly of the cell served as the flexible membrane for the gauge.
temperature dependent, which means that simple integratio@ne of the capacitor electrodes of the gauge was glued to the
of the last expression yields a pressure term that depend®st connected to this membrane using Stycast 2850FT.
only on T# and T® terms. Using the coefficien#s andC of The second electrode was glued in position while resting

Gardneret al.® converted to Sl units, ang=2.8, we obtain  against the bottom plate, with the cell pressurized to 2.7
MPa. This procedure guarantees a very small spacing be-

which in combination with Eq. 16 yields

AV C(V “glu-
P=0.07ﬂ T4+0_035ﬂ 8 (19 ween the pla,t,es for pressures lower than 2.7 MPa, the “glu
Vi Vi ing pressure,” thereby giving a high sensitivity. Electrical
connections to the electrodes were fed through small holes in
3. EXPERIMENTAL SETUP the cell wall. Coaxial cables were used to minimize stray
capacitance effects.
A copper platform(10 cm in diameter, thickness 0.6 tm The gauge was calibrated & K against a Degranges &

served as a single temperature mounting plate on which theuot dead-weight testéP. The standard deviation of the fit

cell, a germanium thermometer, a fixed point device, ao the calibration points was less than 50 Pa. The random
heater, and a carbon resistor thermomet€RT) were error in the pressure, introduced through the capacitance
placed. This platform was attached to the mixing chambemeasurement of the strain gauge, is smaller than 2 Pa when
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206 00 S s B Due to the shallow minimum in thitHe melting curve, it

is possible that the filling line could be blocked with a solid
t when its temperature is close to 780 mK. To overcome this
£ . undesirable effect, a second heater was connected to the
[ ] “He filling line.

4 Another heater was placed on the platform. It consisted
* of 50-cm manganin wire wound on a copper cylind&o

» mm in diameter on which a carbon resistor thermometer
by was placed.

Three thermometers were placed on the platform, the
SRM-767 fixed-point device and a germanium and carbon
206,00 - J resistor thermometers. Another carbon resistor thermometer

+ Crysal #5, second warmup was thermally anchored to the post that connects the top wall
] I A  Crystal #5 third cooldown I ) of the cell to the pressure gauge electrode. It was used to
20475 v S U — measure the temperature of the top of the dely. 1.
8 12 16 2 o The germanium thermometer was calibrated against the
Time (Hour) SRM-767 fixed-point devic& The maximum deviation ex-

pected for this thermometer is 5 mK. A consistency check

FIG. 3. The capacitance of the pressure gauge as a function of time befo . L
averaging, for crystal 5 during the second warmup and the third cooIdown‘.ﬁ’als made by carefully measuring the minimum of e

The capacitancépressuriincrease between the two measurements is due toN€lting curve. Our thermometers read 78 mK at the
a shift of the plug. minimum, which agrees quite well with earlier measure-
ments by Grilly?®
For controlling the temperature we used the carbon re-
using the Andeen Hagerling AH2500 capacitance bridge. sistor thermometer, which was located on the platform in
The pressure of théHe melting curve minimum,P i, combination with the platform heater, to form a P(Bro-
= 2.53081 MPa, was reproduced within 100 Pa. portional Integration Derivatiyefeedback loop. The brain of
To ensure a homogeneous growth of the crystals wehis regulator was a Hewlett Packard HP9000/300 Unix com-
needed to have a vertical temperature gradient in the celputer in combination with a DA@Digital Analog Converter
where the bottom was the coldest part. We therefore set upta drive the heater and an AD@nalog Digital Converter
system in which the post of the flexible membrane could bdo read the temperature. Both the ADC and the DAC were
heated. Because of limited space near this post, the heatercantained in a Hewlett Packard HP35650. The setup was
metal film resistor, was placed outside the cell, while theable to maintain the temperature constant within 0.@p#6-
thermal contact between the post and the heater was prgrammablg which greatly simplified the slow process of

Pressure gauge capacitance (pF)

o
e

vided by a copper wire. working through the whole temperature region.
Crystal #3 Crystal #4
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FIG. 4. The pressure of crystals 3 and 4 plotted as a function of temperature. The reproducibility between a cooldown and a subsequent warmup is good for
crystal 4 but rather poor for crystal 3. The latter could be caused by inhomogeneities in the crystal which are introduced during its growth.
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FIG. 5. Continuation of Fig. 4. The pressure as a function of temperature for crystals 5, 6, 7, and 10. All crystals show good reproducibility. The change in
pressure for crystal 5 is due to a change in density at high temperatures.

Since vacancies have the tendency to bind to impuritiegnental setup, however, were made after the first run. The
and defects in the crystal, it is important to remove them aslata from the first run are therefore included mainly for com-
much as possible. Commerci&He is contaminated with pleteness.
3He, which is typically of the order of 1 ppm. We used the
heat flush effect to purify théHe gas’®*' A mass spectrom-
eter check showed that tHigle impurity content is signifi- All crystals were grown in the temperature range 1.2—
cantly below 1 ppm, but on the basis of the experience ofi.4 K. As one can see from Fig. 2, the melting curve shows
other workers who used the same technique, it is more likely positive slope in this temperature region. While growing
that the concentration igar) below 1 ppb. the crystals, the temperature of the platform and the cell

pressure were held constant. The cell pressure was chosen to
4. MEASUREMENTS OF THE P-T RELATION OF SOLID “He coincide with the*He melting pressure which corresponded

All data presented here have been acquired during twéo the platform temperature. A vertical gradient was intro-

cool-downs of the cell. Major improvements to the experi-duced by using a heater connected to the top of the cell

4.1. Growing the crystals

Remeijer et al. 442

442 Low Temp. Phys. 23 (5-6), May—June 1997



TABLE I. Summary of all good quality crystals that were used for fitting. crystals were flowed mainly because of the lack of pressure

Each item indicates & — T curve takgn upon cooling or warming. Also stability during grovvth. After thermally cycling the crystals,
shown are the crystal number and an index for future reference. The molar

volumes were estimated from the limiting low-temperature prestsge athe reproducibility of theP-T relation always improved sig-

text). nificantly, indicating that this method, in fact, is a better
annealing method than the one that was described before.
Warming This conclusion was also reached by lwasal>? for solid
Crystal No. Cooling Cycle No. Index  V,, cn? *He crystals.
3 w 1 3wl 20.981
4 c 1 4c1 20908 42 Results
4 w 1 4wl 20.908 The P-T curves were measured by making small tem-
: 2 g ggg gggig perature step&+ 40 steps over the whole temperature range
5 w 1 5wl 20954 0.2K-1.4K angl allowing thg crystal tq quilibrate at each
5 w 2 5w2 20.944 temperature. This procedure is shown in Fig. 3.
5 w 3 5w3 20.940 We used the stability of the pressure reading as the equi-
2 c i 66011 228-3277 librium condition. The time to reach equilibrium was typi-
W W . - . .

7 w 1 2wl 20.936 cally 5 to 10 minutes, after which approximately 50 data

readings were taken. Averaging reduced the noise contribu-
tion to the pressure reading by a factor 7 to 0.4 Pa. A single
sweep through the temperature region would take approxi-
(post-heater Slowly decreasing the vertical temperature gra_mately 7-10 hours. Also visible in Fig. 3 is the pressure shift
dient across the cell therefore caused the solid to grow fror?CCUITing between a warmup measurement and a subsequent

the bottom up, and the filling line, which was located at thecooldown. This shift occurs due to a slow shift of the plug in
peak of the cell, would block last. the filling line, resulting in an increase of pressure and a

After growing the crystal, the volume of the cell was decrease in molar volume. Therefore, only cooldowns with

closed by increasing the pressure a few bars above tHa&Fcompanying warmup measurements will be at equal molar
growth pressure, thereby blocking the filling line. Subse-volume. All useful samples along with their melting tem-
quently, all crystals were annealed by leaving them S”ghﬂyperature a.nd molar volume are _summanzed in Tablg I. The
below their melting temperature during a period of 6 hours.P—T relations are shown in Figs. 4 and 5. Despite the

A total of eighteen crystals of very puféle were pre- smoothness of thBTT relation of cryst.al #10 we could not
pared during the two runs. Several crystals proved to b&'S€ the curve for fitting because of its limited tgmperature
badly grown, the telltale sign being anomalous superheatingPa@n- The molar volumes of all samples were estimated from
below the melting curve, sudden pressure shifts, or irreprot€ limiting pressure at low temperature, using g;olar volume
ducibility upon warming and cooling. We believe that the @1d compressibility data on HCPRe from Grilly.

4.3. Analysis
4 The data were analyzed by fitting the functions repre-
senting one of the models described earlier. In addition, we
compared the results with two “phonons only” fits to see
T =
a o
34
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FIG. 6. The coefficient of th&* term for the various crystals and fits. We

clearly see the improvement as a function of crystal number indicating betteFIG. 7. The average data points ofPaT measurement, with phonon-fits
growth conditions. Also shown are the converted da&e text by Gardner, and a Bose gas fit subtracted, are shown. The powefstbéat are used in
indicated by the two solid lines. the phonon fitsee text are also indicated.
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FIG. 8. The standard deviation of a vacar(fyee bosoi fit and different ) o )
phonon fits are summarized in a bar graph. A large improvement gaineE'G-_g- A comparison between the standard (_1eV|at|0n of localized and de-
from using vacancy fits is clearly seen. Note the logarithynacale. localized vacancy(free bosop fits. No clear difference can be seen, al-
though the delocalized vacancy fit seems to be slightly better.

whether including a vacancy contribution would indeed im-

prove the description of the data by phonons alone. The four The values for crystals 3 and 4 are much lower than the
fitting functions which we used are expected values, because of the poor growing conditions for
these early crystals. The conditions for the later crystals im-

_ 4 6 8
P=PotaT"+a,T"+a;T", phonons, (20 proved as we became more skilled in controlling the pressure
P=Po+a;T*+a,T8+a,T phonons(Gardney, during growth.

(21 For the remaining crystals the agreement with the heat

capacity data is good, considering a scatter of 5%. An inter-
esting observation is the fact that the fits which do not in-
P=Py+a,;T*+a,T%g (e %'T), free vacancies. clude a vacancy contribution are systematically below the

(23)  two expected lines, while the fits, that do include a vacancy
H—i}rm, only show random scatter.

P=Py+a,;T*+a,e ®'T, localized vacancies, (22

As one can see, we chose to use the same number of
parameters in all functions for the obvious reason that a
greater number of parameters will increase the degrees &f3-2. Vacancies
freedom and automatically lead to a better fit, which makes Besides the phonon contribution, we expect to find a
guantitative analysis of the fit deviations impossible. vacancy term in the pressure. As we have already indicated,

4.3.1. Phonons

The first and second coefficient of all fi(fP, and a;) 15 T T T T Y v Y T
show basically the same values, regardless of the type of fit.
This is indicative of the intrinsic meaning of these coeffi-
cients; hereP is the limiting zero-temperature pressure, and
a, is the Debye-type phonon contribution. As a consistency
check, we compared tHE* phonon contribution to the spe-
cific heat measurements by Gardretrall® Their coeffi-
cients for the heat capacith (as seen in Table | of the
article) can be converted to ouF* coefficienta, by using

-
o
A A

A

Activation energy (K)

h 4
Eqg. (19 54
AV ] —a— Delocalized (Free bosons
a;=7.0x10° (V—m) [PaK?], (29 1 | g— Delocalized :Fvea bosons;wﬂhf
m 1 —0— Localized

whereA is given in J/mole K, and the molar volum¥, is 1 [—v— Locaized with T*
given in cubic centimeters. Tha,; values for the various 0 Y Y v T 1 ¥ T
crystals and fits is shown in Fig. 6. The solid lines represent f§] &4 § 8 ¢ g ¢ 8§ 8 ¢

the A values by Gardner for the molar volumes of our crys- o _
FIG. 10. Activation energy d&;) as a function of crystal number for the

. . . N
tals. Th,e scatter in ou coefficient is t0o Iarge, (: 5 /o) to localized and delocalizetfree bosonscases. The addition of tHE® term
determine a molar volume dependence, which Only CONStigecreases the coefficients by a small amount but increases the scatter sig-

tutes a 1% change ia; . nificantly.
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TABLE Il. The fit parameters for the localized and delocalized mo@@tse gasfrom Egs.(24) and(25). The lowest row shows the average values for the
last two coefficients.

Localized vacancies Delocalized vacandiftee bosons

No. Po, a,, a,, as, Po, a,, a,, az,

MPa MPaK ™ MPa K MPa MPaK 4 MPa-K 5?2 K
3wl 2.5316 2.853 10° 2.731 7.608 2.5316 2.78810° 0.2217 5.056
4cl 2.6227 3.32610° 7.467 10.54 2.6227 3.28710° 0.2830 7.090
4wl 2.6227 3.308.10° 4.957 10.27 2.6227 3.2&110° 0.2005 6.912
5¢c2 2.5780 3.67810° 125.4 14.15 2.5780 3.66710° 5.838 11.000
5c3 2.5824 3.608 1C° 12.87 11.14 2.5824 3.58810° 0.5914 7.972
5wl 2.5660 3.568 10° 2.306 9.334 2.5660 3.5510° 0.1251 6.341
5w2 2.5780 3.62810° 81.17 10.74 2.5780 3.60810° 0.3720 7.558
5w3 2.5824 3.61x 10° 6.561 10.39 2.5824 3.59010° 0.3036 7.218
6cl 2.5742 3.7881C° 3.562 9.685 2.5742 3.72610° 0.2141 6.821
6wl 2.5742 3.58%10° 2.676 9.308 2.5742 3.56610° 0.1459 6.326
7wl 2.5874 3.63310° 3.025 9.971 2.5874 3.6:810° 0.1389 6.787
Avg. - - 7.355 9.83 - - 0.246 6.77

it is possible that the phonon contribution, which can have  Having established the presence of vacancies, a compari-
TS, T8, and everT'® terms, in addition to the usud@r* term,  son was made between the localized model and the free Bose
is indistinguishable from the exponential-like vacancy con-gas model. The standard deviation from the data is shown in
tribution. It is for this reason that we first compared fits with Fig. 9. The models fit the data well, but within the experi-
four free parameters containing only phonon tef T°, o) precision it is difficult to make a selection.

T°, andT*, T% 79 and the limiting zero temperature pres- We must also bear in mind that, although a combination

ISOlflr/iffg?;eTPII(;)re\gslt:reog]r:eoz r];?:g::)-r? rtc;?r:ﬁ;t?r %owik;;]n:% at_he of aT*# phonon term with a vacancy contribution fits the data
better than &, T8 phonon term, the data of Gardnetral.

cancy contributior(free bosonps . .
It was found that for all crystals the standard deviationSU99est the presence of higher-order phonon terms, which

would be at least a factor of 2, but mostly an order of magthey proved by showing that the heat capacity followed a
nitude smaller when fitting vacancies to the experimentaHniversal function of T® for all molar volumes. It is pos-
data. This means that our experimental precision clearly desible, however, that a small part of tfié term is still due to
cides in favor of vacancies. More important, the deviation forvacancies. This could be within the experimental error,
the phonon fits from the data proved to be systematic, whilgvhich is especially close to the melting temperature of his
the deviation of the vacancy fits showed only random scattelsamples, where the data deviate considerably from the uni-
This can be clearly seen in Figs. 7 and 8. Figure 7 showgersal function. This implies that a fit containing bofH,

deviations up to 200 Pa for the phonon fits, with a pressure-s phonon and vacancy terms should be used, and that the

rgsolutlon of= 0.4 Pa. The largest deviations are seen at th(?'nagnitude of the higher-order terms need not be as large as
highest temperatures, where the vacancy contribution is Iarq‘bund by Gardneet al2®

est. Figure 8 shows the standard deviation for several fits.

TABLE Ill. The same table as before, but now fi¢phonon term has been included. This term lowers the vacancy terms and increases the scatter. The lower
row contains average values for the vacancy coefficients.

Localized vacancies Delocalized vacandizee bosons
No. Po, a, a,, as, Po, a, a,, as,
MPa MPaK ™ MPa K MPa MPaK ~* MPa K ~5/2 K

3wl 2.5316 2.82910° 2.292 7.525 2.5316 2.76810° 0.1873 4.976
4cl 2.6227 3.24210° 2.046 9.747 2.6227 3.21610° 0.0788 6.283
4wl 2.6227 3.23310° 7.385 9.042 2.6227 3.21610° 0.0305 5.658
5c2 2.5780 3.584 1C° 5349 19.89 - - - -
5¢3 2.5824 3.54% 10° 10.72 11.87 2.5824 3.53510° 0.4943 8.703
5wl 2.5660 3.51210° 0.2751 8.106 2.5660 3.5K110° 0.0149 5.065
5w2 2.5780 3.55%10° 4.091 11.06 2.5780 3.54010° 0.1900 7.891
5w3 2.5824 3.548 10° 2.529 10.25 2.5824 3.5381C° 0.1198 7.101
6cl 2.5742 3.692 10° 1.827 10.02 2.5742 3.68810° 0.1124 7.180
6wl 2.5742 3.53310° 0.6505 8.634 2.5742 3.52410° 0.0367 5.680
7wl 2.5874 3.558 10° 0.0151 5.971 - -
Avg. - - 4.467 9.54 - - 0.126 6.49
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TABLE IV. The average physical properties as derived from the fit coefficients for localized and delocalized models.

Localized Delocalizedfree bosons
slkg, K ®/kg, K M/Mage A, K ®/kg, K
T -4.11+0.18 9.83-0.32 5.19-0.7 1.31-0.17 6.77:0.25
T4 T8 —4.61+0.33 9.54r 0.55 3.58:0.9 2.05-0.47 6.49-0.43
4.4, Discussion the averaged results for both models.

We will now discuss the merits of each model and theth T?he calc?latidréilues; for t:‘_ﬁ.ef.f eitlvs massesE a(ljre .Iarger
validity of the parameters that can be distilled from the fit an those ot a barcrie atom. 1his 1S 10 be expected since

coefficients. Because it is evident that the phonon part in:[he vacancy W'” nqt be able to move freely bUt.Wl.” feel
cludes ar® term, we extended the vacancy fits to incorporates_ome _mteractlo_n with the surrounding atoms. This interac-
this term as well. In order to restrict the number of free fittlon IWlItIhre\':_ez;ItlLs_eI;_by the Iarger rtr_lass. > T) the band

. . >
parameters, we determined the ratio of fift and theT® n the tight binding approximationX( ), the ban

coefficients from Gardner’s data, thereby giving an uppelwidth can be deter_mined from the effective mass With. Eq.
limit on the phonon contribution. 15. From Table IV it can be seen that the band width is on

The effect of introducing this additional term is illus- the order of 1.3-2.1 K, which again indicates that the vacan-

trated in Fig. 10, where the activation energy is plotted for allcles are qnly partly delocalized. Th|s also means that a_de-
crystals. Including thél® term decreases the magnitude of scription in terms of free bosons is not completely valid,
the energies but increases the scatter since the conditiolA > T has not been quite met.

The fit coefficients for the two models are summarizedth ":hth? limit w?ere thg t?]ctl\éatl(én egiirgy A'STmUCh larger
in Table Il and Table Ill. The first and second coefficients'2"" the teMperature an e band width% A,T), a con-

Py anda; were discussed before. For the localized model théjition which is satisfied in our case, the free Bose gas model,
third and the last coefficients represent with the effective mass replaced by the band width, accord-

ing to 15, is equivalent to a band mod&E° The values for
the band width given in the table for the tight binding ap-
proximation are therefore equal to the values that would have
been obtained using this band width model.

Lengua and Goodkirtd determined the molar volume
a;=>o/kg, (26) dependence of the activation energy. On the basis of their

the activation energy, respectively. Using the calculated valgata we expecb=4 K for the molar volumes investigated

: . S : by us, which is much lower than the values we actually
ues as shown in Table Ii, in combination with the data 0ffound The discrepancy can be explained by the fact that the
Lengua and Goodkirdfor N - 9®/dV, we find for the non- ' pancy P y

configurational entropg = —4.1%kg . In that case, the va- crystals grown by Lengua and Goodkind may have contained

X ; a much lower concentration of dislocations than ours. Since
cancy concentration at the melting temperature of the CrySc'iislocations or strains in the crystals will have a localizin
tals will be approximately 9x 10 6. Compared to the Y 9

phonon entropy, which is= 3 x 10 3ks per atom, such a effect on the vacancies, this will yield an increase of the
[} B ]

large negative entropy per vacancy seems rather unphysicaei]ffecnve mass and the energy of formation.

. SR . Another source of error could be the assumptions we
In addition, the extremely low concentration is in clear dis- P

agreement with other work in which concentrations as highhave to make on the phonon contribution. This might seem

as 0.1 to 1 percent were fould' This leads us to conclude worse than it actually is because we only assumed a certain

; T4 8 i .
that the localized model does not seem to be appropriate fglrJnCtlonal behavio(T" andT"). The magnitude of the pho

e non contribution is still fitted and determined within our ex-
the description of our results.

For the free Bose gas model the third coefficient can bepgnme_nt. For this reason, we expect these erors to be of
. minor importance.
interpreted as

P s\ i
a,=N W—TW e B, (25)

a measure of the nonconfigurational entropy, and

3/2

) (27)

a2 = kglz

2mh?
) . 5. CONCLUSIONS
from which we can calculate the effective mass M of the

vacancies by We have shown that it is possible to detect the presence
of vacancies by measuring tie-T relation of a crystal. It
Y 1.32425¢10 2. a2, (28)  was found that the phonon contribution to the pressure is in
4He

good agreement with heat capacity measurements by Gard-
The last coefficient ner et al!® The additional vacancy term proved to be quite
e /K 29 small and its magnitude deper_1ds_on the_ assumptions one has
3 B to make on the phonon contribution. Within the framework
will again yield the activation energy. Table IV summarizesof the free Bose gas model we have determined the effective
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Spin relaxation measurements in sollde in the temperature region where exchange dominates
the behavior are reviewed and reanalyzed. A model which brings together the complex
exchange modulation of the dipolar interaction into a single correlation time is adopted. This
may be regarded as introducing an effective pairwise exchange Hamiltonian. On the

basis of this model new procedures are proposed for obtaining mathematical expressions for the
dipolar autocorrelation function and the spectral density functions, which determine the

relaxation times. By the appropriate treatment of short-time and long-time asymptotic behavior,
together with a method for taking into account the mid-range behavior, it is possible to fit

the experimental data extremely well. The success of this procedure seems surprising in the light
of multiple spin exchange in solitHe. It is an indication that the dominant exchange

processes scale with density in a similar way. This conclusion is supported by path-integral
Monte Carlo calculations. Some consequences and implications of this conclusion are discussed.
© 1997 American Institute of Physid$S1063-777X97)01205-X]

1. INTRODUCTION where the spectral density functiods,(w) are the Fourier
Although Thoulespointed out the importance of mul- transform of the corresponding dipolar correlation functions

tiple spin exchange in solitHe some time ago, it was only Grm(t):

with the discovery of low-temperature, spin-ordered phases Tr{D(t)Dn(0)}

that its real significance was appreciate@ertainly, thermal Gm(t)= W}_ v

capacity and magnetization measurements in the paramag- z

netic phase exhibited some deviations, but the existence @ndD ,, are the components of the dipolar Hamiltonian

the uudd phase was simply incompatible with pairwise B

Heisenberg exchange. In retrospect, it is surprising that the _,U«oﬁz“yz E (—1)m Y, " Qi)

pairwise exchange model was found to be so successfulin  ~™ 4,5 1] r i

the explanation of the higher-temperature NMR behavior of

solid 3He. This question is addressed in the present paper.The spin part of the interaction is contained in the second-
Traditionally, NMR proved to be a particularly useful Order spin tensor operatorg;':

tool for the study of exchange in sofftHe. The use of NMR TO—iji—3)il

provides a fairly direct probe of spin behavior through the g zz

measurement of spin susceptibility, spin relaxation times, 3
Th= §{|'2|'++|'+|JZ}=—(T51)+,

and spin diffusion. In the temperature region of about 1 K

the spin relaxation is determined solely by internuclear ex-

change. Here the temperature is high enough for the ex- 3

change “bath” to be tightly coupled to the lattice, while itis ~ T7;=— \[5 I =(TH",

low enough to account for thermal excitation of the vacan-

cies. Historically, this was seen in spin relaxation timeswhere the indexm denotes the total induced spin flip.

which were found to be independent of temperature, but The exchange interaction originates in the large zero-

which varied rapidly with density. point motion of the®He atoms, which results in the move-

ment of atoms among the lattice sites. The crucial point for

multiple spin exchange is that the hard cores of the atoms

can favor the coherent exchange of more than two particles.
Spin relaxation in solic®He in the vicinity d 1 K is  However, since®He is a spin 1/2 fermion, an equivalent

caused by the exchange modulation of the internuclear dipadescription of this motion is possible in terms of a spin ex-

lar interaction. The relaxation times; and T, for this sys- change Hamiltonian. This may be written as

tem are given by

2. SPIN RELAXATION-THE FORMALISM

1 He=—2 (—1)",P7, ®3)
7, = 1(0) +43,(20), (13 n

wheren labels the number of particles in each cydlg,is
(1b) the exchange frequency for particle exchange, anB; is

1 3 5
T, 2 00+ 5 (@) +3(20), the generator of the permutation ofspins.

T2
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In the bcc phase the dominant 2-, 3-, and 4-spin exquiring a complete solution of the problem. Admittedly,
change frequencies are of similar order of magnitude evaluation of higher-order moments becomes increasingly
( ~ 10" Hz). However, since the exchange of an odd numbedifficult, but by diligent application and/or with the aid of a
of particles is ferromagnetic, while the exchange of an everromputer meaningful results may be obtained. For our sys-
number is antiferromagnetic, the resultant exchange can kiem, the second and fourth moments have been evaluated.
small: a consequence of inexact cancellation of the ferromagFhe second moment is
netic and antiferromagnetic tendencies. Thus we have a frus- 9C 4252

. o y°h
trated system and there is @opriori reason to expect the Mo=—— "%,
observed behavior to be ferromagnetic or antiferromagnetic. 20 a
Indeed, different properties of such a system can exhibit difwhere a is the lattice spacing, an@ is a constant which
ferent characteristics. This is particularly striking in two- depends on the crystal lattice:
dimensional solid®He films, which will be discussed for
comparison in Sec. 11.

The lattice structure of the bcc solid means that next-  c©=14.45 for a hcp lattice.
nearest-neighbor exchanges should also be considered. This,
together with the variety of multiple spin-exchange cycles,And the fourth moments are evaluated to be
leads to a complex dynamical system, although there is a M,=22.8V1,J2 for a bcc lattice,
simplification which follows since three spin exchanges can ) )
be expressed as a superposition of pairwise exchanges. Not- Ma=42.0M3J° for a hcp lattice.

withstanding these complexities, we shall start by considerNote that, as expected, the second moment is independent of
ing a simplified and idealized model. In this paper we will motion, here parametrized kly while the fourth moment is
analyze initially, in detail, the consequences of the pairwisestrongly dependent od. Armed with very little else, the
Heisenberg exchange Hamiltonian. We will show that thisconventional approach at this point is to choose an appropri-

model is consistent with spin relaxation measurements! Havate functional form foiG(t), which is consistent with these
ing done this, we will then attempt to explain the reasons fokalues ofM, andM,.

this apparent success in the light of the current understanding
of multiple spin exchange. For now, therefore, the exchange
Hamiltonian to be considered is 4. TRADITIONAL TREATMENT

C=12.25 for a bcc lattice,

o Experimentally it can be seen froln, measurements on
Hy=—23> 111, (4)  solid 3He that the spectral density functidifw) is reason-
= ably approximated by a Gaussian in the hcp phase and by a
wherei andj label the spin sites, and the sum is taken overdecaying exponential in the bcc phase. Thus, the hcp corre-
nearest neighbors. lation function G(t) should be approximately Gaussian,
We now have a well-defined problem for solution. Using while that for the bcc phase should have a Lorentzian profile.
the expression for the exchange Hamiltonian, we can writén the conventional treatment of exchange-induced relax-
the time evolution of the dipolar components as follows: ation in solid ®He the calculatedM, and M, are fitted to
iH,t i, t these functions. Using the Fourier transform then yields ex-
Dm(t)zexiT)Dm exy{— )

pressions for the spectral density functions, from which the

h relaxation times may be found as a functionJof
which, from Eq.(2), gives the dipolar autocorrelation func- bee hep
tion. Fourier transformation then gives the spectral density |\/|_2 1 |\/|_2 My
functions and we can find the relaxation times from Bg. ~ G(U=—73" 77 M, T2/2M G)=—5exg - am, b

Unfortunately, as is common in systems of this complexity, _ _ _

the problem does not have an analytic solution. Thus efforBut sinceM, is known in terms oM, andJ, we have

must be made to approximate methods. In the following sec- M, M,

tions we will review the traditional approaches, before de- G(t)=—% ———F533, G(t)=—5 exp( —21J%t?).
g . ) 3 1+11.43% 3

scribing an improved treatment in Sec. 7.

Using the Fourier transform yields
3. MOMENT EXPANSIONS

0. M 2 w
. . . ) J(w)= exp — ,
At short times, the dipolar autocorrelation function may J 3.38)
be expanded in powers of time as o) 0.05M, F{ w? )
1 1 w)= exp — 5|,
from which may be found the relaxation times as a function
The coefficients expressed in this way correspond to the coref exchange frequency and Larmor frequencw.
ventional moments of the absorption lineshape. The impor- These spectral density functions make definite predic-

tant point about such an expansion, as first noted by Whllertions about the frequency dependence of the relaxation times,
is that such moments can be calculated exactly without rein particular, that ofT ;. In practice, these are not quite con-

: (5
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sistent with the extensive experimental data available. Since 1 wah?y*

these expressions have a single frequency paranietad Hw)=I0)= 35—z e (7)

since the coefficient ob/J is fixed by the short time expan-

sion, while the functional form of the high-frequency behav-In both these expressioi3 may be eliminated in favor of

ior might be correct, it is not possible to ensure precise nuJ- From Eq.(7) the behavior ofJ(w) at short frequencies

merical agreement, because there is no free parameter wiifovides another means of measuring the spin diffusion

which to scale the frequency. This casts doubt on the valuegoefficient:” This makes it possible to observe smaller val-

of J inferred from these analyses. A previous attempt to im-ues ofD, which may be further extended through, mea-

prove these functional expressions has been made by Guygdrements. Note that(w) is not analytic at the origin, in

et al® contrast to the exponential and Gaussian functions discussed
The problem is to obtain a plausible approximation ofin the previous section.

the spectral function on the basis of limited information. Put  In Sec. 3 we obtained an expression for the short-time

another way, this means making the best possib|e use of EmehaVior of the dip0|ar autocorrelation fUnCth’(t) In this

information available. Thus far, we have considered knowl-Section we have obtained an expression for its long-time be-

edge of the short-time behavior of the autocorrelation funchavior. Any approximation function should satisfy both these

tion. In the next section we see that information is availableconditions.

about its long-time behavior. In Sec. 6, we see that some-

thing may even be said about intermediate behavior as welb. UNIVERSALITY AND THE T, MINIMUM

All information is drawn together in Sec. 7, where “im-

. . . It is well-known that a minimum inT; occurs as the
proved” expressions for the spectral density/correlation : . . . 1°
function are obtained. correlation time of the motion varies at a given Larmor fre-

quency. The frequency at which the minimum is observed
gives an order-of-magnitude estimate of the velocity. The
5 SPIN DIFFUSION minimum in T, is related to the behavior of the spectral
density function in the middle range. In this section we shall
The flip-flip nature of the exchange interaction meansformalize these ideds. This will allow us to augment the
that any excess magnetization in a part of the specimen wilong- and short-time behavior @(t) with further informa-
gradually become distributed uniformly. This diffusive pro- tion which any approximation function would accept.
cess is very much slower than that found in fluids, butit may  Within the framework of the Heisenberg pairwise ex-
still be observed by the technique of spin echoes in a fielé¢hange model there is a single microscopic time- J 1,
gradient’ which characterizes the dynamical behavior of the spins.
SinceJ is the rate at which thél |) spin configuration From it a number of general interferences can be made about
changes to th¢l|) configuration, a simple counting argu- the relaxation in such cases. This can be illustrated as fol-
ment implies that the order of magnitude of the diffusionlows. Let us write the autocorrelation functi@(t) as the
coefficient for the magnetization will be Ja?. Once again, product of its initial valueG(0) and a normalized shape
exact calculation of this relation, to find the numerical coef-function g:
ficient is impossible. However, a moment method of
approximatiod may be used, and it is actually possible to G()=G(0)g(t/7).
place bounds on the value of the coeffici®fthe best esti- The shape functiog(t/7) is unity att = 0 and its dimension-
mates are found for the two lattices: less argument/ 7 indicates thatris the characteristic time of
D=0.655Ja2 for a bcc lattice, this sy;tem; it is Fhe natural time unit in terms of which the
dynamical behavior of the system scales. Note that for sim-
D=0.860Ja® for a hcp lattice. plicity we are considering a rotationally invariant system so
These relations are well-supported by  spin eChOthatG(t) need not be encumbered by a spin-flip subscript.
The spectral density functiod(w) is found from the

measurements? Fourier transform of5(t):
Diffusion is a hydrodynamic process whose validity is '

limited to the long wavelength, long time limit. At shorter * i
times and distances the precise details of the atomic motion ‘](“’):f GOt/ nexpiot)dt,

become important. So far as spin relaxation in sdkt is ] ] . ) )

concerned, this has the implication that both the long-timeVhich, after changing the integration variables through
behavior ofG(t) and the low-frequency behavior d{w) = t/7, can be written

are determined by the spin diffusiéhWe therefore have the J(0)=G(0)7j(w7),

asymptotic expansion

where j(z) is the Fourier transform of the shape function

ﬁz'y“a\/; _ap g(x).
G(t)~ —— 7., (6) For simplicity let us start with a simplified expression

60v2D for T

1

where a is the spin density. This diffusive hydrodynamic
behavior has its corresponding effect in the frequency do- —=J(w)
main. We therefore have L

450 Low Temp. Phys. 23 (5-6), May—June 1997 B. Cowan and M. Fardis 450



where the double frequency term is disregarded. It is a
straightforward matter to show that the use of this expression
does not detract from the validity of our general
conclusion$® by subsuming the double frequency termintoa i
composite](w) function. The simplified expression fdy, is
now

1 .
T—l:G(O)Tj(a)’T).
If we divide this expression by or multiply it by o, then the

resulting expressions W¢r) and o/T; will depend onw
and 7 only through the producb: 5

| i 1 1 1

1
=—=G(0)j(w7), (8) 0 10 20 30 40 50 60
Ta? fo . MHz

2 — G(O)wTj (7). (9) FIG. 1. T, minima at different Larmor frequencies for béide. O Richard-
T, son, Hunt, and Meye(1965, (1 Richards, Hatton, and GiffardL965, @
Reich(1963, ¢ Chapellier, Bassou, Devoret, Delrieu, and Sulliva@85.

This means that ;, which is measured at a fixedby vary-

ing w, andT,, which is measured at a fixeol by varying 7,
will be universal functions ofs7 for a given system? The T, minima over a range of frequencies. This information

data plotted in this manner will therefore fall on single 5y he used in the approximation of the spectral density and
curves. This will be seen in Sec. 8. For now, our concern iSyutocorrelation functions.

to discuss th&'; minimum.
In general[except in very unusual circumstances where
j(0) divergeg j(z) starts fromj(0) and initially is a slowly 7. APPROXIMATING G(t) AND J(w)
decreasing function of its argument, as in Ef. The prod- i . _
uctzj(z) starts from zero, whenis zero, and initially grows Let us now consider specifically the bce phase of solid
linearly. However, for large values af the decay ofj(2) He. We .proceed_ to the gonsftructlor? of an apprpxmate spec-
outweighs the linear growth of theprefactor and the prod- (ral density function, which is consistent with the short-
uct decreases. Somewhere in between, vehisrof the order ~ iM€ Microscopic moment expansion 6K(t), ii) the spin
of unity, say, az = z', zj(z) must accordingly have a maxi- diffusion |n the hydrc_)dynamic Iimit, and )iithelK' value
mum. characterizing the mid-range region of thg minima. In
Looking at the expression fdF, as a function of (at a order to find the yalue oK we have collectedl minimum
fixed frequency [Eq. (9)], we see that the existence of a observa_tlon_s which we have pIott_eq against Larmor fre-
maximum inzj(z) tells us that there must necessarily be aduency in Fig. 1. The, data were divided by the square of
minimum inT, as the characteristic time is varied. The “po- & molar volume to remove the small dependencevign

sition” of the T, minimum is given bywyr = 2’ or which.is present when the chqractgristic time is varied by
changing the density. The straight line through the data is

Tmin=2Z' [ wg. given by

Thus, when a minimum is observed, within a constant of the T (in ms) _, wg

order of unity, the characteristic time of the motion may be m:2-8z®< 107% 5 (in MHz).

estimated by the Larmor period. The valuelgfat the mini- m

mum may be written, from Eq9) as This “fit” to the data takes into account the larger experi-

o mental error in the data points at 50 MHz.

_1_: G(0)Z'j(z') The functional form adopted to approxima@(t) is
" wg given by

or, sinceG(0) = M,/3, and denoting the numbeftj(z’) by G(t) a; N a

K~1, we can write G(0) (L+b2I20)* " (142370
Tmin_ gy o where the parametems,, a,, b;, andb, were chosen in

min_ 3K —2

M," such a way as to satisfy the above-mentioned criteria. The
o ) ) second term of this expression gives the correct long-time
We see that at the minimum the value'df is proportional  penayior, while its Fourier transform leads to the correspond-

to the Larmor frequency. The numbér depends on the 4 short-frequency form. The expression for the spectral
shape of the autocorrelation function or the spectral dens't}ﬁensity function can be written in analytic form as

function. Thus, for example, for a Gaussian correlation func-
tionK = 0.657, while for an exponenti&l = 1. The value of o) a7 | o
K for a given system may be found from observations of G(0) 96b;J |\b4J

3
+6

2
+15

b,J

@)
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Larmor frequency divided by the minimum frequency. This
curve we have plotted in Fig. 2, where tfig¢ values were
also divided by the square of the molar volume to account
for the variation ofM, [and thusG(0)] with density.
The experimental points, as we can see, fall very well on
a single curve. At higher frequencies there is some discern-
ible deviation from the universal behavior, which we at-
tribute to different crystal orientations; in the analysis we
make the assumption that we have a polycrystalline sample,
taking averages over the crystal orientation. In the low-
frequency region we see that the data of Richatdal. fall
consistently below the other points. It is believed that this is
0:01 0.1 1.0 1'0_0 a consequence of inaccuracies in the determination of the
f /fmln molar volume of the crystals.
LAY Presenting the relaxation data in this manner facilitates
FIG. 2. Reduced plot of; data for bcéHe together with the “theoretical” the tgstmg OT proposed “theoretical™ forms for th.e SpeCtral
curve. O Richardson, Hunt, and Meyd965, O Richards, Hatton, and density functionJ(w). We have the proposed function in Eq.
Giffard (1965, A Thomlinson, Kelley, and Richardsqi972, ¥V Bernier ~ (10). For this function the relation between the exchange

and Guerrie1983, ¢ Chapellier, Bassou, Devoret, Delrieu, and Sullivan frequency and the frequency of the minimum is found to be
(1985, ® Reich(1963, X Kirk and Adams(1972, + Beal, Giffard, Hat- )
ton, Richards, and Richard$964). wg'"=2.42].

8

), ms/(MHz-cm®)
>

2

m
e
(=4

o©
b

T1/(f0V

Use of this expression enables E#j0) to be plotted on the
» graph of experimental data. The solid line in Fig. 2 shows
+15] ex;{ - —) this plot. We conclude that Eq10) does indeed provide a

by good approximation of the functional form of the spectral
a, \F 1V 1 [ o \ 14 » density function.

+ 2\ - F(z) b_zJ (@) K1/4( @) . The result of all these considerations is that the exchange

frequency can be deduced in a consistent manner from the

(10 measurements made at each molar volume. The best fit to

The parameter values are our analysis yields
— — Ui
a,=0.840, a,=0.160, 1214_%( Vm(cmB)) MHz. 1y
2 24

b,=1.768, b,=2.736,

I' is the gamma function, anl{ is a Bessel function. We
have also included a fact@rby which the lattice sum value
of M, is renormalized as a result of the zero-point motion
that averages the interparticle spacindft We find a value of

& = 0.787; further discussion of this matter is deferred to SecY: Tr SUM RULES AND MOMENTS

where the exponeng = 18.3. This compares favorably with
the results obtained by other me¥n.

9. Moments were introduced originally in the study of
The adiabatic part off; is given in terms of the zero ransverse relaxation. However, since there is a close connec-

frequency value of(w): tion between the moments and the autocorrelation function
1 M, G(t), as we have seen in E€p), and since the spin lattice
T_220'27OT’ relaxation is related td(w), which is the Fourier transform

of G(t), it follows thatT,; and the moments must be related.
which is the quantitative manifestation of the qualitative re-We shall investigate such relationships in this section.

sultT;* = M,7.. In other wordsz, = 0.2704; we see that Starting from the expression for the dipolgy, Eq.(1a),
J~'is a measure of the characteristic time for the exchangeafter changing the variables in the Fourier integral for the
but now with a precise numerical multiplier. double frequency term, we can write

1 o t
8. UNIVERSAL PLOT OF RELAXATION DATA T—:f {G(t)+2G 5) ] exp(i wt)dt.

1 — 00

In Fig. 2 we show a plot of all publishe@; measure- ) ) . ) o
ments orPHe in the bce phase presented in “reduced” form, Again we have assumed rotational invariance for simplicity
We know, in general, from the discussions in Sec. 6 thaPut the generalization to distin,(t) and G,(t) functions
for a given systemT,/J is a single-valued function of IS Straightforward. Inverting this Fourier integral, we obtain

wo/J. Since the exchange frequengys proportional to the 1 (= exp—iwt)

frequency at which th&; minimum is observed, it follows G(t)+2G(t/2)= 5— f —d
. . . . 27T — Tl

that the same universal behavior will be displayed when plot-

ting T, divided by the frequency of the minimum against and then expanding in powers of time leads to

w,
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FIG. 4. Fourth moment sum rule for békle.
FIG. 3. Second moment sum rule for bide.
G™(0) N o GM(0) [t\" versal” plot of T, data in Fig. 4 gives the renormalized value
e Ut e n! 2 for M, and the line corresponds to the spectral density func-
tion of Eq.(10), with the choserg = 0.787. The fit of the line
1 (» & (=1)"e"t" through the experimental data is not so good in this case,
27 ) . T T, do. particularly whenfo/f§" > 1. This plot enhances the high-

) ) ) ) frequency discrepancies iy ; what we are seeing here is a
Equating the powers of time then gives, since for ewghe  magnified version of the high-frequency deviations in Fig. 2.
integral is symmetric,

n

med— 1”(1 1)G<“>o
T—lw—(—)fr +F (0),

0 10. MULTIPLE-SPIN EXCHANGE

which leads to a set of frequency sum rule expressions for  The reality of the situation is that pairwise Heisenberg
T, forincreasingn. The sum rules can be expressed in termsexchange is not adequate to describe the zero point motion in
of moments, using the relations established in®g.In this  the bcc phase otHe. This becomes evident at lower tem-

way, forn = 0,2,4, for example, we obtain peratures. Thermal capacity and magnetic susceptibility may
= dew be analyzed on the basis of pairwise exchange, and theoret-
f T—:7TM2, ical expressions for these properties may be obtained as
o "1 power series in inverse temperature. At lower temperatures,
© w2dw T where higher-order terms are important, the experimental
f == My, data are not consistent with the simple Heisenberg model.
o T1 2 ) -
Even lower temperatures there is a phase transition to a com-
© widw 37 plex, antiferromagnetic, spin-ordered phase, which definitely
f T. 8§ Me requires multiple spin exchange for its explanation.
0 1 . . . .
This being the case, it seems then paradoxical that the
in the case of rapid motion. scaling treatment of relaxation works so well and, in particu-

If one has a set of; data taken over a range of Larmor lar, that the data can be “reduced” so as to fall so well on
frequencies, then the natural inclination is to interpolatethe universal curve in Fig. 2. The high quality of this reduced
smoothly between the points while extrapolating in an intel-data plot implies that so far as NMR relaxation is concerned,
ligent way beyond the end points. Relations such as the sutie system can be understood in terms of a single correlation
rules above provide a test of the validity of such proceduresime that characterizes the motion. In the context of the
One can immediately tell if all the area df w) has been above discussion, the system may be regarded, equivalently,
exhausted or if there is some unforseen behavior hiding beas having an effective pairwise exchange interaction. The
tween or beyond the experimental points. effective pairwise exchange frequency will be some func-

In the present context thid, sum rule may be used for tional combination of the frequencies of the various inter-
a determination of the renormalization factpalluded to in  change processes. Matsumatball’ have calculated the
Sec. 7. The area under the “universal” plot ®f data in  fourth moment for a restricted subset of two-, three-, and
Fig. 3 gives the renormalized value fdd, and the line four-particle exchanges. We thus find the effective pairwise
shown corresponds to our spectral density function of Egexchange frequency determining the NMR relaxation times
(10), with ¢ = 0.787. to be the combination

SinceM, = constx M,J, it follows that M, will be S ) )
renormalized by the same factor. The area under the “uni-  Jetr=Jnn—14JnnJi+6.70nKp+ 6137 — 543K+ 18K,

453 Low Temp. Phys. 23 (5-6), May—June 1997 B. Cowan and M. Fardis 453



whereJ,, is the pairwise exchange frequendy,is the fre- has a dramatic effect on the second layer, changing it from
quency of the three-particle exchange, dqglis the four-  the antiferromagnetic to the ferromagnetic state. Simulta-
particle exchange frequency for interchanges in a plane. neous thermal capacity and magnetization measurements
The reduced data plots incorporate measurements madwve been made. These measurements indicate that the
over a range of molar volumes, where the exchange varieghangeover becomes manifest in these two properties at dif-
over some two orders of magnitude. The quality of the referent densities. A ferromagnetic thermal capacity can coex-
duced data plot then indicates that the interchange frequen; \yith an antiferromagnetic spin susceptibility! This can be
cies of the various exchange cycles scale with density in §nqerstood in terms of the different combinations of ex-

similar mj”?}?é’ as qul).hc;eperlely/ I\‘;‘nd Ja(C::uclci ha\lle Iin- change frequencies which enter into the expressions for ther-
vestigated this” using path-integral Monte Carlo calcula- o canacity and spin susceptibility. The fluid overlayer

tions. They obtalngd the frequencies for a vgrlety of two 'shifts the balance of the different exchange processes. In
three-, four-, and six-spin exchanggsanar 5-spin exchange . L )

contrast with the bulk solid, in 2D the various exchange fre-
has also been calculatél They found that the largest ex- . T

duencies can be varied in different ways; here one has the

change frequencies scale with density in a similar manner} . .
ge freq y facility to continuously tune the frustrated spin exchafite.

the exponents arg,, = 19.0,7, = 19.8, andy, = 17.6. There ) i ) ,
is, however, noa priori reason to expect these dominant The rich variety of phenomena in bulk sofitile is therefore
)I;'kely to be exceeded dramatically in soffée films.

exchange processes to vary with density in the same wa
indeed, it is a surprise that they do. One is led to wonder,
with Cross?° if multiple spin exchange might be no more
than a descriptive construction rather like the planetary epi-
cycles of Ptolemy, and that there may be a more elementar
physical origin of the atomic motion. Currently there is no Present address: National Center for Scientific Research “Demokritos,”
satisfactory, first-principles, theoretical explanation, but it isz)éf:f;ﬁ’begs\f;'@vms thbnC.ac. uv
likely that vacancy-interstitial formation is the fundamental o ' o
process out of which all exchange cycles are Hdilthe
different trajectories taken by the vacancy before reuniting
with its interstitial would then correspond to different
muItlpIg-.spm exchange pycles, the exponan‘eﬂect_mg_the 1D. J. Thouless, Proc. Phys. S@&6, 893 (1965.
probability for the creation of the pair. The elucidation of 2y Rroger, J. H. Hetherington, and J. M. Delrieu, Rev. Mod. Pgs.1
this problem remains one of the unsolved problems in the (1983.
theory of solid helium. M. G. Richards, J. Hatton, and R. P. Giffard, Phys, RE88, A91 (1965.
1. Waller, Z. Phys.79, 370(1932
5R. A. Guyer, R. C. Richardson, and L. I. Zane, Rev. Mod. PH{s 532
(1973).
Further insights into the nature of exchange in bulk solid jH- C. Torrey, Phys. Rev104, 563(1956.
3He may be found from a consideration of two-dimensional ;2 G- Redfield, Phys. Re16 315(1959.
films of *He. In submonolayer films the observed spin relax- (Bl'gzg(‘:owan’ W. J. Mullin, and E. Nelson, J. Low Temp. PIgs. 181
ation behavior is similar to that in three dimensions. The °y. A, Reich, Phys. Rev129, 630 (1963.
relaxation data may be analyfédh a manner similar to that °J. R. Thompson, E. R. Hunt, and H. Meyer, Phys. Lett. 25A, @E57).
described above. Again, the data may be scaled onto a singléB: Eselson, V. Mikheev, and V. Grigor'ev, Sov. J. Low Temp. Pts.
curve, implying that here also the various exchange frequeq—zggi(lgz\?vén and M. Fardis, Phys. Rev. 8, 4304 (1991
cies scale with density in the same way. When expressed ag; p_cowan, L. A. El-Nasr, M. }léa.rdis, and A. Hussain, Phys. Rev. Lett.
a function of interparticle spacing, the variation in two and 5g 2308(198%.
three dimensions is similar. 14B. P. Cowan,Nuclear Magnetic Resonance and Relaxati@ambridge
The situation is very different, however, when consider- University Press(1997.
ing multilayer films of *He. Here the main experimental 163' 'I':a”gesmark" Agnédg PAhé’S’ 53 (F}r?YS)'Rm 1356197
tools have been measurements of spin susceptibility and, Matsinrﬁ?{ola; At;e,.andar';j.s‘lzuy};ﬁa, J.YPhys.(SO(?.\BB).1149
thermal capacity. Starting with a submonolayer film, as the (1989.
adsorbate density increases, a 2D triangular close-packétb. M. Ceperley and G. Jacucci, Phys. Rev. L8, 1648(1988.
solid is formed. Increasing the density further, upon comple-;zD- M. Ceperley, Rev. Mod. Phy§7, 279 (1995.
tion of the monolayer, there is promotion of atoms to theng""g“éis\;v;s”i_JAAET_'NZgg& 15:%2?2& A. Hussain, Phys. Rev. Left
second layer. It is initially a fluid, but as the density is in- 55'3’ 2'308(198’7)_' ' T ' ' ’ T
creased, the second layer solidifies. The first paramagnetiec. p. Lusher, J. Saunders, and B. P. Cowan, Europhys. 14tt809
layer plays a very small part in the observed spin behavior; (1992.
this has been confirmed by analyzing the two—componen?s';ﬂésiiflugeégy J. Nyki, B. Cowan, and J. Saunders, Phys. Rev. L&§.
m’:)ﬂri)lg;irrggmzszzand by replacing the first layer with a 24M. Siqueira, J. Nyki, B. Cowan, and J. Saunders, Czech J. PAgs??,
When it forms, the second solid layer exhibits antiferro-ZSﬁ?g%ueira, J. Nyki, B. Cowan and J. Saunders, Phys. Rev. L@%©96.
magnetic exchange. However, when the density is increaseghis article is published in English in the original Russian journal. It was
further, the third fluid layer is formed. This fluid overlayer edited by S. J. Amoretty.

11. SOLID 3He FILMS
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Spin—lattice relaxation in phase-separated  3He—*He solid solution
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B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraitie
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The spin—lattice relaxation time in3de—*He solid solution with the initial concentration

3.18%He is measured during phase separation by using the pulsed NMR technique. The
relaxation time in a concentrated bbc phase formed as a result of phase separation is

found to be independent of temperature over the entire range of its existence and is determined
by the Zeeman-exchange interaction mechanism. In the dilute hcp daughter phase, the
spin—lattice relaxation time increases on cooling according to theTlaw- x™", where
n=0.88+0.12, andx is the*He concentration. The values ®f in this phase coincide with the
values corresponding to a homogene@uenseparatedsolution of the same concentration.

© 1997 American Institute of Physid$§1063-777X97)01305-4

INTRODUCTION the most interesting features of magnetic relaxation in solid
3He, i.e., the existence of a wide region in which the time
B. N. Esel'son was one of the first scientists who startedr; does not depend on temperatitiee region of exchange
in the fifties the systematic experimental investigatioat plateau.
*He—*He solid solutions which proved to be a very rich and  As the crystal is cooled further, the number of vacancies
interesting quantum system. At the beginning of seventies, & it becomes insufficient not only for a direct thermal con-
QeW fundamental phenomenon, viz., quantum diffusion ofact between the Zeeman subsystem and the lattice, but also
He impurities, was discovered in this system. At low tem-for interaction between the exchange subsystem and the lat-
peratures, these impurities are not Iocaliged, but form a gagce. In this region, the relaxation of nuclear magnetization is
of quasiparticles moving over e crystat _ determined by the exchange—vacancion interaction. An
Large amplitudes of zero-point atomic vibrations in gnaiysis ofT, proved that the spin—lattice relaxation time in
crystals of helium isotopes lead to overlapping of wave funCypis case increases with decreasing temperature, which is in
tions. In the case ofHe, exchange processes associated With, - cord with experimental dafa®
tunneling of neighboring atoms take place. Exchange pro- In this temperature rang&He impurities in &He crystal

CESSEs determme not only spin diffusion, but also Fhe Ma%an affect the spin—lattice relaxation processes significintly.
netic properties of the system, and above all, the spm—latncguch impurities behave as mobile point defedslocalized

relaxation. atoms moving with the tunnel frequency,; which is of the

St st rcessnio s 8 e 3 L
P y ’ terizing the *He—°He exchange. In the region of the ex-

example, Refs. 3951t was found that the temperature de- : . .

. . L change plateaufHe impurities virtually do not change the
pendence of spin-—lattice relaxation tirfig is complex and ime T,, while at lower temperatures their influence be
nonmonotonic. This is due to the face that, according to thé L ificant. In thi P th f oh
Garvin—Landesman model, solftHe can be regarded as a comes_aggl)f:;an - N IS reg:|on, f proces;is orp oEon
system consisting of thre@eeman, exchange, and lattice scattering q c at(()jms can a3_350 make a contribution to the
subsystems, and the energy between individual subsystems!fdTPerature dependence By _

Another temperature-independent relaxation process

transferred in diverse ways. ) 4 ; ~
At high temperatures, the Zeeman subsystem associat&@ntrolled by the concentratior, of “He impurities was
bserved by Bernier and Deviflén the low-temperature re-

with interaction between nuclear spins and the applied mag®" ) X )
netic field transfers its energy to the lattice due to fluctuadion. It was found that the correspondlnsg spin—lattice relax-
tions of the local dipole field induced by thermally activated ation timeT,p varies withx, asT;p ~ X, ~. In the frame of
vacancion diffusion of atoms. Thus, the Zeeman subsysteri€ proposed phenomenological model, these authors ex-
relaxes directly to the lattice, and the functiog(T) passes Plained the process by diffusive energy transfer from the
through a minimum when the characteristic diffusion timeZeeman and exchange subsystems to relaxation centers con-
becomes of the order of the reciprocal Larmor frequency. Sisting of “He clusters. This region on the temperature de-
The thermally activated diffusion flow ofHe atoms is pendence off; is often referred to as the diffusion plateau.
suppressed upon cooling and ultimately stops affecting théater, Bernier and Guerriemlso considered a possible role
dipole—dipole interaction of nuclear spins. Under these conef dislocations in spin—lattice relaxation in the region of the
ditions, the interaction between the Zeeman subsystem arldw- temperaturddiffusion) plateau and obtained an agree-
the lattice occurs through the exchange subsystem as long a®ent with experimental data under the assumption that the
the latter has the lattice temperature. All this leads to one oénergy is transferred from the Zeeman and exchange sub-
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systems to the walls of dislocations which are coupled with(3.18+ 0.02)%He during 0.5 h by the capillary blocking
the lattice strongly. technique. In order to eliminate possible gradients of pres-
Magnetic relaxation in®He—"He solid solutions was sure and concentration, the samples were annealed near the
studied in Refs. 7-10 over a wide temperature range, buhelting point for 24 h. We used the experimental setup de-
was not completed as in the case of pdi¢e. Miyoshi  scribed in Ref. 11 and containing a cylindrical NMR cell
etal,’ who studied solutions with the concentration prepared from the epoxy composite Stycast 1266 and con-
x=1.94-32.1%He, observed a Zeeman—exchange plateawected with the nuclear stage through a thermal switch.
both for the bcc and for the hcp phase as in the case of pure  The samples were in the form of cylinders of diameter 4
3He. They believed that the exchange interaction in the somm and length 20 mm, and measurements were made under
lution does not depend on thi#He concentration, and the a pressure of 3.7 MPa which was recorded by a capacitive
concentration dependence of the spectral density function isickup in situ. The sample in the cell was cooled through a
only due to the dependenes: ~ x'/2 wherewg is the ex-  silver stem with a silver heat exchanger. Measurements were
change frequency. made in the temperature range from 700 mK down to 1 mK,
The experimentswere subsequently extended to the re-j.e., included the range of the homogeneous solution as well
gion of more dilute solutions ofHe in “He (down to  as the range of isotopic phase separation. Cooling to the
0.2%°He),® and the obtained results were interpreted by theegion of decomposition was carried out in steps
authors under the assumption that the main tunnel motion is~ 10 mK) followed by temperature stabilization lasting for
the mutual exchange between neighborfirte and*He at-  many hours. Such a technique was used earlier to obtain
oms. This temperature independent process is determined lyformation on the equilibrium phase-separation curve for
theHe concentration and the molar volume of the crystal. Ifsolutiond2 and on the kinetics of isotopic phase separation.

a®He atom is surrounded by *He atoms, the characteristic The spin—lattice relaxation tim&,; was measured by
time using the pulsed NMR technique at a frequency
T3a=(2J3s) 1 (1)  wo/2m=250 kHz. The system was subjected to the action of

of the process is determined by the tunnel frequehgyof @ Sequence of pulses 96-90, and the longitudinal magne-
exchange for théHe—*He pair. In this case, the experimental tization M (_r) of the system returned to its equilibrium value
data could be described by using a single fitting parameteMo according to the law

T34, and the concentration dependence of the spin-lattice M (7)=My(1—e "T). 2)
relaxation time corresponded to tke! law. The same con- ) .

centration dependence was also recorded by Richetrals® After each pulse, the amplitudé of the experimentally ob-

where the timeT; was measured in the concentration rangeserved free induction signal is proportional to magnetization.
0.01-0.24%He. Consequently, in the general case when the solution contains

Hirayoshi et al° studied magnetic relaxation in solu- two phases in equilibrium after decomposition, we have

tions containing from 0.22 to 7.2%le in the region of the U(r) U b UD N
: — —7/T 7T

tunnel “plateau.” In contrast to the previous model, they Uy~ U, (1-e 1)+U—0 (1-e ™M), ()
assumed that the contribution to the spectral density function
comes from both tunnel motiord#He—He and3He-%He. Where the indiced and h correspond to the bcc and hcp
They also succeeded in explaining the obtained results on tH#hases, respectively.
basis of the proposed model with a single fitting parameter. ~ The obtained experimental results were processed by the

Thus, a single approach to the description of spin—latticééast-squares method with an approximating function of the
relaxation in®He—"He solid solutions has not been worked form (3); typical results for several temperatures are pre-
out. Magnetic relaxation in phase-separated solutions, igented in Fig. 1. Each point in the figure is the result of
which disperse inclusions of the concentrated phase aréve-fold averaging. It can be seen from the figure that recon-
formed as a result of isotopic phase separation in the matrigtruction of magnetization undergoes evolution: the curve
of the dilute phase has also been studied insufficiently. Thi§as a one-exponential form with a spin—lattice relaxation
phenomenon was mentioned only in Ref. 8 in connectiorfime typical of the initial homogeneous solution at high tem-
with the measurements of relaxation time. peraturegabove the phase-separation temperafwrbile at

This research mainly aims at an analysis of spin—latticdow temperatures the curves can be approximated by two
relaxation in a solution Containing 3.18%e over a wide exponentials indicating a heterophase structure of the solu-
temperature range. The main attention is paid to magnetition. The valuesT] and T} of spin—lattice relaxation time
relaxation in daughter phases formed as a result of isotopigetermined in this way are characterized by an error not ex-
phase separation. Thus, the solid solution under investigatiogeeding 10%.
was transformed from the initial hcp phase to the mixture of
a concentrated bcc phase and dilute hcp phase, which al-
lowed us to study relaxation in such a complex and interestTREMPERATURE DEPENDENCE OF SPIN-LATTICE
: ELAXATION TIME
ing system.

Figure 2 shows the values of spin—lattice relaxation time
obtained during cooling of the solution. It should be noted

We studied several samples #1e—*He solid solutions that each point was obtained after a long temperature stabi-
grown from the initial mixture with the concentration lization and corresponds to thermodynamic equilibrium. This

EXPERIMENTAL TECHNIQUE
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FIG. 1. Reconstruction of the longitudinal magnetization of the sample after the application of a 90° pulse at a constant tefpeBafore phase
separationT=221 mK, (a) after phase separatioi:=179 mK (b) and T=139 mK (c).

is confirmed by the fact that the data on the phase-separatiation. We shall carry out an analysis of possible relaxation
curve in the same experiment are in accord with the resultmechanisms separately for each phase.

obtained during sample heating without any noticeable hys-

teresis effects.

The temperature dependence of the timegoresented in
Fig. 2 has three branches corresponding to the initial solution  The independence of the spin—lattice relaxation time
with the hcp structure T9) and two daughter phases, viz., T2 of temperature in the concentrated phase suggests that the
the concentrated bcc phas*é‘j][ and dilute hcp phaseT({). main mechanism of magnetic relaxation in this case is con-
The branching temperaturg,s on this dependence corre- nected with the Zeeman—exchange interaction. It is well
sponds to the beginning of phase separation of the initiaknown that exchange processes’iie cause the motion of
solution (marked by arrow neighboring atoms with antiparallel spins, which is equiva-

It should be noted that a qualitatively similar behavior of lent to rotation of atoms around the center of mass of a pair
spin—lattice relaxation time during isotopic phase separatiof atoms with the angular frequeneyz . Under these con-
was also recorded by Greenbeggal® who investigated a ditions, the relaxation mechanism is determined by the con-
solution with the initial concentration 2%ie. They pre- nection of the Zeeman system with the motiorPde atoms
sented only the values df; for concentrated phase, and a
strong decrease in the value Bf near the phase-transition
temperature was recorded in a wider temperature range than

MAGNETIC RELAXATION IN THE CONCENTRATED PHASE

in Fig. 2. This can be due to incomplete thermodynamic 10{ b Th
equilibrium under the conditions of measurements of the t 5.'
spin—lattice relaxation time in Ref. 8. i .
The timeT; in the concentrated phase is virtually inde- N ‘.‘l To
pendent of temperature, while in the dilute phase the value of = 4 - -_-1.
T, increases with decreasing temperature significantly. Reli- : b .' -
able values off; for the dilute phase were obtained only in : T1 °
the temperature range abowv€l00 mK since the hcp phase t_ Ly o
at lower temperatures contains a very small amount of
3He, which makes the NMR signal from the dilute phase ot '6'1 S “1'0

comparable to the noise level. T K
The different forms of the temperature dependence of !

S_pm_latt'ce_ relax_atlo_n tm_]e for dlffe_rent_phases of the SOIU'FIG. 2. Temperature dependence of the spin—lattice relaxation time in the

tlpn under |n\{est|gat|on illustrated n Fig. 2 CorreSp_ond Winitial solution (T%) and in two daughter phases: concentrat@d) (and

different physical processes responsible for magnetic relaxdilute (T}). The arrow corresponds to the phase-separation temperature.
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during their tunneling due to dipole interaction, and the cortween the Zeeman and the tunnel system for puregﬂe; It
responding pair correlation function for the Gaussian apshould be noted, however, that this relaxation mechanism in
proximation is taken in the fortf pure He is manifested at not too low temperatufabove

N _ 2.2 0.4-0.5 K, while the region of the temperature dependence

9(t)~ exp~ 05wt @ of T, characteristic of the exchange “plateau” for the con-

In this case, the spectral density functidj{w/wg) describ-  centrated phase under given experimental conditions corre-
ing the spin—lattice relaxation under modulation of the di-sponds to the temperature interval from 0.2 K down to the
pole interaction by the exchange of tiide atoms and being lowest temperatures investigated by us.

the Fourier transform of the correlation functig(t) has the Although the reason behind such a difference remains
form unclear, we note some factors which can influence spin—
12 lattice relaxation in a phase- separated solution. First, the
(2m)7“M, . . .
Ji(wlwg)= exp — w?2ws), (5)  concentrated phase formed in the process of isotopic phase
Swe separation contains a large amount Hfle which can

where w is the Larmor frequency anM, the second van Strongly affect magnetic relaxation at temperatures below the
Viek moment, which is connected with the molar volumefegion of the exchange plateau typical of pdtée. In this

V of the crystal through the following relatich: region, the coupling between the exchange system and the
0 lattice becomes weaker than between the Zeeman and ex-
22810 & change systems, and the value Bf must first increase
Mo=—=7—(s). (6) : , i
V abruptly upon cooling, and then attain a nédiffusion)

It should be noted that along with the Gaussian correlation
function (4), magnetic relaxation is sometimes analyzed bytran
using the Lorentz correlation function leading to the follow-
ing expression for the spectral density functfon:

plateau” (see above
It was proved by Bernier and Devifighat the energy
sfer from the Zeeman subsystem to the lattice occurs
through diffusion to clusters formed e impurity atoms.
Since the value of  is inversely proportional to the cube
(2m)Y2Mm, of the concentratiorx, of “He in *He (see above we can
exp( — o/ wg). @) expect that for a certain value &f, the diffusion plateau is
“lowered” to the values ofT; corresponding to exchange
The quantitywe appearing in(5) and(7) is proportional to  plateau. According to estimates based on the results obtained

Jl(w/wE)Z 3(,0E

the exchange integral;: in Ref. 6, such an effect is possible under the given experi-
we=bdss, (8) mental conditions fofHe concentrations amounting to only
a few tens of percent.
where the constartt=3.36 if g(t) is approximated by the Another possibility associated with the difference of the
Lorentzian function antv=4.76 if the approximation is car- concentrated phase of the phase-separated solution from pure
ried out by using the Gaussian function. bcc3He is also worth noting. The concentrated phase can be

_In the approximation of pair exchange between nearesgresented as dispersive inclusions®bfe in the hcp matrix
neighbors, the rate of energy relaxation from the Zeemaformed by the dilute solution ofHe in “He. In this case,
system t05 tunnel excitation is determined by therelaxation of the Zeeman system at low temperatures occurs
expression at the boundary of bcc phase inclusions. The spin—lattice

_ laxation time is proportional to the square of the radus
) 1= (w/ wg) + 43,20/ wy). g ~relaxator . .
(T il wg)+41(20]we) @ o inclusions(under the assumption that they are spheyical
Since w<wg under the given experimental conditions, theand inversely proportional to the spin diffusion coefficient
exponents appearing in expressi@hsand (7) for the spec-  within inclusions. According to estimates, the valued gin
tral density function are equal to unity to a high degree ofthe region of diffusion plateau and the exchange plateau can
accuracy. In this case, formu(8) for spin—lattice relaxation have the same order of magnitude R+ 10 * cm owing to
time does not depend on the type of approximation and acsuch a “size” effect. Although the shape and size’sfe
quires the form inclusions in the*He matrix as well as possible low dimen-
1 sionality of this structure remain disputable, all these factors
b, 9.5-10" . : . :
TH- =" (100  can noticeably affect the processes of spin—lattice relaxation.
1 V2 . . .
WE It should be noted that the boundaries of inclusions play

Since the concentrated bce phase contains almost pufeSignificant role in this process. At these boundaries, rapid
3He, we can use for the molar volumé=23.95 cni/mole  relaxation due to coupling of the tunnel motion®bfe atoms
the value of the parametdis,=0.7-10"3 K corresponding With the vibrational motion of dislocation lines occurs in
to the bee of Hed In this case, formula(10) gives View of a large number of edge dislocatichs.
T°=0.27+0.1 s, which is in good agreement with the ex-
perimental resultssge Fig. 2 . . . RELAXATION IN DILUTE SOLUTIONS OF 3He IN “He

Thus, the experimental values of spin—lattice relaxation
time obtained for the concentrated phase of the decomposed It was noted above that the temperature dependence of
solution in the entire temperature range under investigatiospin—lattice relaxation time presented in Fig. 2 has two re-
are in quantitative agreement with the time of relaxation begions corresponding to dilute hcp solutions3sfe in “He.
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Let us first consider the region corresponding to the initial
solution with the concentration 3.18%e. The value of
T, in this region is independent of temperature within the
experimental error. Hence it is natural to assume that spin— 10 3
lattice relaxation occurs through a direct interaction between y
the Zeeman and exchange systems in this case also. o [
According to Miyoshiet al,” we can estimate the value = i
of T, expected for a solution ofHe in “He by using rela- g
tions (5)—(10). It was assumed in Ref. 7 that the concentra- i
tion dependence of the spectral density functigfw/wg) is
connected withwg , wherewg ~ x*2. Moreover, it was as- 1
sumed thatM,(x)=xM,(1). If we also take into account

LR ALE |

ol L REEraT e | N

the fact that the quantities appearing(§—(10) for the hcp 0,1

phase under investigation with the molar volume Xg, % 3He

V=20.3 cni/mole have the valudd , = 22.6- 10'%Vv? s7%;

b = 6.48;J33= 1.5- 10 ° K, the spin—lattice relaxation rate FIG. 3. Concentration dependence of the spin—lattice relaxation time in the
calculated in this way must be almost two orders of magni_dilute hcp phase. The symboll and @ correspond to different crystals

investigated by us. The experimental results obtained in REV)78 (X),
tude smaller than the observed values. In such an approac@c*)’ and 10(+) were normalized to our experimental conditions. The solid

the predicted concentration dependence has the f6{m jine corresponds to the dependefige~ x~*£2
~ x~ 2 which also contradicts the experimental res(stse
below).

Another approach to the analysis of magnetic relaxatiorP€ reconstructed into the concentration dependence shown in
processes ifHe—*He solutions was used by Greenberg Fig. 3 by taking into account the phase diagram obtained in
et al® on the basis of the Torrey theotylt is well known  Ref. 12. An analysis shows thaT] ~ x", where
that®He impurities in a*He quantum crystal form quasipar- N=0.88+0.12, which speaks in favor of the approach devel-
ticles (impuritong which have the band widtAE=z#J,,.  oPed in Refs. 8 and 14.

In this case3He and*He atoms can change places through  In addition to experimental data obtained by us, Fig. 3
tunneling with the frequencys, and the exchange ra@f also presents_the results of. measuren?éi"n‘lafnade for a ho—
which depends on the number &fle atoms surrounding a Mogeneous(single-phasg dilute hcp solution of*He in
3He atom in accordance with formu(d). According to the “He. According to Fig. 3, these results are in accord with the
theory®® the spin—lattice relaxation time in3%le—*He solu-  values ofT; obtained by us for the dilute phase formed as a

tion with the concentratiol in the exchange “p|ateau” re- result of phase Sepal’ation to within the overall experimental

gion is described by the formula errors. This means that spin—Ilattice relaxation processes in
homogeneous and phase-separated solutions of the same
Tilzz_zng/(w2734)_ (11 concentration are similar.

The quantityrs, was defined in Ref. 8 as a fitting parameter
to the theory® describing the spin—Ilattice relaxation time in
solutions withx=1% and 2%He. It was proved that the The experimental investigation indicates that the
time T3y depends on molar volume and is Virtua”y indepen_zeeman—EXChange interaction is the dominating process de-
dent of concentration. If we use the valuemf, obtained in ~ termining the spin—lattice relaxation time in a phase-
Ref. 8 for the given experimental conditions SeparatedHe—"He solid solution.
(r3i12m=3-10° s7Y), the calculations based on formula Spin—lattice relaxation in the dilute phase of a phase-
(12) give T;~0.8 s, which is in accord with the experimen- Separated solution occurs in the same way as in a homoge-
tal data. In this model, the concentration dependencg;of Neous solution ofHe in “He. The spin—lattice relaxation
has the fornT; ~ x . time in the concentrated phase in the exchange region of the
It should be noted that the value Bf measured for the Phase-separated solution coincides with the corresponding
initial solution is also in agreement with the experimentaltime for pure®He, but in contrast tdHe, the region of the
results obtained in Ref. 10 if we normalize them to the fre-xchange plateau embraces almost the entire temperature re-
quency used by the formulf; ~ w?. Such an agreement gion of existence of the concentrated phase.
indicates that the spin—lattice relaxation processes in an hcp
solution can be also described by taking into account bou?ruit
tunnel movements oiHe—He and®*He—*He as it was done
in Ref. 10. A fitting parameter is used in this case also.
The concentration dependence of the spin—lattice rela
ation time in hcp®He—*He solutions can be investigated .
from an analysis of the third branch in Fig. 2 corresponding
to the dilute phase of the phase-separated solution. Since tl'ml,son D.Sc. thesis, Kharkdg957).
measurements in this case were made along the equilibriumy, Grigo,r'e\'/, B. N. Esel'son, V. A. Mikheev, and Yu. E. Shulman,
phase-separation line, the temperature dependente adn Pis'ma Zh. ksp. Teor. Fiz17, 25 (1973 [JETP Lett.17, 16 (1973].
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Melting of 3He in a phase-separated solid *He—*He mixture
R. P. Haley and E. D. Adams

Department of Physics, University of Florida, Gainesville, FL 32611-8440,"USA
(Submitted November 19, 1996
Fiz. Nizk. Temp.23, 615-618(May—June 199y

The melting pressure of thiHe-rich phase, which is formed after phase separation of a mixture
of 0.6%°3He in“He, has been studied in the temperature range 1-150 mK, below the phase-
separation temperatuig,, at pressures between 2.78 and 3.56 MPa. Measurements were made
with the mixture confined in a silver sinter, and also in an open volume for comparison.

An elevation of the melting pressure relative to pdHe of up to 60 kPa in the sinter cell and

20 kPa in the open-volume cell was observed. Hysteresis between the freezing and melting
temperatures was found for both cells, similar to that observed forjtgen small pores. The
results of Schrenlet al. for heat capacity measurements on a similar system are discussed.

© 1997 American Institute of Physids$1063-777X97)01405-9

1. INTRODUCTION cell is better than 1 Pa. The two cells were connected to the

Ah lid mixt SHe—He d same fill-line, with a junction in the line at the experimental
OMOgeneous solid mixture oHe—He decomposes stage on which the cells were mounted.

into separate phases when cooled to the phase-separation Samples were formed at various pressures by the

3 i - . . . - .
:emperatlf[)e'rlps.TFortLOVZHHe_ cr?ﬂcentrailgns, att Femr)lera capillary-blocking technique, and it was intended that both
ures wetl belowl ps, the eI;rlc Ch matrix contains clus- o open-volume and sinter cells would contain samples at
te_rs_ or droplet'_s of almost pu (He(seelRefs. 1and 2 and the the same pressure, since they were connected to the same
b|bl|ography cited th_elje Schrenlet al. have reported a_de- fill-line. However, the sinter cell samples consistently solidi-
pression of the melting pressure of tfide droplets relative fied at higher pressures than the open (el approximately
Lc.) tthat %f puredbuItI?He. FL:lrtherdmo.re, t.heti/] h::tjve cl)btser\:ed 4.3 MPa. We attribute this to a larger degree of disorder in
shsrgsryals?g\?vnasg Ogig;et:glc?\:v '?hr:en?ng:ting prré);)sirse ?}Fgﬁeﬁhe sinter cell since there is a larger surface area on which a
3He. A possible explanation for these results might be th?ew.atomlc layers of amorphous soffitie form. After for- :

fined-aeometry effect of the small droplets. Pike in $nation the samples were either quenched or annealed just
con :Inel geome yh levated melti P ';3 ) below the solidification point. Phase separation in the sinter
small giass pores has an elevated meiling pre le a and open-volume cells was observed as an increase in

gﬁgrgisfr'\'/l;g ?uebsrPrzltJ‘[’eTg pressure has been reported f%rample pressure of approximately 15'kPa with a time con-

. . o stant on the order of 10 hours for the sinter cell and 20 hours

. we have_ StUd.'ed m?'“”g _and freezing in a 0.6%e for the open-volume cell. The absence of a sinter in the open-
mlxtgre confined in a silver sinter cooled beldlis (ap- . volume cell did not significantly affect the cooling/warming

proximately 200 mH at pressures from 2.78 to 3.56 MPa in rate of the sample. After the phase separation and further

\%der: o deitermms the melting CL:rve cifhtﬁble drop_Iettsr’. cooling, samples were then warmed through the freezing
€ have also made measurements on Ine same MIXUre CQp; \qiinn and cooled back through melting, taking care to
tained in an open volume in order to assess whether th

. . . . EeepT < Tps. In some cases, several such cycles were per-
silver sinter plays any role other than providing an eﬁectlveformed_ Temperatures were measured precisely withia

means of coollng_. _Hysteresys and_the Eﬁ.eCt of thermal hIS'rnelting pressure thermometanounted on the same experi-
tory on the transition were investigated in both cells. The

AT ; mental platform as the cells. The temperature was regulated
implications of our observations on the results of Schren

2 : . . ; using the signal from the thermometer bridge to control
etal”are discussed, and possible explanations are given f%ﬁe current to a heater on the experimental stage. All three
some of the effects that they reported.

strain gauges were calibrated with the same Paroscientific
quartz transducer.
In order to ensure that the data were taken at equilib-
rium, the desired thermometer bridge value was set on the
The sinter cell contains a thin disk of silver sinter of temperature control system, the samples cooled/warmed to
particle size 500-1000 A and packing fraction 50%. Thethe new temperature, and then held at that temperature until
disk of radius 25 mm and thickness 2.5 mm was packed in the pressure in the cells reached equilibrium. In the freezing
silver cell with one wall forming the flexible diaphragm of a transition of the open-volume cell, equilibration could take
capacitive pressure transdu€efthe open volume cell is up to 20 hours.
similar in design, with the sample forming as a solid disk of
radius 17 mm and thickness 1.3 mm. These geometries pr&-' RESULTS AND DISCUSSION
vide a short path for pressure transmission, thereby minimiz-  In both the sinter and open-volume cells, melting of the
ing pressure gradients in the sample. The resolution of eactHe droplets was observed at sample pressures from 3.13 to

2. EXPERIMENTAL METHOD
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FIG. 1. Typical cooling(curvesl, 3 and5) and warming(curves2 and4)
cycles for the melting/freezing dHe in the droplets in the sinter cdbee
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FIG. 3. The bulk®He melting curve(solid line) and the melting points of
3He droplets, taken from sinter cell data.

3.45 MPa. At 3.48 MPa th&He remained solid down to the Volume cell, which also shows hysteretic behavior. In this

lowest temperaturél mK), and at 2.96 MPa melting was not

figure the pressure in the cell is plotted relative to the pres-

observed, presumably because the droplets formed as a ”ayre in the melting curve thermometer. Since the cells were

uid. Upon melting,
cell increased on the order of 1 kPa, and on the order of

kPa in the open-volume cell.

Figure 1 shows typical cooling/warming cycles display-
ing the hysteresis seen in every sample in which meltin
occurred in the sinter cell. The numbers by the curves indi-
cate the time sequence; curveand5 illustrate the effect of

the pressure of the sample in the Simepalibrated against the same pressure standard, this eliminates

gincertainty in the temperature and shows precisely the posi-
tion of the transition relative to the bulk melting curve. Pre-
viously hysteresis was observed for pure helium in porous

E?Iasses and appears to be a characteristic of melting and

reezing in confined geometriédn that experiment the tran-
sitions occurred at pressures above that of the bulk melting

reversing the direction of temperature changes in mid—cycle‘?urve'has one Wouldf_expect for homogeneous nucleation of a
Figure 2 shows a typical warming/cooling cycle in the open-"€W Phase in a confined geometry.

3.276

3.274

3.272

Open cell pressure , MPa

3.270

3.268

Freezing

49 mK

3.10

FIG. 2. Typical warming and cooling cycles for the freezing/melting of

1 i 1
3.20 3.30 3.40
Melting curve pressure , MPa

The temperatures for the sharp kinks in the cooling and
warming curves such as in Fig. 1 are almost the same and the
pressure differences are small. These are shown in Fig. 3 as
single points for samples formed at different pressures along
with the pressure indicated by the pifige melting pressure
thermometer. For the sinter cell we found all melting transi-
tions to be on or above the bulk melting pressure, elevated
by as much as 60 kPa. The precision of the points in Fig. 3 is
much better than would be indicated by the “scatter”, which
is possibly related to the thermal history of the sample and
the droplet siz&.However, we have not been able to corre-
late the size of the pressure elevation with the thermal his-
tory.

We have measured the pressure minimum of essentially
pure3He in the sinter plated with 1%He as a substrate and
found an elevation of the melting pressure in the sinter of
63.9 kPa.

For the open-volume cell, it is clear from Fig. 2 that the
onset of melting in the droplets is elevated above the bulk
melting curve (by 20 kPa, and that the melting/freezing
transition is broadened relative to a bifike isochore. We
attribute this behavior to differences in droplet size between

3He in the open-volume cell. The solid line shows the melting pressure ofn€ sinter cell and the open cell. In the open volume cell, we
bulk ®He. Temperatures are given for the points indicated.
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ters, up to a size on the order ofu 2 In the sinter cell, the observed show no latent heat and are much broader than
pore size of approximately 100 nm limits the size of a clustethose measured by Greywall and Busghbulk *He. These
which can grow from the’He contained inside the pore. are well-known effects of density gradients in the sample.
Thus, the larger droplets in the open-volume cell containThe peak that they observed does indeed appear at a higher
3He which is less confined and one would, therefore, expedemperature ifl,;, is higher, although it is not clear that this

a smaller elevation of the melting pressure. This accounts fopeak actually indicate3 . In fact, the broadening of the
the broadening of the melting transition for the open cellpeak due to the density gradients means that the samples
with the onset of smaller droplets at a high elevation. Inwith higher values of ,;, are not cooled all the way through
comparison, the sinter cell melting transitions are sharpethe ordering transition, so that for successively higher values
and more elevated, suggesting that a high percentage of tief Ty, less of the solidHe contributes to the heat capacity.
3He in a pore is contained in a single cluster, which is limitedIf the droplets were cooled all the way through the ordering
in size only by the’He available within that pore. The cluster temperature, then there would be a decrease in ent@py

size would be approximately 20 nm if it contained all the trapolated toT = 0) of R In 2, whereR is the gas constant.
3He within a pore. Their data for a sample at 3.4 MPa willy = 0.92 mK actu-

The fractional change in volume in the droplets on melt-ally shows a greater contribution to the entropy reduction in
ing Av/v can be calculated from the change in pressure ogooling from 2 mK to just abovely than that found by
melting such as that shown in Figs. 1 and&suming that Greywall and Busch in bulk, probably indicative of a broad-
the molar volume change 6He in the droplets in the same €ning of the transition in the droplets. Greywall and Busch
as in bulk. We find this to be only about 8% of that for pure report an entropy reduction of 0.441n 2 in going through
He in a typical sinter cell measurement, and 40% in thethe transition alone. However, even including contributions
open-volume cell. This indicates that a large fraction of theffom 2 mK down toT,, the entropy reduction of Schrenk
3He remains solid at pressures well below the bulk meltinget al.is only 0.32R In 2 for Ty, = 783 uK and 0.22R In 2
curve. A volume change less than that for bithe would be ~ for Tin = 837 wK. This suggests strongly that all of the solid
expected if surface layers of thigle droplets do not melt in the droplets was not cooled throudly, as would occur
because of the influence of the adjacent higher-density hcfr @ transition broadened by density gradients.

“He. As a result of the van der Waals attraction to thie
surface, the density of the solid in the droplet would be
higher at the interface than in the interior. The higher-density*- CONCLUSIONS

3He solid layers will melt at progressively colder tempera- Melting of ®He droplets contained in a matrix 6He

tures. Evidence for these d_ensjty gradients can be found g, g 4t higher pressures than bite and has a hysteresis
data Such as thos_e shown in Fig. 1, puﬁve?vhere the pres- characteristic of melting in confined geometries. The small
sure continues to increase upon cooling well below the sharg,| me change on melting indicates that much of3He in
melting transition. The initial pronoun.cec_i increase in presyyq droplets does not undergo melting, and remains solid at
sure would then be due to the material in the center of theos5yres below the bulk melting curve due to interaction
droplets, indicating that the high-density héple affects it the surrounding hcp soliéHe. Comparison with a mix-
only the outer layers of théHe in the cluster. The larger e in an open-volume indicates that containing the solid in
fractional volume change in the open-volume cell reinforces, ginter has the effect of limiting the size of thee clusters,

the assertion that it contains larger droplets, so that a lowegn the smaller droplets give rise to a larger elevation of the
proportion of the®He is directly affected by its proximity to melting pressure. We intend to use NMR to measure the

4 . . . .
the "He matrix. It should be emphasized that this continuedygpjet size, the relative amounts of liquid and solid, and to
pressure increase is not attributable to the continued phag@udy solid ordering.

separation since the sample was held at a temperature below
T,s and above the melting transition temperature until the
pressure remained constant with further lowering of tempera-_ ... adams@phys.ufl.edu
ture, before the onset of meltifgig. 1, curvel).

The existence of density gradients in the outer layers of
the droplets can account for effects reported by SChrenhR. Schrenk, O. Friz, Y. Fujii, E. Syskakis, and F. Pobell, J. Low Temp.
et al? relating to magnetic ordering dHe droplets in solid Phys.84, 133(1991); and unpublished results.
*He contained in a silver sinter. Their observations, based orjR. Schrenk, R. Koig, and F. Pobell, Phys. Rev. Left6, 2045(199.
the heat capacity, include higher magnetic ordering temperaa?' Eéki'tt;?r‘ir Jénlfjarlfc.jslj,Asqagsﬁizélar?yva:cein;?.oﬁgﬁq Igf%)?s(.lgz?: ueit
tures, Ty, at pressures as low as 2.8 MPa, 700 kPa below the 1g05(1980.
melting pressure of puréHe, and a history-dependent tran- °R. P. Haley, W. Ni, and E. D. Adams, Czech. J. PH6-S1, 477(1996.
sition temperature. As discussed above, the existence of soli¢f: D- Adams, Rev. Sci. Instrun64(3), 601(1993. _
3He at pressures below the bulk melting curve appears to be%nm’.J.a'hsy's)é'é’,"l%ﬁiggws’ P. S. Haskins, and J. E. McKisson, J. Low
a consequence of confining the droplets within a higher densy. a. mikheev, V. A. Maidanov, N. P. Mikhin, S. E. Kal'noi, and N. F.
sity “He matrix. The history dependence T they report is Omelaenko, Sov. J. Low Temp. Phyisi(6), 309 (1988.
that samples cooled to lower minimum starting temperatures, O S: Greywall and P. A. Busch, Phys. Rev.98, 6853(1987.
Tmin, @ppear to give lower transition temperatures in the heatnis article was published in English in the original Russian journal. It was
capacity data taken during warming. The transitions that thegdited by S. J. Amoretty.
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Growth kinetics of “He crystal with a low 3He impurity concentration
V. L. Tsymbalenko

Russian Science Center “Kurchatov Institute,” Institute of Superconductivity and Solid State Physics,
123182 Moscow, Russia
(Submitted November 12, 1996; revised February 12, 1997

Fiz. Nizk. Temp.23, 619-623(May—June 199y

The kinetic growth coefficient is measured for an atomically rough surface of a helium crystal
grown from a solution with a lowHe impurity concentratiofix=_8-10"° and 210" %).

The impurity does not affect the growth rate of the surface in the temperature range from 1.2 to
1.4 K. A comparison of the experimental results with the theory leads to the conclusion

that the additional contribution of impurity diffusion to the growth kinetics is equal to zero.

© 1997 American Institute of Physid$1063-777X97)01505-3

1. INTRODUCTION 2. TEMPERATURE DEPENDENCE OF IMPURITY
CONCENTRATION IN CRYSTAL AND IN LIQUID AT
The growth kinetics for*He crystals was studied in- EQUILIBRIUM
tensely during the last fifteen ears following the theoretical

2 . ) For a low concentration of the solution, when the effect
predictiot and experimental observatomf the quantum

. o . of impurity is weak, as well as at a high temperature, when
nature of this procesiee the review in Ref.)3According the role of quantum effects is insignificant, the change in the

to the model considered _by .Apdreev apd Paréhhhue chemical potentiaju, of the solvent is proportional to the
growth rate for the crystal-liquid interface is determined byimpurity concentratioh

the mobility of elementary defectésteps of the surface

structure. In turn, the mobility of steps in pure helium is MLa(T,X)= ua(T,0)—Tx. (D)
Ii.mited by scattering at quasiparticles, leading to an exloor“:.'\nl_Equating the chemical potentials of the liquid and solid
tial tgmperature dependence of the growth rate in the regloért}hases we obtain the following expression for the displace-
dominated by roton_s and tq a power dependence at low fhent of the phase-equilibrium point on the pressure scale:
temperatures. The introduction 8fle impurity leads to an

g . Ap=T(x,—Xg)/(v,—vs), Wherex, ¢ is the impurity concen-
additional scfattenng of steps #te atoms .and, asa result, .to tration in the liquid and in the crystal and  the volume per
a decrease in the growth rate. Analyzing this mechanis ’

i4 , » o Matom® Transforming this expression, we obtain the relation
Parshifi determined an additional contribution to the growth yefining the ratio of the impurity concentrations in the crystal

coefficient K associated with impurity: K3~1/(xv3s)  and in the liquid in terms of the shift in the phase-
~1/JT, wherex is the solution concentration angd; the equilibrium point;

thermal velocity of°He atoms. A similar estimate was ob-

tained by Castaingt al®> A numerical comparison of the Xs . AV,Ap 5
magnitude of this contribution for a concentratier 104 X RTx ’ @
with experimental values of the kinetic growth coefficient for
E;:E rg?gubrzlgxlcg tg. sKt[hat impurities start playing a signifi crystal and the liquid an® the gas constant.

. , . Phase-equilibrium curves for low concentrations/ere
The model considered by Parshin presumes that the im- . .
. ) . not measured directly. Figure 1 shows the temperature de-
purity concentration near the surface remains unchanged dur-

: . A B pendencies of impurity distribution, plotted for solutions
ing the growth. The experimental phase-equilibrium c VeS| ith a high impurity concentratiof0.99—8.9%2 It can be
show that the equilibrium concentrations of impurity in the

. N . . seen that the results obtained in the temperature range 1.2—
crystal and in the liquid are different in the general Cas€4 4 k in which our experiments were made coincide to a
During the crystal growth, the solution near the interface Wi"high degree of accuracy for all concentrations. Therefore, we
be depleted or enriched, leading to the emergence of diffusan assume that the same impurity distribution among phases
sion flows and additional dissipation in the solution, whichijs 550 preserved at lower concentrations. It should be noted
reduces the growth rate. Considering this mechanism, BUknat the impurity concentrations in the phasesTat1.4 K
mistrov and Dubovskf proved that the presence of an evenare identical. This means that the effect considered by Bur-
small amount of impurity at the level of;~10"* reduces mistrov and Dubovsk] is absent at this temperature, and the
significantly the kinetic growth coefficient at high tempera- crystal growth rate in the solution must coincide with the
tures~1.4 K. growth rate for pure helium. According to the thedrihe

In this communication, the results of measurements ofjrowth rate in the solution at a lower and at a higher tem-
the growth coefficient for two impurity concentrations are perature must be lower than the growth rate in pure helium
presented with a view to determine the contribution from thesince the additional dissipation is proportional to the square
diffusion mechanism of the growth. of the difference in concentrations.

where AV, is the difference in the molar volumes of the
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e L . FIG. 2. Temperature dependence of the kinetic growth coefficient. Pure
FIG. 1. Impurity distribution between the liquid and solid phases, calculatechelium: the data obtained in Ref. 10) and our resultsA). Growth coef-

according to phase-equilibrium curves for solufitwy using formula2) for ficients for solution withx=8-105 (dark triangles and 2 10~ (dark na-

various concentrations, % 0.99(0), 2.77 (A), 5.03 (1), and 8.9(¢). blas. The dashed and dot-and-dash curves correspond to the growth coef-

Dashed lines indicate the temperature region presented in Fig. 2. The solighjent calculated by the formulas from Ref. 7 for the concentrations 0.008
line is plotted by processing the entire body of experimental data in this;nq 9 9204 respectively.

range using the least square method.

cientK is now given by the formula K = 1/K, + 1/Kp,

Let us estimate the contribution from the diffusion whereK, is the growth coefficient for pure helium.
mechanism numerically. In Ref. 7, a simplified situation of a  The obtained expression shows that the temperature de-
steady-state growth of the plane surface of a crystal wapendence of the kinetic growth coefficient is mainly deter-
considered without taking into account the difference in themined by the temperature variation of the concentration dif-
densities of the liquid and solid phases. In this case, the valuerenceAx/x. In the narrow temperature range 1.2-1.4 K
of the diffusion kinetic growth coefficierp is defined as  under investigation, the remaining parameters change insig-

2D AD nificantly. For example, the diffusion coefficient increases

Kp= — 5 —, upon a decrease in temperature approximately twofold. Fig-

((c=c')%zlac)” L ure 2 shows the theoretical dependencies of the total growth
whereD is the diffusion coefficientc andc’ are the con- coefficient for two concentrationg=0.02 and 0.008%tand
centrations of impurity per unit mass in the liquid and solidfor the following values of parametersp/Ap~10,
phasesZ=us/Ms— s /My, 9Z/dc~T/(msc) for dilute so- g=10m/s,D=8-10"* cn/s, Ax/x~0.53(1.4-T). It can
lutions, Ad is the difference between the chemical potentialsbe seen that, if the effect under consideration exists, the
of the liquid and solid phases, arld the characteristic growth coefficient must change insignificantly.
growth length. It will be shown below that the crystal in this
experiments grows nonuniformly, relaxing to the equilibrium
position under the action of hydrostatic pressure gradient’%' EXPERIMENTAL TECHNIQUE
For this reason, and also due to the simplifications mentioned The crystal was grown in an optical contaihevhose
above, this expression should be regarded as an order-gbhotograph at the moment of measurement is shown in Fig.
magnitude estimate of the effect. In our experimet¥®> 3. A tip emitting electrons is located at the center of the field
= AplppsAp = Ap/psgL, wherep, ¢ is the density of solid  of vision with diameter 10 mm. Under the action of electro-
and liquid helium,Ap=ps—p,, andg is the acceleration static pressure exerted by electrons, the surface of the helium
due to gravity. Substituting these expressions into the fOfcrystal “sagged” by 0.5—1 mm. Then the voltage at the tip
mula from Ref. 7, we obtain the following expression for thewas switched from the negative value-efl kV to a positive

reciprocal growth coefficient: value of the order of several hundreds volts. The crystal sur-
1(Ax\* p. 1 [RT |2 face relaxed to its equilibrium position at a rate determined
1/KD=§ v A_;D_g M c by the hydrostatic pressure gradient and the kinetic growth

coefficientk. The relaxation process was photographed, and
HereM; is the mass of a gram-atom 8fle. The concentra- the number of the shot was printed in the frathé math-
tion per unit mass is connected with the atomic concentratioematical analysis of the indentation contours distinctly vis-
through the relatiorc~3x/4. The observed growth coeffi- ible on the photographs led to the functige f(x,t) for the
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main radii of curvature. Puttindg-(x,y,t)=y—f(x,t), we
obtain the equation for the vertical displacement of the con-

tour:
1+ al
X

2112

=0. )

—+v

Using the experimental dependentgx,t), we can deter-
mine only one radius of curvature. For this reason, we make
an assumption which is justified by visual observations of the
crystal surface, according to which the shape of the indenta-
tion is almost axially symmetric. In this case, we assume that
R,;~R,, a;~a,, and 4f/9x=0 at the lower point of the
contour and obtain the equation of motion of the central
point of the indentation:

a
gAp
wherea is the capillary constana~1.1 mm. The surface
rigidity was assumed to be the same as for pure helium, i.e.,
@~0.2 erg/cm, since the adsorption of impurity at the sur-
face is small in the given temperature range and changes the
surface energy insignificantly. It should also be noted that
surface relaxation took place in the constant volume of the
crystal in the container so that the edges of the indentation
were lowered slightlyby Ay) as the central part rose. This
sets a limit on the applicability of Eq6): |f|>Ay. The
overall error in determining the kinetic growth coefficient is
rather large(of the order of 50% Nevertheless, it will be
shown below that this accuracy is sufficient for determining
the contribution of impurities to the surface growth kinetics.

2

J 1/2
—f+2a? W

, (6)

’ a=

Ap
s K,

4. RESULTS

FIG. 3. Photograph of the crystal in the process of relaxation of the surface  Figure 2 presents the results of measurements of kinetic

_to the equilibrium value an 1.414 K. The time interval bet_ween the shots growth coefficient for two impurity concentrations. The

is 2.8 s. The crystal occupies the lower part of the container. The crystal= . . L

liquid interface in transmitted light can be seen from the difference in thed@shed curves in the figure COfresP_Ond to the total kinetic

brightness of the image. The grey spot at the center of the field of vision iggrowth coefficients calculated by using the formulas from

formed as a result of nonuniform illumination. Ref. 7. It can be seen that even for such low concentrations,
the theoretical kinetic growth coefficient must change radi-

cally, decreasing by a factor of 10-30 &&=1.2 K. This

family of such contours. The electron pressure on the surfac%ﬁeCt_ can be c;]bserved evehn forhthe low a%curarc]:y of ourl
was used earlier by Leideret al! for measuring the kinetic experlments._ The curves show, nowever, that the crysta
growth coefficient for pure helium crystal. growth rate in the solution coinciddso within the experi-
We describe the time variation of crystal contour by us-Menta! error with the growth rate of a pure crystal, i.e., the
ing the equation for the evolution of crystal contour of an correction to the kinetic growth coefficient due to dissipation

arbitrary shapé? introduced by us earlier and defined by the associated with the diffusion of impuri_ty IS ?ma”- .
implicit function F(x,y,t)=0: It should be noted that such a low impurity concentration

nevertheless affects the kinetic growth coefficient at lower

oF oF JgF |22 5 lemperatures. For example, crystallization waves which can
ot TV ax ay - @ pe easily generated by shaking the cryostat at a temperature

] ] ] ~0.45 K in pure helium were not excited in the solution at

wherev is the crystal growth rate. This rate is connectediye  same temperature. This leads to the estimate

with the kinetic growth coefficient and the difference in -1 01 m/s for the kinetic growth coefficient at this tem-

2
+

chemical potentials through the following expression: perature, which is in accord with the estimate obtained by
Ap P a1 a2 Parshirf . ..
v=KAu=K —|—pgy—"—|==+=11, (4) The absence of the effect of impurities on the growth
P1Ps Ap\R; Ry

kinetics indicates that additional dissipation associated with
where p; s is the density of liquid and solid helium, diffusion does not take place in the liquid. This is possible if
Ap=ps—p;, ai, is the surface rigidity, andR, , are the the impurity concentration in the crystal is close to the con-
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centration in the liquid, i.e., the crystal grows under nonequi-on the measurements of the growth rate of an atomically
librium conditions. This situation differs from that consid- rough surface of helium crystal in a solution with the con-
ered in Ref. 7, in which it was assumed that thecentration (5—10)10 ® in a narrow temperature range
concentrations in both phases are close to the equilibrium-0.8 K by the same method as that used in Ref. 11 for pure
concentration. Another possibility is connected with the sim-helium. In this temperature range, the impurity reduces the
plifications made in Ref. 7. It can be seen from Fig. 1 that thegrowth rate by a factor of 2—3, i.e., the temperature depen-
impurity concentration in the crystal below 1.4 K at which dence does not change after the introduction of impurities. In
the measurements were made is higher than in the liquid, i.ethese experiments, an anomalously strong effect of impurity
diffusion flows must be directed towards the crystal surfaceon the growth rate was not observed either.

Burmistrov and Dubovskii disregarded the difference be- Thus, the introduction of an impurity with a concentra-
tween the densities of the liquid and solid phases, althougtion 10 °-10 * does not lead to a significant change in the
the density of the crystal is actually higher than the densitykinetic growth coefficient in the temperature range 1.2-1.4
of the liquid, and its growth is accompanied by liquid flow to K and becomes noticeable only at lower temperatures.

the crystal boundary. This flow coincides in direction with ) )

the diffusion flow, facilitating the transport of impurity to the _ 1h€ author is grateful to S. N. Burmistrov and L. B.

crystal and suppressing diffusion, dissipation, and the effecl't)ubovskii for numerous fruitful discussions in the course of
of impurity on the growth kinetics. However, the opposite research work and to A. Ya. Parshin for valuable discussion

effect associated with the transport of impurity by the crys-©f the results. _
tallization heat flow from the crystal surface also exists. The IS research was carried out under the support of the
conclusions concerning the absence of a diffusion contribuRUssian Foundation of Fundamental Studies, Grant No. 96-
tion to the growth kinetics cannot be made reliably before02-18511a.
the creation of a theory which would take into account all
these factors. x

Another circumstance is also important in the interpreta-
tion of the obtained results. The theoretical calculations————
whose results are presented in Fig. 2 were made on the basi§ ¢ angreev and A. Ya. Parshin, Zhkep. Teor. Fiz75, 1511(1978
of the data on the impurity distribution between the liquid [sov. Phys. JETRS, 763 (1978]. )
and the crystal, which are discussed in Sec¢s&e Fig. 1 2K. O. Keshishev, A. Ya. Parshin, and A. V. Babkin, Pis'ma ZIksg
However, the theory of dilute ideal solutihsnplies that ~,Teor- Phys30, 63(1979 [JETP Lett.30, 56 (1979 .
the derivatived p/d T of the phase-equilibrium curve for the ii ?igg%s.on and E. PolturaRrogress in Low Temperature Physitol.
solution coincides with the slope of the phase diagram for4a. va. Parshin, Physic8109-110, 1819(1982.
the pure substance, i.e., the phase-equilibrium curve is dis2B. Castaing, A. S. Greenberg, and M. Papoular, J. Low Temp. RHys.
placed without a change in shape along the pressure scale t&égll\flglzss?ﬂ.l’son V. G. Ivantsov, V. A. Kovalet al, in Properties of
Ap which does not depend on temperature. In this case, the|jqig and Solid Helium. He3He4 Solutions[in Russiad, pNaukova
impurity distribution between the phases is also independentbumka, Kiev(1982.
of temperature. This conclusion does not agree with experi—;s- N. Burmistrov and L. B. Dubovskii, Europhys. Le#4, 749 (1993.
mental results of measurements of phase-equilibrium curves'\‘/' 'f' 'T‘Z‘;‘g]";‘)‘;lzrr‘]io'z'C'\r"};o"g“:nhiggt*é%s(“f;gg hysicsPergamon, 1980.
for solutions® which were investigated starting from the con- 10, | Tsymbalenko, Pribory Tekhn.ksp. No. 2, 67(1993.
centration~1%. Thus, the applicability of the extrapolation *1J. Bodensohn, K. Nicolai, and P. Leiderer, Z. PH§64, 55 (1986.
of the results on the impurity distribution between thelz\zf-1 Lizgsﬁfggale”koy Fiz. Nizk. Tem21, 162 (1995 [Low Temp. Phys.
EZZ‘ZE&/ Ersef:rgﬁismdiigﬁiazﬁléo lower concentratioh8 ¢ 17" Ts(ymbzl]énko, Zh. Esp. Teor. Fiz108 686(1995 [JETP8L, 373

. 1995].

A decrease in the kinetic growth coefficient under the“gzh. I?.]Wang and G. Agnolet, J. Low Temp. Phg8, 759 (1992.
action of impurity was observed earlier at a very low con—iZCh- L. Wang and G. Agnolet, Physi&194-196 935 (1994.
centration (5_50)10_9 below 0.5 K by using the method of M. Suzuki, M. Thiel, and P. Leiderer, Proc. LT-231, 459(1996.

crystallization waves**® Leidereret al!® reported recently Translated by R. S. Wadhwa
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ELECTRONIC SYSTEMS OVER LIQUID HELIUM

Reconstruction of a charged helium film on a metallic substrate
V. Shikin
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(Submitted July 1, 1996; revised November 20, 1996
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Peculiarities of the reconstruction of a charged helium film surface on a metallic substrate are
considered. Instability evolution in this case resembles the generation of a solitary wave

in hydrodynamics of a free liquid surface and leads to the formation of charged solitons under
certain conditions. Basic characteristics of such solitons are obtained in the one-
dimensional approximation under the conditions of weak nonlinearity of the problenl99J
American Institute of Physic§S1063-777X97)01605-9

A charged liquid surfacéthe type of the liquid and the lem is that the ripplon spectrum has no preferred finite wave
methods of introduction of charges into it are immaterial vector in the case of stability loss. As a result, it remains
possesses peculiar deformation properties. In the linear apmclear which nonlinear reconstructigueriodic or nonperi-
proximation, we are dealing with a consideralfleCou-  odic) of the liquid boundary should be sought.
lomb™) rearrangement of the vibration spectrum of the free  In this communication, we prove that the evolution of
surface of such liquids. Ultimately, the spectrum of surfacenstability of the charged surface of a thick helium filior
vibrations of the liquid loses its stability upon a monotonic other conducting liquig can follow a scenario resembling
increase in the surface charge. This phenomenon, which h&e formation of a solitary wave in hydrodynamics of the
become known mainly in connection with the decay of heavyfree surface of a neutral liquict. As in the case of a semi-
nuclei, was studied by many authdsee, for example, Ref. infinite liquid, the transition to the instability region is ac-
1). Most successful experiments were carried out with a ligcompanied by the emergence of periodic solutions of the
uid helium surface charged with electrons or iérist which ~ deformation equilibrium equation. The period of this struc-
the loss of stability by the surface can be traced in detail, anéHre increases as we move further in the supercritical region,
the main predictions of the theory can be confirmed. tending asymptotically to infinity. The deformation state of

The problem on the behavior of a charged liquid surfacdhe charged helium film surface formed in this case is similar
is important in the supercritical region also. For example, thd® an isolated soliton. The formulas describing the shape of a
reconstruction of the helium surface takes place for semione-dimensional soliton will be derived in the weak nonlin-
infinite helium, for which the loss of stability is observed for €arity approximation introduced below. _
the first time for finite wave numbers of ripplon spectr(em In addition to these original results, we shall refine some
the so-called capillary wave lengtin the supercritical re- dfe_tall_s of definition of crltlpal con_dltlc_)n_s for the I(_)ss _of sta-
gion. Instead of a plane boundary of the liquid, a periodicallyPility in & charged helium film, which is important in view of
deformed structure is obtained with a period close to théh€ ambiguity of these definitions in Refs. 9-11. _
capillary wave length and the modulation amplitude which is ~ 1- Lét us consider a charged helium film on a metallic

a complex function of supercritical parameters. The theory ofUbstrate under the conditions of complete compensation of
this effect is presented in Refs. 3-5, while experimental inthe electric field over the film. The relative position of the

vestigations were carried out by the authors of Refs. 6-8. UPPEr electrode, which is always present in problems on a
As we go over to a liquid film of thickness smaller than ¢harged helium surface, is immaterighe separation be-
the capillary length, the form of instability changes qualita-twee” the electrode and the surface must only be larger than

tively. The most “vulnerable” mode in this case is that with the film thickness For simplicity, we assume that the pos-

zero wave vector. This circumstance, which had been reliSiPle deformation of the film surface is a function of the

ably established theoretically** was not proved in direct coordinatex alone. Thus, the initial equilibrium equation has

experiments in view of technological difficulties in operation the following structure:
with thick liquid films. Only indirect evidencé$of the cor- ¢ V2

rectness of theoretical predictions are available, e. g., the pgé—a VIR RS 5 = CONSst,
observed decreas@s compared to the bulk valuén the [1+(£)7] Bm(d+¢)

critical charge density leading to the loss of stability. The — _| <x<+4|, (1)
evolution of instability of a charged liquid film surface in the

supercritical region also remains unclear. Formally, the prob-  ¢'|,—o=0, 2
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a volume of the liquid on free regions of the film beyond the

interval 2 will be conserved if the strairg; of the film
-1 v +1 thickness changes sign relativedgwithin this interval. This
g' process is shown schematically in Fig. 1a. The value of the
§o .J n constant in Eq(1) must be equal tpgé, so that
J ' d §ot v =pgé1; &l +&(L-1)=0. (43
-L 6 +Lf pY<So 87T(d+§o) pYs&a, 0 1 .
From the condition of conservation of the total volume of the
b liquid, we obtain
") I
¢ S=—S (4b)
N ] KR HerelL is the total length of helium film in th&-direction.
d Introducing the definitior{4b) of &; into (4a), we obtain
: VZ
-L 0 Ll *eot—————>=0, —l<xs<
pg §0+ 87T(d+§0)2 0, I X +|,
FIG. 1. Schematic diagram of experimental cell with incomplete coverage
of the film surface with metallic electrodé€s) and with the film surface *—qgl 1+ I (4C)
covered completely with metallic electrodé®: 2| is the size of the elec- 9 9 L—1/"

trodes, 2 the size of the celld the film thicknessg, the film strain under o o o
the electrodest, the film strain outside the electrodes, afids the helium  In the limit L>1, the renormalization ofi* becomes insig-

film strain. nificant, i.e.,
g*—g, if L>I. (4d)
V=const, —Isx<+l, 3 The situation changes whée=L. The uniform electric
g'=d2¢ldx®, &' =déldx. pressure in the interval L<x<+L leads to bulk compres-

sion of helium. Naturally, we have the stragp of helium in

Here ¢(x) is the strain of the helium surface in the region this case also, but now its magnitude is controlled not by the
—L=xs=+L in the presence of various forces acting on thegravitational term as i4a), but by the helium compressibil-
film surface: gravity, surface tension, and the forces of elecity 9P/gv. Neglecting gravitation in1) and assuming, on
tric origin, which are proportional to the potential difference the contrary, that the constant is equal to the term containing
V between the charged helium surface and the metallic sukyP/gv, we have(see also Fig. 1b
strate[ £(x)—0 asV—0], p andg are the density of helium )

. o . \V;
and the acceleration due to gravity,is the surface tension, = L LE,. (5)
d the equilibrium thickness of the helium film f&f— 0, and 8m(d+&,)? g VP

2| the size of the control electrode in thedirection. The o) andL, are the dimensions of the helium film in the
meaning of the constant on the right-hand side of &Y. ,_ ;g y-directions. Naturally, the value of, is much
depends on the relation betweleandL. The corresponding  gmalier thang, from (4a). P

versions are given below. Requiremé2t is conditional and 2. Having analyzed expressiorida) and (5) for static

indicates in the long run that the solutions of Ef) we are  gain e consider the existing criteria of the loss of stability
interested in have the form of standing waves. For the sakg, a charged helium film.

of definiteness, the origin of coordinates coincides with an

extremum of one of such waves. , ) of a charged helium surface presumes that the size of the film
The electric component of Eql) is written under the i, 1o v _direction is unlimited. Obviously, the lengtlsand

assumption that the solid substrate possesses perfect metallic,nnot be varied in this case so that we can speak only of

properties. In addition, we assume that the total number ofe yersjon(s) of static strain. The equation for the small

electrons on the helium film is not fixdthe potential differ- e ctionsz(x) to static strain, which contains information
enceV is presek The origin of the coordinates lies on the on stability, can be written, according €@) and (5), in the
metallic substrate. The-axis is directed vertically upwards. form

The schematic diagram of the experimental cell is shown in

The conventional formulation of the problem on stability

Fig. 1. B ree B
Returning to the definition of the constant in Edj), we €00 =&+ e(x), j,w 9¢(s)ds=0, (63
consider first the case whér<L. In this case, a piecewise-
smooth solution can be obtained #(ix). Indeed, we neglect V2 s
in Eq. (1) the gradientgin the general case, the reasoning Pg= 471-(d+§p)§ ¢
remains asymptotically correctlif>1> «~*, wherex is the 5
capillary con_stant for heliubn Only the gravitational term — ade"+ v 4 6E2=0. (6b)
competes with the electric term of the problem. The total 8m(d+§&p)
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The combination of the terms in the brackets on the  ,=p?/q® «k?=pgla, (14b)

right-hand side of Eq(6b) changes sign at the point ) ) o )
k being the capillary constant for liquid helium.

Ampg(d+£,)3=V2, . (7) Let us assume, in accordance witkll), that

This criterion corresponds to the loss of stability of the ho-5§ (x)=0 at a certain poinb,, and

mogeneous state of a charged helium film. Neglecting the §£,>0. (159
quantity &, in this expression as compareddpwe arrive at
the definition of the stability boundaries given in Refs 9 and
10.

These requirements lead to the following value of the con-
stantc in Eq. (149:

If I # L, the situation changes: C=y8E5— 5E3. (15b)
4mpg* (1+£0)3= U3, (88 A periodic (or soliton) solution of Eq.(148 exists if, in
addition to the points¢,, there exist some additional points

with d¢(x)/dx=0. Thus, the problem on reconstruction boils
down to an analysis of the properties of the roots of the

Hereg* and¢ are taken fromi4c), and we cannot neglect the
quantity &y in (8a) since &,>¢,. Let us suppose, for ex-
ample, that the following relation is satisfied exactly:

equation
V=Ug. (80) 38— 53— y(58°— 5¢2) =0. (16)
Moreover, using relationéc), (8a), and (8b), we obtain This equation has only one roé6t= 6&,. Consequently, for
o=—d/3. (90  therootsS¢ # 6&,, expressiorf16) is simplified:
In other words, the uniform strain frofda)—(4c) at the criti- BE%+ SE(8Eq— y) + BEo( 69— v)=0. 17

cal point is comparable to the initial film thickness, and its
disregard in the definition dfl, is not justified. The correct
expression folJ, taking into account8a) has the form 288, =— (86— ) = \(8&0— )2 —48&o(5E0— ).

U2=2V2g*/3g, VZ=4mp gd. (10)

The solution of Eq(17) has the form

) ) . ) For the rootss¢.. to be real-valued, the following condition
Hereg* is taken from(4c), andV,, is the critical potential st be satisfied:

(7) from Refs. 9 and 10.
The possible effect of static deformation on the critical (&0~ ¥)?—458&y(8&,—y)=0 or
field of a thin film was noted for the first time in Ref. 11. The
result obtained in Ref. 11 coincides with0) if g*/g=1. (3080t Y) (v~ 580)=0. (19
However, an analysis of the conditions under which such aJsing (1438, we can draw the conclusion that the solutions
renormalization appears was not carried out in Ref. 11. Fobé.. exist if
this reason, it was erroneously assumed in Ref. 11 that the Séo< 20
definition (7) of the critical potential is not correct. In actual Eo=7- (20
practice, both definitions of the critical potenti@lr) and  From the two versions o8¢, we must use only the root
(10)) are justified under appropriate conditions. o&_ for the condition(12) to be satisfied.
3. Let us describe the reconstruction of a charged helium  In the limit 6£,<y, we have
film. This problem is formulated in the simplest form for the

version withl =L to which our analysis will be confined. In 08-=~6%o. (213
this case, we proceed from E@b) with the boundary con- If, however, 5¢,— v, we have
ditions
06 _=—20&(y— 6&o). (21b
0§'(x=0)=0, (11

The periodT of the deformation structure formed can be

+ee determined from the relation
f 6&(s)ds=0. (12
o T 1 (% déé
The reconstruction of the film is naturally possible only 2 q\/a se_ \Jot 66— 7552' (22
in the region
Together with(12) and (17), this expression defines the re-
V>Ver. (13 lation betweenl and y. In the limit §£,<<y, when relation
Under these conditions, the first integral in E6b) has (218 is valid, and hence conditiof12) is satisfied automati-
the form cally, relations(17) and(22) lead to
[de(x)1dx]2=q% — y8&2+ 6¢3+c], (149 T=2mlp. (23
where In the opposite limiting case of the maximum amplitude
5 5 6é9— 7, the periodT — <0, and the periodic solution is trans-
p2= 2 v 1 qe= \ formed into a soliton solution. The soliton profile can be
4m(d+£,)°%pg T 4m(d+ &) a’ obtained from the equation

470 Low Temp. Phys. 23 (5-6), May—June 1997 V. Shikin and P. Leiderer 470



Jy do¢ This research was carried out under the financial support

—_—= X (29 of INTAS Grant No. 93 0933 and the NASA RKA program.
3 6&\y— 6§ e
or
S£(x)=y[1—tantf(px/2)], (25) *E-mail: shikin@issp.ac.ru

DE-mail paul.leiderer@uni-konstanz.de
wherep and y are taken from143.

The rootSé_ in this limit has the form(21b), while for
5ép— vy it tends to zero.

Analyzing the result$21)—(25), we note that the period lﬁé%alﬁggagzgfd%g'\gb LifshitzElectrodynamics of Continuous Media,
T is a nonmonotonic function of the supercritical parameter.2y. g’ shikin and Yu. P. Monarkhalwo-Dimensional Charge Systems in

According to(23), T— as p—0. The behavior ofT for Helium[in Russiaf, Nauka, Moscow(1989).

8&y— v is similar. This nonmonotonicity probably has a 32&9’\6%%gitse\lgr?ndDMl.(ILdf/].hﬂl.ioi?)igi(?gl;gfkad. Nauk. SSSF88 1261
- - o - ov. Phy. Dokladyl4, .

physical meaning. However, it is more natural to deal With 4 "5 0 204 b M. Chemikova, Dokl Akad. Nauk. SSSRS, 829

the monotonic dependendgp), the more so that the ampli-  (197¢ [Sov. Phys. Doklad1, 328 (1976].

tude of £(x) does not depend on the supercritical parameter®V. I. Mel'nikov and S. V. Meshkov, Pis'ma Zh.k&p. Teor. Fiz33, 222

for small p (condition (12) is satisfied automatically The 6'&93\? [JETP '-detpt-3f _Zdll(lggjh)]- Rev. L2, 315 (1979
.. . . . anner an . Lelaerer, yS. Rev. .
nonmonotonicity in the behavior dT(p)' can be removed by 75"\ ijerer and M. Wanner, Phys. Let73, 1869(1979.
introducing the procedure of subtraction 8R. W. Giannetta and H. Ikezi, Surf. Sdi13 412 (1982.
L. P. Gor'kov and D. M. Chernikova, Pis’'ma Zhk&p. Teor. Fiz18, 119
T* 1 [ jééo dé¢ T (1979 [JETP Lett.18, 109(1979].
- = - 10p, M. Chernikova, Fiz. Nizk. Temp2, 1374(1976 [Sov. J. Low Temp.
3 2 ] ]
2 gV |Jee Jet+oe—yoe? P Phys.2, 668(1976)].

. I . 1y, V. Tatarski, Fiz. Nizk. Temp.10, 435 (1984 [Sov. J. Low Temp.
* , d
In this definition, T* tends to zero ap—0 and increases Phys. 10, 227 (1984]

monotonically withp, approaching the value dfdefined by  12a p_volodin, M. S. Khaikin, and V. S. Edefman, Pis'ma Zikp. Teor.
(22) in the regiondéy— . Fiz. 26, 707 (1977 [JETP Lett.26, 543 (1977].
Thus, a transition of a charged helium film to the super-ls'\"- A. Lavrent’ev and B. V. ShabaMethods of the theory of functions of
. ' . . lex Variablegin Russia, Fi iz, M 1958.
critical state leads to the formation of solitons of the form COMPlex Variablesin Russiar, Fizmatgiz, Moscow(1958
(25) on its surface. Translated by R. S. Wadhwa

471 Low Temp. Phys. 23 (5-6), May—June 1997 V. Shikin and P. Leiderer 471



Quantum magnetotransport in a highly correlated two-dimensional electron liquid
on a superfluid helium surface

Yu. P. Monarkha

B. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Av. 310164, Kharkov, Ukraine
Institute for Solid State Physics, University of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo 106, Japan

K. Shirahama and K. Kono

Institute for Solid State Physics, University of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo 106, Japan
(Submitted November 14, 1996
Fiz. Nizk. Temp.23, 629-638(May—June 199y

The theoretical concept of the inelastic quantum magnetotransport of highly correlated surface
electrons on superfluid helium is presented. The low-temperature magnetoconductivity

data are obtained from the damping of the edge magnetoplasmons. It is shown that the temperature
and magnetic field dependences of the magnetoconductivity can be perfectly described by

the inelastic many-electron theory as the interplay of two kinds of Landau level broadening
produced by scatterers and by mutual Coulomb interaction1987 American Institute

of Physics[S1063-777X97)01705-2

INTRODUCTION sition the SE mobility behaves mostly like the mobility of an
ideal 2D electron gas. The cause of this behavior is that the

In the presence of a strong magnetic fi@doriented wavelength of thermal electrons is much shorter than the
normally the surface electronéSE) on superfluid helium  Coulomb correlation lengthin a magnetic field the energy
provide a unique possibility for studying quantum transportscale of the SE density of statd3) is usually much less than
phenomena in a highly correlated, two-dimensionaDJ2 thermal energy and the many-electron effect can be more
electron liquid. At typical electron densities~10° cm™?  pronounced.
and temperatureb<<0.5 K the Coulomb coupling parameter The SE scattering arises from capillary wave qudrifa
(the mean Coulomb energy over the mean kinetic energyplons and helium vapor atoms. In the vapor atom scattering
G=e?\Jmn/(kgT) attains unusually large value§(-100).  regime (T>1K) the quantization of the electron motion
Since the Fermi energy of the SE is much less tkgif, the  caused by the magnetic field leads to unexpected Hall effect:
ultra-quantum limit(Aw.>kgT where w. is the cyclotron the Hall angle decreases with the magnetic fiBldn the
frequency is easily achieved and at typical helium tempera-ultra quantum limit, since the effective collision frequency
tures nearly all electrons populate the ground Landau levely(B) increases faster witB than the cyclotron frequency?

A 2D electron gas in a magnetic field is a singular It was shown that the effect and the experimental data can be
system—the electron energy spectrum becomes discretperfectly described by the extended SCBA théary to 20
therefore, the usual Born approximation fails to describe the. In this regime the many-electron effect is usually small
quantum magnetotransport. The conventional way to treawith the exception of the narrow temperature range around 1
this system is the self-consistent Born approximationk, where the magnetoconductivity becomes density depen-
(SCBA),! in which the effects of level broadening caused bydent if the magnetic field is weak'° It should be pointed out
scatterers are taken into account. For SE on the superfluithat under such conditions the energy exchanged at a colli-
helium the level broadening is the smallest energy paramsion is of the same order of magnitudelaand the inelastic
eter:I'<<kgT. Therefore, ati w.>kgT the SE are confined effect of the electron-atom scattering which is neglected in
to a very narrow energy space of the ground level. In theRefs. 9 and 10, should be additionally analyzed.
limit I'—0, the elastic and inelastic scattering processes re- In the ripplon scattering regimer0.7 K) the experi-
sult in the different analytical behavior of the magnetocon-mental and theoretical situations are much more compli-
ductivity: o, 1/I"—« for the elastic scattering from impu- cated. The experimental magnetoconductivity data per-
rities, whereasr,,— 0 for the inelastic scattering within the formed by different experimental groups contradict each
ground level. It means that the correct result &gt should  other. According to Ref. 11 and 12, the SE magnetoconduc-
be crucially dependent on the relationship between the twdivity o, has a minimum aff~1 K and increases slowly
small parameters, the energy exchanged at a collidien down to T=0.5 K, while in Ref. 13 the SE resistivitg,
and the Landau level broadeniig It may be far away from and, consequentlyy,, decrease with decreasing temperature
the result of the usually used elastic approximatiitie non- to 0.4 K. Therefore, any alternative experimental method of
linear breakage of the elastic approximation was recently disstudying the quantum magnetotransport at LT is welcome.
cussed in Ref. @ At LT small deviations from the axial symmetry of the

The first zero-field conductivity measuremefitdhave  experimental cell spoils, in our view, the conventional analy-
shown that in spite of the high Coulomb correlations, in thesis of the data due to the excitation of low frequency edge
low temperaturgLT) range down to the Wigner solid tran- magnetoplasmonEMP). At the same time, the EMP exci-
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tation technique can be a tool for studying the quantunproaches developed for electrons with weak mutual interac-
magnetotranspolf. As was shown in a rather general tion can scarcely be used. As was shown in Ref. 7, it is
way >8at strong magnetic fields the damping of the EMP isnatural to assume that the highly correlated electron liquid is
proportional to the longitudinal conductivity. Therefore, thein equilibrium in the center-of-mass frame moving along the
EMP damping measurement can be an alternative way cfurface with a drift velocityuy in crossed magnetiB and
determining the SE magnetoconductivity. electricE fields. In this case the substantial simplification of

The electron-ripplon scattering is analogous to the electhe mathematical formalism appears to be possible, since the
tron scattering by acoustic phonons in solids. There is, howeonductivity of SE can be expressed in terms of the equilib-
ever, a substantial difference in the SCBA treatment of SEium dynamic structure factor of thel2electron liquid’®
due to the unusual ripplon dispersian,= (a/p)*%q*? (here
a is the surface tension angd is the liquid helium mass
density. In the semiconductor @ electron systems the . -

. . . Effective collision frequency

acoustic phonon scattering is wusually treated as
quasi-elastit’ since the typical phonon energies are much ~ We start with the interaction Hamiltonian which allows
smaller thanI'. Previous theories of the ripplon-induced one to describe the inelastic magnetotransport induced by
quantum magnetotransport, the single-electron theoryapor atoms and ripplons in a similar way:
(Saitort®), and the many-electron theorDykman and

Khazan(DK)*), which were organized in a much more com-  Hi,= > > U;n‘®A

plex way than the conventional SCBA theory, were based on i=ar q

the quasi-elastic approximation. It can be shown that for the

electron-ripplon  scattering the inelastic parameg/e; g = g exp(—iqre). (1)

=hoqy/T" increases with the magnetic field due dg>q
«B%4 (usually I'c \/B). Additionally, & increases with de- Here we usg to distinguish the electron-atom interaction
creasingT and soon becomes larger than unity. Therefore(j=a) from the electron-ripplon interactionj€r) and in-
the theory of the LT quantum magnetotransport of SE shouldroduce the notation

be initially formulated as an inelastic quantum transport

theory. A q=bgtbT., A= m> ag
. . , -q° s Mk Ch aK ’
In this paper we report the theoretical concept of the ra d A PO

inelastic quantum magnetotransport of the SE on superfluid 2
U —v [ fiq U _Zwﬁ s
r— Vq quv a

helium for electron-atom and electron-ripplon scattering, and — , me={(1]e¥1), (2
the LT magnetoconductivity data obtained from the damping m
coefficient of the EMP. The many-electron effect which is(e) is 53 2D Fourier transform of the electron density;

important at rather weak magnetic fields is taken into aC'a%da* are the creation operators of ripplons dhte atoms:
count by means of the Coulomb correction to the broadeninglul) qmeans the average over the ground surface level;
of the single-electron density of statég;. The theory based R={r,z}; K={q,k}; Vq is the electron-ripplon coupling

on the extended SCBA reproduces the results of the previous s the electron-atom scattering length, amdis the free
approaches as the opposite limiting cases, if the inelastigoctron mass.

effect is ignored and if the Landau level broadening is suc- According to Refs. 7 and 8, the quantum magnetotrans-
cesswe-ly reduced to the ripplon-induced broaderirgl's  nort can be described by the elementary expressions for the
(I'c=0; the single electron Saitoh’s thegrnd to the Cou-  ¢qnqyctivity tensor with the field- and density-dependent ef-

lomb broadening’—T'c (I',=0; the DK theory. Under real  foctive collision frequency(B,n). For a highly correlated
experimental conditions]” transforms continuously from sp glectron liquid we have

I'c to I', with the increase of the magnetic fieRland the
inelastic effect substantially affects the quantum magne-
totransport of SE, reducing both and oy,. The new LT
data of the SE magnetoconductivity as a functionlofnd
B are in good agreemeiftvithout any adjusting paramejer 1
5 UIS [nP3 N
K/

1
_ 2] 1128
v 2kaT % q |Uqu SO(qqu)

with the presented theory of inelastic quantum magnetotrans- k' »So(d,Awa) ¢t (©)
port. The same approach applied as a test to the electron-

atom scattering describes previously measurgddata, in- WhereNg’) andN(Ka,) are the distribution functions of ripplons
cluding the effects caused by the electron-electrorand vapor atoms;

interaction.

So(d,@)=Ng* f €“(ng(Hn*G(0))dt

THEORETICAL CONCEPT ()

is the equilibrium dynamic structure factofiAw,=e,;
Our intention is to describe the quantum magnetotrans——s(Ka,),K is the energy exchanged as a result of the electron-

port of an electron liquid of which the mean potential energyatom collisions, and\,, is the total number of electrons. In

is approximately one hundred times larger than the meathis treatment, the main problem is to find the appropriate

kinetic energy. Under such condition the conventional ap-approximation forSy(q, ).
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It should be pointed out that E¢3) would still contain
the many-electron effect even if we would use the single-
electron approximation for the dynamic structure factor

2h
So(g,w)= N2 f dEf(E)[1-f(E+Aw)]

X >, Iunr Im GN(E)Im Gy (E+ A w).
N,N’

(4)

Here | is the magnetic length =\#Ac/eB); f(E) is

the Fermi-distribution function; Jy n=[(N,X|exp(qre)

X|N’,X—q,1%)|2, andGy(E) is the single-electron Green's

function. In this approximation the theory is the quantum

analog of the semi-classical treatment of highly correlated

electrons by means of the drift-velocity-shifted distribution

function f, = f(E—fikug).®% L I -

Following the general idea of Ref. 22, we take addition- 0 0.5 1.0 15 2.0

ally into account the many-electron effect as a Coulomb cor- fiw/T

rection to broadening of the single-electron density of states _ _ _

Tc. In this picture an electron feels the fluctuation field of FIG.‘ 1.‘ The dynamlc structure factor vs. the inelastic parameter for_the
g . g semielliptic(solid) and Gaussiafdashed shapes of the density of states in

others electrons as a random potential, since the density flugre ultraquantum limit.

tuation has spectral intensities at very low frequencies.

Im Gy(E) is therefore assumed to have a semielliptic shape:

S, (2.0)/S, (. 0)

tic effect can be ignored. Taking into account thatBat
<10 T there is nearly no difference betweey, calculated

for the Gaussian and semielliptic shapes of the density of
state$ we use the more simple Gaussian shape for describ-
eing the inelastic effect of the electron-atom scattering:

2
Im Gy(E)=~ - V1-[(E-E})IT\1% (5)

where Ey, is the central position of the Landau level. The
level broadenind™y is formed by all the present interactions,
including the mutual interaction of the SE. Thus, here th
many-electron effect is finally taken into account in two ma- 16 (= dy

jor respects: first, high Coulomb correlations form the equi- V(@ Y 37 j 2.3 T
librium dynamic structure factor included in E@); sec- 0 (+y7) \/1+5ay 2

ondly, the mutual interaction affects the single electron Aty [kgT
density of states. =1 N (7)

Equation(3)—(5) establish the relationship between the
effective collision frequency and the level broadening. In theHere &, is the inelastic parameter for the electron-atom scat-

ultraguantum limit(N=0, I'o=I") we have tering,
32h q2|2) (ﬁw Vro 2 r \? ho
1 =-—= €X - A T | (a)z < a’O - °
So(q, w) 3T > |X| T Yo = ATkT ex T cot 2T (8)

3 (1-¢ y is the parameter of the SE wave functidd|z)«z
x(9)=74 J ) V1=x2J1—(x+ 8)%dx. (6)  xexp(-y2), which increases with the holding electric field
- E, . As usual, we combined the interaction parameters into
The function x(6) describes the inelastic effect. For I',o, which is equal to the Landau level broadening caused
small values of the energy exchanged as a result of a collby the  electron-atom interactions  only, I'; ¢
sion,iw<I", the quantum magnetotransport can be consid=7%+/(2/7)w.v(0). It should be pointed out, however, that
ered as quasielastig— 1. AtAw~1I", as itis shown in Fig. herel’, ; does not originate from the density of states, and
1, the inelastic effect substantially reduc®$q, ) and con-  differs from I' due to other interactions. In this form, the
sequentlyy(B,n). effective collision frequency has the required analytical be-
In general, the inelastic effect is difficult to describe for havior atl’ —0 (v«1/1"—02), which proves additionally the
the electron-vapor atom scattering because of additional inmportance of the self-consistent broadening of the Landau
tegrations ovek and K’ which appear in Eq(3) if Aw,  levels.
#0. In this case we can therefore substantially simplify the In the case of the electron-ripplon scattering, the inelas-
problem as follows. Usually,q',k'>q,k, and Aw, tic parameter is of a very simple fornd,=%wy/I" [here
=#(qq’ +kk')/M (hereM is the helium atom magsFirst,  w3=2%a/(pl®)] and vV has no additional integrations
we disregard the term proportional ¢o since it is important typical of the electron-atom scattering. Therefore, Bgcan
only in the range of strong magnetic fields where the inelasbe directly insert into
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Therefore, the self-consistent equation for the level broaden-
v"(B, n=g_— f qV2Se(d, wg)da. (9 ing can be written as

dw
Iy= 22 2 I, N,J Im Gy (E

Landau level broadening

According to general rules of the many-particle
physics? if the Coulomb interaction is neglected, the SE —hw)._Z U? Im Dj(q, ). (13
self-energy can be written as I=ar
do From this equation it can be seen that the mixing of the
(E)—IZ E Iy, N’f — G\ (E Landau levels can be ignoretl{(=N) if I'y<fw. (which
we assumg At the same time, it follows that the inelastic
effect changes the level broadeningii®~T"y .

—ﬁw)__Z szDj(q,w)- (10 In the presence of the Coulomb correction to the broad-
=ar ening of the single-electron density of stafég, the self-
Here we introduced the correlators consistent equation for the total level broadenlhgan be
written as

Di(g,t—t")=—i(T[A; (DA —4(t)]),

which are similar for the two kinds of electron scattering

(j=a,r). Here §, and &, are the inelastic parameters for the two kinds
It is easy to see that in the limitw<E, Eq. (10) re-  of electron scattering;

duces tas = 1/4Fﬁ,GN(E) and the broadening can be found

[2=TZ+T2Ya(S8a) + 7oY. (5)). (14)

self-consistently by using Dyson’s equation. In this case v (5):E f“’ dy .
Im GN(E) has a semielliptic shape, with the level broadening a 37 Jo [1+y?]3V1+6%y?
[=(2o+I'Z)*2. Here I'y, is the usual vapor-atom-

induced broadenlng and, o is the ripplon-induced, quasi- :i fw X 2032 2032 d_X
elastic broadening, which is twice as large as a result of the Yi(0)=1% e Vl-ox (0 6(1=6) X'

qualitative analysis of Ref. 24: ) _ ) .
and 6(x) is the unit step function. Since the parametérs

) ASkB . ) L and &, depend orl’, Eg. (14) is a transcendental equation
[ p—F ' "= fo Wi (x)e"dxix. (1) whose solution as a function of basic parameiers, and
n should be found numerically.
Here we use the notation Regarding the Coulomb broadening, we will use the re-

sults of Refs. 9 and 19I(-=%/1.=€eE;l), where the fluc-

W(X)= X eELIZ- _ez(s—l)_ tuating electric fields were calculated
CO=xel 2yae| ¥ R, AT AT J
47TkBTn3/2 1/2
1 1 (1+V1-y| Ef:0-8‘<—) -

w(y)=— + a7 In
1=y (a=y) ‘/9 Since the ripplon or vapor-atom-induced broadening in-
& is the dielectric constant. Since the elastic broadening isreases with the magnetic fiefethich is approximately pro-
caused by ripplond’, o \T, the effective collision fre- portional to\/B) while I'ce1/{B, the Coulomb correlations
quencyve 1T 4 reproduces the result of the previous single-affect the quantum magnetotransport only at weak magnetic
electron theory? o, 1/\/T. fields and high electron densities.

In Eq. (8) the term proportional t&> has a logarithmic It is instructive to plot the inelastic parameters as func-
divergence for smallj. We should cut it off at wave vectors, tions of T for different values of the magnetic field, as it is
for which the approximations made above fdftsr instance, done in Fig. 2. For the electron-atom scattering it follows

it can beq~ \/zrn). Still, in the LT limit which we are con- (Fig. 2,3 that at temperatures of about 1 K, where the many-
sidering the only low electron densitigs< 5- 107 Cm_2, are electron effect is usually StUdiéC]’,O the Coulomb correla-

important and this term can be neglectedBat1 T. tions substantially reduce the inelastic parameter. Still, the
In the inelastic theory the situation is much more com-single-electron approximatiodashed curvesand many-

plicated. ImGy(E) is nonetheless assumed to be of a sharg@lectron theorysolid curves give §,~ 1. According to Fig.

semielliptic shape with the level broadening defined'gs 1, at suchd, we could expect a large decreaselinand

— —2Im S\(EY). Usually, N(’>1; in this case the ripplon ¥'¥- Regarding the level broadening and effective collision

Green’s functiorD, (q,w) andD,(q,w) have similar struc- frequency induced by the electron-atom interactions, the in-

tures: elastic effect nonetheless turns out to be less important due
. to the additional integrations ovérandK’ in Egs.(3) and
Di(q,0)=—=27Ny [ (0= 0g) + s+ wy)], (12). As it is shown in Figs. 3 and 4, the many-electron effect

and the contribution of ripplons to the level broadening pre-
Da(0,@)=—27 > | 72> ij‘) Sw+Aw,). (12) venta strong decrease ihand »@ at weak magnetic fields
k K’ andT<1K.
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The situation is different for the electron-ripplon scatter-in Fig. 2,b. In this case there is no additional integration

except for the integration ovey [Eq. (9)]. Therefore, the
I'; o= JT. The inelastic parametef; increases with decreas- inelastic effect should crucially affect the quantum cially af-

ing temperature and the many-electron effect cannot sugect the quantum magnetotransport of SE, which changes the

ing wherel'c and I, 5 have the sam&-dependenced’,

H B=184T(1); 10T (2)

press the increase at strong magnetic fields, as is clearly se@rdependences df and oy, at LT.
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FIG. 3. The Landau level broadenifgas a function of the magnetic field:
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EXPERIMENTAL METHOD 3 000

As was stated in the introduction, our experimental
method of determiningr,, is based on the general theoreti-
cal conclusions of Refs. 15 and 16 that at strong enough
magnetic fields the damping coefficient of EMP is propor-
tional to the longitudinal conductivityusually it is valid at
B>0.5T). In this case the proportionality constant can be
considered as a geometrical factor which is independent of
B andT. Therefore, at fixedh the EMP damping can be used
for determining temperature and magnetic field dependences
of the SE magnetoconductivity. The edge phenomena for SE
are smoothed over large distances, which assures that the
data correspond to the real SE conductivity.

To study EMP damping we will use the conventional
experimental technique which is similar to the one described
in Ref. 25. The electron sheet employed in the present work

S
S

O (0)/ 0, (B)

1000

-
f—

1 !
has a circular geometry with a diameter of 30 mm, which is 0 5 10 15 20

shaped by an electrode assembly. The electron assembly B.T

consists of a circular disk of 10 mm in diameter anc_j fourps 5 0(0)oo(B) vs. B for n=051CF cm2 (1) and n=3.2
surrounding arc-shaped outer electrodes. The total diametgf1® cm2 (2) at T=1.2 K. The lines show the many-electron theory
of the assembly is 30 mm. The electrodes were immersed ifsolid) and single-electron theoridashegl Data (open squarésare taken
liquid helium, 1.0 mm under the surface. The width of thefrom Ref. 26.

edge of the electron disk was estimated to be 0.3 mm. The

resonance curve was obtained by sweeping the frequency of

an ac excitation voltage, which was applied to one of thedata of Ref. 26 for the SE conductance measurednfor
four surrounding electrodes. The output signal from the op=3.2-10° cm™? at T=1.2 K are plotted in Fig. 5. The con-
posite electrode was analyzed by a two-phase lock-in. Th@uctance is proportional toy, with the numerical factor of
magnetic field and temperature were held constant during thée order of unity unknown for the experiment. We have
measurement of each resonance curve. The electron densithosen the proportionality constant to fit the experimental
was fixed atn=3.5-10" cm 2 data at extremely high magnetic field8<€ 20 T), where the

Since the first mode was contaminated with a low-many-electron effect can be neglected. The data and the
frequency tail and unfavorable noise, the second mode with theory will then still in good agreement in the magnetic field
higher wave number was used to obtain the damping coeffirange where the many-electron effect validity of the approxi-
cient by fitting to the Lorentzian. Ab@v1 K the magnetic mation made for the dynamic structure fac&i(q,w) of a
field dependence of the damping coefficient was found to b&ighly correlated ® electron liquid. It is instructive to note
the same as thB-dependence of the previously studied lon-that in the high temperature range aBg 1 T, the quantum
gitudinal conductivity of SE. Therefore, we have determinedmagnetotransport of SE can be described by using the simple
the geometrical factor which gives the relationship betweernany-electron correction to the level broadenﬁgt(l"g,o
the damping coefficient and,, at T=1.1 K, where the +l“(2;)1’2 in a single-electron expression fe(B) presented
magnetoconductivity is well understood, both theoreticallyin the form of Eq.(8).
and experimentally, while the ripplon contribution and in- In the ripplon scattering regime, the magnetic field de-
elastic effect(according to Fig. ¥ can be disregarded. This pendence ob, is shown in Fig. 6 for different approaches.
factor was then used in the ripplon scattering regime. It follows that the single-electron approximatiol’ = 0)

It should be noted that the driving amplitude had to befails to describe the field dependencemyf, obtained from
kept low in order to avoid the nonlinear distortion of the the damping coefficient of EMBsolid squares At the same
EMP line shape. time, the many-electron DK theory resulisurve 3) cannot
be fitted to the data. The theory presented here reproduces
the B-dependence of the DK theory, if the ripplon contribu-
tion to the level broadening and inelastic effect are ignored:

To check that the many-electron effect is taken into acI'—T'¢, §,—0. Still, in this case, our theory gives, val-
count correctly in the theory presented above, we must firsies which are approximately 2.6 times higher than the result
apply the theory to the high-temperature regife; 1.2 K. of the DK theory. This is attributable to another way of treat-
The many-electron theorysolid curve and the single- ment of the magnetoconductivity of the highly correlated
electron theorydashed curveresults are shown in Fig. 5 for electron liquid used here. It should be pointed out that the
two electron densities. It can be seen that the many-electrdiactor 2.6 is very important for describing the experimental
effect can be ignored at low densities<0.5-10° cm™?). data. Indeed, it is impossible to fit the data and the DK
At substantially higher densitn=3.2-10° cm™2 and B theory by just replacing c=#/7, by I'=(T'2,+T2)*? in
<5 T, the Coulomb correction to the Landau level broadenthe final conductivity equation, since it would reduag,
ing affects the field dependence of,. The experimental o1M - from the data. Therefore, we conclude that the

RESULTS AND DISCUSSION

477 Low Temp. Phys. 23 (5-6), May—June 1997 Monarkha et al. 477



14

; T=03K
‘\" n= 3.5.107 cm-2
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FIG. 7. o, vs. T for three values of the magnetic field=1.84 T[curvel,
O]; B=3.67 T[curve 2, ¢]; B=6.4 T [curve 3, (J]. The many-electron
theory (solid) and the single electron theofgashed;B=6.4 T) have no
fitting parameters.

FIG. 6. The magnetoconductivity of SE vB. at T=0.3 K: the single-
electron approximatiortl); the many-electron theory report¢®); the DK
many-electron theory3). Solid squares are the experimental data found
from the EMP damping.

method proposed by us is a more adequate way of treating
the conductivity of highly correlated2 electron liquid. temperature dependence observed in Ref. 1P>a0.5 K is
The solid curve in Fig. 6 calculated on the basis ofsimilar to the one shown in Fig. 7. Still, the minimum of
theory of this paper without a fitting parameter is in goodo,, was situated at higheF~1 K, and it was necessary to
agreement with the new experimental data. In the wide rangsubstantially reduce the level broadenifig-T', 4 to fit the
of magnetic fieldso,, has a very wealB-dependence be- data. Regarding the,,(T) data reported in Ref. 1®,, and
cause of the interplay of the different contributidis and  consequentlyo,, decrease with decreasing, they are in
I'; o) to the level broadening. The deviation from the datacontradiction with available theories of ripplon-induced
seen aB=<1T is beyond the validity of the approximations magnetoconductivity including the DK theory.
used by ugat such fields the mixing of the Landau levels
becomes important The curve approaches the single-
electron curvdcurve J in the limit of strong magnetic field,
since I'cx1/yB—0. This is reasonable despite the large concLUSIONS
value of the Coulomb coupling parametér=60, since the
typical wave vectors in the dynamic structure faator/B We have investigated the inelastic quantum magne-
are much larger thag7n [according to Ref. 27, in this limit  totransport in a highly correlated®electron liquid of SE on
So(g, ) is nearly the same as that of an ideal electron.gas superfluid helium. The theoretical concept presented and the
The agreement between the theory and thg data magnetoconductivity data obtained from the damping of the
looks even more convincing in Fig. 7, where the results ar&EMP show that the usually used quasielastic approximation
plotted as a function of temperature for three different valuess valid only in a limited temperature range which narrows
of the magnetic field used in the experiment. The increase ofith increasing magnetic field. The inelastic effect which is
oyx With decreasing temperature to 0.2 K is consistent withimportant at LT drastically reduces the Landau level broad-
the prediction of the quassielastic theofaitoH®): o,  ening and magneto-conductivity. The many-electron theory
«1/\/T. At lower temperature3=<0.2 K, the many-electron reported here reproduces the results of previous quasielastic
theory curvegsolid) and the data deviate from the result of theoried®!°® as the opposite limiting cases which cannot be
the quasielastic approximation—the stronger the magnetiseparately applied to the real experimental situation.
field, the more SE magnetoconductivity deviates due to the We have shown that the EMP damping method of mea-
inelastic effect. With the increase of the magnetic field, thesuring the SE magnetoconductivity at LT can be an alterna-
curves and the data gradually approach the single-electraive to the conventional methods based on measuring the
curve (dashed plotted for the strongest magnetic field usedelectron response to the ac voltage by means of the capaci-
in the experiment. The high-temperature deviation of thetive coupling techniques.
weak-field curves from the data might be caused by the in- The perfect agreement achieved between the theory and
crease of the population of higher Landau levels, which wagxperiment in the wide range of temperatutegluding the
disregarded in the electron-ripplon scattering. vapor atom scattering regimnand magnetic fields supports
The temperature dependenceoqf, is the most decisive the idea of the Coulomb correction to the broadening of the
factor for the electron-ripplon scattering regime. Therefore, itsingle-electron density of states and provides important clues
is important to compare the previously measuregd(T) about the behavior of highly correlate® - 100) 2D elec-
data with the data reported here. It should be noted that thi&on liquids in quantizing magnetic fields.
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Possibility of ripplon-induced weak localization
A. J. Dahm

Department of Physics, Case Western Reserve University, Cleveland, OH 44108
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Fiz. Nizk. Temp.23, 639-641(May—June 199y

Ripplon-induced weak localization is proposed for electrons on a liquid-helium surface. Ripplon
scattering is quasi-elastic, the ripplons are quasi-static relative to the electron velocity, and

the relative change in occupation number of the ripplon state in a scattering event is small.
Conditions for the observation of ripplon-induced weak localization are calculated.

© 1997 American Institute of Physid$1063-777X97)01805-7

Electrons bound to a liquid-helium surface form an idealWEAK LOCALIZATION BY RIPPLONS
two-dimensional system. Electron motion along the surface
in a weak perpendicular field, , is metallic with scattering
occurring only from ripplons at temperatures below 0.5 K.

The formation of a ripplonic polaron, consisting of an elec- 1) Scattering is quasi-elastic. The dominant electron-

tron self-trapped in a dimple in the helium surface, is . . . . I
. . - ripplon scattering events involve the absorption or emission
predicted to occur in the presence of a sufficiently strong .. ;
of ripplons with wave vectorgy, ~the thermal wave vector

gﬁ;%?cgtmaéfft'ﬁilg'sgéecem claim has been made for th%f the electronky. For 1-K electrons the energy of ripplons

- . . — _2
Localization effects for electrons on helium films have which dominate the scattering fswq 10"~ K. Thus, the

change in the electron wave vectér,in a single scattering

been discussed only in terms of this ripplonic polaron. Weevent is <1%. The total phase change 5kl for |

present an alternate route to localization of electrons on he- 100 nm is~ 20 radians, and is ~0.2 radians.

lium films. Our suggestion is that electrons are weakly local- 2) Ripplons are quasi-static in the reference frame of the

ized, and possibly strongly localized on a short time scale, b%lectrons The velocity of ripplons witlg=k; is ~3
. =Kt

quag-elastm rlpplqn scattering. When temporal strong Iocal-x 102 of the electron velocity. The positions at which scat-
ization occurs, a dimple or a precursor will form beneath th

. . . etering occurs on the two paths are nearly the same. This is
electron even if the polaronic state is not bound. We Proposg, irated in Fig. 1b. The total change in phase is nearly

that as the holding field is increased to enhance eleCtron'naffected by the motion of slow ripplons,

ripplon scattering, the system will traverse the regimes, weal 3) The percentage change in the occupation number of

localization to strong localization to the bound polaron state.ripplons in a scattering event involving the absorption or

emission of a ripplon of one quantum is small. The occupa-
tion number is~T/hwy,~100 at 1 K. Electrons on the for-
WEAK LOCALIZATION ward and time-reversed paths scatter from ripplons of the
o . same amplitude to within 1%.

Weak localization is the term applied to the coherent  \ye conclude that the total phase change for electrons
backscattering of electrons by elastic scattering from a rangnich traverse the two paths is nearly the same, and the loss
dom set of potentials. It is a precursor to strong localization;, coherence for back scattering is very small. The reader
Excellent reviews on this topic exi3t° Let us consider a set may be inclined to make an analogy with phonon scattering
of fixed random potentials. Electrons can backscatter by traghich dephases the electrons in other two-dimensional sys-
versing a circuit of scatters in clockwigéorward) or coun-  tems. This analogy is incorrect. Phonon scattering occurs at
terclockwise(time reversegdirections. A diagram is shown energiesh o~#sk-~ 1 K, wheres is the sound velocity and
in Fig. 1a. In zero magnetic field with only elastic scatteringkF is ~10° m~L. Electron-phonon scattering is not quasi-
the difference in phase shift along the two pathg, van-  g|astic, and the occupation number is approximately unity.
ishes. The amplitudes for forwardy;, and time-reversed, Thus, a phonon of one quantum absorbed on one path will
A;, paths are additive. The probability of returning to the o exist for the time-reversed path. A good analogy of

We argue that weak localization should occur from rip-
plon scattering. Ripplon scattering differs from scattering
from fixed random potentials in the following ways.

origin is ripplon-induced weak localization is weak localization by
P=|A;+A|2=|A[1+cogA¢)]|>=4|A? (1) quasi-elastic scattering from helium atoms which has been
observed:’

compared to PA|? for scattering in other directions. This

enhancement of back scattering leads to an increase in resis-

tivity. In a magnetic field the additional phase shift STRONG LOCALIZATION BY RIPPLONS

[(e/h)fAdI] differs for the two paths and coherence is de-  Electron localization by ripplons or substrate scattering
stroyed at fields- ®,/1%. Hered, is a flux quantum antlis  is complicated by the formation of a dimple under the elec-
the elastic mean free path. This leads to a negative magné&-on. This dimple forms if an electron is temporarily local-
toresistance at low fields. ized even though no bound polaron state exists. The dimple
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impedes the motion of the electron. Nevertheless, we exam- Bsz

ine the possibility of strong localization by ripplons.

Strong localization occurs for short elastic mean freeric. 2. Resistivity vsB2, n=6x10%m2 T=1.3 K.
paths. The amplitude of the electronic wave function from
successive scatterings will add constructively in some region
of space where the electron becomes localized, and destruc- We have some data that support our suggestion. In Fig. 2
tive interference will occur in other regions of space. Thewe show the resistivity versu®? for electrons on a
wave function decays as exp(/¢), whereé>1 is the local-  a~30-nm-thick helium film. At low fields there is a large
ization length. In fixed random potentials, conduction occurshegative magnetoresistance, more characteristic of strong lo-
via variable-range tunneling from one localized state to ancalization. At higher fields the resistivity fits the Drude for-
other with the absorption or emission of a thermalmula, p~[1+(uB)?]. The mobility, u, is 1.5 nf/V.s, |
excitation® There is interference between different tunneling~50 nm, andg, ~600 kv/m. The field at which the mini-
paths. A magnetic field suppresses destructive interferena@um occurs is consistent with this value lof Scattering
along critical links in the hopping network. This results in afrom substrate imperfections may occur here, but the theo-
giant negative magnetoresistarice. retical ripplon scattering rate accounts fed0% of the total

The situation is much more complicated for the case okcattering. We argue that since every other scattering event
electrons on helium. Consider a mean free path of 50 nminvolves ripplons, localization effects could not be observed
The change irk for each scattering is-+1%. The change if ripplon scattering dephased the electronic wave function.
in ¢ is ~1 radian after~100 scattering events which occurs Localization of electrons on a helium surface is an ex-
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The conductivity and mobility of charge carriers in a quasi-one-dimensional electron system over
liquid helium is measured in the temperature range 0.5-1.8 K in confining electric fields up

to 2.5 kV/cm. The system of quasi-one-dimensional channels is constructed by using high-quality
optical diffraction gratings arranged at a certain heigttver liquid helium which fill the

grooves of the gratings, thus creating one-dimensional liquid channels. It is shown that the electron
mobility decreases with increasirg the value of the mobility being smaller than the

corresponding value for bulk helium. As the temperature decreases, the mobility increases, passes
through a peak, and then decreases. The observed effects can be explained by localization

of charge carriers in quasi-one-dimensional electron systems19%7 American Institute of
Physics[S1063-777X97)01905-1

INTRODUCTION In this research, we investigated the electron mobility in
i i , a quasi-one-dimensional electron system over liquid helium

 The study of one-dimensional and quasi-Oné-j, the temperature range 0.5-1.8 K at frequencies 100 kHz
dimensional electron systems is one of the most interesting,q 1.1 MHz in confining electric fields up to 2.5 kv/cm.
problems in the physics of low-dimensional structures. Suckyq types of optical diffraction gratings with different sepa-
systems are usually formed in thin metal wires and semicONzationg hetween the grooves were used. First results on the
ducting structures. It should be interesting to obtain a oNnepeasyrements of electrical conductivity and mobility of elec-
dimensional electron system of surface electr@®B) over trons in such systems were reported eafifeiThis paper

liquid helium in view of the fact that the SE layer over liquid ~yntains more complete data and a detailed analysis of the
helium is characterized by extremely high purity and homo-gpiained results.

geneity. A method proposed in Ref. 1 for obtaining such a
system employs the surface curvature of the liquid filling the
parallel grooves of an insulating substrate mounted at a CEEXPERIMENT

tain heighth over the liquid helium surface under the action . . .
A quasi-one-dimensional electron system was created by

of capillary forces. The confining electric fiek, displaces . ) . : . :
electrons to the bottom of a liquid channel, their motion Y'Y high-quality opical glass gratings without metal coat-

across the channel being quantized, while the motion alon g. The profile, the arrangement of gratings near the liquid

the channel is quasi-free. It was proved that the energy co _ghuml surfgclet,) a_Pr? the shaﬁ[pe (g flectro?ﬁs are shown |r15
responding to the motion of particles across the channel i@gs_. aan - 1€ separation between e grooves was
defined as pmin grating 1, 1.25% in grating 2, the depth of the grooves

in both gratings being 0.2—0,@m. The profile of grating 1

12 was measured by an electron microscope. It had the shape
, 1) shown in Fig. 1a, and its thickness was 0.8 mm, while grat-

ing 2 was in the form of a glass disk of diameter 30 mm and
wheren=1,2,3 ... ;& is Planck’s constang andm are the  had a thickness 3 mitig. 1b. Grating 1 was made of glass
electron charge and mass, ani the radius of curvature of alone, while the surface of grating 2 was coated with a naph-
the liquid helium surface in the channel, which is determinedhagen film on which grooves were engraved. The naph-
by the heighth. thagen film with grooves had the shape of a disk of diameter

Such a structure was created recently in experinfefits. 20 mm.

It was shown that the electron conductivity in this system is  Experimental cells | and Il in which gratings 1 and 2
strongly anisotropic, its value being a complex nonmono-were contained are shown in Figs. 1c and 1d. Liquid helium
tonic function of the number density of charge carriers andvas at a distancé from the upper plane of the gratings.
the confining electric field. According to estimafed,the  ElectrodesA, B, andC of grating 1 were kept at zero po-
mobility of electrons moving along the channels for smalltential, while a negative potential creating the electric field
h is close to(but smaller thanthe electron mobility over confining electrons at the surface of helium film wetting the
bulk helium. grating was applied to the upper electrod€Miy. 1¢. Elec-

ek,
sn=nhw0, wo= W
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FIG. 1. Grating 1, its profile and arrangement relative to helium; the direction of grooves is indicated by @rd@mating 2, the directions of grooves is
indicated by dashed ling®). Experimental cell I: optical gratin¢l), exciting and receiving electrodéB and Q, confining electrodéD), filament(F) (c).
Experimental cell II: exciting, separating, and receiving electrdde®,3, copper holder4), nut (5), guarding ring(6), optical grating(7), electrode(8),
insulating gasket9), copper inserf10), filament(11), and spring(12). (d).

trode A was used for measuring anisotropy of the electroimaginary G;) components of the conductance of the cell
conductivity along the grooves and at right angles to themand to find the real4,) and imaginary ;) components of
and was not employed by us in this work. In the experimenthe resistance of the electron layer.

tal cell containing grating 2, the upper measuring electrodes The quantitiesG, and G; are connected with the real
1, 2, 3were at zero potential, while a positive potential re-p, and imaginaryp; components of the resistance of the
quired for confining the electron charge was applied to theelectron layer through the following relatiofs:

lower electrodes which had the shape of a disk of diameter

25 mm. Electroded, 2, 3of grating 1 were 2 mm above the  _ _p 23" ) nse’w’p, @
substrate surface. The voltage from the generator was ap- e (e newp)?+ (nelwp)?

plied to electrode® and1, while the signal passing through > 5

the experimental cells was registered from electrodes C and _ _ &S A w(Mw, —Newp;) g

3. With such a method of supplying voltage, the electric field ' S a (M@, nelwp) i+ (nePwp,)?
was directed along the grooves of the substrate. Electtode 3)

was earthed relative to ac voltage. . -
9 Hereng is the average electron number density in the surface

layer, w the cyclic frequencyw, the plasma frequency, and
Jo the conductance of the cell in the absence of electrons. In
the case of a quasi-one-dimensional system, plasma waves
We measured in experiments the variatidrid andAe ~ Cannot propagate across the electron spot, and the summation
of the amplitude and phase of the signal passing through th® formulas is carried out over the values of the wave vector
experimental cells during their charging with electrons. Indetermined by the length, of the electron spot:
measurements at frequency 100 kHz, an ac bridge with the
output leads connected to an amplifier was used. Measure-
ments at frequency 1.1 MHz were made by using the highwheren, = 1, 2, 3,... . In ourcalculations we usually took
frequency phasemetdiK2-12. The data on the values of three terms, which was sufficient for obtaining results with
AU andA¢ made it possible to determine the red@,§ and  an error not exceeding 10%. The coefficiént depends on

DISCUSSION OF RESULTS

Ly:gx=mn, /Ly,
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the cell geometry; in the case when the rectangular geometry 0,3
is used for a quasi-one-dimensional system in which charge
carriers can move only in one direction, this coefficient can o

be written in the form
0.2}

A 2L, sintfg,(ho—d)

L. sinfahg cos QL Sir? q,A. (4)

2,1 -
B, mV's
¥
o
o

HerelL, is the width of the electron spod, is the length of oo

the exciting and receiving electroddg, the separation be- k %0
tween the upper and lower electrodes, ahdhe distance °H
from the electron layer to the receiving and transmitting elec- 1 L

trodes.

While processing experimental results, we assumed that
the plasma frequency for the system of conducting channelsic. 2. bependence of electron mobility in quasi-one-dimensional channels
of the gratings is close to the plasma frequency for a twoon heighth for grating 1,T=1.7 K, f=100 kHz.
dimensional electron layer of the corresponding concentra-
tion. For grating 2, this assumption was observed with a
large margin since the separation between the grooves was Andref proved that the low-frequency mobility of elec-
~10 % cm, which is approximately equal to the averagetrons increases sharply for liquid layers of thickness
separation between electrons. However, the situation witkz700 A. This allowed us to determine the number of mobile
grating 1 is more complicated. Nevertheless, we can assunaectrons for both gratings and to calculate the average elec-
that the plasma frequencies are quite large in both caseson density in the grating grooves proceeding from the total
Under these conditions, we can omit in formu(@s and (3) surface area of the bulk helium. It should be emphasized,
the terms containing the imaginary component of the resishowever, that the condition of constant potential at the sur-
tance of the electron layer. Using the simplified form of ex-face of a charged liquid is valid only for a high electron
pressiong2) and(3), we can determine the values@fand  density. Unfortunately, such calculations are not quite accu-
@, as fitting parameters from the measured valueS,0and  rate for the electron densities used. Nevertheless, we can
G; . In the case of grating 2, the electrodes having the shapapparently assume that they reflect the nature of the de-
of semicircles(see Fig. 1b were replaced by rectangular scribed phenomena.
electrodes of the same area. Such a substitution apparently Figure 2 presents the results obtained in experiments
could not lead to a considerable error since the magnitude afith grating 1. It shows the dependence of the electron mo-
the signal is mainly determined by the area of the receivingility w« in conducting channels dm. The experiments were
and transmitting electrodes. made at 1.7 K at a frequency of 100 kHz. It can be seen that

In order to find the electron mobility in a quasi-one- the value ofu decreases approximately by an order of mag-
dimensional electron system, we must know the number ofitude as the value df increases from fractions of millime-
mobile electrons over the bulk liquid in the channels. For thister to 15 mm. Figure 3 shows typical temperature depen-
purpose, we calculated the electron density distribution ovedences of electron mobility obtained for grating 2 for
the optical gratings. The calculations were based on the cordifferent values ofh. Curves 3 and 4 correspond