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General relations for diffusion coefficients for the cooperative mechanism of diffusion are
obtained on the basis of the proposed model of metal–metalloid glass. The thermodynamics of
Bernal–Polk complexes is developed by using the Ising–Nakano Hamiltonian and the
theory of frozen-in fluctuations. The temperature dependence of diffusivity is analyzed in the
cases of large and small variance of pair interatomic correlations. ©1997 American
Institute of Physics.@S1063-777X~97!01112-2#

Diffusion in frozen-in metastable metals known as me-corresponding tos511 and introduce the parameter
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tallic glasses~MG! was investigated by many authors~see,
for example, Refs. 1–3!. A universal mechanism of diffusion
in MG has not been established so far. Both individu
mechanisms of diffusion, e.g., the pseudovacanc
mechanism4–6 and the cooperative mechanism7,8 in which
several neighboring atoms participate simultaneously in
individual act of lattice rearrangement are being worked o
The possibility of a cooperative mechanism of diffusion
MG was confirmed by an analysis of experimental data.3 It
cannot be ruled out, however, that diffusion mechanisms
different MG are different. The indeterminacy in this pro
lem is primarily due to the lack of clear ideas on the struct
of MG, including point defects in these materials.

In this paper, we propose a model description of MG
the metal–metalloid type on the basis of a Hamiltonian
cluding the one-particle energy of metal atoms determi
by all atoms of MG~both atoms of the metal and the meta
loid! as well as the correlation between metal atoms. T
role of the metalloid in this case is formally reduced to t
overdetermination of the parameters of the Hamiltonian
compared to the case of pure metal; naturally, such an o
determination is significant from the physical point of vie
which follows from the role of metalloids as amorphizer
vitrification and MG stability. This description can be us
for determining the cooperative diffusion coefficient.

DESCRIPTION OF THE MODEL

We consider each metal atom in a corresponding spa
cell ~coordination polyhedron!. As regards metalloid atoms
they occupy positions in the voids of Bernal polyhedron9

~analogous to interstitial positions in a crystal!. In the ab-
sence of an amorphizing metalloid, the potential relief is
termined by metallic bonds and is therefore smo
~blurred!. ~Such a form of the relief formed by metalli
bonds is confirmed by well-known facts such as very we
temperature dependences of diffusivity and viscosity in
uid metals.10! This relief is superimposed by relatively sha
additional wells due to metal–metalloid covalent bonds.

Disregarding the details in the form of the potential, w
ascribe the Ising spins511(s521) to metal atoms with
one-particle energy larger~smaller! than a certain critical en
ergy. We assume thatp is the fraction of the phase volum
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[exp~22L !. ~1!

We also assume that atoms withs511 cannot partici-
pate in lattice rearrangements~fixed atoms!, while atoms
with s521 can take part in such rearrangements~excited
atoms!.

Introducing pair interatomic interaction and neglecti
an insignificant constant term in the expression for ener
we can write the Hamiltonian of the system in the form

H52
1

2z (
i , j

Ji j s is j2w(
i

s i , ~2!

wherez is the coordination number andw.0 ~the summa-
tion over j is carried out for nearest neighbors of thei th
atom!.

From the point of view of Gibbs distribution~and hence
all thermodynamic relations!, Hamiltonian~2! with the addi-
tional condition ~1! is equivalent to the temperature
dependent effective Hamiltonian

H̃5H1LT(
i

s i . ~3!

Hamiltonian~3! has the form of the well-known Ising–
Nakano Hamiltonian which was analyzed in detail for t
case of the ‘‘exchange integral’’Ji j which does not change
as we go over from one cell to another.11,12 In the case of
MG under investigation, the quantityJi j must have a vari-
ance. We assume that the variance is of Gaussian form:

P~Ji j !;expS 2
~Ji j 2J0!2

2V2 D , ~4!

where V5^(Ji j 2J0)2&1/2. As regards the one-particle pa
rametersw andL, their variance will be neglected for sim
plicity.

The Hamiltonian~3! with the additional condition of
freezing-in ~nonthermodynamic type! of fluctuations ~4!
forms the basis of the theory of spin glass.13 The only dif-
ference is the emergence of the temperature-dependent
fective magnetic field’’

h5w2LT. ~5!
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we put aside, among other things, the determination of
state of MG~either a metastable configuration or one of e
ergetically equivalent configurations that are not separa
from each other by a potential barrier! ~see Refs. 14 and 15
in this connection!. We shall use the well-known results o
the theory of spin glass, namely, introduce an analog of m
netizations(T)[^s& ~angle brackets indicate averaging!. ~It
should be recalled that, in the case of frozen-in fluctuati
under investigation, we average not the partition functi
but free energy, i.e., the logarithm of partition function, ov
these fluctuations; the quantitiess(T) are determined by dif-
ferentiating the averaged free energy with respect tow.! For
s(T)511(s(T)521), all the atoms of the metal are fixe
~free!; therefore,s(T) will be called the fixation parameter

We have

s~T!5~2p!21/2E
2`

`

dt expS 2
t2

2 D tanh
Q

T
, ~6!

Q5Vq1/2t1J0s1w2LT, ~7!

where q[q(T) is the memory parameter defined by t
equation

q~T!5~2p!21/2E
2`

`

dt expS 2t2

2 D tanh2
Q

T
. ~8!

It is known from the theory of spin glass that solutio
of Eqs.~6!–~8! are different depending on whether or not t
inequalityJ0.V is satisfied. If this inequality holds, we hav
solutions of the ferromagnetic type; ifw/L,J0 in this case,
a first-order phase transition occurs atT5w/L. We will be
interested in the case whenJ0,V and solutions of the spin
glass type are realized. In order to simplify formulas to t
maximum possible extent, we assume thatV@J0 .

Relations~6! and ~8! are simplified considerably in two
special cases that will be considered here:V;w,L@1 ~a!
andV!w ~b! ~althoughV@J0 in all cases!. It will be proved
below thatTc}wL21 in the case~a!, and hence we are in
terested only in the temperature rangeT!w,V. Using the
asymptotic form of hyperbolic tangent

tanhx5sgn@122 exp~22uxu!#, ~9!

we obtain

s~T!5erf
w2LT

&V
2OS T2

V2D , ~10!

q~T!512OS T

VD , ~11!

where erf is the error integral defined as

erf x5
2

Ap
E

0

x

exp~2t2!dt, ~12!

~O(x) denotes a positive correction of the order ofx!.
It should be noted that forLT/V→0 ~it will be proved

below that this corresponds toT/Tc→0!, the functionss(T)
andq(T) approach the valuess(0) and 1, respectively, fol-
lowing not the exponential, but the power law.
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s~T!5tanhS w

T
2L D ; q~T!5tanh2S w

T
2L D . ~13!

In this case, both parameterss andq approach unity as
T→0 according to the exponential law.

Concluding the section, let us formulate the main a
sumptions from which we are proceeding in fact.

1. In the condensed state, the motion of an atom can
approximately regarded as finite~confined to a certain
cell of the order of atomic size!. A cell rearrangement
or a transition of the atom from one cell to anoth
occurs over a time much longer than the period
vibrations in the cell.

2. In the solid as well as in the liquid state at a tempe
ture slightly higher than the melting pointTm , there
exists an hierarchy of energies: the binding ener
and hence the characteristic energy parameters
cell ~which are of the order of eV! are larger than the
temperatures under investigation. Consequently, if
describe the motion of atoms in cells by the Ham
tonian H(q1 ,p1 ,...,qN ,pN) ~qi ,pi are canonical
variables andN is the number of atoms!, we can as-
sume that the parameters of this Hamiltonian are
dependent of temperature.

3. The phase volume of each atom of a metal can
divided into two regions: the states corresponding
fixed (s511) and excited (s521) atoms. Averag-
ing over the phase volume within each region leads
the Ising–Nakano equivalent Hamiltonian~3! in the
problem on calculation of the partition of function.

4. Frozen-in fluctuations of the parameters of the Ham
tonian ~to be more precise, ‘‘exchange integral’’Ji j

describing the correlation of atoms! are characterized
by the Gaussian distribution with a large variance.

COOPERATIVE MECHANISM OF DIFFUSION

In order to find the diffusion coefficient, we suppleme
the above four assumptions with a fifth assumption.

5. Excited atoms~those withs i521! can move almost
freely under the action of mechanical stresses of c
centration gradients. It should be emphasized that
are speaking not so much of diffusion as the freed
of movement in the sense of a rheological flow as
the case of liquids. Then MG corresponds to the co
centrationy,yc of these atoms, whereyc is a certain
threshold concentration.

In terms of the parameter characterizing the preserva
of complexes for the temperatureTc ~the upper temperature
boundary for the existence of MG!, we obtain the following
equation:

s~Tc!5122yc . ~14!

Naturally, in the case of~relatively slow! heating, MG
goes over to the crystalline and not to the liquid state at
point Tc since the short-range order rearrangement a
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~e.g., segregation of a metal and a metal–metalloid stoic
metric compound!.

Going over to diffusion in the sense of the last~fifth!
assumption, we assume that the small~da!a, da is the
characteristic displacement of atoms anda the atomic spac-
ing! local cooperative rearrangement of the lattice becom
possible ifn adjacent atoms of the metal become excited
this case, forn!z, we obtain the following expression fo
yc :

yc5@n~n!#21/n, ~15!

wheren(n) is the number of possible realizations of sta
with n excited neighbors~per lattice site!. Considering that
z512 for most sites in MG~the coordination polyhedron i
icosahedron!, we find from simple combinatorial and geo
metrical considerations that

yc~3!53021/3'0.322;

yc~4!52021/4'0.473;

yc~5!53021/5'0.506. ~16!

Since such a local rearrangement of the lattice is an
ementary act of diffusion, the diffusion coefficient of th
metal can be naturally represented in the form

D~T!5Dg~T!F12s~T!

2yc
Gn

. ~17!

The second cofactor in this relation gives the probability
atomic excitation~both thermal and frozen-in! required for
an elementary act of diffusion; the quantityDg can be con-
nected with the diffusion coefficientDl in a liquid solution
of the same composition as MG. Indeed, we assume tha
elementary act of lattice rearrangement is the same for
liquid and glass-like phases. Taking into account the fact
almost all complexes in the liquid are dissociat
(s(T).21), we have

Dg~T!5
z0

zl
Dl~T!, ~18!

wherezl is the total number of diffusion paths for a give
atom andz0 the number of paths that are open in MG.

Naturally, in an accurate analysis we must take into
count elementary acts of diffusion ofn atoms. Such an
analysis requires the knowledge of the distribution funct
for groups being rearranged over the number of atoms c
tained in them and probably the temperature dependenc
this distribution. However, bearing in mind that the simul
neous participation of a large number of atoms in the re
rangement has a low probability, we confine our analysis
the case of groups with the same number of atoms and
sume for estimates thatn53; then it follows from geometri-
cal considerations thatzl520. Since only one diffusion
channel can be open in MG~the probability of opening of
each next path is proportional to@12l(T)#/2 for values ofT
not very close toTc , and hence is small!, we obtain

D~T!5zl
21Dl~T!F12s~T!

2yc
Gn

. ~19!
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Let us consider the form of the functionDl(T). If we
were dealing with a simple liquid~liquefied inert gas or melt
of a nontransition metal!, the diffusion would be an activa
tionless process, and functionDl(T) would follow the Swa-
lin quadratic law.16 In the case under consideration, th
quantity Dl must depend on temperature according to
Arrhenius law owing to covalent bonds, and hence

D~T!5zl
21D0 expS 2

El

T D F12s~T!

2yc
Gn

, ~20!

whereD0 andEl are the same preexponential factor and
diffusion activation energy as in a melt of the same com
sition as the MG.

THE CASE OF LOW DISPERSION

We first consider the case of small variance of the
rameterJi j ,V!w ~naturally,J0!V!. Substituting~13! into
~20!, we obtain the temperature dependence of the diffus
coefficient for MG:

D~T!5zl
21yc

2nD0FNFS 2w

T
22L D Gn

expS 2El

T D , ~21!

whereNF(x)5(ex11)21 is the Fermi distribution function.
It can be seen that at low temperatures@T!w(L21/2)21 for
L.0 andT!2w for L,0#, the diffusion coefficient obeys
the Arrhenius law with the activation energy

E052nw1El52n~L1Arth sc!Tc1El ~22!

and the pre-exponential factor

DA5zl
21yc

2nD0 exp 2nL. ~23!

Curve1 in Fig. 1 shows schematically the dependence
D on T.

Generally speaking, diffusion over macroscopic d
tances should be described by taking into account the co
lation factor whose magnitude is of the order of unity a
which strongly depends on the mechanism of diffusion. W

FIG. 1. Dependence of diffusion coefficient on reciprocal temperature
perfect sample~curve1!, insufficiently quenched sample~curve2! for large
dispersion of paired correlations~curve3! ~the instability region is shown by
dashed line;Tm is the melting point!.
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in a cooperative act of diffusion, the lower the probability
the step which is exactly opposite to the given step, and
closer the correlation factor to unity. We shall assume tha
is equal to unity.

It should be noted that the preexponential factorsD0 for
different liquid metals17 differ insignificantly, having the
same order of magnitude asD0.(3 – 30)•1028 m2/s. If the
diffusion activation energy in the liquid phase is relative
small (El!2nw), the diffusion activation energy in differen
MG will be proportional to the correspondingTc in accor-
dance with~22!. Consequently, the diffusion coefficients
different MG as functions of the reduced temperatureT/Tc

can often nearly coincide. Such an approximate similitu
law has apparently been observed in experiments.18

Unfortunately, an exact comparison of obtained relatio
with experimental results is hardly possible at the momen
spite of the rich available information on diffusion i
MG.1–3,18 This is due to the following two circumstance
there are no data on the temperature dependence of the
fusion coefficients in melts in MG of the same compositio
and a considerable fraction of available data on diffusion
MG corresponds to insufficiently annealed samples that
far from being perfect. But the diffusion coefficients in d
fective MG can be much larger than in perfect samples~see
in this connection the experiments described in Ref. 19! as a
result of diffusion over extended defects, i.e., regions w
weakened atomic bonds of the type of planes or chan
formed by atoms withz,12.

Nevertheless, we can draw several qualitative conc
sions.

~1! The diffusion activation energy~defined as the slope o
the curve lnD to the 1/T axis! in a perfect MG is higher
than in the corresponding melt~curve1 in Fig. 1!.

~2! If we assume thatDA;1019 m2/s in a perfect MG~as in
the case19 of Au in Pd77.5Cu6Si16.5 at T'Tg ~Tg is the
glass-formation temperature! and substitute forD0 the
value D0.(3 – 30)•1028 m2/s typical of the preexpo-
nential factor for liquids,17 we obtainL;10.

~3! In insufficiently annealed MG samples, the depende
of ln D on 1/T has the form shown by curve2. The
increase in the steepness of the curve observed as
approachTc from the side of smaller values ofT is as-
sociated with partial annealing of defects, as a resul
which the samples become close to a perfect MG. T
effective preexponential factorDA8 becomes smaller tha
DA .

It should be emphasized in this connection that it wo
be interesting to measure the diffusion coefficient both
perfectly annealed MG samples, and in melts of the sa
compositions.

Here we analyzed the possibility of a description of c
operative diffusion by using the proposed approach and
intrinsic noncontradictory nature. A comparison with expe
mental results shows that the values of the parameterL are
within reasonable limits.

We confined our analysis to the diffusion of metal ato
in alloys and disregarded diffusion of an impurity. An ana
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metalloid alloys shows that the diffusion coefficient
strongly ~although ambiguously! depend on the diffusate
The activation energy is in linear correlation with the pree
ponential factor. In the proposed model, this correlation c
apparently be explained by the presence of the factornL in
the activation energy~22! as well as in the pre-exponentia
factor ~23!. Naturally, this product is different for differen
atoms of the diffusate.

THE CASE OF LARGE DISPERSION

Let us now consider the case of a large variance of
quantityJi j , V;w, andV@Tc .

Substituting~10! into ~20!, we can present diffusion co
efficient in the form

D~T!5DA~T!expS 2
El

T D , ~24!

DA~T!5D0FFS w2LT

V D Gn

, ~25!

where

F~x!5~2p!1/2E
x

`

expS 2
t2

2 Ddt. ~26!

Pay attention to the fact that the expression in the bra
ets in ~25! has no exponential asymptotic form forT→0
~and tends to a finite limitF(w/V)!. For this reason, formu-
las ~24!–~26! correspond to the Arrhenius law with the sam
activation energyEl as for a liquid melt and with a pre
exponential factorDA(T), decreasing slowly upon cooling
~curve3 in Fig. 1!.
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LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

the
Microscopic mechanism of the effect of composition and topological orders of metal
glasses on plastic shear resistance
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Singularities~minima! in the critical stress of catastrophic plastic shear are observed in the
course of variation of composition and topological orders in metal glasses Fe852xCoxB15 ~x515,
17, 19, 21, 25, 30, 40, 50, 64 at. %! due to a change in the chemical composition. The
minima are observed forx521 and 40 at. %, which is close to the rational ratios 3:1 and 1:1 of
atomic concentrations of Fe and Co, that are regarded as stoichiometric ratios for the
formation of nanoclusters with a high average binding energy. The change in the atomic structure
of cluster boundaries is considered as a microscopic mechanism of the effect of composition
and topological orders on the resistance to plastic shear. The difference in the concentrations of
coinciding sites at cluster boundaries is estimated for metal glasses of stoichiometric and
nonstoichiometric compositions. ©1997 American Institute of Physics.
@S1063-777X~97!01212-7#
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The atomic structure of a solid determines its mechan
properties. However, the establishment of the relation
tween mechanical properties and atomic structure for st
turally disordered amorphous systems such as metal gla
remain a complicated problem since the atomic structure
composition and topological orders in metal glasses has
been studied sufficiently. High-resolution electron micro
copy of various metal glasses1–4 revealed regions of averag
order of 1–3 nm in size, while experiments involving ioni
field microscopy proved5,6 that metal glasses have a pol
cluster structure. Polyclusters formed by noncrystalline
dered nanoclusters~having a size up to 10 nm! are separated
by boundaries, but the detailed atomic structure of nanoc
ters and cluster boundaries has not been established
Since mechanical properties of solids are very sensitive
details of atomic structure~type of local ordering and densit
of point and extended defects!, an analysis of these prope
ties can be an effective tool for studying the defects
atomic structure.

It was assumed earlier that metal glasses are hom
neous noncrystalline solid solutions in the form of chao
atomic mixtures. If this is true, the properties of me
glasses must change monotonically with the composition
however, metal glasses possess a nanocluster substru
with a short-range and intermediate ordering, a nonmo
tonic change in the ordering of nanoclusters and the struc
of cluster boundaries upon a monotonic change in chem
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macroscopic properties of a metal glass. In particular,
compositions close to stoichiometric compositions of crys
line analogs, we can expect an increase in the local com
sition and topological ordering, and hence in the avera
binding energy of atoms in nanoclusters. The structural
laxation of boundaries is inhibited in this case, and the c
centration of noncoinciding sites at cluster boundaries m
increase.1! Thus, the formation of ‘‘strong’’ clusters~with
quasi-stoichiometric compositions! is accompanied by the
formation of ‘‘weak’’ boundaries.

First steps in the establishment of correlation betwe
the atomic structure~composition and topological orders!
and properties of metal glasses were made by comparing
macroscopic properties of metal glasses of certain ‘‘stoich
metric’’ composition and glasses whose compositions are
from ‘‘stoichiometric’’ ones.9–11

No attempts have yet been made to calculate these
ichiometric compositions. A qualitative analysis proved th
in the case of binary metal glasses, glasses with eute
compositions must contain ‘‘strong’’ nanoclusters.9 This hy-
pothesis was confirmed for metal glasses of the Fe–B
tem, for which singularities on concentration dependence
some physical parameters were observed for the glass
the eutectic composition Fe83B17. Among other things, nar-
row ~in concentration! and deep minima of strength wer
observed and explained by a high average binding energ

1004121004-06$10.00 © 1997 American Institute of Physics



atoms in nanoclusters and a strong disorder of cluster
9,10
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In view of the high volume energy of cluster boundari

~approximately 5% of atoms of the material belong to bou
ary layers when the size of nanoclusters is;10 nm!, it is
these boundaries, their structure and resistance to pl
shear that plays a decisive role in the mechanical prope
of metal glasses. The minimum of the critical stresss f p cor-
responding to catastrophic plastic shear and observed
‘‘weak’’ cluster boundaries in a eutectic metal glass w
found to be manifested most clearly as compared to pe
liarities in other properties.9,10 Similar singularities in physi-
cal properties must also be observed for other metal gla
formed by ‘‘strong’’ nanoclusters.

In order to establish the relation between the mic
scopic structure and mechanical properties of metal gla
on the basis of the above concepts and to find new m
glasses in which the composition and topological orders l
to the formation of ‘‘strong’’ nanoclusters, we analyzed sy
tematically the concentration dependence ofs f p in metal
glasses of the Fe852xCoxB15 system by varying the compo
sition of the metallic subsystem. It was found that at le
two compounds in this system, i.e., Fe64Co21B15 and
Fe45Co40B15, exhibit singularities~minima ofs f p! typical of
metal glasses with such composition and topological ord
leading to the formation of ‘‘strong’’ nanoclusters. This pu
lication is devoted to the description of these results.

2. MATERIALS AND METHODS

Metal glasses of the system Fe852xCoxB15 ~x515, 17,
19, 21, 25, 30, 40, 50, 64 at. %! were prepared by rapid
tempering of the melt in a rotating drum~planar flow cast-
ing! at the Institute of Physics of the Slovak Academy
Sciences~Bratislava! in the form of strips of 10 mm width
and 30mm thickness. The amorphous state of the strips w
tested by using x-ray diffractometry. The critical stresss f p

of catastrophic shear was measured at 300 K during ex
sion of samples with a working length of 20 mm at a stra
rate 8.331025 s21 on a deformation test machine with
rigidity of 10 kN/mm. Required separate measurements w
made at 4.2 K. Each experimental point fors f p was obtained
by averaging the results of measurements on five samp
The morphology of fracture surfaces was observed by us
a scanning electron microscope TESLA BS-300.

3. EXPERIMENTAL RESULTS

3.1. Concentration dependence of critical stress of
catastrophic shear

The dependence of the critical stresss f p of catastrophic
shear of metal glasses Fe852xCoxB15 on the cobalt concen
tration at 300 K is shown in Fig. 1. It can be seen thats f p

has two minima atx521 and 40 at. % Co. These concentr
tions almost coincide with the points corresponding to
ratios 3:1 and 1:1 of atomic concentrations of Fe and
The pointx564 at. % Co, which is close to the concentr
tion ratio 1:3 of Fe and Co atoms, also gives a small value
s f p , but we cannot state that it corresponds to a minim
since no data for higher concentrations are available.
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Figure 1 also shows a spreadds f p of the experimentally
measured values ofs f p for metal glasses with all concentra
tions under investigation. It was found that the values
ds f p for concentrations 21 and 64 at. % Co, which appro
mately correspond to the ratios 3:1 and 1:3 of Fe and
concentrations, amount to only6(60– 100)MPa~approxi-
mately of the size of symbols in the figure!, while for other
Co concentrations the values ofds f p are6(350– 400)MPa,
i.e., are several times larger than for the two special conc
trations mentioned above.

3.2. Plastic „viscous … fracture of metal glasses of all studied
compositions

Metal glasses of all studied compositions~including
those corresponding to 21, 40, and 64 at. % Co mentio
above! experienced viscous shear fracture, which was c
firmed by fractographic observations: the surface morph
ogy for catastrophic plastic shear and fracture had the
pearance of a ‘‘vein-type’’ ornament formed due to menisc
instability as a result of rupture of ‘‘quasiliquid’’12

~superplastic!13 layer appearing on the surface of cat
strophic plastic shear as a result of local adiaba
heating.14,15 Such observations are especially important
compositions corresponding to minima ofs f p ~Fig. 2! since
they indicate that these minima are not consequence
brittle fracture which leads to small breaking stresses,16,17but
are due to low resistance to plastic shear and viscous f
ture.

3.3. Change in critical stress of catastrophic shear upon
cooling

Table I contains values of critical stress of catastrop
shear at 300 and 4.2 K for metal glasses Fe64Co21B15 and
Fe66Co19B15. It can be seen that in the course of coolin
from 300 to 4.2 K, the value of this quantity for the fir
composition corresponding to a minimum ofs f p increases

FIG. 1. Concentration dependence of critical stresss f p of catastrophic shear
in metal glasses Fe852xCoxB15 at 300 K.
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insignificantly ~by 8%!, while for the second compositio
which does not coincide with a minimum ofs f p this increase
is much stronger~by 32%!.

4. DISCUSSION OF RESULTS

4.1. Peculiarities of concentration dependences of
mechanical parameters of metal glasses

It is well known that composition ordering, the forma
tion of superstructures or intermetallic compounds of a c
tain stoichiometric composition, determine nonmonoto
dependences of the structure and parameters of crysta
alloys on their composition.18,19

The existence of singularities on concentration dep
dences of parameters for metal glasses is not obviousa pri-
ori ~see above!. It indicates that metallic glasses cannot
regarded as a disordered homogeneous atomic mixture o
components and that their atomic structure contains ord
atomic configurations whose properties are determined
the concentrations of the components. This is confirmed,
example, by singularities of the concentration dependen
of critical stress of catastrophic plastic shear in metal glas
which were observed from an analysis of the syste
Fe1002xBx

9,10 and Fe852xCoxB15, namely, minima ofs f p for
some special concentrationsx as well as maxima of the shea
modulus in Ni1002xZrx metal glasses for compositions corr
sponding to intermetallides in the crystalline state.20 This is
in accord with the above-mentioned composition and to
logical orders observed in metal glasses and with the na
cluster type of their atomic structure established earlier.1–7

The presence of ‘‘strong’’ nanoclusters in a eutectic
loy ~such as Fe83B17! appears as natural since crystallizati
in a eutectic melt is limited to the minimum possible~eutec-

FIG. 2. Photograph of the surface of catastrophic plastic shear surface
fracture in axial extension of a strip of metal glass Fe64Co21B15 at 300 K,
obtained by using a scanning electron microscope.

TABLE I. Critical stressess f p of catastrophic shear at 300 and 4.2 K f
metal glasses Fe64Co21B15 and Fe66Co19B15.

T, K

s f p , GPa

Fe64Co21B15 Fe66Co19B15

300 1.2 2.2
4.2 1.3 2.9
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average binding energy. Such ideas are in agreement
the stoichiometries of binary eutectics, which were est
lished long ago by Hume-Rothery and Anderson.21

The reasons behind the formation of ‘‘strong’’ nanoclu
ters in ternary metal glasses Fe852xCoxB15 with rational ra-
tios of atomic concentrations of Fe and Co are apparently
same as for composition ordering in binary crystalli
Fe–Co alloys with the stoichiometric ratios 3:1, 1:1, and 1
of atomic concentrations of Fe and Co.22 The gain in binding
energy in this case exceeds the increase in free energy d
a decrease in the entropy of mixing and configurational
tropy.

All these results taken together show that the short-ra
composition ordering occurs during the formation of glas
in the absence of a long-range ordering. The composi
ordering and the topological ordering accompanying it d
crease the configuration entropy and increase the ave
binding energy of atoms in clusters. The decrease in confi
ration entropy diminishes the number of possible atom
configurations in the cluster boundary layer, while the
crease in the binding energy of atoms in clusters increa
the cluster rigidity. Both these effects suppress structural
laxation of boundary layers. Besides, the composition or
is inevitably violated at cluster boundaries. This leads to
loss of strength, i.e., to ‘‘weakening’’ of boundaries.

4.2. Microscopic mechanism of the effect of composition
and topological orders on the critical stress of plastic
shear

Boundaries play a decisive role in mechanical proper
of metal glasses with a polycluster structure. At high te
peratures~close to the glass-formation pointTg! and low
stresses, a diffusive-viscous flow of polyclusters takes pla
which is similar to a flow of polycrystals according to th
Coble mechanism.23 According to Lifshits,24 both the bound-
ary diffusion of atoms and the slip along the boundaries
important in this case. At low temperatures, when diffusi
is suppressed, slip is the main mechanism of plastic de
mation.

Internal interfaces in metal glasses are the bounda
between clusters7 forming the structure of a metal glass. Du
ing low-temperature~nonuniform! deformation, the slip
originating along cluster boundaries acquires features o
unstable catastrophic process due to local thermal softe
in the band of adiabatic plastic shear,14,15 leading to shear
fracture of the metal glass.

According to the polycluster model of amorphous bo
ies, cluster boundaries offer a lower resistance to pla
shear as compared to that in the bulk of the clusters.8 This
resistance to plastic shear is mainly determined by the ato
structure of cluster boundaries, namely, the concentrationcc

of coinciding sites at these boundaries and by the distribu
of local critical shear stressessc at these sites due to interna
stresses. The smaller the number of coinciding sites at
boundary between clusters, the smaller the resistance off
by the boundary to plastic shear along it. Figure 3 sho
schematically a two-dimensional polycluster with a clus
boundary containing coinciding and noncoinciding sites

nd
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two neighboring locally regular clusters as well as the cor
sponding potential relief along the cluster boundary.25

The critical stresssp of plastic shear along the cluste
boundary in the absence of thermally activated rearran
ments is defined as follows@see~14.46! in Ref. 8#:

sp5~^sc&2dc/2!cc[s0ccc , ~1!

where^sc& is the average local critical shear stress at co
ciding sites on the cluster boundary,dc/2 the half-width of
the distribution of the values ofsc , andcc the concentration
of coinciding sites at the cluster boundary.

Expression~1! is valid for dc<2^sc&/3 andcc512cnc ,
wherecnc is the concentration of noncoinciding sites at t
cluster boundary. Fordc.2^sc&/3, we can used the follow
ing estimate8 for the value ofs0c : s0c'^sc&/2. Thus, we
can write

^sc&/2,s0c<^sc&. ~2!

In the general case, the value ofsp is close to the critical
stresss f p of catastrophic shear at which shear fracture of
polycluster takes place.8 For this reason, we shall assume
estimates thatsp's f p and has the same concentration d
pendence~see Fig. 1!.

It follows from formula~1! that the observed concentra
tion dependence ofsp is due to the dependences ofs0c and
cc on the composition of the metal glass, and the value
^sc& must increase upon composition ordering in the me
lic subsystem. The increment of this quantity can be roug
estimated as

FIG. 3. ~a! Schematic diagram of a two-dimensional polycluster with
cluster boundary~dashed lines!: coinciding sites~circles! and noncoinciding
sites~semicircles! at the cluster boundary, and regular sites of neighbor
locally regular clusters~d!. ~b! Corresponding potential relief along th
cluster boundary.25
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where«0 is the ordering energy and«b the binding energy
per atom. Usually, the value of«b for metals amounts to
1.5–2 eV, while«0'kBT0 , whereT0 is the temperature o
ordering andkB Boltzmann’s constant. For the crystallin
alloy Fe50Co50, T0'1000 K,26 and hence«0'0.1 eV, while
for the alloy Fe75Co25, T0'840 K26 and«0'0.08 eV. Con-
sequently, the incrementD^sc& appearing as a result of com
position ordering of Fe and Co in Fe852xCoxB15 does not
exceed 0.1̂sc&.

As regards the quantitiesdc and cc , their values can
change not only as a result of composition ordering in cl
ters themselves, but mainly due to the change in the struc
of cluster boundaries accompanying this ordering. It can
seen from Fig. 1 that the values of critical stresss f p of
catastrophic shear for stoichiometric compositions are
proximately half the values for close nonstoichiometric co
positions. This decrease should be attributed completel
the change in the values ofdc andcc as a result of a chang
in the structure of cluster boundaries due to composition
dering.

The values ofcc cannot be measured experimentally
direct methods of high-resolution electron microscopy
ionic-field microscopy so far. For this reason, it would
interesting to compare the values ofcc determined by for-
mula ~1! for metal glasses of stoichiometric and nonstoich
metric compositions.

4.3. Estimation of the ratio of concentrations of coinciding
sites at cluster boundaries of metal glasses of
stoichiometric and nonstoichiometric compositions

We denote bysp
min , s0c

min , andcc
min the quantities appear

ing in ~1! for a stoichiometric composition and bysp
max,

s0c
max, and cc

max the same quantities for the nearest nons
ichiometric composition. Then we can write

cc
min/cc

max5~sp
min/sp

max!~^sc
max&2dc

max/2!/~^sc&
min

2dc
min/2!. ~4!

For small (dc
min,max!2^sc&) and large (dc

min,max.2^sc&/3)
width of the spread in local critical stresses, the second fa
on the right-hand side of~4! is close to unity. In these case
we have the following estimate for the ratio of concent
tions for coinciding sites:

cc
min/cc

max5~sp
min/sp

max!'0.5. ~5!

This corresponds to disordering of cluster boundaries du
an increase in the concentration of noncoinciding sites fo
stoichiometric composition.

The ratio cc
min/cc

max can become smaller if compositio
ordering is accompanied by an increase in the average v
of internal stresses in the boundary layer, and hence by
increase indc if dc

max!^sc
max&/3. In this case, the softening o

cluster boundaries is due to an increase in the concentra
of noncoinciding sites as well as due to an increase in lo
internal stresses at cluster boundaries.
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The relation~

TABLE II. Estimated values ofcc
min/cc

max for different types of stoichiometric structures in metal glasses.
Compositions Type of Stoichiometry cc
min/cc

max

Fe852xCoxB15: xmin521; xmax519 Ordering in metallic subsystem of nanocluster 0.52
Fe852xCoxB15: xmin540; xmax530 Same 0.53
Fe1002xBx : xmin517; xmax516 Binary eutectic 0.90
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relative decrease in the fraction of coinciding sites as a re
of composition ordering and the formation of ‘‘strong’’ clus
ters.

It should be noted that the values ofsp appearing in
formulas ~1!–~3! correspond to the temperature 0 K, whi
experimental measurements of concentration dependenc
s f p were made at a nonzero temperature~300 K!. The tem-
perature dependence ofs f p is determined by the joint effec
of thermal activation, which decreases the value ofs f p upon
heating, and a decrease of internal stresses at coinciding
upon heating, which reduce the value ofs f p . In order to take
into account the difference in the values ofs f p at 0 and 300
K, we shall use the data from Table I for 4.2 and 300
which gives

s f p
min~4.2 K!/s f p

max~4.2 K!,s f p
min~300 K!/s f p

max~300 K!.
~6!

It follows readily from ~3! and ~4! that

cc
min/cc

max,~sp
min/sp

max!,s f p
min~300 K!/s f p

max~300 K!.
~7!

Then the ratios of concentrations of coinciding sites
metal glasses Fe852xCoxB15 of stoichiometric and nonsto
ichiometric compositions determined from Fig. 1 are 0.
~for x521 and 19 at. %! and 0.53~for x540 and 30 at. %!.
Consequently, cluster boundaries in metal glasses of i
cated stoichiometric compositions contain approximat
half the number of coinciding sites at the boundaries in m
glasses of close nonstoichiometric compositions. This dif
ence in atomic structure of cluster boundaries determines
microscopic mechanism of the effect of composition and
pological orders on mechanical properties of metal glass

The observed small values of the spread in experime
values ofs f p for compositions of metal glasses correspon
ing to the ratios 3:1 and 1:3 of atomic concentrations of
and Co can be regarded as an indication of a more stan
atomic structure of cluster boundaries in metal glasses
these compositions.

The difference in the values ofs f p for stoichiometric
~eutectic! and nonstoichiometric compositions in the syste
Fe1002xBx is not so large.9,10 In the framework of the pro-
posed model, this is due to the fact thatcc

min/cc
max,0.9.

A comparison of the obtained estimates of the ra
cc

min/cc
max for the determined stoichiometric compositions

various types enables us to estimate qualitatively the dif
ence in the average binding energies for stoichiometric
nonstoichiometric clusters caused by different factors. Ta
II contains all the estimates obtained for the ratios of c
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glasses of stoichiometric and nonstoichiometric compo
tions.

It can be seen that the difference is considerably stron
in the case of the Fe852xCoxB15 system than in the Fe1002xBx

system, which can be the subject of a subsequent experim
tal verification.

5. CONCLUSIONS

~1! Critical stressess f p of catastrophic plastic shear is me
sured experimentally during extension of strips of me
glasses Fe852xCoxB15 (15,x,64) at 300 K as a func-
tion of the composition by varying the ratio of atom
concentrations of metallic components Fe and Co. T
minimaof s f p are observed for compositions withx521
and 40 at. %, which are close to the rational ratios
and 1:1 of atomic concentrations of Fe and Co.

~2! These compositions are interpreted asstoichiometric
compositions for the formation of composition orderin
in nanoclusters of metal glasses, which correspond to
maximum average binding energy for atoms in nanocl
ters, and accordingly, to cluster boundaries with redu
concentration of coinciding sites and lower critical stre
of plastic shear.

~3! The main microscopic mechanism of the effectof varia-
tion of composition of metal glasses on the resistance
plastic shear lies in the change in concentration of co
ciding sites at cluster boundaries upon a change incom-
position and topological orders.

~4! The ratio ofconcentrations of coinciding sitesat cluster
boundaries in stoichiometric and nonstoichiomet
metal glasses for the systems Fe852xCoxB15 and
Fe1002xBx is estimated~taking into account the results o
measurements ofs f p at 4.2 K! on the basis of the poly-
cluster model of the structure of an amorphous so
Thus, the hypothesis concerning the decisive role of
ternal interfaces in the plasticity of solids is used f
predicting differences in the atomic structure of clust
boundariesin metal glasses of stoichiometric and no
stoichiometric compositions.

The authors are grateful to Dr. K. Csach, J. Miskuf, a
V. Ocelik ~Institute of Experimental Physics, Slovak Aca
emy of Sciences, Kosice! for their help in fractographic ob-
servations of the catastrophic shear surfaces in metal gla
under investigation and to Prof. V. D. Natsik for valuab
critical remarks.
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SHORT NOTES

ec-
Oscillations of the spectrum of acoustic phonons interacting with composite fermions
A. L. Zazunov and D. V. Fil

Institute of Single Crystals, National Academy of Sciences of the Ukraine, 310001 Kharkov, Ukraine*
~Submitted July 7, 1997!
Fiz. Nizk. Temp.23, 1345–1348~December 1997!

The interaction of collective excitations in a composite fermion system with phonon modes is
considered. It is shown that for parameters corresponding to real systems in which the
fractional quantum Hall effect is observed, the phase velocity of acoustic phonons has an
oscillating dependence on the wave vector. The obtained oscillating structure of the phonon
spectrum is determined to a considerable extent by the external magnetic field and electron
concentration. ©1997 American Institute of Physics.@S1063-777X~97!01312-1#

The model of composite fermions was proposed by Jain1 gas for certain values of the statistical parameter. The sp
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7/
as a possible mechanism of the hierarchy of fractional fill
factors, which is observed in experiments on fractional qu
tum Hall effect. Filling factors correspond to Hall platea
and, accordingly, to the minima of the longitudinal comp
nent of resistivity tensor. The idea of the approach form
lated in Ref. 1 is based on the assumption that elemen
excitations in such a system are composite quasipartic
These quasiparticles are fermions carrying an even num
(2m) of flux quanta of a statistical gauge field and a sta
tical charge corresponding to this field. In the mean-fi
approximation, we can reduce the statistical interaction to
additional magnetic fieldBst ~acting on statistical charges!
antiparallel to the applied fieldB. The filling factorsn cor-
responding to the integral numberp of filled Landau levels
in the field DB5uB2Bstu correspond to the experimental
observed hierarchyn5p/(2mp61). Jain’s publication1 ini-
tiated a large number of theoretical and experimental wo
devoted to composite fermions. The mathematical appar
of the model of composite fermions based on the descrip
of statistical interaction involving the introduction of an au
iliary Chern–Simons gauge field was developed in Refs
and 3 ~see also Ref. 4!. Similar models were analyzed i
detail earlier for systems with a fractional statistics~see, for
example, Refs. 5–8!. The idea of composite fermions wa
confirmed experimentally in a number publications devo
to the temperature and field dependence of conductivity,9–13

the observation of a magnetic focussing effect,14,15 and the
study of propagation of surface acoustic waves.16–18 These
experiments proved that thermodynamic and transport p
erties of the system nearn51/2 ~for which DB50! are simi-
lar to the properties of a two-dimensional electron gas i
weak magnetic field.

Another possible confirmation of the composite fermi
model is associated with the study of the effects due to
lective modes in such a system, which correspond to ga
field fluctuations relative to the value determined byBst ~if
we use the formalism developed in Refs. 2, 3!. The role of
such fluctuations is significant in anyon systems: such fl
tuations are responsible for the emergence of an any
acoustic mode, and hence superfluid properties of the an
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trum of collective modes in the system of composite ferm
ons and the dynamic form factors were calculated by Sim
and Halperin19 who proved that the variance of collectiv
excitations is characterized by the oscillatory dependence
the wave vector, while the scale and the number of osci
tions are determined by the filling factor. The oscillato
structure of the spectrum of collective modes can be c
firmed, among other things, by their interaction with latti
vibrations. This interaction can result in a rearrangemen
the phonon spectrum, which strongly depends on the fill
factor. The present communication is devoted to an anal
of this problem. Similar effects as applied to anyon syste
were considered earlier in Ref. 20.

Let us consider a two-dimensional system of complet
polarized composite fermions interacting with phonons. T
Hamiltonian of the system has the form

H5HCF1Hph1H int , ~1!

where

HCF5E d2rC1~r !
1

2mCF
@2 i¹1eAD~r !

2a~r !#2C~r !1
1

2 E d2r E d2r 8@C1~r !C~r !

2n0#V~ ur2r 8u!@C1~r 8!C~r 8!2n0#, ~2!

Hph5(
lq

vlqS blq
1 blq1

1

2D , ~3!

H int5
1

AS
(
lq

E d2reiqrC1~r !C~r !glq~blq1bl~2q!
1 !,

~4!

C is the fermion field,mCF the mass of composite fermions
n0 their average concentration,

a~r !5wE d2r 8@C1~r 8!C~r 8!2n0#
ẑ3~r2r 8!

ur2r 8u2 ~5!
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the vector potential of the Chern–Simons statistical fie
w52m the field flux carried by a composite particle,ẑ the
unit vector along the fieldB, AD the vector potential of the
effective field DB5u12wnuB, V(r )5e2/«r the Coulomb
interaction potential,« the permittivity, b1(b) are the cre-
ation ~annihilation! operators for phonons,vlq the phonon
frequencies,glq the matrix elements of interaction o
phonons with composite fermions, andS is the area of the
system. For the sake of definiteness, we assume thatglq
Þ0 only for a certain polarizationl. Then the renormaliza
tion of the phonon spectrum is determined by a pole of
phonon Green’s functionGl(q,v) satisfying the equation

Gl
21~q,v!5@Gl

0~q,v!#212glq
2 K00~q,v!, ~6!

whereGl
(0)(q,v) is the Green’s function for free electron

andK00(q,v) the polarization Green’s function for compo
ite fermions, which is defined~in the random-phase approx
mation! by the matrix equation

K̂21~q,v!5@K̂ ~0!~q,v!#212V̂~q!, ~7!

in which the matrix indices assume the values 0,y if the
x-axis is chosen along the vectorq. In Eq. ~7!, we have

V̂~q!5
2p

q S e2«21 2 iw

iw 0 D , ~8!

FIG. 1. Relative change in the velocity of acoustic phonons as a functio
wave vector~q is measured in the units ofq05(4pn0)1/2!.
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mn mn mCF

whereDmn
(0)(q,v) is the Fourier component of the current

current Green’s function for free fermions in the fieldDB:

Dmn
~0!~r ,t;r 8,t8!52 i ^T$ j m~r ,t ! j n~r 8,t8!%&0

with the zero current component defined asj 0(r )
5C1(r )C(r )2n0 .

The calculation ofKmn
0 at T50 for an arbitraryn gives

Kmn
~0!~q,v!5

1

2pDvc
S q2S0 7 iqDvcS1

6 iqDvcS1 ~Dvc!
2~S21nD!

D .

~10!

Here and below, the upper sign corresponds ton,1/2m and
the lower sign ton.1/2m ~for a givenm!. In formula ~10!,
Dvc5eDB/mCF is the effective cyclotron frequency
nD56n/(12wn) the effective filling factor,

S j5e2x (
nm50

`

f n~12 f m!
n!

m!

xm2n21~m2n!

~v/Dvc!
22~m2n!2

3@Ln
m2n~x!#22 j S ~m2n2x!Ln

m2n~x!

12x
dLn

m2n~x!

dx D j

,

wherex5(qlD)2/2, l D5(eDB)21/2 is the effective magnetic
length,Ln

m2n(x) the generalized Laguerre polynomial,

f n5H 1, n<p21,

h, n5p,

0, n>p11,

.

and p and h are the integral and fractional parts ofnD .
While deriving formula~10!, we assumed that the timet of
composite fermion relaxation is infinitely long. Taking int
account the finiteness oft, we obtain corrections
;(Dvct)22 to the phonon frequency renormalizatio
which can be neglected if we assume that the condit
Dvct@1 is observed for allnD .

Substituting~7!, ~8!, and ~10! into ~6!, we obtain the
dispersion equation in the form

~v22vlq
2 !F S S17

1

w D 2

2S0S nD1S21
e2q

w2«Dvc
D G

2
glq

2 vlqq
2

pw2Dvc
S050. ~11!

Proceeding from Eq.~11!, we consider the renormaliza
tion of the acoustic phonon spectrum (vlq5cq). The solu-
tions of Eq. ~11! corresponding to the phonon mode f
n52/3, 3/5, and 4/7~filling factors corresponding to the
fractional quantum Hall effect! are shown in Fig. 1 as func
tions ofq. The relative changeDc/c in the phase velocity is
laid along the ordinate axis andq in the units of
q05(4pn0)1/2 along the abscissa axis. The matrix eleme
of interaction is chosen in the formglq5Lq(2rdvlq)

21/2,
where L is the deformation potential,r the density of the

of

1011A. L. Zazunov and D. V. Fil



e
te

cie
e
a
a
e
e

th
n
to

e
o
r
a
-

s

sponding to integralnD . The jump in the derivative is asso-
in
s by
au
on

t-
ich
an

stic
uc-
ge

s.

.

ev.

.

us
elastic medium, andd the thickness of the layer in which th
lattice mode propagates. We used the parame
n05231011 cm22, mCF50.25me , «512.6,
c54•105 cm/s, L57.4 eV, r55.3 g/cm3, and d5500 Å.
For the chosen parameters and for the range ofq under in-
vestigation, the phonon frequency lies below the frequen
of collective modes for composite fermions. It can be se
from Fig. 1 that the renormalized velocity of phonons has
oscillatory dependence on the wave vector, the number
scale ~in q! of oscillations depending significantly on th
filling factor. It should be noted that if we disregard th
quantity ~5! in Hamiltonian ~1!, the dependenceDc(q) is
transformed into a dependence close to linear forq,q0 , i.e.,
the effect under investigation is mainly determined by
interaction of phonons with collective modes. In our opinio
the sensitivity of the oscillatory structure of the spectrum
the parametersB and n0 which can be easily varied in th
course of experiment differs significantly from the case
the anyon–phonon interaction20 ~the role of such a paramete
in Ref. 20 was played by the anyon statistics which is
intrinsic parameter of the system!. Figure 2 shows the depen
dence ofDc/c on B for two values ofq. The dependence
Dc(B) has a number of kinks for the values ofB corre-

FIG. 2. Magnetic-field dependences of the change in the velocity of aco
phonons forq50.5q0(a) andq5q0(b).
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ciated with the beginning of filling of a new Landau level
the system of composite fermions as the field decrease
DB. The inclusion of the localized states between Land
levels must lead to the formation of horizontal segments
the Dc(B) dependence in the regions of kinks.

Thus, the interaction of composite fermions with the la
tice for parameters corresponding to real samples in wh
the fractional quantum Hall effect is observed can lead to
oscillatory dependence of the phase velocity of acou
phonons on the wave vector. The emerging oscillatory str
ture of the phonon spectrum will be modified upon a chan
of the applied magnetic field or electron concentration.
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QUANTUM LIQUIDS AND QUANTUM CRYSTALS
On paired nature of superfluid condensate in helium-II
S. I. Vil’chinsky
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A hypothesis on pairing of helium atoms below thel-point is put forth on the basis of empirical
data on the dynamics of3He impurity atoms in superfluid4He, that suggest an abnormally
large effective mass of3He. The role of paired condensate in superfluidity of4He is considered
as well as the possibility of additional experimental proofs of the pairing of4He atoms,
including the observation of vortices with a half-integral velocity circulation quantum. ©1997
American Institute of Physics.@S1063-777X~97!00112-6#

The existence of a coherent condensate of pairs of4He above! to the total mass of3He and4He atoms:
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atoms in liquid helium below thel-point and its role in the
microscopic structure of the superfluid componentrs were
discussed repeatedly in the literature.1–9 However, this ques-
tion remains disputable in view of the lack of a microscop
theory of a superfluid Bose liquid and the scarceness of
perimental data in this field. The possibility of coexistence

a one-particle Bose condensate (^Ĉ0&Þ0) and the conden

sate of weakly couples boson pairs (^Ĉp•C2p&Þ0), which
are similar to Cooper pairs in a superconductor10 to a certain
extent, was discussed earlier.1–7

It was proved in Ref. 8, however, that such a coexiste
of two condensates, viz., the one-particle condensate~OC!
with a small number of particles (n0!n), which is ‘‘de-
pleted’’ due to interaction between bosons, and the inte
paired condensate~PC! formed in the case of a strong attra
tion in a wide range of momentapÞ0, leads to instability of
the superfluid Bose system, while the ground state contain
only PC without any traces of OC atT50 is stable.

Here we pay attention to significant empirical eviden
confirming the formation of coupled pairs of4He atoms in
superfluid helium and consider some consequences of
circumstance. We are speaking of the interpretation of
origin of the anomalously large effective massm3* of 3He
atoms in3He–4He solutions:11 m3* 5(2.3860.04)m3 accord-
ing to heat-capacity measurements with a3He concentration
of the order of 1%,12 andm3* '2.35m3 according to impurity
excitation spectra13 ~wherem3 is the mass of a3He atom!.
The reason behind such a strong increase in the mass of3He
impurity atoms in superfluid4He requires a serious theoret
cal substantiation and cannot be explained~in our opinion!
by only the interaction of elementary excitations~at any rate,
in the first order perturbation theory!.14

It is worth noting that the value ofm3* is close~from
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m352.33~3!m3 ,

indicating~in our opinion! the existence of coupled states
3He and4He atoms in superfluid helium.

The fact thatm3* is slightly larger than(7/3)m3 in a
dilute solution (;1%)3He in 4He can be due to the interac
tion with quasiparticles~phonons! considered by Slyusare
and Struminskii,14 while an increase in the mass t
m3* 5(2.3860.04)m3 in a 5%3He–4He solution12 can appar-
ently be due to direct interaction between3He atoms.12

But if 3He–4He solutions contain coupled pairs of3He
and 4He atoms, the ever pure4He below Tl must contain
coupled pairs of4He atoms since the paired interaction p
tential for them is virtually the same as the potential of
teraction between3He and4He, and the energy of zero-poin
vibrations is lower in view of the larger reduced mass~
m4245m4/2 instead ofm3245(3/4)m4, where m4 is the
mass of4He atoms!. Moreover, the exchange interaction
two identical Bose particles must also facilitate their pairin
Hence it follows that the superfluid componentrs in 4He can
be a condensate of coupled pairs of4He atoms.

It should be emphasized that such a condensate is
completely identical to the ‘‘Cooper’’ PC1–9 with strongly
overlapping wave functions of boson pairs. This can
proved by using the approach developed in Rev. 8 for B
systems with a ‘‘depleted’’ OC and an intense PC, in whi
the number of particles in the Bose condensaten0!n ~n is
the total number of particles!, and the system of Dyson–
Belyaev equations15 for the normalS11 and anomalousS12

eigenenergy components assumes the following form
within principal terms in the small paramete
n0 /n!1@p5p,v)]:

951120951-04$10.00 © 1997 American Institute of Physics
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S12~p!5n0L~p!Ṽ~p!1c~p!, ~2!

where

w~p!5 i E d4p8

~2p!4 G11~p8!Ṽ~p2p8!G~p,p8!, ~3!

c~p!5 i E d4p8

~2p!4 G12~p8!Ṽ~p2p8!G~p,p8!. ~4!

Heren8 is the number of bosons in overcondensate~excited!
states,V0[V(0) the zeroth Fourier component of the initi
potential V(p) of paired interaction between particle
G11(p) and G12(p) are the normal and anomalous Green
functions for bosons,G(p,p8) is the vertex component o
interaction taking into account many-particle effec
L(p)5G(p,0)5G(0,p), and Ṽ(p) is the renormalized
~‘‘screening’’! Fourier component of the interaction pote
tial:

Ṽ~p,v!5V~p!@12V~p!P~p,v!#21, ~5!

whereP(p) is the polarization operator for bosons:

P~p!5 i E d4p8

~2p!4 @G11~p8!G11~p82p!

1G12~p8!G12~p82p!#G~p8,p!. ~6!

It should be noted that the approximation used in Ref
(n0!n,n8'n), which makes it possible to write ‘‘trun
cated’’ equations~1! and ~2! for S11 and S12, is diametri-
cally opposite to the Bogoliubov approximation16 for a
nearly ideal Bose gas, in whichn0'n andn8!n.

In the absence of OC (n0[0), the order paramete
C(p) of a coherent PC is degenerate in phase and is defi
for T→0 by a homogeneous nonlinear integral equation:8

C~p!52E d3p8

~2p!3 G~p,p8!Ṽ~p2p8!
C~p8!

2«~p8!
, ~7!

where

«~p!5H F p2

2m
2m1nV01w~p!G2

2UC~p!U2J 1/2

, ~8!

andm is the chemical potential for bosons, which, accord
to the Hugenholtz–Pines theory,17 taking into account~1!
and ~2! for n050 andn8'n, has the form

m5S11~0!2S12~0!5nV01w~0!2C~0!. ~9!

It should be noted that in Refs. 1–8 it was assumed
the one-particle spectrum«(p) contains a finite gapDÞ0 for
p50. According to Refs. 7 and 8, forn050 this automati-
cally leads to violation of relation~9! as well as the Reatto–
Chester asymptotic form18 for the paired correlation function

^Ĉ(r )Ĉ(r 8)&, which is transformed from the power depe
dence;ur2r 8u22 into the exponential dependence;exp
(2kur2r 8u), wherek;D. However, the presence of the ga
D in a boson spectrum with an intense PC is not essentia~in
contrast to the case of fermions!.10 For this reason, the qua
siparticle spectrum remains acoustic with«'pu for p→0,
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taking the interaction into account!, and relation~9! and the
hydrodynamic asymptotic form

^C~r !•Ĉ~r 8!&.;ur2r 8u22

are preserved in the absence of OC.
A nontrivial solutionC(p)Þ0 of the integral equation

~7!, corresponding to the formation of a coherent PC witho
a OC, exists only when the effective interactionGṼ in a
wide range of momenta corresponds to attraction (GṼ,0)
which must be stronger than the repulsion between pairs
p→0, required for macroscopic stability of the system
spontaneous compression.

It should be noted that effective attraction in a certa
region of the momentum space (pÞ0) emerges even in a
Bose system with repulsion between particles. If we consi
4He atoms to be rigid spheres with an infinitely strong rep
sion at distancesr ,a ~where a is the diameter of a4He
atom!, the self-consistent potential of interaction, accordi
to Ref. 19, has the form

V~p!5V0

sin pa

pa
~10!

and is negative due to diffraction effects~i.e., corresponds to
attraction! in the region (p/a),p,(2p/a). Here we mean
only the first region of negative values ofV(p) since the
value ofp52p/a for a.2.5 Å virtually coincides with the
finite allowed value of quasimomentumpmax'2.5 Å21 of
elementary excitations in superfluid4He. It should be noted
that the Bogoliubov spectrum of one-particle excitations
an almost ideal Bose gas16

E~p!5Fp2u2~p!1
p4

4m2G1/2

,

u~p!5AnV~p!

m
~11!

with the interaction potential~10! is similar to the spectrum
of quasiparticles in superfluid helium19,20 for certain values
of parameters~see Ref. 19!, although the main criterion o
applicability of the Bogoliubov theory,16 according to which
the numbern8 of overcondensate excitations is smaller th
the numbern0 of particles in the Bose condensate, does
hold for the quantum Bose liquid4He. At the same time,
attraction between particles in a Bose liquid can be enhan
significantly in the regionp.(p/a), while repulsion can be
suppressed in the regionp,(p/a) due to collective many-
particle effects described by renormalized~‘‘effective’’ ! po-
tentialsṼ(p) in the vertex part ofG(p,p8). Indeed, an esti-
mation of the polarization operatorP(p) of a normal Bose
gas in the random-phase approximation gives

P0~p,V!5
1

2p2 E
0

kmax k2dk

V22~p2/4m!12m2~k2/m!

'2
m

pa
,0 ~12!

for large values of
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whereV and p are the total energy and momentum of tw
particles. Obviously, the negative sign ofP(p) in the effec-
tive potential~5! corresponds to a suppression of the rep
sion V(p).0 and to an enhancement of attractionV(p),0.
The dashed curve in Fig. 1 describes the initial potential~10!
as a function ofx5pa, while solid curves correspond t
similar dependences of the renormalized potential~5! for dif-
ferent values of the dimensionless interaction param
a5mV0 /ap. It can be seen that the integral contributio
from the region of attraction (p/a)<p<(2p/a) can be-
come larger than the contribution from suppressed repul
for p<(p/a) in Eq. ~7! for large values ofa. Naturally, the
inclusion of Van der Waals forces acting between4He atoms
leads to still stronger enhancement of attraction and can
cilitate the formation of an intense PC in HeII or coupl
pairs of4He atoms.

It should be noted that the existence of a PC with
order parameterC(p)Þ0 does not imply the formation o
coupled boson pairs in a superfluid Bose liquid since Eq.~7!
is similar to the integral equation for the wave function
interacting particles in vacuum:

FIG. 1. Initial ~dashed curve! ~10! and renormalized~solid curves! ~5! po-
tentials as functions ofx5pa for different values ofa.
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~d→0! ~13!

with the zero binding energy

v0[V2p2/2m50.

A coherent PC contains only strongly overlapping pairs
bosons of the type of Cooper pairs.8

At the same time, the astonishing closeness of the va
of the effective massm3* of an impurity3He atom in HeII to
the total mass (m31m4) of 3He and4He atoms indicates the
possibility of formation of coupled states of He atoms, i.
the formation of weakly overlapping~local! pairs of atoms
owing to strong attraction in the momentum rangep.(p/a)
~see Fig. 1!. Indeed, it is well known that the interaction o
atoms in identical or close energy states is characterized
the potentialV determined by the mutual arrangement
atoms~especially by the separationr between their nuclei!.
For a certain equilibrium distancer 0 and for not very high
kinetic energies of free atoms, a more or less stable chem
bond can be formed between atoms as a result of ato
interaction, whose strength can be judged from the lifeti
of the molecule or from the chemical bond energy. The p
sibility of formation of bound states of helium atoms follow
from the data presented in Ref. 22: the equilibrium distan
for the He–He bond is 2.965 Å, which is in accord with th
atomic spacingr 0.3 Å calculated for the observed4He den-
sity r'0.16 g/cm3 ~we assume that the radius of a4He atom
is ;0.5 Å!, while the depth of the potential well correspon
ing to a stable state of He–He is 0.93 meV, which cor
sponds to a temperature of the order of 9 K. In the case w
the superfluid component is mainly formed by a condens
of coupled pairs of atoms, Gastrow’s wave function23 in the
real space should be used instead of the functionw(p) in the
momentum space:

F j5)
i , j

f ~ ur i2r j u!5expS 2
1

2 (
i , j

V~ ur i2r j u! D . ~14!

This function takes into account many-particle correlatio
and is a good approximation for describing the state of liq
4He.24,25

Thus, we cannot rule out the fact that the superflu
component in HeII is mainly formed by a condensate
coupled pairs of4He atoms with doubled mass 2m4 . A di-
rect proof of this fact could be the experimental observat
of quantized vortices with a half-integral velocity circulatio
quantum¸5h/2m4 . The available experimental data26–29do
not allow us to determine unambiguously the circulation
the superfluid velocityvs around Onsager vortex filament
For example, Whitmore and Zimmermann28 measured the
effective circulationG normalized to the densityrs of the
superfluid component, which changes upon a transition fr
the Bose condensate to a condensate of coupled pairs of4He
atoms with the doubled mass 2m4 of quasiparticles, but with
half the concentrationn/2.

In conclusion, the authors express their gratitude to A
Andreev and V. I. Pentegov for fruitful discussions.
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On Hamiltonian formulation of hydrodynamic equations for superfluid 3He– A

A. A. Isayev and S. V. Peletminsky
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The Poisson brackets for the dynamic variables describing the spin and orbital dynamics of
superfluid3He–A are obtained by using a consistent Hamiltonian formalism. The analysis is based
on the derivation of the kinematic component of the system Lagrangian and on the
consideration of variations of dynamic variables, which leave the kinematic component of the
Lagrangian invariant. Equations of motion for the dynamic variables are derived, and
Galilean invariance of the obtained equations is considered by proceeding from the invariance of
the system Lagrangian to Galilean transformations. ©1997 American Institute of Physics.
@S1063-777X~97!00212-0#

1. INTRODUCTION tutes the main problem. In the case of superfluid3He–A,
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This research is devoted to the derivation of the hyd
dynamic equations for superfluid3He–A by using the
Hamiltonian approach. The construction of hydrodynam
of the superfluidA-phase of3He has formed the subject of
large number of publications~see, for example, Refs. 1 and
and the references cited therein!. Several approaches can b
singled out in this case. Some authors3–6 based their analysis
on the microscopic approach, which is model-dependent
rule. This is important for obtaining quantitative estimates
various coefficients appearing in hydrodynamic equatio
However, the most general form of hydrodynamic equatio
permitted by symmetry conditions can be established o
phenomenologically7–9 by using the method of conservatio
laws. An attempt at constructing nonlinear hydrodynam
equations by using the Lagrangian formalism was also m
by Khalatnokov and Lebedev.10 Here we proceed from the
Hamilton approach.11,12 It should be noted that the conce
of intrinsic orbital angular momentum13 associated with the
angular momentum of Cooper pairs plays an important r
in all approaches. We introduce the intrinsic orbital angu
momentum as a generator of spatial rotations of the varia
describing liquid-crystal degrees of freedom.

The determination of Poisson brackets~PB! of dynamic
variables plays a fundamental role in the Hamiltonian
proach. In contrast to ordinary mechanical systems, the
of dynamic variables for condensed media have a nontri
structure. In the case of normal physical systems, the
scription on the hydrodynamic stage of evolution is co
structed on the basis of densities of additive integrals of m
tion whose, PB are well known. A description of a syste
with spontaneously broken symmetry involves the introd
tion of additional hydrodynamic parameters that are not
sociated with conservation laws, but are due to the bro
symmetry. Since these additional variables have no oper
expressions in the secondary quantization representation
PB for these variables can be obtained by simple comp
tion of commutators as usual in a quantum-mechanical d
vation of PB. The construction of PB for dynamic variabl
associated with symmetry breaking~both with the densities
of additive integrals of motion and with one another! consti-
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such variables are the spin and spatial anisotropy vec
da(x) and l i(x) as well as the superfluid momentumpi(x).

The Hamiltonian formulation of hydrodynamic equ
tions for superfluid3He–A at T50 was proposed by Volo-
vik and Balatskii14 who assumed that the motion of the no
mal component is frozen and did not write the P
corresponding to the momentum density. We also include
entropy density in the complete system of PB, which allo
us to formulate the adiabaticity condition for processes
curring in theA-phase. For this purpose, we introduce in t
theory the dynamic variables conjugate to the momentu
and entropy densities, i.e., the displacement vectorui(x) and
the formally introduced variablec(x) ~see Sec. 2!, which are
cyclic ~the HamiltonianH of the system is independent o
these variables!. In order to obtain a complete system of P
we follow the variational principle described in Ref. 12, a
cording to which the structure of the Poisson brackets of
dynamic variableswa(x) is essentially determined by th
form of the kinematic componentLk(w,ẇ) of the Lagrang-
ian, which can be found from the relation

L5Lk~w,ẇ !2H~w![E d3xFa~x;w!ẇa~x!2H~w!

@L is the Lagrangian, H(w) the Hamiltonian, and
Fa(x;w(x8,t)) a certain functional of the dynamic variable
wa(x)#, and by the variations of dynamic variable
dwa(x,t)5dwa@x;w(x8,t)#, which leave the kinematic
component invariant. The latter can be represented in
form

dwa~x!5$wa~x!,G%, ~1!

whereG is the generator of infinitely small canonical tran
formations, which is defined, in accordance with the gene
theory,12 as

G5E d3xFa~x,w!dwa~x!. ~2!

This class of variations can be extended by supplem
ing the Lagrangian with the total time derivative of an arb
trary functionalg~w!, which leads to a new definition of th
functionalFa(x,w):

955120955-07$10.00 © 1997 American Institute of Physics



Fa@x,w~x8!#→Fa8 @x,w~x8!#5Fa~x,w~x8!!
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dg~w~x8!!

dwa~x!
.

An advantage of the approach developed here is th
allows us to obtain PB by considering the most general
nonical transformations of dynamic variables, which are
termined from the requirement of invariance of the kinema
component of the Lagrangian constructed on the basis o
functional Fa8 @x,w(x8)#. These transformations not nece
sarily belong to a group with broken symmetry. Moreov
the application of dynamic variables allows us to write t
Lagrangian~as well as its kinematic component! in a simpler
form than in the case when the Lagrangian is written in ter
of physical dynamic variables through which the state of
system under investigation is described. The complete
algebra obtained on the basis of such a kinematic compo
permits subsequent separation of subalgebras correspon
to physical variables. It should also be noted that the va
tional principle used by us leads to PB automatically satis
ing the Jacobi identity. Since the structure of kinematic co
ponent of the Lagrangian plays the basic role in our analy
our next step is the obtaining of the function
Lk5*d3xLk(x) for superfluid3He–A.

2. KINEMATIC COMPONENT OF LAGRANGIAN AND PB
FOR SUPERFLUID 3He– A

Let us first consider for illustration the construction
the kinematic component of the Lagrangian for classical c
tinuous media. If we disregard in this case the proces
associated with entropy transfer, the functionalLk(x) has
the form15

Lk~x!5p i~x!bi j
21~x!u̇ j~x!, bi j ~x!5d i j 2¹ jui~x!,

~3!

wherep i(x) is the momentum density,ui(x) the displace-
ment vector, andxi the Euler coordinate of an element of
continuous medium. Using the kinematic component~3!, we
can obtain PB for the variablesui(x) andp i(x). Besides, in
order to derive the adiabaticity equation, we must know
PB of the entropy densitys(x) with the remaining dynamic
variables. For this purpose, we write the kinematic com
nent of the Lagrangian~3! in the form

Lk~x!5pI i~x!bi j
21~x!u̇ j~x!2s~x!ċ~x!, ~4!

where

pI i~x!5p i~x!2s~x!¹ ic~x!. ~5!

The variablec(x) which is conjugate to the variables(x)
has been introduced in the kinematic component form
and should be regarded as cyclic in the derivation of
equations of motion. The origin of the second term in fo
mula ~4! is evident, while the structure of the quantitypI i(x)
requires clarification. Note that the momentum densityp i(x)
in ~3! is associated with translations in the space of the v
ablesui(x) andp i(x). When we introduce the new variable
s(x) andc(x), the momentum densityp i(x) is determined
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s(x), andc(x) and can be written in the form

p i~x!5pI i~x!1p i
s~x!,

wherepI i(x) is the momentum density associated with tran
lations in the space of variablesui(x) andp i(x) only, while
p i

s(x) is associated with translations in the space ofs(x)
and c(x). Since the quantitiesc(x) and s(x) are general-
ized coordinates and momenta, the quantityp i

s(x) is defined
as

p i
s~x!5s~x!¹ ic~x!.

For this reason, the momentum densitypI i(x) associated with
translations in the space of the variablesui(x) andp i(x) has
the form ~5!, which leads to the structure of the function
Lk(x) in ~4!.

Using Lk(x), we can obtain the following PB~the ex-
amples of corresponding canonical transformations are g
in Ref. 12; here and below, we shall write only nontrivi
PB!:

$p i~x!,s~x8!%52s~x!¹ id~x2x8!,

$p i~x!,c~x8!%5d~x2x8!¹ ic~x!,

$s~x!,c~x8!%5d~x2x8!,

$ui~x!,pk~x8!%5bik~x!d~x2x8!,

$p i~x!,pk~x8!%5pk~x!¹ i8d~x2x8!2p i~x8!¹kd~x

2x8!. ~6!

The obtained density of the kinematic component~4! of the
Lagrangian corresponds to continuous media. We can ea
generalize this functional to the case of magnetoelastic
dia. For this purpose, we write the density of the kinema
component for a magnet characterized by complete spo
neous breaking of symmetry relative to spin rotations~bro-
ken SO(3) symmetry!:16

Lk~x!52sa~x!va~x!, va[
1

2
«abg~ ãȧ!gb . ~7!

Heresa(x) is the spin density andaab(x) the rotation matrix
which is an additional dynamic variable describing t
breaking of symmetry to spin rotations~the three anglesua

parametrizing the rotational matrixaab are conjugate to the
three spin componentssa!. Using the functionalLk(x) in
~7!, we can obtain PB:16

$sa~x!,sb~x8!%5«abgsg~x!d~x2x8!,

$aab~x!,sg~x8!%5aar~x!«rbgd~x2x8!. ~8!

It was proved in Ref. 12 that the momentum dens
associated with translations in the space of variablessa(x)
andaab(x) is defined as

p i
s[sava i , va i[

1

2
«abg~ã¹ ia!gb .

Consequently, the density of the kinematic component of
Lagrangian for magnetoelastic media can be written in
form
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Lk~x!5pI i~x!bi j
21~x!u̇ j~x!2s~x!ċ~x!2sa~x!va~x!.
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where

pI i5p i2s¹ ic2sava i . ~10!

The last term in formula~9! is the density of the kine-
matic component of the Lagrangian for magnetic syste
Accordingly, the momentum densityp i is a generator of
spatial translations in the space of variablesui , p i , s, c, sa ,
andaab , the momentum densityp i

s5s¹ ic is a generator in
the space of variabless and c, and the momentum densit
p i

s5sava i is a generator in the space of variablessa and
aab . Consequently, the momentum density associated w
translations in the space of variablesui andp i has the form
~10!, which determines the structure of the density of t
kinematic component~9! of the Lagrangian. The applicatio
of the functionalLk(x) in the form~9! leads to two more PB
in addition to~6! and ~8!:

$p i~x!,sa~x8!%52sa~x!¹ id~x2x8!,

$p i~x!,aab~x8!%5d~x2x8!¹ iaab~x!. ~11!

After these preliminary remarks, we are ready to wr
the kinematic component of the Lagrangian for superfl
3He–A. It follows from the above analysis that the constru
tion of translation operators and their densities for vario
physical fields appearing in the Lagrangian plays an imp
tant role in determining the structure of the kinematic co
ponent. The dynamic variables for superfluid3He–A are the
number density of particlesn(x), the densities of the mo
mentump i(x), spinsa(x) and entropys(x), and the vectors
of spin da(x) and spatiall i(x) anisotropy as well as the
superfluid momentumpi(x). We also include in dynamic
variables the density of intrinsic orbital angular momentu
lI i(x) associated with the angular momentum of Cooper pa
We write the density of the kinematic component of the L
grangian, which will be used for obtaining PB of dynam
variables of theA-phase:

Lk~x!5pI i~x!bi j
21~x!u̇ j~x!2s~x!ċ~x!2sa~x!va~x!

2j i~x!ġi~x!2j i* ~x!ġi* ~x!, ~12!

where

pI i5p i2s¹ ic2sava i2jk¹ igk2jk* ¹ igk* . ~13!

Herej i(x) andgi(x) are certain generalized complex coo
dinates and momenta through which the physical dyna
variablesn(x), l i(x), pi(x), and lI i(x) will be expressed.
Since the part of the functionalLk(x) containing the vari-
ablesj i andgi has the standard form known from classic
mechanics, the following formulas are valid:

$j i~x!,gk~x8!%5$j i* ~x!,gk* ~x8!%5d ikd~x2x8!. ~14!

The momentum densitypI i(x) in ~12! is associated, as be
fore, with translations in the space of the variablesui(x) and
p i(x) and is constructed in analogy with the previous cas

Henceforth, we shall need the PB$p i(x),jh(x8)%,
$p i(x),gk(x8)%. In order to derive these PB, we conside
along with the variations
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dui~x!5bi j ~x!dxj~x!, dc~x!52dxi~x!¹ ic~x!,

ds~x!52¹ i@dxi~x!s~x!#,

dsa~x!52¹ i@sa~x!dxi~x!#,

daab~x!52dxi~x!¹ iaab~x! ~15!

also the variation

dj i~x!52¹k~j i~x!dxk~x!!,

dgi~x!52dxk~x!¹kgi~x!, ~16!

which leave the kinematic component of the Lagrangian
variant. On the other hand, variations~16! can be repre-
sented, in accordance with~1! and ~2!, in the form

dj i~x!5$j i~x!,G%, dgi~x!5$gi~x!,G%,

whereG is the generator of transformations~15! and ~16!,
which is defined as

G5E d3xS pI i~x!bi j
21~x!duj~x!2s~x!dc~x!

2
1

2
«abgsa~x!amg~x!damb~x!2j i~x!dgi~x!

2j i* ~x!dgi* ~x! D5E d3xp i~x!dxi~x!.

This leads to the PB

$p i~x!,jk~x8!%52jk~x!¹ id~x2x8!.

$p i~x!,gk~x8!%5¹ igk~x!d~x2x8! ~17!

~similar expressions can be obtained for complex conjug
quantitiesjk* andgk* !.

Let us first consider the spin dynamics of theA-phase,
which is described by the spin densitysa(x) with the unit
spin anisotropy vectorda(x). We define the vectorda

through the formula

da5dI baba , ~18!

where dI b is an arbitrary constant unit vector andaab the
rotational matrix introduced by us in the analysis of a mag
with brokenSO(3) symmetry. Carrying out the convolutio
of the vectordI a with the rotational matrixaab in formulas
~8! and ~11!, we obtain the algebra of PB for the variable
sa(x) andda(x):

$sa~x!,sb~x8!%5«abgsg~x!d~x2x8!,

$sa~x!,db~x8!%5«abgdg~x!d~x2x8!, ~19!

as well as PB with the momentum densityp i(x):

$p i~x!,sa~x8!%52sa~x!¹ id~x2x8!,

$p i~x!,da~x8!%5d~x2x8!¹ ida~x!. ~20!

The Poisson brackets~19! and~20! form the basis of the
derivation of equations in spin dynamics of the superflu
A-phase. Equations of motion in the Hamiltonian approa
have the form
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dp l~x!5« i jk@j i~x!gk~x!1j i* ~x!gk* ~x!#¹ ldw j~x!, ~27!

s
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g

ns-
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@wa(x) are dynamic variables#. This gives

ṡa1¹k~vk
nsa!5«abgS dH

dsb
sg1

dH

ddb
dgD ,

ḋa1~vk
n¹k!da5«abg

dH

dsb
dg , vk

n[
dH

dpk
. ~21!

These equations are a generalization of the Leg
equations17 taking into account the motion of the norm
component.

Let us go over to an analysis of orbital dynamics. It
characterized by the variabless(x), n(x), p i(x), l i(x),
pi(x), and lI i(x). We introduce physical dynamic variable
n(x), l i(x), pi(x), and lI i(x) connecting them with the gen
eralized coordinates and momentagi(x) and j i(x). Let us
consider infinitely small phase transformations with t
phase 2dw(x):

dj i~x!52idw~x!j i~x!, dgi~x!522idw~x!gi~x!,

dj i* ~x!522idw~x!j i* ~x!, dgi* ~x!52idw~x!gi* ~x!.
~22!

The density of the kinematic component~12! remains invari-
ant if we also consider the transformations of the momen
density along with transformations~22!:

dpk~x!522i ~j i~x!gi~x!2j i* ~x!gi* ~x!!¹kdw~x!.
~23!

According to~2!, the generator of transformations~22! and
~23! is given by

G5E d3xn~x!dw~x!,

n~x![2i @j i~x!gi~x!2j i* ~x!gi* ~x!#. ~24!

The quantity n(x) defining the generator of local phas
transformations has the meaning of the number density
particles. Then it follows from~23! that

dpk~x!52n~x!¹kdw~x!.

On the other hand, presenting the variationdpk(x) in
the form

dpk~x!5$pk~x!,G%, G5E d3xn~x!dw~x!,

and considering that the functiondw(x) is arbitrary, we ob-
tain the PB

$pk~x!,n~x8!%52n~x!¹kd~x2x8!. ~25!

Let us now consider infinitely small rotations of the vecto
j i andgi :

dj i~x!5« i jkdw j~x!jk~x!, dgi~x!5« i jkdw j~x!gk~x!.
~26!

~dw j are rotational angles! and similar expressions for com
plex conjugate quantitiesj i* and gi* . Along with transfor-
mations~26!, we also consider transformations of the m
mentum density
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which leave the kinematic component~12! invariant. Ac-
cording to~2!, the generator of transformations~26! and~27!
has the form

G5E d3xlI i~x!dw i~x!,

lI i~x![« i jk@j j~x!gk~x!1j j* ~x!gk* ~x!#. ~28!

The quantitylI i(x) defines the generator of local rotation
~26! and will be interpreted by us as the intrinsic orbit
angular momentum of Cooper pairs in theA-phase~see be-
low!. Taking~28! into consideration, we obtain the followin
expression for variationsdp i(x):

dp i~x!52 lI j~x!¹ idw j~x!.

On the other hand, we have

dp i~x!5$p i~x!,G%, G5E d3xlI i~x!dw i~x!.

This gives the PB

$p i~x!,lI j~x8!%5 lI j~x!¹ i8d~x2x8!. ~29!

Let us now define the spatial anisotropy vectorl i and the
superfluid momentumpi through the formulas

l i5 i« i jkgjgk* , pi5
i

4glgl*
~gk¹ igk* 2gk* ¹ igk!. ~30!

Under the local phase transformations~22!, the vector l k

does not change, and the superfluid momentum is tra
formed according to the law

pi→pi85pi1¹ iw.

Suppose that we are treating the quantitiesgigi* , gi
2 , and

gi*
2 as dynamic variables. Considering that

H5E d3x«~x!,

«~x!5«@x;s~x8!,n~x8!,p i~x8!,l i~x8!,pi~x8!,lI i~x8!#
~31!

~we write here the energy density as a function of only tho
variables that describe orbital dynamics! as well as represen
tations~24!, ~28!, ~30! and the PB~14! and ~16!, we obtain
the following equations of motion for these variables:

S ]

]t
1v i

n¹ i Dgkgk* 50,

S ]

]t
1v i

n¹ i14im Dgk
250,

S ]

]t
1v i

n¹ i24im Dgk*
250; m[

dH

dn
, ~32!

which have trivial solutions

gk
25gk*

250 ~33!
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and time!. Henceforth, we assume thatC51 everywhere,
i.e.,

gkgk* 51. ~34!

Thus, the vectorgk is a normalized complex vector whos
square is equal to zero, which permits the following rep
sentation:

g5
1

&

~D11 iD2!; D1
25D2

251, D1D250. ~35!

Taking relations~33! and~34! into account, we find that the
spatial anisotropy vectorl i is a unit vector (l i

251), while the
superfluid momentumpi is finally determined by the expres
sion

pi5
i

4
~gk¹ igk* 2gk* ¹ igk!. ~36!

The vectorsD1 , D2 , and15@D1D2# form local quantization
axes in the microscopic theory. It follows from definition
~30!, ~36!, and the representation~35! that the vectorspi and
l i are connected through the Mermin–Ho identity

¹ i pk2¹kpi5
1

2
1•~¹ i131!@¹ i1,¹k1#. ~37!

It can easily be seen that the superfluid momentumpi does
not change upon simultaneous fulfillment of the phase tra
formation~22! and rotation around the directionl through the
angle 2dw, for whichdw j52l jdw ~combined phase–rotatio
invariance!.

Formulas~24!, ~28!, ~30!, and~36! solve the above prob
lem on the relation between the dynamic variablesn(x),
lI i(x), l i(x), pi(x) and the generalized coordinates and m
mentagi(x) andj i(x). Using the above representations a
PB ~14! and~16!, we can easily find the following algebra o
PB for variables describing orbital dynamics of superflu
3He–A:

$p i~x!,pk~x8!%5pk~x!¹ i8d~x2x8!

2p i~x8!¹kd~x2x8!,

$p i~x!,n~x8!%52n~x!¹ id~x2x8!,

$p i~x!,s~x8!%52s~x!¹ id~x2x8!,

$p i~x!,l j~x8!%5d~x2x8!¹ i l j~x!,

$p i~x!,lI j~x8!%52 lI j~x!¹ id~x2x8!,

$p i~x!,pj~x8!%5~¹ i pj2¹ j pi !d~x2x8!

2pi~x!¹ jd~x2x8!,

$n~x!,pi~x8!%5¹ i8d~x2x8!,

$ lI i~x!,pj~x8!%5
1

2
l i~x8!¹ j8d~x2x8!,

$ lI i~x!,lI j~x8!%5« i jk lIkd~x2x8!,

$ lI i~x!,l j~x8!%5« i jk l kd~x2x8!. ~38!
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of the quantityLI i5*d xlI i(x) as intrinsic orbital angular mo
mentum. For this purpose, we also introduce the orbital
gular momentumLi

05*d3x« iklxkp l constructed with the
help of momentum densityp l(x). In accordance with~6!,
the quantitiesLi

0, Pi[*d3xp i(x) satisfy the well-known PB

$Pi ,L j
0%5« i j l Pl , $Li

0,L j
0%5« i jkLk

0.

It follows from ~38! that the quantitiesLI i andPi satisfy the
relations

$Pi ,LI j%50, $LI i ,LI j%5« i jkLI k .

Noting that $Li
0 ,LI j%50, we obtain the following relations

for the total angular momentumLi5Li
01LI i :

$Pi ,L j%5« i jk Pk , $Li ,L j%5« i jkLk .

In addition, it follows from relations~38! that under trans-
formations with the generatorLi

0 , the quantitiesn(x) and
l i(x) are transformed as scalars:

$n~x!,L j
0%52« jklxk¹ ln~x!,

$ l i~x!,L j
0%52« jklxk¹ l l i~x!,

while the quantitiesp i(x) andpi(x) are transformed as vec
tors:

$p i~x!,L j
0%5« i j l p l~x!2« jklxk¹ lp i~x!,

$pi~x!,L j
0%5« i j l pl~x!2« jklxk¹ l pi~x!.

On the other hand, under transformations with the gener
LI j , the quantitiesn(x), p i(x), and pi(x) are not trans-
formed:

$n~x!,LI j%5$p i~x!,LI j%5$pi~x!,LI j%50,

while the spatial anisotropy vectorl i(x), which is similar to
the director vector in liquid crystals, is transformed acco
ing to the law

$ l i~x!,LI j%5« i jk l k~x!.

Thus, the intrinsic orbital angular momentumLI i

5*d3xlI i(x) is introduced by us as a generator of spat
rotations of variables of the liquid-crystal type and posses
properties similar to the spin angular momentumSa . It fol-
lows from PB with the quantitiesLi

0 andLI i that, under trans-
formations with the total orbital angular momentumLi , the
number density of particlesn(x) is transformed as a scala
$n(x),L j%52« jklxk¹ ln(x), while the quantitiesp i(x),
pi(x), and l i(x) are transformed as vectors:

$wi~x!,L j%5« i j l wl~x!2« jklxk¹ lwi~x!,

wi~x!5$p i~x!,pi~x!,l i~x!%.

The condition of rotational invariance of the energy dens
of the system is formulated with the help of the total orbi
angular momentumLi and has the form

$Li ,«~x!%5« iklxk¹ l«~x!. ~39!
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3. EQUATIONS OF ORBITAL DYNAMICS
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t ik5t ik
s 1t ik

a , ~44!
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Before we write equations of orbital dynamics, the fo
lowing circumstance is worth noting. Since Cooper pa
possess an orbital angular momentum and an intrinsic or
angular momentum of densitylI i , the quantitylI i makes a
contribution to the total momentum densityj i

j i5p i1
1

2
curli1I ~40!

~upon such a redefinition, the total momentum remains
changed,*d3x j i(x)5*d3xp i(x)!. Accordingly, the energy
density~31! is a function of variablesp i and lI i only through
the momentum densityj i :

«@x;s~x8!,n~x8!,p i~x8!,l i~x8!,pi~x8!,lI i~x8!#

5«@x;s~x8!,n~x8!, j i~x8!,pi~x8!#. ~41!

It follows immediately from this equation that

v5
1

2
curl vn; v[

dH

d lI
, vn[

DH

dp
5

DH

d j
, ~42!

i.e., local rotation of the normal component is of the rigi
body type. The orbital angular momentumLi constructed
from the quantityLi[*d3x« iklxkj l , is the sum of the orbita
angular momentumLi

0[*d3x« iklxkp l and the intrinsic an-
gular momentumLI i5*d3xlI i(x) and coincides with the tota
orbital angular momentumLi5Li

01LI i . Thus, we include
just for the momentum densityj i in the system of hydrody-
namic equations the equation of motion.

The system of PB~38! forms the basis for deriving hy
drodynamic equations for superfluid3He–A. In the local
limit, when the energy density«(x) has the form

«~x!5«@s~x!,n~x!, j i~x!,sa~x!,l i~x!,

¹kl i~x!,pi~x!,da~x!#,

taking into account the Mermin–Ho identity~37!, we obtain
the following hydrodynamic equations for theA-phase:

ṅ1¹ i S v i
nn1

]«

]pi
D50, ṡ1¹ i~v i

ns!50,

ṗi1¹ i S vk
npk1m1

1

4
l k curlkv

nD1
1

2
1•~¹ i131̇#50, ~43!

l̇ i1~vk
n¹k!l i1

1

2
@1 curl vn# i50, j̇ i52¹kt ik ,

l̇I i1¹k~vk
nlI i !1

1

2
@1I curl vn# i1@1•h# i1

1

2
¹kS l i

]«

]pk
D50.

Here t ik is the tensile stress tensor
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t ik
s 5pd ik1

1

2 S j ivk
n1pi

]«

]pk
1¹ i l r

]«

]¹kl r
1~ i↔k!

1
1

2
lIs~« irs¹ rvk

n1«krs¹ rv i
n!2

1

4
~ lI i curlkv

n

1 lIk curliv
n! ,

t ik
a 5

1

2
« ikm¹ j S 1

2
l m

]«

]pj
1tm jD , tm j5« ikml k

]«

]¹ j l i
;

andp is the pressure,

p52«1Ts1mn1 j kvk
n1sa

]«

]sa
1

1

2
lIk curlkv

n;

T[
]«

]s
, hi[

]«

] l i
2¹k

]«

]¹kl i
.

We denote the symmetric and antisymmetric component
stress tensor in~44! by t ik

s and t ik
a , respectively. While sepa

rating the symmetric component of tensort ik , we have used
of the rotational invariance condition~39!, which can be
written, after the evaluation of PB, in the form

« ikl S ]«

] l k
l l1

]«

]¹kl r
¹ l l r1

]«

]¹ r l k
¹ r l l1

]«

]pk
pl1vk

nj l D50.

Although the stress tensor has the antisymmetric compo
~that has the form of spatial derivative!, the following differ-
ential conservation law is valid for the density@r–j # of the
total orbital angular momentum:

]

]t
~« iklxkj l !52¹sS « iklxkt ls1

1

2
l i

]«

]ps
1t isD .

It can be easily seen that equations~43! are compatible with
the Mermin–Ho identity:

]

]t S ¹ i pk2¹kpi2
1

2
1•@¹ i l3¹k1# D50.

The dynamic equations~43! obtained by using the Hamil
tonian approach are generalizations of corresponding e
tions from Ref. 1 to the case of Galilean-noninvaria
systems1! and also include the equation for intrinsic orbit
angular momentum. The last equation in~43! is not written
as a rule while formulating equations of orbital dynami
since intrinsic orbital angular momentum is small in view
strong overlapping of Cooper pairsl i;r(D0 /«F)2, in the
weak-coupling approximation and atT50; see Ref. 13!. It
follows from Eq.~43! that the inclusion of the motion of the
normal component cannot be reduced only to the emerge
of convective terms; the terms proportional to curlvn and
associated with vortex motion of the normal component a
appear. This can lead, for example, to the drag effect, i.e.,
generation of translational motion of the superfluid comp
nent by rotational motion of the normal component w
¹( l kcurlkv

n)Þ0 ~see the equation for the superfluid mome
tum pi!.

18
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If a system possesses Galilean invariance, the energy
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.

density«~x! under Galilean transformations with the para
eterv obeys the law

«8~x!5«~x2vt !1 j i~x2vt !v i1
1

2
r~x2vt !v2,

r~x![mn~x! ~45!

~m is the mass of a3He atom!. The application of the energ
functional satisfying the property~45! leads to a system o
hydrodynamic equations, which also possesses Galilean
variance. In order to verify this, let us first prove the Galile
invariance of the system Lagrangian that corresponds to
kinematic component~12!. Then the variational principle
will also lead to Galilean invariance of Eqs.~43!. In accor-
dance with~12!, the density of the system Lagrangian has
form

L~x!5pI i~x!bi j
21~x!u̇ j~x!2s~x!ċ~x!2sa~x!va~x!

2j i~x!ġi~x!2j i* ~x!gi* ~x!2«~x!. ~46!

The transformation properties of the variables appearing
~46! to Galilean transformations are determined by the f
mulas

p i8~x!5p i~x2vt !1r~x2vt !v i ,

ui85ui~x2vt !1v i t, s8~x!5s~x2vt !,

c8~x!5c~x2vt !, sa8 ~x!5sa~x2vt !,

aab8 ~x!5aab~x2vt !,

j i8~x!5j i~x2vt !expH 2i S mv2

2
t2mvxD J ,

gi8~x!5gi~x2vt !expH 22i S mv2

2
t2mvxD J . ~47!

These expressions lead to the laws of transformations of
quantitiesr~x!, pi(x), l i(x), and lI i(x):

r8~x!5r~x2vt !, pi8~x2vt !1mv i ,

l i8~x!5 l i~x2vt !, lI i8~x!5 lI i~x2vt !. ~48!

Using ~47! and ~48!, we can easily verify that

L8~x!5L~x2vt !2
1

2
v i curli lI~x2vt !. ~49!

By virtue of ~49!, the Lagrangian is invariant to Galilea
transformations:

E d3xL~x!5E d3xL8~x!,

and hence Eqs.~43! corresponding to the energy density~45!
are also invariant to Galilean transformations. It should
noted that the Mermin–Ho identity also preserves its fo
under transformations~48!.

In conclusion, it is appropriate to make the followin
remark concerning the dynamics of cyclic variablesui andc
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grangian~12!. According to~6!, the Hamilton equations o
motion for these variables have the form

u̇i5bi j v j
n , ċ1~v i

n¹ i !c52T

and can be integrated after finding solutions of Eqs.~43!. We
can give a simple physical interpretation of the variab
ui(x,t), which is in accord with the meaning of this variab
in the density of kinematic component of Lagrangian~4!. For
this purpose, we define the functionxi5xi(j,t) implicitly by
using the equality

xi~j,t !5j i1ui@x~j,t !,t#, j i5const. ~50!

Differentiation of both sides of formula~50! with respect to
time leads to the relationu̇i5bi j xj . Consequently, we obtain
ẋ j (j,t)5v j

n .
Thus, we conclude that the functionxi(j,t) which is

defined by relation~50! and the quantityui are the Euler
coordinate and the vector of displacement for the norm
component respectively~the quantityj i has the meaning o
the Lagrangean coordinate of the same element!.
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SUPERCONDUCTIVITY, HIGH-TEMPERATURE SUPERCONDUCTIVITY
Pinning and dynamics of magnetic flux in YBaCuO single crystals for vortex motion
along twin boundaries

A. V. Bondarenko. V. A. Shklovskij, R. V. Vovk, M. A. Obolenskii, and A. A. Prodan

Kharkov State University, 310077 Kharkov, Ukraine*
~Submitted June 19, 1997!
Fiz. Nizk. Temp.23, 1281–1288~December 1997!

Current-voltage characteristics of YBaCuO single crystals are studied for a Lorentz force aligned
along the twin planes. The temperature dependences of the depinning critical currents are
determined in magnetic fields that are parallel or tilted with respect to the twin planes for magnetic
field vectors oriented almost along axisc. A nearly 50% decrease in the critical current in
parallel magnetic fields is attributed to the plastic flow of vortices along channels formed by twin
boundaries. It is shown that the resistance to the viscous flux flow is described quite
correctly by the Bardeen–Stephen model. The peculiarities in the current and temperature
dependences of the differential resistivity at temperatures higher than the melting point but lower
than the temperature of onset of vortex pinning by twin boundaries are attributed to the
coexistence of solid and liquid vortex phases in this temperature region. A large number of peaks
observed in the current dependences of the differential resistivity in a parallel field at
temperatures below the melting point of the vortex lattice is associated with nonuniform indirect
vortex pinning caused by the fluctuations of the separation between twins. ©1997
American Institute of Physics.@S1063-777X~97!00312-5#

A large number of magnetic1–5 and resistive6–9 studies in dependence is also observed for orientation of vectorH in
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YBaCuO single crystals have shown that twin boundar
~TB! affect significantly the magnetic flux pinning and d
namics. This influence is associated, on one hand, with
difference in the energies of vortices localized at the TB a
those in the bulk of the superconductor and, on the ot
hand, with an increased pinning of vortices localized at
TB as compared to the vortices lying outside the TB pla
as vortices move along twins. In particular, experiments
the decoration of the vortex structure for a magnetic fi
orientation along the axisc have shown that the energy o
vortices localized at the TB is about 2% lower than el
where in the bulk of the superconductor.1 This difference in
the energy results in a bending of vortex filaments in m
netic fields tilted relative to the TB10,11 if the disorientation
angle u between the magnetic field vectorH and the TB
plane does not exceed a certain critical valueu* : for
uuu,u* , a part of the vortex filament is trapped by the T
plane.

The quantityu* depends strongly on the orientation
the vectorH relative to the crystallographic axes. This d
pendence is determined by the superconductor anisot
which is estimated for YBaCuO as«[(m/M )1/256, where
m andM are the longitudinal and transverse electron mas
relative to theab planes. Experimental studies have revea
that u* .3 – 7° for H'c,5,6,8 while u* may attain values
between 15 and 35° forHic.5–7

An increase in the pinning of vortices at the TB leads
a specific angular dependence of the critical currentJc : for
uuu,u* , the critical current decreases monotonically w
increasing angleu as the fraction of vortex filaments trappe
by TB decreases forH'c.5,8,12,13An analogous temperatur
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the vicinity of the axisc if the vortex motion is transverse t
the TB planes, i.e., if the current vectorJ is parallel to the
ab-plane and the TB plane.9 An entirely different angular
dependence of the critical current is observed for orienta
of vectorH in the vicinity of thec if vector J is oriented at
an angle of 45° to the TB plane. For such a geometry of
experiment, the minimum of the critical current observed
Hic is transformed into a peak with increasing electric fie
which is used to determine the value ofJc .7 Experiments on
visualization of magnetic flux propagation forHic,4 in
which the induced current vector is also parallel to t
ab-plane of the crystal and oriented at an angle of 45° to
TB plane, show that the magnetic field penetrates the cry
along the TB planes. Such a behavior is probably associ
with a considerably anisotropy of pinning at the TB: th
critical current for transverse motion of vortices~relative to
the TB plane! is about 10 times higher than the critical cu
rent for longitudinal motion.14 Such a strong anisotropy o
pinning must result in a directed motion of the magnetic fl
along the TB planes forHic and/J, TB545°. Hence the
peculiarities of the dependenceJc(u) for orientation of vec-
tor H in the vicinity of the axisc, are probably associate
with peculiarities of the magnetic flux dynamics for vorte
motion along the TB planes.

The present work aims at experimental study of pinn
and dynamics of magnetic flux in YBaCuO single crysta
for magnetic flux movement along TB planes. We sh
present the results of measurements of temperature de
dences of the electrical resistance and current–voltage c
acteristics of bridge 1 in a magnetic fieldH parallel to TB, as
well as in a magnetic field oriented at an angleu59° rela-

962120962-06$10.00 © 1997 American Institute of Physics
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tive to the TB plane, if the field vectorH is oriented in the
vicinity of the axisc.

Single crystals of YBaCuO were grown by the solution
melt technique in a gold crucible and were saturated in o
gen flow at 420 K for three days. Two bridges of width 0
mm were cut from a crystal of size 433 mm in theab-plane
and thicknesst515 mm as shown in Fig. 1. The transpo
current passed along theab-plane. Electrical contacts wer
made by burning-in of the silver paste. Owing to a large a
of the current contacts~about 3 mm2!, the transient electrica
resistance was less than 1023V, thus enabling measuremen
in a constant current up to 0.5 A without overheating of t
current contacts.

It can be seen from Fig. 1 that the transport current v
tor is oriented at right angles to twin boundaries in the fi
bridge and parallel to TB in the second bridge. The gonio
eter makes it possible to rotate the sample about two m
ally perpendicular axes parallel to TB in bridges 1 and 2 a
lying in the plane parallel to theab-plane of the crystal. The
error in setting angles was approximately 0.2°. The orien
tion Hic was determined from the minimum observed
angular dependences of resistance for the orientation oH
parallel to TB.6

The superconducting transition temperature of
sample was 91.8 K for the transition widthDTc>0.3 K. The
average distanced0 between twins was approximately equ
to 2 mm. The measurements were made in direct current
magnetic field 15 kOe forw50 and for anglesu equal to 0
and 9°.

The temperature dependences of the resistivityr(T)
measured in zero magnetic field and in the fieldH515 kOe
for u50 and 9° are presented in Fig. 2 by curves1, 2 and3,
respectively. It can be seen that, for field orientationHic, the
resistivity decreases rapidly atT,Td

TB>88 K. The tempera-
ture Td

TB is associated with the beginning of pinning at tw
boundaries.6 It can be seen from Fig. 2 that the melting tem
peratureTm of vortex lattice in fields 20 kOe is usually 1–
K lower thanTd

TB and is manifested in the form of an add

FIG. 1. Schematic diagram of bridges and experimental geometry.
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tional kink on ther(T) curve in magnetic fields tilted rela
tive to TB.6 Under the given experimental conditions, th
value ofTm is approximately equal to 86 K.

According to measurements, the IVC are linear
T.Tm , i.e., the vortex liquid is not pinned in this temper
ture range. The IVC measured atT,Tm for w50 and for
anglesu50 and 9° are shown in Figs. 3a and 3b, resp
tively. It can be seen that in this temperature range the I
are essentially nonlinear for low values of transport curr
density, i.e., the vortex system is in the pinned state. Figu
shows the current dependences of differential resistiv
rd(J)5dE/dJ. It can be seen from the figure that at tem
peratures smaller than 87 K, therd(J) dependences attai
saturation for large values ofJ. This means that a transitio
to the linear dependenceE(J) is observed with increasing
transport current density, which might indicate the con
tions of viscous flux flow for the transport current densityJ
exceeding the critical depinning currentJcd . It is assumed
that these conditions are characterized by the resistanc
viscous flux flow r f f[dr/dJ5const. Temperature depen
dences of the resistance to viscous flux flow foru50 and 9°
are shown in Fig. 2.

It can be seen from Fig. 4 that at 87 K,T,88 K, the
rd(J) dependences do not attain saturation. This is proba
due to the fact that in this temperature interval the conditio
for viscous flux flow were not created in the current interv
under investigation.

The resistance to viscous flux flow in the Bardee
Stephen model is defined by the relation15

rBS5rN~B/Hc2!, ~1!

whererN is the resistance in the normal state,B the mag-
netic induction, andHc2 the upper critical field. It is nor-

FIG. 2. Temperature dependences of resistivity~light symbols! and resis-
tance to viscous flux flow~dark symbols!. Circles correspond to the field
orientationHic, while triangles correspond to the field tilted to the T
plane. Crosses show ther(T) dependence forH50. Solid curve describes
the temperature dependence of the resistance to viscous flux flow in
Bardeen–Stephen model forHc2 /dT521.8 T/K.
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mally assumed that the temperature dependence of the u
critical field near Tc is determined by the equatio
Hc25(dHc2 /dT)(T2Tc). The best agreement between t
temperatures dependences ofr f f and Eq.~1! is observed for
dHc2 /dT521.8 T/K. This value of the derivative is clos
to the value ofdHc2 /dT522 T/K obtained from magneti-
zation measurements for YBaCuO single crystals for
magnetic field orientationHic.16 This indicates that the lin-
ear segments on theE(J) curves for large values of transpo
current density indeed correspond to the conditions of
cous flux flow. The rBS(T) dependence for
dHc2 /dT521.8 T/K is shown by solid curve in Fig. 2.

The inset to Fig. 3 shows the temperature dependen
of critical depinning currentJcd obtained for anglesu equal
to 0 and 9°. The value ofJcd was determined by extrapola
ing the linear segments of theE(J) curves corresponding to

FIG. 3. Current-voltage characteristics in a field parallel~a! and tilted~b! to
the TB plane, measured at temperaturesT, K: 87.3, 87.15, 87.1, 87.05, 86.9
86.7, 86.4, 86, 85.4, 84.3, 83.3, 81.8, 80.9, 80.6, 80, and 79.6~curves1–16!
~a! and 86.8, 86.4, 86, 85.4, 84.7, and 84.2~curves1–6! ~b!. The inset shows
the temperature dependence of critical depinning current in a field par
~curve1! and tilted~curve2! to TB planes in a magnetic fields.
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viscous flux flow toE50. It can be seen that the value ofJcd

in a tilted field is approximately 1.7 times larger than f
Hic. This difference in the value of critical current for
relatively small variation of the angleu can be due to severa
reasons depending on the ratio of the pinning force at t
boundaries on one hand and the total force of pinning
point defects and indirect pinning on the other hand.

Let us consider this problem in greater detail. It w
mentioned above that the effect of TB on pinning and d
namics of Abrikosov vortices in a YBaCuO superconduc
is due to a lower energy as well as stronger pinning of v
tices localized at TB, which leads to anisotropy of pinning
twins. The value of the ratioDU/U for Hic is estimated as
0.017–0.026.1,17 HereU is the energy of a vortex filament in
the bulk of the superconductor andDU the difference in the
energy of a vortex in the bulk of the superconductor an
vortex localized in the TB plane. This difference in ener

lel

FIG. 4. Current dependences of differential resistivities in a magnetic fi
parallel ~a! and tilted ~b! to the TB planes. The numeration on the curv
corresponds to that ofE(J) dependences shown in Fig. 3.
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leads to a step structure of the vortex filament in a magnetic
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field tilted relative to the TB plane for anglesuuu,u*
as shown in Fig. 5b.11 The value of the critical angle fo
an isotropic superconductor is determined by the relati
~12cosu* )5(2DU/U)1/2 ~Ref. 11! and tanu*
5«215(2DU/U)1/2 ~Ref. 12! for an anisotropic supercon
ductor in the case of a field vectorH tilted relative to the axis
c. For YBaCuO superconductors, the anisotropy param
«>1/6, and hence the value of the angleu* can become as
high as 50°. At high temperatures, thermal fluctuations
reduce the value ofu* , this decrease being determined
the ratio Ep /kBT, where Ep is the pinning energy.18 The
measurements of angular dependences of elect
resistance6 and critical current5,7,12show that the typical val-
ues of the angleu* in magnetic fieldsH<20 kOe for the
orientation of the vectorH close to the direction of the axi
c amount to 15–40°. Thus, foru59°, we can expect a ste
structure for vortex filaments.

Stronger pinning at TB in the case when vortices mo
along the TB plane can be due to a higher concentratio
defects at twins, e.g., oxygen vacancies.19 In addition, an-
other reason behind stronger pinning at high temperat
can be the suppression of the amplitude of thermal osc
tions of vortices localized at TB, which is due to the tw
dimensional nature of their thermal oscillations.10 Obviously,
the pinning of a solitary vortex is maximum for the fie
orientation Hic and decreases with increasingu due to a
decrease in the fractionl tr of the vortex trapped by the TB
plane. However, in a strong magnetic fie
@a0>(F0 /B)1/2,d0#, the situation can change.11 If the pin-
ning at twin boundaries and not at point defects plays a
cisive role, the difference in the critical currents in fiel
parallel and tilted to TB planes can be due to the differe
in the pinning mechanisms in them.

Thus, we assume that pinning at point defects is ne
gibly small. In the magnetic fieldH515 kOe, the distance
a0 between vortices is approximately equal to 370 Å, i.
only 1/50 of vortices are localized in the TB plane. If pinnin
at TB is quite strong, the pinning of vortices located betwe
twin boundaries forHic will be determined by shear defor
mation of the vortex lattice. In the theory of elastic mediu
the maximum shear stresstmax is attained if the Lorentz
force BJsh

c /c052tmax/d. Here t5Dc66, d5d02a0 is the
width of the slip channel in the vortex lattice
(1/3)p<D<(1/2)p,20 and c0 is the velocity of light. The
shear modulus for Hic is defined by the formula
c665F0B(12b)2(8pl)22, whereb5B/Bc2 , andl is the
magnetic field penetration depth. Then the critical curr
controlled by shear deformation of the vortex lattice is giv
by

Jsh
c 52DcF0~12b!2/@d~8pl!2#. ~2!

Assuming thatl>3000 Å, D>1/10, b!1, andd0>2 mm,
we obtainJsh

c >5 kA/cm, which is close to the experimen
tally observed value ofJcd . According to these estimate
the critical current forHic can be controlled by indirect pin
ning of the vortex lattice. When the fieldH is tilted to the TB
plane, the number of vortices crossing TB planes increa
If t is the thickness of the sample, the wid
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d5d0a02t tanu of the channels in which vortex filament
do not intersect TB planes becomes smaller~see Fig. 5c!. In
this case, according to formula~2!, the critical currentJsh

c

increases. The increase in the critical current will be o
served until indirect pinning becomes stronger than the p

FIG. 5. Schematic diagram of channels for motion of vortices in magn
fields parallel~a! and tilted ~b! to TB planes as well as the structure of
vortex filament in the vicinity of a TB plane in a tilted magnetic field~b!.
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ning of vortices trapped by the TB plane. As soon as this
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condition is observed, the vortex lattice starts moving un
the action of the Lorentz force as a single whole, and
critical current decreases with increasing angleu in view of a
decrease in the fraction of vortices trapped by TB plan
Obviously,um<u* for tanu*>d0 /t. Hereum is the angle for
which the critical currentJsh

c attains its maximum value. I
should also be noted that the proposed model can be valid
a finite pinning at point defects also. The condition for t
applicability of the model is that the force of pinning o
vortices crossing the TB plane~which is determined by the
pinning at TB as well as at point defects! is larger than the
resultant force of pinning of vortices that do not cross the
plane, which is determined by pinning at point defects a
indirect pinning.

The r f f(T) dependences obtained by us speak in fa
of the proposed model. According to formula~1!, the curve
rBS(u) must have a peak atu50 since the value ofHc2(u)
in an anisotropic superconductor has the minimum value
Hic. However, atT,86 K, the resistance to viscous flu
flow for u59° is approximately 6% stronger than foru50.
If vortices localized at TB are pinned forHic, the value of
r f f in a perfect crystal forJ.Jsh

c is smaller thanrBS by
rBS(a0 /d0)>0.02 which is determined by the fractio
a0 /d0 of vortices localized at TB. However, in the ca
when TB planes are not oriented strictly alongc, this differ-
ence can be much larger since the fraction of vortices trap
by twin boundaries increases rapidly with the angleu. For
example, in the presence of two blocks in a bridge with
angle of inclination to the axisc equal to 1° and for the
vectorH oriented parallel to the axisc of one of the blocks,
the fraction of vortices intersecting TB in the other blo
amounts to 20%.

An alternative model explaining the minimum of th
critical current for Hic was proposed by Solovjovet al.7

These authors attribute the minimum ofJc(u) to an increase
in the effective bending modulusc44 of the vortex lattice as
a result of an increase in magnetic interaction between
tices. The increase inc44 leads to an increase in the pinnin
lengthLc}c44

1/2, and hence to a decrease in the efficiency
pinning at point defects. If the pinning at point defects pla
a decisive role, this mechanism can lead to a decreaseJc

with the angleu for u,u* . However, the change in th
value ofJc can attain the valueDJc>Jc(l/d) since the mag-
netic interaction is effective over distances of the order ol.
In the temperature range under investigations, the pene
tion depthl is estimated as 3000–4000 Å, and hence
d52 mm we haveDJc /Jc>0.2. This value is much smalle
than the relative change in critical current;0.7 obtained
from experiments.

It is worth noting that the values ofr f f in parallel and
tilted magnetic fields differ considerably, and that the curv
rd(J) for Hic intersect in the temperature rang
Tm,T,Td

TB . It was mentioned above that the temperatu
Td

TB corresponds to the onset of vortex pinning at TB, a
the vortices localized at TB are pinned atT,Td

TB . The ther-
mal motion of these vortices is partially suppressed owing
two-dimensional nature of thermal fluctuations of the
vortices.10 Since the magnetic interaction between vortices
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penetration depth, we can expect that the amplitude of th
mal oscillations of vortices separated by a distancel from
TB are also partially suppressed as compared to the am
tude of vortex oscillations in the remaining volume of th
crystal. Thus, twin boundaries can serve as centers of nu
ation of the crystalline phase; these nuclei grow upon coo
until they occupy the entire volume of the crystal. If the si
of a nucleus of the crystalline phase 1 is small in the dir
tion perpendicular to the TB plane, and the pinning of vor
ces localized at TB is strong, indirect pinning might lead to
transition of the liquid phase to the regime of viscous fl
flow under the action of the Lorentz force, the crystalli
phase remaining in the pinned state. In this case, the re
tance to viscous flux flow of the liquid phase
r f f

l >rBS(12 l /d0). Putting l >2l>6000 Å, we obtain
r f f

l >0.7rBS, which is in good agreement with the exper
mental value ofr f f at T>87 K. In all probability, it is just
the relation between the force of pinning in the liquid pha
and the force of pinning in the solid phase localized in t
vicinity of TB that determines peculiarities in the curre
dependences ofrd in the temperature rangeTm,T,Td

TB .
Another peculiarity of current dependences of differe

tial resistivity is the presence of numerous peaks on
rd(J) curves at temperaturesT,Tm . Similar peaks were
observed earlier in NbSe2 single crystals in the magneti
field range in which pinning is controlled by plastic defo
mation of the vortex lattice.20 Bhattacharya and Higgins20

attribute the peaks on the curverd(J)}Nv@dv/dJ#, wherev
is the average velocity of the vortex lattice, to the curre
dependenceNv(J) of the number of moving vortices sinc
the factor in the brackets, which is inversely proportional
the coefficient of friction, varies smoothly with increasingJ.
It is assumed that the peaks and valleys on therd(J) curves
correspond to peaks and valleys on similar dependence
dNv /dJ. In other words, pinning is assumed to be nonu
form in the volume of the crystal, and the depinning of t
vortex lattice occurs not simultaneously, but with gradu
~upon an increase of current! formation of slip channels for
the vortex lattice. The formation of such channels is poss
if local stresses in the vortex lattice due to frozen disor
exceed the elastic limit of the vortex lattice in the channe

It was noted above that the critical current of vortic
that do not intersect TB planes in twinned YBaCuO sing
crystals with the magnetic field vector oriented appro
mately along the axisc is controlled by indirect pinning if
the pinning force of vortices trapped at twin boundaries
larger than the sum of the forces of pinning at point defe
and indirect pinning of vortices located between twins. Sin
the separations between twins in real crystals are not ide
cal, depinning first takes place in channels with the ma
mum separation between TB planes because the critical
rentJsh

c }d21. Obviously, the scale of pinning nonuniformit
in this case is approximately equal to the separation betw
twins, and the current dependence of differential resistiv
reflects the form of distribution ofd0 in the crystal. The
second scale of nonuniformity exceeding the separation
tween twins can be due to fluctuations of twin bounda
density. If the pinning of vortices trapped by twin boundari

966Bondarenko et al.



is not stronger than the sum of the pinning at point defects
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systematically smaller than in a tilted field. Plastic mecha-
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and indirect pinning of vortices located between twins,
current dependence of differential resistivity reflects the ty
of fluctuations of TB density in the crystal. In magnetic fiel
tilted to the TB planes for large values of angl
u(tanu>d0 /t), when each vortex filament crosses the T
plane, the functionsrd(J) can reflect both the form of the
distribution of the quantityd0 , and the nature of TB densit
fluctuations in the crystal depending on the relation betw
the pinning at TB and at point defects as well as on
distribution of the quantityd0 and TB density fluctuations in
the crystal.

In conclusion, let us briefly formulate the results of th
research. Steady-state current-voltage characteristics
YBaCuO single crystal are considered for the Lorentz fo
parallel to the twin plane. Measurements are made ove
wide range of temperatures and currents in the fi
H51.5 T directed parallel to the axisc and at an angle of 9°
to it. It is shown that the critical depinning current in a tilte
field is almost twice as strong as that in a parallel field. T
proposed physical interpretation of this effect is associa
with qualitatively different mechanisms of formation of th
critical pinning force in parallel and tilted fields. IfHiciTB,
the value ofJcd is determined by plastic deformation of vo
tex bundles relative to vortex rows fixed at twins. Howev
in a tilted field such a mechanism of movement of segme
of the vortex lattice would require the rupture of vortic
themselves and not only of bonds between the vortices a
the case whenHiciTB. This would lead to a much large
value ofJcd(u59°) than that observed in experiments. Co
sequently, a simpler version of consolidated depinning of
entire vortex lattice from twins takes place, corresponding
double critical current density. The proposed interpretatio
confirmed by a qualitative comparison of the values of re
tancer f f to viscous flux flow forJ.Jcd . Since some of
vortex rows remain fixed at twins forHic and for the plastic
mechanism ofJcd , the value ofr f f under these conditions i
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nism of depinning also leads to a much stronger nonmo
tonicity in dE/dJ than in the case of elastic depinning
tilted fields.

*E-mail: mikhail.a.obolenskii@univer.kharkov.ua
1!The formula tanu*5«21(2DU/U)1/2 can be easily derived by the metho

used in Ref. 10 if we take into account the angular dependence of
vortex energy.
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LOW-TEMPERATURE MAGNETISM

red,
On the theory of low-temperature properties of spin systems with magnetic anisotropy
O. B. Zaslavskii, V. V. Ulyanov, and Yu. V. Vasilevskaya

Kharkov State University, 310077 Kharkov, Ukraine*
~Submitted June 28, 1997!
Fiz. Nizk. Temp.23, 1289–1295~December 1997!

Temperature behavior of easy-axis paramagnets in a transverse magnetic field is considered. It is
shown that the low-temperature susceptibility as a function of the field has a peak for all
values of spinS. As the temperature increases from zero, this peak is first sharpened~and not
blurred!, its position changing nonmonotonically. For spinsS,3, the peak becomes
double-humped at a certain temperature, while forS>3, a flat-top peak is observed. Similar
phenomena are also typical of biaxial paramagnets. The energy spectrum of the system coincides
with 2S11 low-lying energy levels for a particle moving in a potential field of a simple
form, which has the shape of a double well for low magnetic fields. This makes it possible to
calculate the tunneling velocity by using quantum-mechanical methods. ©1997
American Institute of Physics.@S1063-777X~97!00412-X#
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Quantum properties of uniaxial paramagnets were s
ied by us together with Tsukernik at the beginning of t
eighties.1 Earlier, such systems were analyzed by using se
classical methods which led to contradictory results. W
managed not only to solve the formulated problem, but a
work out a number of original approaches for studying m
general spin systems, which were developed in our su
quent publications.2 Another unexpected and important se
ondary result was the discovery of a new class of poten
models with exact solutions of the Schro¨dinger equation.3–5

In a review published in 1992,2 we summarized the re
sults obtained during ten years of research. Subseque
new results and a new trend appeared. In the first place
must mention the extension of the manifold of quasi-exac
solvable models3 as well as the discovery of similar two
dimensional models and their generalization to multidim
sional cases.6,7

In this paper, we report on some new results obtain
from the study of anisotropic paramagnets. We shall cons
here only magnetic susceptibility and spin tunneling. F
definiteness, we confine our analysis to spin systems with
Hamiltonian

H5aSz
22bSy

22BSx , ~1!

describing a so-called biaxial paramagnet with anisotro
constantsa,b>0 in a transverse magnetic field proportion
to B ~Sj are spin projections operators!.

2. MAGNETIC SUSCEPTIBILITY OF UNIAXIAL AND BIAXIAL
PARAMAGNETS

We begin with a more detailed analysis of the effect
temperature on the susceptibility of a uniaxial paramag
(a50) for various values of spinS ~without loss of gener-
ality, we also assume thatb51!. We proceed from the re
sults reported in our initial publication1 in which specific
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and the corresponding dimensionless parameters are i
duced; we shall use these characteristics in the presen
search. In Ref. 1~see also Ref. 2!, the behavior of magnetic
susceptibility of a uniaxial paramagnet in the ground st
~i.e., at T50! was studied in detail. It was found that th
magnetic susceptibilityx0522]2E0 /]B2 of the ground
state as a function of magnetic field has a specific beha
for spinS>2: the gradual increase in susceptibility with th
magnetic fieldB gives way to a sharp increase with the fo
mation of a well-localized clearly manifested peak havi
the shape of a ‘‘hump,’’ followed by a rapid decrease
small values in the range of ‘‘critical’’ magnetic field
B052S11 ~see Fig. 1, where the susceptibility of the fir
excited state is also shown for comparison!.

In the same publication, graphic explanation of such
phenomenon is given on the basis of a specially develo
method of effective potential, which can be described as
lows. Since spin is a quantum-mechanical object of ess
tially discrete nature, equations whose solutions descr
the energy spectrum of spin systems have a matrix fo
This complicates the analysis of properties of the system
the standard quantum-mechanical methods. It was fou
however, that we can introduce a rigorous potential desc
tion for a wide class of spin systems, such that the ene
spectrum of the spin system coincides with certain ene
levels for a particle moving in a potential field of a simp
form. Such an exact spin–coordinate correspondence
served as the basis for various approximate methods of
scription of spin systems, e.g., the perturbation theory
the semiclassical approximation. It is especially importa
that this leads to new exact solutions of the Schro¨dinger
equation in the corresponding coordinate system.3–5

The approach proposed by us lies in the application
the concept of coherent spin states for Hamiltonians c
structed from spin operators used in the solution of the pr
lem on their eigenvalues and eigenvectors.8 In the obtained

968120968-05$10.00 © 1997 American Institute of Physics
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coordinate representation, such a Hamiltonian become
Schrödinger differential operator with a certain effective p
tential energy. The potentials obtained for simple spin s
tems either have the shape of nonlocalized wells, or are
riodic. In all cases, there exist various symmetric a
nonsymmetric multiparametric potential models.

For example, if we are solving the problem on determ
ing stationary states of an easy-axis paramagnet in a tr
verse magnetic field, i.e., a system with the Hamilton
H52Sy

22BSx , by using the above method, we arrive at t
standard one-dimensional Schro¨dinger equationd2c/dx2

1@E2U(x)#c50 for a pseudoparticle with a quadrat
energy–momentum relation~spinon!, moving in an effective
potential field constructed from hyperbolic functions:

U~x!5
B2

4
sinh2 x2BS S1

1

2D coshx, ~2!

wherex is a certain dimensionless coordinate. In this ca
the eigenvalues of energyE of the spin system coincide with
the lower 2S11 energy levels of a spinon in the potenti
field ~2!.

It was found that the energy spectrum of uniaxial pa
magnet has a typical ‘‘fan’’ structure corresponding to def
mations of effective potential~Fig. 2!: from double degen-
eracy forB50 with pairwise close energy levels forB!B0

~tunnel splitting in a double potential well; Fig. 2a! to the
energy distribution forB5B0 , which is typical of a fourth-
degree oscillatorU;x4 ~Fig. 2b!, and then to an equidistan
structure of the harmonic oscillator spectrum;x2 ~Fig. 2c!.
In this case, the most significant rearrangement of the en

FIG. 1. Typical magnetic-field dependence of susceptibility of a unia
paramagnet in the ground state~upper curve! and in the first excited state
~lower curve! for S56.

FIG. 2. Typical shapes of the effective potential of a uniaxial paramag
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spectrum is observed in the ‘‘precritical’’ field regio
B&B0 , in which the ‘‘hump’’-type peculiarity of suscepti
bility is located.

It would be interesting to study the effect of temperatu
on the behavior of susceptibility. It turns out that, instead
expected blurring of the singularity, an interesting transf
mation of the ‘‘hump’’ takes place, which can be reduce
roughly speaking, to its ‘‘sharpening’’ and increase at t
beginning followed by gradual blurring and vanishing at
certain critical temperatureTc;S. In addition, a two-hump
profile is formed at the initial stage for not very high valu
of spin (S,3) ~Fig. 3!, while for large values of spin (S>3)
the top of the hump becomes flat~rudiment doubling!. The
position of the peak changes nonmonotonically: at first, i
displaced towards higher values of magnetic fieldB, and
then ‘‘starts returning’’ down toB50 at Tc .

Some typical stages of these transformations of susc
tibility are presented in Fig. 4 along with the standard s
ceptibility of the ground state, which is described by t
dashed curve.

The above-mentioned regularities are determined by
structure of the energy spectrum of a uniaxial paramagne

l

t.

FIG. 3. Two-hump profile of magnetic susceptibility~S53/2, T50.0028!.

FIG. 4. Some stages of low-temperature transformations of susceptib
(S52).
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the region of magnetic fields containing the hump, i.e., a
t

el

m
he

et
on
,
s
-

e-

on

th

ag
el

ur

ra

is
m
et

-
of

h
v-
’’
d
etic
ure

l
he
-
ion
rd
ight;
ted
mp;
ak

um

e-

he
ly

d

-

n-
r-

t

re

the
small separation between the ground energy level and
first excited level and a large distance to next excited lev
For example, for S53, the gap E12E050.16, while
E22E153.34 forBmax52.34.

Thus, the spin system under investigation in the te
perature range 0,T,Tc behaves as a two-level system. T
magnetic susceptibilityx in the two-level approximation can
be written by singling out the temperature correctionDx:

x5x01Dx. ~3!

Considering that energy levels depend on the magn
field and carrying out simple transformation of the partiti
function, we obtain the following formula for susceptibility
which contains the main contribution in the form of the su
ceptibility x0 of the ground state and two competing tem
perature corrections:

x5x01
~D8!2

2T cosh2~D/2T!
2

2D9

11exp~D/T!
, ~4!

whereD[E12E0 , and primes denote derivatives with r
spect toB.

As T→0,x→x0 as expected. For any finiteT and in the
region of smallB, whereD!T, we havex5(x11x0)/2 ~x1

is the susceptibility of the first excited state!, i.e., the main
contribution comes from the second negative correcti
while for higher values ofB the first positive correction can
dominate so thatx.x0 . The two-level approximation~4!
completely describes the behavior of susceptibility in
most interesting region of low temperatures 0,T,Tc .

We can now use the power approximation in the m
netic fieldB for the gapD between the ground energy lev
and the first excited level, which was obtained in Ref. 2:

D5cB2S, c5
S2

22S23~2S!u
, ~5!

which leads to the following expression for the temperat
correction in~3! obtained on the basis of~4!:

Dx5T~S21!/Sf SS cB2S

T D ~6!

with the universal function

f S~x!52S~2S21!c1/S
x~S21!/S

cosh~x/2! F Sx

~2S21!cosh~x/2!

2exp~2x/2!G . ~7!

A comparison of such an approximation for the tempe
ture correction to susceptibility~6! and ~7! with the results
based on exact formulas forE0 andE1 ~as well as forx0! in
the case whenS53/2, 2, 5/2, 3, and 7/2 shows that th
approximation is fairly accurate in the most interesting te
perature region, in which the transformations of the magn
susceptibility profile described above are observed~for all
magnetic fieldsB!.

If we lay the position ofBmax and the magnetic suscep
tibility peak xmax on the coordinate axes, the variation
temperature in the range 0<T<Tc leads to a curve in the
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form of a spiral loop with an isolated point inside it, whic
graphically illustrates the above ‘‘anomalies’’ in the beha
ior of the susceptibility peak, i.e., its temperature ‘‘drift
stage~see Fig. 5!. The following characteristic regions an
reference points relative to transformations of the magn
susceptibility profile can be singled out on the temperat
scale:T050 corresponds to conventional one-hump~stan-
dard! profile; the regionT0<T<T1 is characterized by smal
deformations of the left slope of the hump followed by t
formation of the second~left! peak;T1 corresponds to a two
hump profile with the same height of the peaks; in the reg
T1,T,T2 , the left hump, which is higher than the standa
one, increases, becomes sharper, and is shifted to the r
T2 corresponds to the maximum height of the hump loca
approximately in the same region as the standard hu
T2,T,T3 corresponds to further displacement of the pe
to the right and its gradual decrease; atT3 the height of the
hump decreases to the standard value with the maxim
displacement to the right; in the regionT3,T,T4 the dis-
placement changes direction~to the left!, and the peak is
blurred; T4 corresponds to a highly blurred peak in the r
gion of the standard hump;T4,T,T5 corresponds to a
weakly distinguishable peak, which continues its shift to t
left; T5[Tc is the critical temperature at which the weak
manifested peak reaches the pointB50 ~the susceptibility
curve descends smoothly without any singularities!, and at
T.Tc the value ofx decreases for anyB due to activation of
the remaining excited energy levels~the two-level approxi-
mation becomes inapplicable!. Number on the spiral in Fig. 5
indicate the main temperature reference points.

As the value ofS increases, the spiral curve is shifte
towards higher values ofB, but all qualitative singularities of
transformations are preserved~except the formation of a two
hump profile!.

It should be noted that all calculations~apart from the
two-level approximation and the power approximation me
tioned above! were made on the basis of exact, explicit fo
mulas for the energy levels forS,4 and by using exac
algebraic equations for the eigenvalues of Hamiltonian~1!
for S>4. Moreover, analytic and numerical methods we

FIG. 5. A typical spiral loop describing the position and magnitude of
maximum susceptibility peak in the low-temperature region 0,T,Tc for
S52.
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mutually controlled and verified by plotting graphs.
Another cycle of investigations was devoted to an ana

sis of the behavior of the magnetic susceptibility of biax
paramagnets. It was found that all the peculiarities of susc
tibility mentioned above are observed for such systems a
For example, Fig. 6 shows a series of typical susceptib
profiles for different values of spinS in the case of equa
anisotropy constantsa5b at T50.

In addition, the general dependence of various effects
the ratio of anisotropy constants was studied separately.

Thus, the peculiarities in the magnetic susceptibility
anisotropic paramagnets observed earlier proved to be s
to the effect of various factors and demonstrated some a
tional interesting details of the behavior under an increas
temperatureT and spinS as well as for different ratiosa/b
of anisotropy constants.

Finally, in the case of an arbitrarily directed magne
field, the tensor nature of magnetic susceptibility must
taken into account, i.e., each of its components must be s
ied in detail. For example, in the uniaxial case we are ac
ally dealing ~in view of the symmetry properties! with the
three quantitiesxxx , xxy , andxyy , which should be consid
ered as functions of the magnetic field componentsBx and
By .

3. QUANTUM TUNNELING IN SPIN SYSTEMS

Tunnel effects in various fields of solid state phys
have been studied intensely during the last decade~see the
review in Ref. 9!. Most of such investigations proceede
from the model of a two-level system interacting with t
ambient which served as a thermostat. The possibility of
placing a real quantum-mechanical system with a comp
energy spectrum by a two-level system by disregarding
contribution from higher energy levels is equivalent to t
introduction of effective spinS51/2. In this publication,
however, we indicate a field in the physics of tunnel ph
nomena, in which the spin is not an auxiliary concept,
reflects the real physics of the problem, i.e., tunneling in s
systems~by way of an example, we can mention tunneling
small ferromagnetic particles!.10 The most interesting case
that of large spinsS@1 rather than the case of small spin

In spite of the fact that first indications of experimen
manifestations of spin tunneling were actually described lo

FIG. 6. Magnetic-field dependences of the susceptibility of a biaxial p
magnet for even values ofS from 4 to 20.
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apparatus for studying this effect was worked out only by
middle of the eighties. This is not accidental. The tunnel
of a particle moving in a potential well was explained lon
ago and is described in textbooks on quantum mechanics
the same time, spin is an essentially discrete, pur
quantum-mechanical variable and cannot be represente
such a visual form. It is remarkable that this has beco
possible for the spin system as a whole, that is described
a Hamiltonian which is quadratic or quadratic–linear in sp
components. Such a spin–coordinate correspondence, w
was mentioned in the previous sections of this paper, allo
us to translate the problem under consideration into the
guage of ordinary quantum mechanics and to apply the m
ods developed earlier, including instanton calculus and se
classical approximation.

Let us first consider first a uniaxial paramagnet with
easy-axis type anisotropy, which was discussed above
another purpose. Since the energy levels in the spin sys
coincide~see above! with 2S11 low-lying energy levels for
a particle moving in a potential field of the form~2!, the
magnitudes of the tunnel splittingD5E12E0 of the ground-
state energy also coincide. If we calculate this quantity to
exponential accuracy, the result can be obtained almost
mediately. It is well known12 that this value is determined b
the factor exp(2W), whereW is the Euclidean action on a
trajectory between two degenerate minima:

W5E
x2

x1

dxA2m~U2U2!.

Here m is the effective mass of the particle (\51), and
U25U1 is the value of the potential at the point of min
mum. Thus, if we are not interested in the preexponen
factor, we can forget about the equation of the instan
trajectory in explicit form. However, this is essential for ca
culating the preexponential factor in

D5~v/p!1/2A exp~2W!.

Herev is the frequency corresponding to small oscillatio
near the point of minimum, and the constantA can be deter-
mined from the relation

t5E
xm

x

dxF m

2~U2U1!G
1/2

,

x~t!>x12
A

2vAm
exp~2vt!, t→`,

where xm50 corresponds to the midpoint of the potent
between two minima, andt is the Euclidean time. For the
uniaxial case under consideration with potential~1! and cor-
responding dimensionless quantities, the instanton trajec
can be found in explicit form:

tanh
x

2
5S 12B/B0

11B/B0
D 1/2

tanh
vt

2
, v5A12~B/B0!2.

Using previous formulas, we obtain

-
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D5
Ap~11v!2S11

exp@~2S11!v#. ~8!

For B!B0 , formula ~8! for S@1 gives the result in the
power approximation for the energy gap~6!.

The biaxial case can be considered similarly. It is int
esting from the general point of view since the energy sp
trum of the effective spin potential is a band spectrum.5 Let
us first assume thatB50, andS is integral~for half-integral
values of spin, degeneracy is not removed!. In this case, spin
levels correspond to the edges of merged bands, and
splitting of the ground level is equal to the band width.
however,B;S@1, the widths of the energy bands contai
ing E0 andE1 are much smaller than the separation betwe
the energy levels, so that the splitting can be calculated
regarding the periodic nature of the potential and the b
structure~see for details the review in Ref. 2, in which tu
neling is considered in special cases when energy levels
near the potential barrier peak!.

Moreover, a many-particle system can be approxima
reduced in some cases to a one-particle system~as in the case
of a Heisenberg magnet with weak anisotropy!,2 and the for-
mulas obtained for paramagnets are applicable for calcu
ing the tunnel splitting.

Finally, for B@B0 , we can use perturbation theory. It
interesting that degeneracy is removed in the 2Sth order in
this case.

CONCLUSION

Thus, the method of effective potential proposed
Tsukernik and developed further by other authors proved
be extremely productive and powerful for studying the lo
temperature behavior of susceptibility of anisotropic s
systems as well as for tunnel junctions.

It should be emphasized that, while the classical spin
be parametrized by two variables, in the effective poten
method the system is one-dimensional.
972 Low Temp. Phys. 23 (12), December 1997
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type ~1! appeared as very simple, but further analysis h
proved that the problem proposed by Tsukernik at the be
ning of the eighties gave rise to a new trend in physics.
believe that this publication is another confirmation of th
fact.

The authors are deeply indebted and devote this rese
to Viktor Moiseevich Tsukernik, remarkable scientist a
teacher, considerate and cordial person with whom t
made first steps in the development of new methods in
theory of spin systems.

*Email: vladimir.v.ulyanov@univer.kharkov.ua;
oleg.b.zaslavskii@univer.kharkov.ua
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

la-
Mechanisms for increasing resolution of high-frequency PC spectroscopy
O. P. Balkashin

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted July 14, 1997!
Fiz. Nizk. Temp.23, 1296–1299~December 1997!

It is shown that the improvement of resolution of high-frequency PC spectroscopy is due to a
decrease in the contribution of thermal effects and nonequilibrium phonon reabsorption
to the signal being measured. ©1997 American Institute of Physics.@S1063-777X~97!00512-4#

Point-contact~PC! spectroscopy, i.e., the analysis of in- contacts Ni–Ni of pure nickel at 4.2 K. We used a modu
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elastic electron energy relaxation by passing current thro
a bulk sample with a microscopic constriction, has been
veloped as a relatively simple but effective method of inv
tigation of elementary excitation spectra in pure metals,1 me-
tallic alloys, and compounds.2 The efficiency of this method
is determined by the relation between the geometrical siz
the current concentration region~contact diameterd! and the
electron mean free pathsl « and l i for energy and momenta
relaxation. According to theoretical analysis,3 in the limiting
case of ‘‘dirty’’ contacts, whend*l«5( l i l «)1/2, the spec-
troscopy is still possible, but the intensity of spectral lin
decreases, tending to zero asl« /d→0. If reabsorption of
nonequilibrium phonons becomes significant in this ca
i.e., the diameterd exceeds the mean free pathl ph2e of
phonons scattered by electrons, and the contact region e
riences Joule heating to temperatures determined by the
voltagekT5eV/3.63, the resolution of the method decreas
(D«}kT), and the background signal amplitude increa
considerably. In view of computational difficulties, the qua
titative analysis of variation of PC spectra upon a transit
to the thermal mode was carried out only for the Einst
model of the phonon density of states.3 The inelastic mean
free path for electrons is known to be a function of exc
energy determined by the voltage across a point con
@ l «(eV)#. For this reason, a transition from the spect
mode in the range of low bias voltages to the thermal m
for high bias voltages can be observed for small mean
paths.

Measurements of point-contact spectra at high frequ
cies vt i;1, wheret i are characteristic times of scatterin
for quasiparticles, make it possible to study the kinetics
relaxation processes in contacts from the frequency dis
sion of the signal being measured and to determine the c
acteristic relaxation timet i for quasiparticle excitations o
various types.4–8 Spectral singularities observed in hig
frequency spectra of some contacts are absent in the sp
measured by a traditional low-frequency technique.4,5

This communication is devoted to an analysis of poss
reasons behind the improvement of resolution of PC sp
troscopy by using high-frequency modulation. Measu
ments were made on point contacts between copper
copper-beryllium alloy Cu–Cu~2.7 at. % Be! as well as point
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tion technique, involving the recording of the amplitude
second harmonic of modulation current in low-frequency e
periments as well as the amplitude of rectified voltage
point contacts exposed to a radiofrequency field of freque
78 GHz. A detailed description of experimental technique
given in Ref. 4.

The measured low-frequency PC spectra shown in Fig
~curves1! are characterized by a low intensity of the pe
associated with electron scattering by phonons with tra
verse polarization~T-peak which normally dominates in
spectra!, the absence of anL-peak associated with longitudi
nal phonons, a high background level, and its monoto
increase with the voltage. As a rule, such spectra are
served for ‘‘dirty’’ contacts with a small ratio2 l i /d.1! High-
frequency spectra~curves2 in Fig. 1! exhibit spectral singu-
larities marked by arrows in the figure and absent in
spectra:L-peaks for copper~29 MeV! and nickel~36 meV!
as well as a peak at energies;40 meV associated with a
local vibrational mode for light Be impurity atoms in th
copper matrix;9 besides, the background signal level is mu
lower.

It was shown in our previous publications4,5 that a de-
crease in the background level in the measurements of
spectra at high frequency exceeding the phonon-electron
lision frequency ~v.vph-e5lvDs/vF , where l is the
electron-phonon interaction constant,s the velocity of sound,
vF the Fermi velocity, andvD the frequency of phonons
with the Debye energy! is due to a decrease in the contrib
tion of reabsorption of nonequilibrium phonons to the sp
trum being measured.2! However, inelastic scattering pro
cesses occurring in the point contact~such as spontaneou
and induced emission of phonons by conduction electr
with an excess energyeV or reabsorption of phonons! make
an additive contribution to the spectrum,10 and a decrease in
the intensity of such a process should not result in the em
gence of new spectral singularities. Consequently, the s
tral mode of electron movement in the contact regi
changes during rf measurements.

The heating of a point contact by the transport curr
can be responsible for deterioration of its spectroscopic
tentialities upon an increase in the constant bias voltage
this case, rf measurements at frequencies1 v.vT ~vT

973120973-03$10.00 © 1997 American Institute of Physics
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2;1 GHz is the temperature relaxation frequency

the contact! must reduce the influence of thermal effects co
siderably, thus improving spectral resolution. In order
verify this assumption, we calculated the current-volta
characteristics~IVC! and their second derivatives~PC spec-
tra! under the condition of contact overheating by displa
ment current. Calculations were made for a copper con
with the resistanceR055V at the helium bath temperatur
T051.5 K by using tabulated values of the point-conta
electron-phonon interaction functiongpc(«).1 The following
expression was used for IVC11,12:

I ~V!5
V

R0
2CE

0

`F «2eV

eb~«2eV!21
2

«1eV

eb~«1eV!21

12eVN~«!Ggpc~«!d«, ~1!

where C58d/3e\vFR0 ; b51/kT;R0 is the contact resis
tance at zero bias voltage, andT the temperature. The non
equilibrium phonon distribution functionN(«) for complete
reabsorption of phonons is taken in the form

N~«!5
1

4« F 2«

ebe21
1

«2eV

eb~«2eV!21
1

«1eV

eb~«1eV!21G . ~2!

The point contact temperature was defined in the fo
T5T01DT, whereDT5eV/kg. Figure 2 shows the initia
PC spectrum without overheating~curve 1! and various
modifications of the spectrum for several values of the co
ficient g: from g54, which is typical of the thermal mode, t
g540. Curve4 in this figure shows the point contact spe

FIG. 1. Point contact spectra for Cu–Cu~2.7 at. % Be! ~a! and Ni–Ni ~b!
measured at a low frequency of 3747 Hz~curve1! and at 78 GHz~curve2!.
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trum in the case when only the subsystem of nonequilibri
phonons excited by electrons is heated forg54, i.e., we
assume that an equilibrium distribution sets in the phon
system with the temperature determined by the constant
voltage. In this case, we take into account the fact that
total number of phonons coincides with their number in t
absence of equilibrium heating of the entire contact:

E
0

`

N~«,T!gpc~«!d«5E
0

`

N~«,T0!gpc~«!d«.

Comparing the experimental and theoretical spectra,
can see that curves1 in Fig. 1 and curve3 in Fig. 2 are
similar. The theoretical spectrum, as well as the experime
spectrum, contains noL-peak and displays a high back
ground level. As the overheating becomes smaller, the q
ity of theoretical spectra is improved. A similar improveme
of the spectra is also observed upon an increase in the
age modulation frequency to 78 GHz~curves2 in Fig. 1!.
Naturally, the calculations made for a static IVC cannot
directly compared with the results of measurements in
dynamic rf mode, but the similarity in the observed effects
obvious. Moreover, for ‘‘dirty’’ contacts studied experimen
tally, the effect of heating must be manifested even m
strongly than in the calculations made for the ballistic mo

Thus, the improvement of resolution of PC spectrosco
in high-frequency measurements (v.vT ,vph2e! can be at-
tributed to the weaker effects of nonequilibrium phonon
absorption and point contact heating. Such measuremen
not affect spontaneous emission of phonons by nonequ
rium electrons in view of the inequalityv!ve-ph;104 GHz.
It should be noted that in experiments with low-frequen
interruption of rf radiationvMt i!1 ~quasistatic mode!, the
signal being measured contains a contribution of the bolo
etric effect due to the presence of nonequilibrium phono
induced by rf current in the contact. The amplitude of t
bolometric signal increases with the bias voltage across

FIG. 2. Evolution of PC spectra of a Cu–Cu contact for various values
overheatingDT5eV/kg for g5` ~curve1!, 40 ~curve2!, 20 ~curve3!, and
4 ~curve 5!; curve 4 corresponds to overheating of the phonon subsyst
only (g54).
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3I. O. Kulik and M. V. Moskalets, Fiz. Nizk. Temp.15, 405~1989! @Sov. J.
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v,
rf spectra. For this reason, dynamic measurements of
mixed rf signals or second harmonic amplitude at a h
frequency are preferable.4

The author is grateful to O. I. Shklyarevskii and A. G
Shkorbatov for fruitful discussions of the results of this r
search.

*E-mail: balkashin@ilt.kharkov.ua
1!The value of the ratiol i /d estimated from the intensity of the PC

spectrum8 for a given contact is;0.01.
2!The characteristic electron-phonon scattering frequency is 5 GHz

copper4 and;6 GHz for nickel according to estimates.
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A new variational method in the problem of the spectrum of elementary excitations

of
in an edge-dislocation crystal
I. M. Dubrovskii

Institute of Metal Physics, National Academy of Sciences of the Ukraine, 252142 Kiev, Ukraine
~Submitted May 23, 1997; revised July 28, 1997!
Fiz. Nizk. Temp.23, 1300–1304~December 1997!

A new method based on a combination of the direct variational method and perturbation theory
is proposed to calculate approximately the eigenvalues and eigenfunctions of ground state
and the states close to it. The new method is applicable to the Schro¨dinger equation with a potential
proportional to the dilatation produced by an edge dislocation. The ground-state energy
obtained in this case is lower than the theoretical values obtained in other works. The energy
value is obtained for the lowest state for which the eigenfunction is odd in the azimuthal
angle. It is assumed that the spectrum may be described only statistically near the condensation
point. © 1997 American Institute of Physics.@S1063-777X~97!00612-9#

1. While applying the variational method for calculating proximate value is obtained for the minimum eigenvalue
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the spectrum of the Schrodinger equation, the ground-sta
function is chosen in such a form that it depends on sev
variational parameters, and the average Hamiltonian for
function is minimized with respect to the parameters. T
functions corresponding to the excited states must also
isfy the orthogonality conditions. Hence attempts are m
sometimes to select straightaway a system of orthogo
functions of which one~without any nodal surfaces! will be
the ground state function. If this system of functions is n
complete, it may lead only to a certain sequence of eigen
ues instead of the entire spectrum in a certain interval.
results depend on the appropriate choice of the form of
trial function, and there is no technique for estimating t
correctness. Trial functions are not an approximation of t
eigenfunctions and cannot be used, say, for approximate
culation of the probability of transitions between stationa
states.

The approach proposed in this work is free from t
above-mentioned drawbacks of the variational techni
since it is a combination of the variational technique and
perturbation theory. The initial HamiltonianĤ can be repre-
sented in the form

Ĥ[Ĥ0~$a i%!1Ĥ1~$a i%!, ~1!

where$a i% is a certain set of parameters andĤ0 the Hamil-
tonian whose spectrum and eigenfunctions can be de
mined, say, by separation of variables. IfĤ commutes with a
certain operatorÂ, it is desirable to chooseĤ0 in such a way
that it also commutes withÂ. The values of the paramete
$a i% are determined in the course of the variational pro
dure. For the rest, the splitting in~1! is arbitrary, and there
are no general criteria for its choice although, as will
shown below, this choice determines the closeness of
obtained results to the exact values of the principal and l
excitation eigenvalues ofĤ. The system of eigenfunction
Ĥ0 is used as trial functions in the standard variational p
cedure. The average value ofĤ in the ground stateĤ0 is
minimized with respect to the parameters$a i%, and an ap-
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Ĥ and the set of values of$a i%min . It can be assumed that th

mean values ofĤ in the functions of the excited statesĤ0

for the values of$a i%min are approximate values for the co

responding eigenvalues ofĤ. This approximation can be
evaluated by turning to the Rayleigh–Schro¨dinger perturba-
tion theory. In this theory, the obtained eigenvalues are

first approximation in the perturbationĤ1 for the values of
$a i%min . The quality of the approximation can be estimat
by calculating the values of the expansion parame
^nuĤ1um&/(En2Em) in the perturbation theory. In this cas
it is obvious that the convergence of series in the pertur
tion theory may be different for different eigenvalues, sin

Ĥ1 is generally not proportional to the small parameter. F

example, if the spectrum ofĤ0 consists of discrete and con
tinuous parts whose boundary is the point of condensatio
discrete values, the perturbation theory is not applicable
values close to this point. If the decomposition~1! can be
chosen in such a way that the expansion parameters
smaller than unity at least for the ground state, the pertur
tion theory can be used not only to estimate the accurac
the obtained value, but also to improve it. Indeed, t
second-approximation correction for the ground state ene
is always negative. Hence the second approximation will
ways give a smaller, i.e., more precise, value. Gener
speaking, the value of$a i%min should be determined from th
condition of minimum of the expression for the ground sta
energy in the second approximation of perturbation theo
This would correspond to the use of functions in the fi

approximation inĤ1 as trial functions in the variational pro
cedure. It can be shown that an improvement~i.e., decrease!
in the ground-state energy in comparison with the valu
obtained by using the above procedure is of the fourth or
of the expansion parameter in perturbation theory. Ther
simply no need to resort to minimization of the ground-st
energy if we somehow determine the parameters$a i% of the
decomposition~1! in such a way that the parameters of t
perturbation theory are smaller than unity. The parame
$a i%min are simply the best choice of the separation para

976120976-04$10.00 © 1997 American Institute of Physics
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in the best way~for a given choice of the decomposition~1!!.
If Ĥ commutes with a certain operatorÂ, the spectrum ofĤ
can be divided into subsystems of levels, each of which c
responds to one eigenvalue ofÂ. Each subsystem has it
own state with the minimum eigenvalue ofĤ, which can be
determined in the same manner by requiring additionally t
the functions are the eigenfunctions ofÂ for a certain eigen-
value. In this case, the values of$a i%min

A may be different for
different subsystems, but it is necessary thatÂ commute with
Ĥ0 also. In each subsystem, the excited states can be d
mined with the help of the perturbation theory for values
$a i%min

A obtained for the ground state, while the correspo
ing parameters in the perturbation theory are quite small

2. To illustrate the potentialities of this method, we co
sider the equation

2
]2c

]r22
1

r

]c

]r
2

1

r2

]2c

]w2 2
cosw

r
c5«c. ~2!

Many problems in the physics of crystals which contain ed
dislocations~see Refs. 1–3! can be reduced to this equatio
in dimensionless polar coordinates, that does not contain
parameters. The density of negative values of« near zero
was estimated semiclassically by Lifshits and Pushkaro1

Nabutovskii and Shapiro2 used the conventional variationa
technique to obtain the ground-state energy, while Slyusa
and Chishko3 obtained a better~lower! value for this energy.
The Hamiltonian in Eq.~2! commutes with the operator re
versing the sign ofw, hence the levels are split into tw
subsystems corresponding to functions that are even and
in w. Levels corresponding to even functions only are co
sidered in Ref. 3.

In problems that are usually solved by using perturbat
theory, the Hamiltonian naturally splits into the zero
Hamiltonian for which the eigenvalue problem is eas
solved, and a perturbation that is proportional to a sm
parameter. The expansion parameters in the perturba
theory are proportional to this small parameters and there
are also small. Such a natural splitting does not occur for
~2!, and hence the perturbation theory was not applied
them. We choose

Ĥ052
]2

]r2 2
1

r

]

]r
2

1

r2

]2

]w2 2
q cosw

2r2 1
a1

4r2 2
a2

r
.

~3!

Here, the vibrational parameters are denoted byq, a1 , and
a2 . Note thatĤ0 contains a potential proportional tor22,
and hence has eigenfunctions satisfying the conventio
continuity and integrability conditions only if 2q.a1 , i.e.,
if the sign of this potential varies withw. It will be shown
below that the HamiltonianĤ0 has a spectrum consisting o
a discrete part and a continuous part, as well asĤ. More-
over, it also has a similar angular dependence of the po
tial. In the eigenvalue problem forĤ0 , the variables are
separated, and the complete system of eigenfunctions ca
expressed in terms of known transcendental functions.
hard to formulate any additional concepts determining
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possible choice, and may not even be the best one. The
confirmation about the propriety of such a choice of deco
position ofĤ comes from the computation of the expansi
parameters in the perturbation theory. The variables in
equationĤ0c5« (0)c can be separated, and the equation
the functionF~w! assumes the form

d2F

dz2 1~a22q cos 2z!F50. ~4!

Here, we have made the substitutionw52z1p to transform
the above expression into Matthieu’s canonical equation~see
Ref. 4!. The condition of periodicity inw with a period 2p is
satisfied by Matthieu’s functionsce2m(z,q) and se2m(z,q)
with the even index. They form a complete system of fun
tions on the segment2p/2<z<p/2. For eachq, the sepa-
ration constanta assumes an infinite set of discrete valu
depending on the index and parity of the functions. The fu
tion ce0(z,q) does not have zeros; hence this is the funct
corresponding to the ground state. The solution of the ra
equation is known~see Ref. 5!. The ground-state function
has the form

c005A00p
21/2ce0~z,q!exp~2br!rg, ~5!

whereb and g are certain functions ofq, a1 and a2 , and
A00 is the normalization constant. The mean value of
total Hamiltonian from Eq.~2! in the functionc00, which
must be minimized, assumes the following form after in
gration with respect toz:

«005A00
2 E

0

`

exp~2br!rg11F S 2
d2

dr2 2
1

r

d

dr
1

C0
2

4r2

2
C0

22a0

2qr Dexp~2br!rgGdr. ~6!

Here, a0(q),0 is the eigenvalue of Eq.~4! for
F5ce0(z,q), and

C0
252

2

p E
2p/2

p/2

ce0~z,q!
d2

dz2 ce0~z,q!dz

5
2

p E
2p/2

p/2 F d

dz
ce0~z,q!G2

dz. ~7!

The last term in the integrand operator is calculated by m
tiplying Eq. ~4! for F5ce0(z,q) by ce0(z,q), and integrat-
ing with respect toz. Instead of minimizing ina1 anda2 ,
we can make use of the fact that the minimum of«00 is
attained by the eigenfunction of the integrand operator
any q.0. In this case, we obtain

b~q!5
C0

22a0

2q~C011!
, g~q!5

C0

2
, «00~q!52b2. ~8!

It remains for us to minimize«00(q) in q by numerical tabu-
lation according to Ref. 6. In order to computeC0

2 in this
case, we use the expansion ofce0(z,q) into a Fourier series,
whose coefficients are given in Ref. 6. We obtain
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qmin5460.05, «00
~0!520.1053, C0/250.6466. ~9!
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The eigenfunctions and eigenvalues of the HamiltonianĤ0

are classified according to three quantum numbers, viz.
dial quantum numbern50,1,2,..., the quantum number
s50,1 determining the parity of a function relative to th
reversal of sign ofz @the eigenvalue of the sign-reversal o
erator (21)s#, and m the index of the Mathieu function
which assumes all even values starting from zero fors50
and from 2 fors51. They have the following form:

unsm&5
Ansm

Ap
exp~rA2«nsm

~0! !rmF~2n,2m

11,2rA2«nsm
~0! !@ds0cem1ds1sem#,

m~s,m!5
1

2
~ds0am1ds1bm1a1!1/2,

«nsm
~0! 52

a2
2

~2m12n11!2 ,

Ansm5
~2A2«nsm

~0! !m11

G~2m11! S G~2m1n11!

n! ~2m1n11! D
1/2

. ~10!

Here, F(2n,2m11,2rA2«nsm
(0) ) is the degenerate hype

geometric function,Ansm the normalized constant of the ra
dial function~see Ref. 7 for computing this function as we
as other functions encountered in the computation of ma
elements!, andd ik the Kronecker delta. According to Ref. 4
the eigenvalues of Mathieu functions are denoted byam for
even functions and bybm for odd functions. For the value o
q obtained above, all these eigenvalues are positive ex
a0 . Comparing~10! with ~5! and considering~8!, we obtain

a15C0
22a055.9529; a25

a1

2q
50.7441. ~11!

The correction to the ground-state energy in the first appr
mation of perturbation theory is equal to zero. Averaging
the total HamiltonianĤ in the functions~10! gives values of
the excited-state energy in the first approximation of per
bation theory that are different from«nsm

(0) . These values
have meaning only for the excited states for which pertur
tion theory is applicable.

Let us calculate the highest term in the second appr
mation of perturbation theory for the ground-state energy

Ĥ152
qmin cos 2z

2r2 2
C0

22a0

4r2 1
C0

22a0

2qminr
1

cos 2z

r
. ~12!

The matrix elements ofĤ1 on functions for the ground stat
and others withm50 are equal to zero. The closest sta
with a nonzero matrix element isu002&. In this case,

^000uĤ1u002&50.0336,
^000uĤ1u002&

«0002«002
520.4264,

«000
~2!520.1196. ~13!
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than the best value (20.1111) obtained by Slyusarev an
Chishko.3 The relative decrease is more than 8%. Anoth
result having a physical meaning is the lowest exponent or
as r→0. The value of this exponent obtained in Ref. 3
equal to 0.75, while in the method considered he
m0050.6466.

Similarly, we can calculate the energy and exponent
the lowest odd state:

qmin525, a1534.9688, a250.6994,

m01251.8476,

U^210uĤ1u014&
«0122«014

U50.458, «012
~2!520.0252. ~14!

3. The above example shows that the new method allo
us to obtain better and more comprehensive results than
conventional variational procedure. The results for eigenv
ues can be improved further by calculating other terms a
in second order perturbation theory. However, for levels
which perturbation theory is applicable, the eigenfunctions
the first approximation in perturbation theory can be
garded as approximate expressions for true eigenfuncti
This means that they can be used to calculate the ma
elements for other operators with the same accuracy as
eigenvalues.

The restriction on the applicability of perturbation theo
for the ground state and low-excited states in the case w
the spectrum has a condensation point is probably of fun
mental importance. If the variables in the eigenvalue pr
lem for the HamiltonianĤ are separable, this problem can b
considered by using the WKB approach in the vicinity of t
condensation point.8 This technique can be used to justify
transition to the classical integrable problem. The point
condensation of eigenvalues corresponds to a separatri
viding the regions of finite and infinite motion of the corr
sponding classical particle. If the variables can be separ
only in the HamiltonianĤ0 , the correctionĤ1 corresponds
to the loss of all integrals of motion except the energy. T
WKB approach becomes inapplicable, and there are
methods known which would permit the calculation of t
eigenvalues«(n) for large n, wheren is the level number
counted from the ground state in ascending order. In cla
cal mechanics, the loss of integrals of motion leads to r
dom motion of a particle, especially near the separatrix.9 It
can be assumed that this corresponds to the absence
algorithm for calculating«(n) for largen in the eigenvalue
problem. In this case, the spectrum can be described by u
statistical concepts only, like the density of states. For
equation considered in Sec. 2, such a description was use
Ref. 1.
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

that
Hyperfine-interaction-driven Aharonov–Bohm effect in mesoscopic rings
I. D. Vagner,1 A. S. Rozhavsky,2 and P. Wyder1

1Grenoble High Magnetic Field Laboratory Max-Planck-Institut fu¨r Festkörperforschung and Centre
Nationale de la Recherche Scientifique, BP 166, 38042 Grenoble Cedex 09, France*
2B. I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of
Ukraine, 47, Lenin Ave., 310164, Kharkov, Ukraine**
~Submitted April 21, 1997; revised July 23, 1997!
Fiz. Nizk. Temp.23, 1305–1308~December 1997!

It is shown qualitatively that lifting of the electron spin degeneracy by a hyperfine field, which is
generated by a nonequilibrium nuclear spin distribution, and breaking of the left-right
symmetry by the spin-orbit interaction in a closed ring produces under certain conditions a
persistent current, which demonstrates the Aharonov–Bohm-like oscillations with time in GaAs/
AlGaAs-based mesoscopic rings even in the absence of an external magnetic field. The
typical time interval of these~meso-nucleospinic! oscillations is of the order of several seconds,
which is typical of the nuclear spin relaxation times in heterojunctions. ©1997 American
Institute of Physics.@S1063-777X~97!00712-3#

The persistent currents~PC! in multiconnected meso- main physical interest in this subject is based on the fact
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scopic conductors reflect the broken clockwise-anticlockw
symmetry, which is usually caused by the external vec
potential. Experimentally, PCs are observed when an a
batically slow, time-dependent, external magnetic field is
plied along the ring axis.1–3 The magnetic field variation
results in the oscillatory behavior, with the magnetic fl
quantumF05hc/e ~or its harmonics!, of the diamagnetic
moment~the PC!, which is a manifestation of the Aharonov
Bohm effect.4

We propose that the persistent current exist in a Ga
AlGaAs quantum ring with a nonequilibrium nuclear sp
population, even in the absence of an external magnetic fi
We predict the ABE-like oscillations of PC with time durin
the time interval of the order of nuclear spin relaxation tim
T1 , which is known to be long in semiconductors at lo
temperatures. The physics behind these oscillations ca
understood along the following lines. The hyperfine fie
which is caused by the nonequilibrium nuclear sp
population,5 breaks the spin symmetry of conduction ele
trons which, combined with a strong spin-orbit coupling,
sults under certain conditions in the breaking of the ro
tional symmetry of diamagnetic currents in a ring. Under
topologically nontrivial spin distribution, the hyperfine fie
produces the Berry phase analogous to one which emerg
textured mesoscopic rings.7–11

We note that this is the first of a series of ‘‘mes
nucleospinic’’ effects, which take place in different system
with broken symmetry due to the combined action of t
hyperfine field and spin-orbit coupling.

Let us first examine the nature of the hyperfine electr
nuclear spin interaction and of the electron spin-orbit int
action in typical heterojunctions.

The hyperfine interactions in GaAs heterojunctions a
similar quantum Hall systems attracted recently shar
growing theoretical12 and experimental13–15 attention. The
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the discrete nature of the electron spectrum in these sys
results in the exponential~exp(D/T), whereD is the mean
electron energy spacing, andT is the temperature depen
dence of the nuclear spin relaxation timesT1 on the system
parameters!. We assume here that similar law should app
for the nanostructures with well-defined size quantization
the electron spectrum. Note that in this caseT1 is very sen-
sitive to the potential fluctuations caused by the inhomo
neous distribution of impurities in a heterojunction. Indee
as it was discussed in Ref. 16, the impurity potential mo
lates the spacing, thus providing faster nuclear relaxation

Intensive experimental studies of this phenomenon h
provided a more detailed knowledge of the hyperfine int
action between the nuclear and electron spins in heteroju
tions and quantum wells. It was observed that the nuc
spin relaxation time in GaAs/AlGaAs is rather long~up to
103 sec!13 and the hyperfine field acting on electron spins
this material is extremely high, up to 104 g.14,15 Based on
this knowledge we suggest that once the nonequilibri
population of nuclear spins is created, the hyperfine fi
may strongly influence the electron transport and persis
currents in nanostructures in sufficiently long time.

In this brief note we show qualitatively that the com
bined action of the hyperfine nuclear field and the elect
spin-orbit interaction breaks the time reversal symmetry i
mesoscopic ring~i.e., a sufficiently small ring so tha
quantum-mechanical phase coherence is preserved!, formed
in a GaAs/AlGaAs 2DEG, which results in an oscillatin
persistent current at millikelvin temperatures. The detai
theory will be published elsewhere.

The contact hyperfine interaction between the elect
and nuclear spins is described by the following term in
Hamiltonian:6

Ĥch f
en 5

8p

3
mBgh\2(

i
I iSd~r e2Ri ! ~1!

980120980-03$10.00 © 1997 American Institute of Physics
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magnetons;I , S, Ri , andr e are the nuclear and the electro
spins and position vectors, respectively; andd(r e2Ri) re-
flects the fact that thes-electrons have a nonvanishing pro
ability on the nuclei. Since the conduction quasiparti
wavelength in GaAs is much larger than the internuclei d
tance, it follows from Eq.~1!, that once the nuclear spins a
polarized, i.e., if̂ S i I i&Þ0 ~Refs. 13–15!, the electron spins
will experience an effective hyperfine field, which lifts th
electron spin degeneracy even in the absence of an ext
magnetic field. In GaAs/AlGaAs one may achieve the s
splitting due to hyperfine field of the order of the Ferm
energy:mBHch f>«F ~Refs. 14 and 15!, which is of the order
of 1 K.

Let us assume, therefore, that only one electron spin
entation is populated during the time interval of the order
the nuclear spin relaxation timeT1 . It is quite obvious that
under the topologically nontrivial spin texture~see below!
switching on electron spin-orbit interaction in the system
spin-polarized electrons will produce a persistent current

The standard expression for the spin-orbital interactio

Ĥso5
\

4m2c2 @¹V3p# ~2!

can be rewritten in the form:Ĥso5pÂeff , where the effective
vector potential operator reflects the combined action of
hyperfine field and of the spin-orbit interaction:

Âeff~ t !5
\

4mc2 @s~ t !3¹V#5Âeff
0 expS 2

t

T1
D . ~3!

In what follows we restrict the discussion to the case
GaAs/AlGaAs heterostructure-based mesoscopic rings. S
orbit interaction in semiconductors can be caused by im
rities, boundaries, etc. In GaAs there is a well-known mec
nism, attributable to the crystal anisotropy,17 which can be
presented as

Ĥso5
a

\ (
i

@s i3p#v. ~4!

Here a50.631029 eV•cm for holes withm* 50.5m0 ~m0

is the free electron mass!; s andp are the charge carrier spi
and momentum; andv is the normal to the surface.

We obtain for the effective vector potential operator@Eq.
~3!# the estimate

Âeff
GaAs>

am*

\
. ~5!

Under real conditions we havemBHeh f@a/L, whereL
is the loop perimeter, and the electron spin projection i
well-defined quantum number. The vector potential@Eq. ~5!#
generates a persistent current, which is the sum over
partial current carried by the individual energy levels w
different projections of the electron spin.

The result of summation is an oscillatory dependence
PC on the effective flux across the loop:

2pw5
1

\ R dl^Aeff
GaAs&5

L^^a&&
\2 ^s~ t !&, ~6!
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double brackets denote

^^a&&5
1

L R a~ t !dl. ~7!

For a micron ring formed in a GaAs/AlGaAs 2DEG, 2pw
;30̂ s(t)&. The value of̂ s(t)& depends on the particula
features of the relaxation dynamics.

To estimate the amplitude of a PC generated by a tim
dependent flux@Eq. ~6!#, we must establish the hierarchy o
time scales in a micron ring at the level of millikelvins.

The time scales are the nuclear magnetization relaxa
time T1 , the ballistic time\/D}L/VF , the phase-breaking
time tw>t in , wheret in is the time of inelastic electron sca
tering, andte is one of the elastic processes.

The time te in quasi-one-dimensional GaAs/AlGaA
rings is governed mainly by smooth tails of the impuri
potential located in the ‘‘spacer’’.20,21 In an actual
experiment3 the elastic mean free path is of the order of
mm.

The inelastic timet in in quasi-one-dimensional quantum
rings is defined by a combined action of the electron-phon
scattering and the elastic scattering.20 Under the condition
mBHeh f;«F@D@T the electron-spin-lattice22 scattering in
a ring is suppressed. It is estimated20 to be tw>1027

21028 sec.
In our case the timeT1 far exceeds all the microscopi

electron times,T1@(\/D,tw ,te), which evidently means
that energy relaxation restores the equilibrium distribution
the electron levels, and we have a thermodynam
situation.20 When L; l e!Lw , the persistent current can b
calculated as4

j PC52c
]F

]Fext
uFext50 , ~8!

whereF is the free energy, andFext is the probe externa
flux. The thermodynamic value of̂s(t)& in Eq. ~6! is
mBHeh f(t)/«F>1.

In light of the above discussion, we estimate the pers
tent current in a fully spin-polarized gas whenD@T to be

j PC>
eVF

L (
k51

`
sin~2pkw0 exp~2t/T1!!

k
, ~9!

wherew0>L^^a&&\22m* .
The oscillations of persistent current arise due to

exponential time dependence of the phasew0 exp(2t/T1) in
Eq. ~9!, with the time constantT1 , which in GaAs can be of
the order of several seconds at a temperature of sev
millikelvins.5 We note the marked difference between t
time dependence of standard AB oscillations, which are u
ally observed under the condition of linear time variation
the applied magnetic field, and the hyperfine driven osci
tions, which die out due to the exponential time depende
of the nuclear polarization.

Let us now consider experimental feasibility of the pr
posed effect. A nuclear spin configuration should be crea
when the circulation of the effective vector potential is
nonzero topological invariant@Eq. ~6!#. In the geometry

981Vagner et al.



where the vectorv in Eq. ~4! is normal to the heterojunction,
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either the nuclei, which are pumped along some direction
the plane of the ring, or the spin-orbit coupling should
inhomogeneous along the perimeter, say, due to the inho
geneous distribution of impurities. Since in a GaAs/AlGa
heterojunction the characteristic length of the impurity p
tential is of the order of several hundreds Å, i.e., compara
to the ring width, the mesoscopic sensitivity to a single i
purity position may produce a nonvanishing phase@Eq. ~6!#.
The influence of the long range impurities on the nucl
spin-relaxation time in heterojunctions was studied in R
16. Note that the spin-orbit-produced PC considered abov
not averaged in a single ring, in marked contrast with
situation considered in Refs. 8 and 9.

Other mechanisms connected with external potent
like boundaries, heavy-atom impurities along the ring per
eter, and other imperfections, which may enhance the s
orbit interaction in these systems, will be considered in de
elsewhere.

In summary we propose here the first in a family
hyperfine-field-driven mesoscopic~mesospinic! orbital ef-
fects: the Aharonov–Bohm-like oscillations of a persiste
current in a GaAs/AlGaAs mesoscopic ring in the absenc
external magnetic field. We note that the large~of the order
of 1 T! hyperfine field acts on the electron spins only, whi
results in the nonequilibrium electron spin population. T
later, at millikelvin temperatures, under the conditions of
topologically nontrivial texture,̂ ^a&&Þ0, via the spin-orbit
coupling, results in weak persistent currents, which decre
with time due to the nuclear depolarization, during the tim
interval of the order of the nuclear spin-relaxation timeT1

which can be sufficiently long at low temperatures.
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Classical mesoscopic effect in the resistance of point contacts

n-
Yu. A. Kolesnichenko1 and A. N. Omelyanchouk1
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The mesoscopic effect of the dependence of the point-contact conductance on the spatial
distribution of the impurities is theoretically studied. It is shown that the resistance dependence
on the diameterd is not only determined by the electron mean free pathl i , but also by
the average distance between the impurities. In the case of two types of impurities with different
concentrations the mesoscopic effect is predicted for a dirty point contact (d@ l i) due to
the scattering at specific~e.g., magnetic! impurities with a low concentration. Such contacts were
numerically modeled for random distributions of the two types of impurities. ©1997
American Institute of Physics.@S1063-777X~97!00812-8#

The break-junction technique1 makes it possible to study centration isni5r 0
23! is assumed to be smaller than the co
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electron transport through microconstrictions few nano
eters in diameter. The conducting properties of such sm
contacts are affected by quantum effects such as the 2e2/h
conductance quantization observed while changing the di
eter of the contact,2,3 conductance fluctuations due to ele
tron wave interference,4,5 etc. In ultrasmall contacts, beside
the quantum effects,6,7 the presence of impurities in the con
tact region produces noticeable classic effects. Such ‘‘cla
cal mesoscopic effects’’ cause conductance fluctuations
to the displacement of individual scatterers, and also
stochastic-like dependence on the magnetic field.8 It was
shown in Ref. 9 that individual point defects, which are
cated at a distance from the constriction comparable to
diameterd, cause a deviation of the size-dependence o
ballistic contact’s resistanceR(d) from Sharvin’s
formula.10,11 If the average distance between the impurit
appears greater than or equal tod, we obtain a classica
mesoscopic effect—the dependence of additional contac
sistance due to the defects on their spatial distribution.
will demonstrate below that an analogous dependence ca
also observed in contacts with a short electron mean
path for two types of scatterers of different concentratio
Such a situation can take place, for instance, in experime
observations of size effects in metallic point contacts w
magnetic impurities,12 where a rare spin-flip electron scatte
ing is accompanied by many scatterings at regular impuri
which inevitably appear at the point contacts.

We restrict the analysis of classical mesoscopic effe
to the semiclassical approximation, assuming that the siz
considerably larger than the de Broglie wavelength of el
trons.

Assuming that the point contact is an orifice of diame
d in the insulating partitionS, and separating the two meta
lic half-spaces, we obtain a situation which is illustrated
Fig. 1. It is assumed that the metal has two types of def
of different effective scattering cross section. The charac
istic distancer 0 between the defects of first type~their con-
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tact diameter, which allows us to average all equations o
the coordinates of these impurities. We call such defe
‘‘the background defects’’. The concentration of second-ty
defectsni* , whose interaction with electrons determines t
mesoscopic effects, is such that their separation,r 0*
5ni*

21/3, is comparable tod. Such defects are referred to a
‘‘specific impurities.’’

The current through the contact can be expressed
terms of the Green–Keldysh functiongp

K(r ,«) integrated
with respect to the energy variablej5«p2«F ~«F is the
Fermi energy!13:

I 5
p

2
eN~0!E

S
d2rE d«

2p
^vzgp

K~r,«!&. ~1!

In this formula the integration with respect tod2r is
carried out over the areaS of the contact, andvz is the
component of the electron velocityv5]«/]p parallel to the
contact axis. The angle brackets denote averaging over
directions of the momentump at the Fermi surface«p
5«F , where the density of states isN(0).

In the Keldysh method13 the retardedgp
R and advanced

gp
A Green’s functions appear along withgp

K . The matrix

ĝp5Fgp
A gp

K

0 gp
R G , ~2!

which satisfies the normalization conditionĝp
251 for a non-

superconducting metal, is the solution of the equation14

iv¹ĝp1@ ĝpS#5@ t̂,¹ĝp
~0!#. ~3!

In this equationĝp
(0) is the matrix of the Green’s function

for a pure point contact with only the background impuritie
the scattering of electrons on which is described by
coordinate-independent matrix of self-energy functio
Ŝ5( i /2t i)^gp&, where t i is the characteristic time of the
elastic relaxation. The electron interaction with the spec
defects is associated with the right side of Eq.~3! which

983120983-05$10.00 © 1997 American Institute of Physics
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contains the scattering matrixt̂. This matrix can be deter
mined from the Lippman–Schwinger equation

t̂5V̂2 ipN~0!V̂^ĝp
~0!& t̂, ~4!

where V̂5V̂(r ) is the scattering potential. Note that th
structures of matricesŜ and t̂ are similar to that of~2!.

According to Eq.~3! and the normalization condition
the functionsgp

R,A in a normal metal are equal to their equ
librium values gp

R52gp
A51. Taking into account relation

~4!, the equation forgp
K can be written in the form

v¹ĝp
K2I i~ ĝp

K!5I i* ~ ĝp
~0!K!, ~5!

where

I i~ ĝp!5
1

t i
@^gp&2gp#; I i* ~ ĝp!52 Im tA@^gp&2gp#.

The boundary condition

gp
K~r ,«!5G0S «2

1

2
eU sign zD for uzu→` ~6!

ensures the restoration of equilibrium in the electron sys
at the contact banks. In Eq.~6! G0(«)52 tanh(«/2T) is the
equilibrium Green’s function~T is the temperature!, U is the
voltage applied to the point contact.

Following the authors of Ref. 15, the functiongp
(0)K(r ,«)

can be conveniently expressed as

gp
~0!K~r ,«!5ap~r !G0S «1

eU

2 D1~12ap~r !!G0S «2
eU

2 D ,

~7!

where the voltage-independent functionap(r ) is the prob-
ability that an electron arrives at the pointr from 2` with
the momentump after being scattered only by the bac
ground impurities. The functionap(r ) satisfies a homoge
neous equation similar to the one forgp

(0)K

v¹ap~r !2I i~ap~r !!50 ~8!

FIG. 1. A model of the point contact as a circular orifice in an insulat
partition S. The dots represent the background and the stars symbolize
specific defects. The broken lines represent the electron trajectory thr
the contact.
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ap~r→`!5u~z!, ~9!

which is derived from~6!.
We write the particular solutiondgp

K(r ,«) of a nonho-
mogeneous equation~5! using the corresponding Green
function gpp8(r ,r 8)5g2p8,2p(r 8,r ):

dgp
K~r !5E dp8dr 8gpp8~r ,r 8!I i* ~gp

~0!K!. ~10!

The functiongpp8 should be determined from the rela
tions

v
]

]r
gpp8~r ,r 8!2I i~gpp8!5d~p2p8!d~r2r 8!, ~11!

gpp8~r ,r 8→`!50. ~12!

Substituting the value ofdgp
K in Eq. ~1!, we obtain the

expression for the change in the electric currentDI due to
specific defects

DI 52
pe

2
N~0!E dSE d«

2p
^vzdgp

K~r!&

52
pe

2
N~0!E d«

2p E dpE drGp~r !I i* ~gp
~0!K~r !!,

~13!

where

Gp~r !5E
S
d2rE dp8vz8gp8p~r,r !. ~14!

Multiplying Eq. ~11! by vz and integrating it byr over
the contact area and momentump, we obtain the following
equation for the functionGp(r ):

v
]

]r
Gp~r !1I i~Gp~r !!52d~z!. ~15!

The probabilityap(r ) satisfies Eq.~8!, which combined
with Eq. ~15! yields the relation15

Gp~r !5a2p~r !2u~z!. ~16!

Substituting ~7! and ~16! into the expression for the
point-contact current correction~13!, we find

DI 52peN~0!E d«

2p H G0S «1
eU

2 D2G0S «

2
eU

2 D J E drE dpa2p~r !I i* ~ap~r !!. ~17!

Relation~17! has a wide range of applications. It is val
for any mean free path as to the electron scattering on b
ground impuritiesl i in case their separation distancer 0 is
much smaller than the contact diameterd, and also for arbi-
trary relation between the valued and the distance betwee
the specific defectsr 0* , which provide the mean free path fo
electron scattering on these defects,l i* @d,l i .

The following calculations depend on the properties
both types of scatterers and their concentrations. The i
grodifferential equation for the probabilityap ~8! can be

he
gh
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solved analytically for extreme cases in which the mean free
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path l i is much greater or much smaller than the diameterd.
For the ballistic regime of electron motion through the co
tact we obtain

ap~r !5H u~2z!1sign z, 2vPV~r !

u~2z!, 2v¹V~r !, l i@d
~18!

V~r ! is a solid angle at which the aperture is seen from
point r; u(z) is the ~Heaviside! unit step function.

For the diffusive regime of the electron motion throug
the contactap can be expanded in a series in a small rela
ation timet i ~Ref. 15!

ap~r !5^ap~r !&2t iv¹^ap~r !&1... l i!d, ~19!

where

^ap~r !&5u~z!2sign z
1

p
arctan

1

Q
; ~20!

Q25
2r 2

d2 2
1

2
1F S 2r 2

d2 2
1

2D 2

1
4z2

d2 G1/2

. ~21!

The solution of Eq.~4! for the scattering matrix is com
plicated and can be found only in some special cases.
example, if the interaction with a single impurity located
r i is described by the spin-independent operatorV̂(r )
5VÎd(r2r i) ~Î is a singular matrix,V5const!, then for an
arbitrary interaction potentialV the t̂ matrix will have the
form

t̂5
V̂Î 2 ipV2^ĝp

~0!&N~0!

11@pN~0!V#2 d~r2r i !. ~22!

In the case of a scattering center with nonzero spins the
electron interaction energy with such a scatterer contains
componentV̂5Jŝ ŝd(r2r i) ~ŝ is an electron spin operator
andJ is an exchange interaction constant!. At temperaturesT
above the Kondo temperatureTK;«F exp(21/N(0)J) we
can construct the Born series for the scattering matrix. St
dard calculations16 in the second Born approximation give

tK5
i

2
G~r ,«!^gp

~0!K&; tR,A5E d«

2p

G~r ,«!

«2«86 i0
,

where

G~r ,«!5pN~0!J2s~s11!F1

2
JN~0!

2 E d«8
^gp

~0!K&
«2«8

Gd~r2r i !. ~23!

If we haveN@1 specific defects which yield an electro
mean free pathl i* @max(d, li), the calculation of the curren
through the contact can be performed by ignoring the co
lation between the individual scattering events and writi
the operatort̂ of the system in the form of the sum o
t̂-operators of scattering by isolated defects. In this appro
mation, in the case of isotropic scattering by zero-spin imp
rities the resistanceR of a point contact has the form

R215Rc
21H 12

s*

S (
r i

M ~r i !J ; ~24!
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Rc
215e2N~0!E

S
d2r^vzap~r!&; ~25!

Rc is the contact resistance without the specific impurities13

s* 5
Im tA

vF
5

pV2N~0!

vF@11~pN~0!V!2#

is the effective cross section of scattering by the spec
impurities.

M ~r i !54
Rc

R0
^a2p~r i !@^ap8~r i !&2ap~r i !#&; ~26!

R0
2151/2e2vFN(0)S, andR0 is the resistance of a ballisti

contact~Sharvin formula!.10,11

The sum of theM (r i) functions depends on the specifi
configuration of the impurities and describes the class
mesoscopic effects in the conductivity of point contacts. F
the ballistic case in which the functionap is determined by
Eq. ~18!, we have9

M ~r i !5FV~r i !

2p G2

. ~27!

Figure 2 shows the results of a numerical calculation
Eqs. ~24! and ~27!. In the mesoscopic region (d;r 0* ) the
behavior of the resistance is essentially determined by
presence of impurities at distancesr i;d from the aperture. If
there are some impurities, then we will haveN-shaped de-
pendences (DR/R0)(d) ~curves1 and2 in Fig. 2!, otherwise,
we have a monotonic (DR/R0)(d) dependence~curve 3 in
Fig. 2!. It should be noted that whiled/r 0* is increased from
some point, the value ofDR/R0 stays below its asymptotic
value:

DR

R0
5

16

3p
ni* s* d. ~28!

Figure 3 illustrates a situation that might be observed
experiments12 when the defects are concentrated in a th
layer near the contact. In such a case the contaminated re

FIG. 2. The dependence of the relative correctionDR/R0 for the ballistic
resistance of the point contactR0 versus the ratio between its diameter an
the characteristic distancer 0* between the defects for three random distrib
tions in the contact region. Curves1 and2 represent the cases in which on
of the impurities is located in the contact region, and curve3 is the case in
which there is no such impurity present.
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plays the role of a barrier with effective transparencyD. It is
known17 that the relative changeDR/R0 in the resistance o
a ballistic contact due to the translucent barrier is 12D and
does not depend on the diameterd. The assumption made i
supported by the results of a numerical calculation~Fig. 3!,
which shows a fairly weak (DR/R0)(d) dependence for con
tact sizes, of the order of the thickness of a layer in which
scatterers are concentrated.

For contacts with a small mean free path, using Eqs.~19!
and ~26!, we obtain

Rc
215RM

215
2

3
e2vFN~0!l id; ~29!

RM is the resistance of the diffusion contact~Maxwell’s
equation!;

M ~r i !5
l i

pd

1

~Q211!~Q214zi
2/~Q2d2!!

, ~30!

where Q2(r i) is defined by Eq.~21!. If the characteristic
distance between the specific scatterersr 0* is much larger
than the contact sizer 0* @d, the impurities located at dis
tancesr i@d from the orifice yieldM (r i).( l i /d)(S2/r i

4).
Separating the contribution of distant defects, we obtain fo
relative correction to the resistance

DR

RM
.

s*

S (
r i&d

M ~r i !1
l i

l i*
S

r * d
, ~31!

where l i*
215s* n* , l i5vFt i , and r * 'r 0* . The first term

in Eq. ~31! is the contribution of specific defects in the co
tact region to the contact resistance. The partial contribu
of every scatterer to theDR value is of the order ofs* d/Sli
and increases as the diameter is reduced. In a real situ
for r 0* @d there might be no defects at distancesr i&d from
the contact, and the relationDR/R0 is proportional tod.

Now if d@r 0* , the location of defects has no effect o
the resistance of a point contact. Such inequality allows u
switch in ~24! from a sum over the impurity coordinatesr i to
an integral over the whole space. This yields for the circu
contact

FIG. 3. Relative correctionDR/R0 for the resistance of a ballistic contac
for the various spatial distributions of impurities when the defects are
cated in a thin layer in the insulating plane~curves2–5!. Curve1 represents
a rare case in which one of the impurities initially appears in the n
contact region.
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R215RM
21~12 l i / l i* !. ~32!

Note that Eq.~32! can be directly obtained from expres
sion ~29! for the resistance of a short mean free path con
in which, according to Matthiessen’s rule,l i

21 should be re-
placed byl i

211 l i*
21, bearing in mind thatl i! l i* .

The (DR/RM)(d) dependence, which is determined b
analytical equations~31! and ~32!, is illustrated in Fig. 4,
showing the results of the numerical calculation using E
~24! and~30! for various random distributions of the specifi
scatterers. The mesoscopic regime in the conductanc
point contacts is observed up to the values ofd/r 0* of about
5–10.

For the electron scattering by specific impurities w
nonzero spin, substituting expression~23! for tA into ~17! at
temperatures above the Kondo temperature, we can form
write the differential resistance of a point contact in the fo
~24!, denoting bys* the following function of the voltage
and temperature:

s* 5
pN~0!J2s~s11!

2vF
F12

JN~0!

4

dF~eU!

deU G , ~33!

where

F~eU!5E
0

`

d« «G0~«!E
0

` d«8

«22«82 @G0~«82eU!

2G0~«81eU!#.

The second term in square brackets of expression~33!,
which is a function of voltage and temperature, describes
Kondo anomaly on the current-voltage characteristic of
point contact. Note that the values* , evaluated in the sec
ond Born approximation, does not depend on the scatte
by background defects, and Eq.~33! is valid for any relation
between the contact diameterd and the mean free pathl i .

Therefore, the increase in concentration of the spec
impuritiesni* , which leads to the alteration of the ratio b
tween the characteristic separation of the impuritiesr 0*

-

r

FIG. 4. Dependence of the relative correctionDR/RM for the resistance of
a contact with small mean free path on the ratio between its diameterd and
the characteristic distance between the specific defectsr 0* . Curves1 and2
correspond to two different distributions of these defects.
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dependence of the resistance of a point contact,R(d)5RM

1DR:

DR

RM
;H l i / l i* , r 0* !d li* !d! l i ,

dli
r 0* l i*

1
N0s*

dli*
r 0* @d,

where N0 is the number of defects in contact region. T
influence of specific defects on the resistance for low c
centrations (r 0* @d) is determined by their spatial distribu
tion, which leads to diverse~random! dependencesDR(d).
They can be split into two groups: 1! (DR/RM)(d) increases
with decreasingd if at least one of the specific impurities
located at a distancer !d from the contact aperture; 2! the
ratio (DR/RM) decreases with decreasingd if all impurities
are located far enough from the contact. As mention
above, the total contribution from all defects at different d
tances from the contact can lead to the appearance of a m
mum on the curve (DR/RM)(d). For high concentrations
(r 0* !d) the relative change in resistance is independen
the contact size,DR/RM5const(d). Thus the functional de-
pendence of the point contact resistance versus its diam
can serve as a criterion for determining the concentration
the specific impurities, and also their distribution in the co
tact region. Note that due to the ‘‘screening’’ effect of bac
ground impurities the classical mesoscopic effect in the
fusive contact is weakenedd/ l i.1 times compared to the
ballistic case described in Ref. 7. If the specific impurit
are magnetic impurities, they lead to a nonlinear depende
of the correction for the contact resistance versus the app
voltage. Such dependence can be extracted in standard
periments in point-contact spectroscopy. In this case the
987 Low Temp. Phys. 23 (12), December 1997
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sity and displacement~on the voltage scale! of the Kondo
anomaly in the point contact spectrum.
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Raman investigations of orientational ordering in NiSiF 6–6H2O, NiSiF6–6D2O,

n

and ZnSiF 6–6H2O crystals

V. V. Eremenko, A. V. Peschanskii, and V. I. Fomin

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted May 27, 1997; revised July 2, 1997!
Fiz. Nizk. Temp.23, 1315–1324~December 1997!

The results of investigations of polarized Raman spectra in ZnSiF6•6H2O and NiSiF6•6D2O
single crystals in the temperature range 2–300 K are presented. It is found that the crystals are
orientationally ordered at low temperatures. The orientational disordering is described by a
model in which the rotational motion of the SiF6

22 complex is determined by a two-well
asymmetric potential function. The parameters of the model are determined from the
temperature behavior of the Raman spectral lines. The calculated values of concentration for two
orientational positions of the SiF6

22 complex at room temperature are in good agreement
with the x-ray data. ©1997 American Institute of Physics.@S1063-777X~97!00912-2#

According to the results of x-ray diffraction analysis at
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T5300 K, orientational disorder of octahedral ions SiF6
each of which can occupy one of two energetically inequi
lent positions which are not connected through a symm
element is a structural peculiarity of hexahydrates of nic
and zinc fluorosilicates~NiSiF6•6H2O and ZnSiF6•6H2O!
under investigation. In these orientations, octahedrons
distributed randomly over the crystal, their population den
ties for Ni- and Zn-based compounds atT5300 K being in
the ratio 0.33/0.67.1 The temperature evolution of orienta
tional disorder of the crystals has not yet been studied.

Anomalous temperature behavior of lattice parame
discovered in low-temperature x-ray studies2,3 was attributed
by the authors of these publications to a second-order p
transition~PT!. The crystals of NiSiF6•6H2O at T.220 K 2

and ZnSiF6•6H2O at T.200 K 3 exhibit a change of rhom
bohedral modifications differing in the temperature exp
sion coefficients of the lattice. An analysis of th
permittivity4 of the crystals revealed that NiSiF6•6H2O and
ZnSiF6•6H2O crystals in the temperature range 150–250
experience dielectric losses indicating the existence
temperature-activated motion of electric dipole momen
The observed behavior of dielectric response indicates a
nificant change in the nature of vibrational mobility of ion
in this temperature range.

The space symmetry group of the crystal lattice of
crystal under investigation isR3̄ (C3i

2 ), and the unit cell con-
tains one structural unit (z51).1 An analysis of fundamenta
oscillations5 shows that the ordered structure can have
vibrational modes:

Gvib512Ag112Eg114Au114Eu .

In the Raman scattering~RS!, the Ag and Eg modes with
nonzero components of the Raman scattering tensor are
tive: XX,YY,ZZ for Ag and XX,YY,XY,XZ, and YZ for
Eg .

The Raman spectra were studied earlier
NiSiF6•6H2O

5–10 and ZnSiF6•6H2O
8,9,11 crystals. Jenkins

and Lewis6,7 paid main attention to the temperature depe
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spectral lines were classified for NiSiF6•6H2O and
NiSiF6•6D2O crystals at 300, 110, and 10 K in Ref. 5, fo
ZnSiF6•6H2O at 20 K in Ref. 11, and for MeSiF6•6H2O
~Me5Zn, Ni, Co, Fe, and Mn! at T5300 K in our earlier
publication.9 Jenkins and Lewis8 compared the Raman spe
tra for zinc and nickel fluorosilicates with the correspondi
spectra for fluorotitanates.

In our earlier publication,10 we thoroughly analyzed the
temperature behavior of Raman spectra in a NiSiF6•6H2O
crystal. It was found that atT.130 K, the spectrum acquire
an additional low-frequency line in the lattice vibration r
gion, whose intensity increases anomalously with tempe
ture. The emerging additional line is not a result of a PT;
behavior reflects orientational ordering upon cooling in t
proposed model of an asymmetric two-well potential d
scribing vibrations of SiF6

22 ions.
In order to verify the proposed mechanism of orien

tional disordering, we analyze here the Raman spectra o
wide temperature interval for NiSiF6•6D2O and
ZnSiF6•6H2O crystals having the same structure and sim
types of disorder. We shall also consider estimates of
parameters of the orientational ordering model proposed
Ref. 10.

DISCUSSION OF EXPERIMENTAL RESULTS

Experiments were made on single crystals of high op
cal quality. The coordinate system was determined by cry
faceting in the form of a combination of a hexagonal pris
and a rhombohedron. TheX-axis was parallel to the hexago
nal growth plane and perpendicular to the axisC3 , ZiC3 ,
andY'X,Z. The Raman spectra were excited by the 4880
line emitted by an Ar laser with a power of 200–300 mW
The light scattered by a sample at an angle of 90° was a
lyzed by a double monochromator JOBLIN YVON U-1000 and
recorded by a cooled photomultiplier in the photon cou
mode.

Structural peculiarities and measuring technique are
scribed in detail in Ref. 10.

988120988-08$10.00 © 1997 American Institute of Physics



Low-Temperature Raman Spectra
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We investigated Raman spectra of NiSiF6•6D2O and
ZnSiF6•6H2O crystals atT52 K in the frequency range
0 – 3600 cm21. Figures 1a–c show the Raman spectra w
different components of the Raman tensor for
ZnSiF6•6H2O crystal. The same figure shows for comparis
the spectra for NiSiF6•6H2O and NiSiF6•6D2O ~Figs. 1d and
1e, respectively!. The above frequency range can be divid
into two.5,8–11The first~from 0 to 140 cm21! corresponds to
the lattice vibrations region containing 2Ag12Eg rotational
oscillations of octahedral complexes. The ran
190– 800 cm21 contains lines of intrinsic vibrations o
Me~H2O!6

21 and SiF6
22 complexes as well as broad~even for

T52 K! lines corresponding to librational vibrations o
H2O~D2O!.

Table I contains values of frequency corresponding
Raman lines, attributed to the first-order spectrum, in co
parison with the available data. It can be seen that the n
ber and polarization of lines observed in the Raman spect
at low temperatures are in good agreement with the calc
tions based on the group theory for an ordered crystal lat
described by the space groupC3i

2 (z51).

Experimentally obtained frequencies of vibrations in t
ZnSiF6•6H2O crystal are in good agreement with the ava
able data~see Table I!, but the interpretation of the spectru
differs from that described in Ref. 11, in which the vibratio
at a frequency of 401 cm21 was attributed to intrinsic vibra
tions of the Zn~H2O!6

21 complex, while the vibration a
381 cm21 was classified as an intrinsic vibration of the SiF6

22

complex. The classification carried out here is based o
comparison of the Raman spectra of the crystals under in

TABLE I. Frequency~in cm21! and symmetry of fundamental vibration

Raman scattering.
h

n

e

o
-
-

m
a-
e

a
s-
FIG. 1. Raman spectra of ZnSiF6•6H2O ~a–c!, NiSiF6•6H2O ~d!, and
NiSiF6•6D2O ~e! crystals in experimental geometriesZ(XX)Y, Z(YX)Y,
andX(ZZ)Y at T52 K. The spectral resolution is 3 cm21.

n ZnSiF6•6H2O, NiSiF6•6H2O, and NiSiF6•6D2O crystals which are active in
Symmetry
and identification
of vibrations

ZnSiF6•6H2O NiSiF6•6H2O NiSiF6•6D2O

Our results
T52 K

@Ref. 11#
T520 K

@Ref. 8#
T515 K

@Ref. 10#
T52 K

Our results
T52 K

@Ref. 5#
T510 K

– – – – – 38

Lattice
vibrations HAg

Eg

Ag

Eg

66 65 66 68 68 68
89 90 89 92.5 92 94

129 129 – 134.5 131 130

130 132 130 137 134.5 –

Intrinsic
vibrations of
Me~H2O!6

21 HAg

Eg

Eg

Ag

206 206 207 214 204 203
227 227 228 234 224 225

276 276 278 314.5 302 300

380 401 380 391.5 380 380

Intrinsic
vibrations of
SiF6

22 HEg

Ag

Eg

Ag

392.5 393 395 394.5 403.5 –
400 381 401 403 398 405

462 462 462 463 468.5 462

658 657 658 659 665.5 661

Rotational
vibrations of
H2O~D2O! 5

Ag

Ag

Eg

Eg

Eg

Ag

485.5 486 490 485.5 353.5 –
– – – 505.5 369 –

;555 – – 573 449.5 –
583 ;590 587 604 484 –
679 680 676 704 527.5 –
740 ;740 – 767 578 –

989 989Low Temp. Phys. 23 (12), December 1997 Eremenko et al.
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tions of the Me~H2O!6 complex in Ni- and Zn-containing
crystals differ significantly, while the frequencies of th
complex SiF6

22 have close values. In addition, in comparis
with the data presented in Ref. 11 containing the most co
plete information on the vibrational spectrum, two lines~at
1616 and 1640 cm21! of deformational vibrations of H2O are
observed as well as a line at a frequency;555 cm21 corre-
sponding to the rotationalEg-vibration of H2O ~see Table I!.
The missing line corresponding to theAg rotational vibration
of an H2O molecule~see Table 1! apparently lies in the re
gion 480– 500 cm21, but it is difficult to single out this line
due to the complex form of the line at 485.5 cm21 ~see Figs.
1a and c!.

It should be noted that the Raman spectra of
ZnSiF6•6H2O as well as NiSiF6•6H2O crystals10 exhibit four
narrow lines in the lattice vibration regions, indicating a hi
extent of orientational ordering at low temperatures.

Raman spectra for a NiSiF6•6(D12xHx)2O crystal
~which will be henceforth denoted by NiSiF6•6D2O! have a
more complex structure. In view of incomplete substituti
of deuterium for hydrogen, the spectra contain rotational
brations of D2O, HOD, and H2O ~see Fig. 1e!, deformational
vibrations of D2O at 1196 cm21(Ag) and 1207 cm21(Eg), of
HOD at 1435 cm21(Ag) and 1446 cm21(Eg), and of H2O at
1635 cm21(Eg) as well as valence vibrations of D–O~in the
range 2500– 2650 cm21! and H–O ~in the range
3450– 3550 cm21!. An estimate of the extent of deuteriza
tion of the crystal was obtained from the ratio of intensit
of the spectral lines corresponding to deformational vib
tions of D2O, HOD, and H2O and amounts to 75–80% o
deuterium (x50.2– 0.25). Incomplete substitution of D fo
H is manifested in depolarization of lines corresponding
valence vibrations of H–O and D–O. In contrast to stric
polarized lines in the NiSiF6•6H2O crystal, the lines of rota-
tional vibrations of D2O, HOD, and H2O are predominantly
polarized.

Processing of Raman spectra as a superposition
Lorentzians on a microcomputer made it possible to de
mine the frequencies of all rotational lines of D2O ~see Table
I! and most of lower-intensity lines of HOD and H2O. All
the lines attributed in Ref. 10 to vibrations of H2O in a
NiSiF6•6H2O crystal are as a result of deuterization to t
low-frequency region are displaced to the low frequency
gion as a result of deuterization, which confirms the corre
ness of their interpretation.

Substitution of deuterium leads to a considerable
crease in frequencies of all intrinsic vibrations of t
Ni~D2O!6

21 complex~see Table I!. The effect of deuterization
on the frequencies of intrinsic vibrations of the SiF6

22 com-
plex is worth noting. For example, the lines at frequenc
463 and 659 cm21 for the NiSiF6•6H2O crystal are displaced
by 6–7 cm21 to the high-frequency region as a result
deuterization~see Table I!. A similar increase in the frequen
cies of corresponding intrinsic vibrations of the TiF6

22 com-
plex was observed in MnTiF6•6D2O and ZnTiF6•6D2O
crystals.12 The asymmetric shape of the line at frequen
665.5 cm21 in a NiSiF6•6D2O ~Fig. 1e! is apparently associ
ated with different surroundings of the SiF6

22 complex in the

990 Low Temp. Phys. 23 (12), December 1997
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case of incomplete deuterization~from completely D2O en-
vironment to completely H2O environment with different
probabilities!.

Disordering in H and D is not manifested in the spe
trum of lattice vibrations. Four polarized and narrow lin
~whose half-width is determined by the apparatus functi!
are observed in the frequency range 0–150 cm21 ~see Fig.
1e! as in a NiSiF6•6H2O crystal. Deuterization leads to
displacement of two of lattice vibrations to the low
frequency region~see Table I!.

Small damping of lattice vibrations in the crystals und
investigation at low temperatures indicates a high degre
their orientational ordering. A comparison of the spectra
these crystals has made it possible to classify vibrations
ambiguously.

Temperature Behavior of Raman Spectrum

As in the case of NiSiF6•6H2O crystal, the heating of
ZnSiF6•6H2O and NiSiF6•6D2O crystals leads to qualitative
and quantitative changes in the Raman spectrum, which
manifested most strongly in the low-frequency spectral
gion ~Fig. 2!. As the temperature increases, the spectra w
XX, YY, andZZ components of the Raman tensor for all t
three compounds exhibit an increase in the intensity of s
tering in the low-frequency region adjoining the excitatio
line and the emergence of a new linev2 denoted bynR in
Ref. 10. In spectra with nondiagonal Raman tensor com

FIG. 2. Temperature behavior of Raman spectra with the Raman te
componentXX in the range of lattice vibrations in NiSiF6•6H2O ~a!,
NiSiF6•6D2O ~b!, and ZnSiF6•6D2O ~c!crystals at various temperaturesT,
K: 300 ~curve 1!, 280 ~curve 2!, 260 ~curve 3!, 240 ~curve 4!, and 215
~curve 5! ~a,b!, 220 ~curve 5! ~c!, 200 ~curve 6!, 185 ~curve 7! ~a,b!, 180
~curve7! ~c!, 155~curve8! ~a,b!, 160~curve8! ~c!, 135~curve9! ~a,b!, 140
~curve 9! ~c!, 115 ~curve 10! ~a,b!, and 120~curve 10! ~c!. The spectral
resolution is 3 cm21.

990Eremenko et al.
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nents, no linev2 and no low-frequency wing are observe
but the background scattering increases upon heating. It
be seen from Fig. 2c that an additional low-frequency l
emerges in Raman spectra of the ZnSiF6•6H2O crystal with
diagonal Raman tensor components at a lower tempera
(;120 K).

Temperature evolution of the Raman spectra
NiSiF6•6H2O and ZnSiF6•6H2O crystals is qualitatively the
same~Figs. 2a and c!. The processing of spectra on a micr
computer is described in detail in Ref. 10. Figure 3 shows
temperature behavior of lattice vibration frequencies as w
as Ag(658 cm21) and Eg(462 cm21) modes of intrinsic vi-
brations of the SiF6

22 complex, Ag(206 cm21) and
Eg(227 cm21) modes of the Zn~H2O!6

21 complex, and the
temperature behavior of the rotational mode of H2O
(679 cm21). All the peculiarities in the temperature behavi
of vibrational frequencies observed earlier10 for the
NiSiF6•6H2O crystal also take place for the ZnSiF6•6H2O
crystal.

Experiments with the NiSiF6•6D2O crystal revealed tha
the substitution of deuterium for hydrogen virtually did n
affect the Raman spectra of lattice vibrations~see Figs. 2a
and b!. The temperature corresponding to the emergenc
an additional linev2 and its evolution are the same as for t
NiSiF6•6H2O crystal. The temperature behavior of freque
cies of lattice vibrations, intrinsic vibrations of th
Ni~D2O!6

21 complex, and rotational vibration of D2O ~Fig. 4!
is the same as that observed in a nondeuterized crystal10 It
can be seen from Fig. 4 that the line at frequency 665.5 cm21

FIG. 3. Temperature dependence of vibrational frequencies in
ZnSiF6•6H2O crystal:Ag vibrations~d! andEg vibrations~s!. The error in
frequency measurements does not exceed the size of the symbols.
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~completely symmetric vibration of the Si-F6
22 complex! also

exhibits an anomalous temperature behavior, which, h
ever, differs from that of a nondeuterized crystal in which t
vibrational mode frequency (659 cm21) increases upon heat
ing to T.220 K.10 As a result of heating, the shape of th
line in a deuterized crystal becomes symmetric.

It was noted earlier10 that additional lines in the Rama
spectrum of crystals can appear as a result of PT. It can
seen from Fig. 2 that additional peculiarities are observ
experimentally in the low-temperature spectra at much low
temperatures than those corresponding to the second-o
PT for NiSiF6•6H2O and ZnSiF6•6H2O crystals ~220 and
200 K, respectively!.2,3 Moreover, the intensity of the linev2

increases monotonically with temperature without exhibiti
any peculiarities in this temperature range. These facts c
firm that the emergence of an additional line is associa
with the evolution of orientational disorder and is not t
result of a PT.

Model of Orientational Disorder

According to x-ray data,1 octahedral SiF6
22 ions in fluo-

rosilicates under investigation at room temperature can
cupy~with different probabilities! two orientational positions
that are not associated with a symmetry element and that
be transformed into each other by rotation around the axisC3

through an angle;30°. As a result, the potential function o
rotational vibrations of SiF6

22 ions must have two minima
having different depths and separated by a potential ba

eFIG. 4. Temperature dependence of vibrational frequencies in
NiSiF6•6H2O crystal:Ag vibrations~d! andEg vibrations~s!. The error in
frequency measurements does not exceed the size of the symbols.
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V2 ~Fig. 5!. The lines in Raman spectra attributed to ro
tional vibrations in these wells are obviously polarized ide
tically, but may have different frequencies.10

At low temperatures, only the energy levels of t
deeper potential well are populated, the crystals are orde
and the Raman spectra contain a line of frequencyv1

~68 cm21 for a NiSiF6•6H2O crystal; see Table I!. In the
course of heating, the energy levels in the potential w
separated from the deeper well byDE become populated a
a result of thermal activation~see Fig. 5!. The spectra acquire
an additional line of frequencyv2 , whose intensity depend
on the population density of the metastable state. The re
ation peak10 in this model is due to thermally activated jump
of SiF6

22 ions through the barrierV2 and is observed in the
Raman spectra with the same components of the Raman
sor as for vibrations in the potential wells~see Fig. 2!.

The frequenciesv1 and v2 can be different due to a
change in the moments of inertia of octahedral comple
SiF6

22 as well as due to a change in force constants. It w
found1 that the lengths of hydrogen bonds O–H...F and
angles formed byH–O–H bonds differ significantly for two
orientational positions of octahedrons. At the same time,
tahedrons in these positions differ insignificantly in sha
and parameters.1 A detailed analysis of the shape of the lin
at frequency 659 cm21 for the NiSiF6•6H2O crystal10 and
658 cm21 for the ZnSiF6•6H2O crystal, which is identified
with the Ag ‘‘compression–expansion’’ mode of the octah
dron SiF6

22, revealed that it can be described satisfactorily
a Lorentzian at any temperature. The lack of symmetry
this line indicates that the splitting that can emerge up
heating due to the difference in the shape of octahedron
small, which is in accord with the results obtained in Ref.
The anomalous temperature dependence of the frequen

FIG. 5. Schematic representation of a segment of the potential functio
rotational vibrations of the SiF6

22 complex around the crystallographic ax
C3 .

992 Low Temp. Phys. 23 (12), December 1997
-
-

d,

ll

x-

n-

s
s
e

c-
e

y
r
n
is
.
of

this mode~see Fig. 3! in the crystals under investigation ca
be due to a change in the force constant of the Si-F bond
apparently reflects the change in the temperature behavio
the crystal lattice parameters observed in Refs. 2 and
T.220 K for a NiSiF6•6H2O crystal and atT'200 K for
ZnSiF6•6H2O.

The estimated value of the potential barrierV1 for 120°
reorientations of the SiF6

22 ion in NiSiF6•6H2O and
ZnSiF6•6H2O crystals is 5.5 kcal/mole (;2770 K).4 The
barrier heightV2 can be estimated from the temperature d
pendence of the line widths of the vibrational spectrum sin
reorientational motion is one of the reasons behind th
broadening. It is well known that broadening is described
the formula

G~T!5G01aT1be2V/kT,

whereG0 is the line half-width at a low temperature. Figu
6a shows the half-widthsG of the lines ofAg lattice vibra-
tions as functions of temperature, while Fig. 6b shows
dependence of ln(G2G0) on reciprocal temperature for thes
vibrations as well as for intrinsic vibrations of the complex
Ni~H2O!6

21 and SiF6
22 and rotational vibrations of H2O. It

can be seen that the linear contribution is much smaller t
the exponential one, and the broadening
150 K,T,300 K can be satisfactorily described by an e
ponential~see Fig. 6!. The barrier height obtained from th
temperature dependence of half-width of the linev2 differs
significantly from the values obtained from the broaden

of

FIG. 6. Temperature dependence of line half-width of lattice vibrations~a!
and dependence of the logarithm of half-width on reciprocal temperature~b!
for certain vibrations in the NiSiF6•6H2O crystal:v2 ~d!, v1 ~s!, the line
at frequency 134.5 cm21 ~Ag of lattice vibrations! ~L!, Ag of intrinsic vi-
brations of the SiF6

22 complex (659 cm21) ~�!, Ag of intrinsic vibrations of
the Ni~H2O!6

21 complex (214 cm21) ~f! ~symbols on the curve are lowere
by unity along theY-axis!, andEg of rotational vibration of H2O ~h!.
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of other lines. This confirms the hypothesis that the ad
tional line v2 is associated with rotational vibrations of th
octahedron SiF6

22 in the metastable state~see Fig. 5!. A simi-
lar behavior of line broadening is observed for NiSiF6•6D2O
and ZnSiF6•6H2O crystals. The potential barrier height o
tained from the broadening of thev2 line is (210620),
(170620), and (190620)K for NiSiF6•6H2O,
ZnSiF6•6H2O, and NiSiF6•6D2O crystals, respectively. Th
estimate of the barrier height obtained from the broaden
of other lines lies in the intervals 400–480, 410–500, a
400–480 K for these crystals.

Figure 7 shows the temperature dependence of the
gral intensities of lattice vibration lines in the NiSiF6•6H2O
crystal for Raman spectra with Raman tensor compon
XX andZZ. Anomalous behavior is observed for the inte
sity of not only the linev2 , but also of thev1 line. The
temperature behavior of the intensity of theEg mode ~
92.5 cm21; see Table I! and theAg mode~134.5 cm21, see
Table I! with the normal temperature dependence is a
shown for comparison. It can be seen from Fig. 7 that thev1

and v2 lines have qualitatively similar temperature depe
dences of intensities for both polarizations. The normali
tion of intensities of the lattice vibrational spectra was c
ried out for all temperatures and experimental geometriesXX
andZZ to the intensity of theAg intrinsic vibrational mode
of the SiF6

22 complex with frequency 659 cm21, which is
characterized by a normal temperature dependence of in
sity. In addition, the normalization ofZZ-spectra was veri-
fied from the behavior of the intensity of the line

FIG. 7. Experimental and theoretical temperature dependences of line i
sities in the NiSiF6•6H2O crystal:XX Raman spectra~a!, ZZ Raman spectra
~b!; v2 ~d!, v1 ~s!, the lines at frequency 92.5 cm21 ~n! and at frequency
134.5 cm21 ~L! ~Table I!. Solid curves are calculated by formulas~3! and
~4!.
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The value of the parameterDE can be determined from

the ratio of the intensities of thev1 and v2 lines. The ex-
pressions for the concentrationsN1 andN2 for two different
orientational positions of the octahedral ion SiF6

22 and for
intensitiesI 1 and I 2 of the v1 andv2 lines in the proposed
model were obtained in the harmonic approximation13:

N15c expS 2
hv1

2kTD F12expS 2
hv1

kT D G21

, ~1!

N25c expS 2
DE

kT DexpS 2
hv2

2kTD F12expS 2
hv2

kT D G21

.

~2!

I 15K1c expS 2
hv1

2kTD F12expS 2
hv1

kt D G22

, ~3!

I 25K2c expS 2
DE

kT DexpS 2
hv2

2kTD
3F12expS 2

hv2

kT D G22

. ~4!

wherec is the factor responsible for redistribution of conce
trations with orientationsN1 and N2 upon heating, which
was obtained from the conditionN5N11N251:

c5H expS 2
hv1

2kTD F12expS 2
hv1

kT D G21

1expS 2
DE

kT DexpS 2
hv2

2kTD
3F12expS 2

hv2

kT D G21J 21

;

andK1 andK2 are coefficients independent of the vibration
quantum number. The expression forDE in this case has the
form

DE

kT
5 ln

I 1

I 2
2 ln

K1

K2
2 ln

exp~2hv1/2kT!

exp~2hv2/2kT!

22 ln
12exp~2hv2 /kT!

12exp~2hv1 /kT!
. ~5!

Figure 8a shows the right-hand side of expression~5!
~without the contribution from the value of ln(K1 /K2)! as a
function of reciprocal temperature. We assume t
ln(K1 /K2) is independent of temperature and gives only
constant shift of the curve in this case. The intensitiesI 1 and
I 2 were taken from the spectra with theXX Raman tensor
component since the integral intensities of these lines in
indicated experimental geometry can be determined wit
smaller error than for spectra with theZZ component. As-
suming thatDE is constant for low concentrationsN2 and
using formula~5!, we can determineDE from the slope of
the straight line in Fig. 8a. The deviation of experimen
points from the straight line upon heating can indicate t
the value ofDE changes.

n-
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In the temperature range 135–215 K in which the inte
sity ratio is described by a straight line on a semilogarithm
scale~see Fig. 8a!, i.e., for a constantDE, we can calculate
ln(K1 /K2) by using formula~5!. Substituting the value o
ln(K1 /K2) into ~5!, we determineDE for the entire tempera
ture interval. The results of such calculations for
NiSiF6•6H2O crystal are illustrated in Fig. 8b. The sol
curve corresponds to the averaged value ofDE for experi-
mental values shown by circles. Using the averaged valu
DE ~see Fig. 8b!, we calculate by formulas~1! and ~2! the
concentrationsN1 andN2 whose temperature dependence
shown in Fig. 8c.

Similar calculations were made for theXX Raman spec-
tra for ZnSiF6•6H2O and NiSiF6•6D2O crystals for which the
parameterDE exhibits the same temperature dependence
for the NiSiF6•6H2O crystal, but the parameterDE for the
Zn-based compound becomes variable aboveT'200 K,
while its value below this temperature amounts to 520 K

The values ofN2 andN1 obtained at room temperatur
are 0.33/0.67, 0.37/0.63, and 0.35/0.65 for NiSiF6•6H2O,
ZnSiF6•6H2O, and NiSiF6•6D2O crystals, respectively an
are in good agreement with the values obtained from x-
data.1

The temperature dependence ofDE was obtained from
the intensity ratio. In the temperature interval where
value ofDE is constant, we calculate the intensities by us
formulas~3! and ~4! ~to within the coefficientsK1 andK2!.
Comparing these values with experimental intensities
these six temperatures~135–215 K!, we determine the aver
age value of the scaling factorsK1 andK2 . Using formulas
~3! and ~4!, we determine the line intensities in the enti
temperature range from the averaged value ofDE ~see Fig.
8b!, K1 , and K2 . The results of calculations for theXX
Raman spectra of the NiSiF6•6H2O crystal are shown in Fig
7a by solid curves.

FIG. 8. Temperature dependence of the model parameters fo
NiSiF6•6H2O crystal: logarithms of the intensity ratio as functions of rec
rocal temperature~a!, difference in energyDE between the minima of po-
tentials~b!, and concentrationsN1 andN2 ~c!.
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centrations were calculated in the harmonic approximat
i.e., all the formulas were obtained for a harmonic oscilla
~with an infinite number of energy levels!. In addition, we
assume that the vibrationsv1 andv2 do not interact. It can
be seen from Fig. 5 that in the real case we must take
account a finite number of transitions in both wells of t
potential function as well as transitions occurring above
barrierV2 . The latter have a lower frequency and cannot
determined from experiments unambiguously in view of t
presence of a high-intensity relaxation peak and the linev2

in the spectra. This can lead to lower calculated values ofv2

since the profile of this line contains a line with a low
frequency corresponding to transitions aboveV2 . Naturally,
such an approximation introduces an error in the determ
tion of DE and theDE(T) dependence at high temperature

The temperature range in which the quantityDE be-
comes variable ~T'220 K for NiSiF6•6H2O and
NiSiF6•6D2O crystals andT'200 K for ZnSiF6•6H2O! co-
incides with temperatures at which the thermal expans
coefficient for the crystal lattice changes.2,3 Such a behavior
of the parameters can be due to the formation of a la
number of octahedrons in the metastable orientation posi
as well as due to thermal activation of transitions above
barrierV2 ~see Fig. 5!.

CONCLUSIONS

An analysis of Raman spectra in crystals with isom
phic substitution has made it possible to identify all the o
served lines. It was found that NiSiF6•6H2O and
ZnSiF6•6H2O crystals are ordered at low temperatures.

The obtained results do not confirm the existence o
second-order phase transition in the NiSiF6•6H2O crystal at
T'220 K and in the ZnSiF6•6H2O crystal atT'200 K.

The evolution of orientation disorder in the crystals u
der investigation is associated with thermal population of
metastable orientational state of SiF6

22 ions. The concentra-
tion of ions in the metastable state increase upon heating
may cause a decrease in the energy differenceDE between
the ground state and the metastable state, which in turn
lead to a change in the elastic properties of crystals. T
anomalies in the temperature expansion of the lattice of
NiSiF6•6H2O crystal atT.220 K2 and in the ZnSiF6•6H2O
crystal at T.200 K,3 whose temperatures coincide wit
those at which the parameterDE becomes variable, are prob
ably associated just with this process.

The temperature dependences of concentrationsN1 and
N2 were calculated on the basis of the obtained experime
data on the temperature behavior of frequencies and inte
ties of the lines for two orientational positions of the SiF6

22

complex in the crystals under investigation. In the abo
approximations, the values ofN1 andN2 obtained from Ra-
man spectra at room temperature are in good agreement
the x-ray data.1

The authors are grateful to B. Ya. Sukharevskii and V.
D’yakonov for single crystals presented for our experime
and for their interest in this research.
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A new dynamic mechanism of topological charge creation in a commensurate one-

dimensional charge density wave near the contact with a normal metal

A. S. Rozhavsky, Yu. V. Pershin, and A. S. Kovalev

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted July 11, 1997; revised August 3, 1997!
Fiz. Nizk. Temp.23, 1325–1330~December 1997!

The dynamics of conversion of conduction electrons into topological solitons of a charge density
wave ~CDW! commensurability in an external electric field is investigated. A novel
mechanism of initiation of a nonlinear CDW current in the vicinity of the interface between a
CDW and a normal metal is revealed and explained. The nonlinear current is produced
by the conduction solitons created by the moving profile of the order parameter, formed during
the conversion of electrons into collective phase excitations of a CDW. The field
dependence of the current is of threshold nature and has no analogs in the bulk mechanisms of
CDW nonlinearity. © 1997 American Institute of Physics.@S1063-777X~97!01012-8#
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It is well known that several quasi-one-dimensional m
als are transformed into the Peierls–Fro¨hlich phase as a re
sult of cooling, which is accompanied by the emergence o
lattice superstructure along the unidimensionality direct
with a periodp/kF . The static lattice deformation modulu
creates a gap 2D in the one-electron spectrum, while th
phase of the order parameterD exp(iw) is electrically active
and causes a collective response of a Peierls insulator~PI! to
an external field. The deformations of the lattice are cal
charge density waves~CDW!.

Study of quasi-one-dimensional conductors with CD
is interesting primarily because they exhibit nonlinear el
trical conductivity in very weak electric fields~see, for ex-
ample, the reviews in Refs. 1 and 2!. The nonlinear conduc
tivity is of the threshold type and has always been attribu
to processes occurring in the bulk of the conductor. There
two theoretical approaches to this phenomenon, viz.,
classical approach and the quantum approach.1,2 In both ap-
proaches, the charge transport in a CDW is presented
collective mode, i.e., the Peierls–Fro¨hlich order paramete
phase, when the charge fluctuationsdr and the CDW current
j are described by Fro¨hlich relations for a single chain~see,
for example, Ref. 1!:

dr5
e

p

]w

]x
, j 52

e

p

]w

]t
, ~1!

wherex is the direction of unidimensionality.
The CDW on a single chain is always described by

sine-Gordon~SG! equation. The SG solitons play the role
charge carriers.

In the classical model, the nonlinearity of electrical co
ductivity has the form1

j ;AE22ET
2, E.ET . ~2!

The threshold fieldET is connected with the bulk term in th
SG equation.

The quantum model connects the nonlinearity with
tunnel creation of soliton–antisoliton (s s̄) pairs by an elec-
tric field, and the current is defined as2
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The threshold fieldET is determined by the Coulomb
interaction between a soliton and an antisoliton.

However, the modern state of the experiment does
permit us to give preference to any of the models, hence b
approaches are equivalent at present, and probably com
ment each other.

It has become clear recently that an important role in
conductivity of CDW is played by contact phenomena at
interface between a CDW and a normal metal, where
conduction electron current is transformed into the collect
CDW current. Qualitatively, the need for the existence o
conversion channel is dictated by the instability of a fr
electron or hole in a quasi-one-dimensional Peierls lattice
self-trapping with the formation of a collective charge.3,4

This channel causes a finite conduction through the me
CDW interface at temperaturesT!D, when the conven-
tional one-electron current is exponentially suppresse
@;exp(2D/T)# ~see, for example, Ref. 5!.

It is not obvious beforehand whether an additional no
linearity emerges in the conversion channel. This problem
studied in the present work where it is shown that a nonlin
conductivity emerges in a simplified one-dimensional mod
This conductivity has a structure different from Eqs.~1! and
~2!:

j ;
AE2ET E

A1AE2ET

, ~4!

where ET is defined by the bulk term in the sine-Gordo
equation like in the classical model.

Investigations of the dynamics of the conversion proc
were started in Refs. 6 and 7. An instanton mechanism
proposed in Ref. 6 for the transition of free charges from
chemical potential level at the metal-CDW interface to the
condensate~valence band! with the formation of a collective
charge~CDW phase profile! localized at distances of the or
der of j05\VF /D from the interface. Transition to the con
densate is always made by two electrons, which is remi

996120996-04$10.00 © 1997 American Institute of Physics
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outer boundary relative to the PI. Unlike the case of sup
conductors in whichD is the only parameter determining th
space and time dynamics of the order parameter, three w
defined time scales exist in a PI2,3,6,7:

~1! the time of formation of the quasiparticle spectru
tS;\/D;

~2! the time of deformation of the order parameter modu

tD;v̄21, wherev̄ is of the order of Debye frequenc

v̄!D;
~3! the phase evolution time of the order parame

tw@tD@ts .

These parameters make it possible to formulate and c
sistently solve the problem of transformation of electr
charge through the interface. A quasiparticle level is form
on gap fluctuation~instanton! over a timets . The fluctuation
itself takes place over a timetD , the bound level is absorbe
by the valence band, and the initial conditio
dw5w(x5`)2w(x50)52p is formed for the problem on
the evolution of the phase from the boundaryx50 towards
x.0. This condition corresponds to a charge 2e @see Eq.
~1!#. A steadily moving CDW profile is obtained from th
initial condition in timetw .7

Earlier, we studied7 the evolution of the initial condition
in a cluster of the nearest chains carrying a noncomme
rate CDW. The role of the bulk term in the sine-Gord
equation was played by interaction of the type sin(wi2wi11)
between chains. In the equation for a commensurate CD
each chain acquires an additional term sin(Mwi), whereM is
an integer.1,2 Accordingly, a topological soliton has a
asymptotic formdw5w(x5`)2w(x52`)52p/M . Such
a soliton is a stable carrier of the fractional charge 2e/M in
a CDW.2 It is certainly interesting to study the evolution o
the initial conditiondw52p in M solitons and to study thei
dynamics in an electric field. Such a problem is formula
and solved in the present work for a single chain.

In Ref. 7, we reduced the Cauchy problem for a CDW
an exactly integrable problem and solved it by the inve
scattering problem method. In an external electric field,
exact integrability is violated on the right-hand side of t
sine-Gordon equation, and the equation is solved num

cally. It was found thatss̄pairs are created in an electric fie

with an intensity inversely proportional to timet̄ ~14!,
which determines the current~4!.

We believe that the nonlinear conductivity~4! can be
explained as follows: the initial CDW profile at the interfa
has an energy of the orderD which is considerably highe
than static energy of a topological soliton carrying a cha
2e/M . Away from the interface, nonlinear deformations a
created in the moving front region from the high-energy i
tial profile in a time t0 . During a time of the order of
A2d/(E2ET) ~d is the soliton width!, these deformations
are transformed into topological solitons with an asympto
form dw52p/M , or antisolitons withdw522p/M ~de-
pending on the direction of the electric field! moving behind
the front along or against the field. Accordingly, the to
time for the creation of a stable topological charge62e/M
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termines the number of charges created, i.e., the nonlin
conductivity ~4!.

A similar dynamic effect of multiple creation of domai
walls for a moving domain boundary was studied in Ref.

MODEL AND NUMERICAL ANALYSIS

Suppose that a CDW occupies a semi-axisx>0. The
Lagrangian of the CDW in a field is defined as~see, for
example, Ref. 2!

L5
1

p\VF
H D2

v̄2 S ]w

]t D 2

2
\2VF

2

4 S ]w

]x D 2

1
D2

v̄2

2

M2 v0
2 cosMw1

e

p
\VFE~w2w0!J , ~5!

wherev0 is the commensurability frequency. Here,w0 is the
phase forx→6`. Such a form of notation for the last term
in Eq. ~5! takes into account the fact that the electric fie
acts on CDW only in the region whereu]w/]xuÞ0.

In a nonzero fieldE, the quantityw0 is renormalized as
seen from the equation of motion, which can be represen
in dimensionless units

t5v0tA2/M , y5xS \VFv̄

2Dv0
AM /2D , ~6!

for the variablex5w2w0 .
The equation of motion has the form

]2x

]t22
]2x

]y2 1sin M ~x1w0!5«, ~7!

where

«5
e

2p
\VF

M v̄2

D2v0
2 E ~8!

andw05arcsin«.
Equation~7! is supplemented by the initial and bounda

conditions corresponding to the above hierarchy of time
the conversion problem:

]x

]tU
r 50

50, ~9a!

x~t50!522pu~j̄02y!2w08~«!, ~9b!

x~y50!522p2w0~«!, ~9c!

where j̄ 0 is the coherence lengthj05\VF /D in dimension-
less variables~6!, j̄ 0!1, andu(y) is the Heaviside function.

Note that the small scale of variation of the initial co
dition j̄ 0!1 cannot emerge formally in the solution of
purely phase problem with Lagrangian~5! since the latter
corresponds to the long-wave approximationuw8u!j0

21.2 It
was mentioned above~see Ref. 7 also! that such an initial
condition is the result of joining of the instanton solutio6

formed during the timetD with a long-wave description
valid for t>tw .
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Equation ~7! with the boundary conditions~9! was
solved numerically by the method of finite differences. T
difference equation corresponding to Eq.~7! has the form

x i 11,k1x i 21,k22x i ,k

~Dt!2 2
x i ,k111x i ,k2122x i ,k

~Dy!2

1sin M ~x1w0!5«, ~10!

where Dt is the time step,Dy is the coordinate step, an
x i ,k5x(Dt i ,Dyk). Equation~10! was solved for different
values ofDt, Dy, andM , and under different initial condi-
tions ~9!. Typical solutions have been constructed in Figs
2, and 3. The number of sites (k) is 10000. It was found tha
a change in the initial conditions~9! has no significant effec
on the solution of Eq.~7!.

In a weakly retarding fieldu«u!0.1 ~Fig. 1!, the initial
profile moving against the field loses stability after som
time and simply splits into commensurability solitons. T
latter are retarded, reverse their direction, and eventu
gather nearx50. Radiation propagating with the maximu
speed is observed. With increasing field, charge creation
the field is observed additionally~Fig. 2!.

In an accelerating field, the initial condition trivially de
composes into topological solitons with time for«,0.1,
while the field merely affects the time of formation of so
tons and their velocity. Movement of radiation at the high
velocity was observed in front of the profile. For«.0.1,
charge creation by the field is observed~Fig. 3!. A similar

FIG. 1. Evolution of the initial condition in a retarding field«520.05,
M52:t1,t2,t3,t4,t5,t6,t7,t8.
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effect was also observed in Ref. 9 during a numerical ana
sis of the motion of Josephson vortices in a system w
dissipation. However, the difference lies in that, instead of
infinite number, we are looking at a finite number of creat
charges, this number depending on the field~Fig. 4!. The
dependence of the charge creation time on the field is sh
in Fig. 5 and is approximated well by the law
t̄ 5A1B/A«2«T.

A reversal of the sign of created charges upon a cha
in the direction of the field unambiguously indicates that t
mechanism of their formation is polarization: for«.0, the
soliton moves along the field, and the antisoliton mov
against the field; for«,0, s and s̄ interchange their places

The time of formation of free charge carriers is es
mated as follows.

Suppose that, in a CDW profile moving with a prac
cally limiting velocity, nonlinear fluctuations produce a d
formation of the front withdw50 over a timet0 . In the
absence of a field, such a process does not lead to ch
creation since such a deformation moves with the front a
is not polarized.

We shall assume that, in the presence of a field«.0, the
leading front of the created deformation continues to mo
with the CDW front with a limiting velocity, while the trail-
ing front gets retarded by the field and is ultimately tran
formed into a soliton withdwS52p/M , which subsequently
reverses its direction. The equations of motion for the le

FIG. 2. Evolution of the initial condition in a retarding field«520.3,
M53. CDW solitons with an asymptotic form 2p/3 are produced from the
initial condition (t1) with increasing time:
t1,t2,t3,t4,t5,t6,t7,t8.

998Rozhavsky et al.
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ing front x1 and the trailing frontx2 of deformation have
the form

~1 !:x15C0~t2t0!1x0 ,

~2 !:x25
~«2«T!t2

2
1lt1C, ~11!

whereC0 is the maximum velocity in the system,«T is the
threshold field, while the constantsl andC are determined
from the conditions

FIG. 3. Evolution of the initial condition in an accelerating field«50.3,
M53. CDW solitons with an asymptotic form 2p/3 are produced from the
initial condition (t1) with increasing time.t1,t2,t3,t4,t5,t6.

FIG. 4. Field dependence of the number of topological solitons crea
«.0, M53.
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x1~t0!5x0 ,
]x2

]t U
t5t0

5C0 . ~12!

As soon as the field«2«T separates the centersx1 and
x2 by a distance of the order of the kink widthd over a time
t̄ , we can see that the trailing profile of the created def
mation moves like a free charge, i.e.,

d5x12x25H 2
t̄ 2

2
1t0t̄2

t0
2

2 J ~«2«T!. ~13!

From the last equation, we obtain

t̄5t01A2d/~«2«T!, ~14!

as is indeed observed in the numerical experiment~Fig. 5!.
The quantityt̄ 21(«) defines the intensity of free charge cr
ation, i.e., the current~4!.

Thus, we have discovered and explained a new mec
nism of formation of the nonlinear CDW current near t
interface with a normal conductor. This mechanism supp
ments the known mechanisms studied for an infinite CDW
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d,

FIG. 5. Dependence of the topological charge creation time on fieldu«u.
Numerical method for«.0 ~j!; numerical method for«,0 ~d!, results
obtained by using formula~14! ~dark triangles!.
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