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General relations for diffusion coefficients for the cooperative mechanism of diffusion are
obtained on the basis of the proposed model of metal-metalloid glass. The thermodynamics of
Bernal-Polk complexes is developed by using the Ising—Nakano Hamiltonian and the

theory of frozen-in fluctuations. The temperature dependence of diffusivity is analyzed in the
cases of large and small variance of pair interatomic correlations19€¥ American

Institute of Physics[S1063-777X97)01112-7

Diffusion in frozen-in metastable metals known as me-corresponding tar=+1 and introduce the parameter
tallic glasse§MG) was investigated by many authdisee,
for example, Refs. 193A universal mechanism of diffusion A= LEeXp(—ZL). (1)
in MG has not been established so far. Both individual 1-p

mechan!smss of diffusion, e.g., the pseudovacancion \ye gi50 assume that atoms wish= + 1 cannot partici-
mechanisrfi® and the cooperative mechanistin which ate in lattice rearrangementtixed atoms, while atoms

;ev_e_ral ne|ghborlng atoms participate smul?aneously N al)ith = —1 can take part in such rearrangemeatscited
individual act of lattice rearrangement are being worked OUIatomg
The possibility of a cooperative mechanism of diffusion in o qucing pair interatomic interaction and neglecting

MG was confirmed by an analysis of experimental dalta. ., insignificant constant term in the expression for energy,
cannot be ruled out, however, that diffusion mechanisms in

_ ) X > _ . we can write the Hamiltonian of the system in the form
different MG are different. The indeterminacy in this prob-
lem is primarily due to the lack of clear ideas on the structure 1
of MG, including point defects in these materials. H=- 27 .EJ Jijoi "J_WZ Oi, @)

In this paper, we propose a model description of MG of '

the metal—metalloid type on the basis of a Hamiltonian in-Wherez is the coordination number and>0 (the summa-
cluding the one-particle energy of metal atoms determinedion over j is carried out for nearest neighbors of thé
by all atoms of MG(both atoms of the metal and the metal- atom.
loid) as well as the correlation between metal atoms. The From the point of view of Gibbs distributiofand hence
role of the metalloid in this case is formally reduced to theall thermodynamic relationsHamiltonian(2) with the addi-
overdetermination of the parameters of the Hamiltonian a§onal condition (1) is equivalent to the temperature-
compared to the case of pure metal; naturally, such an oveflependent effective Hamiltonian
determination is significant from the physical point of view,

which follows from the role of metalloids as amorphizer in H=H+ LTE o;. 3
vitrification and MG stability. This description can be used !
for determining the cooperative diffusion coefficient. Hamiltonian(3) has the form of the well-known Ising—

Nakano Hamiltonian which was analyzed in detail for the
case of the “exchange integralJ;; which does not change
as we go over from one cell to anothért? In the case of
We consider each metal atom in a corresponding spatiailG under investigation, the quantity; must have a vari-
cell (coordination polyhedron As regards metalloid atoms, ance. We assume that the variance is of Gaussian form:
they occupy positions in the voids of Bernal polyhedrons 5
(analogous to interstitial positions in a crystain the ab- P(J--)~ex;{ _ (Jij_‘;o)
sence of an amorphizing metalloid, the potential relief is de- N 2V
termined by metallic bonds and is therefore smootl‘\,\lhereVZ«Jij —J0)?Y2 As regards the one-particle pa-

(qurreq). (Sugh a form of the relief formed by metallic rametersw and A, their variance will be neglected for sim-
bonds is confirmed by well-known facts such as very Weaii)licity

temperature dependgnges of di'ffusivity and viscpsity in lig="""7pe Hamiltonian(3) with the additional condition of
uid metals'® This relief is superimposed by relatively sharp freezing-in (nonthermodynamic typeof fluctuations (4)

additional wells due to metal-metalloid covalent bonds. (/.. 4o basis of the theory of spin gld2sThe only dif-

I_Dlsregard!ng the_ details in the form of the potent|a!, Weference is the emergence of the temperature-dependent “ef-
ascribe the Ising spior=+1(oc=—1) to metal atoms with fective magnetic field”

one-particle energy largésmalle) than a certain critical en-
ergy. We assume that is the fraction of the phase volume h=w-LT. (5)

DESCRIPTION OF THE MODEL

, 4
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In view of the absence of a consistent theory of spin glass,
we put aside, among other things, the determination of the
state of MG(either a metastable configuration or one of en-

ergetically equivalent configurations that are not separated

In case(b), relations(6) and (8) assume the form

d L
? .

w
o-(T)=tanI-(?—L); q(T)=tanlf (13

from each other by a potential baridsee Refs. 14 and 15
in this connection We shall use the well-known results of

the theory of spin glass, namely, introduce an analog of mag-

netizationo(T)=(o) (angle brackets indicate averagingt

In this case, both parametessand q approach unity as
T—0 according to the exponential law.
Concluding the section, let us formulate the main as-
sumptions from which we are proceeding in fact.

should be recalled that, in the case of frozen-in fluctuations

under investigation, we average not the partition function

but free energy, i.e., the logarithm of partition function, over

these fluctuations; the quantitie§T) are determined by dif-

ferentiating the averaged free energy with respeet.foFor

o(T)=+1(o(T)=—1), all the atoms of the metal are fixed

(free); therefore,o(T) will be called the fixation parameter.
We have

U(T)Z(Zw)_llsz dt exp(

2

5 ®)

tanh?,

0=Vg't+Jgo+w—LT, (7)

where g=q(T) is the memory parameter defined by the
equation

q(T)=(27-r)’1’2fw dt exp(

2

5 ®

tantf T

It is known from the theory of spin glass that solutions
of Egs.(6)—(8) are different depending on whether or not the
inequalityJy>V is satisfied. If this inequality holds, we have
solutions of the ferromagnetic type;w/L <J, in this case,

a first-order phase transition occursTat w/L. We will be
interested in the case whdg<V and solutions of the spin-

glass type are realized. In order to simplify formulas to the

maximum possible extent, we assume tiatJ,.

Relations(6) and(8) are simplified considerably in two
special cases that will be considered heve:w,L>1 (a)
andV<w (b) (althoughV>J, in all caseg It will be proved
below thatT.«wL ™! in the caseg@), and hence we are in-
terested only in the temperature rang&w,V. Using the
asymptotic form of hyperbolic tangent

tanhx=sgri 1—2 exg —2|x|)], (9)
we obtain
(r(T)=erfW_LT—O(T—2), (10
V2V v
T
q(T)= 1—0(\—/) , 11
where erf is the error integral defined as
2 [x
erfx=\/—; fo exp(—t2)dt, (12

(O(x) denotes a positive correction of the orderxgf

It should be noted that for T/V—0 (it will be proved
below that this corresponds T T.— 0), the functionss(T)
andq(T) approach the values(0) and 1, respectively, fol-
lowing not the exponential, but the power law.
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1. In the condensed state, the motion of an atom can be
approximately regarded as finiteonfined to a certain
cell of the order of atomic sizeA cell rearrangement
or a transition of the atom from one cell to another
occurs over a time much longer than the period of
vibrations in the cell.

. In the solid as well as in the liquid state at a tempera-
ture slightly higher than the melting poiit,,, there
exists an hierarchy of energies: the binding energy,
and hence the characteristic energy parameters of a
cell (which are of the order of evare larger than the
temperatures under investigation. Consequently, if we
describe the motion of atoms in cells by the Hamil-
tonian H(g¢,p1,-.-,0n.Pn) (Q,p; are canonical
variables andN is the number of atomswe can as-
sume that the parameters of this Hamiltonian are in-
dependent of temperature.

. The phase volume of each atom of a metal can be
divided into two regions: the states corresponding to
fixed (0= +1) and excited §= —1) atoms. Averag-
ing over the phase volume within each region leads to
the Ising—Nakano equivalent Hamiltoni&B) in the
problem on calculation of the partition of function.

. Frozen-in fluctuations of the parameters of the Hamil-
tonian (to be more precise, “exchange integral;,
describing the correlation of atognare characterized
by the Gaussian distribution with a large variance.

COOPERATIVE MECHANISM OF DIFFUSION

In order to find the diffusion coefficient, we supplement
the above four assumptions with a fifth assumption.

5. Excited atomgthose withg;= —1) can move almost
freely under the action of mechanical stresses of con-
centration gradients. It should be emphasized that we
are speaking not so much of diffusion as the freedom
of movement in the sense of a rheological flow as in
the case of liquids. Then MG corresponds to the con-
centrationy<y, of these atoms, wherng. is a certain
threshold concentration.

In terms of the parameter characterizing the preservation
of complexes for the temperatufie (the upper temperature
boundary for the existence of M@Gwe obtain the following
equation:

o(To)=1-2y.. (14

Naturally, in the case ofrelatively slow heating, MG
goes over to the crystalline and not to the liquid state at the
point T, since the short-range order rearrangement after
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which crystallization becomes possible has already occurred
(e.g., segregation of a metal and a metal-metalloid stoichio-
metric compoungd
Going over to diffusion in the sense of the ldifth) !

assumption, we assume that the sm@h<a, da is the o t
characteristic displacement of atoms anthe atomic spac- c '
ing) local cooperative rearrangement of the lattice becomes :
possible ifn adjacent atoms of the metal become excited. In : \
this case, fom<z, we obtain the following expression for 1

[}

1

]

]

1

1

1

Ye:
ye=[v(n)] ", (15)

where v(n) is the number of possible realizations of states

with n excited neighborgper lattice sit¢ Considering that 1/7 1

z=12 for most sites in MQthe coordination polyhedron is m

: ) . . . 1/7

icosahedro)) we find from simple combinatorial and geo-

metrical considerations that FIG. 1. Dependence of diffusion coefficient on reciprocal temperature in a
yo(3)=30" 13 0.322: perfect samplécurve 1), insufficiently quenched sampleurve2) for large

dispersion of paired correlatioifisurve3) (the instability region is shown by
dashed linefT,, is the melting point

Ye(4)=20"1~0.473;

y.(5)=30 %~0.506. (16) _ .
) o Let us consider the form of the functidd,(T). If we
Since such a local rearrangement of the lattice is an elyere dealing with a simple liquidiquefied inert gas or melt
ementary act of diffusion, the diffusion coefficient of the of 5 nontransition metal the diffusion would be an activa-

metal can be naturally represented in the form tionless process, and functidh(T) would follow the Swa-
1-o(T)]" lin quadratic lawt® In the case under consideration, the
D(M)=DgyT)|—5— (17) quantity D, must depend on temperature according to the
2y, ; .
Arrhenius law owing to covalent bonds, and hence
The second cofactor in this relation gives the probability of n
; o : : _ E\[1—-0o(T)

atomic excitation(both thermal and frozen-jrrequired for D(T)=z Dy expg — = || ——1 , (20)
an elementary act of diffusion; the quantiy, can be con- T 2Yc

nected with the diffusion CoeffiCiem| in a ||qU|d solution WhereDo and EI are the same preexponentia| factor and the

of the same composition as MG. Indeed, we assume that afiffusion activation energy as in a melt of the same compo-
elementary act of lattice rearrangement is the same for thgition as the MG.

liquid and glass-like phases. Taking into account the fact that
almost all complexes in the liquid are dissociated

(o(T)=—1), we have THE CASE OF LOW DISPERSION

. We first consider the case of small variance of the pa-
Dy(T)= 2p,m), (18  rameter;; ,V<w (naturally, Jo<V). Substituting(13) into
Z (20), we obtain the temperature dependence of the diffusion
wherez is the total number of diffusion paths for a given coefficient for MG:
atom andz, the number of paths that are open in MG. ow n -3
Naturally, in an accurate analysis we must take into ac- D(T)=z|1yC“D0[NF(——2L> ex;{ —) (21
ee T T
count elementary acts of diffusion of atoms. Such an
analysis requires the knowledge of the distribution functionwhereNg(x)=(e*+ 1)~ ! is the Fermi distribution function.
for groups being rearranged over the number of atoms corlt can be seen that at low temperatuj&s<w(L —1/2)~* for
tained in them and probably the temperature dependence &f>0 andT<2w for L<<0], the diffusion coefficient obeys
this distribution. However, bearing in mind that the simulta-the Arrhenius law with the activation energy
neous participation of a Iargglnumber of .atoms in the rear- Eo=2nw+E,=2n(L+Arth )T, +E, 22)
rangement has a low probability, we confine our analysis to
the case of groups with the same number of atoms and agnd the pre-exponential factor

sume for estimates that=3; then it follows from geometri- _—1,-n

cal considerations thaz;=20. Since only one diffusion Da=2"¥c Do exp L. 3

channel can be open in MGhe probability of opening of Curvelin Fig. 1 shows schematically the dependence of

each next path is proportional fa@— X\ (T)]/2 for values off D onT.

not very close tdl;, and hence is smallwe obtain Generally speaking, diffusion over macroscopic dis-
n tances should be described by taking into account the corre-

1-0o(T)
2y,

(19 lation factor whose magnitude is of the order of unity and

D(T)=2z'Dy(T)
which strongly depends on the mechanism of diffusion. We
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can assume that the larger the number of atoms participatirgjs of experimental results on diffusion in annealed metal—
in a cooperative act of diffusion, the lower the probability of metalloid alloys shows that the diffusion coefficients
the step which is exactly opposite to the given step, and thetrongly (although ambiguousjydepend on the diffusate.
closer the correlation factor to unity. We shall assume that ifThe activation energy is in linear correlation with the preex-
is equal to unity. ponential factor. In the proposed model, this correlation can
It should be noted that the preexponential facogsfor  apparently be explained by the presence of the fattoin
different liquid metal§’ differ insignificantly, having the the activation energy22) as well as in the pre-exponential
same order of magnitude &,=(3—-30)-10 8 m%s. If the  factor (23). Naturally, this product is different for different
diffusion activation energy in the liquid phase is relatively atoms of the diffusate.
small (E;<2nw), the diffusion activation energy in different
MG will be proportional to the correspondinfy, in accor-
dance with(22). Consequently, the diffusion coefficients in THE CASE OF LARGE DISPERSION
different MG as functions of the reduced temperatlif&. Let us now consider the case of a large variance of the
can often nearly coincide. Such an approx_lmate S'm'I'IUdequantityJij . V~w, andVsT,.
law has apparently been observed in expenmlfhts. _ Substituting(10) into (20), we can present diffusion co-
Unfortunately, an exact comparison of obtained relationsyticient in the form
with experimental results is hardly possible at the moment in
spite of the rich available information on diffusion in
MG.1318 This is due to the following two circumstances:
there are no data on the temperature dependence of the dif- n
fusion coefficients in melts in MG of the same composition, — [ (W_LT”
DaA(T)=Dg| @ , (25)
and a considerable fraction of available data on diffusion in v
MG corresponds to insufficiently annealed samples that argnhere
far from being perfect. But the diffusion coefficients in de- )
fective MG can be much larger than in perfect sampsese CI)(X)=(27T)1/2J00 ex;{ _ t_
in this connection the experiments described in Ref.a9a X 2
result of diffusion over extended defects, i.e., regions with
weakened atomic bonds of the type of planes or channelg,[S
formed by atoms witle<<12.
Nevertheless, we can draw several qualitative conclu
sions.

D(T)= DA(T)ex;J( - ?) , (24

dt. (26)

Pay attention to the fact that the expression in the brack-
in (25 has no exponential asymptotic form far—0
(and tends to a finite limi® (w/V)). For this reason, formu-
las (24)—(26) correspond to the Arrhenius law with the same
activation energyE, as for a liquid melt and with a pre-
(1) The diffusion activation energfdefined as the slope of exponential factoD(T), decreasing slowly upon cooling
the curve InD to the 1T axis) in a perfect MG is higher (curve3 in Fig. 1).
than in the corresponding melturve 1 in Fig. 1).
(2) If we assume thab o~ 10'° m?%/s in a perfect MGas in
the cas® of Au in Pd,; «CUsSiy4 5 at Tng (Tg is the 1B. Cant_or, in Rapidly Quenched Metals/ol. 1 (ed. by S. Steeb and
glass-formation temp?raturand substitute foDg the zgf !V i{gﬂ’sﬂiiE,".f“&’,ﬁ'f%%dv,?nﬂ'f‘ﬁ){. ﬁmssi:,cjflz(&g\?l?éov, Ser. Chern.
value Do=(3-30)-10" 8 m?%s typical of the preexpo-  met. 11, 87(1985.
nential factor for liquids,” we obtainL ~ 10. 3S. K. Sharma, M.-P. Macht, and V. Naundorf, J. Non-Cryst. Sdli§&-

(3) In insufficiently annealed MG samples, the dependence, 158 Pt. 1 437(1993.
fInD on 1T has the form shown by curve. The D. K. Belashchenko, Fiz. Met. Metallove83, 1076(1982.
0 y " 5D. K. Belashchenko and Fam Khak Hung, Fiz. Met. Metallov&t.1050

increase in the steepness of the curve observed as weg19s4.
approachT, from the side of smaller values df is as- fL- N. Davydov and Z. g- Spolnik, PhysH Status SolidilB1, 5(7 (1%95-

; ; ; ; D. Gupta, K. N. Tu, and K. W. Asai, Phys. Rev. Le36, 796 (1975.
soc_|ated with partlal annealmg of defects, as a result 0fSB. S. Bokhshtein, L. M. Klinger, . M. Razumovskii, and E. N. Uvarova,
which the samples become close to a perfect MG. The i, met. Metalloved51, 561 (1981.

effective preexponential fact@® , becomes smaller than °D. E. Polk, Acta Metall20, 485 (1972.
Da. 10p_ Gray, inPhysics of Simple Liquid®d. by H. Temperley, J. Rowlinson,
and G. RushbrroKe North Holland, Amsterdani1968.

It should be emphasized in this connection that it wouIdEH- Nakano, Prog. Theor. PhyS0, 1510(1973.
be interesting to measure the diffusion coefficient both inmg: ?92‘3@2&12}1 5""‘;?’\,\7 hKﬁaZ?stﬁﬁAfmfﬁgg%s (1975,
perfectl)_/ _annealed MG samples, and in melts of the samex_ . Fisher, Phys. Status Solidi B30, 13 (1985.
compositions. 15D, Chowdhury and A. Mookerjee, Phys. Repl4, 1 (1984.
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LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

Microscopic mechanism of the effect of composition and topological orders of metal
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Singularities(minima) in the critical stress of catastrophic plastic shear are observed in the

course of variation of composition and topological orders in metal glassgs,E®B15 (x=15,

17, 19, 21, 25, 30, 40, 50, 64 at)%ue to a change in the chemical composition. The

minima are observed for=21 and 40 at. %, which is close to the rational ratios 3:1 and 1:1 of
atomic concentrations of Fe and Co, that are regarded as stoichiometric ratios for the

formation of nanoclusters with a high average binding energy. The change in the atomic structure
of cluster boundaries is considered as a microscopic mechanism of the effect of composition

and topological orders on the resistance to plastic shear. The difference in the concentrations of
coinciding sites at cluster boundaries is estimated for metal glasses of stoichiometric and
nonstoichiometric compositions. @997 American Institute of Physics.
[S1063-777X97)01212-7

1. INTRODUCTION composition can result in a nonmonotonic change in the

The atomic structure of a solid determines its mechanicai’@croscopic properties of a metal glass. In particular, for
properties. However, the establishment of the relation pecompositions close to stoichiometric compositions of crystal-
tween mechanical properties and atomic structure for strudine analogs, we can expect an increase in the local compo-
turally disordered amorphous systems such as metal glasséi§ion and topological ordering, and hence in the average
remain a complicated problem since the atomic structure opinding energy of atoms in nanoclusters. The structural re-
composition and topological orders in metal glasses has ndaxation of boundaries is inhibited in this case, and the con-
been studied sufficiently. High-resolution electron micros-centration of noncoinciding sites at cluster boundaries must
copy of various metal glass&$ revealed regions of average increase” Thus, the formation of “strong” clustergwith
order of 1-3 nm in size, while experiments involving ionic- quasi-stoichiometric compositionss accompanied by the
field microscopy provetf that metal glasses have a poly- formation of “weak” boundaries.
cluster structure. Polypluster_s formed by noncrystalline or-  First steps in the establishment of correlation between
dered nanoclusterfiaving a size up to 10 nnare separated he atomic structurgcomposition and topological orders
by boundaries, but the detglled atomic structure of r)anoclusand properties of metal glasses were made by comparing the
ters and cluster boundaries has not been established y'ﬁtracroscopic properties of metal glasses of certain “stoichio-

Since mechanical properties of solids are very sensitive t(ﬁwetric” composition and glasses whose compositions are far
details of atomic structuréype of local ordering and density from “ 9-11

of point and extended defeg¢tsan analysis of these proper- stoichiometric™ ones.
ties can be an effective tool for studying the defects of No attempts have yet been made to calculate these sto-

atomic structure. ichiometric compositions. A qualitative analysis proved that,

It was assumed earlier that metal glasses are homogd? the case of binary metal glasses, glasses with eutectic
neous noncrystalline solid solutions in the form of chaoticCOMPOSItions must contain “strong™ nanoclustérghis hy-
atomic mixtures. If this is true, the properties of metal Pothesis was confirmed for metal glasses of the Fe—B sys-
glasses must change monotonically with the composition. Iftem, for which singularities on concentration dependences of
however, metal glasses possess a nanocluster substruct§@mne physical parameters were observed for the glass with
with a short-range and intermediate ordering, a nonmonothe eutectic composition gg8,;. Among other things, nar-
tonic change in the ordering of nanoclusters and the structur®w (in concentration and deep minima of strength were
of cluster boundaries upon a monotonic change in chemicaibserved and explained by a high average binding energy of

1004 Low Temp. Phys. 23 (12), December 1997 1063-777X/97/121004-06%$10.00 © 1997 American Institute of Physics 1004



atoms in nanoclusters and a strong disorder of cluster
boundaries:°
In view of the high volume energy of cluster boundaries i
(approximately 5% of atoms of the material belong to bound- /
) . L 3,0 7\
ary layers when the size of nanoclusters~40 nm), it is JEAY {\
these boundaries, their structure and resistance to plastic / \ LN
shear that plays a decisive role in the mechanical properties
of metal glasses. The minimum of the critical stresg cor-
responding to catastrophic plastic shear and observed for v * '
“weak” cluster boundaries in a eutectic metal glass was Ve
found to be manifested most clearly as compared to pecu- - ‘l',"
liarities in other propertie$° Similar singularities in physi- i
cal properties must also be observed for other metal glasses 1,0
formed by ‘“strong” nanoclusters. | L i L 1
In order to establish the relation between the micro- 20 40 60
scopic structure and mechanical properties of metal glasses X, at . % Co
on the basis of the above concepts and to find new metal
glasses in which the composition and topological orders leadiG. 1. Concentration dependence of critical stregsof catastrophic shear
to the formation of “strong” nanoclusters, we analyzed sys-in metal glasses kg ,CoB;5 at 300 K.
tematically the concentration dependenceogf, in metal
glasses of the ke ,CoB;5 system by varying the compo-
sition of the metallic subsystem. It was found that at least  Figure 1 also shows a spreadr, of the experimentally
two compounds in this system, i.e., §#€0,;B;5 and  measured values af;, for metal glasses with all concentra-
FessCoyoB1s5, exhibit singularitiegminima of o¢ ) typical of  tions under investigation. It was found that the values of
metal glasses with such composition and topological ordersjo, for concentrations 21 and 64 at. % Co, which approxi-
leading to the formation of “strong” nanoclusters. This pub- mately correspond to the ratios 3:1 and 1:3 of Fe and Co

Gfp, GPa
N
(=}
I T
\-—‘-;1
-
-
/,/
’
’/

lication is devoted to the description of these results. concentrations, amount to only (60—100) MPa(approxi-
mately of the size of symbols in the figyravhile for other
2. MATERIALS AND METHODS Co concentrations the values &#, are = (350—400) MPa,

i.e., are several times larger than for the two special concen-

Metal glasses of the system §e,Co,B;5 (x=15, 17, trations mentioned above.

19, 21, 25, 30, 40, 50, 64 at.)%vere prepared by rapid

tempering of the melt in a rotating drufplanar flow cast-

Ing) at the In_stltute _Of Physics of the Slovak Academy of 3.2. Plastic (viscous ) fracture of metal glasses of all studied
SciencegBratislava in the form of strips of 10 mm width  ompositions

and 30um thickness. The amorphous state of the strips was ) o )
tested by using x-ray diffractometry. The critical stress Metal glasses of all studied compositioiimcluding

of catastrophic shear was measured at 300 K during extel0Se corresponding to 21, 40, and 64 at. % Co mentioned
sion of samples with a working length of 20 mm at a strain"’}bove experienced viscous shear fracture, which was con-

rate 8.3<10° 5 s on a deformation test machine with a firmed by fractographic observations: the surface morphol-
rigidity of 10 kN/mm. Required separate measurements wer89Y for catast‘r‘op.mc plaftlc shear and fracture had the ap-
made at 4.2 K. Each experimental point fey, was obtained ~Pearance of a "vein-type” ornament formed due to meniscus
by averaging the results of measurements on five sampleQStab'“ty _5‘53 a result Of_ rupture of “guasiliquid

The morphology of fracture surfaces was observed by usinésuperplastl):l layer appearing on the surface of cata-

a scanning electron microscope TESLA BS-300. Strophic plastic shear as a result of local adiabatic
heating'**® Such observations are especially important for

compositions corresponding to minima @f, (Fig. 2) since
they indicate that these minima are not consequences of
3.1. Concentration dependence of critical stress of brittle fracture which leads to small breaking stres§é$put
catastrophic shear are due to low resistance to plastic shear and viscous frac-

The dependence of the critical stresg, of catastrophic ture.
shear of metal glasses dze,Co,B;5 on the cobalt concen-
tration at 300 K is shown in Fig. 1. It can be seen tbat o )
has two minima ak=21 and 40 at. % Co. These concentra- 3.3. Change in critical stress of catastrophic shear upon
tions almost coincide with the points corresponding to theCOOIIng
ratios 3:1 and 1:1 of atomic concentrations of Fe and Co. Table | contains values of critical stress of catastrophic
The pointx=64 at. % Co, which is close to the concentra- shear at 300 and 4.2 K for metal glassegs€6,,B.5 and
tion ratio 1:3 of Fe and Co atoms, also gives a small value oFe;sC0;9B15. It can be seen that in the course of cooling
o1, but we cannot state that it corresponds to a minimunfrom 300 to 4.2 K, the value of this quantity for the first
since no data for higher concentrations are available. composition corresponding to a minimum of, increases

3. EXPERIMENTAL RESULTS
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tic) temperature just by noncrystalline clusters with a high
average binding energy. Such ideas are in agreement with
the stoichiometries of binary eutectics, which were estab-
lished long ago by Hume-Rothery and Andergbn.

The reasons behind the formation of “strong” nanoclus-
ters in ternary metal glassesgge,Co,B;5 with rational ra-
tios of atomic concentrations of Fe and Co are apparently the
same as for composition ordering in binary crystalline
Fe—Co alloys with the stoichiometric ratios 3:1, 1:1, and 1:3
of atomic concentrations of Fe and &dThe gain in binding
energy in this case exceeds the increase in free energy due to
a decrease in the entropy of mixing and configurational en-
tropy.
FIG. 2. Photograph of the surface of catastrophic plastic shear surface and All these results taken together show that the short-range
fracture in axial extension of a strip of metal glass/£®,,B,5 at 300 K, composition ordering occurs during the formation of glasses
obtained by using a scanning electron microscope. in the absence of a long-range ordering. The composition

ordering and the topological ordering accompanying it de-

insignificantly (by 8%), while for the second composition Crease the configuration entropy and increase the average
which does not coincide with a minimum of,, this increase binding energy of atoms in clusters. The decrease in configu-

is much strongetby 32%. ration entropy diminishes the number of possible atomic
configurations in the cluster boundary layer, while the in-
4. DISCUSSION OF RESULTS crease in the binding energy of atoms in clusters increases

the cluster rigidity. Both these effects suppress structural re-
laxation of boundary layers. Besides, the composition order
is inevitably violated at cluster boundaries. This leads to a
It is well known that composition ordering, the forma- loss of strength, i.e., to “weakening” of boundaries.
tion of superstructures or intermetallic compounds of a cer-
tain stoichiometric composition, determine nonmonotonics4.2. Microscopic mechanism of the effect of composition
dependences of the structure and parameters of crystallir@d topological orders on the critical stress of plastic
alloys on their compositiotf° shear
The existence of singularities on concentration depen-
dences of parameters for metal glasses is not obwaopis-
ori (see abovg It indicates that metallic glasses cannot be

regarded as a dlsordered_homog_eneous atomic m!xture of t resses, a diffusive-viscous flow of polyclusters takes place,
components and that their atomic structure contains order hich is similar to a flow of polycrystals according to the

atomic configgrations whose properties are deter_mined b&oble mechanisi According to Lifshits?* both the bound-
the concentratl_ons of_the components. Th|s.|s confirmed, foﬁry diffusion of atoms and the slip along the boundaries are
example, by singularities of the concentration dependenceg, ,1ant in this case. At low temperatures, when diffusion
of critical stress of catastrophic plastic shear in metal glasse§S suppressed, slip is the main mechanism of plastic defor-
which were observed from an analysis of the systems, ation '

9,10 i '
Feio0-xBx™ Iand Fes_xCOBs, nalrlnely, minima (f)f‘afp f%r Internal interfaces in metal glasses are the boundaries
Some Specia _concentratlomas Well as maxima o _t € shear patween clustefdorming the structure of a metal glass. Dur-
mOdU|.US N Nioo-xZTx m_etal glasses for compositions corre- ing low-temperature(nonuniform) deformation, the slip
sponding to intermetallides in the crystalline st&t@his is originating along cluster boundaries acquires features of an

in accord with the above-mentioned composition and tOPOy nstable catastrophic process due to local thermal softening

logical orders observed in metal glasses and with the Nangy the band of adiabatic plastic shé4r® leading to shear
cluster type of their atomic structure established eatfiér. fracture of the metal glass ’

The presence of "strong” nanoclustgrs in a eute_ctic'al- According to the polycluster model of amorphous bod-
loy (such as FgB,;) appears as natural since crystallization ies, cluster boundaries offer a lower resistance to plastic

in a eutectic melt is limited to the minimum possiliEutec- shear as compared to that in the bulk of the clusteFhis

resistance to plastic shear is mainly determined by the atomic
TABLE |. Critical stressesr;, of catastrophic shear at 300 and 4.2 K for Structure of cluster boundaries, namely, the concentratjon
metal glasses FgC0,1B15 and FgsC0;9B1s. of coinciding sites at these boundaries and by the distribution
of local critical shear stresses, at these sites due to internal

4.1. Peculiarities of concentration dependences of
mechanical parameters of metal glasses

Boundaries play a decisive role in mechanical properties
of metal glasses with a polycluster structure. At high tem-
eratures(close to the glass-formation poiffty) and low

ot GPa stresses. The smaller the number of coinciding sites at the

T, K Fes4C0:1B1s FesCo19B1s boundary between clusters, the smaller the resistance offered
300 12 22 by the boundary to plastic shear along it. Figure 3 shows
4.2 1.3 29 schematically a two-dimensional polycluster with a cluster

boundary containing coinciding and noncoinciding sites of
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A(o)l{oc)~eqlep, ()

whereeg is the ordering energy angl, the binding energy
per atom. Usually, the value af, for metals amounts to
1.5-2 eV, whileeg=~kgT,, WhereT is the temperature of
ordering andkg Boltzmann’s constant. For the crystalline
alloy Fe,qCos, To~1000 K2 and hencey~0.1 eV, while
for the alloy FesCo,s5, To~840 K*® ande,~0.08 eV. Con-
sequently, the incremei(o.) appearing as a result of com-
position ordering of Fe and Co in ke ,CoB,5 does not
exceed 0.4o).

As regards the quantitie. and c., their values can
change not only as a result of composition ordering in clus-
ters themselves, but mainly due to the change in the structure
of cluster boundaries accompanying this ordering. It can be
seen from Fig. 1 that the values of critical stresg, of
catastrophic shear for stoichiometric compositions are ap-
proximately half the values for close nonstoichiometric com-
positions. This decrease should be attributed completely to
the change in the values éf andc, as a result of a change
in the structure of cluster boundaries due to composition or-
dering.

The values ot cannot be measured experimentally by
FIG. 3. (a) Schematic diagram of a two-dimensional polycluster with a direct methods of high_reso|ution electron microscopy or

c!uster bogndarﬁdashed lines coinciding siteqcircles anq noncomgldmg‘ ionic-field microscopy so far. For this reason, it would be
sites(semicircle$ at the cluster boundary, and regular sites of neighboring,

locally regular clusters®). (b) Corresponding potential relief along the INteresting to compare the valu_es.qf det.ermined by f(-)r-.
cluster boundar§® mula (1) for metal glasses of stoichiometric and nonstoichio-

metric compositions.

(b)

two neighboring locally regular clusters as well as the corre-

sponding potential relief along the cluster bound?éry_ 4.3. Estimation of the ratio of concentrations of coinciding
The critical stressr,, of plastic shear along the cluster sites at cluster boundaries of metal glasses of

boundary in the absence of thermally activated rearrangeifoichiometric and nonstoichiometric compositions

ments is defined as followsee(14.49 in Ref. 8] We denote bwg“”, Ug}:in’ andcg‘i” the quantities appear-
ing in (1) for a stoichiometric composition and by,
0p=((0¢) ~ 8c/2)Cc=0¢cCc (D of® andc™ the same quantities for the nearest nonsto-

where(o) is the average local critical shear stress at coinCiometric composition. Then we can write

ciding sites on the cluster boundar§,/2 the half-width of miny max miny ma ma max i

the distribution of the values af,, andc, the concentration cgleg = (op og ™) (g ) = g 712)l ({oc)

of coinciding sites at the cluster boundary. — 5minp). @)
Expressior(1) is valid for §.<2(o)/3 andc.=1—cC, - c _

wherec, is the concentration of noncoinciding sites at theFor small @]""*<2(a.)) and large """ *>2(o.)/3)

cluster boundary. Fof.>2(o.)/3, we can used the follow- width of the spread in local critical stresses, the second factor

ing estimaté for the value ofog.: oo.~(0)/2. Thus, we on the right-hand side d#) is close to unity. In these cases,

can write we have the following estimate for the ratio of concentra-

tions for coinciding sites:

(og)/2< U'0c$<0'c>- 2

In the general case, the value of, is close to the critical
stressoy, Of catastrophic shear at which shear fracture of theThis corresponds to disordering of cluster boundaries due to
polycluster takes placeFor this reason, we shall assume in an increase in the concentration of noncoinciding sites for a
estimates that,~ o, and has the same concentration de-stoichiometric composition.
pendencdsee Fig. 1 The ratioc""/cI™ can become smaller if composition

It follows from formula(1) that the observed concentra- ordering is accompanied by an increase in the average value
tion dependence af, is due to the dependences®f. and  of internal stresses in the boundary layer, and hence by an
c. on the composition of the metal glass, and the value ofncrease ins. if 5g~<(ot>)/3. In this case, the softening of
(o) must increase upon composition ordering in the metal¢luster boundaries is due to an increase in the concentration
lic subsystem. The increment of this quantity can be roughlyof noncoinciding sites as well as due to an increase in local
estimated as internal stresses at cluster boundaries.

e eT®= (o™ o ®)~0.5. (5
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TABLE II. Estimated values o€™"/c™ for different types of stoichiometric structures in metal glasses.

Compositions Type of Stoichiometry cminjgmax
Fegs «CoBis: xMin=21; x"¥=19 Ordering in metallic subsystem of nanocluster 0.52
Feys_,CaoBis XMin=40; XxM&*=30 Same 0.53
Féi00-xBx : Xmin=17; x"*=16 Binary eutectic 0.90

The relation(5) obviously gives an upper estimate of the centrations of coinciding sites at cluster boundaries in metal
relative decrease in the fraction of coinciding sites as a resuljlasses of stoichiometric and nonstoichiometric composi-
of composition ordering and the formation of “strong” clus- tions.
ters. It can be seen that the difference is considerably stronger

It should be noted that the values of, appearing in in the case of the kg ,Co,B;5 system than in the kg, ,By
formulas (1)—(3) correspond to the temperature 0 K, while system, which can be the subject of a subsequent experimen-
experimental measurements of concentration dependencestaf verification.

o, Were made at a nonzero temperat(880 K). The tem-

perature dependence of, is determined by the joint effect

of thermal activation, which decreases the valuergf upon

heating, and a decrease of internal stresses at coinciding sites

upon heating, which reduce the valueoaf, . In order to take 5. CONCLUSIONS

into account the difference in the values®f, at 0 and 300
K, we shall use the data from Table | for 4.2 and 300
which gives

K (1) Critical stressesr¢,, of catastrophic plastic shear is mea-
" sured experimentally during extension of strips of metal
glasses kg ,CoB5 (15<x<64) at 300 K as a func-

a?}j“(4.2 K)/oT™(4.2 K)<o™(300 K)/oT™(300 K). tion of the composition by varying the ratio of atomic

p fp p ©) concentrations of metallic components Fe and Co. The
minimaof o, are observed for compositions wikt= 21
It follows readily from(3) and(4) that and 40 at. %, which are close to the rational ratios 3:1
and 1:1 of atomic concentrations of Fe and Co.
iy X ( (rg“”/ag‘a")<a?g”(300 K)/af(300 K). (2) These (;pmpositions are ipterpreted smi'c.hiometric.
7) compositions for the formation of composition ordering

in nanoclusters of metal glasses, which correspond to the
maximum average binding energy for atoms in nanoclus-
ters, and accordingly, to cluster boundaries with reduced
concentration of coinciding sites and lower critical stress
of plastic shear.
) The main microscopic mechanism of the effetvaria-
tion of composition of metal glasses on the resistance to
plastic shear lies in the change in concentration of coin-
ciding sites at cluster boundaries upon a changeoim-
position and topological orders
The ratio ofconcentrations of coinciding sitest cluster
boundaries in stoichiometric and nonstoichiometric
metal glasses for the systems g&eCoB;5 and
Feigo-xBy is estimatedtaking into account the results of
measurements af;, at 4.2 K) on the basis of the poly-
cluster model of the structure of an amorphous solid.
Thus, the hypothesis concerning the decisive role of in-
ternal interfaces in the plasticity of solids is used for
predicting differences in the atomic structure of cluster
boundariesin metal glasses of stoichiometric and non-
stoichiometric compositions.

Then the ratios of concentrations of coinciding sites in
metal glasses kg ,CoB;5 of stoichiometric and nonsto-
ichiometric compositions determined from Fig. 1 are 0.52
(for x=21 and 19 at. %and 0.53(for x=40 and 30 at. %
Consequently, cluster boundaries in metal glasses of indi
cated stoichiometric compositions contain approximately
half the number of coinciding sites at the boundaries in metal
glasses of close nonstoichiometric compositions. This differ-
ence in atomic structure of cluster boundaries determines the
microscopic mechanism of the effect of composition and to—( 4)
pological orders on mechanical properties of metal glasses.

The observed small values of the spread in experimental
values ofo, for compositions of metal glasses correspond-
ing to the ratios 3:1 and 1:3 of atomic concentrations of Fe
and Co can be regarded as an indication of a more standard
atomic structure of cluster boundaries in metal glasses of
these compositions.

The difference in the values af;, for stoichiometric
(eutectig and nonstoichiometric compositions in the system
Fewo-xBy is not so large:*® In the framework of the pro-
posed model, this is due to the fact tiedt"/c'®*<0.9.

A comparison of the obtained estimates of the ratio  The authors are grateful to Dr. K. Csach, J. Miskuf, and
ca"ed™® for the determined stoichiometric compositions of V. Ocelik (Institute of Experimental Physics, Slovak Acad-
various types enables us to estimate qualitatively the differemy of Sciences, Kosigdor their help in fractographic ob-
ence in the average binding energies for stoichiometric andervations of the catastrophic shear surfaces in metal glasses
nonstoichiometric clusters caused by different factors. Tableinder investigation and to Prof. V. D. Natsik for valuable
Il contains all the estimates obtained for the ratios of con-<critical remarks.
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SHORT NOTES

Oscillations of the spectrum of acoustic phonons interacting with composite fermions
A. L. Zazunov and D. V. Fil

Institute of Single Crystals, National Academy of Sciences of the Ukraine, 310001 Kharkov, Wkraine
(Submitted July 7, 1997
Fiz. Nizk. Temp.23, 1345-1348December 1997

The interaction of collective excitations in a composite fermion system with phonon modes is
considered. It is shown that for parameters corresponding to real systems in which the
fractional quantum Hall effect is observed, the phase velocity of acoustic phonons has an
oscillating dependence on the wave vector. The obtained oscillating structure of the phonon
spectrum is determined to a considerable extent by the external magnetic field and electron
concentration. ©1997 American Institute of Physids$$1063-777X97)01312-1

The model of composite fermions was proposed bylJaingas for certain values of the statistical parameter. The spec-
as a possible mechanism of the hierarchy of fractional fillingtrum of collective modes in the system of composite fermi-
factors, which is observed in experiments on fractional quanens and the dynamic form factors were calculated by Simon
tum Hall effect. Filling factors correspond to Hall plateausand Halperif® who proved that the variance of collective
and, accordingly, to the minima of the longitudinal compo-excitations is characterized by the oscillatory dependence on
nent of resistivity tensor. The idea of the approach formuthe wave vector, while the scale and the number of oscilla-
lated in Ref. 1 is based on the assumption that elementajons are determined by the filling factor. The oscillatory
excitations in such a system are composite quasiparticlestructure of the spectrum of collective modes can be con-
These quasiparticles are fermions carrying an even numbdifmed, among other things, by their interaction with lattice
(2m) of flux quanta of a statistical gauge field and a statis-vibrations. This interaction can result in a rearrangement of
tical charge corresponding to this field. In the mean-fieldthe phonon spectrum, which strongly depends on the filling
approximation, we can reduce the statistical interaction to affctor. The present communication is devoted to an analysis
additional magnetic fiel, (acting on statistical charges Of this problem. Similar effects as applied to anyon systems
antiparallel to the applied fiel8. The filling factorsy cor- ~ Wwere considered earlier in Ref. 20.

responding to the integral numbprof filled Landau levels Let us consider a two-dimensional system of completely
in the field AB=|B—B,| correspond to the experimentally polar_|zed_ composite fermions interacting with phonons. The
observed hierarchy = p/(2mp=1). Jain’s publicatiohini- ~ Hamiltonian of the system has the form

tiated a large number of theoretical and experimental works
devoted to composite fermions. The mathematical apparatus H=Hce+Hpnt Hint, (1)
of the model of composite fermions based on the descriptiofy hare
of statistical interaction involving the introduction of an aux-
iliary Chern—Simons gauge field was developed in Refs. 2
and 3 (see also Ref. ¥ Similar models were analyzed in HCFZJ d?rv(r)
detail earlier for systems with a fractional statistisse, for
example, Refs. 598 The idea of composite fermions was 1 ,
confirmed experimentally in a number publications devoted —a(n)Pw(n+ 2 J der d2r [ ()W (r)
to the temperature and field dependence of conducfivity, N
the observation of a magnetic focussing efféct and the —no]V([r=r" DT (r")¥(r')—nel, 2
study of propagation of surface acoustic wat®s® These
experiments proved that thermodynamic and transport prop- hzz W), (b* b, + 1) 3)
erties of the system near=1/2 (for which AB=0) are simi- S v R
lar to the properties of a two-dimensional electron gas in a
weak magnetic field. 1 2 gt N

Another possible confirmation of the compaosite fermion Hint:TS %;4 f dredw (r)‘l’(r)gxq(bAqubM,q)),
model is associated with the study of the effects due to col- (4
lective modes in such a system, which correspond to gauge
field fluctuations relative to the value determinedBy (if W is the fermion fieldmcg the mass of composite fermions,
we use the formalism developed in Refs. 2, Bhe role of ng their average concentration,
such fluctuations is significant in anyon systems: such fluc-
tuations are responsible for the emergence of an anyonic
acoustic mode, and hence superfluid properties of the anyon

mor [—iV+eAs(r)

zZX(r—r")

a(f)ZSDf d?r'[WF(r')w(r')—ng] T E (5
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n
(0) () 0 cuviq_ su0
v=2/3 Kio(d, ) DW(q,w)+mCF5 (1— 649y, 9

where DELO,Z(q,w) is the Fourier component of the current—
-1} current Green’s function for free fermions in the field:
- DI(r i ) =—i(T{j*(r,0)"(r' )}
—ob with the zero current component defined g8(r)
1 =P (r)¥(r)—ng.
0 The calculation owa at T=0 for an arbitraryv gives

Ac/c, 107

1 C]ZEO quch21

2mAwe \ TigA w2, (ch)z(zz"'VA)'
ni (10

- v=3/5 KCq0)=

| Here and below, the upper sign corresponds<al/2m and

] the lower sign tov>1/2m (for a givenm). In formula (10),
-2} Aw.=eAB/mqr is the effective cyclotron frequency,
i va=*=v/(1— @v) the effective filling factor,

Ac/c, 1074

o~ nt X" " I(m-n)
Sime & ) o R e (mn?

X[LE‘”(X)]Zi((m—n—X)Lﬁ‘”(X)

dLy"(x) |’
dx ’

Ac/c, 1074

+2X

= i 1 I wherex=(ql,)%/2,1,=(eAB) Y2 is the effective magnetic
0 0.5 1.0 1,5 length,L"" "(x) the generalized Laguerre polynomial,

1, n=sp—-1,
FIG. 1. Relative change in the velocity of acoustic phonons as a function of _ _
wave vector(q is measured in the units af,=(4mny)*?. fo=) 7 N=p,

0, n=p+1,

the vector potential of the Chern—Simons statistical fieldand p and » are the integral and fractional parts of .
©=2m the field flux carried by a composite particiethe ~ While deriving formula(10), we assumed that the timeof

unit vector along the fiel®, A, the vector potential of the COMPosite ferml_or_1 relaxation is infinitely I(_)ng. Taklng into
effective field AB=|1—¢v|B, V(r)=e%er the Coulomb account the finiteness ofr, we obtain correc_:uons
interaction potentialg the permittivity, b* (b) are the cre- ~(Awc7)™? to the phonon frequency renormalization,
ation (annihilation operators for phononsy,, the phonon which can be neglected if we assume that the condition
frequencies, g,, the matrix elements of interaction of AwcT>1is observed foralb,. _
phonons with composite fermions, askdis the area of the ~ Substituting(7), (8), and (10) into (6), we obtain the
system. For the sake of definiteness, we assume ghat dispersion equation in the form

#0 only for a certain polarization. Then the renormaliza-

2 2
tion of the phonon spectrum is determined by a pole of the (wz—wfq) 2113) —3o| vat3a+ %)
phonon Green’s functiofs, (g, w) satisfying the equation 4 ¢ e
2 2

Gy H(a,0)=[GR(d,0)] "= g7 K*(q,0), ®) - %’% 0. (11)
where G{?)(q, ) is the Green’s function for free electrons ¢ 20
andK®Y(q,w) the polarization Green’s function for compos- ~ Proceeding from Eq(11), we consider the renormaliza-
ite fermions, which is define@in the random-phase approxi- tion of the acoustic phonon spectrum,=cq). The solu-
mation by the matrix equation tions of Eq.(11) corresponding to the phonon mode for

- o0 1 v=2/3, 3/5, and 4/7(filling factors corresponding to the
K™(9,0)=[K™(q,0)] "= V(q), (7) " fractional quantum Hall effettare shown in Fig. 1 as func-
in which the matrix indices assume the valueg @ the  tions ofg. The relative changac/c in the phase velocity is
x-axis is chosen along the vector In Eq. (7), we have laid along the ordinate axis and| in the units of
> 1 i o= (4ny)*2 along the abscissa axis. The matrix element
)= 2m (e & i (g  Of interaction is chosen in the forgy,=Ad(2pdw,q) Y2
g l\ie 0 ' where A is the deformation potentiap the density of the
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v sponding to integral’, . The jump in the derivative is asso-
ciated with the beginning of filling of a new Landau level in
the system of composite fermions as the field decreases by
AB. The inclusion of the localized states between Landau
levels must lead to the formation of horizontal segments on
a the Ac(B) dependence in the regions of kinks.

Thus, the interaction of composite fermions with the lat-
tice for parameters corresponding to real samples in which
the fractional quantum Hall effect is observed can lead to an

B oscillatory dependence of the phase velocity of acoustic

phonons on the wave vector. The emerging oscillatory struc-

b ture of the phonon spectrum will be modified upon a change
\——/\/\, of the applied magnetic field or electron concentration.

-2+ *E-mail: fil@isc.kharkov.ua
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A hypothesis on pairing of helium atoms below thgoint is put forth on the basis of empirical
data on the dynamics GHe impurity atoms in superfluifiHe, that suggest an abnormally
large effective mass ofHe. The role of paired condensate in superfluidity*lde is considered
as well as the possibility of additional experimental proofs of the pairintHaf atoms,

including the observation of vortices with a half-integral velocity circulation quantum1987
American Institute of Physic§S1063-777X97)00112-§

The existence of a coherent condensate of pairdHef abov@ to the total mass ofHe and*He atoms:
atoms in liquid helium below th&-point and its role in the
microscopic structure of the superfluid componggptwere
discussed repeatedly in the literatdiré However, this ques-

tion remains disputable in view of the lack of a microscopicindicatin (in our opinion) the existence of coupled states of
theory of a superfluid Bose liquid and the scarceness of e g P P

X 4 ; ; i
. AT - ) He and®He atoms in superfluid helium.
perimental data in this field. The possibility of coexistence of The fact thatm} is slightly larger than(7/3)ms in a

a one-particle Bose condensatel’o) #0) and the conden- dilute solution ¢1%)3He in “He can be due to the interac-

sate of weakly couples boson paiKsi{,- ¥ _,)#0), which  tion with quasiparticlegphonons considered by Slyusarev
are similar to Cooper pairs in a supercondu’é’[m acertain  and Struminskit* while an increase in the mass to

7
m3+ m4:§ m3:2.333)m3,

extent, was discussed earlfer. m3 = (2.38+0.04)m; in a 5%°He—*He solutiort can appar-
It was proved in Ref. 8, hOWEVET, that such a CoeXiStenC%nﬂy be due to direct interaction betwe%ﬁe atomé-_2
of two condensates, viz., the one-particle condensate) But if 3He—*He solutions contain coupled pairs Hfle

with a small number of particlesng<n), which is “de-  and“He atoms, the ever purtHe below T, must contain
pleted” due to interaction between bosons, and the intensgoupled pairs ofHe atoms since the paired interaction po-
paired condensai@C) formed in the case of a strong attrac- tential for them is virtually the same as the potential of in-
tion in a wide range of momenta+ 0, leads to instability of  teraction betweefHe and*He, and the energy of zero-point
the superfluid Bose system, while the ground state containingibrations is lower in view of the larger reduced mass
only PC without any traces of OC at=0 is stable. Ha_a=my/2 instead ofus_,=(3/4)m,, wherem, is the
Here we pay attention to significant empirical evidencemass of*He atom$. Moreover, the exchange interaction of
confirming the formation of coupled pairs 8He atoms in  two identical Bose particles must also facilitate their pairing.
superfluid helium and consider some consequences of thidence it follows that the superfluid componentin “He can
circumstance. We are speaking of the interpretation of th@e a condensate of coupled pairs*bfe atoms.
origin of the anomalously large effective masg of 3He It should be emphasized that such a condensate is not
atoms in*He—*He solutions:* m¥ =(2.38+0.04)m; accord-  completely identical to the “Cooper” PC® with strongly
ing to heat-capacity measurements witHe concentration overlapping wave functions of boson pairs. This can be
of the order of 1942 andm} ~2.35m; according to impurity  proved by using the approach developed in Rev. 8 for Bose
excitation spectrd (wherem, is the mass of &He atom).  systems with a “depleted” OC and an intense PC, in which
The reason behind such a strong increase in the maddeof the number of particles in the Bose condensaf&n (n is
impurity atoms in superfluidHe requires a serious theoreti- the total number of particlesand the system of Dyson—
cal substantiation and cannot be explairigdour opinion Belyaev equatiorts for the normal3,;; and anomaloug ;,
by only the interaction of elementary excitatiof@as any rate, eigenenergy components assumes the following form to
in the first order perturbation theor}/ within  principal terms in the small parameter
It is worth noting that the value ofn} is close(from  ny/n<1p=p,w)]:
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S=n"Vo+ no/\(p)v(p)ﬂL(P(p), (1)  wheren=y¥(0)/m* (m* is the effective mass of bosons
taking the interaction into accoyntand relation(9) and the

312(p) =NoA(P)V(p) + (p), (20 hydrodynamic asymptotic form
where (W(0)-W(r))>~r=r'| 2
[ d'p’ R ) ) are preserved in the absence of OC.
(’D(p)zlf (2m)* Gu(p)V(p=p)T'(p.p"), ®) A nontrivial solutionW(p)#0 of the integral equation

4 (7), corresponding to the formation of a coherent PC without
lﬂ(p):iJ d_p4 Glz(p’)v(p—p’)r(p,p’)- (4) a OC, exists only when the effective interactibV in a
(2m) wide range of momenta corresponds to attractibiv{0)
Heren’ is the number of bosons in overcondendatecited  which must be stronger than the repulsion between pairs for
statesV,=V(0) the zeroth Fourier component of the initial p—0, required for macroscopic stability of the system to
potential V(p) of paired interaction between particles, Spontaneous compression.
G14(p) and G,4(p) are the normal and anomalous Green’s It should be noted that effective attraction in a certain
functions for bosons['(p,p’) is the vertex component of region of the momentum spac@#0) emerges even in a
interaction taking into account many-particle effects, Bose system with repulsion between particles. If we consider
A(p)=I(p,0)=T(0,p), and V(p) is the renormalized “He atoms to be rigid spheres with an infinitely strong repul-
(“screening”) Fourier component of the interaction poten- Sion at distances<a (wherea is the diameter of &He
tial: atom), the self-consistent potential of interaction, according
to Ref. 19, has the form

V(p,@)=V(p)[1-V(p)II(p,w)] %, (5 _
sin pa
wherell(p) is the polarization operator for bosons: V(p)=Vo ba (10
d4 '

and is negative due to diffraction effectse., corresponds to
attraction in the region ¢r/a)<p<(2w/a). Here we mean
, ' / only the first region of negative values ®(p) since the

T G1P")C1a P = PIIT(P"P)- ©  Jaie ofp=2m/a for a=2.5 A virtually coincides with the
It should be noted that the approximation used in Ref. &inite allowed value of quasimomentupmy,,~2.5 A~1 of
(no<<n,n’~n), which makes it possible to write “trun- elementary excitations in superflufie. It should be noted
cated” equationg1) and(2) for X; andX,, is diametri- that the Bogoliubov spectrum of one-particle excitations in
cally opposite to the Bogoliubov approximatinfor a  an almost ideal Bose RES
nearly ideal Bose gas, in whialy~n andn’<n.

Np)=1 | 553 [Gu(P)Gu(P ~p)

In the absence of OCng=0), the order parameter E(p)= pzuz(p)+_42r/2,
¥ (p) of a coherent PC is degenerate in phase and is defined 4m
for T—0 by a homogeneous nonlinear integral equation: Vip)
dp’ ~ W(p) u(p)= - (11)
V)= [ G TV 5o (D
with the interaction potentiglLl0) is similar to the spectrum
where of quasiparticles in superfluid helidft?® for certain values
2 2 172 of parametergsee Ref. 19 although the main criterion of
g(p):{ p__,u+ nVo+e(p)| —|¥(p) 2] , (8) applicability of the Bogoliubov theor}f according to which
2m the numbem’ of overcondensate excitations is smaller than

andu is the chemical potential for bosons, which, accordingthe numbem, of particles in the Bose condensate, does not
to the Hugenholtz—Pines thedtaking into account1)  hold for the quantum Bose liquifiHe. At the same time,

and(2) for n=0 andn’~n, has the form attraction between particles in a Bose liquid can be enhanced
significantly in the regiorp>(#/a), while repulsion can be
p=211(0)~21A0)=nVo+ ¢(0) =¥ (0). ©) suppressed in the regign<(s/a) due to collective many-

It should be noted that in Refs. 1-8 it was assumed thaparticle effects described by renormaliz¢effective™ ) po-
the one-particle spectrua(p) contains a finite gap #0 for  tentialsV(p) in the vertex part ol’(p,p’). Indeed, an esti-
p=0. According to Refs. 7 and 8, far,=0 this automati- mation of the polarization operatdi(p) of a normal Bose
cally leads to violation of relatio9) as well as the Reatto— gas in the random-phase approximation gives
Chester asymptotic fortffor the paired correlation function 1 Ko K2dk

Y (r)Ww(r')), which is transformed from the power depen- My(p, Q)= f
Eience~|r—>r’|*2 into the exponential dependeneeexp 2m® Jo Q= (p¥Am)+2u— (k¥m)

(—«r—r’]), wherexk~A. However, the presence of the gap m

A in a boson spectrum with an intense PC is not esse(itial ~——<0 (12
contrast to the case of fermiond For this reason, the qua- ma

siparticle spectrum remains acoustic witk-pu for p—0,  for large values of
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®o(p’) .
w0—280(p’)+i5’

woo- [ S vip-p

1,0 o(p)= 2m)? (p—p")

(6—0) (13
with the zero binding energy

wo=— p?2m=0.

o
3

A coherent PC contains only strongly overlapping pairs of
bosons of the type of Cooper paits.

At the same time, the astonishing closeness of the value
of the effective mase} of an impurity*He atom in Hell to
the total massrfi;+m,) of *He and*He atoms indicates the
possibility of formation of coupled states of He atoms, i.e.,
the formation of weakly overlappinfocal) pairs of atoms
owing to strong attraction in the momentum range (7/a)
(see Fig. L Indeed, it is well known that the interaction of
atoms in identical or close energy states is characterized by
the potentialV determined by the mutual arrangement of
atoms(especially by the separatianbetween their nuclgi
For a certain equilibrium distanag, and for not very high
kinetic energies of free atoms, a more or less stable chemical
bond can be formed between atoms as a result of atomic
interaction, whose strength can be judged from the lifetime
of the molecule or from the chemical bond energy. The pos-
sibility of formation of bound states of helium atoms follows
from the data presented in Ref. 22: the equilibrium distance
for the He—He bond is 2.965 A, which is in accord with the
atomic spacing,=3 A calculated for the observéte den-
sity p~0.16 g/cni (we assume that the radius oflde atom
FIG. 1. Initial (dashed curve(10) and renormalizedsolid curves (5) po- !S ~0.5 A)’ while the depth of the_pOtentlal well cor_respond-
tentials as functions of=pa for different values ofa. ing to a stable state of He—He is 0.93 meV, which corre-
sponds to a temperature of the order of 9 K. In the case when
the superfluid component is mainly formed by a condensate
of coupled pairs of atoms, Gastrow’s wave funcfibim the
real space should be used instead of the functifp) in the
Kimax= My Q — (p?/4m) +2u, momentum space:

o

\7, V, rel. units

|
o
)

-1,0

-1,5

o =4

1
o =]] f(ri-rh=exq -5 2 V(ri-rjh|. (149
where() andp are the total energy and momentum of two i< i<

particles. Obviously, the negative signld{p) in the effec-  rpig fynction takes into account many-particle correlations

tive potential(S) corresponds to a suppression of the repul-3q is a4 good approximation for describing the state of liquid
sionV(p)>0 and to an enhancement of attractd(p) <0. 44, 24,25

The dashed curve in Fig. 1 describes the initial poteigtiél
as a function ofx=pa, while solid curves correspond to

similar dependences of the renormalized poteit&gfor dif- coupled pairs ofHe atoms with doubled mass12. A di-

ferent values of the dimensionless interaction paramet§lact proof of this fact could be the experimental observation
a=mVp/am. It can be seen that the integral contribution ¢ 4,antized vortices with a half-integral velocity circulation
from the region of attraction #t/a)<p<(2=/a) can be- 4 anwmx=h/2m,. The available experimental ddta®do
come larger than the contribution from suppressed repulsiofjo; giow us to determine unambiguously the circulation of
for p<(w/a) in Eq. (7) for large values otx. Naturally, the 6 syperfiuid velocitw, around Onsager vortex filaments.
inclusion of Van der Waals forces acting betwéete atoms For example, Whitmore and ZimmermaAmmeasured the
leads to still stronger enhancement of attraction and can fg;ective circulationI” normalized to the densitys of the
cilitate tPe formation of an intense PC in Hell or coupled g herfiuid component, which changes upon a transition from
pairs of *He atoms. the Bose condensate to a condensate of coupled pattseof

It should be noted that the existence of a PC with any;qmg with the doubled massrg of quasiparticles, but with
order paramete¥ (p) #0 does not imply the formation of 5 the concentration/2.

coupled boson pairs in a superfluid Bose liquid since(Zg.
is similar to the integral equation for the wave function of In conclusion, the authors express their gratitude to A. F.
interacting particles in vacuum: Andreev and V. |. Pentegov for fruitful discussions.

Thus, we cannot rule out the fact that the superfluid
component in Hell is mainly formed by a condensate of
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On Hamiltonian formulation of hydrodynamic equations for superfluid 3He-A
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The Poisson brackets for the dynamic variables describing the spin and orbital dynamics of
superfluid®He—A are obtained by using a consistent Hamiltonian formalism. The analysis is based
on the derivation of the kinematic component of the system Lagrangian and on the
consideration of variations of dynamic variables, which leave the kinematic component of the
Lagrangian invariant. Equations of motion for the dynamic variables are derived, and

Galilean invariance of the obtained equations is considered by proceeding from the invariance of
the system Lagrangian to Galilean transformations. 1997 American Institute of Physics.
[S1063-777X97)00212-0

1. INTRODUCTION tutes the main problem. In the case of superflthte—A,
such variables are the spin and spatial anisotropy vectors
This research is devoted to the derivation of the hydro-da(x) andl,(x) as well as the superfluid momentusy(x).
dynamic equations for superfluidHe—A by using the The Hamiltonian formulation of hydrodynamic equa-
Hamiltonian approach. The construction of hydrodynamicsions for superfluiPHe—A at T=0 was proposed by Volo-
of the superfluidA-phase ofHe has formed the subject of a ik and Balatskit* who assumed that the motion of the nor-
large number of publicationisee, for example, Refs. 1 and 2 mal component is frozen and did not write the PB
and the references cited thergiSeveral approaches can be corresponding to the momentum density. We also include the
singled out in this case. Some autioPbased their analysis entropy density in the complete system of PB, which allows
on the microscopic approach, which is model-dependent asg to formulate the adiabaticity condition for processes oc-
rule. This is important for obtaining quantitative estimates ofcurring in theA-phase. For this purpose, we introduce in the
various coefficients appearing in hydrodynamic equationstheory the dynamic variables conjugate to the momentum-
However, the most general form of hydrodynamic equationsind entropy densities, i.e., the displacement vegtor) and
permitted by symmetry conditions can be established onlyhe formally introduced variablg(x) (see Sec. 2 which are
phenomenologicalfy® by using the method of conservation cyclic (the HamiltonianH of the system is independent of
laws. An attempt at constructing nonlinear hydrodynamicthese variablesIn order to obtain a complete system of PB,
equations by using the Lagrangian formalism was also madg@e follow the variational principle described in Ref. 12, ac-
by Khalatnokov and LebedeV.Here we proceed from the cording to which the structure of the Poisson brackets of the
Hamilton approach™*? It should be noted that the concept dynamic variablesp,(x) is essentially determined by the
of intrinsic orbital angular momentuthassociated with the orm of the kinematic componertt,(¢,¢) of the Lagrang-

angular momentum of Cooper pairs plays an important rolqean, which can be found from the relation
in all approaches. We introduce the intrinsic orbital angular

mome.n.tum asa generator of spatial rotations of the variables | _ L(@,0)—H(g)= f d3XF (X ) @, (X)—H()
describing liquid-crystal degrees of freedom.

The determination of Poisson bracké®B) of dynamic [ is the Lagrangian, H(¢) the Hamiltonian, and
variables plays a fundamental role in the Hamiltonian ap _(x;¢(x’,t)) a certain functional of the dynamic variables
proach. In contrast to ordinary mechanical systems, the PR (x)], and by the variations of dynamic variables
of dynamic variables for condensed media have a nontriviaky (x,t) = 8¢ [X;(x',t)], which leave the kinematic
structure. In the case of normal physical systems, the decomponent invariant. The latter can be represented in the
scription on the hydrodynamic stage of evolution is con-form
structed on the basis of densities of additive integrals of mo-
tion whose, PB are well known. A description of a system 0¢a(X) ={@a(x).G}, @)
with spontaneously broken symmetry involves the introducwhereG is the generator of infinitely small canonical trans-
tion of additional hydrodynamic parameters that are not asformations, which is defined, in accordance with the general
sociated with conservation laws, but are due to the broketheory!? as
symmetry. Since these additional variables have no operator
expressions in the secondary quantization representation, the G:J A3XF (X, @) 8¢ (X). 2)

PB for these variables can be obtained by simple computa-

tion of commutators as usual in a quantum-mechanical deri- This class of variations can be extended by supplement-
vation of PB. The construction of PB for dynamic variablesing the Lagrangian with the total time derivative of an arbi-
associated with symmetry breakirigoth with the densities trary functionaly(¢), which leads to a new definition of the
of additive integrals of motion and with one anotheonsti-  functional F ,(X,¢):
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Fo X e(x ) ]=FLX e(x")]=F (X, e(x")) by translations in the space of all the variahble&), 7(x),
o(x), and¢(x) and can be written in the form
Sy(e(x"))

0@, (X)
; here;(x) is the momentum density associated with trans-
An advantage of the approach developed here is that |’ =
v g PP velop ! \ations in the space of variables(x) and m;(x) only, while

allows us to obtain PB by considering the most general ca-

N . . / :
nonical transformations of dynamic variables, which are dei (x) is associated with translations in the spaces¢x)

termined from the requirement of invariance of the kinematicf"lnd ¥(x). Since the quantitieg(x) and o(x) are general-

component of the Lagrangian constructed on the basis of thged coordinates and momenta, the quandifyx) is defined
functional F.[x,¢(x")]. These transformations not neces- as

sarily belong to a group with broken symmetry. Moreover, 77(X)=a(X)V;#(X).

the application of dynamic variables allows us to write the _ ) ) )
Lagrangianas well as its kinematic componeii a simpler For th|s_ reason, the momentum densﬁyx) associated with
form than in the case when the Lagrangian is written in termdransiations in the space of the variablgfx) and;(x) has
of physical dynamic variables through which the state of thdn® form(5), which leads to the structure of the functional
system under investigation is described. The complete pBk(X) n (4)1 . .

algebra obtained on the basis of such a kinematic component USing “i(x), we can obtain the following PBthe ex-
permits subsequent separation of subalgebras correspondiﬁﬂ‘ples of corresponding canonical transfgrmaﬂons are given
to physical variables. It should also be noted that the variall R€f- 12; here and below, we shall write only nontrivial
tional principle used by us leads to PB automatically satisfy—PB):

ing the Jacobi identity. Since the structure of kinematic com-  {7,(x),o(x')} = — o(X)V;8(x—x’),

ponent of the Lagrangian plays the basic role in our analysis,

our next step is the obtaining of the functional  {mi(X),¥(x")}=3(x=X")Vi(X),

L= Jd3x Z(x) for superfluid®He-A. {00, (X' )} = S(x—X")

{ui(x), m(X") } = by (x) S(x—x"),

2. KINEMATIC COMPONENT OF LAGRANGIAN AND PB I — / / /
(X)), (X)) =1 (X)V S(X—X")— 7 (X") V. &(X
o SUPERELUID SHoa {00, X )} = ) V] 8(x=x") = mi(X') Vo

mi(X) = i(X) + 7 (X),

, , , , , —x'). (6)
Let us first consider for illustration the construction of _ . _ .
the kinematic component of the Lagrangian for classical conJhe obtained density of the kinematic componehtof the
tinuous media. If we disregard in this case the processelsagrangian corresponds to continuous media. We can easily
associated with entropy transfer, the functiongl(x) has  9generalize this functional to the case of magnetoelastic me-

the form® dia. For this purpose, we write the density of the kinematic
o L component for a magnet characterized by complete sponta-
Z(x)=m )by O uj(x), by (X) = & = V;ui(x), neous breaking of symmetry relative to spin rotatigbeo-

(3 kenSO(3) symmetry:16
where 7i(X) is the momentum density;(x) the displace-
ment vector, and; the Euler coordinate of an element of a Z(X)==5,(X)w,(X), ®
continuous medium. Using the kinematic compon@twe
can obtain PB for the variableg(x) andi(x). Besides, in  Heres,(x) is the spin density ana,z(x) the rotation matrix
order to derive the adiabaticity equation, we must know theyhich is an additional dynamic variable describing the
PB of the entropy density(x) with the remaining dynamic  preaking of symmetry to spin rotatiorithe three angles,,
variables. For this purpose, we write the kinematic compoparametrizing the rotational matré, ; are conjugate to the

1 _
aEE Saﬁy(aa)yﬁ- (7)

nent of the Lagrangia(B) in the form three spin components,). Using the functional%,(x) in
. H 6
)= T (0b; 0050 — () (x), (4 (7). we can obtain P&
where {Sa(X)ISB(X,)}:Sa,BySy(X)5(X—X,)a
lTi(X):Wi(X)_U(X)Vilﬂ(X). (5) {aaﬁ(x)ls'y(X’)}:aap(x)gpﬁya(x_xl)' (8)
The variabley(x) which is conjugate to the variable(x) It was proved in Ref. 12 that the momentum density

has been introduced in the kinematic component formallyassociated with translations in the space of variablgs)

and should be regarded as cyclic in the derivation of theénda,s(X) is defined as

equations of motion. The origin of the second term in for- 1

mula(4) is evident, while the structure of the quantiiy(x) T=S,0,i, 4= > eqp(aVid),g.

requires clarification. Note that the momentum densifx)

in (3) is associated with translations in the space of the variConsequently, the density of the kinematic component of the
ablesu;(x) andr;(x). When we introduce the new variables Lagrangian for magnetoelastic media can be written in the
o(x) and ¢(x), the momentum density;(x) is determined form

956 Low Temp. Phys. 23 (12), December 1997 A. A. Isayev and S. V. Peletminsky 956



Z)=T(X)b; LX) Uj(X) = 0(X) Y(X) = S4(X) @4 (X). omi(X) == V[ 8% (x) i (X) ] = m;(X) V; 6% (x),
O 0=y 080, S0 ==X ()T (),
5a(x) =~ V[ 3%()0 ()],
85,(X) =~V [5,( 3],

where
Ti=T—0Viy—S,w,. (10

The last term in formuld9) is the density of the kine-
matic component of the Lagrangian for magnetic systems. da,g(X)= — dX;(X)Via,g(x) (15
Accordingly, the momentum density; is a generator of

X : . ! also the variation
spatial translations in the space of variahles;, o, ¥, s, ,

anda,g, the momentum density{ =o'V;¢ is a generator in 8&(X)= =V (&(X) X (X)),
the space of variables and ¢, and the momentum density _
m=S,w,; IS a generator in the space of variabkesand 99i(x) = =~ x(X)Vigi(x), (16)

a,s. Consequently, the momentum density associated witkvhich leave the kinematic component of the Lagrangian in-
translations in the space of variablesand r; has the form variant. On the other hand, variatiori$6) can be repre-
(10), which determines the structure of the density of thesented, in accordance with) and(2), in the form

kinematic component9) of the Lagrangian. The application _ _

of the functional %, (x) in the form(9) leads to two more PB 96 ={&(x).G},  40i(x)={gi(x),G},

in addition to(6) and(8): where G is the generator of transformatio5) and (16),

(%), 5,06 )} = — 5, () V; S(x—X'), which is defined as

{mi(X),8,5(x")} = 8(X—X")Viap(X). (11 G=J d3x< i (X)by; (%) 8uj(X) — (X) Sih(X)

After these preliminary remarks, we are ready to write
the kinematic component of the Lagrangian for superfluid
3He-A. It follows from the above analysis that the construc-
tion of translation operators and their densities for various

1
- E saﬁ'ysa(x)a,u’y(x) 5a,u,8(x) - gi(x) 6g|(x)

physical fields appearing in the Lagrangian plays an impor- — & (X) 897 (X) :f d3xr;(X) 6% (X).

tant role in determining the structure of the kinematic com-

ponent. The dynamic variables for superfldide—A are the  This leads to the PB

number density of particles(x), the densities of the mo- . .

mentumar;(X), spins,(x) and entropyr(x), and the vectors {m(),&dX")} == &) Vid(x=x').

of spin d,(x) and spatiall;(x) anisotropy as well as the {71(X),G(X")} = Vi gi(X) S(x—X") (17)

superfluid momentunp;(x). We also include in dynamic

variables the density of intrinsic orbital angular momentum(similar expressions can be obtained for complex conjugate
I;(x) associated with the angular momentum of Cooper pa|rélua“““es§k andgy).

We write the density of the kinematic component of the La-  Let us first consider the spin dynamics of thephase,
grangian, which will be used for obtaining PB of dynamic Which is described by the spin densgy(x) with the unit

variables of theA-phase: spin anisotropy vectod,(x). We define the vectod,
. . through the formula
LX) =a(X) by T (X)U; (X) — o(X) P(X) — Sp(X) w (X
K00 =700 (0 4(X) = 70 #(X) = Se(X) @(X) d.-dsa, 8
—& q:(X) — & q*
&)Gi(x) =& 00 g7 (), (12) whered is an arbitrary constant unit vector ard; the
where rotational matrix introduced by us in the analysis of a magnet
_ o % with brokenSQ(3) symmetry. Carrying out the convolution
Ti= M= OVih = Seai = &Vidk— & Vi - 13 of the vectord,, with the rotational matrixa, in formulas

Here &(x) andg;(x) are certain generalized complex coor- (8) and(11), we obtain the algebra of PB for the variables
dinates and momenta through which the physical dynami€.(x) andd,(x):

vgriablesn(x), 1i(x), pi(x),_ and’li(x) will be expresseq. {82(X),55(X' )} =8 45,5,(X) S(X—X'),

Since the part of the functionak,(x) containing the vari-
ables¢; andg; has the standard form known from classical {84(X),dg(X") } =& 45,d,(X) H(X—X"), (19

mechanics, the following formulas are valid: as well as PB with the momentum density(x):

{fi(x),gk(x’)}={§i*(x),g:(x’)}:5ik5(x—x’). (14) {ﬂ. (X) Sa(X }__ V 5()( X )
The momentum densityr;(X) in (12) is associated, as be- e ,
fore, with translations in the space of the variahigs) and {71(X),do(x)} = S(X=X) Vido(X). (20)
7;(x) and is constructed in analogy with the previous cases. The Poisson bracket&9) and(20) form the basis of the

Henceforth, we shall need the PBm;(x),&,(Xx")}, derivation of equations in spin dynamics of the superfluid
{m(X),9k(x")}. In order to derive these PB, we consider, A-phase. Equations of motion in the Hamiltonian approach
along with the variations have the form
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Pa(X)={@a4(X),H} Sm(X) =i &(X)9k(X) + & (X) gk () 1V 8¢(X), (27)

[¢4(X) are dynamic variablgsThis gives which leave the kinematic compone(it2) invariant. Ac-
SH SH cording to(2), the generator of transformatio(6) and(27)

sa+Vk(vESa)=saﬁy 5_3,35#@(17)’ has the form

| 5H oH 6= | @10 50,0,

da+(UEVk)da:8a,875_SBdw 1)255—77'(. (21)

. - () =gkl § +E X (X)].

These equations are a generalization of the Leggett L= £00gxx)+ &7 (X)gi ()] 28
equation$’ taking into account the motion of the normal The quantityl;(x) defines the generator of local rotations
component. (26) and will be interpreted by us as the intrinsic orbital

Let us go over to an analysis of orbital dynamics. It isangular momentum of Cooper pairs in tAephase(see be-
characterized by the variablas(x), n(x), (x), li(x), low). Taking(28) into consideration, we obtain the following

pi(x), and];(x). We introduce physical dynamic variables expression for variationg;(x):
n(x), 1;(x), p;(x), andl;(x) connecting them with the gen-

eralized coordinates and momerggx) and &(x). Let us omi(X)==1;(x)Vidp;(x).
consider infinitely small phase transformations with thegp the other hand, we have
phase Zo(X):

06i(X)=2i6e(x)&(X),  69i(X)=—2ibe(x)gi(X), omi(x)={mi(x),G}, G=fd3X_|i(X)5QDi(X)-

5§|*(X) =—2i §¢(X)§|*(X), 5g|*(X):2| 5@()()9;'( ((X)) This gives the PB
22

The density of the kinematic compondiP) remains invari- 1mi (3.1 ()} =10 Vi 8(x=x"). (29
ant if we also consider the transformations of the momentunpet us now define the spatial anisotropy vectpmand the
density along with transformation(@2): superfluid momentunp; through the formulas

5m(X) = = 2i(£0091(X) — & (XgF (X)) Vicde(X). o i L
(23 li=ieijg;0k Dizw (9kVigk —gk Vigw. (30
According to(2), the generator of transformatiofi22) and ]
(23) is given by Under the local phase transformatio(®2), the vectorl,
does not change, and the superfluid momentum is trans-
G:f &Pxn(x) So(x) formed according to the law
pi—pi =pi+Vie.

— * *
neO=21L6(08i0) =& (097 ()] 24 Suppose that we are treating the quantiteg’ , g°, and
The quantityn(x) defining the generator of local phase gi*2 as dynamic variables. Considering that
transformations has the meaning of the number density of
particles. Then it follows fron{23) that H= | d®e(x),

om(X)=—n(X)V, S (X).

On the other hand, presenting the variatiém,(x) in 80 =8Da(X),n(x"), mi(x) 1 (x), pi(x"),Li(x")]

(31
the form
(we write here the energy density as a function of only those
S X)={m(X),G}, G:f d3xn(x) de(X), variables that describe orbital dynamies well as represen-
tations(24), (28), (30) and the PB(14) and (16), we obtain

and considering that the functiahp(x) is arbitrary, we ob- the following equations of motion for these variables:

tain the PB P

{m(X),n(X )} = —n(X)V8(x—X"). (25) (ﬁt+v'v')gkgk 0,
Let us now consider infinitely small rotations of the vectors
& andg;: E+UPVi+4iM)g§:0,

0&i(X) = €ij 09j(X) €k(X),  8Gi(X) = &ijk 0@;(X)gi(X).
(26)

d . ) w2 SH
E'H)ivi_‘“:““ gx“=0; K= (32
(6¢; are rotational anglgsand similar expressions for com-
plex conjugate quantitieg® andg; . Along with transfor-  which have trivial solutions
mations(26), we also consider transformations of the mo- s 4o
mentum density gk=9k =0 (33
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and g,gx =C (C is a constant independent of coordinatesHaving obtained this algebra, we consider the interpretation
and tim@. Henceforth, we assume th@=1 everywhere, of the quantityL;= fd>xl;(x) as intrinsic orbital angular mo-
ie., mentum. For this purpose, we also introduce the orbital an-
* gular momentumL?zdeXSik,ka constructed with the
99 =1. (34) help of momentum densityr;(x). In accordance with(6),
Thus, the vectog, is a normalized complex vector whose the quantities.?, P;=[d®x;(x) satisfy the well-known PB

square is equal to zero, which permits the following repre-
sentation: {PI ' J} €ijl P| ' {LI ' J} 8IJkLk

1 It follows from (38) that the quantitieg; and P; satisfy the
9=— (A+iAy); A2=A2=1, A,;A,=0. (35  relations

P H 0 I— y L
Taking relationg33) and(34) into account, we find that the {PiLb=0. fLiLi=sid.
spatial anisotropy vectdy is a unit vector (. 1), while the  Noting that{L ,Lj}=0, we obtain the following relations
superfluid momenturp; is finally determined by the expres- for the total angular momentuig = L°+L

sion
{Pi’Lj}:sijkPk’ {Li’Lj}:sijkLk'

i
2 (9«Vigk — 9k Vigw- (36)  In addition, it follows from relationg38) that under trans-
formations with the generatdrio, the quantitiesn(x) and
The vectorsA,, A, and1=[A;A,] form local quantization |,(x) are transformed as scalars:
axes in the microscopic theory. It follows from definitions
(30), (36), and the representatidB5) that the vectorg; and {n(x),L%}=—ejaxVin(x),
[, are connected through the Mermin—Ho identity 0
), Li = —ejaxVili(x),

1
ViPk= Vipi =5 1 (VilXD[Vi1V,1]. (37)  while the quantitiesr;(x) andp;(x) are transformed as vec-
tors:
It can easily be seen that the superfluid momenpirdoes o
not change upon simultaneous fulfillment of the phase trans-  {7i(X),L;} =&y m(X) — £ XV 7i(X),
formation(22) and rotation around the directidthrough the 0
angle P, for which 8¢;=2l;8¢ (combined phase—rotation {Pi(x),Lj}=eijipi (%) = &jaXk Vi Pi(X) .
invariance. . .
Formulas(24), (28), (30), and(36) solve the above prob- On the other hand, under transformations with the generator

lem on the relation between the dynamic variabhég), foJr’mtePde quantitiesn(x), i(x), and pi(x) are not trans-
L;(x), 1;(x), pi(x) and the generalized coordinates and mo-

mentag;(x) and &;(x). Using the above representations and {n(x),L}={m(x),L;}={pi(x),L;}=0,

PB (14) and(16), we can easily find the following algebra of

PB for variables describing orbital dynamics of superfluidwhile the spatial anisotropy vectéi(x), which is similar to
3He-A: the director vector in liquid crystals, is transformed accord-

ing to the law
{10, Lk =eijil k(%)

Thus, the intrinsic orbital angular momentunti;
= [d3xl;(x) is introduced by us as a generator of spatial

{mi(x), me(x") }=m(X) V] 8(x—x")
—ai(X")V 8(x—x"),
{mi(x),n(x")}=—n(x)V;5(x—x"),

{m(x), 0 (X" )} = — o(X)V;8(x—X") rotations of variables of the liquid-crystal type and possesses
ne ' ’ properties similar to the spin angular moment@mn It fol-
ai(X),1i(x")}= 8(x—x")V;l:(x), lows from PB with the quantities® andL; that, under trans-
J J i

formations with the total orbital angular momentum, the
{mi(x),Lj(x")}= =10 Via(x—x"), number density of particles(x) is transformed as a scalar:
{Wi(x),pj(x,)}:(vipj _Vjpi)é(x_xl) {n(X),Lj}: _Sjk|XkV|n(X), while the qua.ntities 7Ti(X),
pi(x), andl;(x) are transformed as vectors:
—Pi(X)Vjo(x=x"),

{wi(X),Lj}=&ijiw(X) — & XV Wi (X),
{n(x),pi(x")}=V{ 8(x—x"),

wi(X) ={m;(X),pi(X),1;(x)}.

1
i), py(x)}y= 5 (X )Vio(x=x"), The condition of rotational invariance of the energy density
of the system is formulated with the help of the total orbital
1), 1 (x")}=gijld(x—x"), angular momentun; and has the form
1), (X" =gl d(x—x"). (39 {Lie()}=gixVie(x). (39
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3. EQUATIONS OF ORBITAL DYNAMICS tik:tisk"'tiak , (44

Before we write equations of orbital dynamics, the fol-

de
lowing circumstance is worth noting. Since Cooper pairs p6|k+ jivRtpi — 3 +Vil, = v, I +(|<—>k)
possess an orbital angular momentum and an intrinsic orbital Px
angular momentum of densitly, the quantityl; makes a 1 . o1 .
contribution to the total momentum density +3 Ls(eirs Vivp+esVol) - 2 (1; curhy
_ 1 + 1y curliv”),
Ji:7Ti+§CUr|i:_L (40)
(3 o P
ik— A~ T Tmi— €i e
ik 2 €ikm 2 m &p mj mj ikm'k ﬁvjli

(upon such a redefinition, the total momentum remains un-
changed.f d®xj;(x) = [d*xi(x)). Accordingly, the energy andp is the pressure,

density(31) is a function of variablesr; andl; only through

the momentum densitj : de 1

p=—a+Ta+,un+kak+saa El-k curlv™;
e[x;o(x"),n(x"),mi(x"),i(x"),pi(x"),Li(x")]
_ _ de _ de de
=e[xo(x),n(x).Ji(x).pi(x")]. (42) =590 M=o ~Vegwa:
It follows immediately from this equation that We denote the symmetric and antisymmetric components of

stress tensor i44) by t5, andt, respectively. While sepa-

1 SH AH  AH rating the symmetric component of tendgr, we have used

w==curl V", w= V= — - (42 of the rotational invariance conditiof89), which can be

2 o om 5] written, after the evaluation of PB, in the form

e., local rotation of the normal component is of the rigid- de de de de 0

body type. The orbital angular momentum constructed  Ziki| zr- 11+ o5 Vil + 250 Vel 20 pI+UkJI) =0
from the quantityL;= fd3 X8|k|ij| , is the sum of the orbital
angular momentunIL,O Jd3exm and the intrinsic an-  Although the stress tensor has the antisymmetric component
gular momentunt;= [ d3xl;(x) and coincides with the total (that has the form of spatial derivativehe following differ-
orbital angular momentun|1i=Li°+ L;. Thus, we include ential conservation law is valid for the density-j] of the
just for the momentum density in the system of hydrody- total orbital angular momentum:
namic equations the equation of motion. 3

The system of PB38) forms the basis for deriving hy- — (eiXui) = — Vs

drodynamic equations for superflufHe—A. In the local at
limit, when the energy density(x) has the form

1 oJe
8ik|th|s+§ li — ps +7is |-

It can be easily seen that equatiqd8) are compatible with
) the Mermin—Ho identity:
e(x)=e[o(x),n(x),]i(x),8a(X),1i(X),

J
Vidi(x),pi(x),d (X1, p (Vipk Vipi— 1 [V |><Vk1])

taking into account the Mermin—Ho identit@7), we obtain  The dynamic equation&43) obtained by using the Hamil-
the following hydrodynamic equations for tiephase: tonian approach are generalizations of corresponding equa-
tions from Ref. 1 to the case of Galilean-noninvariant
_ systemd and also include the equation for intrinsic orbital
=0, o+Vi(v{'o)=0, angular momentum. The last equation(#8) is not written
as a rule while formulating equations of orbital dynamics
since intrinsic orbital angular momentum is small in view of
+El-(Vi1Xi]=0, (43) strong over_lapping of_Coqper paits~p(Ag/e)?, in the
2 weak-coupling approximation and @t=0; see Ref. 1B It
follows from Eq.(43) that the inclusion of the motion of the
) 1 i normal component cannot be reduced only to the emergence
li+ (0Vi)li+ 7 [Leur V=0, ji=—Vil, of convective terms; the terms proportional to cutl and
associated with vortex motion of the normal component also
appear. This can lead, for example, to the drag effect, i.e., the
| AV )+ [1curl V"], +[1-h]+ = Vk(' ‘98) 0. generation of_translatio_nal motion of the superfluid compo-
ap nent by rotational motion of the normal component with
V(I curlv") # 0 (see the equation for the superfluid momen-

Heret;, is the tensile stress tensor tum p;).18

de
vin+ —

n+V; T
I

. 1
p;i+V; vkpk+,u+ I curl v"
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If a system possesses Galilean invariance, the energgppearing in the density of the kinematic component of La-
densitye(x) under Galilean transformations with the param-grangian(12). According to(6), the Hamilton equations of
eterv obeys the law motion for these variables have the form

S n n —

£ (X)=g(X—Vt)+ ] (x—Vt)v;+ % p(X—Vvt)v?, U=bjop, gt (iVg=—T
and can be integrated after finding solutions of E48). We
p(X)=mn(x) (45) can give a simple physical interpretation of the variable

) 3 o u;(x,t), which is in accord with the meaning of this variable
(m is the mass of aHe atom). The application of the energy i the density of kinematic component of Lagrangidn For

functional satisfying the propert{45) leads to a system of ;g purpose, we define the functian=x;(£,t) implicitly by
hydrodynamic equations, which also possesses Galilean irl‘jsing the equality

variance. In order to verify this, let us first prove the Galilean
invariance of the system Lagrangian that corresponds to the X;(&,t)=§& +u;[x(&,1),t], &=const. (50)
kinematic component12). Then the variational principle _. . _ ,

will also lead to Galilean invariance of Eqgl3). In accor- |.3|ffe1engat|onhof b?th. s_|dssb of formules0) W'tr: respecg tq
dance with(12), the density of the system Lagrangian has theliMe leads to the relation; = by;x; . Consequently, we obtain

form xj(&0)=0].
_ Thus, we conclude that the functioq(&,t) which is
,,,%(x)zFi(x)bﬁl(x)uj(x)—g(x) P(X) — S, (X) @ 4(X) defined by relation(50) and the quantity; are the Euler
i coordinate and the vector of displacement for the normal
—&E()Gi(X)— & (g (X) —&(x). (46)  component respectivelithe quantity&; has the meaning of

The transformation properties of the variables appearing irtlhe Lagrangean coordinate of the same elejnent

(46) to Galilean transformations are determined by the for-
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remark concerning the dynamics of cyclic variahlesandys  Translated by R. S. Wadhwa
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SUPERCONDUCTIVITY, HIGH-TEMPERATURE SUPERCONDUCTIVITY

Pinning and dynamics of magnetic flux in YBaCuO single crystals for vortex motion
along twin boundaries

A. V. Bondarenko. V. A. Shklovskij, R. V. Vovk, M. A. Obolenskii, and A. A. Prodan

Kharkov State University, 310077 Kharkov, Ukrdine
(Submitted June 19, 1997
Fiz. Nizk. Temp.23, 1281-1288December 1997

Current-voltage characteristics of YBaCuO single crystals are studied for a Lorentz force aligned
along the twin planes. The temperature dependences of the depinning critical currents are
determined in magnetic fields that are parallel or tilted with respect to the twin planes for magnetic
field vectors oriented almost along axisA nearly 50% decrease in the critical current in

parallel magnetic fields is attributed to the plastic flow of vortices along channels formed by twin
boundaries. It is shown that the resistance to the viscous flux flow is described quite

correctly by the Bardeen—Stephen model. The peculiarities in the current and temperature
dependences of the differential resistivity at temperatures higher than the melting point but lower
than the temperature of onset of vortex pinning by twin boundaries are attributed to the
coexistence of solid and liquid vortex phases in this temperature region. A large number of peaks
observed in the current dependences of the differential resistivity in a parallel field at
temperatures below the melting point of the vortex lattice is associated with nonuniform indirect
vortex pinning caused by the fluctuations of the separation between twind.99@

American Institute of Physic§S1063-777X97)00312-3

A large number of magnetic® and resistiv&®studiesin  dependence is also observed for orientation of vektdn
YBaCuO single crystals have shown that twin boundarieghe vicinity of the axisc if the vortex motion is transverse to
(TB) affect significantly the magnetic flux pinning and dy- the TB planes, i.e., if the current vectdris parallel to the
namics. This influence is associated, on one hand, with thab-plane and the TB plareAn entirely different angular
difference in the energies of vortices localized at the TB andlependence of the critical current is observed for orientation
those in the bulk of the superconductor and, on the otheof vectorH in the vicinity of thec if vector J is oriented at
hand, with an increased pinning of vortices localized at thean angle of 45° to the TB plane. For such a geometry of the
TB as compared to the vortices lying outside the TB planegxperiment, the minimum of the critical current observed for
as vortices move along twins. In particular, experiments orHlc is transformed into a peak with increasing electric field,
the decoration of the vortex structure for a magnetic fieldwhich is used to determine the valueXyf.” Experiments on
orientation along the axis have shown that the energy of visualization of magnetic flux propagation fddlc,* in
vortices localized at the TB is about 2% lower than else-which the induced current vector is also parallel to the
where in the bulk of the superconductoFhis difference in  ab-plane of the crystal and oriented at an angle of 45° to the
the energy results in a bending of vortex filaments in mag-TB plane, show that the magnetic field penetrates the crystal
netic fields tilted relative to the T8 if the disorientation along the TB planes. Such a behavior is probably associated
angle # between the magnetic field vectbt and the TB  with a considerably anisotropy of pinning at the TB: the
plane does not exceed a certain critical vala€: for critical current for transverse motion of vorticaglative to
|| < 6*, a part of the vortex filament is trapped by the TB the TB plang is about 10 times higher than the critical cur-
plane. rent for longitudinal motiort* Such a strong anisotropy of

The guantity#* depends strongly on the orientation of pinning must result in a directed motion of the magnetic flux
the vectorH relative to the crystallographic axes. This de- along the TB planes foH|ic and 2 J, TB=45°. Hence the
pendence is determined by the superconductor anisotropyeculiarities of the dependendg(#) for orientation of vec-
which is estimated for YBaCuO as=(m/M)¥?=6, where tor H in the vicinity of the axisc, are probably associated
m andM are the longitudinal and transverse electron massewith peculiarities of the magnetic flux dynamics for vortex
relative to theab planes. Experimental studies have revealednotion along the TB planes.
that 6* =3-7° for HLc,>%® while #* may attain values The present work aims at experimental study of pinning
between 15 and 35° fallc.>~’ and dynamics of magnetic flux in YBaCuO single crystals

An increase in the pinning of vortices at the TB leads tofor magnetic flux movement along TB planes. We shall
a specific angular dependence of the critical curtkntfor  present the results of measurements of temperature depen-
|6 < 6*, the critical current decreases monotonically withdences of the electrical resistance and current—voltage char-
increasing anglé® as the fraction of vortex filaments trapped acteristics of bridge 1 in a magnetic figtiparallel to TB, as
by TB decreases far L c.>31213An analogous temperature well as in a magnetic field oriented at an angle 9° rela-
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FIG. 1. Schematic diagram of bridges and experimental geometry.

FIG. 2. Temperature dependences of resistiviight symbols and resis-
tance to viscous flux flowdark symbols Circles correspond to the field

tive to the TB plane, if the field vectdt is oriented in the orientationHilc, while triangles correspond to the field tilted to the TB
vicinity of the axisc plane. Crosses show thgT) dependence foH =0. Solid curve describes

; . the temperature dependence of the resistance to viscous flux flow in the
Single crystals of YBaCuO were grown by the solution— Bardeen—Stephen model for, /dT=— 1.8 TIK.

melt technique in a gold crucible and were saturated in oxy-

gen flow at 420 K for three days. Two bridges of width 0.2

mm were cut from a crystal of sizexd3 mm in theab-plane  tional kink on thep(T) curve in magnetic fields tilted rela-

and thickness=15 um as shown in Fig. 1. The transport tive to TB® Under the given experimental conditions, the

current passed along theb-plane. Electrical contacts were value of T,, is approximately equal to 86 K.

made by burning-in of the silver paste. Owing to a large area  According to measurements, the IVC are linear at

of the current contact&@bout 3 mm), the transient electrical T>T,, i.e., the vortex liquid is not pinned in this tempera-

resistance was less than T, thus enabling measurements ture range. The IVC measured B& T,, for ¢=0 and for

in a constant current up to 0.5 A without overheating of theangles#=0 and 9° are shown in Figs. 3a and 3b, respec-

current contacts. tively. It can be seen that in this temperature range the IVC
It can be seen from Fig. 1 that the transport current vecare essentially nonlinear for low values of transport current

tor is oriented at right angles to twin boundaries in the firstdensity, i.e., the vortex system is in the pinned state. Figure 4

bridge and parallel to TB in the second bridge. The goniomshows the current dependences of differential resistivity

eter makes it possible to rotate the sample about two muty ,(J)=dE/dJ. It can be seen from the figure that at tem-

ally perpendicular axes parallel to TB in bridges 1 and 2 angheratures smaller than 87 K, thg(J) dependences attain

lying in the plane parallel to thab-plane of the crystal. The saturation for large values df This means that a transition

error in setting angles was approximately 0.2°. The orientato the linear dependendg(J) is observed with increasing

tion Hilc was determined from the minimum observed ontransport current density, which might indicate the condi-

angular dependences of resistance for the orientatiod of tions of viscous flux flow for the transport current density

parallel to TB® exceeding the critical depinning currefty. It is assumed
The superconducting transition temperature of thethat these conditions are characterized by the resistance to

sample was 91.8 K for the transition widT.=0.3 K. The  viscous flux flow p;;=dp/dJ=const. Temperature depen-

average distance, between twins was approximately equal dences of the resistance to viscous flux flow fisr0 and 9°

to 2 um. The measurements were made in direct current in @are shown in Fig. 2.

magnetic field 15 kOe fop=0 and for angle® equal to O It can be seen from Fig. 4 that at 8<KI' <88 K, the

and 9°. pq(J) dependences do not attain saturation. This is probably
The temperature dependences of the resistigiff)  due to the fact that in this temperature interval the conditions

measured in zero magnetic field and in the figle- 15 kOe  for viscous flux flow were not created in the current interval

for /=0 and 9° are presented in Fig. 2 by cunde® and3, under investigation.

respectively. It can be seen that, for field orientatitic, the The resistance to viscous flux flow in the Bardeen—

resistivity decreases rapidly AT/ B=88 K. The tempera-  Stephen model is defined by the relation

ture T;® is associated with the beginning of pinning at twin

boundarie$.It can be seen from Fig. 2 that the melting tem-  P8s~ Pn(B/Hc2), Y

peratureT, of vortex lattice in fields 20 kOe is usually 1-2 where py is the resistance in the normal staBthe mag-

K lower thanTgB and is manifested in the form of an addi- netic induction, andH., the upper critical field. It is nor-
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FIG. 3. Current-voltage characteristics in a field paratgland tilted(b) to J, kA/cm?2

the TB plane, measured at temperatufe: 87.3, 87.15, 87.1, 87.05, 86.9,

86.7, 86.4, 86, 85.4, 84.3, 83.3, 81.8, 80.9, 80.6, 80, and(carGes1-16) FIG. 4. Current dependences of differential resistivities in a magnetic field
(a) and 86.8, 86.4, 86, 85.4, 84.7, and 8&@rvesl-6) (b). The inset shows  parallel (a) and tilted (b) to the TB planes. The numeration on the curves
the temperature dependence of critical depinning current in a field paralletorresponds to that df(J) dependences shown in Fig. 3.

(curvel) and tilted(curve2) to TB planes in a magnetic fields.

viscous flux flow toE=0. It can be seen that the value Xy

mally assumed that the temperature dependence of the upper a tilted field is approximately 1.7 times larger than for
critical field near T, is determined by the equation Hllc. This difference in the value of critical current for a
He=(dH.,/dT)(T—T,). The best agreement between therelatively small variation of the angl@écan be due to several
temperatures dependencespgf and Eq.(1) is observed for reasons depending on the ratio of the pinning force at twin
dH.,/dT=—1.8 T/K. This value of the derivative is close boundaries on one hand and the total force of pinning at
to the value ofdH.,/dT=—2 T/K obtained from magneti- point defects and indirect pinning on the other hand.
zation measurements for YBaCuO single crystals for the Let us consider this problem in greater detail. It was
magnetic field orientatioi|lc.'® This indicates that the lin- mentioned above that the effect of TB on pinning and dy-
ear segments on tHg(J) curves for large values of transport namics of Abrikosov vortices in a YBaCuO superconductor
current density indeed correspond to the conditions of visis due to a lower energy as well as stronger pinning of vor-
cous flux flow. The pgg(T) dependence for tices localized at TB, which leads to anisotropy of pinning at
dH.,/dT=—-1.8 T/K is shown by solid curve in Fig. 2. twins. The value of the ratid U/U for Hllc is estimated as

The inset to Fig. 3 shows the temperature dependenceés017—-0.026:'" HereU is the energy of a vortex filament in
of critical depinning currend.4 obtained for angle® equal  the bulk of the superconductor addJ the difference in the
to 0 and 9°. The value of.4 was determined by extrapolat- energy of a vortex in the bulk of the superconductor and a
ing the linear segments of th&(J) curves corresponding to vortex localized in the TB plane. This difference in energy
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leads to a step structure of the vortex filament in a magnetic B B

field tilted relative to the TB plane for angld®)|< 6*

as shown in Fig. 5B The value of the critical angle for A

an isotropic superconductor is determined by the relations

(1-cos@)=(2AU/U)*?  (Ref. 1) and tan#*

1
=g 1=(2AU/U)Y? (Ref. 12 for an anisotropic supercon- 1
ductor in the case of a field vectbrtilted relative to the axis /

c. For YBaCuO superconductors, the anisotropy parameter
£=1/6, and hence the value of the angfe can become as 1
high as 50°. At high temperatures, thermal fluctuations can i
reduce the value of*, this decrease being determined by i
the ratio E,/kgT, whereE, is the pinning energy? The .
measurements of angular dependences of electrical
resistanckand critical currert’”*?show that the typical val- !
ues of the angleg* in magnetic fieldsH=<20 kOe for the |<

orientation of the vectoH close to the direction of the axis
c amount to 15-40°. Thus, fd#=9°, we can expect a step 1B
structure for vortex filaments. B

Stronger pinning at TB in the case when vortices move
along the TB plane can be due to a higher concentration of .
defects at twins, e.g., oxygen vacanciesn addition, an- 0
other reason behind stronger pinning at high temperatures
can be the suppression of the amplitude of thermal oscilla-
tions of vortices localized at TB, which is due to the two-
dimensional nature of their thermal oscillatid©bviously, b
the pinning of a solitary vortex is maximum for the field
orientation Hllc and decreases with increasirfigdue to a
decrease in the fractiol, of the vortex trapped by the TB
plane. However, in a strong magnetic field
[ag=(D,/B)?<d,], the situation can chandélf the pin-
ning at twin boundaries and not at point defects plays a de-
cisive role, the difference in the critical currents in fields
parallel and tilted to TB planes can be due to the difference
in the pinning mechanisms in them.

Thus, we assume that pinning at point defects is negli-
gibly small. In the magnetic fieltH=15 kOe, the distance A
ao between vortices is approximately equal to 370 A, i.e.,
only 1/50 of vortices are localized in the TB plane. If pinning
at TB is quite strong, the pinning of vortices located between
twin boundaries foH|ic will be determined by shear defor-
mation of the vortex lattice. In the theory of elastic medium,
the maximum shear stress,,, is attained if the Lorentz
force BJS{Co=2Tma/d. Here 7=Dcgg, d=dg—a, is the }

width of the slip channel in the vortex lattice,
(1/3)yr<D<(1/2)7,%° and ¢, is the velocity of light. The

shear modulus forHllc is defined by the formula
Ces= PoB(1—b)%(87\) 2, whereb=B/B,,, and\ is the \II

magnetic field penetration depth. Then the critical current d=(d,-t-tan@) cos®
controlled by shear deformation of the vortex lattice is given

by FIG. 5. Schematic diagram of channels for motion of vortices in magnetic
c 2 5 fields parallel(a) and tilted (b) to TB planes as well as the structure of a
h=2DcPy(1—b)“/[d(8mN)~]. (2)  vortex filament in the vicinity of a TB plane in a tilted magnetic fighj.

Assuming that.=3000 A, D=1/10,b<1, anddy=2 um,

we obtainJg=5 kA/cm, which is close to the experimen-

tally observed value of.4. According to these estimates, d=dgyay—t tané of the channels in which vortex filaments
the critical current foH|lc can be controlled by indirect pin- do not intersect TB planes becomes smalere Fig. 5¢ In
ning of the vortex lattice. When the fiel is tilted to the TB  this case, according to formul@), the critical currentJg,
plane, the number of vortices crossing TB planes increaseficreases. The increase in the critical current will be ob-
If t is the thickness of the sample, the width served until indirect pinning becomes stronger than the pin-
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ning of vortices trapped by the TB plane. As soon as thieffective over distances of the order of the magnetic field
condition is observed, the vortex lattice starts moving undepenetration depth, we can expect that the amplitude of ther-
the action of the Lorentz force as a single whole, and themal oscillations of vortices separated by a distanceom
critical current decreases with increasing amgjie view of a  TB are also partially suppressed as compared to the ampli-
decrease in the fraction of vortices trapped by TB planestude of vortex oscillations in the remaining volume of the
Obviously, §,,< 6* for tan & =d,/t. Here§,, is the angle for  crystal. Thus, twin boundaries can serve as centers of nucle-
which the critical currentlg, attains its maximum value. It ation of the crystalline phase; these nuclei grow upon cooling
should also be noted that the proposed model can be valid famtil they occupy the entire volume of the crystal. If the size
a finite pinning at point defects also. The condition for theof a nucleus of the crystalline phase 1 is small in the direc-
applicability of the model is that the force of pinning of tion perpendicular to the TB plane, and the pinning of vorti-
vortices crossing the TB plangvhich is determined by the ces localized at TB is strong, indirect pinning might lead to a
pinning at TB as well as at point defegis larger than the transition of the liquid phase to the regime of viscous flux
resultant force of pinning of vortices that do not cross the TBflow under the action of the Lorentz force, the crystalline
plane, which is determined by pinning at point defects angphase remaining in the pinned state. In this case, the resis-
indirect pinning. tance to viscous flux flow of the liquid phase is

The p¢(T) dependences obtained by us speak in favorp'ffzpBS(l—I/do). Putting 1=2A=6000 A, we obtain
of the proposed model. According to formuld, the curve p'ffzo.7pBS, which is in good agreement with the experi-
pes(0) must have a peak @=0 since the value ofl.,(6) mental value ofp;; at T=87 K. In all probability, it is just
in an anisotropic superconductor has the minimum value fothe relation between the force of pinning in the liquid phase
Hllc. However, atT<86 K, the resistance to viscous flux and the force of pinning in the solid phase localized in the
flow for 6=9° is approximately 6% stronger than fé=0.  vicinity of TB that determines peculiarities in the current
If vortices localized at TB are pinned fétlic, the value of dependences qfy in the temperature rang‘Em<T<TgB.
pir in a perfect crystal ford>Jg, is smaller thanpgg by Another peculiarity of current dependences of differen-
peg(ag/dg)=0.02 which is determined by the fraction tial resistivity is the presence of numerous peaks on the
ag/dy of vortices localized at TB. However, in the case py(J) curves at temperatureb<<T,. Similar peaks were
when TB planes are not oriented strictly alonghis differ-  observed earlier in NbSesingle crystals in the magnetic
ence can be much larger since the fraction of vortices trappefield range in which pinning is controlled by plastic defor-
by twin boundaries increases rapidly with the angleéFor  mation of the vortex latticé® Bhattacharya and Higgif%
example, in the presence of two blocks in a bridge with theattribute the peaks on the curpg(J)«N,[dv/dJ], wherev
angle of inclination to the axig equal to 1° and for the is the average velocity of the vortex lattice, to the current
vectorH oriented parallel to the axis of one of the blocks, dependencé\,(J) of the number of moving vortices since
the fraction of vortices intersecting TB in the other block the factor in the brackets, which is inversely proportional to
amounts to 20%. the coefficient of friction, varies smoothly with increasihg

An alternative model explaining the minimum of the It is assumed that the peaks and valleys ongf(d) curves
critical current forHllc was proposed by Solovjoet al.”  correspond to peaks and valleys on similar dependences of
These authors attribute the minimumX{ 0) to an increase dN,/dJ. In other words, pinning is assumed to be nonuni-
in the effective bending modulusy, of the vortex lattice as  form in the volume of the crystal, and the depinning of the
a result of an increase in magnetic interaction between vorvortex lattice occurs not simultaneously, but with gradual
tices. The increase i, leads to an increase in the pinning (upon an increase of currgrfbrmation of slip channels for
lengthL ;o c}lﬁf, and hence to a decrease in the efficiency ofthe vortex lattice. The formation of such channels is possible
pinning at point defects. If the pinning at point defects playsif local stresses in the vortex lattice due to frozen disorder
a decisive role, this mechanism can lead to a decreadg in exceed the elastic limit of the vortex lattice in the channels.
with the angled for §<6#*. However, the change in the It was noted above that the critical current of vortices
value ofJ, can attain the valuAJ.=J.(\/d) since the mag- that do not intersect TB planes in twinned YBaCuO single
netic interaction is effective over distances of the ordex.of crystals with the magnetic field vector oriented approxi-
In the temperature range under investigations, the penetranately along the axig is controlled by indirect pinning if
tion depth\ is estimated as 3000—4000 A, and hence forthe pinning force of vortices trapped at twin boundaries is
d=2 um we haveAJ./J.=0.2. This value is much smaller larger than the sum of the forces of pinning at point defects
than the relative change in critical current0.7 obtained and indirect pinning of vortices located between twins. Since
from experiments. the separations between twins in real crystals are not identi-

It is worth noting that the values gf; in parallel and cal, depinning first takes place in channels with the maxi-
tilted magnetic fields differ considerably, and that the curvesnum separation between TB planes because the critical cur-
pa(J) for Hic intersect in the temperature range rentJSe<d—t. Obviously, the scale of pinning nonuniformity
Tm<T<TgB. It was mentioned above that the temperaturen this case is approximately equal to the separation between
T}B corresponds to the onset of vortex pinning at TB, andwins, and the current dependence of differential resistivity
the vortices localized at TB are pinnedTatTgB. The ther-  reflects the form of distribution ofl, in the crystal. The
mal motion of these vortices is partially suppressed owing tsecond scale of nonuniformity exceeding the separation be-
two-dimensional nature of thermal fluctuations of thesetween twins can be due to fluctuations of twin boundary
vortices:® Since the magnetic interaction between vortices isdensity. If the pinning of vortices trapped by twin boundaries
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is not stronger than the sum of the pinning at point defectsystematically smaller than in a tilted field. Plastic mecha-

and indirect pinning of vortices located between twins, thenism of depinning also leads to a much stronger nhonmono-

current dependence of differential resistivity reflects the typeonicity in dE/dJ than in the case of elastic depinning in

of fluctuations of TB density in the crystal. In magnetic fieldstilted fields.

tited to the TB planes for large values of angles*

f(tan 6=do/t), when each vortex filament crosses the TB E-mai: mikhail.a.obolenskii@univer kharkov.ua

plane, the functiongy(J) can reflect both the form of the 'The formula targ* =&~ %(2AU/U)Y2 can be easily derived by the method

di b’ . fth i/ d th fTB d . used in Ref. 10 if we take into account the angular dependence of the
istribution of the quantityy, an the nature of TB density e, energy.

fluctuations in the crystal depending on the relation between

the _pinn_ing at TB and.at point defeCtS.aS well as on th€Tva Vinnikov, I. V. Grigoreva, L. A. Gurevich, and A. E. Koshelev,
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LOW-TEMPERATURE MAGNETISM

On the theory of low-temperature properties of spin systems with magnetic anisotropy
O. B. Zaslavskii, V. V. Ulyanov, and Yu. V. Vasilevskaya

Kharkov State University, 310077 Kharkov, Ukrdine
(Submitted June 28, 1997
Fiz. Nizk. Temp.23, 1289-1295December 1997

Temperature behavior of easy-axis paramagnets in a transverse magnetic field is considered. It is
shown that the low-temperature susceptibility as a function of the field has a peak for all

values of spinS. As the temperature increases from zero, this peak is first sharganeédot

blurred, its position changing nonmonotonically. For spBs 3, the peak becomes

double-humped at a certain temperature, whileSer3, a flat-top peak is observed. Similar
phenomena are also typical of biaxial paramagnets. The energy spectrum of the system coincides
with 2S5+ 1 low-lying energy levels for a particle moving in a potential field of a simple

form, which has the shape of a double well for low magnetic fields. This makes it possible to
calculate the tunneling velocity by using quantum-mechanical methods19%
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1. INTRODUCTION physical objects and dimensional quantities are considered,
d:Zmd the corresponding dimensionless parameters are intro-

uantum properties of uniaxial paramagnets were stu oD
Q prop P g duced; we shall use these characteristics in the present re-

ied by us together with Tsukernik at the beginning of the . .
eighties? Earlier, such systems were analyzed by using semi—seamh' _In_ _Ref. 1see glsp Ref. 2 the behgwor of magnetic
classical methods which led to contradictory results. Wes_usceptlblllty of un|a>_<|al _parama_lgnet in the ground state
managed not only to solve the formulated problem, but alsge» &T=0) was-sltlgdled_m 2de2tg|l./ ItB\ZNan fohund that (tjhe
work out a number of original approaches for studying morghagnetic suscgpn lityxo= — ) J 0 JB” of t € ground
general spin systems, which were developed in our subsstate as a function of magnetic field has a specific behavior
quent publicationé.Another unexpected and important sec- for spinS=2: the gradual increase in susceptibility with the

ondary result was the discovery of a new class of potentiaif@gnetic fieldd gives way to a sharp increase with the for-
models with exact solutions of the Schipger equatiori- mation of a well-localized clearly manifested peak having

In a review published in 1992we summarized the re- the shape of a “hump,” followed by a rapid decrease to
sults obtained during ten years of research. Subsequentl§mall values in the range of “critical” magnetic field
new results and a new trend appeared. In the first place, wéo=25+1 (see Fig. 1, where the susceptibility of the first
must mention the extension of the manifold of quasi-exactlyeXcited state is also shown for comparison
solvable modefsas well as the discovery of similar two- In the same publication, graphic explanation of such a
dimensional models and their generalization to multidimenPhenomenon is given on the basis of a specially developed
sional case&’ method of effective potential, which can be described as fol-

In this paper, we report on some new results obtained®Ws. Since spin is a quantum-mechanical object of essen-
from the study of anisotropic paramagnets. We shall considgf2lly discrete nature, equations whose solutions describes
here only magnetic susceptibility and spin tunneling. Forthe energy spectrum of spin systems have a matrix form.
definiteness, we confine our analysis to spin systems with thEhis complicates the analysis of properties of the system by

Hamiltonian the standard quantum-mechanical methods. It was found,
) ) however, that we can introduce a rigorous potential descrip-
H=aS,—BS/-BS,, (D tion for a wide class of spin systems, such that the energy

describing a so-called biaxial paramagnet with anisotropysPectrum of the spin system coincides with certain energy

constantsy, 3=0 in a transverse magnetic field proportional evels for a particle moving in a potential field of a simple
to B (S; are spin projections operators form. Such an exact spin—coordinate correspondence also

served as the basis for various approximate methods of de-
scription of spin systems, e.g., the perturbation theory and
the semiclassical approximation. It is especially important
that this leads to new exact solutions of the Sdimger
We begin with a more detailed analysis of the effect ofequation in the corresponding coordinate system.

temperature on the susceptibility of a uniaxial paramagnet The approach proposed by us lies in the application of
(a=0) for various values of spis (without loss of gener- the concept of coherent spin states for Hamiltonians con-
ality, we also assume th@=1). We proceed from the re- structed from spin operators used in the solution of the prob-
sults reported in our initial publicatidnin which specific lem on their eigenvalues and eigenvectbts.the obtained

2. MAGNETIC SUSCEPTIBILITY OF UNIAXIAL AND BIAXIAL
PARAMAGNETS
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FIG. 1. Typical magnetic-field dependence of susceptibility of a uniaxial

paramagnet in the ground stdigpper curvg and in the first excited state  FIG. 3. Two-hump profile of magnetic susceptibilitg=3/2, T=0.0028.
(lower curve for S=6.

spectrum is observed in the “precritical” field region

coordinate representation, such a Hamiltonian becomes B=Bo, in which the “hump”-type peculiarity of suscepti-
Schralinger differential operator with a certain effective po- Pility is located. .
tential energy. The potentials obtained for simple spin sys- |t would be interesting to study the effect of temperature
tems either have the shape of nonlocalized wells, or are p&n the behavior of susceptibility. It turns out that, instead of
riodic. In all cases, there exist various symmetric ande*Pected blurring of the singularity, an interesting transfor-
nonsymmetric multiparametric potential models. mation of the “hump” takes place, which can be reduced,
For example, if we are solving the problem on determin-"oughly speaking, to its “sharpening” and increase at the
ing stationary states of an easy-axis paramagnet in a tran8€9inning followed by gradual blurring and vanishing at a
verse magnetic field, i.e., a system with the Hamiltoniancertain critical temperaturg.~S. In addition, a two-hump
H= _33_ BS,, by using the above method, we arrive at theproﬁlg is formed. at the ||j|t|al stage for not very hlgh values
standard one-dimensional Schinger equationd2y/dx2 of spin (S<3) (Fig. 3), while for Iarge_values of spmS(zS)
+[E—-U(X)]#=0 for a pseudoparticle with a quadratic the 'tpp of the hump becomes flaudiment Fioubllng .The' '
energy—momentum relatidispinon, moving in an effective position of the peak changes nonmonotonically: at first, it is

potential field constructed from hyperbolic functions: displaced towards higher values of magnetic figld and
then “starts returning” down t@=0 atT,.

Some typical stages of these transformations of suscep-
tibility are presented in Fig. 4 along with the standard sus-

) o ] ) ] ceptibility of the ground state, which is described by the
wherex is a certain dimensionless coordinate. In this Cas€gashed curve.

the eigenvalues of enerdy of the spin system coincide with
the lower 25+ 1 energy levels of a spinon in the potential
field (2).

It was found that the energy spectrum of uniaxial para-
magnet has a typical “fan” structure corresponding to defor-
mations of effective potentialFig. 2): from double degen- T=0.004
eracy forB=0 with pairwise close energy levels f&<B,

(tunnel splitting in a double potential well; Fig. Rto the 1.7
energy distribution foB=B,, which is typical of a fourth-

degree oscillatot) ~x* (Fig. 2b), and then to ag equidistant
structure of the harmonic oscillator spectruax< (Fig. 29. 1.0 1.0 ) 1 S —
In this case, the most significant rearrangement of the energy 05 15 05 15 05 15

B2 1
U(X):Z sint? x—B| S+ =

5 coshx, 2

The above-mentioned regularities are determined by the
structure of the energy spectrum of a uniaxial paramagnet in

7=0.012
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FIG. 4. Some stages of low-temperature transformations of susceptibility
FIG. 2. Typical shapes of the effective potential of a uniaxial paramagnet(S=2).
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the region of magnetic fields containing the hump, i.e., a
small separation between the ground energy level and the
first excited level and a large distance to next excited levels.

25

For example, forS=3, the gap E;—E;=0.16, while
E,— E;=3.34 forB,=2.34.

Thus, the spin system under investigation in the tem-

perature range €@ T<T_. behaves as a two-level system. The
magnetic susceptibility in the two-level approximation can
be written by singling out the temperature correctiop

X=Xot+Ax. ©)

Considering that energy levels depend on the magneti
field and carrying out simple transformation of the partition
function, we obtain the following formula for susceptibility,
which contains the main contribution in the form of the sus-
ceptibility y, of the ground state and two competing tem-
perature corrections:

B (A/)Z ZA"
X = X0t ST CosR(AIZT) 1+ expA/T)"

whereA=E;—E,, and primes denote derivatives with re-
spect toB.

As T—0,x— xo as expected. For any finileand in the
region of smalB, whereA<T, we havey=(x1+ x0)/2 (x1
is the susceptibility of the first excited statée., the main
contribution comes from the second negative correction
while for higher values oB the first positive correction can
dominate so thaj> xo. The two-level approximatiori4)

(4)
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FIG. 5. A typical spiral loop describing the position and magnitude of the
maximum susceptibility peak in the low-temperature regienTo< T, for
S=2.

form of a spiral loop with an isolated point inside it, which
graphically illustrates the above “anomalies” in the behav-
ior of the susceptibility peak, i.e., its temperature “drift”
stage(see Fig. 5 The following characteristic regions and
reference points relative to transformations of the magnetic
susceptibility profile can be singled out on the temperature
scale: T;=0 corresponds to conventional one-huitgtan-
dard profile; the regioT;<T=<T, is characterized by small
deformations of the left slope of the hump followed by the

completely describes the behavior of susceptibility in thegomation of the seconfeft) peak;T, corresponds to a two-

most interesting region of low temperatures T<T.,..

hump profile with the same height of the peaks; in the region

We can now use the power approximation in the mag—r, « 1<, the left hump, which is higher than the standard

netic fieldB for the gapA between the ground energy level
and the first excited level, which was obtained in Ref. 2:
SZ
—cBS o=
A=cB*, ¢ 225329

5

one, increases, becomes sharper, and is shifted to the right;
T, corresponds to the maximum height of the hump located
approximately in the same region as the standard hump;
T,<T<T; corresponds to further displacement of the peak
to the right and its gradual decreaseTatthe height of the

which leads to the following expression for the temperaturehump decreases to the standard value with the maximum

correction in(3) obtained on the basis ¢4):

CBZS
AX:T(S—l)/SfS T ) (6)
with the universal function
(S-1)/S Sx
_ _1\pLS
fs()=28(2S-1)c cosh(x/2) | (2S—1)coshx/2)
—exp(—x/2)|. (7

displacement to the right; in the regidp<T<T, the dis-
placement changes directidio the lef), and the peak is
blurred; T, corresponds to a highly blurred peak in the re-
gion of the standard humpl,<T<Ts corresponds to a
weakly distinguishable peak, which continues its shift to the
left; Ts=T, is the critical temperature at which the weakly
manifested peak reaches the poBw=0 (the susceptibility
curve descends smoothly without any singularjtiend at
T>T, the value ofy decreases for ary due to activation of
the remaining excited energy levelhe two-level approxi-
mation becomes inapplicabléNumber on the spiral in Fig. 5

A comparison of such an approximation for the tempera-indicate the main temperature reference points.

ture correction to susceptibility) and (7) with the results
based on exact formulas f&; andE; (as well as foryy) in
the case wher6=3/2, 2, 5/2, 3, and 7/2 shows that this

As the value ofS increases, the spiral curve is shifted
towards higher values &, but all qualitative singularities of
transformations are preservégkcept the formation of a two-

approximation is fairly accurate in the most interesting tem-hump profilg.

perature region, in which the transformations of the magnetic

susceptibility profile described above are obseried all
magnetic fieldB).

If we lay the position ofB,,5x and the magnetic suscep-
tibility peak xmax ON the coordinate axes, the variation of
temperature in the rangesOT<T, leads to a curve in the

970 Low Temp. Phys. 23 (12), December 1997

It should be noted that all calculatiofapart from the
two-level approximation and the power approximation men-
tioned abovgwere made on the basis of exact, explicit for-
mulas for the energy levels fd8<4 and by using exact
algebraic equations for the eigenvalues of Hamiltor(an
for S=4. Moreover, analytic and numerical methods were
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x ago in the review by Bean and Livingstbhthe theoretical
apparatus for studying this effect was worked out only by the

15F middle of the eighties. This is not accidental. The tunneling
of a particle moving in a potential well was explained long
1.0 ago and is described in textbooks on quantum mechanics. At

the same time, spin is an essentially discrete, purely
gquantum-mechanical variable and cannot be represented in
such a visual form. It is remarkable that this has become
possible for the spin system as a whole, that is described by
0 10 20 30 40 50 a Hamiltonian which is quadratic.or guadratic—linear in spir_1
components. Such a spin—coordinate correspondence, which
B was mentioned in the previous sections of this paper, allows
FIG. 6. Magnetic-field dependences of the susceptibility of a biaxial paraUS t0 translate the problem under consideration into the lan-
magnet for even values & from 4 to 20. guage of ordinary quantum mechanics and to apply the meth-
ods developed earlier, including instanton calculus and semi-
classical approximation.
mutually controlled and verified by plotting graphs. Let us first consider first a uniaxial paramagnet with an
Another cycle of investigations was devoted to an analyeasy-axis type anisotropy, which was discussed above for
sis of the behavior of the magnetic susceptibility of biaxial gngther purpose. Since the energy levels in the spin system
paramagnets. It was found that all the peculiarities of susceRoincide(see abovewith 2S+ 1 low-lying energy levels for
tibility mentioned above are observed for such systems alsg particle moving in a potential field of the for(2), the
For example, Fig. 6 shows a series of typical susceptibilitymagnitudes of the tunnel splitting= E, — E,, of the ground-
profiles for different values of spi§ in the case of equal state energy also coincide. If we calculate this quantity to the
anisotropy constants= g at T=0. exponential accuracy, the result can be obtained almost im-
In addition, the general dependence of various effects opyediately. It is well knowt? that this value is determined by
the ratio of anisotropy constants was studied separately. the factor exptW), whereW is the Euclidean action on a

Thus, the peculiarities in the magnetic susceptibility oftrajectory between two degenerate minima:
anisotropic paramagnets observed earlier proved to be stable

to the effect of various factors and demonstrated some addi- Xp

tional interesting details of the behavior under an increase in W= L dxyzm(U—-U_).

temperaturel’ and spinS as well as for different ratioa/ 8 B

of anisotropy constants. Here m is the effective mass of the particlde€1), and
Finally, in the case of an arbitrarily directed magneticU_=U, is the value of the potential at the point of mini-

field, the tensor nature of magnetic susceptibility must bemum. Thus, if we are not interested in the preexponential

taken into account, i.e., each of its components must be studiactor, we can forget about the equation of the instanton

ied in detail. For example, in the uniaxial case we are actutrajectory in explicit form. However, this is essential for cal-

ally dealing(in view of the symmetry propertieswith the  culating the preexponential factor in

three quantities(,x, xxy, andyyy, which should be consid-

ered as functions of the magnetic field componéBitsand A=(wlm)A exp(—W).

B

o
N
T

e Here w is the frequency corresponding to small oscillations
near the point of minimum, and the consté@ntan be deter-

3. QUANTUM TUNNELING IN SPIN SYSTEMS mined from the relation
Tunnel effects in various fields of solid state physics

have been studied intensely during the last dedade the

review in Ref. 9. Most of such investigations proceeded

from the model of a two-level system interacting with the

ambient which served as a thermostat. The possibility of re- A

placing a real quantum-mechanical system with a complex X(7)=Xy;— 2om exp(— 1), T,

energy spectrum by a two-level system by disregarding the @vm

contribution from higher energy levels is equivalent to theyyherex =0 corresponds to the midpoint of the potential

introduction of effective spinS=1/2. In this publication, petween two minima, ane is the Euclidean time. For the

however, we indicate a field in the physics of tunnel phe-njaxial case under consideration with potentigland cor-

nomena, in which the spin is not an auxiliary concept, butesponding dimensionless quantities, the instanton trajectory
reflects the real physics of the problem, i.e., tunneling in spintan pe found in explicit form:

systemgby way of an example, we can mention tunneling in

small ferromagnetic particle$® The most interesting case is X

that of large spin$>1 rather than the case of small spins.  t@anh3
In spite of the fact that first indications of experimental

manifestations of spin tunneling were actually described londJsing previous formulas, we obtain

X 172

T= dx

Xm

2(U-U,)

1/2

_
tanh%, w=1—(BIBy)2.

1-B/B,
1+B/B,
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8(S+1/2)32w5%(1— ?)S At first glance, spin systems with a Hamiltonian of the
= exd (2S+1)w]. (8) type (1) appeared as very simple, but further analysis has

V(14 w)?S*t proved that the problem proposed by Tsukernik at the begin-
For B<By, formula(8) for S>1 gives the result in the hing of the eighties gave rise to a new trend in physics. We
power approximation for the energy gé&). believe that this publication is another confirmation of this

The biaxial case can be considered similarly. It is inter-fact.
esting from the general point of view since the energy spec-

trum of the effective spin potential is a band spectfubet The authors are deeply indebted and devote this research

. o . to Viktor Moiseevich Tsukernik, remarkable scientist and
us first assume th&=0, andS is integral(for half-integral . ) .
teacher, considerate and cordial person with whom they

values of spin, degeneracy is not remoked this case, spin made first steps in the development of new methods in the
levels correspond to the edges of merged bands, and tr{ﬁeory of spin systems

splitting of the ground level is equal to the band width. If,

however,B~S>1, the widths of the energy bands contain-

ing Eq andE; are much smaller than the separation betweer) o '

the energy levels, so that the splitting can be calculated dis-Emall- viadimir.v.ulyanov@univer.kharkov.ua;
. .. . oleg.b.zaslavskii@univer.kharkov.ua

regarding the periodic nature of the potential and the band

structure(see for details the review in Ref. 2, in which tun-

neling is considered in special cases when energy levels arg[eo B. zaslaveki. V. V. Ul 4V, M. Tsukermik. Fiz. Nizk. T
. . . B. Zaslavskii, V. V. Ulyanov, and V. M. Tsukernik, Fiz. Nizk. Temp.
near the potential barrier peak _ 9, 511 (1983 [Sov. J. Low Temp. Phy®, 259 (1983].
Moreover, a many-particle system can be approximately2y. v. ulyanov and O. B. Zaslavskii, Phys. Rep16, 179 (1992.
reduced in some cases to a one-particle sygtenin the case V. V. Ulyanov, O. B. Zaslavskii, and Yu. V. Vasilevskaya, Fiz. Nizk.

of a Heisenberg magnet with weak anisotrppgnd the for- ~,Temp.23 110(1999 [Low Temp. Phys23, 82 (1997).
las obtained for paramagnets are applicable for calculat—o' B. Zaslavskil and V. V. Ulyanov, Zh.¥Sp. Teor. Fiz87, 1724(1984
mu p g pp [Sov. Phys. JETBO, 991 (1984)].

ing the tunnel splitting. 50. B. Zaslavskii and V. V. Ulyanov, Teor. Mekh. Fiz1, 260 (1987.
Finally, for B>B,, we can use perturbation theory. It is 6A. V. Turbiner, Commun. Math. Phy4.18 467 (1988; Contemp. Math.

; ; ; ; ; 160, 263 (1994; A. G. Ushveridze, Fiz. Elem. Chast. Atom. Yadz§,
nter N h ner IS remov in ths raer in
terest 9 that dege eracy 1s remo ed t&horde 1185(1989 [Sov. J. Part. Nucl20, 504 (1989].

this case. 70. B. Zaslavskii, Phys. Lett. 490, 373 (1994; J. Phys. A27, L447
(1994.
CONCLUSION 8A. M. Perelomov,Generalized Coherent States and Their Applicatjions

) ) Springer, NY, 1986.
Thus, the method of effective potential proposed by °A. J. Leggett, S. Chakravarty, A. T. Dorsey al,, Rev. Mod. Phys59, 1
y
Tsukernik and developed further by other authors proved tgo(El9'37)-Ch ROV and L CUnher Phve RV L cet (18 oh
. . _ . ML uanovsky an . Guntner, yS. Rev. ) YS.

be extremely productive and powerful for studying the low- . "537 9455 (198g: A. Caldeira and K. Furuya, J. Phys. 21, 1227
temperature behavior of susceptibility of anisotropic spin (19gg.
systems as well as for tunnel junctions. Ec P. Bean and J. D. Livingston, J. Appl. Ph@e, 120S(1959.

It should be emphasized that, while the classical spin can 81.9(730Ieman, inThe Whys of Subnuclear Physidglenum, New York
be parametrized by two variables, in the effective potential (1979.
method the system is one-dimensional. Translated by R. S. Wadhwa

972 Low Temp. Phys. 23 (12), December 1997 Zaslavskii et al. 972



ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Mechanisms for increasing resolution of high-frequency PC spectroscopy
O. P. Balkashin

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukrairfe

(Submitted July 14, 1997

Fiz. Nizk. Temp.23, 1296-1299December 1997

It is shown that the improvement of resolution of high-frequency PC spectroscopy is due to a
decrease in the contribution of thermal effects and nonequilibrium phonon reabsorption
to the signal being measured. ®997 American Institute of PhysidsS1063-777X97)00512-4

Point-contac{PC) spectroscopy, i.e., the analysis of in- contacts Ni—Ni of pure nickel at 4.2 K. We used a modula-
elastic electron energy relaxation by passing current througtion technique, involving the recording of the amplitude of
a bulk sample with a microscopic constriction, has been desecond harmonic of modulation current in low-frequency ex-
veloped as a relatively simple but effective method of invesperiments as well as the amplitude of rectified voltage on
tigation of elementary excitation spectra in pure metatge-  point contacts exposed to a radiofrequency field of frequency
tallic alloys, and compoundsThe efficiency of this method 78 GHz. A detailed description of experimental technique is
is determined by the relation between the geometrical size dafiven in Ref. 4.
the current concentration regigoontact diameted) and the The measured low-frequency PC spectra shown in Fig. 1
electron mean free paths andl; for energy and momenta (curvesl) are characterized by a low intensity of the peak
relaxation. According to theoretical analysii) the limiting  associated with electron scattering by phonons with trans-
case of “dirty” contacts, wherd=\,=(I;l,)¥? the spec- verse polarization(T-peak which normally dominates in
troscopy is still possible, but the intensity of spectral linesspectra, the absence of an-peak associated with longitudi-
decreases, tending to zero Rs/d—0. If reabsorption of nal phonons, a high background level, and its monotonic
nonequilibrium phonons becomes significant in this caseincrease with the voltage. As a rule, such spectra are ob-
i.e., the diameted exceeds the mean free palh,_. of  served for “dirty” contacts with a small ratfol; /d.? High-
phonons scattered by electrons, and the contact region expfequency spectrécurves? in Fig. 1) exhibit spectral singu-
riences Joule heating to temperatures determined by the bit¢exities marked by arrows in the figure and absent in rf
voltagek T=eV/3.63, the resolution of the method decreasespectra:L-peaks for coppe(29 MeV) and nickel(36 meV)
(AexkT), and the background signal amplitude increasess well as a peak at energies40 meV associated with a
considerably. In view of computational difficulties, the quan-local vibrational mode for light Be impurity atoms in the
titative analysis of variation of PC spectra upon a transitioncopper matrix besides, the background signal level is much
to the thermal mode was carried out only for the Einsteinlower.
model of the phonon density of statt3he inelastic mean It was shown in our previous publicatiditsthat a de-
free path for electrons is known to be a function of excessrease in the background level in the measurements of PC
energy determined by the voltage across a point contadpectra at high frequency exceeding the phonon-electron col-
[l.(eV)]. For this reason, a transition from the spectrallision frequency (0> wpr.c=AwpS/vg, where N is the
mode in the range of low bias voltages to the thermal modelectron-phonon interaction constasithe velocity of sound,
for high bias voltages can be observed for small mean freeg the Fermi velocity, andwp the frequency of phonons
paths. with the Debye energyis due to a decrease in the contribu-

Measurements of point-contact spectra at high frequention of reabsorption of nonequilibrium phonons to the spec-
cies wr,~1, wherer; are characteristic times of scattering trum being measured. However, inelastic scattering pro-
for quasiparticles, make it possible to study the kinetics ofcesses occurring in the point contdstich as spontaneous
relaxation processes in contacts from the frequency dispeend induced emission of phonons by conduction electrons
sion of the signal being measured and to determine the chawith an excess energgVV or reabsorption of phonopsnake
acteristic relaxation timer, for quasiparticle excitations of an additive contribution to the spectrdfhand a decrease in
various type$® Spectral singularities observed in high- the intensity of such a process should not result in the emer-
frequency spectra of some contacts are absent in the specgance of new spectral singularities. Consequently, the spec-
measured by a traditional low-frequency technifge. tral mode of electron movement in the contact region

This communication is devoted to an analysis of possibleehanges during rf measurements.
reasons behind the improvement of resolution of PC spec- The heating of a point contact by the transport current
troscopy by using high-frequency modulation. Measure-can be responsible for deterioration of its spectroscopic po-
ments were made on point contacts between copper aréntialities upon an increase in the constant bias voltage. In
copper-beryllium alloy Cu—Q@.7 at. % Be as well as point this case, rf measurements at frequericies> wr (wt
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eV, meV trum in the case when only the subsystem of nonequilibrium
phonons excited by electrons is heated for 4, i.e., we
assume that an equilibrium distribution sets in the phonon
system with the temperature determined by the constant bias
voltage. In this case, we take into account the fact that the
total number of phonons coincides with their number in the
xsl/d>~1 GHz is the temperature relaxation frequency forabsence of equilibrium heating of the entire contact:

the contagtmust reduce the influence of thermal effects con- " "

siderably, thus improving spectral resolution. In order to f N(s,T)ng(s)ds=f N(e,To)gpc(e)de.

verify this assumption, we calculated the current-voltage 0 0

characteristicglVC) and their second derivativéPC spec- Comparing the experimental and theoretical spectra, we
tra) under the condition of contact overheating by displacetan see that curves in Fig. 1 and curve3 in Fig. 2 are
ment current. Calculations were made for a copper contaGimilar. The theoretical spectrum, as well as the experimental
with the resistanc®,=5() at the helium bath temperature gpectrum, contains n&-peak and displays a high back-
To=1.5K by using tabulated values of the point-contactground level. As the overheating becomes smaller, the qual-
electron-phonon interaction functian(¢)." The following ity of theoretical spectra is improved. A similar improvement

FIG. 1. Point contact spectra for Cu—C2.7 at. % B¢ (a) and Ni—Ni (b)
measured at a low frequency of 3747 tdurvel) and at 78 GHZcurve?2).

H 12
expression was used for IVE" of the spectra is also observed upon an increase in the volt-
Vv [ g—eV eteV age modulation frequency to 78 GHeurves2 in Fig. 1).
(V)= R_o_Cfo P V] PV Naturally, the calculations made for a static IVC cannot be

directly compared with the results of measurements in the

dynamic rf mode, but the similarity in the observed effects is
Opc(e)de, (1) obvious. Moreover, for “dirty” contacts studied experimen-

tally, the effect of heating must be manifested even more
where C=8d/3efivgRy; B=1kT;Ry is the contact resis- strongly than in the calculations made for the ballistic mode.

+2eVNe)

tance at zero bias voltage, afidthe temperature. The non- Thus, the improvement of resolution of PC spectroscopy
equilibrium phonon distribution functioN(e) for complete in high-frequency measurements ¥ wr,wyn_e) Can be at-
reabsorption of phonons is taken in the form tributed to the weaker effects of nonequilibrium phonon re-
1 2¢ c—eV e+eV absorption and point contact heating. Such measurements do
N(e)= 1o | Fo—1 + P V] + FeTev_ |- (2)  not affect spontaneous emission of phonons by nonequilib-

rium electrons in view of the inequalitga<we_ph~104 GHz.

The point contact temperature was defined in the formt should be noted that in experiments with low-frequency

T=Ty+AT, whereAT=eV/ky. Figure 2 shows the initial interruption of rf radiationw,, ;<1 (quasistatic mode the

PC spectrum without overheatingurve 1) and various signal being measured contains a contribution of the bolom-
modifications of the spectrum for several values of the coefetric effect due to the presence of nonequilibrium phonons
ficient y: from y=4, which is typical of the thermal mode, to induced by rf current in the contact. The amplitude of the

y=40. Curve4 in this figure shows the point contact spec- bolometric signal increases with the bias voltage across the
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A new variational method in the problem of the spectrum of elementary excitations
in an edge-dislocation crystal

I. M. Dubrovskii

Institute of Metal Physics, National Academy of Sciences of the Ukraine, 252142 Kiev, Ukraine
(Submitted May 23, 1997; revised July 28, 1997
Fiz. Nizk. Temp.23, 1300-1304December 1997

A new method based on a combination of the direct variational method and perturbation theory
is proposed to calculate approximately the eigenvalues and eigenfunctions of ground state

and the states close to it. The new method is applicable to the @obes equation with a potential
proportional to the dilatation produced by an edge dislocation. The ground-state energy
obtained in this case is lower than the theoretical values obtained in other works. The energy
value is obtained for the lowest state for which the eigenfunction is odd in the azimuthal

angle. It is assumed that the spectrum may be described only statistically near the condensation
point. © 1997 American Institute of Physid$1063-777X97)00612-9

1. While applying the variational method for calculating proximate value is obtained for the minimum eigenvalue of
the spectrum of the Schidinger equation, the ground-state | and the set of values ¢t} in. It can be assumed that the

function is chosen in such a form that it depends on several oon values ofi in the functions of the excited stat&‘o
variational parameters, and the average Hamiltonian for thiﬁ)r the values of &}, are approximate values for the cor-

function is minimized with respect to the parameters. The di . | & Thi imati b
functions corresponding to the excited states must also satcoPonding eigenvalues od. IS approximation can be

isfy the orthogonality conditions. Hence attempts are madgvaluated by turryng to the Rayle|g.h—Sodj'|mger perturba-
sometimes to select straightaway a system of orthogoné’lon theory. In this theory, the obtalan eigenvalues are the
functions of which ondwithout any nodal surfacesvill be  first approximation in the perturbatiar; for the values of
the ground state function. If this system of functions is not{@ifmin- The quality of the approximation can be estimated
complete, it may lead only to a certain sequence of eigenvalPy calculating the values of the expansion parameters
ues instead of the entire spectrum in a certain interval. Thén|H|m)/(E,,—E,,) in the perturbation theory. In this case,
results depend on the appropriate choice of the form of thé is obvious that the convergence of series in the perturba-
trial function, and there is no technique for estimating thetion theory may be different for different eigenvalues, since

correctness. Trial functions are not an approximation of trugy is generally not proportional to the small parameter. For

eigenfunctions and cannot be used, say, for approximate calymne if the spectrum ¢, consists of discrete and con-
culation of the probability of transitions between stationarys 1 ous parts whose boundary is the point of condensation of

states. . i . .
. . . discrete values, the perturbation theory is not applicable for
The approach proposed in this work' IS free from .thevalues close to this point. If the decompositi@) can be
above-mentioned drawbacks of the variational technique

. L - _ : chosen in such a way that the expansion parameters are
since it is a combination of the variational technique and the y b P

. L A Smaller than unity at least for the ground state, the perturba-
perturbation theory. The initial Hamiltoniaf can be repre- o theory can be used not only to estimate the accuracy of
sented in the form

the obtained value, but also to improve it. Indeed, the
second-approximation correction for the ground state energy
is always negative. Hence the second approximation will al-
ways give a smaller, i.e., more precise, value. Generally

Wh‘?re{“i} Is a certain set of par_ameters _ang the Hamil- speaking, the value dfw;} i, should be determined from the
tonian whose spectrum and eigenfunctions can be deter-

ined b . ¢ variablestifc ith condition of minimum of the expression for the ground state
mined, say, by separation of variablesHiicommutes witha o010 in the second approximation of perturbation theory.

certain operatoA, it is desirable to choosdl in such away  This would correspond to the use of functions in the first
that it also commutes with. The values of the parameters gpnroximation infl; as trial functions in the variational pro-
{a;} are determined in the course of the variational proceeqyre. It can be shown that an improveméet, decrease
dure. For the rest, the splitting 1) is arbitrary, and there , ihe ground-state energy in comparison with the values

are no general criteria for its choice although, as will beyyaineq by using the above procedure is of the fourth order
shovyn below, this choice determines the c.Ios.eness of thgf the expansion parameter in perturbation theory. There is
obtained results to the e>§act values of the principal and Iow-Simply no need to resort to minimization of the ground-state
gxcitation eigenvalues dfi. The system of eigenfunctions energy if we somehow determine the paramefes$ of the

Ho is used as trial functions in the standard variational prodecomposition(1) in such a way that the parameters of the

cedure. The average value Bf in the ground statéd, is  perturbation theory are smaller than unity. The parameters
minimized with respect to the parametdig;}, and an ap- {«;}min are simply the best choice of the separation param-

H=Ho({a})+H:({a}), (1)
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eters for which the series in the perturbation theory convergehoice ofH, in the form (3). This is probably not the only

in the best wayfor a given choice of the decompositiéh)).  possible choice, and may not even be the best one. The final
If H commutes with a certain operatar the spectrum oH confirmation about the propriety of such a choice of decom-
can be divided into subsystems of levels, each of which corposition of H comes from the computation of the expansion
responds to one eigenvalue Af Each subsystem has its parameters in the perturbation theory. The variables in the
own state with the minimum eigenvalue ldf which can be equationHy¢=¢©y can be separated, and the equation for
determined in the same manner by requiring additionally thathe function®(¢) assumes the form

the functions are the eigenfunctionsﬁoﬂor a certain eigen- 2
. A . P
value. In this case, the values{af,} i, may be different for 47 +(a—2q cos Z)®=0. (4)

different subsystems, but it is necessary th@ammute with

Hyp also. In each subsystem, the excited states can be deteqere, we have made the substitutigrs 2z+ 7 to transform
mined with the help of the perturbation theory for values ofthe above expression into Matthieu’s canonical equatee
{a;}4., obtained for the ground state, while the correspondRef. 4). The condition of periodicity inp with a period 2r is
ing parameters in the perturbation theory are quite small. satisfied by Matthieu's functionse,n(z,q) and se,n(z,9)

2. To illustrate the potentialities of this method, we con- with the even index. They form a complete system of func-

sider the equation tions on the segment w/2<z<=/2. For eachy, the sepa-
2y 1oy 1Py cose ration constana assumes an in_finite set of d_iscrete values
- S - y=ey. ) depending on the index and parity of the functions. The func-
dp= pdp p°de p tion cey(z,q) does not have zeros; hence this is the function

ecorresponding to the ground state. The solution of the radial

Many problems in the physics of crystals which contain ed
yp Pty Y ¢ equation is knownsee Ref. h The ground-state function

dislocations(see Refs. 193can be reduced to this equation

in dimensionless polar coordinates, that does not contain arh)fas the form

parametgrs. The de.nsity .of negativg va_llueswiear zero Yoo=Aoo™ Ycey(z,q)exp — Bp)p?, (5)

was estimated semiclassically by Lifshits and Pushkarov.

Nabutovskii and Shapifoused the conventional variational where 8 and y are certain functions off, @; and a,, and

technique to obtain the ground-state energy, while Slyusare#y, is the normalization constant. The mean value of the

and Chishkd obtained a betteflower) value for this energy. total Hamiltonian from Eq(2) in the function ¢, Which

The Hamiltonian in Eq(2) commutes with the operator re- must be minimized, assumes the following form after inte-

versing the sign ofp, hence the levels are split into two gration with respect ta:

subsystems corresponding to functions that are even and odd

;r;dz}eLde\i/r(]aI;;(')gfaspondlng to even functions only are con £ 00= A(Z)of exp— Bp)p?* 1
In problems that are usually solved by using perturbation )

theory, the Hamiltonian naturally splits into the zeroth _ Co—ao _ y

Hamiltonian for which the eigenvalue problem is easily 2qp eXH(—Bp)p

solved, and a perturbation that is proportional to a small

parameter. The expansion parameters in the perturbatidﬂere' ao(0) <0

theory are proportional to this small parameters and therefor® = C&(z0), and

are also small. Such a natural splitting does not occur for Eq. 2 a2 d2

(2), and hence the perturbation theory was not applied to ng— — f cey(z,q) 9z cey(z,g)dz

them. We choose TS

( d? 1d+CS
dp?> pdp  4p?

dp. (6)

is the eigenvalue of Eq.(4) for

2
- # 19 1 ¢ qcose a; « :Efmz d
A 1 2 B g, Ce(z.)| dz (7)

The last term in the integrand operator is calculated by mul-
Here, the vibrational parameters are denotedjby;, and tiplying Eq. (4) for ®=cey(z,q) by cey(z,0), and integrat-
a,. Note thatH, contains a potential proportional o 2,  ing with respect taz. Instead of minimizing inx; and e,
and hence has eigenfunctions satisfying the conventiond¥€ can make use of the fact that the minimumegj is
continuity and integrability conditions only if®>a,, i.e.,  attained by the eigenfunction of the integrand operator for
if the sign of this potential varies witlp. It will be shown ~anyq=>0. In this case, we obtain
below that the Hamiltoniaﬁ-lo has a spectrum consisting of Cé—ao Co
a discrete part and a continuous part, as welHasMore- B(q)= 20CT 1)’ YQ)=—=, eoq)=—p% (8)

. i gq(Co+1) 2
over, it also has a similar angular dependence of the poten-
tial. In the eigenvalue problem foH,, the variables are It remains for us to minimize () in g by numerical tabu-
separated, and the complete system of eigenfunctions can kaion according to Ref. 6. In order to comput% in this
expressed in terms of known transcendental functions. It isase, we use the expansionaaf(z,q) into a Fourier series,
hard to formulate any additional concepts determining thevhose coefficients are given in Ref. 6. We obtain
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Omin=4+0.05, &} 0>— —0.1053, Co/2=0.6466. (99  Thus, the obtained value of the ground-state energy is lower
than the best value<0.1111) obtained by Slyusarev and
The eigenfunctions and eigenvalues of the Hamiltorfn  Chishko® The relative decrease is more than 8%. Another
are classified according to three quantum numbers, viz., rdesult having a physical meaning is the lowest exponemt of
dial quantum numbem=0,1,2,.., the quantum number asp—0. The value of this exponent obtained in Ref. 3 is
0=0,1 determining the parity of a function relative to the equal to 0.75, while in the method considered here,
reversal of sign ot [the eigenvalue of the sign-reversal op- y,,,=0.6466.
erator (—1)7], and m the index of the Mathieu function, Similarly, we can calculate the energy and exponent for
which assumes all even values starting from zerodetrO  the lowest odd state:
and from 2 foro=1. They have the following form:
Omin=25, «@;=34.9688, «,=0.6994,

Ang
[nom)= \r/];m exp(p\/Tﬁf’U)m)p“F( —n,2u f1o1,=1.8476,
+1,207 =0 [ 8,0Cem+ 8y15€n], (210H,|014)
—————=0.458, &{j,=—0.0252. (14)
€012~ €014
(o, m)= 5 (Sy08m+ Sp1bmt ay)*?, 3. The above example shows that the new method allows
us to obtain better and more comprehensive results than the
) conventional variational procedure. The results for eigenval-
O — a2 ues can be improved further by calculating other terms also
nom (2u+2n+1)%’ in second order perturbation theory. However, for levels for
which perturbation theory is applicable, the eigenfunctions in

(2\J=e@ )t T(2u+n+1) | M2 the first approximation in perturbation theory can be re-
T(2p+1) (n!(z,u+n+1) (10 garded as approximate expressions for true eigenfunctions.
This means that they can be used to calculate the matrix
Here, F(—n,2u+1,2p \/—sn(ﬁgjm) is the degenerate hyper- elements for other operators with the same accuracy as the
geometric functionA,,,, the normalized constant of the ra- eigenvalues.
dial function(see Ref. 7 for computing this function as well The restriction on the applicability of perturbation theory
as other functions encountered in the computation of matrifor the ground state and low-excited states in the case when
elementy and &, the Kronecker delta. According to Ref. 4, the spectrum has a condensation point is probably of funda-
the eigenvalues of Mathieu functions are denotecafyfor ~ mental importance. If the variables in the eigenvalue prob-
even functions and blgy, for odd functions. For the value of |em for the HamiltoniarH are separable, this problem can be
g obtained above, all these eigenvalues are positive excepbnsidered by using the WKB approach in the vicinity of the
ao. Comparing(10) with (5) and considering8), we obtain  condensation poirft.This technique can be used to justify a
ay transition to the classical integrable problem. The point of
al—CO a7=5.9529; a,= 2a —=0.7441. (11 condensation of eigenvalues corresponds to a separatrix di-
viding the regions of finite and infinite motion of the corre-
The correction to the ground-state energy in the first approxisponding classical particle. If the variables can be separated
mation of perturbation theory is equal to zero. Averaging ofonly in the HamiltoniarH,, the correctiorH; corresponds
the total HamiltoniarH in the functions(10) gives values of to the loss of all integrals of motion except the energy. The
the excited-state energy in the first approximation of perturWKB approach becomes inapplicable, and there are no
bation theory that are different from{®) . These values methods known which would permit the calculation of the
have meaning only for the excited states for which perturbaeigenvaluess(n) for largen, wheren is the level number
tion theory is applicable. counted from the ground state in ascending order. In classi-
Let us calculate the highest term in the second approxical mechanics, the loss of integrals of motion leads to ran-
mation of perturbation theory for the ground-state energy: dom motion of a particle, especially near the separdtiix.
can be assumed that this corresponds to the absence of an
N OminCOSZ Ci—a, Ci—a, cosz algorithm for calculatings(n) for largen in the eigenvalue
Hi=— 202 - 4p2 20mmp (12) problem. In this case, the spectrum can be described by using
i min statistical concepts only, like the density of states. For the
The matrix elements dfl; on functions for the ground state equation considered in Sec. 2, such a description was used in
and others withm=0 are equal to zero. The closest stateRef. 1.
with a nonzero matrix element |602). In this case,

Anem=

- <OOQ|:|1|002> 1|, M. Lifshits and Kh. I. Pushkarov, Pis'ma ZhkBp. Teor. Fiz11, 456
(000 H,|002=0.0336,—————=—0.4264, (1970 [JETP Lett.11, 310(1970].
€000 €002 2V. M. Nabutovskii and B. Ya. Shapiro, Pis'ma thﬁ) Teor. Fiz.26,
624 (1977 [JETP Lett.26, 473(1997)].
(2) _ _
€000~ 0.1196. (13) 3V. A. Slyusarev and K. A. Chishko, Fiz. Met. MetallovesB, 877(1984.
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

Hyperfine-interaction-driven Aharonov—Bohm effect in mesoscopic rings
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Nationale de la Recherche Scientifique, BP 166, 38042 Grenoble Cedex 09, France
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Ukraine, 47, Lenin Ave., 310164, Kharkov, Ukrdifie
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Fiz. Nizk. Temp.23, 1305-1308December 1997

It is shown qualitatively that lifting of the electron spin degeneracy by a hyperfine field, which is
generated by a nonequilibrium nuclear spin distribution, and breaking of the left-right

symmetry by the spin-orbit interaction in a closed ring produces under certain conditions a
persistent current, which demonstrates the Aharonov—Bohme-like oscillations with time in GaAs/
AlGaAs-based mesoscopic rings even in the absence of an external magnetic field. The

typical time interval of thesémeso-nucleospinjcoscillations is of the order of several seconds,
which is typical of the nuclear spin relaxation times in heterojunctions.1997 American

Institute of Physicg.S1063-777X97)00712-3

The persistent currentd?C) in multiconnected meso- main physical interest in this subject is based on the fact that
scopic conductors reflect the broken clockwise-anticlockwisghe discrete nature of the electron spectrum in these systems
symmetry, which is usually caused by the external vectoresults in the exponentigdexp@/T), whereA is the mean
potential. Experimentally, PCs are observed when an adislectron energy spacing, arid is the temperature depen-
batically slow, time-dependent, external magnetic field is apdence of the nuclear spin relaxation tiniegson the system
plied along the ring axi$-® The magnetic field variation Parameters We assume here that similar law should apply
results in the oscillatory behavior, with the magnetic flux for the nanostructures with well-defined size quantization of
quantum®,=hc/e (or its harmonick of the diamagnetic the electron spectrum. Note that in this cdgeis very sen-
moment(the PQ, which is a manifestation of the Aharonov— Sitive to the potential fluctuations caused by the inhomoge-
Bohm effectt neous distribution of impurities in a heterojunction. Indeed,

We propose that the persistent current exist in a GaAsfS it was discussed in Ref. 16, the impurity potential modu-
AlGaAs quantum ring with a nonequilibrium nuclear spin lates the spacing, thus prowdm_g faster _nuclear relaxation.
population, even in the absence of an external magnetic field. 'Nténsive experimental studies of this phenomenon have

We predict the ABE-like oscillations of PC with time during Provided a more detailed knowledge of the hyperfine inter-
action between the nuclear and electron spins in heterojunc-
tions and quantum wells. It was observed that the nuclear
in relaxation time in GaAs/AlGaAs is rather lofigp to
seg™® and the hyperfine field acting on electron spins in
this material is extremely high, up to 1@.14° Based on
population? breaks the spin symmetry of conduction elec-this knqwledge we sugg_est_that once the nonquilibr@um
population of nuclear spins is created, the hyperfine field

trons which, combined with a strong spin-orbit coupling, re'may strongly influence the electron transport and persistent

sults under certain conditions in the breaking of the rota-. ,rents in nanostructures in sufficiently long time.

tional symmetry of'd'iamagnet-ic gurrgnts in a ring. Qndgr the In this brief note we show qualitatively that the com-
topologically nontrivial spin distribution, the hyperfine field bined action of the hyperfine nuclear field and the electron

produces the Berry_phgse_?Pangous to one which emerges {in_qrhit interaction breaks the time reversal symmetry in a
textured mesoscoplc.rm_ds. _ _ mesoscopic ring(i.e., a sufficiently small ring so that

We note that this is the first of a series of “meso- gy antum-mechanical phase coherence is presgri@mhed
nucleospinic” effects, which take place in different systems;, 5 GaAs/AIGaAs 2DEG, which results in an oscillating
with broken symmetry due to the combined action of thepersistent current at millikelvin temperatures. The detailed
hyperfine field and spin-orbit coupling. theory will be published elsewhere.

Let us first examine the nature of the hyperfine electron-  The contact hyperfine interaction between the electron
nuclear spin interaction and of the electron spin-orbit inter-and nuclear spins is described by the following term in the

the time interval of the order of nuclear spin relaxation time
T4, which is known to be long in semiconductors at low
temperatures. The physics behind these oscillations can b
understood along the following lines. The hyperfine field,1
which is caused by the nonequilibrium nuclear spin

action in typical heterojunctions. Hamiltonian®
The hyperfine interactions in GaAs heterojunctions and g
- R -
similar quantum Hall systems attracted recently sharply en _ MB?’hﬁ22i 1,S8(r—R)) 1)

growing theoreticd? and experiment&f~'° attention. The chf™ 3"
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whereug andvy,, are the conduction electron and the nuclearwhere the brackets stand for quantum averaging, and the
magnetonslt, S, R;, andr, are the nuclear and the electron double brackets denote

spins and position vectors, respectively; af(d.—R;) re-

flects the fact that the-electrons have a nonvanishing prob-
ability on the nuclei. Since the conduction quasiparticle

(an=r awar @

wavelength in GaAs is much larger than the internuclei diS'For a micron ring formed in a GaAs/AlGaAs 2DEG#2

tance, it follows from Eq(1), that once the nuclear spins are

polarized, i.e., i{21;)#0 (Refs. 13—1} the electron spins

will experience an effective hyperfine field, which lifts the

~30o(t)). The value of(a(t)) depends on the particular
features of the relaxation dynamics.
To estimate the amplitude of a PC generated by a time-

electron spin degeneracy even in the absence of an eXterr@épendent flufEq. (6)], we must establish the hierarchy of

magnetic field. In GaAs/AlGaAs one may achieve the spi
splitting due to hyperfine field of the order of the Fermi

energy:ugHcni=er (Refs. 14 and 1§ which is of the order
of 1 K.

Let us assume, therefore, that only one electron spin ori
entation is populated during the time interval of the order of

the nuclear spin relaxation time, . It is quite obvious that
under the topologically nontrivial spin textufsee below

switching on electron spin-orbit interaction in the system of

spin-polarized electrons will produce a persistent current.

The standard expression for the spin-orbital interaction

so 4m202

I

[VVXDp] 2

can be rewritten in the fornt so— pAeﬁ, where the effective

"ime scales in a micron ring at the level of millikelvins.

The time scales are the nuclear magnetization relaxation
time T,, the ballistic timefi/A«L/V, the phase-breaking
time 7,= 7j,, wherer;, is the time of inelastic electron scat-
fering, andr, is one of the elastic processes.

The time 7, in quasi-one-dimensional GaAs/AlGaAs
rings is governed mainly by smooth tails of the impurity
potential located in the “spacer®? In an actual
experiment the elastic mean free path is of the order of 10

The inelastic timer;, in quasi-one-dimensional quantum
rings is defined by a combined action of the electron-phonon
scattering and the elastic scatterfiigunder the condition
ugHeni~er>A>T the electron-spin-lattiéd scattering in
a ring is suppressed. It is estimatédo be 7,=10"7

vector potential operator reflects the combined action of the- 108 sec.

hyperfine field and of the spin-orbit interaction:

A h R t
Aet()= 7= [o()x VV]=AY exp( - T—l) .

In what follows we restrict the discussion to the case o

In our case the timd@; far exceeds all the microscopic
electron times,T,>(%/A,7,,75), Which evidently means
that energy relaxation restores the equilibrium distribution of
the electron levels, and we have a thermodynamic

situation?® When L~I.<L,, the persistent current can be

GaAs/AlGaAs heterostructure-based mesoscopic rings. Spirﬁ:-""lm"l""ted a5

orbit interaction in semiconductors can be caused by impu-
rities, boundaries, etc. In GaAs there is a well-known mecha-

nism, attributable to the crystal anisotroffywhich can be
presented as

~ 04
HSO:%Z [oiXp]v. (4)
Here «=0.6x10"° eV-cm for holes withm* =0.5my (m,
is the free electron magsr andp are the charge carrier spin
and momentum; and is the normal to the surface.

We obtain for the effective vector potential operdtag.
(3)] the estimate

am*

eff %

A GaAs_

©)

Under real conditions we havegH.,= a/L, whereL

JdF

JPC:_CWeXt

|¢ext=0 ! (8)
whereF is the free energy, an®.,; is the probe external
flux. The thermodynamic value ofo(t)) in Eq. (6) is
meHend(t)/ep=1.

In light of the above discussion, we estimate the persis-
tent current in a fully spin-polarized gas whar>T to be

_ eVr « sin2mkeg exp—t/Ty))
Jpc= I E K )
k=1

where po=L({@))h ~2m*.

The oscillations of persistent current arise due to the
exponential time dependence of the phageexp(—t/T,) in
Eq. (9), with the time constant,, which in GaAs can be of
the order of several seconds at a temperature of several

C)

is the |00p penmeter, and the electron spin projecnon is anl”lk8|V|nS. We note the marked difference between the

well-defined guantum number. The vector poteritizd. (5)]

time dependence of standard AB oscillations, which are usu-

generates a persistent current, which is the sum over th'é”y observed under the condition of linear time variation of
partial current carried by the individual energy levels with the applied magnetic field, and the hyperfine driven oscilla-

different projections of the electron spin.

tions, which die out due to the exponential time dependence

The result of summation is an oscillatory dependence off the nuclear polarization.

PC on the effective flux across the loop:

§ anagr =15

h

(a(1)), (6)

2mp=
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Let us now consider experimental feasibility of the pro-
posed effect. A nuclear spin configuration should be created
when the circulation of the effective vector potential is a
nonzero topological invarianfEq. (6)]. In the geometry
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The mesoscopic effect of the dependence of the point-contact conductance on the spatial
distribution of the impurities is theoretically studied. It is shown that the resistance dependence
on the diameted is not only determined by the electron mean free pattbut also by

the average distance between the impurities. In the case of two types of impurities with different
concentrations the mesoscopic effect is predicted for a dirty point cordaet;) due to

the scattering at specifi@.g., magneticimpurities with a low concentration. Such contacts were
numerically modeled for random distributions of the two types of impurities.1997

American Institute of Physic§S1063-777X97)00812-§

The break-junction techniglienakes it possible to study centration isn;= r53) is assumed to be smaller than the con-
electron transport through microconstrictions few nanom-+act diameter, which allows us to average all equations over
eters in diameter. The conducting properties of such smathe coordinates of these impurities. We call such defects
contacts are affected by quantum effects such as €i¢h2 “the background defects”. The concentration of second-type
conductance quantization observed while changing the diandefectsn;® , whose interaction with electrons determines the
eter of the contact® conductance fluctuations due to elec- mesoscopic effects, is such that their separatiop,
tron wave interferenc®® etc. In ultrasmall contacts, besides =ni*_1’3, is comparable tal. Such defects are referred to as
the quantum effect$! the presence of impurities in the con- “specific impurities.”
tact region produces noticeable classic effects. Such “classi- The current through the contact can be expressed in
cal mesoscopic effects” cause conductance fluctuations dugrms of the Green—Keldysh functiogf;(r,s) integrated
to the displacement of individual scatterers, and also itgvith respect to the energy variable=e,—er (eg is the
stochastic-like dependence on the magnetic fleldwas  Fermi energy*:
shown in Ref. 9 that individual point defects, which are lo-

. - ) T de
cated at a distance from the constriction comparable to its |=— eN(o)f dzpf — <ngK(p,8)>_ (1)
diameterd, cause a deviation of the size-dependence of a 2 s 2m P
ballistic 10 flontact’s resistanceR(d) ~ from  Sharvin's In this formula the integration with respect tfp is
formula™"" If the average distance between the impurities 4 ried out over the ares of the contact, and, is the

appears greater than or equal do we obtain a classical component of the electron velocity= ds/dp parallel to the

mesoscopic effect—the dependence of additional contact réqnact axis. The angle brackets denote averaging over the
sistance due to the defects on their spatial distribution. Wejirections of the momentunp at the Fermi surfaces,,

will demonstrate below that an analogous dependence can bggF where the density of states \(0).

also observed in contacts with a sh_ort electron mean free | the Keldysh methdd the retardecgr'f and advanced
path for Fwo _types of scatterers of @fferent c_oncentrgtlonsglé Green’s functions appear along Wi@ﬁ. The matrix
Such a situation can take place, for instance, in experimenta

observations of size effects in metallic point contacts with . gﬁ gg
magnetic impuritie$? where a rare spin-flip electron scatter- 97| o ah
ing is accompanied by many scatterings at regular impurities o o A
which inevitably appear at the point contacts. which satisfies the normalization conditigg=1 for a non-

We restrict the analysis of classical mesoscopic effectSUPerconducting metal, is the solution of the equatfion

@

to th(_a semiclassical approximation, assuming that the size is ivV{:]er[@pE]:[f,VQ(pO)]. 3
considerably larger than the de Broglie wavelength of elec-
trons. In this equatior@f)o) is the matrix of the Green’s function

Assuming that the point contact is an orifice of diameterfor a pure point contact with only the background impurities,
d in the insulating partitior®, and separating the two metal- the scattering of electrons on which is described by the
lic half-spaces, we obtain a situation which is illustrated incoordinate-independent matrix of self-energy functions
Fig. 1. It is assumed that the metal has two types of defects = (i/27;)(g,), where 7; is the characteristic time of the
of different effective scattering cross section. The characterelastic relaxation. The electron interaction with the specific
istic distancer ; between the defects of first tygtheir con-  defects is associated with the right side of E8) which
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and also the condition fdr|— o
ap(r—»)=6(z), 9

which is derived from(6).

We write the particular squtiong(r,s) of a nonho-
mogeneous equatiofb) using the corresponding Green’s
function g/ (r,r')=9g_p —p(r',r):

5g§<r>=fdp'dr'gpp/(r,r')lr<g§,°>K>. (10
The functiong,, should be determined from the rela-
tions
J

Vo Gpp (M) = 1i(gpp") = 8(p—p")o(r—r"),  (11)

gpp,(r,r’—m):O. (12

, _ o _ _ Substituting the value oﬁgg in Eq. (1), we obtain the
FIG. 1. A model of the point contact as a circular orifice in an insulating

partition 3. The dots represent the background and the stars symbolize thgXPression for the change in the electric curramtdue to

specific defects. The broken lines represent the electron trajectory throughP€cific defects
the contact.

Al= 7TeNofdsf S
) =——5 N 5. (02095 (p))

contains the scattering matrix This matrix can be deter- d
mined trom the L|;3pman Schwinger equation --= N(O)f > f dpf erp(r)Ii*(gﬁ,o)K(r)),

t=V—iaN(0)V(g")t, 4

.. S (13)

where V=V(r) is the scattering potential. Note that the
structures of matrice¥ andt are similar to that of2).

According to Eq.(3) and the normalization condition, _ 2 L
the functionsy* in a normal metal are equal to their equi- Gp(r)= Sd p | dp"v2Gpp(p.r). (14
librium values g5=—gp=1. Taking into account relation
(4), the equation fogg can be written in the form

where

Multiplying Eg. (11) by v, and integrating it byp over
the contact area and momentymwe obtain the following

vVaE—1i(Gg) =17 (g, (5  equation for the functioi® (r):
where J
) 1 ) VEGp(r)Hi(Gp(r)):—&(z). (15
'1(8p)= 7 [{Gp)=9pl: 1T (Gp) =2 1m 4Gy~ Gy, The probabilitye,(r) satisfies Eq(8), which combined
The boundary condition with Eq. (15) yields the relatiot?
) T Gy =a_4(r)—6(2). (16)
gp(r,S):G()(S—E ey sign z) for |z —ee ©) Substituting (7) and (16) into the expression for the

ensures the restoration of equilibrium in the electron Systen;])0|nt-contact current correctio3), we find

at the contact banks. In E¢6) Gg(e)=2 tanhg/2T) is the de eU
equilibrium Green’s functioT is the temperatupeU is the Al= _WeN(O)f 5 1Col e+ 57| ~Go| £
voltage applied to the point contact.
Following the authors of Ref. 15, the functig@o)K(r,s) _ ﬂ J' f *
can be conveniently expressed as 2 dr | dpap(NIF (ap(r)). (7
(0K e eU Relation(17) has a wide range of applications. It is valid
gp  (re)=ap(r)Go| e+ N +(1=ap(r))Go| &~ | for any mean free path as to the electron scattering on back-

7) ground impuritiesl; in case their separation distancg is
much smaller than the contact diametierand also for arbi-
trary relation between the valukand the distance between
the specific defectsy , which provide the mean free path for
electron scattering on these defedfs>-d,|;.

The following calculations depend on the properties of
both types of scatterers and their concentrations. The inte-
VWap(r)—li(ay(r))=0 (8) grodifferential equation for the probability, (8) can be

where the voltage-independent functiag(r) is the prob-
ability that an electron arrives at the poinfrom — with
the momentump after being scattered only by the back-
ground impurities. The functiomy(r) satisfies a homoge-
neous equation similar to the one fg{”"
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solved analytically for extreme cases in which the mean free 400
pathl; is much greater or much smaller than the diamdter
For the ballistic regime of electron motion through the con-

tact we obtain 300
0(—2z)+signz, —ve(r)
(D=1 52, —vean), Isd 19

Q(r) is a solid angle at which the aperture is seen from the
pointr; 6(z) is the (Heaviside unit step function.

For the diffusive regime of the electron motion through
the contacie, can be expanded in a series in a small relax-

AR/R, (in units of c’)
N
(o]
o

R 0 2 4 6
ation time7; (Ref. 19 d/ro-
ap(r)=(ap(r))—7ivV{ay(r))+... I;j<d, (29
where FIG. 2. The dependence of the relative correctioR/R, for the ballistic
resistance of the point contaR}, versus the ratio between its diameter and
) 1 1 the characteristic distaneg between the defects for three random distribu-
(ap(r))=6(z)—signz — arctan=; (20 tions in the contact region. Curvésand2 represent the cases in which one
T Q of the impurities is located in the contact region, and ci8vs the case in
or2 1 or2 112 452112 which there is no such impurity present.
2
= ——+||l-7 — | +—= 21
Q d2 2 [( d2 2 dZ ( )
The solution of Eq(4) for the scattering matrix is com- _
| a4 . g mat Rs1=€?N(0) | d?p(v,an(p)): (25
plicated and can be found only in some special cases. For s

example, if the interaction with a single impurity located at

r, is described by the spin-independent operastfr) R, is the contact resistance without the specific impuritfes,

=VI48(r—r;) (I is a singular matrixV=cons}, then for an . Im tA _ mV2N(0)

arbitrary interaction potential/ the t matrix will have the o= ve  ve[1+(7wN(0)V)?]

form . . . . o
L is the effective cross section of scattering by the specific
VI=izVA(g”)N(0) impurities.

t= S(r—ry). (22)

1+[7N(0)V]? R,
In the case of a scattering center with nonzero sghe M(ri)_4R_o {ap(ri)l{ap (1)) = ap(r) ]); 26

electron intgractjqn energy \ivith such a scatterer contains thﬁalz 1/26%0£N(0)S, andR, is the resistance of a ballistic

componenV=José(r—r;) (o is an electron spin operator, contact(Sharvin formula. 1%t

andJ is an exchange interaction conspantt temperature3 The sum of theM (r,) functions depends on the specific

above the Kondo temperatufg~sr exp(~1/N(0)J) we  configuration of the impurities and describes the classical

can construct the Born series for the scattering matrix. Stanyesoscopic effects in the conductivity of point contacts. For
dard calculation in the second Born approximation give  the paliistic case in which the functiom, is determined by

de I'(r,e) Eq. (18), we havé
2me—g'*i0’ Q(r)
2

Figure 2 shows the results of a numerical calculation for
1 Egs. (24) and (27). In the mesoscopic regiord(-rg) the
behavior of the resistance is essentially determined by the
presence of impurities at distanags-d from the aperture. If
o(r—rj). (23)  there are some impurities, then we will haMeshaped de-
pendencesAR/R,)(d) (curvesl and2in Fig. 2), otherwise,

If we haveN>1 specific defects which yield an electron we have a monotonicAR/R)(d) dependencécurve 3 in
mean free path’>max(, |;)), the calculation of the current Fig. 2). It should be noted that whilé/r§ is increased from
through the contact can be performed by ignoring the corresome point, the value akR/R,, stays below its asymptotic
lation between the individual scattering events and writingvalue:
the operatort of the system in the form of the sum of
by . ; . . AR 16
t-operators of scattering by isolated defects. In this approxi- —_— ~~ 4% ;*(. (28)
mation, in the case of isotropic scattering by zero-spin impu- Rp 37"
riies the resistanc® of a point contact has the form Figure 3 illustrates a situation that might be observed in

o* experiment¥ when the defects are concentrated in a thin

R 1= Rc‘l[ 1- < E M (ri)} ; (29 layer near the contact. In such a case the contaminated region

T

i
=5 T(re)(gy)); t*A= f

where

2
M(ri)= : (27)

I'(r,e)=aN(0)J%s(s+1)

(0)K
_IN(0) fd8,<gp )

2 s—¢’
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300 : SXTEIERTES, Y

250 '

AR/Ry (in units of ¢°)

d/ra

FIG. 3. Relative correctiodR/R, for the resistance of a ballistic contact

for the various spatial distributions of impurities when the defects are lo-FIG. 4. Dependence of the relative correctid®R/Ry, for the resistance of
cated in a thin layer in the insulating plaf@irves2-5). Curvel represents  a contact with small mean free path on the ratio between its diamdetad
a rare case in which one of the impurities initially appears in the nearthe characteristic distance between the specific defgctsCurvesl and2
contact region. correspond to two different distributions of these defects.

plays the role of a barrier with effective transparefitylt is

known'’ that the relative chang&R/R, in the resistance of R™I=RyL(1—1,/1*). (32)
a ballistic contact due to the translucent barrier isC1 and
does not depend on the diameterThe assumption made is Note that Eq(32) can be directly obtained from expres-

supported by the results of a numerical calculatibiy. 3), sion (29) for the resistance of a short mean free path contact
which shows a fairly weakAR/R,)(d) dependence for con- in which, according to Matthiessen’s rule,! should be re-
tact sizes, of the order of the thickness of a layer in which theplaced byl; *+1* ~*, bearing in mind that; <17 .

scatterers are concentrated. The (AR/Ry)(d) dependence, which is determined by
For contacts with a small mean free path, using Et@.  analytical equationg31) and (32), is illustrated in Fig. 4,
and (26), we obtain showing the results of the numerical calculation using Egs.
5 (24) and(30) for various random distributions of the specific
R;1=Rh7|l=§evaN(O)|id; (29)  scatterers. The mesoscopic regime in the conductance of

point contacts is observed up to the valueslofy of about

Ry is the resistance of the diffusion contadlaxwell’s  5—10.

equation; For the electron scattering by specific impurities with
nonzero spin, substituting expressi@8s) for t* into (17) at

'_i 1 (30) temperatures above the Kondo temperature, we can formally
7d (Q%+1)(Q%+4z7/(Q%d?))’ write the differential resistance of a point contact in the form

where Q2(r,) is defined by Eq.21). If the characteristic (24), denoting byos™* the following function of the voltage

distance between the specific scattengfsis much larger and temperature:
than the contact sizej>d, the impurities located at dis- mN(0)J%s(s+1)
tancesr;>d from the orifice yieldM(r;)=(l;/d)(S%r?). *=

M(r)=

B JN(0) dF(eU)

: (33

Separating the contribution of distant defects, we obtain for a 2vr 4 deU
relative correction to the resistance where
SR '\/|(fi)+|—i > , (3D F(eU)= “de £G ©_de’ r_
Ry S r=d [¥ r*d fo €& o(%?)f0 82_8,2[60(8 el)
wherel¥ “*=o*n*, |;=ve7, andr*~rg . The first term —Gy(e' +eU)].

in Eq. (31) is the contribution of specific defects in the con-

tact region to the contact resistance. The partial contribution The second term in square brackets of expres&iah

of every scatterer to thAR value is of the order of* d/S]; which is a function of voltage and temperature, describes the

and increases as the diameter is reduced. In a real situatitfondo anomaly on the current-voltage characteristic of the

for r§>d there might be no defects at distancgesd from  point contact. Note that the valug*, evaluated in the sec-

the contact, and the relatidhR/R, is proportional tod. ond Born approximation, does not depend on the scattering
Now if d>rj , the location of defects has no effect on by background defects, and E&3) is valid for any relation

the resistance of a point contact. Such inequality allows us tbetween the contact diametgrand the mean free path.

switch in(24) from a sum over the impurity coordinatgsto Therefore, the increase in concentration of the specific
an integral over the whole space. This yields for the circulaimpuritiesn;* , which leads to the alteration of the ratio be-
contact tween the characteristic separation of the impuritigs
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=(n¥)"Y® and the contact diameter, changes the sizetribution of impurities in the contact region affects the inten-
dependence of the resistance of a point confatd) =Ry, sity and displacementon the voltage scaleof the Kondo

+AR: anomaly in the point contact spectrum.
L, ri<d I*<d<l,,
A_N dl.  Nno* *E-mail: kolesnichenko@ilt.kharkov.ua
Ry _'+0_ r’g >d ** E-mail: post@rulgm1.leidenuniv.nl
roli dIf
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Raman investigations of orientational ordering in NiSiF 6-6H,0, NiSiF4-6D,0,
and ZnSiF 4-6H,0 crystals

V. V. Eremenko, A. V. Peschanskii, and V. |. Fomin

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukrairie
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Fiz. Nizk. Temp.23, 1315—-1324December 1997

The results of investigations of polarized Raman spectra in Zp&O and NiSik-6D,0

single crystals in the temperature range 2—300 K are presented. It is found that the crystals are
orientationally ordered at low temperatures. The orientational disordering is described by a
model in which the rotational motion of the %ﬂ: complex is determined by a two-well
asymmetric potential function. The parameters of the model are determined from the
temperature behavior of the Raman spectral lines. The calculated values of concentration for two
orientational positions of the ﬁF complex at room temperature are in good agreement

with the x-ray data. ©1997 American Institute of Physids$51063-777X97)00912-2

According to the results of x-ray diffraction analysis at dence of intrinsic vibrations of 0. The observed Raman
T=300 K,! orientational disorder of octahedral ions SF spectral lines were classified for NigiBH,O and
each of which can occupy one of two energetically inequivaNiSiFg-6D,0 crystals at 300, 110, and 10 K in Ref. 5, for
lent positions which are not connected through a symmetrgnSir;-6H,0 at 20 K in Ref. 11, and for MeSiF6H,0
element is a structural peculiarity of hexahydrates of nicke{Me=2zn, Ni, Co, Fe, and Mpat T=300 K in our earlier
and zinc fluorosilicategNiSiFe-6H,0 and ZnSik-6H,0)  publication? Jenkins and Lewfscompared the Raman spec-
under investigation. In these orientations, octahedrons arga for zinc and nickel fluorosilicates with the corresponding
distributed randomly over the crystal, their population densispectra for fluorotitanates.
ties for Ni- and Zn-based compoundsTat 300 K being in In our earlier publicatiort® we thoroughly analyzed the
the ratio 0.33/0.67.The temperature evolution of orienta- temperature behavior of Raman spectra in a Ni%H,0
tional disorder of the crystals has not yet been studied.  crystal. It was found that &t>130 K, the spectrum acquires

~ Anomalous temperature behavior of lattice parameteran additional low-frequency line in the lattice vibration re-
discovered in low-temperature x-ray studidwas attributed  gion, whose intensity increases anomalously with tempera-
by the authors of these publications to a second-order phasgre. The emerging additional line is not a result of a PT; its
transition (PT). The crystals of NiSif6H,0 atT=220 K?  pehavior reflects orientational ordering upon cooling in the
and ZnSik-6H,0 at T=200 K* exhibit a change of rhom- proposed model of an asymmetric two-well potential de-
bohedral modifications differing in the temperature expanscribing vibrations of Sig—' ions.
sion coefficients of the lattice. An analysis of the  |n order to verify the proposed mechanism of orienta-
permittivity* of the crystals revealed that Nig#6H,0 and  tional disordering, we analyze here the Raman spectra over
ZnSiFs-6H,0 crystals in the temperature range 150-250 Kwide temperature interval for NiSiF6D,0 and
experience diel'ectric Ioss'es indicating th'e existence 0fnSik;-6H,0 crystals having the same structure and similar
temperature-activated motion of electric dipole momentstypes of disorder. We shall also consider estimates of the

The observed behavior of dielectric response indicates a sigrarameters of the orientational ordering model proposed in
nificant change in the nature of vibrational mobility of ions Ref. 10.

in this temperature range.
The space symmetry group of the crystal lattice of the

) . — 5 , DISCUSSION OF EXPERIMENTAL RESULTS
crystal under investigation B3 (Cg5;), and the unit cell con-

tains one structural unizE& 1).2 An analysis of fundamental Experiments were made on single crystals of high opti-
oscillations shows that the ordered structure can have 7&al quality. The coordinate system was determined by crystal
vibrational modes: faceting in the form of a combination of a hexagonal prism
and a rhombohedron. Thé&axis was parallel to the hexago-
Tyip=12A4+ 12E,+ 14A,+ 14E,,. nal growth plane and perpendicular to the agig, ZIICs,

andYL X,Z. The Raman spectra were excited by the 4880 A
In the Raman scatterin(RS), the A; and E; modes with  line emitted by an Ar laser with a power of 200—300 mW.
nonzero components of the Raman scattering tensor are a€he light scattered by a sample at an angle of 90° was ana-
tive: XX,YY,ZZ for Ag and XX,YY,XY,XZ, andYZ for  lyzed by a double monochromatapglLIN YVvoN U-1000 and

Ey. recorded by a cooled photomultiplier in the photon count
The Raman spectra were studied earlier formode.
NiSiFs-6H,0° %% and ZnSik-6H,08%! crystals. Jenkins Structural peculiarities and measuring technique are de-

and Lewi§’ paid main attention to the temperature depen-scribed in detail in Ref. 10.
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Low-Temperature Raman Spectra

a SiFg 3 Me(H,0),2*
We investigated Raman spectra of NiS&D,0O and ! o S 22
ZnSik;-6H,0O crystals atT=2 K in the frequency range
0-3600 cm?. Figures la—c show the Raman spectra with
different components of the Raman tensor for a l
ZnSiks-6H,0 crystal. The same figure shows for comparison T s
the spectra for NiSig6H,0 and NiSik-6D,0 (Figs. 1d and b ! o Y YX

le, respectively The above frequency range can be divided
into two >#1The first(from 0 to 140 cm?) corresponds to
the lattice vibrations region containingAg+ 2E rotational AJL
oscillations of octahedral complexes. The range M~ A
190-800 cm! contains lines of intrinsic vibrations of i '
Me(H,0)2" and SiE~ complexes as well as brodeven for
T=2 K) lines corresponding to librational vibrations of
H,0O(D,0).

Table | contains values of frequency corresponding to
Raman lines, attributed to the first-order spectrum, in com- d
parison with the available data. It can be seen that the num-
ber and polarization of lines observed in the Raman spectrum
at low temperatures are in good agreement with the calcula-
tions based on the group theory for an ordered crystal lattice

(2]

XX

1, rel. units

M nl

Bl Jl

" + e
described by the space gro@g (z=1). e XX
Experimentally obtained frequencies of vibrations in the
ZnSik;-6H,0 crystal are in good agreement with the avail- l
able datasee Table)l, but the interpretation of the spectrum | |}
300 100

[] ]
4 ]
[ ] []
differs from that described in Ref. 11, in which the vibration 700 500
at a frequency of 401 cit was attributed to intrinsic vibra-
tions of the zmHzo)§+ complex, while the vibration at
381 cm* was classified as an intrinsic vibration of the SiF
complex. The classification carried out here is based on @, 1 Raman spectra of ZngBH,0 (a—9, NiSIFs-6H,0 (d), and

comparison of the Raman spectra of the crystals under invesssir,-6D,0 (e) crystals in experimental geometri@&XX)Y, Z(YX)Y,
andX(ZZ2)Y at T=2 K. The spectral resolution is 3 crh

v, cm™Y

TABLE I. Frequency(in cm™%) and symmetry of fundamental vibrations in ZnSi&H,0, NiSiFs-6H,0, and NiSik-6D,0 crystals which are active in
Raman scattering.

ZnSiFs-6H,0 NiSiFs-6H,0 NiSiFs-6D,0
Symmetry
and identification Our results [Ref. 17 [Ref. 8| [Ref. 10 Our results [Ref. 5]
of vibrations T=2K T=20K T=15K T=2K T=2K T=10K
- - - — - 38
A 66 65 66 68 68 68
Lattice E, 89 90 89 925 92 94
vibrations Ag 129 129 - 134.5 131 130
Eg 130 132 130 137 134.5 -
o A 206 206 207 214 204 203
Intrinsic 227 227 228 234 224 225
ibrations of &
\l\//lle(H 0)2+ Eg 276 276 278 314.5 302 300
26 Ay 380 401 380 391.5 380 380
o E 392.5 393 395 3945 403.5 -
Intrinsic 9
. ) A 400 381 401 403 398 405
vibrations of
Sz Ey 462 462 462 463 468.5 462
6 Ay 658 657 658 659 665.5 661
Ag 485.5 486 490 485.5 353.5 —
Rotational A - - - 505.5 369 -
vibrations of By ~555 - - 573 449.5 -
H,O(D,0) & 583 ~590 587 604 484 -
E 679 680 676 704 527.5 -
Ag 740 ~740 - 767 578 -
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tigation, which shows that the frequencies of intrinsic vibra-
tions of the M&H,0)2* complex in Ni- and Zn-containing
crystals differ significantly, while the frequencies of the
complex Sil%’ have close values. In addition, in comparison
with the data presented in Ref. 11 containing the most com-
plete information on the vibrational spectrum, two lin@s
1616 and 1640 cit) of deformational vibrations of yD are
observed as well as a line at a frequenre$55 cm * corre- w0, w0 Wy w, w3
sponding to the rotationd ,-vibration of H,0O (see Table)l N N
The missing line corresponding to tAg rotational vibration

of an H,O molecule(see Table Lapparently lies in the re-
gion 480—500 cm?, but it is difficult to single out this line
due to the complex form of the line at 485.5 chisee Figs.

la and ¢.

It should be noted that the Raman spectra of the
ZnSiks-6H,0 as well as NiSik-6H,0 crystals® exhibit four
narrow lines in the lattice vibration regions, indicating a high
extent of orientational ordering at low temperatures.

Raman spectra for a NiSiF6(D;_H,),O crystal
(which will be henceforth denoted by Ni%iBD,0) have a
more complex structure. In view of incomplete substitution
of deuterium for hydrogen, the spectra contain rotational vi- B0 100 80 0 0 50 0 00 5 o0
brations of DO, HOD, and HO (see Fig. 1g deformational v, cm™’
vibrations of DO at 1196 cm*(Ay) and 1207 cm*(E,), of . _

HOD at 1435 le(Ag) and 1446 Crﬁl(Eg), and of HO at FIG. 2. Temperature behavior of Raman spectra ywth _the Raman tensor
1635 crrTl(E ) as well as valence vibrations of D~@ the cqmponentxx in the range of lattice vibrations in NiSjFeH,0 (a),

g 8 NiSiFg-6D,0 (b), and ZnSifk-6D,0 (c)crystals at various temperaturés
range 2500-2650 cid) and H-O (in the range k: 300 (curve 1), 280 (curve 2), 260 (curve 3), 240 (curve 4), and 215
3450-3550 cm?). An estimate of the extent of deuteriza- (curve5) (a,b, 220 (curve5) (c), 200 (curve 6), 185 (curve 7) (a,b, 180
tion of the crystal was obtained from the ratio of intens.itiesggﬂ:zgg (8)11555(0(23’5? 1(3)'t(’é’tfo;‘r:]:r"lez%(éi)r'vlsfé)ct’é‘)’.e?héa's%elc‘t‘rgl
of the spectral lines corresponding to deformational vibras.qoution is 3 cmt.
tions of D,O, HOD, and HO and amounts to 75-80% of
deuterium §=0.2-0.25). Incomplete substitution of D for
H is manifested in depolarization of lines corresponding tocase of incomplete deuterizati¢fiom completely RO en-
valence vibrations of H—O and D—O. In contrast to strictly Vironment to completely kD environment with different
polarized lines in the NiS§6H,0 crystal, the lines of rota- Probabilities.
tional vibrations of DO, HOD, and HO are predominantly Disordering in H and D is not manifested in the spec-
polarized. trum of lattice vibrations. Four polarized and narrow lines

Processing of Raman spectra as a superposition divhose half-wi_dth is determined by the apparatus fun@tion
Lorentzians on a microcomputer made it possible to deterdré observed in the frequency range 0__15.03‘3'(”536 Fig.
mine the frequencies of all rotational lines of@(see Table 1€ as in a NiSik-6H,0 crystal. Deuterization leads to a
1) and most of lower-intensity lines of HOD and,®. All dlsplacementlof two of lattice vibrations to the low-
the lines attributed in Ref. 10 to vibrations of,® in a  frequency regiorisee Table)

NiSiFs-6H,0 crystal are as a result of deuterization to the ~ SMall damping of lattice vibrations in the crystals under
low-frequency region are displaced to the low frequency re_|nv§zst|g_at|on_at low temperatures |nd|_cates a high degree of
gion as a result of deuterization, which confirms the correct!n€ir orientational ordering. A comparison of the spectra for
ness of their interpretation. thesg crystals has made it possible to classify vibrations un-

Substitution of deuterium leads to a considerable de&mbiguously.
crease in frequencies of all intrinsic vibrations of the
Ni(DZO)é+ complex(see Table)l The effect of deuterization
on the frequencies of intrinsic vibrations of the §“|Fcom— As in the case of NiSif6H,0 crystal, the heating of
plex is worth noting. For example, the lines at frequencieZnSik;-6H,0 and NiSik-6D,0 crystals leads to qualitative
463 and 659 cm! for the NiSiF;-6H,0 crystal are displaced and quantitative changes in the Raman spectrum, which are
by 6—7 cmi! to the high-frequency region as a result of manifested most strongly in the low-frequency spectral re-
deuterizatior(see Table)l A similar increase in the frequen- gion (Fig. 2). As the temperature increases, the spectra with
cies of corresponding intrinsic vibrations of the ﬁTFcom— XX, YY, andZZ components of the Raman tensor for all the
plex was observed in MnT§6D,O and ZnTik-6D,0  three compounds exhibit an increase in the intensity of scat-
crystals'? The asymmetric shape of the line at frequencytering in the low-frequency region adjoining the excitation
665.5 cm* in a NiSiF;-6D,0 (Fig. 16 is apparently associ- line and the emergence of a new ling denoted byvg in
ated with different surroundings of the %TFcompIex inthe Ref. 10. In spectra with nondiagonal Raman tensor compo-

i
2RI
TG

1, rel. units
B o ??

Temperature Behavior of Raman Spectrum
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FIG. 3. Temperature dependence of vibrational frequencies in theéFIG. 4. Temperature dependence of vibrational frequencies in the
ZnSiks-6H,0 crystal:Ay vibrations(®) andEg vibrations(O). The error in NiSiFs-6H,0 crystal:A, vibrations(®) andEg vibrations(O). The error in
frequency measurements does not exceed the size of the symbols. frequency measurements does not exceed the size of the symbols.

nents, no linew, and no low-frequency wing are observed, (completely symmetric vibration of the S%Fc'omplex' also

but the background scattering increases upon heating. It cgNibits an anomalous temperature behavior, which, how-
be seen from Fig. 2c that an additional low-frequency line€ver: differs from that of a nondeuterized crystal in which the
emerges in Raman spectra of the ZnS#F,O crystal with vibrational mode frequency (659 ¢y increases upon heat-

. — lo . .
diagonal Raman tensor components at a lower temperatufBg t©© T=220 K.”% As a result of heating, the shape of this
(~120 K). line in a deuterized crystal becomes symmetric.

Temperature evolution of the Raman spectra for |t was noted earliéf that additional lines in the Raman

NiSiFs-6H,0 and ZnSik-6H,0 crystals is qualitatively the SPectrum of _crystals can appear as a r_es_u_lt of PT. It can be
same(Figs. 2a and  The processing of spectra on a micro- S€€n from Fig. 2 that additional peculiarities are observed
computer is described in detail in Ref. 10. Figure 3 shows th&xperimentally in the low-temperature spectra at much lower
temperature behavior of lattice vibration frequencies as welfémperatures than those corresponding to the second-order
asAy(658 cn) and E4(462 cmi') modes of intrinsic vi- PT for NiSiF;-6H,O and ZnSik-6H,0 crystals (220 and
brations of the Sif complex, A,(206cmy) and 200K, respectively>® Moreover, the intensity of the line,
Eq(227 cm %) modes of the ZfH20)§+ complex, and the mcreases_mppot(_)nlca_lly with temperature without exhibiting
temperature behavior of the rotational mode ofOH 2any peculiarities in this temperature range. These facts con-

(679 cnY). All the peculiarities in the temperature behavior fifm that the emergence of an additional line is associated
of vibrational frequencies observed eafferfor the with the evolution of orientational disorder and is not the
NiSiF,-6H,0 crystal also take place for the zngigH,0  resultof a PT.

crystal.

Experiments with the NiS§-6D,0 crystal revealed that
the substitution of deuterium for hydrogen virtually did not
affect the Raman spectra of lattice vibratiofsee Figs. 2a According to x-ray datd,octahedral Sif ions in fluo-
and . The temperature corresponding to the emergence absilicates under investigation at room temperature can oc-
an additional linew, and its evolution are the same as for the cupy (with different probabilitiestwo orientational positions
NiSiFg-6H,0 crystal. The temperature behavior of frequen-that are not associated with a symmetry element and that can
cies of lattice vibrations, intrinsic vibrations of the be transformed into each other by rotation around the @xis
Ni(DZO)é+ complex, and rotational vibration of O (Fig. 4  through an angle-30°. As a result, the potential function of
is the same as that observed in a nondeuterized cisital. rotational vibrations of Si ions must have two minima
can be seen from Fig. 4 that the line at frequency 665.5cm having different depths and separated by a potential barrier

Model of Orientational Disorder
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rotational vibrations of the S@Z complex around the crystallographic axis

Cs. FIG. 6. Temperature dependence of line half-width of lattice vibrat{@hs

and dependence of the logarithm of half-width on reciprocal temperéiure
for certain vibrations in the NiS§-6H,0 crystal: w, (®), 0, (O), the line

V, (Fig. 5) The lines in Raman spectra attributed to rota-&t frgquency 134.5 cit (Ag of Iatticei\llibration$ (Q), Ag pf intriqsic vi-
tional vibrations in these wells are obviously polarized iden-2raions of the Sif” complex (659 e (S), Aq of intrinsic vibrations of
. . . the Ni(H,0)s" complex (214 cm*) (©) (symbols on the curve are lowered
tically, but may have different frequenc'&- by unity along theY-axis), andE, of rotational vibration of HO (00).

At low temperatures, only the energy levels of the
deeper potential well are populated, the crystals are ordered,
and the Raman spectra contain a line of frequengy this mode(see Fig. 3in the crystals under investigation can
(68 cm! for a NiSiRs-6H,0 crystal; see Table)l In the  be due to a change in the force constant of the Si-F bond and
course of heating, the energy levels in the potential wellapparently reflects the change in the temperature behavior of
separated from the deeper well Bff become populated as the crystal lattice parameters observed in Refs. 2 and 3 at
a result of thermal activatiofsee Fig. 3. The spectra acquire T=220 K for a NiSik-6H,0 crystal and aff ~200 K for
an additional line of frequency,, whose intensity depends ZnSiF;-6H,0.
on the population density of the metastable state. The relax- The estimated value of the potential barrigr for 120°
ation peak®in this model is due to thermally activated jumps reorientations of the s@: ion in NiSiF;-6H,0 and
of SiFy~ ions through the barriev, and is observed in the ZnSiF;-6H,0 crystals is 5.5 kcal/mole~2770 K)* The
Raman spectra with the same components of the Raman tebarrier heightv, can be estimated from the temperature de-
sor as for vibrations in the potential wellsee Fig. 2 pendence of the line widths of the vibrational spectrum since

The frequenciesv; and w, can be different due to a reorientational motion is one of the reasons behind their
change in the moments of inertia of octahedral complexesroadening. It is well known that broadening is described by
SiFZ~ as well as due to a change in force constants. It washe formula
found" that the lengths of hydroggn bopd§ _O—H...F and the I(T)=T+aT+be VKT,
angles formed byH1—O—H bonds differ significantly for two
orientational positions of octahedrons. At the same time, ocwherel'; is the line half-width at a low temperature. Figure
tahedrons in these positions differ insignificantly in shape6a shows the half-width¥' of the lines ofA, lattice vibra-
and parametersA detailed analysis of the shape of the line tions as functions of temperature, while Fig. 6b shows the
at frequency 659 cmt for the NiSik;-6H,0 crystal® and  dependence of Ifi{—T,) on reciprocal temperature for these
658 cm'! for the ZnSik-6H,0 crystal, which is identified vibrations as well as for intrinsic vibrations of the complexes
with the Ay “compression—expansion” mode of the octahe- Ni(H,0)2" and SiE~ and rotational vibrations of $O. It
dron SiE, revealed that it can be described satisfactorily bycan be seen that the linear contribution is much smaller than
a Lorentzian at any temperature. The lack of symmetry fothe  exponential one, and the broadening at
this line indicates that the splitting that can emerge uporl50 K<T<300 K can be satisfactorily described by an ex-
heating due to the difference in the shape of octahedrons {gonential(see Fig. 6. The barrier height obtained from the
small, which is in accord with the results obtained in Ref. 1.temperature dependence of half-width of the ling differs
The anomalous temperature dependence of the frequency significantly from the values obtained from the broadening
Eremenko et al. 992
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214 cm't (Agz is the intrinsic vibrational mode for the com-
plex Ni(H,0)g").

The value of the paramet&E can be determined from
the ratio of the intensities of the; and w, lines. The ex-
pressions for the concentratioNg andN, for two different
orientational positions of the octahedral ion SiFand for
intensitiesl ; andl, of the w; and w, lines in the proposed

model were obtained in the harmonic approximatton

A N _ hwl 1 hwl -1 1
g 1=cexg — 5=l 1-exg — 1| (1)
e 22 ¢
- PS AE ha)2 hw2 -1
No,=cexp ———=|exp — 5 =||1—expg — —=—
b o 2 KT 2kT kT
2
[ J o )
8060°° _ hw, hwy) |~
o 0 000 °° °:9 li=Kicexp — 5 =||1-exg —— || . @)
®
e AE hw
o o g g e ® o OOOOOOOQO |2=KZCGX[<—ﬁ)eX[{—ﬁ2_)
MY PO & 1 I § A i
100 200 300 2
hw
T, K X 1—8XF<—k—T2> (4)

FIG. 7. Experimental and theoretical temperature dependences of line inten- ) ) o
sities in the NiSiE-6H,0 crystal:X X Raman spectréa), ZZ Raman spectra  Wherec is the factor responsible for redistribution of concen-

(b); w, (@), w; (O), the lines at frequency 92.5 cth(A) and at frequency  trations with orientationdN; and N, upon heating, which
134.5 cmi (¢) (Table ). Solid curves are calculated by formulég) and was obtained from the conditidh=N;+N,=1:

-1
Cc=

X

(4.
h(l)l 1 hb)l
ATkt [T T T
tional line w, is associated with rotational vibrations of the KT T OkT
octahedron Sig—' in the metastable stateee Fig. 5. A simi- o
hw2 B B
and ZnSik-6H,0 crystals. The potential barrier height ob- 1—exr{ B W) ] '
tained from the broadening of the, line is (210t 20),
ZnSiFs-6H,0, and NiSig-6D,0 crystals, respectively. The guantum number. The expression fE in this case has the
estimate of the barrier height obtained from the broadenin(‘f)Orrn

of other lines. This confirms the hypothesis that the addi- '{ AE) [{ hwz)
+exp — ex
lar behavior of line broadening is observed for Nig#D,O
(170+20), and (19620)K for NiSiF;-6H,0, andK;andK; are coefficients independent of the vibrational
of other lines lies in the intervals 400-480, 410-500, and AE I K, exp( — hw,/2kT)

400-480 K for these crystals. —=In—--In In
Figure 7 shows the temperature dependence of the inte- kT 2 Kz eXp( —hw,/2KT)
gral intensities of lattice vibration lines in the NigiBH,O 1—exp(—hw,/kT)
crystal for Raman spectra with Raman tensor components —2In 1—exp—haw, /kT)’ 5
XX andZZ. Anomalous behavior is observed for the inten- !
sity of not only the linew,, but also of thew, line. The Figure 8a shows the right-hand side of expresgion

temperature behavior of the intensity of tlg mode (  (without the contribution from the value of IK(/Ky)) as a
92.5 cm'; see Table) and theA; mode(134.5 cm?, see function of reciprocal temperature. We assume that
Table ) with the normal temperature dependence is alsdn(K,/K,) is independent of temperature and gives only a
shown for comparison. It can be seen from Fig. 7 thatdhe constant shift of the curve in this case. The intensitieand

and w, lines have qualitatively similar temperature depen-l, were taken from the spectra with th€X Raman tensor
dences of intensities for both polarizations. The normalizacomponent since the integral intensities of these lines in the
tion of intensities of the lattice vibrational spectra was car-indicated experimental geometry can be determined with a
ried out for all temperatures and experimental geomeXds smaller error than for spectra with tt#2 component. As-
andZZ to the intensity of theAy intrinsic vibrational mode suming thatAE is constant for low concentratioris, and

of the SiE~ complex with frequency 659 cm, which is  using formula(5), we can determinéE from the slope of
characterized by a normal temperature dependence of intethe straight line in Fig. 8a. The deviation of experimental
sity. In addition, the normalization afZ-spectra was veri- points from the straight line upon heating can indicate that
fied from the behavior of the intensity of the line at the value ofAE changes.

993 Low Temp. Phys. 23 (12), December 1997 Eremenko et al. 993



a
b 600
4r 400 y
A E=550K .
i
<
200
a 1
> Aaa 1 Jl 1
£ Ny ©
08
03 =
/ 02
" A 1 1 et d oy 1 ] ad
3 4 5 6 7 100 20 300
17.10° T, K

FIG. 8. Temperature dependence of the model parameters for
NiSiFg-6H,0 crystal: logarithms of the intensity ratio as functions of recip-
rocal temperaturéa), difference in energAE between the minima of po-
tentials(b), and concentrationsl; andN,, (c).

In the temperature range 135-215 K in which the inten

It should be noted that the values of intensities and con-
centrations were calculated in the harmonic approximation
i.e., all the formulas were obtained for a harmonic oscillator
(with an infinite number of energy levelsin addition, we
assume that the vibrations, and w, do not interact. It can
be seen from Fig. 5 that in the real case we must take into
account a finite number of transitions in both wells of the
potential function as well as transitions occurring above the
barrierV,. The latter have a lower frequency and cannot be
determined from experiments unambiguously in view of the
presence of a high-intensity relaxation peak and the dipe
in the spectra. This can lead to lower calculated values,of
since the profile of this line contains a line with a lower
frequency corresponding to transitions aba&te Naturally,
such an approximation introduces an error in the determina-
tion of AE and theAE(T) dependence at high temperatures.

The temperature range in which the quant§ be-
comes variable (T~220 K for NiSik-6H,O and
NiSiFg-6D,0 crystals andl=200 K for ZnSik-6H,0) co-
ipcides with temperatures at which the thermal expansion
coefficient for the crystal lattice changg$Such a behavior
of the parameters can be due to the formation of a large
number of octahedrons in the metastable orientation position
as well as due to thermal activation of transitions above the
barrierV, (see Fig. 5.

sity ratio is described by a straight line on a semilogarithmic

scale(see Fig. 83 i.e., for a constanAE, we can calculate
In(K,/K,) by using formula(5). Substituting the value of
In(K,/K,) into (5), we determineAE for the entire tempera-
ture interval.
NiSiFg-6H,0 crystal are illustrated in Fig. 8b. The solid
curve corresponds to the averaged value\& for experi-

mental values shown by circles. Using the averaged value of

AE (see Fig. 8l we calculate by formulagl) and (2) the

The results of such calculations for a

CONCLUSIONS

An analysis of Raman spectra in crystals with isomor-
phic substitution has made it possible to identify all the ob-
served lines. It was found that Nig#®H,O and
ZnSik;-6H,0 crystals are ordered at low temperatures.

The obtained results do not confirm the existence of a
second-order phase transition in the NigdH,O crystal at

concentrationdN, andN, whose temperature dependence iSt 220 K and in the ZnSig6H,0 crystal atT~200 K.

shown in Fig. 8c.
Similar calculations were made for tb&X Raman spec-
tra for ZnSik-6H,0 and NiSiF-6D,0 crystals for which the

The evolution of orientation disorder in the crystals un-
der investigation is associated with thermal population of the
metastable orientational state of $iFions. The concentra-

parametedE exhibits the same temperature dependence agyn, of jons in the metastable state increase upon heating and

for the NiSik-6H,0 crystal, but the parametefE for the
Zn-based compound becomes variable abdvwe200 K,
while its value below this temperature amounts to 520 K.
The values ofN, and N, obtained at room temperature
are 0.33/0.67, 0.37/0.63, and 0.35/0.65 for Njs&H,0,
ZnSik;-6H,0, and NiSik-6D,0 crystals, respectively and

are in good agreement with the values obtained from x-ra

datal
The temperature dependence/™E was obtained from

may cause a decrease in the energy differehEebetween
the ground state and the metastable state, which in turn can
lead to a change in the elastic properties of crystals. The
anomalies in the temperature expansion of the lattice of the
NiSiFs-6H,0 crystal atT=220 K? and in the ZnSif 6H,0
crystal at T=200 K> whose temperatures coincide with
¥hose at which the paramet&E becomes variable, are prob-
ably associated just with this process.

The temperature dependences of concentratibnand

the intensity ratio. In the temperature interval where they, \yere calculated on the basis of the obtained experimental
value of AE is constant, we calculate the intensities by usingyata on the temperature behavior of frequencies and intensi-

formulas(3) and (4) (to within the coefficient; andK,).

Comparing these values with experimental intensities aI:ompIex in the crystals under investigation.

these six temperatur¢$35—215 K, we determine the aver-
age value of the scaling factoks, andK,. Using formulas
(3) and (4), we determine the line intensities in the entire
temperature range from the averaged valué Bf (see Fig.
8b), K;, and K,. The results of calculations for th&X
Raman spectra of the Ni§FEH,O crystal are shown in Fig.
7a by solid curves.
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ties of the lines for two orientational positions of the SiF

In the above
approximations, the values of; andN, obtained from Ra-
man spectra at room temperature are in good agreement with
the x-ray datd.

The authors are grateful to B. Ya. Sukharevskii and V. P.
D’yakonov for single crystals presented for our experiments
and for their interest in this research.
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A new dynamic mechanism of topological charge creation in a commensurate one-
dimensional charge density wave near the contact with a normal metal
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The dynamics of conversion of conduction electrons into topological solitons of a charge density
wave (CDW) commensurability in an external electric field is investigated. A novel

mechanism of initiation of a nonlinear CDW current in the vicinity of the interface between a
CDW and a normal metal is revealed and explained. The nonlinear current is produced

by the conduction solitons created by the moving profile of the order parameter, formed during
the conversion of electrons into collective phase excitations of a CDW. The field

dependence of the current is of threshold nature and has no analogs in the bulk mechanisms of
CDW nonlinearity. ©1997 American Institute of Physid$1063-777X97)01012-§

INTRODUCTION Eo

j~(E—ET)exp<—E_ET), E>E;. 3)

It is well known that several quasi-one-dimensional met-
als are transformed into the Peierls—f#lich phase as a re-
sult of cooling, which is accompanied by the emergence of fnte
lattice superstructure along the unidimensionality direction
with a periodz/ke. The static lattice deformation modulus
creates a gap X in the one-electron spectrum, while the
phase of the order paramet&rexp(¢) is electrically active
and causes a collective response of a Peierls insulatpto
an external field. The deformations of the lattice are calledc on

charge density wavelCDW). interface between a CDW and a normal metal, where the

.. ?tudyt_of qu_aS|-9|net-)d|menS|c;Eal cor;]qtgj_(ftors l\_N'th CIIDWconduction electron current is transformed into the collective
IS Interesting primarily because they exnibit nontinear eleC-opyy ¢yrrent, Qualitatively, the need for the existence of a
trical conductivity in very weak electric fieldsee, for ex-

. . . conversion channel is dictated by the instability of a free
ample, the reviews in Refs. 1 angl Zhe nonlinear conduc- y y

L ) lectron or hole in a quasi-one-dimensional Peierls lattice to
tivity is of the threshold_type and has always been att”bUte(ielf-trapping with the formation of a collective chariye.
to Processes occurmng in the bulk (.)f the conductor. There a%his channel causes a finite conduction through the metal-
two t.heoretlcal approaches to this phené);nenon, viz., th DW interface at temperaturéB<A, when the conven-
classical approach and the quan_tum appr _dlm. both ap- tional one-electron current is exponentially suppressed
proaches, the charge transport in a CDW is presented as[‘lexp(—A/T)] (see, for example, Ref)5

collective mode, i.e., the Peierls—FRilich order parameter ' ' :

) It is not obvious beforehand whether an additional non-
phase, whe_n the ch§rg_e fluctue_ltloi?;]sand th_e Chw c_urrent linearity emerges in the conversion channel. This problem is
j are described by Fhtich relations for a single chaisee,

f le, Ref. I studied in the present work where it is shown that a nonlinear
or example, Ret. conductivity emerges in a simplified one-dimensional model.

The threshold fielde; is determined by the Coulomb
raction between a soliton and an antisoliton.

However, the modern state of the experiment does not
permit us to give preference to any of the models, hence both
approaches are equivalent at present, and probably comple-
ment each other.

It has become clear recently that an important role in the
ductivity of CDW is played by contact phenomena at the

e do e do This conductivity has a structure different from E¢b). and
Sp=—— 1= oo @
wherex is the direction of unidimensionality. JVE—E;E
The CDW on a single chain is always described by the |~ ——=——=. (4)
ing in is alway i y J At \/E——ET

sine-GordonSG) equation. The SG solitons play the role of
charge carriers.

In the classical model, the nonlinearity of electrical con-
ductivity has the forrh

where E; is defined by the bulk term in the sine-Gordon
equation like in the classical model.

Investigations of the dynamics of the conversion process

j~\/ﬁr, E>E,. (2) Wwere startgd in Refs. 6 and 7. A_n instanton mechanism was

proposed in Ref. 6 for the transition of free charges from the

The threshold fieldE is connected with the bulk term in the chemical potential level at the metal-CDW interface to the Pl
SG equation. condensatévalence bandwith the formation of a collective

The quantum model connects the nonlinearity with thecharge(CDW phase profilelocalized at distances of the or-
tunnel creation of soliton—antisolitors §) pairs by an elec- der of §,=%AV/A from the interface. Transition to the con-
tric field, and the current is defined?as densate is always made by two electrons, which is reminis-
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cent of Andreev scattering from the point of view of the js 7= To+ m The creation frequencFl de-
outer boundary relative to the PI. Unlike the case of supertermines the number of charges created, i.e., the nonlinear
conductors in which\ is the only parameter determining the conductivity (4).

space and time dynamics of the order parameter, three well- A similar dynamic effect of multiple creation of domain
defined time scales exist in a?P1°" walls for a moving domain boundary was studied in Ref. 8.

(1) the time of formation of the quasiparticle spectrum
Ts~hIA;
(2) the time of deformation of the order parameter modulusMODEL AND NUMERICAL ANALYSIS

Ame @', where is of the order of Debye frequency Suppose that a CDW occupies a semi-axis0. The

w<A; Lagrangian of the CDW in a field is defined ésee, for
(3) the phase evolution time of the order parametery example, Ref. P

TS TA> Ts. ,

1 (A2 2 hAVE 2

These parameters make it possible to formulate and con- L= —v. =2 (E) ~—2 (0_)
sistently solve the problem of transformation of electron mhVE X
charge through the interface. A quasiparticle level is formed A2 2
on gap fluctuatioriinstanton over a timers. The fluctuation t= 2 w§ COSM @+ — ﬁVFE(<P ), )

itself takes place over a time, , the bound level is absorbed

by the valence band, and the initial condition Wherewq is the commensurability frequency. Hetg, is the

S¢=¢(x=%)—¢(x=0)= 21 is formed for the problem on Pphase fox— . Such a form of notation for the last term

the evolution of the phase from the boundar_yo towards in Eq (5) takes into account the fact that the electric field

x>0. This condition corresponds to a charge [Bee Eq. acts on CDW only in the region wheféq/ x| # 0.

(1)]. A steadily moving CDW profile is obtained from the In a nonzero fielcE, the quantityg, is renormalized as

initial condition in time, 7 seen from the equation of motion, which can be represented
Earlier, we studleﬂthe evolution of the initial condition In dimensionless units

in a cluster of the nearest chains carrying a noncommensu- hVew

rate CDW. The role of the bulk term in the sine-Gordon  7=woty2/M, y= X( A \/W) (6)

equation was played by interaction of the type @ir{(¢;1)

between chains. In the equation for a commensurate CDWor the variabley= ¢ — ¢q.

each chain acquires an additional term §lg({), whereM is The equation of motion has the form
an integet:? Accordingly, a topological soliton has an Px Py
asymptotic formée = o(Xx=»°) — o(Xx=—)=27/M. Such i ayz +sinM(x+¢g)=¢, )

a soliton is a stable carrier of the fractional charg#M in
a CDW?2 It is certainly interesting to study the evolution of where
the initial conditiond¢ =27 in M solitons and to study their o Mo2
dynamics in an electric field. Such a problem is formulated  ¢= _— v, ——E )
and solved in the present work for a single chain. 2m A
In Ref. 7, we reduced the Cauchy problem for a CDW tognd ¢, =arcsine.

an exactly integrable problem and solved it by the inverse  Equation(7) is supplemented by the initial and boundary

Scattering problem method. In an external electric f|e|d, th%onditions Corresponding to the above hierarchy of time in
exact integrability is violated on the right-hand side of thethe conversion problem:

sine-Gordon equation, and the equation is solved numeri-

cally. It was found thass pairs are created in an electric field x =0, (9a)
with an intensity inversely proportional to time (14), Il _g

which determines the currefd). o — ,

We believe that the nonlinear conductivit$) can be X(7=0)==2m0(&=Y) = ¢ole), (9b)
explained as follows: the initial CDW profile at the interface x(y=0)=—2m7—¢o(¢), (90
has an energy of the ordér which is considerably higher
than static energy of a topological soliton carrying a Chargé’Vherefo is the coherence lengtty=7%Ve /A in dimension-
2e/M. Away from the interface, nonlinear deformations areless variable$6), ¢€,<1, andé(y) is the Heaviside function.
created in the moving front region from the high-energy ini- Not_e that the small scale of variation of the initial con-
tial profile in a time 7. During a time of the order of dition £,<1 cannot emerge formally in the solution of a
V2d/(E—Ey) (d is the soliton width, these deformations purely phase problem with Lagrangidh) since the latter
are transformed into topological solitons with an asymptoticcorresponds to the long-wave approximatigr|<§&, 12t
form d¢=2=w/M, or antisolitons withdp=—2#/M (de- was mentioned abovésee Ref. 7 algothat such an initial
pending on the direction of the electric figlthoving behind  condition is the result of joining of the instanton solufion
the front along or against the field. Accordingly, the total formed during the timer, with a long-wave description
time for the creation of a stable topological charg@e/M valid for =17,
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FIG. 2. Evolution of the initial condition in a retarding field=—0.3,
FIG. 1. Evolution of the initial condition in a retarding field=—0.05, M =3. CDW solitons with an asymptotic forms3 are produced from the

M=2:t1<t2<t3<t4<t5<t6<t7<t8. initial condition t1) with increasing time:
t1<t2<t3<t4<tb<to<t7<t8.

Equation (7) with the boundary conditiong9) was
solved numerically by the method of finite differences. The
difference equation corresponding to Ed@) has the form

effect was also observed in Ref. 9 during a numerical analy-
sis of the motion of Josephson vortices in a system with
dissipation. However, the difference lies in that, instead of an

Xi+1k T Xi—1k—2Xik  Xik+1t Xik—1—2Xik infinite number, we are looking at a finite number of created
(A7)2 - (Ay)? charges, this number depending on the fighiy. 4). The
dependence of the charge creation time on the field is shown
+sinM(x+ o) =¢, (10 in Fig. 5 and is approximated well by the law
where A7 is the time stepAy is the coordinate step, and 7=A+B/Je—er.
xi x=x(A7i,Ayk). Equation(10) was solved for different A reversal of the sign of created charges upon a change

values ofAr, Ay, andM, and under different initial condi- in the direction of the field unambiguously indicates that the
tions (9). Typical solutions have been constructed in Figs. 1 mechanism of their formation is polarization: fer-0, the

2, and 3. The number of sitek)(is 10000. It was found that soliton moves along the field, and the antisoliton moves
a change in the initial condition®) has no significant effect against the field; foe <0, s and s interchange their places.
on the solution of Eq(7). The time of formation of free charge carriers is esti-

In a weakly retarding fielde|<0.1 (Fig. 1), the initial  mated as follows.
profile moving against the field loses stability after some  Suppose that, in a CDW profile moving with a practi-
time and simply splits into commensurability solitons. Thecally limiting velocity, nonlinear fluctuations produce a de-
latter are retarded, reverse their direction, and eventualljormation of the front with6¢=0 over a timery. In the
gather neax=0. Radiation propagating with the maximum absence of a field, such a process does not lead to charge
speed is observed. With increasing field, charge creation bgreation since such a deformation moves with the front and
the field is observed additionallyFig. 2). is not polarized.

In an accelerating field, the initial condition trivially de- We shall assume that, in the presence of a field, the
composes into topological solitons with time fer<0.1, leading front of the created deformation continues to move
while the field merely affects the time of formation of soli- with the CDW front with a limiting velocity, while the trail-
tons and their velocity. Movement of radiation at the highesting front gets retarded by the field and is ultimately trans-
velocity was observed in front of the profile. Fer-0.1,  formed into a soliton withSos=27/M, which subsequently
charge creation by the field is observéeg. 3). A similar  reverses its direction. The equations of motion for the lead-
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ing front x, and the trailing frontx_ of deformation have

the form

(+):

(—):x

whereC, is the maximum velocity in the systeray is the
threshold field, while the constanktsand C are determined

T

ition (t1) with increasing timet1<t2<t3<t4<t5<t6.
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FIG. 5. Dependence of the topological charge creation time on ffigld
Numerical method fore >0 (H); numerical method foe<0 (@), results
obtained by using formulél4) (dark triangles

IX_

X1 (T9)=Xo, ——

ar = CO . (12)

T=1T,

As soon as the field — et separates the centexs and
x_ by a distance of the order of the kink widthover a time
7, we can see that the trailing profile of the created defor-
mation moves like a free charge, i.e.,

= 2
d=X+—X_=[—7-1-707—?}(8—81-). (13

From the last equation, we obtain

=70+ v2d/(e—€7), 14

as is indeed observed in the numerical experim€ig. 5).
The quantityr (&) defines the intensity of free charge cre-
ation, i.e., the curren4).

Thus, we have discovered and explained a hew mecha-
nism of formation of the nonlinear CDW current near the
interface with a normal conductor. This mechanism supple-
ments the known mechanisms studied for an infinite CDW.
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