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A theoretic analysis of magnon-induced damplhgf quasiparticle states in the normal phase of
doped copper-oxide highz; materials is developed, based on a microscopic model which
accounts for the specificl2 structure of their electron and magnon spectra. Among the obtained
energy and temperature dependenciek @i different regimes, the most peculiar is the
anomalously early onset of linear temperature dependEncE with a doping-independent
coefficient. © 1998 American Institute of PhysidsS§1063-777X98)00107-§

1. INTRODUCTION appearance of metallic conductivity in them; hence, at low
concentrationc of dopants, the HTSC compounds are still
The studies of coexistence and interplay between magypical doped semiconductors with shallow acceptor levels
netic and electric properties of layered copper oxides are ongnd hopping type of conductivit§in particular, for the lan-
of the most immediate problems in high-superconductiv-  thanum system this is true @t<5%, while the acceptor
ity (HTSO. The general scenario for development of phasebinding energy is:~35 meV).>0 It follows from the afore-
states in these systems with their doping was already estalyiq that the proper theoretic description of the breakdown of
lished from the very early experimental datahe initial  magnetic order and of the insulator-metal transition in HTSC
cpmpounds are AFM-ordered Mott msulators with suffi- (at least, for smalt) perhaps cannot be based on commonly
ciently high Neel temperaturdy, but this long-range mag- used translationally-invariant model&he very number of

netic order is very rapidly lost _under S”?a” dopingas evi- such models, including different magnetic mechanisms of
denced by a sharp drop @i with c (until the AFM phase o . .
gralrlng, is too long to be counted, many of them are dis-

g e by e o e e b 0
pIn-1guic p P y At the same time, attempts have been n&d&see also

metal transition. However, the metallic phase of HTSC com- fs. 18 and 19t ider th bl tarting f
pounds cannot be considered as ordinary paramagnetic o%e S: . a:jn i ° (;on5| e; d.esz promemi, s ?]r mgt rom
in the usual sense, since it still preserves the short-rang e primordial importance of disorderéhpurity) character

AFM order which is clearly revealed in its either static and©' Weakly doped HTSC compounds. Initially, mainly due to
dynamic properties(see, e.g., Refs. 2-6 and also theth_e change of the oxygen compongnt, the acceptor levels
reviews ). It should be stressed that, in copper-oxide mateWith localized holes on them appear in AFM-ordered cuprate
rials, unlike common magnetic metals, there are two differPlanes(this localization is greatly facilitated by the striking
ent kinds of fermions responsible for the conducting and?D character of HTSC electronic propertieat low c, these
magnetic properties. The conductivity is mainly determined impurity” holes give rise to a disordered spin subsystem on
by the charge carrieroles, either mobile or localizg¢érom  Which the regular spin excitationgnagnons are scattered
the doping, whereas the strong magnetic correlations ar@nd hence damped. As a result, the long-range magnetic or-
mainly produced by the localized “core” spins. Also, these der gets destroyed and there appears such a minimum value
two kinds of particles are spatially separated: the carrier&min Of wavevector that the magnons with<k,, cannot
predominantly occupy the oxygen sites, and the core spingxist because of strong damping. At lower concentrations
are those at copper sites. Notably, the destroying of longthis value is estimated ds,,~ca %, but at higher concen-
range magnetic order in cuprate Cuf@yers precedes the trations(metallic ones includingsee Ref. 2)) it is changed
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for kmmfv\/c/cf)\gl, where Az is the Bloch domain wall H=Hg+Hs+Hg g,
width andc; is the concentration where the decayifig(c)
meets the freezi_ng temperature_ of spin-glass_ transi_tion. HeI:E @y A U_A_s 2 ei(k_kl)pa:gak'a’
Hence the material can be considered magnetically disor- ko o N ‘ '
dered at distances> k;ﬁ,zgmag, whereé,,4is the magnetic
corrglation length. This finite length is determined by the H=>, Qj(q)ba—jbqj: 1)
doping rather than by the temperature. Nevertheless, mag- a.]
nons withk> Kk, still exist and the magnetic order at dis-
tances <_§mag|s preservedat Ie_ast, at time scale £nag/vss, He o= Z ['yl(Q)(alzTak—q,l_al:r,lak—q,I)
wherev is the magnon velocily K.a.j

When the concentration grows up @>c,, where " 4 i

. - . . X - + +

Co=go/W is the characteristic concentration for insulator- (Bq1=b=qu) + 72(A)(1Bk—q,1 T8k B-q.1)
metal transition(W is the whole conduction bandwidth X (bgo+ quz)].
the Fermi level of freghole) carriers is formed, manifesting . . )
the onset of metallic conductivity. It was shown that, HereN is the number of elementary cells in the lattieg,,
within the scope of Lifshitz's impurity model, which is ap- a@nd bg; are respectively the Fermi and Bose operators for
propriate for HTSC materials, theD2 systems are in fact electronic and magnon excitations. They are labelled by two-

more favorable(at smallc) for this transition than the 3  dimensional wavevectoisandg, with o=T, | related to the
onest? carrier spin states and=1,2 to FM-like and AFM-like mag-

However, the two above mentioned problemsnon branches, and characterized by the isotropic dispersion

. . . i H _r21,2
were treated in Refs. 16—18 independently: the destroying dp\éVS In t?e |°2“% ;/vavelength regiore =#°k“/2m and
magnetic order was calculated with neglect of the band of!j(Q)=Qg;+#A“vsq". The effective massn, the magnon
free carriersithe indirect interaction between localized hole Velocity vs and the spin-wave gag3; can be expressed in
spins was only considered as mediated by the spin-wavirms of microscopic interaction parameters:
band. On the o'Fher hand, the localized core sp_ins_ were  m—242/ta?, v=Jalk,
ignored as possible scatterers for electronic excitations in
calculating the c_haracteri_sti_c concentratmn Undoubtedly, Qg1=52y2JAJ;, Qgo=52y2JAJ; . 2
a more conclusive description of HTSC compounds should

take both factors into account simultaneously: scattering of Forhlllustratlve purplosesf, we shf':lllhuse throughout this
free carriers on localized spins and indirect interactionP@Per the parameter values for,Cai0,: the oxygen-oxygen

between localized spins via the conduction bdid real hopping matrix elemertt~0._6 eV,_ the AFM iXChﬁg‘ge con-
cuprates, the valence bandrhis determines the purpose StantJ=~0.1€eV, the rhombic anisotropkJy,~10"~ meV,

. — _3 + .
of the present work, to study the influence of magneticthe tetragonal an|sotropg(qt~§x10 meV, the Cé Spin
&= 1/2, the in-plane coordination number 4, and magnetic

lattice parametea~5.4 A. This givesm of the order of the
free electron mass, the bandwidW=mnt~2eV, Qg

p.kk' o

The consideration below is restricted to only effects by -
magnon (Bloch-like) excitations with k>k.;,, leaving 1 MeV, {g;~2.5meV, andvs~10" cm/s (note that the
mostly aside the low-energy spin excitations which are nofatter value is comparable to typical values of the Fermi
described by the wavevectdspin fluctuation statgs In  VEIOCity v in the metallic phase of HTSC compounds
other words, we consider the presence of magnon excitatiofgn@lly, Ae=>0in (1) is the shift of the local oxygen level
in addition to the delocalized charge carriers, although thd/©M its initial position because of Coulomb field of the
long-range magnetic order is absent. The main results of thigpped ions(see Ref. 1y

analysis are the energy and temperature dependencies for the Lhedspr—ﬁ!ectron cou;;ling-ls_dellis d?”"eﬁ' from the ¢
magnon-controlled inverse lifetimié of electronic quasipar- standard Shubin—-Vonsovsky model, using the specifics o

ticles near the Fermi level, specific foD2system. In par- spin structure for LgCuO,,*° then the coupling parameters

ticular, a linear temperature dependeii¢d) is found to be  3'®
concentration independent and to begin from lower tempera- Q,(q) 172
tures than follows from the known estimates in literature. Vj(Q)NJ’( 5Ng | ()]

This behavior can contribute considerably to the broadly dis-

cussed linear temperature resistivity in the normal phase okhereJ’ is the exchange parameter between the core spin

high-T. materials. and a carrier spin at the nearest neighbor oxygen(#iis
supposed to be of the order of or even greater thaihus,
formally this interaction is quite similar to the common

> HAMILTONIAN AND GREEN FUNCTIONS electron-phonon coupling in metals, which was studied in
detail by Yu. Kagan and co-workefsee, for example, Ref.

We choose the basic model which joins in a simple way21). However, as will be seen below, the model under con-

the models previously used for description of the magftic sideration possesses certain specifics, due to heligper-

and electronit’ parts of the HTSC systeifbearing in mind ~ sion of either electron and magnon bands and to the absence

for instance the compound @uGQy, y): of the usual adiabatic relation between the corresponding
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velocities. Of course, one can also derive the electronmagnons. Then we pass to the damping of electronic states
electron couplingd-wave superconductingrom Hg_g but  on the Fermi level itself at finite temperatures, including pro-
the analysis below will be restricted only to normal phases.cesses with thermal magnons.

In addition to the above discussed translationally-
invariant terms, the Hamiltonian, Eql), namely, itsHg
part, also contains the perturbation from dopants on oxygeR: PAMPING NEAR THE FERMI LEVEL AT T=0
sitesp, distributed chaotically with concentratian(the mi- As long as we neglect the impurity perturbatias, but
nus sign beforéle accounts explicitly for attraction of car- ~onsider some finite doping leve] a well-defined Fermi
riers to charged dopants resulting in hole conductvity  |eye| ¢.=cWI2 exists in the ® electronic spectruri18
this study we focus mainly on the effects in electronic specThe proadeningl’, of quasiparticle levels close ter is
trum, so that impurity perturbatior{such as, e.g., modifica- given pyI',=Im Il (). However, bearing in mind that, in
tion of the parameterdandJ’ near impurity sites, due to the fact, the metallic state in HTSC compounds onsets well after
evident shifts of the on-site electronic levelsre not in-  the preakdown of long-range magnetic order, we should not
cluded inHs andHs_¢. The corresponding effects can be ¢onsider quasiparticle energies closefathan to the lower
accounted for implicitly by restricting the sums in the mag-poundary energy of magnon&,,,. Since the latter value
non wavevector t@>kny, and adding instead certain sUms gyxceeds both spin-wave gafls; ,'° we can take the magnon
over (chaotig spin fluctuation excitations. But to begin with gispersion law in the relevant region to be identical for the
such a so complicated problem, we shall at this first stag@yo branches and lineaf);(q) = Qq~%v.q. Moreover, we
simply ignore the disorder effects in spin spectrum, and, onliayiend this law to the whole magnon band, forgetting for a
after obtaining the physical results, they will be checked withyoment the long-wave limitatiotwe shall recall it at the
respect to the effects of spin disorder. end of this Section Then, using Eq(5) at T=0, and taking

As usual, we shall infer the single-particle electronicinig account the B character of spin-wave spectrum, we
properties from the Fourier-transformed two-time Green’syrive at:

functions(GF) )
Amax ™

. Fk:FOaf qdq de[ 8(2k cos ¢ —q+ 2Ky)

(o) = ({8l )1 | €O a0 D, oo

(4)

where {.,.} is the anticommutator and...) the quantum- B 1o _ _
statistical average. Their poles in the complex energy'Nere To=4mzJ“/W, Kks=pke, and f=vs/ve. The
plane determine the energy spectrum and damping of quasi-e"™Mi Velocity depends directly on the doping level
particles. vF=va\/E, Whereva=7\/7r/2 a(t/a), and, with our choice of

A necessary pre-requisite for studying the impurity ef-Parametersy,~7x10" cm/s. Theve is close tous (the ra-
fects is a detailed knowledge of dynamics for the “back-t0 B iS close to unity for ¢ being a few percentthis is in
ground” uniform systenoften this presents an independent striking contrast with the usual situation for electron-phonon

problem in complex systems such as HTSC compo)mdsw“p"ng in conventional metals where the sound velocity is
Hence, as a first step, we omit the impurity term eveH in about three orders of magnitude lower thap). After el-

Then the equations of motion for GF, Ed), to the lowest ementary integration, E@6) yields an analytic result:

X O(eg—e—hvq)+ 6(2k cos o—q—2Kky)
X O(ex—ep—hvq)], (6)

order in spin-electron coupling, readily yield the result: Ke
I'=2Tgal Vk>—k2— Vk?— (ks— )%+ ks arcsin_ -
ak(e)=[e—e 1L (e)] 7Y, 5
( ) . I(s_qk
_ —arcsin O(k—Kg) O(k—ks+qy), @)
2 1-fl—qtng k
()=, Y2(q) Q
al e~ &k-q ~{(0) where qy=(gx—eg)/(2B%vEg). The o-functions in Eq.(7)

determine thatl’, drops to zero below certain threshold
guasimomentum value, namely: flor< (8k2+ k) 2— 2k if
B<1, and fork<kg if 8>1. Close to the Fermi surfadat
B<1) we obtain a quadratic dependencd @&=I"(¢) on the
guasiparticle energy=ce,—¢&g:

8)2
3 (8

flk—g/* Ngj )
ek &k—q T Qj(a))’

where f,={exd(ex—e¢)/T]+ 1} and ny={exdQ;(q)/
T]—1}"1 are the Fermi and Bose occupation numbers, an
eg is the Fermi energy of the free holes; this coincides with Iy

the well-known expressions, e.g., from Ref. 22. Below we F(S)*\/——z
consider in detail how the properties of electron and magnon akeV1=p
spectra, specific for our system, are reflected in the behaviarhich is characteristic of @ dispersion, unlike the usuaf

of this otherwise comprehensively studied self-energy ternlaw in 3D systems$? Note that, since the relatioakg
IT.(e). Firstly we consider the broadening of electronic =+/27rc, this function increases wittecreasingconcentra-
states close to the very Fermi level at zero temperature, du@n. In no way does the presence of the enhancement factor
to inelastic electron-electron scattering with creation of(1— 82)~*2in the latter formula mean divergencelfe) in
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the “relativistic” limit 8—1 (reached when the concentra- 800l

tion decreases down —c,=27(J/W)?): in this case the 10%
quadratic law, Eq.(8), is simply changed for &2 law: 79,
I'(e,c9)~0.6(3'/3)°W~ V%32 With the parameter values 600} 5% y

adopted in Sec. 2, we come to the concludianleast, when

T=0) that the usual Fermi-liquid conditioh'(g)/e<1 is - |

well assured for the considered magnon-induced damping in _w

a rather broad vicinity of the Fermi surface at all relevant

concentrationg>cy. 200

To conclude this Section, we estimate the region of va-

lidity of Eqgs. (7) and(8) with respect to the above mentioned i ! 1 L

neglection of spin fluctuation states. In fact, the integration 0 100 200 300 400 500

overqin Eq. (6) is only legal forg> ki, (see Sec. }1 hence T.K

the result, Eq(7), will not make sense it =2Ky,. Then, G 1. Temperature dependence of quasiparticle broadening at the Fermi

with the estimatek,,,~c(J'/J)%a"* for a minimum magnon level for different dopant concentrations. The arrows indicate the calculated

wavevector al =0 [Ref. (16)] the formula, Eq(8), is found values of crossover temperatufe_,, but the visible linearity extends to

to fail only within a narrow fluctuation regionts|<g; " lower temperatures.

~c¢J'?/J. At the boundary of this region, we have the Fermi-

liquid ratio I'(s7)/s;~ Jmc/l2 J'4WF, which is consider- and the parameter values chosen in Se¢Fig. 1), occurs

ably smaller than unity. At least, the simplest assertion oreven earlier, at about 0I§_,, which is essentially lower

the behavior of” within the fluctuation region is obtained by than the commonly considered vallig_,~J.%

changing the “magnon density of states” factpin Eg. (6) Taking into mind the estimate, in the end of the previous

by a constant value-Kyin at q<Kmin, Which givesI'(¢)  section, for the fluctuation limif’(e;) of the broadening

~I'(ey) at[e[=<er, when it is impossible to speak about close to the Fermi level, it follows that this constant limit can

undamped quasiparticles. be reached fol =(T), with lowering temperature, at some
valueT;~/c(J'/3) T, Which is yet much lower than the

4. DAMPING OF FERMI STATES AT FINITE TEMPERATURES crossover temperature value.

c=3%

meV

Using explicitly the &function relations in the occupa-
tion numbersf_y andng; in Im Il (ey) at ex=gg, the
temperature dependent broadening at the very Fermi level We are pleased to devote this paper to the seventieth
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The limitation of critical current in higil; superconducting YBCO thin films has a varied

nature according to the quality of YBCO films. Our results showed that in strips from granular
films the weak links of superconductor—normal metal—superconductor and superconductor—
constriction—superconductor types were responsible for critical current limitation. In the YBCO
strips with improvedpreferential crystallographic orientation a flux-creep critical current
limitation was found and in the highly oriented YBCO strips the Ginzburg—Landau depairing
mechanism approximated the critical current limitation for temperature clo$g.to

© 1998 American Institute of Physid$51063-777X98)00207-2

1. INTRODUCTION (superconductor—normal metal—supercondyctygpe domi-
The critical curren{or critical current densityis one of nate_. The maximal (;rmcal current_ density of these samples
a\fvaSJC(O)~104 Alcm?. On the basis of experimental obser-

the most important parameters of the transport electric ll tions on n conclude that the dc transport broberi ¢
properties of high temperature superconducting thin film ations one can conclude that the dc transport properties o

strips. Various critical current limiting mechanisgGCLM) granular f|Im§ are dgtermlned by weak Imks between. the
take part according to the thin film quality. The nature Ofsu_p_erconductmg grains, thus strc_)n%gly reducing much higher
CCLM can be recognized from the critical current vs. tem-Crltlcal current density of film grains.

perature dependen¢é.(T)]. The important contribution to T_he temperature dependence .Of cr|t|(_:al current dens_lty
these problems in IoW, film strips have been made by the of stripes, patterned from preferentially oriented YBCO thin

I. M. Dmitrenko group from Kharkoysee the excellent re- films, exhibits downward curvature g£(t) (solid and open

view papet and papers cited thergirin this contribution we triangles on pu_rve;). In th|§ case a new mechanism C.)f criti-
review some of our results concernihgT) studies on high cal current limitation begins to dommate. We ascribe this
T. superconducting thin films, strips and junctions CCL.M to the ﬂl.JX creep, and the full lingurvec) r%%resents
stimulated by Prof. I. M. Dmitrenko’s results and personalthe fit of experimental data computed from relation
contacts. je(1)=]j(0)(1—mt—nt?), (1

where m=0.5, n=0.53, andj.(0)=2.6x10° A/lcm?. Be-
cause this type of.(t) is characteristic for samples with

The YBaCuO,_, (YBCO) thin films were deposited j.(0)~10° Alcm? we suppose that the intergranular weak
by dc magnetron sputtering or vacuum coevaporatiodinks are not responsible for critical current limitation. The
method on MgO, SrTi@Q or YSZ and Ce@buffered ALO;  current-voltage K-V) characteristics of these samples in the
single crystal substrates. The strips were patterned by wet dow voltage rangejust abovel.) also confirmed the flux-
ion beam etching. creep dissipation process.

In Fig. 1 we summarizé,(T) dependencies in normal- The strips patterned from YBCO thin films epitaxially
ized units, wherel (T)/1.(0)=j.(T)/j.(0) andt=T/T.. grown on SrTiQ single crystal substrate[j.(0)
We analyzed thej.(t) dependencies of superconducting =10’ A/cm?] usually displayed th¢.(t) dependence corre-
strips prepared from granular YBCO filn{solid and open sponding to curve in Fig. 1. The study of these temperature
circles in dependencies b) in terms of weak link connec- dependencies of critical current indicated a Ginzburg—
tions between grains, where the power dependgn¢g Landau(GL) depairing mechanism in the temperature range
=jc(0)(1—t)“ occurs andx characterizes the type of cur- close to T..% The critical current of the microstrip ap-
rent transport through weak links. The fitted dependencieproaches GL depairing currehi(t)’ when the widthw and
with a=2.5 (dashed line, curvea) are characteristic for thicknessd of the strip are smaller or comparable to the
YBCO films with depressed . and low critical current den- transverse magnetic penetration depth of the thin film
sity [j.(0)<10® Alcm? at self-field conditionsand can be _
ascribed to nonhomogeneous superconductors with large dis- AL =Acoth(d/2r), @
persion of individual connections in weak link network of where A is London penetration depth. If we consider the
our granular filmg? In case of YBCO films, where temperature dependence of magnetic field penetration depth
a~1.5-2 (dashed lineb in Fig. 1), weak links of ScS A (t)=\(0)/(1—t*)2for temperature close 6. we obtain
(superconductor—constriction—superconductoror SNS X\, =~5-10 um which fulfill the conditionsw=<\, andd

2. EXPERIMENTAL, RESULTS AND DISCUSSION

1063-777X/98/24(7)/3/$15.00 468 © 1998 American Institute of Physics
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1O pr e,

o8l o /FLUX CREEP
on 0 * MODEL

le /1¢c(0)
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o3
0.0 R i . ' . ) PR P .\
0.0 0.2 0.4 0.6 0.8 1.0 T K
t= T/Tc FIG. 3. The dependence of critical currdgtvs temperature of a bicrystal

grain boundary Josephson junction. Full line: modified Usadel equation for
FIG. 1. Temperature dependence of the critical current density of YBCO /£, =0.6-4.2.
thin film strips of different quality(see text

<\, [M0)=200 nm andi=50 nm were used in E42)], i.e.,  edge barrier to vortex entry is lowered, and dissipation pro-
homogeneous cross-sectional distribution of transport currerjess in microstrip starts at the current value

in the strip. In Fig. 2 the experimenta}(t) dependence
(solid squaresis compared with GL depairing current den-
sity (full line)

H —i 3/2

Ja()=1a(O) (1O @ the “lower” critical current. The depression gf(t) more
where] 4(0)=[ ®o/3y3omA?(0)£(0)]is the depairing cur- than one order of magnitudéor wide stripsw>\, (t)], in
rent density al=0; @, is magnetic flux quantum ar§f0) is  comparison toj4(t), can be explained by the entering of
coherence length. The valyg(0)~2x 10" A/cm? extrapo-  Abrikosov vortices into the superconductor and their motion
lated from experimental dependence is in reasonable agregcross the strip.
ment with the value computed from Ed3): j4(0)~8 Phase-slip phenomeriRSP in the one-dimensional su-

X 10" Alcm? for A(0)=~200 nm andé(0)~3 nm. These ex- perconducting strifgsas well as in wide stripsmoving
perimental results have shown tha(t) close toT, may  phase-slip centers or phase-slip lipeasay occur as CCLM.
approach the GL depairing current as a limiting mechanismin this case the temperature dependence of the critical cur-

In the low temperature rangéhe dependence in  rent density is described by the relation(t)=j.(0)

Fig. 1,t<0.6) wherew> \ , (wide strip another CCLM takes  x (1—1t)%? predicted by GL theonyEq. (3), but j.(0)
place. Due to current concentration at the strip edges, the:j,(0)], and thedissipation process is characterized by
“quantized” increases of differential resistance in th®
characteristic. We observed properties similar to PSP in
10-um wide and 10Qum long granular YBCO strip¥ The
estimated quasi-particle diffusion leng#s25 um) and tem-
perature dependence of current at voltage steps differ-

—— Ea.@3) ential resistance increaseare in accordance with the PSP
j4(0) = 2:107 Alem? theory. We have concluded that grain boundaries and quality

of the strip edges play very important roles in the PSP, and in

the critical current limitation in wide as well as narrow
YBCO strips.

We also investigated the.(T)dependencies of YBCO
grain boundary Josephson junctions of bicrystal tp€he
most adequate fifull line in Fig. 3) to the experimental
I.(T) dependencésolid squareswe explained by the model
of the temperature dependent ratidéy, wherel is the
length of a normal region in the YBCO strip at a bicrystal
boundary in the direction of current flow argy, is the co-
herence length of the normal region. In this case the tempera-
FIG. 2. Ginzburg-Landau depairing critical current density limitagoti ~ tUré  dependent  transparency of the junction normal
line) for “narrow” YBCO strips close to the critical temperature. region for superconducting carriers is the main factor of

1= (Po/uok )In(d/48), 4
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Frequency and temperature dependences of impedance of HTSC ceramics
V. M. Dmitriev,*** L. A. Ishchenko, and N. N. Prentslau
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of the Ukraine, 310164 Kharkov, Ukraine
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Fiz. Nizk. Temp.24, 624—626(July 1998

Anomalies in ohmic losses in HTSC ceramics are considered in the low- and radio-frequency
ranges. It is found experimentally that the width of the S transition in the ceramics
(YBa,Cu;0,+1%°Fe), SmBaCu;0;, and YB3Cu;_, SO, in a weak magnetic fieldup to 50
Oe) becomes smaller in the frequency interval betwéeand f at which the resistance

does not depend on temperature. It is shown that, for some types of HTSC and for different
samples of the same type, the frequemigyoes not correlate with the superconducting
transition temperaturgé.. © 1998 American Institute of Physids§1063-777X98)00307-1

INTRODUCTION By way of an example, it was provéthat a weak mag-
netic field YBaCwO,+1%°’Fe ceramic alf <T, partially
In our previous publication’;* we reported on the pe- reduces ohmic losses in the rf rangé, while outside this
culiarities in ohmic losseR for high-temperature supercon- range the field enhances the losses.
ductors (HTSO in the low- and radio-frequency ranges Here we report on the results of further investigations of
(0—-1@ Hz) where the magnitude and sign of the temperasthis effect afT<T_ in HTSC ceramics with a low value d¢f
ture derivativedR/dT are complex functions of frequency. and consider the interrelation betwe€nandf..
Among other things, we proved that the derivatiue/oT
changes sign in a certain frequency range=f-—f., and
hence ohmic losses at frequencigsand f.<fr do not de-
pend on temperatureR/dT=0).>° This property of resis-  \ve measured th&(T,H,f ) dependences &<T, in
tanceR, which has been obseryed for most types of HTSC inthe HTSC ceramic YBZU, 955G 0:0; With the following
the normal staté,can be explained qualitatively in the two- parametersT,=92 K, T, =91.8K, f.=3x10® Hz, and
band model of a superconductor with narrow and wide elecf_—= 10 Hz.
tron bands. Figure 1 shows temperature dependences of the resis-
According to Ref. 4, the frequendy, and the tempera- tanceR reduced toR(92 K) and measured at frequencies
ture derivative of the dc resistivity reduced topy (S 10% Hz (curvesl and2), 5x 10° Hz (curves3 and 4), and
=(dpl dT)Ipo) are interrelatedHerep, is the resistivity on 107 Hz (curves5 and6) in zero magnetic fieldodd curve
the initial segment of the linear dependene€l) at low gndin a magnetostatic field of 50 Qeven curves
temperatureg. It can be seen from Fig. 1 that at frequencies befew
In the frequency rangaf, the temperature-, frequency-, (curvesl and2) and above  (curves5 and6), ohmic losses
and magnetic-field dependence of the resistaRogisplay  in the ceramic in the magnetostatic field become higher, and
singularities in the superconducting state of HTSC also. Fothe effect of magnetic field on the resistarRestarts being
example, the effect of the magnetic fi¢tdon R in the range  manifested at the temperatufg(92 K). Thus, the ceramics
Af is observed not at the superconducting transition temunder investigation at these two frequencies exhibits ordi-
peratureT, measured in direct current or at frequencies outnary properties of a superconductor.
side the range\f, but at a temperatur@;,; which can be A different situation is observed at frequencies in the
lower thanT, by several kelvingup to ter). (HereT. isthe  interval Af. In a certain temperature rangeT=T.— T,
temperature at which the resistance changes under the effele resistanc® is independent of temperature as in HTSC
of a weak magnetostatic field during the-S transition) In - without ferromagnetic impurities or PMP. The resistance de-
the temperature rangeT=T.—T.;, ohmic losseR are vir-  creases al <T.; and attains instrumental zero Bt 79 K.
tually independent of temperature. However, the effect of a magnetic field on ohmic los&es
Thus, the properties typical of a superconductorstarts being manifested in this case noffgt as in HTSC
(dRIdT>0 and JR/JH>0) start being manifested af  without ferromagnetic impurities or PMP, but &. In this
<T,, in the frequency rangAf and atT<T, outside this case,dR/dT|y~o>3dR/dT|y—o, and hence the resistan&e
frequency interval. in a magnetic field attains instrumental zero even at 84 K.
These peculiarities oR in the rangeAf are observed Thus, the width of theN—S transition in a HTSC with
virtually for all samples being investigated and for all typesPMP or ferromagnetic impurities in a weak magnetic figld
of HTSC except ceramics with ferromagnetic impuritiesin the frequency rangaf becomes narrower than in zero
(YBa,Cu0,+1%°%Fe) or with paramagnetic properties magnetic field.
(PMP) SmB3Cu,0;° and YBaCu;_,Sc0;.%° Since ohmic losse® are manifested in HTSC in the

DISCUSSION OF RESULTS

1063-777X/98/24(7)/2/$15.00 471 © 1998 American Institute of Physics
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FIG. 1. Temperature dependence of ohmic losses in,€BaysSq =07 FIG. 2. TheT(f.) curves for ceramics SmBau;0, (curvel), YBa,Cu;O,
ceramics, which are reduced To=92 K, at frequencies £oHz (curvesl, (curves 2, 3, different samples YBa,Cu, gsTig o0y (curve 4), and
2), 5X10° Hz (curvess3, 4), and 10 Hz (curvess, 6) in zero magnetic field  Bi, 16Sn 38Ca 56CUQ, (curves).

(curvesl, 3, 5 and in a magnetic field of 50 Ogurves2, 4, 6.

rangeAf at temperatures above and beldy, it would be  transition in the frequency rangef bounded by the frequen-
interesting to find out whethéF, is connected witH . . cies f, and fr at which the resistancR is independent of
In this connection, we investigated various HTSC matetemperature {R/9T=0).
rials and samples made of them. The samples were annealed It is shown that the critical temperatuig measured in
repeatedly in oxygen, and the valuesggf dp/aT, T, and direct current does not correlate with the frequemgy
f. for these materials were measured after each annealing
and heating—cooling cycle.
Figure 2 shows the T,(f.) dependences for

The authors are grateful to the Editorial Board for the

opportunity to congratulate Igor’ Mikhailovich Dmitrenko

. on his jubilee. We were brought up in his department and

some samples of HTSC ceramics: SmBaO, (1), . . o ke .

YBa,CuwO, (2,3 YBaCl ocTi (4 and cherish fond memories of our association with him. We wish
2 (5,9, 2Cl 5T l0.080x him many more years of creative achievements.

Bi 165N 38Ca 566CUC, (5). i ; .
It can be seen that the shapes of Tiéf,) curves for Cus;gsr;ks are also due to Prof. V. D. Fil’ for fruitful dis

different HTSC type or sample are different. The strong
(curve l, 2) and weak(curves3, 4) T.(f.) dependences are
observed, while in some cases the valueTgfis virtually L
. f iff | fth E-mail: dmitriev@ilt.kharkov.ua
independent _0 ¢ (curve 5) Di _erent samp.es of the same « |nermational Laboratory of High Magnetic Fields and Low Temperatures,
HTSC material can exhibit different relations betweén 53-421 Wroclaw, Poland
and f; (curves2 and 3). At the same time, there exists a
certain relation betweefy andS for all values off ., which
was established in Ref. 4 and is presented in Fig. 2. V. M. Dmitriev, M. N. Ofitserov, and N. N. Prentslau, Fiz. Nizk. Temp.
Thus, the entire body of the data described above indi-2\1/6'P38é;|1533 E;C’OI\‘A’ %nl;'(t)r'V\tlaTel\r/]lqu Pgﬁgfg“;}}g?k N
. . P. iko, V. M. Dmitriev, M. N. Ofitserov, . N. u, Fiz.
cate the absence of a correlation between the valugsanfd Nizk. Temp.19, 135(1993 [Low Temp. Phys19, 96 (193],

T, measured in direct current. 3V/. M. Dmitriev, M. N. Ofitserov, N. N. Prentslaet al, Fiz. Nizk. Temp.
21, 397(1995 [Low Temp. Phys21, 308(1995].

4V. M. Dmitriev, M. N. Ofitserov, N. N. Prentslaet al., Fiz. Nizk. Temp.
21, 906 (1995 [Low Temp. Phys21, 698(1995].

It has been established experimentally that a weak magf\z/(-) '\’1'-2 Di“;gieVLA- F; 'Sak";?]v '-ZGO- 20'13;;5"336 al, Fiz. Nizk. Temp.
netic field in HTSC ceramics with ferromagnetic impurities 2> 12 (1994 [Low Temp. Phys20, 8 (1994].
or paramagnetic properties reduces the width MfS  Translated by R. S. Wadhwa

CONCLUSION
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Low-temperature properties of uniaxial paramagnets in a tilted magnetic field
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The behavior of uniaxial paramagnets in a tilted magnetic field is considered as a function of
temperature. The structure of the energy spectrum as well as magnetization and
susceptibility components are determined. Exact formulas for theSpily2 are obtained.
Thermodynamic parameters of the system are studied for arbitrary valigm @ easy-axis and
easy-plane cases in different approximatigneak and strong magnetic fields, low and

ultralow temperatures, ejc.lt is shown that in the easy-plane case, the transverse magnetization
and longitudinal susceptibility as functions of magnetic field at low temperatures exhibit
peculiarities in the form of a series of sharp spikes, while the longitudinal components of these
quantities in the easy-axis case display only a single spike19@8 American Institute

of Physics[S1063-777X98)00407-1]

1. INTRODUCTION transverse magnetic field at ultralow temperatures. In Ref. 1,
) 12 an important method of effective potentials was developed.
In various branches of physics,one frequently encoun- s method was subsequently used for studying various

ters systems whose Hamiltonian is constructed from spin OBshysical properties of uniaxial and biaxial paramagnets and

erators and which are therefore called “spin systems.” W?to discover new classes of exact solutions of the Gtihger

shall consider a specific type of such systems with a SPiRqGuatior?3®

Hamiltonian of the form
_ 2 . shall study five main parameters of the system: two compo-
H=aS;~BS—B.S,, @ nents of the magnetization vectoM( and M,) and three

appearing in the theory of magnetism and describing £omponents of the magnetic susceptibility tengoy, xx..
uniaxial paramagnet in an arbitrarily directed magnetic field2nd xzz- In stationary states marked by the subscript
whereS; is the spin componenB; the magnetic field com- n=0,1,..., 5, these quantities are connected with the rel-
ponents, andx the anisotropy constant. When such systemgvant derivatives of energy levels, with respect to the
are studied in conventional dimensionless varialfles di- ~Magnetic field componen®, andB,:
mensionless energy is introduced as the ratio of energy to the

Some preliminary remarks are appropriate here. We

JE
magnitude of anisotropy constant, which also leads to the M{"=(S),=—((dH)/IB)n=— (7_Bn (2)
corresponding dimensionless characteristic of the magnetic K
field BJ-),l'2 only the sign ofa is actu'ally important. For this o FIVIR PE,
reason, we shall henceforth consider thatssumes only Xk =2 B :_Z&B B (k,I=x,2). 3
| k |

two values: o= —1 corresponds to the easy-axis type of
anisotropy, whilea=+1 corresponds to the easy-plane  The factor 2 introduced for convenience in Ref. 1 will be
anisotropy. preserved for matching the results.

Some properties of the systems of the tyfpehave al- It can be easily proved that thermodynamic quantities
ready been investigatéd® Special attention was paid to the can be expressed in terms of corresponding mean values:
case when the magnetic field is perpendicular to the anisot-
ropy axis 8,=0 anda=—1). The other case with a longi- T_n T__ i I'YEVRRYRY)

: o M =My, X=Xt 57 (MM—=MM)), (4)
tudinal magnetic field 8,=0 anda= +1) was partly con- 2T
sidered in Refs. 4 and 5 We shall consider here th_e gener\:7\Jhere the bar over a certain quantityndicates averaging of
case of a tilted magnetic field for both types of anisotropyy, type
(a==*1) and pay special attention to the thermodynamic
properties of anisotropic paramagnets at low temperatures. 25

Turning to the origin of the problem, we must refer the = > fWexp—E,/T) / X exd—E,/T). (5
reader to our earlier publicatibin which the physical prop- n-o n-0
erties of uniaxial paramagnets were analyzed in detail purely Taking into account the fact that we are dealing with
from the standpoint of the quantum theory, though only in ahree extrinsic parametersB{,B,,T) and two intrinsic

2S

1063-777X/98/24(7)/6/$15.00 473 © 1998 American Institute of Physics
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parameters §,«), we must clearly pay special attention to spectrum of a paramagnet is such that the energy levels are
certain selected quantities that reflect peculiarities typical oirranged in pairgexcept the highest solitary energy level for
all other parameters most clearly and comprehensively. integral S) as a result of splitting due tB, in the case of
double degeneracy in zero magnetic field. For the pair of
2. EXACT RESULTS FOR SPIN S=1/2 energy levels under investigation, viz., the ground level and

o . : . the first excited level, the following formulas hold for the
This is a unique case, when two types of anisotropic

paramagnetgeasy-axis and easy planactually coincide shift that is common for this pair and the energy gap:

(the energy spectra differ only by a constant that does not o S 5
: . o ~ . oy Eg = —S°— ===~ B2+ 0O(|B,®), S>1,
play any role in the characteristié4 and y under investiga 0,1 2(2S-1) *
tion).
If the spin is equal to 1/2, we obtain two simple explicit ~ Eg,=—1—-B3+0O(Bj), S=1, (6)
formulas for the two available energy levels, ?
_ _0_ 0_
Eo1= /A7 B2, B=BZ+BZ A(0)=Alg,-0=E1~Eo= 52535 |B,|%®
so that the magnetization components are given b
g p g y +O(|Bx|28+2). (7)
M(k0>: —Mﬁl):%, i.e. MOD|B, The first of these results follows directly from the conven-

tional perturbation theory, while the second is a finer effect
while the magnetic susceptibility tensor components have thehich was obtained by using a special modification of per-
form turbation theory, taking into account the specific form of the
perturbation operatdv=—B,S, (see Ref. 2 We shall also
write a more exact expression for the gap:

% =~ Xy =B2/B%. s? +1

S
2S| 1 _ 2

0 1 2 0 1
X(zz): _X(zz): Bx/Bs1 XE(Z): _X;z): - BXBZ/BS!

This leads to the following expressions for thermodynamic A0)= 22573(29)!

quantities: Such a formula ensures a very high accuracy ugBg
. 1By B + B sinh(B/T)+BZ(B/T) ~\/S. For example, foiB,|=/S/2, the relative error does
M=3 g BMoT. X2r=—~ 3pT cosif(Bl2T) *©  not exceed 1%.
_ The second step involves taking into account the longi-
T_ sinh(B/T)—(B/T) tudinal componenB, of the magnetic field, which enhances
Xxz x=z 2B3 cosH(B/2T) ’ the splitting of energy levels. This is done by using a special

version of the perturbation theory for closely spaced energy

2 o 2
B Sinf(B/T) +By(B/T) levels? If the Hamiltonian of the system isl=H%+V, we

T

XY™ BT coslBI2T) have
For example, we have 1 4 o 1 —0
L Eou=5 (E5+EDF5 V(Eg—ED?*+4|Voll?, C)

T_
X2 2T cosif(B,/2T) where we have taken into account the fact that the perturba-
for B,=0, tion V= —B,S, in our case has strictly zero diagonal matrix
elements in the representation of the unperturbed Hamil-
XIZZ 1 , XIX:; tonian H%= —Sﬁ— B,S,, and the nondiagonal elementg;
|By|tanh(|B,|/2T) 2T coslf(B,/2T) =—B4£0|S,|1) can also be obtained with the help of the
for B,=0, while for B,=B,=0, the nonzero components are Perturbation theory:
X-zrz: Xl—x: 1/(2T). 1
The exact formulas for energy levels, magnetization, and  |{0|S| 1)|2~82[1— 2517 Bi} S>1/2. (10
susceptibility can also be obtained 6+ 1 andS=3/2, but
these formulas are more cumbersome and will not be given  Thus, for|B,|<1, relations(8), (9), and (10) lead to
in explicit form. We shall use them in graphic illustrations “symmetric repulsion” (Fig. 1) between the ground and first

and as test examples. excited energy levels, which is important for further analysis:
S A
3. THERMODYNAMIC PARAMETERS OF EASY-AXIS 2 2—
Eqg=—S"————B{F=, S>1, 11
PARAMAGNETS 0.1 2(25—-1) *"2 (1)

For «=—1, the main parameters in the ground state carwhere the terms of higher order of smallnessBipandB,
be obtained by using the formula for the ground energy levelhave been omitted, and the energy gap in the first approxi-
The algorithm of the solution is split into two stages. Firstmation is given by

we consider a system in a purely transverse weak magnetic 5 >
field (B,=0, |By/<1). In this case, the structure of energy A= VA(0)*+4SB; (12
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i i
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FIG. 2. Magnetic susceptibility'!? as a function ofB, for B,=0.5 and
S=1.

FIG. 1. Structure of energy spectrum of an easy-axis paramagnet f06

B,=0.1 andS=1 (E, are energy levels nly from the ground and first excited states, while the sec-

ond and next excited stated states give exponentially small
corrections. Such temperatures will be referred to as low, and
the corresponding approximation is called the two-level ap-
proximation.

Using formulag11) for “symmetric repulsion” between
éhe ground and first excited energy levels, we note that the
quantitiesM (), ¥V andy(Y in the first excited state differ

rom the corresponding quantities in the ground state only in
&ign. Consequently, it follows from formuld2)—(4) that

with A(0) from (7). A more exact equation foA can be
obtained on the basis @8) and by replacing the coefficient
of 4B2 in (12) by S*—S?B2/(2S—1)? in accordance with
(10). It should be noted that in subsequent calculations w
shall use explicitly for the sake of brevity formu{&a2), al-
though it should be borne in mind that it can be refined b
the above method. Going over to the magnetic parameters

the ground state, we obtain frofhil) and(12) the magneti- . 0 A
zation M,=M, tanhﬁ,
25°B (0)y2
MPO(B,) = ——= 13 T_ (0 A (Mz7)
> B K07+ a582 e . Al 2 o= vra ot (19
and the susceptibility Similar formulas can also be obtained M, , xy,, andy.,
o 45°A(0)? the effect of temperature being similar to the effecBgf In
X2 (B)= [A(0)2+ 45822 (14  Dpoth cases, sharp spikes gf, are smoothed, becoming
z

broader and lower at the center.

(other components are not written her&his leads to the In order to have a comprehensive pattern of variation of
following conclusions. First, folS=1/2 these results coin- {9 as a function of magnetic field, we must consider this
cide with exact formulas. Second, the susceptibility compoquantity to be a function of the variables Bf andB,, i.e.,
nenty'Y has, like the functiom,, the form of the so-called as a surface over the planB,(,B,). It will be more conve-

two-dimensional Student distribution for a8. Third, for  nient, however, to consider the cross secti¢¥(B,) of this

B,—0, we can write, taking into account corrections, surface for certain fixed values &,. In other words, we
225-1(2g)] S—1 must consider variations of the longitudinal componBpt
Xg)(o): B 1+ 3(25-1)7 Bf , S>1/2. for a fixed transverse componeBy .
X

The obtained formulas and corresponding illustrations

A typical profile of this susceptibility component is shown in give a full idea of the behavior of the parameters under in-
Fig. 2 forB,= 0.5 andS= 1, where the exact solid curve, the vestigation in weak magnetic fields. In strong fields, how-
approximate dashed curve obtained by formdl), and the ever, the magnetization attains saturation, and susceptibilities
refined approximate thin curve illustrating the efficiency of decrease rapidly. Nevertheless, we consider the results of
the used approximation virtually coincide. calculations in this case also, assuming that the first two

Going over to thermodynamic parameters, we note thaterms in the Hamiltoniad = —B,S,—B,S,— S? are princi-
the results obtained for the ground state correspond tpal and taking into account the magnetic anisotropy term as
ultralow temperature$ <A at which the contribution of ex- a correction. It is convenient in this case to choose the coor-
cited states to all thermodynamic parameters is exponentiallginate axes so that one of them is directed along the mag-
small. However, the role of these results is not exhausted bgetic field. In this case, the Hamiltonian assumes the form
what has been said above since Te£2S—1 a pair of lower H=—BS,—co¢ ¢S,?+cos¢ sin ¢(SS,+S.S)—sir? ¢S?,
energy levels is separated from the remaining levels, so thathere cosp=B,/B; sin ¢=B,/B; B=(B§+ Bﬁ)l’z. The first
the contribution to all the thermodynamic parameters cometerm is principal, while the remaining terms are perturba-
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tions. Taking into account quadratic corrections for the E E 4 E
ground energy level in perturbation theory, we obtain 3 4
2 S P
Eo=—BS—S? cod ¢— 5 sin ¢+0(B-1) E By, =0.1
2
I 1 1 1 B
1 B2 -3 z
=—-S{B2+B2-S°+S S-3 52%82+O(B‘1)- 0 N
X z
E
. . . . 1
Using these expressions for calculating the magnetic moment E -4
0
M(O)—_WSBZ +S(2S—1 _2_TB§BZ +o( L ) FIG. 3. Typical structure of the energy spectrum of an easy-plane para-
(By+ )1/ ( ) (BZ+B2%)? B? mag.ne.t in a tilted magnetic fieldSE& 2).
© SB, B2B, 1
My =gzrem ~ 2571 (g2 522 T Ol g2/
x Tz x Tz the B, axis, for which junctions in the energy spectrum are
we obtain the magnetic susceptibility component formed, forB,=0.
The eigenvalues of the Hamiltonian for the unperturbed
0 _ 2SE; BX(B5—3B?2) 1 problem in a purely longitudinal magnetic field,=S2
Xzz = (B§+ 33)3/2+25(28_ D (B§+ 35)3 + B3/ —B,S, can be classified according to the representation of

S,, which leads to a broken—reticular form of the energy
in particular, spectrunf. For small values of the transverse magnetic field
S  25(25-1) 1 componentB,|<1, the network of energy levels is slightly
X(O)lB o=t 2 ( 3)' deformed so that gaps are formed in regions of broken junc-
“ Byl B Byl tions with double degeneradhis is illustrated by Fig. 3 for
S=2 and|B,|=0.1). These gaps are correctly described by
perturbation theory for double degeneraey the points of

The other susceptibility tensor component is given by

ZSBf 53(33_353) 1 junctiong or for closely spaced energy levdia the neigh-
Xg(?()_(BTBZ)SIZ —25(2S— l) W + ?) ) borhood of these poin).s
x ' Tz X Tz The junction points for the ground and first excited en-
so that ergy levels correspond to values B§=B,,, for which
1 Bh=2m—-1, c¢,=(S+m)(S—m+1),
) =O( )
Yool o | Byl m=-S+1,-S+2,..,.S-1,S (16)
Moreover, for integral S and
. 2S  25(25-1) 1 Bn,=2m, c,=(S+1/2)2?—
XxxlBX=0:m_ B2 B,
z z z m=—S+1/2, —S+3/2, ...,.5-3/2,S—-1/2 a7
Finally, for half-integralS. Using the result obtained in the perturba-
2SBB BZ— Bz tion theory for double degeneracy or close energy levels, we
xO=— _2_2r3/2 —4S(25—-1)B,B, IS obtain the following local formulas in the vicinity of each
(Bs+B2) (Bx+Bj3)° point B,:
‘o is) Eo1=Mm?—m-+1/2—(m—1/2)B,
53/
- , E VemB2+ (B,—Bpy)? (18
Similar results can also be obtained for easy-plane para- ) m
magnets in a strong magnetic fiel[dee belowy, the only .
difference being the sign of the corrections. for integerS and

1
Eou=m?—1/4-mB, %5 \JenBi+(B,~Bp)? (19

4. THERMODYNAMIC PARAMETERS IN EASY-PLANE

PARAMAGNETS for ha!f-integers. .
It is important to emphasize that the root term(it8)

As in the case of easy-axis paramagnets, the results oland(19) plays a leading role in the subsequent application of
tained for easy-plane paramagnetie= +1) are also based the obtained formulas to lower-lying energy levels. In this
on the formula for symmetric splitting of energy levels of the connection, we shall refer to result8) and (19) as sym-
ground state. However, we now have a sequence of points anetric splitting. It should also be added that resli®) and
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B, 1.05
0.5

0
B, 5 ,

FIG. 4. Magnetization of an easy-plane paramagnet as a function of mag-

netic field forS=1. FIG. 5. Susceptibility of an easy-plane paramagnet as a function of the
transverse magnetic field compondt for S=5/2 (the dashed curve cor-
responds to the symmetric splitting approximation

4 0 4

(19) are of independent interest in connection with the prob-
lem of spin tunneling;® where the splitting of energy levels where the guantitieB,, and the coefficients,, are the same
forms the main subject of investigation. as in formula(20).

Let us consider the magnetizatiot?) in the ground In many respects, the properties of magnetic susceptibil-
state as a function of the longitudinal magnetic fiBlgdfor ity are similar to those of magnetization, although in some
various values of the transverse componBpt In accor- respects they differ significantly. For example, the spikes are
dance with formula$18) and(19) of symmetric splitting, the  sharper in view of a more rapid decrease with increasing
required quantityM 5(0): —JEq /3B, for the ground energy distance from the kink point8B,, (following the two-
level for small values ofB,|<1 in the vicinity of values dimensional Student’s distributignand the approximation
B,= B, with junctions between this energy level and the first(21) covers successfully not only the neighborhoods of kinks

excited level given by B.,, but also the regions between these points in which the
1 B spikes overlap. In this case, we can use a “global” represen-
c ; (0) ;
MO(B,) = 5 . m _x s |B,—Bul<1, tation of y;,’ in the form of the summation formula
[Cme+(Bz Bm) ] my c BZ
20 m
20 OEy)- 3 :

Sy [CnBi+(B,—Bp)2¥?
whereB,, andc,, are defined by16) and (17). m=my [CnBit (B, ~Bn)7]

The number of spikes of1{®) on the entireB, axis is Where m;=—S+1, m,=S for integer S and m;=—-S
equal to 5. Each peak has a typical sharpened shape with & 1/2, m,=S—1/2 for half-integerS. For {2, the height
maximum value ofy/C./2 at the points8,=B,, and a width  1/(Jcy|By|) of spikes decreases with increasif®| (the
~\Jc.|B,| so that the central spikes are slightly higher andwidth \/c;|By| remaining unchangedand higher peaks are
wider than the peripheral spikes. For example, in the case decated at the center and not at the periphery. The corre-
half-integral S, the height of the tallesicentra) peak is &  sponding illustrations are presented in Fig. 5. The effect of
+1/2)/2, while the height of the lowest peak{§/2 (in the ~ temperature is the same as in the easy-axis case, and is de-
case if integralS, we accordingly have 14%5(S+1) and scribed by formulas of the typ€l5) and illustrated by the
JS/2). Since the separation between the peaks oBjtexis ~ curves in Figs. 6 and 7.
is equal to 2, these peaks have a tendefah increasing
|B,|) to overlapping and merging into one to form a
“crown” which acquires the shape of a bell upon a further
increase in|B,|. This is illustrated clearly by a series of  The variety of quantities and special cases still allows us
curves presented in Fig. 4 for the sy 2. to draw some generalizing conclusions concerning the be-
The second example is the magnetic susceptibility comhavior of the systems under investigation on the whole. The
ponenty!? as a function oB, for various values 0B,. In  main thing is that all peculiarities in the physical parameters
analogy witth(O’, this quantity can also be obtained from mentioned above are observed in the range of small values of
the formula for symmetric splitting. Being connected with transverse magnetic field component, where the energy spec-
the energy through the formu g>= —ZaZEo/aBg, the sus-  trum experiences a considerable rearrangement. Conversely,
ceptibility in the vicinity of broken junctions is given by for large values of magnetic field, the magnetization attains
saturation, while the susceptibility becomes negligibly small.
The type of magnetic anisotropy, i.e., the sign of the
constanta, plays a significant role. In the language of sus-
(22 ceptibility, we have solitary spikes far=—1 and a system

5. CONCLUSION

CmB5
[CmBi—i_ (Bz_ Bm)2]3/2,

X (B,)= |B,— B <1,
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field for S=1/2 becomes nonzero at a finite temperature. It
should also be noted that a tilted magnetic field, i.e., the field
with a B, component, affects the shape pf, in the same
way as temperature.

It should be emphasized once again that, in order to
describe low-temperature properties of anisotropic paramag-
nets under investigation in the most interesting range of mag-
netic fields, it is sufficient to know the behavior of the
ground energy level.

For brevity, only main results are given, and cumber-
some formulas are omitted. Whenever it is possible, we com-
pensate this omission by graphic illustrations.

It is also appropriate to make certain remarks concerning
FIG. 6. Effect of temperature on the behavior of magnetization of an easythe method of calculations. The analysis of physical proper-
plane paramagnet fd@,=0.1 andS=2. ties of uniaxial paramagnets was based, first, on exact ana-
Iytic and various approximate calculations, and second, on
analytic and numerical computations as well as on graphic
illustrations. These approaches are mutually controlled and
Student's distribution fory,,. supplemented. It is the graphical method, which is an analog

of a physical experiment, that often stimulates analytic cal-
The effect of temperature is reduced to a certain smoothCulatlons
ing or blurring of peaks. In the case of purely longitudinal
field, point-like singularities of susceptibility in the form of The authors express their deep gratitude to V. M. Tsuk-
function are replaced by spikes of finite height and width.ernik with whom they made their first calculations in the
Similarly, the susceptibilityy,yx in a transverse magnetic theory of spin systems.
This research is dedicated to A. M. Kosevich who is held
as an example of devotion to science by us.

of 2S spikes fora= + 1. This variety is generalized by uni-
versal formulas, e.g., in the form of the two-dimensional

xT
T=0.2
2 2z
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The spin dynamics of a domain wall is studied in an infinite ferromagnetic chain with an easy-
axis anisotropy as well as in a chain of finite size. The dependence of the intrinsic mode
frequency of the domain wall on the exchange interaction is studied for all admissible values of
the latter. It is shown that this dependence is considerably modified in the region of

transition of the domain wall from collinear structure to canted form. 1898 American

Institute of Physicg.S1063-777X98)00507-9

In this communication, we report on the investigation of Van den Broek and Zijlstfawere the first to show that
nonlinear dynamics of spin systems. Magnetic solitons wergor comparable values of the exchange interaction constant
first studied in Kharkov more than 25 years ago, and Profand the anisotropy constant, a domain wall “collapses” into
A. M. Kosevich was one of the pioneers in this field. The 5 collinear structure of the size of atomic spacing with par-
authors are indebted to him for introducing them to this in-5)1e| and antiparallel spin orientations. Stepanov and
teresting field of physical research at different times. _ Yablonskit? studied experimentally the resonance properties

Nonlinear excitations of magnetically ordered medlaof layered antiferromagnets and observed an additional ab-

(domain walls, magnetic solitopdave been studied exten- . . )
. ! . sorption band in the magnon spectral gap. The authors attrib-
sively for traditional magnets both from theoretical and ex- i N .
uted this band to the emergence of an intrinsic mode in do-

perimental points of view? As a rule, the theoretical studies ) ls. Si h modes d ist in the |
of these objects are carried out by using differential equafnaln walls. Since such modes do not exist in the longwave

tions in the longwave approximation. However, it has beerflescription of a magnet, their emergence is associated with
reported in a number of recent publicatidristhat magnets ~ the discreetness of the magnetic medium and the transforma-

with a weak exchange interactigin which the exchange tion of domain walls to collinear form. Goncharu al?
integral J becomes of the order of, or smaller than, theactually established theoretically the existence of an intrinsic
single-ion anisotropy constayl) undergo qualitative varia- mode in a domain wall for values of the exchange integral
tions in structure and domain wall dynamics, and the resultbelow the critical value corresponding to collapse of the
obtained from a longwave description of such systems bewall.
come inapplicable. In the present work, we demonstrate the existence of an
This problem has attained significance in recent yearsntrinsic mode in a noncollinear domain wall for exchange
following the synthesis of new magnetic materials which satinteraction exceeding the critical value, and describe the
isfy the conditionJ~ 3. Examples of such materials are the \ ariation of this mode in the vicinity of the critical value of
qua5|-one-(_j|men5|onal 6 magnets(CH3)3NH]N|CI32H20, J. This question is of importance not only for the investiga-
(CoHNH)NICl5-1,5H,0,” and layered antiferromagnets tion of magnetically ordered media, but also for the general

: ; 10-2
with ~a ratio J/5~10 %, eg. (CH)n(NHa)MnCl, development of “nonlinear physics” where the interest has

(CyHzns 1NH3) ,MnCl,, "~ and most of the high-temperature e ) )
superconductors and their isostructural analogs. Signiﬁpeen shifting in recent years towards essentially discrete sys-

tems.

cantly, it is possible to change in the above layered antifer= o o o
romagnets the number of organic molecules intercalating The magnetization dynamics is studied in the framework

the magnetic layers, thus opening the possibility of experiof Heisenberg's classical one-dimensional discrete model for
mental investigation of the dependence of the structure andn easy-axis ferromagnet, i.e., by using the Landau-Lifshitz
dynamic properties of such magnets on the value of the exdiscrete equation without damping. The total energy of a
change integral. spin chain can be represented in the form

1063-777X/98/24(7)/5/$15.00 479 © 1998 American Institute of Physics
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FIG. 1. Dependence of the intrinsic mode frequeficgf a domain wall on
the discreetness parameter=J/(Ba?) of an infinite ferromagnetic chain
for collinear(curvel) and cantedcurve 2) forms of the DW.

J
E=2> |~ 2SS~ § (Sher)?|, (1)
n
where S, is the spin of a lattice site|§,|2=1), J is the
exchange interaction constar*0 for a ferromagnet and
B the single-ion anisotropy constan8¥ 0 for an easy-axis
ferromagnet with the easy axis along #geaxis. In this case,

the Landau—Lifshitz equation can be written in the férm

1ds,,
(Uo dt

[Sn (She1tS-D) ]+ [She (S 8) =

(2)

where wy=28ueSy /% is the frequency of a uniform ferro-

magnetic resonanceuf is the Bohr magnetor, the nomi-

nal magnetization, anth=+J/B the characteristic scale of
spatial inhomogeneity of magnetization in a domain wall
(“magnetic length’ ) It is convenient to go over to the com-
+iS), (the classical analog of the mag- where the constard is determined from the next approxi-

plex quantityV ,=
non creation operatbrand spin projection onto the-axis

(St=m,). In this case, if we measure time in units @gl
and introduce the parameter=(l,/a)?, we can write
Eq. (2) in the form

dv,
|—+)\(\If Myy1—

dt \Pn%—lmn"_q}nmn—l_

Vh_1my)

+¥,m,=0. 3

Gvozdikova et al.

exceeding the critical value\(=X\, ). In this range of values

of \, the collinear structure corresponding to the solutidn
becomes unstable and the spin distribution in the domain
wall becomes noncollineant,# +=1). Using the smallness
of the parameterN—\, ), we can find this distribution in
the vicinity of the critical value.=\, . For a noncollinear
structure, it is convenient to represent E8).in terms of the
componentsS, :

ds;

NS .~ S+ STy~ S]]+ SR =0,

(6)

ds,

T MMES). y— SYmE + MES)_; — SimE_ ]+ SimE=0,
@

wheremz=[1—(S)%2—(S)?1V2

To begin with, let us determine the static configuration
of the domain wall by putting,= 0 for the sake of definite-
ness. It follows from symmetry consideration thaf=
—mj_, andS;=S;_,(n>0). In the main(linean approxi-
mation, the system of equatio® and(7) can be reduced to
the system

(1-M)S—AS5=0, n=1,
(2N +1)S N (Sy 1 +S:_)=0, n>1, (8)
whose solution has the simple form
A 3
Sﬁ=F, )\=Z, n=1, (9)

mation in perturbation theory. We introduce the small pa-
rameter of expansion

e=N—N\, (20
and present the approximate solution in the form
« A
Snz F +Z,, (11

It was shown in Refs. 3 and 4 that this equation has ax(vhereA— Ve andZ,— £ ¥2<A. Retaining terms of the order

static solution for a collinear domain wall with the following ©f &% in the static equation$6) and (7), we obtain the
spin orientation: following system of difference equations:

My=1(n<0), my=—1(n>0) (@ A easiz 3 e 0o
(the domain wall is located between spins with numbers 0 3 4 4 3
and J for values of the parametarsmaller than the critical 4 3 8
value\, =3/4. Substituting into Eq(3) the solution(4) and —geAt5 2 (Z1+ Za)_ = A3_0, n=2, (12

the function¥ , in the form¥ ,=W¥,, exp({lt), we can easily
obtain the intrinsic modeof the domain wall forx <X\,

1
szg[6_4)\—)\2—)\\/4-!-87\4-)\2]. )

Curve 1 in Fig. 1 shows the dependen€¥\). For A
<\, , we obtainQ=1-\/2, while O~ (8/\/39)(\, —\)*?
near the critical point.

Let us consider the possibility of the existence of an
intrinsic mode in a domain wall for exchange interactions

4 5_ 3 8
~gn eAt 5 Znm 1 (Zoo1t Zni1) ~ gz AV=0.

It can be shown easily that the solution of this system
can be chosen in the ford;=2,=0, Z,(n=3)#0. This
corresponds to the following expression for the consfant

A=2\¢

(13
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(a different choice of the sequengg leads only to an addi- and

tional expansion of the approximate solution with a different
. X 3 14 3 2
value of the small parameter of the expansiohhe first l--elw——|1-5¢e|wop—= |1+ 5 ¢e|w,
terms in the sequencg, and the asymptotic form for large 4 3 4 3
values ofn are given by +Quv,=0,
7 7.0 7 __32 32 _ 0 10692 2 3 14 3 2
1=4£2=0, 3= 358 ~ . ) 1—§8 WO_Z 1—38 Wl—Z 1+§8 W_q
1432 —QUOZO, (21)
Z,=— —7 %%~ —0.644°7,... 14
TRt (14 = 3(,.2 3(,.2
o —§8 vl_Z —§8 UO—Z _§8 [ %)
o 32 s
Ly 3n g% n>1. +Qw,;=0,
. . . L 2 3 2 3 2
Thus, in the main approximation in the small parameter 1—Zelvai—=1-Z¢lvi——l1-Z¢ v
. . . . . 0 1 -1
the solution for the static configuration of a domain wall has 3 4 3 4 3
the form — Qw,=0,
SO _g X0 g0 _ 2.e =1 15 where the signs “plus” and “minus” in Eqs(19) _and (20
n v >n 1-n~ gn—1: =4 correspond to numbers>1 and n<0, respectively, and

Egs. (21) describe the dynamics of spins with numbers
It can be easily verified that this solution satisfies the=1 and 0 adjoining the center of the domain wall. The in-
system of static equations in which the nonlinear tefous  trinsic mode of the domain wall localized near its center
bic in S},S5,S5,S" ;) are considered only in two equations corresponds to the following solutions of Eq$9)—(21):

for spins in the vicinity of the center of the domain wall, _
= — — + — — >
while all the remaining equations are linearized in spin de- Wa=A exil —&(n=D]+B exg —&n=1)], n=1,
viations S;: vp=Aexd —£&(n—1)]-B exd — &(n—1)], n=1,
1 3 1 3 (22)
(Z—S)SE— 2+e|Sit 7 (S0P 5 (S)’S w,=C exp(£,n)+D expé&n), n<0,
3 v,=—C exp(éin)+D expén), n<0,
) (SH(S)?=0, n=1, (168 where
1 5 2\ 1/2
5 3 exp—é1)=73 5i29—4<1i—+— } (23
> S 2 (S1+8_)=0, n>1. R 4 4

Substituting the solution&22) and (23) into the system
Solving the dynamic problem in the same approximationof equations(21), we arrive at the final expression for the
and with the same accuracy, we retain nonlinear terms onlgependence of the intrinsic mode frequency on the discrete-
with numbersn=0,1 in the dynamic equation®) and(7),  ness parametex of the spin chain. In the main approxima-
and linearize them subsequently in small corrections to th&ion in the small parametet, this dependence has the form
static solution(15):

32
O~ —= JA—\*, 24
Si=Sh O+ VaW,(1),  Si=v2Vi(), (17 339 2
whereW, ,V,<S@. Segment of the dependenc@(\) in Fig. 2 shows this

dependence. SegmeBtof the same dependence shows the
asymptotic form of the frequency dependence of the intrinsic

V,=v, cosQt, W,=w, sin Qt (18  mode obtained numerically by Bogdahal for large val-

ues of the parametex.

into the obtained system of equations, we arrive at the final  Thus, we have shown that the domain wall in an easy-
form of the system of linear differential equations fof  axis ferromagnet has an intrinsic mode over the entire range
andw,,: of values of the discreteness paramelé8, and the fre-
quency dependence of this mode changes sharply in the vi-

Substituting a solution in the form

5 3 - e , -

— W= = (Wpy W, g) = Qu,=0, (19) cinity of_ t_he critical value qf this parameter (_:orrespondlng to

2 4 a transition of the domain wall from collinear to canted
structure.

5 3 Unfortunately, the domain wall dynamics in an infinite

U, = +v,-1)FQw,= 2 . AR . ) . .

2" g (Un+1tn-1) n=0 (20 spin chain with exchange interaction exceeding the critical
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N\, =0.75 for an infinite chain. Curvé in Fig. 2 shows the
dependencé26) for the intrinsic mode. This dependence is
identical to the function5) for an infinite spin chain. The
plus sign in formuld26) corresponds to a nonlocalized mode
with ¢»,=—1.6¢, . In the limit of an infinite chain, this state
passes into antiphase spin vibrations of the upper boundary
of the spin wave spectrum. Cun&in Fig. 2 shows the
dependencé)(\) for this mode.

In the regionA>\, , the problem for a four-spin com-
plex is solved exactlyin contrast to an infinite chajreven
for a domain wall of canted form. It can be shown that its
static configuration is described by the following solutions of
the system of equation$) and(7):

my=—mo=—[1=(L/2V1+2/(2x—1)?]*
L Si=Sy=[1F (L/2V1+2/(2x—1)’]*2, .
2
A, 1 A+ A my=—m_,;=—[1+(1/2(1+2)]*2

S=8,=[17V(1+2)]"2,

where

0

FIG. 2. Eigenfrequency spectrum of a finite spin chain containing a DW.

value can be studied only in a narrow range of valued of AN?(2N%—1)(2N%—4N+1)

near the critical value by making a number of simplifying z(\)= (2N—1)(4N2+2N—1) (28)
assumptions. Hence it should be interesting to study the spin _
dynamics of such a system by using a simplified model con- [N the above formulas, we must take the upper signs for
taining a finite number of spins. Since the width of a domain-N€ région\, <A<\, upper (for n=2,—1) and lower
wall for small values of the exchange integral is close to the>/9ns (for n=0,1) in the interval\;<A<A\;, and lower
atomic spacing and the value of spin deviation decrease¥9ns for alin in the intervalh, <A <X, w?ere)\lzc_).84 1S
rapidly with increasing distance from its center, the intrinsicthe root of the equatiorz(\)+(2x—1)"=1, while A,

dynamics of the wall is determined actually by a small num-=1.24 is the root of the equatia{x) +1=0. The points\,
ber of spins near the center. and\, are not critical points, and all dependences at these

Let us consider a chain formed by four spins in the “do- pqints are smooth(At these points, the rotation angles for
main wall” configuration. In other words, we shall assume SPINS Withn=1 and 2 pass through the valug4.) At the
that, for small values of the exchange integral, the spin Sysgecond cr|t|cal _pomt_\=)\+=1+1/\/§, the _domaln_wall .
tem has a collinear structure of the typ®: m,=m,=—1, type conflguratlon disappears, ar_1d all spins turn in a d|rec-
me=m_,=1. In the collinear phase, the system of equations‘f'or_‘ perpen_d|c_ula_r to the easy axis. In th_|s unstable configu-
(3) can be split into four linear equations for solutions of the@tion, the intrinsic mode frequency again becomes equal to

type W = i, expQ): zero and the spin complex goes over to the homogeneous
ground state. However, the description of a domain wall in
(Q—=D) ¢+ N(pot+ pg)=0, the framework of a four-spin complex becomes physically
invalid for values of the parametarclose to\ . .
(—Q=D¢o+tN(Yat¢-1)=0, (25) In order to describe the transformation of a spectrum in
(Q—1—N\) i+ Ny =0, the region\>\, , we linearize the dynamic equatiol)
and(7) in the vicinity of the static configuratio(27) (for the
(—Q—=1-N)¢y_1+Npg=0. system with a finite number of spins under consideration, we
. X oY -~
These equations describe the frequency spectrum of t m$us_t g;ﬂ in Bqs(6) and(7) $,=S;=m, =0 for alln=3 and
given system with a finite number of degrees of freedom and
its dependence on the discreteness parametes well as S=80+ W (1), S=V,(1),
the critical value\, at which the domain wall goes over _0)_ ox(0) 0)
from collinear to canted form. The eigenfrequency spectrum M=M= Sy "Wy /my™, (29
is symmetric in the sign of) and contains four values. The where the quantities(?) and S{? are defined by27) and
dependencé)(\) has the form W, ,Vo<m® andS{?. As in the case of an infinite chain,
02=\24 A+ 1A AZT 6115, 26) e seek the solution of the linearized equations in the form

W,=w, sint, V,=v,, cos{t and obtain a system of eight
where the minus sign corresponds to the intrinsic mode ofinear equations for the quantities, andv,. Putting the
the domain wall. By putting its frequency equal to zero, wedeterminant of this system equal to zero, we arrive at the
get the value of the critical parametef = 1/2=0.71 which  final equation for determining the dependence of frequencies
is quite close to the corresponding value of the parametef)(\) for modes in the canted phase of the domain wall.
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Nontrivial solutions forQ?(\) (with Q#0) satisfy cubic  *E-mail: kovalev@ilt.kharkov.ua
equations with a complex dependence of the coefficients off E-mail: ysk124@rsphysse.anu.edu.au
the parametex. We shall not write this equation here sinceit

is quite cumbersome. However, we calculated the asymptOthA. Hubert, Theorie der Domaenwande in Geordneten MedieSpringer,

dependenceﬂ()\)'near the critical values\=X\, aqd N Heidelberg(1974.
=\, and numerically plotted these dependences in the enzA. M. Kosevich, B. A. Ivanov, and A. S. KovaleWonlinear Magnetiza-
tire admissible range of values af(curves2 and4 in Fig. tion Waves. Dynamic and Topological Solitofis Russian, Naukova

. Dumka, Kiev(1988.
2). The functionsQ(n) have a root dependence nekr 3J. J. Van den Broek and H. Zijlstra, IEEE Trans. Mah.Mag.-7, 226

=\, . This is the bifurcation point for the high-frequency (197
mode whose degeneracy is removed due to violation of sym#A. N. Goncharuk, A. A. Stepanov, and D. A. Yablonskii, Fiz. Tverd. Tela

metry in the domain wall. For the “intrinsic mode,” cun& _(Leningrad 31, 132(1989 [Sov. Phys. Solid Stat81, 2099(1989].
. . . . . B. Rumpf, Phys. Lett. 2221, 197(1996
in Fig. 2 is quite close to the corresponding dependence fO%A. A. Anders, V. G. Borisenko, and S. V. Volotskii, Fiz. Nizk. Tenfb,

an infinite chain)?=3.09(\ — ). (For an infinite chain, it 39 (1989 [Sov. J. Low Temp. Physl5, 21 (1989)].
follows from (24) that22=2.92(\ —\,).) For not too large M. I. Kobets, A. A. Stepanov, and A. I. Zvyagin, Fiz. Nizk. TenTp1473

values of\, curve2 in Fig. 2 is also quite close to the cor- (1982 [Sov. J. Low Temp. Phys/, 716(1981]. . _
A. l. Zvyagin, M. |. Kobets, V. N. Krivoruchket al,, Zh. Eksp. Teor. Fiz.

responding dependen@ein Fig. 1. _ _ 89, 2298(1985 [Sov. Phys. JET®2, 1328(1985].
Thus, it can be seen that the model of spin chains of°a. |. zvyagin, V. N. Krivoruchko, V. A. Pashchenket al, Zh. Eksp.
finite length can correctly describe the dynamics of a domain Teor. Fiz.92, 311 (1987 [Sov. Phys. JETRS5, 177 (1987)].
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Bose gas with nontrivial particle interaction and semiclassical interpretation
of exotic solitons
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Many-particle bound states in a Bose gas with a complex pair interaction between particles are
considered. It is shown that the combination of attraction and repulsion between particles
leads to the emergence of bound states with peculiar physical properties. In the limit of a large
number of bound states in the Hartree approximation, these states are close in the structure
and properties to exotic solitorisompactons and peakaris classical systems with weak spatial
dispersion. Examples of exotic solitons of various types in magnetically ordered media are
considered. ©1998 American Institute of PhysidsS1063-777X98)00607-0

At the end of the sixties, comprehensive studies of soli-=m,+im, andm=m,=(1—| #|?)Y2, the equations of mag-
ton dynamics of nonlinear evolutionary systems acquiredhetization dynamicgéLandau—Lifshitz equationsacquire the
considerable significance. The investigation of this problenfollowing simple fornt:
in Kharkov was started virtually at this time, Prof. A. M. 2 2

: . . R ) 1 Py d°m
Kosevich being a pioneer in this field. In 1990, Kosevich i — —17m—5+L%) —5 +my=0, 2
et al. published a reviewin which they proposed new types at 2 28
of solitons, viz., magnetic compactons. This article is de-where two “magnetic lengths” are denoted by (a/B8)*?
voted to the study of compactons and their semiclassical inandL =[(a+ a;)/B8]*2
terpretation. In the simplest case of stationary envelope soliton with

The reason behind the existence of dynamic spatiall),ip:(l_mZ(x))lf2 explwt), we can write Eq.(2) after the
localized excitations of nonlinear evolutionary systef@g- first integration in the form
namic solitongis the action and competition of two physical 2

; @ act o on o (1-w)-u
factors: the nonlinearity and spatial dispersion of the —12 S e , 3)
systemt The form of the energy—momentum relatian ax AL =19 u+ 19/ (1—u9)’

= a_)(k) of linear waves affects c_onside_rab_ly the prpperties ofyhere we have introduced a new variable \/m
sqhton state;. The|r structure dlffers S|gn|f|car12tly in 2systems In the limit of an Ising ferromagnet with=0, the soliton
W|th strpqg Q|sper3|on, when the.d|spersibnlca wl 9k ré-  solution of Eq.(3) (Fig. 18 has the form

mains finite in the long-wave limik—0 and in weakly dis-

persive media for whicld—0 for k—0. It has been estab- u=yl-o cogx/2L), |x|<mL,

lished that even in the case of zero dispersion of linear _

. ) ) X u=0, |x|>L. (4)
waves, soliton solutions may exist due to so-called nonlinear
dispersion, but solitons acquire peculiar “exotic” form. This Since the field in the given case differs from zero only in
was noted for the first time in the review by Koseviehal?  a finite region of space, such solutions were later called com-
in the description of Ising ferromagnets. pactons. The frequency dependence of the amplitudes for

In the case of a one-dimensional Heisenberg ferromagoempactons is the same as for envelope solitons, but the
with uniaxial exchange and one-ion anisotropy, the energy ofegion of localization is not connected with frequency and is
the system has the form determined only by material constants. It is important to note

that Eq.(2) linearized iny in the Ising limit has zero disper-
2 2 sion, andw(k)=1. In magnets close to Ising magnets with
_a (‘9_"‘) L@ (ﬁmz) _B (1) <L, Eq.(3)in the small-amplitude limit (+ w<1) can be
2\ x 2 | ox 27 reduced to a simpler equation

(au)z , (1-w)—u? ®

wherem is the magnetization vector a 0 for an easy- —| =U———.
9 > y ox] Y TPrala?

axis ferromagnet. If we measure time in the units abgl/
where wg=2BuoMg/# is the frequency of uniform ferro- The interest in compactons was stimulated by the publi-
magnetic resonance, and introduce dynamic varialtes cation of articles by Rosenatf,who proposed a new version

1063-777X/98/24(7)/5/$15.00 484 © 1998 American Institute of Physics



Low Temp. Phys. 24 (7), July 1998 A. S. Kovalev and M. V. Gvozdikova 485

a u b u known that classical nonlinear evolutionary equations can be
put in correspondence with certain quantum systems of in-
teracting particle$-? For example, soliton excitations in
weakly nonlinear systems are normally described on the ba-
sis of the nonlinear Schdinger equatioNSE)*

-nL 0 rL X 0 X
FIG. 1. Profi i Py 2
. 1. Profiles of the compactdia) and peakor(b) solutions. i e — v + - g| ¢| ¥=0, 9)

whose solution for dynamic solitons is well known and has

of the well-known Korteweg—de Vrie&dV) equation with  the standard form

a nonlinear dispersion tgrm e}nd provgd that this.version has W= 12Ige secliex)exp—iot), e=\1—w. (10)
a compact soliton solution with a stationary profile, an am- _ . o
plitude proportional to the velocity, and with a localization The properties of these solitons are similar in many re-
region independent of the velocity. spects to the properties of coupled many-boson stationary

At the same time, Kosevicl considered compact enve- states in a quantum one-dimensional Bose gas with a
lope solitons for antiphase high-frequency oscillations in arshaped attraction between particteghe wave function
anharmonic chain taking into account nonlinear dispersionP(X1,Xz,...,Xy) Of such states satisfies the following Schro
terms. In this case, the dynamic equation for atomic displacedinger equation:
mentsv (x) has the form 2

d<d
1920 (921) (92(02) —2 W—FNCIH—E Uij(D:ECD,
—+e a—)(2+v+vg+)\v p =0. (6) : i =<l

at?
Uij=—9ga(X—X;j). (11

For A>0, the solution of Eq(6) in the resonance ap-
proximation v ~W(x)sin(wt) disregarding linear dispersion (We putA=1 andm=1/2.) The classical nonlinear Schro
(e=0) has the form of a compacton close to expres$®n dinger equation can be integrated completely by the method
Holm and Kamassa proposed in 1994 their own modificatiorof the inverse scattering problem, while the quantum Schro
of the KdV equation which assumes the existence of a localdinger equation with @shaped interaction can be integrated
ized wave of a stationary profile of the form exp(~Bjx  completely by the Bethe ansatz metHdd? The energy
—Vt|) with definite values of the constangs andB for a  spectrum of the bound many-boson complex has the form
certain value of velocity(see Fig. 1b This new type of E=N-—g?N(N®>-1)/48 and coincides with the result of
exotic solitons was called peakon. In analogy with this typesemiclassical quantization of the soliton soluti®) taking
of solitons, we can also find the envelope solitons of thgnto account the dependene¢N)=gN/4. The boson den-
peakon type which also exist only for a certain critical valuesity distribution in the bound state coincides with the enve-
of frequency of the solution. lope of the functior) |2 for soliton (9) in the limit of a large

If we take into account weak linear dispersian#0) in ~ number of particlesN> 1.
the anharmonic chain considered above and change the sign However, the description of soliton dynamics in terms of
of the nonlinear dispersion term € 0), the wave amplitude the NSE is justified only in the small-amplitude linfgmall
W(x) in the resonance approximation satisfies the equationN) and leads to soliton collapse in the lintNt—cc. Limita-
(aw)z ) (0—1)—3W2/8 tions imposed on the increase of the amplitude for la¥ge

- —_— (7) are usually taken into account by introducing into E@).
ax e — 3|\ W2 additional terms with a higher degree of nonlineafityatu-

It can be easily seen that the solution of Ef). for the  rated nonlinearity’). In this case, the NSE is modified as

critical value of frequency = 1+ e/4|\| assumes the form follows™*2
of a peakon: P
0 |12 = —W+¢—9|¢2|¢+ 8lyl*y=0. (12
W= W) exp(— [X|/(2\\)). ®)

The soliton solution of this equation has the form of a
It should be noted that, for solutions of E@) of the  function with a “plateau” and corresponds to a “drop” in
type of standing waves =W sinkx)sin(wt), the nonlinear the condensed state. A semiclassical analog of the “NSE
energy—momentum relation has the form?=1—¢k?  with saturation” (12) is a one-dimensional Bose gas with

+9W?/16+ 3|\ |k?W?2/2. Thus, the dispersioD = d?w/dk?>  paired and three-particlé-type interactior? in which the
vanishes for the selected amplitudé= \2e/3|\| coinciding  parameter 8 characterizes the intensity of the three-particle
with the amplitude of the peakai®). interaction.

Equations(5) and (7) are typical of problems in which However, the soliton solution dfl2) shows that the soli-
solitons close to compactons and peakons are formed. lton amplitudey{ and the spatial derivativé/dx in the main
connection with a peculiar field distribution in exotic soli- approximation have the same order of smallndssg, §/ 9x
tons, it would be interesting to consider quantum systems in-¢). For this reason, we must generally take into account in
which states with analogous properties can exist. It is welEq. (12) cubic terms containing two spatial derivatives along
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a uij b Uij nonstationary states of a nonideal Bose gas, the time-
dependent Hartree approximatioffDHA) proposed by
v Dirac is normally used. This approximation leads to an equa-
U tion of the type(14) for the Hartree function. However, it is
-a a 0 sufficient to analyze stationary soliton states by using the
0 % .a a X ordinary approximation in which the wave function
®(Xq,X2,...,XN) In (11) has the form of a product of one-
U v particle functions:®=1I¢(x;), where ¢(x) is the normal-
ized Hartree functionf{| ¢|2dx=1). Substituting the expres-
FIG. 2. Pair particle interaction potential leading to compactanand S'Sn for @ into (1), multlplylng bOth its sides by
peakon(b) solitons. 0*(X5)...0*(XN), and integrating with respect to
X2,X3,...,XN, We can easily obtain the equation for the func-
tion ¢(x) in the case of potentidll6):

with nonlinear terms~°. For example, the Landau— 42 d2(0?)
Lifshitz equation(2) written to within ¢ inclusively has the ¢ _ _ 3 _ 2 ¢ _
pter g2 ~Eet2AN-1)We+2(N-1)Uale — 5= =0,
2 2 2 (17)
oy LY R R
e =1 22T U= > || %= 3 L] *p— > |4 e where the Hartree energy and the total energf can be
expressed in terms of the solution of Ed7) as follows:
L ’ *(|yl?) 13 do2
2 x> szfdx —(d—i +2(N—1)We*

Since y~¢ and d/dx~¢/l in the main approximation,

we must retain only the last terms on the right-hand side of _2(N—1)UaZ? d_(P 2 (19)
(13) for ferromagnets close to Ising ferromagnets with ?\ax) |
>|, writing it in a simpler form:
de
oy, Py 1, L2 Ay E=N+Nfdx —)—(N—l)wgo“
— =Pty = - — = dx
ozt -5 — 7= =0. (19
2
This equation contains only cubic nonlinear terms, and +(N—1)Ua2¢p? d_‘P) ) (19)
hence this classical system must be put in correspondence to dx

a quantum system with a paired particle interaction mor
complex than in(11).

We choose for the potenti&l;; in (11) a more complex
function including both the attraction and repulsion at differ-

%For stationary states, the functi@ancan be chosen as real-
valued) It can be seen that E¢L7) has the same structure as
Eq. (14) for an Ising ferromagnet.

account. In our case, bound states of the soliton type EXi!ﬂetermined from Eq(19).
when the total potential is attractive. For simplicity, we
simulate the potential by a system éffunctions. In this
case, two versiongFig. 2a and 2pof such a potential are
possible:

The differential equations can be used in the case of
small spatial derivatived/dx. The last term in17) should
be taken into account only under the conditida?/W=1,
i.e., the total potential must be small, or the finiteness of the
Ujj=2V8(x—xj) —2U[ 8(xi—x;+a) + (x;—x;—a)]. rangea of paired interaction must be manifested clearly. If,
15 however, we proceed from the potential ene(®y), we can
In the first case(a), V>0, U>0, andV—2U=—W>0, Prove that a transition to the simplified potenti&b) is pos-
while in the second cas#h), V<0, U<0, andV—2U = sible When the additio_nal inqualit\WUa2<1 is satisf_ied.
_W<0 (see Figs. 2a and 2b, respectivelgquation(11)  The fulfillment of both inequalitiesV><UWa?<1 requires
with potential (15) can be integrated by the Bethe ansatzthat the total potential be smallV<1.
method, but in view of the cumbersome calculations in-  After the first integration, Eq(17) can be reduced to a
volved, we simplify the problem, replacing potentiab) by ~ [OfM permitting an analysis in the phase plagede/dx):
the point-like potential
92 (
ui,:—zw&(xi—xj)—waza—xz5(xi—xj). (16)
I

de ) g —NWe?

2
a) ¢ TTaNUS? 0

where we assume that>1.

It will be proved below that exotic solitons under inves- In the case d), Eqg.(20) has qualitatively the same form
tigation correspond to extremely large numbiréor which  as Eq.(5), permitting compact solutions in the limiting ver-
the Hartree approximation is applicable. In order to describesion. On the other hand, In the casb),( when U<O0,
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Eq. (20) coincides qualitatively with Eq.7) having a peakon
solution for the critical value of the parameter.
Equation(20) can be integrated, although its soliton so-
lutions can be obtained only in an implicit form.
In the case &) for U>0, this solution has the form

1 | JA—f Cf2-1 X Je 21
— IN ——— —alCsSIiN 55— =4X —,
JA A+ fo+1 JA
where A=4Ua%s/W and f=[(4Ua?/W) X (e — WNg?)/(1
+4Ua’Ne?) |2

In the caself) for U<0, the solution can also be written
in an implicit form:

-

ng +J_ 1-4|U|Na¢
W 1/2
(o] - 2

whereB=4|U|a2%s/W and
F=[(4|U]|a®/W)X (e —WNg?)/(1—4|U|a?N¢?)]"2.

Solutions (21) and (22) contain the dependence

=¢g(N) to be determined. It can be found by using the nor-

malization condition and Eq20).

If we introduce the characteristic value of the Hartree

energye, =W/4Ua? and the characteristic number of par-
ticles N, =1/J/4WU&Z, the dependenc&=N(e) in the
case &) has the form

€ 1/2

€ ) '

N 1/2
arcsin
( € + *

N

&
+ 1+ —

Ex

Ex

(23

Consequently, for small values df (N<N, ), the Hartree
energy is proportional to the square bf e~(NW/2)?,
while for largeN>N, , this dependence is transformed into
the linear dependenae~ (NW/27) X (4W/Ua?)*2 (curve1
in Fig. 3.

In the case If), the dependencdl=N(g) changes as

follows:

N ( e )1/2 - ) (\/_—I-\/_

_— | — +

No Loy Ve, —e
where we have made the substitution-|U| in the defini-
tion of ¢, andN, . For smallN, the dependence=¢&(N)
coincides with that for the case). However, in the case
(b) the value ofN is bounded from above by the value of
N, for which & assumes the maximum valgg (curve2in
Fig. 3.

For a small numbeN<N, of bound bosons, the solu-
tions in the casesa) and () virtually coincide and have the
standard form

JYNW

2

112
: (24)

NW
2 %)

¢= (25

sech(
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£/e,

0 N/N,

FIG. 3. Dependence of the Hartree energy of a bound many-boson complex
on the number of bound particles in it in the case of poteri@a(curve 1)
and (b) (curve2).

In the opposite limiN>N_ , the soliton amplitude tends
to a finite value W/ m?Ua?)Y and the soliton is localized
in a finite region of space ®2=2/\/e,. ForN—o, we have

X
2/mA cos—,

A |X|> A2,

=0, (26)

i.e., the soliton has a typical compacton forsee(4)] shown
in Fig. 1a. Although the boson densijty=N¢? in the soliton
increases withN to infinity, the soliton size remains finite,
and its collapse differs from the collapse in a Bose gas with
a conventional-function interaction.

Substituting the compacton soluti¢26) into the expres-
sion (19) for energy, we can easily verify that the depen-
denceE=E(N) for such solutions is also peculiar:

1lle,
127N,

[x|<7AL2,

E=N(1+e,)—N? (27)
Thus, the eigenenergy of a particle in a compacton is
renormalized, and the correction to energy nonlinea iis
proportional toN? and not toN® as in conventional solitons.
It should be noted that the dependeree Nwy— yN? is
typical of an anharmonic oscillator, i.e., a compacton pos-
sesses some features of a localized nonlinear oscillator due to
its peculiar localization. The same result is also preserved for
the magnetic compactdd) in an Ising ferromagnet. Substi-
tuting solution(4) into the expression for energiyt) for «
=0 and for spin deviation®= [(1—m)dx=2fu?dx, we
arrive at the same dependence

E=N-N?8L. (29

In conclusion, we consider the limit of a large number
N—N, of bound bosons in the casé)( with a negative
paramete|U In this limit, Eq. (20) assumes the form

It should be noted that the inequalities considered above

imply thatN, > 1. Consequently, solutiof25) also exists for
large values oN: 1<N<N,_

(29

d 2
(JZ—&)(M((,—";) —<p2)=o,
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and its soliton solution has the form of a peak@ee *E-mail: kovalev@ilt.kharkov.ua
Fig. 1b:

cpziexp(—|x|/A), (30
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Spin waves in a non-ferromagnetic electron liquid in a magnetic field are studied in the random
phase approximation. The electron bound states in the field of impurity atoms are

considered. It is shown that electron localization facilitates the propagation of spin waves. New
branches of wave spectrum are found in the frequency region where propagation of

Silin’s waves is not possible. The spectrum and damping decrement of waves are obtained.
Intersection of the dispersion curve for a Silin wave with the resonance frequency of electron
transitions between Landau levels and local levels results in a cross situation typical of

coupled waves. The differential cross-section of magnetic scattering of neutrons by a two-
dimensional electron liquid in a magnetic field is calculated. The energy spectrum of scattered
neutrons contains additional peaks associated with one-particle excitations of localized
electrons and spin waves. The positions and widths of these peaks provide information about the
spectrum of electron impurity states as well as the spectrum and damping of spin waves.

© 1998 American Institute of Physid$1063-777X98)00707-5

A cross situation is the intersection of curves describingwave spectra, called magnetic impurity branches, are situated
the energymomentum relation for two types of waves orin the vicinity of these transition frequencié8.
elementary excitatia. . . The existence of additional poles of dynamic spin sus-
ceptibility associated with the above-mentioned resonance
A. M. Kosevich  transitions of electrons can be verified by using a simple
Encyclopedic Dictionary of Solid State Physics approximation in the random phase approximation taking
[in Russiar, Naukova Dumka, Kiev1996 into account the electron— electron interactfofthis ap-
proximation takes into account the exchange energy of elec-
trons, and their mutual scattering is considered in the ladder
approximatiorf The random phase approximation for de-
scribing spin waves in nonferromagnetic metals in a mag-
The existence of spin waves in nonferrromagnetic metalsetic field was used by Edwardsvioriyal® has presented a
in a magnetic field was predicted by Sfliwho proceeded review of works devoted to the effect of impurity atoms on
from Landau’s Fermi-liquid theor§.Soon afterwards, such the spin susceptibility dynamics without taking into account
waves were detected experimentally in alkali metdis. the electron impurity states.
These waves are associated with the spin resonance of con- The growing interest towards two-dimensional electron
duction electrons forming a degenerate electron liquid in thesystem&! has made it necessary to find the effect of impurity
metal. The spin branch of the spectrum of excitations in atoms on the properties of spin waves propagating in a two-
system of interacting electrons corresponds to the dynamidimensional electron liquid in a magnetic field. The impor-
spin susceptibility pole lying outside Stoner sectotsThe  tance of this problem is associated with the fact that in a
damping of spin waves at low temperatures is caused btwo-dimensional system of electrons in a magnetic field, an
collisions of electrons with impurity atoms and lattice de-impurity of even the lowest intensity removes degeneracy of
fects, which are usually taken into account by introducingthe electron “orbit” center position under even the weakest
the collision frequency determined by the relaxation of elec-electron—impurity interaction, and detaches local levels from
tron momentum and spth. each Landau level. The positions of these levels were deter-
For a sample containing impurity atoms attracting elec-mined by Kosevich and Tanatardwho obtained the elec-
trons and in a magnetic field, other types of resonance eledron energy spectrum in a dislocation field and in a magnetic
tron transitions can also be induced by a varying magnetidield. Batakaet al'® considered a strictly two-dimensional
field. Such transitions include those involving spin transferelectron gas in the field of a special type of impurity poten-
between quasilocal levetsas well as between magnetic im- tial in the presence of a magnetic field. In contrast to the
purity levels® and Landau levels. New branches of spinthree-dimensional cade,local levels exist in a two-

INTRODUCTION
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dimensional system in attractive as well as repulsive impupropagate in the electron system. Waves with “negative”
rity atoms. Resonance transitions of electrons between local-) polarization obey the following energy—momentum re-
levels and Landau levels must be accompanied by the emelation:
gence of new branches in the wave spectrum. 1 (qug)|?
In this work, we present'the result; of computations of  w(g)=Qy(1- BO)[l— i (_F)
the spectrum and attenuation of spin waves in a two- 2Bo | Qo

dimensional electron liquid taking into account the local  This relation differs from the corresponding relation for
electron states at impurity atoms in a magnetic field. The, three-dimensional samplenly in the numerical factor be-
electron—electron interaction is taken into consideration ifgre g2, The damping decrement of waves with the spectrum
the random-phase approximation. Rare impurity atoms argg) js equal to the frequency of electron collisions with

assumed to be distributed randomly. Spin waves of differenimpyrity atoms associated with the relaxation of momentum
polarizations are considered in Secs. 1 and 2, while Sec. 3 igng spirf

devoted to their detection in experiments with slow neutrons. | an earlier worki* we showed that, if local levels are

taken into account in the energy spectrum of two-
dimensional electrons, the tensors of high-frequenay (
1. SPIN WAVES WITH “NEGATIVE” POLARIZATION >y) susceptibility acquire resonance contributiofg.. .
] ) ) o These contributions must be taken into account in the disper-
Let us c9n3|der a two—d|mens!on_al elect_ron liquid in the gy, equatior(1). Near the frequencies® of resonant elec-
planez=0 with a constant magnetic field at right angles to 4, transitions between Landau levels and local levels, the

this plane. The energy-momentum relation for electrons igjrcylar components of spin susceptibility contain, in addi-
assumed to be isotropic and quadratic, while the potential ofiop, 16 (2), a ternt*

randomly distributed impurity atoms with a low concentra- .
tion is assumed to be short-range potential. In the random- wg

. 3

imati ispersi | : X' = xoas ———— @
phase approximation, the dispersion equation for spin waves =A% G —w—ivy
propagating in a two-dimensional electron liquid at right . . N
angles to the applied magnetic field has the form wherea  are the oscillator forces for resonance transitions,

andf vy is the local level width. The quantities; depend
on the wave vector. This dependence is manifested in terms
of the order of gR)? (R is the cyclotron radius which
cause a weak renormalization of the group velocity of waves
and will be disregarded in the subsequent analysis.

For electron transitions from a Landau level to a local
level with a spin flip= — =, the resonance frequencies are
given by

|
1—2—M2X1(q,w)=0, ()

where u is the spin magnetic moment of an electrgn,

= Xxx* 1 xyx are the circular components of the dynamic spin
susceptibility tensor which depend on the wave veqgtand
the frequencyw, and | is the Fourier component of the
electron—electron interaction energy taking into consider
ation only thes-wave part of the amplitude of mutual scat- w:=Sw.F 0o wy, (5)
tering of particles. The magnetic susceptibility of the me-

dium into which the sheet=0, occupied by electrons is Wherewc is the cyclotron frequency of an electraiiw, is
immersed, is equal to unity. The quantityn the semiclas- the separation between the Landau level and a local level

sical approximation is associated with the paramBefig- ~ detached from it, and is the resonance number. In the

uring in the Fermi-liquid theory through the following rela- Present case, we have

tion . oo, ) |
Bo=ml/(27h?) o = s w4 KL~ T(eie)])

(m is the effective electron magsThe constanB, is pro- ®)
portional to the zeroth-order term in the expansion of thewheree,,, ands'k(, are the positions of theth Landau level
spin component of the Landau interaction function in Leg-and thekth local level with a spin projectior= +, f is the
endre polynomialé.lts sign is opposite to that of the con- Fermi function,r, is the residue of the electron—impurity
stant used by Platzmaat al* scattering amplitude at the palg¢. —i% vo, andn; the num-
We shall use the semiclassical longwave approximatiorber density of impurity atoms. Summation in E§) is car-

for the componentsx(io) of the susceptibility of a pure ried out over pairs of levels participating in transitions at the
sample: frequencywg . The Fermi function difference obeys Pauli's

1/ qup |2 exclusion principle. The number of terms in E§) depends
3 (Qoi a)) !

2) on the position of the Fermi energy of degenerate elec-

Q
(0) -, -0
X+ (qyw)_XO Qoiw 1

trons.
where vg is the Fermi velocity,Qo=2uH/% is the EPR The frequencies of electron transitions from a local level
frequency, andyo=mu?/w#? is the Pauli susceptibility of to the Landau level with spin fli= — = are defined as
two-dimensional electrons. Substituting formyf into the 0F =50,F Qo+ wp. )

dispersion equatiornl), it can be verified that spin waves
having a “positive” (+) polarization in(1) and (2) cannot  The corresponding oscillator forces have the ftm



Low Temp. Phys. 24 (7), July 1998

wcN;

*

ai=
S h2(swet wo)’w

- ; rclf(eke) — e os)]-
®

Let us consider the neighborhood of the frequengy
=y~ wg Of electron transitions from the Landau lewg]_
to the local levek}, . Sincesy_<ep<e), , the sum over
k appearing in formula6) retains only one term wittk
=N. Other transitions at the frequeney, are forbidden by
Pauli’s exclusion principle. It is assumed tl§a§> wg. If, in
addition, wg>B((},, the resonance frequenay, will be
lower than the boundary frequend€yy(1—B,) of a wave

whose spectrum is defined 168). In this case the dispersion
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z=0. In waves with spectrunil3), the ratio of the compo-
nents of the spin magnetization vectarinduced by a vary-
ing magnetic field is defined as

My Xy XX
My Xxx X-tx+

The Cartesian components of the susceptibility tensor can be
determined easily froni2) and (4).

The damping of spin waves propagating at right angles
to the magnetic field is caused by collisions of electrons with
impurity atoms. These collisions are taken into account
through parameters and v, characterizing the impurity

curve (3) for a Silin wave intersects with the straight line broadening of Landau levels and local levels, respectively.
w=w, and a cross situation similar to the one observed irTaking into account the small imaginary corrections in the
the spectrum of crystal lattice with quasilocal vibrationsexpansions of2) and(4), we can show that the solution of
arisest® Taking into consideration the contributions from the dispersion equationl) has the form w=w.(Qq)

Egs.(2) and(4), we can present the dispersion equatibn
for boundary frequenciegg&E0) in the spin wave spectrum
in the form

l_BO_&)/QO B o 9

1-w/Qy  °l1-owlo’ ©
wherew,=w, , and
_ wcrﬁni

a=ayg=—"—"7% —. 10

O (hwo)’wy (10

This equation has two roots. corresponding to the low-
and high-frequency branches of the spin wave spectrum:

1 1 1
0:=5 o (1—aBg)+ 5 Qo(l—Bo)J—“E {lo(1-aBy)

—Qo(1-Bg) >+ 4Qw,aB3} 2 (12)

The boundary frequenay _ lies beloww, , while w, lies in
the interval[ Qo(1—Byg),Qq]. The parametetr defines the
splitting of branch(3) into two branches. Asx— 0, the fre-
guency w_ approachesw,, and w, approachesy(1
—By). The spin wave spectrum contains a dap_,w,] in

which wave propagation is not possible. The width of this

gap is defined as
Sw=Qy—wg—w_. (12
Curve (3) intersects the linev= w, at the point
_Qo 2Bo(wo—Bodo) v
o0 W}

UF

For g<qg, we can confine the expansion of solutions of the

dispersion equatiofil) into a power series iq. In the long-

—ivy+(g), wherew.(q) is the energy—momentum relation
(13) for waves, andy-. is the damping decrement defined as

Wy
U+an’ -_

Qo

Qo_w: 2
Y= —

Wr— W+

W, -1
1+a —

Q_ +2
v [Bazes)
Qo

Wy — W+

(14)

The small quantities’ and v ensure that the inequality..
<w. is satisfied. Fow— 0, formulas(13) and (14) lead to
the spectrum and damping decrement of spin waves in the
absence of electron localization.

The dispersion equation has two root$3) for wg
<By{}; also. In this case, however,

0),<Qo(1_Bo), 0)6<a)+<90.

Let us consider electron transitions from the local level
s'N_ to the Landau levek. . The transition frequency is
defined asv, = Q(+ wq, while the oscillator force is defined
as

ol N (15)

A=~ o5~ . -

(hwg)*(Qo+ wo)
In the present case, the dispersion equation for boundary
frequencies has the same foff), except that we now have
w,=Qy+ wg and the oscillator forcer is defined by(15).
The limiting frequencies are confined in the intervals

(J)_<Qo(1_Bo), Qo<w+<wr.

The low-frequency spectral branch overlaps with the Silin

wave approximation, the energy—momentum relation for thgyaye band(3). The high-frequency branch lies in the fre-
spin wave branches under consideration assumes the formguency range where Silin’s semiclassical waves cannot

2 -1
o ()=w. 1 (Gve)

__EQO_(OJL 1+

o [Qo— w2
aQ—O —_—

W~ W

13

propagate. The solutions of the dispersion equation differ
from (11), (13) and(14) in the resonance frequency and os-
cillator force have different values. The spin waves with the
energy—momentum relatiow ,(q) attenuate weakly in a

The dispersion of these waves is anomalous. They constitutgansparency banw . ,w,] of width
a nonuniform precession of magnetization around the con-

stant magnetic field direction, propagating in the plane

Aw=Q¢+wy—w, . (16



492 Low Temp. Phys. 24 (7), July 1998 N. V. Gleizer and A. M. Ermolaev

2. WAVES WITH A “POSITIVE” POLARIZATION 3. MAGNETIC SCATTERING OF NEUTRONS BY SPIN

_ WAVES
It can be seen from formul&) that in the absence of

localization of electrons, a weakly attenuating solution of Eq.  The spin waves considered in Secs. 1 and 2 may be
(1) for spin waves with a “positive” polarization can exist observed in experiments with slow neutrons. The differential
only for B,>1. However, the electron liquid becomes un- cross section of magnetic scattering of neutrons by a two-
stable in this cas&For a positive contributiof) from local ~ dimensional electron liquid per unit area is definetf as
levels to the real part of spin susceptibility in the region ) 50,
<w. , the propagation of such waves becomes possible. d°o :i (ﬂ) k_
ST T . L . (n,+1)
This situation is reminiscent of antihelicons in an electron dO’'de’ 4w\ u | k *¢
gas'® whose propagation becomes possible owing to the ex-
istence of a subsystem of localized electrons, the direction of X 2 (Sik—eieIm xi(q,0), (22
whose rotation is defined not only by the magnetic field, but ik
also by the impurity center. . where xj is the symmetrized spin susceptibility tensog,
The resonance frequency of electr?n tra.msmon.s frqm the_ e2/mc the classical electron radiug/=1.91 the gyro-
Landau levek -1y, to the local levek_ with a spin-flip magnetic ratio for neutrongi=k—k’ andfw=s—z’ the

+—— is defi =0~ Qo—wq. [ .
— — is defined asy = w.— {2~ wq. The oscillator force change in the electron wave vector and neutron energy for

is defined as scattering in a solid angléQ’, n,, is the Planck’s distribu-
WL tion function, ande=qg/q. Since the scattering vectar is
N c'n |2w+ [f(en-1)+)—Fen)]. (170 perpendicular to the magnetic field, the sum appearing in

1772, 2+
h*(wc— wg) 0, (22) is defined as

In this case, the dispersion equation for boundary frequencies 1
of spin waves has the form 5 (X+ TXx-)+ Xzzs (23

(U+Qo(l_Bo)_ B (ON
(U+QO ~4Po

, (18) where the spin susceptibility tensor components are calcu-
0w lated in the random phase approximation. In the absence of
electron—electron interaction, the contribution from local
levels to the longitudinal component of dynamic spin suscep-
tibility is given by

where w,=w; and a=ea; . In the intervalw<w,, this
equation has two roots:

(g

1 M |
SX2d )= 5 xohwi Y, —— 1 [f(eh,) —f(£ns)]
2 ke (en— &g

1 1 1
we=5 o (1—aBg) - 5 Qo(l_Bo)iE {lo(1+aBy)

+Qo(1- Bo)*~4aBow(w,+ Qo) 2. 19 1 1
As a—0, the upper branch dfl9) approaches the resonance % en—ethotio * en—e—hw—io/’
frequencyw, , while the rootw  becomes negative.

In the longwave approximation, the solutions of ). ~ This function has resonance singularities at frequencies
can be defined for the case under consideration as |sn—sL|/ﬁ of electron transitions between Landau levels and

local levels without spin flip.
The contribution of one-particle excitations of electrons
' localized at the impurity atoms in inelastic magnetic scatter-
(200 ing cross section of neutrons can easily be obtained from
formula (22). Terms withy.. in (23) contribute to scattering
wherew* are the boundary frequenci€s9). These waves ross section with spin flipt — ¥, while terms with y,,
have a normal dispersion. They attenuate weakly as a respntripute to scattering cross section without spin flip. In
of electron collisions with impurity atoms in the transpar- particular, the cross section of scattering accompanied by
ency bands between boundary frequen€ld} and the reso-  gjectron transitions from a local level to a Landau level with

B 1 (qug)? 271
o (P=w.+ 2 0gtwr

Wy

Qo+ @+
(% QO

wr_wi

nance frequency; . N spin flip = — = is defined in the vicinity ofo=wg (7) as
The frequency of transitions of electrons from the local
level ey, to the Landau levek . 1y- is equal tow, = w, d’c. 1 [yro\?K - o
— Qo+ wg, While the oscillator force is defined as dO'de’ 8w\ m | k X0¥s%s (0—wi )2+ 1
N (24)
_ (I)CrN ni I
O A2 (wot wg) 2w, [flene) —flens-)]. (2D Here, itis assumed that the temperature is low in comparison

with the transition energy. The energy spectrum of scattered
In this case, two branches of the spin wave spectrum lie imeutrons contains symmetric pedRg) associated with one-
the interval (Ow,). The solutions of the dispersion equation particle excitations of localized electrons. Similar peaks
are given by formulagl9) and (20) in which w,=w.—Q, formed as a result of electron transitions from Landau levels
+ wq and the oscillator force is defined by formul2dl). to local levels must also be observedat g (5). Note that
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such peaks are asymmetric in the three-dimensional ‘ase two-dimensional electron system in a magnetic field affects
This is due to the asymmetry of electron density of states ats high-frequency characteristics. Among other things, the
Landau levels. dynamic spin susceptibility has resonance singularities at fre-
In addition to the peaks described by formya), the  quencies of electron transitions accompanied by a spin flip
spectrum of scattered neutrons also contains a series of Lobetween Landau levels and local levels. New branches of
entz peaks formed as a result of scattering by spin wavespin wave spectra are formed at these singularities in a non-
with a spectrun{13) and(20). The cross section of scattering ferromagnetic two-dimensional electron liquid.
with the emission of a spin wave quantum with the energy— We have shown in this work that localization of elec-

momentum relationv is defined as trons at impurity atoms competes with dissipative processes
20 1 Biyro| 2 K/ and facilitates the propz_agatl_on of spin waves. l\_lew_ spect_ral
- S - = ( ) — (wq_QO)Z branches of collective vibrations of spin magnetization exist
dO'de’ 2mQg | | k in frequency regions where Silin waves cannot propagate.
o [ 0g—Q0\2] Y The spectrum and damping decrement of such waves are
X|1ta g (f) o2 2 calculated.
0\ Wg— (0= wg) "+ vy

If the frequency of a Silin wave coincides with the fre-
(25  quency of resonance transitions of electrons between Landau

where o, is the resonance frequend§) or (7), « is the levels and local levels, the spin wave spectrum undergoes
r il . . . .

oscillator force(6) or (8), and y, is the damping decrement rearrangement due to a coupling of spin wave magnetization
of the waves. Fora—0 formala (25) leads to the cross vibrations with vibrations at resonance. The dispersion curve

section of neutron scattering by spin waves with a spectrurﬁor a Silin wave in a two-dimensional glectron liquid is split
(3).1° into a low-frequency branch and a high-frequency branch.

So far, we have not discussed specifically the charactertNese branches are separated by a gap in which waves can-

istics of local electron state@ositions and widths of local Ot Propagate.

levels, residues of amplitude of electron scattering by an im- ‘The spin waves considered here can be detected in ex-
purity atom. We have only used the fact that electron— Periments on measurement of differential cross-section of in-

impurity scattering amplitude has poles. These characteri€!aStic magnetic scattering of neutrons by the spin magneti-
tics may be obtained by comparing theory with experiment,zat'on current of two-dimensional ele(_:trons. The energy
or calculated by using a certain model for the impurity po_spectrum of _scattergd _neutrons contains pe_aks as§0c|ated
tential. In particular, the scattering amplitude residue for the/Vith one-particle excitations of electrons localized at impu-

short-range potential of an impurity atom and a weak split/1li€S, @ well as with spin waves. The symmetric peaks re-
ting of local level from the Landau levek(<w,) can be sulting from one-particle excitations are formed at resonance
C

represented in the forth frequencies of electron transitions between Landau levels
. and local levels. The width of these peaks is determined by
r=2wh wg/Mo,. the width of levels participating in transitions. The positions

In order to estimate the magnitude of peaks of differen.Of Lorentz peaks in the cross-section of scattering by spin
tial cross section of neutron scattering obtained in this secVaves can be used to obtain the wave spectrum, while their

tion, we use the values of parameters typical of thin semiWidth gives the damping decrement. .
metal films and inversion layer at silicon—silicon dioxide The results presented in this communication can be used

interface!! m=10"3'g, the number density of a two- for ;tudying two_—dimensignal metals, inversion layers ata_t

dimensional electron liquidn,=10' m~2, n,/n.=0.01, s.em|conductor_—|nsullator interface, layered systems, and thin
0o/Qe=0.2, By=0.1, v=v,. Hence we obtain),=1.9 films of metals in which the glectrons are gt the lower energy

%102 57! in a magnetic field with induction 10 T, and the '€vel formed as a result of size quantization.

ratios of the maximum values of cross-secti¢®4) and(25)

to the peak of cross section of scattering by a Silin wave arée-mail: alexander.m.ermolaev@univer.kharkov.ua
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The size-effect of Kondo-scattering in nanometer-sized metallic point contacts is measured with
the simplified, mechanically-controlled break—junction technique for CuMn alloy of

different Mn concentrations: 0.017; 0.035; and 0(1#8.017 at.%. The results are compared

with our previous publication on nominally 0.1 at. % CuMn allyThe increase of

width of the Kondo resonance and enhanced ratio of Kondo-peak intensity to electron—phonon
scattering intensity is observed for contacts with sizes smaller than 10 nm. From the
comparison of electron—phonon scattering intensity for the pressure-type contacts, which
correspond to the clean orifice model, we conclude that the size effect is obsentedrinontacts

with the shape of @hannel(nanowirg. © 1998 American Institute of Physics.
[S1063-777X98)00807-X

1. INTRODUCTION nin SRy /Rycd" to be smaller than one. One of them is the
finite electron mean paththe other is changing the contact

. . 12 Thi : r%hape while studying the-dependence. The the&ris valid
observed in point contacts. This appears to be opposite 10 j, e |imit when the average distance between magnetic

thﬁ suf[?pressmn ot:‘the Kdorlwd% eJ_fec;t in thin f|Imsf and wites. impuritiesry is much smaller than the contact sa@hich is
The effect was observed in ballistic contacts of nanometery o yhe case for the smallest contacts. Hence, the application

n
size and explained as being due to the strong enhancement&?formula(z) can't be justified

Kondo temperature by fluctuations of local electron density Fortunately, forro<d the r(:itio of size-dependent pho-

of states. These fluctuations are the result of the lateral ele‘ﬁ'on and Kondo, scat'ferings does not depend on the geometry

tron resonances in the narrow part of the metallic bndgeand mean free path in the contact, and can be taken as a
connecting bulk electroddsin the present work we have

found additional firmai £ th del di reliable evidence of different behavior of these two types of
F(R):P4 addiional confirmation ot the model, proposed N arerers. Another important experimental feature is the

" . . . widening of the Kondo peak while decreasing the contact
Initially, it was noticed that the estimates of the Kondo- 9 P g

. . . sized"? which also qualitatively points to an increase of the
temperature made by the quasi-classical thkdry is too Kondo temperature.

large compared to the bulk value. Unfortunately, the experi- In the present work we use these properties to show

mental condmpns do_ not. satisfy the v_veak coupling limit in qualitatively that the Kondo temperature indeed greatly in-
Kondo scattering which is assumed in the theory. Another . .
: creases for nanometer-sized contacts in the form of a clean
problem is an unknown geometry and electron mean free : .
- o 4 . channelwire). We prove that the clean chanrielire) model
path in a constriction, which are often encountered in the . . .
. . : . Is essential for clear observation of the effect. In the previous
point-contact study and which force one to use the idealize o . :
o . . publicatio we have noted this feature, but only in the
clean-orifice modef. Roughly speaking, due to this model

: . . a[i)resent workbased on a great amount of experimental data
any dependence of a normalized Kondo-peak intensity we do find it to be the necessary condition for observing the
zero biaséRk /Ry (Fig. 1) on a contact diametea slower y 9

) . : size effect. The effect is shown for different known concen-
than proportional tad would resuit in the increase of the trations, and this enables us to correct our previous results
apparent Kondo temperature according to the formiulas for CuMn with nominal concentration 0.1 at.%which cor-
kgTk=Er exp(—2Eg/3)]), (1) responds to the measured concentration of 0.028 &airt%

certainty*=0.017 at.%. The size-effect is maximal when the
J 1 dRy wire diameter is of the order or less than the average distance
—=-0044 —
Er c\R, d(logyo V)

2 between impurity, and decreases with shortening of the elec-
tron mean free path. These conclusions correspond pretty
since §(log eV) are approximately constant arti<R, vz, well to the Zarand—Udvardi theofy.
HereEr andc are the Fermi energy and impurity concentra- A more direct way of showing the enhanced Kondo tem-
tions, respectively. There are many reasons for the exponeptrature is to study nanosize contacts in magnetic fields. It

Recently the size-effect of Kondo scattering has bee

1/3
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elongated neck while breaking the notch. The sample is
glued to the substratel) with Staycast(3). The rod(5) is
pushed mechanically to bend the substr@e The whole
system is immersed in superfluid He at a temperature of
1.6 K. This improves the sample cooling and greatly simpli-
fies the measurements which enable us to collect a huge
amount of experimental data.

After breaking the neck the contact is readjusted for the
initial resistance of the order of @. The continuous pulling
off the electrode$l) enable us to obtain the successive series
of resistances up to several hundreds Ohm until the neck is
completely broken. Each series containing about 10 contacts
is repeated several times. Sometimes the contact resistance
inside the same series jumps to unwanted high values. Then
it was readjusted back by pushing the electrodes slightly.
After a number of breakings, the metal in the contact region
becomes so defective that the making of an elongated clean
neck appears to be difficult. These series show a suppressed
Kondo size-effect.

For each contact three successive recordings are taken,
each of about 5—-10 minutes long. These aredf\&/d1?(V)
anddV/dI(V) characteristics taken in the range of phonon
energies—35-35 mV, anddV/dI(V) taken at about-8—8

13.0

12.5

12.0

dav/di, Q

115

200

100

dR/dv, Q/V

-100

L . i

-3b '-2'0 '-10 0 ‘ 1lo ' 2'0 ' éo mV near zero bias for Kondo-peak recorded separdssy
V. mv Fig. 1. Usually, the non-linearities o¥(l) characteristics
' due to phonons and Kondo-effect are the same on different
FIG. 1. Upper panel: differential resistance of MCB junction of Cuf@ri8  recordings, showing that the contact is stable during the mea-
at.99. In the inset the magnified Kondo peak is shoRy.is a resistance  gyrements. Sometimes, especially for low impurity concen-

connected with contact diametévia Sharvin formulaEq. (4)). dRyy is the . . . .
increase of resistance due to the phonon backscatteriig=20 mV. SRy tration and small size contacts, the intensity of Kondo peak

is Kondo-peak height. Lower panel: the second derivative of current-changes due to t.he electromigration Qf imp.urit.ies.-For these
voltage characteristic of the same contadtis the maximum intensity of cases we use either the maximum intengithich is ob-
electron—phonon interaction background subtracted, according to formulaaryed for the previous recordmg)r the average of two
(Eq. (3). In the inset: the schematic view of mechanically-controlled break _. . Lo
junction: 1—the CuMn alloy; 2—notch; 3—Staycast glue;4—bending since we assume that the maX|'mum'c'urrent density in the
beam;5—push-pulling rodT=1.6 K. center of the contact forces the impurities to move from the
center to the peripheryf.
Care is taken to have the temperature and modulation
", . 13 s

was shown that Kondo resonance becomes less sensitive $91earing® less than the changes of the measurable quantities
the field for decreased siz&$1%'!Despite the experimental discussed below.
difficulties of preserving high resistance contacts during
magnetic field measurements, these experiments would giv& RESULTS
not only qualitative but also the quantitative information.

) . Typical first and second derivatives of current—voltage
These remain for future studies.

characteristic are shown in Fig. 1. The Kondo peak at zero
bias is seen on theV/dI(V)-characteristic. The phonon
2. EXPERIMENTAL backscattering sharply increases the resistance at a2t
mV. In the ballistic limit thedR/dV(V) characteristic is di-

We_ study CuMn dilute_ alloys of three Concentrationsrectly proportional to the electron-phonon interacti@pPl)
determined by x-ray analysis: 0.18; 0.035; and 0.017 at.%. IR, nction grc(eV) through the relatioh

addition, we repeat the measurements for our previous alloy
which was nominally about 0.1 at®% but appears to be 1dR 8 ed

; unatly ppea == (V)=2—gpc(eV), (T=0). 3)
0.028 at.% by x-ray. The accuracy of concentration determi- R dV 3 hvg
nation is about 0.017 at.%. Thus, the alloys with concentra-

tion of 0.017; 0.028; and 0.035 at.% give the same results in Th.e'Sha.rvm resstang@o which we.|dent|fy W'th shal-
o . ; low minima indV/dI(V) is connected in copper with con-
the limits of data-point scattering.

The measurements were carried out on the break juné[?Ct diameted through the formula

tions shown schematically in the inset of Fig. (bwer 30
ane). The sample(1) is a wire with diameter 0.2 mm d~ ——=[nm]. 4
pane) ple(1) R[]

notched(2) at the center by a sharp knife, then etched and
annealed at 700 °C during 2.5 h with spontaneously cooling This formula is valid both for the model of orifice and
down. The annealing seems to be important for obtainindgor long wire only in the case of specular reflections from
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FIG. 2. Normalized increase of differential resistances due to phomen 1 10
data pointy and Kondo(solid data points scatterings. Triangles, squares
and circles stand for CuMn alloys of 0.026; 0.028; and 0.18 at.%, respec- d, nm

tively. The solid straight line stands for the clean-orifice phonon-scattering

intensity. Dotted straight lines are the apparent linear fits for Kondo scatterF!G. 3. The ratio of resistance increase due to Kondo and phonon scattering

ing of three concentrations. as a function of diameter. Squares, triangles, and circles stand for CuMn
alloys of 0.028; 0.026; and 0.18 at.%, respectively. The dashed line serves
as the guide to the eye for 0.026 at.%.

inner boundaries. We shall useas a parameter characteriz-
ing the contact diameter although it should be remembered | general, the Kondo data points rise less steeply with

that it is model_ dependent in the general case. We _recall thfi'ﬁcreasingd than to the phonons; this is especially clear for
the true experimental parameter is the contact resistRgce lower concentrations. The apparent linear fitsd&% /Ry vs.
which can be restored through Ed). d amounts

As the quantitative estimates of phonon and Kondo scat-
tering intensity we choose the increase of differential resis{@ log Y=0.51(0.06)logx—2.68(0.05) for 0.18%,
tance fromR, to the value aV=+20 mV (6R,;) and the (b) logY=0.21(0.11)logx—2.99(0.12) for 0.028%,
height of Kondo peak §R«) shown in Fig. 1, upper panel, (¢) logY=0.14(0.08)logk—3.05(0.08) for 0.026%,

respecf[ivelly. On(_a more parametgr proportional to the phonoRyyich are shown in Fig. 2 with the straight dotted lines. Here
scattering is the intensity of maximulkt in dR/dV(V) spec- X=d [nm], Y= 6Ry /R, and in brackets we denote the stan-

tra which can be connected with the maximum of EPI func-y, 4 geviation. We join the experimental data for concentra-
tion through Eq(3). This quantity has an advantage that thetions of 0.035 and 0.017 at.% in one set with an averages

backgroun({appr_oximated by a straight lineshown in the concentration 0.026 at.%, since they are indistinguishable in
lower panel of Fig. 1] can be subtracted. view of large uncertainty0.017 at.%.

3.1. Contact-size dependence of phonon and Kondo The scattering of data points is rather high which is due
scatterings to the dispersion between different series. The scattering in-

: : side each series is much less. Thus, we can conclude that the
Figure 2 shows the cumulative results of our measure:

ments. The phonofopen data points follow the same trend property of the metal differs from sample to sample, and
for all ;:oncentrations namely, at small sizes they are pro Orf_rom the series to series for the same alloy.
' Y, y brop The alloy with nominal concentrations of 0.1 at.% which

tional tod while for large diameters they are flattened. These

) . “>We have studied in previous woris® yields quite a similar
new data correspond well to our previous results cited in P y q

Refs. 1, 2 and 9. The pure copper follows the same depene_xponent b (in the limits of errors dependence® in the

dence (not shown. The solid straight line denotes the present study despite the quite different experimental condi-
' e . tions (T=1.6 K instead of 0.5 K, an environment of liquid
ORyn/Ry vs. d for a clean orifice model according to tabu-

: o ) helium instead of high vacuum
lated experimentagpc(eV) function in Ref. 7: For pure copper the zero-bias Kondo pedid /R, is of

SRyn 8 ed [20mv the order of 2—4 which corresponds to the purity of our Cu
(R—p :§WJ’ gpc(w)dw metal. Previous studies in the analogous break-junction
0 Jv=20mv F 0 devices®!® also have not revealed the zero-bias Kondo

=4.05x 10~ 3d[nm]. (5)  Peaks in pure copper. The ratio between Kondo and phonon

intensities are plotted in Fig. 3. As we have noted above this

It is important that the experimental points lie above theratio does not depend upon the constriction geometry and
clean orifice line for sizes smaller than 10 nm. For largerelastic mean free path. It is seen tlé&, / 5R,, increases by

diameters the experimental points coincide with and lie bealmost an order of magnitude for diameters smaller than 10
low this line since the elastic electron mean free path beam. For higher concentratiof®.18 at.% this dependence is

comes smaller than the contact diameter. masked. Here we want to notice that, while 0.017; 0.028; and
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simplified experimental technique enables us to collect more
data. The logarithmic voltage dependencessBf / SRy max

are quite evident for all curves. In the inset to Fig. 4 the
voltage width at the half-maximum height vs. diameter is
plotted as shown with the dotted horizontal line in the main
panel. More data points are plotted in the inset since not the
all curves are shown in the main panel. The observed scat-
tering is due to the data points from different series.

The widths of the Kondo-resistance-peaks are shown for
different concentrations as a function of contact diameter in
Fig. 5. In spite of the large data scattering, the increase of
6V 5(d) for diameters smaller than 10 nm is clearly seen.
This increase can be observed for each concentration, includ-
ing 0.18 at.%. It proves that even for this alloy we did ob-
serve increased energy-scale for Kondo-effect, although it
may not be so evident from Fig. 3. It is important to note that
the increase of Kondo-peak width was not observed in
Cu(Fe-contacts® ! with comparable and higher resistances.
The difference between Mn and Fe impurities proves that the
FIG. 4. The normalized Kondo maximum for CuM@.028 at.% for dif- widening O.f Kongo-peak is not due to eXt‘:mSIC effedse
ferent contact diameters. In the inset: the width of the maximum at the hatfluantum diffraction of electron wave functions at small con-
height (see the horizontal dotted line in the main pansl shown as a  strictiong but is connected with the Kondo-mechanism it-
function of diameter. self. Note also, that at thiarge diameters the width of the
Kondo-peak increases at the increasing Mn concentrations in
0.035 at.% correspond to different series and sam(zled the_: row 0.028; 0.035, and 0.18 at.%, as expected due 1o f[he

spin-glass effects. Indeed, for low-resistance contacts with

this is a cause of big scattering of data_ poirite results for ¢=0.0018 we observe the splitting of Kondo-peak due to the
0.18 at.%, represent only a single series and are more con- :
HNUOUS internal field(not shown here

SRk /8RK max

10
F >
(=B 3
ot
g
roo
P 1

1

3.2. Energy dependence of Kondo scattering 4. DISCUSSION

The energy dependence for the normalized Kondo resis- The PC EPI spectral functions are summarized for
tance is shown as a function of contact diameter for 0.02§ressure-type point contacts in Refs. 7 and 17. These are
at.% alloy in Fig. 4. For other concentrations these depenmade either by pressing together the sharp needle to the flat
dences look similar. The new measurements are practicallyurface(other version: by pressing together the sharp edges
the same as already reportédee Fig. 2b) in Ref. 10 of metallic electrodesor by electrical microwelding by a
and Fig. §b) in Ref. 11, but are more detailed since the current pulse. In all these cases the probability of formation
of the metallic contact with a length much smaller than its
width (diametey is high enough. These contacts are satisfac-
10 torily modelled as an orifice in an infinitely thin partition.

i Indeed, the experimentally observed maximum intensity of
_ PC EPI spectra are saturated at a constant value. For copper
2 : o this value is abougp&=0.24 (linear background being sub-
° 8 od o tracted. Theoretical calculation for the simplest metal—
' sodium—gives a value coinciding with the experiment, that
can be taken as a quantitative proof of observing the clean
o %o a PN orificel” With invention of nanofabricated thin film
oa @ a junctions*® STM,'® and mechanically-controllable break
CuMn, at% - & o (MCB) junction€® a new possibility appears. The shape of a
" a nom. 0.1 a contact can be fabricated as a char(méte) whose length is
o 0.18 °% equal or greater than a diameter. According to Ref. 21, the
a 0.035 shape of a contact for STNand evidently, for MCB?) de-
1 ] e pends on the fabrication procedure, and can be made similar
1 10 to both orifice and channel for different prehistories. It was
d, nm shown in Ref. 21 for gold STM junctions that the gentle
F1G. 5. The widih of the Kond _ function of i touch of a needle to the flat surface leads to observing the
Squ-ar-es, tfi:::gltesc,) atmz cicr)glec; th);::jn?onr] gil?/lnugﬁgsg gf %?thaSStO.glgS?tz:{ ontact whose shape was close to the orifice, while the more

0.18 at.%, respectively. The dashed line connects data-points of singlgeep i_mrUSion results in producing a long V\_/ire- Something
series. like this one could expect also for the MCB junctions.

8Vos, mV
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............................................ .« cmeeaa
% g™ ( orifice ) T ag
£ PC a
9 0.11
o o
CuMn, at.%
o 0.18 g
a nom. 0.1 ¢
4 0.035 FIG. 7. Schematic view of MCB junction: before touchifm; first touch
0.01 \ N | . - starting from the low resistance contdb}; successively forming the neck
1 10 while pulling the electrodes offc and d. Small stars denote the magnetic
d nm impurities.

FIG. 6. Maximum of the electron-phonon interaction spectral function as a
function of contact diameter. Squares, triangles_, and circl_es stand for CuMn  Recently, Kolesnichenket al?4 have predicted a classi-
alloys of 0.028;_ 0.026; and 0.18 aF._%, respectively. Horizontal dotted Ilnecal mesoscopic size effect for impurities whose average in-
shows the maximungp of clean orifice value. . . . .
terimpurity distance is comparable or greater than the contact
diameter. This effect is a version of the classical correlation
phenomena in point contacts considered by Gal'perin and
We show thegpa* for our contacts of different concen- Kozub in Ref. 25. Due to the scattering probability which is
tration in Fig. 6. It is seen that the maximum intensitiesproportional to the solid angle by which an orifice is seen
exceed the orifice value by 2—-3 times. This was never obfrom the impurity location, the maximum scattering prob-
served for pressure-type contacts. If we assume a linear irability has the impurity located at the interface of the orifice
terpolation between theoretical limits for clean orifice andmodel. It is easy to see that the number of these impurities
channef increases if the shape of the contact deviates from an orifice
to a wire (Fig. 7). Qualitatively, this effect can explain non-

el g+ 3_77 L linear ind dependence of Kondo scatterifgith increase at
1dR 8 4 small size contacisbut it hardly can be responsible neither
rav V=3 for gec(eV), (T=0), (6  for the increase of width of the Kondo peéig. 5), nor for

the loss of sensitivity to external magnetic field for ultra
then this means that the length of the “wirédr channel is small contacts.
approximately equal to its diameter.
Correspondingly, the experimental data points for
SRyn/Ry in Fig. 2 lie about twice as high than the straight 5- CONCLUSION
solid line which stands for the clean orifice model according  the results of the present work proves the correspon-

to the Eq.(5). Thus, we can state that our contacts With yence of zarand—Udvardi modeto the experiments. This

diameter smaller thar-10 nm are similar to nanosized wire o6l ascribes the enhancement of the Kondo temperature
(channel. More about the length, shape, and purity of this ot magnetic impurities in metallic point contacts due to fluc-

wire can be said from the-dependence of phonon intensity y,ations of the local electron density of states. There are no

but this lies beyond the scope of this work. fluctuations for a pure orifice since lateral quantization of
Figure 7 shows schematically what may happen. Afters|actron wave function is smeared 86On the other hand,

the first breaking there are presumably hillocks seeing each, dirty channels(wires quantization is destroyed by scat-

other(a) and separating by the least distance. First, the pre%rings, especially if they involve spin flip. Note, that for

sure type contact gives the shape more like an orifide  |5rge hiasegof the order of phonon characteristic frequen-
These correspond to contact diameter greatgrs than 20 Nes Kondo scatterings with spin flip are negligible. Thus,
The more pressure—the more defects are introduced, angys conclude that the size effect can be observed in clean
this leads to a decrease in the phonon intensity below thgn,,gh nanosized wires, in accordance with Ref. 4. The nec-
clean orifice valudFig. 6) for the largest diameters. Pulling essary conditions for observing the Kondo size effect in

off the electrodes results to a shape similar to a Wet@n-  ,int contacts are that the phonon intensity should be notice-
nel), but the greater the separation distance the more defec ly greater than that of a clean orifice model.

are introduced to the thinner wire, and this probably leads to

a decrease in the intensity at the least contact diameters. We are indebted to A. I. Yanson who settled the auto-
Other causes may be quantum diffraction effects for electromatic data recording in our lab, which enabled us to carry
and phonon, since their wavelengths become comparable tat this work. Our thanks are to V. V. Demirski for making
the wire diametef® the quantitative analysis of alloys. I. K. Y. and N. L. B.
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A simple theory that makes it possible to calculate the characteristics of metal—insulator—thin
metal film tunnel junctions is developed. Along with the well-known oscillations in the

voltage dependence(V) of tunneling conductance due to commensurate states, it predicts a
number of new effects. For example, even in the case of a symmetric tunnel junction

formed by the identical materials with a rectangular potential barrierg{h® curve displays a
noticeable asymmetry. The branch of #1€V) curve corresponding to tunneling to the thin-

film electrode contains a structure consisting of conductance dipsl998 American Institute of
Physics[S1063-777X98)00907-4

1. INTRODUCTION 2. FORMULATION OF MODEL AND ANALYSIS

- i . ) ~ OF OBTAINED RESULTS
The possibility of observing standing waves in thin

metal films by using the electron tunneling method was pre-  Let us consider a metal—insulator—thin metal film tunnel
dicted at the beginning of the sixti€$golden age” of tun-  junction. We assume that both electrodes are made of the
neling spectroscopy but their experimental studies was same metal with a quadratic energy—momentum relation.
started only after a decadélhe main factor hampering ex- The Fermi energies of these electrodes have the same value
perimental studies was the extremely high sensitivity of théEr1=Er,=Er. We also assume that the first electrode has a
effect to the thickness of the film under investigation, whichgeometrical size such that its electron spectrum can be re-
makes its observation in real films difficult. Jaklevic andgarded as continuous, while the thickndsof the second
Lambé took into account the fact that the thickndsof a  electrode is small enough for the quantum size effect to be
polycrystalline film can change by only a discrete value mul-observed. Spatial quantization leads to a quasi-continuous
tiple to the lattice constard, and hence the film has the energy spectrum. The energy band splits into two-
so-called commensurate states with the transverse wave vedimensional subbands

tor component
P (hkp)?  (wh)?

S enk)=Zm * amiz

ar
kz:Q a (1)

n?, n=1,2,3..., )

wherek, is the wave vector component parallel to the tunnel
barrier plane.
(S/Q is an irreducible fraction and the barrier thicknegs Since we are interested primarily in large-scale voltage
whose energiesE,,,= (Amn)?/2mL? are independent of effects, it is convenient to assume that the measuring tem-
thickness. The size quantization effect has been observed preratureT is equal to zero. AT =0, the occupied states for
various material$Pb, Au, Ag, B)>* by using the tunneling the nth subband of the thin-film electrode lie in the circle
method and can be regarded as a well studied phenomenonmhose radius i&; = v2m(Eg—E,,)/#% (all energies are mea-
It can be applied for determining the positions of some spesured from the bottom of the conduction band of the initial
cial points of the band structure as well as the slope oflectrod¢. We supply the bias voltag¥ to the thin-film
energy—momentum curvegk) near these points. The effect electrode and calculate the contribution to the tunneling cur-
of external agencies on the quantum size effect has also beeent due to theth subband. For a finite negative bias voltage
studied. For example, the effect of high hydrostatic pressure¥ across the thin-film electrode, all the electrons whose
(~10 kbar) was studied in Refs. 5 and 6. states lie within the ringsee Fig. 1adefined by the radik

In all publications mentioned above, however, peculiari-and k,= y2m(E-— E,,—eV)/#, can take part in tunneling
ties emerging in tunneling parameters were considered fagince all of them have a corresponding free state at the op-
finite bias voltagesV across the junction. The present re- posite bank of the junction. Dividing the ar&of the disk
search aims at studying the effect of standing waves on they the two-dimensional density of states®}®, we obtain
behavior of the tunneling conductivity(V)=dl/dV in a  the number of electrond participating in tunneling. Multi-
wide voltage rangéof the order of a volt plying this number by the charge and the transverse
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r S tunneling probabilityP(E,,,,V). Consequently, the calcula-
X £ . - T :
F tion of the tunneling current does not require integration:

e2
J(E,z, V)= W VN2mE,,P(E,;,V),
; (4)
k2 eV<Eg—E,;,.

The tunneling probability?(E,,,,V) for a trapezoidal barrier
> with heights¢; and ¢, and thicknessl appearing in(4) in
} Kz the WKB approximation has a relatively simple fdrm

Aq

P(E,,.V ——exp‘ -
(Enz,V) p,—eV—o;
Ep-eV

ky X[(p—eV— Enz)slz_(ﬁpl_Enz)yz] , (5

a where Ay=4.2md/3% (for simplicity, we assume that the
effective electron mass in the forbidden band of the insu-
lator and in the metallic electrodes is equal to the mass of a
A ky free electronh If eV>Er—E,,, it can easily be seen from
Fig. 1a that a further increase in voltage does not lead to an
— E¢ increase in the number of electrons participating in tunneling
since the subband is open completely, and all its electrons
lying in the circle of the area 2m(Eg—E,,)/%? are already
_ involved in the tunneling process. The contribution to the
K tunneling current from a solitary subband in this case is
2 k given by

—> e(Er—Eny)

kg Jn(V)= T V2mE,,P(En;,V),

Ep-ev Enz-eV eV>Er—E,,. (6)

The current],(V) for small bias voltagesaV<Eg—E,,) is
determined by two factors: the increase in the number of
electrons participating in tunneling and the change in the
tunneling probabilityP(E,,,V), while for large bias volt-
b ages €V>E—E,,) its variation is associated only with the
latter factor.

Differentiating the total current

FIG. 1. (a) Reciprocal space for a quantized film. The Fermi level of the
film is shifted upwards by relative to that of an ordinary metal electrode.
Electrons from thenth subband participating in tunneling lie in the ring of
area 2rmeV#. (b) Reciprocal space for an ordinary metal electrode with
the Fermi level shifted upwards by the bias voltageelative to the Fermi
level of the film. For tunneling planes lying below the Fermi level{  With respect to voltag&/, we obtain the following expres-
<Eg) for V=0, electrons participating in tunneling lie in the ring. For sjon for the tunneling conducti\/ity:

tunneling planes lying above the Fermi levél (=E) for V=0, electrons

participating in tunneling lie on the disc.

J(V)= EEnZ<EF‘](EnZ!V)

o(V)=_ 2 o(En,V), @)

En<Ef

velocity component,,, we obtain the contribution from Where
one subband to the current incident on the plane of the junc-

tion: 7(Enz,V)
S m (ez\/Z—PE V)+VP'(E,,,V
Jin(EnZaV):zeUnzszeW Unz:ﬂ__hi ezvana h? MEnd P(Enz,V) (Enz V)1,
eV<Er—E
eV<Eg—Ep,. (3) S "M@
(The factor 2 in this formula appeared due to the inclusion of ) V2ME,(Eg—E,,)P'(E,;,V),
the electron spin.In the one-band model, all the electrons
lying in the plane perpendicular to tizeaxis have the same | eV>Er—E,,
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The derivativeP’ (E,,,,V)=dP(E,,,V)/dV of the tunneling e? / )
probability with respect to bias voltage can be calculated ho(Er V)= 72 VVZMEP(V.Epy), eV<E,,
analytically: nz: - (1)
0, eV>E,,
P'(Enz,V) The total tunneling current is the sum of the contribu-

tions from all the tunneling planes of individual subbands:

_ eAd(pa—3p1—eV+H2E,) ) Ve~ eV—En,+2\(e1—Ep)°]
2(py—eV—ey)* J(V)= Z Jl(EnZ,V)+ > J2(EL,.V). (12)
E,<E Ep<E,,<Ep+eV
XP(Enz.V). ©)

leferentlatlng this expression with respect to voltage, we

Thus, we can expect the emergence of kinks in the voltag@Ptain the formula
dependence of the tunneling curreitV) at voltageseV
—Er—E,, and the emergence of steps in the differentialc(V)=_ 2 o1(Ey,V)+ > d2(EnzV),
e En,<Er Ep<Ep,<Ep+eV
conductivity o(V). (13)
Let us suppose that the bias voltage is supplied to an
ordinary electrode. In spite of the fact that the energy specfor tunneling conductivity, where
trum of the initial electrode is continuous, only those elec-
trons which can find in the final electrodie allowed andii) al(V)
free states can take part in tunneling. In the case of specular
and elastic tunneling, the first condition indicates that all the e\2m
tunneling electrons must lie on the plang§,=E,,—eV. “ahZ
These planes will be henceforth referred to as tunneling
planes. The total tunneling current can obviously be deter-

[(Er—E, ,+eV)P1'(V,E,)+eP1(V,E,,)]

- eE +e
mined by summing up the contributior),, from all the | xEn—ev—o 2= En: Pl(V En) !,
tunneling planes of the initial electrode or, which is the VEn,—eV
same, by carrying out summation over the corresponding eV=<E,,—E¢
subband£,,, of the final electrode. Let us first consider tun- 0 eV>E.. —E.:

. . . . \ ) nz Fi
neling planes for which the subbansg, lie above the Fermi
level E,,,>Ef . In this case, the second condition is satisfied (14)

automatically since all final states are unoccupied. However,

for eV<E,,— Eg, the current from thenth tunneling plane

is zero since this plane contains no occupied states. Such V)
states are formed only whexV exceeds the energy differ-

ence between the tunneling plane under investigation and the ( e2\2m
F_erm| surface. I_:oeV> En_z— Er, gll these states in the re- 2 [VP1'(V,E,,)+P1(V,E,,)]
ciprocal space lie on a dislsee Fig. 1 the transverse en- ™
ergy component of this disk decreasing continuously with
voltage €, ,=E,,—eV), while the radiusc increases in pro- =1{ « E. —ev—— P1 VE . (19
portion to \E,,,— Er+eV. The contribution to the total tun- Enz 2 E,—eV (ViEwd
neling current from the electrons under consideration is de- eV<E
fined by the formula nz
. 0. eV<E,,

JL(E,,.V) The tunneling probabilityP1(V,E,, and its derivative

0, eV<E,,—E; P1'(V,E,, in this case are defined by the formulas

= e ' ’ ! : (10) Ad

s (Er—E;,)P(V,E;)V2mE/, eV>E,,—E¢ P1(E,,,V) =exp{ — m
Let us consider the tunneling planes whose corresponding % —E V2 (. —E. +eV)? J 16
subbands lie below the Fermi levelE (,<Eg). In this case, [(¢2=End ™~ (02~ Ent eV, (16

free states are available on the opposite bank of the junction

only for electrons lying in a ring of radk; andk, (see Fig.  p1/(v,E,,)=A4P1(V,E,,)e
1b. As the bias voltage increases, the agaf this ring
increases in proportion to the bias voltage<27mmeV#), — 3_ — 3
and the ring moves along theaxis towards the bottom of - Vle1=EnsteV) \/((52 Eno)
the band. ForeV>E,,—Eg, the initial electrodes has no (prteV=go)

states from which an electron could get in the subband under Figure 2 shows the results of calculations of differential
investigation by tunneling. The contribution to the total tun-conductivity of a metal—insulator—thin metal film tunnel
neling current made by a tunneling plane is given by junction, which were made under the assumption that the

3\/ ¢~ En,+eVv

2(p1+eV—og,)

(17)
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FIG. 2. Differential conductivityo(V) of a tunnel junction(solid curve . . - . ) .
formed by a metal, insulator, and a quantized film of uniform thicknessF!G: 3. Differential conductivitys(V) of a tunnel junction(solid curve

L=1000 A. The electrodes are assumed to be made of a hypothetical metig'™ed Py @ metal, insulator, and a heterogeneous quantized film with a
with E.=4 eV and the lattice constaat=2 A. The height of the rectangu aussian distribution over thickness. The electrodes are assumed to be made
F— . -

lar potential barrieke; = ¢,=4 eV and the thickness=11 A. of a hypothetical metal witlEg=4 eV aﬂd the lattice constaat=2 A. The
film thickness varies from 470 to 530 A=500 A, anda=1/6. The height
of the rectangular potential barriep;=¢,=4€eV and the thickness
d=11A. The dashed curve corresponds to the differential conductivity of a
junction with ordinary metal electrodes, which was calculated for the same
electrodes of the junction are made of a certain hypotheticdi2"2meters:
metal with the Fermi energff =4 eV and the lattice con-
stanta=2 A. The film was assumed to be uniform over the

thicknessL. equal to 1000 A and the barrier was assumed tqquantized film, the conductivity first decreases, passes

be rectangular of heighp=4eV and thicknessi=11A.  through a minimum, and only after this increases at a notice-
The curve clearly displays singularities located strictly ingply |ower rate than in the left branch. As a result, the entire
expected regions, but having an oscillating rather than step(V) dependence, which remains parabolic in general, is as
shape. This is in complete agreement with the assumptiong shifted by a certain finite quantity/y, towards positive
made by Daviset al,* according to which size quantization voltages. Similar shift effects for the(V) are well known
effects are superimposed on the parabolic voltage depefrom experiments. For a long time, these effects were ex-
dence of conductance, leading ultimately to oscillations Ofplained, as in Ref. 8, by the potential barrier asymmetry ex-
o(V). It should be noted, however, that the effects observed|ysijvely. It was proved recenfiy®that this shift can also be
for a positive bias voltage corresponding to electron tunnelyye to the difference in the values of Fermi energy for the
ing from an ordinary metal to a quantum-size film are muchg|ectrodes of the tunnel junction provided that one of these
stronger than those observed for a negative voltage. In oUfzjyes is of the order of several volts, and the other value
opinion, the noticeabléalthough nonmonotonjicasymmetry  goes not exceed one volt. It should be noted that the pro-
of the curve should also be classified as an unexpected res%sed model can readily give the values\gf, of the order

For a heterogeneous film whose thickness varies fronys several hundreds millivolts, which are observed in some
470 to 530 A according to the Gaussian law~L cases and which can hardly be explained by the asymmetry
X exp{—[a(L—L)/LT%}, wherea=1/6 andL=500 A, the re- of the trapezoidal barrier.
sults of similar calculations are presented by the solid curve Let us consider the reason behind the asymmetry of tun-
in Fig. 3. In complete agreement with what has been saidheling parameters of symmetric junctions with a rectangular
above, the welldefined oscillating structure was preservetiarrier and electrodes made of the same material. When the
only for the voltagee V=178 meV, which corresponds to the bias voltageV is supplied to the electrode with a quasicon-
value of S/Q=3/2, and henceé,=3#/(2d). The dashed tinuous spectrum, the main contribution to conductivity
curve in Fig. 3 describes the tunneling conductivity calcu-comes from the subbands which lie below the Fermi energy
lated for the same barrier parameters, but under the assumand have transverse energy componé&htsbelonging to the
tion that both banks of the tunnel junction are bulk elec-interval Ez>E,,>Er—eV. In the case of tunneling from
trodes. A comparison of the two curves shows that thahe ordinary electrode, the tunneling conductivity is deter-
guantum size effect changes significantly the right branch ofined by the subbands lying above the Fermi eneigy (
the o(V) curve, leaving its left branch corresponding to the <E,,<Eg—eV). For a quadratic energy—momentum rela-
tunneling from the quantized film to the metal virtually un- tion, the number of such subbands is smaller than in the
changed. In the case of the tunneling from the metal to th@revious case. It should be noted that their ratio depends on
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the Fermi energy, lattice constant, and the interval being
measured, but is generally independent on the thickbexs 1.8
the quantized film. This means that, in the case of simple
increase in the thickneds, our model does not indicate a 1.6
limiting transition to the conventional metal—insulator—metal

tunnel junction with nonquantized electrodes. Asymmetry in . 1.4
tunneling parameters will be preserved as long as the elec- 90'
tron spectrum is continuous for one of the electrodes and ~ 1.2
discrete for the other electrode, which determines the condi- <

tions for the applicability of the proposed model. °10
The model under consideration predicts one more type

of singularities associated with standing waves. It can be 0.8

seen from formulag14) and (15) that o(V)— — for a

negative potential supplied to the bulk electrode for 0.6

eV—E,,. This value of voltage across the junction corre-

sponds to the instant of departure from thth tunneling 04

plane to the lower edge of the conduction band. Generally -1000  -500 VO v 500 1000

speaking, the fact that the receding subband can be respon- Al

sible for a singularity in the tunneling conductivity is quite riG. 4. Differential conductivityo(V) of a tunnel junction(solid curve

unexpected since the contribution of lower subbands to thérmed by a metal, insulator, and a heterogeneous quantized film with a

total tunneling current is negligibly small as a rule. The con-Gaussian distribution over thickness. The Fermi energy of both electrodes is
. . . . . . . Er=1 eV. The remaining calculated parameters coincide with correspond-

tribution of hlgher_lymg subbands is domm?‘tmg' |t.f0||pWS ing values in Fig. 3. The dashed curve shows the differential conductivity of

from formulas(14) and(15), however, that this contribution 3 junction with ordinary metal electrodes, which was calculated for the same

in the immediate vicinity of the band edge tends to zero sgarameters.

rapidly that it overtakes the increase in all the remaining

terms in formula(13). The resulting dip in the conductivity

in this case must be extremely narrow. Indeed, according ejing conductivity of metal-oxide superconductors and can
numerical calculations, the width of the dip in tunnel con-pe explained exclusively on the basis of their superconduct-
ductivity shoyvn in Fig. 3 varies from a few napovo[ﬂ@r ing properties(mainly as breaking of “superconducting
subbands lying at the bottom of the conduction Batwl pigges). Similar effects were also detected in the tunneling
several tens of microvolt§or subbands lying near the Fermi 15 the normal state of metal oxidésand have not been ex-
level). For this reason, the djps are not manifested in_ th%lained so far. The proposed model is the only model pre-
o(V) dependence shown in Fig. 3, which is calculated with &jjcting narrow dips in the conductivity of tunnel junctions
step of 1 mV. However, the singularities under investigationyiin nonsuperconducting banks. In our opinion, the quasi-
start being manifested in the theoretiegV) dependences peridic resistance peaks observed in tunneling parameters
(Fig. 4 under more favorable conditions, e.g., upon a furtherys metal-oxide compounds indicate the presence of quasi-

decrease in the Fermi energy, in the form of random peaks g{yo_gimensional subbands with a small number of charge
resistance, which leaves a hope of their experimental obsefx riers in their electron spectra.

vation under certain experimental conditions.

This article was written to commemorate the 70th birth
anniversary of Academician I. M. Dmitrenko who indicated
the elegance of tunneling “probing” of solids even at the
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Tunneling experiments with Bi2223 reveal that a decrease in the carrier concentration shifts the
boundary frequencw, of the cuprate phonon spectrum towards higher frequencies from

we=98 mV(T.=113 K) to wy=106 mV(T.=107 K) with an insignificant suppression of the
energy gap parametdr. © 1998 American Institute of Physid$1063-777X98)01007-X|

INTRODUCTION to 845 °C and held there for 2 h. Then the plates were cooled

The relation between the superconducting transition tem@Pidly (approximately during 3 minto room temperature.

perature and charge carrier concentration in metal oxides h4$ @ result of such a quenching, the sample resistance in-
been established quite reliabijthe relation betweefi, and creased, Wr_ule the _superconductlng transition t(_emperature
the phonon spectrum of cuprates has been studied less coffgcreasedrig. 1. It is well known that the annealing tem-
prehensively. The establishment of such a relation can be Rerature required for obtaining optimally doped oxygen
sound argument in an analysis of the highsuperconduc- ceramics of the Bi2223 phase under.atmospherlc pressure
tivity mechanism. The carrier concentration in cuprates cafi€S in the range 820-830 CA%cordmg to the data of

be varied with the help of high pressifreyhich increases Q|fferent|al thermal .anaIyS|$DTA.), the oxygen concentra-

the ratio 21/kT, and softens the high-frequency part of the tion decreases at higher annealing temperatures. The anneal-

phonon spectrurft® Such a behavior should be expected foriNd temperature chosen by us ensures oxygen removal. If we
the strong electron—phonon mechanism of superconductivit{@Pidly cool the sample, the oxygen concentration in it will

if the main contribution to the change im2k T, comes from € frozen at a level below the optimal value, and the carrier
high-frequency phonon mod&sdowever, the mechanism of concentration decreases accordingly. This will lead to an in-
the effect of pressure on the carrier concentration is quit€'€ase in the sample resistance and a decrease in the transi-
complicatec? Besides, pressure can only increase the carriefion temperature. The method of variation of the number

concentration in cuprates. Consequently, the inverse proble@fNSity of charge carriers used by us has considerable limi-
in which the carrier concentration decreases is of interest. tations since the Bi2223 phase starts decomposing at

Here we use the hardening of samples, in which the=860 °C (see, for example, Ref.)9For this reason, the

carrier concentration is changed by varying the oxygen inde£ange in the superconducting transition temperature associ-
8, the cationic stoichiometry of the remaining core of a meta@t€d With quenching is less than ten degrees. It should be
oxide remaining unchanged. The obtained results lead to 30ted that a change in the superconducting transition tem-

relation betweerT(8) and the energy gap and phonon perature of the Bi2223 phase is also observed for an excess
frequencies of Bi26223. oxygen concentration in the sample. For this purpose, the

sample should be annealed under a high oxygen pressure at
530 °C. The change iit; in this case amounts to approxi-
mately 10 K1°

We studied tunnel junctions of the break junction type,  Thus, the conditions of sample treatment used by us lead
prepared on ceramic plates of a Bi-based metal oxide of thto a decrease in the concentratiprof hole carriers relative
2223 phase. The initial ceramics(95% of the to the equilibrium concentration. Consequently, the values of
Bi; Ply .St Ca ,Cus0, phase withT,=110K) was ob- p should be determined from the left-hand side of the well-
tained by solid-phase synthesis from chemically pure oxidesknown Gaussian dependencg,(p):
Ten 1X0.1X 12 mm plates with silver current and potential _ 2
contacts obtained by high-temperature annealing were pre- Te(P)=Temal 1 ~82.8p=0.167].
pared in each experimental cycle. The methods of preparing In order to obtain a tunnel junction, a ceramic sample
thin ceramic plates is described in detail in Ref. 5. The rewas mounted on a flexible steel substrate and coated by a
sults of measurements proved that the superconducting tratecquer layer. The substrate was bent until a microcrack was
sition temperatures of plates prepared in the same batch wefermed in the ceramic, which was monitored by measuring
virtually identical. In order to obtain samples with oxygen the change in the sample resistance. The lacquer layer coat-
deficiency, half the plates in a batch were heated in a furnacieg the ceramic plate not only protected the ceramic reliably

EXPERIMENT
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1.2 peaks on thell/dV curves. The spread in the values of en-

2 ergy gaps obtained for ceramics with equilibrium charge car-
rier concentration was small, and the mean valué afas
A=37+0.5 meV. The spread in the value Affor ceramics

with a deficiency of charge carriers was much largar (
08} =33.5-2.5meV). The increase in the spread in the values

1 of parameterA in oxygen-depleted samples is of universal
nature. Such a spread was observed in the spectra of break
junctions! as well as in the characteristics of these metal
oxides obtained with the help of scanning tunneling micro-
04l scope(STM).*? This spread is probably associated with local
fluctuations of carrier concentration emerging at a tempera-
ture below a certain temperatufé of the junction*>* A
certain decrease in the energy gap parameter upon a decrease
in the carrier concentration is observed in our case even if we

R, O

0 1 L 1 n 1 take into account the spread in the measured valug tifie
80 100 120 ratio 2A/kT, decreasing thereby from 7.6 to 7.2. It was
T.K noted by several authdfs**that the parametes for under-

FIG. 1. Characteristics of the resisti\R(T) transition of the reference dOPiNg does not chander even increasgsipon a decrease
sample 1 T,=113 K) and the annealed sample B.£107 K) of Bi2223  in the hole concentratiop. Among other things, such a

metal oxide. The value of . was determined from the middle of t{T) behavior can be due to strong energy gap anisotropy in bis-
transition. muth cuprates. Strongly directional tunneling effect realized
in an acute cone angle makes it possible to determine the

arameterA only in one of crystallographic directions. For

_from_degrar(]j_lnr?, ItI)Ut a(ljso fixed tt)he_ paramTt_ers qf the brbela&is reason, the energy gapobserved in tunnel junctions is
junction, which allowed us to obtain tunnel junctions stable i ihe maximum gap ., as a rule. At the same time, the

in resistance. For a small bias voltage=-5 mV, the resis- Ecrease in the gap width noted in Refs. 11 and 12 does not

tance of the obtained tunnel junctions increased upon coo sxceedA . for the equilibrium state of a bismuth cupréte.

ing, reflecting the emergence of an energy gap. The ratio he characteristics of energy gaps for the reference sample 1
the value; of the resistang of the junction foreV<A and as well as for the hardened sample 2 were blurred rapidly
eV>A in the temperature _rangeT~4.2—2_O K was upon heatingsee Fig. 2 For this reason, it is impossible to
Rr(0)/Ry(V>A4)~1CP. The resistance of the junctions in establish the extent to which th&(T) dependence corre-
the nprmal state waBy~50-—1001}. . . __sponds to the BCS theory. The absence of a clearly mani-
. Figure 2 shows_ the _conductance of symmetric SIS Jur‘CTestedA(T) dependence for tunnel samples was noted by
tions of the break junction pre dt=4.2K. The val_ues of some authors and is attributed at present to the emergence of
energy gaps were determined from the separation of thg “pseudogap.”™3* The singularity(dip) in the tunneling
conductance of junctions f@&V~3A is apparently also con-
nected with the emergence of a “pseudogapeée Fig. 2

All tunnel junctions under investigation displayed a
zero-point anomalypeak in conductance, which vanished
upon a transition of the banks to the normal state. The am-
plitude of this anomaly increased linearly upon cooling in the
entire temperature range=4.2—100 K. The magnetic field
up to 3 kOe did not produce any noticeable effect on the
anomaly.

The minima in the tunnel conductance derivative
d?l/dV? (Fig. 3 for bias voltages satisfying the relation
eV,=2A +hw; correspond to phonons of frequenciesin
the cuprate. The spectroscopic nature of these singularities is
confirmed by the constancy of their position on the energy
scale for the entire series of the junctions under investigation
as well as by the independence of their position of tempera-
ture in the range of=4.2—77 K. It should be noted that
2 —1 1 L different samples from the same batch can display amplitude
-200 -100 0 100 200 variations in the tunneling spectrum, but the position of sin-

V.mVv gularities on the energy scaleneasured from the gape-
FIG. 2. Reflection of the energy gap in the tunneling conductance oimams unchang_ed in this case. It (_:an be seen that, f(_)r_ceramlc
Bi2223—1-Bi2223 junctions atT=4.2 K for sample 1 {,=113K) and  samples with different concentratiopsof holes, the minima
sample 2 T.=107 K). in the initial region of the spectra afl/dV? virtually coin-
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1.0 frequency mode in YBCO associated with vibrations of api-
cal oxygen O4 was observed by using optical spectroscopy
for an oxygen-deficient composition YB2au,0g .%°

The authors are grateful to N. A. Chernoplekov for nu-
merous fruitful discussions on the electron—phonon interac-
tion in high-temperature superconductors.
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d21/dv2, rel. units
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1
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authors (V.M.S.)) warmly recalls the breathtaking years
1962-65 during which he worked in the department headed

-1.0F by Acad. Dmitrenko who guided us to the fascinating world
of superconductivity through an elegant, and yet enigmatic
tunnel.
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On spin wave scattering by a soliton in a two-dimensional isotropic ferromagnet
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Scattering of magnons by a two-dimensional topological Belavin—Polyakov soliton in an

isotropic ferromagnet is studied analytically. It is shown that the problem of spin wave scattering
by a soliton with an arbitrary value of the topological chatgean be analyzed completely

in the longwave limit. General principles of the soliton—magnon interaction are studied, especially
the relation between scattering and the behavior of the mode as the magnon wave vector
approaches zero. It is found that the scattering intensity has its maximum value for partial waves
with the azimuthal numben=0,+1,=2 (m=v—1). Although the mode with the maximum
scattering always passes to a local modekierO according to the general law, this fact is not
crucial for the scattering intensity. In particular, the scattering intensity is stronger for a

partial wave withm=—1 for v=1 (there is no local mode fdk—0) than for a partial wave

with m=+1 (a local mode exists fok—0). © 1998 American Institute of Physics.
[S1063-777X98)01107-4

1. It is well known that solitons play a special role in the existence of self-duality equations, general statisoliton
thermodynamics of one- and two-dimensionaD(and 2D) solutions are also known for this modg@ee Refs. 7, 8 for
nonlinear models of ordered media, including magnets. Adetailg. The magnon spectrum in the presence of this soliton
systematic analysis of the thermodynamic quantities requiresas studied in Ref. 9, where it was shown that a soliton with
a knowledge not only of the structure of solitons, but also ofa topological charger possesses 2 local magnon modes
the properties of magnon modes in the presence of a solitowith zero frequency. These modes are limiting points of par-
Local modes(LM), especially the zeroth modes, are quitetial cylindrical waves with an azimuthal numberv<m
important for constructing the soliton thermodynamics in the< v for k—0.
1D case(see Refs. 193 For example, these modes deter- We shall show that for the Landau-Lifshitz equation
mine the temperature dependence of the densitylbfsli- (LLE) describing an FM with energyl), the problem of
tons in soliton phenomenolodyResonance in LM can be scattering of a spin wave by a soliton can be analyzed com-
observed directly in experimenm$.A number of exact solu- pletely in the long-wave approximation.
tions are known for D magnets, and solitons as well as 2. In order to analyze small oscillations of magnetiza-
magnon modes can be described against their backgroundtion, it is convenient to introduce a rotating system of unit

The situation is much more complicated in the two-vectors e;,6,,65, Wwhere e;=e, cos#+sind(e, coSe
dimensional case. As a rule, an analysis of solitons was car+e, sing) coincides with m in a soliton, ande,=
ried out by using numerical methods. Studies of magnon-e sin¢+e, cose, e,=[e;Xe;]. Here,# and ¢ are angu-
modes against the background of soliton modes have onllar variables form. The soliton solution can be represented
just begun. In this connection, it becomes especially imporin an explicit form as follows": tan(0/2)=(R/r)‘”|, o=vy
tant to analyze models for which analytical results can bet ¢y, wherev==*x1,%£2,... is the topological charge,and
obtained and general laws governing the soliton—magnon iny are polar coordinates in the FM plane, while the soliton
teraction can be determined. radiusR and ¢, are arbitrary parameters. Linearizing the

For physically interesting models of2magnets, we are LLE in m; andm,, we can represent the equation for spin
aware of only the exact solution obtained by Belavin andwaves against a soliton background in the form of a two-
PolyakoV to describe a topological soliton in an isotropic dimensional Schinger equation for the quantity=m,
ferromagnet(FM) whose energy can be presented in the+im,:

form
2

v v o 2A 0
—V2+r—200329)z,/x—2i cos 6 — Ly _

a"rl _’)/MO It =0,
@

W=A=f (Vm)2dxdy, (1)
where A is the exchange constant ant=M/Mg is a unit

vector defining the direction of the magnetizatibh (M,  wherey is the gyromagnetic ratio. The solution of this equa-
=|M]). In view of the gauge invariance of the model and thetion has the form of a superposition of cylindrical waves:

1063-777X/98/24(7)/4/$15.00 510 © 1998 American Institute of Physics
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r 2v 2 1 R 2v
ﬁ) +m+m—y(?) }

(6)
where m is the azimuthal quantum number. The function Thus, fore=0 (or k=0), we can construct at least one
Fm(r) satisfies an equation having the form of a radialgo|ution of the problent4) that does not have a singularity at

Schrainger equation: zero. For small but finite values of frequency, this solution
can be used as an approximate solution in the region

1

m+ v

m=o r m
y= 2 Fp(nexgimy—iot), 3) Fb=sin o(ﬁ)

1d 1, ) <1/, when the termyk? in (4) is small in comparison with
Crdr (r ar|Fmt 7z [m*+2mv cos 6+ »* cos 2] terms containingd®y/dr? or /r2. If, however,r is quite
CE —K2E large (to be more precise;,>R), another simplification is
m m» possible: forr>R, the anglef—0 and(4) is transformed
into the standard Bessel equation whose solution is well
2_wMo known:
“2A° 4
Fm=Jn(kr)+ o, (k)Ny(kr), n=m+w, )

The “potential” in this equation is not low, but it can be
analyzed quite comprehensively in the longwave likiR
<1. For this purpose, we use the fact that éor 0 Eq. (4)
possesses an exact solution:

whereJ,(x) andN,(x) are the Bessel and Neumann func-
tions of the integral index (the notationn=m-+ v will be
used at later stages ajso
3. The quantitya,(k) can be associated easily with the
magnon scattering matrix. For this purpose, we must con-
sider the asymptotic form of solutiofT) at extremely large
distances from the solitoffor r>max(1/k),R}) and com-
o=vl|v|. 5 pare it with the solution of the problem on free movement of
magnons, i.e., on magnon states without a votfeko com-
The existence of these exact solitons is associated withare the solutions of this problem, it is convenient to intro-
the restoration of the gauge invariance for-0 and the  §,ce the variabléj= s exp(ry—iwt) which is transformed
validity of the self-duality equa_ltlon chara_cterlstlt_: of a staticsyr + _, into (m,+imy)exp(—iwt) and describes a spin
2D LLE (see Ref. 9 for a detailed analysis of this problem \,ave against the background of the homogeneous state
An analysis of Eq(5) reveals that for —0 the solution mle,. Taking formulas(3) and (7) into consideration, we

(O) v— .. . . . i X ) i
Frm’(r)<(r/R)""™ (for definiteness, we shall discuss in the can write the asymptotic form of the solution in terms of this
following the casev>0; to analyze solitons witv<<0, itis  \aiaple forr>R as follows:

sufficient to replacen by —m). This means that fom=v,

this solution does not have a singularity for-0, and can be - =

used for analyzing magnon modes in a solitosR). Away = _Zx CrlIn(kr) +o(K)Np(kr) Jexpliny —iwt),

from the soliton (—), FQu(r/R)~**™_ For y>—m, "~ 8

the functionF?) decreases as we go away from the soliton.

This at once leads to the existence df| 2eroth modes with whereC, are arbitrary constants. Obviously, this expression

—|v|<m=]v| localized in the vicinity of the solito. for free motion must be valid for alt including r=0. In
The physical meaning of two such modes is obvious: forother words, free motion corresponds dq(k) =0. In this

m=1, the function F{’)<#; and describes translational case, for an appropriate choice of the cons@nt we obtain

modes, i.e., the displacement of a soliton as a whole. Théhe wave function for free motions~exp(k-r). On the

casem=0 corresponds to the variation of free soliton param-other hand, fora,(k) #0, the asymptotic form ofj for r

etersp, and R. As regards the remaining LM with=0, >1/k can be represented as

which may exist forv>1, their emergence is associated with

FO=Ttan 6/2)]™" sin 6=(R/r)°™ sin 6,

n=co
a high latent symmetry of the static LLE in modd)), i.e., T —ikr ikr I
with the fact that the general Belavin—Polyakov solution v n;x Cale ™+ SukjeT Jexpiny —iwt), ©
with the topological charge depends on 2free parameters
(see Refs. 1-3,)8 where
For m<— v, the functionF{9(r) decreases as—x. 1—ioy(K)
Hence it can be used only as an asymptotic solution for re-  Sy(k)= THio(K) (10
gionsr<R. The casen= — v is special sinc&‘®) — const as n
r—oo. It will be proved below that a singularity in the mag- The quantityS,(k) has the meaning of an element of the
non scattering by a soliton exists in this case also. S-matrix for scattering of a partial wave with a given
Form> v, the solutionF(?) has a singularity at zero and 4. Let us now calculate the scattering matrix in the long-

is not applicable for describing regions in the vicinity of the wave limit (k> 1/R). It was mentioned above that the func-
soliton center. In this case, we can use the second linearlyons (5) or (6) describe correctly the solution in the region
independent solutiof¥) which can be easily represented for r<1/k. In other words, the solution in this region can be
k=0 in the form sought for small but finite values &fin the form
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Fo(r)= Fﬁ?'l)(r)[lJr a(r)], (1D k—0, anddo(k)/dk diverges for smalk. Such a behavior
01) ; ) was detected during a numerical analysis of magnon scatter-
whereF ;"™ is one of the functiongS) or (6), a(r)<1. Sub- g for m=0 by a magnetic vortex in an easy-plane
stituting (1) into (4) and retaining terms witk®F ) or a(r)  antiferromagnet?

only, we obtain fore(r) an inhomogeneous equation For other values of andm, it is not possible to obtain
2 1 da da dF© general formulas foir(k). However, this problem can be
FO T a9 ar - k?F(©), (120  solved for any specific values efandm after simple(albeit

cumbersome at timggalculations.
The solution of this equation without a singularity at We present below the results of calculations for

zero can be presented in the form =1,2,3 and for certain values of which cannot be de-
scribed by general formulgd5) and (16).
=— ZJr L fu FO(y)]2d (13 Forv=1 andm=—1,—2, we can write
a(r)=—k 0 u[F(O)(u)]z 0 [ v v. e

_ 2
As r—0, the functiona(r)— 0. Hence the above correc- -1l =m(kR)= In[ 1(kR)],

tion is obviously small for small values of (kr<1, but _ 271 _ 2

perhapsr ~R). For larger, this function increases and for 7-2(K)= () (KRHL= (kR)Z In[1(kR)1}-

quite larger, whenkr~1, the quantitya(r)F{? cannot be In the region of existence of quasilocal modes y<m
treated as a small correction &), and Eq.(12) is no <v), we can restore the general dependence

longer applicable. However, this region is not significant for

our problem, i.e., for determining the scattering amplitude  om(K)(kKR)Z» M1, 17
for kR<1. Indeed, over a wide range of valuesroffor R
<r<1/k, we can use the asymptotic for8) on one hand,
assuming on the other hand theafr) <1, and describex(r)
with the help of Eq.(13). Moreover, we can use for cylin-
drical functions in this region their asymptotic forms for
small argumentsz=kr<1, J,(z)=(1hn!)(z/2)"N,(2)=
—[(n—1)!/=7](2/z)", which simplifies the specific task of _ 1/2 8

computingo (k). o2(K)=2X3TkRIA)".

5. Let us discuss some specific results. For a transla- Together with formulag15) and (16), which give the
tional mode (n=1 or n=v+1), a(r) can be calculated values ofo(k) for m=1 and anyr, as well as the values of
exactly and the required asymptotic solution can be repreg(k) for m=0,—1,—2 andv=1,2,3, these results also lead
sented in the form to certain general conclusions concerning the nature of mag-
R (KR)2 [ )2 (KR)? v+l non scattering by a soliton. o o _

Fmn= (— —_— (—) - —) . It was found that the scattering intensity is not maximum
r 4v \Rj 4v(p+1) IR for partial waves with the smallest=+1,0 (this assump-

It can easily be seen that, f®®<r<1/k, the second tion is also valid for magnetic vorticEs").
term in the brackets is small in comparison with the other  The fact that the limiting poink=0 is a local mode for
two terms. For>R, we can write partial waves with a giverm is not critical for scattering

R\™1  (KR)Z [r)|"+ intensity. In particular, for a soliton with=1, the scattering

Fm:(_) S S (14)  intensity of a partial wave witm=—1 (there is no local

r 4v(v+1) \R mode fork— 0) is stronger than witn= +1 (a local mode

Using the asymptotic form of the cylindrical functions exists fork—0). The only regularity is that the mode with

In particular, for a soliton withv=2, the values obr,
for certain values ofm are defined by formulasry(k)
=(kR)?, o,(k)=(1/9)(kR/2)®. For v=3, we obtain

o_1(k)=3%kR/4)2, oy(k)=(3%%8)(kR/2)%,

sin 6| 1—

J.(2),N,(2), we find that the maximum scattering always passes into a local mode for
k—0.
o(k)= ™ k_R 2 (15) The third singularity lies in that for Belavin—Polyakov
vi(v—=1)1\ 2 solitons there are no simple laws describing the connection

of scattering intensities fom=+|m| and m=—|m|. For
magnon scattering by vortices in easy-plane magnets, such
regularities were found by numerical analysis,(k)

. =o_(k) for antiferromagnet® while for ferromagnets,
We can also carry out overall computations for any the values ofo,(K) and o (K) are obtained from each

andn=1, i.e., form=—v»+1. In this case, computations are ther by reversing the sian of the maanon frequetic
more cumbersome, and we shall directly present the result Rli y 9 9 9 q Y.

calculations: The authors are indebted to D. D. Sheka for help and
- discussions, and to V. G. Bar'yakhtar, A. K. Kolezhuk, F. H.
m. (16) Mertens, H. J. Schnitzer, and G. M. Wysin for a discussion
of the results. This research was partially supported by a
An analysis shows that for this mode the intensity ofgrant(No. 2.4./27 from the Ukrainian State Foundation for
scattering of magnons is maximum, althouglk) -0 as Fundamental Research.

for m=1, and the scattering intensity decreases Kes0
even more rapidly than for solitons with a large topological
charge.

agk)=
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Attenuation of sound wave energy in low-dimensional organic conductors with several charge

carrier groups is investigated theoretically. It is shown that the existence of a Fermi

surface sheet in the form of a corrugated plane affects considerably the behavior of the sound
attenuation ratd’ in a magnetic fieldH. Giant oscillations of" as a function of H,

which are not associated with quantization of charge carrier energy, are predicted. Oscillations
with a period dependent on the wavelength of sound appear in a quantizing magnetic

field in addition to the oscillations described by the Lifshitz—Kosevich formula.1998

American Institute of Physic§S1063-777X98)01207-9

Many organic conductors have a metal type conductiv- Let us consider the propagation of acoustic waves in
ity, and their electron energy spectrum can be studied wittiayered conductors placed in a magnetic field, whose elec-
the help of methods developed for metals. Independently dfron energy spectrum consists of two bands with an energy—
Onsagel, Lifshitz and Kosevich formulated the inverse momentum relation
problem of reconstructing the electron energy spectrum by
studying experimentally the magnetic susceptibility of met- * 5(

als at low temperatures in a strong magnetic field. Subse- 8(p)=nzo en(Px,Py)CcO

an
sz); 1)
guently, other methods were also proposed for reconstructing
the main characteristic of the spectruffermi surfacg by -
experimental investigation of galvanomagnetic efféetsd b a;Npy ampy aqp,
. . ; ) e (p)= > Anchos< )cos( )cos(
propagation of electromagnetic and acoustic waves in a mag- nm.g h ) h
netic field?~’ 2
Organic conductors have a layered or filamental struc-
ture with a sharp anisotropy of the electrical conductivity = The coefficients of cosines in formul&$) and (2) de-
resulting apparently from the sharp anisotropy of velocitiescrease rapidly with increasing indices over which summation
at the Fermi surface. This considerably narrows the class d§ carried out, and hence the maximum value of the function
possible types of Fermi surface. The specific nature of lowe4(py,py) on the Fermi surface(p) = e, which is equal to
dimensional electron energy spectrum leads to a large nunmaxey(py,p,)=7eg, is much smaller tharg. The coeffi-
ber of diverse effects which are not observed in ordinarycients Ay o= 7:U and Agg= nU are much smaller than
metals. This simplifies considerably the solution of the in-A;o;=U, while all the remaining coefficients i(2) except
verse problem of reconstructing the energy spectrum ofg,, are assumed to be equal to zero in specific calculations.
charge carriers. Such a choice of the dispersion relation for charge carriers
From topological point of view, the simplest model of takes into account a weak dependence of the charge carrier
the Fermi surface of a quasi-two-dimensional conductor is &nergy on the projection of the momentyy=n-p onto the
weakly corrugated cylinder, which is in good accord with thenormal n to the layers and the preferred motion of charge
results of experimental studies of galvanomagnetic phenontzarriers with a quasi-one-dimensional specti@nalong the
ena and Shubnikov—de Haas oscillations in some salts of-axis. In many layered organic conductors, the normal to
tetrathiafulvalené=13However, the replacement of halogens the layers does not coincide with the symmetry axis of the
in them by a more sophisticated complex of the typecrystal, and the arguments of cosines in formylgsand(2)
MHg(SCN, where M is one of the metals from the group must be supplemented by a phase taking into account the
(K, Rb, TI), leads to a quite complicated dependence of redeviation of the axep,, py, p, from the symmetry axes of
sistance on the magnetic field. According to the band calcuthe crystal. However, the results obtained by us did not
lations of the electron energy spectrum, the Fermi surface athange significantly when these phases or terms in formula
the saltdBEDT-TTF),MHg(SCN), consists of a weakly cor- (2) with higher indices of summation were taken into con-
rugated cylinder and weakly corrugated plaitd®The au-  sideration.
thenticity of such a version for the spectrum of charge carri-  The acoustic wave attenuation decrement in a conductor
ers can be verified by studying the attenuation of acoustican be determined by solving the equation in the theory of
waves in such conductors. elasticity

1063-777X/98/24(7)/4/$15.00 514 © 1998 American Institute of Physics
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wherep and\;,, are the density and elastic moduli tensor of on them in the reference frame associated with the vibrating
the crystal andu,, is the deformation tensor. The forée lattice, but also with renormalization of the energy spectrum
acts on the crystal lattice from the side of the electron systemander the action of crystal deformation

excited by a spin wave which we shall assume to be mono-

chromatic with a frequency. de =Nij(p)ujj - ©)
The electric fieldE excited by an acoustic wave should The tensor components of the deformation potential
be sought from the Maxwell equation \ij(p) appear in the kinetic equation in which the number of
Ariw )2 charge carriers is preserved, i.e., in the form
curl curl E= j+|—| E 4
! ( c) @ AP =P~ D), 10

and the condition of electroneutrality of the conductor, whichwhere angle brackets denote averaging over the Fermi sur-
is equivalent to the condition of continuity of the electric face andm is the free electron mass.

current; Using the solution of the kinetic equatid), we obtain
div j=0. ©) a relation connecting the current density
. . 2 afg
The current density and forceF are determined b = o — d3p=(ev;
y y jl (27Th)3 f eU|l// e d p <eU|lJl> (11)

solving the kinetic equation for the distribution function

fole(p)—p- U} — afy/de, which can be presented in linear and the force
approximation in weak perturbation of the electron system of

; ; 1 m d
an acoustic wave in the form Fi:E [ XH]+ 5 i+ . (At (12)
b ap (1 k 3
Vot st 7710 =9 ®  with the displacement of ions and the electric fielg.

) Let an acoustic wave propagate in the plane of layers
wheree andv are the electron charge and velocitythe along thex-axis.
duration of its motion in a magnetic field, the velocity of In Fourier representation, Eq8)—(5) can be reduced to
light, andg=—iwAj(p)ujj+eE-v. a system of linear algebraic equations for Fourier compo-
The collision integral, which vanishes as a result of thenents of the displacement(k) of ions and the electric field

substitution of the equilibrium Fermi functiofo{e(P)  E(k). The condition for the existence of a nontrivial solution
—p-u} in a reference frame moving with the ion velocity  of this system of equationgequality of its determinant to

is taken into account in the approximation of the mean fregzerg is the energy-momentum relation. The imaginary parts
time 7 of charge carriers, i.e., in the form of the operator ofof the roots of this equation define the decrement of attenu-
multiplication of the nonequilibrium correctior /dfq/de  ation of an acoustic wave and an electromagnetic wave gen-
to the Fermi distribution functiorf, by the collision fre-  erated by it, while the real parts of these roots describe renor-
quency 1f. malizations of the wave velocities.

At quite low temperatures, when the temperature blur-  The solution of the kinetic equation in Fourier represen-
ring of the Fermi distribution function of charge carriers is tation has the form

much smaller than the separation between their quantized t

levels in a magnetic field (), the response of the electron :J' dt’a(t exolikIx(t") = x(1) 1+ »(t’' — ) =R

system to the external perturbation should be sought by solv- v —w gt explikx(t") =x(V)]+ ( )}=Rg.

ing the quantum kinetic equatith? or by using Kubo’s (13
l _ * . .

method! (Q=eH/m*c is the rotational frequency of an Formula_(13) where v=1/r—iw, g(t)=wAj(t)ku;(k)

electron around a closed orbit, amt is its cyclotron effec- .
i Y +ev(t)-E(k) can be used to present the fluxes characteriz-
tive mas$. We shall assume that the energy spectrum of

S ; . Ing the response of the electron system to the perturbation
charge carriers is not too close to two-dimensional, so that ; : i
caused by sound in the following form:
hQlep<n<l (7)

§i(k) =3 (K Ej (k) + a5 () kaouj (K), (14)
and the Fermi surface contains many electron states with -
quantized momentum projectigny in the direction of the (Aixip(K)) =Dbjj (K E;j(k) +¢jj (k) kau;(k), (15
magnetic field. In this case, the semiclassical description of . . o
I : . where the Fourier transforms of the electrical conductivity
nonequilibrium processes is valid for the electron system, :
e N : o;i(K) and acoustoelectronic tensoss;(k), b;(k), and
and the use of Boltzmann's kinetic equati@) is fully jus- c--J(k) are described by the ex ression]s !
tified for determining the acoustoelectron coefficients. 4 y P
Pe_rturbatio.n of the conduct_ion electrqns of an acoust.ic Uij(k):<920ifqvi>; aij(k):<evi§ij>a
wave is associated not only with the action of the electric R R (16)
field b|J(k):<eA|XRU1>, C|J(k):<A|XRAJX>
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The attenuation of acoustic waves is described by a roatetic field. For magnetic fields in which the electron orbit
of the dispersion equation that is closedés. Presenting it radiusr exceeds considerably the acoustic wavelength, but is

in the form much smaller than the electron mean free gatthe contri-
® butions from this group of electrons to the electrical conduc-
k=—+k, (17) tivity tensor components and all acoustoelectronic coeffi-
s

cients oscillate upon a variation of the inverse magnetic field
and confining ourselves in the solution of the dispersior(Pippard effed. If kryp<1, the oscillations are formed
equation just to the main approximation in the small quantitypPractically by all charge carriers with a quasi-two-
k,, we arrive at the following expression for the dampingdimensional energy spectrum and the oscillation amplitude is

decrement” of a longitudinal acoustic wave: comparable with the part of the acoustoelectronic coeffi-
- cients varying smoothly with the magnetic field.
= ~ ~ Conduction electrons with a quasi-one-dimensional en-
I'=Im k;=Im 2— 1_—~ [ f(ayxbxy— Cxxo'yy) q .
ps (1—Eoyy) ergy spectrum respond weakly to the presence of a magnetic

field, but their presence may considerably affect the depen-
(18  dence of the decrement of sound attenuation on magnetic
K= wls field for 1<kr<Kkl.
If the acoustic wave propagates along thxis, the
asymptotic behavior of the decrement of sound attenuation
A7iw ) remains the same as in the case of just one group of charge
= =2 PS T oo carriers with a quasi-two-dimensional energy spectrum, and
the sound attenuation decrement experiences resonance 0s-
T o—g TaxOxp  ~ —a AxjT ax cillations upon a variation of the inverse magnetic field.
R S If the energy—momentum relation for quasi-two-
dimensional conduction electrons has the form
~ bixa'xﬂ ~ bi><a><j

biﬁzbiﬂ_Ty Cij=Cij= a,B=Y,z. p)2(+p§ " 5<apz

~ o~ o~ H, . H
+CXX—I(ayX— bxy) E + Oyy W

Here,

28|:
V0T (20)

X XX = + — J—
(19 &(p) m P
If the magnetic fieldH=(0,H sin 6,H cos6) does notlie  and a strong magnetic field is directed at right angles to the
in the plane of the layers, i.e., #f is not equal torr/2, the layers along thez-axis, the following relation holds for the
charge carriers with the quasi-two-dimensional energy-sound attenuation decrement for indefinitely small values of
momentum relatiorfl) move along a closed orbit in a mag- the parametev;i:

, (21)

k=wls

Nmou, (my)2+ (kKRp)?2+i w[ 1+ sin(2krg)]
1—sin(2krq) + (my)22+ (kR7p)?/2+ 1/2(3/4kr o) +i p

- 41rps®

whereu = v C2w/2s*w3Q 7, w, is the frequency of plasma Nmwu, , (my)? (kRp)?
oscillations,r,=v,/Q; Q=eH/mc, R=2Ac/eHa, and N I'= Arps? Q71 1+sin(Zkro) + ——+—
is the number density of charge catrriers.

If », differs considerably from zero, the numerator and N 71 ] 22
denominator of formulg21) acquire additional terms pro- 2 (krg)? K= wls

portional to 73. _ .
However, upon a deviation of the acoustic wave vectorh I(;]Stea((jj of sha;p pealgs which are ?ijerVeddi?wé?/
from the preferred direction of the velocity of charge carriers. 1€ dependence of soun attenuation decrement .
) . : . sin(xkry)=1, the peak ofl” for the same values ofkZ is
with energy—momentum relatioi2), their role in the acous-

tic wave attenuation increases sharply. This is due to the fac?tttained upon a smooth variation of the magnetic field. The
Py asymptotic behavior of the sound attenuation decrertiht

that the contribution of these electrons to electrical conduc;, magnetic fields satisfying the condition<kr<1/y re-

tivity in a direction orthogonal to the wave vector increasesmains unchanged for an arbitrary quasi-two-dimensional
with the anglep between the vectok and thex-axis, thus  ejectron energy spectrum also, and only numerical factors of
causing a decrease in the resonance denominator.¢For the order of unity in the last three terms are sensitive to the
> (kr) 2, there will be no resonance if the number densi-type of energy—momentum relation for charge carriers.

ties of both types of charge carriers are of the same order of |n high-purity conductors with| 7> 1, a decrease in the
magnitude. Instead of resonance, we now obtain giant oscilmagnetic field for any orientation of the acoustic wave vector
lations of sound attenuation decrement which has the followleads to a replacement of the resonance and giant oscillations
ing form for o= 7/2: of I" by Pippard oscillations fokr »> 1, their amplitude be-
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ing (kry)¥2 times smaller than the part of varying The authors are indebted to A. M. Kosevich for fruitful
smoothly with magnetic field. discussions of the obtained results. We also take the oppor-
At low temperatures, when energy quantization oftunity to congratulate him on his jubilee and wish him sound
charge carriers in a magnetic field is significant, the quantunmealth and creative achievements. This research was partially
oscillations described by the Lifshitz—Kosevich fornfula  financed by the Ukrainian Ministry of Sciend&rant No.

o 2.4/192.
Tose hQ |12 ncg = 2
Iion =1 w(né) Neg7n co eHh * 4

aTnm
m*
(23 *E-mail: peschansky@ilt.kharkov.ua
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Theoretical study of the broken symmetry phéB&P transition line in solid HD reveals that its
anomalous features provide evidence for quantum orientational melting. The observations of
unusual reentrant behavior is a consequence of the symmetry properties of the system, namely, the
fact that in HD all rotational states and transitions between them are allowed, in contrast to

the behavior of the homonuclear isotopes &hd D,. The systematic underestimation of the
transition pressure characteristic of all theories of the BSP transition can be removed if
crystal-field effects are taken into account. 1®98 American Institute of Physics.
[S1063-777X98)01307-3

1. INTRODUCTION by van Kranendonk.Evidence for differences in properties
of asymmetric and symmetric hydrogens, which are a conse-
X o . uence of the coupling of the rotation and translation of the
HT, DT, T,) presents a unique possibility for studying theq . Ping .
. . ; . . .~ molecule in the condensed state, has been reported since the
diversity of quantum isotopic effectsThe differences in . .~ 3 ; . .
sixties? A large negative deviation of the'a ratio from the

ti f the isotopi bst t be, | .
properties ot the 1sotopic substances cannot be, as a rulg, | hcp value of/8/3 found by Prokhvatiloet al* for HD

related solely to the de Boer quantum parameter, an ¢ b diffracti tributed by th
symmetry-related nuclear-spin effects turn out to be far mor&t 2€r0 pressure by x-ray difiraction was atlributed by the

essential. Due to symmetry requirements, hydrogen and deguthors to features of the intermolecular interaction of HD
terium have two species: para;Bnd ortho-D correspond to molecgles. Sub;equent calculations by Strzhemechny-

the even rotational quantum numkkmhereas ortho-kiand ~ POrt this conclusion. _

para-D, correspond to odd states. In the case of HD mol- But the most striking differences between the homo-
ecules, the nuclei are distinguishable and the molecules daclear hydrogens (Fand Dy) and HD are evident by prop-
not possess a center of inversion. As a result, the HD mol€rties of the solids under very high pressures. At low pres-
ecules do not have ortho-para species and all angular m§re, the free rotor quantum numbei$/ remain good
mentum states)=0,1,2,... and transitions between all of quantum numbers for molecules in solig Bnd D,, and at
them are allowed. low temperatures only lowest statés 0 in the evenl spe-

To a very good approximation, the electron density dis-Cies are occupied. Since tlie=0 state has a spherically sym-
tributions in the H and HD molecules are the same. But in metric spatial distribution, there is no orientational order in
the HD molecule the center-of-charge does not coincide wittp-Hz ando-D, at low pressures down =0 K. The inter-
the center-of-mass. Since the molecule rotates around if®olecular interaction admixes the higher rotational states
center-of-mass but the intermolecular interactions are relateigito the ground state wave function, but this admixture is too
to the center-of-charge, rotations of the molecules are acmall to produce the ordering at zero pressure. With increas-
companied by translational displacements of the center-ofing pressure, the anisotropic intermolecular interaction in-
mass. Thus, the rotation and translation of the molecule arereases, and admixtures of higher rotational states into the
coupled dynamically. As a result of such off-center rotation,ground state wave function become more appreciable, even-
an additional Heisenberg-like term appears in the anisotropitually resulting in the transition into a phase characterized by
part of the intermolecular potential, as first has been showwrientational order. This transition has been called the broken

The large isotopic family of hydrogendi,, HD, D,,
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Low Temp. Phys. 24 (7), July 1998 Freiman et al. 519

symmetry phas€BSP transition. This transition was fore- important results emerged from these studies, only small
told by Raich and Etters in 197®Ref. 6] and found experi- changes were found in the predicted transition pressure. It
mentally by Silvera and Wijngaarden in 19816rD,’ and  was suggestéll that many-body effects are responsible for
then by Lorenzana, Silvera and Goettel in 1989piH,.2  the systematic underestimation of the transition pressure. In
Moshary, Chen and Silvet@xperimentally studied the BSP the present paper, we propose a new approach to this prob-
transition in HD and reported evidence for a non-monotonidem. It is shown that the main discrepancy between theory
phase lingi.e., aP-T minimum and thus reentrant behayior and experiment can be removed even in the MF approxima-
that contrasted markedly with that found ferH, ando-D,.  tion if crystal field effects are taken into account.

The BSP transition in HD was found at 68.3 GPa and  Another problem that has been intensively studied in the
3 K, which gave by extrapolating the temperature depencontext of the BSP transition is the question of the structure
dence a transition pressum@, at T=0K of Py~69.0 of the BS phase. In early theoretical studiés;!”'®the
(*2) GPa. The minimum point was located @,  Structure assumed to bPa3 a-nitrogen structure. The
~53 GPa andl,~30 K or in reduced units af,,/B~1/2  crystal structure of the high-temperature phase to 120 GPa
(B is the rotational constantThe disordered phase is reen- (phase ) was found to be hcf; but the structure of the BS is
trant, that is, for fixed pressure in the range betwgrand  still unknown. Recent theoretical search for the lowest-
P, as temperature is increased, the solid goes from a disognergy structure of the BS phase based on the local density
dered to an ordered and then to a disordered phase on@@proximatioR”>* and ab initio molecular dynamics
again. The slope of the orientational melting cudf,/dT  simulation$>**suggest a four-molecular orthorhombic struc-
is negative at temperatures less thBp and positive aff ~ ture of Pca2; symmetry. On the other hand, recent spectro-
>T.. At T=65K (T/B~1) the transition pressure be- Scopic data do not rule olRa3, at least forp-H,.?’

comes equal t®,. Above this temperature, the studied por-  In the present paper the phase diagram of solid HD has
tion of the transition curve is approximately linear with tem- been calculated. We show that quantum orientational melting
perature. can readily account for the unusual features of the BSP tran-

The pecu”ar features of HD responsib|e for the remark.SitiOﬂ in this system. The behavior of the phase transition
able behavior of its BSP transition line and the nature of thdine in solid HD as compared with Hand D, is a conse-
transition itself are thus of obvious interest. Two differentquence of the symmetry properties of the system, namely of
mechanisms have been proposed in the literature. One &#e fact that in HD transitions between all the rotational
them, called quantum orientational meltitfy'! was studied states are allowed in contrast tg Bind D;.
for the model system of all- quantum rotors before the
phase transition in HD was found experimentally. A different
approach to the problem was proposed by Strzhemethny2. BASIC EQUATIONS
According to the latter model, the mechanism of the
pressure-driven orientational ordering in solid HD is com-
pletely different from that in Hand D,, and is related to the
creation of a single delocalized=1 state that is a direct
analog of the zero-point vacancy waves in quantum crystals. H=BL?—(Ugn+U;) Y+ Uyn?/2, (D)
Thus, this mechanism is directly tied with the Heisenberg-wherel_ is the operator of angular momentutd;, and U,

Lkg terdm_tm ':c?e m:ermotletgular potential that is specific 10 5re mojecular and crystal field constarisis the rotational
and s oti-center rotation. . constant; = \4m/5(Y,o) is the order parameter; and.)
Yenotes thermodynamic averaging with the Hamiltonian

In the MF approximation, the Hamiltonian of the system
of linear rotors interacting via quasiquadrupolar forces can
be written in the following fornf®

from both experiment and theory for many yedsge, for
examplett?2~1and references therginThe main efforts in
theory have been made either to calculate the transition pres-

sure at zero temperatdre?®or to predict the lattice structure _ @By af o
for the BS phasé'~2 After the BSP transition was found Uo= g L,BEW; Vir T QEQy @

experimentally, it became clear that the critical densities de- By - . _ ) i
termined in the first theoretical studfdS*6were consider- WhereVyg, ™ is the interaction matrix, defined by the param-

ably underestimated relative to experiment. In more recerfeters of the intermolecular potential and by the lattice param-
work, several basic assumptions and simplifications of thesgtersiQi’=0,0 5~ (1/3)8,4, f numbers the lattice site€)
early treatments have been subjected to careful analysis, afia unit vector along the equilibrium orientation of the mol-
attempts were made to go beyond the most questionable agcule in the sitd.

proximations. One of the most significant approximations is ~ While the molecular field is generated by the coupling
the mean field MF) approximation. The effect of correla- t€rms in the intermolecular interaction potential, the crystal-
tions neglected in the MF approximation was taken into acfield ternt

count(in different way$ by Lagendijk and Silver& and by A

Sprik and Klein'® the effect of translation-rotation coupling U =-— 5 > B(Rs)Yao(Qy) ©)
was studied by Janssen and van der Avéirdnd the °

consequences of different forms of the intermolecularoriginates from single-molecular terms in the intermolecular
potential were tested by Aviraet all’ Though a number of potential. HereB(R;) is the radial function characterizing

The MF constant
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the anisotropic pair potentidlR is the radius-vector of the the system is a minimuntd/d»=0). Data on the variation
nearest neighbors) s;=Rs/R5, and & are indices of the oOf the order parameter with temperature and molecular field
nearest neighbors. constantU, allow us to obtain the phase transition line for

The orientational state of the system is determined byhe given value of the crystal field constant in the coordinates
values and signs of the molecular and crystal constants, arldo— T. The locus of equatiod »/dT=< for differentUj is
can be described by positive and negative order parameteriie curve of absolute instability of the orientationally ordered
In the case ofr-N, and the low-temperature phasemH,, ~ phase. The locus of equatiéi( 7,) =F(7=0) for different
U,>0 andU,=0 (more precisely, the second-degree term isUy is the curve of the thermodynamically equilibrium tran-
zero, but higher-degree terms do exifr 8-0,, U,<0 and  sitions (7 is the value of the order parameter for which the
U,>|Ug| and the order parameter is positive. FprO,,  free energy of the ordered phase becomes equal to the free
both molecular and crystal field constants are negative, e@nergy of the disordered phase
negative order parameter describes precession of disc-like Using van Kranendonk’s analytical representationf
molecules. The states with the negative order parameter cdhe short-range valence potential of Ree and Befitlere
be treated as the orientational analog of the easy-plane-tygeve calculated the molecular field constéigtas a function
ordering in magnets. of relative compressioR,/R, whereR, andR are the near-

As shown in Ref. 28, even very small crystal fields canest neighbor distances at zero pressure and pressume
substantially change the behavior of the system. For positivepectively. It was assumed that the BS phase in solid HD has
U,, the main difference with the case 0f,=0 lies in the the same supposedly lowest energy strucRica@2, as was
fact that the orientational phase transitions, instead of separedicted for solid H.?2-% Finally, to map the BSP transi-
rating orientationally ordered and disordered states havingion line into P-T space, we must use the pressure-volume
generally speaking different symmetry, separate more andquation of state. Although nB-V experimental data have
less ordered states of the same symmetry. Thus, these phdseen reported for solid HD at these pressures, isotopic dif-
transitions are of the order-order type. ferencegat least between Hand D,) in the megabar range

The most characteristic feature of the system at negativare very small. Thus, we use the recent x-ray pressure-
values of the crystal fieldcompared with that at);=0) is  volume equation of state for Hand D, measured by
that states with a negative order parameter can exist as thdreubeyreet al?! (Vinet functional form.
modynamically stable states of the system along with the As expected, the phase transition pressure calculated un-
states having a positive order parameter. The phase trangler the assumption of zero crystal field underestimates the
tions occurring in the system at negative crystal fields are thexperimental value by a factor of four. As shown in our
transitions between two different ordered states, the easywtudy of the model system given by the Hamiltonian
axis orientational states with the positive order parametef(Eq. (1)],?® negative values for the crystal field shift the
and the easy-plane orientational states wj#i0. phase transition line upward to higher pressures. Figure 1a,

In principle, the crystal-field term can be deduced fromshows a set of theoretical curves that give the best agreement
Eq. (3). It is proportional to a product of such quantities aswith the experimental data from Ref. 9. These curves corre-
é.=cla—/8/3, the deviation ofc/a from the ideal hcp spond to reduced crystal fields, /U, of —0.13,—0.14, and
value; ¢,,=b/a—v3, the deviation ob/a from the ideal hcp —0.15. The theory succeeds in reproducing the distinguish-
value in the case of the monoclinic distortion, anding feature of the HD phase transition line, i.e., the non-
P,(cos 6p)=(3/2)cog 6,—1/2, whered, is the polar angle of monotonicity of the curve and a correct position of the mini-
the central molecule with respect to th@xis. None of these mum. The steeper temperature dependence characteristic of
guantities are known to sufficient accuracy either from ex-the experimental data is principally due to the effect of ori-
periment or theory. That is why the reduced crystal field willentational correlations, and in part to the Heisenberg-like
be treated in the present study as a parameter of theory. term in the HD-HD intermolecular potential omitted in this
study.

In the present paper we consider the crystal field as a
parameter in the theory, and thus the question exists as to the

To find the phase diagram of the system of rotors devalue and the sign of this parameter required to gain agree-
scribed by the HamiltoniafEq. (1)], we used the same com- ment between theory and experiment. As follows from the
putational scheme as in Refs. 10 and 11. First, the energgnalysis of Eq(3), the negative sign of the crystal field is
spectrum of the linear rotors in the fieltlY,, was calculated, definite, and the values given above correspond to the value
where V= —(Uy7+U;). We used the basis of spherical of ¢&,;=c/a—/8/3, the deviation ot/a from the ideal hcp
functions Y, in which the kinetic energy operatdr? is  value, which was found in the recent x-ray high-pressure
diagonal. The basis set was restricted 407, which, within  study?! A detailed analysis of this point will be given else-
the studied range of, ensures sufficient accuracy of calcu- where. Here we would like to point out that the deformation
lations for lower levels of the system. Making use of theof the lattice that gives rise to the negative crystal field as a
spectrum obtained, we have calculated the free enférmya response of the lattice to the applied pressure is in accord
function of the order parameter and of the temperature awith the general Le—Chatelier—Braun principle.
given values of the molecular field and crystal field constants ~ As one can see, the BSP transition line in solid HD is
Uo andU;. Then we found the temperature dependence osimilar to theP-T melting curve of*He (Fig. 1b. It is es-
the order parameter from the condition that the free energy dfablished that the presence of the minimum in tHe melt-

3. RESULTS AND DISCUSSION
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FIG. 1. Broken phase transition line in solid HD. Symbols:experimental T.K
data by Moshary, Chen, and Silvé¥&olid curves: present theory. Different
curves are labeled by values of the reduced crystal f@ldvielting curve in

3He (b).

FIG. 2. Entropies of liquid and solidHe (a) and ordered and disordered
phases of solid HOb).

4. CONCLUSIONS

ing curve stems from the fact that the entropy of the solid  The broken symmetry phase transition line in solid HD
phase exceeds the entropy of the liquid at low temperaturegas hbeen shown to be an example of quantum orientational
where the thermal properties of the condensed phases afgelting. The unusual behavior of the phase transition line
dominated by spin properties. Liquithe obeys Fermi sta- (j.e., its P-T minimum) is a consequence of the symmetry
tistics, with the entropy proportional to the temperature. O”properties of the system, namely, the fact that in HD all
the other hand, the entropy of solféie is that of weakly rotational states and transitions between them are allowed, in
interacting spin 1/2 nuclei; that is, the entropy of sdfte is  contrast to homonuclear isotopes &hd D,. The systematic
independent of temperature and equalRtim 2 (Fig. 2a. In ynderestimation of the transition pressure characteristic of all
this temperature region, the entropy contribution to the fregheories of the BSP transition can be removed if crystal-field
energy is an additional factor that stabilizes the solid phaseaffects are taken into account. It was suggested that the effect
A similar situation occurs in the case of the system ofgf grientational correlations, and specifically for HD, the
rotors. The molecular field gives a doublet-shape groungejsenberg-like term in the intermolecular potential, should
state of the system; this provides an extra contribution to th@e taken into account to obtain guantitative agreement be-
entropy of the ordered phase, which is equaRttn 2. Asa  ween theory and experiment.
result, in the low-temperature region the entropy of the ori-
entationally ordered phase is larger than that of the disor-
dered phasé¢Fig. 2b. Similar to the case ofHe, this is an ACKNOWLEDGMENTS
additional factor that stabilizes the ordered phase. Above the This research was supported by the N$BMR-
point of intersection, the situation becomes “normal” and 9624050. The authors dedicate this work to Prof. Yu. Kagan
the entropy factor stabilizes the disordered phase. on the occasion of his 70th birthday.
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A microscopic extension of the phenomenological model of double-well orientational states, viz.,
pentagonal and hexagonal configurations of molecules, which is widely used for describing

the low-temperature phase of fulleritgC is proposed. A simple kinetic equation and a set of
thermodynamic relations connecting the crystal lattice deformation, the concentration of
orientational excitations of molecules, and temperature are derived. Basic physical properties of
the low-temperature phase, including orientational glass transition, heat capacity, thermal
expansion, rheological properties and damping of elastic vibrations are described on a unified
basis. The conclusions of the theory are compared with the experimental data, and

empirical estimates are obtained for the parameters of double-well states and the
lattice—orientational interaction. It is shown that the large values of thermal expansion and acoustic
damping above the orientation glass-transition temperature of fullerite are due to high-

intensity lattice—orientational interaction. @998 American Institute of Physics.
[S1063-777X98)01407-9

INTRODUCTION molecule play a significant role in the classification of struc-
tural states of crystalline fullerene.

Recent studies following the synthesis of crystalline  The formation of a crystal from & molecules is ensured
fullerene (fullerite) Cqo in 1990 revealed peculiarities in the by the forces of paired Van der Wadlsispersion interac-
structural parameters as well as in thermal, acoustical, angon, which have a significant noncentral component deter-
mechanical characteristics of this crystal in the low-mined by the mutual orientation of molecules and associated
temperature range, which are associated with the thermal exvith the nonuniformity of electron density on the surfaces of
citation of rotational degrees of freedom of molecdfeS.  molecules. Fullerite g exists in three structural modifica-
These peculiarities were explained qualitatively on the basisions differing in the ordering of molecular orientation. The
of phenomenological concepts of the structural—orientationatritical temperature T,~260 K separates two crystallo-
phase transition near 260 K and double-well orientationagraphic modifications: the high-temperature face-centered
states in the low-temperature phase, which are referred to asibic (fcc) phase and the low-temperature simple culsig
the pentagonalp) and hexagonalh) configurations. This  phase. Thermal excitation of rotational degrees of freedom at
research aims at a microscopic extension of phenomenologF> T, leads to random rotation of molecules, which effec-
cal concepts concerning double-well orientational states ofively “smooths” the angular dependence of pair molecular
molecules and at constructing of a simple kinetic theory prointeraction potential and ensures the energy expedience of
viding a description of peculiarities in the temperature be-densely packed fcc structure. In the region of low tempera-
havior of most physical properties of the low-temperatureturesT<T,, the centers of gravity of molecules also form a
phase of fullerite g on a unified basis. In order to avoid lattice of sites of the fcc structure, but their third-order sym-
terminological ambiguity and formulate the problem moremetry axes acquire ordered orientations in view of the in-
clearly, it is expedient to characterize briefly the structuralcreasing role of the noncentral component of dispersion
features of fullerite, which are associated with rotational deforces: nearest neighbors are divided into symmetrically
grees of freedom and orientational states of molecules.  equivalent groups containing four molecules eéigtrahe-

A molecule of fullerene g, has the shape of a truncated dra) with different orientations of third-order axes along spa-
icosahedron whose surface is formed by 12 pentagonsal diagonals of an elementary cube within a grofipe
framed by single covalent bonds C—C and by 20 hexagonél1l) type directiong and the centers of such tetrahedra
framed by alternating single C—C and doublesC bonds. form a lattice of sites of a sc structure.

The large set of symmetry axes of the molecule contains 10 At the same time, the sc phase possesses one more im-
third-order axes passing through the centers of diametricallportant structural feature, viz., partial orientational disorder

opposite hexagons. Pentagon and hexagon configuratiomssociated with the possible retarded rotations of molecules
of electron orbitals and third-order symmetry axes of theabout ordered axes between two orientational configurations

1063-777X/98/24(7)/11/$15.00 523 © 1998 American Institute of Physics
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nonequivalent from the energy point of view: pentagapal
and hexagonalh). Both configurations correspond to the
minima in the angular dependence of molecular interaction
energy: a deepdglobal) minimum is attained as the double
bond of a molecule approaches the center of a pentagon on
the surface of a neighboring moleculp-configuration; a
shallower(local) minimum takes place when a double bond
approaches the center of a hexagon on the surface of a neigh-
boring moleculeh-configuration. The difference in the en-
ergies of p- and h-configurations per intermolecular bond is
of the order of 0.01 eV, and the energy barrier separating the
configurations is of the order of 0.3 é\*:° For this reason,
molecular rotationdi.e., transitions between these configu-
rationg can be stimulated by thermal fluctuations at moder-
ately low temperatures. Thus, the ideal thermodynamically
equilibrium structure of the sc phase of fulleritg,&orre- 9
sponds to p-configurations of all molecules, while h-
configurations should be regarded as thermally excited locdl!G. 1. Schematic diagram of a double-well potentiglf) characterizing
orientational defects of the crystal structure. Various experifhe depend_ence of the inter_action energy of adjacent fullerite molecules on
. . the generalized angular variable.

mental methods of structural analysis and theoretical esti-
mates show that a thermodynamically equilibrium relative
concentration of defective h-configurations in a wide tem-Consequently, the volume concentrationNy paired inter-
perature range 90—-260 K has a high value of the order ofnolecular bonds satisfies the relatibiga®= 24, wherea is
20-40%, and thermally activated local transiti¢ratations  the length of an edge of an elementary cube. Since each
between p- and h-configurations occur during time periods ofntermolecular bond can be in two metastable states, we can
the order of or less than 10 s, i.e., rapidly on the laboratonalso introduce in our model instantaneous local concentra-
time scale. Consequently, the orientational subsystem of thgons Np(r.t) andNp(r,t) of pentagon and hexagon configu-
sc phase in this temperature range can be regarded as a seitions respectively, which satisfy the balance equaitom-
of orientational liquid/OL). On the other hand, in the case of servation law
cooling of fullerite belowT ;~ 90 K, thermodynamic equilib-
rium between p- and h—c?)nfigurations has no time to be es- Np(r,8)+ Ni(r.t)=No, @)
tablished over reasonable laboratory time intervals. This alwhere the spatial coordinateis determined to within the
lows us to treat the sc phase under these conditions dattice parametea.
orientational glas$OG) with a relative concentration of fro- Refining the model of double-well states formulated
zen defective h-configurations of the order of 20% and tcabove, we note that its application presumes that it is pos-
refer to the temperaturgé, as the temperature of orienta- sible to single out a set of identical independent collective
tional glass transitiofl. angular variable® among the aggregate of rotational de-
grees of freedom of crystallinegg molecules, whose num-
ber is normalized to the parametdy, and classical dynam-
ics for each such variable is determined by an equation of
motion of the type

The orientational structure of the sc phase of fullerigg C d2
described in Introduction can be put in corresponddnoa- I pres 0=— a9 U(0)+K(t). 2
ditionally to a certain extehtwith the energy states of neigh-
boring molecules shown in Fig.°r>° Strictly speaking, ori- Here| is the effective moment of inertia corresponding to
entational states of molecules and transitions between thethe variabled, andK¢(t) is the moment of forces describing
in a crystal are of cooperative nature, and hence the ahglethe interaction of the singled out degree of freedom with the
has the meaning of a generalized coordinate describing locaémaining degrees of freedom of the crystal. The macro-
disorientation of neighboring molecules. The introduction ofscopically large number of the remaining degrees of freedom
such a coordinate in the description of orientational molecuallows us to consider their effect on the singled out “par-
lar dynamics in fullerite g, has not been substantiated mi- ticle” with the dynamic variabled as an action of a certain
croscopically. Nevertheless, the phenomenological model oéffective mediumthermostagtand to treat the functioK (t)
local “one-particle” double-well states illustrated in Fig. 1 is as a complex random process whose statistical parameters
found to be constructive and makes it possible to construct are determined by the state of thermal motion of the medium.
description of thermal, acoustic, and mechanical properties The phenomenological model described above makes it
of the low-temperature sc phase of fullerite which matchegossible to analyze the orientational relaxation in the sc
the experimental results. phase of fullerite g by using the results of the theory of

An individual unit cell of fullerite contains four one-dimensional Brownian motion of a particle in a potential
molecules each of which has 12 nearest neighborgelief of a complex shap¥. We shall assume that the

1. PHYSICAL MODEL AND KINETIC EQUATION FOR
DESCRIBING ORIENTATIONAL RELAXATION IN SC PHASE
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medium(the majority of degrees of freedom of the crysfal  linear approximation for the dependence of the barriggs
in thermodynamic equilibrium with temperatufeand con- and U, on the components of the symmetric strain tensor
sider only relaxation processes associated with deviation of;y :
the dynamic variable# from equilibrium. According to (e) _ _(ph)
Kramers'? we can introduce for each of the potential wells Upn=Upn=vi" ik ®)
depicted in Fig1 a mean timer, or 7, over which a particle  where v{P'" is the symmetric matrix whose components
which was first localized near the bottom of the correspondhave the dimensions of energy. Here and below, recurring
ing well leaves it through the barrigd, or U, under the coordinate indices indicate summation. For a crystal of cubic
action of thermal impacts exerted by the medium. For lowsymmetry, the matrix of deformation potential constants
temperatureskT<U,,U, (k is the Boltzmann constant o™ in crystallographic coordinates must have the form
these times are determined by an activation formula of the P =v, 8 (3 is the Kronecker symbgli.e., linear cor-
form rections to scalar energy parameters are determined by only
one scalar combination, i.e., the sum of diagonal component
Upn of the strain tensas; = 5 & . Thus, taking into account the
Tp,h= 70 expﬁ. 3 cubic symmetry of fullerite, we can write the deformation
correctiong5) to the parameters of the double-well potential

In the general case, the pre-exponential faetpin this " N form

formula has a complex structure. The typical valuesodre Ui;’%: Uph=Uphell
of the order of effective period 2(1/U, )2 of molecular (;)
librations, wherdJ| |, is the value of the second derivative of A¥'=A-v,ey, (6)

the functionU (8) near the bottom of the corresponding well. wherev,=v,—vy.

This means that, strictly speaking, has different values for It should be noted that the dependence of the scalar pa-
pentagonal and hexagonal configurations. Besides, exact vaameterdJ , , on the shear components of elastic strain in the
ues ofr, also depend on the parameters of the medium, viz.jinear approximation in the case of a cubic crystal can appear
the temperature of the crystal and the viscous friction emergonly if we take into account the rotational modes of defor-
ing if we take into account the relation between mOleCU|armati0n in the nonsymmetric theory of e|astic1ﬁ/'_|’his pre-
librations and translational vibrations of the Crystal sumes a correction to the right-hand sides of re|at(@)‘|$)f
(phonong and vibrations of the atomic core of the molecule. the scalar terms proportional to spatial derivatives of the field
A quantitative description of such dependences on the basis rotational vectors for macroscopic elements of the crystal-
of the phenomenological model under investigation is impostine medium, which is equivalent to the inclusion of spatial
sible; we can only expect that the dependence of the pregispersion effects in the continuum mechanics of the crystal.
exponential factorr™ on temperature and parameters of  Replacing the times-, , in the kinetic equatior(4) by

the potentialU(6) is much weaker than the dependence de—Tgfg]: 7o exp(UEf?,/kT) we obtain an equation determining the
termined by the exponent. For this reason, we shall henceinetics of orientational relaxation of molecules in the pres-
forth assume that the factat®™ in (3) is a constant the ence of macroscopic elastic deformations in the fullerite
which is the same for both configurations({~7{"=17,  crystal. In the further analysis, it is convenient to go over to
=const) and treat the parametéts, Uy, A=U,—Uy, and  the relative concentrations,=N,/N, and n,=Np/N, of

To @s microscopic characteristics of the phenomenologicabentagon and hexagon configurations. The variation of these

model under investigation. quantities is described by the following equations:
Using the timesr, and 7, and the balance equatigf), 5 ()

we can easily write a simple kinetic equation describing the 7 — n,+np= T( )

time variation of the concentratioNy, or Ny=No—Nj: ot T (7)

np+ny,=1

J Nh NO_ Nh (&) (&)
—Np=——+ . 4 Uph—Upnen o Th
gt N Th Tp @ 7'(p8,|)1: ) eX[{%), T(S):m. (8

The effect of orientational transitions in the system of  Let us consider one more important aspect pertaining to
molecules on the thermal, acoustic, and mechanical propethe conditions of applicability of Eq$7) for describing pro-
ties of fullerite can be taken into account in the model undercesses associated with varying strain fieldg= g (r,t).
investigation by supplementing this model with some moreExpression3) for the mean time of emergence of a particle
relations and parameters which also have microscopic dirom a potential well was derived by Kramét$or the time-
semimicroscopic meaning. In order to describe the relatioindependent potenti&l (). In this case, the role of minimal
between rotational degrees of freedom of molecules with théime intervals appearing in the corresponding diffusion prob-
fullerite lattice, we must introduce corrections associatedem is played by the time of correlation of a random process
with elastic deformations of the lattice to the parameters oK(t) and the period, of oscillations of the particle near the
the double-well potentidl (8). Assuming that the deforma- bottom of the well; these time intervals are equal to charac-
tions are small, we can neglect their effect on the parametderistic molecular time and are of the order of or less than
7o in the first approximation and to confine our analysis of al0 '?s. This means that the quantity, , defined by
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formula (3) preserves the meaning of “instantaneous” valuefullerite (e.g., the results of x-ray of neutron diffraction spec-

of the mean time of emergence of the particle from the poiroscopy. The generally accepted estimate at the present

tential well for time-dependent values of the barriéts,  time isA=(11-13)x 103 ev.2®

only if the characteristic time of their variation is much The factor7{*) appearing in front of the time derivative

longer than these minimal time intervals. Consequently, wen the kinetic equatiori7) has the meaning of relaxation time

can expect that the kinetic equati@f is also applicable for over which the local thermodynamic equilibrium in molecu-

describing orientational relaxation processes excited by thkr orientation is restored if it was violated by a fast change

varying strain fieldse;(r,t) if these strains vary insignifi- in internal stresses or external conditiofesg., change in

cantly over time intervals of the order of the molecular libra-temperaturg Indeed, it can easily be seen that, for time-

tion period 7. independent values of and e, the approach to orienta-
The effectiveness of the microscopic refinement of thetional equilibrium is described by solutions of equatids

phenomenological model of double-well orientational stateof the type

in fullerite Cgq proposed in this section is determined by the ¢

possibility of mdmatmg and carrying out experiments whose np,h(t)—ﬁff%z[np,h(O)—ﬁEf,ﬁ]ex;{ _ W) (11)

results make it possible to obtain empirical estimates for all T

the model parameters introduced above: the barrier heigh{gpere n,.n(0) are the initial nonequilibrium concentrations

Up andUy, and their differenced=Up—Uy,, the effective 4 hentagonal and hexagonal configurations. The explicit de-

libration period 7y, the deformation potential constantg pendence 06) on temperature and coordinates is given by
andvy,, and their difference y=v,—vy,.
o) T0 exf {Un—vhey(r)}/kT]

2. THERMODYNAMIC EQUILIBRIUM AND ORIENTATIONAL 1+exd — A—v,ey(r)
GLASS FORMATION kT

(12

If the temperature of the crystal and local deformations  Relations(11) and (12) form the basis of the formal
remain unchanged for a long time, the local densities of pendescription of the orientational glass transition in fullerite.
tagon and hexagon configurations assume thermodynanmWe shall consider this phenomenon for quite perfect crystals,
cally equilibrium values,(r; T) andnp(r;T) which are de- neglecting random strain fields, but presuming the presence
scribed by the time-independent solutions of E&): of bulk compressione; by the hydrostatic pressure

P=-B g, , whereB(® is the isothermal bulk compression
1+eXF{A_UA8”(r)) modulus. Lett,,, be the characteristic laboratory time, i.e.,
kT ) the total time of temperature stabilization for the sample and
A—vaey(r)| ]2 of carrying out the physical experiment at a given constant
1+ ex% - T)

temperature. Reasonable values of this quantity can be esti-
mated as,,~10° s with a possible spread within an order of

It should be noted that equilibrium nonuniformities of magnitude. The orientational glass transition temperature
orientational ordering in fullerite emerging due to static non-T¢(P) can be naturally determined as the solution of the
uniform strainse;(r) of the crystal can appear in the analy- equation
sis of the fullerite structure by the x-ray and neutron spec- P)\(Ty=t 13
troscopy method; their inclusion can be essential in 7 (1) =t (13
describing acoustic and mechanical properties of the crystallsing formula(12) and taking into account the inequality
For example, considerable nonuniformity of orientational or-A<U,, and a considerable indeterminacy of the numerical
dering must be observed in fullerite containing dislocationsvalues of the parameters, andt,,,, we can write the ap-
Formulas(9) make it possible to describe nonuniform distri- proximate solution of Eq(13) determining the temperature
butions of pentagon and hexagon configurations appearingy with a relative error of the order of 10%:
around stationary dislocation linéan analog of the Cottrell

-1
ny(riT)=np(T)=

’

ny(r;T)=np(T) =

or Snoek impurity atmospheres which are encountered in the Ty(P)=|k In Yab Up+ % p)_ (14)
physics of alloys* For this purpose, we must substitute into To B

formulas(9) the expressions for the strain fields of individual In experimental investigation of the temperature depen-
dislocations. dence of the physical parameters of fullerite, certain singu-

For pure and well-annealed fullerite samples, we cangyities, whose recording makes it possible to obtain empiri-
neglect nonuniform straing:(,=0). In this case, the relation ¢ yajues ofT,, are observed in some cases in the vicinity
betweenny, and n, is determined only by the value of the of the orientational glass-transition temperature. For ex-

temperaturel and the parameteX=U,—Uy,: ample, such a singularity was observed in experiments on the
n(T) thermal conductivity of fullerite g, under pressuré: these
kT In Fp(T) =A. (100  experiments confirm the linear form of the functidg(P) in
h

a very wide range of pressures, while under zero pressure we
This formula makes it possible to obtain an empirical esti-obtain the value oT 4(0)=90 K. Formula(14) together with
mate of the parametek by using the results of experimental experimental data on thgy(P) dependence can be used for
study of the temperature dependence of orientational order iobtaining empirical values of the parametéls and v, of
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the theory. The positive slope of tiig(P) curve recorded in  crystal, which is equivalent to distributidi®) obtained from

Ref. 11 indicates the positive sign of the deformation potenmicroscopic considerations in statistical mechanics.

tial constantv,>0. The mechanical stress tensor componentsare defined
Assuming thatt,,,=3%x10°> s and using the empirical in thermodynamics as generalized forces conjugate to the

estimatesr,~3x 10" * s andB~ 10 GPa obtained in acous- strain tensor components, :

tic experiments>'® as well as the estimatelT,/dP

~60 K/GPa obtained in Ref. 11, we obtain the values of IF(T+0O, e, vpn)

Oi= 1
U,=0.3eV andv,=2.0eV. Ik Ie ik 0. (17
“h
Specific calculations require the knowledge of the ex-
3. THERMODYNAMICS OF DEFORMATION, THERMAL plicit form of the funCti0n|~:(T+®,Sik,Vh). For small val-
EXPANSION, AND HEAT CAPACITY OF THE SC PHASE ues of nonequilibrium correctior®, e, andvy,, this func-

In this section, we propose a thermodynamic descriptior%Ion can be approximated by the truncated power series

of the influence of.rotatlonal degrees of freedom of .mO.I-F:FO(T)_a’(T)®8ik5ik_,8(T)®Vh_ Y(T) w6
ecules on deformation and thermal properties of fullerite in
the temperature rangél {,T.). In an analysis of this phe- —(12E(T)O%+ (1/12)(T) vﬁ+(1/2))\ik,m(T)siks|m
nomenon, we shall use basic principles of the thermodynam-
ics of irreversible processes, the phenomenological model of (18)
double-well orientational states, and microscopic refinemenin order to describe the thermal and rheological properties of
of this model described in Sec. 1. fullerite in the approximation of linear response, it is suffi-
We shall assume that a thermodynamically equilibriumgient to confine our analysis only to the quadratic terms in
state of the fullerite lattice is undeformed at a certain preseghjs expansion. The free enerfy of the initial state and the
temperaturel and in the absence of external forces. Let uscoefficient of expansiofil8) are certain functions of the ini-
suppose that fullerite becomes nonequilibrium as a result ofa| temperatureT, and their explicit form can be obtained
quite small long-wave strains;,(r,t). These strains cause gnly from an analysis of the thermal motion of the crystal on
small local deviations of temperature from its initial vallie microscopic level by using the methods of statistical me-
and violate the equilibrium orientational ordering of mol- chanics. It should also be noted that the tensor structure of
ecules, i.e., generate small deviations of local concentrationge terms proportional to the strain tensgg presumes the
of hexagonal and pentagonal configurations from their equizybic symmetry of the crystal and disregard of spatial dis-
librium valuesmo)(T) andﬁ,(JO)(T)=l—ﬁ(10)(T). Inorder to  persion effects associated with the interaction of hexagonal
describe these deviations, we introduce the variable temperaxcitations with gradients of local lattice rotatiofsee the
ture T+0(r,t) and the nonequilibrium correction to the discussion of this question in Sed. 1
number density of hexagon excitationsi,(r,t)=n{" The physical meaning of individual coefficients in ex-
+ vy(r,t). According to the basic concepts of the thermody-pansion(18) can be clarified by analyzing several reversible
namics of irreversible processésee, for example, Ref. 1,7  processes corresponding to different external conditions by
we can describe a nonequilibrium state of the crystal by inusing this expansion. We shall carry out such an analysis
troducing the free energy densi(T+©,e;,,v,) which is  following the procedure described by Landau and LifsHitz.
regarded as a function of temperature, extrinsic parameters L€t us first consider two processes of reversible defor-
e and the intrinsic parametef,, the latter being treated as Mation of the crystal(1) quasistatic deformation at a con-
an independent thermodynamic variable, For the given initiaftant temperature§(=0), and(2) extremely rapid deforma-
temperaturdT, the total differential of free energy is defined tion during which heat exchange between different regions

ik€ik

by the thermodynamic identity of the crystal and the relaxation of local values of number
~ ~ ~ density of hexagonal excitations cannot take plage=0).
~ dF JF ds In the first case, minimization of the free ener@p) in vy,
dF=7g 40+ e deipt v, dp, (19 gives the change in the quasiequilibrium concentration of

while equilibrium states of the crystal must correspond to thehexagonal excitations, which follows after the slow variation

. .~ of strain:
minima of the functionF(T+ 0,¢&;,,v,,) under preset exter-

nal conditions. o 7Y

For example, for given values of the strain tensor com- ~ *n '~ Sik€ik - (19
ponentse;,, the thermodynamic equilibrium state is defined
by the equation Substituting(19) into (18) and putting® =0, we obtain the

~ free energy of a reversible isothermal deformation, which
IF(T+0O,g;,vn) —o (16 can be written in the form
Jdv ’ ~
" e F = Fo(T)+ (U2 G ein,

The solution of this equation for the variablg must de- )
scribe an equilibrium distribution of hexagonal configura- NU _r 5.8 20
tions n{(T)=n{O(T) +{(T), in a statically deformed tklm = Rikim = 7 Cik Pim -
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It can be seen that the parametgfS),, have the meaning of B?
tensor components of isothermal elastic moduli. Cy=T| &+ o) 27
For the second process under investigation, the entropy
éz_[aE/aT]Sik of individual regions of the crystal must In the case of slow heating of the unstressed crystal

remain unchanged, while local values of temperature chang(e‘;ikzo)_’ thﬁ Increase m_temp}err]ature IS ?Ccomp?‘”k'ﬁ%d by a
in proportion to strains. From the conditions of vanishing of c"angde In the concentration of hexagonal excitatiogs

the parameter v, and the entropy increment&(hlE and th? thermal egpansion straif)) is generated. These
—F,). /d®=0 we obtain gquantities are solutions of the system of two equations cor-
0 €ik -

responding to the minimization of the free enefd) over
a the variablesy, andgy, :
®(8):_— 5ik8ik' (21)
§ [7\ik|m8|m_7Vh5ik:a®5ik-
Substituting(21) into (18) and puttingy,,=0, we obtain the Yoikeik~ Mvh=—BO.
free energy of adiabatic deformation, which can be written inGoing over to isothermal moduli in accordance wi@), we

(28)

the form obtain
FO=Fo(T)+ (V2N e keim. 22 Lo TR
az ik 37]B(0) ik -
i = Nikim+ 3 SikOim - B0 g+ N 9
FON Bn 27(((;1)77 ¥B) .
Here (). are the tensor components of adiabatic elastic 7B

moduli. According to(20) and (22), the difference between

. . . ) , The substitution of these quantities in(@8) leads to the
adiabatic and isothermal moduli is defined as

expression describing the variation of free energy as a result
a? 4P of slow heating of the crystal under constant pressurg (
?‘f‘;) 5ik5Im- (23) EO)
The elastic moduli tensor for a cubic crystal has three E(P)ZFO(T)_ E
independent components. In the crystallographic system of 2
coordinates, we normally usk;;11,=C11, N112=C;, and
N1212= Nogo5= Cas, as independent components, while the
bulk modulusB is defined by the relationB=C;;+2C,.
Thus, the shear modul3,, in the approximation used here

® 0
)\i(kl)m_)\i(kl)m:
B> (an+yp)?

§+7+ B0 02 (30)

This leads to the following expressions for the heat capacity
at constant pressu@p=—T#’F(P/9@2 and the difference
Cp—Cy in heat capacities:

has the same value for isothermal and adiabatic deformation, B% (an+yp)?
the only difference appearing for the compression modulus: Cp=T| &+ 7+ B(O—)nz '
2 2 2 @3
B*)-BO=—4 (24) Cp—Cy _ (ant+yp)
& 7 T  BO,

ITet us consider two more revers_ible_processes: slow Using formulas(29)
heating of the crystal at constant volurfie., in the absence
of strainse;,=0) and under constant pressuia the ab-
sence of stressas;;=0). In the former case, minimization
of (18) with respect to the variable,, gives the variation of

and(31), we can also obtain easily
the expressions for the thermal expansion coefficient
=0e(?19@ and the well-known thermodynamic relation be-
tweenx and the heat capacity differerfeCp—Cy,:

the concentration of hexagonal excitations, which is propor- ant+yB ©0)..2
tional to the temperature increment: = TR, Cp—Cy=TB7k". (32
Lo_B g (25 The formulas(24), (27), (31), and (32) derived above
hop make it possible to connect the formally introduced coeffi-

. . . _ _ cientsa, B, v, & u and N\, of expansion(18) with the
Substituting(25) into (18) and puttinge;, =0, we obtain the macroscopic parameteis). . A& | Cy, Cp, «, of the

following expression de_scrlblng the variation of free energycrystal which have a clear physical meaning as can be mea-
as a result of slow heating at constant volume:

sured experimentally. It should also be noted that the terms
,82

1 in these formulas depending on the coefficieitsy, and »
£+ —
n

FV=Fy(T)-=

2 02 (26) describe the contribution of thermal excitations of the rota-

tional degrees of freedom of molecules to physical param-

This formula leads to the relation connecting the coeffi-eters of fullerite, while the terms depending on the coeffi-
cient of expansior{18) with the heat capacity of the crystal cients « and ¢ describe the purely lattice(phonon

at constant volum€, = — T#*F)/90? (this quantity is re- contribution. The possibility and expedience of such a sepa-

duced to unit volume of the crysjal ration in the theoretical formulas and in the experimental
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data processing are due to qualitatively different forms of thdn the case when the lattice and orientational contributions in
temperature dependences of each of these contributions. the measured values 6f are separable, formul87) can be

It is also useful to establish the relation between theused for obtaining an empirical estimate of the ratig/A.
coefficient 8, y, and  characterizing the orientational con-
tribution to the thermodynamics of fullerite and the param-4. EFFECT OF ORIENTATIONAL RELAXATION ON
eters of the model of double-well orientational states of mol-RHEOLOGICAL PROPERTIES OF FULLERITE

ecules, which was described in Sec. 1. For this purpose, we A description of acoustic and deformation properties of

must compare some of the results of the thermodynamlgolids in the continuum mechanics presumes the knowledge

ahnaly_S|s W'_th m_m(;oscop::;c relatlo_ns prejsent_ed In Sec. 1. Fogy the basic rheological equation connecting internal stresses
the given time-independent straif, and a given tempera- o (r,t) and the straing;(r,t) generating them. For per-

tureT+ 0, the minimization of the free enerdys) over the oy elastic linear bodies, such a relation is determined by

variablev,, leads to the equilibrium distribution the classical Hooke’s lawsry(r,t)=\imeim(r.t), where
_ 0 % Nikim IS the tensor of elastic moduli of the material. It is
h(0,24) =N (T+0) —nX(T) = P ent P ©, (33  important that this relation is local in space and time, i.e.,
long-range effects as well as aftereffects are absent. How-
which is equivalent to the distributiof®) derived from the  eyer, the presence of quasi-independent internal degrees of
kinetic equation(7). If we write (9) for the temperaturd  freedom associated with lattice deformations in the solid vio-

+0 and linearize irej, and®, we obtain lates the local nature of the relation between stresses and
strains. The basic rheological equation for such bodies in the
—e) —0) A UA @ . . .
Ny (T+O)—ng (M =fl i/ T ent T/ (343 linear approximation assumes the féfrft
t
xe* (1, :j dt’fd3r’A- r—r't—t’ r',t).
F(x)= . (34b) ai(r,t) B ikim( )eim(r’,t)

(1+e )2 (39)
(_Zomparing(34a) and (33), we arrive at the following rela- g equation takes into account aftereffect and internal fric-
tions: tion inherent in actual solids, and the role of elastic moduli in

Y va . A B R, A a5 such a generalized Hooke’s law is played by an integral op-
Pyl e El T/ (35  erator with the kernel\;m(r,t).

_ _ _ Equation (38) assumes the conventional form of
In an analysis of experimental data, one more relatiorHooke’s law if instead of the fields; (r,t) and o (r,t) we
connecting the coefficieny with the orientational compo-  ,nsider their Fourier components (g, ) and o (q,»)
_ _ 0 . . . 1 A 1
nent ko= k—a/B!®) of the thermal expansion coefficient (hereq andw are the wave vector and cyclic frequency re-
can be found helpful. Using formula82) and(35), we ob-  gpeciively. Applying to (38) the Fourier transformation in

tain spatial and time variables, we obtain the linear algebraic re-
Bk, T lation
YT R AKT) (36) = X =
Tik(d, ®) = Nikim(9, @) &1m(q, ©),, (39

According to(18), the value of the coefficieny charac-  in which, in contrast to Hooke’s law, the components of the

terizes the intensity of interaction of orientational states OftensorX-k, are generally complex-values quantities depend-
Ceo molecules with the lattice deformation. Consequently,ing onql and o:

the direct proportionality ofy to the orientational component

ko Of thermal expansion is quite natural. = _ J"” f AL —i(gr—wt) 4
Experiment®’ show that orientational ordering of mol- Nikim(0,©) 0 dt | dr Aim(r, D)€ ' (40)

ecules strongly affects the lattice parameter of fullerite: the

value ofa(T) changes strongly at the phase-transition point _ o i e
T, as well as for gradual “freezing out” of hexagonal exci- COMPplex elastic modulkm(9,w) from an analysis of joint

tations during cooling of fullerite in the temperature interval €volution of dynamic variables of the crystal lattice and in-

(T4, T.), while thea(T) dependence in the regidh<T, is ternal degrees of freedom of the crystal associated with it by
mgch weaker. This observation suggests thatx,, in gthe the methods of thermodynamics and statistical mechanics of

range corresponding to orientational liquid. Besides, the thefITeversible processesee, for example, Ref. 21While de-
mal expansion coefficient at these temperatures virtually rescribing the aftereffects and internal friction in fullerite, we
mains unchanged and equal ke=6X10"5 K~! (except a Must take into account the relation between dynamic defor-
weak anomaly near 100)KRelations(35) and (36) lead to mations of the lattice and rotational degrees of freedom of
the following simple formula for the orientational contribu- molecules or orientational excitations corresponding to them.

tion to the heat capacity per unit volume, which is valid for Using the formal thermodynamic definition of the stress ten-
sor(17) and the expansion of free ener(fy8), we can obtain

a relation connectingr;, with the strain tensor components
€ix, temperature increme®, and concentrations,, of hex-
agonal excitations. In order to establish the one-to-one cor-

We can find the explicit form of the kerndl;,,(r,t) or

K~ Ko

Cp"=Cp—T¢(T)=

B koA T
Kor (l+ UAKor ) 37)

UA A
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respondence between the mechanical stggs,t) and the expansions in plane waves &b “Y, which leads to
straing;,(r,t) varying according to a preset law, this relation Hooke's law in the form(39) with complex moduli of elas-
should be supplemented with two kinetic equations: theicity described by the formula
equation of thermal conductivity that makes it possible to 2

. . - ~ g“xRw Ror
describe the relaxation of local temperature variations ?\ik|m(q,w)=7\i(ﬁ?n—[ —— —
O(r,t) emerging due to varying straim;(r,t), and the Qx—le l-ier
equation describing the relaxation of the nonequilibrium con-
centrationv,(r,t) which is also associated with the strain
gik(r,t). Thus, the problem is reduced to an analysis of the

i wRWO

+ () 5. _
(Px—io)(l-ior?) B™ Sik Sim

system of three equations which have the following form in (42
the linear response approximation: Here we have used the notation
Tik(1 D) = Njameim(r,t) = a®(r,1) Si = yvn(r,t) S, a? yfv, ayf
(419 Rw= BIE Ro=g@4 RWOZB(OO—)gT : (43

G(f,t)—x5ikVin®(r,t)= _ % Sien(r ), (410 :hese dimepsionles; paramgters dgtermine the relative varig-
ion of elastic moduli associated with relaxation processes:
Rw andR,, characterize the contribution of thermal and ori-
Va S 9) (410 entational relaxation moduli to dispersion, whifg,, de-
A Tk scribes the interference contribution. As expected, the value

+ .
T
. . . . ... of R, is proportional to the coefficieny of orientational—
Here the dot over a variable indicates the time dlfferentlatmq Lo P p_ ny
attice interaction.

operator,V; is the operator of differentiation with respect to It should be noted that the relaxation processes consid-

the coordinatey &;, is the thermal diffusivity tensor for a o . .
: . - ered here lead only to a renormalization of the elastic moduli
cubic crystal(the parametey together with the coefficients : Co
tensor components; 1, and\ 1125 (i.€., the crystal rigidity to

of expansion(18) is a certain function of the initial tempera- . .
) . .. extension—compressigrbut do not affect the shear modulus
ture T), and the right-hand side of the thermal conductivity . .
; : . N1212. We must also pay attention to spatial disperside-
equation(41b) describes the rate of variation of local values : . . .
pendence org) of elastic moduli associated with thermal

of temperature as a result of adiabatic deformatsee for- ey . . .
. ) . . relaxation; the emergence of aftereffects in the given case is
mula (21)). Equation(410 was obtained by linearizing the . . . )
quite natural since a relaxation process is the heat exchange

kinetic equation(7) with respect to the strain tensor compo- . ) .
. between spatially separated extension and compression re-
nentse;, and temperature increme6t ) ) .
gions in a strain wave.

The choice of single-values solutions of the system o
equations(41) is ensured by its supplementing with a few
additional relations: the initial condition for E¢41c), and 5. ACOUSTIC PROPERTIES OF THE SC PHASE
the initial and boundary conditions for E1b). If we as-
sume that the strain tensor componesjisvary according to

A
KT

T(O);/h"‘ Vh:f(

In a description of acoustic properties of solids, spatial
- o and temporal delocalization of the kernel in the integral re-
a preset law from the initial valuesy(r,—%)=0, itis natu- 544 (38) appear in the form of damping effects of acoustic
ral to take the initial conditions in the forM(r,—<)=0 \;5ye5 and dispersion in the velocity of their propagation.
and »,(r, —)=0. In the case of an unbounded crystal, Wethe yelocities and damping factors of acoustic waves are

can assume that the straing(r,t) are equal o zero at an yetermined by the solutions(q) of the dispersion equation
infinitely long distance. In this case, the boundary conditions

to Eq.(41b) should be chosen as the natural requirement that dedpwzéik—xik,m(q,w)q,qm|=0, (44

Q(r,t) vamshes at infinity. An "?‘”a'ys's of gftereffects N wherep is the crystal density. In the presence of dispersion
finite fullerite crystals can be carried out only if we know the _ - 4 imaginary corrections to elastic moduli, the real compo-
conditions of the force and thermal contact between the crys;, ¢ Rew(q) of the solutions acquire a more complicated
tal sl?rface alnd th? a_mblenft.E 410 and (41 _ dependence oq (dispersion in the velocities of soundnd

we Solve So ut|ons_ oft gs41h) and( ; o assuming imaginary corrections Inm(q) # 0 describing attenuation ap-
that the functione;(r,t) is given and substitute them into
%4169’ \:(vehobtam ctjhe mtegr(‘jal _relatéo(BS) (;N'th an fe>;]pllck|t Acoustical properties of single crystals are often studied
orm of the coor matg an time ependence o the emet!)y using the high-frequency echo-pulse method: excitation
A.i!“m(r’t): However, it is most convenient to ana!yze SP€-and detection of waves having a given frequeneyand
cific physical prob'lems by' converting equatio@l) into a ropagating along individual crystallographic directions. In
system of algebraic equations. This can be done by expan(g-1iS caseg=ng, wheren is a unit vector with preset com-

ing gik(_r't) ano_l the requ_ired functions;(r,1), Q(r,t) and ponents, and it is convenient to seek the solution of the dis-
vy(r,t) in the eigenfunctions of the corresponding boundary- ersion equatiori44) in the form

value problem and by carrying out the Fourier and Laplacé)
transformations in the time coordinate. By way of an ex- ) )

ample, we consider deformations of an unbounded a(n, @)= s(n,w) s(n,w) {14—' 2T
crystal and seek solutions of Eqd1) in the form of Fourier (45

- 0(n,w)

+il(n, )=
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wheres, T', and é are the wave velocity, damping factor per tional relaxation timer,,= 7°(T) which depends on time,
unit length, and logarithmic decrement respectively. In aand the thermal relaxation time,= 7(n,T) which depends
crystal with the cubic symmetry, the propagation of high-both on temperature and on the direction of wave propaga-
frequency elastic waves is studied most often along the foltion. The relaxation times are defined as

lowing three directions{100), (110), and(111).

At first sight, the use of the complex mod(i2) leads to o (T)= 7o exp(Up/kT)
the dispersion equatiot4) of a complex form. The main o 1+exp(A/KT) '
difficulty in the search for exact solutions of this equation is _ () s
the dependence of the components of the tehggy, on the w(n,T)=x(Mlsi (M1~ (48)
magnitudeq of the wave vector. However, the method of The formulas connecting the velocitie§”(n), s{’(n) and
echo-pulse spectroscopy gives interesting results in the cagé”)(n) of acoustic waves with adiabatic moduli of elasticity
of a small dispersion of elastic moduli, which is formally are well known for the crystallographic directions under in-
described by the inequalitie®, <1 andR,<1. These in-  yestigation(see, for example, Ref. 22The relation between
equalities make it possible to obtain approximate solutions ofne coefficientA(n) and the moduli is given by
the dispersion equations by perturbation theory methods by =) 4 2
putting Nim= A2 in the zeroth approximation. If we are Cii'+2Cy; I
interested only mTinear corrections in the paramekgysand A= 3(;(1? in the (100 direction,
R,, we can make the replacement

2(Ciy+2C)

3(Ciy'+Ciy'+2CHy)

in the (110 direction,

w

2:
XA =x S(:)c)(n)

Cir2cy the (111) direction. (49)
= = — in the irection.
Ciy+2Ct)+4cCy,)

for the substitution(42) into (44), i.e., consider the values of A=
the wave number corresponding to the energy—momentum
relation in the zeroth approximation, i.ew=s)(n)q Comparing the dispersion equatit4iv) with expression

X (s()(n) are the values of the velocities of sound deter-(45), we can easily derive formulas describing the frequency
mined by adiabatic moduli of elasticityAfter such a substi-  dispersion of velocity and attenuation of the longitudinal
tution, the difficulties encountered in the solution of the dis-wave. In the approximation linear in the paramet&g,
persion equatiori44) for the variableq are the same as for R,,, andRy,,, we have
the zeroth approximatiofsee, for example, Ref. 22

If we consider oscillations with the wave vectqrori- s”(n)-s(nw) A [ Ry Ry’
ented along the crystallographic directiod®0), (110, and st (n) 2 |1+ 7507 1+ The?
(111), two transverse and one longitudinal waifesill
propagate in each of these directions without damping in the ~ Rwo(1+ TorTw®?) 50
zeroth approximation. Since the thermal and orientational re- (1+ 75,02 (1+ ) |’ 50
laxation do not lead to a renormalization of the shear modu-
lus (A 121=C{3)), their inclusion leads to frequency disper- 5 A RoTorw  Ryrwo
sion of velocity and attenuation of only longitudinal waves. (n,w)=mA(n) 1+ 720° 1+ th0°
For each of these directions, Ed4) splits into three simple
equation as in the absence of dispersion. Two of these equa- _ Rwo(7or— 7w) @ (51)
tions describe undamped transverse wagebscriptt), and (1+ Tger)(1+ 7‘\2,\,(1)2) '

the third equation describes an attenuating longitudinal wave
(subscriptl). In the linear approximation in the parameters
Ry andR,,, these equations have the form

The velocity and decrement of a wave are determined by
its frequencyw and the direction of propagatiam but the
temperature dependence of these quantities is more signifi-

w=s§§°)(n)q, w=s§;°)(n)q (46) cant. The latter is determined by the relatively weak depen-
dencesR,(T), Rw(T), Rwo(T) and much stronger depen-
for transverse waves and dencesr,(T) and ry(T). Most informative results can be
obtained by acoustic spectroscopy of crystals in the vicinity
Ry, i wTWRw of temperatured (w) defined by the relaxation resonance
w=[1—A(n) T S p— condition w7(T)~1: these temperatures of the crystal cor-
or w respond to peaks of th&(T) dependence and blurred steps
Rwo vz - on thes(T) dependence.
T lmirge)(1tirge)|| (n)gq (47) In the case of fullerite &, each relaxation effect con-

sidered herdorientational and thermal relaxatiomust gen-
for the longitudinal wave. Heré\(n) is a dimensionless erally correspond to its own relaxation resonance at tempera-
combination of the tensor componemnt§?),, which has a  turesT{"(w) and T{”(w,n), defined by the equations
positive value of the order of unity. This relation also con-
tains two parameters having dimensions of time: the orienta- w7, (T)~1, wry(n,T)~1. (52
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According to Egs(51) and (52), the heights of absorption account the estimates obtained in Sec. 2, we arrive at the
peaks are proportional to the paramet@gsandR,y and are  conclusion thav ,>vy,, and we can write with an accuracy
connected through them with the initial parameters of theo within 20%

theory as well as a few parameters accessible to direct ex-

perimental measurements: vp~vp~2eV, v,~24X 1073 eV.
500 = §(TON) = mAfyvs (53) Experimental data on the dependence of the peak tem-
m m 2BIA peratureT®” on the ultrasonic frequenty® together with

2 the resonance conditidb2) and formula(48) for 7,(T) lead
TAX _ (54) 1o the following estimates for the parameters of a double-
2B™¢ well potential:

S = 8(T") =

The recording of relaxation peaks extends the potentiali-
ties for obtaining empirical estimates of phenomenological
parameters of the theory. For example, using relati@@s
and (53) and neglecting the difference betwe&4? and
B(*), we obtain

v 2500
—~= : {on - (55 Y KoA ( A ) (1+€9?
= (P L (p X =

U,~Up=~0.3eV, 7,=3x10 s,

It is also expedient to estimate the value of the lattice—
orientational interaction parametet or the dimensionless
parametek,, corresponding to it:

A Ak T en=g5 = Tk KT & (57

In the first approximation in small relaxation parameters,

formulas(37) and(55) also lead to a relation containing only In the temperature rangeTl{,T;) we are interested in, the
the quantities accessible to direct experimental measurdunction ¢(x) varies approximately from 3 to 17, and hence
ments: the following estimate is valid for the midpoint of this inter-
val: ,~8x 10 2. The large value of this parameter is actu-

TABT 2 ; fai ; ; ;
(on _ m_Tor. (56) ally responsible for the decisive effect of orientational exci-
P 25(n?’) tations on the thermal and acoustic properties of fullerite.

This relati kes it ible t timate th lati Concluding this section, we note the highly damping
nis refation makes it possibie to estimate the relative Conbroperties of the low-temperature phase of fulleritg.GAc-
tribution of orientational excitations of molecules to the ther-

O . . =" cording to the existing classificatidf,solids for which the
mal parameters of fullerite in the range of orientational I'qu'dlogarithmic damping factor attains valuesd®# 10~ 2 belong
(Tg,To).

. to highly damping materials. As a rule, such properties are
The low-temperature phase of fulleritegChas been gnly ping prop

. . . X inherent in complex metal alloys at temperatures of the order
studied comprehensively by high-frequency acoustic SPEC5t or above the room temperature. Fulleritg, Gelongs to a
troscopy methods, although most of the results um‘ortunatel}/eW materials preserving highly damping properties over a

pertain to polycrystals. In order to compare the relations de\'/vide temperature range. The above analysis shows that a

rlvedlt ab(k))\t/e_ Wgh the fexplesrlmedntlaé data, :/Ive str;]all useltth hysical reason behind this property is the large value of the
results obtained in Rets. an as well as e resulls qhice orientational interaction parameter.

other authors presented in these publications. Experimental
data lead to the following estimatesA~0.5-0.6, B
~10 GPa, T{"=215K, and §{®"~2x10"2. Substituting
these values andk,~6x10"° K1 into formula (56), CONCLUSIONS
we obtain the following estimate for the orientational
contribution to heat capacity of fullerite:C{""~3.3

X 10° J-m 3K =150 Jmole 1-K ! (the possible error in

1. The microscopic extension proposed for the phenom-
enological model of doublewell orientation statgentago-
nal or hexagonal configurations used extensively for de-

this estimate is of the order of 20%). The results 01Escribing various physical properties of the low-temperature
experiments show that the heat capaciGy, in the tempera- phase of fullerite g, which exists below the phase transition

ture range 100—200 K remains unchanged and has the valje . .
P . . . . temperatureT.=260 K. A set of microscopic parameters
coinciding with the estimate obtained above. Such a COInCI_characterizin the thermally activated transitions betwgen
dence leads to the conclusion that the thermal characteristi%snd h confi grations(barrie);su U.  their differenceA
of fullerite Cgo in the range 4, T) Of orientational liquid — _ Uu,-u gnd the characterist'i)c' mhc;lecular libration period
are mainly determined by thermal excitations of hexagonal_) 'i)s r*(‘)’ osed as well as a set of deformation gtential
configurations of molecules: in the first approximation, 7o brop . pote
Y — ~(on)_ L constants),, v, andv, characterizing the effect of fullerite
= ko=const andCp=C’=const in this range. Naturally, . : . o
. . . ) ) - lattice deformations on these barriers and their difference. A
this conclusion is not valid for the immediate vicinity of the - : o X :
simple kinetic equation describing the relaxation of nonequi-

temperaturd . where anomalies in thermal parameters assoy,, . : , : . )
. . - : librium concentrations op andh configurations is obtained.
ciated with the phase transition are manifested.

Substituting the above experimental values of param- 2. A semimicroscopic model of double-well orienta-
eters of fullerite into formula55), we obtain the estimate tional states and their corollaries are compared with the ther-
va~2A for the deformation potential constant. Taking into modynamic relations for macroscopic physical characteris-
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tics of fullerite obtained from an analysis of the boundary”E-mail: natsik@ilt.kharkov.ua

properties of free energy for the processes of heating, as We]'":OI' sound propagation in other less symmetric directions along which
as quasistatic and dynamic deformation waves cannot be classified strictly as longitudinal and transverse waves,

thermal and orientational relaxation must lead to dispersion and attenua-
3. Relations Connecting the structural and experimentally tion of all three acoustic modes. Propagation of transverse waves in fuller-
. .. . . . ite polycrystals must also be accompanied by relaxation effects, since in-
measurable thermOdynam'C characteristics of fullerite with dividual grains in the field of transverse wave are subjected not only to
the microscopic parameters of the double-well state param-shear strain, but also to compression i.e., extension strain.
eters are derived.

4. Expressions are obtained for complex elastic moduli
of fullerite, connecting its mechanical characteristics with 1p_a. Heiney, J. A. Fischer, A. R. McGhi al, Phys. Rev. Leti66, 2911
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CHRONICLES

Igor Mikhailovich Dmitrenko
(On his 70th birthday )

Fiz. Nizk. Temp:24, 704 (July 1998
[S1063-777X98)01507-7

July 24, 1998, marks the 70th birthday of Igor of Dr. Dmitrenko as one of the founders and supervisors of
Mikhailovich Dmitrenko, Member of the National Academy the Institute for Low Temperature Physics and Engineering
of Sciences of the Ukraine, Head of the Department at theéhy Kharkov, and also as an active member of the Editorial of
B. Verkin Institute for Low Temperature Physics and Engi- oy journal.
neering, Kharkov, and a leading specialist in the field of
superconductor physics. Dr. Dmitrenko gained wide recog
nition owing to his brilliant experiments on the transient Jo-
sephson effect, quantum interference, magnetic flux quant
zation, and macroscopic tunneling phenomena in
superconducting systems. His name is associated with nu-
merous applied investigations aimed at practical application
of the achievements of superconducting technology in mod-
ern electronics. As regards his scientific organizational capa-
bilities, it is hard to overestimate or overemphasize the rolegranslated by R. S. Wadhwa

We heartily congratulate Igor Mikhailovich on his jubi-
lee, and wish him health, prosperity and many years of fruit-
ful scientific activity.

The Editorial Board

1063-777X/98/24(7)/1/$15.00 534 © 1998 American Institute of Physics
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Yurii Moiseevich Kagan
(On his 70th birthday )

Fiz. Nizk. Temp.24, 705 (July 1998
[S1063-777X98)01607-7

The leading Russian theoretical physicist Yurii Moi- crystals, and a comprehensive analysis of the kinetics of
seevich Kagan, Member of the Russian Academy of Scispin-polarized hydrogen.
ences, turned 70 on July 5, 1998. The field of low-  We sincerely wish Yurii Moiseevich many more years of
temperature physics research has been enriched greatly bis inherent scientific activity, dynamism and energy in
his brilliant ideas and results, including the prediction ofresearch and his cordial relationship with colleagues and
quasilocal vibrations of crystals with impurities, a micro- pupils.
scopic analysis of the phonon spectra of metals, description The Editorial Board
of the metastable metallic phase of hydrogen and tunneling
mechanism of phase transitions, prediction of the self-
localization effect during quantum diffusion of defects in Translated by R. S. Wadhwa

1063-777X/98/24(7)/1/$15.00 535 © 1998 American Institute of Physics
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Arnold Markovich Kosevich
(On his 70th birthday )

Fiz. Nizk. Temp.24, 706 (July 1998
[S1063-777X98)01707-1

Arnold Markovich Kosevich, Corresponding Member of dynamic nonlinear excitations in magnetically ordered media
the National Academy of Sciences of the Ukraine, Head ofvas carried out under his guidance. For many years, he has
the Department at the B. Verkin Institute for Low Tempera-been an active member of the Editorial of our journal.
ture Physics and Engineering, Kharkov, Professor at the Arnold Markovich celebrates his 70th birthday at the
Kharkov State University, and a talented theoretical physizenith of his scientific career, with an irrepressible capacity
cist, turned 70 on July 7, 1998. His name is associated witho generate new original ideas and to develop them into im-
the solution of numerous fundamental problems in the fielgoortant and brilliantly formulated results. We heartily con-
of low-temperature solid state physics. He was one of thgratulate Dr. Kosevich, and wish him health, prosperity and
founders of the theory of quantum oscillatory effects in met-many years of fruitful scientific activity.
qls. The results obtained by A. M. que\{ich fro'm investiga- The Editorial Board
tions of phonon spectra and dynamic dislocation processes
are widely used for describing thermal and mechanical prop-
erties of crystals. A profound and comprehensive analysis Ofranslated by R. S. Wadhwa

1063-777X/98/24(7)/1/$15.00 536 © 1998 American Institute of Physics
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