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Fields and currents induced by vortex structures in a Josephson junction in a thin superconducting
film are considered. Simple asymptotic regularities describing fields and currents induced by
solitary Abrikosov–Josephson vortices and periodic chains of such vortices are obtained. These
regularities are applied to some nonlinear small-scale states. ©1997 American Institute of
Physics.@S1063-777X~97!00107-2#

1. INTRODUCTION the form of a stationary 2p-kink was obtained for the phas
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In 1975, Likharevet al.1 formulated important state
ments and obtained first results in the field of nonlocal
sephson electrodynamics of structures of the type
variable-thickness bridge arranged over a superconduc
screen. In 1990, Ivanchenko and Soboleva2 laid the basis of
nonlocal electrodynamics of a Josephson junction in a
superconducting film whose thicknessD is much smaller
than the London depthl of magnetic field penetration in
superconductor. On the other hand, a systematic deve
ment of the nonlocal Josephson electrodynamics of junct
between bulk superconductors was started in 1992 in Re
and 4. In this case, a nonlocal description is essential w
the critical Josephson current densityj c is large:

j c. j 0[cf0 /~16p
2l3!, ~1!

where f0[p\c/ueu52.0531027Oe•cm2 is the magnetic
flux quantum. A set of exact solutions describing vort
structures was obtained for junctions between bulk superc
ductors under the condition~1!.1,4–11 It is clear now that the
results obtained in Refs. 1, 4–11 can be used in
Ivanchenko–Soboleva electrodynamics for junctions
which the critical Josephson current density satisfies the c
dition

j c.
D

l
j 0 , ~2!

since in this case the basic electrodynamic equation in Re
assumes an analytic form coinciding with the basic equa
in the one-dimensional nonlocal electrodynamics of Jose
son junctions between bulk superconductors under co
tions ~1!.1,4,12–15 The solutions of a nonlocal integro
differential equation obtained in Refs. 1, 4–11 for a pha
differencew of Cooper pairs on different sides of a Josep
son junction make it possible to determine magnetic a
electric fields and currents. The magnetic field distribution
junctions between bulk superconductors is analyzed in R
4–11, while similar analysis for the electrodynamics of
Josephson junction in a thin film can be found only in Re
12, 13, in which the magnetic field structure was conside
on the basis of Refs. 1, 4~in these publications, a solution o
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difference of Cooper pairs! as well as in our preliminary
research14 in which the results for static periodic structure
are considered. In the present communication, we investi
~on the basis of a large number of solutions obtained in R
1, 4, 6–10!, the electromagnetic field structure for the pha
differencew for various vortex states of a tunnel junction
a thin superconducting film under conditions~2!.

In Sec. 2 of this communication, we shall obtain t
kernels of nonlocal operators connecting the magnetic
electric fields with the derivative of phase difference. In S
3, all the available plane-wave solutions of the sin-Hilb
equation will be listed.

Section 4 is devoted to an analysis of fields and curre
of solitary vortices. The characteristics of periodic sta
~with the mean magnetic field and without it! will be consid-
ered in Sec. 5. The main results are summarized in the C
clusion.

2. MAGNETIC AND ELECTRIC FIELDS. SURFACE CURRENT

We shall derive expressions for the current as well
vortex magnetic and electric fields created by the phase
ference in a Josephson junction in a thin superconduc
film (D!l) lying in the planey50. We proceed from the
expression for the superconducting current density

j s~x,z,t !52
c

4pl2 F f0

2p
¹f~x,z,t !1A~x,0,z,t !G ~3!

and from Maxwell’s equations in the entire space

2DA~r ,t !5
4p

c
j ~r ,t !2

1

c2
]2A

]t2
2
1

c
¹

]V~r ,t !

]t
, ~4!

DV~r ,t !50, ~5!

whereV andA are the scalar and vector potentials, resp
tively ~we choose the gauge divA50!, f(x,z,t)
5u(2x2d)f1(x,z,t)1u(x2d)f2(x,z,t); f1 and f2 are
the phases of the wave functions of Cooper pairs on the
and right of the tunnel junction, which is symmetric abo
the straight linex50 and has the width 2d.
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Assuming that the junction is infinitely thin, following
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Abrikosov, and using~3!, we can write the following ex-
pression for current density in the entire space:

j ~r ,t !5I ~x,z,t !d~y!5 j s~x,z,t !Dd~y!

52
cd~y!

4ple
@S~x,z,t !1A~x,0,z,t !#, ~6!

where I is the current in the superconducting film, an
S(x,z,t)5(f0/2p)¹f(x,z,t); le5l2/D is the effective
London penetration depth. Substituting~6! into Maxwell’s
equation~4!, we obtain

DA5
1

le
@S1A~x,0,z,t !#d~y!1

1

c2
]2A

]t2
1
1

c
¹

]V

]t
. ~7!

Let us find the conditions under which we can neglect
displacement current in this equation. It can be seen from~7!
that the displacement current in vacuum is small in comp
son with the superconducting current if the characteristic
quenciesv are quite low (v2/c2!l22). On the other hand
it will be shown below that the displacement current dens
in the dielectric gap can be estimated asv2v j

22 j cw, where
v j54p@dc jc /(«f0)#

1/2 is the Josephson frequency and« is
the permittivity of the junction. Since the Josephson curr
density is estimated asj cw, it can be stated that the displac
ment current in the gap is significant forv;v j ~vortex emis-
sion in vacuum can occur at such frequencies. This effec
weak in view of the smallness of the ratio of vortex veloc
to the velocity of light!. Hence the displacement current
vacuum can be neglected ifv j

2/c2!l22, i.e. if the junction
width is quite small:

2d!
«cf0

8p2 j cl
2 .

In this case, Eq.~7! assumes the form

DA5le
21@S1A~x,0,z,t !#d~y!.

Going over to Fourier transforms, we obtain

A~q,t !52
2Aqx21qz

2

q2~112leAqx21qz
2!
S~qx ,qz ,t !. ~8!

It follows from formula ~3! that ¹S(x,z,t)50. This means
thatS(qx ,qz ,t) can be presented in the form

S~qx ,qz ,t !5
qzSx2qxSz
qz
21qz

2 @ey3q#.

Using this formula, we can present vector potential~8! in the
form

A~q,t !52i
i ~qzSx2qxSz!

q2Aqx21qz
2~112leAqx21qz

2!
@ey3q#. ~9!

The combinationi (qzSx2qxSz) appearing in this equation i
the Fourier transform of curlyS(x,z,t)5(f0/2p)curly¹w.
Since the functionf(x,z,t) suffers a discontinuity a
x50, curl¹fÞ0. It will be shown in Appendix I~cf. Ref.
17! that
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wherew(qz ,t) is the Fourier transform of the phase diffe
ence: w(z,t)5f1(20,z,t)2f2(10,z,t). Substituting ~10!
into ~9!, we obtain a relation between the Fourier transfor
of the vector potential and the phase difference:

A~q,t !52
f0

p

qzw~qz ,t !

q2Aqx21qz
2~112leAqx21qz

2!
@ey3q#.

Reverting to the coordinate representation, we obtain
vector potential

A~r ,t !52
f0

8p2le
E

2`

1`

dz8

3
]w~z8,t !

]z8

~z2z8!ex2xez
Ax21~z2z8!2

P~ uyu,

Ax21~z2z8!2!, ~11!

where

P~ uyu,r!5E
0

1` dQ

11Q
expS 2

uyuQ
2le

D J1S Qr

2le
D .

Evaluating the curl in the potential~11!, we obtain the fol-
lowing equation for the magnetic field:

H~r ,t !5
f0

8p2le
sgny¹E

2`

1`

dz8
]w~z8,t !

]z8
R~ uyu,

Ax21~z2z8!2, ~12!

where

R~ uyu,r!5E
0

1` dQ

11Q
expS 2

uyuQ
2le

D J0S Qr

2le
D .

While deriving ~11! and ~12!, we assumed that the tunne
junction is infinitely thin. If, however, the junction width
2d is small but finite, the vector-potential and the magne
field are defined foruxu.d by the same formulas, since w
can disregard for smalld the variation of the kernelsP and
R associated withd ~cf. the case of bulk superconductors
Ref. 7!. For uxu,d, the vector-potentialA(r ,t) and the field
H(r ,t) are obtained approximately from~11! and ~12! in
which we putx50.

In order to obtain the electric fieldE5c21]A/]t2¹V,
we must know the vector potentialA as well as the scala
potentialV. The latter quantity is obtained from the Josep
son relation: fory50, uxu,d, we have

Ex'
f0

4pcd

]w~z,t !

]t
. ~13!

It was mentioned above that the characteristic frequen
;v j}d

1/2. This means thatEx}d
21/2 inside the junction.

On the other hand, it follows from~12! that ]Ax /]t}v j

}d1/2. Hence, in view of the assumption concerning a sm
junction width, it can be assumed that the electric field ins
the junction is determined only by the scalar potential wh
is obtained from~13!:
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The distribution of scalar potential in superconducting fie
is obtained by solving the Laplace equation~5! under the
boundary conditions

V~6d,0,z,t !57~f0/4pc!]w~z,t !/]t;

V~x,0,z,t !52
f0

4p2c
sgnx~ uxu2d!

3
]

]t E2`

1`

dz8
w~z8,t !

~z2z8!21~ uxu2d!2
,

uxu.d. ~14!

Using these boundary conditions, we obtain from t
Laplace equation~5! the following expression for the scala
potential in vacuum foryÞ0:

V~r ,t !5
if0

8p3c

]

]t E2`

1`

dz8dqxdqzw~z8,t !exp~ iqxx

1 iqz~z2z8!2Aqx21qz
2uyu!

3F uqzusin~dqx!1qx cos~dqx!

qx
21qz

2

2
dqx cos~dqx!2sin~dqx!

dqx
2 G .

This leads to the following relatively simple asymptotic re
resentations for the scalar potential:

V~r ,t !5
f0x

8p3cd

]

]t E2`

1`

dz8dqxdqz exp~ iqz~z2z8!

2Aqx21qz
2!uyuw~z8,t !qx

d

dqx

sin~dqx!

qx
, uxu&d;

V~r ,t !'2
f0x

4p2c

]

]t E2`

1`

dz8

3
w~z8,t !

Ax21y21~z2z8!2~ uyu1Ax21y21~z2z8!2!
,

uxu@d.

Knowing the expressions forA(r ,t) andV(r ,t), we can de-
termine the electric field. If2d&x&d, we obtain

E'
f0

8p3c

]

]t H 2¹F xd E
2`

1`

dz8w~z8,t !E
2`

1`

dqxdqz

3exp@ iqz~z2z8!2Aqx21qz
2uyu#qx

d

dqx

sin~dqx!

qx
G

1le
21E

2`

1`

dz8
]w~z8,t !

]z8
sin~z2z8!P~ uyu,uz2z8u!J .

~15!
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the last formula is transformed into formula~13!. For
uxu@d, we can write

Ex'
2le

c
sgny

]Hz

]t
1

f0uyu
4p2c

]

]t

3E
2`

1` dz8w~z8,t !

@x21y21~z2z8!2#3/2
,

Ey'2
f0x sgny

4p2c

]

]t E2`

1` dz8w~z8,t !

@x21y21~z2z8!2#3/2
,

Ez'2
2le

c
sgny

]Hx

]t
. ~16!

Finally, we obtain an expression for the surface curr
I (x,z,t) passing over the film. For this purpose, we use
boundary condition imposed on the Maxwell equati
I (x,z,t)5(c/4p)ey , H(x,10,z,t)5H(x,20,z,t). It follows
from Eq. ~12! that

Ha~x,10,z,t !2Ha~x,20,z,t !52@sgnyHa~r ,t !#y50 ,

a5x or z. This leads to a connection betweenI (x,z,t) and
the magnetic field components parallel to the film f
y56014:

I x~x,z,t !5
c

2p
@sgnyHz~r ,t !#y50 ,

~17!

Hz~x,z,t !52
c

2p
@sgnyHx~r ,t !#y50 .

Thus, we obtain general expressions which enable u
determine the fields and current from the known phase
ference. We shall apply these expressions to specific non
ear states in Secs. 4 and 5.

3. SIN-HILBERT EQUATION AND ITS SOLUTIONS

It was shown in Refs. 2, 17 that the phase difference
Cooper pairs satisfies the equation

l

p E
2`

1`

dz8
]w~z8,t !

]z8
R~0,uz2z8u!

5sin w~z,t !1
b

v j
2

]w~z,t !

]t
1

1

v j
2

]2w~z,t !

]t2
, ~18!

wherel5cf0 /(16p
2 j cl

2);b54ps/«;s is the conductivity
of the tunnel junction. In the following analysis, we sha
focus our attention on the case when a significant varia
of the phase difference occurs over lengths smaller t
le . In this case, we can use the approximation

dR~0,uzu!
dz

5
P

z
,

whereP is the symbol for Cauchy’s principal value, and E
18 then assumes the form12–14,17:
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l E1`

Á
dz8 ]w~z8,t !

f

e

ag

a

c-

e

l t

re

L5v j
21v4A12~ lv j /v4!.

on
ds
Eq.
ere
ulk
for
ion

ith
for
lec-
all

of a

is

bi-

n
n

the
p 2` z82z ]z8

5sin w~z,t !1
b

v j
2

]w~z,t !

]t
1

1

v j
2

]2w~z,t !

]t2
. ~19!

At present, there are no general techniques available
solving the sin-Hilbert equation~19!. So far, twelve exact
solutions have been obtained for Eq.~19!.1,4–11We shall con-
fine ourselves only to plane-wave solutions:

1. a stationary 2p-kink1,4

w5p12 arctan
z

l
; ~20!

2. a strongly dissipative traveling 2p-kink in a junction
carrying a constant current8:

w5p1arcsini12 arctan
z2v1t

l ~12 i 2!21/2, ~21!

wherei is the current density distributed uniformly over th
junction and normalized toj c , v15v j

2l /(bAi2221) is the
wave velocity;

3. a travelling nondissipative 4p-kink6,7:

w54 arctan
z2 lv j t

l
; ~22!

4. a stationary periodic chain with a nonzero mean m
netic field9

w5p12 arctanF ~A~L/ l !2111L/ l !tan
z

2LG ; ~23!

5. a nondissipative traveling periodic chain with a me
field9

w54 arctanF S lv j1v2
lv j2v2

D 1/2 tan z2v2t
2L G . ~24!

The wave velocity is connected withL through the rela-
tion v2

25v j
2L(AL214l 22L)/2;

6. a strongly dissipative travelling periodic vortex stru
ture in a junction with current10:

w5p1u12 arctanF 1

tanh~a/2!
tan

z2v3t
2L G , ~25!

whereu anda are defined by the formula sinu cosha5 i ,
cosu sinha5l/L, while the vortex velocity is defined by th
relationv352v j

2Li tanha/b;
7. a stationary periodic chain with a mean field equa

zero9:

w5p12 arctanFA~L/ l !221 sin
z

LG ; ~26!

8. a nondissipative travelling periodic vortex structu
without the mean field9:

w54 arctanF 1

Av4 /~v j l !21
sin

z2v4t
L G , ~27!

where
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The above set of solutions of the sin-Hilbert equati
~19! will be used for determining magnetic and electric fiel
and currents corresponding to known vortex solutions of
~19!. It should be emphasized that all these solutions w
obtained in the theory of Josephson junctions formed by b
superconductors. These solutions will be used below
studying the vortex structures in a Josephson junct
formed in a thin film.

4. FIELDS AND CURRENTS IN ISOLATED VORTICES

Proceeding from general formulas~12!, ~15!–~17! con-
necting the fields with the phase difference and current w
the magnetic field, we obtain asymptotic expressions
fields and currents in the case when the source of the e
tromagnetic field is an arbitrary small-scale vortex. We sh
use these expressions for solving Eqs.~20!–~22!.

A common feature of all these states is the existence
characteristic scalel *!le such that foruz2vtu@ l * , the
derivative of the phase difference decreases rapidly:]w/]z
} l * (z2vt)22. Considering further thatw(z,t) for these
states is an odd function of (z2vt), it can be stated that the
magnetic flux across a superconducting film exists and
nonzero:F5(f0/2p)*2`

1`dz]w/]z
Using the asymptotic representations14

R~ uyu,r!'H ln
4le

gr
, y50, r!2le ~g51.78...!,

2l

Ay21r2
, Ay21r2@2le ,

]R~0,r!

]uyu
'2

1

r
, r!2le ,

we obtain an expression for the magnetic field for an ar
trary phase differencew(z,t)5c(z)(z5z2vt) whose de-
rivative dc/dz decreases rapidly foruzu@ l * :

~a! If c~z! varies significantly over scales smaller tha
le ~i.e., l *!le), we can write in the plane of the junctio
(y50) in the vicinity of the vortex (Ax21z2!2le)

Hx~x,60,z!57
f0x

8p2le
cx~ uxu,z!,

Hy~x,0,z!52
f0

8p2le
cy~ uxu,z!, ~28!

Hz~x,60,z!57
f0

8p2le
cz~ uxu,z!,

where we have introduced the magnetic form factors of
vortex

cx~ uxu,z![E
2`

1`

dz8
c8~z8!

x21~z2z8!2
,

cy~ uxu,z![E
2`

1`

dz8
c8~z8!

Ax21~z2z8!2
,
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c ~ uxu,z![E1`

dz8
~z2z8!c8~z8!

, c8~z![dc/dz;

x

es
r-

ric

o
th
v
ti

-

n

E '
Fv

@ uyu22l ~123z2~r 8!22!#,

w

be

lu-

g

z
2` x21~z2z8!2

~b! at large distances from the vorte

(Ax21y21z2@2le) and uzu@ l * ), we can write

H'
F

2p
sgny

r 8
r 83

, ~29!

wherer 8[$x,y,z%. The last formula was obtained for stat
in which FÞ0. This is just the case in which we are inte
ested.

Let us now derive asymptotic formulas for the elect
field produced by an isolated vortex. ?We assume thatd is
the smallest scale, i.e.,d! l * , le , and confine ourselves t
states with a nonzero magnetic flux. Let us first consider
field inside a tunnel layer as well as in vacuum just abo
and below the junction. Taking into account the asympto
form of the kernel

P~ uyu,r!'H 1, y50, r!2le ,

2le

r S 12
uyu

Ay21r2
D , Ay21r2@2le

we obtain from~15! the following expressions for small
scale states (l *!le) in this region of space:

~a! inside the tunnel layer (2d,x,d, y50):

Ex'2
f0v
4pcd

c8~z!, Ey'
f0vx
p2cd2

sgnyc8~z!,

Ez'2
f0vx
4pcd

c9~z!; ~30!

~b! away from the vortex (uzu@ l * ) and the junction
plane (uyu@le):

Ex5
Fv
2pc

]

]z F z

Ay21z2~ uyu1Ay21z2!
G ,

Ey5
w0vxd

2

p2cy4
sgnyc8~z!, Ez52

f0vxd
2

3p2cy3
c9~z!.

~31!

Finally, the electric field away from the junctio
(uxu@d) is obtained from~16!:

~a! in the junction plane (y50) for Ax21z2, l *!le

Ex'
f0v
4p2c

]cz~ uxu,z!

]z
,

Ey'
f0vx
4p2c

sgny
]cE~ uxu,z!

]z
,

Ez'2
f0vx
4p2c

]cx~ uxu,z!

]z
, ~32!

where the electric form factorcE is defined as

cE~ uxu,z![E
2`

1`

dz8
c8~z8!

@x21~z2z8!2#3/2
;

~b! if, however,Ax21y21z2@2le anduzu@ l * , we can
write
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e
c

x 2pcr83 e

Ey'2
Fv
2pc

sgny
x

r 83
,

Ez'2
3Fvlex

pc
sgny

z

r 85
. ~33!

It follows from formulas~29! and ~32! that away from
the vortexE;vH/c, which corresponds to the case of slo
motion considered by us.

In order to apply formulas~28!–~32! to the specific non-
linear states~20!–~22!, we observe that these states may
obtained from the function

c~z!5c012n arctan
z

l *
~34!

through an appropriate choice of parametersc0 , n and l * .
The form factors for the function~34! have the form

cx~ uxu,z!5
2pn

~ uxu1 l * !21z2
uxu1 l *

uxu
,

cz~ uxu,z!5
2pnz

~ uxu1 l * !21z2
,

cy~ uxu,z!'5
4n

l *
S 12

z2

l
*
2 D ln 2l *

uxu
, Ax21z2! l * ,

2pn

Ax21z2
, uxu, uzu@ l * ,

cE~ uxu,z!'H 4n

l * x
2 , Ax21z2! l * ,

2pn

~x21z2!3/2
, uxu, uzu@ l * .

~35!

The exact expressions for the form factorscy andcE , which
are valid for any relation betweenuxu, z, and l * , are given
in Appendix 2.

In order to obtain magnetic and electric fields for so
tions ~20!–~22!, we must substitute form factors~35! into
~28!–~33!, and take into account the fact that the followin
relations hold for function~34!:

F52nf0 , c8~z!5
2nl*

z21 l
*
2 , c9~z!52

4nl* z

~z21 l
*
2 !2

.

The values of the parametersn, l * , andv can be found by
comparing formulas ~20!–~22! with ~34!:
n51, l *5 l , v50 for a 2p-kink ~20!, n51, l *5 l/A12 i 2,
v5v j

2l /(bAi 221) for solution ~21!, and finally
n52, l *5 l , v5v j l for a 4p-kink. The surface current can
be determined from relation~17!.

In the vicinity of the small-scale 2pn-kink
(Ax21z2, l *!le), for example, we can write

I'
nf0c

8p2le

2z lx1sgnx~ l *1uxu!lz
~ uxu1 l * !21z2

. ~36!
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This formula generalizes the expression obtained in Ref. 13
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@c(z)22pL# is a periodic function ofz. The expressions
ar
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n

n
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or
for the current in a 2p-kink for l!uxu, uzu!le . It follows
from ~6! and ~36! that the maximum density of the curre
passing through the junction isnf0c/(8p2l2l * ). We re-
quire that this current density must not exceed the depai
current densityj d5cf0 /(12A3p2l2j), wherej is the cor-
relation length. In this case, we obtain the following co
straint on the Ginzburg–Landau parameterk5l/j:

k.
3)n

2

l

l *
.

The magnetic field in the plane of the junction (y50) at
the smallest distances from the vortex is obtained by sub
tuting ~35! into ~28!:

Hy~x,0,z!'
nf0

2p2lel *
ln

uxu
2l *

, Ax21z2! l * . ~37!

This formula shows that for any of the Abrikosov–Josephs
vortices ~20!–~22!, the magnetic field in the junction plan
diverges logarithmically forAx21z2→0. Such a divergence
also occurs in the theory of regular Abrikosov vortices. It
eliminated by truncation at the correlation lengthj, which
physically indicates the presence of a normalcore of size
;j ~it should be recalled that such a violation of superco
ductivity does not arise in the nonlocal theory of junctio
formed by bulk superconductors4–7!. We carry out such a
regularization in our case also. In this case, formula~37! is
valid for uxu.j, and the field inside the normal core can
presented with logarithmic accuracy in the form

Hy'
nf0

2p2l * le
ln

j

l *
.

Before concluding this section, let us compare the el
tric field in the states~21! and~22!. For this purpose, we firs
determine the values of the dimensionless current densi
and parameterb characterizing dissipation for which bot
these states can be realized~for a fixed value of the Joseph
son frequencyv j ). The condition for the applicability of the
solution ~21! is a large dissipation (b@v l

*
21) or, if we take

into account the values ofv and l * ,

b@ i 1/2v j . ~38!

On the contrary, solution~22! is nondissipative, i.e., appli
cable forb!v l

*
21 . Substitutingv and l * into this expres-

sion, we obtain

b!v j . ~39!

Conditions~38! and ~39! can be realized simultaneously fo
i 1/2!1. In this case, we obtain for the state~21!
v' i lv j

2/b! lv j , l *' l . In other words, the vortex velocity
~21! is smaller than~22!, even as the characteristic scales
these vortices are identical. Among other things, this me
that, in accordance with~30!–~33! and~35!, the electric field
in state~22! is larger than in state~21!.

5. FIELDS AND CURRENTS IN PERIODIC VORTEX CHAINS

Proceeding from formulas~12!, ~15!–~17!, we shall ob-
tain expressions for fields and currents in the case w
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obtained in this way will be applied for specific nonline
states~23!–~27!.

While analyzing the 2pL-periodic chains, it is conve-
nient to present the derivative of the phase difference in
form14

c8~z!5
1

L (
n50

1`

An cos
nz

L
. ~40!

In particular, if

c~z!5c012m arctanS g tan
z

2L D , ~41!

we obtain~in accordance with Ref. 18! A05m, An52m(g
21)n(g11)2n, n>1. Solutions ~23!–~25! are obtained
from function ~41! through an appropriate choice of param
etersc0 , m, g. If, however,

c~z!5c012m arctanS d sin
z

L D , ~42!

thenAn50 for n52k>0, and the coefficients of expansio
of c8 with odd numbers are defined by formulaA2k11

54m@d/(11A11d22#2k11, k>0.18 The nonlinear states
~26!, ~27! can be obtained from the function~42! through an
appropriate choice of parametersc0 , m andd.

Substituting the expansion~40! into expression~12! for
the magnetic field, we obtainH5H̄(x,y)1dH(x,y,z),
where the bar indicates averaging over the period 2pL of
spatial oscillations, anddH denotes the oscillating correctio
to the mean value. The quantitiesH̄ anddH are defined as
follows14:

H̄x52
f0

4p2le
sgnyc̄8E

0

1` dQ

11Q

3expS 2
uyuQ
2le

D sin xQ

2le
,

H̄y52
f0

4p2le
c̄8E

0

1` dQ

11Q
expS 2

uyuQ
2le

D cos xQ2le
,

H̄z50, ~43!

dHx52
f0

4p2leL
sgny(

n51

1`

AnFxS nuyu
L

,
nx

L D cosnz

L
,

dHy52
f0

4p2leL
(
n51

1`

AnFyS nuyu
L

,
nx

L D cosnz

L
,

dHz52
f0

4p2leL
sgny(

n51

1`

AnFzS nuyu
L

,
nx

L D sin nz

L
,

where c̄85A0 /L is the derivative of the phase differenc
averaged over the period~if the phase difference is define
by ~41!, thenc̄85m/L. For the state~42!, the mean value of
c8 is equal to zero.! The values of the functionsFx ,
Fy , Fz are presented in Appendix C.

The expansion of the electric field in harmonics f
2d,x,d is obtained from formula~15!:
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Ē 52
f0v

f ~y!c̄8,

a

in
n
on

or

a
l t

ie
w
ur

H '2
f0

arctan
x

c8~z!,

va-
g

e

in

in
ase
x 2p2cd

Ēy5
f0vd

2x

p2c
c̄8

sgny

~d21y2!2
, Ēz50,

dEx52
f0v
2p2cd

f ~y! (
n51

1`
An

L
cos

nz

L

2
f0v

4p2cle
(
n51

1`
An

L
cos

nz

L
FzS nuyu

L
,0D ,

dEy5
f0vxd

2

p2c

sgny

~d21y2!2 (
n51

1`
An

L
cos

nz

L
,

dEz5
f0vx
2p2cd

f ~y! (
n51

1`
nAn
L

sin
nz

L
, ~44!

where f (y)[arctan(duyu21)2duyu(d21y2)21.
Formulas~44! were obtained under the assumption th

d!L. Away from the junction (uxu@d), the electric field is
obtained from~16!:

Ē52
f0v
2p2c

c̄8
uyu lx2x sgnyly

x21y2
,

dEx5
f0v

2p2cL2 (
n51

1`

nAnFFzS nuyu
L

,
nx

L D
2

uyu

Ax21y2
K1S nAx21y2

L D Gcosnz

L
,

dEy5
f0vx sgny

2p2cL2Ax21y2
(
n51

1`

nAnK1S nAx21y2

L D cosnz

L
,

dEz5
f0v

2p2cL2 (
n51

1`

nAnFxS nuyu
L

,
nx

L D sin nz

L
. ~45!

The subsequent discussion is based on the follow
remark14: periodic dependences of fields and currents oz
may appear against the background of their mean values
near the tunnel layer, i.e., for (x21y2)1/2&L. Accordingly,
if the mean value ofc8 is nonzero, the quantitiesHx ,
Hy , Ex , Ey , I z are defined by their mean values f
(x21y2)1/2@L. In the opposite case, whenc̄850, the de-
pendences ofHx , Hy , Ex , Ey , I z on z are significant at all
distances from the junction in view of the fact that the me
values of all field and current components are proportiona
c̄8. On the other hand, the periodic dependence onz must be
taken into account for arbitraryc̄8 and (x21y2)1/2 for find-
ing Hz , Ez andI x , since the mean values of these quantit
are always equal to zero. Taking this into consideration,
obtain the following expressions for magnetic fields and c
rents for the case whenc̄8Þ0:

~a! for Ax21y2!L, the quantities
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x 4p2le y

Hy'2
w0

4p2le
S c̄8 ln

le

L
1c8 ln

2L

gAx21y2
D ,

Hz'2
f0

8pleL
sgny(

n51

1`

An sin
nz

L
, ~46!

I x'
cf0

16pleL
(
n51

1`

An sin
nz

L
,

I z'
cf0

16p2le
sgnxc8~z!.

If An are the coefficients in the Fourier series of the deri
tive of the function~41!, we can calculate the sum appearin
in the expressions forHz and I x :

(
n51

1`

An sin
nz

L
5

m sin~z/L !

~g211!~g221!212cos~z/L !
;

~b! for L!Ax21y2!le , we have

Hx'2
f0c̄8

4p2le
arctan

x

y
,

Hy'2
w0c̄8

4p2le
ln

2le

gAx21y2
,

I z'
cw0

16p2le
c̄8 sgnx.

If y2@L2 andLuxu, the first term becomes dominant in th
sum ~43! determining dHz since Fz}n

21/2 exp(2nuyu/L).
Consequently, Hz}A1 exp(2uyu/L). If, however,
uyu!L!uxu, then, in view of the fact that Fz

}exp(2nuxu/L), we can retain only the term withn51 in the
sum over n determining dHz . Consequently,Hz , I x
}A1 exp(2uxu/L);

~c! for Ax21y2@le, we have

Hx'2
f0x sgny

2p2~x21y2!
c̄8,

Hy'2
f0uyu

2p2~x21y2!
c̄8,

I z'
cf0

4p3x
c̄8.

The componentsHz and I x attenuate in the same way as
case~b!.

Let us now consider the magnetic fields and currents
the case when the mean value of the derivative of the ph
difference is equal to zero:

~a! for Ax21y2!L, the values ofH and I are obtained
from formulas~46!, in which we must putc̄850. If An are
Fourier coefficients for the derivative of the function~42!,
the sum of the series appearing in the expressions forHz and
I x can be presented in the form
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A 22
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f0v sgny

c̄8l 1O@exp~2uxu/L !#.
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(
n51

An sin L
54m 11d

2d22112cos~2z/L !
,

~b! If y2@L2 and Luxu, we have Fx , Fy

}n21/2 exp(2nuyu/L). Hence, in analogy with the casec̄8
Þ0 mentioned above, it can be stated that all magnetic fi
components attenuate as exp(2uyu/L) and are proportional to
A1 ;

~c! If uyu!L!uxu, we have Fx}exp(2nuxu/L), Fy
}n21/2 exp(2nuxu/L). Hence all components of magnet
fields and currents in this range are proportional
A1 exp(2uxu/L).

Using ~45!, we obtain the following expression for th
electric field for2d,x,d:

Ex'2
f0v
2p2dc

f ~y!c8~z!1g~y,z!,

Ey'
f0vd

2x

p2c

c8~z!

~d21y2!2
,

Ez'2
f0xv
2p2cd

f ~y!c9~z!,

where g'2f0v@c8(z)2c̄8#3(8p2lec)
21, for uyu!L.

For large values ofy(uyu@L), g(y) attenuates exponentiall
and is defined by the first term in the expansion of the
rivative of the phase difference:g}A1 exp(2uyu/L). The
electric field at large distances from the junction (uxu@d) is
obtained from~45!:

~a! for Ax21y2!L, we obtain

Ex'2
f0v
2p2c

uyuc8~z!

x21y2
1

f0v
4pcL (

n51

1`
nAn
L

cos
nz

L
,

Ey'
f0v
2p2c

x sgny

x21y2
c8~z!,

Ez'2
f0v
4pLc

c9~z!. ~47!

For the function~41!, the sum overn appearing in~47! is
defined as

(
n51

1`
nAn
L

cos
nz

L
5
m

L

~g211!~g221!21 cos~z/L !21

@~g211!~g221!212cos~z/L !#2
.

If, however, the coefficientsAn determine the function~42!,
we can write

(
n51

1`
nAn
L

cos
nz

L

5
8m

L
A11d22 cos

z

L
3

d222sin2~z/L !

@112d222cos~2z/L !#2
;

~b! If y2@L2 andLuxu, we have

E'2
f0v
2p2c

c̄8
uyu1x2x sgnyly

x21y2
1O@exp~2uyu/L !#;

~c! For uyu!L!uxu, the following expression is ob
tained:
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The asymptotic expressions obtained for fields and c
rents in this section lead to a number of conclusions ab
the structure of fields for periodic states of the junction:

~a! the z-components of magnetic and electric fields a
eraged over the period 2pL of spatial oscillations are equa
to zero, while thex- andy-projections of mean fields vanis
only for solutions for whichc̄850;

~b! it follows from ~46! that in the vicinity of a junction,
the magnetic field has a logarithmic singularity which, as
the case of isolated vortices, should be associated with
violation of superconductivity in the vicinity of the junction
The electric field is finite everywhere;

~c! for states ~20!–~22!, the magnetic field in films
(y50) averaged over the oscillation period

H̄y'
mf0

4pleL
ln

guxu
2le

, uxu!le

differs qualitatively from the mean field in bulk
superconductors9:

H̄y'
mf0

4plL
, uxu!l.

This is associated with the fact that, in contrast to th
films, Abrikosov–Josephson vortices in bulk supercondu
ors have a regular core.

6. CONCLUSION

In this work, we have presented a theoretical analysis
fields and currents in a Josephson junction in a thin sup
conducting film. The maximum attention is paid to the ca
of a large critical Josephson current, when the phase dif
ence satisfies the sin-Hilbert equation. The general res
obtained here are applicable to eight specific nonlinear s
tions of spatially nonlocal sin-Hilbert equation, which we
obtained in the theory of bulk superconductors.

It is shown that Abrikosov–Josephson vortices in a th
film differ from vortices in the nonlocal electrodynamics
bulk superconductors having a regular core~i.e., a magnetic
field without singularities!. On the other hand, vortices in
film have a singularity like normal Abrikosov vortices. Th
singularity must be regularized at distances of the orde
correlation length.
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APPENDIX A ]f
52uq u

f2~10,qz!
2

f1~20,qz!
,

an-
We shall show that the quantityqzSx2qxSz appearing in
formula ~9! is connected with the phase jump forx50. For
this purpose, we first expressf(x,z) in terms of
f1(20, z) andf2(10, z). It follows from ~3! thatf1 and
f2 satisfy the Laplace equation in half-plane:

Df1~x,z!50 for x,0,

Df2~x,z!50 for x.0. ~A1!

Solving this equation, we obtain

f1~x,z!52
x

p E
2`

1`

dz8
f1~20,z8!

x21~z2z8!2
,

f2~x,z!5
x

p E
2`

1`

dz8
f2~10,z8!

x21~z2z8!2
. ~A2!

Calculating]f/]x and]f/]z on the basis of~A2! and going
over to Fourier representation, we obtain
:

S ]x D
qxqz

z F uqzu1 iqx uqzu2 iqx
G

S ]f

]z D
qxqz

5 iqzFf2~10,qz!

uqzu1 iqx
1

f1~20,qz!

uqzu2 iqx
G .

This leads to the following expression for the required qu
tity:

qzSx2qxSz5
f0

2p FqzS ]f

]x D
qxqz

2qxS ]f

]z D
qxqz

G
5

f0qz
2p

@f1~20,qz!2f2~10,qz!#.

APPENDIX B

For the function~34!, form factorscy andcE have the
form
cy~ uxu,z!52
23/2n

R2 FAR22x22z21 l
*
2

2
ln
R21z21 l

*
2 2&~ l *

AR22x22z21 l
*
2 1uzuAR21x21z22 l

*
2 !

x2

1AR21x21z22 l
*
2 arctan

AR21x21z22 l
*
2 2&uzu

AR22x22z21 l
*
2 2& l *

G ,
cE~ uxu,z!5

23/2n

x2
]

] l *
H l *cy~ uxu,z!

23/2n
1

uzu
R2 FAR21x21z22 l

*
2

2

3 lnS x2

R21z21 l
*
2 2&~ l *

AR22x22z21 l
*
2 1uzuAR21x21z22 l

*
2 !

D
1AR22x22z21 l

*
2 arctan

AR21x21z22 l
*
2 2&uzu

AR22x22z21 l
*
2 2& l *

G J ,

where R[@(x21z22 l
*
2 )214l

*
2 z2#1/4. For small-scale periodic states (L!le), in view of the fact
that n>1, we can disregardL/(2nl ) in integrals with re-
ic
APPENDIX C

The functionsFx , Fy , andFz , which define the Fourier
coefficients in the field expansion, are defined as follows

Fx~a,b!5E
0

1` du sinhu

coshu1L/~2nle!

3exp~2a coshu!sin~b sinhu!,

Fy~a,b!5E
0

1` du coshu

coshu1L/~2nle!

3exp~2a coshu!cos~b sinhu!,

Fz~a,b!5E
0

1` du

coshu1L/~2nle!

3exp~2a coshu!cos~b sinhu!.
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spect tou. In this case, we obtain the following asymptot
representations:

~a! if Aa21b2!1, we obtain

Fx'arctan
b

a
, Fy' ln

2

gAa21b2
, Fz'

p

2
;

~b! if a2@1,ubu, we get

Fx'Ap/2a
b

a
exp~2a!,

Fy'Fz'Ap/2a exp~2a!;

~c! if a!1!ubu, we can write

Fx8'
p

2
sgnb exp~2ubu!,
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Fy'Ap/2ubu exp~2b!,

a
ns

.

.,

7Yu. M. Aliev and V. P. Silin, Zh. E´ksp. Teor. Fiz.104, 2526~1993! @JETP
77, 142 ~1993!#.

,

Fz'
p

2
exp~2ubu!.

These asymptotic expressions can be used to obtain
proximate formulas for fields and currents in periodic chai

*E-mail: malish@sci.lpi.ac.ru

1G. M. Lapir, K. K. Likharev, L. A. Maslova, and V. K. Semenov, Fiz
Nizk. Temp.1, 1235~1975! @Sov. J. Low Temp. Phys.1, 590 ~1975!#.

2Yu. M. Ivanchenko and T. K. Soboleva, Pis’ma Zh. E´ksp. Teor. Fiz.51,
100 ~1990! @JETP Lett.51, 114 ~1990!#; Phys. Lett.A147, 65 ~1990!.

3Yu. M. Aliev, V. P. Silin, and S. A. Uryupin, Sverkhprovodimost’: Fiz
Khim., Tekh.5, 228 ~1992!.

4A. Gurevich, Phys. Rev.B46, 3187~1992!.
5Yu. M. Aliev, V. P. Silin, and S. A. Uryupin, Pis’ma Zh. E´ksp. Teor. Fiz.
57, 187 ~1993! @JETP Lett.57, 193 ~1993!#.

6Yu. M. Aliev and V. P. Silin, Phys. Lett.A177, 253 ~1993!.
506 Low Temp. Phys. 23 (7), July 1997
p-
.

8A. Gurevich, Phys. Rev.B48, 12857~1993!.
9G. L. Alfimov and V. P. Silin, Zh. E´ksp. Teor. Fiz.106, 671~1994! @JETP
79, 369 ~1994!#.

10V. P. Silin, Pis’ma Zh. E´ksp. Teor. Fiz.60, 442 ~1994! @JETP Lett.60,
460 ~1994!#.

11A. Gurevich, PhysicaC243, 191 ~1995!.
12R. G. Mints and I. B. Snapiro, PhysicaA200, 426 ~1993!.
13R. G. Mints and I. B. Snapiro, Phys. Rev.B49, 6188~1994!.
14A. S. Malishevskii and V. P. Silin,Brief Communications in Physics
Physical Inst. Rus. Acad. Sci.@in Russian#, No. 1–2, 64~1996!.

15Yu. M. Aliev, G. L. Alfimov, K. N. Ovchinnikovet al., Fiz. Nizk. Temp.
22, 626 ~1996! @Low Temp. Phys.22, 477 ~1996!#.

16A. A. Abrikosov, Basic Principles of the Theory of Metals@in Russian#,
Nauka, Moscow~1987!#.

17R. G. Mints and I. B. Snapiro, Phys. Rev.B51, 3054~1995!.
18A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,Integrals and
Series. Elementary Functions@in Russian#, Nauka, Moscow~1981!#.

Translated by R. S. Wadhwa
506A. S. Malishevski 



Quasiwaves in superconductors

E. V. Bezuglyi and A. V. Boichuk

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
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Fiz. Nizk. Temp.23, 676–685~July 1997!

Temperature dependence of the amplitude and ballistic velocity of a high-frequency signal
~quasiwave! in a superconductor, associated with the energy dependence of the velocity of electron
excitations, is studied theoretically. The spatial distribution of the quasiwave field and the
transformation coefficient are calculated for quasiwave excitation by an electromagnetic wave as
well as by longitudinal or transverse elastic deformation. The obtained results are in accord
with the data on electron sound velocity measurements in the superconducting states of Ga, Mo,
and Al. © 1997 American Institute of Physics.@S1063-777X~97!00207-7#

1. INTRODUCTION 2. SIMPLE MODEL
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The effect of nonresonant transfer of a high-frequen
excitation~quasiwave! by charge carriers with the Fermi ve
locity in metals were predicted theoretically by Kagano
et al. 1–3 The physical nature of this effect is associated w
the presence of a group of nonequilibrium electrons with
maximum component of the Fermi velocity along the dire
tion of propagation of the exciting wave, which form a c
herent signal of the quasiwave experiencing, apart from
laxation damping, a power damping due to divergence of
effective electron beam. As these electrons are out of re
nance with the exciting wave, the efficiency of its transfo
mation into a quasiwave is relatively low, and hence the fi
reliable quantitative results of its observation in a norm
metal have been obtained only recently4 in experiments with
transverse as well as longitudinal polarization of the excit
acoustic signal.

The behavior of a quasiwave in a superconductor w
studied even in the early research by Burmaet al.5 who were
the first to report on the observation of a signal having
velocity of the order of the Fermi velocity and with a line
energy–momentum relation both in the normal metal and
the superconductor in which the velocity decreased sign
cantly with temperature. Subsequent experiments with
and Mo6,7 confirmed the existence of ‘‘electron sound’’ i
superconductors, which was associated with the Fermi-liq
zeroth sound. It should be noted, however, that the theo
cal model proposed in Refs. 6 and 7 was based on a strin
assumption concerning the absence of interband Coope
teraction between charge carriers forming zeroth sound.
cording to Leggett,8 the spectrum of zeroth sound has
activation character with a gap of the order ofD, and hence
this signal must attenuate over distances of the order of
herence lengthj0 under the given experimental conditions.

6,7

In this communication, we propose an alternative int
pretation of electron sound in superconductors as a man
tation of the ballistic ~quasiwave! mechanism of high-
frequency perturbation transfer by electron excitations of
superconductor. A decrease in the velocity of the signal
T→0 in this case is due to a decrease in the velocity
excitationsv 5 vFj/« (j 5 («2 2 D2)1/2) upon a decrease in
their energy«.
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A complete analysis of excitation of a quasiwave in
superconductor includes the solution of the kinetic equat
for the nonequilibrium correctionx to the distribution func-
tionn0(«) 5 @1 1 tanh(«/2T)#/2 in the half-spacex.0, i.e.,

2 ivx1
j

«
vx

]x

]x
1n

j

«
~x2^x&!5 iv

]n0
]« S j

«
~L ikuik

1w̃ !1vp̃sD , ~1!

L ik5l ik2^l ik&, w̃5w1^l ik&uik ,

p̃s5ps1 ivmu ~2!

~w is the gradient-invariant electric potential,ps the super-
fluid momentum,l ik the deformation potential,uik the strain
tensor, andn the relaxation frequency! together with Max-
well’s equations

dN50, curl curl E5
4p iv

c2
j , ~3!

wheredN and j are the nonequilibrium charge and curre
densities, respectively:

dN52enFS w̃1E dj
j

«
^x& D ,

j i5enFS rs^v ivk& p̃sk2E dj~v ix& D ~4!

~rs is the density of superfluid condensate!, and the equation
in the theory of elasticity

S s02 ]2

]x2
1v2Dui1 1

r
f i50, ~5!

where

f i52nF
]

]xk
E dj

j

«
^L ikx& ~6!
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inte-
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tice, s0 the velocity of sound,r the density of the metal, an
nF the density of states; the angle brackets indicate avera
over the Fermi surface.

A complete self-consistent solution of the problem w
the boundary condition on the metal surfacex50 corre-
sponding to the given way of quasiwave excitation is mu
more complicated than the corresponding problem for a n
mal metal in view of energy dispersion of the rate and f
quency of relaxation of quasiparticles as well as the exc
tion of an additional degree of freedom, viz., the phase of
order parameter. This solution will be described in the f
lowing sections. In order to clarify the qualitative pattern
the temperature dependence of the phase and amplitude
quasiwave, we first use a model approach, replacing the
lution of the self-consistent equations~3! for electromagnetic
fields by a perturbation of the formivA(m5vx /vF ,
z5j/«)d(x)]n0 /]« localized in the planex50 into the
right-hand side of Eq. ~1! ~the polynomial A(m,z)
52A(2m,2z) reflects the symmetry of the right-hand sid
of the initial kinetic equation~1!!. Confining our analysis to
the collisionless limit and substituting the solution of t
model equation into formulas~4! and~6!, we obtain genera
expressions for the quasiparticle contribution to the respo
of the system at a distancex from the source of perturbation
which contain integrals of the form

Cn~x!5
D

2T E
0

` dj

cosh2~«D/2T!

3E
0

1 dm

im S j

« D n expS i F~«!

m D ,
F~«!5F0

«

j
, ~7!

where«5(j211)1/2 is the excitation energy in the units o
D(T) andF05vx/vF is the phase of a quasiwave in a no
mal metal.1

The physical meaning of expression~7! is the superpo-
sition of partial waves transferred to the point of observat
by excitations with various velocities. An analysis of th
expression can be carried out only forF@1, when mutual
interference suppresses the contribution of a larger par
excitations and singles out a small region in the phase sp
~«,m! occupied by nearly synphase excitations forming a
herent signal of a quasiwave. The size and position of
region are determined by the combination of two factors
rapid decrease in the number of excitations with high en
gies «.T/D, and the interference of partial contribution
from low-energy excitations with a considerable spread
velocity, which increases forj→0, m→0.

In a normal metal without velocity dispersio
(j/«→1), effective excitations are concentrated in a narr
region 12m<1/F0 near the reference point:

Cn
N5E

0

1 dm

im
expS i F0

m D'
exp~ iF0!

F0
, ~8!

which leads to the familiar power dependence of the sig
amplitude on the distance from the source, which is ass
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should be noted that in the case of a transverse perturba
the right-hand side of Eq.~1! and the model polynomia
A(m,z) corresponding to it vanish form→1.3 As a result, the
expression for the amplitude of a transverse quasiwave c
tains an additional powerF0

21 @see also formulas~27! and
~35!#.

In a superconducting transition, effective excitatio
with 12m<1/F0 and characteristic energies of the order
temperature («<T/D) remain synphase in a small neighbo
hood ofTc , where variations of the partial phaseF~«! are
small in this energy range:

dF~«!5F~T/D!2F0;F0

D2

T2
!1. ~9!

As in the case of the normal metal~8!, asymptotic analy-
sis of a quasiwave in region~9! is possible only for long
distances (F0@1) from the source, when the correction
dF0 anddU to the phase and to the amplitude of the qua
wave are formed in the region 1!«<AF0 :

Cn~x!5Cn
~N!F1~T,F0!, F1~T,F0!51

2
DApF0

2T&
e2 ip/4, ~10!

dF0

F0
52

dU

U0
5

D

4T
ApF0, F0S D

T D 2!1, F0@1.

~11!

As the temperature decreases (F0(D/T)
2@1), the syn-

phase condition is satisfied only for a small number of hig
energy excitations, and the main contribution to~7!, in which
we can replace the Fermi distribution by its Boltzmann lim
and carry out integration with respect to the angular variab
i.e.,

Cn~x!5
2D

T E
0

`

djS j

« D n11

expS 2
D

T
«1 iF0

«

j D , ~12!

F0S D

T D 2@1, ~13!

is determined by the position of the saddle po
j*5z exp(2pi/6) in integral ~12!, where the quantity
z(T,F0) 5 (F0T/D)

1/3has the meaning of the characteris
energy of effective excitations:

Cn~x!5Cn
~N!e2 iF0F2

~n!~T,F0!; ~14!

F2
~n!~T,F0!52S 2pD«*

3T D 1/2S j*
«*

D n11

expS 2
D

T
«
*
3 D ;

«* ~T,F0!5A11j
*
2 , j*5z exp~2p i /6!,

z~T,F0!5~F0T/D!1/3. ~15!

It can easily be proved that when condition~13! is sat-
isfied, the phase of the exponent in~14! is large. This allows
us to substantiate the above asymptotic estimate of the
gral with respect to the angular variable and to use form
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~14! for evaluating the amplitude and phase of the quasiwave
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qvF

; b5
n
. ~19!
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at an arbitrary distance from the source and at low temp
tures.

The characteristic feature of the obtained results are
nonlinear dependence of the quasiwave phase on the dis
from the source of perturbation and temperature, which
associated with a change in the effective quasiparticle en
z(T,F0), and a rapid decrease in the quasiwave amplit
upon cooling and upon an increase in the distance from
perturbation source, which are due to the displacemen
effective~almost synphase! quasiparticles to the region of th
distribution function ‘‘tail’’.

It will be shown below that formulas~10!–~15! repro-
duce with an exponential accuracy the main features of
complete solution. From the physical standpoint, the mo
approach describes the ‘‘one-particle’’ mechanism of form
tion of the temperature dependence and spatial distribu
of the quasiwave signal without taking into account colle
tive effects of screening of electromagnetic fields in a me
which change significantly as a result of the superconduc
transition and which determine the behavior of the p
exponential factors. The inclusion of these effects require
selfconsistent determination of electromagnetic and ela
fields accompanying the quasiwave propagation. This wil
done in the following sections.

3. ELECTROMAGNETIC QUASIWAVE

In order to solve the problem on excitation of a qua
wave incident on the superconductor surface by an elec
magnetic wave polarized along they-axis, we consider the
kinetic equation~1! and Maxwell’s equations~3!, retaining
in them only the terms containing transverse electric fie
and neglecting the contribution of the elastic component.
suming that the electron reflection at the metal boundar
specular and that the Fermi surface is spherical, we can
duce the solution of the boundary-value problem in the h
space to the problem on the entirex-axis by continuingE,
j , and ps evenly to the semi-axisx,0. This leads to the
emergence of a jump in the derivative ofE at the metal
boundary in the Fourier transform of Maxwell’s equations

2E8~0!1q2E5
4p iv

c2
j , ~16!

where j is the Fourier transform of current density in th
infinite metal9:

j ~q,v!5enFb~q,v!ps , ~17!

b~q,v!5rs^vy
2&22E

0

`

dj
]n0
]« S ^vy

2K&

2 in
j

«
G^vyK&2D ,

K5 ivS qvx j

«
2v2 in

j

« D 21

, G21511 in
j

«
^K&,

~18!

^K&52
p

2k
ln
p1 ib1k

p1 ib2k
; p~j!5

«

j
,
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It should be noted that, in view of the assumption that
Fermi surface is spherical, the last term in integral~17! van-
ishes.

Solving the system of equations~16!–~19! and returning
to the coordinate representation, we obtain the general
mula for the spatial distribution of transverse electric field
the superconductor:

E~x!52
E8~0!

pq0
E

2`

` dk exp~ iF0k!

rsQ1k213QJ0~k!/2k
,

Q5~qL /q0!
2, q05v/vF , ~20!

Jn~k!52E
0

`

dj
]n0
]«

pS p1 ib

p D nf S p1 ib

k D ,
f ~z!5z1~12z2!

1

2
ln
z11

z21
,

Jn~k!'~11 ib!nJ0~k!,
D

T
!1,

Jn~k!'J0~k!,
D

T
@1, ~21!

whereqL is the reciprocal London penetration depth.
In order to evaluate the integral in~20!, we continue the

integrand to the upper half-plane of the dimensionless w
numberk5q/q0 and displace the integration contour in th
direction Imk.0, bypassing the singularities of the inte
grand. The latter contains short-wave poles correspondin
conventional screening at the Meissner or skin depth as
as the branching pointk0511 ib, corresponding to the con
tribution of the quasiwave to the spatial field distributio
described by the formula

EQW~x!52
2E8~0!

3pq0Q
E

~C!

kdk exp~ iF0k!

2rsk/31J0~k!
, ~22!

where the integration contourC in the complex planek,
which bypasses the cut of the integrand, is shown in Fig.
In a normal metal, the branching pointk0 of the function
J0(k)5 f @(11 ib)/k# reflects directly the singularity of the
logarithmic function inf (z), while in a superconductor its
origin is due to the fact that the branching point of the log
rithm in the analytic continuation described above, i.
p(j)5p0(k)5k2 ib, intersects the energy integration co
tour mapped on the semi-axis (1,1`) in the complex plane
p(j) for Rek.1.

The contour integral~22! can be represented as the su
of the integralsI11I2 over the cut edges; in accordanc
with the analytical continuation rules, the energy integrat
contour on the right edge of the cut inJ0(k) ~21! must by-
pass the branching pointp0(k) of the integrand in the com
plex plane p(j) as shown in Fig. 1b. Substitutin
k→k1 ib into I1 and I2 and separating the contributio
J08(k) of the contour bypassing the branch pointp0(k) in
~21!, we finally obtain
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ensures the smallness of the integrand as well as of the inte-

se
.
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e
on
EQW~x!52
2E8~0!

3pq0Q
exp~2bF0!

3E
1

11 i`

~k1 ib!dkeiF0kS 1

Z~k1 ib!1J08~k!

2
1

Z~k1 ib! D , ~23!

Z~k!5
2

3
krs1J0~k!,

J08~k!522ipE
1

k

dpUdj

dpU ]n0
]«

pS 12S p1 ib

k1 ib D 2D . ~24!

It can easily be proved that the value ofJ08 is small in the
asymptotic region ~11! and ~13! under investigation:
uJ08u!uZu. Indeed, for (D/T)(F0)

1/2! 1,F0 @ 1 the charac-
teristic values ofk andp in ~24! are close to unity in view of
rapid attenuation of the exponential factor in~23!, which

FIG. 1. Integration contours for calculating the coordinate dependenc
the quasiwave field~a! and for analytic continuation of the response functi
~b!.
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gration interval inJ08 . In the opposite limit (D/T)AF0 @ 1
the value ofJ08 is exponentially small due to a rapid decrea
in the distribution function of nonequilibrium excitations
This allows us to simplify the general formula~23! by retain-
ing in it only the first nonvanishing term inJ08 . In the ob-
tained expression, we direct the contour of integration w
respect tok along the real axis and then interchange the or
of integration with respect ofk andp, carrying out the sub-
stitution k→kp:

EQW~x!52
2E8~0!

3q0Q
exp~2bF0!E

1

`

dk

3E
0

` D

2T

dj exp~ iF0kp!

cosh2~«D/2T!

p~kp1 ib!

Z2~kp1 ib!

3S 12S p1 ib

kp1 ib D 2D . ~25!

Integrating with respect to the variablek playing the role
of the angular variable 1/m in ~25!, we arrive at an expres
sion which is close to the model formula~7!, differing from
it qualitatively only in the presence of the factorZ22 de-
scribing the collective effect of the Meissner (rs) and the
skin (j 0) screening of the transverse field:

EQW~x!5EQW
N ~x!exp~2 iF0!

3E
0

` D

2T

dj

cosh2~«D/2T!
expS iF0

«

j DZ22

3~p1 ib!, ~26!

where

EQW
N ~x!5

4iE8~0!

3q0QF0
2 exp~ iF0@11 ib!# ~27!

is the distribution of the quasiwave field in the norm
metal.1!

The calculation of asymptotic values ofEQW(x) is
analogous to the evaluation of the model result~7!. In the
vicinity of the superconducting transition temperature~11!,
the characteristic energies in ~26! are large
(;T/D@1, p(j)→1), and the factorZ(p)'1, while, in the
region~13! in which integral~26! is evaluated by the steepe
decent method~see @~12!–~14!#, the quantityZ(p) is re-
placed by its value at the saddle pointZ(p* ), p*5«* /j* .
Considering thatrs!1, p*'1, andJ0(p* )'1 nearTc , and
that the quasiparticle contributionJ0(p* ) to the field screen-
ing is exponentially small at low temperatures, we obtain
final asymptotic form of the electromagnetic quasiwave fi
distribution in the superconductor:

EQW~x!5EQW
N ~x!F1~T,F0!,

D

T
AF0!1; ~28!

EQW~x!5EQW
N ~x!e2 iF0z22~T,b!F2

~1!~T,F0!,

D

T
AF0@1; ~29!

of
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~11 ib* !, D@T;
b*5
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*

«*
, ~30!

whereb* has the meaning of the frequency dispersion
rameter for effective excitations. Thus, the obtained ratio
the quasiwave signal in the superconductor to its value in
normal state differs from the model ratio~10! and ~14! only
in the presence of the factorz22(T,b) describing the change
in the type of screening of the transverse field from the s
screening nearTc to the Meissner screening in the bulk
the superconductor.

It should be noted that, in view of the strong screening
the electromagnetic field in the metal, an electromagn
quasiwave can be observed experimentally only in the
crowave frequency range of the exciting wave. Indeed, s
stitutingE8(0) 5 vE/c, qL 5 vp /c, into ~27!, whereE is the
incident wave amplitude andvp the plasma frequency, w
obtain the following estimate for the coefficient of transfo
mation of an exciting signal into a quasiwave forF0;1:

EQW
~N!

E
;

c

vF
S v

vp
D 2;102S v

vp
D 2,

which becomes equal to its typical valuem/M 2 (s0 /vF)
2

; 1024 for a longitudinal acoustic quasiwave~m andM are
the masses of the electron and the ion, respectively; see
2 and also~40! and ~41!! only for v;1012 s21. For a semi-
metal with a low value ofvp , this estimate can be softene
significantly. Apparently, the acoustic method of excitati
of a quasiwave, which will be discussed in the followin
section, is most favorable from the experimental point
view.

4. ACOUSTIC QUASIWAVE

In this section, we consider the excitation of a quasiwa
by transverse and longitudinal deformation of the metal s
face, which is known to be accompanied by the emerge
of electric fields. In this connections, we must use the g
eral expressions for the Fourier components of the dens
of charge, current, and electron force:

dN52enF~ckp̃sk1aw̃1ck
~d!Uk!,

j i5enF~bikp̃sk2ci w̃1bik
~d!Uk!, f i5 f i

~d!1 f i
~ f !1 f i

~ j ! ,

f i
~d!52 ivmnFDikUk , f i

~ f !5 ivmnF~bik
~d!p̃sk2ci

~d!w̃ !,

f i
~ j !52

ivmc2q2

4pe2
~ p̃sa2Ua!d ia ,

a5y,z,U5 ivmu ~31!

with the kinetic coefficientsa,b,c,b(d),c(d), andD as deter-
mined in Ref. 9. Omitting the simple but cumbersome cal
lations involved in the solution of the boundary value pro
lem in the half-space in the model of free electro
(l ik52mv ivk), we write the equation for the Fourier com
ponent of transverse strain excited in the metal by an ex
nal transverse perturbation~both of the deformation and th
electromagnetic type!:
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u~q!5
v22s0

2q21v2mD̃/M
,

D̃5D2
1

qL
2 S q22 ~qL

2sd2q2!2

qL
2s1q2 D , ~32!

wheres andsd are the transverse and deformation cond
tivity and D is the coefficient of transverse deformation r
sponse:

s~k!5rs1
3

2k
J0~k!, sd~k!512rs2

3

2k
J1~k!,

D~k!52E
0

`

dj
]n0
]«

p1 ib

p
2

3

2k
J2~k!. ~33!

Separating the contribution of the cut originating at t
branch pointk0 in the coordinate representationu(x) as was
done in Sec. 3 and using the small parameterm/M!1, we
obtain the general expression for the spatial distribution
elastic field of a transverse quasiwave:

uQW~x!52
mu8~0!

pM S s0v D 2q0E
~C!
dk exp~ iF0k!

3S 2
3

2k
J2~k!1

~12rs23J1~k!/2k!2

rs13J0~k!/2k D
1

eE8~0!

pMv2q0Q
E

~C!
dk eiF0k

12rs23J1~k!/2k

rs13J0~k!/2k
.

~34!

It should be noted that, in the case of excitation of
transverse acoustic quasiwave by an electromagnetic w
incident on the free surface of a metal (u8(0)50), the first
term in ~34! is equal to zero. For acoustic excitation, th
quantity E8(0) should be determined self-consistently
solving the external problem for the electromagnetic fie
but according to Iwanowski and Kaganov,3 its contribution
to the quasiwave amplitude is negligibly small.

Further procedure of evaluating the quasiwave com
nent of transverse sound is similar to that used for calcu
ing the field of an electromagnetic quasiwave~Sec. 3! and
leads to the same temperature dependences of the s
~28!–~30! in whichEQW

N should be replaced by the field dis
tribution for a transverse acoustic quasiwave in a norm
metal3:

uQW
N 5S u8~0!

4imq0
3M S s0v D 22 4ieE8~0!

3Mv2q0Q
D

3
exp~ iF0~11 ib!!

F0
2 . ~35!

The estimate of the coefficient of transformation of
transverse elastic perturbation to a quasiwave,

uQW
u~0!

;
v

s0

mv

MvF
S s0v D 2;S s0vFD

3

;1026

contains an additional power of the small parameters0 /vF as
compared to its value (s0 /vF)

2 for a longitudinal acoustic
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quasiwave. This factor, which complicates the experimental
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observation of a transverse acoustic quasiwave, is due to
vanishing of the transverse component of the model de
mation potential at the reference point. It was mentioned
Ref. 3 that this factor can be absent in the general case o
arbitrary electron spectrum. This apparently explains wh
transverse quasiwave could not be registered in recent
periments with Al whose Fermi surface is successfully
scribed by the Harrison standard construction from spher
regions of the Fermi surface for free electrons, while
signals of transverse and longitudinal quasiwaves in
which has a complex electron spectrum, have compar
amplitudes for the same excitation power.4

The calculation of the field distribution for a longitudin
quasiwave in a superconductor is much more complica
since the field component of the response cannot be
pressed in terms of appropriate conductivities~it is well
known that the concept of longitudinal conductivity cann
be introduced for the superconducting state even in the lin
approximation since the contribution to the longitudinal c
rent comes from the electric field as well as from the os
lations of the order parameter phase!. In this connection, the
nonanalytic part of the Fourier component of elastic stra
which has a branching point in the complex planeq and
generates the quasiwave component of the signal, ha
rather cumbersome structure:

uQW~x!5
imu~0!

pM E
~C!

dk

k
eiF0kW~k!,

W~k!523SD1
abd

212ccdbd2bcd
2

k2~ab1c2! D , ~36!

where all the kinetic coefficients contain the branch po
k0511 ib. In contrast to the transverse field, the variati
of the integrand upon a transition through the cut is sign
cant, and the expansion in this quantity is impossible in
general case. Asymptotic analysis shows, however, that
structure of the response~30! can be simplified considerabl
in limiting cases. Indeed, at low temperaturesT!D, the qua-
siparticle contributions to kinetic coefficients containing t
branching point are exponentially small, and their contrib
tion toW can be separated in the perturbation theory. In
vicinity of the critical temperature, we can derive the follow
ing relation by using exact expressions for kinetic coe
cients:

W~k!511 ib2
k2

3
@12a21~k!#1O~D/T!. ~37!

At the same time, nonanalytic corrections appearing
to the branch point of the function

a~k!'12
1

2T E
0

` dj

cosh2~j/2T!
gS ln p1 ib1k

p1 ib2kD ,
g~z!5

z/2

11 ib~12z/2!
, ~38!

are of the order of (D/T)AF0, and the values of these co
rections in the wave regionF0@1 are large as compared t
the last term in~37!, which can consequently be neglecte
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QW 3pM 11 ib
1 2

D!T. ~39!

Herea1 anda2 are the values of the functiona(k) at the
edges of the cut.

Carrying out asymptotic calculations on the basis of f
mulas~38! and ~39!, we obtain forDAF0!T, F0@1

uQW~x!5
4imu~0!

3MF0
exp@ iF0~11 ib!#S E

0

` dke2k

L2~k!1p2

2
DAF0

2T&
exp~2 ip/4!E

0

` dk

Ak
e2kA~k!D ,

A~k!5
L2~k!2p2

@L2~k!1p2#2

2
b

4p E
0

`

djS l12 ~j!

L1
2 ~k!

1

12 ib~L1~k!1 l1~j!!/2

2
l2
2 ~j!

L2
2 ~k!

1

12 ib~L2~k!1 l2~j!!/2D ,
L~k!5 ln

2F0~11 ib!

ie2k
, L6~k!5L~k!6 ip,

l6~j!5 ln
j2

j221
, j.1; l6~j!5 ln

j2

12j2
7 ip,

j,1; A~k!'
L2~k!2p2

@L2~k!1p2#2
~122ib ln 2!,

b!1. ~40!

The first term in~40! corresponds to the quasiwave si
nal in a normal metal and coincides with the expression
tained by Gokhfeld and Kaganov2 if we neglect the logarith-
mic dependenceL(k). Retaining in~40! only the large term
ln F0 according to the main logarithmic approximation, w
can easily see that the obtained temperature dependen
the phase and amplitude of the quasiwave coincides with
model dependence~10! and~11! corresponding to a decreas
in the velocity and amplitude of the quasiwave upon a tr
sition throughTc . However, real experimental values of th
signal phase are such that we must take into account
numerical factors in formula~40!. This necessitated a nu
merical analysis which shows that the velocity and the a
plitude of the quasiwave, which decrease rapidly in the
perconducting state, can first pass through a maximum
not very large values of the phaseF0 . It should be noted tha
in order to obtain a simplified numerical estimate, we c
neglect the logarithmic dependenceL(k) in ~40!:

uQW~x!5
4imu~0!

3MF0
exp@ iF0~11 ib!#S 1

L2~1!1p2

2
DApF0

2T&
e2 ip/4A~1!D . ~41!
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the functiona(k) ~38! is exponentially small and can b
separated in the perturbation theory@see comments to for
mula ~24!#. In this case, the amplitude and velocity of
ballistic signal always decrease with temperature:

uQW~x!5
imu~0!

3Mz2F0
exp~2bF0!

3F2
~0!~T,F0!E

0

` dke2k

~12 ibL1/2!~12 ibL2/2!
,

~42!

z5E
0

` dj

cosh2 j

Z

12 ibZ
, Z5 ln

4T

eD
jA11 ib,

DAF0@T, D!T;

uQW~x!'
4imu~0!

3MF0
exp~2bF0!F2

~0!~T,F0!

3S ln22S pT

egD D 2, b!1;

E
0

` dke2k

L2~k!1p2 , b@1;

~43!

where lng5C50.577... is the Euler constant.
At low temperaturesT!D, the functionW(k) ~36! can

be linearized in the exponentially small quasiparticle con
bution to the kinetic coefficients:

uQW~x!5
imu~0!

pM E
11 ib

11 i` dk

k
eiF0k~W12W2!~k!, ~44!

~W12W2!~k!52
2D

3T E
0

`

dj expS 2
D

T
« D S 3k ~p1 ib!

2
k

pD
2

~G^K&12G^K&2!, ~45!

where the functionsG and^K& are defined in~18! and~19!.
Carrying out asymptotic expansions similar to~25!–~30!, we
finally get

uQW~x!5
4imu~0!

3MF0
S 12

ib*
2 D 2e2bF0

3F2
~0!~T,F0!E

0

`

3
dke2k

~12 ib*L1* ~k!/2!~12 ib*L2* ~k!/2!
,

D@T, ~46!

L6* ~k!5L* ~k!6p i , L* ~k!5 lnS 2F0~11 ib* !

ie2k

«*
j*

D ,
uQW~x!'

4imu~0!

3MF0
e2bF0F2

~0!~T,F0!
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3S E
0

` dke2k

L* 2~k!1p2 ub* ~b,T,F0!u@1.

~47!

According to~46! and~47!, the changes in the amplitud
and phase of a longitudinal acoustic quasiwave referred
their values in the normal state exhibit at low temperature
behavior similar to that following from the model calcula
tions ~14! and ~15!.

The obtained results describe qualitatively the expe
mental results5–7 in which an increase in the phase of a
electron sound signal was observed forT→0. In the vicinity
of Tc , these variations are proportional toD(T), which is in
accord with formula~10!. It should also be noted that th
amplitude of electron sound in Ga and Mo decrea
abruptly upon a transition throughTc , which can be an in-
dication of vanishing of the zeroth sound component of
signal in the superconducting state and of a transition to
purely ballistic transfer mode~quasiwave!. A detailed analy-
sis of the behavior of the signal of a longitudinal quasiwa
in a superconductor supported by numerical calculations
be published in a separate article together with correspo
ing experimental data.

The authors are grateful to N. G. Burma and V. D. F
for fruitful discussions of the results.
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1!It should be noted that, in the adopted approximation, the phaseEQW

N does
not depend on the mean free path. At the same time, a numerical ana
of the exact formula reveals a weak increase in the ballistic trans
velocity upon an increase in relaxation frequency. This circumstance h
simple physical meaning: as the mean free path decreases, the contrib
from electrons arriving at the point of observation along slanting~longer!
trajectories becomes smaller, which leads to narrowing of the effec
electron beam and to an increase in the transport velocity.
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Simulation of resistive state of a granular superconductor

s of
V. K. Ignatjev

Volgograd State University, 400062 Volgograd, Russia*
~Submitted October 30, 1996!
Fiz. Nizk. Temp.23, 686–695~July 1997!

The equation for hypervortex in a slightly granular superconductor is obtained, and the vortex
lattice is numerically simulated. The dissipation associated with the formation, collapse,
and movement of hypervortices is considered. The equations describing the dynamics of magnetic
field distribution, nonlinear susceptibility, and current–voltage characteristics in the resistive
state are obtained. The numerically simulated equations give results that are in good agreement
with those obtained experimentally. ©1997 American Institute of Physics.
@S1063-777X~97!00307-1#
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Various models of high-temperature superconduct
~Bean’s, spin-glass, Josephson medium, percolation,!
treat a superconducting ceramic as a nonlinear medium~sys-
tem with distributed parameters! with considerable time and
spatial dispersions. No general approach has been wo
out for simulating and studying such systems, and hence
impossible to compare theoretical and experimental res
or to analyze the operation of electrical and radioenginee
units made of high-temperature superconductors and to o
mize their characteristics.

The construction of a consistent phenomenologi
model of the electrodynamics of a medium requires the
lution of three problems:~a! analysis, i.e., the construction o
the response of the medium to an arbitrary external ac
with the help of the system function of the medium th
depends only on its parameters and not on the action;~b!
synthesis, i.e., using the experimental data for construc
of the system function of an arbitrary medium satisfying t
requirement of the analysis; and~c! simulation, i.e., connect
ing the integral parameters of the system function of
medium with the processes occurring in it to facilitate a co
parison of the theoretical and experimental results. In m
ern theoretical electrical engineering, the problems of an
sis and synthesis of linear chains have been sol
completely with the help of uniquely connected pulse, tra
mission, and frequency characteristics. For nonlinear cha
the problem is solved in some particular cases only appr
mately, as a rule, by series expansion of the current-volt
characteristic for quasistationary processes, and by
method of harmonic balance and slowly varying amplitu
for harmonic and narrow–band action. As a rule, we c
isolate in the system under investigation a closed subsys
containing a superconducting sample and having two pair
clamps for input and output. Such a system is treated a
passive nonlinear four-pole for which the work done by t
external agency is equal to the change in the internal en
of the medium and losses in it. In turn, the internal ene
and losses in a passive medium are nonlinear retarded p
tials of the external agency and uniquely define the reac
of the medium to it, i.e., describe the system function of
medium. Such an approach makes it possible to characte
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electrically measurable integral quantities~like total resis-
tance, surface impedance, and nonlinear susceptibility! and
to verify experimentally the results of theoretical analysis

An analysis of vortex dynamics in a granular superco
ductors plays an important role in the construction of t
phenomenological model of quasistationary nonlinear e
trodynamics of high- temperature superconductors. The c
cept of Josephson hypervortices introduced by Sonin1 proved
to be quite useful for describing the mixed state in superc
ducting ceramics.2,3 However, the models considered
Refs. 1–3 cannot be used for analytic description of mag
tization curves and complex susceptibility. In Ref. 3, for e
ample, it is assumed that there are no Abrikosov and Jos
son vortices. An analysis of the motion of a solitary pla
vortex was carried out in Ref. 4 for a regular Josephs
medium with identical critical junction currents and in th
absence of vortex penetration in granules, which does
permit a description of the critical state of real ceramic s
perconductors. A fairly complex system of equations w
obtained in Ref. 5 for describing hypervortices in a granu
superconductors for the general case taking into accoun
strongly stochastic and nonlocal nature of the medium.

It should be remarked that recently synthesized cera
superconductors with a high current-carrying capacity hav
comparatively high critical current of Josephson junctio
between granules and hence the Josephson penetration
becomes comparable with~or even smaller than! the granule
size. Such superconductors can be called slightly granu
Numerical simulation of equations in Ref. 5 shows that t
intergranular magnetic field at the center of a hypervor
becomes stronger than the lower critical field of a granule
a slightly granular superconductor even in an external m
netic field of the order of 10 Oe. In stronger external ma
netic fields, Abrikosov vortices penetrate the granules pr
tically everywhere in the bulk of the superconductor.

1. CONSTITUTIVE EQUATION

In order to generalize the constitutive equations obtain
by the author earlier5 to the case of a slightly granular supe
conductor taking into account the penetration of Abrikos
vortices into granules, let us assume that the supercondu

514514-08$10.00 © 1997 American Institute of Physics
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z-axis, and denote byn(x,y) the concentration of Abrikosov
vortices in granules, averaged overz. In external fields that
are not too strong, vortices are located in the vicinity of t
granule surfaces, and it can be assumed that there ar
vortices at the center of granules. Following Ref. 5, we c
struct a smooth functionx~r ! whose value at the center o
each granule coincides with the phase of the order param
In this case, the following condition is satisfied for an
closed contourC passing through the centers of granules a
Josephson junctions:

R ¹x~r !dr52pSm1 R R
s
n~r !edS,D , ~1!

where e is a unit vector along thez-axis, S the surface
stretched over the contourC is andm an integer.

This equation can be written in the form

curl~¹x~r !!52p~n~r !1mid~r2r i !!, ~2!

wherer i is the hypervortex axis coordinate,mi the number of
magnetic flux quanta in the intergranular space of a hyp
vortex, andd~r ! is a twodimensional delta-function. We in
troduce the following notation:m1 is the average fraction o
the normal phase in a superconductor or permeability o
superconductor in the absence of intergranular currents
Abrikosov vortices,m2(B1) the permeability of a granule
associated with the penetration of Abrikosov vortices,B the
average magnetic induction in a superconductor,B1 the in-
duction in the intergranular space, andm3 the averaged per
meability of a superconductor in the absence of granular
rents, whenB1 is equal to the external fieldH. In this case,
we get

B15B/m3 , eF0n5m2B/m3 , m35m11m22m1m2 .
~3!

We introduce the dimensionless gradiently invariant vec
g 5 apAp^A(r ) 2 F0¹x(r )/2p&/2F0 , whereA~r ! is the
magnetic field vector-potential, anda the mean separatio
between the centers of granules. Taking formula~2! into ac-
count, we can write

B5F0~2 curl g/~apAp!1mied~r2r i !1en!,

which easily leads to the relation

B5F0

3
@2 curl g/~apAp!1mied~r2r i !#~m11m22m1m2!

m12m1m2
.

~4!

The total free energy of a superconductor measured from
zero level of magnetic field and currents assumes the fo

W5
1

8p (
k51

N

@m1VkB1
2~r k!1~12m1!VkF0

2n2~r k!/m2

14F0I k~12cos~wk!!#/c,

where r k is the coordinate of thekth Josephson junction
Vk the volume of the region containing a part of the gran
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critical current in the junction, andwk the phase difference
across the junction.

Averaging in accordance with the procedure described
Ref. 5, we obtain

^W&5FJE E E ~l2ucurl g1emiapApd~r2r i !/2u2

112D3 exp~2D2g2!!dV, ~5!

where the following notation has been used:FJ

5 F0rI J/2pc; D 5 (11 a2u¹gu2/40)21; l 5 lJ(m3)
1/2/(m1

2 m1m2), lJ 5 (cF0 /p
3a2rI J)

1/2 is the Josephson penetra
tion depth,r the density of intergranular Josephson jun
tions, andI J the average critical current in the junctions.
contrast to the exact expression obtained in Ref. 5, form
~3! here does not take into account fluctuations of the m
netic field vector potential. Numerical simulation shows th
the contribution of the corresponding terms is small.

The time-independent constitutive equation for a sligh
granular superconductor may be obtained in the conventio
way by minimizing the free energy~5!. Taking into account
the resistive model of a Josephson junction,6 we obtain the
complete time-dependent equation:

l2 curl curl g52gD3 exp~2D2g2!2tg82tRCg9

1bmi curl ~ed~r2r i !!, ~6!

wheret5F0 /(2pI JRc), R is the mean normal resistance
the junctions,b5al2pAp/2, and the prime indicates tim
derivative. Together with Eq.~4! which can be used to find
the magnetic inductionB in a superconductor from the
known value of the vectorg and Eq.~3! which expresses the
intergranular magnetic fieldB1 ~and hence the permeabilit
of granulesm2(B1) and the parameterl(m2)! in terms of
B, Eq. ~6! describes the dynamics of magnetic field distrib
tion in a superconductor.

A stationary solitary vortex in an infinite superconduct
is described by a one-dimensional time-independent equa
in cylindrical coordinates

l2S r 2 d2gdr2
1r

dg

dr
2gD5r 2D3g exp~2g2D2!. ~7!

The boundary conditions can be obtained from Eq.~1!:

rg~r→0!→2amAp/4, g~r→`!→0. ~8!

Together with these boundary conditions, Eq.~7! can be eas-
ily solved numerically, and this leads to the following e
pression for magnetic inductionB(r ) in a hypervortex:

B~r !5S m11m22
m1m2

m1
2m1m2D SBJlJ

r D d~rg !

dr
,

BJ52F0 /~alJpAp!5~4F0I Jr/c!1/2.

The magnetic field distribution obtained in this way is qua
tatively quite close to its distribution in an Abrikosov vorte
thus justifying the term ‘‘hypervortex’’ introduced in Ref. 1

For the hypervortex boundary, we can naturally take
loop on whichj50. In this case, the energy of a vortex
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unit length can be determined as the integral over the sur
covered by this loop, of the energy density which, in acc
dance with Eq.~5!, has the form

F5FJ~l2ucurl gu2112D3 exp~2g2D2!!,

FJ5BJ
2/8p. ~9!

Naturally, the total energyW of the hypervortex depend
on the flux trapped by the vortex. It is borne out by nume
cal computations that as in the case of Abrikosov vortic
one-quantum hypervortices (m51) are more advantageou
than many-quantum hypervortices (m.1) from the energy
point of view. Note that a hypervortex withm51 can con-
tain tens or even hundreds of magnetic flux quanta conc
trated in Abrikosov vortices penetrating the granules. He
it can be called a one-quantum hypervortex only in the se
that only one magnetic flux quantum is contained in the g
between granules.

The dependence of the energy of two interacting vorti
on the separation between them as well as the energ
hypervortices in square and triangular lattices can also
determined numerically. Like Abrikosov vortices, hypervo
tices moving in the same direction repel each other, wh
those moving in the opposite directions attract each ot
and a triangular lattice is more advantageous~albeit slightly!
than a square lattice from the energy point of view. Figur
shows the initial segments of the dependence of the en
W of a hypervortex and the magnetic fluxF trapped by the
hypervortex on the average magnetic inductionB5NF in a
superconductor in the normalized coordina
v5W/(FJlJ

2), b5B/(BJlJ
2). In our calculations, the de

pendencem2(B1) was approximated by the function

m2~ uB1u>HC1!5
~ uB1u!1/22~HC1!

1/2

~ uB1u!1/21k~HC1!
1/2,

m2~ uB1u,HC1!50,

and it was assumed thatHC1 5 BJ/3; k 5 5; m1 5 0.1; a/lJ

51.

2. VORTEX LATTICE DYNAMICS

The study of vortex lattice dynamics requires the ana
sis of losses occurring during the hypervortex movement

FIG. 1. Dependence of the energyv and the fluxw in it as functions of the
average magnetic fieldb.
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junction resistance. Averaging in the same way as during
derivation of constitutive equations in Ref. 5, we obtain t
mean-square voltage across the junction:̂Uk

2&
5 ^wk8

2&F0
2/(2pc)2 5u g8u2F0

2/(2p2c2). From here we can
easily obtain the mean density of dissipative power:

p5r^Uk
2&/R5F0

2ug8u2r/~2Rp2c2!. ~10!

We shall assume that the attenuation of normal cond
tion currents is quite rapid, and a vortex moving along t
x-axis with a constant velocityv in the coordinate system
attached to the vortex center is described by a tim
independent equation. In this case,

ug8u25u~v¹!gu25v2S S ]gx
]x D 21S ]gy

]x D 2D'
v2B2

m3l
2BJ

2 .

Using formula~10! and considering that the magnetic ener
in a vortex is equal to half the total energyW of the vortex,
we determine the dissipative power:P5v2tW/lJ

2 . This for-
mula enables us to determine the electromagnetic fric
force acting on a unit length of a hypervortex moving in
granular superconductor:

f52vtW/lJ
2. ~11!

The problem of pinning of hypervortices remains large
unsolved at present. It was shown in Ref. 4 that under cer
conditions, a considerable pinning force may act on a tw
dimensional vortex in the regular lattice of Josephson ju
tions. Following Refs. 7 and 8, it can be shown that like
Abrikosov vortex, a hypervortex can be fixed at the boun
ary of a superconductor. However, if the size of the hyp
vortex considerably exceeds the granule size in a cera
superconductor, averaging over the stochastic system
junctions makes the hypervortex energy practically indep
dent of the position of its axes. In other words, the pinni
disappears. However, if the vortex size is comparable w
the granule size in a slightly granular superconductor, av
aging does not occur, and the pinning remains. Moreov
Abrikosov vortices trapped by the hypervortex may
pinned at the boundaries of granules.7,8 These vortices are
also subjected to the Lorentz force exerted by the trans
current. Hence it can be assumed that the pinning forcefP
and the Lorentz forcefL acting on a hypervortex are propo
tional to the magnetic fluxF trapped by it:

fL5F sgn~B!@ j3e#/c. ~12!

Taking into account the above assumptions and relati
~11! and ~12!, we can use the modified Bean’s model9,10 to
write the law of motion of a hypervortex:

v~ j !5Q~ u j u2 j C!sgn~B!@ j3e#S 12
j C
u j u D lJ

2F

Wtc
, ~13!

where Q(x) is the Heaviside function,Q(x>0)50,
Q(x,0)50, j C is the critical current density, andB5NF is
the average magnetic induction. Formulas~11! and ~13! do
not take into account the losses occurring during the mo
of Abrikosov vortices in granules. Following Ref. 11, we ca
show that in magnetic fields that are much weaker than
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comparison with the losses in intergranular junctions.
Several theoretical and experimental works12 indicate

that Bean’s rigid model cannot be applied to real superc
ductors. In high-temperature superconductors, the ther
activation of vortex movement acquires a special sign
cance. Taking into consideration the elastic model of int
action of a hypervortex with the pinning center,7,8 we assume
that the Lorentz force corresponding to the critical curr
density displaces the vortex lattice by a distanced, and this
is followed by a free movement of the lattice. Taking fo
mula ~12! into consideration, we obtaind5F j C /(kc),
wherek is the rigidity. This means that the potential barri
to be overcome for detaching a vortex from the pinning c
ter isU05dF j C /(2c). The transport current having a de
sity j displaces the vortex lattice by a distancex5 jd/ j C ,
and the barrier for detaching a vortex
DU5U02kx2/25U0( j C

22 j 2)/ j C
2 . Since the fraction of vor-

tices overcoming the barrier as a result of thermal activa
is equal to exp(2DU/(kBT)), wherekB is the Boltzmann con-
stant, and the Heaviside functionQ(u j u2 j C) in Eq. ~13!
should be replaced by the functionQ1( j ):

Q1~ u j u, j C!5expSU0~ j
22 j C

2 !

j C
2kBT

D ,
Q1~ u j u> j C!51. ~14!

The motion of a hypervortex at a constant velocity is n
the only dissipative process in a granular superconduc
Unlike Abrikosov vortices in a type II superconductor, th
emergence and vanishing of hypervortices in granular su
conductors is accompanied by losses in intergranular ju
tions. The vanishing of a solitary vortex in a slightly granu
superconductor indicates that at the instantt50, the param-
eterm in Eq. ~6! varies from 1 to 0. It should be noted th
Eq. ~6! is obtained as a result of averaging of the resist
model for a Josephson junction,6 i.e., a model with lumped
parameters which is valid only for quasistationary proces
in which the wavelength of electromagnetic oscillations
considerably larger than the granule size. Hence Eq.~6! does
not describe microwave oscillations emerging during the f
mation of a vortex, and we can speak of instantaneous va
tion of the parameterm in this model only when the period
of microwave oscillations is much smaller than the time co
stantt. Under these assumptions, the formation of a hyp
vortex is an adiabatic process, and the energy density a
points of the superconductor is a continuous function
time.

The energy lossQ associated with the vanishing of
hypervortex is obtained by taking into account Eqs.~6!, ~9!,
and ~10! in analogy with losses occurring during vorte
movement:

q5rE
0

`

dtE E E
V

d3r ^uk&
2/R

5
F0

2r

2p2c2R E
0

`

dtE E E
V

ug8u2d3r
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V
0

1l2 curl curl g1tRCg9!dt

52FJE E E
V

d3rE
0

`S ]

]t
~12exp~2g2!

1l2ucurl gu21tRCug8u2!22 div@g83curl g# Ddt
5U~0!2U~`!1

r

2 E E E
V

C^uk~10!&2d3r

1 R R
S
d2rE

0

`

@g83curl g#dt5W1WC~10!.

HereS is the surface covering the volumeV of the super-
conductor,U(T) is the total energy of the superconductor,
variation due to the vanishing of a vortex is equal to t
vortex energyW, andWC is the energy of intergranular ca
pacitors at the instantt510. Note that in view of formula
~4!, curl g5HSapAp/(2F0)5const on the surfaceS. On
the other hand, the value ofg on surfaceS in steady state is
also determined by the external field only, i.e
g(0)5g(`), and the surface integral is equal to zero.

Since the variation of parameterm in Eq. ~6! is treated
as an adiabatic process, the current distribution and the
ergy density do not change at any point at the instant
transitiont50. On the other hand, the vanishing of a vort
is associated with a transition of intergranular Joseph
junctions into resistive regime, i.e.,wk(10)50. In this case,
nondissipative Josephson current is replaced by conduc
and displacement currents, and the potential energyWJ of
Josephson junctions is replaced by the energyWC of charged
intergranular capacitors. Subsequently, the energyWC is
scattered in microwave oscillations in Josephson junctio
Hence we can putWC(10)5WJ(20)5W/2 and obtain an
expression for the dissipation energy associated with
vanishing of a vortex:

q51.5W. ~15!

3. RESISTIVE STATE

Let a superconductor with hypervortex concentrati
N(r ) carry the transport current of densityj ; hypervortices
move at velocityv, experience the action of the Loren
force fL , andr vortices vanish per unit volume of the supe
conductor per unit time. In this case, the power balance eq
tion for unit volume can be written in the form

Ej5uNufLv1rq1WJ]~ uNu!/]t. ~16!

Here we have taken into account the fact that the work d
by the electric field to displace the charge is spent not o
for heat losses, but also to change the potential energ
Josephson junctions. The force against which the work
done upon a change in the phasewk of a junction is of a
nonelectromagnetic origin since the energy of the junct
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does not depend on the voltage applied to it, and hence
an extraneous force. In a certain sense, the change in
junction energy is similar to the charge of a perfect stora
cell. Taking into account relations~12! and~15! and the con-
tinuity equation

]uNu/]t52div~ uNuv!2r ,

we can transform relation~16! to

Ej5
@B3v#

c
j2

W

2 F2 ]~ uBu/F!

]t
13 divS uBu

F
vD G . ~17!

This relation is the constitutive equation for the critical a
resistive states of weakly granular superconductor; toge
with the Maxwell’s equations

curl E52
1

c

]B

]t
; ~18!

curl B5
4p

c
j ~19!

it describes the electrodynamics of the superconductor c
pletely. If the magnetic field is directed along thez-axis, i.e.,
B(r )5B(x,y)e5NFe, we have gradB54p@e3 j #/c.

Let us consider steady-state conditions under which
transport current density is virtually constant, and the L
placian of the magnetic inductionB can be neglected. Takin
relation ~13! into account and carrying out simple vect
transformations, we can write Eq.~17! in the form of the
nonlinear Ohm’s law:

E5g~ uBu!j S 12
j C
u j u DQ~ u j u2 j C!, ~20!

where

g~ uBu!5
lJ
2

tc2 S FuBu
W

16pW
d~ uBu/W!

duBu D ~21!

is the differential resistivity in the resistive state. Figure
shows the magnetic field dependence of the differential
sistivity g(uBu) normalized to the characteristic resistan
g05Ra of the granular medium and calculated for the d
pendences of the vortex flux and its energy on the aver
magnetic fieldb, which are shown in Fig. 1. This depen
dence is successfully approximated by the formula

FIG. 2. Dependence of differential resistivity of a superconductor in
resistive state on magnetic field in normalized coordinates.
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It should be noted that the approximation coefficients
different for different values ofHC1 andm2(B1) for granules
and of the ratioa/lJ, but the analytic form of approximating
functions remains unchanged. For example, the flux resis
ity g for a certain value of mean field turns out to be larg
thang0 . The characteristic resistivityg0 is the resistivity of
a three-dimensional matrix formed by resistorsR with a pe-
riod a, i.e., the resistivity of a granular superconductor w
all the intergranular junctions in the resistive state. If t
magnetic field created by the transport current at the su
conductor surface is strong enough, and the condit
g(B).g0 is satisfied in a certain cross section, the ceram
superconductor in the resistive state can be separated
two phases, viz., the internal ‘‘Josephson’’ phase in wh
the transport current flows through intergranular junctions
the superconducting state and is accompanied by the mo
of hypervortices, and the external ‘‘Abrikosov’’ phase
which the junctions are in the resistive state, hypervorti
are not formed, and the transport current is accompan
with the motion of Abrikosov vortices in the granules, whic
are formed and vanish at the boundaries of the granules

The problem on phase equilibrium in dissipative syste
has not been solved yet. Following the Zubarev method
nonequilibrium static operator,13 and the matching principle
of the minimum dissipative power for a given external effe
whose role is played by the transport current, we can ass
that the current density at the interface is continuous, and
following condition must be observed:g( j2 j Csgn(j))5g0j.
It should be noted that the applicability of the Zubar
method to essentially nonstationary processes has not
analyzed so far.

Let us consider an plane-parallel plate of unit length
from a granular superconductor of thicknessd and carrying a
direct transport currentI passing along they-axis, exceeding
the critical valueI C5d jC , and creating the magnetic fiel
HI52pI /c at the plate surface. The conditionB(t)5const
in this case leads to the conditionE(t,r )5const. Let us sup-
pose that the planex50 passes through the center of th
plate, andB(0)50. If HI@HC1 , we can assume tha
B(d/2)5HI . Denoting byU the voltage drop over a uni
length along they-axis, we obtain from Eqs.~19! and ~20!

I5
c

2p
BS d2D52E

0

d/2

~U/g1 j C!dx. ~23!

Let us find the differential resistance of the plate forI5I C
and U50. Putting E50 in Eq. ~20!, we obtain
B(x)54p j Cx/c. Then Eqs.~22! and ~23! lead to

r5
dU

dI U
U50

5S 2E
0

d/2 dx

g~B~x!! D 21

5
4Ra

3d S 1
1

9cBJ
40pI C

lnS 11
49pI C
cBJ

D D 21

.
2Ra

15d
.0,

i.e., the current–voltage characteristic of a slightly granu
superconductor has a kink atU50. Such a dependence wa
observed in Josephson structures experimentally.14

e
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pointU50 is directly connected with the fact that accordi
to Eq. ~17!, E(B50) Þ 0 in view of the additional energy
dissipation accompanying the vanishing of vortices. If
assume, as is usually done for type II superconductors,
E5@B3v#/c,11 E50 at the center of the plate, which con
tradicts the requirement that the electric field is constant o
a cross section under steady-state conditions.

The general solution of the system of equations~17!–
~19! is rather cumbersome. For a plane-parallel plate, i
convenient to reduce these equations to a system of
dimensional first-order equations:

4pW
d~ uBu/F!

duBu
]E

]x
sgn~B!1E

]B

]x
52

c

4p S g~ uBu!

3S ]B

]x D 21 6plJ
2B

tc2
]2B

]x2 D S 12
4p j C

cu]B/]xu DQS U]B]xU
2
4p j C
c D ~24!

]B/]t52c]E/]x, ~25!

and to solve this system numerically. However, the distri
tions obtained as a result of numerical simulation can ha
be verified experimentally. In order to compare the results
calculations with experimental data, we must relate the
namics of the magnetic induction distribution in the sam
with the integral electrically measurable quantities, viz., c
rent and voltage.

Let us consider a superconducting sample as a two-
carrying the transport currenti (t). On one hand, the powe
of the external source is equal to the Poynting vector thro
the sample surfaceS, and on the other hand, it is spent f
changing the internal energyW of the sample and the powe
lossP depending on the square of the instantaneous valu
the current:

u~ t !i ~ t !5
4p

c R R
S
@E~r ,t !3H~r ,t !#d2r5P~ i 2~ t !!

1
dW~ i 2~ t !!

dt
,

whereu(t) is the voltage across the sample terminals. W
denote by uD(t)5P(t)/ i (t) the loss voltage and by
L5d(2W)/d( i 2) the differential inductance. Taking into ac
count the fact that the vectorsE andH on the surface of the
superconducting sample are mutually orthogonal and
rected along the tangent to the surface, and using Ampe
circuital law, we obtain

u~ t !5E
1

2

ES~r ,t !dr5uD~ i ~ t !!1L~ i 2~ t !!
di

dt
. ~26!

The integral can be evaluated along the contour connec
the terminals over the shortest path on the conductor surf
The electric field strengthES on the sample surface can b
determined from Eq.~24!.

Thus, the voltageu(t) across the sample terminals for
given currenti (t) through the sample is a computable qua
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tity which can also be measured directly. In order to det
mine the loss voltage and differential inductance, we assu
that the sample carries a sinusoidal currenti (t)5I 0 sin(vt).
For any value of the currentI whose magnitude is smalle
than I 0 , we can find two instants of timet1 and t2 such that
i (t1)5 i (t2)5I and di(t1)/dt52di(t2)/dt. Denoting
u(t1)5u1 andu(t2)5u2 , we obtain from~26!

uD~ I !5
u11u2
2

, L~ I 2!5
u12u2

2v~ I 0
22I 2!1/2

. ~27!

Figure 3 shows the results of numerical simulation of t
current–voltage characteristics~dependences of the loss vol
ageuD! and the dependences of the inductance of a gran
superconductor on the transport current for a plate of thi
ness d5100lJ with a critical current density
j C55•1023JJ at three different frequencies normalized
1/t. The current in Fig. 3 is normalized to the critical valu
I C5d jC , and the voltage and inductance are plotted in ar
trary units. Figure 4 shows for comparison the curren
voltage characteristics and the dependence of inductanc
transport current experimentally measured at frequencies
60, and 300 Hz according to the technique proposed in R
15 and 16. Measurements were made on a cylindrical sam
made of an yttrium ceramic and having the height 30 m
outer diameter 20 mm, and inner diameter 16 mm. It sho
be noted that an increase in the inductance of the sam
upon its transition to the resistive state, which is sometim
considerably larger than its geometrical inductance, is
purely kinetic effect. It is due to the fact that the loss volta
in model ~26! is assumed to be a function of the instan

FIG. 3. Theoretical current–voltage characteristics~a! and the dependence
of induction of a superconductor on transport current~b!: v 5 1025t21 ~1!;
v 5 3 • 1025t21 ~2!;v 5 1024t21 ~3!.
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neous value of transport current. In actual practice, the po
loss is a retarded potential of transport current in view of
finite velocity of vortices, which leads to a phase shift in t
loss voltageuD(t) relative to the transport currentI (t). This
phase shift is recorded by the measuring system as an
crease in inductance.

Figure 5a shows the theoretical dependence of the
component of the second harmonic of the response o
weakly granular HTS material to a varying magnetic field
the strength of the applied constant magnetic field. The
culations were made for an infinitely long plane-paral
plate of thickness 2000lJ ; the critical current density wa
assumed to bej C55•1023JJ , and the varying magnetic
field was regarded as a sinusoidal field of frequen
v51023/t and amplitude 3.2BJ . The strengthH0 of the
constant magnetic field is laid along the abscissa axis in
mensionless units ofh05H0 /BJ , and the scale along th
ordinate axis is arbitrary. Figure 5b shows for comparis
the experimental dependence measured according to
technique described in Ref. 17. Measurements were mad
77 K on a yttrium ceramic sample of diameter 2.5 mm a
length 15 mm in a varying magnetic field of frequency
kHz and amplitude 5 Oe. Similar experimental results
described in Ref. 18.

CONCLUSIONS

Good agreement between the theoretical and experim
tal dependences indicates that the models of hypervort

FIG. 4. Experimental current–voltage characteristics~a! and the dependenc
of induction of a superconductor on transport current~b! at various frequen-
cies f ~in Hz!: 20 ~curve1!, 60 ~curve2!, and 300~curve3!.
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used for constructing the phenomenological electrodynam
of ceramic superconductors are fruitful. It would be intere
ing to establish the existence of hypervortices in actual pr
tice and their observability in ceramic superconductors.
mathematically isolated hypervortex, which is a singular
lution of the constituent equation~6!, describes from the
physical point of view a current loop connecting intergran
lar Josephson junctions, which plays the role of a link
Abrikosov vortices in granules. Numerical simulation dem
onstrates the advantage of such a structure from the en
point of view. The magnetic flux created by current loops
a vortex lattice can amount to a few thousandths of the fl
of Abrikosov vortices, and the configuration of these curre
is probably too complex for their direct observation. We c
assume that the model of hypervortices describes analytic
the nonlinear and nonlocal interaction between Abrikos
vortices in granules through the system of intergranular
sephson junctions as well as their interaction with the surf
and transport currents. The experimentally observed com
nature of the nonlinear susceptibility of HTS materials,17,18

which cannot be described quantitatively by using the Be
rigid model, the model of spin glass, or the percolati
model, indicates the presence of such an interaction.

The author is grateful to A. E. Konshin who provide
experimental results on current–voltage characteristics
HTS materials.

This research was carried out under project No. 93-0

FIG. 5. Theoretical~a! and experimental~b! dependence of the real compo
nent of the second harmonic on constant magnetic field.
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LOW-TEMPERATURE MAGNETISM

ms
Hydrodynamic theory of magnets with strong exchange interaction
A. A. Isayev, M. Yu. Kovalevsky, and S. V. Peletminsky

National Scientific Center Institute of Physics and Technology, 310108, Kharkov, Academicheskaya 1,
Ukraine*
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A microscopic approach to the description of multisublattice magnets with strong exchange
interaction is proposed. Low-frequency dynamics of such magnets is characterized by the
appearance of an additional dynamical variable, i.e., the orthogonal matrix of rotation,
which corresponds to the total breaking of spin invariance@brokenSO(3) symmetry#. The
structure of the source that breaks the symmetry of the equilibrium Gibbs distribution is
established. The quasiaverage representation is generalized to weakly anisotropic, locally
equilibrium states. The thermodynamics of such states is constructed. The method of reduced
description is formulated and in its framework the hydrodynamic equations for the density
of total spin and the matrix of rotation are obtained. The spectra of spin waves are found and the
number of Goldstone and activation modes is determined. Two-sublattice ferrimagnet is
considered as a special case of the magnet with brokenSO(3) symmetry, which corresponds to
the special dependence of thermodynamic functions from the matrix of rotation. ©1997
American Institute of Physics.@S1063-777X~97!00407-6#
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In the present work we study the low-frequency dyna
ics of the multisublattice magnet with strong exchange in
action. It is known that high-frequency processes in magn
can be described on the basis of the Landau–Lifs
equation.1,2 The use of this equation in the low-frequen
case~hydrodynamic limit! for the multisublattice magnets i
not well justified since the sublattice spins are not appro
mate integrals of motion because of the strong intersubla
exchange interaction. In Ref. 3 it was shown that redu
description arises in the investigation of the low-frequen
dynamics of the multisublattice magnet with exchange in
action. Reduced description parameters are the densit
total spin sa(x) and the orthogonal matrix of rotatio
aab(x), which characterizes the orientation of the rigid co
plex of the sublattice spins formed as a result of the
change interaction. The appearance of the matrix of rota
as an additional dynamic variable corresponds to the t
symmetry breaking relative to spin rotations@broken
SO(3) symmetry#. Thus, low-frequency dynamics of th
multisublattice magnet with exchange interaction is acco
panied by the appearance of the states with spontaneo
broken spin invariance. This description needs the attrac
of nontraditional reduced description parameters, which
connected with the matrix of rotationaab . Effective method
for the study of such states is a Hamiltonian approach.4–7 In
its framework the dynamics of the magnet with total symm
try breaking relative to spin rotations8 and the dynamics o
the ferrimagnet9 were considered. The idea of spontaneo
symmetry breaking of the statistical equilibrium state10–12

has been also used for disordered magnetic systems o
‘‘spin glass’’ type.13–15Note that in Ref. 16 on the basis o
this concept and with the use of the analogy between
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the equations of motion have been formulated for uniax
magnets with spontaneous symmetry breaking relative to
spin rotations around the anisotropy axis. This symme
breaking is a special case of the total spontaneous symm
breaking.

We shall consider in the microscopic approach the th
modynamics and hydrodynamics of the magnetic syste
with strong exchange interaction in the presence of w
anisotropy on the basis of the quasiaverages10 and the re-
duced description17 methods. Standard quasiaverages, wh
apply for the description of equilibrium states, are gener
ized in the case of weakly anisotropic, locally equilibriu
states. Locally equilibrium Gibbs distribution is construct
on the basis of consideration of the local unitary transform
tion which corresponds to the broken symmetry relative
the spin rotations@see Eq.~2.8!#. Performing this transforma
tion on the source in Gibbs distribution, we introduce t
matrix of rotationa(x) for the locally equilibrium states
Weak anisotropy permits us to consider the total spin as
approximate integral of motion and in the sense of the m
approximation of anisotropy~see the text for details! the cor-
responding term with the spin is included in the exponent
the Gibbs distribution.

To construct the hydrodynamic equations on the basi
reduced description method we introduce the matrix of ro
tion b(x,r̂) as a functional of the nonequilibrium statistic
operatorr̂, using the concept of the system order parame
operator. The connection between the matrix of rotat
a(x) in locally equilibrium Gibbs distribution and the matri
of rotationb(x,r̂), which is the functional of the nonequi
librium statistical operatorr̂ is established. The equations o
motion for the density of total spin,sa(x) and the matrix of

522522-12$10.00 © 1997 American Institute of Physics



rotation aab(x) @Eqs. ~3.17! and ~3.18!# are found. These
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equations describe the low-frequency dynamics of the m
tisublattice magnet with strong exchange interaction a
weak anisotropy. The structure of the spectrum of s
waves is determined.

It is shown that weakly anisotropic ferrimagnet repr
sents a special case of the magnet with total symmetry br
ing, which corresponds to a special dependence of the m
of rotation.

1. THE ORDER PARAMETER

In the microscopic approach to the magnetic systems
basic operators, from which all other operators are c
structed, are the operators of site spinssn( l ) of atoms~l is
the number of the site, andn is the number of the crysta
sublattice!. The HamiltonianH and the statistical operato
r̂ are constructed from these operators only,H5H( ŝ), r̂
5 r̂( ŝ). An arbitrary physical quantityĉ of the magnet is
also the operator functional of the site spinsĉ5 ĉ( ŝ). We
switch from the site representation to the continuum rep
sentation:v0

21ŝna( l ) ——→
v0→0

ŝna(x). Herev0 is the volume

of the unit cell, andx[Rl is the position vector which de
fines the position ofl th site. The spin-density operato
ŝna(x) satisfy the commutation relations

@ ŝna~x!,ŝmb~x8!#5 i«abgdnmŝmg~x!d~x2x8!. ~1.1!

We introduce in the continuum limit the operation of th
spatial shifts@Pk ,...#

@Pk ,r~ ŝ~x8!!#[ i
]r~ ŝ~x81y!!

]yk
U
yk50

,

@Pk ,c~x, ŝ~x8!!#[ i
]c~x, ŝ~x81y!!

]yk
U
yk50

, ~1.2!

wherer( ŝ(x8)) andc(x,ŝ(x8)) are the functionals ofŝ(x).
In accordance with this definition

c~x,ŝ~x81y!!5e2 iPyc~x,ŝ~x8!!eiPy. ~1.3!

Realization of the operatorPk in the classical case in term
of the spin densities in the framework of the Hamiltoni
approach is given in Refs. 8 and 9. For our purposes s
faction of the relationships~1.2! and~1.3! is sufficient in the
quantum case and therefore we shall not solve the prob
of concrete realization of the spatial shift operatorPk in
terms of the spin density operators. Defining the translati
ally invariant operatorĉ(x)[ ĉ(x,ŝ(x8)) by the relationship
ĉ(x2y,ŝ(x81y))5 ĉ(x,ŝ(x8)), we have by virtue of Eq.
~1.3!

i @Pk ,ĉ~x!#52¹kĉ~x!. ~1.4!

In the case of weakly anisotropic magnetic systems the m
type of interactions are the exchange interactions. An
tropic interactions are assumed to be small and can be t
into account by means of the perturbation theory. Disrega
ing the anisotropy, we can characterize the magnetic sys
by a set of additive motion integralsĝa5*d3xza(x) (a
50,a), where ĝ0[H5*d3x«̂(x) is the Hamiltonian, and
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Taking into account the weak anisotropy, we see that
total spin Ŝa is only the approximate integral of motion
Equations of motion for the densitiesẑa(x) have the form

ż̂a~x!5 i @H,ẑa~x!#, ~1.5!

and with allowance for the operator identity

i @Â,b̂~x!#52 i @B̂,â~x!#2¹kb̂k~x! ~1.6!

for arbitrary quasilocal operatorsâ(x), b̂(x), where

Â5E d3x â~x!, B̂5E d3x b̂~x!,

b̂k~x!5 i E d3x8xk8E
0

1

dl@ â~x2~12l!x8!,

b̂~x1lx8!]

can be represented in the form

«̇̂~x!52¹kq̂k~x!, ~1.7!

ṡ̂a~x!52 i @Ŝa ,«̂~x!#2¹k ĵ ak~x!.

Here $q̂k(x), ĵ ak(x)%[ẑak(x) are the flux density operator
of energy and momentum, for which, in accordance w
~1.6!, we have

q̂k~x!5
i

2 E d3x8xk8E
0

1

dl@«̂~x2~12l!x8!,

«̂~x1lx8!], ~1.8!

ĵ ak~x!5 i E d3x8xk8E
0

1

dl@«̂~x2~12l!x8!,

ŝa~x1lx8!].

In the case of the isotropic magnetic systems (@Ŝa ,«̂(x)#
50) equations of motion~1.7! have the form of differential
conservation laws.

In macroscopic description of magnets the notion of
order parameter of the investigated system has an impo
role. We shall consider in what follows the magnet with to
symmetry breaking relative to spin rotations. It is charact
ized by the three rotation angleswa , which realize a param-
etrization of the three-dimensional rotation group in sp
space, or by the real rotation matrix associated with the
aab(w) (aã51). Moreover, we shall study the two subla
tice ferrimagnet with noncompensated sublattices charac
ized by the unit vector of antiferromagnetisml a ~or by the
two rotation angles!. In the case of total symmetry violatio
the order parameter is the complex spin vectorDa(x)
5Tr rD̂a(x)5D1a(x)1 iD2a(x), where D̂a(x)5D̂1a(x)
1 i D̂2a(x) is the order parameter operator~D1

15D1 , D2
1

5D2!. For the two sublattice ferrimagnet the order parame
is the real vectorDa(x)5Tr rD̂a(x), where D̂a(x) is the
order parameter of the ferrimagnetic system (D̂15D̂). The
order parameter operator in each cases satisfies the symm
properties
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STATES

m-
on-
-
an

la

te

m
rder

ui-

pin

-
in
Eq.
ion
sta-

an
otal
te-
in

the
a-
ds
la-

le.
in
ion
d
en

ll
di-

of
ot-
of
i @Pk ,D̂a~x!#52¹kD̂a~x!. ~1.9!

Note that the order parameter operator is expresse
terms of the spin operators of the sublattices and it is usu
chosen in such a way that the order parameter for the no
state is equal to zero. By virtue of relations~1.1! and ~1.9!
the operatorsŝ(x) and D̂(x) are transformed under the loc
spin rotations as vectors

Ua
1ŝa~x!Ua5aab~x!ŝb~x!,

Ua
1D̂a~x!Ua5aab~x!D̂b~x!, ~1.10!

Ua5expS 2 i E d3xwl~x!ŝl~x! D
@wa(x) are the local rotation angles#. In accordance with
~1.10!, the orthogonal rotation matrixa(w) has the form

aab~w!5~exp~2«w!!ab5dab cosw1nanb~1

2cosw!1«albnl sin w, ~1.11!

where

wa5naw, na
251, ~«w!ab5«abgwg .

The infinitesimal characteristics of the unitary transformat
Ua is the operatorUa

1dUa , wheredUa is variation of the
unitary transformationUa due to variationda of the or-
thogonal rotation matrix (da•ã52a•dã). In accordance
with ~1.10!,

Ua
1dUa5 i E d3xdRg~x!ŝg~x!,

dRg5
1

2
«abg~ ãda!ab . ~1.12!

@The quantitydRg in ~1.12! is not variation of some vecto
Rg#. Note that in what follows it will be convenient for us t
use the formalism of left and right Cartan forms13,18

vak[
1

2
«abg~ ã¹ka!gb,

vI ak[
1

2
«abg~a¹kã!bg5aabvbk . ~1.13!

We define the translationally invariant states of the mag
by the relationr̂(s(x81y))5 r̂(s(x8)) or by virtue of ~1.2!

@Pk ,r̂ #50. ~1.14!

The statistical operators describing the equilibrium state
collinear magnet satisfy this relation. For spiral magnetic
dering the transformation of translations by the vectorx and
spin rotation around some axisna (na

251) by the anglepx
do not change the state of the system:

exp@ ix~P̂2p~naŜa!!#r̂ exp@2 ix~P̂2p~naŜa!!#5 r̂

or

@ r̂,Pk2pk~naŜa!#50. ~1.15!

The vectorpk is called the vector of the magnetic spiral.

524 Low Temp. Phys. 23 (7), July 1997
in
ly
al

n

et

f
-

In the framework of thermodynamics and hydrodyna
ics of condensed media in the microscopic approach the c
cept of quasiaverages10 plays an important role. In accor
dance with this concept, the equilibrium average of
arbitrary quasilocal operatorĉ(x) of a magnetic system with
spontaneously broken symmetry is defined by the formu

^ĉ~x!&5 lim
n→0

lim
V→`

Tr vnĉ~x![Tr wĉ~x!, ~2.1!

wn5exp$Vn2Yaĝa2nĜ%.

HereYa[(Y0 , Ya) are the thermodynamic forces conjuga
to the additive motion integralsĝa ~Y0

21[T is the tempera-
ture, and2YaY0

21[ha is the effective field!. The source
Ĝ in ~2.1! lifts the degeneracy of the statistical equilibriu
state and represents itself as a linear functional of the o
parameter operator

Ĝ5E d3xg~x,t !D̂~x!1h.c.5Ĝ~ t !. ~2.2!

The specific form of the functiong(x,t) ~which can depend
on time! is defined by the symmetry properties of the eq
librium state.

In the case of anisotropic magnetic systems the total s
Ŝa stops to be the integral of motion so that in Eq.~2.1! one
should setYa50. Allowance for anisotropy in the Hamil
tonian H lifts the degeneracy relative to the uniform sp
rotations. Therefore, the summand with the source in
~2.1! should be put down. Nevertheless, in the investigat
of weakly anisotropic magnetic systems we shall use the
tistical operator of the form~2.1!, which is ‘‘main’’ approxi-
mation of the weak isotropy. Here the next elucidations c
be done. Since we consider the weak anisotropy, the t
spin Ŝa can be assumed to be the approximate motion in
gral and we include the corresponding summand with spin
the exponent of the Gibbs distribution~2.1!.

The sourceĜ is introduced in Eq.~2.1! for the following
purpose. If we take into account the weak anisotropy in
framework of perturbation theory, then as zero approxim
tion we will have the statistical operator which correspon
to the magnetically ordered state with broken symmetry re
tive to the spin rotations. The sourceĜ in distribution ~2.1!
plays a role of the parameter that lifts the degeneracy.

This can be illustrated by using the following examp
If we consider a ferromagnet with exchange interaction
the magnetic field, then the term describing the interact
with external field will play the role of the anisotropy an
will fix the direction of the magnetic moment in space. Wh
the field goes to zero~weak anisotropy!, the source in the
Gibbs distribution plays the role of the infinitesimally sma
anisotropy, which removes the degeneracy and fixes the
rection of the moment. Thus, the statistical operator~2.1!
describes the weakly anisotropic quasiequilibrium states
the magnetic system in the main approximation of the anis
ropy and we shall use it in what follows for generalization
the case of locally equilibrium states.
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symmetry breaking relative to spin rotations, for which t
order parameter has the structureD̂(x)5D̂1(x)1 i D̂2(x) and
D̂1

15D̂1 , D̂2
15D̂2 . We formulate the symmetry properties

the equilibrium state. For the spiral magnetic ordering
accordance with Eq.~1.15! we have

@w,Pk2pk~naŜa!#50,

@w,Y0H1YaŜa#50. ~2.3!

From the Jacobi identity follows the condition of compatib
ity of Eqs. ~2.3!

«abgnaYb@w,Ŝg#50.

We thus obtainna5Ya /uYu. The relations~2.3! allow us to
find the functiong(x,t)

g~x,t !5ja~w0!a~w~x,t !![ja~x,t !,

wa~x,t !5na~px2ht!, ~2.4!

wherewa
0 is a uniform rotation;ha5hna ; andja is a con-

stant complex vector which we can choose for convenie
in the formj5j11 i j2 , j1

25j2
251, j1j250. From here one

can see that the statistical equilibrium state is character
by the thermodynamic forcesYa , the spiral vectorpk , and
the rotation angleswa

0. The vectorja fixes the reference
frame for the rotation angles and is not a thermodyna
parameter. In accordance with definitions~1.13!, the left and
right forms corresponding to the rotation matrixa(x,t) in
~2.4! are

vak5pkna , vI ak5pknI a , ~2.5!

wherenI 5a(w0)n.
Note that in the case of collinear magnets introduction

a source in the statistical operator~2.1! in the presence o
thermodynamic forcesYa has no meaning since the ter
YaŜa lifts the degeneracy of the statistical equilibrium sta

Let us examine the locally equilibrium states. It is we
known17 that the statistical operator

w~Y~x8!!5expHVn2E d3x8Ya~x8!ẑa~x8!J ~2.6!

generalizes the Gibbs statistical operator for the normal
tems in the case of locally equilibrium states. For the syste
with spontaneously broken symmetry the locally equilibriu
states are described by the statistical operator

wn~Y~x8!,f~x8!!5expHVn2E d3x8Ya~x8!ẑa~x8!

2nUf
1ĜUfJ [Uf

1wI nUf , ~2.7!

where

wI n5expHVn2E d3xYa~x!ẑa~x!2nĜJ ,
ẑa~x!5Ufẑa~x!Uf

1

andUf is the local unitary operator which corresponds to
broken symmetry@see, for example, Eq.~1.10! for symmetry
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eter phase that enters into the sourceG. Introducing the sta-
tistical operator~2.7! for the locally equilibrium states base
on the calculation of the averages with the statistical oper
wn(Y(x8),f(x8)), we can go over to the averages with th
statistical operatorwI v :

Tr wâ~x!5Tr wI Ufâ~x!Uf
1 ,

where the operatorUfâ(x)Uf
1[b̂(x), as a rule, can be eas

ily found. This operator is of the typeâ(x). In the statistical
operatorwI n the sourceĜ is space uniform and for calcula
tion of the averages TrwI b̂(x) the standard perturbatio
theory @on gradients of the parametersYa(x),f(x)#, which
leads to the ordinary quasiaverages, can be used.

Thus, in accordance with~2.1! and ~2.7!, the statistical
operator of the weakly anisotropic, locally equilibrium stat
of the magnet with total symmetry breaking relative to sp
rotations is written in the form

wn~Y~x8!,a~x8!!5expHVn2E d3x8@Y0~x8!«̂~x8!

1Ya~x8!ŝa~x8!#2nĜaJ
[Ua

1wI nUa , ~2.8!

Ĝa[Ua
1ĜUa5E d3x8~ja~x8!D̂~x8!1h.c.!,

where

wI n5expHVn2E d3x@Y0~x!«Î ~x!

1YI a~x!ŝa~x!#2nĜJ ,
Ĝ5E d3xjD~x!1h.c., ~2.9!

and «Î 5Ua«̂Ua
1 , YI 5aY. Here the thermodynamic force

Ya(x) and the orthogonal rotation matrixaab(x) are the ar-
bitrary functions of coordinates. In the equilibrium state@see
~2.1!# Ya(x)5Ya and the structure of the orthogonal rotatio
matrix aab(x) is determined by Eq.~2.4!. The matrix of
rotation aab(x) for the locally equilibrium states is intro
duced in the distribution~2.8! by the transformation of loca
spin rotation performed on the sourceĜ.

We obtain now the main thermodynamic identity for th
locally equilibrium states and show that the locally equili
rium averages of the densities of additive motion integr
and fluxes corresponding to them can be expressed in
approximation of small inhomogeneities in terms of the
cally equilibrium thermodynamic potential. In this conne
tion, it is worthwhile to go over to the statistical operat
wI n which is defined by Eq.~2.9!. From ~2.9! it follows that
the locally equilibrium thermodynamic potentialV is the
functional of the thermodynamic forcesYI a[(Y0 ,YI a) and
the rotation matrixa(x):

V5E d3xv~x,YI ~x8!,a~x8!!. ~2.10!
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Herev is the density of the thermodynamic potential. Vary-
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dH
5

1
,

dH
52

Ya
,

dH
5

1 dV
. ~2.15!

c
of

y

re-

ity
ing the potentialV with respect to the thermodynamic force
Y0 andYI , we obtain

dY0V5E d3xdY0~x!Tr wI «Î ~x!5E d3xdY0~x!«~x!,

dYI V5E d3xdYI ~x!Tr wI ŝ~x!5E d3xdYI ~x!sI~x!,

wheresI (x)5Tr wI ŝ(x)5a(x)s(x). Varying the potentialV
with respect to the orthogonal matrixa, we have daV
5*d3xY0(x)Tr wI d«Î (x). By virtue of the explicit form of
the operator«Î (x) and the relation~1.12! we thus find

daV5 i E d3xd3x8dRa~x!Y0~x8!Tr w$Y,a%

3@ ŝa~x!,«̂~x8!#. ~2.11!

Under calculation of the trace in Eq.~2.11!, by virtue of
quasilocality of the operator«̂(x8), the pointsx8 placed near
x give the main contribution. Therefore, expanding the qu
tity Y0(x8) near the point x, Y0(x8)5Y0(x)1(x8
2x)k]Y0 /]xk1..., weobtain in the main approximation

daV5 i E d3xdRa~x!Y0~x!Tr w@ ŝa~x!, H#1O~¹Y0!.

~2.12!

We thus have

S dV

darn~x! D
Y

5
i

2
«amnarm~x!Y0~x!Tr w@ ŝa~x!,H#

1O~¹Y0!. ~2.13!

Thus, the thermodynamic relationship for the locally equil
rium states takes the form

dV5E d3xS «~x!dY0~x!1sIa~x!dYI a~x!

1S dV

daab~x! D
YI

daab~x! D , ~2.14!

where the variational derivative (dV/daab(x))YI is deter-
mined by Eq.~2.13!. If instead of the variablesYI a we use the
variablesYa5YI baba , then relation~2.14! can be rewritten
in the form

dV5E d3xS «~x!dY0~x!1sa~x!dYa~x!1E
1S dV

daab~x! D
Y

daab~x! D ,
where

S dV

daab
D
Y

5S dV

daab
D
YI

1S dV

dYI a
D
a

Yb .

We define the entropy density by the expressions52v
1Yaza . We can then easily show that with an accuracy
¹Y0 the following equations are valid:
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Here H5*d3x«(x). If the density of the thermodynami
potential in the local limit allows expansion on gradients
the parametersYI ,a

v~x;YI ~x8!,a~x8!!5v~YI ~x!,a~x!,vI k~x!!

1O~¹YI ,¹vI k!, ~2.16!

then Eq.~2.14! can be simplified. In the operator identit
~1.6! setting a(x)5 «̂(x), b̂(x)5 ŝa(x) and taking into ac-
count that for the anisotropic magnetic systems@Ŝa ,«̂(x)#
Þ0, from ~2.12! we obtain

daV5E d3xdRa~x!Y0~x!$ i Tr w@Ŝa ,«̂~x!#1¹kj ak%,

j ak[Tr w ĵak ,

where the operator of the spin flux densityĵ ak is defined by
Eq. ~1.8!. Since¹kdRa52dvI bkaba , the last relation can
be rewritten in the form

daV5 i E d3xdRa~x!Y0~x!Tr w@Ŝa ,«̂~x!#

1E d3xY0~x! jIak~x!dvI ak~x!, jIk5a jk . ~2.17!

From it we find

]v

]vI ak
5Y0 jIak . ~2.18!

In addition,

]v

]amg
5
iY0

2
«abgambTr w@Ŝa ,«̂~x!#. ~2.19!

Therefore, the main thermodynamic identity can be rep
sented in the form

dv5«dY01sIadYI a1
]v

]aab
daab1Y0 jIakdvI ak , ~2.20!

or, taking into account the definition of the entropy dens
s, we can write

d«5T ds1hI adsIa1
]«

]aab
daab1 jIakdvI ak . ~2.21!

To find the energy flux density in the locally equilibrium
state we use the relation

iTr w@Â1B̂,â~x!1b̂~x!#50,

where â(x)5Y0(x) «̂(x) and b̂(x)5Ya(x) ŝa(x). Taking
into account~1.6!, we obtain

¹kQk~x!50,

Qk~x!52
i

2 E d3x8x8k E
0

1

dlYa~x2~1

2l!x8!Tr w@ ẑa~x2~12l!x8!,
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ẑb~x1lx8!]Yb~x1lx8!. ~2.22!
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Ignoring in this expression the gradients¹Y0 and¹Ya , us-
ing ~1.8!, we find

Qk5Y0
2qk1Y0YI a jIak1O~¹YI !.

Because of the arbitrariness of the gradients of the par
etersYI andvI k , we haveQk50. We thus obtain

qk5hI a jIak ,

and, therefore, in accordance with~2.21!,

zI ak5
]«

]vI ak

]zI a
]sIa

, a5~0,a!. ~2.23!

3. REDUCED DESCRIPTION. HYDRODYNAMIC EQUATIONS

The reduced description method is used in describing
nonequilibrium states of macroscopic systems at the hy
dynamic stage of evolution~small inhomogeneities!17. For
the weakly anisotropic magnetic systems with total symm
try breaking relative to spin rotations the reduced descrip
parameters are the densities of the additive motion integ
za(x) ~with respect to exchange Hamiltonian! and the rota-
tion matrixbab(x) in spin space. To formulate the hydrod
namic equations, it is necessary to introduce the rotation
trix bab(x) as a functional of the nonequilibrium statistic
operatorr̂, b(x)5b(x,r̂). This matrix, which characterize
the orientation of the mean value of the order parameter
eratorDa(x,r̂)5Trr̂D̂a(x) relative to some fixed frame1,
m, 13m ~I25m251, 1m50!, does not coincide, in genera
with the rotation matrixaab(x) that enters into the locally
equilibrium Gibbs distribution and into the thermodynam
potential v. We define the rotation matrixbab(x,r̂) as a
functional of the nonequilibrium statistical operatorr̂ by the
relations19

lb~x,r̂ !D~x,r̂ !50, mb~x,r̂ !D2~x,r̂ !50. ~3.1!

By virtue of ~3.1! and ~1.10! for the rotation matrixb(x,r̂)
the following equation is valid:

b~x,Uc
1rUc!5b~x,r̂ !c~x!, ~3.2!

wherec(x) is the arbitrary matrix of local rotation. We tak
into account the variation of the orthogonal matrix of ro
tion db(x,r̂), which is associated with the variation of th
statistical operatordr̂:

db~x,r̂ !5b~x,r̂1dr̂!2b~x,r̂ !5b~x,r̂ !x~x,r̂,dr̂!.
~3.3!

Here the matrixx(x,r̂,dr̂) is a linear functional ofdr̂ that
can be represented in the form

xab~x,r̂,dr̂!5Tr dr̂x̂ab~x,r̂ !.

The operatorx̂ab(x,r̂) which depends on the initial statist
cal operatorr̂ obeys, by virtue of the orthogonality conditio
bb̃51, the antisymmetry propertyx̂ab(x,r̂)52x̂ba(x,r̂).
Defining the dual quantityx̂g51/2«abgx̂ab , we represent
the variation of the rotation matrixdb(x,r̂) in the form

dbab~x,r̂ !5bag~x,r̂ !«gblTr dr̂x̂l~x,r̂ !. ~3.4!
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xa(x,r), whose proof one can find in Ref. 19:
1. The operatorx̂a is determined to an accuracy of th

transformationx̂→x̂85x̂1c( r̂), wherec( r̂) is an arbitrary
c-number functional of the statistical operatorr̂, and is
uniquely fixed by the condition Trr̂ x̂(x,r̂)50.

2. For the operatorx̂a the following equations are valid

iTr r@ ŝa~x!,x̂b~x8,r̂ !#5dabd~x2x8!,

iTr r@Pk ,x̂a~x,r̂ !#5vak~x,r̂ !. ~3.5!

The transformation laws relative to spin rotations and spa
translations for the operatorx̂a are

Ucx̂a~x,Uc
1rUc!Uc

15x̂l~x,r̂ !cla~x!,

eiPyx̂a~x,e2 iPyr̂ eiPy!e2 iPy5x̂a~x2y,r̂ !,

wherec(x) is the arbitrary matrix of local rotation.
We formulate now the equation of motion for the o

thogonal rotation matrix. Accordingly we choose the var
tion dr in the formdr5 ṙdt and assume that the statistic
operatorr̂(t) satisfies the Liouville equation

ṙ̂~ t !5 i @ r̂~ t !, H#. ~3.6!

As a result, by virtue of~3.4!, we obtain the equation

ḃab~x,r̂ !5 ibal~x,r̂ !«lbgTr r̂@H,x̂g~x,r̂ !#. ~3.7!

We consider the evolution of a nonequilibrium, spatially i
homogeneous state of the magnet with total symmetry bre
ing in the ranget@t0 ~t0 is the relaxation time! at the hy-
drodynamic stage of evolution. In accordance with t
reduced description hypothesis, at these times the none
librium statistical operator is a functional of the reduced d
scription parameters

r~ t ! ——→
t@t0

r~z~x,t !, b~x,t !!,

z~x!5Tr r̂~z,b!ẑ~x!, b~x!5b~x,r̂~z,b!!. ~3.8!

In these relations the orthogonal rotation matrixb(x,r̂) as a
functional of the nonequilibrium statistical operator is d
fined by Eqs.~3.1!. In accordance with~1.7! and~3.7! and by
virtue of the reduced description hypothesis~3.8!, the equa-
tions of motion for the reduced description parameters, h
the form

«̇~x,r̂ !52¹k Tr r̂~z,b!q̂k~x!,

ṡa~x,r̂ !5 i Tr r̂~z,b!@H,ŝa~x!#, ~3.9!

ḃab~x,r̂ !5 ibal~x,r̂ !«lbg Tr r̂~z,b!@H,x̂g~x,r̂ !#.

We represent the statistical operatorr̂(z,b) in the form

r̂~z,b!5w~Y,a!1 r̂8~z,b!. ~3.10!

Here w(Y,a) is the locally equilibrium statistical operato
~2.8! and the operatorr̂8(z,b) determines the dissipativ
processes. Since we are interested in the main approxima
of the spatial gradients, and since we disregard the diss
tive processes, we can disregard the contribution of the
erator r̂8(z,b) in Eqs. ~3.9!. We can therefore assume th
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the relation Trr̂(z,b)...'Tr w(Y,a)... is approximately
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satisfied. The relation between the densities of the addi
motion integrals and the thermodynamic forces is defined
the relation~2.14!. We recall that the orthogonal rotatio
matrix a(x), which enters into the locally equilibrium Gibb
distribution and the thermodynamic potentialv, does not co-
incide with the rotation matrixb(x,w).

To find the equation of motion for the spin densi
sa(x), we make use of the expression~2.13! for the varia-
tional derivativedV/da of the thermodynamic potentialV
with respect to the rotation matrixa. Comparing Eqs.~3.9!
and ~2.13!, we represent the equation of motion for the sp
densitysa(x) in the form

ṡa52
1

Y0
«amnalmS dV

daln
D
Y

. ~3.11!

In Eq. ~3.11! the thermodynamic potentialV5*d3xv(x) is
considered to be a functional of the variables
YI a(x),aab(x) under the local dependence of the inver
temperatureY0(x): v(x)5v(x;Y0(x),YI a(x8),aab(x8)). If
the thermodynamic potential is a functional of the form

V5E d3xv~x!,

v~x!5v~x;Y0~x!,Ya~x8!,aab~x8!!, Ya5YI baba ,

then in terms of the new set of variables we have

ṡa52«abgS Yb

Y0

dV

dYg
1

1

Y0
ambS dV

damg
D
Y
D . ~3.12!

In the local limit, when the density of the thermodynam
potentialv is represented as

v~x!5v~Y0~x!,YI a~x!,a~x!,vI k~x!!,

from ~3.11! we obtain

ṡa52
1

Y0
«abgamb

]v

]amg
2¹kj ak , ~3.13!

j ak5
1

Y0

]v

]vI bk
aba .

The first term on the right side of Eq.~3.13! takes into ac-
count the anisotropy.

We obtain the equation of motion for the orthogon
rotation matrix. Substituting expression~3.10! in ~3.7! and
ignoring the influence of the dissipative processes, we fi

ḃab~x,v̂ !5 ibag~x,ŵ!«gbl Tr ŵ@H,x̂l~x,ŵ!#.

Noting further that in the main approximation for the stat
tical operatorw(Y,a) the stationary condition~2.3! holds,
we can rewrite the last equation in the form

ḃab~x,ŵ!5 ibag~x,ŵ!«gblhs Tr ŵ@ ŝs ,x̂l~x,ŵ!#

5bag~x,ŵ!«gblhl ,

where the relation~3.5! is taken into account. We note tha
the asymptotic relation~3.8! contains the rotation matrix
b(x,r̂), which is defined by the relations~3.1!. On the other
hand, Eqs.~2.23! for the flux densities of the additive motio
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the rotation matrixa(x) that enters into the locally equilib
rium Gibbs distribution and, in general, is not identical to t
matrix b(x,ŵ). Therefore, to close the equations of motio
we must establish a connection between these two ortho
nal matrices. Using the relations~3.1!, ~3.2!, and ~2.8!, we
have

lb~x,w!D~x,w!5 lb~x,w!ã~x!D~x,wI !50,

mb~x,w!D2~x,w!5mb~x,w!ã~x!D2~x,wI !50.

We see, therefore, that the rotation matrixb(x,w)ã(x)
5b(x,wI ) is a function of the argumentsYI ,a,vI k . The vari-
ablesYI andvI k change slowly in space and the time and t
dependence on the matrixa is weak because of the sma
anisotropy. Therefore, the equation of motion for the rotat
matrix a(x) in the main approximation with respect to th
spatial gradients and small anisotropy can be represente
the form

ȧab~x!'bag
21~x,wI !ḃgb~x,w!5aag~x!«gblhl . ~3.14!

Thus, we obtain a closed system of equations for the mag
considered by us, without regard for the dissipative p
cesses:

ṡa52
1

Y0
«abgSYb

dV

dYg
1amb

dV

damg
D ,

ȧab52aag«gbl

Yl

Y0
. ~3.15!

The equation for the energy density is

«̇52¹k

1

Y0
2

]v

]sa

]v

]vak
. ~3.16!

By virtue of ~2.15!, Eqs.~3.15! can be written in the form

ṡa5«abgS dH

dsb
sg1

dH

damb
amgD , ȧab5«brgaag

dH

dsr
.

~3.17!

Since the energy density« is a function of the quantities
s, a, sI , andvI k @see Eq.~2.21!# and since the quantitiess,
sI , andvI k for the weakly inhomogeneous and weakly anis
tropic states vary slowly in space and time, it is useful
change to the variables«, a, sI , andvI k in Eqs. ~3.15! and
~3.16!. By virtue of ~1.13! and~2.15!, we obtain from~3.15!
and ~3.16! a closed system of equations

«̇52¹k

]«

]sIa

]«

]vI ak
, ȧab5«arnarb

]«

]sI n
,

ṡa52¹k

]«

]vI ak
1«ajmS sI j

]«

]sIm
1vI jk

]«

]vI mk

1ajr

]«

]amr
D . ~3.18!

As a result of the equation of motion for the rotation matr
we find the equation of motion for the Cartan formvI ak

vİ ak52¹k

]«

]sIa
1«abgvI bk

]«

]sIg
. ~3.19!
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From these equations and from the thermodynamic relation
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the
~2.21! follows the adiabaticity of the processes in the a
proximation considered by us,ṡ50.

4. FERRIMAGNET

In this section we consider the thermodynamics and
drodynamics of the weakly anisotropic, two-sublattice fer
magnet with noncompensated sublattices. We see that t
is an essential simplifying circumstance which allows to co
sider the two-sublattice ferrimagnet~for brevity simply ‘‘fer-
rimagnet’’! as a special case of the magnet with total sy
metry breaking relatively to spin rotations with a special ki
of dependence of the thermodynamic quantities on the r
tion matrix.

For the ferrimagnet the sourceĜ in the statistical opera
tor ~2.1! is defined by the formula

Ĝ5E d3xl~x,t !D̂~x!5Ĝ~ t !, D̂1~x!5D̂~x!,

u l~x!u51. ~4.1!

The real vectorl a ( l a*5 l a) has a sense of the antiferroma
netism vector. Assuming that the equilibrium state is the s
ral ordering state@see Eq.~2.3!#, we find the form of the
function l a(x,t)

l~x,t !5ja~w0!a~w~x,t !![ja~x,t !,

wa~x,t !5na~px2ht!, uju51, ~4.2!

whereja is a constant real unit vector, andwa
0 is a uniform

rotation. Thus, the statistical equilibrium state of the fer
magnet is characterized by the thermodynamic forcesY0 and
Ya , by the rotation angleswa

0, and by the spiral vectorpk .
The difference from the case of the total symmetry violat
@see Eq.~2.4!# is that in Eq.~4.2! ja is a constant real vector
Therefore, rotations around the vectorja do not change the
antiferromagnetism vectorl a and, hence, ferrimagnet is cha
acterized by the two independent rotation angleswa

0.
In accordance with~2.1!, ~2.7!, and ~4.1!, the locally

equilibrium distribution of the ferrimagnet is defined by th
formula

wn~Y~x8!,l ~x8!!5expHVn2E d3x8Ya~x8!ẑa~x8!

2nĜl J [Ua
1wI nUa , ~4.3!

Ĝl5Ua
1GUa5E d3x8ja~x8!D̂~x8!

[E d3x8l~x8!D̂~x8!,

where

wI n5expHVn2E d3x@Y0~x!«Î ~x!1YI a~x!ŝa~x!#2nĜJ ,
Ĝ5E d3xjD̂~x!.
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are the arbitrary functions of coordinates. In the state of
total equilibriumYa(x)5Ya and the structure of the antifer
romagnetism vectorl a is defined by formula~4.2!. From
~4.3! and the normalization condition Trw51 it follows that
the locally equilibrium thermodynamic potentialV is a func-
tional of the quantitiesYa(x),l a(x):

V5V~Y~x8!,l ~x8!!5E d3xv~x;Y~x8!,l ~x8!!. ~4.4!

Note the next important peculiarity. It follows from~4.3! that
the antiferromagnetism vectorl a is related to the rotation
matrix aab by the relationl a5jbaba . This allows us to
consider the ferrimagnet as a particular case of the ma
with total symmetry breaking relative to spin rotations, f
which the dependence of the thermodynamic potentialV on
the rotation matrixaab occurs only through the combinatio
jbaba[ l a . Therefore, we can use the results obtained e
lier with allowance for the indicated peculiarity without re
peating the calculations of the second section.

We write the main thermodynamic identity for the lo
cally equilibrium states. Variational derivatives of the the
modynamic potentialV5V(Y,l ) with respect to the thermo
dynamic forcesYa are defined by the equations

S dV

dY0
D
l

5«, S dV

dYa
D
l

5sa . ~4.5!

We find the variational derivative (dV/d l )Y . Since in the
case of the ferrimagnet

S dV

darn
D
Y

5jrS dV

d l n
D
Y

,

then scalary multiplying both parts of the last relation on t
vectorjr (jr

251), we have

S dV

d l n
D
Y

5S dV

darn
D
Y

jr . ~4.6!

The derivative (dV/da)YI is defined by formula~2.13!, and
the derivative (dV/da)Y is related to the derivative
(dV/da)YI by the relation

S dV

daab
D
Y

5S dV

daab
D
YI

2S dV

dYb
D
a

aamYm . ~4.7!

Using ~4.6!, ~4.7!, and ~2.13! for the derivative (dV/d l )Y ,
we obtain

S dV

d l a~x! D
Y

5
i

2
«agmlm~x!Y0~x!Tr w@ ŝg~x!,H#

2S dV

dYa~x! D
l

lm~x!Ym~x!. ~4.8!

Thus, the thermodynamic identity for the locally equilib
rium states of the weakly anisotropic ferrimagnet has
form

dV5E d3xS «~x!dY0~x!1sa~x!dYa~x!
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dV

d l ~x! . ~4.9!
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Taking into account the expression for the entropy den
s52v1Yaza , we see that to an accuracy of¹Y0 the fol-
lowing equations are valid:

dH

ds
5

1

Y0
,

dH

dsa
52

Ya

Y0
,

dH

d l a
5

1

Y0

dV

d l a
. ~4.10!

Let us consider the local limit of the relations which w
obtained when the density of the thermodynamic potentiav
depends on the variables.Y, l , and¹kl ~or, in the last case
on the quantityvak52«abgl b¹kl g!:

v~x!5v~Y~x!,l ~x!,vk~x!!. ~4.11!

The connection between the variablesY, l , andvk , and the
variablesYI , a, andvI k is given by

Ya5YI baba , l a5jbaba ,

vak5~drn2jrjn!aravI nk . ~4.12!

The quantity jIk was obtained in the second section
Eq. ~2.18! for the spin flux density. Taking it into accoun
and also Eqs.~4.11! and~4.12! for the spin flux density in the
case of the ferrimagnet, we find

jIak5
1

Y0

]v

]vak
dab

' ãbg , dab
' [dab2 l al b

or

j ak5
1

Y0

]v

]vak
. ~4.13!

Here we took into account that since variations of the qu
tities l a and vak are not independent~see Ref. 9!,
l a]v/]vak50. Besides, it is easy to obtain the relation th
connects the derivatives (]v/] l )Y,v and (]v/]a)YI ,vI :

S ]v

] l n
D
Y,v

5jmS ]v

]amn
D
YI ,vI

2S ]v

]Yn
D
l ,v

l rYr .

Using Eq.~2.19!, we thus have

S ]v

] l n
D
Y,v

5 i
Y0

2
«abnl b Tr w@Ŝa ,«̂~x!#2S ]v

]Yn
D
l ,v

l rYr .

~4.14!

The second law of thermodynamics in the local limit c
thus be written in the form

dv5«dY01sdY1
]v

] l
dl1Y0 j kdvk , ~4.15!

where the derivative (]v/] l )Y,v is defined by Eq.~4.14!.
Using the entropy densitys, we can rewrite the last relatio
as follows:

d«5T ds1hds1
]«

] l
dl1 j kdvk . ~4.16!

Here we have taken into account that
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S ] l D
s,s,vk

Y0
S ] l D

Y0 ,Y,vk

To find the energy flux density in the locally equilibrium
state we use, by analogy with the case of the total symm
violation, the relation~2.22!. Within accuracy of¹Y0 we
then obtain

qk5ha j ak . ~4.17!

Therefore, in accordance with~4.16!,

zak5
]«

]vak

]za
]sa

.

Let us consider the hydrodynamic stage of evolution o
weakly anisotropic ferrimagnet at timest@t0 ~t0 is the re-
laxation time!. To construct hydrodynamics we will use, b
analogy with the case of a magnet with total symme
breaking relative to spin rotations, the reduced descript
hypothesis. The reduced description parameters are the
sities of the additive motion integralsza(x) and the antifer-
romagnetism vectorga(x,r̂) considered as a functional o
the nonequilibrium statistical operatorr̂* .1! In such a
scheme the equation of motion for the antiferromagnet
vector is obtained on the basis of the operatorĝa(x,r̂) of the
antiferromagnetism vector. As in the case of the magnet w
total symmetry breaking, we have used the operatorx̂(x,r̂)
@see Eq.~3.4!# to derive the equation of motion for the rota
tion matrix. However, we can at once obtain the equation
motion for the vectorl a by using the connection between th
antiferromagnetism vectorl a and the rotation matrixaab ,
l a5jbaba , indicated above. After convolution of both side
of Eq. ~3.14! with the constant vectorjr we have

l̇ a5«abghbl g ~4.18!

or

l̇ a52«abg

Yb

Y0
l g .

Further, the equation for the spin densitysa in the gen-
eral case was found earlier and is given by Eq.~3.12!. As-
suming that the density of the thermodynamic potentiav
depends on the variablesY0 , Ya , and l a ,

v~x!5v~x;Y0~x!,Ya~x8!,l a~x8!!, l a5jbaba ,

@we recall that in the derivation of Eq.~3.12! the potentialv
is considered under the local dependence on the inverse
peratureY0#, then, switching from Eq.~3.12! to the new
variables, we obtain

ṡa52
1

Y0
«abg SYb

dV

dYg
1 l b

dV

d l g
D . ~4.19!

Thus, Eqs.~4.18! and~4.19! are the dissipation-free dynami
equations for the weakly anisotropic ferrimagnet. The eq
tion for the energy density is

«̇52¹k

1

Y0
2

]v

]sa

]v

]vak
~4.20!
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@here we have used the expression~4.17! for the energy flux
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densityqk#.
Using ~4.10!, we can write Eqs.~4.18! and~4.19! in the

form

ṡa5«abg S dH

dsb
sg1

dH

d l b
l gD , l̇ a5«abg

dH

dsb
l g . ~4.21!

Equations~4.21! coincide with the corresponding equatio
obtained in the framework of the Hamiltonian approach
Ref. 9.

Since the energy density« is a function of the quantities
s, s, l , andvk @see Eq.~4.16!#, for verification of the adia-
baticity condition we switch in Eqs.~4.18! and~4.19! to the
variables«, s, l , andvk . By virtue of ~4.16!, from ~4.18! and
~4.19! we obtain in the local limit the system of equations

ṡa5«abgS ]«

]sb
sg1

]«

] l b
l g1

]«

]vbk
vgkD2¹k

]«

]vak
,

l̇ a5«abg

]«

]sb
l g ,«̇52¹k

]«

]sa

]«

]vak
. ~4.22!

From the equation for the antiferromagnetism vector follo
the equation for the quantityvak :

v̇ak5«abg

]«

]sb
vgk2~dab2 l al b!¹k

]«

]sb
.

Using ~4.16! and ~4.22!, we haveṡ50, which proves the
adiabaticity of the processes in the approximation which
are considering.

5. SPECTRUM OF SPIN WAVES

To find the spectrum of spin waves for the multisubl
tice magnet with total symmetry breaking we linearize t
system of equations~3.18! and choose as parameters, whi
describe the deviation from equilibrium, the quantiti
dsIa(x,t)5sIa(x,t)2sIa

(0) and daab(x,t)5«agrdwg(x,t)arb
(0)

3(x,t), wheresI (0) anda(0) are the equilibrium values. The
matrix of rotation aab

(0)(x,t) satisfies the equationȧab
(0)

5«arg(]«/]sIg)arb
(0) . The variation of the right Cartan form

is

dvI ak~a!5vI ak~ba!2vI ak~a!5¹kdwa2«abgvI bkdwg ,

bab5dab2«abgdwg .

AssumingdsI , dw}exp i(kx2vt), we obtain the system o
equations

~ ivI2hN2 i f1 f 8N2T!abdwb5«abdsIb , ~5.1!

~2 ivI1 i f̃1hN2M«2N f̃82T̃!abdsIb5~D2ND9N

2M f 8N1G8N1 iD 8N1 iND̃81 iM f2 iG2 iQ

1 iQ̃1NQ82Q̃8N1H1MT!abdwb ,

where

«ab5
]2«

]sIa]sIb
, f ab5ki

]2«

]sIa]vI b i
,
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ab i ]sIa]vI b i
ab i l ]vI a i]vI b l

Dab8 5kipl
]2«

]vI a i]vI b l
, Dab9 5pipl

]2«

]vI a i]vI b l
,

Nab5«agbng , Mab5«agbsIg ,

Gab5«agbki
]«

]vI g i
, Gab8 5«agbpi

]«

]vI g i
,

Tab5
]2«

]sIa]wb
, Qab5ki

]2«

]vI a i]wb
,

Qab8 5pi
]2«

]vI a i]wb
, Hab5

]2«

]wa]wb
.

The terms connected with the matricesT, Q, Q8, andH take
into account the anisotropy. EliminatingdsI from Eqs.~5.1!
and equating to zero the determinant of the equation fordw,
we find the next dispersion relation for determination of t
spectrum of spin waves:

det~v2a1v~ ib11b2!1 ic11c2![detA50, ~5.2!

a52«21, b15M2aRN2NR̃a1aT2T̃a,

R5 f 82Ih, b252a f2 f̃ a, ~5.3!

c152G1~D81 f̃ aR!N1N~D̃81R̃a f !1T̃a f2 f̃ aT

2Q1Q̃,

c25D2ND9N1 f̃ a f2NR̃aRN1T̃aT1NQ82Q̃8N

1H1~G82hM!N.

It is easy to see that the matricesa andb2 are symmetrical
and that the matricesb1 andc1 are antisymmetrical. In the
matrix c2 all terms are explicitly symmetrical, except th
term (G82hM)N. For the study of the symmetry of thi
matrix we note that equilibrium valuessIa , pk , andhI a , as
follows from Eqs.~3.18!, are related by the relation

Nab S sIbhI 2pk
]«

]vI bk
D5

]«

]wa
. ~5.4!

In the absence of anisotropy the right side of Eq.~5.4! is
equal to zero. Using Eq.~5.4!, it is not difficult to see that
((G82hM)N)ab5((G82hM)N)ba . Hence, in the absenc
of anisotropy the matrixA is a Hermitian that leads to rea
values of the spin wave frequencies8. In the presence of an
isotropy we have

~~G82hM!N!ab2~~G82hM!N!ba5~naNbg

2nbNag!
]«

]wg
.

For the Hermitian character of the matrixA it follows that
the relation

Nag

]«

]wg
[«abgnb

]«

]wg
50, ~5.5!
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rotations around the directionna5hI a /hI do not change the
energy functional«. If the energy functional« does not sat-
isfy the relation~5.5!, then the matrixA is not a Hermitian
and complex frequencies, in general, arise in the spectr
This means that the corresponding state is unstable. Th
fore, when the matrixA is not a Hermitian, the exchange an
anisotropy constants should satisfy certain inequalities
the spectrum of spin waves to be real. Further, we ass
that Eq.~5.5! is satisfied.

We rewrite the dispersion relation~5.2! in the form

(
n50

6

An~k!vn50, ~5.6!

where the coefficientsAn (n50,...,6) in terms of the convo
lution

uabcu5
1

6
«abg«uvtaaubbvcgt

are defined by the formulas

A05uc2c2c2u23uc1c2c1u,

A1526ub1c1c2u23ub2c1c1u23ub2c2c2u,

A2523uac1c1u13uac2c2u13ub2b2c2u26ub1b2c1u

23ub1b1c2u,

A35ub2b2b2u16uab2c2u26uab1c1u23ub1b1b2u,

A453uaac2u23uab1b1u13uab2b2u,

A553uaab2u,

A65uaaau.

We carry out the analysis of the possible spectra of s
waves in the limit of small wave vectorsk. Note that in the
absence of anisotropy and atv50, k50 we have
detA(0,0)5detc2 and by virtue of the evident form of th
matrix c2 ~5.3!, detA(0,0)50. This means that in the isotro
pic case the system has at least two Goldstone modes@since
A2l11(k50)50#. In the presence of anisotropy the situati
changes: detA(0,0)5detc2Þ0 which means that all mode
of the anisotropic magnet, in general, are activation mod
However, the order of the activation frequencies with resp
to anisotropy may be different, and it changes from first
third. Since we are considering a small anisotropy, we t
into account the anisotropy in the linear approximation.
the given approximation the modes, whose activation
quencies are quadratic and cubic in anisotropy, become
vationless. Let us consider some special cases of equilibr
values of the quantitiessI , hI , andpk .

1. sI50, hI 50, pk50.
The dispersion relation~5.6! has the form

A6v
61~A481A49k

2!v41A29k
2v21A0-k

450. ~5.7!

Here we have evidently given the dependence of the mo
lus uku in the coefficientsAn in Eq. ~5.6!. Solution of Eq.
~5.7! yields two pairs of Goldstone and one pair of activati
modes
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where

v0
252

A48

A6
,

F1,25
1

2A48
$2A296A~A29!224A0-A48%,

F35
A6A292A48A49

A6A48
.

We present here for comparison the spectra of spin waves
the isotropic magnet13,14 in the case under consideration

v i
25l i

2k2, i51,2,3.

2. sIÞ0, hI 50, pk50.
The dispersion relation has the form

A6v
61~A481A49k

2!v41~A281A29k
2!v21A0-k

450.
~5.8!

At small k we have one pair of Goldstone and two pairs
activation modes

v1,2
2 5v6

2 1R6k
2, v3

25R3k
4.

Here

v6
2 5

1

2A6
$2A486A~A48!224A28A6%,

R657
A291A49v6

2

A6~v1
2 2v2!

, R352
A0-

A28
.

Similarly for the isotropic magnet8 we have

v1
25n1k

4, v2
25n2k

2, v3
25v0

21n3k
2.

In connection with the appearance of the activation frequ
cies in the isotropic magnet, it should be noted that the qu
tities sIa andvI ak are invariant relative to the right uniform
rotations with the matrixb:

s→s85bs, a→a85ab̃.

The energy density in the isotropic case«5«(sI ,vI k) is there-
fore also invariant relative to the right rotations. However
need not necessarily be invariant relative to the left rotati

s→s85sb, a→a85b̃a,

when, for example,8 the quantitiessIa and vI ak enter « in
convolution with some ‘‘foreign’’ vector, which characteriz
ies the given magnet

«5«~ l asIa ,l avI ak!

~l a is the unit vector of anisotropy, which is connected w
the left rotations!. This is the reason for the occurrence of t
activation branches in the spectrum. Such situation is ch
acteristic of the considered exchange multisublattice m
nets, whose state is described, jointly with the spin dens
by the additional dynamic variable which is the matrix
rotation; if the state of the magnet is characterized only
the spin density, then the activation frequencies are abs

532Isayev et al.



We emphasize that in the equations of motion for the addi-
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phenomenological approach based on employment of the
8,9
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iz.

la-

as
tive motion integrals the expansion in terms of spatial gra
ents begins with the linear terms on gradients and in
equation of motion for the rotation matrix the expansion b
gins with zero-order terms on gradients, which correspo
to the precession motion with the corresponding activat
frequencies.

3. sÞ0, hI Þ0, pk50.
Equation~5.6! has the form

A6v
61~A481A49k

2!v41~A281A29k
2!v21A081A09k

250.
~5.9!

In this case all branches are activation branches

v i
25v0i

2 1ci
2k2, i51,2,3,

where the activation frequenciesv0i
2 are determined from the

cubic equation, which is obtained from Eq.~5.9! at k50. For
the isotropic magnet in this case8 we have one pair of Gold
stone branches and two pairs of activation branches

v1,2
2 5v6

2 1m6k
2, v3

25m3k
2.

4. sIÞ0, hI Þ0, pkÞ0.
This is the most general case. Analysis of the dispers

relation shows that there are six activation branches wh
spatial anisotropy is caused by the presence of the s
structure

v i5v0i1 ċi~pk!1di8~pk!21ci9k
2.

For the isotropic magnet in the given case8 we have

v1,25a~pk!6Abk21g~pk!2,

v i5v0i1l i8~pk!1m i8~pk!21m i9k
2~ i53,...,6!.

6. CONCLUSIONS

Thus, on the basis of generalization the quasiavera
method for the weakly anisotropic, locally equilibrium stat
and with use of the reduced description method with
elements of the matrix of rotation as additional dynamic va
ables, we have built thermodynamics and have found
equations of low-frequency dynamics of the multisublatt
magnets with strong exchange interaction. In some spe
cases the results are in agreement with the results of
533 Low Temp. Phys. 23 (7), July 1997
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Hamiltonian formalism. Except for the multisublattice
magnets, the concept of total spontaneous symmetry br
ing relative to spin rotations has been used in the Ham
tonian approach for the description of the low-frequency d
namics of the superfluidB-phase of3He ~Ref. 19! and of the
quantum spin crystals.20
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1!As for the magnet with total symmetry breaking in the case of the anti
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vectorga(x,r̂) considered as a functional of the nonequilibrium statistic
operatorr̂.
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Classification of states and macroscopic degeneracy in an open XY-chain

in transverse field
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The spectral structure for an openX–Y chain is determined rigorously, and one-fermion states
are classified for all values of anisotropy and transverse field. Quasidegeneracy is
interpreted as well as the general nature of ordering in a certain class of systems with a locally
nondegenerate ground state. ©1997 American Institute of Physics.@S1063-777X~97!00507-0#
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The interest towards theXY-model was aroused by th
problem of ordering in Heisenberg antiferromagnets.1 In the
simplest models like an isotropic ferromagnet, the grou
state energy level is already degenerate for a finite numbe
lattice sites and the corresponding states violate the sym
try of the system. The tendency towards ordering in the m
roscopic system is manifested at the most elementary le
viz., in a pair of interacting sites. The situation is different
a Heisenberg antiferromagnet whose ground state is no
generate for any number of sites and any dimensionality
the system,1 and the minimum excitation energy for a pair
sites is equal to the exchange interaction parameter. In
case, the ordering is basically associated with the ma
scopic nature of the system. The same situation is also r
ized in some other quantum systems.

Such an effect can be studied in the model of anXY-
chain in a transverse magnetic fieldH, which can lead to
rigorous results. This model was analyzed by Liebet al.1 and
Barouchet al.2 who studied a chain ofN spins (S51/2)
forming a closed circle with a Hamiltonian

H52 (
n51

N21

~JxSn
xSn11

x 1JySn
ySn11

y !2H(
n51

N

Sn
2, ~1!

supplemented by interaction of boundary sites, wh
Jx.Jy.0. Going over to Fermi operators and disregardin
certain ‘‘boundary’’ term, we can present the Hamiltonian
a noninteracting system of fermions with the dispersion
lation

«~k!5@~Ja cosk2H !21D2 sin2 k#1/2,

k5~2n/N!p, p50,..., N21,

Ja5
1

2
~Jx1Jy!, D5

1

2
~Jx2Jy! ~2!

and with the vacuum state as the ground state. It follo
hence that the ground state is not degenerate forD Þ 0,
HÞJa , and its energy for anyN is separated from the rest o
the spectrum by a gapd :

d5
1

2
D@12H2/~JxJy!#

1/2, H,JxJy /Ja ;
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The information obtained in this way does not give any
dication about the order forN→`. In such a situation, the
existence of the long-range order in the system in thermo
namic limit atT50 and for nonzero anisotropy (D Þ 0) is
evidenced by the asymptotic behavior of the correlators
the type^Sn

aSn11
a & (a5x,y,z) detected in Ref. 2 forl→`.

Lieb et al.1 also considered an openXY-chain in zero
magnetic field for which a rigorous solution can be obtain
without using the above-mentioned approximation. It w
found that in this case there exists an eigenstate forD Þ 0,
whose energy separation from the ground level
;(Jy /Jx)

2N/2. A similar result was obtained by Pfeuty3 for
an open Ising chain in a transverse magnetic field. The
thors of Refs. 1 and 3 believe that it is this quasidegener
that is responsible for the emergence of order forN→`.
Thus the assumption required for considering a chain clo
into a ring does not affect the thermodynamic functions
complicates the physical interpretation of results and m
also be manifested during structural analysis of the orde
states.

In view of all that has been stated above, it should
expedient to study the exact solutions of a finite (N.4)
openXY-chain in a transverse magnetic field over the en
range of variation of field and anisotropic parameters. In t
work, we present the distribution of energy levels of sing
fermion states as well as a classification of these states w
out any explicit details of their structure. Two categories
‘‘band’’ type states and two types of states corresponding
quasidegeneracy are revealed. It is found that the spe
quasidegeneracy is always associated with the emergen
long-range order. We shall discuss the critical size of
chains for which special solutions responsible for quasi
generacy are obtained. We shall also present concepts
perturbation theory revealing the macroscopic nature of
quasidegeneracy and its particular role for a certain clas
quantum systems. Since these simple concepts are supp
by rigorous results obtained in the family ofXY- models
considered here, they can be used with confidence in o
analogous situations also.

534534-07$10.00 © 1997 American Institute of Physics



2. FORMULATION OF EQUATIONS
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We shall use the methods described in Ref. 1 to cons
the Hamiltonian~1! in which we assume, without any loss o
generality, thatJx.0,uJyu,Jx , H>0. Other versions can b
reduced to this model through simple unitary transform
tions. The exact solution of model~1! is obtained by apply-
ing Jordan–Wigner transformation to the Fermi operators
terms of which the Hamiltonian assumes a quadratic form
is diagonalized with the help of theuv-transformation which
is defined by the following equations:

u51/&~w1z!, v51/&~w2z!,

AA1w5«2w, A1w5«z, ~4!

where u, v, w, z are N-dimensional columns, and matri
A is equal to

An,m5Hdn,m2
1

2
~Ja2D!dn,m212

1

2
~Ja1D!dn,m11 .

~5!

The fermion energy« is chosen to be nonnegative so that t
ground state does not contain fermions.

The problem is reduced to determining the eigenval
and eigenvectors~there must be exactlyN such functions and
vectors! for the first of Eqs.~4!:

AA1w5«2w. ~6!

All the solutions of this equation have the for
(n51, 2, . . . ,N; N.4)

wn5c1e
ik1n1c18e

2 ik1n1c2e
ik2n1c28e

2 ik2n ~7!

where k1 , k2 are complex-valued and are connected w
«.0 from Eq.~6! through the equations

«5«~kp!, p51, 2. ~8!

The function«(k) is defined in~2!. ~We shall not consider
rare cases of multiple roots and the corresponding type
solutions which, if required, can be obtained from~7!
through the limiting transitionk12k2→0 or k1,2→0,p.!

Relations~8! ensure for any values ofc1,2, c1,28 the so-
lution of all equations~6! written in terms of the vector com
ponentswn and matrix elements (AA1)n,m except the first
two (n51,2) and the last two (n5N,N21). These bound-
ary conditions are satisfied through an appropriate choic
c1,2, c1,28 , which leads to a homogeneous system of fo
equations for them. The nontrivial solvability condition fo
this system gives another equation for determining the p
sible values of«, k1,2:

~11g2 cot2 k1!sin
2@~N11!k1#

5~11g2 cot2 k2!sin
2@~N11!k2#,

k15
1

2
~k12k2!, k25

1

2
~k11k2!,

g[D/Ja5~Jx2Jy!/~Jx1Jy!. ~9!

~Note that the conditionJy.0 corresponds to 0,g,1,
while the conditionJy,0 corresponds tog.1.! Instead of
one of the equations~8!, we can take
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hm5H/Jm , Jm5JxJy /Ja , ~10!

which describes the condition«(k1)5«(k2). Then the sec-
ond of Eqs.~8! will define the eigenvalues of«. Formula~2!
for «(k) is the same for open and closed chains, but poss
values ofk in our case are determined by the system
equations~9!, ~10!.

In the absence of a magnetic field, formula~10! de-
scribes a simple relation between two ‘‘momenta
k16k25p, which reduces Eq.~9! to the form described in
Ref. 1. The case of Ising’s model in a transverse field is a
reduced to an equation in a single momentum and the g
eral solution of the system~6! in this case has the form
ceikm1c8e2 ikm.3

In the general case described here, the two ‘‘momen
involved in the formation of a state are connected throu
relation ~10! which depends on the model parameters. T
leads to various types of solutions and complicates th
analysis.

3. CLASSIFICATION OF SOLUTIONS

Equations~9! and~10! have the following types of solu
tions depending on the position of numbersk1 , k2 in the
complex plane. In order to obtain a mutually unique para
etrization of the families of functions~7!, we impose certain
constraints onk1 , k2 .

1. k1 , k2 are real,

0,k2,k1,p; ~11!

2. ~a! k1 is real,k25 ip; ~b! k1 is real,k25p1 ip;

0,k1,p, p.0. ~12!

3.k1,2 arecomplex,k15k2* , k15k1 ip, k25k2 ip;

0,k,p, p.0. ~13!

4.~a!k1,25 ip1,2, 0, p2, p1 ; ~b!k15 p 1 ip1

k25 ip2 , p1,2.0; ~c! k1,25 ip1,21p, p1.p2.0.
~14!

All the above relations are strict inequalities and th
ensures that the vectors exp (ikm) appearing in~7! are lin-
early independent@see the remark following Eq.~8!#.

Solutions of types 1 and 2 are called ‘‘band’’ solution
since the values of«(k1) for them coincide with the corre
sponding values of«(k) for a ring-shaped closed chain t
within quantities of the order of 1/N.

Solutions of the first type are realized under the con
tion H,uJmu for the values ofk1,2 lying in the interval
(0,k0), cosk052uhmu21 for Jy.0 and in the interval
(p2k0 ,p) for Jy,0. In these intervals, the function«(k) is
nonmonotonic under the above condition and assumes
of its values twice. It has a minimum at the poi
km5arccoshm if Jy.0, and a maximum ifJy,0. Thus, the
possible values ofk1,2 for the first type of solutions satisfy
the conditions

0,k2,km,k1,k0 , Jy.0;

p2k0,k2,km,k1,p, Jy,0. ~15!
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Solutions of type 2 correspond to values ofk1 lying in the
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interval (k0 ,p) for magnetic fieldsH,uJmu if Jy.0, and in
the interval (0,p2k0) if Jy,0. For H,uJmu, the ‘‘band’’
solutions can be only of type 2.

Solutions of types 3 and 4 are realized in fiel
H,Ja , and correspond to quasidegeneracy in the system
in Refs. 1, 4, we attribute this to the emergence of long-ra
order forN→`. This will be supported by additional argu
ments.

4. ‘‘BAND’’ TYPE SOLUTIONS

For solutions of type 1 which are realized only in fiel
uhmu,1, Eq. ~9! can be conveniently written in the form

11g2 cot2 k1

11g2 cot2 k2
5
sin2~N11!k2

sin2~N11!k1
,

0,k1,p/2, k1,k2 , k11k2,p. ~16!

In the interval@0,k0#, wherek0[k0/2, Eq. ~10! describes a
monotonically decreasing function:

k2~k1!5arccos~hm /cosk1!. ~17!

Substituting this equation into Eq.~16!, we obtain

f ~k1!5FN~k1!, 0,k1,k0 , ~18!

wheref andFN are functions on the left and right-hand sid
of Eq. ~16! after such a substitution. The functionf (k1)
decreases monotonically in the interval@0,k0# from ` to 1.
In a certain neighborhood of each pointp l /(N11),
l50, 1, 2,...,m, the functionFN(k1) increases monotoni
cally from 1 to ` to the left of this point and decrease
monotonically to the right. Herem is defined by the condi-
tion

pm

N11
,k0<

p~m11!

N11
. ~19!

At other points in the interval (0,k0), the function
FN(k1),1 andFN(k0)51. Thus, Eq.~18! has two solutions
in each interval

Pl[S p l

N11
,

p~ l11!

N11 D ~20!

with l51, 2,...,m21. In the intervalP0 , Eq. ~18! always
has only one root. The absence of the second root~near
k150! is equivalent to the condition

1

g2,
~N11!2

sin2~N11!km
2

1

sin2 km
11,

km5arccoshm . ~21!

The sufficient condition for this relation to be fulfilled~i.e.,
for the absence of the second root in the intervalP0! is the
simpler relation

1

g2,
1

3
~N11!21

2

3
. ~22!

This relation shows that for an anisotropy 0,g,1, the ab-
sence of the second root inP0 is ensured in a quite long
chain, the choice of the length of the chain being indep
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second root does not appear in the intervalP0 for all N.4.
It was assumed above that the numerator on the r

hand side of Eq.~16! does not vanish together with the d
nominator. This, however, does not change in principle
above distribution of roots since we proceed in this ca
from Eq.~9! which is obviously satisfied. Turning directly t
the system of equations forc1,2, c1,28 , we observe that its
rank is equal to two and hence two independent soluti
exist in this case also.

The fermion energy corresponding to the parameterk1

may be expressed as«@k11k2(k1)#, where any point in the
interval containing the given solution can be taken ask1 with
an error not exceeding;1/N.

Let us make a general remark. It is hard to prove direc
the absence of the second root inP0 under the condition~21!
for anyN and for arbitrary parameters. However, it can e
ily be shown that there must be at least two additional ro
if such roots do exist at all. A count of the total number
irrefutably existing roots would lead to the conclusion th
the corresponding algebraic eigenvalue problem has m
thanN linearly independent solutions, which leads to a co
tradiction. In the following analysis we shall always be
these arguments in mind so that no such roots are fo
whose existence has not been proved rigorously.

The solutions of type 2 can be parametrized by the nu
bersk, p:

k15k, k25 ip for J.0;

k15p2k, k25 ip1p for Jy,0,

0,k,p, p.0. ~23!

In both cases (Jy.0, Jy,0), Eq.~10! assumes the form

cosk1coshp52uhmu or ucosku25uhmu,

k5
1

2
~k2 ip ! ~24!

and defines uniquely the monotonically increasing funct
p(k) with k varying in the interval (k0 ,p) for uhmu,1, and
in the interval (0,p) for uhmu.1.

Denoting the arguments of complex numbers cosk and
sin@(N11)k# through 2C and24FN, respectively, we can
represent Eq.~9! in the form

exp~ iw![
@12uhmuexp~2 iC!#@17ha exp~ iC!#

@12uhmuexp~ iC!#@17ha exp~2 iC!#

5exp~ iFN!, ha[
H

Ja
, ~25!

where the upper sign corresponds to the caseJy.0, and the
lower sign to the caseJy,0. The quantitiesC,FN are con-
nected with the parametersk, p5p(k) through the relations

tan~C/2!5tan~k/2!tanh~p/2!,

tan~FN/4!5cot@~N11!k/2#tanh@~N11!p/2#. ~26!

An analysis of the functionsC(k),FN(k) leads to the fol-
lowing conclusions concerning the solutions of Eq.~25!.
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For uhmu,1 and for any sign ofJy , Eq. ~25! must have
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a root in each intervalPl , l52m11, ...,N21, wherem is
defined in~19!. In addition, there exists one more solutio
which may be of type 1 and correspond to the valuek1 in the
intervalPm , or of type 2 and correspond to the valuek in the
intervalP2m .

For uhmu.1 (Jy.0, Jy,0), Eq. ~25! must also have a
root in each intervalPl , l51,...,N21. In the intervalP0 ,
there is no solution forJy,0. ForJy.0, a solution appears
in the intervalP0 only if the following condition is satisfied

12ha,
g2

~N11!coth@~N11!p0/2# S hm
hm21D

1/2

,

coth p052hm21. ~27!

An analysis of~27! leads to the following system of inequal
ties describing sufficient but simpler conditions under wh
a solution does not exist in the intervalP0 :

g2.12ha.g@g1~12g2!1/2#/~N11!,

g.@~N11!211#21/2. ~28!

It follows from these inequalities that no solution exists
P0 for quite largeN if the field H,Ja and the anisotropy
g Þ 0. The value ofN can be chosen so that it does n
depend on the closeness of the fieldH to Jm . ForH.Ja , it
follows directly from ~27! that a solution does exist inP0 .

Let us consider separately the possibility of the existe
of a root in the intervalPN for various fields. ForJy.0,
there are no roots in this interval for all values of the fie
and for allN.4. For Jy,0, a root appears in the interva
PN only if the following condition is satisfied:

12ha,
g2

~N11!tanh@~N11!p~p!/2# F uhmu
11uhmuG

1/2

,

cosh@p~p!#52uhmu11. ~29!

A simpler sufficient condition for the absence of roots
PN is

12ha.g2/~N11!. ~30!

It follows from ~29! and~30! that forH.Ja , a root exists in
PN for all N.4, while for H,Ja no such root exists for
quite largeN.

Let us summarize the results obtained on the numbe
‘‘band’’ type solutions.

For H,uJmu,Ja(g,&) or H,Ja,uJmu(g.&),
there are 2(m21)11 solutions of type 1,N2122m solu-
tions of type 2, and one solution whose type~1 or 2! depends
on the specific values of parameters. The total numbe
these roots is equal toN21. For quite largeN ~the condi-
tions for this are determined by the inequalities~21!, ~29!!,
there are no other ‘‘band’’ type solutions for the values
field indicated above.

If uJmu,H,Ja , there existN21 solutions of type 2
only. For quite large values ofN @conditions ~27!, ~29!#,
there are no other ‘‘band’’ type solutions in this case als

In fields H.Ja , there always exist exactlyN ‘‘band’’
type solutions, some of which may be of type 1 only f
g.& since in this caseJa,uJmu.
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quite largeN. This missing root corresponds to a solution
type 3 or 4, which we shall consider below.

5. QUASIDEGENERACY

At the beginning, we note that for solutions of type 3 a
4, it is convenient to present the fermion spectrum« in ~8! in
terms ofk1,2:

«25cos22~k1,2!@Jg
2 cos2~k1,2!7H2#@Jag

2 7cos2~k1,2!#,
~31!

where the upper sign corresponds to the caseJy.0, and the
lower one to the caseJy,0.

Solutions of type 3 are possible only forJy.0 and ‘‘mo-
menta’’ of type~13!. Formula~10! uniquely defines in this
case the monotonically increasing functionk(p) in terms of
which Eq.~9! can be represented in the form

~cosh2 p2hm
2 !~Jag

2 2cosh2 p!

5Jag
2 ~cosh2 p2hg

2!sinh2 p
sin2@~N11!k~p!#

sinh2@~N11!p#
,

Jag[Ja /Jg , hg[H/Jg , Jg[~JxuJyu!1/2. ~32!

An analysis of functions on the right and left sides of th
relation shows that the condition for the existence of a r
of this equation coincides forH,Jm with the condition~21!
for the absence of a solution of type 1 in the intervalP0 , and
for Jm,H,Jg8 with the condition~27! for the absence of a
solution of type 2 inP0 . The field Jg8 is determined from
~32! by imposing the condition that the limiting relation
coshp→Jg8/Jm, kp→0 are satisfied forH→Jg8 ~for H5Jg8 ,
the solution has a quasipolynomial form, see remark follo
ing formula ~8!!. Note thatJg8 depends onN, but the differ-
enceJg2Jg8 is a rapidly decreasing function forN→`:

Jg2Jg8>D4/~8Ja
2Jx!~N11!~Jy /Jx!

N. ~33!

The solution of Eq.~32! can be presented in an explicit form
only for largeN. In the zeroth approximation coshp5Jag,
while the asymptotic formula for correction has the follow
ing form for N→` uniformly in the field interval
0,H,Jg8 :

Jag
2 2cosh2 p54A sin2@~N11!kg#~Jy /Jx!

N11, ~34!

where

coskg5H/Jg , A5~Ja
22H2!DJg

22uJxJy2H2u21.

To obtain the value of« corresponding to the solution
under consideration~we shall denote this value as«0!, we
should putk15 ip in ~31! and substitute~34! in it. Retaining
only the principal nontrivial term of the asymptotic form i
N, we obtain

«0>2Busin@~N11!kg#u~Jy /Jx!~N11!/2, ~35!

where B5D(Ja
22H2)Ja

21uJxJy2H2u21/2.
Note that in the limitH→Jg8 , formula ~35! assumes the

form
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2D3~N11!

~J /J !~N11!/2. ~36!
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Putting H50 in ~35!, we arrive at the result obtained i
Ref. 1.

It can be seen from~35! and ~36! that the energy corre
sponding to a type 3 solution forN→` is a rapidly decreas
ing function of N in the entire range of existence of th
solution. Thus, the creation of a fermion with such an ene
leads to a variation of the system energy that is exponent
small in comparison withN, i.e., to quasidegeneracy.

It is interesting to note that as can be seen from Eq.~35!,
the dependence of«0 on the fieldH displays characteristic
oscillations. For eachN, there exists a discrete set of field
~the set condenses asN→`! in which the exact degenerac
«50 takes place. The fields are defined by the equa
Hl5Jg cos@pl/(N11)#, wherel51,2,..., N/2. These oscilla-
tions are a ‘‘continuation’’ of the same field oscillations
an isotropicXY-model obtained in Ref. 4 to the anisotrop
case.

It should be observed once again that a type 3 solu
exists in the field interval 0,H,Jg8 . It will be shown that
the solution changes to type 4 as the field crosses the u
boundary of this interval.

An analysis of Eqs.~9!, ~10! shows that for solutions o
type 4, version~a! is realized in~14! for Jy.0, while version
~b! is realized forJy,0. The version~c! is usually not real-
ized for type 4 solutions. For roots of type 4~a,b!, it is con-
venient to represent Eqs.~9,10! in terms of the variables
p5(p11p2)/2, p85(p12p2)/2. In view of Eq. ~10!, p,
p8 satisfy the condition 0,p8,p. This equation uniquely
defines monotonically decreasing functionsp8(p) ~different
for different signs ofJy! using which we can transform Eq
~9! into an equation inp. Let us consider successively th
casesJy.0 andJy,0.

For Jy.0, the equation inp is formally obtained
from ~32! by substituting 2sinh2@(N11)p8(p)# for
sin2@(N11)k(p)#. An analysis of this equation leads to th
conclusion that one root exists forJg8,H,Ja , whereJg8 has
been defined above, if there is no ‘‘band’’ solution in th
interval P0 , as expressed by an inequality inverse to~27!.
The asymptotic formula for this root forN→` has the form

Jag
2 2cosh2 p>AQN

2 ~Jx
21@H1~H22JxJy!

1/2# !2~N11!,
~37!

whereQN512exp@22(N11)pg#,coshpg5H/Jg .
The corresponding value of«@k25 ip in ~31!# is given

by

«0>BQN~Jx
21@H1~H22JxJy!

1/2# !N11, ~38!

where the base of the exponential function ofN is less than
unity in the interval of fields under consideration. F
H→Jg8 formula ~38! is transformed into~36!. Among other
things, this is ensured by the factorQN in ~37!, ~38!. This
factor can be disregarded for all fields except a small ne
borhood ofJg8 ~determined by the smallness ofN21!. For
Jy→0, Eq. ~38! leads to the result obtained in Ref. 3.

For Jy,0, Eq. ~9! assumes the form

538 Low Temp. Phys. 23 (7), July 1997
y
lly

y

n

er

-

2hg
2!cosh2 p

cosh2@~N11!p8~p!#

cosh2@~N11!p#
. ~39!

An analysis of this equation leads to the conclusion that th
exists just one root in the entire interval of fields 0,H,Ja
if the inequality opposite to~29! is satisfied. Asymptotic for-
mulas for this root and the values of«0 are defined by the
expressions~37! and ~38! in which QN is assumed to be
equal to unity.

Thus, for fieldsH,Ja and 0,g,`, a special solution
is realized in the system in addition to the ‘‘band’’ solution
if N exceeds a certain critical valueNc . For given param-
eters of the model, this value can be determined from form
las ~21!, ~27!, and~29!. It follows, among other things, from
the rough sufficient conditions~22!, ~28!, and ~30! that for
Jy.0 the special solution exists for allN.4, i.e. for
Nc54, in the range of values of parameters satisfying the
of conditions

0,g,1,

H/Ja,min$~12g2!, ~12@g21g~12g2!1/2# !%.

6. PERTURBATION THEORY

In order to understand more clearly the nature
quasidegeneracy and its connection with the emergenc
long-range order forN→`, we study theXY-model under
consideration from the point of view of the perturbatio
theory~PT!. We proceed from Ising’s model withĤ0 , which
corresponds toJy50, H50 in ~1! for a weak transverse field
H or a small exchangeJy . The following obvious points,
which will be quite significant in subsequent analysis, sho
be borne in mind. The quantityĤ0 has a doubly degenerat
ground level energyE0 , the corresponding statesu1& and
u2& are ~tensor! products of states of individual sites. A
lattice sites of the vectoru1& are orthogonal to the lattice
sites of the vectoru2& ~for largeN, this corresponds to the
macroscopic difference between statesu1& and u2&). Be-
sides, there exists a symmetryĤ5Ĥ01V ~rotation around
thez-axis byp! that transforms the statesu1&,u2& into each
other and for which the degeneracy space$E0% of level E0

splits into two one-dimensional spaces defined by the vec
u1&6u2&.

The introduction of a perturbationV causes a splitting of
the levelE0 which is described by an equivalent operator
the perturbation theory. The general structure of itsmth or-
der term has the form

P0V~R0V!m21P0 ,

R0[~12P0!~Ĥ02E0!
21~12P0!, ~40!

whereP0 is a projector on$E0%,V } H or Jy . It follows from
the facts listed above that ifm,N for V } H orm,N/2 for
V } Jy , all terms in~40! can transform each of the state
u6& into itself only, giving the same corrections to them
which cannot lead to a splitting ofE0 . Only beginning from
m5N forV } H andm5N/2 forV } Jy does Eq.~40! acquire
terms with a nonzero matrix element betweenu1& and
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u2&. This leads to the formation of eigenstatesu1&6u2&
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and to an exponentially small splitting;(H/Jx) or
;(Jy /Jx)

N/2 of the levelE0 . In this case, the number o
terms that can contribute to the first nonvanishing correc
in the perturbation theory is not more thanN, which does not
change the rapidly decreasing nature of the dependenc
splitting onN. For a larger dimensionn of the lattice, the
rate of decrease increases on account of an increase i
excitation energy of intermediate states to quantities of
order ofJxN

(n21)/n.
For largeN, the splitting remains small right up to th

value of perturbation closely approaching the gapJx in the
spectrumĤ0 . However, the real applicability of perturbatio
theory may be hampered by corrections that do not unde
splitting and nonuniformly displace levels of energyĤ0 even
in lowest orders of perturbation theory. This may lead
their intersection and thus render perturbation theory inap
cable. Exact results show that this does not happen in
case under consideration and perturbation theory really
scribes the true picture of splitting for allH,Jx or Jy,Jx
for quite large N. However, if the above procedure
applied to an antiferromagnetic Ising chain with spin 1,
cluding isotropic antiferromagnetic perturbatio
z2y(Jy5Jz), the intersection of levels described above
realized for a certain value of the anisotropy if Haldan
hypothesis7 is valid.

Thus, the analysis carried out in the framework of p
turbation theory leads to the conclusion that the presenc
quasidegeneracy in large systems~anomalously small split-
ting with a characteristic exponential dependence
N,;jN,j,1! indicates that each of the corresponding sta
is a superposition of the same macroscopically differ
states.

We shall now discuss in detail the mechanism behind
emergence of long-range order in the simplest case u
consideration. As long as the number of sites is small,
ground state 2̄1/2(u1&2u2&) of the system is purely degen
erate and separated from the remaining states by an ob
able energy gap.@In order to avoid confusion, we remark th
we are dealing with the inverse images of real states in
subspace$E0% where the equivalent Hamiltonian in the pe
turbation theory is defined by~40!.# For N→`, this pure
state is transformed into the limiting stateu`&, which is a
mixture of limiting macroscopic distinguishable homog
neous statesu`,1& and u`,2&, since for any local observ
ables~correlators! K, we can write

^`uKu`&5221~^`,1uKu`,1&1^`,2uKu`,2&!. ~41!

For n→`, the nonzero limit of the correlator̂(S0
x2^S0

x&)
3(Sn

x2^Sn
x&)& calculated in Ref. 2 for the stateu`& is just the

sufficient condition for its decomposition into a mixture
homogeneous states.5 Apparently, the componentsu`,6& of
the decomposition41 cannot be decomposed further and a
therefore really observable different thermodynamic state
which the ordering takes place (^Sn

x& Þ 0).
Note that in the limitN→`, the second state of th

quasidegenerate doubletu1&1u2& coincides withu`&. This
is manifested in single-fermion states of types 3 and
whose parameters are directly connected with the param
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the parameters describing the spatially nonmonotonic pa
the correlators;exp(2pn)cos(kn) for large n in fields
H,Jg .

2 Solutions of type 3 existing in the same regions
fields coincide exactly with the real and imaginary part
parametersk1,2. In the field Jg,H,Ja also, the para-
metersp1,2 of the solution of type 4 define the paramet
p12p2 of the exponentially decreasing part of th
correlators.2

The analysis carried out in this section can be gene
ized, and hence we can speak about a certain class of q
tum lattice systems existing in the vicinity of Ising-like mod
els for which the above mechanism of quasidegeneracy
establishment of long-range order is realized forN→`, in
spite of the fact that the ground state is not degenerate
finite N.

7. CONCLUSION

Single-fermion states are classified for an open fin
(N.4) anisotropicXY-chain with a transverse magnet
field, and the distribution of the corresponding energy lev
is obtained for all values of the parametersJx , Jy , andH.
Two types of ‘‘band’’ type solutions~type 1 and type 2! are
obtained for such a system. Their energy is defined by
formal dispersion relation«(k) for an infinite chain for real
allowed values ofk. In addition, there exists a special sol
tion which can also be of two types~type 3 or type 4! and
has an energy corresponding to complex values ofk.

States of type 1 contain in their construction two re
momentak1,2.0 for which«(k) assumes identical values. I
other words, there may exist solutions when the spectr
«(k) is nonmonotonic~for k.0), and correspond to gene
alized standing waves. These solutions are realized in fi
H,uJmu in which such a nonmonotonicity of«(k) exists.

States of type 2 exist for all fields and their constructi
contains one real ‘‘momentum’’k1 . The boundary condi-
tions are fulfilled on account of terms that decrease rap
with increasing distance from the boundary and cont
‘‘momentum’’ k2 of the typeip or p1 ip.

In fields H,Ja , there areN21 solutions of ‘‘band’’
type and one special solution whose energy tends rap
~exponentially inN! to zero with increasing length of th
chain. ForN→`, the latter causes a degeneracy of the s
tem, especially the degeneracy of the ground state. To
more precise, the region in which a special solution~of type
3 or 4! is realized for finiteN is defined by the inequalities
~21!, ~27!, and ~29!. Among other things, it follows from
these inequalities that if the model is nearly isotropic or
field approaches the critical valueJa from below,N must be
quite large i,e.,N.Nc@1. At the same time, there exists
wide range of values of parameters for which a special so
tion exists for allN.4(Nc54).

In the entire range of parameters in which a special
lution exists, the available results of calculations for corre
tors carried out in Ref. 2 for a ring indicate that the limitin
ground state in it is a mixture of homogeneous macrosco
cally different states. These calculations were carried out
a model with identical signs of exchange parameters. Ho
ever, using the characteristic quasidegeneracy as a true c
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can assume that it also exists for opposite signs of excha
if H,Ja .

The informal analysis from the point of view of pertu
bation theory carried out in this work lends authenticity
the statement that quasidegeneracy is linked with long-ra
order. This analysis allows us to describe one of the poss
mechanisms of the emergence of order in systems havi
nondegenerate ground state in a finite volume. Such a s
may be a superposition of two vectors which become m
roscopically distinguishable with increasing number of sit
retaining in it nonzero weights forN→`. In this limit, such
a superposition is transformed into a mixture of macrosco
cally distinguishable states, whose individual compone
have the same energy density as the mixture. In fact
indicates that the thermodynamic limit for the ground state
not unique~first-order phase transition point!, and the com-
ponents of decomposition are purely thermodynamic pha
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These phases could be obtained directly by the method
quasimeans or by making a limiting transition under app
priate boundary conditions. In view of the fact that a sy
metry element exists in such a case and transforms th
components into each other, quasidegeneracy sets in du
the transitionN→`.
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Dynamic susceptibility of spin-1/2 Ising chain in transverse field

m-
O. Derzhko and T. Krokhmalskii

Institute for Condensed Matter Physics, 1 Svientsitskii St., L’viv-11, 290011, Ukraine1)
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Dynamic susceptibility of the one-dimensional spin-1/2 transverse Ising model is obtained by
using the numerical approach suggested earlier@Ferroelectrics153, 55 ~1996!#. The
dependence of the susceptibility frequency shapes on the value of the transverse field at various
temperatures is discussed. The way in which the frequency shape rebuilds as the transverse
field increases is illustrated. ©1997 American Institute of Physics.@S1063-777X~97!00607-5#

The one-dimensional spin-1/2 Ising model in a trans-onalize the bilinear fermion form. Basic results may be su
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verse field is an important subject of theoretical studies
only because of its usefulness in solid state physics, but
because many of its statistical mechanics properties ca
examined exactly.1–3 However, since the early 1970s it wa
known that calculation of some time-dependent spin corr
tion functions for this model encounter great difficulties a
in spite of many papers dealing with this problem4–7 ~see
also recent papers8,9 dealing with such studies for the one
dimensional spin-1/2XX model! the investigation of dy-
namic properties calls for more efforts. In the present pa
our goal is to provide a fresh view on the analysis of s
dynamics. Specifically, we shall extend the earlier elabora
numerical approach for equilibrium statistical mechanics c
culations for spin-1/2XY chains10,11 to the analysis of dy-
namic properties of transverse Ising model and we s
study, in particular, its dynamic susceptibility.

We consider spin-1/2 chain described by the Ham
tonian

H5V(
j51

N

sj
z1J(

j51

N21

sj
xsj11

x , ~1!

whereV is the transverse field at the site, andJ is the inter-
action between neighboring sites. Two distinctive cases
responding to different signs of intersite interaction will
considered, i.e.,J,0 ~ferromagnetic coupling! and J.0
~antiferromagnetic coupling!. We are interested in the time
dependent, two-spin correlation functionŝsj

a(t)sj1n
b &,

where the angle brackets denote thermodynamic ave
^(...)&[Tr@e2bH(...)#/Tr e2bH. The correlation function
between thez-components was derived in Ref. 2. We sh
restrict the analysis mainly to the correlation function b
tween thex-components of two spins, noting that all oth
nonzero correlation functions can be found in principle
differentiation:

^sj
x~ t !sj1n

y &52^sj
y~ t !sj1n

x &5
1

V

d

dt
^sj

x~ t !sj1n
x &,

^sj
y~ t !sj1n

y &52
1

V2

d2

dt2
^sj

x~ t !sj1n
x &. ~2!

In order to evaluate the quantity of interest, one sho
rewrite the Hamiltonian~1! in terms of Fermi operators with
the help of the Jordan–Wigner transformation and then d
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marized as follows: The relations between spin operators
Fermi operators are

sj
x5

1

2
w1

1w1
2w2

1w2
2 ...w j21

1 w j21
2 w j

1 ,

sj
y5

1

2i
w1

1w1
2w2

1w2
2 ...w j21

1 w j21
2 w j

2 , ~3!

sj
z52

1

2
w j

1w j
2 ,

where

w j
15 (

p51

N

Fp j~hp
11hp!, w j

25 (
p51

N

Cp j~hp
12hp!;

~4!

the transformed Hamiltonian~1! has the form

H5 (
k51

N

LkS hk
1hk2

1

2D ,
$hq ,h r

1%5dqr , $hq ,h r%5$hq
1 ,h r

1%50; ~5!

Lp , Fp j , andCp j are determined from the equations

(
j51

N

Cp j~Ajn1Bjn!5LpFpn ,

(
j51

N

Fp j~Ajn2Bjn!5LpCpn ,

~6!

(
j51

N

Fq jF r j5(
j51

N

Cq jC r j5dqr ,

(
p51

N

FpiFp j5 (
p51

N

CpiCp j5d i j

with

Ai j[Vd i j1
J

4
d j ,i111

J

4
d j ,i21 ,

Bi j[
J

4
d j ,i112

J

4
d j ,i21 .
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For further details see Refs. 1, 10, and 11. In view of~3!–~5!,
x x

b

expressed compactly in the form of the Pfaffian of 2(2j
d
the calculation of̂ sj (t)sj1n& reduces to exploiting of the

Wick–Bloch–de Dominicis theorem and the result can
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1n21)32(2j1n21) antisymmetric matrix constructe
from elementary contractions
ize
4^sj
x~ t !sj1n

x &5^w1
1~ t !w1

2~ t !w2
1~ t !w2

2~ t !...w j21
1 ~ t !

3w j21
2 ~ t !w j

1~ t !w1
1w1

2w2
1w2

2 ...w j21
1 w j21

2 w j
1w j

2w j11
1 w j11

2 ...w j1n21
1 w j1n21

2 w j1n
1 &

5PfS 0 ^w1
1w1

2& ^w1
1w2

1& ... ^w1
1~ t !w j1n

1 &

2^w1
1w1

2& 0 ^w1
2w2

1& ••• ^w1
2~ t !w j1n

1 &

A A A ••• A

2^w1
1~ t !w j1n

1 & 2^w1
2~ t !w j1n

1 & 2^w2
1~ t !w j1n

1 & ••• 0

D , ~7!

where that the described approach allows one to study finite-s
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N

Fp jFpm

cosh@ iLpt2~bLp/2!#
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,

^w j
1~ t !wm

2&52 (
p51

N

Fp jCpm

sinh@ iLpt2~bLp/2!#

cosh~bLp/2!
,

~8!

^w j
2~ t !wm

1&5 (
p51

N

Cp jFpm

sinh@ iLpt2~bLp/2!#

cosh~bLp/2!
,

^w j
2~ t !wm

2&52 (
p51

N

Cp jCpm

cosh@ iLpt2~bLp/2!#

cosh~bLp/2!
.

Equations~6!–~8! form the starting point for further nu
merical calculations. Considering a chain ofN5280 spins
with J561 and a certain value of the transverse field in
rangeV50.1–5, we solvedN3N standard problem~6! ob-
tained in the resultLp , Fp j , Cp j . Settingj532 and certain
n in the range from 0 to 30, we then computed element
contractions~8! involved in ~7! for a given temperature in
the rangeb51020.1 and timet up to 120 and evaluated th
Pfaffian numerically obtaining in the result the quantity
interest, i.e., the correlation between thex-components of
spins at the sitesj and j1n taken at timest and t50, re-
spectively. There are few practical limitations on this a
proach, i.e., finite chain sizeN, presence of boundarie
1< j , j1n<N, and finite timet. These effects lead to devia
tion from a time behavior inherent to an infinite chain, whi
is the case of interest in statistical mechanics. The valu
this deviation depends on the values of the transverse
and the temperature. Nevertheless, since such effect is
to recognize, one may derive in a wide range of parame
the results which are not subject to these influences,
which refer toN→`. The data produced in the calculation
described above@as well as the results forxxx(k,v) ~9! ob-
tained on their basis# pertain to infinite chains. The results o
our numerical calculations were found to be in excelle
agreement with the exact results obtained atT5` ~Ref. 6!
andT50, V5J/2 ~Ref. 7! and with the notorious exact re
sult for thezz correlation function.2 It should be emphasize
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effects which, however, are beyond the scope of the pre
paper. Finally, we verified relations~2! which connect
^sj

x(t)sj1n
x & with other correlation functions after these co

relation functions are computed in a similar manner.
We shall discuss the dynamics of the transverse Is

model looking at the dynamic susceptibility

xxx~k,v![ (
n51

N

eiknE
0

`

dt ei ~v1 i«!t
1

i
^@sj

x~ t !,sj1n
x #&,

«→10. ~9!

The frequency shapes of Rexxx(0,v) and Imxxx(0,v) at
various transverse fields and temperatures are shown in F
1 and 2. Small wiggles in the curves corresponding tob
55 were introduced by the finite time cutoff in~9! because
of rather slow decay of correlations versus time~especially
for V50.2, 1 and ferromagnetic intersite coupling!. The
wiggles can be removed either by increasing the time cu
in ~9!, which requires computer resources, or by increas
the value of«, which slightly smooths the frequency shap
and decreases, in particular, the heights of their peculiarit
Usually, we set«50.001–0.05.

Let us now turn to the discussion of the results. Figur
shows the dependence of Rexxx(0,v)2v and Imxxx(0,v)
2v curves onV various temperatures. From these plots
easily see that Imxxx(0,v) exhibits two peaks forV50.2
~the Ising-like case! and one peak forV51 ~the case of
almost noninteracting spins in an external field!. At low tem-
peratureb55 for V50.2 Imxxx(0,v) reveals a high sharp
peak in the vicinity of zero frequencyv'0.03 and a low
broad peak atv'0.76 for ferromagnetic intersite couplin
and two pronounced peaks at frequenciesv'0.36 andv
'1.02 for antiferromagnetic intersite coupling. In the ca
V51 Im xxx(0,v) reveals one high and broad peak atv
'0.51 andv'1.50 for ferro- and antiferromagnetic cou
pling, respectively. As the temperature is raised tob51, the
situation qualitatively remains the same. ForV
50.2 Imxxx(0,v) exhibits two lower and broader peak
compared with the preceding case, which are shifted
higher frequenciesv'0.09, v'0.94 for ferromagnetic in-
tersite interaction and to lower frequenciesv'0.21, v
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FIG. 1. xxx(0,v) versusv at various tempera-
tures. The solid lines represent data for ferr
magnetic intersite couplingJ521, the dashed
lines denote data for antiferromagnetic intersi
couplingJ51; 1 corresponds toV50.2; 2 cor-
responds toV51.
'1.00 for antiferromagnetic intersite interaction; in the latter
ig

c
bl

g,

c

or
,

V50.3, 0.4, 0.5, 0.6~shown in Fig. 2!. As can be seen from

to-

he

d:

er
eak
case the low-frequency peak becomes higher than the h
frequency peak. ForV51 Im xxx(0,v) exhibits only one
lower and broader peak compared with the caseb55, which
is shifted to higher frequencyv'0.67 for ferromagnetic
coupling and to lower frequencyv'1.42 for antiferromag-
netic coupling. At high temperatureb50.1 the frequency
profiles of Imxxx(0,v) almost coincide for ferromagneti
and antiferromagnetic couplings, although it is still possi
to recognize two peaks forV50.2 atv'0.13,v'0.88 and
v'0.15,v'1.03 for ferro- and antiferromagnetic couplin
respectively, and one peak forV51 at v'1.00 andv
'1.10 for ferro- and anti-ferromagnetic coupling, respe
tively.

In order to understand how two-peak shapes transf
into one-peak shapes as the transverse field increases
performed additional calculations ofxxx(0,v) at b55 for
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Fig. 2, the high-frequency peak on the curve Imxxx(0,v)
2v for b55, V50.2 at v'0.76 for ferromagnetic cou-
pling and the low-frequency peak atv'0.36 for antiferro-
magnetic coupling with increasing transverse field move
ward the low-frequency peak atv'0.03 for ferromagnetic
coupling and toward high-frequency peak atv'1.02 for an-
tiferromagnetic coupling, which in turn become broader. T
positions of the peaks are as follows:v'0.03,v'0.57 for
V50.3, v'0.05, v'0.28–0.36 forV50.4 for ferromag-
netic intersite interaction;v'0.56, v'1.03 forV50.3, v
'0.75, v'1.05 for V50.4 for antiferromagnetic intersite
interaction. ForV50.5 two peaks have already coalesce
Im xxx(0,v) reveals one peak atv'0.10 andv'1.00 for
ferro- and antiferromagnetic coupling, respectively. Furth
increase of the transverse field leads to the shift of one p
to higher frequencies, i.e.,v'0.15 ifV50.6 andv'0.51 if
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FIG. 2. xxx(0,v) versusv for differ-
ent values of transverse field atb
55. The solid lines represent dat
for V50.2 ~these curves are also
plotted in Fig. 1! and V50.6; the
long-dashed lines denote data forV
50.3; the short-dashed lines corre
spond to data forV50.4; the dotted
lines represent data forV50.5.
V51 for ferromagnetic coupling andv'1.10 ifV50.6 and
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as
v'1.50 if V51 for antiferromagnetic coupling.
In summary, we were able to numerically examine t

dynamic properties of one-dimensional spin-1/2 Ising mo
in a transverse field and to evaluate the frequency-depen
susceptibility. These results seem to be important since
the best of our knowledge, they constitute the only ex
numerical results available. In addition, we hope that
main features of the susceptibility in the given limiting cas
of small and large transverse fields would be observabl
the measurements of dynamic dielectric constant of qu
one-dimensional, hydrogen-bonded ferroelectrics mater
like CsH2PO4, PbHPO4 ~Ref. 12 and 13! (V,J/2) and in
the absorption spectrum measurements forJ-aggregates14,15

(V.J/2). However, these problems and the reconsidera
of some approximate approaches used earlier for analys
experimental data require a separate study.

We wish to thank Professor L. L. Gonc¸alves and Profes
sor J. Richter for stimulating discussions. O. D. is indeb
to Mr. Joseph Kocowsky for continuous financial support
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Emission Mo¨ssbauer study of CMR manganite La 0.8Ca0.2MnO3. I. Anomalous

ferromagnetism

V. Chechersky and A. Nath

Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A.

H. Ju and R. L. Greene

Center for Superconductivity Research, Department of Physics, University of Maryland, College Park,
Maryland 20742, U.S.A.
~Submitted March 21, 1997!
Fiz. Nizk. Temp.23, 727–731~July 1997!

Using 57Co emission Mo¨ssbauer technique, we present clear evidence that in Ca-doped
manganite, the magnetic and paramagnetic phases coexist belowTC , with the abundance of the
latter increasing with temperature. In contrast with the regular ferromagnetic materials, the
variation of the hyperfine internal magnetic fieldH int with temperature deviates considerably from
the Brillouin relation, and exhibits an abrupt drop atTC . These features characterize the
magnetic transition as a first-order transition. The non-Brillouin behavior ofH int(T) and the
temperature dependence of the shape of the magnetically split sextet indicate the presence
of spin fluctuations in this material well belowTC . © 1997 American Institute of Physics.
@S1063-777X~97!00707-X#

Recent observations of colossal negative magnetoresis-57Co for Mn in a compacted pellet of La0.80Ca0.20MnO3, by
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tance~CMR! in thin films and bulk materials of doped man
ganites Ln12xMxMnO3 ~Ln5La et al., M5Ca et al.! have
generated renewed interest in this system.1–15 The double-
exchange model accounts only qualitatively for ferroma
netic ordering and transport properties.9,16–19

Ln12xMxMnO3 has a perovskite-type crystal structure, whe
Mn ions are surrounded by six oxygen anions which
shared by other Mn ions in a three-dimensional netwo
while the Ln/M ions occupy the spaces between these o
hedra. The end members,x 5 0 andx 5 1, are antiferromag-
netic insulators, but intermediate compositions (0.2, x
, 0.5) with mixed Mn31/Mn41 are ferromagnetic metals
The electron hopping between Mn31 and Mn41 is believed to
occur via O22 by simultaneous electron jump from Mn31 to
O22 and from the latter to Mn41. This ‘‘double exchange’’
event requires that the two hopping electrons have the s
spin polarization: a requirement which is met when both M
ions are ferromagnetically ordered.16–19Among the four 3d
electrons of the Mn,t2g

3 electrons are localized, while th
eg
12x state which is strongly hybridized with O2p orbitals is
itinerant belowTC in the ferromagnetic–metallic state an
localized in the paramagnetic–insulating state aboveTC . It
is believed that the main function of the applied magne
field is to increaseTC , which leads to a large decrease
resistivity, giving rise to a CMR. The basic features of th
transition can be understood on the basis of the double
change picture; however, several aspects are elusive.9 Here
we report on the unusual behavior of ferromagnetism
La0.80Ca0.20Mn~57Co!O3 as sensed by the Mo¨ssbauer effect
probe involving substitution of a minuscule amount of M
by 57Co with minimal perturbation of the system.

The compound was synthesized by conventional s
state reactions and characterized by x-ray diffraction
magnetization measurements as a function of tempera
To obtain Mössbauer data, we substituted about 20 ppm

545 Low Temp. Phys. 23 (7), July 1997 1063-777X/97/0
-

e
e
,
a-

e

c

x-

n

d
d
re.
f

diffusion at 950 °C for 4–5 h under O2 flow ~sample 1,TC
5 200 K!. A few representative Mo¨ssbauer spectra o
La0.80Ca0.20Mn~57Co!O3 at different temperatures are show
in Fig. 1. The observation of a single symmetrical sextet w
fairly narrow line widths at 80 K indicates that the sample
homogeneous, and that the microprobe57Co occupies the
unique crystallographic site of Mn. Even at 80 K, which
well belowTC 5 200 K (T/TC 5 0.4), the magnetically or-
dered~MO! sixline component constitutes only 80%, the re
is paramagnetically relaxed~PR! species. The paramagnet
fraction grows at the expense of the magnetically orde
phase as the temperature increases until the MO compo
vanishes completely atTC ~Figs. 1 and 2!. It is worthy of
note that the temperature dependence of the amount of p
magnetic fraction in Fig. 2 perfectly mimics the resistivi
behavior belowTC . These observations support the infe
ences drawn by Lynnet al. from their neutron scattering
studies of La0.67Ca0.33MnO3.

20 They observed a quasielast
component, which increases with temperature at the expe
of the main spin-wave excitations. They assumed that
component can be attributed to a paramagnetic phase, w
the electrons diffuse on a short length scale (; 12 Å). How-
ever, this component was not observed for manganites w
lower concentrations of Ca, e.g., 0.175.

The magnetic transition, as evidenced by the tempera
dependence of the hyperfine internal magnetic field on
daughter57Fe nuclei, is quite sharp: the hyperfine splittin
drops abruptly from about 50% of the maximum expec
saturation value (< 550 kOe) to zero atTC 5 200 K ~Fig. 3!.
This feature and the coexistence of the paramagnetic
ferromagnetic species nearTC characterize this transition a
a first-order phase transition.21 The order of the transition is
also supported by earlier reports of a significant change
volume atTC .

22–25 It should be noted that a sharp transitio
is also expected in an ideal superparamagnetic material

545545-04$10.00 © 1997 American Institute of Physics
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no spread in the sizes of magnetic clusters when it
proaches its blocking temperature. However, we did not fi
any reliable evidence for superparamagnetism from our
servations. Moreover, the value ofTC obtained from the
magnetization and Mo¨ssbauer effect measurements agr
well.

The temperature dependence of theH int on
57Fe nuclei

shows no saturation well belowTC and differs considerably
from the Brillouin function typical of magnetic materia
~Fig. 3!. In addition, the experimental spectra shown in F

FIG. 1. Emission Mo¨ssbauer spectra of La0.8Ca0.2Mn~57Co!O3 at different
temperatures: magnetically ordered~MO!; paramagnetically relaxed~PR!.
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1 reveal a temperature-dependent broadening of the
widths of the magnetic component. These two different o
servations presumably have the same origin. In a reg

FIG. 2. The fraction of nonmagnetic component versus temperature.
connecting experimental points with error bars is a guide for the eye.

FIG. 3. The normalized internal magnetic field versus normalized temp
ture. Solid line connecting experimental points is a guide for the eye; do
lines are the Brillouin functions for the spin 1/2 and 5/2. The error bars
smaller than the dimension of the circles.
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temperature-independent because the frequency of colle
excitations is much higher than the Larmor frequency of
daughter57Fe (; 108 s21). Therefore, the Zeeman splittin
(H int) of the sextet is proportional to the time averag
z-component of the magnetic moment of an ion,^Sz&, and
mimics the temperature dependence of the spontaneous
netization, i.e., the Brillouin function. In contrast, in the C
doped manganites, the heterogeneous distribution and
ionic radius mismatch of the substituent unavoidably int
duce some disorder in the spin system. At any tempera
below TC , a certain fraction of the spin system is weak
ordered~and predestined to convert to paramagnetic com
nent at a slightly higher temperature! and is likely to be
surrounded by some paramagnetic ions in the vicinity.
these regions, due to dipole-dipole interactions, the wea
ferromagnetic spins fluctuate about the average value. C
sequently, thez-component of the spins becomes time d
pendent,Sz(t) 5 ^Sz& 1 DSz(t), whereDSz(t) is the instanta-
neous spin deviation from the mean value^Sz&. This in turn
induces a time-dependent hyperfine internal magnetic fi
H int(t) 5 ^H int&(Sz(t)/S). The theory~Ref. 26 and the bibli-
ography cited there! predicts two effects, inhomogeneou
line broadening:

Dg5~negH int /S!2^DSz&
2t; ~1!

and line shifts relative to their positions in the absence
electronic spin fluctuations:

Dd5~negH int /S!3^DSz&
3t2, ~2!

whereneg is the magnetic hyperfine parameter;t is the re-
laxation time, which is not exactly the same in~1! and ~2!,
but assumed to be equal for the sake of simplicity. If the ti
of spin relaxation overlaps with the Mo¨ssbauer effect time
scale ( ; 1027–10211 s), we observe the temperatur
dependent line shape. The temperature dependence ofH int

does not reflect the true macroscopic magnetization a
arises mainly from the temperature-dependent value
^DSz&.

Moreover, as the conversion of the ferromagnetic
paramagnetic species progresses with temperature, it is
companied by a change in the Mn41/Mn31 ratio ~see the
discussion in Part II! and thereby the internal magnetic fiel

In sharp contrast with the paramagnetic spectra wh
consist of two unresolved doublets~Fig. 4a!, the magneti-
cally ordered component consists of only a single se
~Figs. 1 and 4b! with an isomer shift~IS! intermediate be-
tween the values obtained for this temperature by extrapo
ing the IS vs.T plots for PR1 and PR2 species. It means tha
the transition into the magnetically ordered state is accom
nied by a complete delocalization of holes in the band, wh
makes all the magnetically ordered iron atoms indistingui
able in the Mo¨ssbauer spectrum, regardless of their init
valence state in the lattice aboveTC .

Preliminary results show that an external magnetic fi
of only 0.6 T applied atTC 5 200 K generates about 40% o
the magnetically ordered phase with an internal magn
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field of 64 kOe~Fig. 5!. This ferromagnetic phase is metalli
as indicated by the isomer shift and by a decrease of ab
25% in the resistivity of the sample.

The small magnitudes of quadrupole splittings ev
aboveTC represent a relatively small degree of Jahn–Te
distortion of the oxygen octahedron in La0.8Ca0.2MnO3.
However, it is possible that we might be observing the me
value of the dynamic Jahn–Teller distortions.

In summary, we find that in contrast with normal ferr
magnets, La0.8Ca0.2MnO3 consists of a mixture of paramag
netic and ferromagnetic regions within the same matrix
low TC , and the fraction of the paramagnetic compone
increases with temperature. Also, the temperature dep
dence of the internal hyperfine field does not follow the Br
louin function. This circumstance, together with th
temperature-dependent line widths of the magnetic com
nent, is evidence of the presence of spin relaxation proce
well belowTC . These two aspects directly bear on the ma
netic and transport behavior and the CMR of doped man
nites, and should be taken into account in any theoret

FIG. 4. Computer fit of the Mo¨ssbauer spectra of La0.8Ca0.2Mn~57Co!O3 at
T 5 300 K ~a!; and 80 K~b!. PR1 and PR2 are the two paramagnetic dou
blets; PR5PR11PR2 ~paramagnetic fraction in all the spectra collected
the wide velocity range was approximated by a single line without loss
the accuracy!; MO is magnetically ordered component.
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model attempting to explain these effects. An abrupt fall
the hyperfine magnetic field atTC and the coexistence of th
paramagnetic and ferromagnetic regions characterize
transition as a first-order phase transition. We also prese
microscopic evidence of the hole delocalization induced
ferromagnetic ordering.
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FIG. 5. Decomposition of Mo¨ssbauer spectrum of La0.8Ca0.2Mn~57Co!O3 at
T ' TC with and without external magnetic field. Abundance of magnetica
ordered component~MO! is 40%. PR1 and PR2 are the two paramagnetic
doublets.
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Emission Mo¨ssbauer study of CMR manganite La 0.8Ca0.2MnO3. II. Step-by-step

snapshots of the metal-insulator transition
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H. Ju** and R. L. Greene

Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD
20742, U.S.A.
~Submitted March 21, 1997!
Fiz. Nizk. Temp.23, 732–737~July 1997!

We follow the step-by-step progression of events while approaching the Curie temperatureTC
from below using57Co substituent as a microprobe in an emission Mo¨ssbauer study
combined with resistivity measurements. In the temperature range 0.33, T/TC < 1, the material
consists of a mixture of ferromagnetic and paramagnetic regions within the same matrix.
An increase of the amount of paramagnetic fraction is accompanied by a decrease in electron
delocalization in the ferromagnetic regions. AtT > TC , the electrons are localized to
neighboring Mn41/Mn31 pairs only, in about 46% of the paramagnetic species. The strength with
which Mn atoms are bound to the neighbors also decreases progressively and rather steeply
in the range 0.65< T/TC 5 1. Zero field resistivity,r0 , follows linearly with the amount of the
paramagnetic phase in the range 0.65< T/TC < 1 and still shows metal-like behavior up to
T/TC 5 1.03. © 1997 American Institute of Physics.@S1063-777X~97!00807-4#

Substitution of La31 by Ca21 converts antiferromagnetic
31 41

couple of millicuries of carrier-free57Co into a compacted
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insulator LaMnO3 into the mixed valence Mn /Mn ferro-
magnetic metal which undergoes a transition to the param
netic semiconducting state atTC . According to the double-
exchange model,1 the probability of electron hopping
between Mn31 and Mn41 via O22 is controlled by the rela-
tive orientation of neighboring Mn spins and is at a ma
mum when Mn ions are ordered ferromagnetically. This
counts qualitatively for the correlation between magnetic a
transport properties in doped manganites. The ‘‘colos
magnetorersistance’’~CMR! recently observed in this
system2–9 is the focus of considerable attention, because
the potential applications for devices and the challenge
fully understand the basic nature of the transition and
associated CMR. The decrease by several orders of ma
tude of the resistivity in a few-tesla magnetic field nearTC
suggests that there is a healthy interplay between magn
order, electronic behavior, lattice distortions, and elas
properties of the material. In a search for these correlati
the simultaneous macro- and microscopic measurements
formed on the same sample would be very valuable. Em
sion Mössbauer spectroscopy offers such a unique poss
ity.

Here we report the results of an emission Mo¨ssbauer
effect study, where only a few tens of parts-per-million
Mn is substituted by57Co with minimal perturbation of the
manganite system, in conjuction with simultaneous resis
ity measurements. We follow the progressive enrichmen
the ferromagnetic component in Mn41 with decreasing elec
tron delocalization as we approach theTC from ferromag-
netic component in Mn41 with decreasing electron deloca
ization as we approach theTC from below. This is
accompanied by a sharp decrease in the binding of the M
its neighbors. To obtain Mo¨ssbauer data, we diffused
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pellet of La0.8Ca0.2MnO3 ~sample 2,TC 5 237 K! measuring
2.53 2.73 12 mm by a two-step thermal treatment, viz.,
950 °C for 4–5 h followed by 6 h at 900 °C,both under O2
flow. A gas flow cryostat was modified to allow the fou
probe resistivity measurements while collecting Mo¨ssbauer
data.

The material was prepared by conventional solid st
reaction and characterized by x-ray diffraction and magn
zation measurements.

The temperature-dependent resistivity plot and Mo¨ss-
bauer spectra of La0.8Ca0.2Mn~57Co!O3 at corresponding tem
peratures are shown in Fig. 1. The six-line spectrum is ch
acteristic of a magnetically ordered material, while a sing
or doublet~in the case of nonzero electric field gradient
the lattice site occupied by57Co! are an indication of a para
magnetic state. We found that even atT/TC 5 0.33 ~not
shown!, the sample contains only 90% of magnetic fractio
the rest is paramagnetic. The presence of only a single s
metrical sextet with relatively narrow line widths~similar to
the one shown in Part I of this paper for sample I Fig. 4!
shows that the sample consists of a single phase, and tha
microprobe,57Co, occupies the unique crystallographic s
of Mn. The ferromagnetic component converts into the pa
magnetic state rather gradually up toT/TC ' 0.85. Thereaf-
ter, there is a rapid increase in the concentration of the p
magnetic component until it becomes 100% atTC 5 237 K.
The coexistence of ferromagnetic and paramagnetic reg
within the same matrix distinguishes it from convention
ferromagnetic materials10 and could be responsible for it
peculiar transport and magnetic properties. For instanc
plot of the resistivity as a function of the amount of ferr
magnetic fraction in the temperature range 0.65< T/TC < 1 is
linear ~Fig. 2!. It means that the current flows exclusive

549549-05$10.00 © 1997 American Institute of Physics
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FIG. 1. The extent of ferromagnetic to paramagnetic state conversion and the change of resistivity in La0.8Ca0.2Mn~57Co!O3 as a function of temperature: P
paramagnetic component; M, ferromagnetic component. For simplicity, the two paramagnetic species~see text! have been approximated to a singlet witho
loss in accuracy in the computer analyses of Mo¨ssbauer spectra recorded in a wide velocity range.
through filamentary ferromagnetic regions surrounded by
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regions. Correlation between these spin fluctuations could
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paramagnetic inclusions in accord with the recently propo
model.11 The paramagnetic phase present belowTC may be a
major source of carrier scattering fromT/TC ' 0.6 toTC .

The Curie temperature as determined by the Mo¨ssbauer
effect, i.e., the temperature at which the sextet collap
completely, just corresponds to the maximum of the deri
tive dr0 /dT. It is noteworthy that the change from meta
like conductivity to the thermally activated behavior is abo
the transition into the paramagnetic state by 7 K~Fig. 1!.
One can perhaps rationalize this observation in the follow
fashion. AtTC , the static magnetic order as seen by Mo¨ss-
bauer effect measurements vanishes. However,
temperature-dependent line shapes~i.e., broadening! of the
sextet belowTC ~Fig. 1! are indicative of the presence o
some dynamic magnetic correlations in quasistatic magn
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d
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persist aboveTC ~with frequencies higher than abou
1011 s21, which are above the limit of Mo¨ssbauer effect time
scale!, which would permit the probability of double ex
change to be nonzero. This would account for the meta
behavior up toT/TC 5 1.03. The noncoincidence ofTC and
maximum of the resistivity has been reported by several
searchers.

We also observe a decrease in the magnitude of
chemical shift of the ferromagnetic species as a function
temperature~Fig. 3!. The chemical shift is determined by th
s-electron density on the daughter nucleus57Fe, which in
turn is determined primarily by the shielding from
3d-electron density—the higher the shielding the sma
will be thes-electron density and larger the magnitude of t
chemical shift. Taking into account the expected negat
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thermal shift with increasing temperature due to the seco
order Doppler effect,12 the chemical shift~d! for the ferro-
magnetic component clearly undergoes a very sharp ano
lous decrease in the range 0.65< T/TC 5 1 ~Fig. 3!. This
observation is very insightful. The ferromagnetic species
progressively getting enriched in Mn41 (Fe41). One can in-
fer that the Mn41 ions are sharing the delocalized electro
with progressively fewer Mn31 asTC is approached.

The paramagnetic component aboveTC consists of two
species~Fig. 4! with the following parameters at room tem

FIG. 2. A plot of resistivity versus ferromagnetic fraction in the temperat
range 0.65<T/TC<1.

FIG. 3. A plot of the center~chemical! shift of ferromagnetic~M! species
versus temperature for La0.8Ca0.2Mn~57Co!O3. The solid line is a guide for
the eyes.
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d-

a-

isperature. Species I.d 5 0.44 mm/s, Area5 54%; Species II.
d 5 0.21 mm/s, Area5 46%. The chemical shift for species
corresponds to the daughter57Fe31 ~at Mn31!, while that for
species II corresponds approximately half-way between
for 57Fe31 and57Fe41, assumingd ' 0 for 57Fe41 at 300 K.13

Therefore, in the paramagnetic state, 46% of material con
of Mn31/Mn41 pairs with the electron shuttling between
pair, while in the remaining 54% of the material there is
delocalization of electrons and the species contains o
Mn31. The observation of 46% Mn41/Mn31 pairs by emis-
sion Mössbauer spectroscopy translates to the presenc
23% of Mn41 because57Co(57Fe), which is situated in a
Mn31 site and shares an electron with a Mn41 neighbor,
cannot be distinguished from a57Co~57Fe!, which is situated
in a Mn41 site and shares an electron with a Mn31 neighbor
if the exchange rate is faster than the reciprocal lifetime
the excited state of the Mo¨ssbauer probe (107 s21). This also
constitutes an elegant procedure for determining the con
tration of holes in manganites. Since 20% units of Mn41

arise from Ca substitution, the remaining presumably a
from cation vacancies created by thermal treatment in am
ent O2.

14 We attribute the localization of the electrons
Mn31/Mn41 pairs to the distortions of the Mn–O octahed
with respect to each other, which introduces asymmetry.
observations support the small polaron model10,15–20 in the
sense that the electrons are strictly localized betw
Mn41/Mn31 pairs aboveTC .

The normalized total area under the spectrum is plot
as a function of temperature in Fig 5. The area of the sp
trum represents the recoil-free Mo¨ssbauer events and is thu
a measure of the strength with which Mn is bound to
neighbors~i.e., the Debye–Waller factor!. There is a dra-

e

FIG. 4. Decomposition of Mo¨ssbauer spectrum of La0.8Ca0.2Mn~57Co!O3 in
paramagnetic state. Species I and II correspond to two different vale
states of the daughter57Fe ~see text!.
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matic reduction of the area in the range 0.65< T/TC 5 1 and
a minimum is attained atTC . This clearly indicates that the
amplitude of vibration for Mn is fairly large nearTC . This
can again arise from torsional oscillations between Mn
octahedra. The ferro-magnetic metal to paramagnetic ins
tor transition is accompanied by significant expans
~'13%! of the lattice.21–24An anomalously large amplitud
of vibration for Mn ~and O! atoms aroundTC has been re-
ported in Refs. 18, 24, and 25 which was predicted ear
elsewhere.20

The conversion to the paramagnetic state, anoma
changes in chemical shift of the ferromagnetic compone
and a decrease in the total area of the spectrum, take p
continuously in a wide temperature range and not prec
tously at a well-defined transition temperature. The decre
in density of states as determined by photoemiss
studies16,26 and density of holes by the Hall effect27 for the
La–Ca–Mn–O system also show a similar progress
change over a span of temperatures. Perhaps these obs
tions are indicative of the first-order phase transition and
the intrinsically heterogeneous nature of the doped ox
systems~a property shared by the high-temperature sup
conductors!.

We observe almost zero quadrupole splitting for the f
romagnetic state and small values (< 0.15 mm/s) for the two
paramagnetic species. The magnitude of quadrupole spli
depends on the degree of deviation from spherical distr
tion of the electron cloud~viz., electric field gradient! around
57Fe nucleus. Therefore, one would expect that the Mn
bond lengths should be nearly equal in the ferromagn
state. This rules out only the static Jahn–Teller distortio
and not the dynamic ones.19,28 On the other hand, the non
zero quadrupole splittings~about 0.15 mm/s! for both of the
paramagnetic species are indicative of the fact that

FIG. 5. A plot of normalized area under the Mo¨ssbauer spectrum as
function of temperature. The solid line is a guide for the eyes.
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small Jahn–Teller distortion, static or dynamic.
More importantly, the Mn–O bond lengths would differ fo
each of the paramagnetic species because of differing
valence. This was borne out by the powder neutron diffr
tion studies of Caignaertet al.23 and Daiet al.24 They ob-
served that the Mn–O bond lengths are nearly equal be
TC , and that there is a distribution of bond lengths in t
paramagnetic state. These observations are contrary to t
made by Radaelliet al.22

In summary, moving along ther0(T) plot and collecting
Mössbauer spectra at specified temperatures, we obtai
insight into the microscopic nature of some transport a
magnetic properties of the La–Ca–Mn–O system. The p
ence of paramagnetic regions far belowTC is believed to be
a major source of carrier scattering fromT/TC ' 0.6 toTC .
Noncoincidence ofTC and the peak ofr0(T) can be attrib-
uted to the spatial correlations of the spin fluctuations in
narrow temperature range aboveTC . We also get a good
measure of the different stages of the transition, starting w
completely delocalized electrons in the ferromagnetic ph
with Mn31/Mn41 ratio of about 3.5. AsT approachesTC
from below, the ferromagnetic phase is continually enrich
in Mn41 with decreasing extent of electron delocalizatio
Finally, atT > TC , the electrons are localized to neighborin
Mn41/Mn31 pairs only, in a considerable portion of the par
magnetic species. We also found a minimum of recoil-fr
fraction atTC . The Mn atoms are undergoing larger mea
square displacements in the paramagnetic phase.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS
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Metallic point contacts formed by physical vapor deposition and chemical vapor
deposition: microscopy study and point-contact spectroscopy

N. N. Gribov,1,2 J. Caro,1 T. G. M. Oosterlaken,1 and S. Radelaar1

1Delft Institute of Microelectronics and Submicron Technology (DIMES), Delft University of Technology,
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2B. I. Verkin Institute of Low Temperature Physics and Engineering, Academy of Sciences of Ukraine, 47
Lenin Ave., Kharkov 310164, Ukraine*
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Fiz. Nizk. Temp.23, 738–745~July 1997!

We have made an electron-microscopy study of nanoholes in membranes in successive stages of
metal deposition using two different techniques: physical vapor deposition~PVD! and
chemical vapor deposition~CVD!. One-sided PVD~thermal evaporation! of gold and silver was
used, as is relevant for heterocontacts. The key results in this case are: 1! the holes are not
filled during deposition and 2! closing of the holes is accomplished by lateral growth of the film
on the membrane. In the case of CVD of tungsten we found that nanoholes in membranes
are filled at the beginning of the deposition, and that the process is capable of filling holes as small
as 10 nm. Fabricated devices~a-tungsten! show good quality point-contact spectra which
are characteristic of ballistic transport through the constriction. A very interesting stepwise current
increase was observed for one amorphous tungsten point contact. ©1997 American
Institute of Physics.@S1063-777X~97!00907-9#
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Very stable metallic point contacts~PC! can be made
with nanofabrication techniques.1,2 the contacts are made b
metal deposition on both sides of a thin silicon nitride me
brane with a hole of diameter in the range 10–30 nm. In t
way the nanohole is filled with metal and the electrodes
formed. By using nanofabricated contacts as microscope
electronic transport, several new, subtle phenomena h
been discovered, e.g., two-level resistance fluctuations du
defect motion in the constriction3,4 and nonuniversal conduc
tance fluctuations involving electron scattering at rem
defects.5,6

Until a few years ago, nanofabricated point conta
were almost exclusively fabricated as homocontacts,
contacts made of the same~very pure! metal. Recently, how-
ever, devices of a more complex structure have also b
fabricated and studied. Examples are heterocontacts,7,8 con-
tacts including magnetic multilayers9 and tunneling
contacts.10 To interpret the electrical transport measureme
on these devices and to judge further capabilities of
nanofabrication technique of point contacts, it is crucial
know how the actual contact is formed. About this mat
virtually nothing is known, so that one can only guess ab
the structure and morphology of the constriction region.

In this paper we report an electron-microscopy study
the closing and/or filling of nanoholes in membranes in s
cessive stages of metal deposition and we present the p
contact spectra of the fabricated devices. The deposi
techniques used are physical vapor deposition~PVD! and
chemical vapor deposition~CVD!. Physical vapor deposi
tion, in this case thermal evaporation of Au and Ag from
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integrated circuit fabrication to deposit semiconductors,
sulators, and conductors. Here we use CVD of W, which
well known from the filling of vias~i.e., contact channels to
devices or lower-level metallization! in integrated circuits,11

but which so far was not used to produce metallic po
contacts. We combine the results of scanning electron
croscopy ~SEM! and transmission electron microscop
~TEM! with point-contact spectra of fabricated contacts, th
presenting the complete picture of contact formation and
resulting electrical properties.

2. ELECTRON MICROSCOPY STUDY

Microscopy samples were prepared by patterning arr
of holes. Each hole forms from single-pixel exposure with
e-beam writer ofe-beam sensitive resist on a silicon nitrid
layer. After the resist development holes in resist are tra
ferred to the nitride by etching in an SF6/He plasma. Etching
is stopped when the resist is completely consumed and
nitride thickness is about 25 nm. Depending on whethe
sample is prepared for SEM or for TEM, the nitride lay
either is initially supported by silicon across the whole ar
or is a membrane as used for real point contacts,2 respec-
tively. In the case of SEM samples we used arrays of 7
3750 holes placed on an 80-nm period square grid. T
large extent of this array facilitates breaking of the ch
through a ‘‘line of holes.’’ The supporting Si is very helpfu
here, since it is the Si chip that we break along a proper l
In the case of TEM samples we used a 200-nm period a
of 735 holes in the membrane.

554554-07$10.00 © 1997 American Institute of Physics
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First, with the SEM inspection, we investigated how
hole is filled and/or covered during one-sided PVD of a 20
nm-thick Au or Ag layer, with the substrate oriented perpe
dicular to the evaporation beam. Before deposition, the s
strate is cleanedin situ with an O2 glow discharge. The
chamber pressure, substrate temperature, and deposition
are 53 1027 Torr, 300 K, and 0.3–0.5 nm/s, respective
The micrographs in Figs. 1a and 1b show the resulting cr
sections. As can be seen, the nitride surrounding a hol
severely underetched. This results from the high isotro
etch rate of Si in the SF6/He plasma. Effectively, each hol
is in a ~small! membrane, just like a hole of a real conta
The rounded profile of a hole arises from transferring
resist profile to the nitride and from subsequent over etch
The smallest diameter of a hole is 25 nm. The step cover
of the Ag film is very poor~see Fig. 1b: The film covers th
hole, but does not fill it. This finding agrees with the fact th

FIG. 1. SEM micrographs of the cross sections through a ‘‘line of hole
before deposition~a! and after deposition of 200-nm Ag~b!. The voids
result from etching in the SF6 /He plasma. At the bottom of the voids in~b!
some Ag is deposited. Small distrubances of the cross sections may ex
a result of breaking. Dots guide the eye in following interfaces/surfaces
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vias of microelectronic devices cannot be filled reliably w
metal by PVD.11 Inspection of the outer Ag surface reveale
an array of shallow pits, which result from the missing m
terial that has passed through the holes before closing. In
case of PVD of a 200-nm Au layer we made very simi
observations.

As a further step we monitored with high-resolutio
TEM the growth of Au and Ag in successive stages of PV
on membranes with an array of holes of diameter in
range 30–70 nm. Figure 2 shows TEM micrographs in th
stages of PVD of Au. From these micrographs and sim
ones in other deposition stages we make the following
servations.

1. In the initial stage of PVD~'2 nm on thickness moni-
tor, i.e., 1.23 1016 atoms/cm2; Fig. 2a grains on the unpat
terned membrane parts and on the outer rounded wall
hole have a certain density. However, a circular region cl
to the narrowest part of a hole is decorated with a necklac
smaller grains, which have a higher area density.

2. Grains on the membrane and on the rounded w
coalesce in a way characteristic of an amorphous subs

’

t as

FIG. 2. TEM micrographs of membranes with holes after deposition of 2
and 20-nm Au~a, b, and c, respectively!. A necklace of small grains in the
narrow part of the hole is discernible in~a! and ~b!. Closing of the hole is
accomplished by lateral growth of the film. The bar marker in~c! is the same
as in ~a! and ~b!.
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~'5 nm, i.e., 2.93 1016 atoms/cm2; Fig. 2b. Since these
grains grow faster than the necklace grains, they cannot
lesce with the regular grains in the broader area aroun
hole.

3. During the stage of formation of a closed polycryst
line film on the membrane ~'20 nm, i.e., 11.8
3 1016 atoms/cm2; Fig. 2c closing of a hole occurs by later
growth of the film. Also for these deposition experiments t
observations for Au and Ag were very similar, even thou
the Ag exposures required to reach the stages of nuc
growth and grain coalescence are approximately twice th
of Au.

On TEM micrographs we measured the remaining h
size after deposition of Au layers of different thickness
Figure 3 shows the resulting dependences. In the initial s
of deposition the size of the holes decreases very rapidly
result of formation of the necklace. Further size decre
proceeds slowly. It can be seen that for an initial diamete
30 nm one should deposit about 70-nm au to close the h
i.e., a layer more than twice as thick as the hole diamete

To investigate the capabilities of CVD to fill holes fo
point contacts, we also performed TEM analysis of me
branes with holes onto which W was deposited by CVD.
particular, we depositeda-W ~common bcc W!, which we
normally apply as interconnect material in microelectro
devices.11 Depositions ofa-W were carried out in a cold
wall, low-pressure CVD reactor by the reduction of WF6 by
H2. Films deposited with this process have very good s
coverage and a low resistivity. We used a 49 quartz dummy
wafer with slits to accommodate 63 9-mm2 chips with eight

FIG. 3. Remaining hole size~average over membranes and directions! as a
function of Au thickness deposited by PVD on one side of a membrane
four initial hole diameters~filled symbols! and the corresponding depen
dences for CVD of W, for two initial hole diameters. Error bars result fro
differences between membranes and measurement directions. Dashe
ments are extrapolations.
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membranes. The slits were machined to leave open a 1-
gap between the chips and the heater plate of the reacto
give the reactants free access to the lower face of the m
brane. A substrate cleaning step was not included, since
assumed that dry etching in SF6/He plasma, which is
stopped when the resist is consumed and the membrane
thinned to their final thickness, leaves a clean surface.
deposition parameters areT 5 500 °C p 5 1 Torr, 50 sccm
WF6, and 500 sccm H2. The deposition times were 30, 40
50, and 60 s~20 s appeared to be below the incubation tim
for nucleation!.

In Fig. 4 we show TEM micrographs for depositio
times 30, 40, and 50 s. In the initial stage@Fig. 4a# grains
occur at the edge of and inside the holes. Holes are fil
therefore, at the outset of the deposition. This is in stro
contrast with the above PVD results. Figure 4b shows
next stage, where filling of channels between regions of c
lesced grains occurs and where grains and the smallest h
have approximately the same size. A substantial size
crease of some holes occurs already, although the film is
yet continuous. Again, this is in contrast with the results
PVD. The holes used here are much smaller than the st

r

seg-

FIG. 4. TEM micrographs of membranes with holes after CVD ofa-W
during 30, 40, and 50 s~a, b, and c, respectively!. The bar marker in~a! is
the same as for~b! and ~c!. The arrows in~c! indicate the holes which are
already closed.
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tures presently filled with W in microelectronic industry.12

Nevertheless, Figs. 4a and 4b indicate that very good
coverage develops. For a deposition time of 50 s@Fig. 4c,
thickness;60 nm, as measured with a surface profiler# the
smallest holes are completely closed and the film seems
tinuous.

For the W depositions the film thickness was measu
for a deposition time of 50 s. Nevertheless, this enables u
plot two more lines in Fig. 3, for two initial hole diameter
The considerably steeper slope of the lines for W beyond
range, where the necklace for PVD is formed, reflects
differences between PVD and CVD in the closing of a ho

3. ELECTRICAL CHARACTERISTICS

Two different types of heterocontacts were made us
PVD of Ag and Al as the final steps of our fabricatio
scheme.2 Fabricated point contacts were characterized
measuring the point-contact spectrumd2V/dI2(V) at the
liquid-helium temperature. The spectra were nearly antisy
metric with respect to the bias-voltage polarity. It is know
that in the case of ballistic electron transport through
contact~the elastic mean free pathl i of electrons is much
larger than the contact size! d2V/dI2(V) reflects the pecu-
liarities of the phonon density of states of the metals t
form the contact Figure 5 shows the PC spectra of P
fabricated Ag/Al devices. For type-A heterocontacts~the
cross section of the device is shown schematically in
inset in Fig. 5! after deposition of 200-nm Ag on side 1 o
the membrane with a single nanohole, 200-nm Al was
posited on side 2. One can expect, taking into account
results in Fig. 1, that the Ag/Al interface for this type
heterocontacts is situated close to the center of the cons

FIG. 5. PC spectra of the Ag/Al heterocontacts described in the text. F
20-nm-thick Ag layer the phonon peaks from Al are absent. The con
diameters are in the range 10–25 nm. The inset shows a schematic
section through a point contact.
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of both metals. Indeed, as can be seen in Fig. 5a, the po
contact spectrum of a type-A device has clear phonon peak
of both Ag and Al. To move the interface Ag/Al away from
the constriction, we fabricated type-B heterocontacts. Fo
these contacts 200-nm Ag was deposited on side 1 of
membrane and a bilayer of 10-nm Ag/200-nm Al or 20-n
Ag/200-nm Al on side 2. In the case of 10-nm Ag the 35-m
peak of Al is still present in the spectrum~Fig. 5b!, but is
absent in case of 20-nm Ag. In the latter case the spectru
that of pure Ag. Similar results were obtained for conta
with 200-nm, Al on side 1 and 20-nm Al/200-nm Ag on sid
2. For these contacts the spectrum is that of pure Al. A p
sible explanation for this result is that geometry of our d
vices is between that of a clean orifice and a short chan
for the last geometry the spectral contribution from the
gions outside the channel is reduced compared to that of
clean orifice model, most of the signal coming from t
channel region. The results for the heterocontacts with a
placed interface seem to agree with this conclusion. Ho
ever, the spectral intensities of our homogeneous cont
follow the theoretical relation for the clean orifice mode4

which indicates that the degree of channel character is n
ligible. Therefore, since the thinner layer of the bilayer
comparable to the probing depth, this result remains un
plained.

From studies of metallization of vias in microelectron
devices it is known that the CVD method is capable of fillin
holes as small as 70 nm.12 In order to further investigate the
capabilities of W-CVD to fill much smaller holes we hav
fabricateda-W and amorphous W point contacts with a go
yield of devices for electrical measurements. In the case
amorphous W we used the reduction of WF6 by GeH4 with
the deposition parameters:T5 300 °C, p5 1 Torr, 50 sccm
WF6, 50 sccm GeH4, and 500 sccm H2. In contrast toa-W,
the films deposited by this process have a high resistivity
a result of relatively large concentration of incorporated g
manium. The film thickness~per side! was about 350 nm for
a-W and 175 nm for amorphous W.

Figure 6 shows a point-contact spectrum of ana-W de-
vice of resistanceR 5 45.6 V. The contact diameter isd
5 10 nm ~estimated from the Wexler formula!, which is
much smaller than the size of the contact plugs used now
microelectronics. The spectrum shows a sharp TA-pho
peak at 20 mV and a weaker and broader feature at 40
which is a double-phonon peak. The background is relativ
low and there is a weak zero-bias anomaly. Finally, the L
phonon peak is not resolved, which is not unusual ofa-W
contacts.13,14The W spectrum in Fig. 6 is comparable to th
best spectra of ballistic mechanical point contacts made f
a high-purity W base material.13,14 This indicates that the
CVD depositeda-W is of high quality. Indeed, an estimat
of the elastic mean free path from the ratioR300K/R4.2K of
the film ~in the free electron approximation! gives l i
5 95 nm, confirming the ballistic transport through the co
tact.

Bulk layers of amorphous W deposited with CVD a
superconducting below 4.3 K, which makes it possible
study the superconducting properties of contacts of this

a
ct
oss
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terial. To characterize the amorphous W point contacts,
measure the I –V curve and its second derivativ
d2V/dI2(V) above and below the superconducting transit
temperature for several devices. AboveTc the amorphous W
contacts appears to be not very interesting, because
point-contact spectra are virtually structureless. This is a
sult of the high resistivity of the material~150–200 mV•cm
at 4.2 K! and the related very short elastic mean free p
( l i ' 1 nm!. Below Tc the curves show a rich variety o
features which are related to the superconducting state~since
they are absent aboveTc), which could not be classified in
systematic way. We attribute this circumstance to devi
dependent compositional inhomogeneities on the scale o
constriction, which arise from the incorporated Ge atoms

Figure 7 shows examples ofI -V curves of an amorphou
W point contact with normal state resistanceRN512.2V and
a diameter of 125 nm in the range 1.5–5 K. The contac
characterized byj515 nm andl'500 nm. These value
were estimated from Gor’kov’s relations for dirt
superconductors15 ~j is the coherence length andl is the
penetration depth!. Consequently, the device operates in t
dirty transport limit, wherej, l i ! d ! l. Below 4.3 K the
contact is in the superconducting state and the curves h
some structures, in particular, instabilities and a stepw
current increase at low currents. A significant hysteresis
observed when sweeping the current in the opposite direc
~see the 1.5-K curve!. The sign of the hysteresis was found
be random. From more accurate measurements we found
in the range of a steep current increase the voltage
switch rapidly between two discrete levels, indicative o
transition between two metastable states.

The stepwise behavior is reminiscent of similar behav
in narrow ~j,l!width! superconducting channels.16,17 This
behavior was, among other things, explained in terms

FIG. 6. Point-contact spectrum of ana-W device formed by chemical vapo
deposition.T 5 1.5 K andR545.6V.
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phase-slip centers~PSC!. Our amorphous W point contacts
however, operate in a different limit than those channels
that the PSC model does not apply. The origin of the step
Fig. 7 is probably of mesoscopic nature. To the best of
knowledge, this would be a new aspect of this type ofI -V
curves, which we will discuss further.

We assume that the stepwise behavior may be relate
the motion of vortices created near the entrance of the c
striction by the magnetic field generated by the transp
current. Althoughl @ d, the formation of such vortices is
possible, sincej ! d ~j is a measure of the vortex core
whose characteristics in this case may be slightly differ
from those of the Abrikosov vortices!. At large enough cur-
rents the device resistance would arise from the motion
the vortices. It is known that vortex motion can be block
by pinning centers, which are expected to be readily av
able in amorphous CVD-W with built-in germanium. Vorte
motion, therefore, is possible only at large enough curre
where the current-induced force overcomes the pinn
force. Since the vortex core size~and thus the spatial scale o
the pining relief! is not much smaller than the contact siz
one expects a sample-specific percolation-like characte
the vortex motion. Increasing the current, therefore, wo
first lead to the formation of one ‘‘path’’ of vortex motion
which corresponds to a chain of weak enough pinning c
ters. Then, with an increase of the current, a second pe
lation path would appear. Accordingly, switching-on of pat
would correspond to the steps on theI –V curve, as ob-
served. Of course, this tentative explanation needs fur
checking.

FIG. 7. TheI –V characteristics of an amorphous W point contact ofRN

5 12.2V, measured at different temperatures. The estimated contact d
eter is 125 nm. Below 4.3 K the curves display a supercurrent.
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4. DISCUSSION
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The TEM observations for PVD of Au and Ag films o
unpatterned parts of the membranes and on the roun
edges of the holes can be explained by applying the gro
mechanisms of a metallic film on amorphous substrates18 and
need no further discussion. The main point to be address
that, aside from the inner edge region, where the necklac
formed, the holes do not become filled with metal. This c
be explained in the following way. The edge of the hole i
part of the substrate with positive curvature~rounded profile;
see Fig. 1! and negative curvature~due to the circular shape
as seen in top view!. From studies of the metallization o
vias in microelectronic integrated circuits it is known19 that
areas of dominating negative curvature are preferential s
for nucleation and growth. In our case this leads to nuc
close to the narrowest part of the hole and subsequentl
the necklace of small grains. Since, the hole is a miss
area, the atoms emitted from the melt are lost. This redu
the number of adatoms collected by nuclei near the hole
that these nuclei grow slower than other nuclei. This effec
even enhanced because of the inclination of the wall of
hole with respect to the incoming atomic beam~increase of
area!. We believe that the absence of coalesced grains a
inner edge of the hole~see Fig. 2b! and the slower growth o
necklace grains are attributable to this mechanism.

After deposition on one side, the metal that covers
hole acts as a microsubstrate during deposition on the o
side. TEM inspection after deposition of 20-nm Ag on side
~200-nm Ag was deposited on side 1! showed a dark region
inside the hole, surrounded by a light halo, while it was n
clear that growth had started on the side wall. This sugg
preferential growth on the metal inside the contact ho
which after prolonged deposition on side 2 might lead to
~poly! crystal that bulges out of a hole. A 200-nm Al
deposited on the surface of this bulging crystal. This me
that the distance of the Ag/Al interface on side 2 to t
constriction is equal to the height of the crystal, which can
larger than 20 nm and larger than the expected depth
which the electron-phonon interaction can be probed. If t
is true, it may explain the absence of the LA peak in Fig.
for the Ag/Al heterocontact with the 20-nm Ag interlayer.

The results for one-sided PVD tempt us to specul
about the fabrication of homocontacts, which are usua
formed while rotating the substrate in the beam emerg
from the melt. We expect that such a two-sided deposit
will not noticeably suppress the tendency of the hole’s w
to remain uncovered. However, when a hole starts to c
from two sides, edges may continue to grow~as seen from
the inside!, so that filling starts. Simultaneously, the interi
of the hole becomes less accessible, so that filling beco
harder and may not be completed in some cases~void for-
mation!. Clearly, this would limit the yield of the fabrication
process.

Our electrical measurements on heterocontacts indi
that, in principle, very good devices of this type can be fa
ricated with PVD. It turns out, however, that deposition o
bilayer on one side of the membrane does not give eno
control over the position of the heterointerface. In additio
control over the degree of flatness of the interface, a requ
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anteed. These findings suggest modifications of the fabr
tion process. For example, we are considering to form po
contacts by first depositing metal 1~or a bilayer or multilayer
of metals! on side 1 of the membrane, followed by a high
selective etch of type hole and finally by depositing meta
in the hole and on the reverse side of the membrane.

In the case of CVD the TEM observations can be und
stood from the properties of this process. First, because
reactive sticking coefficient is small, most of the impingin
molecules are reemitted. This circumstance and also the
dom velocity distribution of the reactants provide a supply
the material to all surface areas, irrespective of the lo
surface orientation. Thus, the walls of the hole are cove
from the beginning of deposition. In turn, for the PVD pr
cess the sticking probability is close to unity~no reemission!
and, by geometry, the velocity of impinging atoms is main
directed along the axis of the hole, promoting preferen
growth at its entrance.

The electrical data for W contacts indicate that CVD,
nature, is very suitable to fabricate metallic point contacts
limitation is that CVD processes are available for a limit
number of metals. Stimulated by the results on the W c
tacts, we have recently started the fabrication with CVD
Si point contacts. In this case CVD makes it possible
fabricate completely single-crystalline devices.20

5. CONCLUSIONS

We have made an electron-microscopy study of the c
ing of nanoholes in membranes at the successive stage
one-sided physical vapor deposition of Au and Ag, as it o
curs in heterocontact formation. We is found that the ho
do not become filled with metal in a one-sided depositio
The holes are closed by lateral growth of the film on t
membrane when its thickness is more than twice the h
diameter. Metal closing of one side of a hole serves a
microsubstrate for growth of metal deposited from the ot
side. Growth from the other side seems to occur prefer
tially on the metal and not on the side walls.

We have also applied chemical vapor deposition ofa-W
and amorphous W to the formation of point contacts. Fr
TEM inspections we find that the W-CVD process is capa
of filling holes as small as 10 nm from the beginning of t
deposition, in contrast to physical vapor deposition. Fab
cated devices show good quality point-contact spectra
electron-phonon interaction, conforming that PVD and CV
processes yield ballistic point contacts. For one amorph
W device we have observed a very interesting stepwise
rent increase which may arise from switching-on of perco
tion paths for vortex motion.

This work is a part of the research program of the Stic
ting voor Fundameteel Onderzoek der Materie~FOM!,
which is financially supported by the Nederlandse Orga
satie voor Wetenschappelijk Onderzoek~NWO!. N. N. Gri-
bov acknowledges the NWO for a grant received in a p
gram for scientists of the former Soviet Union~ref. no. 714-
033!. We appreciate valuable comments of Ol
Shklyarevskii. We thank C. D. de Haan of the National Ce
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

by
Peculiarities in the effect of hydrogen on CDW transition in NbSe 3

Kh. B. Chashka, V. A. Bychko, M. A. Obolenskii, Raid Hasan, and V. I. Beletskii

Kharkov State University, 310077 Kharkov, Ukraine*

A. V. Basteev and A. N. Prognimak

Kharkov Institute of Machine Building Problems, 310046 Kharkov, Ukraine
~Submitted December 5, 1996; revised January 31, 1997!
Fiz. Nizk. Temp.23, 746–752~July 1997!

The influence of intercalated hydrogen concentration on the physical properties of NbSe3 is
investigated. The mass-spectrometric analysis reveals a nonlinear dependence of hydrogen
extraction from the crystal structure on the saturated pressure. Resistive measurements
make it possible to study the concentration dependence of the temperatureTCDW corresponding
to a phase transition accompanied with the formation of a charge density wave~CDW!
and temperature dependence of CDW pinning threshold fields. A metal-semiconductor phase
transition is observed for certain concentrations of intercalated hydrogen. All the measurements are
made in the temperature range of the first CDW transition~90–300 K!. © 1997 American
Institute of Physics.@S1063-777X~97!01007-4#

Phase transitions accompanied with the formation of a The quantum model of CDW propagation developed
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charge density wave~CDW! are observed in many layere
and straight-chain metallic compounds including NbSe2 and
NbSe3 with a strong anisotropy of physical parameters.

The CDW instability was predicted by Peierls1 who
proved that the minimum free energy for a one-dimensio
atomic chain is attained during the formation of a CDW.
this case, the electron density in the given direction is
scribed by the relation

r~x!5r0@11a cos~Qx1w!#, ~1!

where r0 is the homogeneous electron density,ar0 the
charge modulation amplitude,Q52kF the modulation wave
vector, and the phasew characterizes the position of th
CDW relative to the ionic lattice.

The existence of CDW transition is associated with
formation of Fermi surface regions coinciding as a result
parallel transfer by the vectorQ52kF ~nesting!. Under these
conditions, the polarizability of the electron system in t
periodic electric field of the lattice is large, and the latti
becomes unstable to a periodic distortion with the wave v
tor Q. A gap formed in the energy spectrum in coincidin
regions of the Fermi surface reduces the value of elec
energy. A CDW is generated if the gain in the electron e
ergy is larger than the increment of elastic energy due
crystal lattice distortion.

In perfect systems, a lattice distortion can be displa
without dissipation in the form of a propagating wave as
result of translational invariance. The CDW energy does
depend on the phasew. In real systems, such a translation
invariance is violated due to phase pinning at defects o
the lattice itself.

If the CDW energy in an applied electric field excee
the pinning energy, the CDW starts sliding over the latt
and makes an additional contribution to conductivity.
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Bardeen presumes that the CDW can tunnel through pot
tial barriers in the regionE.Eth ~whereEth is the threshold
field for CDW depinning!.

In this model, the following expression was obtained f
conductivity:

s~E!5sa1sb~12Eth /E!exp~2E0 /E!, ~2!

wheresa is the ohmic conductivity andE0 the activation
field connected with the pinning energy«g through the ex-
pression

E05p«g
2/4\e* vF . ~3!

Heree*5em* /MF is the effective charge,m* the effective
mass,andMF the Froehlich mass of charge carriers, char
terizing transport in the CDW state. Expression~2! is in good
agreement with experimental data for pure samples
trichalcogenides.

A large number of experimental publications have be
devoted to the study of the effect of impurities on the CD
state in NbSe3. These publications are mainly aimed at t
investigation of the effect of doping. The latter can be carr
out by replacing Nb atoms by the atoms of another transit
metal, but it is difficult to determine exactly the concentr
tion of impurities obtained during the single crystal grow
as a result of doping. It is difficult to obtain high concentr
tions of impurity atoms as a result of doping, and these
oms are distributed nonuniformly over the crystal.3

For low-dimensional structures such as chalcogenide
transition metals, impurities can be introduced not only
doping, but also by intercalation.

As a result of intercalation, two effects are observed
respective of the type of intercalate and the position of i
purity in the lattice: a change in the parameters of the ini
lattice and a change in the charge carrier concentration

561561-06$10.00 © 1997 American Institute of Physics



result of charge transfer from the intercalate to the matrix.
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For this reason, intercalation with hydrogen is especially
teresting. In view of the small size of the hydrogen ato
hydrogen can be intercalated to high concentrations with
a noticeable lattice distortion, and the simplicity of its ele
tron structure simplifies the interpretation of experimen
data.

At the present time, the information on complex expe
mental analysis of the effect of band structure variation
quasi-one-dimensional trichalcogenides on the thermo
namic characteristics of the CDW transition, including t
temperatureTCDW of the CDW transition, as well as on th
propagation of CDW in electric fields exceedingEth is
scarce. Moreover, the effect of a mobile impurity~such as
hydrogen! on the mechanisms of CDW pinning remains u
clear.

For this reason, we shall investigate here the effec
hydrogen impurity on the CDW transition in NbSe3.

EXPERIMENTAL TECHNIQUE

Niobium triselenide single crystals were grown by t
method of chemical gas-transport reactions.

The saturation of samples with hydrogen was carried
from the gaseous phase at a constant temperature 35
under various pressures. The saturated pressure varied
2 to 10 bar.

The hydrogen concentration in the samples was de
mined by using mass spectrometry. The small mass of
single crystals did not allow us to determine the hydrog
concentration in a single crystal, and hence we used the
lowing method. Pellets of diameter 5 mm and thicknes
mm were pressed from NbSe3 single crystals under a pres
sure not exceeding 5•102 bar. The central part of the pelle
was cut in the form of a block of the size 13135 mm and
used for subsequent resistive measurements. All the t
parts of the pellet and an individual NbSe3 single crystal
were placed into a cell for saturating with hydroge
Segment-shaped parts of the tablets were used in mass-
trometric analysis. The samples were placed on glass
ramic substrates on which currents and potential leads w
fixed. Electric contacts were created with the help of co
ducting silver paste~Fig. 1!.

We studied the influence of hydrogen concentration
the temperature dependence of the resistanceR of pressed
samples. The results of measurements are shown in Fig.
should be noted that according to Monceau,3 all the main
peculiarities in the behavior of the resistance are clea
manifested in resistive measurements on the samples
pared in this way. For example, this method can be use
determine the CDW transition temperature reliably. At t
same time, a monocrystalline sample of NbSe3 was saturated
under a pressure of 10 bar, after which the hydrogen con
tration in it could be reduced by gradual cooling in a vacu
;1029 bar. The temperature of heating in such experime
did not exceed 200 °C, and according to the results of m
spectrometry, hydrogen is liberated under such conditi
without a loss in the stoichiometry of the compou
NbSe3. Such a technique allowed us to trace the variation
TCDW ,Eth ,I th , and other parameters of the compound fo
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constant size of the sample. Thus, all the peculiarities
served in our experiments can be attributed mainly to
change in hydrogen concentration. The results of these m
surements are presented in Fig. 3.

The measurements ofR were made in the temperatur
range 90–300 K. In this region, the first CDW transitio
takes place in NbSe3.

In order to observe nonlinear conductivity and to det
mine the threshold values of the electric field strengthEth

and currentI th , we measured the current–voltage charact
istics ~IVC!. The measuring circuit allowed us to record th

FIG. 1. ~a! Location of the sample on the substrate: substrate~1!, contact
pads~2!, and sample~3!. ~b! Measuring circuit:x–y recorder~1!, photoam-
plifier ~2! dc scanning generator~3!. ~c! Method of determining CDW
threshold field by using the dc bridge circuit. The inset shows an examp
standard IVC recording.
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U(I ) dependence directly and to measure the dependenc
(Ux2Uf) on I by using the bridge circuit~Ux is the voltage
across the sample in the state with pinned CDW andUf is
the voltage across the sample in the state with a slipp
CDW!. This method made it possible to increase the se
tivity of the measuring circuit for measuringI th by three
orders of magnitude. The threshold field of depinning,Eth ,
was defined as (I thRx)/L, whereI th is the threshold value o
transport current, which was determined from bridge circ
measurements,Rx the sample resistance in the pinned sta
which was determined on the linear segment of theU(I )
dependence and was equal toUx /I for I,I th , and L the
distance between the potential contacts. The methods o
termining I th ,Rx , andU th are illustrated in Fig. 1.

DISCUSSION OF EXPERIMENTAL RESULTS

The results of mass-spectrometric measurements of
amount of hydrogen liberated from the pellets are shown
Fig. 4. The peculiar nonmonotonic dependence of
amount of hydrogen released from the sample on the s
rated pressure can apparently be associated with our ex
mental conditions. Since the liberation of hydrogen from
sample occurred atT5500 °C, we took into account in our

FIG. 2. Temperature dependence of resistance for several hydrogen s
tion pressures for pellet samples with a metallic~a! and semiconducting~b!
behavior of resistance.
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thankT. The remaining hydrogen can remain in the bou
state in the matrix lattice at this temperature. This assum
tion leads to the conclusion about the existence of at le
two nonequivalent positions of hydrogen in the NbSe3 lat-
tice, which can be associated with the presence in this lat
of nonequivalent chains differing both in the atomic sepa
tion of Nb–Se, Se–Se, and Nb–Nb, and with the bind
energy in the chains.3 Also, this is in accord with the result
of analysis of the NbSe2–hydrogen system, in which we dis
covered two nonequivalent states of hydrogen with differ
binding energies.4 It should be borne in mind that the un
cell of NbSe2 has a configuration close to that of NbSe3, but
they differ in the way of packing into layers or chains r
spectively. Thus, the amount of hydrogen was appare
determined inaccurately in mass- spectrometric meas
ments, but, on the other hand, the results of measurem
indicate that an increase in saturation pressure leads
redistribution of hydrogen in the lattice and to an increase
the relative amount of strongly bound hydrogen.

The results of measurements of resistance of polyc
talline of pressed samples are shown in Fig. 2. In Fig. 2a,
values of resistance are normalized toRmin , viz., the mini-
mum value in the region of the CDW transition. In Fig. 2
the values ofR are given in absolute units. It should be not
that the metallic type of resistance is observed under p
sures 8 bar.P.3.75 bar. An increase in saturation pressu
leads to an overall increase inR. It can be seen from the
figure, however, that all the peculiarities typical of a CD
transition are preserved. In samples saturated under pres
of 6 bar, the semiconductor behavior of the resistance
observed. The estimate of the forbidden gap width from
sistive measurements givesD/kB517 K ~whereD is the en-
ergy gap andkB the Boltzmann’s constant!. Balseiro and
Falicov5 proved that the CDW transition temperature can
described by the relation

TCDW51,14\v0 exp@21/~leff N~«!!#, ~4!

whereN(«) is the density of electron states at the Fer
level andleff the effective constant of the electron–phon
interaction. Thus, the CDW transition temperature is a fu
tion of the density of states. In the rigid-band approximatio
intercalation with hydrogen should displace the Fermi lev
It should be noted that saturation with hydrogen in th
model can be an effective tool for influencing the band str
ture. Usually, hydrogen intercalated in the lattice of lo
dimensional structures is a donor that facilitates the cond
tion band filling and shifts the Fermi level so that th
conductance of the samples increases. Bullett6 carried out
detailed analysis of the band structure and proved that
conduction band is quite narrow, and the Fermi level lies
the smooth segment to the left of the peak on theN(«)
dependence. In this case, saturation with hydrogen must
to a sharp increase in the density of states, when«F ap-
proaches the peak on theN(«) curve, which in turn must be
reflected in the behavior ofTCDW . The dependence o
TCDW on saturation pressure shown in Fig. 5 is in quanti
tive agreement with the proposed mechanism. Complete
ing of the conduction band must lead to the emergence of

ra-
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in vacuum
FIG. 3. Variation of the temperature dependence of the resistance of a single crystal as a result of gradual hydrogen extraction: after first heating
~a!, after second heating in vacuum~b!, and after 48~c!, 96 ~d!, and 144 hours~e!.
semiconducting state, which is actually observed in experi-
io
tio
te
h

th

under investigation is illustrated in Fig. 3. As in the pressed

n
nce
ate.
es
e
se
ments. The origin of the metallic state at higher saturat
pressures and accordingly at higher hydrogen concentra
remains unclear. In order to study this state, we investiga
the resistance of monocrystalline samples saturated with
drogen under the pressureP;10 bar, in which the hydrogen
content decreases gradually with time. The evolution of
temperature dependence of the resistanceR of the sample
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samples, the behavior of the resistanceR of this sample is
initially of the metallic type. Gradual removal of hydroge
from the sample leads to an overall increase in the resista
and ultimately to the emergence of the semiconducting st
The estimate of the energy gap in this case giv
D/kB;180 K, which is close in order of magnitude to th
results obtained by Bullett.6 We can assume that the increa
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in saturation pressure leads to partial filling of the next
ergy band. It is surprising, however, that the value ofTCDW
changes only slightly in this case. Unfortunately, we did n
obtain in our experiments the concentration depende
TCDW(x) for low hydrogen concentrations, but such me
surements are planned in the nearest future.

The results of investigation of threshold fields on
monocrystalline sample saturated with hydrogen at 10
are presented in Fig. 6a. It can be seen that the value
Eth differ considerably from those obtained for pure samp
both in the absolute value of the threshold fields~which is in
accord with the results obtained by Thorneet al.!,7 and in the
presence of descending regions on theEth(T) curve at
T.140 K and T,104 K, which are absent for pur
samples.3 The temperature dependence of pinning ene
calculated by using relation~3! is shown in Fig. 6b. It also

FIG. 4. Amount of liberated hydrogen as a function of saturation pres
(x is the number of atoms per unit cell!.

FIG. 5. Dependence of the CDW transition temperature on the hydro
saturation pressure, measured for pellet samples.
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has a clearly manifested peak atT;140 K. In our opinion,
such singularities in the behavior ofEth indicate that hydro-
gen atoms are effective pinning centers, and the presenc
a peak on the«g(T) curve signifies an increase in the mob
ity of hydrogen upon heating in an electric field. The inte
sity of pinning remains unclear and requires further inve
gations. As the sample approached the semiconducting
in our experiments, we observed the emergence of lo
frequency voltage oscillations in the electric field ran
E.Eth , an example of such a recording is given in Fig. 7.
detailed discussion of the results of these experiments wil
given in the following communication.

CONCLUSIONS

~1! It has been established that the temperature co
sponding to the first CDW transition weakly depen
on the concentration of intercalated hydrogen.

~2! The values of the threshold field of CDW depinnin
for hydrogen-saturated samples is higher than

re

n

FIG. 6. Temperature dependence of the threshold fieldsEth for pure~j! and
saturated under a pressure of 10 bar~:! samples~a! and of the pinning
energy«g calculated by formula~3! for a single crystal saturated with hy
drogen at 10 bar~b!.
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th
pure samples. The shape of the temperature de
dence of the threshold fields of CDW depinnin
changes qualitatively.

~3! The results of mass spectrometry give a nonmo
tonic dependence of the amount of liberated hyd
gen on saturation pressure with a minimum
P;6 bar.

~4! The samples saturated atP;6 bar exhibit the semi-
conducting behavior of the resistance.

It should be noted in conclusion that th
NbSe3–hydrogen system exhibits a number of peculiar f

FIG. 7. Example of recording of voltage oscillations in the sample in
state corresponding to Fig. 3b.
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der to determine more exactly the position of hydrogen
oms in the lattice, the binding energy and the charge stat
hydrogen atoms occupying various positions. Intercalat
with hydrogen can become an informative method for a
lyzing the shape of theN(«) curve. If, in addition, hydrogen
is a mobile impurity, it must noticeably affect the nonline
behavior of the resistance in the CDW state for both tran
tions in NbSe3 in an external magnetic field.
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PHYSICAL PROPERTIES OF CRYOCRYSTALS

eir
Analysis of decomposition of impurity–helium solid phase
R. E. Boltnev, E. B. Gordon, I. N. Krushinskaya, M. V. Martynenko, A. A. Pelmenev,
E. A. Popov, V. V. Khmelenko

Branch of the Institute of Energy Problems in Chemical Physics, Russian Academy of Sciences, 142432
Chernogolovka, Moscow distr., Russia*

A. F. Shestakov

Chernogolovka Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow distr., Russia
~Submitted December 9, 1996!
Fiz. Nizk. Temp.23, 753–766~July 1997!

The elemental composition of the impurity–helium solid phase~IHSP! grown by injecting of a
gas jet containing Ne, Ar, Kr, and Xe atoms and N2 molecules into superfluid HeII is
studied. The measured stoichiometric ratiosS5NHe/NIm are much larger than the values predicted
by the model of frozen together monolayer helium clusters. The theoretical possibility of
freezing together of two-layered clusters is justified in the continual model of the helium subsystem
of IHSP which fills the space between rigid impurity centers. Regularities of decomposition
of ‘‘dry’’ samples ~extracted from liquid helium! are analyzed in the temperature range 1.5–12 K
under pressures from 10 to 500 torr. Two stages of sample decomposition are discovered: a
slow stage accompanied by cooling and a rapid stage accompanied by heat release. These results
suggest the presence of two types of helium in IHSP, viz., weakly bound and strongly
bound helium which can be attributed respectively to the second and first coordination spheres of
helium formed around heavy impurity particles. A tendency to elevation of the thermal
stability of impurity–helium~IH! samples upon an increase in the mass of impurity center has
been observed. An increase in the helium vapor pressure above the samples also increases
their stability. It is found that the decomposition of IH samples containing nitrogen atoms in the
temperature range 3–4.5 K is accompanied with luminescence induced by recombination
of atoms. This indicates the possibility of a wide range of chemical reactions in solidified helium.
© 1997 American Institute of Physics.@S1063-777X~97!01107-9#
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The observation of solidification of solid helium upo
the introduction of heavy impurity particles to supercondu
ing helium resulting in the formation of a new metastab
impurity–helium solid phase~IHSP!1,2 opens new prospect
for investigation of the properties of particles separated
helium atoms. On the other hand, the impurity–helium so
phase itself is a new object in the low-temperature phys
whose properties have been studied insufficiently.

The formation of IHSP was demonstrated for vario
impurity ~Im! particles: Ne, Ar, Kr, Xe, and N atoms an
N2 molecules. The IHSP was obtained by introducing in
superfluid helium of a gas jet of impurity particles dilute
with helium after its passage though the rf discharge reg
It was found that this phase prepared in superfluid heli
can exist outside the liquid also. It is decomposed comple
at temperatures 6.5–8.5 K.3,4

A theoretical analysis based on the cluster approac4,5

confirmed that the physical foundation for the formati
of the IH phase is the decrease in the amplitude of ra
vibrations of helium atoms in the field of dispersion forces
aheavy impurity center resulting in the formation of rig
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freezing together in IHSP.
A direct experimental evidence of partial loss

quantum-mechanical properties of helium around impu
particles has been obtained recently.6 The rotational structure
of vibrational spectra of SF6 molecules implanted in Hen
helium clusters (n;104–105) was recorded, and the mo
ment of inertia of the emitting complex was determined. T
obtained value is much larger than the moment of inertia
a free SF6 molecule and corresponds to the complex form
by an SF6 molecule surrounded by eight helium atoms ri
idly coupled with the shell.

Experiments on the determination of the elemental co
position of the impurity–helium solid phase revealed tha
consists mainly of solidified helium; the stoichiometric coe
ficientsS5NHe/NIm for various impurity particles vary from
12–17 for Ne and N atoms to 60 for Ar atoms.4 However,
the form of decomposition of IHSP has not been investiga
in detail, and it remains unclear whether the elemental co
position of IHSP samples is preserved right up to their
struction or can be changed during heating. The aspect
stability and decomposition mechanism are very import

567567-11$10.00 © 1997 American Institute of Physics
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TABLE I. Experimental conditions for obtaining impurity-helium samples
~for the gas mixture composition@NIm

0 #/@NHe
0 # 5 0.01!.
either preserves its metastable state up to the temperatu

decomposition which is of the form of a phase transition,
its properties change during heating from 1.5 to 7 K which
leads to its complete decomposition atT;7–8 K. It was
noted earlier that the shape of a ‘‘dry’’ sample changes
temperatures which are much lower than 7 K. Moreover,
analysis of thermoluminescence of N atoms stabilized
IHSP samples demonstrated the merging of impurity p
ticles in IHSP even atT;1.5 K in samples immersed in
He II.7 However, it remained unclear whether these p
cesses were of bulk nature or a manifestation of an insig
cant number of defects in IHSP responsible for luminesce
was detected.

In this paper, we report on the study of decomposition
impurity–helium samples under various conditions: hold
outside liquid helium at constant temperature, heating fr
1.5 toT;10–12 K in helium under various pressures.

We used the methods developed for studying the
emental composition of IH samples, including the indep
dent determination of the true volume of the samples and
number of impurity particles in them.3,4 In earlier experi-
ments, the samples were evaporated immediately after
measuring the true volume for determining the number
type of impurity particles on the basis of an analysis of
formed gas, while in our cycle of experiments we made lo
term measurements of their true and apparent volumes
ing heating from 1.5 to 10–12 K, and only then the samp
were evaporated to carry out the analysis of the formed
Moreover, we modified the measuring technique in orde
improve the stability of measuring conditions and to elev
their accuracy.

As in Refs. 3 and 4, we used atoms of inert gases Ne,
Kr, Xe and N2 molecules as impurity particles. Most expe
ments were made on the samples obtained by injecting
He II gas flows which were not subjected to the action o
discharge since this leads to additional thermal effects
recombination of chemically active particles formed in the
discharge region. This method makes it possible to st
thermal effects accompanying the transition from the me
stable impurity–helium phase to the stable~impurity–
helium! state. In order to determine the possibility of part
‘‘evaporation’’ of helium from the samples, we measur
temperature in the bulk of the sample and near its surfac

In order to obtain additional information on the nature
decomposition of impurity–helium samples, the latter we
obtained in some experiments by introducing into He II a g
jet after its passage through the rf discharge region, w
allowed us to detect synchronously the luminescence of
trogen impurity atoms. The effect of external pressure on
stability of the samples was studied on the same sample

In addition, we carried out a theoretical analysis of t
stoichiometric composition of IHSP based on the approac
used for describing optical properties of impurity atoms
liquid helium.8–10
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2. EXPERIMENTAL TECHNIQUE AND SETUP

2.1. Method of obtaining and investigating the samples
prepared by introducing in HeII the gas jets not subjected to
rf discharge

The experimental technique used for obtaining IH
samples is described in detail in Refs. 3. The schematic
gram of the low-temperature setup is shown in Fig. 1. In t
series of experiments, most of IHSP samples were obta
by introducing ‘‘cold’’ gas mixtures~not subjected to the
action of rf discharge! in the bulk of superfluid helium filling
a specially shaped cup5. In order to prevent joint freezing o
impurity particles in the gas, we used gas mixtures stron
diluted with helium (@NIm#/@NHe#51:100) and heated the
end of the pipe through which the gas was introduced by
annular heater15 (R510 V) to T;80 K. The temperature
of the lower part of the pipe was measured by a copp
constantan thermocouple3.

Under typical experimental condition
~PHe;10–15 torr and gas flux dN/dt ;(7–9)
31019 particles/s!, we obtained the samples with Ne, Ar, K
atoms and nitrogen molecules as impurity centers. In
case when the Xe impurity was used, impurity–heliu
samples could not be obtained with the help of ‘‘cold’’ je
since virtually all of xenon was frozen out at the walls of t
quartz tube of the source~the equilibrium pressure of satu
rated xenon vapor atT;80 K is 4•1023 torr, while
PXe51021 torr in the gas mixture passing through th
source of atoms!. For this reason, xenon–helium sampl
were obtained only as a result of action of a rf discharge
the gas mixture being condensed. Table I gives experime
conditions for various impurity–helium samples.

Sample accumulation was terminated after the sam
filled the cylindrical part of the cup to a height of 0.5–2 cm
The samples were in the form of jelly-like semitranspare
cylinders which did not differ in appearance from th
samples obtained earlier as a result of passage of a ga
undergoing condensation through the region of a
discharge.1 Such cylinders preserved their shape in heliu
and exhibited elastic properties: the upper free surface of

No. of
experiment

Impurity
Atom

~molecule!
Im

Gas jet,
dN/dt•10219,
particles/s

Sample
accumulation

time
t, s

Degree of
condensation

a, %

1

Ne

11.0 2750 9
2 7.2 770 36
3 6.06 1470 9
4 9.0 637 23
1

Ar

8.6 3060 13
2 8.67 2480 7
3 7.4 2500 9
4 6.92 1750 15
1 5.7 1490 35
2 Kr 6.13 820 40
3 5.4 2345 9
1 Xe 7.24 890 30
1 N2 5.82 1672 14
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sample vibrated in the presence of mechanical vibrations of
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the helium Dewar, being displaced by a distance up to
cm from the equilibrium position.

Taking into account the high porosity of the obtain
IHSP samples,3 we investigated experimentally the behavi
of the apparent and true volume of the sample as function
time and temperature. In the course of experiments, the
lowing operations were made with IHSP samples:

~1! visual observation of the volume and shape of
sample with the help of a video camera;

~2! measurements of the true and apparent volumes in
secutive cycles ‘‘removal–immersion’’ in the HeII vo
ume with a short-term holding (t;150 s) above the he
lium surface atT54–6 K;

~3! analysis of variation of the apparent volume during t
removal of liquid helium from the cup and heating fro
1.5 K to T.8 K;

~4! evaporation of impurity particles of the sample and th
accumulation in the measuring volume outside the
lium Dewar flask for determining their amount.

In order to ensure the stability of the conditions duri
the determination of the true sample volume in the giv
measuring cycle, a side cylinder4 ~see Fig. 1! of a much
larger volume (100 cm3) was placed at the level of the work
ing quartz cup (10 cm3) and filled with helium with the help
of a second thermomechanical pump11. The special shape
of the cylinder made it possible for mobile parts of the co
struction to move freely and permitted the visual control
processes occurring in the Dewar flask. The presence o
side cylinder filled with helium allowed us to stabilize an
maintain experimental condition during the measurement
the volumes of the samples, the background rate of decr
in the liquid helium level being;1023 cm/s, which in-
creases the accuracy in determining the volume. Moreo
in the computational procedure described above,3 the change
in the background rate of helium extraction from the cylind
after the removal of the sample from the helium volume w
additionally taken into account. Accordingly, the sample v
ume was determined from the relation

V05$h12h21v1~ t1
02t1!2v2~ t22t1

0!%pd2/42Vd ,

whered is the inner diameter of the cylinder,h1 and t1 are
the position of the helium level in the cylinder and the tim
of its measurement,h2 and t2 are the position of the helium
level in the cylinder after the extraction of helium from th
sample and the time of its measurement.t1

0 is the instant of
time corresponding to the extraction of helium from t
sample,v1 andv2 are the background rates of decrease in
level of liquid helium in the cylinder upon the immersion
the sample in helium and its removal from helium resp
tively, and Vd is the volume of the metallic container i
which the sample is kept.

The stoichiometric ratioS5NHe/NIm was determined
from independent measurements of the true volume of
samples and of the absolute number of impurity particles
them.3,4 The number of impurity particles in the sample w
calculated after evaporation of the sample and the accu
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lation of the formed gas in the measuring volume outside
helium Dewar flask by measuring the gas pressure and u
the mass-spectrometric analysis.3

Since we investigated impurity–helium samples
which atoms of heavy inert gases~Ar, Kr, Xe! with relatively
high boiling points play the role of impurity centers, spec
experiments were required for determining the efficiency
their accumulation in the volume outside the helium Dew
flask after sample evaporation. Such experiments for Kr
oms revealed that the efficiency of accumulation under
conditions described earlier3 is high and amounts to
(9862)%.

In experiments on temporal stability of ‘‘dry’’ impurity–
helium samples~extracted from liquid helium!, the container
with the sample was removed from helium with the help
an annular magnet8 ~see Fig. 1! fixed on the side tube and
was held 1–3 cm above the helium surface, where the t
perature was 4–6 K. After this, the image of the sample w
recorded simultaneously with the measurement of temp
ture. The pressure of helium vapor in the Dewar flask in t
case was;10 torr.

In experiments on temperature stability of the sampl

FIG. 1. Schematic diagram of the low-temperature part of the setup: so
of atoms~1!, gas accumulating tube~2!, thermocouple junction controlling
liquid nitrogen temperature in the source~3!, side cylinder for liquid helium
~4!, quartz cup for accumulating sample~5!, throttle seal on the collecting
tube ~6!, side tube thermometer~7!, annular permanent magnet~8!, helium
Dewar flask~9!, nitrogen Dewar flask~10!, thermomechanical pump fo
liquid helium supply to the side cylinder~11!, thermomechanical pump fo
liquid helium supply to the cup for sample accumulation~12!, thermometer
of collecting tube~13!, side tube~14!, and annular heater~15!.
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the accumulating tube with thermometer13 ~see Fig. 1! fixed
to it was introduced in the cup with the sample located at
bottom so that the thermometer was immersed in the sam
completely. The changes in the shape and the apparent
ume of the sample were recorded by a video camera thro
observation slits in the Dewar flask. The recording of te
perature and sample image was started when the cyli
was filled with helium. After the helium supply to the cylin
der with the help of the thermomechanical pump12 was
terminated, the level of helium in the cylinder lowered. T
visible volume of the sample decreases considerably as
level of helium passed through the sample, but the temp
ture in the sample remained constant.

After the removal of liquid helium from the cup, th
sample was heated. As a rule, the samples under inves
tion were cylindrical and preserved their shape, decreasin
size. By the end of heating, the shape of the samples cha
to spherical. The visible volume of the sample was de
mined according to the sample image in video recording

2.2. Methods of investigation of samples obtained by
introducing gas jets passed through the rf discharge region
into HeII

Figure 2 shows schematically the setup for the exp
ment on the stability of IH samples obtained by introduci
into He II the gas mixtures after their passage through th
discharge region. Samples were accumulated in a cylinde
diameter 3.5 cm. A mesh disk of diameter 3 cm fixed on
special tie-rod was located at the bottom of the cylinder d
ing accumulation and made it possible to extract the sam
from the He II volume when the accumulation was co
pleted. A semiconducting thermometer fixed at the cente
the disk remained inside the sample after its growth. A s
ond semiconducting thermometer was fixed to another

FIG. 2. Schematic diagram of experimental setup on thermoluminesc
recording in an impurity–helium solid phase: source of atoms~1!, impurity–
helium solid sample~2!, mesh disk~3!, quarts cup for accumulating samp
~4!, thermomechanical pump for supplying liquid helium to the cylinder~5!,
condenser lens~6!, thermometer in the sample~7!, thermometer above the
sample~8!, and system of optical radiation recording~9!.

570 Low Temp. Phys. 23 (7), July 1997
e
le
ol-
gh
-
er

he
a-

a-
in
ed
r-

i-

rf
of
a
r-
le
-
of
c-
-

rod and measured the temperature above the sample sur
Its position could be changed in the course of the exp
ment.

Thermoluminescence of IH samples containing sta
lized active particles was detected by a monochroma
MDR-1 supplied with a photomultiplier FEU-136 operatin
in the photon counting mode.

The systems of temperature and luminescence recor
were automated on the basis of a DVK-3 computer and a
of KAMAK standard blocks.

3. EXPERIMENTAL RESULTS

3.1. Temporal stability

Visual observation of the shape and visible volume
IHSP samples placed in the cylinder with HeII revealed
absence of any visible change after prolonged holding~up to
104 s!. On the contrary, the removal of the samples fro
liquid helium and their holding atT54–6 K and
P510 torr during;150 s resulted in their decompositio
manifested in a decrease in the visible and true volum
After each sample ‘‘removal–immersion’’ cycle, the visib
Vv and the trueV0 volumes were determined. The results
these measurements for impurity–helium samples with
ferent impurity centers are shown in Fig. 3. The initial ra
Vv /V0 was 2.6 for Ne and 2.2 for Kr and Xe. It can be se
that the visible and true volumes decrease almost line
with time. Table II gives the initial values of true and visib
volumes of the samples and their relative change after 4
‘‘removal–immersion’’ cycles in He II. The relative de
crease in true volumes (DV0 /V0)•100%) varied from 16–
23% for Ar, Kr, Xe, and to 34–38% for N2 and Ne.

ce

FIG. 3. Time dependences of trueV0 ~light symbols! and visibleVv ~dark
symbols! volumes of impurity–helium samples with different impurity cen
ters: Ne~squares!, N2 ~nablas!, Ar ~triangles!, and Kr ~circles! in a series of
‘‘removal–immersion’’ cycles in the bulk of He II.
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TABLE II. Values of true and visible volumes of impurity-helium samples
~Im 5 Ne, Ar, Kr, Xe, N2! immediately after accumulation and their relative

-
gas

s
-

3.2. Stability during heating

After measuring the true and visible volumes, t
samples were placed on the bottom of the cylinder filled w
liquid helium. An accumulation tube with a thermomet
fixed to it was introduced in the cylinder. Usually, the the
mometer was immersed in the sample, reaching the bot
of the container. After the helium supply to the cylinder w
terminated, the level of helium decreased; the visible sam
volume decreased considerably as the level of helium pa
through the sample. In this case, the thermometer dete
the constant temperature;1.7 K. The sample temperatur
started increasing only after evaporation of the entire amo
of liquid helium from the cylinder, and the sample volum
decreased further.

Figure 4 shows typical thermograms of heating and ti
dependences of visible volumes for impurity–heliu
samples with various compositions. It can be seen that
sample volume changes most noticeably at temperat
3–5 K for Ne–He samples and 5–6 K for Kr–He samples
strong heat release accompanied with instantaneous de
position was observed only for Ne–He samples~see Fig. 4a!;
in remaining cases, a decrease in volume to a certain sta
ary value was observed. Table III contains the values of r
tive decrease in visible volume during heating and in
entire course of the experiment. It should be noted that as
level of helium passed through the sample, the visible v
ume changed from the valueVv

1 observed after 4–6
‘‘removal–immersion’’ cycles~see Table II! to the value
Vv
2 ~see Table III! observed immediately before the samp

heating, i.e., by a factor of 1.12~for Xe! or 2.2 ~for Ne!.

3.3. Determination of elemental composition

After the completion of the stability test for the sample
impurity particles were accumulated, and their number w
measured. Under the assumption made in Ref. 3, this
lowed us to determine the following parameters of impurit
helium samples: volumes of IH clustersVc5V0 /NIm , their
diametersD52@3Vc /(4p)#1/3, and the stoichiometric ratio
S5Vc /Vf21 for IH samples~whereVf546 Å3 is the vol-
ume occupied by helium atoms in the liquid atT51.7 K!.

Table IV contains the measured number of impurity p
ticles immediately after their accumulation as well as af
short-term sample holding above the He II surface. In or
to illustrate the decrease in the true volume of the sam

decrease after 4–6 ‘‘removal-immersion’’ cycles in He II.

Impurity
particle

Initial volume, cm3
Relative decrease

in volume

true
V0

apparent
Vv
0

true
V0 /V0

1
visible
Vv
0/Vv

1

Ne 0.425 1.16 1.6 1.5
Ar 0.378 1.63 1.2 1.8
Kr 0.79 2.0 1.3 1.4
Xe 0.30 0.66 1.3 1.42
N2 0.17 0.75 2.1 1.8
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~as a result of ‘‘removal–immersion cycles required for th
determination; see Fig. 3!, Table IV also shows the ranges o
volume variation and the corresponding variation of stoich
metric ratio. The parameters of the samples which w
evaporated~as in Ref. 3! immediately after the determinatio

FIG. 4. Time dependences of visibleVv volumes of impurity–helium
samples (Im5Ne ~a!, N2 ~b!, Kr ~c!, and Xe~d!! for heating and correspond
ing thermograms of heating. The samples are obtained by introducing
flows not subjected to the action of a rf discharge into He II.

TABLE III. Relative change in visible volumes of impurity-helium sample
during heating of dry samples (Vv

2/Vv
k) and in the course of entire experi

ment (Vv
0/Vv

k).

Impurity particle Vv
2/Vv

k Vv
0/Vv

k

Ne 3 10
Ar 4 12
Kr 4 8.5
Xe 5 8
N2 6 15
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TABLE IV. Determination of elemental composition of impurity-helium samples.

t

8
4

39
4
6

2
3

Parameters of impurity-helium samples

Number ofSample volume, cm3

particles in IH cluster Initial diameter Stoichiometric
Impurity atom No. of initial after annealing sample volume of IH cluster coefficien
~molecule! Im experiment V0 Vt NIm•10

220 Vc , Å
3 D, Å S

Ne

1* 0.20 - 2.64 757 11.3 16
2 0.425–0.266 - 2.0 2125–1330 16.0 45–2
3 0.174–0.133 - 0.813 2140–1635 16.0 45–3
4* 0.346 - 1.33 2601 17.06 55

Ar

1* 0.43 - 3.77 1140 12.96 24
2* 0.403 - 1.44 2799 17.5 60
3* 0.465 - 1.65 2818 17.52 60
4 0.378–0.32 0.028 1.74 2172–1839 16.0 46–
1 0.79–0.60 - 2.92 2705–2054 17.2 58–4

Kr 2 0.36–0.25 0.07 2.0 1800–1250 15.09 38–2
3* 0.23 - 1.07 2150 16.01 46

Xe 1 0.30–0.203 - 1.96 1530–1036 14.3 32–2
N2 1 0.17–0.08 - 1.26 1349–635 13.7 28–1

Note:Asterisk marks experiments in which samples were evaporated immediately after the measurement of their volume.
of true volumes for evaluating the number of impurity par-
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ticles in them are also given in the table for comparison.
In some experiments, the true volumesVt of the ‘‘dry’’

impurity–helium samples were measured after the com
tion of heating cycles; these values are also given in Ta
IV. The true volumes measured in this case were close to
values of visible volumes.

3.4. Heating of samples containing active particles

Figure 5a shows thermograms for a ‘‘dry’’ Kr–helium
sample recorded in the experimental geometry shown in
2. The first thermometer was inside the sample, while
second was 1 mm above the sample; the helium pressu
the Dewar flask was 10 torr. The supply of HeII to the c
inder was terminated, and the sample was heated as the
of helium in the cylinder decreased. It can be seen from F
5a that the temperature in the sample at the initial stage
considerably lower than the temperature outside the sam
and the temperature detected by the inner thermomete
creased abruptly and becomes close to the temperature
side the sample only after the instantaneous decompos
of the sample occurring at the temperature registered by
outer thermometer which is close to the temperat
;7–8 K of the decomposition of IH sample reporte
earlier.2,4

Figure 5b shows the time dependence of the therm
minescence intensity for a sample at a wavelen
l;525 nm. The glow is due to luminescence of nitrog
impurity atoms stabilized in the sample. In the temperat
range 2.5–4.5 K, thermoluminescence has a high inten
and is accompanied by a considerable decrease in the sa
volume. A further heating quenches the glow, and the sam
volume remains unchanged up to instantaneous decom
tion. The decomposition is accompanied by a high-inten
luminescence glow and a temperature jump up to 8.3 K
similar decomposition is observed for all IH samples co
taining active particles.
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Experiments on the effect of external pressure on
sample stability were made according to the scheme
sented in Fig. 2. Thermogram of sample heating~with the
thermometer inside the sample! and the intensity of its lumi-
nescence were recorded under a pressure increasing afte
pumping of helium vapor from the Dewar flask was term
nated.

Figure 6 shows a thermogram of heating and the te
perature dependence of thermoluminescence of the sa
for a Kr–helium sample. The pressure in the Dewar fla
increased as a result of heating and amounted to 100 to
the moment of instantaneous decomposition. It can be s
that the decomposition of the sample in this case takes p
at a higher temperatureT;10 K; the temperature jump is
also much stronger~up to;18 K!.

At a slower heating, Ar–He and Kr–He samples cou
be heated up to 13 K, the pressure in the Dewar flask be
;500 torr. The drop of helium pressure due to evacuation
helium vapor from the Dewar flask at this temperature led
instantaneous decomposition of the sample accompanie
a luminous glow.

Thus, it has been established that the stability of
samples is higher under a higher pressure of the helium
dium.

4. DISCUSSION OF RESULTS

The obtained results make it possible to analyze
composition of impurity–helium samples and lead to t
conclusion that the composition changes as a result of h
ing outside helium.

4.1. Analysis of initial stoichiometric ratios

Initial stoichiometric ratios for impurity–helium sample
obtained by injecting gas jets which were not subjected
the action of an rf discharge~see Table IV! amount to 16–55
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for Ne–He, 24–60 for Ar–He, 26–58 for Kr–He, and 13–
for N2–He samples. In the model of IHSP as a phase
impurity–helium clusters frozen together, we can conclu
that clusters have one or two filled helium shells surround
heavy impurity particles.

Before analyzing the obtained results, it is expedien
consider theoretically the possibility of existence of IHS
with a varying stoichiometric composition.

Phenomenological Model of IHSP
We developed a simplified phenomenological appro

based on the assumptions normally used for studying
optical properties of atoms in liquid helium.8–10 The main
fundamental assumption concerns the additivity of the c
tributions of the energy of helium with a cavity of a certa
shape and the energy of an atom perturbed by the ambie

FIG. 5. ~a! Thermograms of heating for Kr–He sample obtained by int
ducing of a gaseous mixture@Kr#:@He# 5 1:200 after its passage through th
rf discharge region into He II: curve1 was plotted according to the reading
of the thermometer in the sample~see Fig. 2!, and curve2 corresponds to
the readings of the thermometer above the sample.~b! Thermoluminescence
kinetics of a Kr–He sample atl5525 nm under the helium pressure in th
Dewar flask of 10 torr.
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the total energy of the system.9 This assumption makes i
possible to obtain a satisfactory description of the press
dependence of displacement and width of spectral lines
atoms in helium.8–10

In the first approximation, we can neglect the form
mutual arrangement of impurity centers in the IHSP lattice
view of fast damping of the van der Waals interaction
impurity particles with helium atoms. In this case, the co
tribution from the interaction of impurity atoms to the ener
of the system can be neglected the more so in view of
large separation between impurities. According to calcu
tions, this contribution is small even for a transient state
merging of two one-layer impurity–helium clusters.

Thus, an analysis of the impurity–helium phase on
whole boils down to an analysis of one of its cells having t
composition Im Hen . The expression for the system ener
normalized to a cell has the form

- FIG. 6. ~a! Thermograms of two consecutive heating of the mesh with
sample~curve1! and without sample~curve2! upon an increase in pressur
in the Dewar flask from 10 to 100 torr.~b! Thermoluminescence kinetics o
a Kr–He sample atl5525 nm under increasing helium pressure.
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where«He is the average energy per atom of the He- s
system,Ecav the energy of cavity formation, andEint the
energy of interaction of an impurity center with the ambie
The dependence of«He on the average densityr of the he-
lium subsystem is defined, as usual, by the formula

«He5rb/21r~11g!c/2,

where the constantsb52888.81 K•Å3, g52.8, and c
51.045537•107 K•Å313g, given in Ref. 11 ensure the co
rect description of the properties of liquid helium atT50,
viz., theatomicvolumeV5 @ 2 (11 g)c/b#1/g 5 45.8 Å3, the
energy per atom«5(g/(g11)) (b/2V)527.15 K, and the
isothermal compressibility k522V2/gb51.2031022

atm21. The energy of a spherical cavity of radiusR, i.e.,

Ecav5s4pR21P
4p

3
R31

4p\

8m E
0

` ~¹r̃!2

r̃
r 2dr

is the sum of the surface energy proportional to the surf
tensions50.274 K/Å2,12 the work done to create the cav
ity, which is proportional to the external pressureP, and the
term representing the kinetic energyEk associated with the
existence of a helium density gradient at the edges of
cavity. The contribution to this term comes from the sphe
cal layer in which the helium densityr̃ changes significantly
from 0 at the center to a constant valuer. The energy

Eint54pE
0

`

r̃~r !Vint~r !r 2dr

of interaction of an impurity center with the helium su
roundings is determined by the interaction potentialVint(r ).

We introduce the following simplifying assumptions: th
distribution of helium around an impurity center is spheric
an impurity atom is incompressible, i.e., the cavity rad
R5const, and possible changes in the distribution of heli
densityr̃ in the vicinity of an impurity center upon a chang
in the IHSP composition are reduced to its multiplication
a constant. These assumptions are based on the fact tha
separation between atoms in liquid helium is much lar
than the distance corresponding to the minimum of
He–He pair interaction. The analysis of solitary impurity
helium clusters by the density functional method13 led to the
conclusion that the He density distribution in the first co
dinate sphere around an impurity center~for the KrHen clus-
ter! does not change starting fromn520: this is in accord
with the approximation of a rigid impurity atom.

Bearing in mind that the energy of interactionEint as
well as the kinetic energyEk under these approximations a
linear functions of density, i.e.,

Eint1Ek5r2Db,

we can write the energy of IHSP in the form

E5
~nb1Db!

2
r1

nc

2
r~11g!1s4pR21

4p

3
R3P. ~1!

SinceP5r2]E/]r, we can treat the obtained expression
an equation of state of IHSP. We will use this expression
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an arbitrary composition RgHen . For zero pressure, the he
lium density can be determined from the formula

r5@2~11g!nc/~nb1Db!#1/g.

This leads to the following expression for the binding ener
of an impurity atom:

Eb5E~RgHen!2«n. ~2!

Forn→`, we haveEb 5 Db/2V 1 s4pR2. We equate this
quantity to the binding energy for a solitary atom obtain
by Dalfovo13 and then findDb on the basis of the estimat
R>r e20.2 Å following from an analysis of graphical data13

obtained for the helium density in the vicinity of an impurit
where r e is the equilibrium distance for diatomic Rg–H
molecules~borrowed from Ref. 14!. The results of calcula-
tions based on formulas~1! and ~2! and valid for a rigid
impurity atom are presented in Fig. 7. All systems exhibi
monotonic increase in the binding energy and in the heli
density upon a decrease in the stoichiometric ratio. It sho
be noted that for large densities comparable with the den
of liquid helium, our arguments are not quite correct. Ho
ever, we do not aim at deriving the equation of state at
moment~which is a complicated and interesting problem!. It
would be reasonable to assume that the ‘‘solidification’’
helium in the entire IHSP cell is just the condition of i
existence. For this reason, the criterion of existence of IH
can be established on the basis of the equation of state o
liquid:

r>rc ,

whererc os a certain critical density corresponding to solid
fication of helium. This criterion determines implicitly th
maximum stoichiometric ratio in IHSP. Naturally, this rat
is exactly observed when an IHSP sample is grown in exc
of liquid helium as in our experiments. A reliable estimate
the numbern can be obtained from the ratio of atomic vo
umes of solid and liquid helium during freezing, which
equal to 0.88,15 extrapolated to T50, which gives
1/rc50.88V540.3 Å3. The corresponding values are give
in Fig. 7. Since the only effect of external pressure for pu
helium is just the attainment of critical density, helium
peripheral regions of an IHSP cell is a quantum-mechan
object just like ordinary solid helium. On the other hand, t
earlier quantum-mechanical analysis of a one-layered hel
cluster4,5 revealed that the number of quantum degrees
freedom for helium in the latter case decreases in view
rigid nature of radial vibrations of the helium shell. The co
responding solid state naturally has a high density. It can
determined by extrapolating the density of solid helium
the value atT50 along the melting phase-transition curv
and amounts to 1/rc534.41 Å3.15 This result can be used
for calculating the values of the stoichiometric coefficienn
for strongly bound ‘‘classical’’ helium. Figure 7 presentin
the values ofn shows that these values are quite close to
occupation numbers for the first coordination sphere ca
lated by Dalfovo.13

Thus, the above analysis shows that according to sim
physical considerations concerning the short range of
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Van der Waals interaction, the stoichiometric ratios for
stable ‘‘classical’’ IHSP must be close to the occupati
numbers for the fist coordination sphere of an impurity p
ticle. However, helium atoms in the first coordination sph
have small amplitudes of zero-point vibrations, and the c
responding decrease in the zero-point vibrational energ
sufficient for solidification of a certain number of neighbo
ing helium atoms due to effects of short-range correlati
between them. However, helium atoms belonging to a
mote~far! coordination sphere are bound by energies typ
of the He–He interaction, i.e., much more weakly than
atoms from the first coordination sphere which interact w
the impurity atom.

Consequently, an IHSP with a composition AHen can be
regarded as a system (AHen)Hen2n if we single out helium
from the first coordination sphere which is bound mo

FIG. 7. Dependence of the binding energy~a! and the average helium den
sity ~b! on n in the impurity–helium solid phase RgHen ~Rg5Ne, Ar, Kr,
Xe!; theoretical estimates of the numbern of rigidly bound helium atoms
and of the total numbern of helium atoms per impurity center~square
brackets! and the range of experimental values of stoichiometric coefficie
~↔!, 3 marks the number of helium atoms in the first coordination sph
obtained by Dalfovo.13
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strongly. This allows us to assume that the IHSP stability
ultimately determine d by the conditions under which heliu
of the first coordination sphere starts evaporating. Estima
the helium vapor pressure under these conditions, i.e.,

pHe5p0~T!exp~2~DHeA2DHeHe!/T!),

whereDHeA2DHeHe is the difference in the energies of in
teraction between He and an impurity center and betw
He–He atoms,p0(T) being the vapor pressure over classic
solid helium calculated by us earlier,5 we obtained Rg–IHSP
stability diagrams presented in Fig. 8.

4.2. Analysis of decomposition of IH samples

The analysis carried out above explains why the s
ichiometric ratio for freshly prepared samples is much hig
than that in Ref. 3. Moreover, the kinetics of decompositi
which includes two stages, i.e., the initial smooth stage
subsequent fast stage~see above! becomes qualitatively
clear.

The first stage of gradual decomposition of the samp
is manifested during consecutive removals of IH samp
from the bulk of HeII and their holding atT'4–6 K.
Sample decomposition was detected from the decreas
true and visible volumes~see Fig. 3!. Formally, a decrease in
the sample volume with a constant number of impurity p
ticles in the sample indicates a decrease in the stoichiom
ratio, Such a decrease was observed for all the samples u
investigation~see Table IV!.

The experimentally obtained rates of decrease in the
volumes of impurity–helium samples make it possible to
timate the characteristic time of the first stage of decom
sition ~Table V!. This time varies from 2•103 s for a Kr–He
sample to 8.5•103 s for a N2–He sample. We assume that th
sample consists mainly of solidified helium, and a decre
in the volume is due to evaporation of He atoms from
branched surface.

s
,

FIG. 8. Theoretical diagram of IHSP stability for the compositions NeHn

~curve1! and XeHen ~curve2!. The phase diagrams for helium~curve3!,
classical helium~curve4!, and IHSP as a system of clusters NeHe12 ~curve
5! are shown for comparison.
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TABLE V. Analysis of decomposition of ‘‘dry’’ impurity-helium samples at external temperatureT ; 4–6 K.
Impurity
particle
in sample

Sample
volume
V0 , cm

3

Time of holding sample
of T;4–6 K

tT , s

Change in
sample volume

DV0 , cm
3

Sample decomposition
rate

dN/dt, particle/s

Lifetime of sample
withV05 1 cm3

at T;4–6 K
tc , s

Ne 0.425 540 0.19 9.6•1018 2842
Ar 0.378 312 0.07 6.3•1018 4457
Kr 0.78 385 0.19 1.4•1019 2026
Xe 0.30 150 0.08 1.44•1019 1875
N2 0.17 600 0.07 3.3•1018 8571
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helium in the absence of merging of heavy centers natur
leads to sample cooling. This follows not only from the fa
that the temperature in the sample at this stage is lower
in the absence of helium~which can be explained by a hig
heat capacity of IHSP and liquid helium!, but also from the
presence of ‘‘steps’’ on the thermogram for attenuat
temperature-dependent luminescence of nitrogen impurity
oms~See below and Fig. 5!. The fact that the temperature i
the sample at this stage is considerably lower than near
sample explains why this stage was not detected in the
experiments: the change in the sample volume occurre
the temperature 7–8 K indicated by the outer thermome
i.e., near the temperature at which the second stage of
composition begins.

At the second stage, energy is liberated as a resu
merging of heavy particles, and the temperature in the b
of the sample becomes higher than in the background m
surements.

Figure 4 characterizes the second stage of decomp
tion. The temperature range in which the volume decrea
abruptly depends on the type of impurity particles. Figure

FIG. 9. Experimental temperature dependences of relative variations of
ible volumes for various impurity–helium samples~Im 5 Ne ~d!, N2 ~j!, Kr
~m! ~dark triangles! and Xe~dark nablas.!.
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of the samples, which indicate that the second stage occu
the temperature range 3–4 K for the Ne–He sample
5–7 K for the Kr–He sample.

If, however, the Kr–He sample was obtained by intr
ducing a gas jet after its passage through the rf discha
region onto He II, the stage of merging of impurity particl
is manifested in the luminescence of nitrogen impurity ato
~see Fig. 5b!. Since nitrogen impurity (1023%) is always
present in a real gas mixture, the passage of the gas
through the discharge region leads to the formation of me
stable atoms N(2D) which are stabilized in the helium me
dium for long periods of time;104 s. The prohibition on
the 2D–4S transition of the nitrogen atoms is removed a
the lifetime is reduced to 15–30 s only as a result of merg
of such an atom with another heavy particle, viz., a
atom.7,16

It should be noted that all the samples containing ‘‘a
tive particles,’’ i.e., obtained by condensation of gas jets h
ing passed through the rf discharge region, suffered ins
taneous decomposition. In the case when the samples
obtained without the action of the rf discharge on the j
instantaneous decomposition was observed only for
Ne–He sample, while the remaining samples retained t
volume upon further heating up to 12 K after its strong
duction by a factor of 8–12~see Table IV!.

An increase in pressure stabilizes IHSP, and its ultim
decomposition occurs in the higher-temperature region.
temperature interval of decomposition for heavy impur
centers is wider than for Ne impurity centers.

The breakdown of the helium–impurity phase can
used for carrying out chemical reactions at ultralow tempe
tures. The addition of a small amount of chemically acti
particles to the inert mixture@Rg#/@He# undergoing conden-
sation leads to the formation of an impurity–helium so
phase with stabilized chemical reagents in superfluid heliu
If we then remove the sample from He II and heat it, as
ciation of impurity particles leading to a reaction betwe
chemical reagents will take place.The sample stability a
the temperature region of the chemical reaction can be va
by choosing appropriate main impurity~@Rg#5Ne, Ar, Kr,
etc.!. This opens new prospects for studying reactions w
matrix-isolated particles, and the parameters of the ma
~impurity–helium phase! can be varied over a wide range.

is-
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CONCLUSIONS
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~1! The composition of impurity–helium samples o
tained by injecting impurity particles from a gas jet whic
has not been subjected to the action of a rf discharge
HeII is determined experimentally. The stoichiometric rat
for all the particles under investigation~Ne, Ar, Kr, Xe, and
N2! are much larger than the values predicted by the mo
of one-layered clusters frozen together. The theoretical p
sibility of freezing together two-layered clusters is subst
tiated in the framework of the continual model of the heliu
subsystem of the IHSP filling the space between rigid im
rity centers.

~2! The breakdown of impurity–helium samples r
moved from He II under low pressures is investigated. I
shown that the failure occurs in two stages. At the first sta
‘‘weakly bound’’ helium from the second coordination h
lium spheres surrounding impurity particles evaporates, le
ing to sample cooling. The second stage begins at temp
tures 3–6 K and is characterized by the breakdown of
first coordination spheres, the association of heavy impu
particles, a considerable decrease in volume, and sam
heating. It is found that the temperature ranges in which
failure of IH samples takes place are determined by the t
of the impurity particle: the lighter the particle, the lower th
temperature at which the decomposition processes beg~3
K for N2 and Ne and 5 K for Kr!. The type of the impurity
particle also determines the nature of decomposition: ins
taneous decomposition of IHSP is observed for Ne, wh
samples with Ar, Kr, Xe and N2 are characterized by
steady-state value of the volume at the end of decomposi
A considerable decrease in volume during decompositio
recorded when the temperature increases
7 K: by a factor of 8 for Kr– and Xe–He samples and by
factor of 12–15 for Ar– and N2–He samples.

The presence of even a small fraction of active impur
particles (@N#;1023%) in impurity–helium samples lead
to their instantaneous decomposition as a result of heati

~3! Thermoluminescence of IHSP accompanying the
crease in the volume of IH samples at temperatures 3–4
has been observed for the first time. Luminescence is a
ciated with merging of impurity particles as well as with th
recombination of N atoms during IHSP decomposition.

~4! It is found thatT57 K is the temperature of ultimat
decomposition of IHSP during its heating under a heliu
vapor pressureP510 torr. All processes in IHSP such as
decrease in volume, luminescence, and heat release occ
to this temperature.
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samples is investigated It is found that an increase in p
sure improves the stability of the sample, and their deco
position occurs at a higher temperature, its nature remain
unchanged.

~6! Insulation of chemically active particles by solidifie
helium in IHSP atT51.5 K allows us to analyze their prop
erties on one hand and makes it possible to carry out che
cal reactions at low temperatures during the IHSP decom
sition on the other hand.

It should be interesting to apply the methods of x-ray diffra
tion analysis for determining the IHSP structure and for
vestigating the rearrangement of impurity particles during
decomposition.
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Free and self-trapped excitons in rare-gas cryocrystals: coexistence and mixing

n

of states
I. Ya. Fugol’ and E. I. Tarasova

B. Verkin Institute for Low Temperature and Engineering, National Academy of Sciences of the Ukraine,
310164 Kharkov, Ukraine*
~Submitted August 28, 1996; revised November 22, 1996!
Fiz. Nizk. Temp.23, 767–778~July 1997!

The absorption spectra for rare-gas cryocrystals are calculated taking into account one-phonon
scattering and multiphonon interaction of free excitons with local lattice vibrations. The
possibility of coexistence of free and self-trapped excitons in nonequilibrium states above the
bottom of the exciton band is discussed on the basis of a comparison of the free exciton
energy with exciton damping in the one-phonon scattering and during transitions to exciton-
vibron states. It is found that free exciton damping at low temperatures is mainly
determined by one-phonon scattering in the entire exciton band only for xenon. In argon and
krypton crystals, both types of damping make comparable contributions. The probability
of transition of an exciton to self-trapped states in neon is so high that the existence of band
excitations is unlikely. ©1997 American Institute of Physics.@S1063-777X~97!01207-3#
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The lowermost exciton states in rare-gas solids~RGS!
are genetically related to a Rydberg-type atomic state and
characterized by an intermediate excitation radius which
much larger than the radius of the ground state, but does
exceed the distance to nearest neighbors in the lattice.
result ~and also due to high deformability of the cryocrys
lattice!, excitons in RGS possess a number of peculiar pr
erties. According to the type of the exciton–phonon inter
tion, the situation in RGS can be treated as an intermed
case, which leads to a nontrivial phenomenon of existenc
free ~F! and self-trapped~ST! excitons. On one hand, th
strong resonant coupling~the exciton band half-width
B;0.5 eV! leads to a considerable decrease in the energ
band quasiparticles relative to the local crystal excitat
levelEM in the nondeformed lattice~see the diagram in Fig
1!. On the other hand, an exciton can form a potential w
due to local lattice deformation in view of the strong excito
phonon coupling and can be trapped at one or two nea
atoms.1–6 The depthELR of the potential of the self-trappe
state depends on the exciton-phonon interaction param
D5AvELR1/2~v is the characteristic phonon energy! which
determines the slope of the potential at the pointE5EM ,
whereEM corresponds to the middle of the band. The qu
tity D characterizes the electron energy fluctuation dur
the lattice vibration time\/v and determines the width o
the absorption spectrum for a local center.6 A band exciton
stays at a lattice site for a short time\/B!\/v ~the adiaba-
ticity condition!, and the intensity of its scattering at the loc
potential is determined by the nonadiabaticity parameter

l5D2/B2!1. ~1!

Weak scattering corresponds to the coherent motion
band exciton, which is manifested in dynamic narrowing
the absorption line~as compared to a local center! and in its
displacement towards the bottom of the band~the wave num-
berk50!. In this case, forELR.B ~the strong coupling con
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states locally deforming the lattice and their manifestation
the spectrum also become possible. Thus, a weak excit
phonon scattering and a strong coupling with a local def
mation

v!D!B,ELR . ~2!

are observed in RGS.
Table I contains the parameters of exciton–phonon

teraction taking into account the existence of two types
self-trapped states: one-center quasi-atomic states~a-STE!
and two-center quasi-molecular states~m-STE!. All RGS are
characterized by very large values ofELR andB as compared
to low phonon frequencies.3 This peculiarity is responsible
for considerable difficulties in the calculation of exciton d
namics. We outline here the main problems involving
analysis of various aspects of the exciton-phonon interac
in RGS.

Relatively narrow absorption peaks typical of band qu
siparticles are characterized in RGS by a considerable as
metric region corresponding to higher energies and havin
width much larger than the phonon frequency.1–4 The shape
of the bands does not correspond to the model of w
exciton–phonon scattering~especially for Ne and Ar!. In
spite of the importance of the problem, the origin of t
short-wave wing has not been interpreted unambiguou
yet. The excited states of the wing with small coefficients
absorption and reflection are used in experiments for ef
tive excitation of the crystals.

The conditions for simultaneous manifestations of ba
and self-trapped states in absorption spectra were first
sidered theoretically for a strong exciton–phonon coupling
molecular crystals,5,6 and then analyzed for a large set
relations betweenB andELR also.7–11 However, the possi-
bility of manifestation of the dual nature of exciton absor
tion specifically for RGS has not been estimated in view
complexity of the situation~2!.

578578-09$10.00 © 1997 American Institute of Physics
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The peaks of free excitons observed in luminescenc
Xe, Kr, and Ar crystals as well as high-intensity excito
emission bands of thea-STE type in Ne and Ar and of the
m-STE type in Ne, Ar, Kr, and Xe were considered in term
of coexistence of band and self-trapped states.1–4 A finite
lowermost excitation state which is usually observed in
minescence is attained as a result of long-term multist
relaxation that takes place during the optical lifetim
t0;1029 s, wheret0@\/v;10213 s. Naturally, it is im-
portant to analyze the possibility of coexistence of band
localized excitons at various stages of their energy relaxa
in nonstationary states.

Exciton self-trapping is the most important factor det
mining the dynamics of excited states, distribution of rela
ation channels, and transport of excitation energy in RG
Nevertheless, peculiarities of exciton dynamics and sep
tion of the mechanisms of self- trapping~in a perfect crystal!
and localization of excitons at defects as well as separa
of energy intervals in the exciton band in which self-trappi
is most intense remain disputable.

The peculiar structural and temperature sensitivity of
spectra for free and self-trapped excitons as well as emis
of impurity centers populated from the exciton states of
matrix also remain unclear. These dependences canno
explained without taking into account the intraband rela
ation and energy transport by nonthermalized excitons.

FIG. 1. Formation of band and self-trapped exciton states in the config
tion coordinates model: quasi-molecular state~left!, quasi-atomic state
~right!, and band states of excitons~center!; w0 is the distribution function
for the motion of an atom at a lattice site in the ground state.
TABLE I. Parameters of exciton-phonon interaction~energy in eV!.
of
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d
n

-
-
.
a-

n

e
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excitons turned out to be historically connected with t
adiabatic approach in the theory of deformation interact
of excitons with the lattice. For this reason, experimen
data were interpreted as the coexistence of free and
trapped excitons separated by a barrier at the adiabatic
tential, and the population of ST states was associated
overcoming of a self- trapped barrier by free excitons n
the bottom of the band.1–4 The application of the adiabati
approach to RGS is justified by formulas~1! and~2! and has
formed the basis for considerable advances in understan
of self-trapping in wide-band insulators.1 However, it was
pointed out long ago by Rashba5 in his pioneering work de-
voted to light absorption in the case of a strong coupl
between an exciton and phonons that the disregard of
motion of nuclei does not permit an analysis of the effe
taking into account vibrational excitations of ST states n
and above the adiabatic barrier state. The difficulties w
explained by the mixing of states of free and self-trapp
excitons in large-amplitude vibrationally excited states d
to an increase in the transparency of the barrier. Sub
quently, Joselevich and Rashba12,13 considered self-trapping
of excitons with kinetic energies«k at the level of the self-
trapping barrier («k,0.1 eV). The process was induced by
transition to the adiabatic potential in the barrier regio
Such a channel is associated with the necessity of a ce
initial local deformation as well as a fast transformation
the kinetic energy into the energy of local deformation of t
lattice. The estimates obtained for perfect crystals led to v
ues of self-trapping probability which were too low to e
plain high-intensity ST-luminescence peaks. However,
very important qualitative conclusion that this probability
considerably higher than for thermalized excitons and ha
peak at the level of the adiabatic barrier height w
obtained.12 This result served as a strong impetus for sub
quent intense studies of possible self-trapping mechani
for high-energy excitons, including those taking into accou
nonadiabatic mixing of band excitons and vibrationally e
cited ST states.

The idea of configuration mixing is based on th
quantum-mechanical analysis od the motion of atoms i
lattice. The states of free excitons and vibrationally exci
self- trapped states~see Fig. 1! which differ in the configu-
ration of nuclear wave functions the more strongly, the lar
the lattice deformation around a local excitation lie above
bottom of the band. Self-trapping can be considered by us
a nonadiabatic approach as a transformation of the kin
energy of a band exciton into the kinetic energy of a lo

a-
Cryocrystal Type of state ELR B v D l G0 tST8 , s Eb

Xe m-STE 0.85 0.45 0.0063 0.073 0.03 4•1028 2•1028 0.16
Kr m-STE 1.38 0.45 0.0071 0.1 0.05 1.7•1024 4•10212 0.115

Ar
a-STE 0.77

0.35 0.0091
0.084 0.06 5.9•1024 1.1•10212

0.08
m-STE 1.6 0.12 0.12 3.8•1022 1.7•10214

Ne a-STE 0.85 0.2 0.0075 0.08 0.16 5.5•1022 1.2•10214 0.02
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The problems listed above stimulate an analysis of

the approaches proposed earlier for describing the excit
phonon interaction in order to develop the ideas on the st
ture and dynamics of intermediate-radius excitons in RG

The main aim of this research is the discussion of a m
complete concept of coexistence of free and self-trapped
citations in RGS including the range of exciton kinetic en
gies up to the middle of the band for time intervals start
from absorption (ta;10215 s).

In this publication, we analyze absorption spectra
RGS taking into account one-phonon damping and the c
pling between free and self-trapped excitons~Sec. 1!, the
dispersion range for band excitons which corresponds to
formation of branches of mixed exciton- -vibron states p
dicted in the model7,14 ~Sec. 2!, and consider in detail the
problem of coexistence of free and self-trapped excitons
nonequilibrium states above the bottom of the band by co
paring the probabilities of exciton scattering by phonons a
of damping at local exciton-vibrational states~Sec. 3!.

1. MANIFESTATION OF FREE AND SELF-TRAPPED
EXCITONS IN ABSORPTION (WEAK DAMPING
APPROXIMATION)

The difficulties in the analysis of coexistence of free a
self-trapped excitons in the intermediate case of exciton c
pling with phonons are associated with the description
delocalized free excitons~F! as well as excitons localize
virtually on a lattice site~ST! by using a unified approach. I
was shown in publications on the effect of exciton-phon
interaction on the exciton absorption spectra6–11,15 that the
high-energy tail and the main part of the absorption ba
have the form of a Lorentzian constricted due to the h
mobility of a free exciton. It should be recalled that the a
sorption spectrum for a local center can be described b
wide Gaussian curve. The low-energy of the absorption b
in the exciton resonant region decreases exponentially~ac-
cording to the Urbach law! and is associated with optica
transitions to ST states. In order to take into account
F–ST dualism in exciton absorption, two approaches to
problem of excitation eigenstates in the lattice have b
developed:~a! the states of an F exciton are used as the ba
and the exciton-phonon interaction with one, two, e
phonons is taken into consideration consecutively~in order
to obtain a local state, the sum of an infinite series should
determined!, or ~b! the complete set of ST states is used
the basis, to which the operator of resonant transfer of e
tation is applied. As a rule, both approaches involve con
erable difficulties when attempts are made to obtain a gen
solution in the case of intermediate coupling.

The application of approach~b! by Cho and Toyazawa7

resulted in a renormalization on one-site exciton-vibron l
els of the ST state~corresponding to a linear exciton–phono
interaction! to a set of narrow bands with a specific energ
momentum relation. As a result, the change in the form
the absorption spectrum from a Gaussian to a narrow r
nant peak for an almost free exciton upon an increase in
parameterB of resonant transfer of excitation was demo
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free exciton peak near the bottom of the band occurs w
condition~1! is satisfied. These authors managed to desc
the Urbach of the absorption band near resonance assoc
with transitions to quasi-local ST states below the bottom
the band. The inclusion of only local phonons at sites nea
to an excitation did not allow the authors of Ref. 7 to obta
the Lorentzian shape of the high-energy wing of the ba
since the scattering at lattice phonons was not envisage
the model. It was shown, however, that a weak~in view of
nonadiabaticity! band of absorption by quasi-local exciton
vibron states can be observed in the high- energy region
the band.

The next advancement in the analysis of the probl
was made by Sumi9 who took into account quantum effec
of motion in the lattice by using a nonadiabatic approa
The proposed method of approximation of multiphonon p
cesses made it possible to realize successfully approac~a!
and to obtain polaron-like narrow-band states below the
citon resonance as well as the phonon structure of the
sorption spectrum on the high-energy side of the fundam
tal exciton peak.

Sherman10 described a method of exact solution of th
problem by using approach~a! and confirmed Sumi’s result
on calculation of absorption spectra to a considerable ext
Coupled exciton states were constructed on the local bas
the form of orthogonal wave functions constructed by co
secutive broadening of the exciton-phonon localization
gion so that scattering at delocalized phonons was also ta
into account. Sherman10 calculated the absorption spectra n
merically for a crystal with a fixed frequencyv of optical
phonons and with the set of values ofELR andB with maxi-
mum values 7v and 20v, respectively. For RGS crystals
ELR;100v and B;50v ~see Table I!, and the effect of
mixing of the states has a high sensitivity to the magnitu
and to the ratio of these parameters. For this reason,
results obtained in Ref. 10 cannot be interpolated to R
easily, and the proposed algorithm of using recurrent re
tions for obtaining the complete set of states in extrem
cumbersome.

The next stage in overcoming the difficulties in calcula
ing the systems withELR.B@v was the publication by A.
Sumi11 who made an attempt to combine phenomenolo
cally approaches~a! and~b! each of which was applied in th
first approximation in the relevant perturbation. It is impo
tant that Sumi11 analyzed the interaction with acoust
phonons, which is typical of RGS. Since he calculated o
cal spectra, the analysis was carried out near the bottom
the exciton band (k50), where configuration mixing of free
and self-trapped excitons is known to be weak. In order
calculate Green’s functionG(k,E) of the exciton–phonon
system, the imaginary component of the mass oper
S(E) was formally written as the sum of two dampings: t
one-phonon dampingG(E) of free excitons, and the damp
ingGST(E) associated with the probability of transition of a
exciton with energyE to a self-trapped state. The spectr
distribution of the probability of excitation absorption by
local center is proportional to the Frank–Kondon factor a
has the form of a Gaussian with the half-widthD:
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According to Refs. 8, 11, and 14 that attenuation of the
citon state due to transitions to a self-trapped state far a
from the middle of the bandEM can be approximated by th
formula

GST~E!5A2p
~E2EM !2

D
expF2

~E2EM !2

2D2 G . ~4!

A. Sumi noted that, according to this formula, the val
of GST(E) near the bottom of the band is exponentially sm
in the parameterE2/D2;B2/D2@1, and G(E)@GST(E)
above the bottom of the band. For this reason, the attenua
GST(E) is manifested significantly only below the bottom
the band, whereG(E)50, and hence contributes only to th
formation of the low-energy edge of exciton band abso
tion. Sumi11 carried out self-consistent calculations
Green’s function, scatteringG(E), as well as the absorptio
band forELR550v andB540v, which is far from the pa-
rameters typical of RGS~see Table I!. Thus, the analysis o
the problem for the range of parameters typical of RGS
not yet been carried out.

In this section, we describe the results of calculations
exciton absorption curves for RGS made according to
following algorithm. The absorption spectrum is defined
terms of Green’s function in the form

A~E!521/p Im G~k50, E!, ~5!

and Green’s function is defined through the mass oper
S(E):

G~k,E!5
1

E2«~k!2S~E!
. ~6!

Here«(k) is the energy-momentum relation for an exciton
a rigid lattice, and

Im S~E!5G~E!1GST~E!. ~7!

Such an approach presumes that the perturbation is smal
does not lead to a significant rearrangement of the eig
states of the band exciton. We used formula~4! for
GST(E) and the well-known approximation for the probab
ity G(E) of exciton scattering at acoustic phonons
T50:1,16

G~E!5lE. ~8!

We did not calculate the band peak width since it
known that absorption bands in RGS are very wide and
be described by the transverse-longitudinal exciton splitt
DE;DvLT;0.1 eV in the polariton model.1 However, real
spectra are characterized, in addition to an anomalous w
of the resonant peak, by a noticeable background in the h
and low-energy regions.1,2,4 The peculiarities of the absorp
tion band are manifested most clearly for Xe since ot
resonances are far away. The calculations based on thi
gorithm resulted in an integral-small blue side-band in
absorption band~solid curve in Fig. 2a!, which corresponds
to the prevailing concepts on weak exciton scattering in
crystal. The integral intensity of the spectrum is equal
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unity. The parameters used in the calculations are given
Table I. The asymmetry of the curve is emphasized b
comparison with the Lorentzian curve with the wid
G05const(E), which is typical of one-phonon scattering ne
resonance~dashed curve!. The solid curve in Fig. 2b corre
sponds to the absorption spectrum for Kr obtained by us
the same algorithm. Although the band asymmetry is ma
fested clearly, the maximum height of the main exciton pe
is much larger than the contribution from the phonon wi
~the height of the peak is two orders of magnitude larger th
the scale of the figure and is naturally not presented!, and its
integral intensity amounts to more than 90%. The exci
absorption spectrum obtained for Kr is close to that cal
lated by us for Ar if we take into account only one-cente
self-trapped states.

Experimental absorption spectra for Ne and Ar are s
broader than for Xe and Kr. This corresponds to prevail
concepts concerning higher intensity of exciton-phonon
teraction in light RGS. However, partial superposition of s
glet and triplet resonances, transverse-longitudinal b
splitting, and coexistence of two types of self-trapped sta
complicate considerably the interpretation of experimen
results for these crystals. For this reason, it is importan
obtain additional theoretical information on possible prop

FIG. 2. Calculated absorption spectra for excitons in Xe~a! and Kr ~b!. The
solid curve is calculated by formulas~4!–~8!; the dashed curve correspond
to the Lorentzian with the half-widthG0 characteristic of one-phonon damp
ing; the dot-and-dash curve is calculated according to the energy-mome
relation ~10!. The integral intensity of the high-energy band relative to t
total intensity isl,3% for Xe.
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ties of excitons, even if we confine ourselves to the simp
quantitative estimates.

Let us consider the theoretical absorption spectrum
Ne taking into account only one- center self-trapped sta
which dominate in this crystal. Calculations based on f
mula ~5! give a considerable blue side-band~up to 25% of
the integral intensity! and general asymmetry of the ban
~solid curve in Fig. 3!. The dashed curve corresponds to t
Lorentzian describing the absorption of free excitons w
the characteristic one- phonon damping. The obtained
tern indicates a considerable contribution of self- trapp
states to exciton absorption in Ne and casts a shadow
doubt on the correctness of calculations carried out in
approximation of weak damping of exciton states, wh
does not change the band structure of quasiparticles. N
rally, it was considered expedient to analyze additionally
possible contribution of self-trapped states to absorption
to the energy-momentum relation for excitons, taking in
account the renormalization of band states. Further ana
aims at determining the influence of nonadiabatic effects
the exciton-phonon interaction on the states of excitons n
and above the bottom of the band in RGS.

2. BAND EXCITON STATES TAKING INTO ACCOUNT
NONADIABATIC EXCITON-VIBRON MIXING

In this section, we discuss briefly the mixing of states
free excitons and vibrational excitations of self-trapped sta
on the basis of an approach using the basis of self- trap
states@of type ~b!; see Introduction# which was proposed
earlier.7,14 The analysis will be based on the model of no
dispersive phonons. Degeneracy of all normal coordinate
the lattice makes it possible to introduce their linear for
qn , each of which interacts with an electron excitation
cated at thenth lattice site. The Hamiltonian of an electron
excited crystal can be written in the traditional form:

H5Hexc1H lat1H int . ~9!

The expressions for individual terms actually coincide w
their form in Refs. 9 and 10. The electron component of

FIG. 3. Calculated absorption spectra for excitons in Ne. Notation is
same as in Fig. 2.
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help of the Fourier transform. The lattice termH lat corre-
sponds to the lattice in the absence of an electron excita
and contains the kinetic energy operator for nuclei. The
teraction termH int corresponds to a linear approximation
phonon operators and is not regarded as small. We cho
for the orthonormal basis the vibrationally excited states
an exciton localized at the same site with the deformati
We assume that these states are a solution for a self-tra
exciton ~the problem with Hamiltonian~9! without a reso-
nant transfer term inHexc! and have equidistant vibrationa
levels for all energy values up to the top of the exciton ba
~harmonic approximation forH lat!. Figure 1 shows the de
pendence of the lattice potential on the normal coordin
q of the lattice site at which the excitation is localized~we
assume thatH lat1 H int 5 EM 2 vq0q 1 vq2/2!. The dimen-
sionless parameterq0 ~the displacement of the potentia
minimum in a self-trapped state! is a measure of the exciton
phonon coupling and determines the parameterD 5 vq0 /&
andELR 5 vq0

2/2. We confine our analysis to the approa
called the consideration of ‘‘internal subspace,’’7 in which
the processes of exchange of a local excitation betw
phonons and the ambient lattice are disregarded. For
case, an exact solution of the Schro´dinger equation for the
total Hamiltonian ~9! was obtained,7,14 and the energy-
momentum relationE(k) for mixed exciton-vibron states
was determined in the form

(
s

j s
E~k!2es

5
1

«~k!
. ~10!

Herees is the energy of thes-th vibrational level of the ST
state,«(k) corresponds to the dispersion branch of an ex
ton in a rigid lattice, measured from the lattice-site lev
EM , and j s is the Frank–Condon factor for a local center.
the absence of exciton-phonon coupling (q0→0), j s5dM0 ,
and we obtain, in accordance with~10!, the energy momen-
tum relation for free excitons in a rigid lattice
E(k)5EM1«(k). In the case of a strong exciton–phono
coupling (D@v), the expression forj s has the asymptotic
form

j s5
v

~2p!1/2D
expS 2

~es2EM !2

2D2 D . ~11!

In this paper, we calculate the energy spectra co
sponding to Eq.~10! by using the parameters for RGS fro
Table I. The result obtained fora-STE in Ar is shown sche-
matically in Fig. 4a, while the results of numerical calcul
tions for branches at the center of the band are presente
Fig. 4b. Peculiarities of the spectrum are completely de
mined by the form of variation ofj s , i.e., the overlap inte-
gral for nuclear wave functions of a free exciton and t
vibrational s-state of a self-trapped exciton. The parame
j s has the maximum valuej M;v/D at the middle of the
band ~for E5EM!. According to Eq.~10!, the states of the
free and self-trapped excitons are mixed, and the width of
energy region in the band with a relatively strong mixing
states is of the order ofD ~see Fig. 4!.

e
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Let us now consider a fairly large peripheral region
the energy-momentum relation whereues2EMu@D, and the
nuclear wave functions of free and self-trapped states ove
to a considerably smaller extent. In Xe, Kr, and Ar cryocry
tals, exciton states near the bottom of the band are virtu
not mixed with exciton-vibron states in view of the smallne
of the Frank–Condon factor exp(2B2/2D2) determining a
very low transparency of the self-trapping barrier at the ad
batic potential. Thus, the traditional application of the ad
batic approximation for an analysis of self-trapping near
bottom of the exciton band for heavier cryocrystals is
accord with the obtained result. Nevertheless, according
the theory, the energy rangeuE2EMu&D for each branch
with the numbers contains regions corresponding to notic
ably mixed exciton- vibron states. However, band states
not destroyed completely even in the case of a str
exciton-phonon interaction in the Ar cryocrystal. Figure
shows that considerable changes are observed only in a
tain range of wave vectors, whose relative width at the ce
of the band is approximately equal toD/B. The blurring of

FIG. 4. Energy-momentum relation for exciton-vibron states calculated
formula ~10! for Ar taking into account the quasi-atomic self-trapped st
~the parameters of calculation are given in Table I!: general view~a!, nu-
merical calculations for the middle of the band~b!; the dashed line corre-
sponds to the energy- momentum relation«(k) for excitons in a rigid lattice.
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dampingGST(E).
The absorption spectra for the obtained exciton-vibr

states for cryocrystals with a weak exciton–phonon damp
~Xe, Kr! and a strong damping~Ne! differ significantly ~the
dot-and-dash curve in Figs. 2 and 3!. In the Xe spectrum, the
contributions from two bands, viz., a very narrow~since this
model disregards scattering at acoustic phonons! purely ex-
citon peak near the bottom of the band and a bro
(DE;D) band of the Gaussian type at the middle of t
band, can be separated easily. The ratio of integral intens
of these bands is equal to (12l)/l, wherel is a small
parameter~see formula~1! and Table I!. This fact can be
interpreted as a manifestation of the effect of coexistence
free and self- trapped excitons in absorption. The small c
tribution (;3%) to absorption from self-trapped states in X
indicates the suitability of the model described in the pre
ous section.

An increase in the nonadiabaticity parameterl in the
series from Xe to Ne is accompanied not only by an incre
in the intensity of the second band, but also by a shift of
peak towards the bottom of the band. The value ofELR for
Kr for which the exciton band width is the same as for Xe
much larger, and hence the contribution from ST states
absorption is manifested in the form of a gently sloping sid
band with a weakly manifested peak extended far into
blue edge~all the spectra are orthonormalized to unit integ
intensity!.

The contributions of the two types of absorption in t
Ne spectra cannot be separated in practice, and the spec
has the shape of an asymmetric wide band~dot-and-dash
curve in Fig. 3! shifted to the red edge relative to the positio
of the bottom of the band for a nondeformed lattice~‘‘pure’’
exciton corresponds to the Lorentzian in Fig. 3!. This shift,
distinguishing the result from that obtained in the previo
section~solid curve in Fig. 2!, is a manifestation of mixed
exciton-vibron narrow-band states below a purely exci
resonance. According to Refs. 7 and 10, it is difficult
single out a phonon-free peak in the absorption band in
case in view of the effect of mixing of states. Neverthele
the shapes of these bands are close, which can also ind
the qualitative applicability of the model considered in t
previous section, presuming that the states of free excit
are characterized by weak damping. In order to clarify
origin of exciton states in Ne as well as possible change
the band properties of excitons in other cryocrystals,
must analyze in detail the total damping of excitons, wh
determines the stability of band states of quasiparticles
well as the relation betweenG(E) andGST(E), which is of
fundamental importance for determining the kinetic para
eters of free excitons.

3. CRITERIA FOR COEXISTENCE OF FREE AND SELF-
TRAPPED EXCITONS ABOVE THE BOTTOM OF THE BAND

The smallness of the quasiparticle damping as compa
to its kinetic energy is a criterion for preserving the fr
~coherent! type of motion of an exciton. One-phonon dam
ing for the intraband exciton scattering~k–k8 transitions!
was analyzed by us in detail earlier.16 We proved that free

y
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FIG. 5. Relation between the exciton kinetic energyE ~dot-and dash line! and the contributions of transitionsGST(E) to a quasi-atomic self-trapped state
~solid curve! and one-phonon scatteringG(E) ~dashed line! to damping: for Ne~a! and for Ar ~b!.
states can serve as a good approximation for excitons scat-
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tered by acoustic phonons virtually for all exciton states
the temperature interval corresponding to the existence
cryocrystals. A similar analysis should be carried out tak
into account the damping associated with transitions t
self-trapped state. Figures 5 and 6 show theGST(E) and
G(E) dependences calculated by formulas~4! and~8! respec-
tively for all RGS Let us first consider the relation betwe
the quantitiesGST(E) andG(E).

One-phonon relaxation processes following the exc
tion dispersion curve dominate over the probability of tra
sitions to self-trapped states in the energy range where

GST~E!!G~E!. ~12!

It can be seen from Figs. 5 and 6 that this region is sign
cant only in Xe and is not observed in Ar and Ne. Th
means that the coexistence of nonthermalized states of
and self-trapped excitons in a certain energy range can
confirmed only for a Xe cryocrystal~and near the bottom o
the band in Kr to a certain approximation!, and the quantity
GST(E) can be regarded as the probability of self-trappin
In this case, the natural assumption is made that after a t
sition to a self-trapped state, the probability of relaxation
an excitation in vibrational levels is much higher than t
of
g
a

-
-

-

ee
be

.
n-
f

case, the excitation energy transfer should be considere
taking into account only the mean free path of free excito
relative to scatteringG(E) at phonons.

In the region whereGST(E);G(E), which has the
maximum width for Xe, Kr, and Ar, we cannot judge abo
self-trapping probability in terms ofGST(E) since multiple
transitions from the states of free excitons to self-trapp
states and back are possible during the relaxation time
order to determine the self-trapping probability, detail
analysis of relaxation processes in a self-trapped state ta
into account multiphonon processes which are beyond
scope of this paper is required. Nevertheless, we can s
with confidence that the kinetics of free excitons in this e
ergy range will be determined by two types of damping w
comparable contributions.

It should be recalled that expression~4! for GST(E) is
valid only for the energy range far away from the center
the band, whereuE2EMu@D. For this reason, we are not i
a position to analyze the conditionGST(E)@G(E) on the
basis of the results presented in Figs. 5 and 6 for Ar, Kr, a
Xe in the range of high kinetic energies of excitons. Ho
ever, it is obvious that processes of transition to a s
FIG. 6. The same as in Fig. 5, but taking into account transitions to a quasi-molecular self-trapped state: for Kr~a! and for Xe~b!.
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exciton states in the band of this crystal.
Let us now consider the stability of the band state

self-trapping process. The criterion for the conservation
coherence is the small value of the total damping for a q
siparticle relative to the value of its kinetic energy. On t
scale of Figs. 5 and 6, the energy–momentum relation~the
dot-and-dash line denoted byE! appears as a nearly vertic
line, and the relation

GST~E!/E!1 ~13!

is satisfied to a high degree of accuracy for excitons ab
the bottom of the band in Xe, Kr, and Ar crystals. It w
mentioned in the previous sections that exciton-vibr
narrow-band states~see Fig. 4a!, which make a specific con
tribution to absorption on the low-energy side of the excit
peak, must be manifested in these crystals near the botto
the band in the given theory. However, the change in
energy–momentum relation for excitons in the resonance
gion, which is associated with a considerable phono
exciton mixing, must introduce considerable corrections
the problem of existence of such branches. This aspect m
be investigated in greater detail.According to Fig. 5a,
situation in Ne is opposite to condition~13! for the entire
band, and this leads to the following important conclusion
nonadiabatic exciton- phonon interaction in Ne induces c
siderable mixing of states of free and vibrationally excit
self-trapped excitons, which must be manifested in a vio
tion of the energy– momentum relation for band excitatio
in the limit of a rigid lattice. The state of free excitons in th
case cannot be treated as a good zeroth approximation
analysis of relaxation of excitations and energy transpor
the lattice. The presence of a large contribution of reson
transfer in the exciton energy in Ne along with a very stro
deformational interaction with the lattice is responsible
unique peculiarities of this crystal. A further analysis of t
properties of excitons in Ne should be carried out in terms
nonstationary states.

In conclusion, let us consider the relation between
formal estimates of nonadiabatic effects, viz., ener
momentum relation~10! and self-trapping probability~4!,
obtained here with the actual peculiarities of the structure
lowermost self-trapped electron excitations in RGS in
form of quasi-atomic and quasi-molecular centers. It
known that the luminescence spectra of Ne and Ar crys
exhibit both types of self- trapped states, while the spectr
Kr and Xe crystals display only quasi-molecular centers. T
states of quasi-molecular type are characterized by a con
erable nonlinearity and nonisotropy in the deformational
ordinate. The interaction of a one- center state with the R
lattice is symmetric and has the form of a strong repulsion
nearest neighbors. In our calculations, we used the o
coordinate model of the exciton- phonon interaction, wh
formally corresponds to a one-center self-trapped state.
parameters of self-trapped and band states as well as
lattice parameters are given in Table I.

It should be noted above all that binding energiesEb of
the lattices are small, especially for light cryocrystals. T
means that the system of local vibrational levels in a o
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in RGS is unstable in view of the fact that stresses are c
siderably higher than the tensile strength of the lattice
large strains. The theory of mixing of exciton-vibron stat
in this case can be used either in terms of the damping
states of free excitons, or for considering fast processes,
absorption of light. The presence of a wide region of en
gies and coordinates in which the lattice potentials cor
sponding to the ground and a self-trapped state overlap i
cates the instability of the basis state in an analysis o
polaron-like energy-momentum relation of type~10! ~an ex-
citon plus a high-energy vibron at the same site! in the range
of small strains~see Fig. 1!. Polaron-type states~as in Fig.
4b! must obviously decay into a free exciton and vibration
excitations of the lattice. Such processes were not taken
account in the model corresponding to the ener
momentum relation~10!. Moreover, even a qualitative de
scription of transformation of a high energy of local defo
mation of the lattice associated with electron excitation in
independent local or band excitations of the lattice s
system does not exist.

One more decay channel is also possible for qua
atomic self-trapped states. This channel is associated w
transition of an excitation from quasi-atomic to qua
molecular local vibrations since the lattice surrounding
region of expansion around the excitation is compresse17

which increases the resonant coupling between the atom
the ambient and can induce two-center self-trapping.

The energy range corresponding to quasi-molecular
brational levels lies belowEM . In this region, we can expec
an additional an additional effect, viz., the mixing of states
quasi-atomic and quasi-molecular types, along with
change in the disperse structure of excitons, if the bind
forces between an excitation and corresponding locali
states are strong enough~e.g., as in Ne and Ar!. It should be
emphasized that in spite of the large value ofELR

(m) as com-
pared toELR

(a) ~see Fig. 1!, the coupling between excitons an
low-symmetry quasi-molecular vibrations is weaker th
their coupling with completely symmetric mode of on
center states. The considerable nonlinearity of the molec
potential near the middle of the band also plays a signific
role. Quasi-atomic excitation with a smaller value ofELR

indeed dominates in the radiation emitted by Ne and Ar cr
tals in which both types of self-trapped states are observ
This fact indicates above all that the estimates of the pr
ability GST(E) obtained here for two-center states on t
basis the quantitiesELR can be too high. In addition, the
strong repulsive interaction of an excitation with the su
rounding particles can lead to a considerable contribut
from the one-center self-trapping channel to the populat
of quasi-molecular states~see above!. For this reason, we
confined our analysis ofGST(E) in these crystals only to
one-center self-trapping.

The exaggerated values ofGST(E) for Xe and Kr must
be reflected qualitatively in the expansion of the ene
range~12! in which nonthermalized states of free and se
trapped excitons can coexist. In spite of the fact that o
center self-trapping in Xe and Kr cryocrystals is disadvan
geous from the energy point of view~judging from the large
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deformational potential~1.3 eV for Xe! observed in experi-
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ments on the temperature shift of absorption bands!, the
term corresponding to one-center excited state in this crys
is also essentially repulsive at a distance separating ne
neighbors in the lattice. This means that a one-center m
stable quasi-local state can play the role of an intermed
stage in absorption and in transitions of an excitation
tween the band and a quasi-molecule. This can ultima
increase the probability of self-trapping to a two-center st
in the region above the bottom of the band, compensating
above-mentioned effect of nonlinearity of molecular pote
tial to a certain extent.

It should be emphasized that the self-trapping probab
ties and the existence of new polaron-like dispers
branches are problematic in the case of quasimolecular e
tation rather than the zeroth approximation itself in the fo
of local exciton-vibron highly excited levels since the vibr
tional structure of the self-trapped state is formed within
molecule due to a resonant bond between two atoms~as they
approach each other! and is stable in the lattice in the zero
approximation.

An analysis of optical properties including polariton e
fects in the region of photon- exciton mixing involves th
determination of the self-trapping probability for excitons
the bottom of the band, wherek50. Table I contains the
values ofGST(E52B)[G0 as well as corresponding life
timestST for free excitons relative to self-trapping. Compa
ing the values of this time for Xe with the latest estima
obtained from optical experiments on damping of free ex
tons in especially perfect crystals taking polariton effe
into consideration (tST>2•1028 s),18 we see that results co
incide wonderfully. The two opposite effects~the contribu-
tion of one-center states and the nonlinearity of the qu
586 Low Temp. Phys. 23 (7), July 1997
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the formation of the probability of exciton self-trapping
Xe. In any case, the mutual influence and coexistence of
self- trapping channels in RGS require further detailed inv
tigations.
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Molecular adsorption states and sticking probability of D 2 molecules on the W(110)

ts on
surface at liquid helium temperatures
V. D. Osovskii, Yu. G. Ptushinskii, V. G. Sukretnyi, and B. A. Chuikov

Institute of Physics, National Academy of Sciences of the Ukraine, 252022 Kiev, Ukraine*
~Submitted October 21, 1996!
Fiz. Nizk. Temp.23, 779–783~July 1997!

The dependence of the sticking probability of D2 molecules on the W~110! surface of tungsten
on the degree of coverageS(u) at the substrate temperatureTs;5 K is measured under
different conditions of adlayer formation.The effect of significant increase in the sticking
probability for D2 in the course of population of weakly bound absorption states observed earlier
~V. D. Osovskiiet al., Pis’ma Zh. Éksp. Teor. Phys.60, 569 ~1994! @JETP Lett.60, 586
~1994!#! increases considerably on the surface precovered with an ordered monolayer of deuterium
atoms and even more strongly for a surface covered with atomic and physisorbed molecular
monolayers. The peculiarities in theS(u) dependence observed atTs;5 K are explained, taking
into account the island mechanism of adlayer growth as well as the precursor mediated
process of its formation. TheS(u) dependences are also obtained forTs578 and 300 K and
indicate the Langmuir mechanism of adsorption during the population of the 550 K atomic state as
well as the precursor mediated mechanism of formation of the 410 K atomic state. ©1997
American Institute of Physics.@S1063-777X~97!01307-8#
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Adsorption of hydrogen on metal surfaces is of cons
erable interest in connection with the problems of its dis
lution and storage in metals as an ecologically pure fu
hydrogen embrittlement of metals, and so on. The small
and mass of hydrogen atoms and molecules as well as
double mass of the hydrogen isotope~if we disregard tritium!
can ensure manifestations of special effects in the cours
interaction of hydrogen with the surface, which are not o
served for larger molecules. Low-temperature studies ar
special importance since in this case weakly bound phys
adsorption states can be populated and analyzed u
steady-state conditions, and quantum effects can be m
fested. Weakly bound molecular adsorption states often p
the role of precursors in the mechanism of dissociative
sorption which is the main stage in the above-listed p
cesses. For this reason, an analysis of low-temperature
sorption of hydrogen isotopes is a very interesting proble

Hydrogen adsorption at metal surfaces is studied
detail,1 except for low temperatures of the substrate. In f
publications devoted to low-temperature adsorption of
drogen, the symmetry of the adlayer, the mobility of a
sorbed particles, and phase transitions at temperatures
to the liquid helium temperature were mainly studied.2–8 In
our earlier publications, the data on the spectra and kine
of population of weakly bound hydrogen adsorption sta
are reported.9–13 Among other things, the effect of a stron
increase in the sticking probability for D2 molecules on the
W~110! surface was observed for the substrate tempera
Ts;5 K during the population of weakly bound molecul
adsorption states.13 This effect was interpreted as a cons
quence of elevated efficiency of kinetic energy scattering
an incident molecule impinging on a weakly bound molec
adsorbed earlier as compared to its collision with the p
surface or the surface covered with rigidly bound adsor
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multiple population and depletion of weakly bound molec
lar adsorption states and observed a considerable enha
ment of this effect. The data of sticking probability of D2
molecules atTs578 and 300 K are also obtained for com
parison.

EXPERIMENTAL TECHNIQUE

The experiments were made on a ultrahigh-vacu
setup of the ‘‘camera obscura’’ type by the methods of m
lecular beam and thermodesorption spectroscopy. The
perimental technique is described in detail in Refs. 12 a
14. The sticking probabilityS was determined from the de
pendence of the flux of molecules scattered or desorbed f
the sample surface on the adsorption time:15

S~ t !512I ~ t !/I m , ~1!

where I (t) and I m are the ionic currents of the detector
scattered molecules at the instantt and after the total reflec
tion of molecules from the saturated sample surface.

The coverage degreeu5n/n0 ~n is the surface concen
tration of adsorbed particles andn0;1.4•1015 cm22 is the
concentration of the surface atoms of the substrate! was de-
termined from the time dependence ofS from the formula

u5n/n0E
0

t

S~ t !dt, ~2!

wheren is the gas-kinetic molecular flux on the sample s
face. In our previous publications,9–13 the value of the quan-
tity u is given in relative units since we did not measure t
flux n. However, we can use the results obtained in Refs
and 16, according to whichu51 in the case of saturation o
atomic phase of hydrogen adsorption on the W~110! surface,
and determine the proportionality factor between the quan
u and the area bounded by the curveS(t). Such a method of

587587-04$10.00 © 1997 American Institute of Physics
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evaluatingu is approximate and does not take into acco
the possible error in recording molecules scattered by
cold surface or desorbed thermally.

DISCUSSION OF EXPERIMENTAL RESULTS

Figure 1 shows theS(u) dependences for three differe
processes atTs;5 K. The first process~curve1! corresponds
to adsorption of D2 at the initially pure W~110! surface. In
this experiment, the gas temperatureTg5550 K, and the
valueS0;0.3 of the initial sticking probability (u50) cor-
responds approximately to the dependenceS0(Tg) from Ref.
13. The most typical peculiarity of theS(u) dependence, i.e.
an increase inS upon the onset of the population of weak
bound physical adsorption states, is observed atTg5550 K
as well as at lower values ofTg .

13 For convenience, Fig. 2
reproduces the spectrum of thermodesorption of the D2 ad-
layer from Ref. 13, saturated atTs;5 K. In Ref. 13, we
assumed that weakly bound 15 K and 8 K molecular adsorp-
tion states correspond to the second and third monolaye1!

but the peak at 15 K in the thermodesorption spectrum
much smaller than that at 8 K, and we believe that th
states correspond to the second monolayer. The emerg
of two peaks as a result of thermodesorption of molecu
from the same monolayer is probably due to the presenc
defects in the surface structure or with the fact that the
layer has two phases: two-dimensional condensed isla
and a two-dimensional gas. For this reason, we shall
mention the 15 K state in further analysis since it does
contain an appreciable amount of D2 molecules.

FIG. 1. Dependence of the sticking probability for D2 molecules on the
degree of coverage of the initially pure surface~curve1!, the surface ini-
tially covered with an atomic deuterium monolayer~curve2!, and the sur-
face covered additionally with a molecular deuterium monolayer~curve3!;
curves 28 and 38 represent calculated dependences.
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The second process~curve2! is the desorption of D2 at
Ts;5 K following sample annealing at 300 K after th
completion of the first process. It was shown in Ref. 2 th
the W~110! surface remains covered by an ordered mo
atomic deuterium layer as a result of such an annealing.2! It
can be seen that the region of strong increase inS is dis-
placed towards largeru, and the maximum value ofS in-
creased considerably.

In our opinion, the reason behind the observed diff
ence in the curves1 and2 lies in the fact that, in view of the
island mechanism of growth of the atomic layer, weak
bound D2 adsorption states in the first process are popula
even before the entire surface is covered by the atomic la
For this reason, the conditions required for an increase in
sticking probability are created for lower values of the to
coverage degreeu than in the second process, when weak
bound adsorption states are formed above the monato
coating that has already been formed. The form of
S(u) dependence for this process indicates that the precu
state whose role is most probably played by the 5 K state
participates in the population of the second monolayer.

The third process~curve3! is the adsorption of D2 fol-
lowing isothermal desorption from the 5 K state occurring
after interception of the molecular beam. The D2 molecules
cannot be stationary in the 5 K state, and a certain number
molecules is present at the surface for an open molec
beam as a result of dynamic equilibrium between adsorp
and desorption. A decrease in the coverage after intercep
of the molecular beam was determined by the time dep
dence of the detector current after the interception.

Figure 1 shows that, as a result of actuation of the m
lecular beam after such an interception, the sticking proba
ity becomes much higher than for the pure surface. We
lieve that the large value ofS at the beginning of the third
process is determined, first, by the fact that before the ac
tion of the molecular beam, the surface is covered by wea
coupled molecules in the 8 K state, which ensure effectiv
loss of kinetic energy of incident molecules, and hence

FIG. 2. Thermodesorption spectrum for D2. The temperatureTd corre-
sponds to the desorption peak, K: 5~1!, 8 ~2!, 15 ~3!. 60 ~4!, 150 ~5!, 410
~6!, and 550~7!.
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are still absent at the beginning of the third process, and t
evaporation rate reducing the sticking probability, is equa
zero. In the second process, the 5 K absorption state is popu
lated even before the formation of the complete monolaye
8 K, probably due to the island mechanism of the growth
the second monolayer~the 8 K! state, and D2 molecules
evaporate intensely at this stage.

A phenomenological analysis of adsorption involvin
precursor state and characterized by different values of s
ing probability above empty and filled regions was carr
out by Zhdanov.17 Under certain simplifying assumptions, h
obtained the following equation for sticking probability:

S5~12u2!Se1u2SfK fe~12u2!/@Kfe~12u2!1Kfd#,
~3!

whereSe andSf are the sticking probabilities above emp
and filled regions,Kfe the rate constant for transitions o
molecules from the precursor state above the filled regio
the precursor above an empty region,Kfd is the rate constan
for desorption from the precursor state above a filled reg
andu2 is the coverage degree in the second monolayer.

The dashed curve28 in Fig. 1 shows theS(u) depen-
dence for the second process obtained from Eq.~3! for the
values Se50.15 andSf50.55, which are approximatel
equal to the experimental values of sticking probability at
beginning of the second process~the surface is covered by
monolayer of deuterium atoms! and at the beginning of the
third process~the surface is also covered with a monolayer
D2 molecules in the 8 K state!. The theoretical and experi
mental curves were matched with the help of the fitting
rameterKfe /Kfd .

In simulating the third process, we must supplement
right-hand side of Eq.~3! ~we denote it byf (u3)! with the
term taking into account evaporation of molecules from th
K state:

S5 f ~u3!2Kdn0u3 /n, ~4!

whereKd is the desorption rate constant,n0;1015 cm22 the
surface concentration of substrate atoms,n;1013 cm22

•s21

the gas-kinetic molecular flux in our experiments, andu3 the
coverage degree in the third monolayer.

Curve 38 in Fig. 1 shows theS(u) dependence calcu
lated by using Eq.~4! for Se50.55 ~which is equal to the
experimental value ofS at the beginning of the third pro
cess!, Sf50.95, andKd5(kT/h)exp(2q/kT) ~k and h are
the Boltzmann and Planck constants respectively, andq the
desorption activation energy!. On basis of Eq.~4!, we as-
sume that the filling of the third monolayer~the 5 K state!
also involves the precursor state.

It can be seen from Fig. 1 that the experimental a
theoretical curve are in qualitative agreement, which ma
more reliable the explanation of peculiarities in theS(u)
dependence atTs;5 K under various experimental cond
tions, which was proposed in Ref. 13 and here. Moreove
comparison of the experimental and theoretical depende
S(u) for the third process led to the valueSf50.95 for the
sticking probability for the incidence of a D2 molecule on a
site occupied by a molecule adsorbed earlier in the 5 K state.
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TheS(u) dependences measured at higher substrate
peratures~78 and 300 K! are shown in Fig. 3. Naturally, the
maximum degree of coverage at these temperatures can
be as high as unity since weakly bound adsorption phases
unstable at these temperatures. The sharp decrease i
value ofS with increasingu in the interval of coverage de
gree 0,u,0.5 corresponds to the Langmuir mechanism
adsorption in the case of population of the 550 K atom
adsorption state. The second atomic state 410 K is obvio
filled with the participation of a precursor~in all probability,
this is the 8 K state!, which is manifested in slowing down o
the decrease in the sticking probability upon an increase iu.
As expected,15 this slowing down is manifested most clear
for Ts578 K than forTs5300 K. A similar enhancement o
the role of the precursor upon a decrease in the subs
temperature was encountered by us during investigation
oxygen adsorption on tungsten.14

CONCLUSION

We observed new manifestations of the positive effec
weakly bound physical adsorption states on the stick
probability of D2 molecules at the W~110! surface at low
temperatures. Depending on the conditions of adlayer,
mation, the difference in the manifestations of this effect c
be explained under the assumption on the island mechan
of its growth. The values of sticking probability for a D2
molecule incident on a pure surface (;0.3), on the surface
covered by a monolayer of adsorbed deuterium ato
(;0.15), and on the surface covered additionally with ph
sisorbed molecular monolayer (;0.55) were calculated di-
rectly from experiments and by comparing of experimen
and theoreticalS(u) dependences. The sticking probabili
(;0.95) for a D2 molecule impinging on a molecule ad

FIG. 3. Dependence of the sticking probability for D2 on the degree of
coverage atTs578 ~curve1! and 300 K~curve2!.
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sorbed earlier in the 5 K state was also determined. The
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ace
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v,

i,
S(u) dependences at higher temperatures (Ts.78 K) indi-
cate that two different mechanisms of formation of t
atomic phase of deuterium absorption~Langmuir mechanism
and through an extrinsic precursor! are realized.
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SHORT NOTES
Weakly damping waves in quasi-two-dimensional conductors
V. G. Peschansky and D. A. Torjanik
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The transfer of electromagnetic field to the bulk of a layered conductor by charge carriers with a
quasi-2D energy spectrum is most effective when the electric field of the wave is polarized
along the normal to the layers. ©1997 American Institute of Physics.@S1063-777X~97!01407-2#

Layered conductors of organic origin possess a quasi- 1!kr!kl ~3!
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two-dimensional electron energy spectrum, and their kin
parameters are essentially anisotropic.

Peculiarities of quasi-2D energy spectrum of charge ca
riers, i.e.,

«~p!5 (
n50

`

«n~px ,py!cos~anpz /h! ~1!

leads to a number of peculiar effects in a magnetic field.
As a rule, the coefficients of the cosines in the dep

dence of the energy« of charge carriers on their quas
momentump in formula ~1! decrease rapidly with increasin
number n, and the maximum value of the functio
«1(px ,py) on the Fermi surface«(p)5«F is equal to
h«F!«F ~h is the parameter characterizing the quasi-tw
dimensional electron energy spectrum! so that the velocity
component for charge carriers along the normal to the lay
i.e.,

vz52 (
n51

`

~an/h!«n~px ,py!sin~anpz /h! ~2!

is much smaller than the velocity component along the l
ers.

Layered conductors in a constant external magnetic fi
H turn out to be more transparent than in zero field. In
strong magnetic field, when the radius of curvaturer of the
trajectory of conduction electrons is much smaller than
only their mean free pathl , but also the wavelength 1/k, the
orientational effect, i.e., a strong dependence of kinetic
rameters of a conductor on the magnetic field orientat
relative to the layers, is observed. For certain values of
angleu between the magnetic field vector and the norman
to the layers, the asymptotic behavior of high-frequen
electrical conductivity and acoustoelectronic coefficie
changes significantly, leading to a considerable increas
the damping length for electromagnetic1–4 and acoustic5

waves. However, the magnetic field also stimulates
acoustic transparency of layered conductors for
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In contrast to acoustic transparency in magnetic fie
satisfying condition~3!, weak damping at the skin depthd
for electromagnetic waves propagating along thex-axis for
values ofu differing noticeably fromp/2 is possible only for
selected values of magnetic field

Hn5kcDp/2pe~n11/4!, ~4!

wherec is the velocity of light,e the electron charge,Dp the
diameter of the Fermi surface in the direction orthogona
the magnetic field and to the wave vectork, and the integer
n is large, but still much smaller than 1/h. In this case, the
magnetic fieldH 5 (0, H sinu, H cosu) must be strong
enough for the periodT52p/V of electron motion in the
orbit «5const andpH5p•H/H5const to be much smalle
than its mean free timet. For an experimental geometry i
which the magnetic field is orthogonal to the wave vector
an electromagnetic wave incident on the surfacexs50 of the
conductor, conduction electrons can transfer information
the field and skin layer to the bulk of the conductor ove
distance of the order of their mean free path in the form
narrow spikes predicted by Azbel.10 For h!d/r , the field in
a spike coincides in order of magnitude with the field in t
skin layer over a wide frequency range.11

For a considerable deviation of the magnetic field fro
the normal to the layers, electron orbits become stron
elongated in the direction of ‘‘openness’’ of the Fermi su
face, and the conditionT!t can become inadequate for a
infinitely large value ofH. For values ofu close top/2, the
effect of magnetic field on the charge carrier dynamics
comes weak in view of the smallness of quasi-2D parameter
h, and the Azbel spike mechanism is replaced by the tran
of the varying field by electrons moving rapidly to the bu
of the sample in the form of the Reuter–Sondheim
quasi-waves.12

For u5p/2, a considerable fraction of conduction ele
trons move in open orbits in the momentum spa
py5const, and the fan of all possible directions of their dr

591591-02$10.00 © 1997 American Institute of Physics
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Fourier transforms of the current densityj (k) and electric
field E(k), i.e.,

j i~k!5s i j ~k!Ej~k!1E dk8Qi j ~k,k8!Ej~k8! ~5!

is nonlocal even in a strong magnetic field, the ker
Qzz(k,k8) differs from zero even for purely specular refle
tion of charge carriers from the sample surfacexs50, and
s i j (k) has the form

s i j ~k!5
2e3H

c~2ph!3
E dpzE

0

T

dtE
2`

t

dt8v i~ t !v j~ t8!

3exp~n~ t82t !!cos ik@x~ t8!2x~ t !#. ~6!

Heren51/t2 iv, and t and t8 are the times of charge
motion in a magnetic field according to the equations

]px
]t

52
eHvz
c

;
]pz
]t

5
eHvx
c

. ~7!

For h!1, the time variation of the electron velocityvx
does not exceedvh1/2, wherev is the characteristic Ferm
velocity, so that we can assume that away from the sad
points on the Fermi surface, an electron moves without
acceleration in the momentum space along thepz axis over a
distance equal to the unit cell period during the time

T5
2phc

aeHvx
5

2pv
V0vx

. ~8!

It can be easily verified that the components of the ten
s i j (k) for infinitely small values ofh have a root singularity
of the form

szz~k!5S v0
2h2

n D $~a1
2 21!21/21~a2

2 21!21/2%; ~9!

Dsyy~k!5n~v0 /kv !2$~kv/n!211%1/2; ~10!

wherev0 is the frequency of plasma oscillations of char
carriers, insignificant numerical factors of the order of un
areomitted, anda6 5 i (kv 6 V0)/n.

The kernel of the integral operatorQi j (k,k8) as a func-
tion of k also possesses this property.

At distance from the sample surface which are mu
larger than the characteristic radius of curvaturer5v/V0 of
an electron trajectory in a magnetic field or the displacem
of an electron over a wave period 2pv/v, the electromag-
netic field decreases in proportion tox23/2 exp(2x/l). A
slowly decreasing varying electric fieldEz(x) for V0@v
oscillates withH over large distancesx:

Ez~x!5Ez~0!h24/3S v0

c D 24/3S vv D 2/3r21/2x23/2
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l

le
n

or

h

nt

S r l D
r!x!r /h. ~11!

The damping of electric fieldEy(x) over the mean free
path of charge carriers forh!1 has the form

Ey~x!5Ey~0!S v0

c D 24/3S vv D 2/3l21/2x23/2

3expS 2
x

l
1
ivx

v D ; v/v!x!v/vh ~12!

and does not contain the magnetic field.
The oscillatory dependence ofEy(x) on magnetic field is

manifested only in small corrections proportional toh2. Nu-
merical factors of the order of unity, which are determin
by the form of the energy– momentum relation for condu
tion electrons, are omitted in formulas~11! and ~12!.

Such a strong polarization dependence of the intensit
a wave penetrating in the bulk of the sample makes it p
sible to use even thin plates of a layered conductor, wh
thickness is considerably larger than the skin depth,
smaller than or of the order of the mean free path of cha
carriers, as filters transmitting a wave of a certain polari
tion.
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Bloch–Siegert type shift and indirect interaction between nuclear spins

L. L. Buishvili

Institute of Physics, Georgian Academy of Sciences, 380077 Tbilisi, Georgia

T. L. Buishvili

Department of Physics, Tbilisi State University, 380028 Tbilisi, Georgia
~Submitted June 17, 1996; revised September 3, 1996!
Fiz. Nizk. Temp.23, 787–788~July 1997!

The Bloch–Siegert-type shift of resonant frequency associated with cross-relaxation interaction is
investigated. It is shown that indirect interaction between spins with a low concentration is
determined by the polarization of spins with a higher concentration at low temperatures. ©1997
American Institute of Physics.@S1063-777X~97!01507-7#

The dynamics of a spin system consisting of two spins
H 5 B S1I2 ; H 5 B* S2I1 ,
ha

t

in
o
n
r-
b
rm

-

e
ss

b
sa

re

e

1 ( in 2 (

e

rm

rm

-
d
s-

-
n

–
nd-

u-
ith
gh
se
ift

rant
In-

70
with close Zeeman splittings at ultralow temperatures
been recently studied experimentally. These spins can be
nuclear spins of different isotopes, e.g.,1 203TL ~with a 30%
concentration! and205TL ~with a 70% concentration! having
the spin 1/2. Typically, the concentration of one type of sp
is much higher than the concentration of the other type
spins. We denote byS the spins with a higher concentratio
and byI the spins with a lower concentration. Direct inte
action between the spins with the lower concentration will
neglected. The Hamiltonian of such a system has the fo

H5vSS
z1v I I

z1HSS
z 1(

n,i
AinSn

zI i
z1(

n,i
~BinSn

1I i

1Bin* SnI i
1!,

whereSz 5 (nSn
z ; I z 5 ( i I i

z ; vS andv I are the Zeeman fre
quencies of theS andI spins, respectively,HSS

z is the secular
component of interaction betweenS spins, the forth term
corresponds to the secular component of interaction betw
theS and I spins, and the last term is responsible for cro
relaxation. We assume thatvS2v I is much higher than the
frequencies characterizing the dipole–dipole interaction
tween nuclear spins. In this case, following the univer
method,3 and transforming the density matrix

r̃5exp~ i ~vSS
z1v I I

z!t !r exp~2 i ~vSS
z1v I I

z!t !,

we obtain the equationdr̃/dt5@H8,r̃ #, where

H8~ t !5HSS
z 1(

n,i
AinSn

zI i
z1(

n,i
~BinSn

1I i
2ei ~vS2v I !t

1Bin* Sn
2I i

1e2 i ~vS2v I !t!. ~1!

This expression contains rapidly oscillating terms
sponsible for small parameters:HSS

z /(vS 2 v I), Ain /(vS

2 v I), Bin /(vS 2 v I). Consequently, we can apply th
method of averaging2,3 which gives

Hav8 5HSS
z 1(

n,i
AinSn

zI i
z1

1

vS2v I
@H1 ,H2#, ~2!

where
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and the commutator is given by

@H1 ,H2#

52S (
nii 8

BinBi 8n
* Sn

zI i I i 8
1

1 (
nn8 i

BinBin8
* I i

zSn
1Sn8D . ~3!

Since the spins of theS type in the system interact, th
third term in formula~2! for n Þ n8 can be combined with the
first term, and the averaged Hamiltonian assumes the fo

Hav8 5HSS
z 1(

n,i
AinSn

zI i
z1

2

vS2v I
S (
nii 8

BinBi 8n
* Sn

zI i
2I i 8

1

1(
n,i

uBinu2I i
zSn

1Sn
2D . ~4!

The second term and the component of the third te
with i5 i 8 cause a frequency shift for theI spins ~for
I51/2 and S51/2!, the shift caused by the third term
( i ,nuBinu2/(vS2 v I), being similar to the Bloch–Siegert fre
quency shift.4 However, the Bloch–Siegert shift is induce
by a varying field, while in our case the shift is due to cros
relaxation terms. A similar shift is also observed forS spins.

The third term~for i Þ i 8! corresponds to indirect inter
action betweenI spins. By lowering temperature, we ca
attain a magnetically ordered state forI spins, and the sign
reversal for ^Sn

z& can lead to the ferromagnetic
antiferromagnetic transition or the reverse transition depe
ing on the initial conditions.

It should be noted in conclusion that the above arg
ments remain also valid in the case of two-level systems w
different frequencies, which are mutually coupled throu
the electric dipole–dipole interaction. However, in this ca
the term( i ,nAinSn

zI i
z is absent, and hence the frequency sh

is determined only by Bloch–Siegert-type terms.
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LETTERS TO THE EDITOR

cap-
New modes of coupled electron–ripplon oscillations in a Wigner crystal in strong
driving electric fields

V. E. Sivokon’, V. V. Dotsenko, Yu. Z. Kovdrya, and V. N. Grigor’ev

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted March 12, 1997!
Fiz. Nizk. Temp.23, 789–792~July 1997!

Resonant peculiarities in the conductivity of a Wigner crystal with a surface charge density
63108cm22 as functions of the amplitude of an exciting signal are investigated at temperature
75 mK in the frequency range 1–20 MHz. It is found that an increase in the signal amplitude
induces new resonances which probably are due to coupling of phonon modes of the electron
crystal with the modes of capillary waves excited under nonlinear conditions. ©1997
American Institute of Physics.@S1063-777X~97!01607-1#

Surface electrons localized over liquid helium form aquencies are connected with the resonant frequencies of
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quasi-two-dimensional classical system with Coulomb int
action. This system has been studied intensely both theo
cally and experimentally.1 The formation of an electron crys
tal discovered for the first time by Grimes and Adams2 in
1979 is one of the most striking effects manifested by suc
system.

A specific property of a Wigner crystal~WC! in a system
of surface electrons is the formation of coupled electro
ripplon resonances. The observation of such resonances
the first experimental evidence of the formation of a WC2

Experimental study of the electron– ripplon resonant sp
trum in weak driving electric fields3 confirmed the correct-
ness of the theoretical concepts concerning the origin
these resonances.4,5 It would be interesting to study the spe
trum of these resonances in strong driving fields, in wh
nonlinear effects can be observed, the more so that a num
of new fascinating phenomena in the nonlinear region of W
were detected recently.

The nonlinear behavior of a Wigner crystal in a ma
netic field was studied in Refs. 6–9, where it was found t
the behavior of longitudinal magnetoconductivity chang
abruptly starting from certain values of the driving elect
field.

Nonlinear properties of a WC manifested in an ess
tially nonmonotonic dependence of the longitudinal cond
tivity on the driving field amplitude were also observed
zero magnetic field.10 All the above-mentioned effects hav
not received a reliable theoretical explanation.

The change in the electron–ripplon vibrational spectr
of WC in the nonlinear region has been studied insu
ciently. In strong fields, overheating of electrons and W
melting can in general take place. In all probability, this w
observed by Yuselet al.11 who discovered the transforma
tion of the optical mode of coupled electron–ripplon vibr
tions into the plasma mode typical of the liquid phase. In
only theoretical publication we are aware of, in which t
nonlinear effect on WC is considered,12 the emergence o
additional~so-called demultiplicative resonances! whose fre-
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illary waves on the helium surface deformed by electrons
strong driving fields is predicted.

Here we analyze the variation of the electron–rippl
resonant spectrum with the magnitude of the driving fie
We investigated a Wigner crystal with the surface cha
density 63108 cm22 ~the melting point 0.54 K! at a helium
bath temperature of 75 mK. Measurements were made in
frequency range 1–20 MHz for measuring signal amplitud
from 0.3 to 10 mV. The measuring cell was in thermal co
tact with the dilution chamber of the refrigerator and had
form of a parallel-plate capacitor of diameter 27 mm with
layer of liquid helium of the height;1 mm in the capacitor
gap. Electrons were sputtered on the liquid helium surf
during short-term actuation of a filament and were confin
with the help of a positive potential applied to the low
capacitor plate. The upper plate separated by 2 mm from
lower plate consisted of three annular measuring electro
A signal from the high-frequency generator was supplied
the outer annular electrode, and the response was reco
from the inner electrode, the intermediate electrode be
earthed. The cell and the measuring circuit are described
analyzed in detail and Ref. 13.

The results of measurements are shown in Fig. 1 in
form of frequency dependences of the amplitude of the
sponse of the measuring cell to rf signals with different a
plitudes of the generator voltage. The amplitude of the dr
ing electric field acting in the plane of the layer
proportional to the amplitude of the input signal, but is also
function of the conductivity of the electron layer and fr
quency and varies along the radius of the electron ‘‘spo
The frequency dependences of the amplitude of the ou
signal are of resonant type and can be approximated by
sum of the resonant curves. The resonance curves wer
sumed to be of Lorentzian shape in the course of the an
sis.

We selected the resonant frequencies, amplitudes,
widths so that the total calculated signal corresponded

595595-03$10.00 © 1997 American Institute of Physics



d

n
p
tt

s
n
is
ce
r:
st
a
h
th

n

u

C
he
th
o
es

r-

t a

ron
the
so-

id
.
nt,
ies

re-
the
by
e
e
the
ent

ul-

ni-
but
er-
with
ncy
d to
ith

in a
it-
on

ce

th
.

n the
ent
es are
experimental data. The results of analysis are presente
solid curves in Fig. 1.

For the lowest amplitudes of the signal~driving field!,
the frequency dependence of the response amplitude ca
presented as the sum of two resonant curves. As the am
tude of the measuring signal increases, the resonant pa
changes. The resonance at a frequency;9 MHz is broad-
ened considerably and shifted towards higher frequencie

In the low-frequency region, the resonance correspo
ing to the first harmonic of standing waves in the cell
slightly displaced, and additional low-frequency resonan
whose number increases with the signal amplitude appea
additional resonance appears near the initial resonance
ing from the amplitude 0.5 mV, the third resonance appe
when the signal reaches 2 mV, and the fourth at 5 mV. T
frequency of each new resonance differs from that of
previous resonance by approximately 1 MHz. Figure
shows the dependences of the positions of these resona
on the amplitude of excitation~driving field!. Several series
of measurements were made in order to verify the reprod
ibility of the results.

A theoretical analysis of the resonant properties of a W
over liquid helium was carried out in Refs. 4, 12, 14. In t
absence of coupling between electrons and ripplons,
spectrum of longitudinal plasma oscillations in the electr
layer ~taking into account the screening effect of electrod!
has the form

v l
25

4pnse
2k sinh kd sinh k~H2d!

m sinh kH
, ~1!

wherens is the surface electron density,m and e are the
electron mass and charge,H is the gap between the measu
ing and confining electrodes,d the height of the liquid he-
lium level with respect to the confining electrode, andk the
wave vector determined from the condition of zero curren
the boundary of the electron layer.

FIG. 1. Frequency dependences of the resonance signal amplitudes~in mV!
for different amplitudes of excitation: 0.3~curve1!, 1 ~curve2!, 5 ~curve3!
and 10 mV~curve4!. For the sake of visualizations, the curves are displa
along the amplitude axis by1 0.05 mV~curve2), 1 0.1 mV ~curve3! and
10.2 mV ~curve 4!. The points correspond to experimental data and
curves are the result of approximation by the sum of Lorentzian curves
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The presence of the electron crystal leads to elect
localization and to the emergence of static deformation of
liquid helium surface. The conditions are created for re
nant excitation of capillary waves15,16with frequencies

vn5~a/r!1/2gn
3/2, ~2!

wherea andr are the surface tension and density of liqu
helium andgn the vector of the reciprocal crystal lattice
When the electron–ripplon interaction is taken into accou
coupled electron– ripplon vibrations appear. The frequenc
of these vibrations for the first resonance are defined as

v2~k!5
v1
2v l

2~k!

C1v1
21v l

2~k!
, ~3!

wherev1 is the first mode from the set~2! andC1 the coef-
ficient of coupling between electrons and ripplons, cor
sponding to the first mode. The arrows in Fig. 1 indicate
positions of two harmonics of standing waves predicted
~3! if we use forC1 the value calculated on the basis of th
self-consistent theory5 and also take into account of th
3He impurity on the surface tension. It can be seen that
experimental and theoretical results are in good agreem
for very small values of the driving field.

Monarkha12 predicted the emergence of so-called dem
tiplicative resonances~or partition resonances! in vibrational
spectra at frequenciesv2/3, v3/3,... . in strong driving
fields. It is still unclear how such resonances will be ma
fested during measurements in a specific measuring cell,
the fact that the inclusion of nonlinearity leads to the em
gence of additional low-frequency resonances correlates
the experimental results described above. The low-freque
nonlinear resonances observed by us probably correspon
coupling of the phonon modes of the electron crystal w
additional low-frequency modes described by Monarkha.12

Thus, we have studied electron–ripplon resonances
Wigner crystal for high values of the amplitude of an exc
ing signal. New vibrational modes for the Wigner crystal

d

e

FIG. 2. Dependences of the frequencies of resonances appearing i
low-temperature region on the amplitude of the exciting signal. Differ
symbols corresponds to different series of measurements. Dashed curv
plotted for a more visual illustration of the observed dependences.
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the surface of superfluid helium were observed in strong
of
es

ltin

in

,

6I. Wilen and R. Gianetta, Jpn. J. Appl. Phys.26Suppl. 26-3, 2105~1987!.
7K. Shirahama and K. Kono, Techn. Rep. ISSP, ser. A, No. 2852~1994!.

,

driving electric fields for the first time. The frequencies
these modes are lower than the frequencies of linear r
nances. The experiments will be continued in the range
high concentrations and temperatures close to the me
point of the Wigner crystal.
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CHRONICLE

is
Victor Moiseevich Tsukernik: On His 70th Birthday

Victor Moiseevich Tsukernik, a leading theoretical physicist, turned 70 on May 28, 1997. We congratulate him on th
occasion and wish him sound health, great achievements in his scientific activity and personal life.

Editorial Board
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