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We consider observational constraints on the creation of particles induced by hypothetical trans-Planckian
effects during the current stage of the Universe’s expansion. We show that compatibility with the diffuse γ-ray
background measured by the EGRET experiment strongly restricts this creation. In particular, it rules out the
possibility of detecting signatures of such short-distance effects in anisotropies of the cosmic microwave back-
ground radiation. On the other hand, the possibility that some part of ultrahigh-energy cosmic rays originates
from new trans-Planckian physics remains open. © 2002 MAIK “Nauka/Interperiodica”.
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Recently, much interest was attracted to the study of
possible deviations of the dispersion law of quantum
ultrarelativistic particles from the standard ω(k) = k at
very large (“trans-Planckian”) momenta k > M (pre-

sumably, M ~ MP1 = ; we put " = c = 1 in this
paper). This suggestion was previously discussed in the
quantum theory of black holes [1] (where it does not
lead to any new observable effects), but then it was
applied in cosmology [2]. Reasons for the existence of
such an effect may follow from an explicit breaking of
Lorentz invariance either induced by the existence of
additional spatial dimensions (e.g., with “asymmetric
warping” of usual 4D curved space–time [3]) or sug-
gested by analogy with quasiparticles in quantum liq-
uids [4]. Nonstandard dispersion laws also arise in non-
commutative geometry [5] and κ-Poincare symmetry
algebra [6].

Almost all attempts to find observational signatures
of this effect in cosmology were related to its influence
on the spectra of scalar perturbations and gravitational
waves generated during inflation. However, as was
emphasized in [7], if any correction to these spectra
arises at all, it means creation of real particles with
ultrahigh energies (caused by some new trans-Planck-
ian physics) due to any expansion of the Universe. In
particular, this should also occur at the present time.
Note that there is not even a qualitative difference
between the type of the Universe’s expansion during a
de Sitter (inflationary) stage in the early Universe and
nowadays: both are accelerating ones. Of course, the
present value H0 of the Hubble parameter H ≡ /a,
where a(t) is the scale factor of the Friedmann–Robert-
son–Walker (FRW) cosmological model and H0 is the

¶This article was submitted by the authors in English.
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Hubble constant, is much less than H during inflation.
But, as we will see, it is much easier to detect particles
with ultrahigh energies created now than those created
long ago during inflation (in spite of the fact discussed
below that the number of created particles is second
order in the parameter of nonadiabaticity |β(k)|, while
corrections to the spectra of inflationary perturbations
are first order in |β(k)|).

Following the general approach of [7] (see also
more recent papers [8]), we will phenomenologically
describe the effect of ultrahigh-energy particle creation
in cosmology due to unknown trans-Planckian physics
in the following way. Expansion of the Universe results
in redshifting of spatial momenta: k = n/a(t), n = const,
where k = |k | (in the case of a noncommutative geome-
try, the quantities which are redshifted ∝ a–1 are not
exactly the usual momenta k, but the difference
between them and k becomes small for k ! M; see [5]).
As a result, wave equations for the time-dependent
parts of quantum field operators in the Heisenberg rep-
resentation have the following form in the regime of
large momenta k @ H:

(1)

for scalar particles, and

(2)

where the dot denotes the derivative with respect to the
time t, the prime denotes the derivative with respect to

the conformal time η = , Ak is some quantity

characterizing the electromagnetic field (it is propor-
tional to covariant components of the vector-potential A
in the standard case), and the 3D spatial Fourier expan-
sion is assumed. Note that, in principle, ω(k) for the

φ̇̇k 3Hφ̇k ω2
n/a( )φk+ + 0=

Ak'' a
2ω2

n/a( )Ak+ 0=

t/a t( )d∫
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electromagnetic field may also depend on photon polar-
ization. Deviation of ω(k) from the standard law ω = k
for k * M results in breaking of conformal invariance
for photons (and massless neutrinos, too), so photon
creation in the FRW metric becomes possible. Below
we will argue that massive particles with a rest mass
m ! M must be created as well (even if m @ H) if cre-
ation of massless particles is not suppressed.

Let H ! M. Then generic solutions of Eqs. (1) and (2)
have the following form in the WKB regime H ! k ! M
(in the leading WKB approximation):

(3)

(4)

(5)

(we omit the spin index s below).
Usually, the adiabatic vacuum βn = 0 is assumed for

all modes of all quantum fields. However, trans-Planck-
ian physics may result in a nonzero βn (its actual value
may be different for quantum fields of different spins
and even for different polarizations, but we will not
consider the latter possibility). So, supposing that par-
ticles with k @ M do not exist as individual particles or
are not observable for other reasons (since we do not
see them after all), we arrive at the following observa-
tional picture of the effect under consideration: in the
course of the Universe’s expansion, pairs of particles
and antiparticles with superhigh energy M (~MP1) are
spontaneously created at the moment when their
momentum k(t) ≡ n/a(t) = M and their occupation num-
ber is |βn |2. The corresponding correction coefficient
_2(n) to the power spectrum of inflationary perturba-
tions is obtained by matching Eq. (3) (or its analogue
for gravitational waves) to the exact solution of the
massless scalar wave equation in the (approximately)
de Sitter background with the Hubble parameter H esti-
mated at the moment of the first Hubble radius crossing
k(t) = H. It is equal to

(6)

We will see below that |βn | should be small. Then αn can
be made unity by a phase rotation, and _2(n) = 1 –
2Reβn. Its difference from unity is first order in |βn |.

Our approach is to take αn and βn (subject to condi-
tion (5)) as phenomenological quantities which should
finally follow from a concrete model of nontrivial trans-
Planckian physics and investigate how they are limited
by present observational data. Thus, we consider only
real particle creation (corresponding to an imaginary
part of the effective action of quantum fields in a FRW
background). This should be contrasted to real, vacuum
polarization corrections to the effective action consid-

φk
1

2ωa
3

----------------- αn 0, e
i∫ωdt–

βn 0, e
i∫ωdt

+ 
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1

2ωa
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i∫ωdt–
βn 1, e
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αn s,
2 βn s,

2
– 1, s 0 1,= =

_
2

n( ) αn βn–
2
.=
ered, e.g., in [9]. The latter corrections result in a refrac-
tion index different from unity for radiation. They can
be strongly limited by observations of distant γ bursts
[10]. Note also that corrections to the effective volume
in phase space leading to “trans-Planckian damping”
that were recently proposed in [11] (in particular, they
may explain why particles with k @ M are not observ-
able) can be easily incorporated in the formalism used
here by changing the overall time-dependent prefactors
in Eqs. (3), (4).

In [7], the first step in this investigation was made by
considering the back reaction of created ultrahigh-
energy gravitons on the Universe’s expansion at
present. It was assumed that βn has the following
expansion in terms of the small parameter Hn/M, where
Hn ≡ H(tn) is the Hubble parameter estimated at the
moment of the trans-Planckian border crossing n =
Ma(tn) for each Fourier field mode k:

(7)

Then it was shown that the first term in (15) is very sup-

pressed:  & /M4 = 10–122 /M4, while

the second term is bounded by  ! /M2 (thus,
it is also suppressed if M ~ MP1). Note that time-trans-
lation invariance (which we do not want to abandon)

requires  and  to be independent of n,
which was noted in [7]. On the other hand, the phase of
βn is n-dependent and may be large. This leads to oscil-
lations in _2(n) and results in inflationary perturbation
spectra which, however, are unobservable for H ! M
due to their high frequency in k space [8, 12].

The first, H-independent term in (15) describes
“pure” trans-Planckian particle creation, where the
Universe’s expansion plays a kinematic role only. The
second term in (15) is responsible for a mixed effect
where both small-scale trans-Planckian physics and
large-scale space–time curvature participate. A con-
crete toy model producing the latter term was proposed
in [7], namely, the quantum state of any Fourier field
mode k which has a minimal energy density just at the
moment of the trans-Planckian border crossing (this
state differs from the adiabatic vacuum in the next term
of the WKB expansion). Since the minimal energy state
may not appear as a result of the adiabatic evolution in
the WKB regime  ! ω2 (even for a nonstandard dis-
persion law), this model implicitly assumes that some-
thing radical happens for k > M: either no mode exists
in this regime at all but is instantaneously “created” at
the moment when its momentum falls down to M, or the
WKB condition is suddenly violated for k > M, e.g.,
because of ω(k) becoming very small for k > M (as
occurs, e.g., in the model considered in [13]). Then, if

ω(k) = k for k < M exactly, the model leads to  = 1/2

βn βn
0( ) βn

1( )Hn

M
------ …+ +=

βn
0( ) 2

H0
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for minimally coupled scalar particles (1) (see [7]; the
recent papers [8] arrived at essentially the same result).

To create photons, some deviation from the standard
dispersion law ω(k) = k should exist even for k ≤ M. Let
us assume that the quantity to be diagonalized for each

Fourier mode k is  = (  + a2ω2 )/2a4; then equa-
tions for αn and βn in the representation (4) take the
form (cf. [14] for the case of a conformally coupled
massive scalar field)

(8)

(9)

The diagonalization condition at η = η0(n) (when
k = M) is βn(η0) = 0. If particle creation is small, |βn| ! 1,

then βn ≈ –i /4 (up to a phase factor and an
additional strongly oscillating term). Therefore,

(10)

for photons.
Note that expression (10) remains valid for confor-

mally coupled massive particles as far as their restmass
m ! M. So, this toy model shows that the second term
in expansion (15) need not be suppressed for massive
particles with m @ H. This remarkable fact may be
understood using the following argument: any non-
standard dispersion law ω(k) is equivalent to the
appearance of an effective-mass term m2(k) ≡ ω2(k) – k2

(m2 may be negative, of course). For k ~ M, where a sig-
nificant deviation from the standard dispersion law
occurs, the rest mass m2(0) is completely irrelevant.

Equations for creation of massive fermions in a
FRW background are similar to those in the case of
conformally coupled massive scalar particles (with an
additional multiplier n/ma in the r.h.s. of Eqs. (8) and
(9) for the standard dispersion law ω2 = k2 + m2; see,
e.g., [15]). Therefore, if photons are created due to
trans-Planckian effects at all, one may expect that mas-
sive fermions with m ! M including leptons are created
with a comparable (or even slightly larger) rate due to
the present expansion of the Universe.

Now we take the next step and study the limits on
trans-Planckian particle creation following from the
direct observability of created particles (photons, in
particular). Also, we omit the assumption M ~ MP1 and
consider the case M ! MP1. We show that data on high-
energy cosmic rays require much more suppression of

 and  as compared to the results obtained in [7].

The measured flux of ultrahigh-energy cosmic rays
(UHECR) extends to energies on the order of E ~ E0 ≡

ε̃k Âk
'2 Âk

2
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1011 GeV only. On the other hand, a typical energy of
particles emerging from the trans-Planckian region can
be much higher, up to E ~ 1019 GeV. Can the highest
energy particles pass undetected? The answer is nega-
tive. First, measurements place the following constraint
on the integral flux of high-energy particles (see, e.g.,
[16]):

(11)

Second, the Universe is not transparent to high-energy
radiation. Particles which are injected with any E > E0
will rapidly (on the cosmological time scale) migrate
into a lower energy range. For our purposes, it is suffi-
cient to consider attenuation of high-energy particles on
photons of the cosmic microwave background (CMB)
radiation.

Protons lose energy in the process of pion photopro-
duction. This gives rise to the famous Greisen–Zat-
sepin–Kuzmin (GZK) cutoff. The attenuation length
for this process (that is, the distance over which the
energy of a primary particle decreases by one e-fold) is
less than 20 Mpc at E > E0. Roughly half of the released
energy ends up in the electromagnetic cascade; the rest
is carried out by neutrinos. The Universe becomes
transparent for protons with E ≈ E0. Therefore, the
number of protons which could have been produced by
trans-Planckian effects (and which conserve) is subject
to constraint (11). This can be rewritten as a constraint
on the quantum-gravity scale M in a way similar to
what follows. However, a somewhat stronger and less
model-dependent constraint can be obtained by consid-
ering an electromagnetic cascade which migrates to
even lower energies. From this point of view, it is unim-
portant whether the electromagnetic cascade was initi-
ated by the propagation of high-energy protons or by
photons (or, for that matter, electrons) which were
directly created by trans-Planckian effects. Even neu-
trino production in the trans-Planckian region is not
harmless. Neutrinos create an electromagnetic cascade
in interactions with the cosmic background of relic neu-
trinos. Since about 1% of high-energy neutrinos inter-
act over the horizon scale [17], our final constraint,
Eq. (15), would be only an order of magnitude weaker
even in the unrealistic case of pure neutrino creation.
For these reasons, we concentrate on the constraint
imposed by the electromagnetic cascade in what
follows.

A high-energy photon cascades to lower energies in
the chain of the following reactions. First, it creates e+e–

pairs in collisions with CMB photons. Secondary elec-
trons recreate photons with energies somewhat lower
than the energy of the original photon via the inverse
Compton process, and so on. The corresponding atten-
uation length at E @ E0 is about 0.1 of the present hori-
zon size, and it is even smaller for smaller energies.
Therefore, the cascade migrates to lower energies until

FE E0> 10
2–
 km

2–
 yr

1–
 sr

1–
10

71–
 GeV

3
 sr

1–
.≈ ≈
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it reaches the sub-TeV scale, which corresponds to the
threshold of pair creation on cosmic backgrounds.

Therefore, the integrated energy flux of particles
emerging from the trans-Planckian region may not
exceed the integrated energy flux in the sub-TeV range,
where the diffuse γ-ray background was measured by
the EGRET telescope [18]. The measured value of this
background is

(12)

Let us relate this flux to the energy-production rate.
The rate of growth of energy density in particles emerg-
ing from the trans-Planckian region due to the expan-
sion of the Universe is [7]

(13)

In this relation, both particles and antiparticles are
counted; g = 2 for photons and neutrinos, g = 4 for mas-
sive fermions. N counts for all particle species which
can create the electromagnetic cascade at the end, since
one expects that the trans-Planckian creation is “demo-
cratic” and insensitive to particle masses as far as
m ! M. Omitting the neutrino, N = 26 in the standard
model. In supersymmetric or Grand Unified models,
N ~ 102–103. The integrated flux of energy accumulated
during the age of the Universe will be S1 ≈ JH–1.
Requiring S1 < S0, we get

(14)

We see that the constraint on the  term in the
decomposition (15) is very strong. Thus, this term
should be practically absent regardless of the value of
M. A contribution from the second term is strongly sup-

pressed by the small quantity  ≈ 10–122. As a

result, for the  coefficient we obtain

(15)

In recent literature (see, e.g., [19]), there were opti-
mistic expectations regarding possible imprints of
short-distance physics on the spectrum of CMB
anisotropies generated in the inflationary scenario of
the early Universe. Let us estimate now the impact of
the restriction (15) on the possible magnitude of the
effect. According to Eqs. (6), (14), and (15), a fractional
correction to the power spectrum of inflationary pertur-
bations which arise due to trans-Planckian physics is
given by

, (16)
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P

------ βn
1( )H inf

M
---------=
where Hinf is the value of the Hubble parameter during
the last 60 e-folds of inflation, Hinf /MP1 < 10–5. In view
of the constraint (15), we find

(17)

On the other hand, astrophysical data on the constancy
of the speed of light yield the lower limit M > 1015 GeV
[10].1 This gives δP/P < 10–3 for the maximum possible
magnitude of corrections to the perturbation power
spectrum. We conclude that trans-Planckian particle
creation is so strongly restricted by observations of
UHECR that it will be impossible to detect signatures
of short-distance physics in CMB anisotropies, since
the allowed contribution is smaller than the cosmic
variance at all multipoles of interest, l < 104.

Returning to UHECR themselves, one may consider
the speculative possibility that events observed above
the GZK cutoff energy are due to peculiarities of trans-
Planckian physics. However, trans-Planckian creation
of particles would occur homogeneously in the Uni-
verse and therefore should lead to the GZK cutoff in the
spectrum of created protons at high energies and to the
pileup of protons at E ~ 4 × 1019 eV. Thus, protons can-
not explain super-GZK events despite the fact that
trans-Planckian creation does occur within the GZK
sphere of ~50 Mpc, from where protons can reach us.
On the other hand, the attenuation length for photons
grows with energy, and therefore photons may produce
a spectrum of cosmic rays compatible with the AGASA
data [20] at the highest energies. One problem which
may arise here is related to an overall normalization. At
E ~ 1020 eV the attenuation length for photons is about
100 times smaller than the horizon scale. This gives the
distance scale to sources which contribute to the flux at
ultrahigh energies. On the other hand, byproducts of the
electromagnetic cascade pile up at the EGRET energies
and are accumulated from the entire Universe. On these
grounds, one expects that the ratio of the energy flux in
UHECR (S ~ 10–60 GeV4 sr–1, see Eq. (11)) to the dif-
fuse EGRET background cannot be larger than 0.01.
This value comfortably fits the data, and the numerical
coincidence may indicate that these two backgrounds
can indeed be related. However, to maintain this level
of the UHECR flux in photons, one should assume

1 Strictly speaking, this limit was obtained assuming that a correc-
tion to the standard dispersion law for k  0 starts with the
cubic term, ω2 = k2(1 ± (k/M) + …). If the cubic term is absent
and the correction begins from a larger power of k/M, there is no
lower limit on M. However, constraint (15) remains valid. So,
even in this specific case, to obtain significant corrections to the
perturbation power spectrum generated during inflation, either a
specific mechanism for trans-Planckian particle creation produc-

ing  @ 1 should be invented or one has to postulate a low

M ≤ 10–6 MP1 which is not compatible with the condition Hinf ! M
(necessary for general relativistic description of inflation and
generation of perturbations) for many inflationary models.

δP
P

------ 10
11– 1
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M
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small extragalactic magnetic fields and small universal
radio background (cf. [21]). In addition, one would
need to fine-tune the rate of trans-Planckian creation to
the level of the observed UHECR flux. Also, this mech-
anism is not favored by the observed angular clustering
of UHECR [20, 22]. One should note, however, that the
same problems arise in many other models which
attempt to explain super-GZK events.

We conclude that at least some cosmic rays with
energies beyond the GZK limit may have originate due
to new physics in the trans-Planckian region. This strik-
ing possibility remains open and deserves further study,
while constraint (17) makes the expected contribution
of trans-Planckian physics to the CMB anisotropies
unobservable.

The authors thank CITA, University of Toronto,
where this project was started, for hospitality. A.S. was
also partially supported by RFBR, grant no. 02-02-
16817, and by the RAS Research Program “Quantum
Macrophysics.”
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Black-Hole Horizon and Metric Singularity at the Brane 
Separating Two Sliding Superfluids¶
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An analogue of a black hole can be realized in the low-temperature laboratory. The horizon can be constructed
for “relativistic” ripplons (surface waves) living on the brane. The brane is represented by the interface between
two superfluid liquids, 3He-A and 3He-B, sliding along each other without friction. A similar experimental
arrangement was recently used for the observation and investigation of the Kelvin–Helmholtz type of instability
in superfluids [1]. The shear-flow instability in superfluids is characterized by two critical velocities. The lowest
threshold measured in recent experiments [1] corresponds to the appearance of the ergoregion for ripplons. In
the modified geometry, this will give rise to the black-hole event horizon in the effective metric experienced by
ripplons. In the region behind the horizon, the brane vacuum is unstable due to interaction with the higher-
dimensional world of bulk superfluids. The time of the development of instability can be made very long at low
temperature. This will allow us to reach and investigate the second critical velocity—the proper Kelvin–Helm-
holtz instability threshold. The latter corresponds to the singularity inside the black hole, where the determinant
of the effective metric becomes infinite. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 04.50.+h; 04.70.Dy; 67.57.De; 47.20.Ft 
1. Introduction. The first experimental realization
of two superfluid liquids sliding along each other [1]
gives us a new tool for the investigation of many phys-
ical phenomena related to different areas of physics
(classical hydrodynamics, rotating Bose condensates,
cosmology, brane physics, etc.). Here we discuss how
this experimental arrangement can be modified in order
to produce an analogue of the black-hole event horizon
and of the singularity in the effective Lorentzian metric
experienced by the collective modes (ripplons) living
on the brane (the interface separating two different
superfluid vacua, 3He-A and 3He-B, which we refer to
as the AB brane below).

The idea of the experiment is similar to that dis-
cussed by Schützhold and Unruh [2], who suggested
using gravity waves on the surface of a liquid flowing
in a shallow basin. In the long-wavelength limit, the
energy spectrum of the surface modes becomes “rela-
tivistic,” which allows us to describe the propagating
modes in terms of the effective Lorentzian metric. Here
we discuss the modification of this idea to the case of
ripplons propagating along the membrane between two
superfluids.

There are many advantages when one uses the
superfluid liquids instead of the conventional ones:
(1) The superfluids can slide along each other without
any friction until the critical velocity is reached, and
thus all the problems related to viscosity disappear.
(2) The superfluids represent quantum vacua similar to

¶This article was submitted by the author in English.
0021-3640/02/7605- $22.00 © 20240
those in relativistic quantum field theories (RQFT) (see
review [3]). That is why the quantum effects related to
the vacuum in the presence of an exotic metric can be
simulated. (3) The interface between two different
superfluid vacua is analogous to the brane in the mod-
ern RQFT, and one can study the brane physics, in par-
ticular, the interaction between the brane matter and the
matter living in the higher dimensional space outside
the brane. Here, on example of the AB brane, we show
that this interaction leads to vacuum instability in the
AB brane behind the event horizon. (4) Reducing the
temperature, one can make the time of the development
of the instability long enough to experimentally probe
the singularity within the black hole (the so-called
physical singularity).

2. Effective metric for modes living in the AB
brane. Let us consider surface waves—ripplons—
propagating along the AB brane in the slab geometry
shown in Fig. 1. Two superfluids, 3He-A and 3He-B,
separated by the AB brane move along the brane with
velocities v1 and v2 in the container frame. The normal
components of the liquids—the systems of quasiparti-
cles on both sides of the interface—are at rest with
respect of the container walls in equilibrium, vn = 0.
The dispersion relation for ripplons can be obtained by
modification of the equations obtained in [4] to the slab
geometry:

(1)
M1 k( ) ω k– v1⋅( )2

M2 k( ) ω k– v2⋅( )2
+

=  F k
2σ iΓω.–+
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Here, σ is the surface tension of the AB brane; F is the
force stabilizing the position of the brane (in experi-
ment [1] it is an applied magnetic-field gradient); M1(k)
and M2(k) are the masses of the two liquids involved in
the oscillating motion of the brane:

(2)

h1 and h2 are the thicknesses of layers of two superflu-
ids; ρ1 and ρ2 are mass densities of the liquids, and we
assume that the temperature is low enough that the nor-
mal fraction of each of the two superfluid liquids is
small.

Finally, Γ is the coefficient in front of the friction
force experienced by the AB brane when it moves with
respect to the 3D environment along the normal  to
the brane, Ffr = –Γ(vbrane – vn) (in the frame of container
vn = 0). The friction term in Eq. (1) containing the
parameter Γ is the only term which couples the 2D
brane with the 3D environment. If Γ = 0, the brane sub-
system becomes Galilean invariant; the Γ-term violates
Galilean invariance in the 2D world of the AB brane.

In a thin slab where kh1 ! 1 and kh2 ! 1, one obtains

(3)

where

(4)

(5)

For k ! kP, the main part of Eq. (3) can be rewritten in
the Lorentzian form

(6)

(7)

while the right-hand side of Eq. (6) contains the
remaining small terms violating Lorentz invariance—
attenuation of ripplons due to the friction and their non-
linear dispersion. Both terms come from physics which
is “trans-Planckian” for the ripplons. The quantities kP
and ckP play the role of the Planck momentum and
Planck energy within the brane: they determine the
scales where the Lorentz symmetry is violated. The
Planck scales of the 2D physics in the brane are actually
much smaller than the “Planck momentum” and
“Planck energy” in the 3D superfluids outside the
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brane. The parameter Γ is determined by the physics of
3D quasiparticles scattering on the brane, and it practi-
cally does not depend on velocities v1 and v2, which are
too small for the 3D world.

At sufficiently small k, both non-Lorentzian
terms—attenuation and nonlinear dispersion on the
right-hand side of Eq. (6)—can be ignored, and the
dynamics of ripplons living on the AB-brane are
described by the following effective contravariant met-
ric gµν:

(8)

Introducing relative velocity U and the mean velocity
W of two superfluids,

(9)

one obtains the following expression for the effective
contravariant metric:

(10)

3. Horizon and singularity. The original KH insta-
bility [5] takes place when the relative velocity U of the
motion of the two liquids reaches the critical value Uc =

c/ . At this velocity, the determinant of the metric
tensor

(11)

has a physical singularity: it crosses the infinite value
and changes sign. However, before U reaches Uc, the
system reaches the other important thresholds at which
analogues of ergosurface and horizon in general relativ-
ity appear. To demonstrate this, let us consider the sim-
plest situation, when velocities U and W are parallel to
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Fig. 1. The brane—interface between two moving superflu-
ids, 3He-A and 3He-B. vsA and vsB are the superfluid veloc-
ities of two liquids sliding along the brane, while the normal
components of the liquids—analogue of the matter living
outside the brane—are at rest in the frame of the container,
vnA = vnB = 0. The dashed line demonstrates the propagating
surface wave (ripplon) which represents the matter living on
the brane.
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each other (i.e., v1 and v2 are parallel) and these veloc-
ities are radial and depend only on the radial coordinate
r along the flow. Then the interval of the effective 2 + 1
space–time in which ripplons move along the geodesic
curves is

(12)

(13)

ds
2

=  
c

2
W

2
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2
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Fig. 2. Horizon and singularity in the effective metric for
ripplons on the brane (AB interface). We assume that the
A-phase is at rest, while the B phase is radially moving to
the center as shown by arrows.

Fig. 3. Imaginary part of the ripplon spectrum due to inter-
action with the environment in the higher-dimensional
space. In the ergoregion, the attenuation transforms to the
amplification leading to the instability of the brane world.
The time of development of this instability is long at low T,
where Γ is small. In contrast, the Kelvin–Helmholtz
instability behind the singularity rapidly develops and
rsingularity  0.

Kelvin–Helmhotz

rsingularity

g00(rsingularity)
(14)

The circle r = rh, where g00 = 0, i.e., where W2(rh) –
α1α2U2(rh) = c2, marks the “coordinate singularity”
which is the black-hole horizon if the velocity W is
inward (see Fig. 2). In such radial-flow geometry, the
horizon also represents the ergosurface (ergoline in 2D
space dimension) which is determined as the surface
bounding the region where the ripplon states can have
negative energy. We call the whole region behind the
ergosurface the ergoregion. This definition differs from
that accepted in general relativity, but we must extend
the notion of the ergoregion to the case when Lorentz
invariance and general covariance are violated and the
absolute reference frame appears. At the ergosurface,
the Landau critical velocity for excitations of ripplons
is reached. Also, as follows from [4] (see also Section 5
below), the ergoregion coincides with the region where
the brane fluctuations become unstable, since both real
and imaginary (Fig. 3) parts of the ripplon energy spec-
trum cross zero at the ergosurface.

4. Brane instability behind the horizon. This
means that the brane becomes unstable in the presence
of the ergoregion. This instability is caused by the inter-
action of the 2D ripplons with the 3D quasiparticles in
bulk superfluids on both sides of the brane [4]. The
interaction of brane with the environment, i.e., with the
superfluids on both sides of the brane, is the source of
the attenuation of the propagating ripplons: this interac-
tion determines the parameter Γ in the friction force. In
the ergoregion, the imaginary part of the spectrum of
ripplons becomes positive; i.e., the attenuation trans-
forms to amplification of surface waves with negative ω
(see Fig. 3, where the imaginary part of the spectrum
crosses zero with the slope proportional to Γ). Since the
instability of the interface with respect to exponentially
growing surface fluctuations develops in the presence
of the shear flow, this instability results in the formation
of vortices observed in experiment [1].

In 3He experiments [1] with shear flow along the
AB interface, one has kh1 @ 1 and kh2 @ 1. Thus, the
relativistic description is not applicable. Also, in the
rotating cryostat, the superfluids flow in the azimuthal
direction instead of the radial. That is why there was no
horizon in the experiment. However, the notion of the
ergosurface and of the ergoregion behind the ergosur-
face, where the ripplon energy becomes negative in the
container frame [4], is applicable. The instability of the
brane inside the ergoregion leads to formation of vorti-
ces in the vortex-free 3He-B, which were detected using
NMR with single-vortex resolution. The observed
threshold velocity for the vortex formation exactly cor-
responds to the appearance of the ergosurface
(ergoline) in the container [1, 4].

There are thus two ingredients which cause the vac-
uum instability in the ergoregion: (i) the existence of
the absolute reference frame of the environment outside

d t̃ dt
W r( )dr

c
2

W
2

r( )– α1α2U
2

r( )–
----------------------------------------------------------.+=
JETP LETTERS      Vol. 76      No. 5      2002



BLACK-HOLE HORIZON AND METRIC SINGULARITY 243
the brane; and (ii) the interaction of the brane with this
environment (Γ ≠ 0) which violates Galilean (or
Lorentz) invariance within the brane. They lead to
attenuation of the ripplon in the region outside the hori-
zon. Behind the horizon, this attenuation transforms to
amplification, which destabilizes the vacuum there.
This mechanism may have an important consequence
for the astronomical black hole. If there is any intrinsic
attenuation of, say, photons (either due to superluminal
dispersion or due to the interaction with the higher-
dimensional environment), this may lead to the cata-
strophic decay of the black hole due to instability
behind the horizon, which we discuss in Section 5.

Let us estimate the time of development of such
instability, first in the artificial black hole within the AB
brane and then in the astronomical black hole. Accord-
ing to Kopnin [6], the parameter of the friction force
experienced by the AB brane due to Andreev scattering
of quasiparticles in the bulk superfluid on the A-phase
side of the brane is Γ ~ T3m*/"3c⊥ c|| at T ! Tc. Here,
T is the temperature in 3He-A; m* is the quasiparticle
mass in the Fermi liquid; c⊥  and c|| are the “speeds of
light” for 3D quasiparticles living in anisotropic 3He-A
(these speeds are much larger than the typical “speed of
light” c of quasiparticles (ripplons) on the 2D brane);
and Tc is the superfluid transition temperature, which
also marks the 3D Planck energy scale. Assuming the
most pessimistic scenario, in which the instability is
caused mainly by the exponential growth of ripplons
with the “Planck” wave number kP, one obtains the fol-
lowing estimation for the time of the development of
the instability in the ergoregion far enough from the

horizon: τ ~ 1/ (kP) ~ 10(Tc/T)3 s. Thus, at low T, the
state with the horizon can live for a long time (minutes
or even hours), and this lifetime of the horizon can be
made even longer if the threshold is only slightly
exceeded.

This provides unique possibility to study the hori-
zon and the region behind the horizon; the physical sin-
gularity, where the determinant of the metric is singu-
lar, can also be easily constructed and investigated.

At the lower temperature T < m* , the temperature

dependence of Γ changes: Γ ~ T 4/"3 c|| [3], and at
very low T it becomes temperature-independent: Γ ~
"k4, which corresponds to the dynamical Casimir force
acting on the 2D brane moving in the 3D vacuum. Such
intrinsic attenuation of ripplons transforms to the
amplification of the ripplon modes in the ergoregion,
which leads to instability of the brane vacuum behind
the horizon even at T = 0.

5. Instability of the black hole behind the hori-
zon? Now let us suppose that the same situation takes
place in our (brane) world; i.e., the modes of our world
(photons, or gravitons, or fermionic particles) have
finite lifetime due to interaction with, say, the extra-
dimensional environment. Then this will lead to the

Γ̃

c⊥
2

c⊥
3
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instability of vacuum behind the horizon of astronomi-
cal black holes. This can be considered using Eq. (6),
which incorporates both terms violating the Lorentz
invariance at high energy: the superluminal upturn of
the spectrum, which leads to decay of particles, and the
intrinsic broadening of the particle spectrum character-

ized by (k). Following the analogy, we can write the

intrinsic width as a power law (k) ~ µ(ck/µ)n, where
µ is the energy scale, which is well above the Planck
scale EP of our brane world, µ @ EP; and n = 6 if the
analogy is exact.

We shall use the Painlevé–Gullstrand metric, which
together with the superluminal dispersion of the parti-
cle spectrum allows us to consider the region behind the
horizon:

(15)

Here, G is Newton’s constant and M is the mass of the
black hole. This metric coincides with the 3D generali-
zation of the metric of ripplons on AB brane in Eq. (13)
for v1 = v2. Equation (13) gives the following dispersion
relation for particles in the brane:

(16)

or

(17)

We are interested in the imaginary part of the spectrum.

For small (k) ! ck, the imaginary part of the energy
spectrum is

(18)

Behind the horizon, where W > c, the imaginary part

becomes positive for |k · W| > E(k) (or k2 < /(W2/c2 – 1));
i.e., attenuation transforms to amplification of waves
with these k. This demonstrates the instability of the
vacuum with respect to exponentially growing electro-
magnetic or other fluctuations in the ergoregion. Such

an instability is absent when  = 0, i.e., if there is no
interaction with the trans-Planckian or extra-dimen-
sional world(s).

The time of the development of instability within
the conventional black hole is determined by the region
far from the horizon, where the relevant k ~ kP. Thus,

τ ~ 1/ (kP) ~ µn – 1/ . If µ is of the same order as the
brane Planck scale, the time of development of instabil-
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ity is determined by the Planck time. That is why the
astronomical black hole can exist only if µ @ EP, which
takes place when the 4D and 3D Planck scales are
essentially different, as in the case of the AB brane. The
black hole decay due to the quantum process of Hawk-
ing evaporation corresponds to µ = M, where M is the
black hole mass and n = 4.

6. Conclusion. In conclusion, the AB brane—the
interface between the two sliding superfluids—can be
used to construct an artificial black hole with an ergo-
surface, horizon, and physical singularity. Using the
AB brane, one can also simulate the interaction of par-
ticles on the brane with those in the higher-dimensional
space outside the brane. This interaction leads to the
decay of the brane vacuum in the region behind the
horizon. This mechanism can be crucial for astronomi-
cal black holes, if this analogy is applicable. If the mat-
ter fields in the brane are properly coupled to, say, grav-
itons in the bulk, this may lead to the fast collapse of the
black hole.
I thank V.B. Eltsov, M. Krusius, R. Schützhold, and
W.G. Unruh for fruitful discussions. This work was
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In order to determine the electron (anti)neutrino mass mν, a number of precise atomic experiments with gaseous
and frozen targets of molecular tritium T2 have been carried out in the last decade. The nonzero neutrino mass
should be manifested in the form of fine features near the upper edge of the β-electron spectrum. The problem
of calculating the spectrum of final excitations, which is of crucial importance for determining mν, is discussed.
An operator approach has been used for an analysis of spectral sums. This allows a number of effects that could
not be considered earlier to be discussed, including the recoil effect, which can be of substantial importance in
the interpretation of the current and future experiments. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 23.40.Bw; 14.60.Pq; 31.10.+z
In recent atomic experiments, the neutrino mass was
determined from the electronic spectrum of the β decay
of molecular tritium [1–6]

T2  T3He+ + e– + . (1)

A theoretical spectrum, where the neutrino mass  is
a varying parameter, is fitted to the experimental data.
The upper edge of the β-electron spectrum is equal to
about 18.6 keV and most sensitive to the nonzero neu-
trino mass. A rich variety of electronic rovibrational
states of the T3He+ molecule is populated because of
the recoil energy and instantaneous change in the
charge. The spectrum of final excitations was calcu-
lated in [7–13], where it was demonstrated that about
99% of final states were distributed over a 100-eV
range near the upper edge. The spectrum consists pri-
marily of comparatively narrow rovibrational multip-
lets corresponding to bound and resonance adiabatic
electronic states, 57.4% of which are in the ground
electronic state of the T3He+ molecule. The ground rov-
ibrational multiplet consists of several hundred bound
and resonance molecular states with the rotational
quantum number J ~ 22–25 [8]. Although the probabil-
ity of populating an individual rovibrational state is
very sensitive to variations in the recoil momentum
(energy) pβ [13], the integral contribution of the multip-
let is virtually constant. The statistical processing of
most experimental data faces a problem hindering the
unambiguous determination of nonzero neutrino mass.
Indeed, the best approximation of the β-electron spec-

trum is reached with negative , i.e., in the nonphys-

ical region. Moreover, the resulting  value depends
on the fitting energy range. In the conservative
approach, the experiments give an upper limit for neu-
trino mass mν ≤ 2–3 eV/c2. The new series of experi-

ν̃e

mν
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mν
2

mν
2
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ments within the plans of the KATRIN collaboration
should achieve an accuracy in measuring the neutrino
mass in the subelectron-volt range [14]. In this paper,
the problem of calculating the spectrum of final excita-
tions is considered. The operator technique of calculat-
ing spectral sums provides quantitative estimate of the
recoil effect on the spectrum of final excitations. The
correction is shown to depend explicitly on the β-elec-
tron energy and to be equal to about 1 eV in the energy
range below the upper edge by ~100 eV, i.e., in the
region of sensitivity of future experiments.

The differential spectrum of β electrons is deter-
mined as [10] (e = me = " =1)

(2)

where the summation is over all final states of the T3He+

molecule; Eβ and eβ are the total and kinetic energies,
respectively; pβ is the β-electron momentum; and
F(pβ, Z) is the Fermi factor [15]. The upper edge mea-
sured from the ground state is determined as

(3)

where Eg is the ground-state energy of the T3He+ mole-
cule,  is the ground-state energy of the T2 molecule,

ER = /4Mt is the recoil energy of the center of mass
of the molecule, and Mt is the triton mass. The proba-
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bility of populating final states is expressed in terms of
the squared matrix element of the recoil operator:

(4)

where R is the internuclear distance. All available β
spectrometers measure the integral spectrum

(5)

The theoretical spectrum of final excitations is pre-
sented as pairs of quantities (En, Pn).

The spectrum of final excitations is calculated with
inevitable approximations. First, the momentum pβ is
taken to be equal to the upper edge. It is difficult to
quantitatively estimate variations in recoil operator
matrix elements (4). However, the total recoil energy of
the molecule must evidently decrease with decreasing
β-electron energy. Second, the spectrum of final excita-
tions above the upper edge of the one-electron contin-
uum is calculated in a simplified approach ignoring the
nuclear motion. Ad hoc corrections to the spectrum are
included into the tables published in [12].

An analysis of the above approximations is compli-
cated, because it is necessary to estimate integrals (4)
involving fast oscillating functions, where |qR | ~ 25.
However, experiments can be interpreted by means of
integral characteristics given by spectral sums (2) and
(5). A similar problem arises in an analysis of the Möss-
bauer effect [16]. The problem can be solved in the
operator formalism leading to the sum rules. Here, a
similar approach is proposed for analyzing spectral
sums for the β-electron distribution.

Substituting the T3He+ molecule Hamiltonian H for
En in Eq. (5), we remove the summation with respect to
n and arrive at the expression

(6)

where  = W0 – eβ – H. Operator expression (6) is trans-
formed by using the relation

(7)

which is easily obtained, because the kinetic energy

operator has the form  = – ∆R, where M = Mt /2 is

the reduced molecular mass. According to Eq. (7), the
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recoil exponent can be removed from Eq. (6) with the
substitution

(8)

The term q2/2M corresponds to the integral rovibra-
tional recoil energy. Adding it to the recoil energy of the
molecular center of mass, we obtain

(9)

Redefining ER and W0, we derive the β-electron spec-
trum in the following form of the expectation of a cer-
tain operator in the initial state of the T2 molecule:

(10)

In Eq. (7), the term linear in the momentum has the
magnitude |(q, )/M | ~ 10–2, which corresponds to
0.3 eV. Expanding the θ function in this parameter by
using the relation

(11)

we arrive at the expression

(12)

Generalized functions are, as usual, treated in terms of
a convolution with a certain smooth function. For the
continuous electron rovibrational spectrum, the convo-
lution arises naturally as the integration over the final
states. For the discrete spectrum, the convolution is
ensured by the additional averaging with the resolution
function of a β spectrometer:

(13)

In both cases, δ terms in Eq. (12) give rise to energy
peaks in the spectral sums. The leading correction is
|(q, )/M |2 ~ 10–4 due to additional averaging over

angles . In this paper, only the first term of expan-

sion (12) is taken into account.
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2

–( )=

– δ ê mνc
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The exponential in Eq. (10) is expanded similarly.
Upon averaging over the angles, we obtain

(14)

where

(15)

The spectral contribution of this term is small. In par-

ticular,  ≤ 0.1 eV3 for the ground electronic state.
The remaining corrections in expansion (14) are of the
higher order.

The final operator representation for the β-electron
spectrum has the form

(16)

A similar procedure for the differential spectrum yields

(17)

Introducing the unity decomposition  = 1
into Eqs. (16) and (17), we obtain operator formulas
valuable in practice. For the integral spectrum, it has the
form

(18)

Formulas (16)–(18) are asymptotically exact. Cor-
rections are inversely proportional to the energy inter-
val and are small [see Eq. (14)]. Formula (18) indicates
that the pseudo-spectrum of final excitations involves
only vibrational modes. Analyzing the simplest classi-

cal model, we conclude that the term q2/2M = /4Mt

is the integral classical rovibrational energy of mole-
cule recoil. The residual summation over the pseudo-
spectrum of vibrational modes corresponds to averag-
ing over the initial vibrational state.
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Let us consider the ground electronic state of the
T3He+ molecule. Only several vibrational states con-
tribute to the pseudo-spectrum of the final excitations:

(19)

The integral probability is equal to 0.574 [7] as in the
standard approach. Using Eqs. (19), we calculate the
mean excitation energy of the ground rovibrational
multiplet as

(20)

This value coincides with the result of the summation
of several tens of rovibrational lines presented in the
tables from [9]. Value (20) was obtained with the recoil
momentum pβ corresponding to the upper edge of the
spectrum and the nonrelativistic relation between the
momentum and energy of a β electron. The relativistic
formula used in [13] increases the value by 0.03 eV.
This result follows from the exact sum rule

(21)

which is a particular case of relations used in deriving
the operator formulas. The additional shift of the center
of rovibrational excitations, which is determined by the
second term in Eq. (20), is equal to about 0.1 eV for
excited electronic states.

As was mentioned above, the nuclear motion is
ignored when calculating high electronic states.
According to ad hoc corrections made in tables in [12],
integral lines are characterized by a shift of 1 eV simu-
lating the rovibrational recoil effect. According to the
present analysis, an identical shift of 1.7 eV must be
attributed to all lines. A residual uncertainty of about
0.1 eV depends on the properties of a given electronic
state. In contrast, a shift of 1.9 eV proposed in [13] is
quite large. In addition, the probability distribution of
the contribution of electron resonances was taken to be
the 3-eV-wide Gaussian, which simulates the rovibra-
tional broadening. According to our concept of the
spectrum, the overlap integral can be calculated with
the simplest oscillator wave function in the initial state
and the semiclassical radial Airy function in the final
state. In this case, the resulting distribution is Gaussian-
like with the width

(22)

where  is the oscillation frequency of the T2 mole-
cule, R0 ≈ 1.4 is the equilibrium internuclear distance in
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the initial T2 molecule, and Zeff ≈ 1.5–2 is the effective
charge determining the slope of the molecular term of
the final state at the point R0. Formula (22) yields δE ≈
3–4 eV. According to [12], the fitted neutrino mass is
only slightly sensitive to the width of resonance lines.

In conclusion, we discuss the correction of the total
molecule recoil energy (9). The spectrum upper edge
W0 is one of free parameters in fitting the β-electron
spectrum. The recoil energy is insignificant in this case.
However, we revealed that the total recoil energy
depends explicitly on energy. This dependence is man-
ifested as both a change in the recoil energy of the
molecular center of mass and the integral shift of the
centers of rovibrational multiplets. The latter shift is the
primary manifestation of the dependence of the recoil-
operator matrix elements Pn(pβ) on the β-electron
energy. The magnitude of the effect is independent of
the method of calculating the spectrum.

The correction to the β-electron spectrum given by
Eqs. (2) and (5) can be presented as a weak energy
dependence of the upper edge W0:

(23)

where  is an arbitrary reference point of the spec-
trum. The effect is weak. In particular, δW0 ~ 0.04 eV
for an energy interval of about 200 eV. However, the
integral spectrum behaves approximately as (W0 – eβ)3.
Variation in W0 gives rise to the δW0(W0 – eβ)2 terms.
The dependence on neutrino mass leads to negative

contributions on the order of (W0 – eβ) to the spec-
trum. Thus, the energy interval is responsible for the
enhancement of the effect.

Fitting experimental data, we expected that the aver-
age W0 value would be determined primarily by points
near the lower edge of the spectrum, where the number
of events is several orders of magnitude as large as that
near the upper edge. A weak energy dependence leads
to a small positive correction to the standard spectrum
obtained with a fixed W0 value. The effect is compen-
sated by taking a negative average value of the free

parameter . The farther the lower edge of the spec-
trum, the lower the effective W0 value; the higher the
effective correction δW0, the higher the absolute value

of the negative parameter . This behavior was pro-
nounced in detailed reports of experiments (see Table 1
in [5]).

The effect was estimated through the simplest
numerical simulation. Using the standard tables of the
spectrum of final excitations and assuming that the neu-
trino mass equals zero, we calculated the hypothetical

W0
eff( )

W0 δW0 eβ( ),+=

δW0 ER
0( )

ER–
eβ

0( )
eβ–

Mt

-------------------,≈=

eβ
0( )

mν
2

mν
2

mν
2

spectra of β electrons with and without the correction
δW0. When W0 was taken at the lower edge of the fitting
interval, these two spectra coincided at two edges of the

energy interval. Varying , we fitted the two spectra
over the entire interval by the least squares method. As

a result, the best fit was reached with  ≈ –1.9 eV2/c4,
which is approximately equal to the values reported in
[4, 6]. The inclusion of the correction to the procedure
of fitting the experimental spectrum must give the
actual effect magnitude.

In summary, operator formalism was applied to ana-
lyze the spectral sums. In order to improve the theoret-
ical spectrum of final states, several modernizations
were proposed. In particular, the numerical effect of the
recoil energy on neutrino mass determined by fitting
the theoretical spectrum of β electrons to experimental
data was discussed. The numerical estimates, calcula-
tions of the spectrum, and detailed analysis of the oper-
ator product expansions will be given elsewhere.

This work was supported by the National Science
Foundation (USA), grant no. PHY-9984075.
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The high-energy behavior of the total cross section for highly virtual photons, as predicted by the BFKL equa-
tion at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM
optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL pre-
dictions for future linear colliders are presented. © 2002 MAIK “Nauka/Interperiodica”. 
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Photon–photon collisions, particularly γ*γ* pro-
cesses, play a special role in QCD [1], since their anal-
ysis is under much better control than the calculation of
hadronic processes, which require the input of nonper-
turbative hadronic structure functions or wave func-
tions. In addition, unitarization (screening) corrections
due to multiple Pomeron exchange should be less
important for the scattering of γ* of high virtuality than
for hadronic collisions.

The high-energy asymptotic behavior of the γγ total
cross section in QED can be calculated [2] by an all-
orders resummation of the leading terms: σ ~ α4sω, ω =

πα2 . 6 × 10–5 (Fig. 1). However, the slowly rising

asymptotic behavior of the QED cross section is not
apparent, since large contributions come from other
sources, such as the cut of the fermion-box contribu-
tion: σ ~ α2( )/s [1] (which, although subleading in
energy dependence, dominates the rising contributions
by powers of the QED coupling constant) and QCD-
driven processes (Fig. 2).

The high-energy asymptotic behavior of hard QCD
processes is governed by the Balitsky–Fadin–Kuraev–
Lipatov (BFKL) formalism [3, 4]. The highest eigen-
value, ω, of the BFKL equation [3] is related to the
intercept of the QCD BFKL Pomeron, which in turn
governs the high-energy asymptotic behavior of the

cross sections: σ ~  = sω. The BFKL Pomeron
intercept in the leading order (LO) turns out to be rather
large: αIP – 1 = ωLO = 12ln2(αS/π) . 0.55 for αS = 0.2
[3]. The next-to-leading order (NLO) corrections to the

¶This article was submitted by the authors in English.
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BFKL intercept have recently been calculated [5], but

the results in the  scheme have a strong renormal-
ization scale dependence. In Ref. [6] we used the Brod-
sky–Lepage–Mackenzie (BLM) optimal scale setting
procedure [7] to eliminate the renormalization scale
ambiguity. (For other approaches to the NLO BFKL
predictions, see Refs. [8, 6] and references therein.)
The BLM optimal scale setting resums the conformal-
violating β0 terms into the running coupling in all
orders of perturbation theory, thus preserving the con-
formal properties of the theory. The NLO BFKL pre-
dictions, as improved by the BLM scale setting, yields
αIP – 1 = ωNLO = 0.13–0.18 [6]. Strictly speaking, the
integral kernel of the BFKL equation at NLO is not
conformally invariant, and, hence, one should use a
more accurate method for its solution (see [9]). But

MS

Fig. 1. Photon–photon collisions in QED: (a) electron-box
diagram: σ ~ α2( )/s; (b) one-photon exchange dia-

gram: σ ~ α4s0; (c) a typical higher-order diagram, its

resummation leads to σ ~ α4sω, ω = πα2 [2].
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in the BLM approach the dependence of the eigenvalue
of the kernel from the gluon virtuality is extremely
weak [6] and, therefore, ωNLO coincides basically with
the eigenvalue.

The photon–photon cross sections with LO BFKL
resummation were considered in Refs. [4, 10–12]. The
total cross section of two unpolarized gammas with vir-

Fig. 2. High-energy photon–photon collisions in QCD:
(a) quark-box diagram: σ ~ α2( )/s; (b) one-gluon

exchange diagram: σ ~ α2 s0; (c) a typical higher-order

diagram; its resummation leads to σ ~ α2 sω. ωLO =

12ln2(αS/π) . 0.55 [3] and ωNLO = 0.13–0.18 [6].

slog

αS
2

αS
2

Fig. 3. The energy dependence of the total cross section for
highly virtual photon–photon collisions predicted by the
BLM scale-fixed NLO BFKL [14, 15, 6] compared with
OPAL [16] and L3 [17] data from LEP2 at CERN. The
(solid) dashed curves correspond to the (N)LO BFKL
predictions for two different choices of the Regge scale:
s0 = Q2 for upper curves and s0 = 4Q2 for lower curves.

αIP

αIP
tualities QA and QB in the LO BFKL [4, 11] reads as fol-
lows:

with the gamma impact factors in the LO for the trans-
verse and longitudinal polarizations:

,

where a Regge scale parameter s0 is proportional to a

hard scale Q2 ~ , ; Γ is the Euler Γ function and
eq is the quark electric charge.

Although the NLO impact factor of the virtual pho-
ton is not known [13], one can use the LO impact factor
of Refs. [2, 11], assuming that the main energy-depen-
dent NLO corrections come from the NLO BFKL sub-
process rather than from the photon impact factors
[14, 15].

Fig. 3 compares the LO and BLM scale-fixed NLO

BFKL predictions σ ~ α2 sω [6, 14, 15] with recent
CERN LEP2 data from OPAL [16] and L3 [17]. The
spread in the curves reflects the uncertainty in the
choice of the Regge scale parameter, which defines the
beginning of the asymptotic regime: s0 = Q2 to 4Q2 for
LO and NLO BFKL, where Q2 is the mean virtuality of
the colliding photons. One can see from Fig. 3 that the
agreement of the NLO BFKL predictions [14, 15, 6]
with the data is quite good. The sensitivity of the NLO
BFKL results to the Regge parameter s0 is much
smaller than in the case of the LO BFKL. The variation
of the predictions in the value of s0 reflects uncertainties
from uncalculated subleading terms. The parametric
variation of the LO BFKL predictions is so large that it
can be, in fact, neither ruled out nor confirmed at the
energy range of CERN LEP2.
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The double-logarithmic DGLAP asymptotic behav-

ior related with / ) terms for the total pho-
ton–photon cross section was considered in Ref. [12]
and found to be small for the CERN LEP2 kinematical
region. The point is that most of the CERN LEP2 data
[16–18] are collected at the approximately equal virtu-

alities of the colliding photons: 1/2 < /  < 2. It
should be stressed that the soft Pomeron contribution to
the γ*γ* total cross section, if estimated within the vec-
tor-dominance model, is proportional to σγ*γ* ~

( /Q2)4σγγ and therefore suppressed for such highly
virtual photons as those under consideration.

We also note that the NLO BFKL predictions are
consistent [15] with data recently presented by ALEPH
[18]. In contrast, the NLO quark-box contribution [19]
underestimates the L3 data point at Y ≡ sγγ/〈Q2〉) = 6
by 4 standard deviations. Indeed, the NLO quark-box
contribution [19], calculated in massless approxima-
tion, can be scaled down from general considerations
with the quark masses. For example, at leading order,
the inclusion of masses to the quark-box diagram
reduces its contribution by 10–15% [19]. Also, the one-
gluon exchange added to the (N)LO quark-box contri-
bution is not sufficient to describe the data at Y = 6
within (3) 4 standard deviations (see also Fig. 4).

(QA
2log QB

2

QA
2 QB

2

mV
2

(log

Fig. 4. The energy dependence of the total cross section for
virtual photon–photon collisions predicted by the NLO
BFKL for future linear colliders. The solid curves corre-
spond to the BLM scale-fixed NLO BFKL predictions with
s0 = Q2 (upper curve) and s0 = 4Q2 (lower curve). The dot-
ted curve shows the one-gluon exchange contribution.
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In Fig. 4 the BLM fixed-scale NLO BFKL predic-
tions for a future linear collider with the photon–photon

collider option (  ≤ 0.8 ) under discussion

[20] are shown.
The NLO BFKL phenomenology is consistent with

the assumption of small unitarization corrections in the
photon–photon scattering at large Q2. Thus, one can
accommodate the NLO BFKL Pomeron intercept value
1.13–1.18 [6] predicted by the BLM optimal scale set-
ting. In the case of hadron scattering, the larger unitari-
zation corrections [21] lead to a smaller effective
Pomeron intercept value, about 1.10 [22].

In summary, highly virtual photon–photon colli-
sions provide a very unique opportunity to test the high-
energy asymptotic behavior of QCD. The NLO BFKL
predictions for the γ*γ* total cross section, with the
renormalization scale fixed by the BLM procedure,
show good agreement with the recent data from OPAL
[16] and L3 [17] at CERN LEP2. The results obtained
could be very important for future lepton and photon
colliders.

The authors thank V.P. Andreev, A. Bohrer,
A. De Roeck, J.R. Ellis, J.H. Field, I.M. Ginzburg,
A.B. Kaidalov, V.A. Khoze, M. Kienzle-Focacci,
M. Krawczyk, C.-N. Lin, V.A. Schegelsky, V.G. Serbo,
M. Przybycién, A.A. Vorobyov, and M. Wadhwa for
helpful discussions. This work was supported in part by
the Russian Foundation for Basic Research, the INTAS
Foundation, the U.S. National Science Foundation, and
the U.S. Dept. of Energy under contract no. DE-AC03-
76SF00515.

REFERENCES
1. V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and

V. G. Serbo, Phys. Rep. C 15, 181 (1975).
2. V. N. Gribov, L. N. Lipatov, and G. V. Frolov, Phys. Lett.

B 31B, 34 (1970); Yad. Fiz. 12, 994 (1970) [Sov. J. Nucl.
Phys. 12, 543 (1971)]; H. Cheng and T. T. Wu, Phys.
Rev. D 1, 2775 (1970).

3. V. S. Fadin, L. N. Lipatov, and E. A. Kuraev, Phys. Lett.
B 60B, 50 (1975); Zh. Éksp. Teor. Fiz. 71, 840 (1976)
[Sov. Phys. JETP 44, 443 (1976)]; Zh. Éksp. Teor. Fiz.
72, 377 (1977) [Sov. Phys. JETP 45, 199 (1977)].

4. I. I. Balitsky and L. N. Lipatov, Yad. Fiz. 28, 1597 (1978)
[Sov. J. Nucl. Phys. 28, 822 (1978)].

5. V. S. Fadin and L. N. Lipatov, Phys. Lett. B 429, 127
(1998); G. Camici and M. Ciafaloni, Phys. Lett. B 430,
349 (1998).

6. S. J. Brodsky, V. S. Fadin, V. T. Kim, et al., Pis’ma Zh.
Éksp. Teor. Fiz. 70, 161 (1999) [JETP Lett. 70, 155
(1999)].

7. S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys.
Rev. D 28, 228 (1983).

8. B. Andersson, G. Gustafson, and J. Samuelsson, Nucl.
Phys. B 467, 443 (1996); M. Ciafaloni, D. Colferai, and
G. P. Salam, Phys. Rev. D 60, 114036 (1999); R. S. Tho-
rne, Phys. Rev. D 60, 054031 (1999); G. Altarelli,
R. D. Ball, and S. Forte, Nucl. Phys. B 599, 383 (2001).

sγγ s
e

+
e

–



252 BRODSKY et al.
9. L. N. Lipatov, Zh. Éksp. Teor. Fiz. 90, 1536 (1986) [Sov.
Phys. JETP 63, 904 (1986)]; Phys. Rep. C 286, 131
(1997); L. V. Gribov, E. M. Levin, and M. G. Ryskin,
Phys. Rep. C 100, 1 (1983).

10. J. Bartels, A. De Roeck, and H. Lotter, Phys. Lett. B 389,
742 (1996); A. Bia as, W. Czy , and W. Florkowski, Eur.
Phys. J. C 2, 683 (1998); J. Kwieci ski and L. Motyka,
Acta Phys. Pol. B 30, 1817 (1999); Eur. Phys. J. C 18,
343 (2000); J. Bartels, C. Ewerz, and R. Staritzbichler,
Phys. Lett. B 492, 56 (2000); N. N. Nikolaev, J. Speth,
and V. R. Zoller, Zh. Éksp. Teor. Fiz. 93, 1104 (2001)
[JETP 93, 957 (2001)].

11. S. J. Brodsky, F. Hautmann, and D. E. Soper, Phys. Rev.
D 56, 6957 (1997); Phys. Rev. Lett. 78, 803 (1997); Erra-
tum: 79, 3544 (1997).

12. M. Boonekamp, A. De Roeck, C. Royon, and S. Wallon,
Nucl. Phys. B 555, 540 (1999).

13. V. S. Fadin, D. Yu. Ivanov, and M. I. Kotsky, BUDKER-
INP-2001-33, DFCAL-TH-01-2 (2001); hep-
ph/0106099; J. Bartels, S. Gieseke, and C. F. Qiao, Phys.
Rev. D 63, 056014 (2001); Erratum: 65, 079902 (2002);
J. Bartels, S. Gieseke, and A. Kyrieleis, Phys. Rev. D 65,
014006 (2002).

14. V. T. Kim, L. N. Lipatov, and G. B. Pivovarov, in Pro-
ceedings of the 29th International Symposium on Multi-
particle Dynamics (ISMD99), Providence, 1999, hep-
ph/9911242; in Proceedings of the 8th Blois Workshop
(EDS99), Protvino, Russia, 1999, hep-ph/9911228;
V S. Fadin, V. T. Kim, L. N. Lipatov, and G. B. Pivo-
varov, in Proceedings of the XXXV PNPI Winter School,
Repino, Russia, 2001, hep-ph/0207296.

15. S. J. Brodsky, V. S. Fadin, V. T. Kim, et al., presented at
PHOTON2001, Ascona, Switzerland, 2001; SLAC-
PUB-9069, CERN-TH/2001-341; hep-ph/0111390.

l z
.

ń
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The self-generation of periodic spin-wave envelope soliton trains of microwave spin waves in active rings based
on ferromagnetic films is studied experimentally. The trains of bright solitons with different periods are self-
generated in the same ring due to the frequency-selective control of the attenuation of spin waves circulating in
an active ring. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Ds; 75.70.-i
Two types of envelope solitons—bright and dark
solitons—can be excited and propagate in nonlinear
dispersive media. The properties of these solitons were
studied in detail (see, e.g., [1, 2]). Recently, it was sug-
gested using active rings based on nonlinear dispersive
media for the self-generation of envelope solitons. In
particular, active rings based on ferromagnetic films
were used to self-generate envelope solitons of micro-
wave spin waves [3, 4]. In these works, the period T of
soliton trains was determined as T = l/v, where l is the
ring length and v  is the soliton velocity. In other words,
trains observed in these works can be attributed to the
circulation of one soliton in the ring. Similar treatment
is applicable to experiments with optical solitons gen-
erated in optical fiber rings (see, e.g., [5]).

According to simple physical reasoning, several
solitons can generally circulate in a ring. Recently, Carr
et al. [6, 7] obtained analytical stationary one- and mul-
tisoliton solutions for rings based on dispersive media,
where nonlinear waves can be described by the one-
dimensional nonlinear Schrödinger equation. However,
experimental observation of soliton trains self-gener-
ated with different periods in the same ring is an open
problem.

In this work, the possibility of self-generating peri-
odic trains of bright solitons of microwave spin waves
with different periods, i.e., the possibility of controlling
the density of nonlinearly generated trains of spin-wave
solitons, is investigated experimentally.

The grounds of the experiment are easily presented
in spectral terms. Any self-generated periodic train of
microwave pulses (solitons in this case) obviously has
a discrete frequency spectrum. The period of the train is
determined in terms of the frequency spacing between
harmonics ∆f as T = 1/∆f (this was the fact for self-gen-
erated dark and bright solitons in [3, 4]). Therefore,
increasing the spacing between harmonics forming the
0021-3640/02/7605- $22.00 © 20253
train can decrease the period of a generated pulse train.
Thus, controlled generation in an active resonant ring
can be realized when only selected natural harmonics
(resonant modes) are involved in nonlinear self-gener-
ation.

Two self-generation regimes were realized for the
same ring in this study. The first regime corresponds to
the two-soliton circulation mode; i.e., every second ring
harmonic is concerned in the generation of bright soli-
ton trains. The second regime corresponds to the one-
soliton circulation mode; i.e., all ring harmonics are
involved in the generation of bright soliton trains. The
initial harmonics (resonant ring modes) were chosen by
the frequency-selective control of the attenuation of
spin waves circulating in the active ring. As will be
shown below, all resonant modes are concerned in gen-
eration due to increasing gain, i.e., due to the compen-
sation of attenuation in the ring.

Previous experiments with spin-wave solitons were
well described by the nonlinear Schrödinger equation

(1)

which indicates that bright envelope solitons can exist
in media, when dispersion and nonlinear coefficients of
the carrier wave are opposite in sign. This condition is
satisfied for so-called backward volume spin waves
propagating in an in-plane magnetized ferromagnetic
films. The dispersion ω(k) of this wave is monotonic in
the long-wavelength spectral region [8, 9], the disper-
sion coefficient D = ∂2ω/∂k2 and nonlinear coefficient
N = ∂ω/∂|a |2 of the wave are positive and negative,
respectively. Moreover, the single-mode regime of
propagating spin waves is easily realized for this wave
[10]. This circumstance is particularly important for
excluding undesirable interference effects when study-
ing soliton phenomena. For this reason, a backward
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volume spin wave was used as a carrier wave in our
experiments.

Experiments were carried out with an active ring
involving an yttrium iron garnet (YIG) film, microwave
amplifier, and attenuator. We emphasize that the band
of amplified frequencies and dynamical range of the

Fig. 1. Frequency response measured for the active YIG
film ring near generation threshold for gain G = –0.2 dB.

Fig. 2. (Left panels) Envelopes of the self-generated micro-
wave signal circulating in the active ring and (right panels)
corresponding frequency spectra as measured for gain G =
(a) 0.1, (b) 0.8, (c) 1, and (d) 1.3 dB.
amplifier were chosen such that the YIG film deter-
mined the nonlinear properties of the ring. The attenu-
ator smoothly controlled attenuation in the ring and
switched it to the generation regime. A microwave sig-
nal was injected and withdrawn by directed splitters.
Experiments were carried out with 2-mm-wide YIG
film specimens (spin-wave waveguides), which were
cut out of a high-quality single-crystal YIG film 5.2 µm
in thickness, which was grown on a substrate of gado-
linium gallium garnet with (111) orientation. Micro-
wave spin waves were generated and detected by the
ordinary microstrip structure [11, 12], which had short-
circuited input and output microstrip antennas, whose
width was equal to 50 µm and length, to the width of the
film waveguide. According to the condition of obtain-
ing soliton trains with periods of several tens of nano-
seconds, the antennas were spaced at 5 mm.

Experiments conventionally involved two stages.
The first stage, where the frequency response of the
active ring as a ring resonator was controlled and stud-
ied, aimed at obtaining the resonator frequency
response ensuring minimum losses for several alternate
resonant eigenmodes. The lowest losses must be
ensured for a resonant mode located deep enough in the
spectrum of the backward volume spin waves to keep
nonlinearly generated harmonics within this spectrum.
Choosing the frequency response of the external part
(other than the ferromagnetic film) of the electron
microwave section ensures the desired frequency
response of the ring. The second stage aimed at self-
generating soliton trains of nonlinear pulses of spin
waves with different periods.

Figure 1 shows the frequency response of the ring
resonator near self-generation threshold for G =
−0.2 dB and bias field H = 1020 Oe. Self-generation
threshold G = 0 was determined by the onset of the
monochromatic generation of a microwave signal in the
ring. This generation was detected by the high-sensitive
HP70206 spectrum analyzer. The resonant ring eigen-
mode with the smallest losses, which is indicated by the
circle in Fig. 1, was the first mode that reached the self-
generation regime for G ≥ 0 in nonlinear experiments.
Thus, this mode was the carrier frequency of the pulse
train generated with further increasing gain. We empha-
size that the next resonant modes with comparatively
small losses are the next nearest modes spaced at 2∆f
from the carrier mode. Losses for nearest modes spaced
at ±∆f from the carrier mode were somewhat larger.
Due to this relation between attenuations, subsequent to
the carrier mode, other resonant modes spaced at 2∆f
were involved in self-generation with increasing gain.
Then, as gain increased, all the ring-resonator modes
spaced at ∆f were concerned in self-generation.

The development of the self-generation process
with increasing gain is illustrated in Fig. 2, which
shows (left panels) envelopes of the self-generated
microwave signal and (right panels) respective fre-
quency spectra. As is seen, single-frequency mono-
JETP LETTERS      Vol. 76      No. 5      2002
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chromatic generation is followed by multifrequency
generation even at G = 0.1 dB, which is slightly above
the generation threshold. However, the nonlinear pro-
cess is insufficiently developed for G = 0.1 dB. This
conclusion is supported by the presence of the pedestal
in Fig. 2a. The self-generated pulse train for G = 0.8 dB
consists of pronounced knoidal waves (bright soliton
train) (Fig. 2b). The period of the train is T = 1/2∆f, and
the FWHM duration of one soliton is τ2 = 29 ns.

As gain increases further, some nonlinear modes are
suppressed, whereas other modes increase (Fig. 2c).
The self-generated periodic train for G = 1.3 dB again
has the form of a stationary soliton train (Fig. 2d),
whose period is twice the period of the train shown in
Fig. 2b, and the duration of one soliton is equal to τ1 =
27 ns.1 

We emphasize that the regime of the self-generation
of spin-wave solitons that is shown in Fig. 2b is
obtained in this work and corresponds to the simulta-
neous circulation of two solitons in the ring. The self-
generation regime shown in Fig. 2d is similar to the
regime described in [4]. Elementary calculations dem-
onstrate that the velocities of solitons coincide in both
regimes (Figs. 2b, 2d) and are approximately equal to
the group velocity v g = 2.4 × 106 cm/s of the carrier spin
wave with a frequency of 4739 MHz and wave number
of 80 Rad/cm–1.

The self-generated frequencies of all observed trains
coincide with the frequencies of resonant ring eigen-
modes (cf. Figs. 1 and 2). Therefore, the observed self-
generation process can be treated as modulation insta-
bility caused by the four-wave interaction between spin
waves corresponding to the resonant modes of the ring.

To check that the observed self-generation of non-
linear-pulse train is the self-generation of solitons, we
developed a model of the process and carried out a
numerical simulation. In the model, the composite ring
is treated as a homogeneous ring resonator of traveling
spin waves. The length of this resonator is taken as l =
v g/T, where v g is the group velocity of spin waves at the
center frequency of the transmission band in the linear
regime. The form of the frequency transmission band
can be varied in a numerical simulation.

As is usually done in the theory of envelope solitons,
we suppose that spin waves interact though the four-
wave interaction. Four-wave processes in an
unbounded ferromagnetic medium [13] or in a ferro-
magnetic film [14] are usually analyzed through the
equations of motion in the wave vector space of Fourier
components ak of the spatial variable. In the case under
consideration, in order to take into account the resonant
properties of the ring, we derive the set for the ampli-
tude of the resonant harmonics an of a spin-wave packet
that circulates in the ring and has dimensionless scalar
envelope a(z, t). Using the formalism developed for

1 With further increasing gain, the ring exhibits chaotic dynamics,
which must be studied separately.
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nonlinear spin waves [13], we obtain the following
equation from the set that consists of the Landau–Lif-
shitz equation of magnetic-moment motion and magne-
tostatic equations:

(2)

Here, an(t) and ωn are, respectively, the dimensionless
scalar amplitude and natural frequency of the nth reso-
nant mode of spin waves in the ring resonator; N is the
nonlinear coefficient of the four-wave interaction
between spin waves; and ν is the nonlinear attenuation
parameter of spin waves. Note that, when changing to
the equation for the envelopes of a narrow wave packet,
set (2) takes the form of the familiar Ginzburg–Landau
equation [2] and of nonlinear Schrödinger equation (1)
for ν = γn = 0.

The natural frequencies ωn of the resonant spin
waves in the ferromagnetic film ring are specified by
the discrete set of wave numbers kn = 2πn/l determined
by the periodic boundary conditions

(3)

i.e., ωn = ω(kn). Recall that we consider only waves of
the lowest thickness mode of the backward volume spin
waves whose dispersion ω(k) is well known [8, 9].

Depending on the frequency, a resonant eigenmode
of the ring may be either attenuated or amplified. This
fact is taken into account in Eq. (2) through the effec-
tive parameter γn, which is positive for attenuating res-
onant modes, is negative for modes beyond self-gener-
ation threshold, and is equal to zero for self-generation
threshold. The effective parameter γn presents losses on
the propagation of spin waves in the ferromagnetic
film, frequency-dependent losses on the filtration of a
signal in the antennas, and frequency-independent
amplification of the signal by the microwave amplifier.

Similar to nonlinear optics [2], the attenuation of
spin waves is described in Eq. (2) by the frequency-
independent phenomenological parameter ν. The mea-
surements in the monochromatic regime of the genera-
tion of spin waves in a spin-wave delay line yielded ν =
109 s–1 for the center (carrier) frequency f0 = 4739 MHz.
The nonlinear attenuation of the carrier spin wave, which
is comparatively long-wavelength (k = 80 Rad/cm–1),
can be physically attributed to its scattering into short-
wavelength spin waves.

In particular, numerical calculations indicate that
the stable self-generation regime for periodic trains of
constant-amplitude solitons can be reached only in
rings with an asymmetric frequency response. For a
symmetric frequency response, the generated-soliton
amplitudes oscillate slowly in the stationary regime.
This phenomenon must be studied further by computer
simulation and, on the basis of the available results, can

∂an/∂t iωnan i N iν–( )+ +

× Σn'Σn''Σn'''an'an''*an'''δ n' n''– n''' n–+( ) γnan.–=
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be treated as follows. When the frequency response is
asymmetric, energy can flow into harmonics having
large (given) losses. In this case, the periodic exchange
of energy between natural resonant ring harmonics
symmetric about the center frequency is suppressed,
and the stationary regime of generating a train of soli-
tons of constant amplitude is realized. The frequency
response in actual experiments is always asymmetric,
so that low-frequency backward volume spin waves are
attenuated more strongly than high-frequency waves.

In addition, numerical calculations demonstrated
that the stable stationary regime of the self-generation
of periodic pulse trains can be reached by increasing
losses only in one of ring eigenmodes spaced at 2∆f
from the center mode. In this case, center and next near-
est modes that have minimum losses and are spaced at
2∆ serve as initial harmonics whose modulation insta-
bility developed with increasing gain is responsible for
the generation of a train of solitons.

Fig. 3. Results of numerical simulation of the self-genera-
tion of soliton pairs in the active ring based on an yttrium
iron garnet film: (a) the preset frequency response of the
ring, (b) the spectrum of the spatial harmonics of a self-gen-
erated periodic train, and (c) the periodic train of self-gen-
erated solitons.
Figure 3 shows the results of numerical calculations
by Eqs. (2). Figure 3a shows the loss characteristic
γn(kn) of a certain filtering ring, which has an asymmet-
ric frequency response and a locally nonmonotonic
transmission band (increase in losses for n = 1; n has
conventional meaning in Fig. 3). In this case, the har-
monics with n = 0 and 2 serve as initial harmonics. Fig-
ure 3b shows the spectrum of the spatial harmonics of a
stationary wave packet formed in this ring. Figure 3c
shows the time envelope |a(z, t)| of this packet for a cer-
tain point of the ring. As is seen in Fig. 3b, the ampli-
tudes of all odd harmonics are very small compared to
the amplitudes of even harmonics including the zeroth
harmonic. Therefore, odd harmonics virtually do not
contribute to the shape of the spatial envelope of the
wave packet, and the envelope of the absolute value of
the amplitude of a nonlinearly generated microwave
signal has the form of two soliton-like pulses circulat-
ing in the ring. The duration of one nonlinear pulse in
the periodic train for the stationary regime is equal to
38 ns, which is consistent with the experimental value
τ2 = 29 ns.

Thus, the numerical simulation demonstrates that
the control of the frequency response of an active reso-
nant ring can provide the stationary circulation of a
wave packet consisting of a pair of pulses. This process
is manifested in the time envelope as a train of soliton-
like pulses with frequency that is twice the frequency of
the wave-packet circulation in the ring.

More detailed experimental results will be reported
and compared with theory later.

In conclusion, we emphasize that the above method
of controlling the density of nonlinearly self-generated
envelope solitons in active ferromagnetic-film rings can
be extended to other dispersive ring systems. In such a
system, the electric length of a ring must be approxi-
mately equal to several or several tens of wavelengths
of the wave process in hand in order for the spectrum of
its natural resonant frequencies to be discrete despite
the losses in the system.
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An exact quantum solution of the problem of electron scattering from a short-range potential in the presence of
a strong elliptically polarized laser field is obtained. The differential scattering cross section as a function of the
number of absorbed (or emitted) photons exhibits a plateau caused by the rescattering of electrons from the scat-
tering center. Numerical results for a linearly polarized laser field are presented, and it is shown that the plateau
boundaries agree well with classical estimates. © 2002 MAIK “Nauka/Interperiodica”.
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Among the most interesting and extensively studied
nonlinear effects involved in above-threshold ioniza-
tion (ATI) and high-order harmonic generation (HHG)
processes are “plateaus” observed in the ATI and HHG
spectra. The presence of a plateau implies that the pho-
toelectron yield resulting from n-photon ATI or the
intensity of the nth pump laser harmonic depend
weakly on the number n of absorbed photons over a
broad interval (for n & nmax). Possessing a single-elec-
tron character, these effects have been well studied
experimentally and described theoretically, both by a
direct numerical solution of the nonstationary (time-
dependent) Schrödinger equation and within the frame-
work of a quasiclassical approach based on the rescat-
tering concept [1]. According to this concept, a strong
oscillating field returns electrons (escaping from atoms
due to tunneling ionization events) back to the host
ions: rescattering from the ions, the electrons gain addi-
tional energy from the pump wave, thus forming a pla-
teau in the ATI spectrum or recombining with the emis-
sion of large-n harmonics.

It is interesting to note that the structure of such a
plateau depends only weakly on the particular shape of
the atomic potential, so that the quasi-classical esti-
mates of the cutoff (nmax) values and the structures of
the HHG and ATI spectra, calculated in the Keldysh
approximation (modified to allow for the rescattering
effect) [2] within the framework of a zero-radius three-
dimensional potential model, are in perfect qualitative
agreement both with the results of exact numerical cal-
culations and with the experimental data for real atoms
(see [3] and references therein). Recently [4], it was
demonstrated that the appearance of a plateau related to
the rescattering effect is also characteristic of a laser-
assisted electron–ion recombination process.
0021-3640/02/7605- $22.00 © 20258
A common feature of the aforementioned processes
is that an electron in the initial and/or final state is
bound to an atom and, hence, is less subject to the
action of a laser wave field as compared to electrons in
the continuum. This paper presents an example of an
exactly solved problem, which shows that plateau
effects also accompany free–free electron transitions in
a strong laser field (induced multiphoton bremsstrahl-
ung and absorption upon electron scattering from an
atom). Therefore, these specific nonlinear effects are
inherent in all processes involving the interaction of
atomic systems with strong laser fields.

Let us consider the scattering of an electron from a
static atomic potential V(r) in the presence of an ellip-
tically polarized laser field with an electric vector
F(t) = FRe[eexp(–iωt)], where e is the unit (complex)
vector of polarization: e · e* = 1 and e · e = l is the
degree of linear polarization of the field F(t) (0 ≤ l ≤ 1).
In a formalism of the quasi-energy states (QES, see,
e.g., [5]), the state of an electron with an asymptotic
momentum p in the potential V(r), corresponding to
elastic scattering with the energy E = p2/2m in the
absence of the field F(t), is a periodic function of time
which satisfies the following equation:

(1)

Here, χp(r, t) and G(+)(r, t; r', t ') are the QES wave func-
tion and the retarded Green function of the electron in
the field F(t), respectively; e = E + Up is the quasi-
energy; and Up = e2F2/4mω2 is the mean vibrational
energy of an electron in the laser field. The scattering

Φp r t,( ) χp r t,( ) Φp
scatt( ) r t,( )+ χp r t,( )= =

+ r' t 'e
ie t ' t–( )/"–

G
+( ) r t; r' t ', ,( )V r'( )Φp r' t ',( ).d∫d∫
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amplitude is determined by the asymptotic behavior of
the scattered wave:

(2)

where pn =  is the electron momentum
in the channel featuring absorption (for n > 0) or emis-
sion (n < 0) of |n | photons, !n is the scattering ampli-
tude in the nth channel, and the sum over n involves all
open channels with En = E + n"ω > 0.

It is possible to solve Eq. (1) exactly when the
atomic potential is modeled by a zero-radius potential
(ZRP)

(3)

admitting one weakly bound state (r) with an

energy of E0 = –"2κ2/2m. It should be noted that the use
of the ZRP in this problem is much better justified as
compared to the cases of ATI or HHG because of the
short-range character of the potential of a neutral atom.
Below we use dimensionless quantities, whereby the
energies (including Up) are measured in units of |E0 |;
frequencies, in units of |E0 |/"; and the field amplitudes

F, in units of F0 = /|e |". For example, the
scattering on a hydrogen atom is characterized by |E0 | =
0.754 eV = 0.0277 a.u. (the binding energy of H–) and
F0 = 3.362 × 107 V/cm = 6.52 × 10–3 a.u.

In the ZRP model, the problem reduces to calcula-
tion of the Fourier coefficients fk determining behavior
of the scattering wave function Φp(r, t) at r  0:

(4)

Indeed, using the well-known expression for G(+)(r, t; 0, t'),
the amplitude !n in Eq. (2) can be represented as (see
the results obtained in [6] for a circularly polarized field
F(t))

(5)

and the differential scattering cross section is

(6)

A system of linear inhomogeneous equations for fk

follows from Eq. (1) with boundary condition (4) (see

Φp
scatt( ) r t,( ) r ∞→ !n

e
i pnr/" iωnt–

r
------------------------,

n E/"ω[ ]– 1+>

∞

∑=

2m E n"ω+( )

V r( ) 2π"
2

κm
------------δ r( ) ∂

∂r
-----r,=

φE0

2m E0
3

Φp r t,( ) r 0→
1
r
--- 1– 

  f t( ) 1
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ikωt
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imφ̃n f 2s n– m– Js l

U p

2ω
------- 

  Jm
2F

ω2
------- e pn⋅ 

  ,
m s,
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iφ̃n e pn⋅

e pn⋅
---------------,=

dσn

dΩ
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pn

p
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2
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the analogous calculations in [7] for ionization from the
state (r) in the ZRP):

(7)

where

(8)

%n, δ = p2 – (2n + δ)ω, and δ = 0(1) for even (odd) k val-
ues. Note that the coefficients fk with even and odd
numbers are determined independently (for ionization,
the incident wave χp(r, t) in Eq. (1) is absent and the
boundary condition (4) contains only the coefficients fk

with even k [7]). Numerical values of fk are obtained by
solving a system of equations (7) “truncated” at n; the
rate of convergence with respect to n (the number of
coefficients taken into account) depends on F, ω, and p.

The exact relations (5)–(8) admit analytical treat-
ment in some limiting cases. In particular, ignoring
nondiagonal matrix elements Mn, m in relations (7), we
obtain

(9)

Note that, in a weak field (i.e., for F2 ! ω3 or Up =

F2/2ω2 ! ω, we have Mm, n ~ ). For a cir-
cularly polarized field F(t) (l = 0), nondiagonal matrix
elements are zero and the approximation (9) coincides
with the exact expression for fk; substituting this
expression into (5) yields the well-known result for a
circularly polarized field [6]. For 0 < l ≤ 1, the poles of

the coefficients  in the complex plane E (i.e., the
zeros of the denominator in (9)) give an equation for the
complex quasi-energy. The imaginary part of the quasi-
energy coincides with the width of level (r) in the
Keldysh approximation of multiphoton ionization the-
ory [7]. 

With neglect of the term Mn, n in expression (9), we
can obtain simple closed relations for dσn/dΩ in the
Born and/or low-frequency limits, whereby the term

φE0

1 i %n δ, Mn n, %0 δ,( )+ +( ) f 2n δ+
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(2n + δ)ω in the relation  =  can
be omitted. For example, in the low-frequency limit,

(10)

where (1 + ip)–1 is the exact amplitude of elastic scatter-
ing in the ZRP model. Substituting (10) into (5) and
taking into account orthogonality of the Bessel func-
tions,

we arrive at

(11)

which is the Kroll–Watson result [8]. In the case of fast

electrons (p @ 1, or p @  in absolute units), we
can omit unity in the denominators of (10) and (11),
thus obtaining the Bunkin–Fedorov result for the ZRP
model [9]. 

An analysis shows that the main difference of the
results [8, 9] from the exact solution is due to neglect of
the nondiagonal matrix elements Mn, m in expression
(9). These elements describe high-order effects (i.e.,
rescattering effects) of interaction with the atomic
potential. In the lowest order, allowance for the rescat-

%n δ, p
2

2n δ+( )ω–

f k
KW( ) ck

1 ip+
--------------,=

Jν k+ u( )Jk u( )
k ∞–=

∞

∑ δν 0, ,=

dσn
KW

dΩ
-------------

pn

p 1 p
2

+( )
-----------------------Jn

2 2F

ω2
------- e p pn–( )⋅ 

  ,=

2m E0

Fig. 1. The differential cross section (in dimensionless
units, see the text) of forward scattering (θ = 0) as a function
of the number of absorbed (emitted) photons calculated for
ω = 0.155, E = 20.5ω = 3.1775, and F = 0.4 (Up = 3.33 =
21.48ω) and 0.6 (Up = 7.49 = 48.34ω) using the exact equa-
tions (solid curves) and the approximate formula (11)
(dashed curves). Solid and dashed arrows indicate the K-
and R-plateau cutoffs estimated by formulas (15) and (19),
respectively.
tering corresponds to an iteration of the system (7)
based on the zero approximation (9):

(12)

In the ZRP model, approximation (12) is equivalent to
taking into account the first correction of the atomic
potential to the ATI amplitude in the Keldysh approxi-
mation. The results of numerical calculations (see
below) show that, for frequencies ω < 1, approximation
(12) ensures a high accuracy (the difference from the
exact results being below 5%) in a broad range of field
intensities.

Since the rescattering effects are most significant for
a linear polarization of the field F(t), the numerical
results will be presented for the simplest geometry, in
which the initial electron momentum is directed along
the linear polarization axis and the angular distribution
of scattered electrons depends only on the angle θ
between p and pn. Figure 1 shows the differential for-
ward scattering cross sections (θ = 0) calculated, by
approximate formula (11) and by exact formulas (5)–
(8), as a function of the number of absorbed (emitted)
photons for ω = 0.155; the initial electron energy E =
20.5ω, and two values of the field amplitude, F = 0.4
and 0.6. For scattering from a hydrogen atom, these
parameters correspond to a CO2 laser frequency, the
initial electron energy E = 2.4 eV, and the field intensi-
ties I ≈ 2.4 × 1011 and 5.4 × 1011 W/cm2 (in such fields,
the probability of tunneling ionization of hydrogen is
negligibly small and the effect of ionization of target
atoms in the course of scattering can be ignored).

A clearly pronounced feature in Fig. 1 is the pres-
ence of two plateaus in the differential scattering cross
section as a function of the number of absorbed pho-
tons. The first plateau (corresponding to smaller n) is
obtained for both exact and approximate calculations
and is five-to-six orders of magnitude higher than the
second plateau. A fully analogous situation takes place
in the ATI spectra (see, e.g., [3]), where the first plateau
is well described in the Keldysh approximation (and is
referred to below as the K-plateau), while the second is
due to the rescattering effects (R-plateau). The results
of a numerical analysis show that the lengths of both the
K- and R-plateaus for electron scattering at fixed E and

ω increase with F, while  increases much faster

than does . On the contrary, as the electron energy
E increases, the length (in the n scale) of both plateaus
decreases, the K-plateau contracting much faster than
the R- plateau. For example, at F = 0.4 and E = 30.5ω
= 1.42Up, the cross section smoothly decays with
increasing n unless the R-plateau appears (i.e., the

f 2n δ+
1( )

c2n δ+ Mn m, %0 δ,( ) f 2m δ+
0( )

m n≠
∑–

1 Mn n, %0 δ,( ) i %n δ,+ +
----------------------------------------------------------------------.=

nmax
R

nmax
K
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K-plateau is virtually absent, while the R-plateau still

has a length of  ≈ 100).

Figure 2 shows the plots of dσn/dΩ versus n calcu-
lated for the energy E = 150.5ω and F = 0.4 and 0.5
(Up = 21.48ω and 33.57ω, respectively). For these
parameters, the K-plateau is completely absent and the
R-plateau appears only in a sufficiently strong field
(F * 0.5). Another characteristic feature in the high-
energy cross section is the appearance of the R-plateau
in the process of induced emission (n < 0) in a broad
range of n (for which the Kroll–Watson and Bunkin–
Fedorov approximations give a deep minimum and dif-
fer significantly from the exact results).

As the scattering angle θ increases, the structure of
the spectrum of scattered electrons significantly
changes because the role of rescattering effects
decreases. Evolution of the plateau structure is illus-
trated in Fig. 3. As was noted above for θ = 0, the
K-plateau at the E, F, and ω values indicated in Fig. 3
is absent. As the θ value increases, the R-plateau length
decreases, while the K-plateau becomes clearly mani-
fested at θ ~ π/3, significantly masks the R-plateau at
θ > π/2, and completely determines the spectrum of
scattered electrons for still greater angles of scattering.
An analogous situation is also observed for other values
of the parameters, so that the scattering by large angles
is well described by formula (11). However, it should
be pointed out that the interval of small angles ∆θ, in
which approximation (11) is inapplicable (i.e., the
region of “critical geometry,” where the momentum
transfer p–pn is perpendicular to the field polarization
plane and the argument of the Bessel function in (11) is
close to zero), significantly expands with increasing n
and may reach up to ∆θ ~ π/2.

nmax
R

Fig. 2. The same as in Fig. 1, but for E = 150.5ω = 23.3275.
Thin and thick solid curves refer to F = 0.4 (Up = 3.33 =
21.48ω) and 0.5 (Up = 5.2 = 33.57ω), respectively.
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The above results admit a simple qualitative inter-
pretation within the framework of a quasi-classical
approach, by analogy with interpretation of the plateau
effects in HHG [2], ATI [10], and electron–ion recom-
bination spectra [4]. The classical equations employed
in such an analysis represent the equations for saddle
points in the quasi-classical calculation of integrals in
the amplitude of the process under consideration (see,
e.g., [11]). Restricting our consideration to the case of
a one-dimensional motion of the electron along the
direction of linear polarization of the field F(t) (forward
scattering and backscattering), the K-plateau cutoff

( ) can be estimated using an equation expressing
the law of conservation of the kinetic energy of the
electron in the field upon collision with a scattering
center at a time t:

(13)

nmax
K

p
1
c
---A t( )+

2

k t( ) 1
c
---A t( )+

2

,=

Fig. 3. The plots of dσn/dΩ versus n for various scattering
angles θ calculated for F = 0.4, ω = 0.155, and E = 30.5ω
using the exact equations (solid curves) and approximate
formula (11) (dashed curves). Solid and dashed arrows indi-
cate the K- and R-plateau cutoffs according to quasi-classi-
cal estimates (see the text).
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where A(t) = –(cF/ω)sinωt is the vector potential, p is
the initial momentum, and k(t) is the momentum upon
collision. Using a solution to Eq. (13),

(14)

it is possible to calculate the maximum energy gained
by the electron as a result of interaction with the scat-
tering center:

(15)

where the minus and plus signs correspond to forward
scattering and backscattering, respectively. Thus, for
forward scattering, the K-plateau in the bremsstrahlung
absorption spectrum disappears at E ≥ 2Up. It should be
noted that result (15) can also be obtained more for-
mally, by equating the argument and index of the Bessel
function (11), which corresponds to the region of tran-
sition from oscillating to decaying behavior of Jn(x). As
can be seen from the results of numerical calculations
presented in Figs. 1–3, estimate (15) agrees well with
the exact quantum-mechanical calculation. The differ-
ence in length of the K-plateau for the backscattering
and forward scattering is proportional to pF/ω2 and
becomes large in a strong low-frequency field, which
explains why backscattering predominates upon
absorption of a large number of photons.

The R-plateau cutoff ( ) can be estimated within
the framework of the rescattering concept, by consider-
ing first the collision of an electron with a scattering
center at a time instant t, then the motion of the electron
in the wave field (over the time interval from t to t + τ)
and finally, the repeated scattering (rescattering) at a
time instant t + τ. This three-step process is described
by the following system of equations:

(16)

(17)

(18)

where Eqs. (16) and (18) are analogous to Eq. (13) and
express the conservation of the kinetic energy of the
electron upon collisions at the time instants t and t + τ,
while Eq. (17) describes the return of the electron to the
scattering center at the time instant of rescattering
(t + τ). The joint solution of Eqs. (16)– (18) leads to the
following expression for a maximum value of the elec-
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,

tron energy ( ω ≡ max(k(t + τ)2 – p2)) gained in the
course of the “double” scattering:

(19)

where

(20)

Here, the functions g+(τ) and g–(τ) correspond to the
forward scattering and backscattering, respectively.
The coefficient K tends to a maximum (Kmax = 1.25) for
a  0, which corresponds to small primary electron
energies and/or superstrong low-frequency fields. In
this case, the maximum energy gained by the electron
in the field amounts to 10Up (the same maximum
energy is gained by the high-energy photoelectrons in
the ATI process [10]). In the opposite case, a * 1 (or
E * 8Up), the coefficient K is small (K & 1) and rapidly
decays with increasing a. Note that the classical equa-
tions possess no real solutions for E > 10Up (the func-
tions g±(τ) are complex), which corresponds to the
absence of rescattering effects: electrons cannot return
to the scattering center (see [4] for the electron–ion
recombination and [10] for ATI). In the case of back-
scattering (θ = π) of electrons with the energies E *

0.1Up,  > , the less “intense” R-plateau related
to the rescattering is masked by the K-plateau corre-
sponding to a single (direct) scattering (Fig. 3).

The above results show that a correct allowance for
the atomic potential essentially determines the pattern
of electron scattering from an atom in a strong laser
field and accounts for the appearance of plateaus in the
spectra of electrons scattered by small angles. The pla-
teau effects observed in induced bremsstrahlung pro-
cesses are of the same nature as those in other interac-
tions of atoms with intense laser fields.
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and the Effect of Radiation Trapping on the Lifetime 

of the Hidden Alignment of Ne Terms
É. G. Saprykin1, S. N. Seleznev2, and V. A. Sorokin2

1Novosibirsk State University, Novosibirsk, 630090 Russia
2 Institute of Automation and Electrometry, Russian Academy of Sciences, 

Siberian Branch, Novosibirsk, 630090 Russia
Received July 8, 2002

The dichroism of a neon gas discharge plasma in a weak magnetic field is investigated by scanning the 3s2–2p4
transition by monochromatic laser radiation. Magneto-optical resonances of the intrinsic macroscopic align-
ment and hidden alignment of the 2p4 level are separated. Against the background of these resonances, reso-
nances attributed to coherence transfer from the 1s2, 4, 5 levels and the birefringence of the wings of the nearest
absorption lines from the 1s4, 5 levels are observed. A new type of alignment is revealed—integral hidden align-
ment, whose lifetime, in contrast to the case with macroscopic alignment, increases without bound with increas-
ing radiation trapping. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 33.55.-b; 42.50.Gy
1. The processes of the collisional and radiative
transfer of population and coherence play an important
role in forming the radiative characteristics of a gas dis-
charge plasma. The possibility of studying them can be
substantially extended by using laser radiation. In par-
ticular, the laser method was used in [1, 2] to study the
population transfer accompanying inelastic collisions
with atoms and electrons. The first observation of the
collisional transfer of nonlinear resonances [3] indi-
cated that the velocity of atoms can considerably
change in their inelastic scattering by electrons. In a gas
discharge, radiative transfer processes induced by dis-
charge radiation are of significant importance. The
reabsorption of radiation contributes to the decay rate
of metastable states and, under certain conditions, is
more important than transitions in inelastic collisions
with electrons [4]. It should be expected that discharge
radiation can also induce the transfer of the coherence
of Zeeman sublevels. Coherence transfer from the
metastable 1s5 level upward to 2p Ne levels was tested
in experiments [5], in which spontaneous radiation was
detected. However, narrow magneto-optical resonances
(MORs) were not observed. In this study, we apply the
laser method to detect the transfer of magnetic coher-
ence (alignment) of Ne levels.

2. The experiment was described in [6, 7]. A water-
cooled gas discharge tube 4 mm in diameter and 40 cm
in length with a discharge current of 80 mA was placed
in a scanned transverse magnetic field. To detect the
alignment of the 2p4 level, the 3s2–2p4 transition was
scanned by weak circularly polarized laser radiation.
The dichroism (the difference between the intensities
0021-3640/02/7605- $22.00 © 20264
of the linearly polarized laser radiation components
parallel and normal to the magnetic field) was mea-
sured by the derivation method (the deviation fre-
quency and amplitude being 400 Hz and 0.1 G, respec-
tively) with the signal accumulation over ~15 min.
Laboratory magnetic fields were compensated, and
their residual effect was taken into account when pro-
cessing the data obtained. Figures 1 and 2 show the
processed spectrograms and the scheme of transitions,
respectively.

Visually, the MOR involves narrow and wide com-
ponents. However, it is formed by numerous factors.
First, it is the alignment of the 2p4 level by radiation
from the 2p4–1sj transitions. Second, it is the induced
transfer of alignment from the 1s2, 4, 5 levels. Third, the
alignment consists of macroscopic alignment (MA),
caused by the anisotropy of the aligning radiation, and
hidden alignment (HA), associated with anisotropy
induced in the reference frame of a moving atom by
both the isotropic component of this radiation and
anisotropic collisions [8, 9]. MA and HA relax in dif-
ferent ways and, therefore, differently affect the general
shape of the MOR. Finally, the birefringence signal
falls into the dichroism channel due to the residual par-
asitic magnetic field (~0.05 Oe) [10].

In our experiment, the contributions Pi from MA
(i = m) and HA (i = h) are described by the same
Lorentzian dependence on the magnetic field H,
whereas the amplitudes Ii(ω) as functions of the scan-
ning-radiation frequency ω, as well as relaxation con-
002 MAIK “Nauka/Interperiodica”
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stants Γ2i(p) as functions of gas pressure p, differ for
these two types of alignment:

(1)

where Γ0 is the radiative decay probability and ki is the
coefficient dependent on radiation trapping [11] and on
the frequency of the induced exchange by alignment
with other levels [12]. The function Im(ω) repeats the
contour of the emission line forming MA, whose life-
time increases with radiation trapping. The function
Ih(ω) is alternating,1 and the lifetime of HA is indepen-
dent of radiation trapping [8]. This behavior is due to
the absence of the integral spectral component of HA.

The contributions of dichroism and birefringence to
the measured signal for varying scanned and parasitic
magnetic fields were determined in [10]. The parasitic
transverse field Hy is responsible for the term with a
parity opposite in sign to the change of the scanned
field. This term determines the symmetric structure in
curves in Fig. 1 (we recall that the derivative of the

1 Its sign coincides with and is opposite to the sign of MA for small
and large detunings, respectively.

Pi Ii ω( )Γ2i p( )/ Γ2i p( )2
2µBgH( )2

+[ ] ,=

Γ2i p( ) Γ0ki α2 p,+=

Fig. 1. Typical spectrograms. Numerals by the curves show
the pressure (in torr) and the relative scale.
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MOR signal was recorded). Previously, we attributed
this structure to the birefringence of the wing of the
absorption line from the 1s5 level (the 2p8–1s5 transition
with a detuning of 16 cm–1, i.e., about one thousand
Doppler widths) [13]. In recent experiments, similar
MORs with the characteristics of MA and HA of the 1s4
level were observed. We attribute these resonances to
the birefringence of further absorption lines from the
1s4 level: 2p6–1s4 (with a detuning of –58.2 cm–1) and
2p7–1s4 (with a detuning of +136.1 cm–1). The contri-
bution from the wings was described by three MORs
with ω-independent amplitudes.2 In addition, the struc-
ture of the total resonance included five MORs corre-
sponding to the alignment of the 1s2, 4, 5 levels.3 By
varying Hy, we demonstrated that these resonances
exist even when this field is completely compensated.
We attribute them to the induced transfer of alignment.

The longitudinal magnetic field gives rise to addi-
tional combinations of contours, which involve, for
each MOR, not only ordinary-width Lorentzians, but
also double-width Lorentzians described according to
[10]. In addition, the model includes shifts along the
coordinate axes, the amplitude of the contour associ-
ated with the dichroism of the Doppler absorption line,
the amplitudes of residual parasitic magnetic fields, and

2 Numerical estimates of the amplitudes of these contours corre-
spond to their values in the birefringence channel.

3 Two contours with the same α2 and different ki were used to
describe the MORs of the HA and MA of the 1s2, 4 levels.

Fig. 2. Level scheme. The dashed straight lines with arrows
denote scanning radiation (λ = 6328 Å) that is resonant with
the center of the 3s2–2p4 transition, blue wings of the 2p8–
1s5 (6334 Å) and 2p7–1s4 (6383 Å) transitions, and the red
wing of the 2p6–1s4 (6305 Å) transition. The heavy straight
lines with arrows are radiation inducing alignment transfer.
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the parameter of deviation broadening.4 Such a large
number of parameters can only be satisfactorily esti-
mated by simultaneously fitting a set of curves for dif-
ferent pressures (12 curves, each containing
168 points). This fit, which became possible due to
increasing computer performance, ensures the use of
common parameters and certain physical suppositions,
such as the dependence of impact broadening on the gas
pressure being linear and identical for different types of
alignment of one level and that the dependences are
monotonic.

The appearance of HA signals for the 1s2, 4 levels is
surprising. As was mentioned above, the function Ih(ω)
is alternating and its integral is equal to zero. Therefore,
the spectrally integrated transfer of HA and the HA of
the line wings must be absent. However, the experiment
indicates the nonzero integral HA (IHA) component,
which can be attributed to the fact that slow aligned
atoms leave more efficiently hidden aligned levels due
to induced transitions. This is possible because the
spectral width of the radiation inducing transfer is
smaller than or close to the width of the alignment spec-

4 The last parameter was determined in a separate experiment with
a varying deviation amplitude.

Fig. 3. MOR amplitudes of the 2p4 level: (1) MA(2p4),
(2) HA(2p4), (2a) radiation-induced HA(2p4), (2b)
HA(2p4) induced by anisotropic collisions, (3) IHA(2p4),
and (3a) IHA(2p4) induced by anisotropic collisions.
trum. In this case, IHA with the alignment sign of fast
atoms remains in the original levels, and the lifetime of
IHA depends on the degree of radiation trapping. For
this reason, we consider ki for the MOR of IHA of this
kind (i = hi) as a varying parameter. Then, this IHA is
transferred similar to MA. The exhausted part of HA
must have the HA time characteristics (without the
effect of radiation trapping on the MOR width),
although it acquires integral properties. Such a positive
contour with the HA characteristics of the 1s4 level
really manifests itself in the MOR structure.5 The HA
and IHA of the 2p4 level were also allowed.

It is known that the collisional depolarization of the
1s2 and 1s4 levels in neon is primarily determined by
resonant exchange by excitation. In this case, the rate of
alignment destruction on the J = 1  J = 0 transition
is given by the expression α2 p = 0.028Γ0Nλ3, where N
is the atomic density and λ is the wavelength of the res-
onance transition [14]. For 0°C, we have α2(1s4)/Γ0 =
0.408 torr–1 and α2(1s2)/Γ0 = 0.395 torr–1. For this rea-
son, the relative collisional broadening of the resonance

5 A similar MOR of the 1s2 level cannot be separated from other
wide MORs, because the scanning range is fairly narrow.

Fig. 4. MOR amplitudes of the HA of the 1s levels:
(1)   IHA(1s2), (2) transfer IHA(1s4), (3) IHA(1s5),
(4) IHA(1s5) in the line wing, (5) IHA(1s4) in the line wing,
and (6) IHA(1s4).
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levels was described by one variable. In addition, we
took Γ0(1s2) = 13.3Γ0(1s4).

Figures 3–6 show the amplitudes of intrinsic and
“transfer” MORs and ki values for different types of
alignment. The table presents the estimates of the relax-
ation constants.

The Γ0 value obtained for the 2p4 level is close to
measurements [15, 16] and calculation [4], and the col-
lisional damping coefficient α2 for this level is close to
the data of [16]. For MOR(1s5), we obtained a negative
sign (Fig. 4; curves 3, 4),6 which agrees with the previ-
ously determined difference in the alignment signs of
the levels 2p4 and 1s5 [7]. The relaxation constants for
this resonance turned out to be close to the data of [7],
whereas Γ0(1s4) and α2 appeared to be close to the data
of [4, 5, 17] and [14, 17, 18], respectively. For the
MORs of MA(1s4) (Fig. 5; curves 1, 2) and IHA(1s4)
(Fig. 4; curves 5, 6), we obtained positive and negative
signs, respectively. According to [5], the alignment of
the 1s4 level also consists of two contours of different
signs: a wide contour associated with HA and a narrow
contour, which is, in our opinion, the MA contour nar-

6 The alignment of the 2p4 level is taken as positive, which corre-
sponds to MA at the J = 1  J = 0 transition.

Fig. 5. MOR amplitudes of the MA of the 1s levels:
(1) MA(1s4) in the line wing, (2) MA(1s4), and (3) MA(1s2).
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rowed by trapping.7 The signs of the corresponding
MORs from the 1s2 level turned out to be opposite
(Fig. 4, curve 1 and Fig. 5, curve 3). However, this is
due to the difference in the widths (rather than the
signs) of the level alignments. The spontaneous or
induced alignment transfer induces two MORs in the
final level, the first and second of which have the initial-
level and final-level widths, respectively. These reso-
nances have opposite signs and equal squares [12]. The
narrow resonance has the sign of the original MOR and
determines the sign of alignment for zero magnetic
field. For the 1s2 level, the MOR(2p4) has the original
sign, whereas the MOR(1s2) has the opposite sign.

3. Thus, the decomposition of the total MOR of the
alignment of the 2p4 level into Lorentzians reveals con-
tours with the characteristics (widths and signs) of the
alignment of the 1s levels, which indicates the transfer
of the alignment of these levels upward to the 2p levels.

In our opinion, in this study, the narrowing of MORs
associated with radiation trapping was detected for the
first time by using monochromatic radiation. Although
a similar narrowing was observed for the first time by

7 In contrast, in [5], the narrow contour was attributed to the trans-
fer of alignment from the 1s5 level.

Fig. 6. Variations in the radiative components of the MOR
widths: (1) khi(1s4), (1a) km(1s4), (2) khi(2p4), (2a) km(2p4),
(3) khi(1s2), and (3a) km(1s2).
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Lukomskiœ et al. [5], they attributed it to the alignment
transfer from the 1s5 level. At the same time, this phe-
nomenon is not extraordinary. Indeed, the alignment
lifetime is determined by the integral spectral processes
of radiation reabsorption in a discharge, whereas the
MOR shape, reflecting these processes, is determined
by the destruction of alignment by a magnetic field. For
this reason, the spectrum of scanning radiation is of
minor importance.

The km(1s4) value (Fig. 6, curve 1a) falls below the
complete-trapping limit (0.3 for the J = 1  J = 0
transition [11]). According to [12], this can result from
the induced exchange of alignment with wider 2pj lev-
els, whose MORs must be widened in this case. How-
ever, the 2p10 level stands out among them, because it is
the narrowest, has the maximum g factor, and is only
slightly broadened by collisions and because its MOR
width of MA for pressures near 3.3 torr becomes com-
parable to or smaller than the MOR width of the MA of
the 1s4 level.8 Seemingly, the increase in the MOR
width of MA(1s4) at this pressure (Fig. 6, curve 1a) can
be attributed to the exchange by MA with the 2p10 level.
The pressure dependence of km(2p4)is nonmonotonic
(Fig. 6, curve 2a), which can also be associated with the
exchange processes.

However, the trapping-induced decrease in khi

(Fig. 6, curves 1–3) is greater than the theoretical pre-
dictions for MA [11] and cannot be attributed to the
exchange processes. The cause can be the fact that the
original distribution of the alignment axis directions for
individual atoms for IHA (as well as for HA) is isotro-
pic. Therefore, although reemission somewhat reduces
original anisotropy and limits the increase in the life-

8 According to [12], the effect of changing the MOR widths is
maximum when the MOR widths of levels exchanging by align-
ment are close to each other and depends on the sign of the differ-
ence of these widths.

Table

Level
g-factor

Γ0, MHz α2/Γ0, torr–1

Estimate Ref. Estimate Ref.

2p4 8.3 8.3 [15] 0.43 0.48 [16]

1.301 8.47 [4] 0.43 [7]

7.31 [7]

1s5 1.3 1.14 [7] 0.8 0.83 [7]

1.503

1s4 6.6 6.3 [17] 0.35 0.34 (325 K) [14]

1.464 6.4 [5] 0.32 [17]

6.64 [4] 0.35 (340 K) [18]

0.203 [5]

2p0 6.8 [4] 0.01 (315 K) [18]

1.984
time of MA under complete trapping, it does not affect
the increase in the “trapped” lifetime of IHA. For the
same reason, disordering collisions should not destroy
IHA. In view of this circumstance, it is possible that
IHA can be formed when inelastic atomic collisions
transfer IHA and HA of fast atoms from the 1s4 to 1s5
level. The effect of the cell temperature on the charac-
teristics of the MOR(1s5) testifies to this phenomenon
[13]. The peaks in curve 1 in Fig. 6 seemingly result
from transfer of IHA between the 1s4 and 2p10 levels.
On the left side of the first peak, the MOR width of
IHA(1s4) is larger than that of IHA(2p10) and increases
as the exchange rate rises and as the MOR widths
approach each other. On the right side, the trapped
MOR width of IHA(1s4) is equal to or less than that of
IHA(2p10). In this case, the MOR of IHA(1s4) narrows
sharply. Then, the large collisional broadening of the
1s4 level compensates for the trapping-induced narrow-
ing and again results both in the prevalence of the MOR
width of IHA(1s4) and in the appearance of an addi-
tional peak. MORs with the characteristics of the 2p10
level were not included into the processing algorithm,
and variations in their characteristics manifest them-
selves as distortions (nonmonotonicity) of the ampli-
tudes and widths of the other resonances in the pressure
range 1–1.5 torr and near 3.3 torr.

The irradiation anisotropy on the discharge axis at
the center of the line for the 1s2, 4 levels is small for the
pressures in use. MA in the line wing (Fig. 5, curve 1)
is obviously formed by atoms that have high transverse
(with respect to the cell axis) velocities. Since the den-
sity of these atoms is low, the photon free path is longer
than the cell diameter. The change in the sign of this
MOR with increasing pressure can be attributed to the
spontaneous transfer of negative MA from the 2p6
level. For transfer MORs (Fig. 5, curve 2), the contribu-
tion of anisotropy near the tube wall is more substan-
tial,9 and the sign of the MOR is conserved. MA of the
1s5 level can be formed due to radiation-induced trans-
fer from the 2p levels (rather than spontaneous decay,
which is absent in this case). For this reason, radiation
is not trapped, and the MOR widths of IHA and MA,
which are described by one contour with the width
depending linearly on pressure, are indistinguishable.
Possible variations induced in the MOR width by
exchange processes can affect the estimates of other
parameters.

The peak in the MOR amplitude of MA(2p4) (Fig. 3,
curve 1) is caused by the 2p4–1s2, 4 (∆J = 1) transitions
with the maximum oscillator strengths (0.249 and
0.173, respectively), whereas the dip is caused by emis-
sion from the 2p4–1s5 transition, where ∆J = 0 and,
therefore, the sign of this MOR is negative. In this case,
the oscillator strength is noticeably smaller (0.074), and
MA is maximum at higher pressures. Similar to [8], the

9 The signal in the wings corresponds to the tube axis, whereas the
transfer signal is integral over the tube cross section.
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MOR of HA(2p4) (Fig. 3, curve 2) involves not only the
contribution proportional to the radiation intensity
(Fig. 3, curve 2a),10 but also the contribution from
anisotropic collisions, which is proportional to the
atomic density (Fig. 3, curve 2b). The MOR of
IHA(2p4) has positive sign (Fig. 3, curve 3), which is
possible if IHA is induced by transfer from the 1s4
level.11 Indeed, curve 3, disregarding the slope propor-
tional to the atomic density (straight line 3a), is similar
to the MOR amplitude (taken with the opposite sign) of
the IHA from this level (see Fig. 4). The fraction of
IHA that increases linearly with pressure is likely
formed by HA(2p4), which is induced by anisotropic
collisions (as a result of transitions of fast atoms to
other 2p levels due to inelastic atomic collisions).

In this brief communication, we cannot discuss in
detail all the features of the complex interaction
between the 2p and 1s levels. We only point to the pres-
ence of transfer MORs and nonzero IHA, emphasize
that the dependence of the radiative component of the
MOR widths of IHA on the neon pressure differs from
the dependence predicted for MA under the conditions
of radiation trapping, and call attention to the depen-
dence of the MOR widths on the frequencies of induced
alignment exchange. Since all the parameters are inter-
related, the quantitative estimates can be insufficiently
accurate; hence, more precise measurements and a
more complete processing algorithm are required.
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work was supported by the Program “Universities of
Russia” (project no. 01.01.054) and by the Russian
Foundation for Basic Research (project no. 02-02-
17923).
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Based on the developed kinetic theory of rectified radiative forces, we found sufficient conditions for purely
optical (nonmagnetic) three-dimensional confinement and cooling of atoms with the J = 0  J = 1 quantum
transition in a weak field of mutually orthogonal bichromatic standing waves. We show that a deep stable atom
localization of atoms in the cells of an effective light superlattice (with a spacing much larger than the light
wavelength) can be achieved by controlling the phase shifts (time-difference phase) of the temporal oscillations
in orthogonally polarized field components and by specially choosing the field parameters. The proposed
scheme of purely optical confinement can be directly used for a large group of atoms like Yb isotopes and alkali-
earth elements with even–even nuclei. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.80.Pj; 42.50.Vk
Because of its unique physical applications, the
optical localization of atoms is an extremely important
trend in current studies of resonant light pressure [1–3].

One of the most successful and fruitful solutions to
this problem is the confinement of atoms in a magneto-
optical trap (MOT)1 [4]. A nonuniform magnetic field
is an integral MOT element, because it allows the Earn-
shaw optical theorem (EOT) [5] to be circumvented.
This theorem states that a stable localization of atoms
by spontaneous light pressure forces in a weak (unsat-
urating the quantum transition) resonant field is not
possible. Bouyer et al. [6] showed how the EOT could
be circumvented by purely optical (nonmagnetic)
methods using optical pumping of atoms with degener-
ate ground states. This scheme does not work for atoms
with the ground-state angular momentum Jg = 0.

Meanwhile, the EOT was proved [5] (see also [6] for
a discussion) precisely for atoms with scalar linear
polarizability, which the atoms with the Jg = 0  Je = 1
quantum transition are. The principal possibility of
overcoming the fundamental EOT constraints (without
applying a magnetic field) for such atoms using the so-
called rectified radiative forces (RRFs) in weak2

bichromatic fields was pointed out in [7] (2D localiza-
tion) and [8] (3D localization). However, the final solu-
tion of the problem and the elucidation of specific prac-
tical conditions for the achievement of dissipative opti-
cal confinement by this method requires a mandatory

1 By its nature, a MOT is a dissipative optical trap, because the par-
ticles are simultaneously cooled and confined in it.

2 Here, we do not consider the use of rectified gradient (dipole)
forces in strong bichromatic fields [7, 9] for the localization of
atoms.
0021-3640/02/7605- $22.00 © 20270
allowance for quantum RRF fluctuations and for the
effect of field phases on the RRF spatial structure.

Here, these factors are simultaneously taken into
account in the Wigner atomic density matrix formalism
for a simple field model in the form of mutually orthog-
onal bichromatic standing waves. We found sufficient
conditions (imposed on the relative initial phase shifts
and on the wave parameters) that provide a deep stable
3D localization of atoms and, thereby, ensure that the
EOT constraints (i.e., suppression of the vortex RRF
component and long-term particle confinement in
ultradeep light-induced potential wells) are overcome.

The problem under study also has an interesting
research-and-application aspect, because it is directly
related to the purely optical confinement of a large
group of atoms like odd–odd Yb isotopes and alkali-
earth elements with the Jg = 0  Je = 1 quantum tran-
sition (strong singlet, 1S0–1P1, and intercombination,
1S0–3P1, transitions of this type were effectively used in
MOT experiments [10–12]). These atoms are believed
to be very promising objects for carrying out new fun-
damental cold-particle experiments (see [10–13] and
references therein). We emphasize that the presence of
a magnetic field (as in MOTs) is undesirable for several
important physical applications of the optical confine-
ment of atoms [6, 9].

Consider an ensemble of atoms in a bichromatic
field with a complex amplitude,

(1)

where ∆0 and ∆1 are the frequency detunings of the
fields E0 and E1 from the frequency ω0 @ |∆0 |, |∆1| of

E E0 r( )e
i∆0t–

E1 r( )e
i∆1t–

,+=
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the quantum transition between the ground (with angu-
lar momentum Jg = 0) and excited (with angular
momentum Je = 1) atomic states.

As was shown in [7, 8], zero total radiation flux den-
sities for each field mode frequency are a necessary
condition for stable confinement of atoms with the type
of transition under consideration in weak biharmonic
fields (it predetermines the suppression of the principal,
quadratic (in field) vortex RRF component):

where Jjα is the energy flux density of the field compo-
nents in superposition (1) that are polarized along the
unit vector ej of a Cartesian coordinate system and that
have the frequency detuning ∆α; the angular brackets
denote averaging over microscopic spatial oscillations
with a period of the order of the light wavelength. The
field model in the form of a superposition of mutually
orthogonal standing waves satisfies this condition:

(2)

where Vjα(r) = d(ejEα(r))/" are the local Rabi frequen-

cies, d = ||d ||/ , ||d || is the reduced matrix element of
the transition dipole moment, kα = (ω0 + ∆α)/c are the
wave numbers, ξjα and ϕj are the phases of the temporal
and spatial oscillations in the field components, and Vα
are their real amplitudes. Note that the phase shifts of
the spatial oscillations in the complex field amplitudes
that have identical polarizations but belong to different
frequency modes can always be made equal by appro-
priately choosing the coordinate system. Therefore, the
phases ϕj in expression (2) do not depend on α.

We describe the state of the atoms interacting with a
resonant optical field by using the Wigner matrix of
density ρ(r, v, t) [1, 2]. In the quasi-classical limit
"kα ! mv  (v  and m are the characteristic atomic veloc-
ity and mass, respectively) and in interaction represen-
tation, this matrix satisfies the kinetic equation

(3)

where "  is the dipole atom-field interaction operator;
 is the relaxation operator that includes the recoil

effect during spontaneous transitions [1, 2]; and the
square brackets and braces denote the commutator and
anticommutator, respectively. Below, it is convenient
for our analysis to consider  in Cartesian representa-
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j
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V xα r( ) Vαe
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tion [8], i.e., in the representation of basis wave func-
tions (intra-atomic motion) for the ground (ϕ g) and

excited ( ) states, in which the matrix elements of the

transition dipole moment  are directed along the unit
vectors of the Cartesian coordinate system:

In the resonance approximation, the system of equa-
tions (3) can then be represented as

(4)

(5)

where γ is the decay rate of the excited state, γ⊥  = γ/2,
f(r, v, t) = Sp( ) is the Wigner particle distribution
function in phase space (r, v), qii(r, v, t) and ρi(r, v, t)
mean the densities of the distributions of the population
difference and the projections of the complex ampli-
tude of the induced dipole moment onto the axes of the
Cartesian coordinate system, the functions qij(r, v, t)
for i ≠ j describe the coherence between the excited

atomic states, and the term (ρ) on the right-hand side
of Eq. (5) describes the recoil effect during spontaneous
transitions in the quasi-classical limit:
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Let the resonant fields be weak and the frequency
detunings ∆0 and ∆1 be not very close to each other:

(6)

where να = ∆α + iγ⊥ .

In that case, the excited-state populations and the
Stark energy-level shifts are small [8] and the distribu-
tion function (DF) can be represented as the sum of a
slowly varying [on time scales t > τ = (ωRg)–1, ωR =

"k2/2m, k = ω0/c] principal component  and a small
rapidly oscillating (with characteristic frequencies

Ω1 @ τ–1) addition to it  (cf. [14]):

(7)

The density matrix elements that describe the light-
induced internal motions in the atom can be eliminated
from the system of equations (4) and (5) by the expan-
sion of the field in powers (actually in the parameter
g ! 1) of the following structure:

(8)

where  and  are the linear differential operators

acting on  and the superscript denotes the order of
smallness of the corresponding terms in g ! 1.

Below, we restrict our analysis to slow atoms (kv  ! γ)
and take into account the fact that in our problem (as we
will see), the atomic temperature T (in energy units)
that corresponds to the Doppler cooling limit is always
much higher than the depth of the microscopic potential
wells produced by rapidly oscillating (with a period of
~1/k) gradient forces,

(9)

because T * "γ/2. Using the expansion (8) and addi-
tional averaging of the DF over small-scale spatial
oscillations with a period of the order of the light wave-
length [valid under the condition (9)], we obtain the fol-
lowing Fokker–Planck equation for the DF (for the
averaged DF, we retain the original designation):

(10)

where the linear (in velocity) force F1R and the RRF FR,
respectively, match the general formulas (11) and (12)
from [8] derived in a simple model of preset motion and
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the velocity diffusion tensor Dij, in the second order of
smallness in the field, is given by the formula (ri = rei)

For our case of the fields (2), we have
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where the scalar, U(r), and vector, A(r), RRF potentials
are defined by the expressions

(14)

Thus, the quadratic (in field) force F1R is the friction
force and the RRF FR, which arises in the fourth order
of smallness in the field, is generally a potential-vortex
force in nature. The latter is attributable to interference
effects in the resonant light pressure [7, 8], which, in
particular, shows up in the dependence of its spatial
structure on the relative phase shifts of the standing
waves: (ξjα – ξiα). In this case, the vortex RRF compo-
nent is determined by the correlators (of the fourth
order of smallness in the field) of the mixed products of
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the projections of the field amplitudes and their deriva-
tives that refer to standing waves of different frequency
modes and different polarizations (in the notation of

[8], the terms in the expression for the RRF ∝ ,
α ≠ α', j ≠ l).

Even for overdamped motion, where Ω2/κ2 = ε ~
γδk/ωRk ! 1 (Ω2 ~ Fδk/m), the vortex RRF component
curlA can result in unstable motion (the EOT manifes-
tation mechanism!) and hamper particle localization [7,
8]. Let us show that by controlling the relative phase
shifts ξjα – ξiα of bichromatic fields of the form (2), we
can successfully solve this problem. Note that for two
intersecting monochromatic standing waves (polarized
along the same direction), control of the spatial radia-
tive-force structure by varying the relative phase shifts
of the waves was convincingly demonstrated in experi-
ments [15].

Let the phase shifts of the bichromatic field compo-
nents satisfy the condition (n1 and n2 are arbitrary inte-
gers)

(15)

In particular, this condition is always satisfied if the
phase differences between orthogonally polarized
waves, ξjα – ξiα, are multiples of π: ξjα – ξiα = πmij,
where mij are arbitrary integers of the same parity. In
that case, sinΨij = 0, cosΨij = 1, and, as follows from
(12) and (14), the RRF is a purely potential (A = 0)
force. For κ > 0, it can generate a body-centered cubic
superlattice (with spacing L = π/δk @ λ = 2π/k) of
atoms localized in potential wells with the characteris-
tic depth

(16)

Indeed, in this case, the Fokker–Planck equation
(10) for κ > 0 admits a steady-state solution of the Boltz-
mann form:

(17)

The condition for deep localization of atoms in
superlattice cells follows from Eqs. (17):

If this condition is satisfied, the sizes of the localized
bunches of atoms are estimated as r0 ~ 1/δkη1/2 !
1/δk ~ L. Thus, the localization parameter η is a com-
plicated function of the field amplitudes and frequency
detunings: η = η(∆1, ∆2, V1, V2). The stability of deep
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(η @ 1) atom localization is characterized by the mean
lifetime of an atom in an individual superlattice cell
(determined by the time of particle diffusion from one
well into another). The latter is estimated as

(18)

where Ds . D/κ2 is the coefficient of spatial diffusion of
the atoms in the field of radiative forces and τ0 has the
meaning of the particle lifetime in the so-called optical
molasses with sizes L/2 (see, e.g., [2]). The estimate
(18) was obtained from (10) in the limit (ε ! 1) of over-
damped particle motion (which is reached in most real
situations [8]) based on the approximation of the
boundary of the region of attraction of a stable RRF
node by an atom-absorbing sphere of radius L/2.
Clearly, it makes sense to speak about stable localiza-
tion of atoms in the superlattice if τ is much longer than
the lifetime of viscous confinement, i.e., when
(1/η)3/2eη @ 1.

To obtain specific estimates showing the real possi-
bility of deep atom localization, we choose field fre-
quencies and amplitudes to satisfy the conditions

(19)

In that case, only the field E0 is responsible for cool-
ing (because g1 ! g0), T . "γ/2, the frequency detuning
∆1 of the field E1 determines the superlattice spacing
(because δk . ∆1/c), and all conditions (6) for the appli-

cation of perturbation theory (  ~ 0.1) are sat-
isfied. The atom localization parameter η is determined
only by the ratio of the transition frequency to the
detuning ∆1,

and the field intensities Jα with the frequency detuning ∆α
required for particle localization are related to the radia-
tion intensity saturating the quantum transition, Js, by sim-

ple formulas, J0 = Js × 10–2 and J1 =  × 10–2 (|∆1|/γ)Js.
For example, for the 1S0–1P1 singlet transition of the
ytterbium atom with λ = 398.8 nm, γ = 1.8 × 108 s–1, and
detuning |∆1| ~ 2 × 1011 s–1, we have the following esti-
mates: L . 0.5 cm, η = 14, r0 ~ 0.1 cm, τ0 . 0.01 s, τ ~
250 s, T = 7.2 × 10–4 K, J0 ~ 0.6 mW cm–2, and J1 .
0.8 W cm–2. For the same detuning ∆1 of the quasi-res-
onant field and for the 1S0–3P1 intercombination transi-
tion [11] with λ = 555.6 nm and γ ~ 1.2 × 106 s–1, we
have L . 0.5 cm, η ~ 10, r0 ~ 0.1 cm, τ0 . 1 s, τ ~ 250 s,
T = 5 µK (!), J0 ~ 1.4 × 10–6 W/cm2, and J1 .
280 mW/cm2.
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Thus, the atom localization conditions are satisfied
for extremely low intensities. By decreasing the detun-
ing |∆1|, we can increase the localization parameter η
and decrease the quasi-resonant field intensity J1. In
this case, the confinement of atoms may require
increasing the cross-sectional laser-beam sizes R
because of the condition R > 1/δk.

In conclusion, note that the vortex RRF component
of atoms in a bichromatic field of the form (2) for arbi-
trary relative phase shifts of the standing waves can be
suppressed by a purposeful choice of field detunings

[see expressions (12) and (14)]: ∆1∆0 = – . In such a
situation, however, the stability condition (η @ 1) is
very difficult to satisfy for realistic superlattice param-
eters, because the field frequency detunings are “rig-
idly” related to each other. In particular, the regime of
atom confinement that corresponds to the conditions
(19) cannot be achieved; in this regime, cooling to lim-
iting temperatures ~"γ is combined with stable deep
localization and a relatively small (L < 1 cm) adjustable
superlattice spacing.

The vortex RRF component is also suppressed for
uncorrelated fluctuating phases of orthogonally polar-
ized standing waves [in superposition (2)], which can
be produced, for example, by using independent
sources of laser radiation. In this case, the localization
conditions deteriorate, because the depths of the light-
induced potential wells decrease and the relative phase
shifts of the waves completely lose their role of control-
ling parameters.
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A quantum theory is developed to describe optical parametric amplification under low-frequency pumping,
which is observed in nonlinear photonic crystals in sequential interactions of light waves with multiple frequen-
cies. Spatial variations of the mean number of photons and the Fano factor at signal and additional frequencies
are analyzed. It is shown that a field with a sub-Poisson statistics of photons can be formed at a signal frequency
which is 1.5 times higher than the frequency of pumping. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.50.Dv; 42.65.Ky; 42.65.Yj
The goal of this letter is to call attention to the pos-
sibility of applying nonlinear optical methods to create
fields with a level of photon fluctuations below that for
coherent radiation. This is achieved without the use of
feedback and is observed in light field at the exit from
a nonlinear optical crystal. The case in point is sequen-
tial three-frequency interactions of light waves with
multiple frequencies ω, 2ω, and 3ω in nonlinear photo-
nic crystals (NPCs), that is, in optical crystals with peri-
odic modulation of only nonlinear susceptibility (see
review [1]). Such a nonlinear lattice is, for instance,
created in nonlinear optical crystals with a regular
domain structure or in periodically polarized crystals.

It is well known [2, 3] that light attenuation and
amplification (in a laser or an optical parametric ampli-
fier at low-frequency pumping) either occur with the
conservation of the statistics of photons or are accom-
panied by an increase in the level of photon fluctua-
tions. In the nonlinear optical method considered
below, which uses phase sensitivity of the parametric
process under low-frequency pumping conditions, a
decrease in the number of signal-wave photons is
accompanied by the suppression of signal photon fluc-
tuations. This radically distinguishes the parametric
process under consideration from the traditional para-
metric process under high-frequency pumping condi-
tions.

Consider the sequential interaction of light waves
with multiple frequencies ω, 2ω, and 3ω in an NPC. We
assume that the intense pumping and signal waves have
the frequencies 2ω and 3ω, respectively (Fig. 1). Let
one of the nonlinear optical processes be the parametric
frequency conversion downward

2ω  ω + ω, (1)
0021-3640/02/7605- $22.00 © 20275
and let the other process be the mixing of optical fre-
quencies

ω + 2ω  3ω. (2)

The phase detunings for Eqs. (1) and (2)

(3)

in an NPC, for instance, in lithium niobate [1], can be
balanced by the vector of the reciprocal nonlinear “lat-
tice” (collinear quasi-phase-matching conditions)

(4)

where kj = k( jω) is the wave number at the frequency
jω; the mj = ±1, ±3, … numbers characterize the order
of quasi-phase-matching; and Λ is the modulation
period of nonlinear susceptibility. If conditions (4) are
satisfied, a parametric process occurs under low-fre-
quency pumping conditions in the sequential interac-
tions that we are considering [4]. Note that sequential

∆k2 k2 2k1, ∆k3– k3 k2– k1–= =

∆k2 2πm2/Λ , ∆k3 2πm3/Λ ,= =

Fig. 1. Schematic drawing of optical parametric amplifica-
tion at low-frequency NPC pumping. Pumping wave fre-
quency is 2ω, and signal wave frequency is 3ω (χ(2) is qua-
dratic nonlinearity). In addition to pumping and signal
waves, a wave with frequency ω appears at the crystal out-
put.
002 MAIK “Nauka/Interperiodica”
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interactions have been observed in KTP (potassium tit-
anyl phosphate KTiOPO4) and LiNbO3 crystals [1].

We will show that a signal with a sub-Poisson statis-
tics of photons can be obtained if a coherent signal of
the frequency 3ω is fed to the entrance of an NPC. A
quantum description of nonlinear optical processes in
space requires the use of the field momentum operator
[5]. In the approximation of a given classical pumping
field, the momentum operator for processes (1) and (2)
has the form [6]

(5)

where aj,  are the photon annihilation and creation

operators with the commutation relations [aj , ] = δjk,
[aj , ak] = 0 and βj is the effective nonlinear wave cou-
pling coefficient (j = 1, 3). Equation (5) for an NPC is
valid under the conditions of weak amplification at
length Λ, β2Λ ≈ β3Λ ! 1.

The dynamics of the aj operators in the interaction
representation is given by the Heisenberg equation

(6)

Our major interest is the wave with the frequency 3ω.
We will therefore consider the case |β3 | > |β2 |, for which
the solution to Eq. (6) is

(7)

The values of the aj0 and  operators correspond to

the entrance of the nonlinear medium, ϕ =  =

 is the pumping phase, and the functions in
Eq. (7) are given by the equations

(8)

where κ = 1/ , ε = |β2/β3 |, and γ = .

The initial condition of our problem is field at fre-
quency ω in the vacuum state |0〉1 and field at frequency
3ω in the coherent state |α〉3; that is, the quantum field
state at the entrance of an NPC has the form |ψ(0)〉  =
|0〉1|α〉3, α = |α| , and |α| = , where 〈n30〉  is
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iϕ30 n30〈 〉
the mean number of signal photons and ϕ30 is the sig-
nal-wave phase.

The dynamics of the mean number of photons in an
NPC is determined by the equations

(9)

The terms outside parentheses in Eq. (9) are related to
vacuum fluctuations, and their contribution decreases
as 〈n30〉  grows. Equation (9) shows that the mean num-
bers of photons depend on the ratio between the pump-
ing ϕ and signal ϕ30 phases; that is, the process under
consideration possesses phase sensitivity. If the G+G–

and u–F– products have the same sign, the mean num-
bers of photons at frequencies ω and 3ω vary in
antiphase as functions of the (3ϕ – 2ϕ30) phase relation;
that is, a maximum of 〈n1〉  corresponds to the minimum
of 〈n3〉  and vice versa. As G+G– > 0 always, the behavior
of the mean number of photons depends on the sign of
u–F–. According to Eq. (8), u–F– > 0 at small |β2 |z
parameter values.

The nonmonotonic dependences of the mean num-
bers of photons 〈n1〉  and 〈n3〉  on interaction length at
(3ϕ – 2ϕ30) = π/2, where 〈n1〉  and 〈n3〉  have extrema, are
shown in Fig. 2. It follows from Fig. 2b that the mean
number of photons at the frequency 3ω first decreases
as interaction length increases and then, at |β2 |z * 1.5,
grows. The behavior of the mean number of photons at
the frequency ω is more complex (Fig. 2a). Curves 1
and 2 show that the mean number of photons first
increases, decreases at interaction lengths |β2 |z * 0.5,
and then again increases.

We arrive at the conclusion that, at small interaction
lengths |β2 |z & 1.5, signal “damping” rather than ampli-
fication occurs in the process under consideration. This
damping is related to the conversion of signal photons
into photons with frequency ω; that is, the difference
frequency is generated (3ω – 2ω  ω). Signal ampli-
fication at this frequency occurs when the process of
parametric frequency conversion downward (Eq. (1))
accompanied by mixing of optical frequencies (Eq. (2))
becomes substantial. The competition of these two pro-
cesses can, we believe, somewhat decrease the level of
photon fluctuations at the frequency 3ω (see below).

The (3ϕ – 2ϕ30) = π/2 phase relation also deserves
attention because maximum photon fluctuation sup-

n1〈 〉 n30〈 〉 G+
2

G–
2

2G+G– 3ϕ 2ϕ30–( )sin–+( )=

+ G–
2

F+
2
,+

n3〈 〉 n30〈 〉 u–
2

F–
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+ G+
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pression is then observed at the frequency 3ω. The Fano
factor then takes the form

(10)

The dependences of the Fano factor (Eq. (10)) on
the interaction length are shown in Fig. 3. According to
these plots, there is a region of |β2 |z values, which
depends on the ratio between the nonlinear coupling
coefficients ε = |β2/β3 |, where a sub-Poisson statistics
of photon fluctuations is observed (^3 < 1); for the
problem parameters under consideration, the minimum
Fano factor value is ^3 ≈ 0.6. An analysis shows that
the statistics of photons at the frequency ω is then
super-Poisson (^1 > 1) irrespective of the (3ϕ – 2ϕ30)
value. Note that if no signal wave is fed to the entrance

^3
1
n3〈 〉

---------- n30〈 〉 u– F–+( )2
G+ G––( )2[{=

+ u– F––( )2 ) 4u–F–+ ]

+ 2u–
2
F–

2
2G–

2
G+

2
F–G+ u–G––( )2

+ + } .

Fig. 2. Dependences of normalized mean numbers of pho-
tons (a) 〈N1〉  and (b) 〈N3〉  at frequencies ω and 3ω, respec-
tively, on reduced interaction length |β2 |z for various ε =
|β2/β3 | values. The curves were calculated and the mean
numbers of photons normalized for the initial mean number
of signal photons 〈n30〉  = 100, 〈Nj 〉  = 〈nj 〉/〈n30〉 .
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of an NPC (〈n30〉  = 0), the statistics of photons at the fre-
quencies ω and 3ω at the output is super-Poisson [7].

The most important result of this work is the devel-
opment of a quantum theory of the process observed in
sequential wave interactions in which an intense pump-
ing wave parametrically interacts with a signal wave
whose frequency is 1.5 times higher than that of pump-
ing. We can then obtain radiation with a sub-Poisson
statistics of photons at the output of an NPC under sig-
nal attenuation conditions.

According to the theory developed, fields with a
sub-Poisson statistics of photons can form at |β2 |z ≈ 1
(see Fig. 3). Let us estimate the intensity of pumping at
which this condition is satisfied, for instance, for the
LiNbO3 NPC, when all interacting waves are extraordi-
nary. The nonlinear β2 coefficient is then given by β2 =
8πχ(2)|A2 |/λnm2, where χ(2) = d33 = 34 pm/V is the qua-
dratic susceptibility tensor; A2 and λ are the pumping
amplitude and wavelength, respectively; and n is the
refractive index at wavelength λ. Put λ = 0.5 µm, m2 = 3,
and z = 1 cm. We then have |A2 | ≈ 3 × 103 V/cm and an
intensity of pumping I2 ≈ 104 W/cm2, which is quite
attainable in experiments. As to the ratio between the
nonlinear coupling coefficients ε = |β2/β3 |, it is virtually
determined by the ratio between the quasi-phase-
matching orders ε ≈ m2/m3.

Our analysis therefore shows that the suggested
nonlinear optical method for creating fields with a sub-
Poisson statistics of photons can be implemented
experimentally.

Note in conclusion that the method under consider-
ation augments the laser method for generating radia-
tion with a sub-Poisson statistics of photons (see [8, 9]
and the references cited therein). The suggested source
of nonclassical light can be of interest for high-preci-

Fig. 3. Dependence of the Fano factor ^3 at the frequency
3ω on reduced interaction length |β2 |z for various ε =
|β2/β3 | values. The curves were obtained for 〈n30〉  = 100.
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sion measurements and for quantum communication
purposes.
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It is shown that multiple scattering is of significant importance in the formation of the line width of parametric
X-ray “backward” radiation of relativistic electrons in a crystal. A theory of the line width of this radiation
based on the functional integration method is suggested. The problem of multiple scattering effects on para-
metric X-ray radiation is shown to be similar to the problem of the Landau–Pomeranchuk–Migdal multiple
scattering effect on the bremsstrahlung of high-energy electrons in an amorphous medium. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 79.20.Kz; 61.14.Dc
1. Parametric X-ray radiation of relativistic elec-
trons is observed when particles fall at a small inci-
dence angle with respect to one of the crystallographic
planes of crystal atoms (see recent reviews [1, 2] and
references therein). This radiation is largely concen-
trated in directions close to the Bragg angles of particle
field reflection from such planes. Of special interest is
parametric X-ray radiation “backward” when particles
fall onto a crystal at a small angle with respect to one of
its crystallographic axes (axis z), because the contribu-
tions of other kinds of radiation such as bremsstrahlung
and coherent radiation are then considerably sup-
pressed. Narrow lines then appear in the spectral angu-
lar radiation density as a result of the interference of
waves reflected from crystallographic atomic planes
oriented normally to axis z. The natural width of these
lines is determined by the number of crystal atom
planes with which an electron interacts. Experimental
studies of the line widths of parametric X-ray radiation
backward have recently been performed on an MAMI
accelerator (Mainz, Germany) at electron energies of
855 MeV [3]. The measured line widths were, however,
much larger than the natural line width of parametric
X-ray radiation.

In this work, we show that multiple scattering of
particles in a crystal is of significant importance in the
formation of the line width of parametric X-ray radia-
tion. Equations that describe the multiple scattering
effect on the line width of parametric X-ray radiation
are obtained. The spectral-angular density of paramet-
ric X-ray radiation is averaged using the functional
integration method. It is shown that, mathematically,
this problem is similar to the problem of the Landau–
0021-3640/02/7605- $22.00 © 20279
Pomeranchuk–Migdal effect of multiple scattering on
bremsstrahlung of ultrahigh-energy electrons in an
amorphous medium.

2. The determination of the spectral-angular radia-
tion density of a relativistic electron that moves along
the r(t) trajectory in a medium with nonuniform permit-
tivity eω(r) = 1 + (r) requires knowledge of the time
Fourier component of the particle electric field vector
Eω(r). This value is determined by the equation [4]

(1)

where jω(r) is the Fourier component of the particle
current density vector,

(2)

and v(t) is the velocity of the particle.

The method of Green’s functions can be used to
show that the spectral-angular radiation density has the
form

(3)

eω'
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where k is the wave vector in the direction of radiation
(|k | = ω) (we use units in which the velocity of light is
equal to one).

The first term in Eq. (3) determines the contribution
to the radiation of changes in the trajectory of the parti-
cle in an external field. This term does not depend on

(r). For a relativistic electron, this term makes a
major contribution in the region of radiation angles
close to the direction of particle velocity v(t). The con-
tribution of this term to parametric X-ray radiation
backward can be ignored. The second term in Eq. (3) is
only nonzero in the region of coordinates where the
εω(r) value is nonzero. For this reason, the determina-
tion of the contribution to radiation caused by nonuni-
formity of medium permittivity only requires knowl-

edge of field Eω(r) in the region where (r) ≠ 0. In the

simplest situation of a small (r) value, a solution to
Eq. (1) can be sought in the form of the expansion in

powers of (r). The first term of this expansion is

independent of (r) and is the (r) field of the par-
ticle moving in the vacuum along the r(t) trajectory.

Substituting this expression for (r) into Eq. (3) and

using the Fourier expansion of (r) and (r), we
obtain the following equation for the spectral-angular
density of radiation:

(4)

where jω, k – q is the coordinate Fourier component of
the particle current density vector,

(5)

When a relativistic electron falls onto a crystal at a
small angle ψ to one of the crystallographic axes (axis
z), the major contribution to parametric X-ray radiation
backward is made by the qx = qy = 0 components. Per-
mittivity nonuniformity along the x and y axes normal
to z is then inessential to radiation. Taking into account
the periodicity of permittivity along the z axis, the radi-
ation intensity can be found using the following expres-
sion for :

(6)

eω'

eω'

eω'

eω'

eω' Eω
0

Eω
0

Eω
0

eω'

dE
dωdo
--------------

e
2ω4

4π2
----------- k

d
3
q

2π( )3
-------------

eω q,'

ω2 k q–( )2
–

-------------------------------∫×=

× jω k q–,
1

ω2
------ k q–( ) k q–( ) jω k q–,⋅[ ]–

 
 
 

2

,

jω q, e tv t( ) i ωt qr t( )–( )[ ] .expd

∞–

∞

∫=

eω q,'

eω q,' 2π( )2δ q⊥( )eω qz,
1 iNaqz–( )exp–
1 iaqz–( )exp–

-----------------------------------------,=
where δ(q⊥ ) is the two-dimensional delta function, q⊥  =
(qx, qy); a is the distance between crystallographic
atomic planes along the z axis; N is the number of such
planes; and

(7)

Function (6) has sharp maxima at qz = g, where g =
2πn/a and n are integers. For N  ∞ and rectilinear
particle movement in a crystal, these g values corre-
spond to the parametric X-ray radiation lines ωn =
νgcosψ(1 + νcosθ)–1, where ψ = (ψx, 0) is the angle
between (–v) and g and q = (θx, 0) is the angle at which
radiation occurs [we are interested in radiation in the (x,
z) plane in the region of θx angles close to the direction
of Bragg reflection of waves].

Multiple scattering results in small deviations of the
particle velocity vector from the initial direction v. Tak-
ing these small deviations into account, the v(t) veloc-
ity vector can be written as

(8)

where v⊥ (t) · v = 0 and |v⊥ | ! |v|. The mean distance
covered by a particle between its sequential collisions
with crystal atomic planes then changes, which in turn
causes changes in the line width of parametric X-ray
radiation. The finite number of crystal atomic planes that
interact with the particle also causes line broadening.

Consider radiation close to one of the parametric
X-ray radiation lines ω = ωn , taking into consideration
the influence of crystal thickness L = Na and multiple
particle scattering in a crystal on the line width. After

substituting the qz  g +  variable into Eq. (4), it is

easy to see that the characteristic  values that make
the major contribution to parametric X-ray radiation
near the line of interest are close in order of magnitude
to  ~ 1/Na. To within terms of the order of 1/N, the
spectral-angular density of parametric X-ray radiation
close to the line with frequency ωn is given by the equa-
tion

(9)
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where Φ(v⊥ (t)) is the function that determines the influ-
ence of multiple scattering on parametric X-ray radia-
tion,

(10)

The v⊥ (t) value in Eq. (10) is a random particle scat-
tering angle value at time t related to multiple scattering
of the particle in the crystal. Equation (9) should be
averaged over these random scattering angle values. An
important property of relativistic electron scattering in
a crystal when a beam falls at a small angle ψ to crys-
tallographic axis z is scattering of particles largely
along azimuthal angle ϕ in the plane orthogonal to the
z axis [5]. A redistribution of particles over this angle
occurs as a result of multiple scattering by crystal atom
chains oriented parallel to the z axis. If ψ @ ψc, where
ψc is the critical angle of axial channeling, multiple
scattering by crystal atom chains is a Gaussian process
with the mean square of multiple scattering angles

 = qL. This differs from the mean square of multiple
scattering angles of particles in an amorphous medium
by a factor of the order of R/4ψd, where R is the Tho-
mas–Fermi radius of screening of the potential of a sep-
arate crystal atom and d is the interatomic distance
along axis z [5]. Functional (9), which should be aver-
aged, also has Gaussian form, and averaging can there-
fore be performed by the functional integration method
[6]. In the simplest situation of (θ – ψ)2 @ qL, the
dependence of the preexponential factor on random
value ν⊥ (t) can be ignored in Eq. (9). This dependence
appears as a result of the action of differential operators
on the Φ(v⊥ (t)) functional. Separating out the part of
Eq. (9) subject to averaging and taking into account that
particle scattering in the problem under consideration
largely occurs along axis y, we obtain the following
equation for the spectral angular density of parametric
X-ray radiation backward:

(11)
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(13)

Here, t = N∆, t ' = k∆, and νn is the scattering angle at
time tn = n∆.

Functional integral (13) has the same structure as
the corresponding integral in the theory of the Landau–
Pomeranchuk–Migdal multiple scattering effect on
bremsstrahlung of high-energy electrons in an amor-
phous medium [7, 8]. Integral (13) can therefore be cal-
culated by the method developed in [7] to describe the
Landau–Pomeranchuk–Migdal effect. This gives

(14)

Separating out dimensional values in Eqs. (12) and
(14), we can write function F in the form

(15)

where σ ≡ ωnqL2/2, x = t/L, and u = (t – t ')/L. This for-
mula shows that the influence of multiple scattering on
parametric X-ray radiation backward is determined by
the σ parameter. If σ ! 1, the influence of multiple scat-
tering on parametric X-ray radiation can be ignored.
The F = F0 function then determines the natural line
width of parametric X-ray scattering,

(16)

According to Eq. (16), the line width is given by ∆ω ~
1/L to within an order of magnitude.

If σ @ 1, the characteristic ueff values in Eq. (15)
have the order of magnitude ueff ~ (3/σ2)1/3. The line
width is then determined by the equation

(17)

It follows that multiple scattering at σ @ 1 causes
substantial broadening of parametric X-ray radiation
lines compared with their natural widths. Under the
conditions of experiments performed in [3], in which
electrons with an energy of 855 MeV fell on a silicon
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crystal 525 µm thick at an angle of ψ = 5 mrad to the
〈111〉  axis, the σ value for the line corresponding to g =
2π/a was σ ~ 75. Multiple scattering in these experi-
ments caused substantial (larger than an order of mag-
nitude) line broadening compared with the natural line
width of parametric X-ray radiation.

N.F.Sh. thanks Professor H. Backe of the University
of Mainz for discussions of measurements and interpre-
tation of ultranarrow parametric X-ray radiation lines.
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A method for obtaining intense pulsed beams of molecules possessing low kinetic energies is proposed. The
method is based on the formation of a cold pressure shock (shock wave) in an intense pulsed molecular beam
interacting with a solid surface, which serves as a source of the secondary beam of low-energy molecules. The
proposed method was successfully used to obtain intense beams of H2, He, CH4, and Kr molecules with kinetic
energies not exceeding 10 meV, and H2/Kr and He/Kr beams with kinetic energies of H2 and He molecules
below 1 meV. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 07.77.Gx; 79.20.Rf
1. Introduction. Intense molecular beams with a
particle flux density of ≥1020 (sr s)–1 and a kinetic
energy in the interval from a few units to several tens of
millielectronvolts are required for the experimental
investigation of chemical reactions, elastic and inelastic
collisions, and interactions of molecules with surfaces
[1]. In recent years, such beams were also employed in
experiments on the confinement of molecules in traps
[2, 3].

A method most widely used for the obtaining of
intense molecular beams is based on their separation by
skimmers from gasdynamically cooled streams emitted
by pulsed nozzles [4]. The kinetic energy of molecules
in a beam is determined by the gas temperature T0
reached before expansion through the nozzle:

(1)

where v  is the established gas flow rate, m is the molec-
ular mass, γ = cp/cv is the ratio of specific heats, k is the
Boltzmann constant, and T is the established tempera-
ture. For a gas at room temperature in the source, the
kinetic energy of molecules in the beam varies, depend-
ing on the γ value, from ≅ 50–60 meV (for monoatomic
gases) to ≥150–200 meV (for polyatomic molecules).

According to Eq. (1), obtaining low-energy molecu-
lar beams requires a gas in the source to be cooled.
However, cooling the pulsed sources of molecular
beams down to low temperatures is a difficult problem
because the materials employed (in particular, plastics
and elastomers) lose their elastic and plastic properties.
Moreover, a decrease in the temperature leads to a sig-
nificant drop in the gas pressure, which complicates the
formation of gasdynamically cooled intense streams.

The beams of molecules possessing low kinetic
energies (≤50 meV) are usually obtained with effusion
sources either operating at room temperature or

1
2
---mv

2 γ
γ 1–
-----------k T0 T–( ),=
0021-3640/02/7605- $22.00 © 20283
employing a gas cooled to liquid nitrogen temperature
(for helium beams, down to liquid helium temperature)
[1, 5]. The kinetic energy of molecules in such a beam
is determined by the gas temperature in the effusion
source (Ekin ≅  kT0). However, intensities of the molecu-
lar beams obtained by this method are relatively low
(not exceeding 1016–1017 (sr s)–1). In addition, the
velocities of molecules in such beams exhibit consider-
able scatter. Therefore, it is necessary to separate a low-
energy component, which still reduces the beam inten-
sity.

In this paper, a relatively simple method is proposed
for obtaining intense pulsed beams of molecules with a
kinetic energy variable from about 1 meV to several
tens of millielectronvolts.

2. Description of method and experiment.
According to the proposed method, low-energy pulsed
molecular beams are produced using a pressure shock
(shock wave) [6–8] generated as a result of interaction
of an intense, gasdynamically cooled, pulsed molecular
beam (or stream) with a solid surface. The essence of
the process is illustrated in Fig. 1. In the experiment, an
intense (≥1021 (sr s)–1), wide-aperture (divergence, ω ≅
0.05 sr), pulsed molecular beam was incident onto a liq-
uid-nitrogen-cooled copper heat exchanger, to which a
duralumin multichannel metal plate with a thickness of
L = 4 mm was fastened. The plate contained channels
with a diameter of d0 = 0.5 mm, arranged in a close-
package pattern with a distance of 0.75 mm between
the hole centers. The 8-mm-thick heat exchanger had a
through channel of a converging cone shape, with input
and output diameters of 11 and 9 mm, respectively. The
distance from the nozzle outlet edge to the front surface
of the multichannel plate was about 70 mm. In order to
exclude the multichannel plate operation in the “trans-
parency” mode, the plate was tilted relative to the beam
axis by a small angle of α ≅  d0/L ≅  7°.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagram of the experimental setup.

Fig. 2. Plots of the kinetic energy of molecules in a low-
energy beam of He versus gas pressure in the nozzle (1) for
a gasdynamically cooled beam, (2) for the absence of gas
cooling in the shock wave region, and (3) for the primary
molecular beam.

Fig. 3. Plot of the kinetic energy of molecules in a low-
energy molecular beam of He versus gas temperature in the
pressure shock region (He pressure in the nozzle, 2 atm).
When an intense supersonic molecular beam strikes
the cooled plates, a cold pressure shock is formed in
front of the plates and inside the channels [9, 10]. The
characteristic size of this pressure shock region is on
the order of the mean free path of molecules Λ [7, 8].
For Λeff ≥ d0 (Λeff > Λ is the effective mean free path of
molecules in the channels [1]), the gas inside the chan-
nels cools down to the wall temperature (i.e., approxi-
mately to liquid nitrogen temperature), so that the pres-
sure shock generates a beam of low-energy molecules.
The condition of Λeff ≥ d0 was nearly always realized
under the experimental conditions studied. As a result,
intense gasdynamically cooled molecular beams were
obtained, with the kinetic energy of molecules deter-
mined by gas temperature in the pressure shock region
(~77 K) according to formula (1). At a low pressure in
the shock wave, when the gasdynamic flow conditions
were not obeyed, the system operates in the effusion
mode and the average velocity of molecules in the
beam is close to the value for a gas at liquid nitrogen
temperature (naturally, with an increased scatter of the
velocities of molecules in the beam).

The experiments were performed using a pulsed
nozzle of the current loop type [11] with an output
diameter of 0.75 mm. The time of nozzle opening
(pulse width at half-height) varied within ~70–100 µs,
depending on the gas pressure and composition. The
gas pressure in the nozzle was varied in the range from
≅ 0.1 to 7 at. The nozzle outlet had the shape of a cone
with a total opening angle of 15° and a length of 35 mm.
The molecular beam was formed in a vacuum chamber
evacuated to a residual pressure of ~1 × 10–6 Torr by a
turbomolecular pump. The number of molecules
ejected from the nozzle per pulse depended on the gas
pressure in the nozzle and varied from ~8 × 1015 to 2 ×
1018. A method for determining this value is described
in detail elsewhere [12, 13].

The intensity and the velocity of molecules in the
low-energy beams were experimentally studied as
functions of the intensity and velocity of an incident
beam and the gas temperature in the pressure shock
region. The scatter of particle velocities (the degree of
gas cooling) was determined in both incident and out-
put beams. These measurements were performed by a
time-of-flight (TOF) technique using a pyroelectric
detector with a time resolution of ~3–5 µs [14, 15]. The
TOF spectra of molecules, recorded at various dis-
tances from the nozzle, were used to determine the par-
ticle velocity and its scatter in the molecular beams.

3. Results and discussion. The experiments were
performed with the molecular beams of H2, He, CH4,
and Kr. In all cases, the above source generated the
beams of molecules possessing low velocities. Figure 2
shows a plot of the kinetic energy of He molecules in a
low-energy molecular beam versus gas pressure in the
nozzle (curve 1) in comparison to the analogous plots
for the secondary beam measured in cases when the gas
in the shock wave was not cooled (T0 ~ 300 K) and for
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Data on the velocities and energies of molecular beams

Gas composition and
pressure (atm) in the nozzle

Primary beam Low-energy beam

v, m/s Ekin, meV v, m/s Ekin, meV

H2 1.9 2950 91.7 1050 11.6

0.6 2620 72.4 810 6.9

CH4 2.0 1330 149.2 450 17.1

0.6 1250 131.8 370 11.5

Kr 2.0 385 62.5 168 11.9

1.0 360 54.7 130 7.1
the initial (primary) beam (curves 2 and 3, respec-
tively). As the intensity of the primary beam (i.e., the
gas pressure in the nozzle) is reduced, the energy of
molecules in the secondary (low-energy) beam signifi-
cantly decreases, approaching the mean energy of He
atoms at T ≅  77 K (~6.6 meV).

Figure 3 shows a plot of the kinetic energy of mole-
cules in a He beam versus the gas temperature in the
pressure shock, which was measured at a helium pres-
sure of 2 atm in the nozzle. Note that, in the given tem-
perature interval, the kinetic energy of molecules
decreases somewhat more rapidly as compared to the
linear law. This behavior is related to the fact that, under
the experimental conditions studied, a decrease in the
temperature was accompanied by a decrease in the gas
pressure in the shock wave (i.e., in the source of the
low-energy beam), which additionally decreased the
secondary beam velocity.

The results of measurements of the average velocity
and energy of molecules in the low-energy beams of
H2, CH4, and Kr are presented in the table, in compari-
son to the analogous data for the initial (primary) beam.
As can be seen, experiments under the conditions
described above allowed the molecular beams of H2 to
be obtained with a kinetic energy of Ekin ≤ 6.9 meV, and
the beams of CH4 and Kr, with Ekin ≤ 11.5 and 7.1 meV,
respectively. Note that the mean velocity of Kr atoms in
such a beam is v  ≅  130 m/s.

The experiments were also performed with mixed
molecular beams of the H2/Kr and He/Kr types (at a
partial pressure ratio of 1:5 in both cases). At a gas pres-
sure of 0.8 atm in the nozzle and a temperature of
≅ 77 K in the shock wave, the molecular beam velocity
(~165 m/s) corresponded to kinetic energies of ≤0.3
and 0.6 meV for H2 and He molecules in the beams,
respectively.

Let us estimate the intensities of low-energy beams
obtained by the proposed method, using the results of
measurements for the molecular beams of He. Accord-
ing to the amount of gas consumed for a series of n
pulses ejected from the nozzle (see, e.g., [12, 13]), the
total number of He atoms emitted per pulse at a gas
pressure of 2 atm in the nozzle is ≅ 7 × 1017. Since the
JETP LETTERS      Vol. 76      No. 5      2002
initial molecular beam pulse duration was ~100 µs and
the beam divergence was ω ≅  0.05 sr, the beam intensity
was I1 ≅  1.4 × 1023 (sr s)–1. The low-energy molecular
beam intensity was lower by a factor of 30–50 and
amounted to I2 ≥ 1021 (sr s)–1. Therefore, intensities of
the molecular beams obtained were four to five orders
of magnitude greater as compared to those of the “stan-
dard” effusion beams. The concentrations of helium
atoms in the initial beam and in the shock wave, esti-
mated as described in [12, 13], were N1 ≅  2.5 × 1016 cm–3

and N2 ≅  1 × 1017 cm–3.

Thus, the proposed method allows intense pulsed
molecular beams to be obtained, with the kinetic ener-
gies of molecules in the range from 1 meV to several
tens of millielectronvolts. It was demonstrated that the
energy of molecules in such beams can be controlled by
varying the initial (primary) beam intensity or the gas
temperature in the shock wave. For the obtaining of
low-energy molecular beams of He and H2, a deeper
gas cooling in the pressure shock regions can be
achieved by using liquid helium. It should be noted
that, using Kr as the carrier gas, it is possible to obtain
beams of CO, N2, NO, and O2 molecules with energies
not exceeding 2–3 meV.

The author is grateful to V.M. Apatin and A.N. Petin
for technical assistance.
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Nonequilibrium Coulomb effects in resonant tunneling through deep impurity states are analyzed. It is shown
that Coulomb vertex corrections to the tunneling transfer amplitude lead to power law singularity in the current–
voltage characteristics. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.Gk
Localized states of individual impurity atoms and
interacting impurity clusters can play the key role in
tunneling processes in small size junctions and often
determine the behavior of tunneling characteristics in
STM/STS contacts. Now it is evident that in tunneling
junctions of nanometer scale there exists nonequilib-
rium distribution of tunneling electrons which changes
local density of states and tunneling conductivity spec-
tra. Some interesting effects, such as resonance struc-
ture of tunneling conductivity inside the semiconductor
band gap, the increased value of the observed band gap
and nonequilibrium interaction of neighboring impu-
rity atoms have been recently investigated experimen-
tally and theoretically analyzed [1–4]. But all these
effects are caused by local changes of the initial density
of states in the contact area due to interactions of non-
equilibrium particles. The modification of tunneling
amplitude by the Coulomb interaction of conduction
electrons in a metallic tip with nonequilibrium local-
ized charges was ignored. It is shown in the present
paper that corrections to the tunneling vertex caused by
the Coulomb potential can also result in nontrivial
behavior of tunneling characteristics and should be
taken into account. One encounters effects similar to
the Mahan edge singularities in the problem of X-ray
absorption spectra in metals [5]. The effect is well pro-
nounced if the tunneling rate from a deep impurity level
to metallic tip γt is much larger than relaxation rate γ of
nonequilibrium electron distribution at a localized
state. This condition can be realized experimentally for
a deep impurity state in the semiconductor gap. Direct
tunneling from such states to semiconductor continuum
states is strongly reduced due to the wide barrier
formed by surface-band bending. The relaxation rate
connected with electron–phonon interaction can be
estimated to be of the order 108–1010 1/s at low temper-
atures [6]. As to γt it is a parameter which can be varied
in STM/STS experiments changing tip-sample separa-

¶This article was submitted by the authors in English.
0021-3640/02/7605- $22.00 © 20287
tion. Since tip-sample separation is comparable with
atomic scale, γt often exceeds the relaxation rate for
deep impurity states. The typical experimental value of
tunneling current 1 nA corresponds to γt . 1011–1012 1/s
[3]. As will be shown below for γt @ γ, the impurity
level becomes nearly empty when the value of applied
bias voltage approaches the impurity energy. So the
core hole Coulomb potential is suddenly switched on
and the tunneling amplitude is changed. One might
expect in this situation a power-law singularity in the
current–voltage characteristics near the threshold volt-
age.

The system semiconductor—impurity state—metal-

lic tip can be described by the Hamiltonian :

, (1)

where

(2)

describes the electron states in the metallic tip and the

semiconductor, respectively; (ckσ) and (cpσ)
describe creation (annihilation) of electron in states
(kσ) and (pσ) in each bank of the contact.

(3)

corresponds to a localized impurity state. We consider
“one electron neutral impurity”—the impurity level is
singly occupied at zero applied voltage due to the on-
site Coulomb interaction. But in the case of large tun-
neling rate to the metallic tip, the on-site Coulomb
repulsion of localized electrons can be omitted if we

Ĥ

Ĥ ĤL ĤR Ĥ imp ĤT Ĥ int+ + + +=

ĤR εk µ–( )ckσ
+ ckσ,

kσ
∑=

ĤL εp µ– eV–( )cpσ
+ cpσ

pσ
∑=

ckσ
+ cpσ

+

Ĥ imp εdcdσ
+ cdσ

dσ
∑ Undσnd σ–+=
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analyze the behavior of tunneling current at the applied
voltage close to the impurity energy εd, because in this
situation the impurity state becomes nearly empty
above the threshold value of the applied bias. Let us
also point out that the Kondo regime is destroyed at
Anderson impurity for the values of applied bias near
the threshold [7, 8]. In this case the Kendo effect is not
responsible for any unusual features of the tunneling
characteristics.

Tunneling transitions from the impurity state to the
semiconductor and the metal are described by the part

(4)

Finally, part Hint includes the Coulomb interaction of
the core (impurity) hole with conduction electrons in
the metal:

(5)

Hamiltonian Hint appears as a many-particle interaction
and describes rearrangement of conduction electrons in
the potential of the hole, suddenly switched on by tun-
neling transition of the impurity electron. Since we are
far from the Kondo regime it is sufficient to consider
tunneling current in the lowest order in the tunneling
amplitude Tkd. Scattering by the impurity hole Coulomb
potential does not change electron spin. Thus, in the
lowest order in Tkd we can consider renormalization of
the tunneling amplitude independently for each spin—
the same one for conduction and impurity electrons. It
is also reasonable to use for simplicity an averaged
value of screened Coulomb interaction describing
s-wave scattering of conduction electrons by a deep
hole Wkk' = W.

Edge singularities in the tunneling current can be
analyzed by means of diagram technique for nonequi-
librium processes. Using Keldysh functions G<, the
tunneling current can be determined as (we set charge
e = 1)

, (6)

where we have defined tunneling “response function”
J(V). If the Coulomb interaction is neglected, one can
obtain the usual expression for this response function in
the lowest order in Tkd:

(7)

ĤT Tkdckσ
+ cdσ T pdcpσ

+ cdσ+( )
kp

∑ h.c.+=

Ĥ int Wkk'ckσ
+ ck'σ 1 cdσ'

+ cdσ'–( ).
kk'σσ'

∑=

I V( ) Im J V( )( ), J V( ) i ωTkdGkd
σ<d∫

k σ,
∑= =

J0 V( ) i ωTkd
2 Gkk

σ<Gdd
σA Gkk

σRGdd
σ<+( ).d∫

k σ,
∑=
Substituting the corresponding expressions for the
Keldysh functions [4] and performing integration over
k we get

(8)

where the tunneling rate γt = ν and ν is the unper-
turbed density of states in the metallic tip. Kinetic
parameter γ corresponds to relaxation rate of electron
distribution at the localized state. In the suggested
microscopic picture (Eq. (4)), this relaxation rate is
determined by sufficiently small electron tunneling
transitions from the impurity to the semiconductor con-

tinuum states γ = νp. (In general γ can include dif-
ferent types of relaxation processes.)

Nonequilibrium impurity filling numbers nd(ω) are
determined from kinetic equations for the Keldysh
functions G<:

(9)

As was explained in the Introduction for a deep impu-
rity level, the relation γt @ γ is quite possible. Then

(εd) = 1, while nd(εd) ! 1 and there is actually a core
hole in the impurity state. Thus, for low temperatures
one can obtain from Eq. (8)

(10)

where

(11)

and D is the band width for electrons in metal.

The usual form of the tunneling current is of course
reproduced from Eqs. (6), (8), (10).

Now let us consider renormalization of the tunnel-
ing amplitude and vertex corrections to the tunneling
current caused by the Coulomb interaction between the
impurity core hole and electrons in the metal. The
many-particle picture strongly differs from the single-
particle one near the threshold voltage. First-order cor-
rections due to the Coulomb interaction (the first graph
in Fig. 1a) have a logarithmic divergence at the thresh-

J0 V( ) γt ωd
nk

0 ω( )
ω eV εd i γ γt+( )+–+
------------------------------------------------------∫=

+
nd ω( ) i γ γt+( )–( )

ω eV εd–+( )2 γ γt+( )2+
------------------------------------------------------------- ,

Tkd
2

T pd
2

nd ω( )
γnp

0 ω( ) γtnk
0 ω( )+

γ γt+
-------------------------------------------.=

np
0

J0 V( ) γt X( )ln i
γtγ

γ γt+
-------------+=

×
eV εd–
γ γt+

----------------- 
 arccot

εd–
γ γt+
------------- 

 arccot– ,

X eV εd– i γ γt+( ) )/D+( )=
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old voltage eV = εd, which is cut off by the finite relax-
ation and tunneling rates:

(12)

Tunneling matrix elements are changed by the Cou-
lomb interaction:

(13)

If we look at Eqs. (7), (8), it becomes clear that log-
arithmic contribution comes from the first combination

of the Green functions: . In what follows we
retain only logarithmically large parts, assuming that
|ln((γ + γt))/D)| @ 1, so only these combinations of the
Green functions are the most important in perturbation
series. Then from Eq. (13) we obtain that the tunneling

amplitude contains logarithmic correction:  =

−TkdL,  = – , where factor L is

. (14)

In high orders of perturbation, the expansion ladder
graphs (Fig. 1a) are the simplest “maximally singular”
graphs. But this is not the only relevant kind of graphs.
If we look at the first graph in Fig. 1b, we notice, that a
new type of “bubble” appears, which is logarithmically
large for small “total” energy (ω + ω1). The important
point is that the relevant region of integration over ω
and ω1 is the region of small ω. It is just this region
which gives the essential contribution to logarithmic

factor L in any other pair of .

This means that the central bubble also contributes
an additional logarithmic factor to the total result. In
this situation, which is not new in physics, one should
retain in the nth order of perturbation expansion the
most divergent terms proportional to (Wν)nLn + 1. For
the first time such a method was developed by Dyatlov
et al. [9]. It was shown that for a proper treatment of
this problem one should write down integral equations
for the so-called parquet graphs (Fig. 1b), which are
constructed by successive substitution of the simple
Coulomb vertex for the two types of bubbles in pertur-
bation series. These equations represent some exten-
sion of the ordinary Bethe–Salpeter equation and
describe multiple scattering of conduction electrons by
the core hole Coulomb potential in the two “most sin-
gular” channels. The integral equations can be solved
with logarithmic accuracy, as was done, for example,
by Nozieres [10, 11] for edge singularities in X-ray
absorption spectra in metals.

The solution of the “parquet” equations contains
nothing new in our problem. So we present the result

J1 V( )

=  i ωTkd Gkk
σ<Gdd

σATkd
1++– Gkk

σRGdd
σ<Tkd

1––+( ).d∫
k σ,
∑

Tkd
1–– ωTkdW Gkk

σ<Gdd
σA Gkk

σRGdd
σ<+( ).d∫

k σ,
∑=

Gkk
σ<Gdd

σA

Tkd
1––

Tkd
1++ Tkd

1––

L Wν( ) X( )ln=

Gkk
< Gdd

A R( )
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without going into technical details. Summing up the
most divergent graphs with logarithmic accuracy, one
can obtain the following singular part of the response
function [10]:

(15)

Then the tunneling current near the threshold volt-
age can be expressed as

(16)

where φ = (eV – εd)/(γ + γt)). If we consider a
deep impurity state in the gap of the semiconductor
(below the Fermi level) and positive tip bias voltage,
then εd < 0, eV < 0. So, phase φ is a steplike function
varying approximately from 0 to π, when the applied
bias crosses the threshold eV = εd. Since we retain only
the most logarithmically large terms in the tunneling
current, Eq. (16) is valid only if |eV – εd | ! D. In the
absence of the Coulomb interaction (W = 0), this singu-
lar part reduces to the usual first-order contribution
arising from the first term in Eqs. (7), (8).

In summary, if the tunneling rate to the metallic tip
exceeds the relaxation rate of localized electrons, the
Coulomb interaction of the core hole and the conduc-
tion electrons in the metal strongly modifies the tunnel-
ing transition amplitude and leads to (i) nonmonotonic
behavior of the current–voltage characteristics;
(ii) power-law singularity of the tunneling current and
conductivity when the value of the applied voltage
approaches the impurity level energy; (iii) the possibil-
ity of the current–voltage characteristics being rather

J V( )
γt 1 2L–( )exp–( )

2Wν
------------------------------------------.=

I V( )

=  
γt

2Wν
----------- D2

eV εd–( )2 γt γ+( )2+
---------------------------------------------------

Wν

2Wνφ( ),sin

(arccot

Fig. 1. Coulomb corrections to Tkd. Solid lines represent Gk
and dashed lines, Gd. (a) Ladder approximation, (b) parquet
graphs (Coulomb wavy lines are overdrawn as black circle
vertexes).
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asymmetric, because of different dependence of phase
factor φ on the applied bias below and above the thresh-
old value. Power law singular behavior of the tunneling
current is sensitive to the values of the tunneling and
relaxation rates, as well as to the value of the Coulomb
interaction W. So, different exponents in power depen-
dences of the tunneling current on the applied voltage
can appear with changing tip-sample separation. Some
current–voltage characteristics obtained for typical val-
ues of parameters are shown in Fig. 2.

It seems also possible to set up an experiment with
negative impurity charge and negative tip voltage close
to the value εd + U. In this case, W > 0 and the Coulomb

Fig. 2. Current–voltage curves for typical values of dimen-
sionless Coulomb and kinetic parameters. Current is mea-
sured in dimensionless units I/eγ. (a) w = Wν < 0, εd =
0.4 eV, (b) w = Wν > 0, εd + U = 0.4 eV, γt/γ = 3, εd/γ = 40.
Dashed lines correspond to W = 0. The experimental STM
image of Cr impurity on the InAs (110) surface is shown in
the inset for V = 0, V = 0.5(V), V = 1.5(V) in sequence.
corrections to the tunneling amplitude result in power-
law behavior of the tunneling current with the opposite
sign exponent in Eq. (16). The tunneling current is sup-
pressed near the threshold, compared to the noninter-
acting case. This behavior is shown in Fig. 2b.

Experimental STM/STS investigations of deep
impurity levels on semiconductor surfaces give evi-
dence of the existence of the described effects. Some
STM images demonstrate nonmonotonic dependence
of tunneling current on applied bias voltage [1]. With
increasing bias voltage, the impurity atom is “switched
on” in the STM image—it appears as a bright spot. But
further increase of the tunneling bias “extinguishes” the
brightness of the impurity atom and it is seen as a dark
spot in the STM image (see inset in Fig. 2). According
to the present model, it can be explained by a decrease
in the tunneling current caused by the Coulomb vertex
corrections to the tunneling amplitude for some types
of impurities.

We thank L.V. Keldysh for helpful discussions. This
work was supported by the Russian Foundation for
Basic Research, project nos. 00-15-96558 and 00-02-
17759, and by the Nanostructure program.
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The instability of a magnetic flux flow in a system of vortices and antivortices in superconductors with a power
(exponent m) anisotropic current–voltage characteristic was studied theoretically. It was shown that instability
arose even at a comparatively weak anisotropy of the current-carrying properties of a superconductor if m @ 1.
The dispersion equation determining the dependence of the increment of instability growth on the wave number
was derived and analyzed. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Ha; 75.60.Jk; 74.60.Ec; 74.60.Ge
One of the most striking effects in the dynamics of
vortex systems in second-kind superconductors discov-
ered some ten years ago was the observation of a mac-
roturbulent magnetic flux behavior at the magnetization
reversal front, which separated regions with opposite
directions of Abrikosov vortices [1–3]. In some interval
of magnetic field and temperature values, the stationary
picture of the distribution of vortices and antivortices
became unstable. A disordered magnetic flux motion
arose at the magnetization reversal front. This process
rapidly developed in time and was accompanied by the
appearance of channels of antivortex penetration into
the region occupied by vortices. The annihilation of
vortices and antivortices occurred at the front, and the
process of macroturbulence soon ended with the com-
plete disappearance of vortices. This phenomenon has
an obvious analogy with turbulence in hydrodynamics,
and its interpretation is therefore of general interest for
physics.

An attempt at explaining macroturbulence was
made in [4]. The instability was related to a heat wave,
which was generated at the magnetization reversal front
because of energy release in the annihilation of vortices
and antivortices. Unfortunately, this mechanism can
hardly be responsible for macroturbulence [5], because
energy released in the annihilation of vortices in high-
Tc superconductors is too low to cause noticeable heat-
ing.

A different instability mechanism suggested in [5]
related its nature to well-defined anisotropy of the cur-
rent-carrying properties of samples in the ab plane. The
0021-3640/02/7605- $22.00 © 20291
matter is that macroturbulence is only formed in
YBa2Cu3O7 – δ single crystals and other 1–2–3 systems
in which twin boundaries are always present. In our
view, precisely this circumstance is of key importance
for solving the problem of the nature of macroturbu-
lence. Because of the presence of twin boundaries, vor-
tices and antivortices move under the action of Lorentz
forces along these “guiding” boundaries (the so-called
guiding effect) toward each other at an angle of about
45° with respect to the magnetization reversal front. As
a result, the tangential component of the velocity of
vortices experiences discontinuity at the interface. As is
known from classical hydrodynamics, the presence of
tangential velocity discontinuities causes instability of
liquid flow. This approach allowed certain macroturbu-
lence peculiarities observed in experiments to be
explained.

The hydrodynamic approximation taking into
account anisotropy of viscous flow of vortices provides
a basis for understanding macroturbulence [5]. The
analysis performed in [5] was, however, based on the
simplest approximation of a linear relation between the
Lorentz force that acted on vortices and the velocity of
vortices. This approximation corresponded to a linear
current–voltage characteristic of the sample, which
only existed in superconductors in the region of strong
currents. It turned out that instability only arose at a
very strong anisotropy of the viscosity coefficient.
Clearly, a more correct description of instability
required using a more realistic model of the viscous
flow of vortices based on a nonlinear current–voltage
002 MAIK “Nauka/Interperiodica”
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characteristic. In this work, we theoretically studied the
instability of the magnetization reversal front on the
assumption that the current–voltage characteristic was
a power function with exponent m ≥ 1. We showed that,
even at a comparatively weak anisotropy of the current–
voltage characteristic, the flow of a system of vortices
and antivortices in a superconductor became unstable.

Consider an infinite superconducting plate of thick-
ness 2d placed into external magnetic field H oriented
parallel to the sample surface along the z axis. The x
axis is directed normally to the plate, and the origin
x = 0 is situated in the center of the plate. Let magnetic
field H first increase to the extent that the magnetic flux
in the form of vortices completely fills the sample. Fur-
ther, let this field decrease, pass through zero, and
assume some negative value. Vortices with opposite
magnetic flux directions (antivortices) then penetrate
into the surface regions of the plate on both its sides. It
is clear from the problem symmetry that it suffices to
consider one (e.g., the right, 0 < x < d) half of the sam-
ple. The geometry of the problem is schematically
shown in Fig. 1.

Thermal activation causes slow magnetic flux flow.
The annihilation of vortices and antivortices at the
x = x0 boundary separating the regions of their exist-
ence (see Fig. 1) results in additional penetration of
antivortices from the plate surface in a constant mag-
netic field H. As a result, the total number of vortices in
the center of the sample decreases, and the x = x0

boundary slowly moves at rate U deeper into the sample
(Fig. 1).

Let us denote the densities of vortices and antivorti-
ces by N1(x) and N2(x), respectively. The relation
between vortex density Nα(x, y) (α = 1, 2) and magnetic
induction B(x, y) in the corresponding superconductor
region is obvious, Nα(x, y) = sαB(x, y)/Φ0, where s1 = 1

Fig. 1. Density distributions of vortices (N1(x)) and antivor-
tices (N2(x)) in the right half of the plate (0 < x ≤ d).
and s2 = –1. The densities of vortices and antivortices
should satisfy the continuity equation

(1)

where Vα are the hydrodynamic velocities of vortices
and antivortices. The second equation for vortex densi-
ties Nα and velocities Vα is found using the current–
voltage characteristic of the sample, which can be writ-
ten as

(2)

Here, J is the current density; E is the electric field; Jc

is the critical current density, which is determined as JY

at EY = E0 (usually, E0 is set equal to 1 µV/cm); ε < 1
(anisotropy parameter); and axes X and Y correspond to
directions along and across twin boundaries (further, it
is assumed that these boundaries make angles of 45°
with axes x and y). The magnetic field dependence of
the critical current density will be taken into account in
the simplest form, namely, Jc = A/Nα. The current den-
sity and electric field values are related to Nα and Vα by
the known equations

(3)

(4)

Let us formulate the boundary conditions at the
magnetization reversal front, which moves at rate U.
According to the first condition, vortex and antivortex
fluxes normal to the boundary are equal in magnitude
but have opposite signs in a frame of reference that
moves together with the front, that is,

(5)

The second condition takes into account the annihila-
tion of vortices and antivortices. We assume that the
rate of annihilation is proportional to the product of
vortex densities,

(6)

Lastly, the mean magnetic induction in the vicinity of
the interface is set to zero,

(7)

This equality directly follows from Eq. (1) and from the
observation that condition (7) is fulfilled at the initial
time of the penetration of antivortices into the sample
(at this time, N1 = N2 = 0).

To study the instability of the system under consid-
eration, we must first determine the unperturbed (base)

∂Nα /∂t div NαVα( )+ 0,=

JX
1
ε
---Jc

EX

E0
------ 

  1/m EX

E0
------ 

  ,sgn=

JY Jc
EY

E0
------ 

  1/m EY

E0
------ 

  .sgn=

J
csα

4π
------- curlNα ,=

Ex

NαsαΦ0

c
-------------------Vαy, Ey–

NαsαΦ0

c
-------------------Vαx.= =

N1 V1 U–( )n N2 V2 U–( )n+ 0.=

N1 V1 U–( )n RN1N2.=

N1 N2.=
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distribution profiles N1(x) and N2(x). A simple analysis
shows that, unfortunately, the problem does not have
self-similar solutions corresponding to plane front
motion x = x0(t) at a constant rate U = const ≠ 0. We first
find the stationary solution corresponding to zero
velocity U = 0. Putting ∂Nα /∂t = 0 in Eq. (1) and using
boundary conditions (5)–(7), we obtain

(8)

In what follows, the constant C is assumed to be much
larger than unity for the vortex density at the front, N0,
to be much lower than that at the boundary of the sam-
ple. Ignoring unity under the square root in Eq. (8) and
using the boundary condition for the induction at the
sample boundary, N2(d) = H/Φ0, we obtain the follow-
ing estimate for vortex density N0:

(9)

Base profile (9) is observed if the front of magneti-
zation reversal is immobile. In our problem, the inter-
face moves. This movement changes the base profile.
We will, however, assume that the rate of front move-
ment is fairly low, U ! Vα, and that the base profile only
slightly differs from Eq. (9).

The stability of the front can conveniently be ana-
lyzed using the dimensionless variables

(10)

The normalization with respect to the time-dependent
value N0 = Nα(x0(t)) is admissible, because we assume
the time of instability development to be small com-
pared with the characteristic time of base profile
changes.

The perturbed vortex density will be sought in the
form

(11)

The linearized boundary conditions are written at the
perturbed front,

(12)

with the unit normal vector n = (1, –ikδξ(ζ, τ)). It fol-
lows from boundary condition (7) that δξ = ( f1 – f2)/2.

Nα x( ) N0 1 sαC x0 x–( )/d+ ,=

C
8π 2dA

cΦ0N0
2
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2Φ0RN0

2

cE0 1 εm
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8πAE0
----------------,= = =

ξ x/L, ζ y/L, L
cΦ0N0

2

4π 2A
------------------, r

RN0
2Φ0

2cE0

------------------.= = = =

nα nα
0( )

f α λτ ikζ pα ξ ξ 0 τ( )–( )+ +[ ] .exp+=

ξ ξ 0 ζ τ,( ) ξ0 τ( ) δξ ikζ λτ+( ),exp+= =
JETP LETTERS      Vol. 76      No. 5      2002
Equation (1) gives expressions for the p1 and p2
parameters. Substituting them and Eq. (11) into
Eqs. (5) and (6) yields a system of two linear homoge-
neous algebraic equations for the f1 and f2 fluctuation
amplitudes. Equating the determinant of the system to
zero and ignoring the terms quadratic in velocity U, we
obtain the dispersion equation for the dependence of
increment λ on wave number k,

(13)

The Ω value is the root with ReΩ > 0 of the follow-
ing algebraic equation:

(14)

The dispersion equation is written in the ε ! 1 limit.
Equations (13) and (14) only contain the ε anisotropy
parameter raised to a power of m. Typical of 1–2–3
high-Tc superconductors far from Tc are the ε ~ 0.1–0.2
and m ~ 10 values.

Consider the solution of the dispersion equation. At
m = 1, we obtain the same result as in [5], that is, if e <
ec (m = 1) ≈ 0.0045, the solutions to problem (13), (14)
include λ(κ) such that Reλ > 0. The increment of insta-
bility increase Reλ then reaches a maximum at finite
wave number k values. Clearly, this corresponds to
breaking the magnetization reversal front with a char-
acteristic spatial scale ~k–1. At m > 1, the behavior of
the increment of instability growth is qualitatively sim-
ilar. The dependences of Reλ on κ at various m values

λ mrρ Ω2
2iκ 2– eκ 2

–+( ),=

κ k u /2mrρ, u Ut0/L,= =

ρ 2r( )1/m
, e εm
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Ω4 m 2+
m
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2

m 1–
m
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–

4
m
----Ω–+

+ iκ m 1–
m

-------------Ω2 Ω 2+ + 
 

– eκ 2 Ω2 2
m
----Ω iκ m 1–

m
-------------–+ 

  0.=

Fig. 2. Reλ(κ) dependence at ε = 0.2, (u/r)2 = 0.02, and var-
ious parameter m values.
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and the characteristic anisotropy parameter value e =
0.2 are shown in Fig. 2 by way of illustration. For defi-
niteness, the (u/r)2 ratio (which should, according to the
assumptions made above, be small) was set equal to
0.02. The figure shows that the spectrum of perturba-
tions depends strongly on the exponent of the current–
voltage characteristic. Instability is observed at m > 10;
that is, Reλ > 0 solutions that reach maxima at finite k
values exist at fairly large m.

The results obtained in [5] were based on the model
of linear viscosity anisotropy, which was not very real-
istic. In that model, instability began to develop only
when fairly stringent requirements on the anisotropy
parameter value were met. In the more realistic model
used in this work, instability developed virtually irre-
spective of the anisotropy parameter ε value if the cur-
rent–voltage characteristic of the superconductor was
fairly steep; that is, if m @ 1. The use of this model
should allow theory to be quantitatively compared with
the results of magnetooptical measurements and the
experimental current–voltage characteristics of samples.
This work was financially supported by the Russian
Federal Program on Superconductivity (contract
40.012.1.1.11.46), INTAS (project no. 01-2282), the
Russian Foundation for Basic Research (projects
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V. N. Lazukov1, *, P. A. Alekseev1, N. N. Tiden1, K. Bek2,
E. S. Klement’ev1, 2, and I. P. Sadikov1

1 Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
* e-mail: lvn@isssph.kiae.ru

2 Laboratory of Neutron Scattering, ETHZ, Villigen, PSI, Switzerland
Received July 12, 2002

The temperature (3–60 K) and transferred momentum (0.3–2.3 Å–1) dependences of the intensity of quasi-elas-
tic magnetic neutron scattering were studied for the polycrystalline heavy-fermion CeAl3 compound to eluci-
date the special features of its ground state. Transferred momentum variations caused oscillations of the inten-
sity of quasi-elastic magnetic neutron scattering, which was evidence of magnetic correlations in the f-electron
subsystem occurring in a fairly wide temperature range. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.27.+a
The scale of interactions between 4f electrons and
the crystal electric field in heavy-fermion compounds
as a rule noticeably exceeds that of hybridization with
conduction electrons. It is therefore usually assumed
that hybridization only enhances the relaxation of crys-
tal electric field excitations and manifests itself in phys-
ical properties only at low temperatures comparable to
the Kondo temperature (TK). For instance, according to
the recent work [1], the crystal field effects on the spec-
trum of magnetic excitations are limited to the situa-
tions when the crystal electric field splitting –∆CF is
smaller than or equal to TK. If ∆CF > TK, the only energy
scale is TK; that is, the role played by the crystal field
effects then reduces to changes in the degree of degen-
eracy of the ground state. A detailed study of the spectra
of magnetic excitations of CeAl3 (TK ≈ 0.5 meV) [2]
(where we have ∆CF @ TK) at low temperatures by
inelastic neutron scattering, however, gave evidence of
strong changes in both the intensity and energy of the
transition between the ground and the first excited lev-
els of the ground multiplet, which was split in the crys-
tal electric field. It was found that the transition energy
(E ≈ 6 meV) began to gradually grow as temperature
decreased below the ∆CF scale value. A further increase
in temperature to T ~ TK accelerated this growth. The
intensity of the transition remained approximately con-
stant and even decreased at T ~ TK in spite of an obvious
increase in the population of the ground state, which
accompanied temperature decrease.

Another peculiarity of the spectra of magnetic exci-
tations of CeAl3 was the presence of noticeable quasi-
elastic scattering at low temperatures [3], although the
ground state of CeAl3 in the crystal electric field was
the |±3/2〉  doublet, in which quasi-elastic transitions
were forbidden in the dipole approximation. The quasi-
elastic signal observed at T < TK in heavy-fermion sys-
0021-3640/02/7605- $22.00 © 20295
tems is usually treated as a consequence of the relax-
ation of 4f electron spins on conduction electrons
caused by the Kondo effect. That is, the conclusion can
be drawn that quasi-elastic scattering at T < TK reflects
the properties of the new, so-called Kondo, ground state
rather than being related to magnetic dipole transitions
between 4f electron states in the crystal electric field.
Nevertheless, the deviations from the single-ion behav-
ior specified above were observed in [2] at substantially
higher temperatures, that is, starting with T ~ ∆CF,
although the quasi-elastic signal proper was not studied
in detail.

To summarize, the experimental results described
above contradict the fairly popular description of the
special features of the spectrum of magnetic excitations
in heavy-fermion systems in which a single character-
istic energy scale (–TK) is used. This prompted us to
undertake a detailed study of the temperature and
momentum transfer dependences of the intensity of
quasi-elastic magnetic neutron scattering in the temper-
ature range TK ≤ T ≤ ∆CF. Our goal was to shed light on
the roles played by Kondo scattering and crystal field
effects in the formation of the ground state of heavy-
fermion systems.

We used the same polycrystalline CeAl3 and LaAl3
samples as in [2]. The quasi-elastic magnetic neutron
scattering spectra of polycrystalline CeAl3 were mea-
sured on a FOCUS time-of-flight spectrometer with the
use of a SINQ source of neutrons (Paul Scherrer Insti-
tute, Switzerland) in the temperature range 3–60 K. The
initial neutron energy was E = 3.1 meV, and the resolu-
tion at the elastic line was ∆E = 0.06 meV. The interval
of neutron scattering angles (2θ) was 10°–130°, which
corresponded to ~0.3–2.3 Å–1 momenta transferred by
neutrons. Each sample weighed ~20 g. The transmis-
sion of CeAl3 was higher than 90%. The characteristic
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Quasi-elastic magnetic neutron scattering spectra of
CeAl3 at T = 3 K for mean transferred momenta (Q) h, 0.32;

s, 1.13; and m, 1.60 Å–1. Lines are fitted curves.

Fig. 2. (a) Temperature dependences of the FWHM (Γqe) of
quasi-elastic magnetic neutron scattering by CeAl3: open
circles (this work) and dashed line (data from [3]). (b) Inte-
gral intensity of s, quasi-elastic magnetic neutron scatter-
ing and n, inelastic magnetic neutron scattering [2]. The
dashed and dotted lines in Fig. 2b are the calculated results
obtained in the single-ion approximation; see text for
details.
time of measurements at one temperature was ~20 h.
Measurements on LaAl3 were used to estimate phonon
scattering and background. A comparison of the neu-
tron spectra of CeAl3 and LaAl3 showed that the
phonon component in the spectrum of CeAl3 was much
weaker than the contribution of magnetic scattering
under our experimental conditions; this component was
therefore ignored in the further analysis. The effective-
ness of detectors was calibrated against a vanadium ref-
erence.

Some of the experimental spectra obtained at T = 3 K
are shown in Fig. 1. The mean angle values (transferred
momenta) in this figure were found by averaging over a
±5° (±0.1 Å–1) interval. Note that the intensity of quasi-
elastic magnetic neutron scattering varied nonmono-
tonically as the transferred momentum increased (com-
pare Q = 1.13 and 1.60 Å–1). The temperature depen-
dence of quasi-elastic magnetic neutron scattering was
obtained by summing the spectra recorded at all angles.
The shape of the quasi-elastic magnetic neutron scatter-
ing spectrum line was approximated by a Lorentz func-
tion multiplied by a temperature factor. The experimen-
tal data on the temperature dependence of the width of
quasi-elastic scattering closely coincided with those
obtained in [3] (Fig. 2a).

The integral intensity of quasi-elastic magnetic neu-
tron scattering was calculated from the experimental
width and the amplitude of the Lorentz function. The
width of quasi-elastic magnetic neutron scattering
changed as temperature varied, and the integral inten-
sity was therefore obtained by integrating the spectrum
in the energy range of –2 meV to E = 10Γ(T) [where
Γ(T) is the width of the spectrum at half-height], that is,
to E of 15 to 40 meV depending on temperature. The
temperature dependence obtained is shown in Fig. 2b.
The same figure contains the data from [2] on the inten-
sity of the |±3/2〉   |±1/2〉  transition and the calcu-
lated temperature dependences of the intensities of the
inelastic and quasi-elastic peaks. These dependences
were obtained for the single-ion model of crystal elec-
tric field effects taking into account the probabilities of
transitions and changes in level populations under tem-
perature variations. The experimental spectra were not
absolutized, and the data from [2] were therefore com-
pared with the experimental values by referencing the
latter to the calculated results. The referencing was
performed for the data obtained at the highest tempera-
ture (T = 60 K for quasi-elastic magnetic neutron scat-
tering).

Note that the deviations from the single-ion calcula-
tions of both inelastic and quasi-elastic components are
observed at temperatures commensurate with ∆CF and
noticeably increase at about 2TK. Importantly, the inten-
sity of the quasi-elastic component decreases; that is, a
new ground state is formed. The conclusion can be
drawn that the formation of this new ground state
begins at T ~ ∆CF @ TK rather than at T ~ TK.
JETP LETTERS      Vol. 76      No. 5      2002
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The anomalies observed in the temperature depen-
dence of the intensity of the |±3/2〉   |±1/2〉  transition
were explained in [4] by strong anisotropic exchange
interaction specific to the Kondo systems. This interac-
tion decreases the lattice symmetry because of a
dynamic distortion of the environment of the rare-earth
metal ion and therefore changes the symmetry of the
f-electron ground state Hamiltonian. As a result, the
“pure” states in the crystal electric field transform into
mixed states; for instance, the |±3/2〉  state transforms
into α|±3/2〉  + β|±1/2〉 , which decreases the intensity of
the transition under consideration. The anomalous tem-
perature dependence of quasi-elastic magnetic neutron
scattering can, we believe, be explained in a similar
way (by the |±1/2〉  “impurity” state).

The momentum transfer dependence of the intensity
of quasi-elastic magnetic neutron scattering was stud-
ied for the spectra recorded at T = 3, 10, and 40 K, see
Fig. 3. The form factor of the Ce3+ ion is shown by the
dashed line in this figure. At T = 3 K, the intensity oscil-
lates as a function of the transferred momentum with a
period of ~1.0 ± 0.2 Å. The amplitude of oscillations
noticeably decreases as temperature increases (T =
10 K), and, at T = 40 K, this amplitude becomes com-
parable with measurement errors. It follows that we
obtained experimental evidence of the existence of f–f
correlations in a fairly wide temperature range. As con-
cerns the single-ion behavior, it is established for Ce
ions at temperatures close to or higher than ~40 K,
which is much higher than TK. Note that the tempera-
ture range of intensity (that is, form factor) oscillations
coincides with the temperature range of deviations
from the “single-ion” inelastic peak parameters.

One of the possible approaches to describing the
ground state of a heavy-fermion system is in treating
this state as a spin liquid-type state with resonating
valence bonds [5, 6]. The main property of such a state
is the fact that the system of localized spins transforms
at low temperatures to a half-filled band of spin excita-
tions with a width of order TK with the excitations of the
spin liquid described by the Fermi statistics [7]. The
calculated results obtained using this model [7] predict
the appearance of oscillations in the dependence of the
intensity of quasi-elastic magnetic neutron scattering
on the transferred momentum. These oscillations “sur-
vive” even in polycrystalline samples. According to the
model, the period of oscillations is related to the dis-
tance between cerium ions (κ = 2π/d, where κ is the
period of oscillations and d is the distance between the
ions that form resonating valence bonds). The approxi-
mation of the experimental data by the equations from
[7] showed that the best description of these data was
attained at d = (6.5 ± 1.3) Å (see Fig. 3, solid line),
which coincided with the distance between Ce ions,
that is, the lattice parameter a. This means that the
model suggested in [7] predicts ions with resonating
valence bonds to be situated at hexagonal lattice sites
along axis a.
JETP LETTERS      Vol. 76      No. 5      2002
To summarize, the most important results of this
work are as follows. First, we observed interrelation
between variations in the intensity of the inelastic and
quasi-elastic components of the spectrum of magnetic
excitations. Secondly, we showed the existence of spin
correlation effects in heavy-fermion compounds in a
fairly wide temperature range (~∆CF); these effects
became noticeably stronger at temperatures of about
TK. This led us to conclude that the temperature evolu-
tion of the spectrum of magnetic excitations in a heavy-
fermion system was determined by two rather than one
physically significant energy parameters, namely, TK

and ∆CF. Note that the results obtained do not contradict
the description of the ground state of a heavy-fermion
system as a spin liquid-type state with resonating
valence bonds and the spectrum of spin-liquid excita-
tions that obeys the Fermi statistics [6].

The authors thank A.S. Mishchenko for fruitful dis-
cussions and valuable comments and D. Rubio for help
with measurements. This work was financially sup-
ported by the Russian Foundation for Basic Research

Fig. 3. Momentum transfer dependences of the intensity of
quasi-elastic magnetic neutron scattering by CeAl3
obtained at T = 3, 10, and 40 K. The form factor of Ce3+ is
shown by the dashed lines. The solid lines were obtained in
calculations by the model suggested in [7] with distance d =
6.55 Å between Ce ions.
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A temperature-induced orientational transition is investigated in a mixture of nematic liquid crystals on the sur-
face of a cleavage of a ferroelectric triglycine sulfate crystal. The transition has been observed by the variation
of the polarized absorbance components of a dye introduced into the nematic matrix with increasing tempera-
ture. The reorientation of molecules in the liquid crystal volume confined by solid walls is due to competition
between dispersion and polar forces at the surface and the decrease in the electric field of the substrate up to its
complete disappearance at the ferroelectric Curie point. © 2002 MAIK “Nauka/Interperiodica”.
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The alignment of liquid crystal molecules confined
by solid walls can be due to the competition of two or
more independent factors favorable to homeotropic or
planar texture [1]. If the competing factors differ in
their temperature dependence, an orientational transi-
tion from one texture to the other can take place. A tran-
sition from planar to homeotropic alignment with vary-
ing temperature under conditions of a competition
between van der Waals and short-range anchoring
forces on the surface was observed previously [2]. The
competition of polar and dispersion van der Waals
forces of the substrate also favors the orientational tran-
sition [3]. At the same time, the electric field of the sub-
strate substantially affects the alignment of the liquid
crystal because of its dielectric anisotropy and
enhances the polar effects at the confining surfaces [4].
The competing effect of dielectric, polar, and disper-
sion forces can be effectively observed on the orienting
surfaces of ferroelectrics. The spontaneous polarization
field of a ferroelectric single crystal depends on temper-
ature and vanishes at the point of its phase transition to
a nonpolar state. If the liquid crystal is chosen so that its
temperature of the transition to an isotropic liquid is
above the Curie point, the alignment of the nematic can
be traced until the electric field of the substrate com-
pletely disappears. The polar and surface polarization
effects on the energy of nematic anchoring to the ferro-
electric surface were discovered recently [5].

In this work the behavior of a mixture of nematic
liquid crystals is studied on the surface of a cleavage of
a ferroelectric triglycine sulfate (TGS) crystal. An ori-
entational transition in the bulk of the liquid crystal
layer due to variations of the competing forces at the
surface with temperature is reported.

Polar and nonpolar substrates were used in the
experiment for orienting liquid crystals. Areas of TGS
cleavages containing “–” domains served as polar sub-
0021-3640/02/7605- $22.00 © 20299
strates. A liquid crystal was placed in the space between
two coaxially oriented cleavages [6] separated by wire
spacers 20 µm in diameter. Mixture B ((2/3) MBBA +
(1/3) EBBA) was used as the liquid crystal in order to
extend the temperature range of the existence of the
mesophase [7]. An observation using a polarization
microscope demonstrated that the mixture existed as a
nematic phase up to 51.5°C, that is, above the ferroelec-
tric phase transition temperature (49°C). With the aim
of visualizing the orientational effects under conditions
of the intrinsic birefringence of the substrates, the
anthraquinone dye KD-10 [6] was added to the mixture
in the amount of 0.3 wt %, whose absorption band max-
imum coincided with the He–Ne laser wavelength (λ =
632.8 nm). Observations by polarization microscopy
led to the conclusion that the nematic mixture is in a
planar alignment along the crystallographic axis c of
TGS. Absorption spectra D|| and D⊥  of the KD-10 dye
in the nematic phase of mixture B at a fixed temperature
(23°C) are presented in Fig. 1. The large value of the
dichroic ratio D||/D⊥  = 7 at the He–Ne laser wavelength
provides the possibility of reliably observing the orien-
tational effects. TGS cleavage plates made a small con-
tribution to polarized absorbance components. This con-
tribution was determined in samples that did not contain
a liquid-crystal mixture and a dye and was taken into
account in the experiment. The spectrum was obtained
on an SF-20 spectrophotometer connected to a com-
puter. Nonpolar substrates were glass plates treated by
depositing a polymer film of poly(vinyl alcohol) on
them. It is known [8] that such a treatment gives a non-
polar surface layer and provides a homogeneous align-
ment of nematics. The substrates were oriented uniaxi-
ally (that is, the directions of their easy orientation axes
coincided) and were separated by Teflon spacers 20 µm
thick. Mixture B with the KD-10 dye was poured in the
gap between the substrates in the isotropic phase.
002 MAIK “Nauka/Interperiodica”
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The orientational texture of the liquid crystal mix-
ture was studied by placing the samples in a thermo-
stated cell. The temperature was scanned by a thermo-
stat and was measured by a copper–constantan thermo-
couple. A He–Ne laser beam passed through the sample
so that the direction of its polarization coincided with
the director n of the nematic mixture and the crystallo-
graphic axes of the TGS plates. The intensity I|| of the
modulated signal was taken from a photodiode and was
measured by a selective nanovoltmeter. Next, the sam-
ple was rotated around the laser beam through 90°, and
the temperature dependence of I⊥  was recorded. The
magnitude of I0 corresponded to the intensity of the
laser radiation passed through the sample area free of
the liquid crystal mixture. The experimental procedure
with the use of laser radiation allowed the state of a
sample to be controlled by a polarization microscope

Fig. 1. Polarized absorption spectra D|| and D⊥  of the
KD-10 dye in nematic mixture B between TGS cleavages in
a 20-µm gap at a temperature of 23°C.

Fig. 2. Absorbance components ν|| and ν⊥  of the KD-10 dye
at the He–Ne laser wavelength in nematic mixture B
between two polar surfaces of TGS cleavages in a 20-µm
gap as functions of temperature.
while scanning the temperature so as to exclude the
possible motion of domain walls on TGS cleavage sur-
faces [9]. The mixture absorbance components corre-
sponding to the dye absorption band maximum for the
light polarization directions parallel and perpendicular
to the director were calculated by the equations ν|| =

 and ν⊥  =  [7]. 

The absorbance components ν|| and ν⊥  of the dye at
the He–Ne laser wavelength are given in Fig. 2 as func-
tions of temperature for nematic mixture B on polar
surfaces. The experimental data in Fig. 2 demonstrate a
significant decrease in ν|| and an insignificant increase
in ν⊥  in the vicinity of the ferroelectric phase transition.
The components become equal on the transition of TGS
to the nonpolar state (49°C). The temperature depen-
dence of ν|| and ν⊥  is shown in Fig. 3 for mixture B on
nonpolar substrates. The curves draw closer together up
to the point of the phase transition of the nematic mix-
ture to the isotropic liquid (51.5°C). The difference in
the run of the polarized absorbance components on
polar and nonpolar surfaces points to an orientational
effect, which accompanies the decrease in the order
parameter of the liquid crystal with increasing temper-
ature. The ν|| and ν⊥  components on polar substrates are
equal to each other above the point of the phase transi-
tion of the ferroelectric to the nonpolar state, in which
the electric field of the substrate disappears, but below
the point of the phase transition of the nematic mixture
to the isotropic liquid, up to which this mixture retains
its liquid crystal properties. This fact allows the conclu-
sion that the nematics undergo an orientational transi-
tion from the planar to homeotropic texture.

In order to analyze the experimental data, let us con-
sider processes at the boundary of the liquid crystal
layer. On the TGS cleavage surface, the electric field of
the spontaneous polarization of the ferroelectric
“packs” the molecules of the nematic mixture, because
of its negative dielectric anisotropy, in the substrate
plane [9]. The field may turn out to be nonuniform
across the thickness of the polarized layer of the liquid
crystal λD with the average dielectric constant ε and to
make a contribution to the surface energy proportional
to the quadrupole density q [9] and the density σ of
charges adsorbed on the surface [4]. The total contribu-
tion of the electric field to the surface energy, depend-
ing on the deflection angle θ of the liquid crystal direc-
tor from the normal to the surface, was fe =
(−π∆εσλD/ε2 + 4πq/ε)cos2θ) = wecos2θ [4]. Van der
Waals dispersion forces of the substrate favors the pla-
nar texture, because these forces are responsible for the
difference in the alignment of nematics on the “+” and
“–” domains of TGS [9]. The anisotropic part of the
surface energy for dispersion forces, without taking
into account correlations between molecular orienta-
tions and assuming the equality of the order parameter
in the bulk and at the surface of the liquid crystal cell,
can be represented in the form fd = wdcos2θ [3]. Thus,

I0/I ||( )log I0/I ⊥( )log
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the contributions of the electric field and dispersion
forces to the surface energy of nematics have the same
angular dependences. In addition, these forces give rise
to unidirectional moments on the surface. The temper-
ature dependences of the spontaneous polarization vec-
tor of the ferroelectric [10] and the order parameter of
nematics on glass surfaces [11] qualitatively coincide
and cannot generate the reorientation threshold of the
liquid crystal [1]. These features allow us not to con-
sider the competition of the given factors in our exper-
iment. At the same time, the asymmetric action of the
liquid crystal–solid interface and the character of the
interaction of the ends of molecules with the TGS
cleavage surface [9] may give rise to a polar moment
favorable to the homeotropic alignment of nematics.
The surface induces a polar order parameter, which
contributes to the surface energy fp = −wpcosθ [3]. The
coefficient wp also takes into account surface polariza-
tion. This polarization is due to ordering of molecular
dipoles and interacts with the electric field of the sub-
strate [12]. Competition between the polar fp and dis-
persion fd factors leads to a temperature-induced orien-
tational transition in nematics [13]. The minimization
of the free energy carried out in [3] gave cosθ = 1 if
wp > wd and cosθ = wp/wd at wp < wd. Because the tem-
perature dependences of wp and wd are different, an ori-
entational transition may occur from planar to homeo-
tropic texture. Suppose that in our case wp < wd. Polar
moments favor homeotropic alignment. However, both
the electric field and surface dispersion forces tend to
orient the director of nematics in the planar geometry.
As the electric field of the ferroelectric decreases with
increasing temperature and completely disappears
above the Curie point, the competition of dispersion
and polar forces lead to the homeotropic texture.
Another contribution to the surface energy should also
be taken into account. This contribution is due to the
gradient of the scalar order parameter of the liquid crys-
tal at the surface, which can be represented in the form
fq = wqcosθ4 [14]. The coefficients wp and wd differ in
their temperature dependence, and an orientational tran-
sition of the nematic is possible. However, the contribu-
tion of fq commonly turns out to be small [4]. It was this
instance that did not allow the significant difference in
the anchoring coefficients of MBBA on the TGS cleav-
age surfaces for the planar and homeotropic alignments
to be explained using this mechanism [5, 15].

Thus, an orientational transition of nematic mix-
ture B from the planar texture to the homeotropic one
was observed. The alignment was a consequence of the
competition of three contending factors: the electric
field of the ferroelectric tends to “lay” liquid crystal
molecules in the substrate plane and the van der Waals
anchoring forces favor the planar alignment, whereas
the polar effects give rise to the homeotropic texture.
The transition is due to a difference in the temperature
dependence of the competing factors and a decrease in
JETP LETTERS      Vol. 76      No. 5      2002
the electric field of the substrate down to its complete
disappearance at the Curie point of the ferroelectric.
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Fig. 3. Absorbance components ν|| and ν⊥  of the KD-10 dye
at the He–Ne laser wavelength in nematic mixture B
between two nonpolar glass surfaces in a 20-µm gap as
functions of temperature.
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The problem of pairing in anisotropic electronic systems possessing patches of fermion condensate in the vicinity
of the Van Hove points is analyzed. Attention is directed to opportunities for the occurrence of non-BCS pairing
correlations between the states belonging to the fermion condensate. It is shown that the physical emergence of
such pairing correlations would drastically alter the behavior of the single-particle Green function, the canonical
pole of Fermi-liquid theory being replaced by a branch point. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.Mn
The ground state of conventional superconductors at
zero temperature is known to be a condensate of Coo-
per pairs with total momentum P = 0. In Fermi-liquid
theory, the familiar BCS structure of the ground state is
associated with the logarithmic divergence of the parti-
cle–particle propagator at P = 0 and is independent of
the details of the pairing interaction. However, a mark-
edly different situation can exist in strongly correlated
systems in which the necessary stability condition for
the Landau state is violated and the Landau quasiparti-
cle momentum distribution suffers a rearrangement.
Under certain conditions, this rearrangement leads to a
fermion condensate (FC): a continuum of dispersion-
less single-particle (sp) states whose energy e(p) coin-
cides with the chemical potential µ over a finite (and, in
general, disconnected) domain p ∈  ̂  in the momentum
space [1–6]. In such a case, the preference for pairing
with P = 0 comes into question because of the degener-
acy of the FC sp spectrum, and the nature of pairing
depends on the configuration assumed by the FC.

Here we study a two-dimensional square-lattice sys-
tem having lattice constant l, in which the FC is situated
in domains adjacent to four Van Hove points with coor-
dinates (±π/l, 0) and (0, ±π/l), while the sp states with
ordinary dispersion are concentrated around diagonals
of the Brillouin zone [2, 5]. To proceed efficiently, we
shall focus on the nature of particle–particle correla-
tions in the FC subsystem and ignore contributions
from the sp states with nonzero dispersion. It is
assumed that all the particle–hole contributions have
already been taken into account in terms of an effective
single-particle Hamiltonian with sp spectrum ξ(p) =
e(p) – µ. Accordingly, only pairing contributions
should be incorporated in the equation for the Green

function Gαβ(x, x') = –i 〈Tψα(x) (x')〉 . For simplicity,

¶This article was submitted by the authors in English.

ψβ
†
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spin indices α, β, etc., will henceforth be omitted. The

Green function is then expressed as G(p, ε) = [ (p,
ε) – Σ(p, ε)]–1 in terms of the free Green function

(p, ε) = ε – ξ(p) and a self-energy or mass operator
Σ(p, ε). In superfluid electron systems with an FC, the
familiar Cooper pair (“C-pair”) of BCS theory, which
by definition has momentum P = 0, can form only from
sp states of diagonally opposite patches of the FC. The
electron mass operator Σ is given by the usual formula

Σ = –∆ ∆, where (p, ε) = –[ε + ξ(p)]–1 and ∆ is the
amplitude associated with generation of the BCS pair.
In this case the electron Green function G has the con-
ventional pole, and the sp spectrum, given by E(p) =
[ξ2(p) + ∆2]1/2, possesses a gap specified by ∆.

In anisotropic electron systems inhabiting crystal-
line materials that exhibit fermion condensation, all FC
patches should in principle be treated on an equal foot-
ing. It follows that pairing correlations affecting sp
states located in neighboring FC patches may become
important. Since the fraction of the Brillouin zone
occupied by the FC is small, these correlations are
specified by the antiferromagnetic vector Q = (π/l, π/l).
In the conventional situation, the BCS coupling con-
stant prevails, and the formation of “Q-pairs” having
momentum Q is irrelevant. However, in the antiferro-
magnetic scenario for fermion condensation [5],
wherein the scattering amplitude Γ is approximated by
the well-known spin-fluctuation-exchange term [7]

(1)

the constant λC associated with C-pair formation coin-
cides with the Q-pair coupling constant λQ. Upon sup-

Go
1–

Go
1–

Go
– Go

–

N0Γ q Q ω,( )

=  
s1 s2⋅

κ2 pF
2– q Q–( )2 β2 iω/ω0+ +

-------------------------------------------------------------------– ,
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plementing Eq. (1) by regular terms, the ratio λQ/λC

may vary in either direction. This prompts us to inves-
tigate the condition for stability of the BCS state against
perturbations ∆' of the BCS gap function characterized
by vectors close to Q (see below).

If this condition is violated, then Q-pairs must enter
the picture. The most likely outcome is the Larkin–
Ovchinnikov–Fulde–Ferrell (LOFF) [8, 9] scenario, in
which the Q-pair condensate simply replaces the C-pair
condensate of the BCS description. In the LOFF sce-
nario, the new ground state usually ceases to be homo-
geneous. However, in the present case involving the
single commensurate vector Q, the system remains
homogeneous. Another possibility is that the new
ground state becomes a “cocktail” composed of C- and
Q-condensates. In this nonabelian exemplar of the pair-
ing problem, the whole band of many-particle–many-
hole states, envisioned as a conglomerate of C- and
Q-pairs, comes into play. A similar situation occurs in
the microscopic theory of rotation treated as a collec-
tive excitation [10].

To gain insight into the problem, let us represent the
relevant mass operator Σ in terms of Feynman dia-
grams, as illustrated in the figure. The propagator of a
C-pair is depicted by a double solid line; the propagator
of a Q-pair, by a double dashed line; and that of an elec-
tron, by a single solid line. The open circle stands for
the usual block of the Feynman diagrams representing
the amplitude ∆ for generation of a C-pair, while the
solid circle stands for the block D of similar diagrams
describing generation of a Q-pair. Within a BCS-like
approximation, only diagrams (a) and (b) are relevant,
as in the conventional case of interband transitions.

In drawing more complicated diagrams contributing
to the mass operator, these restrictions must be obeyed:

(i) Emission of a pair of either type (C or Q) must be
compensated by its absorption, ensuring particle con-
servation. In fact, pair emission and pair absorption
must alternate from left to right in any diagram.

(ii) The direction of the single electron line reverses
upon passing through a circle, whether open or solid.

(iii) The first (leftmost) and the last (rightmost) cir-
cles must be of the same type.

(iv) The first two circles cannot be of the same type;
otherwise the diagram is reducible. Likewise, the last
two circles cannot be of the same type.

With these restrictions, the equation for the mass
operator Σ can be expressed in closed form, since only
two different degrees of freedom are involved. We
obtain a system of three equations,

(2)

Σ ∆+GC
– ∆– D+GQ

– D,–=

GC Go GoD+GQ
– DGC,–=

GQ Go Go∆
+GC

– ∆GQ.–=
JETP LETTERS      Vol. 76      No. 5      2002
Upon introducing the dimensionless quantities XC =
GC/Go, XQ = GQ/Go, and

(3)

this system can be conveniently rewritten

(4)

The second of Eqs. (4) gives XC  = (1 – XC)/KQ;
insertion of this relation into the third equation of the

set leads to KC  + (KQ – KC + 1)XC – 1 = 0. Analogous

operations yield KQ  + (KC – KQ + 1)XQ – 1 = 0.
These quadratic equations have respective solutions

(5)

The Green function G is now easily evaluated from the
first of Eqs. (4), with the result

(6)

The same result may be derived from the equations of
motion [11]. We observe that the conventional Fermi-
liquid-theory pole has been replaced by a branch point.
The new Green function (6) possesses a nonzero imag-
inary part over a finite interval in ε delimited by the two
zeros E± of the denominator of G. This is our primary
result.

For the sake of clarity, let us neglect the inclination
of the FC plateau in the spectrum of the sp excitations

KC Go∆
+Go

–∆,=

KQ GoD+Go
–D,=

ΣGo KCXC– KQXQ,–=

XC 1 KQXCXQ
– ,–=

XQ
– 1 KCXCXQ

– .–=

XQ
–

XC
2

XQ
2

XC

KC 1– KQ– KC 1– KQ–( )2 4KC+[ ] 1/2
+
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--------------------------------------------------------------------------------------------------,=

XQ

KQ 1– KC– KQ 1– KC–( )2 4KQ+[ ] 1/2
+
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G
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Diagrammatic representation of contributions to the mass
operator Σ.
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due to pairing and set ξ(p ∈  F) ≡ 0, just as in the system
with an FC present but without pairing. We then find

(7)

where E±(∆ ± D)2, and Eq. (6) takes the form

(8)

Another interesting result concerns the topological
charge N introduced by Volovik [2] to analyze the struc-
ture of the sp Green function of Fermi systems. Sup-
pressing a trace over spin and band indices, this quan-
tity is given by

(9)

where the behavior of G is considered on an imaginary
semiaxis of frequencies ε = iΩ and the integral is eval-
uated along an arbitrary contour C in the space (Ω, p)
enclosing the singularity (a linear singularity—the
Fermi line—occurring at Ω = 0). The topological
charge has the value N = 1 for a normal Fermi liquid
and remains unchanged for marginal and Luttinger
Fermi liquids. However, when a fermion condensate is
present, its value shrinks to N = 1/2 [2]. If we now gen-
eralize the definition of N to apply to superfluid sys-
tems, asserting simply that the integration contour
embraces the singularity of G, the topological charge
evaluated for the Green function (8) is again N = 1/2,
since the full variation of the argument of G over the
contour amounts only to π. We conclude that the topo-
logical charge is conserved in the superfluid phase tran-
sition induced by non-BCS pairing.

Beyond these formal results, there is the pivotal
question of whether non-BCS pairing of the kind
described here can, in reality, win the contest with ordi-
nary BCS pairing when the effective interaction Γ takes
the form (1) and therefore entails comparable values of
the two coupling constants λC and λQ. Resolution of
this issue requires knowledge of the actual gap func-
tions ∆ and D. Generalized gap equations determining
the two gap functions may be derived by summation of
the appropriate diagrams of the scattering amplitude in
the particle–particle channel, as is done in the diagram-
matic foundation of BCS theory. Explicitly, these equa-
tions read

(10)

KC KQ– 1+( )2 4KQ+[ ] 1/2

=  ε 2– ε2 E+
2–( ) ε2 E–

2–( )[ ] 1/2
,

G ε( ) ε
ε2 E+

2–( ) ε2 E–
2–( )[ ] 1/2

-----------------------------------------------------, p ^.∈=

N
ld

2πi
--------G ω p,( )∂lG

1– Ω p,( ),

C

∫°=

∆ p( ) 9 p p1 P 0=, ,( )GC
– p1 ε,( )∫–=

× ∆ p1( )G p1 ε,( )dv p1

εd
2πi
--------,

D p( ) 9 p p1 P Q=, ,( )GQ
– p1 Q ε,+( )∫–=
where 9(p, p1, P = 0) and 9(p, p1, P = Q) are the
respective blocks of scattering-amplitude diagrams
irreducible in the particle–particle channel and speci-
fied by pair momenta 0 and Q, while dvp denotes the
FC momentum-space volume element. At nonzero tem-
perature T, the usual factor tanh(ε/2T) is to be inserted
in the integrands of Eqs. (10).

In the familiar case with D = 0, the second equation
in the set (10) disappears, and we are left with the single
gap equation of BCS theory. Conversely, if ∆ = 0, only
the second equation in (10) survives, and we are led to
the LOFF type of pairing. A third possibility is the
emergence of a “cocktail” with both ∆ ≠ 0 and D ≠ 0.
To decide which of the competing scenarios prevails in
a given case, we should compare the respective super-
fluid corrections δEN and δEBCS to the ground-state
energy (i.e., we should compare the condensation ener-
gies for the different pairing alternatives, where N
labels one or another non-BCS scenario).

It is instructive to treat a simple model in which the
blocks 9(p, p1, P = 0) and 9(p, p1, P = Q) are approx-
imated by respective constants λC and λQ in the FC
region, while vanishing outside. The solutions ∆ and D
of Eqs. (10) are then also constants in this domain and
zero outside. The non-BCS condensation energy is
given by the formula

(11)

which may be derived in the same manner as the anal-
ogous formula for δEBCS appearing in the Landau–Lif-
shitz textbook [12]. In obtaining this result, the ratio
λQ/λC has been fixed.

A comprehensive study of the problem requires a
knowledge of the sp spectrum ξ(p) = e(p) – µ, since
when pairing occurs, ξ(p) necessarily differs from zero
even in the momentum region ^ occupied by the FC
[1]. In evaluating ξ(p), one can employ the standard
relation

(12)

where δn = n – n0 is the difference between the momen-
tum distributions for the superfluid and nonsuperfluid
states of the system with the fermion condensate
present, δe is the corresponding difference in the sp
spectra, and f is the effective interaction in the particle–
hole channel.

In analyzing the problem, we exploit the fact that the
strength f of the effective interaction f(p, p1) in the par-
ticle–hole channel exceeds its strength in the particle–
particle channel. This allows one to expand ξ(p) as
given by Eq. (12) in a Taylor series with respect to the

× D p1( )G p1 ε,( )dv p1

εd
2πi
--------,

δEN λ( ) ∆2 D2+

λ1
2

------------------ λ1,d

0

λ

∫–=

δe p( ) f p p1,( )δn p1( ) v p1
, p ^,∈d∫=
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order parameter ∆ and evaluate the coefficients of the
expansion by equating terms of the same power in this
parameter. To illustrate the procedure, consider the sit-
uation in which the ordinary C-pairing of BCS theory
prevails. In this case,

(13)

where

(14)

and E(p) = [ξ2(p) + ∆2]1/2. Let us now insert the expan-
sion

(15)

first into Eq. (14) and then into Eq. (12), thereby
obtaining

(16)

Here we have neglected an insignificant variation of
the chemical potential of order ∆2. Since the gap value
∆ is small, one can expand the right-hand-side of
Eq. (16) into a Taylor series in ∆. Every term of the lat-
ter expansion must necessarily coincide with the
respective term of the Taylor expansion on the left-
hand-side of the equation. Focusing on the terms of
zeroth power in ∆, which are absent from the left-hand-
side of Eq. (16), this fact is seen to require that the term

1 – ξ1(p)/[ (p) + 1]1/2 – 2n0(p) on the right-hand-side
is identically zero, which in turn yields

(17)

∆ λC n p( ) 1 n p( )–( ) v p,d∫̂–=

n p( ) E p( ) ξ p( )–
2E p( )

-----------------------------=

ξ p( ) ξ1 p( )∆ ξ2 p( )∆2 …, p ^∈+ +=

ξ1 p( )∆ ξ2 p( )∆2 …+ + f p1 p1,( )∫̂=

× 1
2
---

ξ1 p1( ) ξ2 p1( )∆ …+ +

2 ξ1 p1( )( ξ2 p1( )∆ …+ +( )2 1+[ ]
-------------------------------------------------------------------------------– n0 p1( )–

× v p1
.d

ξ1
2

ξ1 p( )
1 2n0 p( )–( ) ]

2 n0 p( ) 1 n0 p( )–( )[ ] 1/2
-------------------------------------------------------,=

E1 p( ) ∆
2 n0 p( ) 1 n0 p( )–( )[ ] 1/2
-------------------------------------------------------, p ^.∈=
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These conditions are virtually equivalent to the coinci-
dence of n0(p) in the FC region, in the limit ∆  0.
Equating the terms linear in ∆ on the left and right of
Eq. (16), one can find the quantity ξ2, and so on to
higher orders as needed. The analysis shows that the
dimensionless ratio ξ2(p)∆/ξ1(p), which is proportional
to the ratio (9/f ) ~ (Tc/Tf) of the critical temperature Tc

of the pairing transition to the characteristic tempera-
ture Tf of fermion condensation, always remains
rather small because the interaction f must be very
strong for a fermion condensate to form. It is thus a
reasonable approximation to retain only the term ξ1 in
expansion (15).

One can proceed analogously in the general case
with D ≠ 0. The same argumentation can in fact be
applied to evaluate the variation of the FC spectrum
with T in the normal state at temperatures near Tc. The
result becomes especially transparent if one may ignore
damping effects, in which case the standard formula
n(p, T) = [1 + exp(ξ(p, T)/T)]–1 may be employed in
Eq. (12) to obtain [1, 3]

(18)

The key equations (10) and (12) are cumbersome to
analyze and solve. However, their treatment is facili-
tated if we work in the temperature region close to the
critical temperature Tc, since one of the gap functions ∆
or D vanishes, while the other satisfies a linear equation
yielding the corresponding critical temperature, Tc1 (for
∆ ≡ 0) or Tc2 (for D ≡ 0). If BCS pairing is victorious,
this equation takes the customary form [13]

(19)

Suppressing an insignificant variation of the momen-
tum distribution n(p, T) with T and inserting ξ(p, T)
from Eq. (18), we arrive at the relation

(20)

which determines Tc1. In the opposite case, for which
the Q-condensate disappears at Tc2 > Tc1, the analog of
Eq. (20) is found to be

ξ p T,( ) T
1 n0 p( )–

n0 p( )
----------------------, p ^.∈ln=

1 λC

1 2n p Tc1,( )–
2ξ p Tc1,( )

---------------------------------- v p.d∫–=

Tc1

λC

2
------

1 2n0 p( )–
1 n0 p( )–[ ]ln n0 p( )ln–

---------------------------------------------------------- v p,d∫–=
(21)Tc2 λQ

1 n0 p( ) n0 p Q+( )––
1 n0 p( )–( ) n0 p( )ln 1 n0 p Q+( )–( ) n0 p Q+( )ln–ln+–ln

------------------------------------------------------------------------------------------------------------------------------------------------ v pd .∫̂–=
We see that the outcome of the contest between C- and
Q-condensates at sufficiently high temperatures
depends crucially on the arrangement of the FC.

What conditions ensure the occurrence of the cock-
tail solution of the gap equations (10)? We answer this
question for the case T = 0 by considering the stability
condition

(22)

∆' k ω,( ) 9F '( )–≡

=  9 G– p ε,( )G p k+ ε ω+,( )[∫–
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for the BCS state in the particle–particle channel,
derived from the first of Eqs. (10) with D set identically
to zero. Violation of stability is signaled by the emer-
gence of imaginary frequencies ω(k) in solutions of this
equation. In the most dangerous case, the wave vector
k associated with the perturbation ∆' coincides with Q
and involves the block 9(p, p1, Q), which we treat as a
parameter λQ. The stability condition is violated if the

coupling constant λQ exceeds a critical value . The

equation fixing  is

(23)

where G and F are the pair of Green functions entering
the system of Gor’kov equations. Upon substituting the
explicit forms for these functions, Eq. (23) may be con-
verted into

(24)

the gap ∆(λC) and the spectra E(p, λC) and ξ(p, λC)
being given by Eqs. (13) and (17). Equation (24) serves

to determine the critical constant  for given λC, and

the pure BCS vacuum is destroyed if λQ > .

Violation of the stability condition for the state with
a pure Q-condensate may be analyzed along the same
lines. In this case, one employs the second of Eqs. (10)
with ∆ set identically zero and determines the critical

constant  responsible for destroying the pure Q-pair-
ing state as a function of λQ. Now, suppose that the two

curves (λQ) and (λC) are plotted on the plane (λC,
λQ). If a region is found in which both the C- and
Q-condensates lose their stability, then the cocktail
solution of Eqs. (10) must prevail throughout that
region.

Finally, we turn briefly to possible experimental
consequences of non-BCS pairing. In conventional
superconductors, the linewidth is known to be very nar-

+ F p ε,( )F p k+ ε ω+,( ) ]∆ ' k ω,( )dv p
dε
2πi
--------

λQ
cr

λQ
cr

1 λQ
cr G p ε,( )G Q p– ε–,( )[∫̂–=

+ F p ε,( )F Q p– ε–,( ) ]dv p
dε
2πi
--------,

1

=  λQ
cr E p( )E p Q+( ) ξ p( )ξ p Q+( ) ∆2+ +

2E p( )E p Q+( ) E p( ) E p Q+( )+[ ]
---------------------------------------------------------------------------------------- v p,d∫̂–

λQ
cr

λQ
cr

λC
cr

λC
cr λQ

cr
row, but this would not be the case if non-BCS pairing
were to occur (see Eq. (8)). A significant broadening of
the sp line is predicted to accompany the cocktail solu-
tion. Such a spectral broadening would affect many
prominent experimental signatures of pairing, notably
the falloff of the specific heat C(T) as T  0 (slower
than in the BCS case), the dependence of the gap value
on T, and the behavior of the penetration depth. Another
specific feature of the non-BCS solutions is related to
possible violation of the property of time-reversal
invariance. This property is of course intrinsic to BCS
theory, since the ground state is time-reversal invariant
by construction. However, if the total momentum P of
the pairs involved differs from zero, special restrictions
are needed to maintain the invariance.

We are indebted to G.E. Volovik and M.V. Zverev
for numerous valuable discussions. This research was
supported in part by NSF Grant no. PHY-9900713, by
the McDonnell Center for the Space Sciences, and by
the Russian Foundation for Basic Research, grant
no. 00-15-96590.
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It is found that a magnetic field up to 20 T affects photoluminescence absorption spectra in NaCl:Eu crystals in
the process of impurity aggregation into complexes. The spectral changes are irreversible and are observed after
quenching the crystals at the early stages of the formation of small metastable complexes containing impurity–
vacancy Eu2+–V dipoles. Emporal correlations revealed between the occurrence of the magnetoplastic effect
and a change in the optical properties of the crystals in a magnetic field. © 2002 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 75.80.+q; 78.55.Hx; 61.72.Hh
The discovery of magnetoplastic effects in ionic
crystals [1–10] and the experimental corroboration of
spin-dependent mechanisms of the magnetic field
effects on plasticity [11, 12] revealed new aspects of the
physics of structural defects and posed numerous prob-
lems in this area. Notwithstanding abundant evidence
of the existence of magnetoplastic effects in dielectrics
[1–12], metals [13–15], and semiconductors [16–20],
comprehensively justified models of such phenomena
have not been proposed so far. The main obstacles are,
first, the absence of convincing data on the type of
atoms of which the defects that determine the occur-
rence of magnetoplastic effects are composed and, sec-
ond, the absence of direct methods for measuring the
amount of elementary spin-dependent events in a mag-
netic field. Indirect information on such events obtained
in studying the mobility of individual dislocations and
other characteristics of plasticity gives no way of unam-
biguously determining microscopic parameters of the
defects under study.

The aim of this work is to create experimental con-
ditions for observing the magnetic field effect on pho-
toluminscencve excitation spectra of ionic crystals in
which magnetoplastic effects is observed.

Procedure. NaCl:Eu crystals (~0.01 at. %) were
chosen for the investigation because (1) magnetoplastic
effects are observed in these crystals and arise, accord-
ing to suggestions made in [10, 11], because of the
structural rearrangement of complexes of impurity–
vacancy dipoles (Eu2+ ion + cation vacancy V), which
are stoppers for dislocations; (2) magnetic properties of
Eu2+ ions and some of their large complexes are well
known (see reviews [21, 22]); and (3) Eu2+–V centers in
ionic crystals give intense photoluminescence whose
0021-3640/02/7605- $22.00 © 20307
excitation spectrum is sensitive to the aggregation of
single impurity–vacancy dipoles into complexes [21,
22].

Magnetic field pulses of 10-ms duration and ampli-
tude B up to 20 T were generated in a short solenoid by
a discharge of a condenser battery. The magnetic field
with induction B ~ 10 T is “weak” for the system of
paramagnetic defects at hand, because the energy µB ~
10–3 eV, which it can impart to an Eu2+ ion with a mag-
netic moment µ (µ ~ µB, µB is the Bohr magneton) is an
order of magnitude less than the mean energy of ther-
mal fluctuations kT ~ 10–2 eV at T ~ 300 K. Hence, the
presence of nonequilibrium defects is of principal
importance for observing the effect of a weak magnetic
field on the physical properties of crystals [11]. In our
experiments, the magnetic field effect on photolumi-
nescence spectra was sought in quenched crystals.
These crystals contained nonequilibrium complexes of
impurity–vacancy dipoles and exhibited a magneto-
plastic effect within ~ 50 h after quenching [10].

The quenching of crystals was carried out after their
heating for 1–2 h at a temperature of 770 K by cooling
on a copper plate to a temperature of 293 K with an
average rate of ~ 5 K/s. To prevent the diffusion deleted
of oxygen, hydroxyl groups, etc., into the crystals, the
thermal treatment was performed in a He or Ar atmo-
sphere.

The luminescence of crystals was excited by the
ultraviolet light of a DKCSh-120 lamp passed through
an MDR-4 monochromator and was measured with a
second MDR-6 monochromator and an FÉU-106 pho-
tomultiplier. All spectra were obtained at room temper-
ature.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Photoluminescence excitation spectrum (on the
right) recorded at 428 nm (Elum = 2.9 eV) and a lumines-
cence spectrum (on the left) excited by light with a wave-
length of 350 nm (Eex = 3.7 eV) of NaCl:Eu single crystals:
(a) before (dashed line) and after (solid line) quenching and
(b) before (solid line) and after (dashed line) exposure of the
quenched crystals in a magnetic field with B = 20 T. The
inset in Fig. 1b demonstrates the system of Eu2+ ions elec-
tronic levels split by the crystal field, between which transi-
tions take place under the action of light. The numbering of
transitions 1, 2, and 3 coincides with the numbering of
bands S1, S2, and S3. Radiationless transitions are desig-
nated by wavy line 4.

Fig. 2. Dependence of the value of (1 – S1/S2) (relative dif-
ference in integral intensities of the S1 and S2 bands of the
luminescence excitation spectrum) on the magnitude B of
the magnetic field pulse.
Results and discussion. Quenching causes the dis-
solution of large complexes of impurity–vacancy
dipoles (precipitates) [21, 22]. The corresponding
changes in the photoluminescence spectrum due to the
quenching of crystals are in the disappearance of bands
assigned to the glow of precipitates of three types:
(1) ordered aggregates of impurity–vacancy dipoles
along the (301) planes (at the emitted light quantum
energy Elum = 2.56 eV), (2) ordered aggregates of impu-
rity–vacancy dipoles along the (111) planes (Elum =
2.83 eV), and (3) the EuCl2 Suzuki phase (Elum =
3.03 eV) [21]. The bands that remained after quenching
in the luminescence spectrum (at Elum = 2.90 eV) and in
the luminescence excitation spectrum (Fig. 1a) corre-
spond to impurity–vacancy dipoles and their small
(undetectable by x-ray methods) nonequilibrium com-
plexes of unknown structure [21]. The sensitivity of
optical properties of these complexes to a magnetic
field was the subject of investigation.

In order to provide a way for complexes of various
atomic configurations to form, each sample after
quenching was held during a certain time t (from
10 min to 2 months) at room temperature. After that,
the photoluminescence excitation spectrum of the sam-
ple was measured, which served for determining the
initial state of the impurity before the exposure of the
sample to a magnetic field. Next, the sample was
exposed to a magnetic field, and the photoluminescence
excitation spectrum was measured again. Subsequently,
we compared the spectra obtained before and after the
exposure of the sample to a magnetic field; that is, we
attempted to detect the residual changes induced by the
field.

It was found that exposure of a crystal to a magnetic
field with B = 20 T at T = 293 K gave rise to a change
in the ratio of intensities in the S1 and S2 bands of the
photoluminescence excitation spectrum recorded at
428 nm (Elum = 2.90 eV) (Fig. 1b). The quantity 1 – S1/S2,
which expressed the relative difference in the emitted
energies at the same (in terms of the photon flux) exci-
tation for the S1 and S2 bands, was chosen as character-
istic of the residual changes of the excitation spectrum
after the exposure of a crystal to a magnetic field. As the
magnetic field induction increased, a monotonic
increase in the value of 1 – S1/S2 was observed at T =
293 K (Fig. 2).

The magnetic field effect on the optical properties of
crystals can be observed only in the samples that were
held after quenching at room temperature for 15 h < t <
100 h. At different t that fall outside this range, no
change in the value of 1 – S1/S2 action was observed
under exposure to magnetic field; that is, ∆(1 – S1/S2) = 0
(Fig. 3a). This is in good agreement with the results
obtained in [10], where a change in the microhardness
∆H of NaCl:Eu crystals was observed after their expo-
sure to a magnetic field with B = 6 T at 30 h < t < 80 h
(Fig. 3a). Correlation is also observed between the vari-
ations of the absolute value of the microhardness H and
JETP LETTERS      Vol. 76      No. 5      2002
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the quantity S1/S2 with time after the quenching of crys-
tals (Fig. 3b).

If, after the first exposure of a crystal to a magnetic
field with B = 20 T and the recording of the changes in
its excitation spectrum, the crystal was exposed to the
field several more times, no additional changes were
observed (Fig. 4a). This fact was verified within both
several hours and several days after the first exposure of
a crystal to a magnetic field. Hence, a single magnetic
field pulse leads to a complete and irreversible transfor-
mation of all the magnetically sensitive defects occur-
ring in the crystal. Nevertheless, it was possible to
observe the magnetic field effect on the photolumines-
cence excitation spectrum in the same sample up to
three times if the crystal was previously quenched and
held at T = 293 K during ~ 50 h at each such attempt
(Fig. 4b).

Another type of changes induced by a magnetic field
in the photoluminescence excitation spectrum repre-
sents a change in the fine structure of the S2 band (see
inset in Fig. 5a). This band consists of several compo-
nents (Fig. 5a), the position of whose centers was found
by the twofold differentiation of the excitation spec-
trum and was fixed when the procedure of decomposi-
tion was carried out. The best fit of the spectrum is
achieved with the use of five Gaussian lines (Fig. 5a).
In spite of the fact that these lines have not been
assigned to certain small complexes of impurity–
vacancy dipoles so far, their existence has been long
known and their positions in our experiments agree
well (to 1 nm) with the data obtained in [23]. Assuming
that S2 = 1, we investigated the integral intensity (area)
of each of the four lines σi (i = 1, 2, 3, 4) as a function
of the induction of the applied magnetic field. It was
found that σ1 and σ3 remain virtually unchanged after
exposure of the crystal to a magnetic field, whereas σ2
increases, and σ4 decreases with increasing B, so that
the sum σ2 + σ4 remains constant (Fig. 5b). In studying
the dependences σi(t), where t is the time elapsed after
quenching, it was found that it was lines 2 and 4, which
are sensitive to the magnetic field, that exhibited the
greatest changes during the pause between quenching
and exposure to magnetic field (Fig. 5c).

The experimental conditions created in this work
allowed us to observe the effect of a “weak” magnetic
field on the photoluminescence of point defects com-
posed of a small number of reliably identified centers,
which represent Eu2+–V impurity–vacancy dipoles. It is
known that light excitation of the Eu2+ ions entering the
composition of such centers initiates transitions from
the 4f 7 level to the 4f 6 5d level, which is split in the
crystal field into two sublevels, t2g and eg, differing in
symmetry [21, 22] (see inset in Fig. 1b). The radiative
relaxation of excited ions proceeds from the state of the
eg symmetry with an overwhelmingly high probability
(~99%), whereas the transition from the t2g state can
proceed in two ways: either through multiphonon, fully
JETP LETTERS      Vol. 76      No. 5      2002
Fig. 3. Variations of the spectral properties and micro-
hardness of crystals: (a) (1) the increment of the value of
(1 – S1/S2) after a magnetic field pulse with B = 20 T and
(2) the change in the microhardness of crystals ∆H under
the action of a magnetic field pulse with B = 6 T [10] as
functions of the time t passed after the quenching of crys-
tals; (b) (1) the value of S1/S2 and (2) the microhardness of
crystals H [10] as functions of the time t passed after the
quenching of crystals.

Fig. 4. Distribution of intensities in the luminescence exci-
tation spectrum (1 – S1/S2) as a function of current time t:
(a) under the action of repeated magnetic field pulses with
B = 20 T at single quenching of a crystal ((1) before and
(2) after exposure to magnetic field); (b) the same as (a) at
multiple quenching of a crystal 50 h prior to each exposure
to magnetic field.
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radiationless relaxation or through radiationless transi-
tion to the eg level followed by emission with the tran-
sition from the eg level to the 4f 7 ground state [21, 22].
The change in the ratio of the integral intensities of the
S1 and S2 bands after exposure of the crystal to a mag-
netic field (Fig. 1b) can be due to an increase in the frac-
tion of the defects characterized by a high probability of
radiationless relaxation. It was reported in [24] that
such complexes were found in NaCl:Eu.

Fig. 5. (a) Decomposition of the photoluminescence excita-
tion spectrum of quenched crystals into Gaussian compo-
nents (curves 1–5); (b) and (c) areas of components σi des-
ignated in Fig. 5a by numbers (i = 1, 2, 3, and 4) as functions
of (b) the magnitude B of the magnetic field pulse and
(c) the time t passed after the quenching of crystals. The
total area S2 =  = 1 is assumed to be constant. The inset

in Fig. 5a demonstrates a fragment of the excitation spec-
trum in the S2 band before (solid line) and after (dashed
line) the exposure of a crystal to a magnetic field.

σi∑
The disappearance of the magnetic field effect on
the photoluminescence excitation spectrum as the tem-
perature at which the crystal was exposed to a magnetic
field decreased (Fig. 2) points to a significant role of
thermal fluctuations, which initiate the transitions of
metastable complexes to short-lived, magnetically sen-
sitive states. This is in agreement with the results
obtained in [11] in an investigation of magnetoplastic
effects. The dependence of 1 – S1/S2 on B obtained in
this work exhibits a similarity to the dependence of the
dislocation path on the magnetic field induction [25].

A gradual decrease in the effect of sensitization of
the optical properties of crystals with respect to expo-
sure to a magnetic field after multiply repeated quench-
ing procedures (Fig. 4b) indicates that the magnetic
field changes the probability of the formation of com-
plexes of impurity–vacancy dipoles to the benefit of the
stable configurations such that they are poorly “dis-
solved” in the next thermal treatments. Therefore,
quenching ceases to sensitize the crystals with respect
to exposure to a magnetic field after several cycles.

The areas under individual lines σi (Fig. 5) charac-
terize the amount of complexes of defects excited by
light of corresponding energy. Therefore, the mutually
compensating changes in σ2 and σ4 induced by the
magnetic field (Fig. 5b) can be interpreted as a transfor-
mation of complexes from one type to another. The
variation of the areas of these lines with the time after
quenching (Fig. 5c) indicates that the magnetically sen-
sitive complexes consist of several impurity–vacancy
dipoles rather than one.

Because the magnetic field effect on both plasticity
and photoluminescence excitation spectra reaches a
maximum within ~50 h after quenching (Fig. 3), it can
be suggested that the transformation of the same
defects in a magnetic field makes a contribution to the
change in both optical and mechanical properties of
crystals.

Conclusions. It was found that the magnetic field
exerts effect on the photoluminescence excitation spec-
trum in NaCl:Eu crystals in the process of Eu impurity
aggregation after quenching. The change of optical
properties of crystals is due to transformation of the
structure of nonequilibrium, intermediate, small Eu2+

impurity–vacancy dipole complexes in a magnetic
field.

It is revealed that the magnetic field effect on com-
plexes of point defects is irreversible. This indicates
that the role of magnetic field consists in initiating the
relaxation of metastable states of complexes. Repeated
thermal treatments, which lead to the nucleation of
metastable complexes of defects, partially sensitize the
crystal with respect to the action of a magnetic field.

It is hoped that the results obtained will replenish
the lack of information on the initial stages of the for-
mation of small clusters and nuclei of growth for vari-
ous nano- and microsamples (nanotubes, precipitates
and second phase formations in electronic materials,
JETP LETTERS      Vol. 76      No. 5      2002
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etc.). In addition, the possibility of controlling spin-
dependent stages of the impurity aggregation process
using a magnetic field extends the range of nonthermal
methods for changing the atomic structure of defects
and the corresponding structure-sensitive crystal prop-
erties. The latter is of special importance for under-
standing physical processes in Eu2+-doped dielectrics,
which find wider and wider technical applications as
elements of optical sensors and dosimeters [23, 26–29].

This work was supported by the Russian Foundation
for Basic Research, project nos. 02-02-99302, 02-15-
96703, and 01-02-97029.
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Nonlinear NMR in a Superfluid B Phase of 3He in Aerogel
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The properties of liquid 3He in a low-density aerogel preliminarily covered with a few monolayers of 4He were
studied by pulsed and nonlinear CW NMR techniques. It was found that an NMR frequency shift from the Lar-
mor value exhibits a sharp increase at a magnetization tilting angle exceeding 104°. Nonlinear CW NMR sig-
nals related to the formation of a macroscopic region featuring homogeneous precession of the magnetization
(homogeneous precession domain) were observed. The experimental results confirm that the low-temperature
superfluid 3He phase in the aerogel is analogous to the B-phase in bulk 3He and indicate that the spin supercur-
rents play an important role in the spin dynamics of superfluid 3He in aerogel. © 2002 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 67.57.Lm; 76.60.-k
1. Introduction. The theory of superfluid 3He
phases is well developed and in most cases shows a
quantitative agreement with experiment. For this rea-
son, superfluid 3He is an ideal object for verification of
the theoretical models of systems with nontrivial Coo-
per spin pairing. Presently, an important problem is to
study the influence of impurities on such an object.
Such a possibility was offered by development of the
technology of low-density aerogels. An aerogel repre-
sents a “mop” consisting of SiO2 strands with a diame-
ter on the order of 30 Å, while the characteristic dis-
tance between strands amounts to 500–1000 Å (we
imply so-called 98% aerogel, in which 98% of the vol-
ume is free, employed in most experiments with 3He).
Since the coherence length of superfluid 3He (amount-
ing to several hundreds of Angströms) significantly
exceeds the diameter of strands, the strands play the
role of impurities in 3He.

The superfluidity of 3He in aerogel was discovered
several years ago [1, 2]. At present, it is known that the
presence of strands leads to a small (20–30%) depres-
sion of the superfluid transition temperature in 3He and
that two superfluid 3He phases, analogous to the super-
fluid A and B phases in bulk 3He, may exist in the aero-
gel [3, 4]. However, the phase diagram of superfluid
3He in aerogel exhibits qualitative differences from that
of bulk 3He. In particular, the region of existence of the
equilibrium A-like phase is much smaller (even at large
pressures and in strong magnetic fields) as compared to
that of bulk 3He; however, the A-like phase remains sta-
ble in a sufficiently wide temperature interval in a
supercooled state.
0021-3640/02/7605- $22.00 © 20312
Experiments in aerogel can be performed both with
pure 3He and in the presence of a small admixture of
4He. In the former case, the NMR spectrum is signifi-
cantly influenced by the paramagnetic solid 3He, which
a high magnetic susceptibility at low temperatures and
whose two monolayers cover the surface of strands.
Upon the introduction of 4He, solid 3He is replaced by
nonmagnetic 4He and the NMR response is fully deter-
mined by the liquid 3He.

2. NMR in bulk 3He-B. In the superfluid B phase of
bulk 3He, the frequency of linear (at small excitation
amplitudes) CW NMR is determined by the angle ψ
between the direction of external magnetic field H and

the order parameter vector n: ω ≈ ωL + sin2ψ,

where ΩB is the temperature-dependent longitudinal
resonance frequency (Leggett frequency) for 3He-B and
ωL = γH is the Larmor frequency. Far from the cell
walls, n || H and ω = ωL. Near the wall, ψ ≈ 63° for H
parallel to the wall plane, which leads to a shift of the
frequency. As a result, the absorption line in the linear
CW NMR spectrum become asymmetric, comprising a
peak at the Larmor frequency and a long “tail”
extended toward high frequencies and determined by a
spatial distribution (texture) of the order parameter.

In the case of a pulsed NMR measured for suffi-
ciently large magnetization tilting angles β, the system
exhibits a texture transition and the M and n vectors
exhibit precession as if the walls were absent (the
Brinkman–Smith mode) [5]. The frequency of preces-
sion is ωL if the β value does not exceed Θ0 =

ΩB
2

2ωL
----------
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 ≈ 104°. For β > Θ0, the precession fre-
quency varies by the law

The presence of spatial inhomogeneities of the precess-
ing magnetization (e.g., due to a gradient of the field H)
leads to the appearance of spin supercurrents carrying
the longitudinal magnetization component. As a result,
a homogeneously precessing two-domain structure
(homogeneous precession domain, HPD [6]) may form
in a closed 3He-B volume. One of these domains repre-
sents a region of virtually equilibrium magnetization; in
the other, the magnetization vector is rotated by an
angle close to Θ0 and exhibits in-phase precession at a
Larmor frequency at the interdomain wall, the charac-
teristic thickness of which usually amounts to 0.2–
0.3 mm. The spin supercurrents also play an important
role in determining the stability of an HPD: spatial
inhomogeneities give rise to currents which tend to
restore homogeneous precession.

Under CW NMR conditions, when a homogeneous
magnetic field gradient (parallel to H and directed in
the z axis) is applied to a sample and the RF field fre-
quency ωrf is fixed, an HPD is formed in the course of
a gradual decrease of the homogeneous component of
the external magnetic field H0 (the RF field amplitude
must be sufficiently large) [7]. The HPD begins to form
when the coordinate z (determined by the condition
ωrf = γH(z)) reaches the cell boundary (zc). Owing to the
spin supercurrents, the magnetization tilting angle in
this region may reach and exceed the Θ0 value. When
the field H0 decreases, this region of the cell keeps in
resonance with the RF field (due to the fact that β
slightly exceeds Θ0, which leads to a positive frequency
shift). As a result, the HPD size increases and the spa-
tial distribution of β is determined by the condition that
the frequency of precession is equal to that of the RF
field; the domain wall coordinate (z0) is determined by
the resonance condition ωrf = γH(z0). The absorbed RF
power is determined by a phase difference between the
precessing magnetization and the RF field. This differ-
ence is established on a level such that the absorbed
power equals the power dissipated within the HPD via
the magnetic relaxation processes. The dissipation
increases with the HPD size. As H0 keeps decreasing,
the HPD breaks (and is not restored when H0 is scanned
in the reverse direction). If the RF field is switched off
in the presence of an HPD, the domain will retain its
homogeneity and the magnetic relaxation will only
reduce the HPD size: the domain wall moves and the
frequency of a long- lived induction signal (the duration
of which is significantly greater than the characteristic
time of dephasing in an inhomogeneous magnetic
field—τ = (γ∇ HL)–1, where L is the cell length) gradu-
ally decreases from ωrf to γH(zc).

1/4–( )arccos

ω ωL

4ΩB
2

5ωL
----------- 1 4 βcos+( )–=
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If the order parameter of a low-temperature super-
fluid 3He phase in aerogel corresponds to that of the B
phase in bulk 3He, the NMR behavior in this system
must be similar to that observed in bulk 3He-B. Accord-
ingly, it is natural to expect that the dependence of ω on
β for nonlinear NMR would exhibit a feature at
β ≈ 104°. It can be also suggested that the spin super-
currents in the 3He B-like phase in aerogel are qualita-
tively similar to those in bulk 3He-B and can lead to
HPD formation. However, until now the NMR investi-
gations of 3He in aerogel were mostly restricted to lin-
ear CW NMR response. These experiments showed
that the NMR behavior of the 3He B-like phase in aero-
gel is in fact like that of bulk 3He-B: the NMR line
exhibits broadening toward high frequencies (while a
quantity analogous to the Leggett frequency is several
times smaller in aerogel than in bulk 3He-B) and the
decrease of magnetic susceptibility with decreasing
temperature is similar to that observed in bulk 3He-B.

Until the present, pulsed NMR measurements were
performed either for pure 3He in aerogel (whereas no
features in dependence of the NMR frequency on β
were found near β ≈ Θ0) or at small magnetization tilt-
ing angles [2, 8]. Recently, a study of the nonlinear CW
NMR in superfluid 3He B-like phase in aerogel was
reported by the Grenoble group [9]. The NMR signal
characteristics (dependence on the scan direction and
the field gradient) reported in [9] corresponded to the
behavior typical of the HPD. However, the region of
existence and the amplitude of the signal observed in
[9] were smaller than one may expect from an HPD
with the length significantly exceeding the domain wall
thickness. Thus, the question concerning the possible
HPD formation in the B-like phase of 3He in aerogel
did not receive an unambiguous answer.

The aim of our experiments was to study the nonlin-
ear NMR (in both pulsed and continuous modes) in
superfluid B-like phase of 3He in aerogel. The experi-
ments, discussed below, were conducted in an aerogel
with the surface covered with two monolayers (calcu-
lated estimate) of 4He.

3. Experimental. The experiments were performed
at a pressure of 25.5 bar in a magnetic field varied from
284 to 1082 Oe (which corresponded to NMR frequen-
cies from 922 kHz to 3.51 MHz). The experimental
chamber (Fig. 1), mounted on a nuclear demagnetiza-
tion stage, comprised two similar cells of the same
cylindrical shape (diameter, 5.3 mm; height, 5.6 mm)
made of a Stycast-1266 epoxy resin. Each cell was sur-
rounded by NMR coils (thermally insulated from the
cell body). The first cell (cell 1) was almost completely
filled with 98% aerogel (except for 0.15-mm gaps
between the aerogel and internal wall surface). The sec-
ond cell (cell 2) contained aerogel in the form of a disk
with a thickness of ~2.4 mm, which was situated in the
middle part of the sample volume. The required tem-
perature was provided by a nuclear demagnetization
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cryostat and monitored by a platinum NMR thermom-
eter gauge located in a special volume below the exper-
imental cells.

4. Pulsed NMR of 3He-B in aerogel. The pulsed
NMR measurements were conducted only with cell 1.
The sample was exposed to magnetization-tipping RF
pulses at the NMR frequency. The free precession
(induction) response signals were recorded in the mem-
ory of a computer and processed to determine the time
dependence of the frequency and the signal amplitude.

The phase transitions in 3He in aerogel were mani-
fested by changes in the frequency, amplitude, and
duration of the free induction signal in response to
application of the small RF pulses (corresponding to
the angles of magnetization deflection less than ~20°).
Upon cooling below the superfluid transition tempera-

ture of 3He in aerogel (  ≈ 0.76Tc, where Tc = 2.37 mK
is the superfluid transition temperature for bulk 3He

Tc
a

Fig. 1. Schematic diagram of the experimental chamber
(see the text for explanations).

Fig. 2. Initial frequency of induction signal in 3He-B in
aerogel vs. the tilting angle of magnetization. (1) H =

1.01 kOe, T ≈ 0.83  and (2) H = 285 Oe, T ≈ 0.78 .Tc
a

Tc
a

1

2

L

under the given conditions), the system exhibited two
sequential transitions. First, there appeared and
increased a negative shift of the NMR frequency rela-
tive to the Larmor value, which was related to the tran-
sition to a supercooled 3He A-like phase in aerogel.

Then, at a certain temperature of about ≈0.85 , the
sample converted into a B-like phase whereby the
frequency shift became positive and increased with fur-
ther decrease in the temperature [10]. On heating from
the B-like phase, the shift decreased in proportion to

(1 – T)/  and vanished (being always positive) at T =

. These results agree with the recent experiments [4],
where a similar behavior was observed by a CW NMR
technique.

It was established that the free induction signal at
large magnetization tilting angles significantly varies
with time. For determining the dependence of ω on β,
the time variation of the induction signal was extrapo-
lated to the initial time instant (it should be noted that
the results remain qualitatively the same for any reason-
able method of determining the characteristic fre-
quency at a given β, for example, by taking the average
frequency of the Fourier transform of the frequency of
the induction signal). Figure 2 shows a plot of the
induction signal frequency versus initial magnetization
deflection angle for the 3He B phase in aerogel. As can
be seen, the experimental curves exhibit a feature at β ≈
104° whereby the signal frequency begins to grow
sharply with β, as should be expected for the B phase.
At the same time, we observed no signs of a textural
transition to the Brinkman–Smith precession mode. As
can be seen, the precession frequency at any magneti-
zation tilting angle below 104° is significantly shifted
from the Larmor value, while still varies depending on
β. This result indicates that the texture of the order
parameter is determined by the aerogel volume (and,
probably, by the aerogel density inhomogeneities over
distances much shorter than the characteristic cell size),
rather than by the walls of the experimental cell.

5. HPD in 3He-B in aerogel. Experiments devoted
to determining the possibility of HPD formation in
aerogel were performed with both cells. Figure 3 shows
the CW NMR signal profiles measured in cell 1 on
decreasing H0 for various RF field amplitudes. The
abscissa axis in Fig. 3 (and in the other plots of CW
NMR signals) shows the homogeneous component of
the applied magnetic field recalculated into a coordi-
nate by the formula z = (γH – ωrf)/γ∇ H. The point z = 0
corresponds to the validity of the resonance condition
for bulk 3He at the top of the cell, and z = –5.6 mm, at
the bottom of the cell. When the domain wall occurs
inside the cell, the resonance condition is obeyed at the
middle of the wall (this is true for bulk 3He-B and will
be shown below to hold for an HPD in aerogel as well),
and the abscissa in fact indicates the domain wall
position.

Tc
a

Tc
a

Tc
a
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The signal observed for a pumping field amplitude
of ~0.02 Oe (Fig. 3b) is significantly higher than the
signals measured at smaller amplitudes of pumping,
which corresponds to HPD formation, growth
(whereby the HPD occupies the entire cell), and break-
age (for z ≈ –9.4 mm). Upon breakage, no HPD is
formed during the reverse scan. Our calibration of the
NMR spectrometer showed that the NMR signal ampli-
tude (Fig. 3b) corresponds to within 10% to the ampli-
tude of the NMR signal anticipated from the HPD.

Figure 4 shows variation of the induction signal
amplitude and frequency with time after the HPD was
“grown” as described above and the RF field was
switched off. As can be seen, the signal amplitude
exhibits oscillations (rather than smoothly decaying to
zero as in the case of bulk 3He [7]), although the char-
acteristic signal duration is large and the time depen-
dence of frequency on average agrees well with that
expected for a slow relaxation of the HPD. A total
change of the induction signal frequency amounts to
≈1590 Hz, which coincides to a good accuracy with the
frequency change calculated by the formula δω = γ∇
HL0 (where L0 is the HPD length immediately before
switching off the RF field), as it has to be in the case of
HPD formation. Oscillations of the induction signal
amplitude may be caused by spatial inhomogeneities
(or anisotropy) of the aerogel density. These would
result in inhomogeneities within the HPD and in a non-
uniform magnetic dissipation over the HPD volume.
This would lead to inhomogeneous β distribution over
the sample and to dephasing of the precession in vari-
ous parts of the aerogel. Spin supercurrents will tend to
restore the homogeneous precession, thus giving rise
oscillations in the precession phase distribution, analo-
gous to the torsional HPD oscillations observed in bulk
3He-B [11].

It should be noted that the magnetic dissipation may
give rise, due to a low thermal conductivity of 3He in
aerogel, to significant temperature nonuniformities and
resulting HPD inhomogeneities. In our experiments
with CW NMR, HPD formation in cell 1 was accompa-
nied by an increase in the temperature of 3He in aerogel
because of magnetic relaxation leading to energy dissi-
pation. When the H0 variation was stopped (i.e., the
HPD length was fixed), the sample temperature contin-
ued to grow at a time constant on the order of one
minute (estimates obtained from the data [12] on the
thermal conductivity of 3He in aerogel show that over-

heating may reach up to 0.1–0.2  at a characteristic
power of several nanowatts, dissipated in the aerogel).
The magnetic relaxation rate increases with tempera-
ture, and the HPD breaks within several minutes, since
the dissipated power exceeds the maximum possible
value of the absorbed power at a given RF field ampli-
tude.

The overheating effects were barely manifested in
cell 2, where the maximum distance from the aerogel

Tc
a
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center to bulk 3He was several times smaller than in cell
1. In cell 2, the HPD initially formed, as a rule, in the
volume free of aerogel. As the HPD length increased, it
penetrated the aerogel and eventually filled the entire
cell. Figure 5 shows the absorption and dispersion pro-
files measured during HPD formation in cell 2. Here (as
well as in Fig. 3) the value z = 0 on the abscissa axis
corresponds to the validity of the resonance condition

Fig. 3. Transverse magnetization amplitude profiles (i.e.,
the square root of the sum of squared absorption and disper-
sion signal intensities) measured at ∇ H = 284 Oe, H =

1 Oe/cm, T ~ 0.67  and various RF field amplitudes:

(a) 0.002, 0.005, and 0.01 Oe, in the order or increasing
average signal intensity; (b) 0.02 Oe.

Tc
a

Fig. 4. Time variation of the amplitude and frequency of a
long-lived NMR induction signal after switching off the RF
field at an HPD length of ~4.9 mm in cell 1. The experimen-
tal conditions are the same as indicated for Fig. 3b.
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for bulk 3He at the top of the cell, the value of z =
−5.6 mm implies the same at the bottom of the cell,
while z = –1.5 and –3.9 mm correspond to the aerogel–
bulk 3He boundaries.

As can be seen from Fig. 5, the NMR absorption
both in bulk 3He and in aerogel monotonically
increases with the HPD length (a faster signal buildup
in the initial HPD growth stage is related to domain
wall formation). Note that no sharp features are
observed when the domain wall crosses the aerogel–
bulk 3He interface. Previously, we repeatedly observed
the growth of the HPD absorption by a nearly linear law
(over the HPD length) for bulk 3He (unpublished data
of many experiments performed in the past years). A

Fig. 5. Profiles of the (1) NMR absorption and (2) disper-
sion signals during the HPD formation in cell 2 for H =

284 Oe, ∇ H = 0.94 Oe/cm, T ~ 0.66 , an RF field ampli-

tude of ~0.01 Oe.

Tc
a

Fig. 6. Time variation of the amplitude and frequency of a
long-lived induction signal after switching off the RF field
at an HPD length of ~4.7 mm in cell 2. The experimental
conditions are the same as indicated for Fig. 5.
mechanism of this absorption still remains unclear and
requires further investigation. Here, we will only note
that this mechanism is effective in aerogel as well. It
was found (in this study, as well as in the preceding
experiments with bulk 3He) that the absorption
increases with the temperature and is virtually indepen-
dent of the external magnetic field gradient.

In contrast to the results of experiments in cell 1, the
amplitude and frequency of the induction signal from
the HPD, measured after switching off the RF field,
varied in a smooth manner, which was indicative of
homogeneity of the HPD retained in the course of the
relaxation process (Fig. 6). No distinguishable features
were observed at the frequency of the induction signal
corresponding to a moment of the domain wall crossing
the aerogel–bulk 3He boundary (for a current coordi-
nate determined by the signal frequency).

Using the sample in cell 2, we also studied the tem-
perature dependence of the HPD formation process. It
was established that the HPD did not penetrate the aero-

gel at a temperature slightly below  (usually, on the

order of 0.9 ), although an HPD in the upper aerogel-
free volume part of the cell forms at temperatures up to
that corresponding to the transition of bulk 3He into the

A-phase (TAB ≈ 1.2 ). On the other hand, an inverse
pattern was observed at a sufficiently low temperature:
the HPD formation in the bulk (aerogel-free) part of
cell 2 took place at greater RF field amplitudes as com-
pared to those in aerogel. As a result, there was a certain
interval of the RF field amplitudes in which it was pos-
sible to form an HPD only in aerogel in the absence of
HPD in bulk 3He. Figure 7 shows two NMR signal pro-

files measured at T & 0.65  for different amplitudes
of the RF field (curve 1 corresponds to the case of HPD
formation in aerogel only). The fact that the abscissa
corresponding to the signal growth onset (curve 1) is
close to the coordinate of the aerogel–bulk 3He inter-
face shows that the NMR frequency in the domain wall
is close to the Larmor value; this is probably indicative
of a texture transition of the Brinkman–Smith type in
the case of the HPD formation in aerogel under CW
NMR conditions. In contrast to the pulsed NMR data
(Fig. 2), this results in an almost zero shift of the pre-
cession frequency from the Larmor value at magnetiza-
tion tilting angles close to Θ0 (otherwise, the HPD sig-
nal growth onset would be shifted to the left by a value
corresponding to the frequency shift from the Larmor
value, which amounts to not less than 1 mm in the z
scale).

6. Conclusion. The results of our investigation leave
no doubt that a low-temperature superfluid 3He phase in
aerogel is analogous to the B phase of bulk 3He. It was
demonstrated that the spin supercurrents play an impor-
tant role in the spin dynamics of 3He-B in aerogel, as
well as in bulk 3He-B, and can lead to the formation of
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a homogeneously precessing domain. Similar to the
case of bulk 3He-B, HPD formation can be used as a
probe for studying the superfluid 3He-B phase in aero-
gel. In particular, it would be very interesting to eluci-
date questions concerning the observation and study of
the “catastrophic” relaxation of 3He in aerogel, by anal-
ogy with the phenomenon taking place in bulk 3He-B at
temperatures on the order of 0.4Tc [13], the nature of
which is still unclear.
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experiments, and to I. Fomin for fruitful discussions.
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Behavior of the tunneling mode of hydrogen in MnH0.04 and MnH0.07 under high pressures in sapphire anvils
was studied by the method of incoherent inelastic neutron scattering (INS). It is established that the INS peak
corresponding to the hydrogen tunneling in a double-well potential disappears at a pressure of 0.8 GPa in a
quasi-hydrostatic regime, while being retained without visible changes under pure hydrostatic conditions. An
analogous, albeit weaker, suppression of the tunneling mode takes place upon grinding of a freshly prepared
sample. The effect of suppression of the hydrogen tunneling modes by applied inhomogeneous elastic stresses
is explained by a shift of the energy levels in the adjacent wells caused by the static displacements. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 62.50.+p; 61.12.Ex
Recent experiments [1–3] on the neutron diffraction
and inelastic neutron scattering (INS) from solid solu-
tions of hydrogen in α-Mn revealed the effect of hydro-
gen tunneling at relatively high temperatures (up to
about 90 K). The effect was manifested by the appear-
ance of a temperature-dependent intense narrow peak at
6.3 meV in the INS spectra, which was explained by
splitting of the ground vibrational state as a result of the
tunneling of hydrogen atoms between adjacent closely
spaced 12e positions. The energy of the observed tun-
neling modes was about 30 times that for the other
quantum systems [4, 5].

The nature of the observed effect is probably related
to the fact that hydrogen atoms incorporated into com-
plex Bravais lattices (such as those of α- and β-Mn)
occur in positions spaced much more closely as com-
pared to the case of hydrogen solutions in other metals
possessing simple lattices. For example, the neutron
diffraction data [2] showed that hydrogen atoms in α-
Mn randomly occupy 12e dumb-bell positions in the
space group I43m, the distance between which (0.68 Å)
is much shorter than that typical of the hydrogen atoms
dissolved in bcc metals (2.2 Å). It was natural to sug-
gest that a decrease in volume, leading to a reduction of
the distances between possible positions of hydrogen
atoms and to a change in the shape of the double-well
potential, may significantly influence the tunneling of
hydrogen. In connection with this, we studied the effect
of high pressures on the effect of hydrogen tunneling in
α-Mn by method of incoherent INS.
0021-3640/02/7605- $22.00 © 20318
The experiments were performed on the MnH0.04
and MnH0.07 samples prepared as described previously
[6]. The powder of α-Mn was saturated with hydrogen
(generated via decomposition of aluminum hydride) in
a high-pressure chamber. The hydrogenation process
was conducted at a pressure of 0.85 GPa and a temper-
ature of 623 K for 4 h, followed by rapid cooling to
room temperature. The content of dissolved hydrogen
was determined by hot extraction into a calibrated vol-
ume.

The neutron scattering measurements were per-
formed in a temperature interval from 15 to 100 K on a
DN-12 spectrometer operating in the INS mode [7]
using an IBR-2 reactor of the Laboratory of Neutron
Physics (JINR). For this purpose, a ring-shaped pyro-
lytic graphite analyzer was placed between the samples
and a ring detector composed of 16 3He counters of the
SNM-31 type, so that the scattering angle was 2θ = 90°
and the energy analyzed was 14.9 meV.

High pressures were applied to the samples placed
into special cells with sapphire anvils [8]. Samples with
a volume of ~2 mm3 were loaded at a pressure of up to
20 kbar in a quasi-hydrostatic regime. Purely hydro-
static conditions were created by filling anvils with a
special fluid (Fluorinert). Samples in a high-pressure
chamber were cooled using a special cryogenic refrig-
erator.

The INS spectra of freshly prepared samples
(Fig. 1a) showed that a decrease in temperature below
100 K leads to the appearance of a sharp resonance
002 MAIK “Nauka/Interperiodica”
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peak at 6.4 meV, which agrees with the previous results
[3] and corresponds to the tunneling motion of hydro-
gen atoms in the double-well potential. The peak ampli-
tude significantly decreases upon dry or wet (ethanol)
trituration of the samples (Fig. 1b). Upon loading in a
quasi-hydrostatic mode in sapphire anvils, the INS
spectrum exhibits a dramatic change: the peak at
6.4 meV disappears already at a pressure of about
8 kbar and is restored neither at higher pressures
(17 kbar) nor upon unloading (Fig. 2a). Since the phe-
nomenon is observed in both MnH0.04 and MnH0.07
samples, the effect of pressure is independent of (or
weakly dependent on) the hydrogen concentration.

The above results suggest that the effect of suppres-
sion of the hydrogen tunneling states is related to the
residual elastic stresses (or defects) arising in the sam-
ples as a result of nonhydrostatic loading or grinding,
while the contribution of homogeneous compression is
small. In order to verify this assumption, we conducted
experiments under hydrostatic conditions, using freshly
prepared samples loaded in anvils filled with Fluori-
nert. In this case, no significant changes in the INS peak
at 6.4 meV were observed: the intensity and the width
and position of the peak remained virtually the same
upon hydrostatic loading (Fig. 2b).

Fig. 1. INS spectra measured on a DN-12 spectrometer (a)
for MnH0.07 at different temperatures and (b) for freshly
prepared and triturated MnH0.04 samples.
JETP LETTERS      Vol. 76      No. 5      2002
Thus, changes in intensity of the INS peak related to
hydrogen tunneling are caused by the local elastic
stresses in the sample, either induced by inhomoge-
neous pressure or produced by grinding, rather than by
applied pressure as such.

The probability of tunneling in a defect-free crystal
is determined as

where ∆ is the tunneling bandwidth and ω is the char-
acteristic frequency of the dynamic displacements
caused by the interaction with lattice vibrations [9, 10].
The probability of tunneling in a crystal strained by
elastic stresses must be significantly decreased by a
shift δ between the energy levels:

In the absence of local stresses, a shift of levels arises
due to the dynamic displacements and determines the
temperature dependence of the tunneling probability. In
our experiments, the shift of levels is determined by
static (rather than dynamic) displacements. The large
magnitude of this shift is explained by the elastic mod-

W ∆2/ω,≈

W ∆2 ω
ω2 δ2

+
-----------------.≈

Fig. 2. INS spectra measured on MnH0.04 samples loaded
by different pressures in sapphire anvils under (a) quasi-
hydrostatic and (b) purely hydrostatic conditions.
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uli of the metal matrix being much higher as compared
to those of a quantum crystal [11]. Analogous manifes-
tations of the tunneling modes suppressed by local elas-
tic stresses should probably be observed in other quan-
tum systems as well, albeit being less pronounced in
cases of lower elastic moduli.
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It is shown that states with phase increments δϕ > π can form in superconductor–narrowing (normal metal)–
superconductor systems. If the conditions a ! l ! ξ(0), where a is the cross-sectional size of the narrowing, l
is the length of narrowing, and ξ(0) is the correlation radius at zero temperature, are satisfied, there is a region
of parameters (a, l, ξ(0), T) in which the critical current is attained in solutions with a phase difference δϕ > π.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.60.Jg
Superconducting systems with a “bottleneck” to
current passage have been studied in many works [1–6].
The simplest systems of this kind are SIS systems
(superconductor–insulator–superconductor). Such sys-
tems (Josephson contacts) have been used extensively,
and the theory of both stationary and nonstationary
phenomena in them has been developed as early as the
late 1960s [1–5]. Superconductor–narrowing (normal
metal)–superconductor systems are more complicated,
and the theory of nonstationary phenomena in them
cannot be considered complete. We will show for the
simplest example of a superconductor–short “impure”
normal metal bridge–superconductor system that even
the critical current problem has not been solved cor-
rectly. This circumstance is, we believe, in part related
to advances in the theory of SIS systems. One of the
first works on an S–normal metal narrowing–S system
dates back to 1975 [7]. A superconductor–narrowing of
the same material–superconductor system was consid-
ered in [8]. In particular, current was found to be a func-
tion of phase difference in the [–π, π] interval in both
works. Below, we analyze superconductor–impure-
normal-metal narrowing–superconductor systems and
determine the dependence of current on the phase dif-
ference in a wide range of phase difference values. We
show that the situation in which critical current is
attained at a phase difference much larger than π in the
(ξ(0)/l) (∆/Tc) parameter, where l is the bridge length, a
is the cross-sectional bridge size, and ∆ is the order
parameter in the superconductor, is quite realistic. The
bridge length is assumed to be much smaller than
(D/πTc)1/2, where Tc is the transition temperature in
superconducting beaches. It is assumed for simplicity
that the contact is symmetrical and the transparency at
0021-3640/02/7605- $22.00 © 20321
the SN boundary is equal to one, which allows the sim-
plest boundary conditions to be used, namely, those of
the continuity of Green functions and their derivatives
at interfaces. In the “impure” limit, the equations for the
Green functions α and β for a superconductor have the
form [9, 10]

(1)

where D = v ltr /3 is the diffusion coefficient, ∂– = ∂/∂r –

2ieA, A is the vector potential, and Γ =  is the elec-
tron time of travel with spin flip.

The coupling constant in the bridge is zero; there-
fore, ∆ = 0. It is also assumed that Γ = 0 and A = 0.
Current density j is expressed through the β Green
function as

(2)

where ν = mp/2π2 is the density of states on the Fermi
surface. Set

(3)

Within a normal metal bridge, Eq. (1) reduces to a
system of two equations, one of which,

, (4)

α∆ βω–
D
2
---- α∂–

2β β∂2α
∂r

2
---------– 

 + αβΓ ,=

α 2 ββ*+ 1,=

τ s
1–

j ieνD2πT β*∂–β β∂+β*–( ),
ω 0>
∑–=

α θ, βsin θ iϕ( ).expcos= =

∂
∂x
------ ∂ϕ

∂x
------ θcos

2

 
  0=
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is a corollary to the law of current conservation. The
solution to Eq. (4) is

(5)

where A ≡ A(ω) is the constant of integration. Using
Eq. (4) allows the second equation to be transformed as

(6)

This means that system (1) has two integrals of motion.
Equation (6) gives

(7)

where B is the second constant of integration. Gener-
ally, Eq. (7) is solved in elliptical functions. In our
problem with a short bridge, the {A, B} values are large.
We use Eq. (7) to find the sinθ function,

(8)

where Z = A/B and γ is the constant of integration. For
a symmetrical contact,

γ = 0. (9)

Under the assumption that only the bottleneck
region is important, the phase difference δϕ between

∂ϕ
∂x
------

A

θcos
2

-------------,=

∂
∂x
------ ω θsin

D
4
---- ∂θ

∂x
------ 

 
2 A

2

θcos
2

-------------++
 
 
 

0.=

∂ θsin
∂x

-------------- B
2

A
2

–
4ω
D

------- θsin–




±=

– B
2 4ω

D
------- θsin– 

  θsin
2





1/2

,

θsin 1 Z
2

– Bx
Bl
2
-----– γ+ 

  ,cos±=

Dependence of the Bl/2 value on phase difference δϕ.
two superconductors is obtained from Eq. (5) in the
form

(10)

The Bl value is a function of two variables, (δϕ, Z). At
a fixed Z value, Eq. (10) yields

(11)

It follows from this equation that the Bl value at a fixed
Z value is an unambiguous monotonically increasing
function of δϕ.

The integration in Eq. (10) yields

(12)

In the region of phase gradients, as long as the cur-
rent density is not too high, we can use the boundary
condition of continuity of function α at the supercon-
ductor–normal metal interface using the unperturbed
superconductor α value,

(13)

Equations (12) and (13) give

(14)

(15)

As phase difference δϕ passes points π(2N + 1) (N is an
integer), the Bl function has discontinuities. The
δ(Bl/2) jump value is

(16)

The Bl value is an odd function of phase difference δϕ.
The dependence of Bl/2 on δϕ is schematically shown
in the figure. The general solution to Eq. (10) for the
Bl/2 value can be written in the form

(17)

where N is the jump number.
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The current density at the contact is determined by
Eq. (2):

(18)

At N ≠ 0, the major contribution to current density is
made by the first term in square brackets in Eq. (18). At
N ≠ 0, the equation

(19)

has logarithmic accuracy. Impure metal conductivity σ is

(20)

Using Eq. (20), total current I through the contact can
be written as

(21)

where R is the resistance of the narrowing in the normal
state. An increase in current through the bottleneck
causes an increase in N up to Ncr. The critical Ncr value
is found from the condition that current density is large
to the extent that the ∆ superconductor order parameter
is suppressed near the bottleneck. At N ~ Ncr, Eq. (21)
for the current through the contact ceases to be valid.

Let us find Ncr and the current through the contact at
N ~ Ncr. We will use a simpler model in which a weak
connection is the neck of the hyperboloid of revolution
[8]. The coordinates of hyperboloid points are given by
the orthogonal curvilinear coordinates {u, v, ψ} [11]

(22)
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where 0 ≤ u < us. As follows from Eq. (22), the surface
of the hyperboloid is given by the equation

(23)

Suppose that the mean free path of electrons is ltr !
aus, where a ! ξ(0). If these conditions are met, the
{θ, ϕ} functions only depend on one coordinate v. We
find from Eq. (1) that

(24)

The solution to Eq. (24) is

(25)

where A is the constant of integration. Using Eq. (25)
and the condition a ! ξ(0), we transform Eq. (1) for the
θ function to the form valid at all v  values,

(26)

In the region of large gradient terms, only the first term
in Eq. (26) should be retained. This equation is easily
solved, and, taking into account v   –v  symmetry,
the solution has the form

(27)

Phase change δϕ in passing through the neck of the
hyperboloid is determined by the equation
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The solution to Eq. (28) can be written in the form

(29)

In the v  @ 1 region, we can conveniently pass to
spherical coordinates by setting 

(30)

Equation (26) then takes the form

(31)

ρ @ a, Eq. (31) can be solved by perturbation theory
methods. We assume in this region that

(32)

where ∆0 is the superconductor order parameter at large

distances from the narrowing and sinθ0 = ω(ω2 + )–1/2.
The θ1 value satisfies the equation

(33)

Setting

(34)

we can rewrite Eq. (33) in the form

(35)

where

(36)

The solution to Eq. (35) satisfying the boundary
conditions as ρ  ∞ has the form

(37)

where C2 is the constant of integration.
Sewing together the solutions to Eqs. (27), (31), and

(34) in the intermediate region a ! ρ ! ξ, we find the
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Φ ω
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ρ
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∫ κρ–( )exp–

× C2
ω

κD ω2 ∆0
2

+
------------------------------- ρ1ρ1∆1 ρ1( )exo κρ1( )d

a

ρ

∫+ ,
C2 coefficient and one equation for the free parameters
of Eq. (27),

(38)

Equations (38) were obtained with the use of the
expression for the sinθ function in the region a ! ρ ! ξ,
which follows from Eq. (27),

(39)

Correction ∆1 to the order parameter satisfies the equa-
tion

(40)

The current density in the hyperboloid is determined
by the equation

(41)

The integration of Eq. (41) over the surface {v  = 0,
u < us} yields the total current I through the contact,

(42)

where R is the resistance of the hyperboloid in the nor-
mal state,

(43)

At N = 0, Eqs. (29), (38), and (42) give the result
obtained in [12]. The critical current at a ! ξ is, how-
ever, attained at N values larger than 0 rather than at
N = 0. In the region N ≥ 1, Eqs. (29) and (38) give

(44)

where frequency ω lies in the interval

(45)
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2

B
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2

------- 
 cos κaB

πB
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------- 
 sin+±

=  
ω

ω2 ∆0
2

+
----------------------

2∆0ω

D ω2 ∆0
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+( )
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κρ1–
.d

0

∞

∫–

θsin 1 A
2

B
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ρ

-------– 
  .cos±=

2πT
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ω2 ∆0
2

+
----------------------

ω

ω2 ∆0
2

+
----------------------Φ

ρ
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 
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------cos

2
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∑  = eνD4πT

A
a ucos
---------------.
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I
2π2

eR
--------T A ω( ),
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-----------------------------------.=
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The ωcr(N) limiting frequency value can be estimated
by Eq. (38) from the condition that correction terms
have values of the same order of magnitude as the prin-
cipal terms,

(46)

Equations (42), (43), and (45) can be used to find the
total current through the narrowing as a function of
parameter N,

(47)

Equation (47) allows the critical current Icr value to
be determined up to a factor of the order of one,

(48)

This critical current Icr exceeds the value obtained in
[12] in the ξ(0)/a parameter.

In deriving Eq. (48) for the critical contact current,
we used the strong dirt approximation. This means that
the ltr electron mean free path should be shorter than all
characteristic lengths of the problem. In particular, the
conditions

(49)

where

(50)

should be met. If the second condition in Eq. (49) is not
satisfied, Eq. (47) for the current can, in any event, be
used up to N values of the order of N1, where

(51)
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πTc

--------- 
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πTc
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-------.=
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To study the region of N values N > N1, we must use
more general equations valid at arbitrary electron mean
free path values [13, 14]. This problem requires sepa-
rate consideration and will be considered in a detailed
communication.

The goal of this work was to demonstrate the exist-
ence of solutions in the region of large gradients of the
order parameter phase, which are capable of carrying
currents that substantially exceed current values when
the phase difference changes in the (–π, π) interval.

One of us (Yu.N.O.) thanks the Russian Foundation
for Basic Research (project no. 17729) and the Ministry
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