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Results of background measurements with a prototype of the Borexino detector were used to obtain bounds on
the lifetime of radiative neutrino decay νH  νL + γ. The new lower limit for the lifetime of pp and 7Be neu-
trinos is τc.m.(νH  νL + γ)/mν ≥ 4.2 × 103 s eV–1 (α = 0). It is more than an order of magnitude stronger than
the value obtained in previous experiments using nuclear reactors and accelerators. © 2002 MAIK
“Nauka/Interperiodica”.
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1. If neutrinos have mass, then a heavier neutrino
may decay to the lighter one νH  νL + γ. In the Stan-
dard model (SM), the lifetime of a neutrino expressed in

terms of the transition magnetic moment  is [1–4]:

, (1)

where  is in Bohr magneton (µB) units. The proba-
bility of radiative decay in SM is very low. If the neu-

trino transition moment  has a value close to that
expected for a diagonal magnetic moment µν ≈ 3.2 ×
10–19(mν/1 eV)µB, then from Eq. (1) the lifetime of a
neutrino is τ ~ 1029 years. At the same time, the reasons
(the same as for a right boson) that lead to a large mag-
netic moment also lead to an increase in the probability
of radiative neutrino decay [5–9].

The radiative decay of reactor antineutrinos  was
studied in [10–14]; the latter gives the best lower limit
of τc.m/mν ≥ 200 s eV–1 (90% c.l.) for the lifetime. A

search for the νµ and  decays was performed in high-
intensity neutrino beams from π+ and µ+ decaying at
rest; the lifetime of the muon (anti)neutrino was
bounded as τc.m/  ≥ 15.4 s eV–1 [15]. A much more
restrictive limit was obtained from the solar γ-ray flux,
τc.m/  ≥ 7 × 109 s eV–1 [16]. The astrophysical limits

are even stronger and lie in the region 109–1020 s/eV
(see [17–19] and references therein).

¶This article was submitted by the authors in English.
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In this paper, we present the results of the search for
neutrino radiative decay with a prototype of the Borex-
ino detector.

2. Experimental setup and results of measure-
ments. Borexino, a real-time detector for low-energy
neutrino spectroscopy, is near completion in the under-
ground laboratory at Gran Sasso (see [20] and refer-
ences therein). The main goal of the detector is a direct
measurement of the flux of 7Be solar neutrinos of all
flavors via neutrino–electron scattering in an ultrapure
liquid scintillator.

The prototype of the Borexino detector—Counting
Test Facility (CTF)—was constructed to test the key
concept of Borexino, namely, the possibility to purify a
large mass of liquid scintillator at the level of contami-
nation for U and Th of a few units of 10–16 g/g. As a sim-
plified scaled version of the Borexino detector, a vol-
ume of liquid scintillator is contained in a 2-m-diameter
transparent inner nylon vessel mounted at the center of
an open structure that supports 100 phototubes (PMT)
[21]. The whole system is placed within a cylindrical
tank (11 m in diameter and 10 m height) that contains
1000 tons of ultrapure water, which provides a 4.5-m
shielding against neutrons originating from the rock
and against external γ rays from PMTs and other con-
struction materials. Detailed reports on the CTF have
been published [20–25].

The energy of an event in the CTF detector is
defined using the total collected charge from all PMTs.
The coefficient linking the event energy and the total
collected charge is called light yield (or photoelectron
yield). The light yield for the electrons can be consid-
ered linear with respect to its energy only for energies
above 1 MeV. At lower energies, the phenomenon of
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“ionization quenching” violates the linear dependence
of the light yield on energy [26]. The deviations from
the linear law can be taken into account by the ioniza-
tion deficit function f(kB, E), where kB depends on the
scintillator properties. The total collected charge in this
equals Q ~ Ef(kB, E).

Because of the nonlinear dependence of the light
yield on the energy released due to the ionization-
quenching effect, the CTF resolution should be
expressed in terms of the total registered charge, which
is directly measured in the experiment.

A study with radioactive sources placed at different
positions inside the CTF inner vessel showed that the
CTF response can be approximated by a Gaussian, with
sigma defined by the following formula:

(2)

where Q = AEf(kB, E)v f is the mean total registered
charge for events of energy E distributed over the detec-
tor’s volume; v 1 is the relative variance of the PMT sin-

gle photoelectron charge spectrum (  = 0.34); A is the
scintillator specific light yield measured in photoelec-
trons per MeV (A = 350 p.e/MeV is CTF-2 for the event
at the detector’s center); and v f is the volume factor,
coming from the averaging of the signals over the CTF
volume. The parameters v p = 0.0023 and v f = 1.005
give additional signal variance for the source distrib-
uted over the detector’s volume in comparison to the
point-like source at the detector’s center. The last case
will naturally yield v p = 0 and v f = 1. All the parameters
in (2) were defined with satisfactory precision from the
CTF-II data (see [27, 28] for the details). For estimates
of the energy resolution, one can use the approximation
σE/E ≈ σQ/Q.

The experimental spectra of the CTF-II setup in the
energy region up to 450 keV accumulated during
32.1 days of measurements are shown in Fig. 1. The
spectrum without any cuts is shown on the top. The next
distribution is obtained with the muon veto, which sup-
pressed the background rate only 25% in this energy
region. Time-correlated events (occurring in the time
window ∆t ≤ 8 ms) and events with reconstructed radius
r ≥ 100 cm (i.e., outside of the inner vessel) were also
removed. Additional α/β discrimination was applied to
eliminate contribution from α particles. The remaining
background rate at 300 keV of 0.05 counts/keV kg yr is
the lowest value achieved at any large-scale low-back-
ground installation.

The major part of the remaining background in the
energy region up to 200 keV is induced by the β activity
of 14C. Another source of background is the soft part of
the spectra of β and γ coming from the decay of 40K
present in construction materials (decays occur out of
the scintillator volume).

The β decay of 14C is an allowed ground-state to
ground-state (0+  1+) Gamow–Teller transition with

σQ 1 v 1+( )Q v pQ2+ ,=

v 1
an endpoint energy of E0 = 156 keV and half life of
5730 years. Deviations from the allowed shape of the
14C spectrum are usually parametrized as C(E) = 1 +
αE. Although the β decay of 14C was investigated by
many groups over almost 50 years, the situation with
the shape factor is still unclear [29]; we leave this
parameter free in our estimations.

The model function for the remaining background
was selected as the sum of the 14C spectrum and a first-
order polynomial for the underlying background,

(3)

with six free parameters: N0 is the number of 14C
decays; A is the scintillator light yield; kB is the quench-
ing factor; α is the 14C shape factor; and a, b are the
parameters describing the linear underlying part of the
residual spectrum.

The end-point energy of the 14C spectrum was
defined in other experiments with high accuracy, E0 =
(156 ± 0.5) keV, and is fixed in the calculations.

In any case, this parameter is in strong correlation
with the parameter A, and its uncertainty is masked by
the uncertainty in the parameter A. The maximum-like-
lihood method was used to find the best values of the
free parameters of the model function. A good agree-
ment of the proposed model with the experimental data
in the energy region 138–380 keV was obtained (χ2 =
205/214).

3. Analysis. The analysis is performed with the
assumptions that the decaying neutrino νH is domi-
nantly coupled to the electron (UeH ≈ 1), and in the final
state νL the neutrino mass is vanishing (i.e.,  !

). The expected laboratory gamma spectrum is
defined by a photon moment distribution in the center-
of-mass system. For the common case, one can write
the photon angular distribution in the general form
[11]:

(4)

The anisotropy parameter α defines the angular dis-
tribution of the photon relative to the spin of the decay-
ing neutrino in the neutrino rest frame and is related to
the space–time structure of the decay vertex. For the
Majorana neutrino, α is identically zero (α = 0) but can
take on any value –1 ≤ α ≤ 1 for the Dirac neutrino.
With the assumption of total parity violation, the gener-
ated left (right)-handed Dirac neutrinos correspond to
the case α = –1(+1). The lab-frame energy of the decay
gamma Eγ in terms of the lab-frame energy of the neu-
trino Eν and the center-of-mass angle θ is

(5)
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After relativistic time dilation one obtains the
gamma energy spectrum Eγ due to the decay of the neu-
trino with energy Eν:

(6)

where τc.m. represents the center-of-mass neutrino life-
time. Taking into account the solar neutrino energy
spectrum φν(Eν), one can write the expected gamma
spectrum in the detector as

(7)

where V is detector volume, T is the time of measure-
ment, and c is the speed of light in vacuum.

In the calculations, we used the neutrino fluxes
given by the standard solar model (SSM)[30] and the
neutrino energy spectra from [31]. Signal shapes (7)
were convolved with the detector response function:

, (8)
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Fig. 1. CTF-II background in the low-energy region and the
result of the sequential cuts applied in order to reduce the
background: A) raw data; B) unions cut; C) radial cut (with
100 cm radius); D) α/β discrimination.
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where Res(Q, Q') is the detector response function and
σQ is defined by (2).

The Monte-Carlo method was used in order to sim-
ulate the CTF response to gammas. The events were
generated according to the spectrum given by Eq. (7)
inside the inner vessel and in the adjacent water layer of
50 cm. The gamma-electron showers were followed
using the EGS-4 code [32]. As soon as an electron of
energy Ee appears inside the scintillator, the corre-
sponding charge is added to the running sum, taking
into account the quenching factor and the dependence
of the registered charge on the distance from the detec-
tor’s center. The obtained results for different a values
are shown in Fig. 2.

Taking into account the best ratio of the expected
effect to background and in order to avoid systematic
errors caused by the uncertainty of the linear part of the
background at lower energies, the range 185–380 keV
was chosen for the analysis. The maximum-likelihood
method was used to find the possible contribution from
the radiative decay of the SSM solar neutrino in the
measured spectrum. The likelihood function was found
with the assumption that the number of counts in each

channel of the measured spectrum  obeys a normal
distribution and represents the sum of the model func-

Si
exp

Fig. 2. The experimental spectrum measured by CTF-II
(upper plot with error bars) and the expected energy spectra
from gammas appearing in radiative decay of the neutrino
νH  νL + γ calculated by the M-C method with

τc.m./mν = 5.0 × 103 s eV–1 for 3 values of the parameter.

ke
V

(keV)
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tion describing the residual background (3) and the
spectrum due to the neutrino decay calculated using
Eqs. (6)–(8).

The A, kB, and α parameters were fixed in the anal-
ysis at the values found during the data fitting in the
wider region 138–380 keV with better statistics. The
other three parameters were free. The changes in α and
kB practically do not influence the results of the analy-
sis. The parameter A was also estimated independently
from the measurements with a radon source.

The analysis of the upper limit on the lifetime of the
neutrino was performed in the following way. First, we
minimized the χ2(N0, a, b, τc.m./mν) value for different
values of τc.m./mν. The integration of the probability
function gives a value of 0.9 (90% c.l.) for τc.m./mν =
4.2 × 103 s eV–1 (α = 0). This limit is practically indepen-
dent of the lower bound of the analyzed region. The results
of the optimal fit for value τc.m./mν = 4.2 × 103 s eV–1

(α = 0) are shown in Fig. 3. In the same way, the upper
limits τc.m./mν ≥ 1.5 × 103 s eV–1 (α = –1) and τc.m./mν ≥
9.7 × 103 s eV–1 (α = 1) were obtained. Actually, the
analysis of the CTF-II gives a 25% limit on the part of
the background in the region 200–250 keV attributed to
possible neutrino decay. The low sensitivity is
explained by the similar behavior of the background

Fig. 3. The fit in the region 185–380 keV for radiative neu-
trino decay: (1) M-C calculation of the gamma spectrum
from νH  νL + γ decay with τc.m./mν = 4.2 × 103 s eV–1

(α = 0); (2) 14C β-spectrum; (3) linear background; (4) total
fit.

(keV)

ke
V

and the effect (small negatively sloped linear function).
In principle, correct modeling of the 40K background,
can eliminate the major part of the background, which
will finally lead to better results. The obtained values
are more than one order of magnitude stronger than
those obtained for low-energy neutrinos in direct exper-
iments.

4. Using the data obtained with the prototype of the
Borexino detector, the lower limit on the mean lifetime
of pp- and 7Be-neutrino relative radiative decay is
obtained: τc.m.(νH  νL + γ)/mν ≥ 4.2 × 103 s · eV–1

(α = 0). It is more than one order of magnitude stronger
than that obtained in previous experiments using
nuclear reactors and accelerators. The CTF data can be
used in the search for νH  νL + e+ + e– decays as
well.
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A mixed problem for the compact U(m) vector nonlinear Schrödinger model with an arbitrary sign of coupling
constant is exactly solved. It is shown that a new class of solutions—composite U(σ + µ) vector solitons with
inelastic interaction (changing shape without energy loss) at σ > 1 and strictly elastic interaction at σ = 1—
exists for m ≥ 3. These solitons are color structures consisting of σ bright and µ dark solitons (σ + µ = m) and
capable of existing in both self-focusing and defocusing media. The N-soliton formula universal for attraction
and repulsion is derived by the Hirota method. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.50.Kk; 11.10.Lm; 42.65.Tg
The evolution system of m coupled nonlinear
Schrödinger equations (CNSE-m)

(1)

arises in the weak-coupling limit in various nonrelativ-
istic models of nonlinear field theory. The conditions
for integrability and exact solutions of CNSE-m are of
both practical and academic interest (nonlinear optics,
plasma, ferromagnetism, hydrodynamics, atomic
Bose–Einstein condensates, etc. [1–6]). Two coupled
parabolic equations of motion that are equivalent to set
(1) with m = 2 and c1 = c2 were rigorously derived in
[7], where the self-action of differently polarized waves
in nonlinear media with tensor response was studied. In
Eqs. (1), parameters cj determine dispersion, and coef-
ficients ajk with j ≠ k and j = k determine the nonlinear
interaction and self-actions of fields ψj, respectively.
For different variables ζ and ξ and different κk =
sgn(cjajk), Eqs. (1) describe, at the classical level, the
spatial or time evolution of an m-component field in a
cubic nonlinear medium [7, 8] and, at the quantum
level, a Bose gas with m color degrees of freedom [9,
10] with the attractive (κk > 0) or repulsive (κk < 0)
point interaction.

Set (1) is exactly integrable in the Liouville sense
only in a few cases, where strict conditions are satisfied
for the driving parameters cj and ajk. Using Zakharov
theorems on the additional motion invariants, we can
prove (proof will be given elsewhere) that set (1) with
ajk = ±akk and cj = ±c allows the zero-curvature repre-
sentation (Lax pair) and can be treated by the method of
the inverse scattering problem (MISP). In this case, the

i L̂ jψ j* a jk ψk
2ψ j*, j

k 1=

m

∑ 1 m, ,= =

ψ j C, L̂ j∈ ∂ ζ ic j∂ξξ ; a jk c j R,∈,+=
0021-3640/02/7607- $22.00 © 20414
integrable reductions of the CNSE-m form a set of vec-
tor models of solitons with unitary U(m) and
pseudounitary U(m, n) symmetry groups. The known
exact solutions to this set of models, e.g., the Manakov
U(2) vector model [8] (L0 = L1 = L2, σ = 2, and µ = 0)

(2)

are single-color multisolitons, bright (ψ1, 2, … ~ sechα)
[8] and dark (ψ1, 2, … ~ ) [11, 12] in self-focusing
(κ > 0) and defocusing media (κ < 0), respectively. In
this sense, bright [8] and dark [11, 12] vector soliton
solutions constructed on the basis of U(1) scalar bright
[ψ(±∞) = 0] and dark [ψ(±∞) = ρexp(iΘ)] solitons [5,
13] of the conventional boundary problems can be asso-
ciated with the trivial class. Exact solutions to the
pseudo-Euclidean U(1, 1) model (by the MISP) [9] and
Euclidean U(1 + 1) model (2) with defocusing nonlin-
earity (κ < 0) (by the Hirota method) [12] indicate that
the composite vector solitons, as well as U(1) scalar
solitons, interact elastically (trivially).

In this study, we demonstrate that the set of U(m)
vector nonlinear Schrödinger models [integrable reduc-
tions of set (1)]

(3)

with the mixed-density boundary conditions

(4)

with m ≥ 3 has the class of exact solutions—color
U(σ + µ) vector solitons, where σ = 1, 2, …, m and µ =
m – σ, with nontrivial interaction (intermode
exchange). Conditions (4) mean that each degree of
freedom ψn(1 ≤ n ≤ m) in set (3) has its zero-density,

i L̂0ψ j* κ ψ1
2 ψ2

2+( )ψ j* j, 1 2, ,= =

βtanh

i L̂0ψ j* κ ψk
2ψ j*, j

k 1=

m

∑ 1 m,= =

ψσ ζ ξ,( ) ξ ∞→ 0, ψµ ζ ξ,( ) ξ ∞→ ρµe
iΘµ
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ρn = 0, or nonzero-density, ρn ≠ 0, vacuum (condensate)

with asymptotic phase .

The N-soliton formula of m-component set (3) and
(4) is universal for self-focusing (attractive; sgnκ = +1)
and defocusing (repulsive; sgnκ = –1) media with cubic
nonlinearity.

Applying MISP to set (3) and (4), one must analyze
the structure of (m + 1)-sheet Reimann surfaces. For
this reason, we obtained the N-soliton solution by the
Hirota method [14], which is mathematically less cum-
bersome. The elastic (trivial) type of interaction
between composite (bright and dark) U(1 + 1) vector
solitons [9, 12] was shown to follow from the factoriza-
tion of the N-soliton solution of set (3) and (4) in the
particular case of m = 2. In the general case, the N-soli-
ton solution is nonfactorable, and the interaction of
color multisolitons is inelastic (changes the shape with
conserving energy). We found special cases where the
exchange between nonlinear modes does not arise and
N-soliton scattering is factorable.

1. We introduce the Hirota functions

and change (   ) linear operators  to bilinear

operators  defined as

In what follows, we consider variables ζ and ξ in
Eqs. (1), (3), and (4) as time t and coordinate x.

With scaling changes |κ| = 2, cj = c(>0), and x 

x , set (1) in the Hirota representation forms a bilin-
ear set of the compact U(m) symmetry:

(5)

where λ ∈  R is an arbitrary parameter determined
below and δ = sgnκ.

In terms of bilinear operators, the functions Gj and
H can be represented as a series in powers of the formal
parameter ε. We choose this representation so that it is
consistent with boundary conditions (4):

(6)

ρn
2

G j Hψ j, G j C, H R, j∈∈ 1 m,= =

L j
ˆ D j

ˆ L̂

D̂

D̂ UV( ) D̂U( )V U D̂V( ).–=

c

D̂1G jH 0, j 1 m, ,= =

D̂2HH 2δ Gk
2

k

m

∑=

D̂1 = iD̂t D̂2+ D̂2 = D̂x
2 λ–,( ),

G j ε2ν g0µg2ν
µ δjµ εg0σg2ν 1+

σ δjσ+( ),
ν 0=

∞

∑=

H ε2νh2ν; g0
µ

ν 0=

∞

∑ h0 g0σ 1,= = = =
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where  is the Kronecker delta and . Func-
tions Gj obviously specify an m-component field (m =
σ + µ) for an arbitrary combination of σ and µ (e.g., σ
bright solitons and µ dark solitons). The N-soliton solu-
tion describing the evolution of solitons in set (5) is
obtained according to the standard Hirota scheme (R ~

Gj, H; j = )

(7)

To zero order in ε, we take the vacuum solution g0µ =

ρµexp(iΘµ), where Θµ = kµx – (  + λ)t with

found from Eqs. (5). In the physics of optical solitons,
δ = sgnκ = +1 and –1 correspond to the self-focusing
and defocusing media, respectively. To the first order in
ε, we have

where  and ζn are arbitrary complex parameters. In
the single-soliton (N = 1), two-soliton (N = 2), etc. sec-
tors, series (6) in scheme (7) terminate in the second,
fourth, etc. orders in ε, respectively. Solutions (to sixth
order in ε) of set (5) describing the evolution of N soli-
tons in two σ and µ sectors of the U(m) vector ψ space
have the form

(8)

(9)

δαβ j 1 m,=
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kµ
2

λ 2δ ρµ
2

µ

m σ–

∑–=

g1
j( ) γn

j( ) ηn( ),exp
n 1=

N

∑=

ηn ζnx i ζn
2 2δ ρµ

2

µ

m σ–

∑+
 
 
 

t,+=

γn
j( )

Hψσ η̂n ε1γn
σ η̂ iη̂ j* ε3anij

σ(
ij

N

∑+




n 1=

N

∑=

+ ε5 anijlm
σ η̂ lη̂m* …,+

l m,

N

∑

Hψµ g0µ ε0 η̂ iη̂ j* ε2aij
µ η̂ lη̂m* ε4aijlm

µ(
lm

N

∑+
ij

N

∑+




=

+ ε6 aijlmqr
µ η̂qη̂ r* …,+

q r,

N

∑

H ε0 η̂ iη̂ j* ε2aij η̂ lη̂m* ε4aijlm(
lm

N

∑+
ij

N

∑+=

+ ε6 aijlmqrη̂qη̂ r* … .+
q r,

N

∑



416 AGALAROV, MAGOMEDMIRZAEV
Here, parameter ε = 1 (Hirota),  = exp(ηn),

(10)

One can clearly see from these formulas that the two-
soliton (N = 2) solution terminates in the fourth order in
ε. At the same time, Eqs. (8) and (9) correspond to the
exact three-soliton (N = 3) solution of set (5). Higher
order solutions are not presented because of their awk-
wardness.

2. Single-soliton (N = 1) solution of the mixed non-
linear U(σ + µ) vector Schrödinger model (3) and (4),
according to Eqs. (8)–(10), has the form

(11)

where the Hirota function has the form H = 1 +

a11  with

As is seen, mixed-color U(σ + µ) vector soliton (11) is
a dynamic topological formation, and its particular
cases coincide with the known single-color bright
(ψ{µ} = 0, δ = +1) [8] and dark (ψ{σ} = 0, δ = –1) [11,
12] solitons. However, in contrast to vector solitons [8,
11, 12], exact solution (11) satisfies set (3) for both
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attraction (self-focusing; δ = +1) and repulsion (defo-
cusing; δ = −1). Moreover, universal color U(σ + µ)
vector soliton (11) can be determined in some states by
its dynamic topological origin. It is convenient to treat
these states in terms of particles. Let {σ, µ}, where σ +
µ = m, specifies the possible isotopic states of the color
U(σ + µ) vector soliton given by Eq. (11). Then, by
analogy with QCD, the state with mixed color {σ ≠ 0,
µ ≠ 0} can be considered as flavor, whereas the state
without mixing ({0, µ}), {σ, 0}), as flavorless (single-
color). By this analogy, the mixed-color U(m) vector
soliton has an internal structure, and the existence of
various states is reasonable for this composite particle.
In particular, for the U(5) vector nonlinear Schrödinger
model, solution (11) for one ({3, 2}) of four possible
flavor states ({1, 4}, {2, 3}, {3, 2}, {4, 1}) of the color
U(3 + 2) vector soliton has the form

(12)

Here,

where u = 2Reζ1 and v  = 2Imζ1 are the inverse width
and velocity of the soliton, respectively. It is seen that
the composite U(5) vector soliton given by Eq. (12)
consists of two dark (ψ1, ψ2) and three bright (ψ3, ψ4,
ψ5) components (nonlinear modes). The U(5) vector
soliton has six possible states. However, two of them
are flavorless (single-color) vector solitons—bright {5,
0} and dark {0, 5} vector solitons in self-focusing (δ =
+1) and defocusing (δ = –1) media, respectively. A
change in the refractive index of the medium induced
by the interaction of the ψ1, …, ψ5 components ∆n2 ~
|ψ1|2 + |ψ2|2 + … + |ψ5|2 can be calculated by directly
substituting explicit solution (12). However, the univer-
sal formula

(13)
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following for the whole set of U(m) vector nonlinear
Schrödinger models from Eqs. (5), expresses ∆n2 in
terms of the common Hirota function H. In particular,

for the above U(5) model with µ =  one has H =

1 + a11 . Then Eq. (13) yields

with signs + and – for the self-focusing and defocusing
media, respectively.

The presence of a vacuum–condensate with nonzero

density —in a defocusing medium (δ = –1) poses the
following reasonable restriction on the characteristics
of the color vector soliton:

Nevertheless, since the color U(m) vector soliton has
(m – 1) possible flavor states, the observation of these
states in multimode optical systems may be more prob-
able than the observation of single-color states, whose
number equals two.

3. Two-soliton (N = 2) solution and the interac-
tion dynamics of mixed-color multisolitons. Let us
demonstrate that the interaction of color multisolitons
specified by Eqs. (8) and (9) in the mixed U(m) vector
nonlinear Schrödinger model given by Eqs. (3) and (4)
is nontrivial (changing the shape without energy loss) at
m ≥ 3, and the intermode (energy) exchange occurs pro-
portional to the intensities of the soliton nonlinear
modes. Without loss of generality, we analyze the
asymptotic behavior (t  ±∞) of color multisolitons
specified by Eqs. (8) and (9) for N = 2.

Two-soliton solution (N = 2) given by Eqs. (8) and
(9) takes the form

(14)

where σ + µ = m and the Hirota function is

Let v 1 > v 2 (Imζ1 > Imζ2), where v n is the velocity of

the  soliton in the jth mode (j = 1, 2, …, µ, µ + 1, …,
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µ + σ). Solution (14) for t  ±∞ on the trajectories

ξn = x – v nt of individual  solitons is decomposed
into the sum of free soliton solutions given by Eq. (12):

(15)

Here, the envelope  of the nth soliton in the jth
mode for n = 1, 2 and j = σ, µ has the form

where

and soliton amplitudes  and  before and after

the interaction are related to one another as  =

, where the matrix  transforms the asymptotic
function for t  –∞ to the asymptotic function for
t  +∞. These amplitudes and matrix have the form

(16)

where

It is seen that the soliton velocities v n are invariants of

motion, whereas the phases  and amplitudes 

are not. Since | | ≠ 1 and | | = 1 in the general case,
the interaction of mixed-color U(σ + µ) vector solitons
(14) is nontrivial and gives rise to the exchange of
intensity between modes, which is proportional to

~| |2. This exchange is responsible for the energy
redistribution in the components (nonlinear modes) of
color vector solitons. However, the exchange effects
different character in the σ and µ modes: σ modes

exchange nonzero energy ~| |2 and conserve sign,

whereas µ modes conserve energy (| |2 = 1) but
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ã21
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change their signs and acquire additional phase shift
~(2φnµ + π) as a result of interaction. It is seen that the
µ modes interact only if their phases are different.

As a whole, the asymptotic analysis indicates that
the exchange between the components of an individual
color soliton is not arbitrary (chaotic) but correlates
with the corresponding changes in the components of
all other solitons. The nontrivial interaction of color
multisolitons (14) and the possible intermode
exchanges in the system described by Eqs. (3) and (4)
must satisfy the conservation laws for (i) the total inten-

sity of an individual  soliton,  =

, and (ii) the total intensity of all solitons

before and after interaction,  =

. The validity of these laws can easily
be seen from asymptotic Eqs. (16). In addition, the
interaction-induced shifts of the soliton centers of mass

∆Xn =  –  = (–1)n + 12 lnχ, where

with

(17)

obey the Sudzuki–Zakharov–Shabat condition
ζ11∆X1 + ζ22∆X2 = 0 (conservation law for the soliton
centers of mass), which follows from the conservation

of the quantity Itot = dx in time t. The above

conservation laws and the exact formulas describe
quantitatively the exchange kinetics and possible scenar-
ios of intermode exchange in the system of color multi-
solitons (14). Let us discuss the factor e in Eq. (17).

Owing to the explicit multiparticle effects in e, the
shifts ∆Xn of the centers of mass for color solitons do
not have the factorization property that is conventional
for ordinary solitons. Therefore, e indicates a complex
character of the interaction of composite U(σ + µ) vec-
tor solitons (14). In the general case [for arbitrary soli-

ton parameters , ζn, (zjµ), vacuum densities , and
the number of components σ + µ = m), the soliton shifts
∆Xn cannot be represented in the two-particle form
because of the presence of e; the N-soliton scattering
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does not reduce to pair scattering, and the interaction of
composite U(σ + µ) vector solitons at σ ≥ 2 is nontrivial
(changes the shape with energy conservation). In a par-
ticular case of the linear dependence of parameters

 –  = 0, they do not affect e, the contribution
of vacuums is symmetrized, and the shifts ∆Xn of cen-
ters can be represented in the two-particle form. There-
fore, N-soliton scattering is factorized, and the interac-

tion between solitons becomes elastic (| | = 1, j = σ
and µ). Moreover, it directly follows from Eq. (17) that
the interaction between composite U(1 + 1) vector soli-
tons is completely elastic in the Manakov mixed U(2)
model with σ = µ = 1 [12]. In all other cases, color
U(σ + µ) vector solitons with m = σ + µ ≥ 3 interact
nontrivially, and their nonlinear modes undergo energy
exchange satisfying the above conservation laws.

We are grateful to V.E. Zakharov for his attention to
the work and S.V. Manakov and V.G. Marikhin for use-
ful remarks. This work was performed in part at the
Landau Institute for Theoretical Physics.
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Nonlinear Resonant Polarization Rotation 
under Conditions of Coherent Population Trapping
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Nonlinear resonant optical rotation was studied over a wide range of experimental parameters at the Rb D1 F =
2  F' = 1 transition in the 87Rb vapor under conditions of coherent population trapping. The angle of rotation
was found to depend nonmonotonically on the laser intensity and applied magnetic field. The effect of optical
pumping out to the level F = 1 is discussed. It is demonstrated experimentally that the Faraday rotation angle
increases twofold upon the compensation for pumping. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.50.Gy; 42.25.Ja
The nonlinear polarization rotation (nonlinear Fara-
day effect) is among the effects that are closely allied to
coherent population trapping and electromagnetically
induced transparency in degenerate systems [1–10]. In
measuring magnetic field with the help of the resonant
Faraday effect, one ordinarily uses low-intensity laser
radiation, because it allows the obviation of field-
induced line broadening and provides a high sensitivity
[1, 2]. This approach is suggested for measuring micro-
gauss fields. It should be noted, however, that the appli-
cability of this method, as a rule, is restricted to super-
low magnetic fields (~100 µG). Moreover, due to the
strong absorption under resonance conditions, mea-
surements can be carried out only at low atomic con-
centrations.

The use of relatively high intensities and optically
dense media is a promising approach in experiments
with nonlinear resonant polarization rotation. In this
case, the coherent population trapping occurs in
medium, resulting in a decrease of absorption because
of the effect of electromagnetically induced transpar-
ency. A wide range of measured fields (up to several
gauss) is one of the advantages of this method, render-
ing it promising for practical applications such as, e.g.,
measurement of the variations in the earth magnetic
field. In addition, the use of optically dense media
increases the Faraday rotation angle up to several
radian (compared to milliradians in the experiments
with low intensities and optically thin media), thereby
improving the measurement accuracy. In particular, the
maximal rotation angle at the 87Rb D1 F = 2  F' = 1
transition equals 10 rad in a magnetic field of 0.6 G [4].
The sensitivity of the method is limited by the dynamic
Stark effect (intensity dependence), collisional effects,
and by the radiation reabsorption (concentration depen-
dence) [4, 5, 11, 12] and, as theoretical estimates show,
0021-3640/02/7607- $22.00 © 20419
is comparable with the sensitivity of the low-intensity
measurements [13].

In this work, the nonlinear resonant polarization
rotation in 87Rb vapor was experimentally studied at the
F = 2  F' = 1 transition of the D1 line. The F = 2 
F' = 1 transition was chosen among other transitions
between the hfs components of the 5s1/2 and 5p1/2 levels
because it is most sensitive to the magnetic field and,
hence, is of the greatest practical interest. Measure-
ments were performed over a wide range of laser inten-
sities and magnetic fields. The laser parameters and the
magnetic field were varied from 10 µW/cm2 to
100 mW/cm2 and from 0.25 to 25 G, respectively. Mea-
surements were made in an optically dense medium
with a rubidium concentration of ~1011 cm–3, for which
the role of collisional effects and radiation reabsorption
was negligible, as was confirmed by the linear concen-
tration dependence of rotation angle.
The scheme of experimental setup is shown in Fig. 1.
An external cavity diode laser 1 was used as a source of
monochromatic radiation. The radiation was linearly
polarized at the laser output. Polarization was con-

Fig. 1. (a) Scheme of the setup: (1) laser, (2) polarizer,
(3) light filters, (4) cell with 87Rb vapor, (5) heater, (6) sole-
noid, (7) magnetic screen, (8) polarizing beam splitter, and
(9) and (10) photodiodes; (b) scheme of the hyperfine struc-
ture of the 87Rb D1 line.
002 MAIK “Nauka/Interperiodica”
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trolled additionally by polarizer 2. The intensity was
varied using set of calibrated light filters 3. The laser
beam with a cross section of 2 × 5 mm passed through
cylindrical cell 4 56 mm in diameter and 55 mm in
length filled with 87Rb vapor without buffer gas. The
cell was placed inside solenoid 6, which was used to
produce a longitudinal magnetic field. To prevent influ-
ence of the laboratory magnetic field, magnetic screen
7 was used. The screening quality was checked against
the absence of Faraday rotation in the switched-off
solenoid. The rubidium concentration in the cell was
varied using heater 5. When passing through the cell,
laser beam fell on polarizing beam splitter 8, which was

Fig. 2. Magnetic-field dependence of the Faraday rotation
angle (for an intensity of 100 mW/cm2 and a concentration
of 1.5 × 1011 cm–3). The dependence of a point at which the
effect changes sign on the Rabi frequency (square root of
intensity) is shown in the inset. The arrow indicates the
point corresponding to an intensity of 100 mW/cm2.

Fig. 3. Faraday rotation angle as a function of laser intensity
(for a magnetic field of 0.85 G and a concentration of 1.1 ×
1011 cm–3).
set at an angle of 45° to the laser output polarization.
The Faraday rotation angle and the absorption in the
cell were calculated using the radiation intensity mea-
sured in the different splitter arms by photodiodes 9
and 10.

The magnetic-field dependence of the Faraday rota-
tion angle is presented in Fig. 2. The measurements
were performed with a laser intensity of 100 mW/cm2

and a concentration of 87Rb atoms of 1.5 × 1011 cm–3. In
low fields, the rotation angle increases linearly with
magnetic field, following the linear increase of Zeeman
splitting. On further increase in a magnetic field and,
correspondingly, in Zeeman splitting, the left-hand and
right-hand circular light polarizations get off the two-
photon Raman resonance, which is responsible for the
coherent population trapping. This disturbs the coher-
ence between the magnetic sublevels and, hence,
reduces the Faraday effect. The decay of atomic coher-
ence and of the attendant electromagnetically induced
transparency is confirmed by the experimentally
observed increase in absorption. At even higher mag-
netic fields, the rotation angle changes sign. The change
in sign of the effect is caused by a change in the
medium dispersion characteristics after the decay of
atomic coherence; this is analogous to a change in sign
of the derivative of refractive index for a probe wave in
the experiments with electromagnetically induced
transparency [7].

Measurements showed that the curve for the mag-
netic-field dependence of Faraday rotation angle
changed its shape (position of a maximum, point at
which the effect changes sign, etc.) with changing light
intensity. It proved that the magnetic field at which the
effect changes sign depends linearly on the square root
of intensity, i.e., on the Rabi frequency of laser field
(inset in Fig. 2). The corresponding Zeeman splitting
approximates the Rabi frequency. In particular, for an
intensity of 100 mW/cm2 (Rabi frequency 21.5 MHz),
the effect changes sign in the magnetic field B = 15 G
corresponding the sublevel splitting δ = gµBB/h ≈
21 MHz, where µB is the Bohr magneton, h is Planck’s
constant, and g is the Landé factor taken to be unity for
estimation.

Measurement of the rotation angle as a function of
light intensity showed that, at low intensities, the
medium is virtually insensitive to magnetic field. As the
intensity increases, the rotation angle starts to grow rap-
idly, reaches maximum, and then decreases (Fig. 3).
Such a behavior can be explained in the following way.
At low intensities, the atomic coherence is almost
absent in medium. As a certain threshold is exceeded,
the onset of coherent population trapping is observed in
the medium, resulting in a sharp enhancement of the
Faraday effect. The experimentally observed threshold
intensity was found to be ~100 µW/cm2 (Fig. 3). This is
slightly higher than the threshold of coherent popula-
tion trapping caused by the relaxation processes Ω ≈
JETP LETTERS      Vol. 76      No. 7      2002
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 = 0.44 MHz, where γ ≈ 6 MHz is the homoge-
neous width of the transition and Γ ≈ 16 kHz is the Zee-
man coherence relaxation rate, which is equal in the
experimental conditions to the time of atomic flight
through the laser beam (the corresponding light inten-
sity is 40 µW/cm2). The threshold shift can be
explained by the fact that the Rabi frequency becomes
equal to the Zeeman splitting at the intensities on the
order of 100 µW/cm2 in the applied magnetic field, and
the effect is close to zero (inset in Fig. 2).

With an increase in laser intensity, the number of
atoms involved, within the inhomogeneously broad-
ened contour (the Doppler halfwidth in the experiment
was WD ≈ 250 MHz), in the coherent population trap-
ping and interacting efficiently with light increases.
This results in an increase in the Faraday rotation angle
with increasing intensity.

On further rise in intensity, the effect starts to
weaken. Theoretical estimates within a simplified
three-level Λ-type scheme without inhomogeneous
broadening indicate that, at high intensities, the Fara-
day effect is inversely proportional to light intensity and

reaches maximum at Ω ≈  = 3.8 MHz (at γ @ δ),
which corresponds to I ≈ 3 mW/cm2. Measurements
showed that the rotation angle reached its maximum at
the laser intensity I = 20 mW/cm2 (Fig. 3), which is
higher than the theoretical value obtained without
regard for the Doppler broadening. Note, however, that
the inhomogeneous broadening can be ignored at Ω @

WD ≈ 13 MHz, which corresponds to I ≈
35 mW/cm2.

Note that, since the F = 2  F' = 1 transition is an
open system, the population is optically pumped out to
the F = 1 level under the action of electromagnetic
wave, resulting in weakening of the Faraday effect. Evi-
dently, the compensation of population pumping from
the system should increase the Faraday rotation angle
and improve the magnetic-field sensitivity at a fixed
concentration of active atoms. This is particularly
important for overcoming the sensitivity threshold
associated with the influence of collisions and radiation
imprisonment at high concentrations [4, 5, 11, 12].

To study the effect of optical pumping out, an auxil-
iary laser was used. It was tuned to the F = 1  F' = 2
transition and pumped population from the F = 1 level
to the F = 2 level via the upper F' = 2 level. The F =
1  F' = 2 transition has no dark states, providing
high efficiency of pumping. The beams of both lasers
were superposed inside the vapor cell, and the intensity
of the auxiliary laser was 70 mW/cm2. The experiment
was conducted with various intensities of the main laser
and magnetic fields. The angle of rotation was
increased approximately twofold.

These results agree with simple estimates. The rate
of optical pumping out of the F = 2  F' = 1 transition

2Γγ

2δγ

Γ /γ
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can be estimated at νout = γ , where  is the popula-
tion of the upper F' = 1 level. Under conditions of
coherent population trapping, the population of the
upper level is  ≈ Γ/γ and, correspondingly, the
pumping rate is νout ≈ Γ. In the absence of the auxiliary
laser, the rate of population recovery to the system is
determined by the relaxation rate between the hfs sub-
levels. This rate is determined by the atomic time of
flight through the laser beam and is equal approxi-
mately to the Zeeman coherence relaxation rate νin ≈ Γ.
Thus, the rates of population outflow from the F = 1
level to the F = 2 level and back are approximately the
same, νin ≈ νout, and, hence, the level populations are
also equal. On switching on the auxiliary laser tuned to
the F = 1  F' = 2 transition having no dark states,
the population recovery rate increases substantially. As
a result, almost the whole population undergoes transi-
tion to the F = 2 level, resulting in a twofold increase of
the Faraday effect, as was observed in the experiment.

The above considerations are in agreement with the
numerical calculations carried out for a three-level
open system. The calculations show that the compensa-
tion of optical pumping in the range of low magnetic
fields results in a twofold increase in the Faraday rota-
tion angle. In addition, the linear field dependence of
the rotation angle can be extended appreciably and,
accordingly, the maximum attainable rotation angle can
be increased upon choosing optimal radiation parame-
ters and medium. The extension of the dynamic range
is of great importance in fabricating optical magnetom-
eters. The results of studying the influence of optical
pumping out and its compensation on the Faraday rota-
tion are rather cumbersome and will be reported in
detail elsewhere.

One more specific feature of the nonlinear resonant
Faraday effect is that the dichroism in the center of an
inhomogeneously broadened line is totally absent,
because the absorption coefficients for the right-hand
and left-hand circular polarizations of electromagnetic
wave are equal. Evidently, the lack of dichroism allows
the accuracy of measuring magnetic field to be
improved, which is particularly important for the opti-
cally dense media, where the absorption plays a signif-
icant role.

Our experiments demonstrate that the Faraday rota-
tion angle depends nonmonotonically on the laser
intensity and magnetic field. It turns out that the opti-
mal light intensity exists (20 mW/cm2 in our experi-
ments) for which the angle of rotation is maximal. Mea-
surements of the rotation angle as a function of mag-
netic field suggest that the sense of rotation of the
polarization plane is different at high and low magnetic
fields. The Zeeman splitting corresponding to a change
in sign of the effect is equal approximately to the Rabi
frequency of the light wave. The magnetic field at
which the effect changes sign is virtually independent

n1' n1'

n1'
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of the atomic concentration and, hence, on the sample
temperature.

It seems that the compensation of the population
optical pumping out from the system is promising for
the extension of dynamic range and improvement of
accuracy of measuring magnetic field using the nonlin-
ear resonant Faraday effect. A twofold increase of the
effect has been demonstrated experimentally.

The results obtained open up new possibilities for
using the phenomena of coherent population trapping
and electromagnetically induced transparency in
degenerate systems to solve applied problems. The
design of a new generation of magnetometers seems to
hold much promise.

We are grateful to P.M. Anisimov, R.L. Kolesov,
E.A. Kuznetsova, A.G. Litvak, V.A. Mironov, and
V.E. Semenov for helpful discussions. This work was
supported by the Russian Foundation for Basic
Research, project no. 01-02-17779.
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A method of producing and confining ultracold electron–ion plasma with a strongly nonideal ion subsystem is
considered. The method is based on the laser cooling of plasma ions by the radiation resonant with the ion quan-
tum transition. A model is developed for the laser cooling of recombining plasma. Computer simulation based
on this model showed that the ion nonideality parameter can be as large as ~100. The data obtained demonstrate
that the production of ultracold nonideal plasma is quite possible. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.58.–c; 32.80.Pj
In recent years, considerable interest has been
expressed in studying ultracold plasma (UP) [1–13].
Experimental works on producing and studying plas-
mas at cryogenic temperatures (>4 K) were performed
earlier and described in book [14]. Interest in such plas-
mas was mainly caused by the possibility of investigat-
ing various elementary processes with low-energy par-
ticles. It should be noted that the degree of ionization of
plasma produced in these experiments was low (<10–4).

In [2–4] the idea was proposed of producing and
confining strongly ionized UP by resonance laser cool-
ing and plasma ion localization. In spite of a low parti-
cle concentration (<108 cm–3), the interparticle interac-
tion in such plasma is relatively strong because of the
low particle temperature. It is characterized by the non-
ideality parameter [15]

where α = e or i, kB is the Boltzmann constant, e is ele-
mentary charge, a is the mean interparticle distance, N
is the particle (electron and ion) concentration, and Tα
is the ion (α = i) or electron (α = e) temperature. For the
ion subsystem, Γi can be much greater than unity. The
respective electronic component may be weakly non-
ideal (Γi ! 1), but its temperature is relatively low
because of cooling due to the elastic collisions with
ions, so that the Debye radius (determined by this tem-
perature) is smaller than the size of cooled area, provid-
ing the necessary condition for the existence of elec-
tron–ion plasma.

Note that, despite the great progress in utilizing the
laser-cooling and atom–ion localization methods [16,
17], recombining electron–ion plasma has not been
studied in this context so far. One may anticipate that
the extension of these methods to plasmas will assist in
preparing new physical objects in laboratory condi-
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tions. In particular, a UP with strongly nonideal laser-
cooled ionic component is among such objects. This
plasma is of considerable interest due to the following
reasons.

It is the natural physical implementation of the clas-
sical three-dimensional model, so-called one-compo-
nent plasma (OCP) (ideal electron subsystem acts as a
neutralizing background), which is widely used in the-
oretical studies of phase transitions in Coulomb sys-
tems [15]. For this reason, this system is a highly suit-
able object for the experimental study of the liquid–
(Wigner)crystal transition [15] predicted by the OCP
theory. The possibility of varying Γi in laboratory (by
controlling laser parameters) is very important for
studying the properties of phase states and transitions
between them in quasi-neutral strongly ionized plas-
mas.

Interest in UP has been grown due to recent experi-
ments [5–7], in which it was produced by near-thresh-
old photoionization [18] of preliminarily cooled Xe
atoms. The authors of experiments [5–7] assumed that
the electron and ion temperatures were as low as 0.1
and even 10–3 K, respectively, for the concentrations of
charged particles ~108–109 cm–3; i.e., plasma should be
strongly nonideal for both components. However, the
experimental results ran counter to the assumption
about very low particle temperature. In a number of
subsequent works [8–13], these experiments were ana-
lyzed, and it was shown that the relaxation of both sub-
systems to the minimum-potential-energy state in times

τe ~  and τi ~  (ωe and ωi are the electron and
ion plasma frequencies) increases their kinetic energy
by ~e2/a, where a is the mean interparticle spacing. The
corresponding nonideality parameters are Γe, Γi ~ 1.
Further rise in electron temperature is caused by the
recombination-induced heating. Therefore, this method
allows one to produce UP with the nonideality parame-

ωe
1– ωi
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ter <1 and the lifetime less, at least, than the plasma
expansion time.

In our opinion, the combination of two methods—
creation of initial UP by near-threshold photoionization
followed by laser cooling and ion localization by reso-
nant radiation—is the promising method of producing
long-lived UP with strongly nonideal ion subsystem.
Such is the case, because the ion heating upon the relax-
ation to equilibrium distribution is compensated by
laser cooling while the plasma expansion is prevented
by the ion localization in optical trap and, correspond-
ingly, electron localization by the light-induced ambi-
polar potential [2, 19].

Note also that the ion-cooling laser radiation affects
not only the translational but also the ion internal
degrees of freedom. The formation of excited ions ini-
tiates a number of elementary processes that compli-
cate the plasma cooling pattern. In particular, the super-
elastic electron collisions with excited ions and the for-
mation of Rydberg atoms and autoionizing states in the
recombining UP are such processes.

In this work, computer simulation was carried out
for the plasma laser-cooling dynamics with the aim of
determining the range of attainable UP parameters.

Let us consider a “cold” rarefied plasma with a par-
ticle temperature of <100 K and a concentration of
<109 cm–3, which can be produced by near-threshold

Fig. 1. Scheme of elementary processes: αi and αR are the
autoionizing and Rydberg atomic states, respectively; E12 is
the ion excitation energy; ER is the energy [22] above which
the electron-impact-induced de-excitation rate is higher
than the spontaneous decay rate. The following processes
are also shown: Wi are the laser-induced transitions; KNe
denote the electron–atom inelastic collisions; KiNe is the

electron-impact-induced ion de-excitation; R  is the

three-particle recombination; Γai is the autoionization
decay; and γ is the spontaneous decay of an excited ion.

Ne
2

αR
photoionization. Considering the results of works [11–
13], we assume that initial temperatures satisfy the con-
dition Γe < 1 and Γi ~ 1. Let the plasma be exposed to
the monochromatic radiation [in the form of standing
wave with amplitude E = E0cos(klr) along the l direc-
tion] quasi-resonant with the quantum transition of
plasma ions and having frequency ω red-shifted from
the resonance frequency ω21: ω – ω21 = ∆ < 0. Then the
friction force acting on ions in the weak-saturation

|V | ! γ, |∆| and slow-ion γ @ k  case can be writ-
ten as [20]

(1)

where mi is the ion mass, χ is the friction coefficient, V
is the Rabi frequency, γ is the ion excited-state sponta-
neous-decay rate, and v is the ion velocity.

The conditions

are considered, where τ = max( , ), νii is the fre-
quency of elastic interion collisions, and τ0 = χ–1 is the
ion cooling characteristic time.

Due to the elastic collisions with ions, electrons are
also cooled, but the electron cooling rate is lower than
that of ions if τ0 < (meνei/mi)–1 (me is electron mass and
νei is the frequency of elastic ion–electron collisions).
As a result, the ion subsystem may be strongly nonideal
(Γi @ 1), with the electron state remaining weakly non-
ideal. Despite the low concentrations, the three-particle
recombination rate is high, because the initial particle
temperatures are low. Besides, this recombination is
distinctive in that the electron is captured to highly
excited (Rydberg) atomic levels followed by their elec-
tron-impact de-excitation down along the energy axis.

As a result, the cooling irradiation remains resonant
with the ion core of the formed Rydberg atom, and the
atom undergoes transition to the autoionizing state
upon core excitation. This results in the situation corre-
sponding to the method of producing autoionizing
states by the “excitation of isolated core” [21].

The subsequent autoionizing atomic decay again
results in the formation of an ion and an electron,
thereby preventing the recombination. Figure 1 is the
schematic of the main elementary processes involved in
our model.

As a result of autoionization and superelastic elec-
tron collisions with excited ions, hot electrons appear
with energy εh equal to the resonance ion-transition the
energy E12 appreciably higher than the kinetic energy εe

of thermalized electrons. This results in the formation
of two groups of electrons, because the energy
exchange between them is hampered due to small elas-

tic-scattering cross sections σee ~ . The formation of

εi/mi
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hot electrons also brings about recoil-induced ion heat-
ing. The recoil energy is εr ≈ meE12/mi.

Apart from the above-mentioned processes, there
are some other processes influencing the ion kinetic
energy. Among these are ion heating caused by the
quantum fluctuations of radiative forces [20] and
decrease in the ion kinetic energy as a result of weaken-
ing interparticle Coulomb interaction in the recombina-
tion.

Plasma dynamics depends on the size of the region
and the way of localization. In our opinion, a purely
optical trap based on the use of rectified gradient forces
in bichromatic laser fields is most promising for the
localization [23], because it is free from the disadvan-
tages inherent in the traditional plasma magnetic con-
finement methods (magnetohydrodynamic instabilities
are possible in nonuniform magnetic fields). The depth
U0 of such a trap can be as large as ~10 K [23]. If the
characteristic trap size L ! λh, where λh is the mean
free path of hot electrons, the latter will freely escape
the trap (in the ambipolar regime with the same number
of ions). Although this reduces plasma concentration,
the contribution of these electrons to the heating of the
remaining thermalized electrons can be ignored. In
what follows, the conditions

(2)

are assumed to be fulfilled. This signifies that the ther-
malized electrons with mean kinetic energy εe are con-
fined in the trap, while the hot electrons freely escape it.

With allowance for this, the dynamics of mean
kinetic energies εe and εi of the thermalized electrons
and ions and their concentrations Ne and Ni can be
described by the set of equations

(3)

(4)

(5)

(6)

(7)

where j0 is the classical [24] recombination flux. The
second term on the right-hand side of Eq. (3) accounts
for the escape of thermalized electrons to the group of
hot electrons through the superelastic collisions with
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excited ions, where Ki is the electron-impact ion-de-
excitation rate constant, and N2i is the concentration of
excited ions. It is described by Eq. (4), which is
obtained in the quasi-stationary approximation valid
under the condition

(8)

where τr is the characteristic recombination time and τh

is the characteristic time of electron recombinational
heating. Our estimates show that condition (8) is ful-
filled for the concentrations Ne = 105–109 cm–3 and Γe ~
0.1. In Eq. (5), the first term on the right-hand side
accounts for the electron recombinational heating with
the transition of some Rydberg atoms to the decaying
autoionizing states; Γn is the number of atoms excited
in unit time from the state with principal quantum num-
ber n to the appropriate autoionizing state (ICE mecha-
nism) followed by the decay of the latter; ER is the
energy above which the electron-impact-induced de-
excitation rate is higher than the spontaneous decay
rate; En is the electron binding energy in the nth state;
nc corresponds to the upper limit of bound states; and

nR = . The second term is responsible for the
energy exchange in elastic collisions of thermalized
electrons and ions (as shown in [25], the pair-collision
approximation can be used for weakly nonideal elec-
tron subsystem for an arbitrary value of Γi) with fre-
quency νei. The first term for the ion kinetic energy on
the right-hand side in Eq. (7) describes the ion heating
by virtue of the recoil energy arisen in the formation of
hot electrons; Λ = ("k)2γ2|V |2/[2mi(∆2 + γ2/4)] describes
the ion heating due to quantum fluctuations of radiative
forces [20]; Ui = –ξe2/a [26] is the potential energy of
interacting ions (ξ ~ 1); and the corresponding term in
Eq. (7) accounts for a change in this energy in recombi-
nation. The value of Γn was determined in the weak-
field limit from the population balance equations for
autoionizing states in the quasistationary approxima-
tion, whose validity follows from condition (8). In so
doing, the model of fast mixing between the states with
different orbital quantum numbers l, the condition Γn ! j0,
and the features in the dependence of the autoionization
rate Γnl [27] on l were used.1 In the model considered,
Γn = Γn(|V |, ∆, γ, Ne, Γnl) is a function of field parame-
ters, characteristics of ion quantum transition, concen-
tration of thermalized electrons, and a functional of
autoionization rate Γnl and j0 is expressed by the classi-
cal formula.

Since electrons in the course of ion cooling are
heated due to three-particle recombination (Γe

decreases, as is confirmed by the numerical experi-

1 With an increase in l at a fixed n, the autoionization rate Γnl rap-
idly decreases (by several orders of magnitude) and the contribu-
tion to Γn comes only from the states with l ≤ lmax (lmax & 10)
[27, 28], so that one may put Γnl = 0 at l > lmax ! n).

γ @ τ r
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ments), they can be considered weakly nonideal and
forming ion-neutralizing background.

Computer simulation of model (3)–(7) was carried
out for the Mg ions with the initial concentration N0 =
109–105 cm–3, detuning ∆ = 2 × 108–109 s–1, and Rabi
frequency |V | = 108 s–1.

Fig. 2. Dynamics of plasma parameters for N0 = 106 cm–3,

∆ = 2 × 109 s–1, and electron initial energy εe0 = 1 K.

Fig. 3. The nonideality parameter and the electron tempera-
ture as functions of N0 (for ∆ = 2 × 108 s–1) and ∆ (for N0 =

106 cm–3).

N0

;
 Figure 2 demonstrates the dynamics of plasma
parameters (Γi, εe, Ne) in the course of cooling. It turned
out that quasistationary values of parameters are estab-
lished in a relatively short time (<10–4 s) and then
slowly change because of a decrease in plasma concen-
tration as a result of the escape of hot particles (main
reason) and the recombination. Despite the low initial
electron temperature, the recombination plays a consid-
erable role only at the initial moment. Because of the
fast recombinational electron heating, the rate
decreases rapidly and the escape of hot particles from
the cooling region plays the main role. Note that a high
Γi ~ 160 value is achieved in a rather short time, after
which it changes only slightly upon decreasing plasma
concentration.

The nonideality parameter is shown in Fig. 3 as a
function of concentration Γi(N0) and detuning Γi(∆).
The Γi values correspond to the time t = 0.1 s. Similar
dependences for the maximal electron temperature are
also shown in the figure. One can see that the character
of Γi(N0) dependence alters at N0 ≥ 106 cm–3, because
the processes change their roles: at small N0, the “fluc-
tuation” heating mainly limits the ion cooling; as N0
increases, the electron–ion energy exchange becomes
dominant. A change in the roles of processes is also
manifested by the deviation of the Γi(∆) dependence

from the (∆) ~ 1/|∆| dependence obtained for |∆| > γ
on the assumption that fluctuation heating dominates.

The dependences shown in Fig. 3 can be used to
determine the range of N0 values that are admissible for
the plasma localization in a trap with depth U0. For
example, the concentrations N0 ≤ 3 × 106 cm–3, for
which the maximal temperature of thermal electrons
does not exceed 10 K, are admissible for U0 = 10 K.
Nevertheless, Γi ~ 150 can be attained even in such a
rarefied plasma.

Our studies have shown that the plasma laser cool-
ing is a rather complicated phenomenon, whose speci-
ficity is caused by the low energies of charged particles,
action of resonance radiation on both translational and
internal degrees of freedom of particles and by the
plasma localization in trap. Of special note is the stabi-
lizing role of the trap. In the absence of the trap, the
plasma would decay, due to its expansion, in a time on
the order of 10−3–10–4 s (even at T ≤ 10 K).

Our computer simulation has demonstrated that
plasma laser cooling in an optical trap is an efficient
method of producing long-lived ultracold plasma with
a strongly nonideal ion subsystem, which can be used
in laboratory studies of phase transitions in the coulom-
bic systems. Note also that the specificity of the ele-
mentary processes occurring in cooled plasma allows
the use of this method for the formation of Rydberg and
autoionizing atomic states and the study of the recom-
bination processes in as yet poorly explored low-tem-

Γ i
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perature and low-concentration ranges and the proper-
ties of nonideal plasma.

This work was supported by the Russian Foundation
for Basic Research, project no. 99-02-16873.
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In a strong electric field, liquid metal of a micropoint is in the extended metastable state. At a certain degree of
superheating, rapidly growing vapor bubbles arise spontaneously in it (vapor cavitation or explosive boiling),
leading to the explosion of the micropoint. The resulting mixture of droplets in vapor expands with a high veloc-
ity to transform into plasma bunches. The field dependences obtained with this model for the explosion delay
time and for the droplet size agree qualitatively with the experimental data for tungsten micropoints. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.Fx; 64.60.My
It was established by Mesyats et al. [1, 2] that, if the
electric field strengthens locally in the vicinity of a
micropoint, explosive electron emission is preceded by
microexplosions of the point tip. At the current density
j > 108 A/cm2, the micropoint at the cathode surface
acquires an energy of ~104 J/g, after which it explodes.
This is accompanied by the transformation of field-
emission current into the explosive electron-emission
current with the formation of a crater at the cathode. In
[3–6], the electrohydrodynamic processes occurring in
the plasma state after the destruction of cathode
micropoint were considered. The possible role of metal
superheating in the microexplosion was discussed in
[7]. However, the physical nature of the processes lead-
ing to microexplosions (ectons) at the cathode surface
was still not fully understood. The authors of [1, 2]
showed that the processes occurring in the wire electric
explosion are closely related to the explosive electron
emission. Experiments [1, 2] suggest that an external
electric field plays the decisive role in the micropoint
explosion: a less than twofold change in the field
strength changes the microexplosion delay time by
seven orders of magnitude.

A two-phase liquid–vapor system in an external
field becomes thermodynamically unstable at a certain
critical field strength [8] and undergoes transition,
through phase explosion, to a new state with a different
configuration, namely, to a finely dispersed phase mix-
ture. In the case of wire explosion, a vapor in equilib-
rium with the conductor compressed by the Ampere
forces is supersaturated with respect to the liquid with-
out current. For this reason, liquid-phase nuclei with
critical radius can spontaneously arise in this vapor at a
certain degree of supersaturation (magnetic field),
thereby destabilizing the “conducting liquid-metal
core–vapor” system and inducing its explosive trans-
0021-3640/02/7607- $22.00 © 20428
formation into a rapidly expanding finely dispersed
mixture of liquid droplets in vapor [8–11]. In contrast
to the explosion of thin wires, the explosion of
micropoints occurs in a strong electric field, which
induces, at the liquid–gas interface, surface electric
force directed toward the vapor and, hence, extending
metal. Because of this, liquid conductor appears in the
extended (superheated) metastable state. At a certain
field strength and degree of superheating, rapidly
grown vapor bubbles arise spontaneously, and the cav-
itation (explosive boiling or cavitation; see [12, 13] for
detail) with pressure impulse occurs in the micropoint
liquid. The micropoint breaks and transforms into the
expanding finely dispersed mixture of droplets in
vapor, from which plasma bunches are subsequently
formed and flow toward the anode. Experimental data
[14] confirm the presence of such droplets in the
micropoint explosion products. The cavitation
micropoint explosion model explains the experimen-
tally observed [1, 2] sharp decrease in the delay time
between the impulse and explosion upon a small
increase in the field strength and allows one to estimate
the size of liquid droplets and the value of post-explo-
sion current.

Figure 1 presents the experimental data from [1, 2].
The explosion delay time was measured as a function of
field strength at micropoints with radii of curvature R ~
(0.05–0.3) µm. Measurements were made in the range
E ~ (70–130) MV/cm with current densities (4.5–220) ×
107 A/cm2. After the micropoint explosion, the dis-
charge current increased from ~10–2 to ~1 A.

Let the micropoint be a liquid-metal cylinder of
length l and radius R and have spherical tip. At the inter-
face of two magnetically inactive media (liquid and
gas), in which the electric field and current are perpen-
002 MAIK “Nauka/Interperiodica”
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dicular to the interface, the equilibrium is described by
the equations

(1)

(2)

The index l refers to liquid and g refers to gas. Equa-
tion (1) is the condition for the constancy of chemical
potential along both media. In Eqs. (1) and (2), E is the
electric field strength; µ, ε, and ρ are the chemical
potential, the dielectric constant, and the substance
density, respectively; and ∆pM is the addition to the liq-
uid pressure from the Ampére forces. For a cylindrical
rod, ∆pM = µ0j2R2/4, where µ0 is the magnetic constant
and j is the current density. The corresponding term for
the gas phase is negligible because of the low current
density in it.

Equation (2) relates the liquid and gas pressures p at
the interface to each other. Here, Fγ = 2γ/R is the capil-
lary pressure for a micropoint with spherical curvature
and FE is the surface electric force at the interface of
two media with different dielectric constants; it is
directed toward the medium with the smaller value of
this constant. The surface tension γ(T) = γ0(1 – T/Tc)θ

was determined from the data in [15] (Tc is the critical
temperature and θ = 1.25 is the critical index). For the
perpendicular force, one has

(3)

Linearizing the chemical potentials in Eq. (1) with
respect to pressure in the vicinity of ps (ps is the equilib-
rium pressure in the absence of fields and surface cur-
vature), one obtains

(4)

(5)

Below, we restrict ourselves to the case where one of
the media is a liquid metal and the other is a nonpolar-
izable weakly conducting vapor with εg > 1. In this
case, the contribution of the electrostriction forces to
the pressure and chemical potential can be ignored, and
expression (3) for the surface electric force (3) takes the
form

(6)
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The field strength in liquid metal can be estimated
using Ohm’s law El = j/σl. Taking σl ~ 0.7 × 105 S/m,
one obtains El ≤ 3 MV/cm; this value is appreciably
lower than the field strength near the tip. The estimates
of the contributions from different media to the phase
pressures in experiments [1, 2] suggest that the main
contribution comes from the surface electric force FE,
which produces high negative pressures exceeding the
contribution of the capillary Ampére forces by more
than an order of magnitude. Because of this, the pres-
sure in liquid metal is much lower than its equilibrium
value ps; i.e., the metal is in a extended metastable state.
At the initial moment, the surface electric force applied
to the micropoint tip produces an unloading wave in the
micropoint. The characteristic size of the extended
region is ~usτ, where us is the sound velocity and τ is the
delay time. Since, for the micropoint length l < (10–
15)R, the micropoint has time to unload along its entire
length during the experiment, the volume of metastable
liquid is comparable with the micropoint volume.

The pressure–chemical potential phase diagram for
the states of micropoint metal and surrounding vapor in
Fig. 2 is constructed using the semiempirical equation
of state for tungsten [16] at T ~ 1.2 × 104 K. The line b
is a binodal; ig and il are the chemical potential iso-
therms for the gas and liquid, respectively. The point of
intersection of the lines ig and il corresponds to the liq-
uid–gas equilibrium at pressure ps and chemical poten-
tial µs in the absence of current and electric field.

The horizontal line in Fig. 2 corresponds to the total
chemical potential uniform across the whole system in
equilibrium. The black points 1, 2, and 3 are the states
of the liquid metal micropoint in electric fields E = 120,
100, and 70 MV/cm, respectively. The metal pressure at

Fig. 1. Emitter explosion time as a function of electric field
strength at the micropoint. Curve (1) is the expectation time
for the nucleus appearance in liquid phase; curve (2) is the
time of heating emitter to a temperature of ~1.3 × 104 K;
curve (3) is the time of reaching steady-state nucleation, as
calculated by Eq. (13). Rhombi denote the experimental
data from [1, 2].
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these points is appreciably lower than the equilibrium
pressure ps. The point g denotes the gas state in equilib-
rium with metal. The chemical potentials of liquid
metal and gas are equal, but the phases of the substance
are at different pressures (the difference is mainly
caused by the surface electric force).

The electric field strength inside the metal is low
compared to the external strength. In such a situation,
both the vapor surrounding the micropoint and occur-
ring in a strong electric field and the gas bubble of crit-
ical radius arising inside the liquid-metal micropoint,
where the field is nearly zero, may be in equilibrium
with the superheated metal. The vapor pressure and
chemical potential in such a bubble should coincide
with those outside the micropoint.

Fig. 2. The tungsten phase diagram in the µ–P plane.

Fig. 3. Typical plots of the work of formation for the phase
nucleus vs. the dimensionless radius for the parameters α =
0.01, 0.2, and 0.3.
Let a bubble of radius a arise near the micropoint tip
with the initial radius R. Due to the low compressibility
of liquid, the micropoint slightly thickens, its radius of
curvature increases, and the field strength decreases at
the tip. Because of this, the field strength changes when
the bubble forms, according to the expression

(7)

where E0 = Eg is the field strength at the micropoint in
the absence of a bubble.

The pressure difference ∆p = pg – pl between the
vapor in the bubble and the liquid is given by Eqs. (4)
and (5). If the electric field dominates, one can write
∆p ≈ E2/8π. The work necessary for the formation of a
bubble with radius a in the extended superheated
micropoint liquid is found from the relation

(8)

It is convenient to introduce the dimensionless radius

x = a/R and the dimensionless work  = 6A/R3 .
Then one has from Eq. (8)

(9)

where α = 48πγ/R  is the dimensionless parameter. In
the experimental conditions of works [1, 2], this param-
eter does not exceed few hundredths.

It follows from Eqs. (8) and (9) that the equation
determining the extreme points for xc takes the form

(10)

The dependence of the dimensionless work on the
dimensionless radius x is shown in Fig. 3 for different
values of parameter α. At x ! 1, the curve has a weak
maximum, which almost disappears in high fields. The
maximum point corresponds to the critical radius and
work

(11)

One can see that the work of formation of the critical
bubble decreases drastically with increasing field
strength near the micropoint.

Every bubble with radius larger than ac grows with
a high rate. This growth is restricted by the radius cor-

responding to the minimum of function  in Fig. 3. In
the range of parameter α considered, the maximum
occurs at x ≥ 1. In this range, the vapor bubbles grow to
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a size that exceeds the initial micropoint radius. By this
instant of time, the micropoint should be destroyed.

Let us estimate the instant of time at which a viable
vapor nucleus appears in the superheated metastable
liquid of volume V. The mean expectation time τ for
the appearance of such a nucleus is ordinarily written
as [17]

(12)

where G = Ac/kT is the Gibbs number, n is the number
of nucleation centers in a unit volume (the parameters
for the liquid–vapor phase equilibrium curve for tung-
sten were taken in accordance with the semiempirical
equation of state given in [16]), and B ≈ 1010 s–1 is the
kinetic factor.

The dependence of τ on the field strength (solid
curve) is drawn in Fig. 1 for the volume V ≈ 10πR3 and
the number of cavitation centers determined by the
metal density. The micropoint temperature in [1, 2] was
not measured, so that we chose the value T ~ 13 × 103 K
from the condition of best fit to the experimental data.
At this temperature, growing vapor bubbles appear near
the micropoint tip. Our calculation adequately
describes the steepest left portion of the delay-time vs.
field-strength curve. The right portion of this curve
changes much slower with changing field strength.
However, at high field strengths, the total delay time
can be controlled by the time it takes to establish
steady-state nucleus flow [17, 18]. According to the
theory in [19], it can be determined from the relation

(13)

where m is the tungsten atomic mass. The delay time
may also be determined by the time it takes for the
micropoint to be heated to the temperature correspond-
ing to the onset of fast bubble grow. The latter time can
be estimated from the formula

(14)

where cp is the heat capacity of liquid metal. Lines 2
and 3 in Fig. 1 correspond to these times.

At low field strengths, the expectation time τ for the
appearance of vapor bubbles in metal is much longer
than all other times, so that it controls the total delay
time. As the field strength increases, the time τ rapidly
decreases and becomes much shorter than the time τh

and, next, than τd. Accordingly, the delay time for the
moderate electric-field strengths (from the field range
considered) is close to τh and, for higher fields, it is
close to τd.

The cavitation destruction transforms the
micropoint into a finely dispersed sol, whose droplets
fly apart from the micropoint. After the dispersion of
the micropoint, the field near its surface decreases sub-
stantially and becomes Ef ~ REg/l. The droplet size af
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after the micropoint destruction can be estimated from
the relation af = 16πγ/ . In this case, the surface elec-
tric force is balanced out by the capillary pressure (Fγ =
FE). For the field strengths Eg = 120, 100, and
70 MV/cm, the droplet radii are, respectively, af ~ (0.9,
1.3, 2.6) × 10–5 cm. These values correlate with the
experimental data in [2], where the range of most fre-
quently observed droplet radii was found to be (0.1–
1.5) × 10−5 cm. The number of droplets formed after the

micropoint explosion can be estimated at N ~ 3R2l/4 .
For the above-mentioned R and af values, seven or eight
droplets appear from a single micropoint.

The commonness of the phenomena experimentally
observed in [1, 2] in the explosions of a current-carry-
ing conductor and a micropoint is explained by the ther-
modynamic instability of a two-phase “liquid conduc-
tor–vapor” system in an external field. At the same
time, there are certain distinctions: in the first case, the
stability limit is reached for a superheated vapor [8–
11], whereas in the second case it is reached for a
extended liquid, but in both cases this results in the
explosive dispersion of the system and ensuing
decrease in the strength of external field.

The model developed in this paper, although it does
not lay claim to the complete description of such a com-
plex phenomenon as the transformation of field emis-
sion into the explosive electron emission, allows one to
obtain the experimentally observed steep dependence
of the explosion expectation time as a function of the
field strength at the micropoint and the droplet size after
the explosion.

We are grateful to V.E. Fortov for valuable remarks.
This work was supported by the Russian Foundation
for Basic Research, project nos. 02-02-17255, 02-02-
17376, and 00-15-96529.
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Experimental data on the compression of solid deuterium at a pressure of ~60 GPa are presented. The data were
obtained on a generator of powerful converging spherical shock waves. The results are compared with the data
of shock experiments obtained on a Nova laser facility and an electrodynamic EPBF-Z plant. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 62.50.+p; 07.35.+k
The behavior of hydrogen at extremely high pres-
sures and temperatures has always been of interest,
both from the fundamental and applied points of view.
The fact is that strongly compressed hydrogen plasma
is the most abundant state of the matter in nature. It
determines the structure of stars and giant planets of the
solar system and their evolution, and there is a hope for
the implementation of controlled thermonuclear fusion
with inertial confinement and preparation of high-tem-
perature metallic hydrogen superconductor by com-
pressing its isotopes to ultrahigh pressures. Despite the
very simple one-electron structure, the theoretical pre-
dictions about the behavior of hydrogen in the megabar
pressure range have a large measure of uncertainty
because of the fundamental difficulties associated with
correct inclusion of the strong interparticle interaction
and taking into account of the degeneracy effects in a
strongly nonideal plasma of condensed planes. Interest-
ingly, some theoretical models lose thermodynamic
stability in the range of experimentally high tempera-
tures and megabar pressures. This is believed to be due
to the “plasma” phase transition and, in turn, stimulates
experimental studies in this range of parameters.

Experimental studies of hydrogen at high pressures
and temperatures also involve difficulties that are
caused by the high mobility and compressibility of
hydrogen and its low molecular weight and, hence,
hamper the generation of high temperatures by the
methods of powerful shock wave physics. For this rea-
son, to move up along the scale of dynamic pressures,
one must use the most elaborated methods of exciting
powerful shock waves, while the reliability of the pres-
ently available results is not too high. For instance, the
results obtained for a liquid shock adiabat in the exper-
iments with laser shock waves [1] suggest that the
plasma compressibility is exceedingly high and hard to
explain by theoretical models, but this was not con-
0021-3640/02/7607- $22.00 © 20433
firmed experimentally at a later time in the experiments
with electrodynamic shock compression [2].

The work on measuring the deuterium shock com-
pressibility using powerful spherically converging
shock waves excited by the detonation of condensed
explosives began in 1998. Of the possible systems suit-
able for the solution of this problem, an explosion sys-
tem was chosen in which a thin-walled steel shell was
accelerated to velocities of 9–23 km/s by the spherical
converging detonation wave produced by explosion
products [3]. The impact of this shell on the deuterium
sample produces states in it that are close to the ones
obtained on a Nova laser facility [1]. The scheme of the
measuring unit is shown in Fig. 1. The standard reflec-
tion method was used [4], for which the knowledge of
the shock-wave velocity in the substance of interest and

Fig. 1. Scheme of the measuring core and the arrangement
of the samples. Positioning of electrocontact gauges is
shown at the bottom of the figure: d and s are the lower-
level and upper-level gauges, respectively.
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the parameters of the wave transmitted in the screen
material protecting the sample is necessary to deter-
mine the compression parameters of the substance. The
range of attainable pressures in a spherical system was
determined by the radius of sample positioning; the
smaller the radius, the higher the pressure in the
sample.

At the first stage of the work, a modest radius (mea-
surement radius) of 17.6 mm was chosen, which corre-
sponded to a velocity of 12.9 km/s for the steel shell.
The samples were arranged in a standard way; to detect
the time of shock wave transmission through the sam-
ples, electrocontact gauges were used. In each measur-
ing device, three samples—a control aluminum (screen
material) sample and two deuterium samples—were
placed. The gauge length of the samples was 4 mm,
which exceeded the target thicknesses in laser experi-
ments by more than an order of magnitude [1]. This
eliminates the problem of detecting the nonequlibrium
state (in [1], the sample thicknesses were equal to about
a hundred microns) and increases the accuracy and reli-
ability of measurements. Nevertheless, considering that
the shock wave in the samples is asymmetric in reality
(deviates from spherical motion), from four to six
experiments with eight to ten independent detections in
each of them were carried out to obtain the results with
the desired accuracy (~1% for wave velocities).

It should be emphasized that the spherical genera-
tors of powerful shock waves used in this work and the
method of recording velocities of shock waves and
gauging surfaces were put to a detailed test and widely
used in Russia in determining the shock compressibil-
ity for a broad class of materials in the megabar range

Fig. 2. The P–ρ diagram of the deuterium shock compres-
sion. Experiment: q this work (solid phase); n, j, and r

are, respectively, the data from [1], [9], and [2] (liquid
phase). Calculated Hugoniot curves: for (1) solid (ρ0 =

0.119 g/cm3) and (2) liquid (ρ0 = 0.171 g/cm3) D2, as cal-
culated using the equation of states from [7], and (3) liquid
D2 from the Sesam equation of states [2].
of dynamic pressures (see [3] and references given
therein).

Although the spherical explosion systems provide a
direct and most reliable method of checking the pres-
ently existing experimental data, the use of such sys-
tems presents considerable difficulties, which cannot be
obviated a priori with ease. The main difficulties are
associated with (1) the necessity of developing the tech-
nology of deuterium confinement in the capsule of a
measuring device in the “undisturbed” liquid (or solid)
state until the shock wave arrives at the sample
(>10 min) and (2) the reliable operation of measuring
elements at low temperatures (~10–18 K).

In addition, the interpretation of the data for spheri-
cal systems is hampered by the necessity of introducing
corrections to the experimental results because of the
nonstandard convergence of shock wave in the materi-
als under study and the departure of the temperature
conditions in the experiments from the standard condi-
tions.

All methodological problems were solved in special
studies. However, it was found, in the course of devel-
oping the technology of obtaining condensed deute-
rium from the gas phase, that the transformation of gas
into the solid state and holding it in the frozen form for
the desired time is a more simple method. Because of
this, the first measurements were made with the solid
phase in parallel with developing the technology of
deuterium confinement in the liquid state. It was
assumed that the results of measurements were close
for both phases. The aggregate state of deuterium was
monitored by calibrated temperature sensors placed at
different points of the active volume (V ~ 10 cm2).

The preliminary results were reported at the VI
Zababakhin Scientific Readings in Snezhinsk [5]. Note
that these results are virtually no different from the data
of this work, which includes additional measurements.

After the report in Snezhinsk, new data on measur-
ing the shock compression of liquid deuterium by a
group of researchers at the Sandia laboratory (USA) [2]
have appeared. In [2], a strong magnetic field accelerat-
ing aluminum foil (from 200 to 300 µm in thickness) to
a velocity higher than 20 km/s. The impact of the foil
on the sample produced shock waves in it with an
amplitude up to 70 GPa. These results are presented in
Fig. 2. One can see that the data of work [2] are in con-
flict with the data in [1], although the error of determin-
ing the parameters was rather large, as was pointed out
by the authors of that work.

In the reflection method, the value of shock adiabat
and isentrope or the equation of state for the screen
material are the fundamental factors which affect the
accuracy of determining pressure and density in the
compressed substance. In our experiments, the screen
was made from aluminum. The calculations were car-
ried out using the equation of state for the liquid phase
[6] of aluminum. This equation adequately describes its
thermodynamic parameters and the experimental
JETP LETTERS      Vol. 76      No. 7      2002
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Hugoniot curve for Al up to 1000 GPa. In the range
below 500 GPa, the calculated Hugoniot curve virtually
coincides with the isentrope reported in [2].

According to our equation of state for Al, its density
at normal conditions (300 K) is ρ0 = 2.71 g/cm3, and
ρ0 = 2.74 g/cm3 at T = 10 K. The equation of state for
solid deuterium [7] gives ρ0 = 199 g/cm3 at T = 10 K.

In five experimental runs conducted in this work, the
average local (instantaneous) shock wave velocities
(direct measurement), after introducing due correc-
tions, were found to be D = 16.39 ± 0.10 km/s, U =
8.53 km/s, and P = 383 GPa (ρ0 = 2.74 g/cm3); for the
deuterium, D = 20.3 ± 0.2 km/s, which corresponds to
U = 15.08 km/s and P = 60.9 GPa on the P–U diagram.
The shock compression density was ρ = 0.774 ±
0.040 g/cm3 (ρ0 = 0.199 g/cm3).

The obtained experimental point is shown in Fig. 2.
As an illustration, the Hugoniot curves calculated using
the equation of state [7] for solid and the Sesam equa-
tion of states [8] for liquid deuterium are presented in
the figure. The point lies on the continuation of the
experimental adiabat branch obtained in [9] for liquid
deuterium and contradicts the data from [1]. However,
it should be borne in mind that the measured parameters
relate to the solid deuterium and, in principle, may
change upon the transition to liquid states. This
assumption is based, in particular, on the fact that the
experimentally obtained point is situated near the
“interface” of two deuterium adiabat branches, so that
one cannot rule out the possibility that the deuterium
compression parameters change qualitatively at high
(megabar) pressures used in this work.

We are planning to accomplish such measurements.
It is believed that these experiments, which will be con-
JETP LETTERS      Vol. 76      No. 7      2002
ducted using the forced variants of spherical plants and
the sample thicknesses of few millimeters, will play the
decisive role in the question of the representativeness of
the Livermore laboratory data.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 00-02-
17505a.
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It is shown that the isotherms of isoelectronic materials in the statistical model converge in the megabar pressure
range. The convergence of isotherms is universal and depends neither on the crystallographic structure nor on
the specific type of the intermolecular potential. It is pointed out that the majority of compounds and minerals
which constitute the Earth’s mantle are isoelectronic with neon. The melting curves of isoelectronic materials
are parallel to each other. The mutual arrangement of the melting curves depends on the number of atoms in the
molecule. Computations of the shear moduli of materials at 1 Mbar show that the materials with small number
of electrons per atom have the lowest shear modulus. These materials are preferable for using as pressure-trans-
mitting media in the megabar pressure range. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.30.+t; 64.70.Dv; 62.20.Dc
1. The materials are isoelectronic if they have the
same number Z of electrons (protons) per atom. There
is confusion about the definition what materials are iso-
electronic. For example, the CH4, NH3, and H2O com-
pounds are considered as isoelectronic [1]. Neverthe-
less, although all of them have 10 electrons per mole-
cule, they have 2.0, 2.5, and 3.3 electrons per atom,
respectively; i.e., they are not isoelectronic. In accor-
dance with the classical rigid-ion model, the isotherms
of isoelectronic rare gas solids and alkali halides are
separated by the interval ∆P ~ V–4/3, where P is pres-
sure, and V is volume. Hence, the interval P must
increase at compression. However, the results of X-ray
experiments showed the opposite behavior.

X-ray diffraction experiments [2, 3] at 300 K for iso-
electronic CsI and Xe (Z = 54), as well as for RbBr and
Kr (Z = 36) [3] up to 0.55 Mbar (1 Mbar = 100 GPa) are
illustrated in Fig. 1. Figure 1 shows that the isotherms
of these isoelectronic pars at the pressure P > 0.2 Mbar
are indistinguishable within the experimental resolu-
tion. The convergence of isotherms for CsI and Xe was
studied up to 3 Mbar, where both materials undergo
structural changes and insulator–metal transitions [4].
Recently, Loubeyre et al. measured the equation of
state for isoelectronic solids (Z = 2) LiH up to
0.36 Mbar, LiD up to 0.94 Mbar, and He up to 1.3 Mbar
by X-ray diffraction methods [5, 6]. They found that the
isotherms of LiH and He approached each other under
pressure [5]. The authors of [5, 6] noted that the simi-
larity in the equations of state of isoelectronic solids
under pressure may be quite general and this can hardly
be predicted a priori [6].

The convergence of isoelectronic isotherms of inert
gas solids and alkali halides (group IA–VII com-
0021-3640/02/7607- $22.00 © 20436
pounds) at high pressure can be explained from simple
considerations. Both materials have closed shells, and,
hence, the short-range repulsive interactions between
inert gases and alkali halides are virtually identical. The
main difference between them consists in the attractive
forces: Coulomb forces in halides and van der Waals
forces in inert gases. With increasing pressure, the

Fig. 1. 300-K Isotherms of isoelectronic materials Xe, CsI
(Z = 54) and Kr, RbBr, BaS (Z = 36) from X-ray experi-
ments [2, 3, 8].
002 MAIK “Nauka/Interperiodica”
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interatomic forces start to be dominated by short-range
repulsive rather than attractive terms, and the isotherms
of these materials must approach each other under pres-
sure.

In connection with the experimental study of the
equations of state of solid inert gases and IA-VII com-
pounds, two question arise:

(1) is the convergence of isotherms at high pressure
complete or are the isotherms still separated by the
interval ∆V?

(2) does the convergence of isotherms at high pres-
sure hold only for inert gases and alkali halides or is it
also valid for all isoelectronic materials?

The equations of state of elements at megabar pres-
sures include the kinetic pressure of a uniform degener-
ate Fermi gas, the Coulomb (Madelung) correction, and
the exchange correction. It has the form [7]

(1)

where p = P/a is the reduced pressure, P is the pressure
in Mbar,

n = Z /V is the electron density, V is the atomic vol-
ume, aB is the Bohr radius, and e is the electron charge.

The equation of state of compounds can by obtained
from the condition that the volumes of different compo-
nents of compounds are additive and their partial pres-
sures are equal. It is convenient to write the generalized
equation of state in the form suitable for both elements
and compounds, 

(2)

where

(3)

Here, Nk is the number of times the element with the
atomic number Zk appears in the chemical formula. The
parameter Z* corrects the Coulomb (Modelung) correc-
tion for compounds (for an element, Z* = Z). It follows
from Eq. (2) that the isotherms of two materials A and
B having the same Z (isoelectronic materials) but dif-
ferent  and  (  > ) are separated by the
interval
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It can be concluded that
(1) at moderate pressures the isotherms of isoelec-

tronic materials are separated by the interval ∆V(P).
The mutual arrangement of the isotherms of isoelec-
tronic materials depends on Z*. For compounds, Z* is
larger then for elements, Z* > Z, and, hence, the iso-
therm of, e.g., CsI is located below the isotherm of Xe
(Fig. 1);

(2) at megabar pressures, the isotherms of isoelec-
tronic materials converge completely (∆V  0 at
P  ∞). The convergence of the isotherms of isoelec-
tronic material at high pressure is universal. It is true for
the different classes of materials (molecular, ionic,
covalent, or metallic) and depends neither on the crys-
tallographic structure nor on the specific type of the
intermolecular potential at low pressure.

The isotherm of BaS (Z = 36; II–VI compound)
from X-ray diffraction experiments [8] is shown in Fig. 1.
It is seen that, after the B1–B2 phase transition at
6.5 GPa, the isotherm of BaS above P > 20 GPa coin-
cides with the isotherms of RbBr and Kr. The isotherms
of isoelectronic oxides MgO, Al2O3, and SiO2 (Z = 10;
II–VI, III–VI, and IV–VI binary compounds, respec-
tively) from shock-wave experiments [9] are presented
in Fig. 2. (The Hugoniot curve of SiO2 above 2 Mbar
corresponds to melting [10]). Figure 1 shows that, after
the transition to the high-density phase (stishovite) at
P > 0.2 Mbar, the isotherm of SiO2 coincides with the
isotherms of MgO and Al2O3.

It is remarkable that the majority of compounds and
minerals constituting the Earth’s mantle [11] are iso-
electronic with neon (Z = 10). Some of these materials
are MgO, Al2O3, SiO2, LiCl, NaF, Na2O, P2O5, MgF2,
MgSiO3, Mg2SiO4, CaMg(SiO3)2, NaAl(SiO3)2,
Al2Si2O8, Ca2Mg5(Si2O5)4(OH)2, NaAlSi3O8,
MgAl2O4, Mg3Al2(Si2O6)3, and Mg3Al2Si3O12. There-

Fig. 2. 300-K Isotherms of isoelectronic materials MgO,
Al2O3, and SiO2 (Z = 10) from shock-wave experiments [9].
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fore, the Earth’s mantle, provided that its composition
is described by the parameter Z, mainly consists of
neon. If one bears in mind that the Earth’s core mainly
consists of iron (Z = 26), then one can say that the Earth
is mainly a “neon–iron” body.

To conclude this section, it should be emphasized

that Eq. (1) holds at high compressions (V < 4 Z1/3).
Nevertheless, experiments show that the convergence
of isoelectronic materials may occur at much lesser
compressions.

2. Let as turn now to the melting temperature of iso-
electronic materials. It was predicted earlier that the
melting curves of the isoelectronic materials Xe and

aB
3

Fig. 3. Melting curves of (a) Xe and CsI and (b) Ar and KCl
from DAC experiments [14, 15]. The line for Ar corre-
sponds to the equation Tm = 83.78(1 +

∆P/0.2232)0.6854exp(–0.005∆P), P = P – 0.7 GPa (see
[16]).

Fig. 4. The shear moduli of various materials at a pressure
of 1 Mbar, as calculated from the Voigt formula GV = (3B –
6P)/5. The squares correspond to the bcc and fcc lattices. 
CsI intersect at high pressure [12]. The pressure depen-
dence of melting temperature can be estimated qualita-
tively from the Lindemann melting theory. It follows
from this theory that the melting temperature Tm ~ nVB,
where n is the number of atoms in compound, V is the
atomic volume, and B is the bulk modulus [13]. There-
fore, the curves of isoelectronic materials should be
parallel to each other. The mutual arrangement of melt-
ing curves mainly depends on the number of atoms in
compounds. Thus, the melting temperature of a com-
pound is higher than the melting curve of the corre-
sponding isoelectronic element. The melting curves of
the isoelectronic pairs Xe–CsI (Z = 54) and Ar–KCl
(Z = 18) at high pressures, taken from the unique DAC
experiments, are presented in Fig. 3 [14–16]. Figure 3
shows that the melting curves of isoelectronic materials
do not intersect.

3. A new effect—the inversion of shear moduli upon
compression for various classes of materials—was pre-
dicted in [17]. In accordance with this hypothesis, the
materials traditionally considered as the softest (such as
rare gas solids and molecular materials) can become the
hardest in the megabar range. In this regard, it should be
noted that the convergence of the isotherms of pairs of
isoelectronic materials such as CsI–Xe, RbBr–Kr and
LiH–He [2, 3, 5] (Fig. 1) implies that the inversion of
shear moduli for rare gas solids Xe, Kr, and He does not
occur (the isotherms of isoelectronic pairs do not inter-
sect upon compression). As an example of the shear
moduli inversion, it is pointed out in [17] that Xe
becomes stiffer than CsCl at pressures of hundreds of
kilobars. This is not surprising, because Xe is stiffer
than Kr, which is isoelectronic with respect to CsCl. It
is pointed out in [17] that the intersection of melting
curves (for example, Fe and Ar) is a strong evidence of
the shear modulus inversion. However, the melting
temperature is not connected directly to the shear mod-
uli. Thus, the shear modulus of Pd is half of that of Fe,
but the melting temperature of Pd is higher than for Fe
[18]; the isotherms and shear moduli of the isoelec-
tronic pairs Xe–CsI and Ar–KCl converge at high pres-
sure, but their melting temperatures are different
(Fig. 3).

The authors of [17] recommended to use metals,
including In, Pb, Sn, Na, Be, Bi, Ga, etc., as quasi-
hydrostatic pressure-transmitting media in the megabar
pressure range, instead of the traditional materials (rare
gas solids etc.). We calculated the shear modulus at a
pressure of 1 Mbar for various Z using the Voight for-
mula GV = (3B–6P)/5 (Fig. 4). This formula is exact for
the lattices with the central interaction [17], e.g., for the
bcc and fcc structures, i.e., the most probable structures
at high pressure. In the calculations of shear moduli, we
used the equation of state of materials from the X-ray
and shock-wave data. Figure 4 shows that the inert
gases and molecular gases, as well as alkali metals
(and, consequently, corresponding isoelectronic com-
pounds) have the lowest shear moduli and that the
JETP LETTERS      Vol. 76      No. 7      2002
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inversion of shear moduli at 1 Mbar is absent. It should
be noted that, when studying the melting curves at pres-
sures up to 1 Mbar and temperatures up to 4000 K, iso-
electronic Ar and KCl (Z = 18), as well as MgO and
Al2O3, which are isoelectronic with Ne (Z = 10) [19],
were used. Figure 4 shows that the materials with low Z
value (Z < 4), for example, H2 (Z = 1), He, LiH (Z = 2),
NH3 (Z = 2.5), and H2O (Z = 3.3) are most suitable for
using as pressure-transmitting media in the megabar
pressure range. A methanol–ethanol–water mixture is
often used in high-pressure experiments as a pressure-
transmitting medium. It is remarkable that Z ≅  3, for
this mixture, for which reason this mixture is used suc-
cessfully as a pressure-transmitting medium.

The author is grateful to S.M. Stishov, E.E. Tareeva,
and V.N. Ryzhov for fruitful discussion. This work was
supported in part by the Russian Foundation for Basic
Research, project no. 02-02- 17112.
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The interactions of the aluminum acceptor impurity in silicon are investigated using polarized negative muons.
The polarization of negative muons is studied as a function of temperature on crystalline silicon samples with
phosphorus (1.6 × 1013 cm–3) and boron (4.1 × 1018 cm–3) impurities. The measurements are performed in a
magnetic field of 4.1 kG perpendicular to the muon spin, in the temperature range from 4 to 300 K. The exper-
imental results show that, in phosphorus-doped n-type silicon, an µAl acceptor center is ionized in the temper-
ature range T > 50 K. For boron-doped silicon, the temperature dependence of the shift of the muon spin pre-
cession frequency is found to deviate from the 1/T Curie law in the temperature range T & 50 K. The interac-
tions of a µAl acceptor that may be responsible for the effects observed in the experiment are analyzed. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 71.55.Cn; 76.75.+i
In the last few years, interest in studying paramag-
netic centers in semiconductors has quickened in con-
nection with the possibility of using them as a basis for
designing a quantum computer [1], this issue being the
subject of a considerable literature. In the light of this
problem, detailed data on the electronic structure of dif-
ferent paramagnetic centers and on their interactions in
semiconductors are of prime importance. One of the
types of paramagnetic centers existing in semiconduc-
tors is a shallow acceptor center (AC). Unlike donors,
shallow acceptor centers formed in diamond-like semi-
conductors (such as diamond, silicon, and germanium)
have not been adequately investigated [2].

Our previous studies [3–6] showed that, by using
polarized negative muon beams, it is possible to obtain
extensive data on the interactions of ACs in diamond-
like semiconductors, while the potentialities of conven-
tional methods (ESR, ENDOR, and NMR) in this
respect are limited.

The possibility to use negative muons for studying
ACs in semiconductors is based on the fact that a muon
being captured by an atom of the medium causes the
formation of a muon atom, which models an acceptor
impurity. For example, in silicon, a muon atom is an
analogue of an aluminum atom: µAl. The time depen-
dence of the muon polarization P(t) on the 1s level of a
µAl atom is determined by the state of the electron shell
of the given muon atom (AC) and by its interaction with
0021-3640/02/7607- $22.00 © 20440
the medium. An AC in a semiconductor can be in the
ionized (diamagnetic) state or in the neutral (paramag-
netic) state. Let us assume that µAl is formed in the neu-
tral state µAl0 and that the transition to the diamagnetic
state µAl– is allowed. Then, the muon polarization P(t)
in an external magnetic field transverse with respect to
the muon spin can be represented in the form [4]

(1)

where P0 is the muon polarization on the 1s level at
t = 0; λ is the relaxation rate of the muon spin in the
paramagnetic state of the AC; νi is the ionization rate of
the AC; ω and φ are the precession frequency and initial
phase for the relaxing polarization component; ωd and
φd are the respective parameters for the nonrelaxing
(diamagnetic) polarization component; and C1 and C2
are the relative amplitudes of the relaxing and nonrelax-
ing components, which depend on λ, νi, and δ = ω – ωd.

The experimentally measured quantities λ and ω
depend on such parameters of the AC as the relaxation
rate of its magnetic moment (ν) and the hyperfine inter-
action constant (A). The value of the latter is deter-
mined by the density distribution of the wave function
of a hole bound to the acceptor. In [7], the isotropic
hyperfine interaction approximation was used to derive
analytical relationships between the parameters of the

P t( )

=  P0 C1e
λ ν i+( )t–

ωt φ+( )cos C2 ωdt φd+( )cos+[ ] ,
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muon spin polarization and the parameters characteriz-
ing the interactions of the ACs in a semiconductor:

(2)

(3)

Here, " = h/2π, where h is Planck’s constant; kB is Bolt-

zmann’s constant; µB and  are the Bohr magnetons
for an electron and a muon, respectively; g is the g fac-
tor for an AC; ωe = gµBB/" is the angular frequency of
precession for the magnetic moment of the electron
shell of an AC in a magnetic field B; and T is the tem-
perature. For a shallow AC in silicon, J = 3/2 [8] and
g = –1.07 [9].

Our previous studies [3, 6] gave some evidence that
the temperature dependence of the shift of the muon
spin precession frequency deviates from the 1/T Curie
law for µAl acceptors in phosphorus-doped silicon
(Si:P, [P] = 1.6 × 1013 cm–3) and in boron-doped silicon
(Si:B, [B] = 4.1 × 1018 cm–3). In the latter case, the
impurity concentration is close to its critical value nc

corresponding to the semiconductor-to-metal transition
(the Mott transition).

This paper presents a more detailed study of the
interactions of ACs in silicon samples of the aforemen-
tioned types.

The polarization of muons stopped in the target was
measured in a magnetic field perpendicular to the muon
spin by detecting the decay electrons resulting from the
reaction µ–  e– +  + νµ. In this case, the time
dependence of the number of detected electrons has the
form of a cosine-modulated exponent. The cosine
period is equal to the period of revolution (precession)
of the muon spin in magnetic field, and the cosine
amplitude and its time dependence are determined by
the muon polarization at the instant of decay.

The measurements were performed using a GPD
spectrometer [10] positioned in the µE1 muon channel
of the proton accelerator of the Paul Scherrer Institute
(Switzerland). The samples cut out of silicon single
crystals had the form of disks ~20 mm in diameter and
~8 mm in height. The samples were mounted so that the
disk axis coincided with the axis of the muon beam.
The temperature of the samples was stabilized with an
accuracy of 0.1 K in the temperature range from 4 to
300 K. The procedure used for processing the experi-
mental spectra is described in [4, 5].

The results obtained by approximating the experi-
mental data by function (1) testify to the absence of the
nonrelaxing polarization component for the boron-
doped sample in the whole temperature range (i.e.,
C2 = 0 and νi = 0). In the phosphorus-doped silicon,
only the relaxing component is observed in the temper-
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ature interval 12.5 K ≤ T ≤ 50 K, while at T > 52 K, only
the nonrelaxing component of the muon polarization is
present in the spectrum (i.e., C1 = 0). Hence, in Si:B, an
AC is in the paramagnetic (neutral) state in the whole
temperature range. In Si:P, an AC is paramagnetic at
temperatures T & 50 K and diamagnetic when T >
52 K.

For the samples under investigation, Fig. 1 shows
the temperature dependences of the shift of the muon
spin precession frequency ∆ω = (ω – ω0), where ω0 is
the precession frequency measured for each given sam-
ple at T0 = 290 K. For the Si:P sample at T < 50 K and
for the Si:B sample at T > 50 K, the dashed lines in
Fig. 1 represent the dependences of the types of 1/T and
(1/T – 1/T0), respectively. As seen from this figure, the
dependence ∆ω/ω0 = f(T) is determined by the 1/T
Curie law in the temperature range T < 50 K for Si:P
and in the temperature range T > 50 K for Si:B. In the
latter case, the experimental data are closer approxi-
mated by the dependence ∆ω/ω0 ~ (1/T – 1/T0). This
suggests that, in Si:B, at room temperature, an AC is
not ionized (ω0 ≠ ωd). Approximating the experimental
data in the aforementioned temperature ranges by
dependence (2), we determined the value of the hyper-
fine interaction constant (A/h) for a µAl acceptor. This
value was found to be (23 ± 2) MHz for Si:P and
(20.0 ± 2.3) MHz for Si:B, which agrees with our pre-
vious results [6] to within the experimental errors.

However, in the case of boron-doped silicon, in the
temperature range 4.5 K ≤ T & 40 K, the dependence
∆ω/ω0 = f(T) noticeably deviates from the 1/T law: at
T ≈ 50 K, the growth of the frequency shift with
decreasing temperature terminates and, at T < 50 K,
even a certain decrease in ∆ω/ω0 is observed as T
decreases further. The temperature dependence of the
muon spin relaxation rate obtained for this sample also
considerably differs from the corresponding depen-

Fig. 1. Temperature dependences of the shift of the muon
spin precession frequency for silicon samples with boron
and phosphorus impurities. The dashed lines are plotted for
illustration.
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dence for phosphorus-doped silicon (Fig. 2). In the lat-
ter case, the experimental dependence λ(T) agrees well
with that reported previously [6] for silicon samples
with impurity concentrations lower than ~2 × 1017 cm–3.

Fig. 2. Temperature dependences of the muon spin relax-
ation rate for silicon samples with phosphorus and boron
impurities. The dashed and dotted lines show the results of
approximation by dependence (3).

Fig. 3. (a) Probability W0 for a µAl acceptor center to be in
the nonionized (paramagnetic) state at the thermodynamic
equilibrium in silicon with different concentrations of donor
Nd and acceptor Na impurities. (b) Temperature dependence
of the free electron concentration ne in silicon with different
donor (phosphorus) concentrations Nd. The values of W0
and ne are calculated by the relations known from the liter-
ature (see, e.g., [12]).

>

The data presented in Fig. 2 were approximated by
dependence (3) under the assumption that the relax-
ation rate of the magnetic moment of an acceptor
depends on temperature according to the power law ν =
CTq: (a) for Si:P, at A/h = 23 MHz; (b) for Si:B, at
A/h = 20 MHz and T > 12 K. The values of the param-
eters C and q obtained as a result of this approximation
were C = (1.9 ± 1.2) × 106 s–1 and q = 3.2 ± 0.3 for Si:P
and C = (2.4 ± 0.7) × 109 s–1 and q = 1.1 ± 0.1 for Si:B.
It should be noted that, in the case of Si:B, the absolute
value of the parameter C can be inaccurate, because the
approximation of experimental data was performed
using the value of A/h derived from the data on ∆ω/ω0
at T ≥ 50 K.

The fact that the exponent in the temperature depen-
dence of ν is close to three testifies to the phonon mech-
anism of relaxation for the magnetic moment of an AC
in phosphorus-doped silicon, whereas, in heavily
boron-doped silicon, the dominant relaxation mecha-
nism is the spin-exchange scattering of holes by the
acceptor (see also [6]).

From the data obtained for ∆ω/ω0, it follows that, in
phosphorus-doped silicon, at T > 50 K, ionization of
ACs takes place. In n-type silicon, the paramagnetic
state of an AC, i.e., µAl0, in which a given center is
formed within the time t < 10–8 s [11], is not a thermo-
dynamic equilibrium state (see Fig. 3a, which presents
the calculated probability W0 for the µAl acceptor cen-
ter to be in the nonionized state at thermodynamic equi-
librium in n-type and p-type silicon). In principle, the
ionization of an acceptor in n-type silicon can be caused
by the following processes: (i) the capture of an elec-
tron from the conduction band and (ii) the thermal ion-
ization, which occurs when a hole (h+) acquires energy
due to its interaction with phonons and thus leaves the
impurity center. According to theoretical calculations
[13], the rate of the thermal ionization of impurity
centers grows with increasing temperature as νi ~
exp(−Ei/kBT), where Ei is the impurity ionization
energy. Since the rate of capture of the conduction elec-
trons by the ACs is proportional to the electron concen-
tration ne [14], we have νi ~ ne ~ exp(–Ei/2kBT) (the cal-
culated dependence ne = f(T) for phosphorus-doped sil-
icon is shown in Fig. 3b). However, the absence of
reliable data on the capture cross section for conduction
electrons captured by a neutral AC (see [14]) and the
absence of data on the AC–phonon interaction constant
makes it impossible to estimate the contribution of the
aforementioned processes to the dependences ∆ω/ω0 =
f(T) observed in the experiment. Presumably, one
should not rule out the possibility that, in n-type silicon,
a µAl atom can be formed in the ionized state in the case
when the free electron concentration in the sample
exceeds the concentration of holes that appear near the
muon atom in the course of its formation.

The study of the temperature Ti at which a break is
observed in the curves ∆ω/ω0 = f(T) as a function of
JETP LETTERS      Vol. 76      No. 7      2002
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donor concentration in silicon reveals the role of the
thermal ionization process. At a fixed temperature, the
rate of thermal ionization of ACs should remain practi-
cally invariable in a wide range of impurity concentra-
tions, whereas the contributions of the two other mech-
anisms of the AC ionization are concentration depen-
dent.

In Si with a boron impurity concentration of 4.1 ×
1018 cm–3, the breaks observed in the dependences
∆ω/ω0 = f(T) and λ = f(T) can be caused by the interac-
tion of the µAl acceptor with boron impurity centers.
This interaction is likely to become effective only in the
temperature range T & 50 K.

The problem of interimpurity interactions in disor-
dered systems has been intensively studied in the last
few years (see [15]). Silicon, in which the semiconduc-
tor-to-metal transition (the Mott transition) occurs as a
result of the interaction between impurity centers ran-
domly distributed in space, is one of the most suitable
objects for studying this phenomenon.

As is known [16, 17], in heavily doped p-type or
n-type silicon, the exchange interaction between impu-
rities leads to a decrease in the macroscopic magnetic
susceptibility χ of the sample: χ ~ T–α, where the expo-
nent α is less than unity and decreases with increasing
impurity concentration; i.e., the temperature depen-
dence of χ noticeably deviates from the Curie law.
According to [16], in boron-doped silicon, α = (0.3–
0.4) at the boron concentration [B] ≈ 4 × 1018 cm–3.
Basically, from Eq. (2), one should infer that ∆ω/ω0 ~ χ.
It is evident that the temperature dependence of the
shift of the muon spin precession frequency that was
obtained in our experiments for Si:B at T & 50 K (see
Fig. 1) cannot be fully explained in terms of the macro-
scopic magnetic susceptibility of the given sample,
because, even at α = 0.3, a twofold increase in ∆ω/ω0
should be observed as the temperature decreases from
50 to 5 K. However, unlike the macroscopic quantity χ,
the frequency shift ∆ω/ω0 is determined by the local
susceptibility of the AC. Hence, the difference in the
behavior of ∆ω/ω0 and χ should be a manifestation of
the difference between the local and macroscopic mag-
netic susceptibilities in disordered systems near the
Mott transition.

Thus, it was found that the behavior of a µAl accep-
tor center in Si strongly depends on the type and con-
centration of impurity in the sample: in weakly doped
n-type silicon, the AC is ionized at T > 50 K, while in
the sample with a high concentration of p-type impurity
([B] = 4.1 × 1018 cm–3), the AC is in the paramagnetic
(neutral) state practically up to room temperature. In
the temperature range T & 50 K, in p-type silicon, a
decrease in the atomic susceptibility of the AC is
JETP LETTERS      Vol. 76      No. 7      2002
observed, which testifies to the appearance of a mag-
netic interaction between impurities. In addition, the
results of this study presumably testify to the difference
between the local susceptibility of an AC and the mac-
roscopic magnetic susceptibility of the sample. Further
studies should reveal the mechanism of ionization of an
AC in n-type silicon and provide a more detailed infor-
mation about the interimpurity interactions in p-type
silicon.

We are grateful to the Management of the Paul
Scherrer Institute (Switzerland) for making these mea-
surements possible.
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The Coster–Kronig Process Used to Study the Transition
of Metal Nanoclusters into a Nonmetallic State
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The results of an experimental study of the Coster–Kronig process in copper nanoclusters obtained by a pulsed
laser deposition technique are presented. It is established that the Köster–Krönig process probability depends
on the cluster size and is determined by the possibility of a transition of the metal cluster into a state in which
copper exhibits no metallic properties. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.22.-f; 71.30.+h 
Presently, considerable effort is devoted to studying
objects with dimensions in a nanometer range [1–5].
Containing from several dozen to a few hundred atoms,
such objects occupy an intermediate position between
single atoms and crystalline solids and usually exhibit
the physical and chemical properties differing from
those of bulk materials of the same composition. This
circumstance makes the investigation of nanodimen-
sional objects interesting from the standpoint of both
basic science and applications.

As the number of atoms in a cluster increases, the
electron structure of the cluster is modified, whereby a
set of discrete atomic levels transforms into a continu-
ous band characteristic of the bulk metal. It would be
most interesting to reveal the moment of transition by
determining a minimum number of atoms in the cluster,
at which “metallization” takes place, that is, the system
exhibits the transition from a nonconducting state of the
molecular dielectric type to a state featuring metallic
conductivity. The special properties of nanoobjects can
be successfully used in nonlinear optics [6], heteroge-
neous catalysis [7], and nanoelectronics [8]. For these
applications, it is important to establish the limiting
properties of nanoobjects and, hence, the limits of min-
iaturization of the related devices.

The possibility of tracing the transition of a metal
cluster into a nonmetallic state in the course of decrease
in the cluster size was originally pointed out by Citrin
and Wertheim [9]. Subsequently, there were several
experimental attempts to detect this transition in metal
clusters deposited on various substrates by measuring
the blue shift of the plasma frequency [10], polarizabil-
ity [11], valence [12], and electron tunneling from Fe
nanoclusters into GaAs substrate [13]. However, it was
difficult to treat the results of these experiments as
being due to the transition of metal clusters into a non-
metallic state.
0021-3640/02/7607- $22.00 © 20444
In [7, 14], the transition from metal into a nonmetal-
lic state in Au and Pd clusters deposited on TiO2 was
studied by scanning tunneling spectroscopy (STS).
Some features observed in the current–voltage charac-
teristics of metal nanoclusters showed evidence of a
certain “effective bandgap” present in the electron
structure of clusters, the width of which tends to zero
(EG  0) when the cluster size increases to ~40 Å (to
contain ~500 atoms). A important condition for such
measurements is the need in using a specially selected
narrow-bandgap semiconductor substrate, the bandgap
of which would allow the STS measurements while
being sufficiently large as compared to the effective
bandgap of a cluster studied.

Here we propose an alternative approach to experi-
mental observation of the transition of metal clusters
into a nonmetallic state. The method is based on the fact
that the intensity of lines in a multiplet structure of the
Auger electron spectra, determined by the Köster–
Krönig process, depends on the cluster size. As will be
demonstrated below, this dependence must be observed
for the transition metal clusters with Z ≤ 30, provided
that the spin–orbit splitting energy is greater than the
valence band width.

The Coster–Kronig process is essentially the Auger
transition in which the initial vacancy (hole) and the
electron filling this vacancy (hole) occur in the same
electron shell (Fig. 1) [15]. The appearance of a
vacancy (hole) on the L2 level upon the action of radia-
tion on the L level split as a result of the spin–orbit
interaction initiates the L2L3M45 Auger transition. How-
ever, the electron transition from L3 to L2 with excita-
tion of an M45 electron in the valence band (Fig. 1, pro-
cesses 1 and 2) is only possible provided that the spin–
orbit splitting energy is sufficient to excite an electron
in the valence band, due to a large overlap of the wave-
002 MAIK “Nauka/Interperiodica”



        

THE COSTER–KRONIG PROCESS USED TO STUDY 445

                                                                                                                                                                           
functions of electrons on the L2 and L3 levels, the
Coster–Kronig process probabilities are higher by one
order of magnitude [15] than probabilities of the usual
Auger transitions L2M45M45 and L3M45M45 (for brevity,
jointly referred to below as the L23M45M45 Auger transi-
tions). Therefore, a characteristic time of the Coster–
Kronig process is significantly shorter than that of the
L23M45M45 Auger transition. As a result, the fraction of
holes preliminarily created by the exciting radiation on
the L2 sublevel decreases. Therefore, the Coster–Kro-
nig process leads to a decrease in the intensity I2 of the
L2M45M45 line as compared to that (I3) of the L3M45M45
line. For this reason, the ratio of intensities of these
lines exhibits an anomalous growth reaching (e.g., for
bulk copper) I3/I2 ≈ 8, which is much greater as com-
pared to the value I3/I2 ≈ 2 characteristic of Cu atoms
[16, 17]. This is indicative of the absence of the Coster–
Kronig transitions in atoms. In a bulk metal or cluster,
the Coster–Kronig process probably takes place due to
effective interatomic relaxation (Fig. 1).

In this study, we have experimentally established for
copper clusters of decreasing size that the I3/I2 ratio var-
ies from 7.8 for R ≈ 100 Å to 2.3 from R ≈ 20 Å, which
can be evidence of the transition from the metallic state
into a state in which copper exhibits no metallic prop-
erties.

The electron states of Cu nanoclusters, obtained by
pulsed laser deposition (PLD) of copper onto a cleaned
surface of highly oriented pyrolytic graphite (HOPG),
were studied at room temperature under ultrahigh vac-
uum conditions (p ≈ 5 × 10–10 torr) in a chamber of an
XSAM-800 electron spectrometer using X-ray photo-
electron spectroscopy (XPS) and Auger electron spec-
troscopy (AES).1 The XPS and AES spectra were
excited by the MgKα radiation with hν = 1253.6 eV.
The composition of the metal deposit was studied
in situ by XPS.

During the PLD process, radiation of the YAG:Nd3+

laser (λ = 1.06 µm) with an energy of E = 80–100 mJ in
the Q-switched mode (τ = 15 ns) and a pulse repetition
frequency of 25 Hz was focused onto a chemically pure
copper target. A system of beam deflecting lenses
ensured scanning of the target surface according to a
preset program, which allowed the PLD process to be
performed in an automated regime, with number of
pulses varied from 1 to 105. By changing the laser oper-
ation parameters and the deposition geometry, it was
possible to vary the deposited particle flux density from
1012 to 1015 cm–2 at a pulse duration of τp ≈ 10–7–10–6 s.
According to [18], the laser power density of 108–
109 W/cm2 corresponds to the energy of Cu atoms
within 10–100 eV. The ionized beam fraction was
about 5%.

1 The PLD method was developed and used to prepare the Cu clus-
ters on HOPG with active the participation of A.V. Zenkevich.
JETP LETTERS      Vol. 76      No. 7      2002
According to [19], copper is deposited on HOPG so
as to form islands of a finite size. Additional investiga-
tions, in which Cu was deposited onto NaCl and the
deposit was studied by transmission electron micros-
copy (TEM), showed that, by changing the number of
laser pulses from 2 × 103 to 6 × 104, it is possible to
obtain clusters with an average size varying from 20–
100 Å and the width of the size distribution function
much smaller as compared to the case of thermal depo-
sition [4].

In our experiments, the intensity of the L23M45M45
Auger transitions in Cu was studied as a function of the
number of laser pulses N varied from 500 to 8 × 104. In
order to recalculate this into a dependence on the clus-
ter size (or the number of atoms in a cluster), we used
the following approach. First, the intensities J1 and J2 of
the Cu2p3/2 and Cu3d XPS lines, respectively, with the

Fig. 1. A schematic diagram showing evolution of the
L23M45M45 Auger transitions and L2L3M45 Coster–Kronig
processes on the passage from atom to cluster and macro-
scopic metal: BEA and BEM are the binding energies of the
core-level electrons in an atoms and metal, respectively; IP
is the ionization potential; φ is the electron work function of
the metal; Erel is the relaxation energy; EF is the Fermi level;
and EVB is the valence band. The primary vacancy formed
at the L2 level is filled by the electron from the L3 level (pro-
cess 1). The liberated energy ∆E is spent to excite an elec-
tron in the valence band with the formation of a vacancy
(hole) in the valence band (process 2). The vacancy on the
L3 level, formed as a result of process 1, is filled by an elec-
tron from the valence band (process 3). The liberated energy
is spent to excite a electron in the valence band with the for-
mation of a vacancy (hole) in the valence band (process 4).
Processes 1 and 2 are the Coster–Kronig transitions; pro-
cesses 3 and 4 are the accompanying usual Auger transi-
tions. As a result of the Coster–Kronig processes and the
usual accompanying Auger transitions, the final state is tri-
ply ionized.

BEM

BEA
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photoelectron free path lengths λ1 and λ2 were mea-
sured for various numbers N of laser pulses. The ratio
of these intensities can be expressed as

(1)

where d is the nominal thickness of a deposited film

composed of Cu clusters, and  and  are the XPS
peak intensities for d @ λ (bulk metal).

Using relation (1) and taking into account that λ1 =
13 Å (Cu2p3/2, binding energy BE2p = 932.5 eV) and
λ2 = 50 Å (Cu3d, binding energy BE3d ≈ 5 eV) [19], we
readily obtain the dependence d = f(N). This function
proved to be linear: d = KN, where K ≈ 0.002 Å/pulse
for N = 20–2000 and K ≈ 0.001 Å/pulse for N = 4000–
16000. Taking into that the copper film studied consists
of clusters with an average size of 〈R〉  and a number
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Fig. 2. X-ray photoelectron spectra of 2p1/2 and 2p3/2 levels
(a) and the L3M45M45 and L2M45M45 Auger electron spec-
tra of single crystal copper (b).
density n0, we can relate the nominal film thickness d to
these quantities as

(2)

With allowance for the established linear relation
between d and N, we arrive at the following relation
between the average cluster size and the number of
laser pulses N:

(3)

The number density of copper clusters on HOPG is
n0 ≈ 2 × 10–4 Å–2, which is close to the value reported
for copper on carbon (n = 1.92 × 10–4 Å–2) [19]. This
method of determining the average cluster size was also
verified for the Au/NaCl system, by comparing the val-
ues calculated using relation (3) to the results of direct
determination of the cluster size distribution by TEM
[3]. Note that the proposed method allows the average
cluster size to be determined for the system studied in
situ in the spectrometer chamber.

Figure 2 presents the Cu2p1/2 and Cu2p3/2 XPS spec-
tra (a) and the AES spectra of L23M45M45 transitions (b)
for the standard samples of single crystal copper. As
can be seen, the spin–orbit splitting between 2p1/2 and
2p3/2 levels amount to ∆E = 19.8 eV, which coincides
with the published value [15]. The ratio of intensities of
the L3 and L2 lines is I3/I2 ≈ 8. The L3M45M45 spectrum
exhibits additional satellites with Ekin below the transi-
tion energy. These satellite peaks are due to the interac-
tion of Auger electrons with the triply ionized M45
valence electron states (Fig. 1) arising due to the
Coster–Kronig process.

Figure 3 shows the AES spectra of L3M45M45 and
L2M45M45 transitions in copper clusters deposited onto
the HOPG surface by different numbers of laser pulses.
It is seen that, as the N value increases, the intensity of
line L3 grows faster than the intensity of line L2.

Using the AES spectra of L23M45M45 transitions
experimentally measured for various numbers N of
laser pulses, we constructed a plot of the intensity ratio
I3/I2 versus average cluster size R (Fig. 4). The transi-
tion from the number of laser pulses to the average size
of Cu clusters was performed according to formula (3).
As can be seen from Fig. 4, an increase in the cluster
size is accompanied by a growth in the ratio of intensi-
ties of L3M45M45 and L2M45M45 transitions: as 〈R〉
changes from 18 to 100 Å, the I3/I2 ratio grows from 2.2
to 7.8. It should be recalled that the ratio for a bulk solid
tends to 8 [16, 17]. This result shows that the Auger
spectra of Cu nanoclusters reflect the Coster–Kronig
process, the probability of which depends on the cluster
size. A deviation from the value I3/I2 ≈ 2 corresponding
to the transitions in Cu atoms is observed even for Rc ≈

R〈 〉 3
2πn0
------------d 

  1/3
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R
3K
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20 Å. Thus, this Rc value can be treated as the cluster
size below which nonmetallic properties of the clusters
are manifested.

According to the results of estimates, the number of
Cu atoms in the cluster with a radius of Rc ≈ 20 Å is n ≈
1/2(R/R0)3, where R0 = 3.61 Å is the Wigner–Seitz
radius for Cu. Note that the fractions of atoms occur-
ring in the surface (ns) and in the bulk (nv) for the clus-
ter with Rc ≈ 20 Å are ns/nv ≈ 0.4 and nv /n ≈ 0.6, respec-
tively. It is a difference in the electron states of atoms
on the surface as compared to those in the bulk, which
accounts for a shift in the binding energy of the core-
level electrons of the surface atoms in metal clusters [9,
20]. This energy depends on the density of electron
states in the valence band, which is determined by the
average size of a nanocluster [1,20]. These results [9,
20] indicate that the electron states exhibit evolution on
the passage from the metal to atomic state via interme-
diate nanoclusters. Indeed, the electron configuration of
the valence shells of copper is 3d104s1. As a result of the
s–d hybridization, the valence band of Cu corresponds
to 3d9.64s1.4 [21]. Therefore, a decrease in the cluster
size (i.e., the transition from solid Cu to atom) is
accompanied by rehybridization and, hence, the x value

Fig. 3. Variation of the intensities of the L3M45M45 and
L2M45M45 Auger electron transitions in Cu clusters depos-
ited on HOPG by increasing number of laser pulses N.
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in the electron band structure 3d10 – x4s1 + x must depend
on the cluster size, varying from x = 0 for Rc  0 to
x = 0.4 for 〈R〉   ∞.

The increase in the I3/I2 ratio from 2.2 to 7.8 for the
L2L3M45 transitions in copper, accompanying the
growth of the cluster size from 20 to 100 Å, can be
related to the Coster–Kronig process in the systems
with a finite number of copper atoms and explained
within the framework of the known mechanisms of evo-
lution of the electron states in metal clusters. As the
nanocluster size decreases, the degree of hybridization
x drops from 0.4 to 0 and the valence band exhibits nar-
rowing [6, 16]. This can be considered as evidence that
the valence band structure disappears and, for the Cu
coverage on the HOPG surface studied, transforms into
atom-like electron wavefunctions. In this case, the
Coster–Kronig process probability must decrease and,
in the limit of individual Cu atoms, tend to zero. The
ratio of the Auger line intensities I3/I2 must tend to the
ratio of the statistical weights 2j + 1 of the split j = l ± s
sublevels, which equals 2 for the Cu2p3/2 and Cu2p1/2

levels.

Fig. 4. Plots of (a) the ratio I3/I2 of the intensities of
L3M45M45 and L2M45M45 Auger electron transitions and
(b) the Coster–Kronig process probability β23 versus the Cu
nanocluster size R.



448 BORMAN et al.
Following Yin et al. [16], the ratio I3/I2 can be
related to the corresponding Coster–Kronig process
probability β23:

(4)

where n2 and n3 are the hole occupancies of the atomic
levels L2 and L3 determined by statistical weights of the
corresponding states (for copper, n3/n2 = 2) and Γ3 and
Γ2 are the widths of the L3 and L2 levels. For the crys-
talline copper, β23 = 0.64 [16]. Using formula (4) and
taking into account experimental dependence of the
I3/I2 ratio on the cluster size R (Fig. 4a), we can study
the probability β23 as a function of R. This dependence
is presented in Fig. 4b, where it was taken into account
that Γ3/Γ2 ≈ 1 for the atomic copper and Γ3/Γ2 ≈ 1.1 for
the crystalline copper. As can be seen from Fig. 4, the
Coster–Kronig process probability decreases to zero
for copper clusters with R = Rc ≈ 20 Å.

The emission of M45 electrons from the valence
band via the Coster–Kronig process can take place pro-
vided that the spin–orbit splitting energy ∆E =  –

 is greater than the valence band width EVB [22]. In
copper this condition is satisfied and, hence, the
Coster–Kronig process has to be observed. According
to estimates, the inequality

(5)

is always valid for EVB(M45| ) representing the bind-
ing energy of M45(3d) electrons in the presence of a
hole on the L2(2p1/2) level. 

Indeed, in the approximation of equivalent orbitals
[23], condition (5) can be written as

(6)

This inequality is always valid, since we have ∆E =

19.8 eV (for Cu with Z = 29) and (M45) = 10.2 eV
(for Zn with Z = 30). 

Taking into account that the separation of lines in
the multiplet structure of Cu is retained in the gas and
crystal phases [15], we can show that the energy condi-
tions for the Coster–Kronig process are not satisfied for
copper in the atomic state. Indeed, comparing the value
∆E ≈ 19.8 eV to the ionization potential of the Cu+ ion,
IP1 ≈ 20 eV, we see that ∆E < IP1. This indicates that the
Coster–Kronig process is impossible in atoms. 

Thus, we established that the Coster–Kronig pro-
cess is possible only in the metallic copper and cannot
take place in Cu atoms. We believe that this difference
is due to the effects of interatomic relaxation, which
results in a decrease of the IP1 value by an amount on
the order of Erel (Fig. 1). This hypothesis is confirmed
by the results reported in [16], according to which the
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I3/I2 ratio is 7.85 for metallic copper and I3/I2 ≈ 2.17 for
copper vapor.

Thus, the observed relation between the intensity
ratio I3/I2 for the L2L3M45 transitions and the dimen-
sions of Cu nanoclusters deposited on HOPG can be
explained by a decrease in probability of the Coster–
Kronig process with decreasing cluster size, that is,
with the transition of copper from the metallic state to
a nonmetallic state described by quasiatomic wave-
functions. The number of atoms or the cluster size (Rc)
for which a transition to the metallic state takes place
can be estimated, for the simplest case of the s band,
from a condition of delocalization for the s electrons
whereby the distance between levels δE ≈ EVB/2n will
become comparable with kT. This yields Rc ≈
R0(EVB/kT)1/3 ≈ 22 Å (EVB ≈ 5 eV is the valence band
width), which corresponds to the number of atoms in
the cluster with N = 100 atoms. The estimated cluster
size Rc ≈ 22 Å is comparable with that (Rc ≈ 20 Å) esti-
mated for Cu from the I3/I2 curve (Fig. 4b), which is
additional evidence that the nanoclusters of Cu on
HOPG exhibit the transition to a nonmetallic state at a
cluster size of R ≈ Rc ≈ 20 Å.

Using the results presented above, it is possible to
study the transition to the metallic state for 3d metal
clusters on various substrates by measuring only the
L2L3M45 transitions involving the Coster–Kronig pro-
cess. For the elements with Z ≤ 30 (Zn), the Coster–
Kronig process is possible, because the energy differ-
ence between the 2p3/2 and 2p1/2 levels (∆E) is greater
than the binding energy of 3d electrons (EVB): ∆E >
EVB. For the elements with Z > 30, the Coster–Kronig
process is unlikely, since the EVB value increases with Z
faster than does ∆E. It should be noted that the series of
the L23M45M45 Auger lines accompanied the XPS spec-
tra excited by the same MgKα source.

It is possible to note an analogy in the character of
the L23M45M45 Auger spectra of transition metals and
nanoclusters (in particular, for Cu). As was demon-
strated in [24, 25], the Auger spectra of metals with Z >
30 (for which the effective Coulomb interaction Ueff of
two holes in the final L23M45M45 state is greater than the
band width Γ: Ueff > 2Γ) exhibit a quasiatomic structure
and the Coster–Kronig process is absent [26]. In con-
trast, in the metals with Z ≤ 30 (where Ueff < 2Γ), the
Auger spectra reflect the band structure and the Coster–
Kronig process is observed.

The nanoclusters of Cu on HOPG also exhibit a
decrease in the valence band width [20] with decreas-
ing cluster size, which is evidence of a transition from
the band to quasiatomic structure of the valence band.
As was indicated above, this is accompanied by vanish-
ing of the Coster–Kronig process.
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The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructures) with
large-scale fluctuations of random potential in the heteroboundary planes was studied at low temperatures down
to 0.5 K. The properties of excitons whose photoexcited electron and hole are spatially separated in the neigh-
boring quantum wells by a tunneling barrier were studied as functions of density and temperature. The studies
were performed within domains about one micron in size, which played the role of macroscopic traps for inter-
well excitons. For this purpose, the sample surface was coated with a metal mask containing special openings
(windows) of a micron size or smaller. Both photoexcitation and observation of luminescence were performed
through these windows by the fiber optic technique. At low pumping powers, the interwell excitons were
strongly localized because of the residual charged impurities, and the corresponding photoluminescence line
was nonuniformly broadened. As the laser excitation power increased, a narrow line due to delocalized excitons
arose in a threshold-like manner, after which its intensity rapidly increased with growing pumping and the line
itself narrowed (to a linewidth less than 1 meV) and shifted toward lower energies (by about 0.5 meV) in accor-
dance with the filling of the lowest exciton state in the domain. An increase in temperature was accompanied
by the disappearance of the line from the spectrum in a nonactivation manner. The phenomenon observed in the
experiment was attributed to Bose–Einstein condensation in a quasi-two-dimensional system of interwell exci-
tons. In the temperature interval studied (0.5–3.6) K, the critical exciton density and temperature were deter-
mined and a phase diagram outlining the exciton condensate region was constructed. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 73.20.Mf
In recent years, the interest in Bose–Einstein con-
densation has been stimulated by major achievements
concerned with the observation and investigation of this
phenomenon in dilute and deeply cooled gases of atoms
confined in magnetic traps [1]. Because of the large
atomic masses, the critical temperatures of the Bose–
Einstein condensation in dilute gases are on the order of
microkelvin or even lower. In a semiconductor, a
hydrogen-like exciton, being a composite boson, has a
mass that is several orders of magnitude smaller. There-
fore, the Bose–Einstein condensation in a dilute gas of
hydrogen-like excitons is expected to occur at much
higher temperatures of about 1 K [2]. In the last few
years, the Bose–Einstein condensation of excitons in
2D systems obtained on the basis of semiconductor het-
erostructures has been the object of intensive research
[3–19].

Earlier, we studied the photoluminescence of inter-
well excitons in GaAs/AlGaAs double quantum wells
containing long-period fluctuations of random potential
in the heteroboundary planes [19]. The large-scale fluc-
tuations were obtained by using the growth interruption
technique at the heteroboundaries of the quantum wells
[20]. The properties of interwell excitons were studied
0021-3640/02/7607- $22.00 © 20450
by varying their concentration and temperature within
single domains whose size was about 1 µm. To work
with a single domain, the surface of the structure was
coated with an opaque metal mask that had lithograph-
ically made windows of a micron size or smaller,
through which the photoexcitation and the subsequent
observation of photoluminescence were performed. In
a single domain, which essentially played the role of a
macroscopic trap, it was easier to accumulate the inter-
well excitons up to the critical densities at which the
excitons began to exhibit collective properties. In the
conditions of the resonance laser excitation that gener-
ated intrawell 1s HH excitons, it was found that, at low
powers and sufficiently low temperatures, the interwell
excitons are strongly localized while the corresponding
photoluminescence line is nonuniformly broadened (a
half-width of about 2.5 meV). As the resonance excita-
tion power increases, the narrow line of delocalized
interwell excitons arises in a threshold-like manner (the
minimal linewidth is less than 350 µeV). On further
increase in the pumping power, the intensity of this line
grows, and the line itself is somewhat shifted to lower
energies (by about 0.5 meV), in accordance with the
filling of the lowest state in the domain. When the tem-
002 MAIK “Nauka/Interperiodica”
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perature grows at constant pumping, this line disap-
pears from the spectrum in a nonactivation manner: the
line intensity decreases according to a power law with
increasing temperature. This phenomenon testifies to
the Bose condensation in the quasi-two-dimensional
system of interwell excitons under the conditions of the
spatial constraint that is determined by the size of the
lateral domains varying within approximately 1 µm. In
view of the fact that the width of the narrow line in
question remains practically constant with varying tem-
perature, its appearance in the luminescence spectrum
can be attributed to the part of excitons condensed at
K = 0. For the temperature interval studied in our pre-
vious experiments (1.5–3.4) K, it was found that the
critical values of the exciton density and temperature
are related by a dependence close to linear. This paper
studies the Bose condensation of interwell excitons in a
heterostructure of the same architecture at lower tem-
peratures, down to 0.5 K. The main purpose of this
study is to determine the phase diagram of this
collective phenomenon in the temperature interval
(0.5–3.4) K.

We studied a GaAs/AlGaAs n–i–n heterostructure
with GaAs/AlAs/GaAs double quantum wells. The
width of the GaAs quantum wells was 12 nm, and the
width of the AlAs four-monolayer barrier was 1.1 nm.
The structure was grown by molecular beam epitaxy on
the (001) surface of an n-doped GaAs substrate (Si dop-
ing to a concentration of 2 × 1018 cm–3). First, a 0.5-µm-
thick GaAs buffer layer doped with Si to a concentra-
tion of 2 × 1018 cm–3 was grown on the substrate. The
next layer was an insulating one (x = 0.33), 12 mm in
thickness. Then, the GaAs/AlAs/GaAs double quantum
well was grown. The well was covered with another
12-nm-thick insulating layer (x = 0.33), which con-
tained an AlAs/AlxGa1 – xAs (x = 0.33) ten-period super-
lattice with a period of 3 nm. The next layer was con-
ducting, its thickness was 0.1 µm, and it consisted of
GaAs doped with Si to a concentration of 2 × 1018 cm–3.
The whole structure was covered with a 10-nm-thick
GaAs insulating layer (the top layer). At the boundaries
of the double quantum wells, AlAs four-monolayer bar-
riers were grown. The epitaxial growth of these barriers
was performed using the growth interruption technique.
This technique provided the formation of long-period
lateral fluctuations of random potential that were
related to the fluctuations of the AlAs barrier widths.
Metallic contacts made of Cr/Ge/Au alloy were applied
to the buffer layer and to the doped layer in the upper
part of the mesa.

The surface of the n–i–n structure of architecture
described above was coated with a metal mask (a
120-nm-thick aluminum film) containing openings
(windows) up to 0.5 µm in diameter. The mask was fab-
ricated by the lift-off electron beam lithography. As a
result, the surface of the sample had the form of a reg-
ular rectangular array of windows that were transparent
to light. The spacing between the windows was
JETP LETTERS      Vol. 76      No. 7      2002
150 µm. In the experiment, the excitation and the detec-
tion of the luminescence signal were performed
through single windows. We emphasize that the alumi-
num film was not connected with the n+ contact area of
the heterostructure.

To study the luminescence spectra at temperatures
of (0.5–1.4) K, the sample was placed in a low-temper-
ature chamber in which He3 vapor was condensed. The
sample was immersed in liquid helium. The tempera-
ture was controlled by pumping He3 vapor through a
cryogetter pump and measured by a resistance ther-
mometer.

For the excitation of luminescence and for the mea-
surement of the luminescence signal, we used the fiber-
optic technique. The experiment was performed with a
50-µm light guide. With the help of a specially
designed device, the center of the light guide was posi-
tioned in front of the micron-size window. The lumi-
nescence was excited by a single-mode cw He–Ne
laser. To minimize the effect of scattered light, a linear
polarizer was placed before the entrance slit of a double
monochromator (Ramanor 1000), so that the polariza-
tion direction was orthogonal to the polarization of the
exciting laser radiation. The luminescence spectra at
the exit of the monochromator were measured by a
CCD camera.

The results testifying to the exciton condensation
were obtained from the experiment with the excitation
through a mask window that was less than 1 µm in
diameter. Figure 1 presents the experimental lumines-

Fig. 1. (a) Behavior of the luminescence spectra of interwell
excitons as a function of bias voltage at T = 0.55 K.
(b) Schematic diagram of optical transitions and (c) the
dependence of the spectral positions of the direct (D) and
interwell (I) excitons on the bias voltage.
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Fig. 2. (a) Luminescence spectra of an interwell exciton (the I line) for different He–Ne laser excitation powers at the bias voltage
U = –0.5 V and T = 0.55 K. (b) Dependence of the intensity of the interwell exciton line on the optical pumping power. The arrow
indicates the threshold power at which the I line arises in the spectrum.
cence spectra of interwell excitons (the I line) that were
obtained at different bias voltages, at a helium bath
temperature of 0.55 K. The optical transitions are sche-
matically illustrated in Fig. 1b. In the intrawell lumines-
cence region, which is not shown in Fig. 1, at zero bias
voltage, two lines are observed: a free heavy-hole exci-
ton, i.e., a 1sHH exciton, and a bound exciton [18]. The
line corresponding to interwell excitons (the I line)
arises in the spectrum when, in the presence of a bias
electric field, the value of the Stark shift of the dimen-
sional quantization energy bands, eF∆z, begins to
exceed the difference between the binding energies of
the intrawell and interwell excitons: eF∆z > ED – EI.
From Fig. 1, it follows that the interwell exciton line is
shifted linearly (to a high accuracy) with varying elec-
tric field (see also Fig. 1c). This is direct evidence that
the I line is associated with an interwell exciton whose
electron and hole are in neighboring quantum wells
separated by a barrier transparent to tunneling. As the
bias voltage increases, the times of the radiative annihi-
lation of interwell excitons change; namely, they
increase by more than an order of magnitude because of
the decrease in the overlapping of the electron and hole
wave functions of the exciton across the barrier. In this
case, as seen from Fig. 1, the luminescence intensity
under the conditions of steady-state excitation varies
only slightly. This fact supports the previously made
conclusion [19] that the quantum yield of luminescence
of interwell excitons is sufficiently high, and the radia-
tionless transitions can be ignored. In its turn, this result
testifies to the high quality of the heterostructure under
investigation.

At low excitation powers, below 10 µW, at T = 0.55 K,
the luminescence spectrum is represented by a rela-
tively broad asymmetric band (the bandwidth is about
3 meV, see Fig. 2). This band is nonuniformly broad-
ened, and, in our opinion [19], its origin is related to the
strong localization of interwell excitons by the random
potential fluctuations because of the residual charged
impurities. As the pumping power grows (>10 µW), a
narrow line arises in a threshold-like manner at the vio-
let edge of the broad band, the intensity of this narrow
line increasing with the further increase in the pumping
power. Qualitatively, the situation develops with
increasing pumping in the same way as in the case of
the resonance excitation at higher temperatures T >
1.5 K [19]. The intensity of the narrow I line grows with
increasing pumping power according to a linear law
(see Fig. 2b), but this growth is much faster than that of
the structureless luminescence background observed
below this line. The I line itself is shifted with growing
pumping power by approximately 0.5 meV toward
lower energies. The minimal width of the I line is
0.7 meV; i.e., in the case of the excitation by a He–Ne
laser, this line is approximately twice as wide as in the
case of the resonance excitation by a Ti–sapphire laser
with the same spectral resolution. The structureless
luminescence band under the I line increases linearly
JETP LETTERS      Vol. 76      No. 7      2002
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with increasing excitation power. As the pumping
power grows further (above 50 µW), the narrow line of
interwell excitons begins to broaden and then, broaden-
ing monotonically, shifts toward higher energies
because of the screening of the bias electric field.
Hence, from the value of the spectral shift, it is possible
to estimate the concentration of the interwell excitons
by the Gauss formula:

(1)

where d is the distance between the spatially separated
e–h layers, N is the exciton density, and ε is the dielec-
tric constant. For example, if we take the distance
between the electron–hole layers equal to 10 nm, the I
line will be shifted by 1.4 meV toward higher energies
at an interwell exciton concentration of 1010 cm–2.

Earlier, it was demonstrated that the narrow line of
interwell excitons disappears from the luminescence
spectra at T > 3.4 K. Below, we present an example
illustrating the sensitivity of this phenomenon to tem-
perature (see Fig. 3). Figure 3a shows that, at T = 1.29 K,
the narrow line vanishes against the background of the
structureless luminescence band of localized excitons
when the exciting laser power decreases below P <
14 µW. However, if we fix the critical power at a level
of 14 µW, which corresponds to the disappearance of
the line from the spectrum, and then reduce the temper-
ature of the sample, the narrow line reappears at the
violet edge of the structureless continuum and its inten-
sity increases with further cooling (see Fig. 3b). Even
at temperatures T < 1.14 K and lower, the narrow line is
clearly visible in the spectra, its intensity growing with
decreasing temperature. For the region T < (0.5–1.5) K,
we found that the behavior of the intensity of this line
as a function of temperature obeys the relation

(2)

where IT is the intensity of the line at a temperature T,
Tc is the critical temperature at which the narrow line
disappears from the spectrum, and α ≈ 1 is the expo-
nent.

Judging from the behavior of the narrow line of
interwell excitons as a function of temperature, one can
see that the phenomenon observed in our experiments
demonstrates all characteristic features of the phase
transition associated with the Bose condensation of
excitons; i.e., as soon as the critical values of density
and temperature are reached, a new collective phase of
interwell excitons comes into play. Therefore, we tried
to determine the form of the phase diagram under the
conditions of Bose condensation of interwell excitons.
For this purpose, at every given temperature in the
interval under study T = (0.5–3.6) K, we investigated
the dependence of the luminescence spectra on the
pumping power and determined the threshold power Pc

at which the narrow line begins to appear in (or disap-
pear from) the spectrum. Thus, the phase diagram was
constructed in (Pc – T) coordinates, and for its construc-

δE 4πe2ND/ε,=

IT 1 T /Tc–( )α ,∼
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tion, we used the region where the dependence of the
intensity of the narrow line on the laser excitation
power was linear. The resulting phase diagram is pre-
sented in Fig. 4 in both linear and logarithmic coordi-
nates (see the inset in Fig. 4). Experimentally, it was
found that, from the point of view of the e–h pair gen-
eration in the double quantum wells, the excitation by a
He–Ne laser is almost five times more efficient than the
resonance excitation by a Ti–sapphire laser. This result
is explained by the low coefficient of resonance absorp-
tion in the double quantum wells. In Fig. 4, the experi-
mental points obtained with He–Ne and Ti–sapphire
lasers are represented by different symbols. The range
of the pumping power variation was within approxi-
mately an order of magnitude (from ten to two hundred

Fig. 3. (a) Dependence of the intensity of the I line on the
pumping power at T = 1.29 K and at a bias voltage of –0.5 V.
(b) Behavior of the spectra at a pumping power of 14 µW in
the course of the gradual cooling of the structure. The I line
appears in the spectrum at T < 1.2 K.

Fig. 4. Phase diagram of the Bose condensation of interwell
excitons in the temperature interval T = (0.5–3.6) K.

Ti–Sp
Ne–Ne

T = 1.29 K
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microwatts). The concentration of the interwell exci-
tons could be estimated judging from the shift of the
narrow line toward higher energies at high pumping
powers because of the screening of the bias voltage. At
the minimal temperature achieved in the experiment,
T = 0.55 K, and at a pumping power of 10 µW, when the
narrow line arises in the spectrum in a threshold-like
manner, the exciton density estimated by Eq. (1) is
Nc(T = 0.55 K) = 3 × 109 cm–2. In the phase diagram
presented in Fig. 4, the scales of the pumping power,
narrow line intensity, and interwell exciton density are
linearly related (P ~ I ~ N).

The phase diagram obtained by us has an unusual
form. In the temperature interval (1.2–3.6) K, the criti-
cal densities and temperatures, at which the condensa-
tion takes place, are related to each other by the power
law

(3)

where α = 3/2. This power law is an unexpected result.
The point is that, in the presence of a lateral spatial con-
straint, the critical temperature should be related to the
density of noninteracting excitons by the law that is
close to linear:

(4)

where g = 4 characterizes the spin degeneracy of the
exciton state, mex is the translational mass of the exci-
ton, and S is the area of the lateral constraint. A possible
reason for the deviation from this dependence is that the
system under study is quasi-two-dimensional, while the
gas of interwell excitons is nonideal, because interwell
excitons interact with each other.

At the temperatures T < 1.2 K and down to 0.5 K,
where the strong localization effects are most pro-
nounced, the relation between the critical density and
critical temperature cannot be described by a simple
power law. It should be also emphasized that the Bose
condensation under study manifests itself on the scale
of exciton concentrations in certain limits: Nloc < Nex <
NI – M. The lower limit corresponding to low concentra-
tions is caused by the effects of the strong localization
of interwell excitons by the defects inside the domain
(trap). We estimate the density of the localized states in
the structures under investigation as Nloc ≈ 3 × 109 cm–2.
It is precisely the localized states that are likely to be
responsible for the unusual form of the phase diagram
at the lowest temperatures. The upper limit (high con-
centrations) is caused by the collapse of excitons as a
result of the insulator-to-metal transition, NI – M. Indeed,
as the power of the He–Ne laser excitation increases
above 200 µW, the luminescence line of interwell exci-
tons begins broadening and shifts to higher energies.
The shift of the I line occurs because of the screening
of the bias electric field, while its broadening is caused
by the overlapping of the exciton wave functions in the
quantum well plane and the Fermi repulsion between

Nc Tc
α ,∼

Tc π"
2Nex/gkBmex NexS( ),ln≈
electrons in one well and between holes in the other
well. We estimate the density at which the interwell
excitons collapse and an electron–hole plasma with
spatially separated electrons and holes is formed as
NI − M < 1011 cm–2. This density corresponds to the

dimensionless parameter rS = 1/ aB < 2.

In the recent publication [21], Bose condensation
was considered in a system of noninteracting two-
dimensional excitons in the presence of a discrete spec-
trum of localized states below the continuum of
extended exciton states. In this publication, it was
pointed out that, because of the physical limitations,
even in the presence of a single discrete level ε0 lying
below the exciton mobility threshold, the chemical
potential of excitons µ does not become equal to zero
when the critical condensation conditions are reached,
namely: –µ > –ε0 = |ε0|, i.e., |µ|min = |ε0|. This means that,
when the critical temperature is reached, the maximal
number of extended exciton states (Nex)max are formed.
When the temperature becomes lower than the critical
one Tc, the concentration N becomes greater than
(Nex)max and the excess Bose particles, N – (Nex)max,
should condense into localized states in macroscopic
quantities. If we return to the experiments considered
above, at the excitation powers below the threshold val-
ues, we can see a wide, nonuniformly broadened lumi-
nescence band that corresponds to the continuum of
localized states. However, above the threshold, a single
narrow line arises with an intensity that grows much
faster than the structureless continuum below it. The
narrow line appears near the mobility edge of the delo-
calized exciton states [6]. These observations disagree
with the conclusion of the cited paper [21]. Presumably,
in the system under investigation, in the presence of
localized states and in the presence of the spatial con-
straint related to the lateral size of domains (traps), the
Bose condensation of delocalized interwell excitons
follows a more complicated scenario.
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with a He3 low-temperature chamber, to A.V. Bazhenov
for the assistance in the experiment, and to
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Russian Foundation for Basic Research (project nos.
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The formation of diamond-like structure in the carbon onion core was modeled by the molecular-dynamics
method. The stages of this transformation (formation of holes in the fullerene shells and their healing accom-
panied by a decrease in the interlayer spacing in onion; accumulation of “free” atoms in the core and formation
of new shells by these atoms; and core transformation under the action of these modified shells and temperature)
adequately describe the main features of the Banhart and Ajayan observations. © 2002 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 61.48.+c
The discovery of carbon onions—spherical carbon
particles consisting of graphite-like shells
(fullerenes)—is associated with the name of D. Ugarte.
In experiments with the irradiation of nanoparticles
filled with gold and lanthanide oxides, Ugarte discov-
ered remarkable particles consisting of concentric per-
fectly shaped graphite shells. In his work [1], he was
first to use the term “carbon onion” in the description of
new particles. It was shown in the subsequent works
[2–5] that the carbon onions can be prepared from a
diversity of carbon materials, including nanodiamond
[6]. The spacing between the onion shells corresponds
to the interlayer spacing in graphite and comprises
~0.34 nm. One of the models treats the onion structure
as a system of concentric fullerenes put into one
another and having symmetry Ih with strictly fixed
number N of atoms, where N = 60b2 and b is the shell
number [7]. The carbon onions are unstable and
destroyed after irradiation [8]. In 1996, F. Banhart and
P. Ajayan found that the intense irradiation of carbon
onions by electron beam at a temperature of 700°C for
one hour results in a diamond structure in the onion
core [9–11]. These authors assumed that the pressures
produced by the radiation and temperature inside the
carbon onion exceed the graphite–diamond phase-tran-
sition pressure at these temperatures, giving rise to the
diamond structure. However, they did not suggest any
consistent mechanism that would be responsible for
this transition. In [12], molecular dynamic modeling of
the formation of sp3 atoms in a carbon onion consisting
of only two fullerene shells C60 and C240 was performed
by the density functional method. The interspace
between the shells of this onion and the space inside the
C60 shell were saturated with carbon atoms. It was
established that, to form a structure containing, on the
average, 70% sp3 atoms, nonequilibrium conditions
0021-3640/02/7607- $22.00 © 20456
must be created; namely, a considerable atomic inflow
must occur from the outer shells to the core region of the
onion (130 additional atoms) and the local temperature
should be increased to 2100 K. However, this value
exceeds by 2.5 times the experimental temperature.

In this work, the mechanism of carbon onion core
transformation into a diamond-like structure (DLS) is
suggested which adequately accounts for the main
experimentally observed regularities of this transition.

According to the experiment, the following stages
can be distinguished in the transformation of the core of
carbon onion structure into diamond [9].

1. Under the action of radiation and temperature
(650–750°C), the spacing between onion shells
decreases with decreasing distance to the core. For
example, in an onion comprising 15 shells, the inter-
layer separation changes from 0.33 to 0.22 nm for the
shells with radii 12–1.3 nm, respectively.

2. The onion shells take on a more perfect spherical
shape and, simultaneously, single-crystal or polycrys-
talline diamond structure arises in the core.

3. After the irradiated samples are cooled to room
temperature, the core DLS remains stable, whereas the
surrounding graphite-like structure contains many
defects.

Below, the results of molecular dynamic modeling
are presented for the transformation of carbon onion
core into DLS. Classical molecular dynamic modeling
amounts to solving the Newton equations, which were
integrated in this work using the Verlet–Beeman
scheme with an integration step of 0.35 fs. The total
computational time was 140 to 530 fs, depending on the
model chosen. The forces acting on atoms were calcu-
lated in various ways, depending on the distance
between the interacting atoms.
002 MAIK “Nauka/Interperiodica”
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The short-range chemical interactions (rij < 0.2 nm)
were calculated using the empirical potential intro-
duced by Brenner [13] for hydrocarbons in studying the
growth dynamics of thin diamond films. According to
this many-particle potential, the binding energy of two
neighboring atoms is given by the expression

(1)

where  and  are the repulsive and attractive expo-

nential terms, respectively, and  are the coefficients
allowing for the many-particle interaction [13].

The long-range interaction was taken into account
using the Lennard-Jones potential for the general
hydrocarbon systems [14, 15]

(2)

where cn, k are the spline coefficients and ε and σ are the
parameters of van der Waals forces.

The combined expression for the total energy has
the form

(3)

The forces were calculated analytically as the deriv-
atives of the potential with respect to the radius-vector,
and the temperature of the structure was specified by
the mean particle velocity.

The C60@C240@C540@C960 onion was chosen as an
initial model. We assume that the interlayer separation
decreases because of the formation of hole vacancies in
the fullerene structure as a result of atomic escape
under the action of irradiation and temperature. This
assumption is confirmed by the experimental fact that
the amount of formed diamond increases substantially
after replacing electron by the ion beam [10]. Inasmuch
as the pentagon regions are most strained in the
fullerene structure composed only of hexagons and
pentagons [16], these regions are energetically least
stable under the external actions. Based on this assump-
tion, we removed in our model five atoms from each of
the 12 pentagons of the C540 fullerene and five neigh-
boring atoms for each pentagon, resulting in the C420
structure with holes. This structure is more spherical
and contains unsaturated bonds. However, the unsatur-
ated bonds are energetically unfavorable, so that these
holes heal rather rapidly [16]. To determine the most
probable way of filling the holes, the fact was taken into

Eij
b Vij

R BijVij
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Vij
R Vij
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account that the onion shells become spherical and the
separation between them decreases during the course of
experiment. It is known that, to make fullerene more
spherical, pairs of heptagons and pentagons should be
present in its structure [17, 18]. Making use of the
Stone–Waals transformations [16], we obtained the
transformed pseudospherical smaller-diameter C420
fullerene containing 60 heptagons and 72 pentagons
(Fig. 1a) from the C420 structure with holes. The atomi-
zation energies for the C540 fullerene, C420 fullerene
with holes, and transformed C420 fullerene are, respec-
tively, 3.93, 2.82, and 2.99 keV. The difference in the
atomization energies for the fullerene with holes and
C540 fullerene is –1.11 keV, whence it follows that the
hole formation process is endothermic, while the
required energy is delivered by the radiation source.
The difference in the atomization energies of the
fullerene with holes and the transformed C420 fullerene
is evidence that, energetically, the structure with unsat-
urated bonds is less favorable.

Assuming that the irradiation effect is the strongest
for the middle layers of a large onion [9], we obtained,
in a similar manner, the transformed pseudospherical
C600 fullerene containing 60 heptagons and 72 penta-
gons (Fig. 1b) from the C960 fullerene. The atomization
energies for the C960 fullerene, C600 fullerene with
holes, and transformed C600 fullerene are, respectively,
7.02, 3.87, and 4.32 keV. As in the case of the transfor-
mation of C540 into quasi-spherical C420 fullerene, the
formation of holes in the C960 structure requires an
energy source (e.g., ion or electron beam), while the
quasi-spherical C600 fullerene is energetically more
favorable than the fullerene with holes. Therefore, we
obtained the transformed C60@C240@C420@C600 onion
(model I) by removing 480 atoms (27% of the total
number of atoms in the original structure) from the
C60@C240@C540@C960 structure. Table 1 presents the
interlayer distances for this model and the distances
corresponding to the extrapolated experimental curve
[9]. Both are in good agreement with each other.

Fig. 1. Transformed fullerenes: (a) C420 fullerene (Ih sym-
metry) and (b) C600 fullerene (Ih symmetry).
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To cut the CPU time, the onion-like C60@C240@C420
structure was used as a precursor (precursor I') of the
DLS, and the action on it from the outer shells was
modeled by hydrostatic pressure with a magnitude cal-
culated by the formula [19]

(4)

where h = 3.4 Å is the interlayer spacing in graphite,
R = R(C420) + 3.4 (in Å) is the radius of outer shell for
C420 in the unstrained structure, ∆V/V is the relative
change in the fullerene volume as a result of changing
radius from R to R(C600) (Table 2), and S11 =
0.00098 GPa–1 and S12 = –0.00016 GPa–1 are the ele-
ments of the matrix of compliance coefficients for
graphite [19].

Three computational runs were carried out in our
study.

In the first run, precursor I' was heated under an
external pressure (4) of 39 GPa (Table 2) to the temper-
ature at which more than one-half (58%) of the total
number of atoms became tetrahedrally coordinated.
The corresponding temperature was 1450°C.

Pt
2
3
--- h

R
--- 1

S11 S12+( )
------------------------- ∆V

V
-------,=

Table 1.  Interlayer spacing for the models and for the
extrapolated experimental curve

Model Shell
Intershell sep-

aration
(in Å)

Intershell separation 
(in Å) corresponding 
to the extrapolated 

curve [9]

I C60–C240 2.86 1.97

C240–C420 2.49 2.09

C420–C600 2.67 2.19

II –C140 1.95 1.85

C140–C240 2.14 2.0

C240–C420 2.31 2.10

C420–C600 2.50 2.20

III C60–C140 – 1.82

C140–C180 – 1.95

C180–C240 – 2.04

C240–C420 1.98 2.13

C420–C600 2.49 2.22

C60'
We assume that the structure with more than 50%
(58%) of sp3 atoms provides a good model for the DLS.
We found that, if this structure is thermalized at the
same temperature (1450°C) for a more prolonged time,
the number of sp3 atoms increases very slow. For
instance, after the thermalization of precursor I' at a
temperature of 1450°C for 353 ps, the number of sp3

atoms increased only by 0.022%. At the same time, the
thermalization, for the same time interval, of the same
precursor at a temperature of 1100°C, at which 40% of
atoms become tetrahedrally coordinated, reduces the
number of sp3 atoms by only 0.012%. Experiments
show that, to form a diamond crystal in the carbon
onion core, the carbon onions should be irradiated for
1 h [9]. Thus, the time it takes for the formation of dia-
mond crystal structure exceeds the time accessible in
our computations by ten orders of magnitude, which
casts doubt on the possibility of its computer modeling
with the presently available computational resources.

With our assumptions about the DLS, by the transi-
tion temperature Tt below will be meant the tempera-
ture at which more than one-half of the sp3 atoms in the
precursor become tetrahedrally coordinated. In this
way, the Tt value in the first computational run was
found to be 1450°C (Table 3), which is approximately
twice its experimental temperature [9]. Besides, the
separation between the C60 and C240 fullerenes in
model I did not conform to a monotonic decrease in the
interlayer spacing with decreasing distance from the
core center [9].

To improve the model, the fact was taken into
account that a certain fraction of the atoms removed
from the initial C60@C240@C540@C960 onion (the total
number of these atoms in model I was equal to 480)
remains inside the onion structure. In principle, these
atoms can both occupy arbitrary positions without
organizing ordered structure [12] and form new
fullerene shells. It turned out that the formation of a
new fullerene molecule was energetically more favor-
able. For example, the specific strain energy for the

@C140@C240@C420@C600 onion (model II; Fig. 2)
is 0.63 eV/atom, whereas the specific strain energy of
the structure consisting of the C60@C240@C420@C600

onion and 140 atoms occupying arbitrary positions
between the shells and in the onion core was found to
be 0.94 eV/atom.

C60'
Table 2.  Radii of fullerene shells and hydrostatic pressures for different models

Model I II III

Shell C60 C240 C420 C600 C140 C240 C420 C600 C60 C140 C180 C240 C420 C600

Radius, Å 3.64 6.50 8.99 11.66 3.00 4.95 7.09 9.40 11.90 – 7.99 9.97 12.46

Pressure, GPa 39.4 45.6 42.2

C60'
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Table 3.  Characteristics of the transformation of model structures into DLS

Model
Number of atoms removed 
from the C60C240C540C960 

structure (%)
Tt (°C)  Number of sp3

atoms at Tt (%)
Number of sp3 atoms

at T = 300 K (%)

C60C240C420 27 1450 58 46

C140C240C420 19 700 62 54

C60C140C180C240C420 9 350 74 64

C60'
On this basis, we used model II in the second com-
putational run. This model corresponds to the situation
where 30% of atoms removed initially from the original
C60@C240@C540@C960 structure remain inside the
C60@C240@C420@C600 onion. They form new fullerene
shell C140 and exert pressure on C60, so that the opti-
mized C60 fullerene transforms into the  cluster
containing 50 sp3 atoms (Fig. 2). One can see from
Table 1 that this model fits the extrapolated experimen-
tal curve [9] well: the interlayer spacing tends to mono-
tonically decrease with decreasing distance from the
onion center. Because of this, the

@C140@C240@C420 structure (precursor II') was
chosen as a precursor of DLS in this computational run.
The pressure exerting on it by the C600 shell is given in
Table 2. We heated precursor II'. The transition temper-
ature at which 465 of 600 atoms became sp3-coordi-
nated was found to be 700°C (Table 3). This value
agrees well with the experimentally observed tempera-
tures of the carbon onion core transformation into dia-
mond [9].

To determine whether model II is optimal, per-
formed the third computational run. In this run, an even
larger number (67%) of atoms removed from the origi-
nal C60@C240@C540@C960 onion were retained in the
inner shells, and it was assumed that these atoms can
form two new fullerene shells C140 and C180. Hence, a
highly strained C60@C140@C180@C240@C420@C600
structure (model III) was taken as a model in this com-
putational run. Its inner shells C60, C140, and C180 form
structure with a quantity of diamond-like bonds even at
normal conditions. The C60@C140@C180@C240@C420
structure (precursor III') was a precursor in this run.
The temperature for the modeled transition was found
to be 350°C. This value is half as high as the experi-
mentally observed value [9].

Analyzing the obtained results, we can conclude
that model II is optimal for the comparison with the
experiment (Table 3). In this model, about 30% of the
atoms removed from the original
C60@C240@C540@C960 onion remain in the region
between the layers of the transformed onion structure
C60@C240@C420@C600 and form new fullerene shell
C140. On the whole, 320 atoms are removed to the outer
shells (about 20% of the total number of atoms in the

C60'

C60'
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original C60@C240@C540@C960 onion). Model II also
agrees with the extrapolated experimental curve for
interlayer distances.

All DLSs obtained in the three computational runs
were cooled to room temperature (T = 300 K) after
heating to Tt. Since the number of sp3 atoms changed
only slightly in this case (Table 3), the DLS obtained in
model II can be considered stable.

Therefore, we suggest the following mechanism for
the transformation of carbon onion core into DLS.

I. The most strained regions in the onion fullerene
shells are destroyed under the action of radiation and
temperature. As a result, holes appear in the shells.
Hole healing leads to a decrease in the fullerene surface
and, as a result, in the interlayer spacing in the onion.

II. Nearly 70% of “free” atoms arisen in the core
structure after the hole formation leave their “parent”
shells and move into the other outer and inner shells.
The total number of atoms migrating beyond this parent
region is equal to about 20% of the number of core
atoms. It is most likely that they are accumulated near

Fig. 2. Cross cut of a strained onion structure

@C140@C240@C420@C600 (model II).C60'
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the surface of the transformed onion to form new shells.
This effect can be used to explain the fact that, despite
the increase in the core density as a result of formation
of the sp3 structure, no appreciable decrease in the
onion size is observed [9–11]. The atoms remaining in
the parent region form new fullerene shells, also lead-
ing to a decrease in the interlayer spacing.

III. Because of a decrease in the interlayer spacing,
the onion shells act as “microscopic pressure chambers,”
in which the DLS appears upon rising temperature to
700°C (Fig. 3). In Fig. 3, the contour of the DLS surface
replicates the typical contour of a heavily defective struc-
ture of graphite shells in the photographs of room-tem-
perature-cooled onions with a diamond core [9].

Let us compare the mechanism suggested in this
work with the experimentally observed regularities of
the carbon onion core transition into diamond. Items I–
II of our mechanism are in compliance with the exper-
imental stage I, which was mentioned at the beginning
of this work. Item III describes the second experimental
regularity. The third experimental stage corroborates
our conclusion that the resulting DLS structures are sta-
ble after cooling to room temperature (Table 3).

Note that the transformation of carbon onions into
diamond is of great commercial interest [20, 21]. The
point is that the presently available methods of produc-
ing diamond from graphite require very high pressures
and the presence of catalysts. For example, the forma-
tion of diamond from C60 fullerenes necessitates a non-
hydrostatic pressure on the order of 20 GPa [22]. As to
the transformation of carbon onion core into diamond,

Fig. 3. Cross cut of a diamond-like structure cooled to T =

300 K (initial structure @C140@C240@C420@C600).C60'
it is a direct transition from graphite to diamond. For
this reason, apart from the theoretical interest in the
understanding of the mechanism of this transition, its
explanation is topical from the applied point of view.
The mechanism suggested in this work account for the
main experimentally observed regularities of the transi-
tion of carbon onion core into diamond.

We are grateful to G.A. Vinogradov, I.V. Stankevich,
and M. Menon for discussion and valuable remarks.
This work was supported by INTAS (grant no. 00-237)
and the State Scientific and Technical Program “Topi-
cal Directions in Condensed Matter Physics.”
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We present experimental investigations of ultrafast phase transitions in tellurium following excitation by an
intense femtosecond laser pulse. Femtosecond time-resolved polarization-sensitive microscopy is used to mon-
itor the temporal evolution of optical anisotropy (birefringence) of the irradiated material. The decay of optical
anisotropy associated with the loss of order in crystalline tellurium is fluence-dependent and occurs within 0.5–
3 ps. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.Kb; 61.80.Ba; 78.20.Fm
Ultrafast laser processing of materials, especially
metals and semiconductors, is a field of condensed-
matter physics and material science that has developed
rapidly over the last few years. It has proved to be of
considerable interest for both applied and fundamental
research for a variety of reasons, which are discussed
extensively in the literature. An important application
of ultrashort laser pulses is connected with the study of
ultrafast phase transitions. In our previous work [1], we
experimentally studied ultrafast changes of order of
monocrystalline graphite under irradiation by a femto-
second laser pulse using a new experimental technique
that exploits the optical anisotropy of the crystal.

In this letter, we present the results of a similar study
performed on samples of monocrystalline tellurium.
The experiments were performed with a chirped-pulse-
amplified Ti:sapphire laser system (100-fs pulse dura-
tion), using time-resolved polarization-sensitive optical
microscopy [1]. The sample surface is excited by an
intense s-polarized pump laser pulse at 800 nm (angle
of incidence 45°) and probed by a weak time-delayed
p-polarized probe laser pulse at 400 nm (normal inci-
dence). Snapshots of the laser-excited surface are
recorded by a digital CCD-camera. Further details of
the technique can be found in [1].

The (100) surface of monocrystalline tellurium con-
tains the optical anisotropy axis. Rotating the sample
around the surface normal allows variation of the angle
ϕ between the anisotropy axis and the polarization vec-
tor of the probe pulse. In this way, the ordinary reflec-
tivity Ro (ϕ = 90°), extraordinary reflectivity Re (ϕ =

¶This article was submitted by the authors in English.
0021-3640/02/7607- $22.00 © 20461
0°), as well as the so-called “anisotropic” reflectivity
component Rcr (ϕ = 45°) [1], can be measured:

where no and ne are the complex refractive indices for
ordinary and extraordinary polarization; δ = (ne – no)/2,
and n = (ne + no)/2.

The complex indices of refraction for unexcited tel-
lurium are as follows [2]: for the pump (λ = 800 nm),
no = 5.84 – 1.06i, ne = 6.73 – 2.89i; for the probe (λ =
400 nm), no = 2.37 – 3.29i, ne = 2.22 – 3.96i. The skin
depths (µ = λ/4πImn) are µo = 60 nm, µe = 22 nm for
the pump and µo = 10 nm, µe = 8 nm for the probe.
Thus, the skin depth at the probe wavelength is always
less than the skin-depth of the pump pulse.

In Fig. 1a, snapshots of the transient changes of the
anisotropic reflectivity in the laser-irradiated area are
presented. Corresponding spatial cross sections, repre-
senting the fluence dependence of the “anisotropic”
reflectivity component at a given time instant, are
depicted in Fig. 1b. From Fig. 1b, it can be seen that
during the first few picoseconds, the intensity of the
“anisotropic” reflectivity component drops drastically
in the center of the focal spot (maximum fluence) indi-
cating a corresponding loss of the optical anisotropy,
which is interpreted as a loss of crystalline order [1] m
the excited surface layer. The threshold fluence with
respect to the change of anisotropic reflection is about
F ≈ 15 mJ/cm2 (a study of melting near the threshold
fluence is the subject of our future research, as it
demands modernization of an experimental technique).
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Fig. 1. (a) Transient snapshots and (b) profiles of the “anisotropic” reflectivity Rcr of the excited Te surface for different pump–probe

time delays for a pump peak fluence of 66 mJ/cm2.

(b)

1—0.1 ps
2—0.5 ps
3—0.7 ps
4—1.0 ps
5—1.5 ps
6—5.0 ps
7—final
The recovery of the anisotropic reflectivity back to
nearly the initial value indicates crystallization upon
resolidification. This process is much slower and takes
a few nanoseconds.

Fig. 2. Temporal evolution of the (a) “anisotropic” and
(b) ordinary (Ro) and extraordinary (Re) reflectivity compo-
nents for different laser fluences above the melting thresh-
old.

Final
Ro
Figure 2 shows the temporal evolution of the ordi-
nary, extraordinary, and “anisotropic” reflectivities for
different excitation fluences above the melting thresh-
old. It is clear that the decay time of the “anisotropic”
reflectivity component coincides with the time at which
the ordinary and extraordinary reflectivities become
equal. Within a few picoseconds, the optical anisotropy
for the presented fluences disappears, whereas the iso-
tropic reflectivity reaches a constant value. We interpret
the observed rapid loss of optical anisotropy and the
existence of a stationary isotropic reflectivity at later
times as due to the formation of a liquid surface layer
with a thickness larger than the penetration depth of the
probe pulse. Thus the decay time of the optical anisot-
ropy may be referred to as the melting time.

Figure 2a shows the temporal evolution of the aniso-
tropic reflectivity component for different laser flu-
ences and aims to demonstrate the pronounced depen-
dence of the melting time on the incident laser fluence.
The melting time derived by a simple exponential fit of
the measured time dependences in Fig. 2a is plotted in
Fig. 3 as a function of the laser fluence. For laser flu-
ences above 45 mJ/cm2, which is approximately three
times the melting threshold, the melting process occurs
essentially in less than one picosecond. For laser flu-
ences closer to the melting threshold, the melting time
increases up to a few picoseconds.

In order to provide a physical interpretation of the
results of our optical measurements, we have analyzed
the optical properties of a thin film of liquid tellurium
on a crystalline tellurium substrate. The optical con-
stants of liquid tellurium were determined by means of
time-resolved interferometry [3]. This technique allows
for femtosecond time-resolved measurements of
changes (relative to unexcited tellurium) in both the
amplitude and the phase of the reflected probe light. We
JETP LETTERS      Vol. 76      No. 7      2002
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have performed interferometric measurements for suf-
ficiently high fluences at long delay times up to a few
nanoseconds to assure that the laser-melted layer of liq-
uid tellurium has a thickness larger than the skin depth
of the probe. Taking the optical constants of crystalline
tellurium at λ = 400 nm as reference values and using
the Fresnel formulas, we determine the complex index
of refraction for liquid Te at our probe wavelength as
nliquid Te = 2.6 – 2.1i. The reflectivities obtained with the
measured optical constants for liquid Te are in good
agreement with previously reported results [4]. It is
important to note that at λ = 400 nm, the skin-depth in
the melt (µliquid Te = 15 nm) is larger than in the crystal-
line solid (µo = 10 nm, µe = 8 nm) but still less than the
skin depth in the solid for the pump.

Let us discuss now the physical mechanisms of
melting that operate in tellurium. More precisely, we
wish to distinguish between three different possible
melting pathways: nonthermal melting, bulk thermal
melting via homogenous nucleation, and heteroge-
neous thermal melting. Nonthermal melting describes a
transition to the liquid phase which is driven by an elec-
tronically induced instability of the lattice upon excita-
tion of sufficiently dense electron–hole plasma [5] and
which has been extensively studied in covalently
bonded semiconductors. This kind of melting can be
extremely fast (100-fs time scale), because it does not
require heating of the lattice prior to the phase transi-
tion.

The borderline between thermal and nonthermal
processes is determined by the time needed for the
energy transfer from the primarily excited electronic
system to the lattice. This time can be estimated using
the two-temperature model [6, 7]. For femtosecond
laser excitation, the characteristic time of temperature
equilibration is τ = ceci/α(ce + ci) [8], where ce and ci are
the heat capacities of the electrons and lattice, respec-
tively, and a is the electron–phonon coupling constant.
In tellurium, the heat capacity of the electrons is very
small [9], thus the characteristic time for lattice heating
is approximately given by τ ≈ (ce/α). If typical values
for α in metals are applied (unfortunately, α is not
known for the specific case of tellurium) thermalization
times of 1 ps or less are derived. Therefore, for the larg-
est pump fluences studied in this work (F > 45 mJ/cm2),
the observed melting time is comparable to the charac-
teristic time of lattice heating, and it is not possible to
distinguish between non-thermal and thermal melting
processes.

However, for lower fluences, melting needs longer
times (>1 ps) and can be regarded as thermal in nature.
Usually it is assumed that melting occurs hetero-
geneously starting at the surface where no nucleation
barrier exists and proceeds into the bulk with a velocity
ultimately limited by the speed of sound. It follows
from the above analysis of the optical constants that the
observation of stationary isotropic optical properties
requires a liquid layer with a thickness of at least
JETP LETTERS      Vol. 76      No. 7      2002
15 nm. The sound velocity in solid tellurium is about
cs ≈ 2000 m/s [9], which sets a lower limit for the time
of heterogeneous melting of about 7–10 ps. Therefore,
for the fluence range presented in this work, heteroge-
neous melting can be excluded, although it may occur
for fluences very close to the melting threshold.

In order to explain melting times of just a few pico-
seconds, which are observed in this work, we invoke
the model of thermal melting via homogenous nucle-
ation [10]. This model describes the formation of liquid
nuclei in the bulk of an overheated solid, i.e., after the
hot laser-excited electrons have thermalized with the
initially cold lattice via electron–phonon coupling. We
would like to stress that the formation of liquid nuclei
inside the bulk is generally less probable than the for-
mation of a liquid layer at the free surface. However,
under strong superheating, the melting over the skin-
depth by homogeneous nucleation can in fact be faster
than the melting due to the propagation of a solid–liq-
uid interface from the surface into the bulk of the mate-
rial. In particular, it was shown recently [10] that for
high superheating, corresponding to excitation fluences
sufficiently above the melting threshold, the melting
time by thermal homogeneous nucleation is essentially
limited by the time needed for energy thermalization.

In summary, we have applied ultrafast time-resolved
optical anisotropy measurements to study structural
transitions in femtosecond laser-excited mono-crystal-
line tellurium. The presented data indicate that in this
material, melting may occur by thermal, homogeneous
nucleation.

We thank S.V. Petrov from ITP RAS for tellurium
samples. This work was supported by the NATO Grant
SA(PST.CLG no. 975059) and the Forschungspool of
the University of Essen (V.T.).

Fig. 3. Melting time as a function of laser fluence (see text
for details).
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AgBr Nanocrystals in a Crystalline KBr Matrix
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The phenomenon of spatial confinement of the electron–hole recombination in exchange-coupled donor–accep-
tor pairs was observed by optically detected magnetic resonance in AgBr nanocrystals formed as a result of the
self-organized growth in an ionic KBr crystal matrix. The effect is manifested by the maximum distance
between recombining donors and acceptors being restricted to the nanocrystal size and by a change in the g
value of shallow electron donor centers. Based on an analysis of the exchange interactions, the distribution of
distances in the donor–acceptor pairs is determined and the dimensions of nanocrystals are estimated. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 71.35.Ee; 73.22.–f; 61.46.+w
The phenomenon of spatial confinement of charge
carriers is a characteristic feature of low-dimensional
semiconductor systems. Self-organized growth of the
low-dimensional structures such as quantum dots and
nanocrystals is a promising technological process [1].
Silver halides AgCl and AgBr are indirect-bandgap
semiconductors possessing unique properties (in par-
ticular, the latent image formation), which are widely
used in photography [2]. The oriented nanocrystals of
silver halides formed as a result of the self-organized
growth in the matrix of ionic alkali halide crystals [3–
5] are convenient model objects for investigation of the
spatial confinement effects by microwave spectroscopy,
since the electron and hole centers, as well as localized
excitons in the bulk crystals of AgCl and AgBr, have
been investigated in much detail [2, 6, 7]. It was of spe-
cial interest to study the recombination of electron–
hole pairs and excitons in such model structures.

Here, we report on the recombination luminescence
from self-organized micro- and nanocrystals of AgBr in
a KBr crystal matrix studied for the first time by the
method of optically detected magnetic resonance
(ODMR). It was found that the ODMR spectra of the
AgBr nanocrystals are significantly different from the
spectra of bulk AgBr crystals, the distinctions being
related to the spatial confinement of the electron–hole
recombination in the case of nanocrystals.

The crystals of AgBr and KBr:AgBr (2 mol % AgBr
in KBr melt) were grown using the Stockbarger tech-
nique. The latter samples were synthesized using AgBr
single crystals as the dopant material. The micro and
nanocrystals of AgBr formed in the KBr matrix as a
result of the self-organized growth. The photolumines-
cence (PL) was excited by UV light from a deuterium
lamp and measured with the aid of a monochromator.
0021-3640/02/7607- $22.00 © 20465
The microwave (35 GHz) power supplied to a sample
was modulated at a frequency of 80–10000 Hz, after
which the microwave-induced changes in the PL inten-
sity were monitored by a lock-in amplifier.

Figure 1 presents the PL (a) and ODMR (b) spectra
measured using a bulk AgBr crystal sample (curves 1)
and two KBr:AgBr samples (curves 2 and 3) cleaved

Fig. 1. The (a) PL and (b) ODMR spectra of (1) a bulk AgBr
crystal and (2, 3) two KBr:AgBr samples cleaved from dif-
ferent parts of the KBr:AgBr boule grown from a KBr melt
containing 2 mol % AgBr. T = 1.7 K. The ODMR spectra
were measured at ν = 35.2 GHz, P = 400 mW, fmod = 85 (3)
and 1500 Hz (3'), and B || [001]; λ = 587 nm. The arrows at
curve 3 in (a) indicate the emission wavelengths used to
measure the ODMR spectra presented in Fig. 2a; the arrows
in (b) indicate the positions of lines corresponding to the
localized holes (h) and shallow electron centers (SEC and
SEC*) in the bulk AgBr and in AgBr nanocrystals, respec-
tively.
002 MAIK “Nauka/Interperiodica”
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from different parts of the KBr:AgBr boule (the curve
number corresponds to a sample number). The ODMR
spectra of sample 3 presented in Fig. 1 were measured
using a microwave power modulated at 85 and 1500 Hz
(curves 3 and 3', respectively).

As can be seen, both the PL and ODMR spectra of
KBr:AgBr sample 2 (curves 2) are close to the corre-
sponding spectra of the bulk AgBr crystal (curves 1).
The optical emission spectra contain a band with the
maximum at 580 nm, assigned to the donor–acceptor
(D–A) recombination, and a more intense peak at
500 nm related to the residual (a few ppm) iodine impu-
rity in AgBr. The ODMR spectrum detected using the
580 nm emission band displays the signals (indicated
by arrows in Fig. 1b) due to localized holes (h) with g =
2.08 and shallow electron centers (SEC) with g = 1.49,
corresponding to the recombination of distant D–A
pairs. The ODMR lines in the central part of the spec-
trum are assigned to triplet excitons [2]. The triplet
nature of these lines is confirmed by the presence of a
peak due to the forbidden transition with ∆m = ±2. The
similarity of the PL and ODMR spectra observed in
KBr:AgBr sample 2 and the bulk AgBr crystal indicates
that rather large microcrystals of a silver halide (AgBr)
retaining properties of the bulk material can form as a
result of the self-organized growth process in
KBr:AgBr (as well as in the KCl:AgCl system studied
previously [4, 5]).

Fig. 2. (a) The ODMR spectra of KBr:AgBr sample 3 mea-
sured at λ = 587, 560, and 532 nm; (b) the resonance fields
B corresponding to the EPR transitions at 35 GHz for a pair
of recombining centers with spins 1/2, g values of 2.08 and
1.57, and various exchange interaction constants J; the
right-hand curve shows the number N of the recombining
donor–acceptor pairs as the function of J, calculated using
the ODMR spectrum measured at 587 nm.
The PL and ODMR spectra obtained from
KBr:AgBr sample 3 significantly differ from those
observed in samples 1 and 2 considered above. The
luminescence spectrum of sample 3 exhibits an intense
exciton band in the region of 440 nm, which is analo-
gous to that observed in the PL spectrum of AgBr
nanocrystals in gelatin and glass matrices [2, 8, 9]. This
fact indicates that AgBr nanocrystals with dimensions
on the order of 6 nm are present in the KBr crystal
matrix. In addition, the ODMR spectra 3 and 3'
(Fig. 1b) show broad asymmetric bands at low and high
fields and two more intense peaks in the central part.
The shape of the ODMR spectrum significantly
changes in response to increase in the chopping fre-
quency: the separation of maxima of the broad signals
in low and high fields increases, while the distance
between central ODMR peaks decreases.

A similar behavior is observed on decreasing the
luminescence wavelength at which the ODMR signal is
detected. Figure 2a shows the ODMR spectra measured
in sample 3 using the emission at 532, 560, and 587 nm
(indicated by arrows at curve 3 in Fig. 1a). These spec-
tra were measured using a chopping frequency of 85 Hz
and increased microwave power (400 mW). Similarly
to the case of increasing chopping frequency, a reduc-
tion in the detection wavelength leads to a decrease in
separation of the ODMR peaks in the central part of the
spectrum and to an increase in the distance between
broad signals in the low and high fields. The minima of
the ODMR signals are observed in magnetic fields cor-
responding to the g value of localized holes in AgBr and
g = 1.57, which is different from the g value of shallow
electron centers in the bulk AgBr.

The energy levels of a D–A pair in a magnetic field
B can be described using a spin Hamiltonian

(1)

where Se = Sh = 1/2. Here, the first two terms describe
the interaction of electron (on the donor) and hole (on
the acceptor) with the magnetic field, while the third
term describes the isotropic exchange interaction. In
AgBr, the g values of donors and acceptors are isotro-
pic. The positions (resonance fields) of the EPR transi-
tions at a microwave frequency of 35 GHz, calculated
by Eq. (1) for gh = 2.07, ge = 1.57 and various exchange
interaction constants J, are presented in Fig. 2b in the
same scale of fields as that used in Fig. 2a for the
ODMR spectra. The calculations were performed using
the “R-Spectrum” program written by Grachev [10].

For distant D–A pairs, in which the spacing ρ
between donor and acceptor is large compared to the
sum of their Bohr radii, the exchange interaction is
weak. The ODMR spectrum of such a system must dis-
play two lines corresponding to the EPR of isolated
donors and acceptors, as it is actually observed in the
spectra of bulk AgBr and AgBr microcrystals in KBr. A
decrease in the distance ρ gives rise to the exchange
interaction J which leads to splitting of the energy lev-

H geµBSeB ghµBShB JSeSh,+ +=
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els of the D–A pair in a zero field and to splitting of the
ODMR signals. In the ODMR spectrum, four lines cor-
respond to each J value, whose positions vary with J as
depicted in Fig. 2b. When the L value exceeds that for
the Zeeman interaction, the D–A pair states split in a
zero field can be described by the total spin S = 0 (sin-
glet) and S = 1 (triplet). The corresponding ODMR
spectrum must contain two lines, whose splitting, due
to nonlinearity of the levels S = 0 and S = 1, mS = 0, must
tend to zero with increasing J. In contrast to the case of
AgCl, the ODMR spectra of the triplet excitons in AgBr
(J = –1.9 cm–1) are isotropic and exhibit no splitting of
the fine structure. Both the bulk crystals and the micro-
crystals of AgBr contain coexisting systems of the D–A
pairs and the excitons with a fixed exchange splitting.

The exchange interaction depends on overlap of the
wave functions of electrons and holes. When the Bohr
radius of the donor is much greater than that of the
acceptor (aD @ aA), the exchange interaction constant
exponentially depends on the D–A distance [11]: J =
J0exp(–2ρ/aD), where J0 is the limiting exchange inter-
action value. A similar exponential relation describes
the rate of radiative recombination in the pair [12]: the
emission due to the recombination of closer pairs is
characterized by a higher recombination rate. This
approach is applicable to AgBr crystals, since shallow
electron centers are characterized by a hydrogenlike 1s
wave function with a large Bohr radius aD = 1.7 nm [6],
while the wave function of a hole center is considered
as localized.

In the presence of a Coulomb interaction, the emis-
sion wavelength decreases with increasing distance
between the recombining centers [13]. It should be
noted that a strong electron–phonon interaction in
AgBr crystals leads to the appearance of broad bands in
their PL spectra. The emission at a certain wavelength
contains contributions from the D–A pairs with various
distances between donors and acceptors, which is man-
ifested as a distribution of exchange interactions in the
ODMR spectra measured at a certain emission wave-
length.

An analysis of the ODMR spectra measured at vari-
ous emission wavelengths and chopping frequencies
showed that the shape of the observed ODMR signals
corresponds to a superposition of the signals from
exchange-coupled D–A pairs (SEC and localized
holes) with a certain distribution of exchange interac-
tions related to the distribution of distances between
donors and acceptors. Indeed, a decrease in the detec-
tion wavelength or an increase in the microwave power
and/or the chopping frequency leads to a shift of the
ODMR signal peak in accordance with the increase in
magnitude of the exchange splitting (Fig. 2a).

In the bulk AgBr crystal, D–A pairs are predomi-
nantly encountered for which J ≈ 0, while the fraction
of pairs with nonzero exchange is rather insignificant
and manifested only by the broadening and characteris-
tic shape of the ODMR line of shallow electron centers
JETP LETTERS      Vol. 76      No. 7      2002
and localized holes. The opposite situation is observed
for AgBr nanocrystals, where no distant pairs are
present because of small crystal size and only pairs fea-
turing considerable exchange interactions are mani-
fested in the ODMR spectra. Here, the region of g val-
ues corresponding to isolated donors and acceptors
(ODMR of distant pairs) must display minimum sig-
nals. A shift of the ODMR minimum in the spectrum of
sample 3 toward lower fields as compared to the line of
shallow electron centers in the bulk AgBr (cf. SEC and
SEC* in Fig. 1b) is probably indicative of an increase
in the g value of these centers in AgBr nanocrystals as
a result of the spatial confinement.

It was established that the holes in AgCl crystals
exhibit self-localization due to the Jahn–Teller effect
[2]. In AgCl nanocrystals, the Jahn–Teller effect is
partly suppressed which leads to a change in parame-
ters of the spin Hamiltonian [4, 5]. It was previously
accepted that no self-localization of holes takes place in
the bulk AgBr [2, 14]. However, based on the results of
this study, we believe that the holes in AgBr can be self-
localized as well. However, in contrast to the situation
in AgCl, the dynamic Jahn–Teller effect taking place in
AgBr leads to isotropization of the g value, as observed
in experiment. The g value of holes in AgBr is close to
an average g value of the self-localized holes in AgCl.
According to this approach, the exciton in AgBr pos-
sesses qualitatively the same structure as the self-local-
ized exciton in AgCl in which the wave function of an
electron trapped by a self-localized hole is close to the
wave function of a shallow electron center. A smaller
magnitude of the singlet–triplet splitting observed in
AgBr can be explained by a more strongly delocalized
wave function of the electron part of the exciton.

In the region of strong fields (B > 1.6 T), the ODMR
spectrum exhibits only signals from the shallow elec-
tron centers. The ODMR signal amplitude is propor-
tional to the number N of recombining pair with a given
exchange J corresponding to the resonance magnetic
field B. Using the results of calculations presented in
Fig. 2b and the ODMR line shape, it is possible to
reconstruct a distribution of the number N of recombin-
ing pairs with respect to the exchange interaction con-
stant J. The result of such reconstruction is presented
by curve N(J) depicted in the right-hand part of Fig. 2b.
With an allowance for the exponential dependence of
the exchange interaction magnitude on the D–A dis-
tance ρ, we can also determine the distribution of D–A
pairs with respect to their spacing.

Figure 3a shows the results of such calculations per-
formed with aD = 2 nm and |J0 | = 5 cm–1 for the ODMR
spectra measured at the three emission wavelengths
indicated above. The shape of the distribution profiles
is close to Gaussian (dashed lines in Fig. 3a). As can be
seen from these distributions, the emission from
KBr:AgBr contained no contribution due to the distant
pairs, just as is expected for nanocrystals with dimen-
sions on the order of several nanometers; it is also seen
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that the average ρ value decreases with the PL wave-
length used to detect the ODMR signals.

It was natural to suggest that the most probable posi-
tion of a shallow donor is at the center of an AgBr
nanocrystal, while a hole most probably occurs at the
surface of this crystal. Assuming that L ≈ 2ρ, we can
estimate the average size of nanocrystals from the
resulting N(J) distributions. As can be seen from
Fig. 3a, the luminescence at a shorter wavelength is due
to nanocrystals with a smaller average size. The total
distribution of nanocrystals with respect to their dimen-
sions in KBr:AgBr samples can be determined from an
ODMR spectrum measured using the total optical
emission from the sample. Figure 3b shows a distribu-
tion of the nanocrystal size in KBr:AgBr sample 3,
which was obtained upon analysis of the ODMR spec-
trum 3.

Fig. 3. (a) Distribution of the number of recombining D–A
pairs with respect to their spacing determined from the
ODMR spectra measured for KBr:AgBr sample 3 using
three emission wavelengths (587, 560, and 532 nm).
Dashed lines show approximation by the Gaussian profiles;
(b) the distribution of AgBr nanocrystals with respect to size
in KBr:AgBr sample 3.
In contrast to the case of bulk AgBr and AgBr
microcrystals, the ODMR spectrum of nanocrystals
reveals no contribution due to localized excitons with a
fixed exchange interaction magnitude.

Thus, we have established that crystalline KBr
boules grown from a KBr:AgBr melt with a large (1–
2 mol %) concentration of AgBr impurity contain self-
organized AgBr inclusions representing both microc-
rystals, retaining properties of the bulk material, and
nanocrystals in which significant role belongs to the
spatial confinement effects. These effects are mani-
fested by the maximum distance between recombining
donor–acceptor pairs being restricted to the nanocrystal
size and by a change in the g value of shallow electron
donor centers. Based on an analysis of the exchange
interactions in nanocrystals, a distribution of distances
in the donor–acceptor pairs is determined and the
dimensions of nanocrystals are estimated.

This study was supported in part by the Russian
Foundation for Basic Research (project no. 00-02-
16950) and by the Federal Program “Physics of Solid
State Nanostructures.”
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We report on the first observation of light-induced nonohmic current in a semiconductor nanostructure. The
effect is revealed in an unbiased asymmetric InAs quantum well under excitation by far-infrared laser radiation
in the presence of a tilted magnetic field. It is interpreted in terms of a nonzero toroidal moment of a two-dimen-
sional electron gas. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 73.50.Pz
Even in the framework of classical electrodynamics,
it can be shown that for the complete characterization
of a system possessing an arbitrary distribution of cur-
rents and charges, three independent families of elec-
tromagnetic multipoles should be taken into account:
electric, magnetic and toroidal moments [1]. The first
two families have been well known for a very long time
while the third one was introduced not long ago, in
1957, by Ya.B. Zel’dovich [2] to explain the effect of
parity violation under weak interactions in nuclear sys-
tems (for the concept of toroidal moment, see, e.g., [3,
4] and references therein). Since 1978, a number of the-
oretical works have been devoted to various aspects of
so-called toroidal state of condensed matters, which is
characterized by nonzero toroidal moment density (see,
e.g., [5]). The most nontrivial effects predicted for tor-
oidal-moment-possessing systems are related to their
magnetic properties. One of such effects is so-called
superdiamagnetism, which implies a system in nonsu-
perconducting phase possessive of a giant diamagnetic
susceptibility close to the theoretical limit [6].

The idea that an in-plane magnetic field gives rise to
toroidal dipole moment in asymmetric nanostructures
was first proposed in [7]. It was shown that nonzero tor-
oidal moment is always accompanied by an asymmetry
of energy spectrum of the system (E(k) ≠ E(–k)), and
k-dependent excitation of such a system may give rise
to a drift electric current in it, as well as to electric
polarization. In the limit of low magnetic fields, these
effects can be described by the following phenomeno-
logical relations:

(1)

¶This article was submitted by the authors in English.

J βT ;=
0021-3640/02/7607- $22.00 © 20469
(2)

where T is the time-odd polar vector (toroidal dipole
moment), β is a dissipation coefficient, and I is the polar
vector perpendicular to the well plane. Thus, k-depen-
dent excitation of an asymmetric nanostructure in the
presence of a magnetic field tilted in the XZ plane (Z is
the growth axis) may result in a drift current along the
Z axis proportional to (Bx), as well as in an electric
polarization in the XZ plane which is proportional to
Bx · Bz. The former effect was observed in asymmetric
quantum structures under either photoexcitation [8–10]
or excitation by an external electric field [11]. However,
no evidence of the latter effect has been observed up to
now.

In this letter, we report on the first observation of a
light-induced nonohmic current related to the nonzero
toroidal moment of a two-dimensional (2D) electron
gas. Experiments were performed on (001)-MBE
grown single-quantum-well InAs/GaSb structures sup-
plied by thin AlSb barriers to avoid hybridization-
related effects [12]. A typical structure consists of a
15-nm InAs channel sandwiched between two 0.3-nm-
wide AlSb barriers and capped with a 20-nm GaSb
layer. Low-temperature electron-sheet density and
mobility were 1.7 × 1012 cm–2 and 1.5 × 105 cm2/V s,
respectively. Each device was supplied by a pair of
striplike ohmic contacts. A high-power pulsed NH3
laser optically pumped by a CO2 laser was used as a
source of far-infrared radiation. The laser wavelength
was 90.6 µm, pulse duration was about 30 ns, and peak
laser radiation intensity was on the order of 100 W/cm2.
Magnetic field was provided by a superconducting
solenoid. The experiments were performed at 4.2 K at
normal incidence of light on the sample surface. Light-
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induced in-plane currents in unbiased devices were
detected through the voltage drop on a 50 Ω load resis-
tor in a short-circuit regime by a high-speed storage
oscilloscope. In-plane current was measured in two
directions: either across or along the in-plane compo-
nent of magnetic field. The former experimental geom-
etry is shown in the inset in Fig. 1. The latter geometry
can be obtained by the clockwise rotation of the sample
by 90° about the Z axis.

Pronounced current pulses were observed in both
the X and Y directions. These pulses copied the shape of
initial laser pulses, indicating that the process responsi-
ble for their appearance had a steady-state character

Fig. 1. Light-induced currents as a function of magnetic
field B at ϕ = 45°. Solid circles: Jx; open circles: Jy. Solid
curves are the interpolation of the experimental data. Dotted
curve is the device ohmic conductivity as a function of B.
The inset shows the geometry of the Jy measurements. The
geometry for Jx can be obtained by the clockwise rotation
of the sample through 90° about the Z axis.

Fig. 2. Light-induced currents as a function of angle ϕ at
B = 2 T. Solid circles: Jx; open circles: Jy. Solid curves are
the interpolation of the experimental data. Dotted curve is
the device ohmic conductivity as a function of ϕ.
with a response time shorter than 10–7 s. The currents
were found to be independent of both light direction
and polarization, as well as of the orientation of crystal-
lographic axis in the well plane. This means that the
currents were caused not by the asymmetry carried by
light but by the inner system asymmetry provided by
the electric field built-in across the well [13]. The cur-
rent along the Y axis (Jy) was odd with respect to the
external magnetic field B, while the current along the X
axis (Jx) was even with respect to B. Switching of the
angle between the magnetic field and the well plane
from ϕ to –ϕ reversed the sign of Jx, while the sign of
Jy was retained. The dependences of both Jx and Jy on B
at ϕ = 45° and the behavior of the device’s ohmic con-
ductivity σ are shown in Fig. 1. It is seen that, at low
magnetic fields, Jy is proportional to B, but then it goes
to zero with increasing B because of a drastic drop in σ.
Surprisingly, Jx is clearly insensitive to σ and increases
roughly as B2. To demonstrate this unambiguously, the
angle dependences of both Jx and Jy at B = 2T are plot-
ted in Fig. 2 together with the angle dependence of σ.
Once again, Jy decreases with increasing B, whereas Jx

is clearly insensitive to σ, and its behavior looks like an
ideal sinusoid with double angle ϕ as an argument.

It is easy to see that our experimental results are in
good agreement with phenomenological relations (1)
and (2). To clarify the microscopic picture of the effect,
let us consider the details of the photoexcitation pro-
cess. It is well known that a 15-nm-thick InAs quantum
well contains a highly degenerate two-dimensional
electron gas. A minimum electron-sheet density for the
occupation of the second size-quantized level is known
to be about 2.2 × 10–12 cm–2 [14]. Since in our structures
this value is about 1.6 × 10–12 cm–2, only the first size-
quantized level is occupied at low temperatures, so that
the effects related to the presence of the second level
can be ignored. Further, since both Jy and Jx are inde-
pendent of light (left- or right-hand circular) polariza-
tion, the spin-related effects (see, e.g., [15, 16]) can also
be ignored. Taking into account that (i) the energy of a
light quantum in our experiments is as low as 13.7 meV
and (ii) Bz is too low to access cyclotron resonance con-
ditions, one can expect that the phonon-assisted optical
transitions (Drude-like process) are the predominant
mechanism of light absorption. This means that the
photoexcitation process is a k-dependent process. Thus,
the current Jy can be identified as a conventional drift
photogalvanic current, which is related to the imbal-
ance between the k-dependent optical transitions within
the asymmetric energy spectrum.

As for the current Jx, its mechanism is not evident.
First, the nonohmic nature of Jx indicates that the elec-
trons should be localized along the X axis. Moreover,
the polarization effect predicted in [7] also implies the
Landau-quantization-related localization of electrons
along the X axis and their quasi-free motion along the Y
axis. Thus, as a result of the Lorentz force effect, each
JETP LETTERS      Vol. 76      No. 7      2002
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of them is supposed to possess an electric dipole
moment, so that the total electric dipole moment of the
unexcited electron gas should be zero. On the other
hand, the Landau quantization at relatively low B is also
confirmed experimentally by the observation of well-
resolved Shubnikov–de Haas oscillations in InAs quan-
tum wells in a quantizing magnetic field as low as 1 T
or even less [17, 18]. Therefore, despite the fact that the
in-plane electron motion is not fully suppressed by the
quantizing component of the magnetic field (otherwise
Jy should be zero), Landau localization effects may be
of importance under experimental conditions. In this
sense, the current Jx can be interpreted as being due to
the nonzero net electric dipole moment of 2D electron
gas resulting from the k-dependent photoexcitation.

However, it should be noted that, in the framework
of the concept of toroidal moment, one can propose an
alternative microscopic mechanism for the current Jx.
Indeed, as was also predicted in [7], the Landau quanti-
zation in a toroidal-moment-possessing nanostructure
can be accompanied by the spatial separation of elec-
trons along the X axis depending on their wave vector
along the Y axis. In this case, each phonon-assisted
optical transition in k space should be accompanied by
the appropriate hoppinglike transition in real space
along the X axis as an integral part of the same absorp-
tion act. Therefore, taking into account the asymmetry
of the energy spectrum, k-dependent photoexcitation
can result in a nonzero net hopping in real space along
the X axis. Such a process may also be the reason for the
nonohmic current. Thus, the identification of a micro-
scopic mechanism of the light-induced nonohmic cur-
rent under experimental conditions clearly requires fur-
ther experiments, which will be done in the near future.
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S.D. Ganichev and Ya.V. Terent’ev for the contribution
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part by the Russian Foundation for Basic Research
(project nos. 00-02-17045, 01-02-17933), by the Pro-
gram “Nanostructures,” INTAS (grant no. 99-01146),
and SNSF (grant no. 7SUPJ062181).
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Self-assembled arrays of Ge–Si clusters with sizes of ~ 10 nm and a density of ~ 1010 cm–2 have been grown
by molecular beam epitaxy. Stable steady-state field electron emission from such clusters has been observed
and studied. The emission is characterized by resonance current peaks, which are explained by the quantization
of the electron energy in nanoclusters. The estimation of the ground level energy from their emission measure-
ments coincides with estimates obtained by other methods. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.22.–f; 73.21.La; 79.70.+q; 81.15.Hi
Interest in Ge–Si nanocluster heterostructures is due
to the real possibility of creating principally new
devices on their basis using quantum-size effects and
working even at T ~ 300 K. Infrared photodetectors
working in the region 4–6 µm with an efficiency that
exceeds the efficiency of detectors based on III–V het-
erostructures by 3–4 orders of magnitude have already
been developed [1]. This has been achieved by obtain-
ing uniform arrays of Ge quantum dots with a suffi-
ciently narrow size distribution and sizes of <10 nm. At
such sizes, in spite of the effective mass of charge car-
riers, which is larger than that for III–V semiconduc-
tors, lateral quantization already removes the forbid-
denness of optical transitions polarized in the detector
plane. This sharply increases the efficiency of the zero-
dimensional system as compared to an object having
two-dimensional quantum valleys.

The goal of this work was obtaining arrays of Ge
nanoclusters with prescribed parameters and studying
their electron-emission properties and the possibility of
manifestation of quantum-size effects in field electron
emission from quantum dots (artificial atoms).

The samples were grown by molecular beam epit-
axy of Ge on the Si(100) surface. Because of the high
(4.2%) relative mismatch between the parameters of Ge
and Si lattices, three-dimensional Ge clusters are
formed directly on the clean Si substrate by the
Volmer–Weber mechanism. However, these clusters are
readily peeled off the substrate. In order to avoid the
exfoliation of clusters, a number of buffer layers of a
SixGe1 – x solid solution were deposited, over which a
pure Ge film was sputtered with a thickness of several
monolayers. Because of a smaller mismatch between
the lattice parameters of the Ge film and the SixGe1 – x
substrate, the film grows by the Stransky–Krastanov
mechanism. The films were sputtered at temperatures
0021-3640/02/7607- $22.00 © 20472
of 350–750°C, which provide the mobility of atoms
sufficient for bringing the system to a thermodynamic
equilibrium state. The growth process and the chemical
composition were monitored by high-energy electron
diffraction and Auger spectroscopy, respectively.

In spite of the significant relaxation of elastic strains
at the buffer Si–Ge substrate, starting from a thickness
of three–five monolayers the layer-by-layer growth of
the Ge film changes for the formation of three-dimen-
sional clusters, which provide the minimization of the
free energy of the system by means of a decrease in the
energy of elastic strains at cluster tips.

A typical image of the array of nanoclusters
obtained with the use of an atomic force microscope
(AFM) is shown in Fig. 1a. The clusters have a quasi-
pyramidal shape with a height of 2–10 nm, a base size
of 10–40 nm, and a tip curvature radius of ~ 1 nm. The
density of clusters exceeds 1010 cm–2. Both the size of
the clusters and the distance between them have a rela-
tively small spread around the mean values; that is, cer-
tain self-assembling of the system occurs. In this case,
the driving force of self-assembling is the tendency of
the system to minimize the free energy through mini-
mizing the energy of the elastic deformation associated
with the mismatch between the film and substrate lat-
tices.

It is seen in Fig. 1b that three types of clusters,
shaped as a hut, dome, and superdome, are formed in
the general case. The preferred growth of any of these
types can be provided by changing the process condi-
tions. The tips, that is, the parts of the clusters that pri-
marily consist of Ge, can be considered as quantum
dots (artificial atoms). With a tip curvature radius of
~1 nm, the electric fields can reach values of >107 V/cm
necessary for obtaining field electron emission even at
002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) AFM image of an array of Ge–Si nanoclusters; (b) fragment of the array with hut, dome, and superdome clusters.
relatively small (~105 V/cm) macroscopic electric
fields. The same estimate for the electric field necessary
for the occurrence of tunnel emission is also obtained
when individual nanoclusters are considered as artifi-
cial atoms similar to a hydrogen atom (see, for exam-
ple, [2]).

Field electron emission was studied in plane diode
cells with an anode covered with a phosphor of the ZnS
type to visualize the emission. In all cases, steady-state
field electron emission was obtained with a current den-
sity of ~1 mA/cm2 at a mean electric field in the gap
between the electrodes of ~105 V/cm, which was suffi-
ciently uniform over a surface area of 1 cm2. A current–
voltage characteristic (CVC) of the emission at T =
300 K is given in Fig. 2. A distinctive feature of the
emission from Ge quantum dots is the occurrence of
current peaks in the CVC. The number of peaks
increases with increasing mean height of the grown
clusters or with the growth of their height (and the
change of their composition) due to coating with the
JETP LETTERS      Vol. 76      No. 7      2002
anode material during the passage of high currents. As
a result, the CVCs are smoothed. The distance between
the current peaks increases with increasing peak num-
ber n, which can be seen in Fig. 2. The peaks are more
clearly revealed in the CVC constructed in Fowler–
Nordheim coordinates log(i/U2) = f(U–1) (Fig. 3). It
may be suggested that the occurrence of current peaks
and their position in CVC are associated with the quan-
tization of the energy of electrons in the clusters, which
can be considered in our case as quantum dots (artificial
atoms). It is notable that the current peaks are clearly
revealed in spite of the notable spread of clusters in
height. Evidently, this is associated with the fact that
the major contribution to emission is made by the cur-
rents from the clusters having the smallest tip radius
and the largest height.

Because of the complexity of the three-dimensional
problem of field electron emission from a quantum-size
cluster of a complex shape, we will restrict ourselves to
a consideration of the one-dimensional model of a
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potential box. Such a model was used by Duke and
Alferieff for the description of field emission through
individual adatoms [3]. In our case, such a consider-
ation is acceptable, because a strong electric field is
lumped mainly in the region of a cluster tip, and the
height of the pyramidal cluster can be considered as the
width of the potential well. The difference in the band-

Fig. 2. CVC of field emission from an array of Ge–Si nan-
oclusters with an area of 0.5 cm2.

Fig. 3. Characteristic of filed emission from nanoclusters in
Fowler–Nordheim coordinates.

Fig. 4. Energy diagram of field emission from a Ge–Si nan-
ocluster.

lo
g(

I/
U

2 )

gap widths of Si and Ge can be taken as the depth of the
potential well for electrons of the Si–Ge heterojunction
if the deformation effect on the energy spectrum of
charge carriers is neglected, because Si and Ge grown
by an epitaxial process exhibit, as a rule, p-type con-
duction due to the occurrence of vacancy defects. In
this case, as distinct from the case of n-type Si consid-
ered in [4], a potential well for electrons is formed in
the region of the Si–Ge heterojunction.

The results obtained can be interpreted based on the
energy diagram presented in Fig. 4. Because of the pen-
etration of the electric field into the cluster, the discrete
electron energy levels in the potential well are dis-
placed, and a current peak appears in the CVC when the
level of emergence of electrons from Si becomes coin-
cident with one of the energy levels in the potential
well; that is, resonance tunneling occurs.

Under the assumptions adopted, the energy of the
ground quantization level in the potential well of the
Si–Ge heterosystem becomes equal to ∆E ~ 100 mV,
which agrees well with the results of electron tunneling
spectroscopy of Si–Ge clusters [5]. The electric field
inside the cluster, which displaces the levels by the
value of the energy gap between them, can be estimated
at F = ∆E/h, where h ~ 5 nm is the height of the cluster.
This value turns out to be equal to ~3 × 105 V/cm and
virtually coincides with the macroscopic field esti-
mated from the geometry of the test diode. The occur-
rence of the electric field F > 107 V/cm necessary for
tunnel electron emission into a vacuum can be
explained based on the geometry of clusters with a ver-
tex corner radius of <1 nm.

Thus, field electron emission from Ge–Si nanoclus-
ter heterostructures found in this work can serve as an
efficient method for studying quantum-size effects in
such structures and as the physical basis for creating
new nanoelectronic devices.

The authors are grateful to Yu.M. Litvin and
P.M. Litvin for AFM photographs of nanoclusters.

This work was supported by the National Academy
of Sciences of Ukraine, target project no. VTs/85.
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The probabilities of clusters spanning a hypercube of dimension two to seven along one axis of a percolation
system under criticality were investigated numerically. We used a modified Hoshen–Kopelman algorithm com-
bined with Grassberger’s “go with the winner” strategy for the site percolation. We carried out a finite-size anal-
ysis of the data and found that the probabilities confirm Aizenman’s proposal of the multiplicity exponent for
dimensions three to five. A crossover to the mean-field behavior around the upper critical dimension is also dis-
cussed. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.60.Ak; 64.60.Fr
Percolation occurs in many natural processes, from
electrical conduction in disordered matter to oil extrac-
tion from a field. In the latter, the coefficient of oil
extraction from oil sands (the ratio of the actually
extracted to the estimated oil) can be as much as 0.7 for
light oil and as low as 0.05 for viscous heavy oil. An
increase in this coefficient by any new point requires
appreciable investment. Additional knowledge about
the percolation model can reduce the amount of addi-
tional investment.

A remarkable breakthrough in the theory of critical
percolation was made in the last decade thanks to a
combination of mathematical proofs, exact solutions,
and large-scale numerical simulations. Recently,
Aizenman has proposed a new exponent that describes
the probability P(k, r) of a critical percolation d-dimen-
sional system with the aspect ratio r being spanned by
at least k clusters [1],

(1)

where αd is a universal coefficient depending only on
the universality class, and ζ = d/(d – 1).

In two dimensions, Aizenman’s proposal (1) was
proved mathematically [1], confirmed numerically [2],
and derived exactly [3] using the conformal field theory
and Coulomb gas arguments. This exponent seems to
be related to the exponents of two-dimensional copoly-
mers [4]. In three dimensions, proposal (1) was
checked numerically in [5] and, more recently and
more precisely, in [6].

The upper critical dimension of percolation is dc =
6, which follows from the comparison of the exponents
derived on the Cayley tree with those satisfying scaling
laws (see, e.g., [7] and [8]). The fractal dimension Df of
percolating critical clusters is equal to 4 above dc, and

¶This article was submitted by the authors in English.

P k r,( ) αdkζr,–∝ln
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the number of percolating clusters becomes infinite at
d > dc. This fact would imply that ζ = 0 at d = 6 if we
supposed (rather naively) that Aizenman’s formula
applies at the upper critical dimension. Supposing that
this is true and taking into account that the values of ζ
for d = 2 and d = 3 are, respectively, 2 and 1.5, we can
place all three points on the straight line ζ = (6 – d)/2,
as depicted in Fig. 1. We can then estimate the respec-
tive values of ζ for d = 4 and d = 5 at ζ = 1 and ζ = 0.5;
these values are far from those predicted by Aizenman’s
formula, which gives 4/3 and 5/4, respectively. In con-
trast, based on simulations, Sen [9] claims that ζ = 2 for
all dimensions from two to five.

The main purpose of our simulations is to estimate
the exponents for the dimensions from two to six with
an accuracy sufficient for distinguishing between the
values predicted for d = 4 and d = 5 by Aizenman’s for-
mula and a naive application of cluster fractal-dimen-

Fig. 1. Variation of Aizenman exponent ζ with the space
dimension d, as predicted by Aizenman (circles and dotted
line), claimed by Sen (dashed line), and discussed in the text
(solid line).
002 MAIK “Nauka/Interperiodica”
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sion arguments and by the straight-line fit, as discussed
above.

In the rest of the paper, we briefly summarize the
highlights of our study, then present some details of our
research, and finally discuss the results for the Aizen-
man exponent and the physics of a crossover from the
Aizenman picture to the mean-field picture.

Our main results can be summarized as follows.
1. Modified combination of the Hoshen–Kopelraan

algorithm and Grassberger’s strategy. We use the
Hoshen–Kopelman (HK) algorithm [10] to generate
clusters and Grassberger’s “go with the winner” strat-
egy [6] to track spanning clusters. We add a new tag
array in the HK algorithm, which allows the reduction
of the tag memory order from Ld to Ld – 1, where L is the
linear size of the hypercubic lattice. As a result, the
amount of memory is about two orders less for large
values of L, and the program is about four times
faster—the complexity of the algorithm is compensated
by the lower memory capacity needed for swapping to
and from the auxiliary array.

2. Efficient realization of combined shift-register
random-number generators. We use an exclusive-or
(⊕ ) combination zn of two shift registers:

(2)

(see [11] and the references therein). We reduce the
computational time for generating random numbers by
a factor of 3.5 through an efficient technical modifica-
tion: we use the SSE command set that is available on
processors of the Intel and AMD series starting from
the Intel Pentium III and AMD Athlon XP.

3. Extraction of the exponents for dimensions three
to five. We first use finite-size analysis to estimate the
logarithm of the probability P(k, r) in the limit of infi-
nite lattice size L. We then fit data as a function of the
number of spanning clusters k to obtain the Aizenman
exponent ζ.

4. Confirmation of Aizenman’s proposal. The esti-
mates of the exponent for dimensions d = 2, 3, 4, and 5
coincide well with those proposed by Aizenman.

5. Qualitative interpretation of Aizenman’s conjec-
ture. Cardy interpreted Aizenman’s result qualitatively
in two dimensions on the basis of the assumption that
the main mechanism for reducing the number of perco-
lation clusters is the termination some of them. The
same result can be derived for the cluster confluence (or
merging) mechanism. This means that, in low dimen-
sions, the percolation clusters consist of a number of
closed paths (loops), while, in higher dimensions, clus-
ters are more similar to trees. Indeed, it is well known
that the probability of obtaining a loop becomes lower
for higher dimensions and goes to zero in the limit of
infinite dimensions (Cayley tree) [7, 8].

6. Crossover to mean-field behavior. We found evi-
dence that the probability of clusters spanning a hyper-

xn xn 9689– xn 5502– ,⊕=

yn yn 4423– yn 2325– , zn⊕ xn yn⊕= =
cubic lattice tends to unity in the limit of high dimen-
sions, as follows from the well-accepted picture. We
did not find any dramatic changes in the probabilities
around the upper critical dimension dc = 6 but rather
found evidence for a crossover. Therefore, Aizenman’s
formula (1) can also apply to dimensions higher (but
not too much higher) than the upper critical dimension
and describe approximately the probabilities of span-
ning clusters in large, though finite-size systems.

We follow with the details of the critical percolation,
simulations, and data analysis.

Spanning probability. We can define the probabil-
ity P(k, r; L) that k clusters traverse a d-dimensional
hyperrectangle [0, L]d – 1 × [0, Lr] in the Lr direction
[1]. Provided that the scaling limit exists (this was
proved recently by Smirnov for the percolation in plane
[12]), the probability P(k, r) can be defined as a limit of
P(k, r; L) as L  ∞. Aizenman proposed that P(k, r)
should behave according to (1) in the dimensions from
three to five. The validity of formula (1) for the perco-
lation plane was well established in [1, 3, 2].

Numerical results ([5] and [6]) for the exponent ζ
for critical percolation on cubic lattices seems to con-
firm Aizenman’s proposal for the value of ζ = 1.5.

Actually, we can consider the probability P(k, r) as
the probability of obtaining k clusters at the distance r
from the left side of the hyperrectangle if clusters grow
to the right. Only two processes can change the number
of clusters: cluster merging and cluster termination.

The differential dP of the probability is

(3)

where the right-hand side represents the product of the
probability P(k, r) and the differential of the total bor-
der hyperarea of k clusters, each with the hyperarea dif-
ferential k1/(d – 1)dr. This expression follows from the
fact that the unit area of measure is proportional to the
characteristic transverse length of “infinite” clusters.
Therefore, the transverse area remains constant as k
changes, while the longitudinal length increment in
these units is ∝ k1/(d – 1)dr. Integrating Eq. (3), we
recover probability (1). Thus, P(k, r) describes the
probability that k clusters do not merge together.

The same probability can be obtained by the process
of cluster termination, as given by Cardy in plane [3],
which can easily be extended to dimensions d > 2.

This means that the exponent ζ cannot be larger than
the one proposed by Aizenman, and ζ = d/(d – 1) is the
upper bound for the exponent.

Algorithms and realizations. The classical realiza-
tion of the HK algorithm [10] requires memory for two
major structures: an array for keeping a (d – 1)-dimen-
sional cluster slice and a tag array. The total memory
required by the algorithm is ∝ Ld – 1 + pcrLd, where pc is
the site percolation threshold value. Therefore, for large
rL, one of the main advantages of the HK algorithm
(i.e., relatively low memory consumption) is negated

dP P k r,( )k1/ d 1–( )kdr,∝
JETP LETTERS      Vol. 76      No. 7      2002



ON THE AIZENMAN EXPONENT IN CRITICAL PERCOLATION 477
Table 1

d k Lmin Lmax δL pc Ref.

2 1–5 16 256 16–32 0.59274621(13) [13]

3 1–6 8 64 4, 8 0.3116080(4) [14]

4 1–6 8 48–56 4, 8 0.196889(3) [15]

5 1–6 4 32, 24 4, 8 0.14081(1) [15]

6 1–6 4 15–16 3–5 0.109017(2) [16]

7 1–4 4 10 1 0.0889511(9) [16]

Minimal Lmin and maximal Lmax linear sizes of the percolation lattice and the interval δL between two consecutive values of L depending
on the dimension d and number of clusters k. The values of pc are taken from the references in the last column.
by the second term. Our modification of the original
algorithm allows the memory for the tag array to be
reduced to about 3pcLd – 1.

Instead of keeping all tags in memory and selecting
new tags with increasing tag numbers, we create two
arrays, of which one keeps the tag value and the other
one keeps the number N of the slice where the corre-
sponding tag was last used. When we build a cluster, we
update this array with N = Ncurrent for the tags used. If
N < Ncurrent – 1, then this tag is not on the front surface
of the sample, and it will never be used again, so that we
can, therefore, reuse it. We note that cluster-size infor-
mation should be taken into account before reusing the
associated tag, if the size information is required.

We use the “go with the winner” strategy [6] as fol-
lows. If the system has k spanning clusters for some
aspect ratio r = nδr, it is stored in memory and is grown
for δr. If the resulting configuration has k spanning
clusters, it is stored, and the growth process continues.
Otherwise, we return to the previously saved state.
Using this procedure, we calculate the probability
Pi(δr) that the system propagates at the distance rL
from the position r = (i – 1)δr. Finally, we obtain P(r =
nδr) = (δr). By choosing sufficiently small
values of δr, we can achieve rather high probabilities of
Pi(δr) (which can be determined from a few realiza-
tions), while the total probability may be very small
(down to ∝ 10–100 in our case).

The random-number generator was optimized for
the SSE instruction set as follows. Because the length
of all four RNG legs is {a|b}{x|y} > 4, the nth step of the
RNG does not intersect the (n + 3)th step. Therefore,
we can pack four consecutive 32-bit values of

 and  into 128-bit XMM regis-

ters, process them simultaneously [see Eq. (2)] and thus
obtain zn, zn + 1, zn + 2, and zn + 3 within one RNG cycle.

Data analysis. The lattice size was varied from Lmin
to Lmax with the step δL. In Table 1, particular values of
the simulation parameters are presented together with
the interval of the number of clusters k depending on
the dimension d. The direct result of the simulations is

Pii 1=
n∏

xn ax bx{ }–{ } yn ay by{ }–{ }
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the probabilities P(k, r; L) that exactly k clusters con-
nect two opposite surfaces (separated by the distance
rL) of the rectangle with size Ld – 1 in the “perpendicu-
lar” direction, in which we apply periodic boundary
conditions. We use the values of site percolation thresh-
olds on hypercubic lattices from [13–16], as shown in
Table 1.

Data analysis consists of three steps. First, we com-
pute the slope s(L) of ln P(k, r; L) for a given dimension
d, number of clusters k, and linear lattice size L. An
example of such a function is given in Fig. 2 for lnP(5,
r; 16) in the dimension four. We also plot the logarithm

of the probability P+(k, r; L) = (k', r; L) of the

event that at least k clusters span the (hyper)rectangle at
the distance rL. To calculate s(L), we use data only in
the interval of the aspect ratio r between 1.5 and 5. We
note that the probability of five clusters spanning a rect-
angle with linear size L = 16 at a distance of 5 × 16 =
80 is extremely small ≈10–52.

P
k' k≥∑

Fig. 2. The logarithms of the probabilities of exactly k clus-
ters P(k, r; L) (+) and of at least k dusters P+(k, r; L) (×) for
the dimension d = 4 and the number of clusters k = 5 as
functions of the aspect ratio r, as discussed in the text.
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Second, we compute probabilities in the limit of an
infinite system size L, fitting slopes s(k) with the
expression (see Fig. 3)

(4)

where B, t, and L0 are fitting parameters [17, 5, 18]. The
resulting values of the slopes s(k) are presented in
Table 2. The number of runs used to compute each par-
ticular entry in Table 2 varied from 106 to several tens
for higher dimensions.

We checked the accuracy of our simulations, as well
as the validity of the approach for site percolation on a
square lattice. Table 3 shows a comparison of our
results for the slope s with the exact values and with
earlier simulations, in which the other modification of
the HK algorithm, but not the Grassberger strategy, was
used. We note that our results coincide well with the

s k; L( ) s k( ) B

L L0+( )t
---------------------,+=

Fig. 3. Plot of s(k; l) for k = 3 clusters in the dimension four
as a function of 1/(L + L0) with the fitting parameter L0 =
4.12 (h) and for k = 4 clusters in the dimension six with L0 =
4.03 (e). Straight lines result from fitting to the correspond-
ing data, as discussed in the text.
exact results and give a higher accuracy for larger val-
ues of k in comparison with the previous numerical
results, despite the smaller computation time. Our data
for k = 1 is less accurate because of the smaller statistics
(106 runs, compared to 108 samples in [5]). This is a
direct demonstration of the effectiveness of the Grass-
berger strategy for large values of k.

Finally, we use values in Table 2 to determine the
Aizenman exponent ζ by fitting the data in each col-
umn to

(5)

in two and three dimensions, as proposed by Grass-
berger [6], and to

(6)

in higher dimensions. Here, A, k0, and p are fitting
parameters. We take only the leading behavior in k into
account.

Spanning, proliferation, and crossover to mean-
field behavior. The results of the final fit to (5) and (6)
are shown in Table 4. The second row for each particu-
lar dimension d is the fit with the power p fixed to the
Aizenman exponent value. This is done to check the fit
stability. Indeed, the values of A and k0 coincide within
one standard deviation for the dimensions two to five.

The larger deviations of parameters for the dimen-
sions six and seven may be attributed to the appearance
of cluster proliferation—the number of clusters is
known [1] to grow as Ld – 6 in dimensions d > dc = 6. We
plot the coefficient αd [defined by Eq. (1)] in Fig. 4 as a
function of the dimension d. The probability of exactly
one cluster spanning at the given distance r becomes
smaller as the dimension increases from two to five and
larger for larger dimensions, as can be seen from the
first row (k = 1) of Table 2 and from the lower curve in
Fig. 4. For any fixed d, the value of αd approaches some
limit for the dimensions two to five and k > 2, which
suggests the values of corrections to the leading behav-
ior in k (see Eqs. (5) and (6)).

s A k2 k0–( )p/2
=

s A kp k0–( )=
Table 2

k
d

3 4 5 6 7

1 –1.377(1) –1.774(3) –1.859(9) –1.76(2) –1.48(4)

2 –6.919(6) –6.330(15) –5.57(6) –4.73(8) –3.55(11)

3 –13.655(15) –11.64(4) –9.95(12) –8.27(12) –6.25(16)

4 –21.47(3) –17.77(6) –14.65(20) –11.95(25) –9.3(3)

5 –30.23(3) –24.02(8) –19.9(3) –15.75(30)

6 –40.02(6) –31.0(1) –25.0(3) –22.7(2)

Values of s(k) for different numbers of clusters k and dimensions d for site percolation on hypercubic lattices with periodic boundary con-
ditions in directions perpendicular to the spanning direction.
JETP LETTERS      Vol. 76      No. 7      2002
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The fact that the value of ζ, which we formally
extracted from our data for d = 6, more or less coincides
with ζ = d/(d – 1) = 6/5, as is formally calculated using
the Aizenman expression, may be interpreted as an
indication that the number of clusters depends logarith-
mically on the lattice size L. One can expect that the
logarithmic behavior is visible only for somewhat larger
values of L than we have used so far (see Table 1). With
the values of L of the order we used in simulations, we
see effectively the same picture as for the lower dimen-
sions—clusters span according to the Aizenman for-
mula. This means that at small (or moderate) values of
L, the main mechanism is as discussed above: cluster
merging and termination. And only at sufficiently large
system sizes we will see cluster proliferation. An indi-
cation of that can be seen from the values of αd in the
dimension seven in Fig. 4. The probabilities become
closer, and this can be attributed to cluster proliferation
and treated as a crossover to the mean-field behavior.

Discussion. The results have shown the validity of
Aizenman’s proposal in the dimensions three to five
(results on a plane were already proved rigorously) and
do not support Parongama Sen’s claims based on their
simulations (Fig. 1). We have found evidence of cluster
proliferation for the dimension seven. The analysis can
be extended to the number of spanning clusters to dis-
tinguish exponential decay with the system size of the
number of clusters for the dimension five, logarithmic
growth of them for the dimension six, and linear growth
for the dimension seven. The same technique can be
used to numerically establish such a crossover to the
JETP LETTERS      Vol. 76      No. 7      2002
mean-field picture, although a significantly longer com-
putational time than we used is needed for this. In fact,
the linear growth of the multiplicity of spanning clusters
for seven-dimensional critical percolation was con-
firmed numerically in preprint [19] posted at the arXiv
preprint library a few days after our cond-mat/0207605.

We are grateful to P. Grassberger and R. Ziff for use-
ful discussions of algorithms. We also thank S. Kor-
shunov and G. Volovik for the discussion of the results.
This work was supported by the Russian Foundation
for Basic Research.

Fig. 4. The coefficient αd (as a function of the dimension d)
extracted from the probabilities P(k, r) for different num-
bers of clusters k.
Table 3

k This paper Exact from [3] From [5]

1 –0.6541(5) –0.6544985 –0.65448(5)

2 –7.855(3) –7.85390 –7.852(1)

3 –18.32(1) –18.3260 –18.11(15)

4 –32.99(3) –32.9867

5 –51.83(2) –51.8363

Values of s(k) in two dimensions for different k calculated in this paper using the exact Cardy formula [3] and estimated in [5] for site per-
colation on a tube.

Table 4

d A k0 p d A k0 p

2 2.090(4) 0.244(5) 2.0012(10) 5 2.8(1) 0.40(4) 1.24(3)

2.0940(5) 0.2489(7) 2 2.78(2) 0.38(2) 5/4

3 2.81(4) 0.64(4) 1.489(7) 6 2.8(8) 0.5(3) 1.12(14)

2.757(2) 0.587(3) 3/2 2.41(5) 0.33(6) 6/5

4 3.06(20) 0.41(6) 1.315(30) 7 1.4(10) 0.08(116) 1.4(4)

2.949(5) 0.373(3) 4/3 2.03(12) 0.50(13) 7/6
Values of the fitting parameters A and k0 and the power p as defined in Eqs. (5) and (6) for the dimension d.
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A system of unitary transformations providing two optimal copies of an arbitrary input cubit is obtained. An
algorithm based on classical Boolean algebra and allowing one to find any unitary transformation realized by
the quantum CNOT operators is proposed. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Lx
It is known that an arbitrary quantum state

(1)

cannot be copied exactly (cloned). The no-cloning the-
orem was proved in [1]. However, Buzek and Hillery
[2] found a unitary transformation entangling two
qubits |ψ〉12 = |00〉12 with the input qubit |ψ〉0 so that the
output state has the form

(2)

where

(3)

The reduced qubit density operators , , and 
at the output are related to the input density operator
ρin as

Here,  = |ψ⊥ 〉0〈ψ⊥ |, where |ψ⊥ 〉0 = α|1〉0 – β|0〉0 is the
state orthogonal to the input state, α = eiϕsin(ϑ /2), and
β = cos(ϑ /2). The quality of obtained copies is specified
by the cloning accuracy F, which is determined by the
overlap of the input and output states [3]

Thus, the output qubits  and  consist of 5/6
fraction of the input qubit ρin and 1/6 fraction of an

ψ| 〉0 α 0| 〉0 β 1| 〉0+=

Ψout| 〉 Φ0| 〉01 0| 〉2 Φ1| 〉01 1| 〉2,+=

Φ0| 〉 1
6
--- 2α 00| 〉 β 01| 〉 β 10| 〉+ +( ),=

Φ1| 〉 1
6
--- 2β 11| 〉 α 01| 〉 α 10| 〉+ +( ).=

ρ0
out ρ1

out ρ2
out

ρ0 1,
out 5

6
---ρin 1

6
---ρ⊥

in ,+=

ρ2
out 2

3
---ρin 1

3
---ρ⊥

in .+=

ρ⊥
in 

F
1

4π
------ ϕ ψ in〈 |ρout ψin| 〉 ϑsin ϑ .d

0

π

∫d

0

2π

∫=

ρ0
out ρ1

out
0021-3640/02/7607- $22.00 © 20481
admixture. The qubit |ψ〉2 is auxiliary and called clon-
ing. Gisin and Massar [4] proved analytically that rep-
resentation (3) of the output qubits is optimal, i.e., max-
imizes the average accuracy of the correspondence
between the input and output qubits.

The sequence of actions for cloning qubits is repre-
sented in the form of a universal quantum cloning
machine. For its operation, it is necessary to prepare
preliminary the entangled state of two qubits

(4)

by applying unitary operators to zeroth qubits:

Here,

is the turning operator of a qubit and

(5)

is the CNOT operator, where ⊕  is the modulus-2 sum-
mation. The resulting set of equations

(6)

has the solution

(7)

Ψprep| 〉 C1 00| 〉 C2 01| 〉 C3 10| 〉 C4 11| 〉+ + +=

Ψprep| 〉 R1 θ3( )P21R2 θ2( )P12R1 θ1( ) 00| 〉12.=

R θ( ) θcos θsin

θsin– θcos 
 
 

=

P12 x y,| 〉 x x y⊕,| 〉=

θ1 θ2 θ3 θ1 θ2 θ3sinsinsin+coscoscos C1,=

θ1 θ2 θ3coscossin θ1 θ2 θ3sinsincos– C2,=

θ1 θ2 θ3 θ1 θ2 θ3cossinsin–sincoscos C3,=

θ1 θ2 θ3 θ1 θ2 θ3sincossin+cossincos C4,=

θ1cos
2 C2

2 C3
2–

1 2C3
2– 2C4

2–
--------------------------------- θ3

1 2C2
2– 2C4

2–

1 2C3
2– 2C4

2–
---------------------------------,cos

2
+=

θ2cos
2 C3

2 C4
2 θ3cos

2
–+

1 2 θ3cos
2

–
----------------------------------------,=
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Table 1

N (C1, C2, C3, C4) cos2θ1 cos2θ2 cos2θ3 sign(cosθi, sinθi) |Ψout〉

1 (2, 1, 1, 0)
(–––, +++) P21P02P10|Ψin〉

(+++, +–+) P12P20P01|Ψin〉

2 (2, 1, 0, 1)
(+++, –+–) P21P10P02|Ψin〉

(+++, +++) P10P20P02P01|Ψin〉

3 (2, 0, 1, 1)
(+++, –+–) P12P01P20|Ψin〉

(+++, +++) P01P02P20P10|Ψin〉

4 (1, 2, 1, 0)
(–––, +++) P20P10P01 |Ψin〉

(+++, +–+) P21P10 |Ψin〉

5 (1, 2, 0, 1)
(+++, –+–) P12 P01|Ψin〉

(+++, +++) P21 P10|Ψin〉

6 (1, 1, 2, 0)
(–––, +++) P01P02P20 |Ψin〉

(+++, +–+) P12 P20|Ψin〉

7 (1, 1, 0, 2)
(+++, –+–) P12 |Ψin〉

(+++, +++) P01 |Ψin〉

8 (1, 0, 2, 1)
(+++, –+–) P21P02 |Ψin〉

(+++, +++) P12P20 |Ψin〉

9 (1, 0, 1, 2)
(+++, –+–) P21 |Ψin〉

(+++, +++) P20P10 |Ψin〉

10 (0, 1, 1, 2)
(–––, +++) |Ψin〉

(+++, +–+) P12 |Ψin〉

11 (0, 1, 2, 1)
(–––, +++) P21 P02|Ψin〉

(+++, +–+) P20P10 P02|Ψin〉

12 (0, 2, 1, 1)
(–––, +++) P12P01 |Ψin〉

(+++, +–+) P01P02 P10|Ψin〉

1

6
------- 1

2
--- 1

1

2
-------+− 

  1
2
---

2
3

-------+−
1
2
--- 1

1

2
-------+− 

 

1

6
------- 1

2
--- 1

1

5
-------+− 

  1
2
--- 1

5
3

-------+− 
  1

2
--- 1

2

5
-------+− 

 

1

6
------- 1

2
--- 1

1

5
-------+− 

  1
2
--- 1

5
3

-------+− 
  1

2
--- 1

1

5
-------+− 

 

1

6
------- 1

2
--- 1

1

5
-------± 

  1
2
--- 1

5
3

-------+− 
  1

2
--- 1

2

5
-------+− 

 
P

02

P
02

1

6
------- 1

2
--- 1

1

2
-------± 

  1
2
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2
3

-------+−
1
2
--- 1

1

2
-------± 

 
P

20

P
02

1

6
------- 1

2
--- 1

2

5
-------+− 

  1
2
--- 1

5
3

-------+− 
  1

2
--- 1

1

5
-------± 

 
P

10

P
01

1

6
------- 1

2
--- 1

2

5
-------± 

  1
2
--- 1

5
3

-------+− 
  1

2
--- 1

1

5
-------± 

 
P
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P
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P02 P
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P
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1

6
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2
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1

2
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  1
2
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1
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1

2
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P
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P
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6
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2
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2
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-------± 
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P

10
P
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P
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P
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1

6
------- 1

2
--- 1

1

2
-------± 

  1
2
---

2
3

-------+−
1
2
--- 1

1

2
-------± 

 
P21 P

02
P

10

P
20

P
01

1

6
------- 1

2
--- 1

1

5
-------+− 

  1
2
--- 1

5
3

-------+− 
  1

2
--- 1

2

5
-------± 

 
P

10

P
01

1

6
------- 1

2
--- 1

2

5
-------± 

  1
2
--- 1

5
3

-------+− 
  1

2
--- 1

1

5
-------+− 

 
P

20

P
20
θ3cos
2 1

2
--- 1

1 2C3
2– 2C4

2–

1 4 C1
2C4

2 C2
2C3

2+( )–
------------------------------------------------±





=

× 1 4 C1
2C4

2 C2
2C3

2+( )– 8C1C2C3C4+




.

At the second stage, the quantum cloning machine
mixes input qubit (1) with prepared state (4):

(8)

Ψin| 〉 ψ| 〉0 Ψprep| 〉 α C1 000| 〉 C2 001| 〉 C3 010| 〉+ +(= =

+ C4 011| 〉 ) β C1 100| 〉(+

+ C2 101| 〉 C3 110| 〉 C4 111| 〉 ) ,+ +
JETP LETTERS      Vol. 76      No. 7      2002



CLONING OF QUBITS OF A QUANTUM COMPUTER 483
so as to obtain optimal state (2) at the output 

(9)

Comparing Eqs. (3) and (9), we obtain only 12 dif-
ferent combinations of admissible parameters C1, C2,
C3, and C4, for which solution (7) gives the angles for
operators R1(θ1), R2(θ2), R1(θ3) (see columns 2–5 in
Table 1). The sixth column of Table 1 shows the signs
of the rotation angles of R(θ).

Now, we obtain transformations converting input
state (8) (with known C1, C2, C3, and C4) to output state
(9) only in terms of CNOT operators (5). We represent
the total transformation operator as

where pi(x, y, z) are the logical functions of three Bool-
ean variables.

Let us find this function for the first row of Table 1.

Ψout| 〉 Φ0| 〉01 0| 〉2 Φ1| 〉01 1| 〉2+=

=  1
6
--- 2α 000| 〉 β 010| 〉 β 100| 〉+ +(

+ 2β 111| 〉 α 011| 〉 α 101| 〉+ + ).

Ψout| 〉xyz P x y z, ,( ) Ψin| 〉xyz=

=  p1 x y z, ,( ) p2 x y z, ,( ) p3 x y z, ,( ), ,| 〉 ,

Scheme of the optimized variant of the Buzek–Hillery clon-
ing machine. Only two CNOT operators participating in the

production of the output state  from |ψ〉0 and |Ψ〉prep

involve the input qubit |ψ〉0. The arrows point to the goal
qubit of the CNOT operator.

Ψ| 〉012
out

Table 2.  Truth table for functions pi

x y z p1 p2 p3

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 1 0 1

0 1 1 * * *

1 0 0 1 1 1

1 0 1 1 0 0

1 1 0 0 1 0

1 1 1 * * *

Note: Asterisks mean arbitrary values.

out

prep
JETP LETTERS      Vol. 76      No. 7      2002
Since the CNOT operator can realize only linear
Boolean functions, only two of eight different combi-
nations are suitable. For one of them, we represent the
set of disjunctive normal forms in terms of the Zhe-
galkin polynomials:

Then,

The other rows in Table 1 are filled similarly. To
describe the CNOT operator with inversion, we intro-
duce the notation

where R  =  is the NOT operation.

The lower half of row 2 in Table 1 describes the
operation of the Buzek–Hillery quantum cloning
machine [5], whereas the upper half of row 2 describes
its optimized variant. It is seen that the output state
|Ψout〉  can be obtained by three CNOT transformations,
only two of which involve the input qubit (see figure).
The equatorial qubits of the first row were studied in [6]
without discussing the method of their production.

In summary, we obtained the set of unitary transfor-
mations producing two copies of an arbitrary input
qubit. This transformation is optimal, because it maxi-
mizes the average accuracy of correspondence between
the input and output qubits. The algorithm allowing one
to find any unitary transformation realized by the quan-
tum CNOT operators is proposed on the basis of classi-
cal Boolean algebra.
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Translated by R. Tyapaev

p1

=  x&y&z x&y&z x&y&z x&y&z∨ ∨∨ x y,⊕=

p2

=  x&y&z x&y&z x&y&z x&y&z∨ ∨∨ x z,⊕=

p3 x&y&z x&y&z x&y&z x&y&z∨ ∨∨=

=  x y z.⊕ ⊕

Ψout| 〉xyz p1 p2 p3, ,| 〉=

=  x y x z x y z⊕ ⊕,⊕,⊕| 〉 P21P02P10 Ψin| 〉xyz.=

P
12

x y,| 〉 P12 x y,| 〉 x x y⊕,| 〉 P12R2
π
2
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π
2
--- 

  0 1
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