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Abstract—The total energy for an unconstrained and biaxially confined model of Ge1 – xSnx alloys was calcu-
lated using molecular-dynamics simulation. This made it possible to study the thermodynamic stability of both
disordered and ordered phases of the semiconductor alloys. A remarkable suppression of the phase separation
in Ge1 – xSnx due to biaxial strain was found. © 2002 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

The search for optoelectronic direct-gap materials
on the basis of Group IV semiconductors has been stim-
ulated in the past years by new crystal-growing technol-
ogies such as molecular-beam epitaxy and laser crystal-
lization. The research efforts follow several basic lines.
One of them consists in growing metastable alloys with
a diamond structure and fundamental energy gap at the
Γ-point (for example, Ge–Sn and Si–Sn alloys) [1, 2].
Under equilibrium growing conditions, Ge and Sn, as a
rule, are normally not soluble components; however,
alloys on their basis can be obtained using nonequilib-
rium growing techniques. Ge1 – xSnx (x < 0.3) metasta-
ble semiconductor alloys were synthesized using
pulsed UV laser crystallization [3].

Soma et al. [4] studied the effect of stress on the
phase diagrams of Ge–Sn and Si–Sn alloys. They pre-
dicted the enlargement of the stability region of the Ge–
Sn solid solution under external pressure. A common
feature of the alloy epitaxies is the strain due to lattice
mismatch and different thermal expansion coefficients.
The epitaxial layer of a binary alloy grown pseudomor-
phically on a substrate becomes highly strained. The
strain and compositional fluctuations influence all types
of properties of the alloys including the miscibility.

In this paper, we present a theoretical study of the
thermodynamic properties of strained bulk as well as
epitaxial Ge–Sn alloys. We investigate the influence of
biaxial strain on the miscibility of these alloys using
molecular-dynamics simulation.

While basic physical properties of semiconductor
alloys can be obtained by first-principles self-consistent
calculations, computational simulation using molecular
dynamics (MD) is helpful for understanding the stabil-
ity of semiconductor alloys [5].

1 This article was submitted by the author in English.
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2. MOLECULAR-DYNAMICS SIMULATION

For the calculation of thermodynamic stability using
molecular dynamics, first we have to determine the
potential model. Among many empirical model poten-
tials, which have been suggested for tetrahedral semi-
conductors, the Tersoff three-particle potential turned
out to be the most successful for investigating many
properties of semiconductor compounds [6].

The interatomic potential interaction energy of two
neighboring atoms i and j has the form

(1)

where

(2)

(3)

(4)

and bij is a many-body order parameter describing how
the bond-formation energy is affected by the local
atomic arrangement due to the presence of other neigh-
boring atoms (the k-atoms). This many-body function
of atomic positions i, j, and k has the following form:

(5)
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(7)

(8)

(9)

ζij is the effective coordination number, and g(θ) is a
function of the angle between rij and rik , which has been
fitted to stabilize the tetrahedral structure.

The parameters for Ge were taken from [6], and for
Sn, these were derived from a gray-tin cohesion energy
adjustment, which was equal to 3.12 eV per atom [7]
and presented in our previous article [8]. Simulation
was performed for systems with N = 216 particles, the
initial positions of which were taken at tetrahedral sites
of a cell, which are formed by 3 × 3 × 3 unit cells of the
diamond type. The periodic boundary conditions were
used. This method was based on solving the Newton
equation set using the fast form of the Verlet algorithm
[9], which, being self-starting, does not lead to the
accumulation of roundoff errors. Simulation is started
from an initial structure, in which two kinds of atoms
are randomly placed in a diamond lattice. After the sys-
tem passed to the equilibrium state with a time step ∆t =
0.15 × 10–15 s, we calculated the pair distribution func-
tion g(r) for Ge, Sn, and Ge0.74Sn0.26 at various temper-
atures [8]. When Ge1 – xSnx substitutional solid solu-
tions are formed, the first peak of the pair distribution
function splits into three peaks corresponding to the
Ge–Ge, Ge–Sn, and Sn–Sn bonds. As temperature
increases, the pair distribution function peaks become
somewhat broader and shift slightly, which means that
the conservation of the tetrahedral crystal structure is
retained. In addition, the coordination number corre-
sponding to the number of nearest neighbors was con-
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Fig. 1. Total energy of Ge, Sn, disordered (d-GeSn), rhom-
bohedral (RH-GeSn) and zinc blende (ZB-GeSn) alloys at
x = 0.5 as a function of volume.
trolled in the course of simulation. Such behavior of the
system is confirmed by the total energy as a function of
the temperature.

3. BULK SEMICONDUCTOR ALLOYS

The lattice constants of the reference random alloy
(x = 0.5) and the four ordered structures Ge, α-Sn,
ZB-GeSn (zinc blende), and RH-GeSe (rhombohedral)
were determined from the condition of minimal total
energy as a function of volume (Fig. 1). Thus, at 300 K,
from our calculation for Ge a = 5.659 Å (experimental
value 5.657 Å [7]); and for Sn, a = 6.490 Å (experimen-
tal value 6.489 Å [7]). To check the stability of the
investigated structures against segregation of the two
constituents, we compare the total energy of the equi-
librium ZB-GeSn, RH-GeSn, and disordered GeSn
with the arithmetical mean of the total energies of Ge
and Sn. Figure 1 shows that the ordered phases are
more stable than the disordered phase, ∆E(D) > ∆E(O).
The random alloys have two tendencies toward phase
transformations simultaneously, i.e., a tendency toward
decomposition and a tendency toward superstructure
formation.

For the disordered (D) binary alloy Ge1 – xSnx , the
Helmholz mixing free energy ∆F as a function of x and
T at a fixed pressure is given by

(10)

Then, ∆F can be written as

(11)

where ∆E is the mixing energy and ∆S is the mixing
entropy defined similarly to ∆F. Since the magnitude of
∆(PV) is small at the normal pressure of about 1 atmo-
sphere, ∆E and the mixing enthalpy ∆H are inter-
changeable. The calculated mixing energy ∆E as a
function of composition at T = 0 K is represented in

∆F x T,( ) = FGeSn x T,( ) 1 x–( )FGe T( )– xFSn T( ).–

∆F ∆E T∆S,–=
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Fig. 2. The mixing energy ∆E as a function of composition
x of Ge1 – xSnx alloy at T = 0 K (curve 1 represents the
pseudopotential calculation of Soma et al. [4] and curve 2
represents our calculation).
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Fig. 2 in comparison with the pseudopotential calcula-
tions of Soma et al. [4]. The approximation ∆E =
Ωx(1 – x) should introduce some error in the free
energy calculation because our case extends beyond
pair interactions. We obtain an interaction parameter of
ΩGe–Sn = 11.86 kcal/mol compared with the indirect cal-
culated value from the experimental phase diagram
ΩGe–Sn = 7.55 kcal/mol [10] and the theoretical estimate
ΩGe–Sn = 15.3 kcal/mol [11]. The entropy of mixing is
supposed to be equal to the configurational entropy in a
regular-solution model, which is given by

(12)

Figure 3 shows the mixing free energy of Ge1 – xSnx

as a function of x at four temperatures. These curves
show that the alloys under consideration have a misci-
bility gap (MG). Below the critical temperature TC =
830 K at xC = 0.62, the excess free energy shows a com-
mon tangent line at two different x values, indicating
the tendency for phase decomposition, i.e., the occur-
rence of a miscibility gap. Knowledge of the free ener-
gies allows the construction of a phase diagram. The
T−x phase diagram for Ge1 – xSnx is presented in Fig. 4.
The binodal curve is the line in the (x, T) plane where
the Ge- and Sn-rich disordered phases have equal
chemical potentials µ. The spinodal line describes the
limit of metastability of the disordered phase when
d2F/dx2 = dµ/dx = 0, with F being the free energy. For
T = 300 K, the solubility limit of Sn(Ge) in Ge(Sn) is
less than 2% (0%). The phase diagram also indicates
that, in a wide range between spinodal and binodal
curves, the random alloy may exist in a metastable
phase. We find that the thermodynamically stable
ground state corresponds to phase separation. We cal-
culated the temperature limit of stability for ordered ZB
and RH phases. The ordering temperatures are TO =
848 K (for ZB-GeSn) and TO = 365 K (for RH-GeSn).

At thermodynamic equilibrium, the system phase
separates below TC into Ge- and Sn-rich mixtures. If,
however, phase separation is kinetically inhibited,
metastable long-range ordering will persist below TO .

4. EPITAXIAL SEMICONDUCTOR ALLOYS

We model a thin pseudomorphic epitaxial semicon-
ductor alloy grown on a substrate (s) with a lattice con-
stant as by setting the alloy lattice constant a|| parallel to
the substrate equal to as and optimizing the MD calcu-
lated total energy through variation of the lattice con-
stant a⊥  in the direction perpendicular to the substrate.
The excess free energy is decreased by the elastic
energy due to build-up strain. Generally, the miscibility
gap decreases. In the corresponding T–x diagram
(Fig. 4), such a trend is indeed observed. For a biaxial
strain of 3%, the critical temperature is about 1010 K at
xC = 0.8. The phase diagram becomes more asymmet-
ric; simultaneously, the miscibility gap, as well as the

∆S R 1 x–( ) 1 x–( )ln x xln+[ ] .–=
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region of spontaneous decomposition, reduce. One may
indeed state that there is a tendency towards the sup-
pression of phase separation in Ge1 – xSnx due to elastic
strain. This result explains why in Ge1 – xSnx epilayers
with an Sn content up to x = 0.3 evidence for phase sep-
aration has not been observed [3]. The enthalpy of for-
mation ∆H of the epitaxial form of phase α is similar to
that of the bulk form. Then, the substrate strain (ss)
energy [12] is given by

(13)

Figure 5 shows our calculated enthalpies of the GeSn
lattices matched to Ge. The effective enthalpy of forma-
tion of an epitaxial film (relative to lattice-matched
products) can be written as

(14)
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Fig. 3. The mixing free energy ∆F of Ge1 – xSnx as a func-
tion of x at T = 0, 400, 600, and 800 K.
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Note that the stability of the ZB phase of GeSn is
increased under epitaxial strain in comparison to RH-

GeSn, i.e., ∆  < ∆ . If phase separation is
slow, metastable long-range ordering may occur. These
special structures have a lower enthalpy than a disor-
dered alloy of the same composition.

This study will surely lead to a better understanding
of the physical properties of Sn–Ge alloys.

5. SUMMARY

Thus, we presented a molecular dynamics method to
study unstrained and biaxially strained binary Ge1 – xSnx

alloys. Biaxial strain has been taken into account by fix-
ing an in-plane lattice constant. We observe a wide mis-
cibility gap for unstrained Ge1 – xSnx . The critical tem-
perature is about 830 K. However, there is also a wide
range of compositions where a random Ge1 – xSnx alloy
may exist in a metastable phase.

Ess
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Fig. 5. The enthalpies of the formation of zinc-blende (ZB-)
GeSn, rhombohedral (RH-) GeSn as a function of lattice
constant a, and for epitaxially (ep-) confined (to aGe =
5.645 Å) ZB- and RH-GeSn. 
Biaxial strain is extremely important for the misci-
bility behavior of alloys. The miscibility gap, as well as
the region of spontaneous decomposition, are reduced.
In this case, the critical temperature is markedly raised.
Highly ordered zinc-blende or rhombohedral phases
are more stable against spinodal decomposition than
the same random alloys. Analysis of the effective
enthalpy of formation of an epitaxial films shows that
the stability of the ZB-phase is increased under epitax-
ial strain in comparison with RH-GeSn and long-range
ordering may occur.
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Abstract—The effect of the concentration of the majority charge carriers (n) and the electron-flux density (ϕ)
on the efficiency of radiation-defect production (η) in n-Si samples was studied. It is shown that the dependence
η(ϕ) features a maximum, which shifts to larger values of ϕ as n increases. This effect is explained by assuming
that there is an optimal relation between the concentrations of primary defects produced per unit time and those
of the free charge carriers, which charge these defects. © 2002 MAIK “Nauka/Interperiodica”.
It has been shown experimentally that the electron-
irradiation intensity (ϕ) affects the efficiency of radia-
tion-defect production (η); however, there are certain
contradictions between the data reported [1–4].

Zolotukhin et al. [5] studied the electron-flux depen-
dence of the efficiency of A-center production ηA(ϕ) in
n-Si samples that had a resistivity ρ = 60 Ω cm and
were irradiated with 2.2-MeV electrons. It was found
[5] that there existed a critical value ϕc , which sepa-
rated the region where such a dependence was observed
from the region where ηA was independent of ϕ (ϕc =
5 × 1012 cm–2 s–1). The preliminary irradiation of the
samples with protons in order to increase the number of
macroscopic defects in crystals reduced ϕc to 2 ×
1012 cm–2 s–1; a preliminary plastic deformation
brought about an increase in ϕc to 1013 cm–2 s–1. The
observed effect was attributed [5] to recombination of
the Frenkel pairs' components at the crystal-lattice
defects. A similar decrease in the efficiency of E-center
production (ηE) was observed previously [6] for ϕc =
5 × 1012 – 2 × 1013 cm–2 s–1.

Pagava and Basheleœshvili [7] studied n- and p-type
Si samples with the same concentration of free charge
carriers (6 × 1013 cm–3). It was shown [7] that the depen-
dence η(ϕ) had a maximum at ϕc = 5 × 1012 cm–2 s–1 in
the crystals of both types. Application of an electric
field to the samples in the course of irradiation does not
affect the value of ϕc; however, the dependence η(ϕ)
shifts to larger values of ϕ only in n-Si, which is attrib-
uted to a difference between the charge state of the pri-
mary radiation defects in the n- and p-type crystals.

In this paper, we report the results of studying n-Si
crystals doped with phosphorus with concentrations of
n1 = 1013 cm–3, n2 = 6 × 1013 cm–3, and n3 = 2 × 1014 cm–3

and grown by the float-zone method; the oxygen con-
centration in the crystals was ~2 × 1016 cm–3. The sam-
1063-7826/02/3610- $22.00 © 21077
ples were irradiated with 2-MeV electrons at room tem-
perature.

The studies were conducted using the method of
local irradiation with subsequent measurements of the
volume photovoltage (Uph) across the irradiated area of
the sample. This method was described in detail else-
where [8, 9].

As is well known, Uph ∝  ∂ρ/∂x. The samples under
investigation were irradiated with a fixed dose of elec-
trons (Φ = 5 × 1015 cm–2); therefore, we have Uph ∝  η.
The measurements were performed at room tempera-
ture in the region where the A centers were exhausted;
therefore, the height of the potential barrier between the

1

Uph, arb. units

1013
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2

3

1012

2

3

ϕ, cm–2 s–1

Dependences of the volume photovoltage Uph on the flux
density of 2-MeV electrons ϕ in locally irradiated n-Si sam-
ples. The charge-carrier (electron) concentration n =
(1) 1013, (2) 6 × 1013, and (3) 2 × 1014 cm–3. The irradiation
dose Φ = 5 × 1015 cm–2.
002 MAIK “Nauka/Interperiodica”
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irradiated and unirradiated parts of the sample was con-
trolled by varying the concentration of acceptor centers
with deeper levels (the E centers and divacancies V2).

The measurements showed that, in contrast to the A
centers [5], the dependences Uph(ϕ), i.e., the depen-
dences of the efficiency of producing the E and V2 cen-
ters on (ϕ) feature maxima in certain ranges of ϕ;

these maxima shift to larger values of ϕ as η increases.
In crystals with charge-carrier concentrations n1, n2, and
n3, we have ϕc = 2 × 1012, 5 × 1012, and 1013 cm–2 s–1,
respectively (see figure). If we assume that a 2-MeV
electron forms a single Frenkel pair in n-Si crystal, then
the ratio n/NV (where NV is the concentration of vacan-
cies formed per unit time) for the crystals with concen-
trations n1, n2, and n3 is equal to 5, 12, and 20, respec-
tively.

The presence of a peak in the curve η(ϕ) in n-Si
crystals and the shift of this peak along the ϕ axis as n
varies suggests that there is an optimal relation between
the concentrations of primary radiation defects formed
per unit time and those of free charge carriers, which
charge these defects.

ηE V2,
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Abstract—n-Si crystals grown by the float-zone method with a phosphorus concentration of ~6 × 1013 cm–3

and irradiated with 2-MeV electrons and 25-MeV protons were studied. It is shown that the kinetics of the iso-
chronous annealing of the A centers and divacancies (the annealing temperature and the rearrangement of radi-
ation defects in the situation where the dissociation of one type of defects gives rise to more stable defects)
depends in a complicated way on the energy, dose, and temperature of irradiation; i.e., this kinetics depends on
the relation between the concentrations of various radiation defects and on the charge state of reacting primary
radiation defects when they interact with each other, with impurity atoms, and with disordered regions. An
increase in the concentration of divacancies in the temperature range of 180–210°C is attributed to the dissoci-
ation of disordered regions. © 2002 MAIK “Nauka/Interperiodica”.
Previous studies on the thermal stability of radiation
defects showed that an increase in the oxygen concen-
tration in silicon samples reduces the temperature of
annealing of divacancies V2 [1]. A dose dependence of
the annealing temperature for the defects was also
observed. The annealing of divacancies is completed at
a temperature of Tann = 190°C after irradiation with neu-
trons at a dose of Φ = 4 × 1019 cm–2 [2].

It was shown by Berman et al. [3] that, in n-Si sam-
ples irradiated with 3.7-MeV protons, the annealing of
divacancies occurred in two stages, one of which was
observed at Tann = 150°C and corresponded to the
annealing of divacancies in disordered regions, and the
other of which was observed at Tann = 275–325°C and
corresponded to the annealing of divacancies in the
defect–impurity shell surrounding this region and also
in the undamaged crystal host.

When analyzing the reported results of the afore-
mentioned studies, one may conclude that the diva-
cancy-annealing temperature depends on the concen-
tration of sinks for the products of dissociation of these
centers (vacancies). Along with impurity atoms, such
sinks can be represented by disordered regions, whose
size and concentration depend on the particle-energy
and the dose of irradiation. According to this model, the
dissociation of the less stable radiation defects (for
example, the E centers and divacancies) in the course of
isochronous heat treatment is bound to be accompanied
by an increase in the concentration of stable A centers,
which is indeed observed in the n-Si samples irradiated
with large doses of γ-ray quanta [4].

We believe that the number of A centers formed in
the course of isochronous annealing of n-Si samples
1063-7826/02/3610- $22.00 © 21079
irradiated with high-energy particles is controlled by
the ratios σ1/σ2, NE/NA , and /NA . Here, σ1 and σ2

are the cross sections for the capture of vacancies by
oxygen atoms and by disordered regions; and NE , ,
and NA are the concentrations of E centers, divacancies,
and A centers, respectively.

In this paper, we report the results of studying n-Si
crystals grown by the float-zone method and doped
with phosphorus to a concentration of 6 × 1013 cm–3; the
oxygen concentration determined from infrared-
absorption measurements was ~2 × 1016 cm–3. The sam-
ples were irradiated with 2-MeV electrons or 25-MeV
protons at room temperature.

Concentrations of the A and E centers and divacan-
cies V2 in the course of isochronous annealing were
determined from an analysis of the dependence of the
majority-carrier concentration on the reciprocal tem-
perature 1/T in the range T = 77–300 K.

The samples under investigation were bar-shaped
with a surface area of 3 × 10 mm2 and thickness of
1 mm. Isochronous annealing of irradiated samples was
performed in the temperature range Tann = 80–600°C
with a step of 10°C. The samples were kept at a fixed
temperature for 10 min. After each isochronous-anneal-
ing stage, the Hall method was used to measure the
electron concentration N in the range of 77–300 K.
Nonrectifying contacts for measuring the Hall voltage
were formed by rubbing aluminum powder into the sil-
icon surface.

As an example, Fig. 1 shows the dependences N =
f(1/T) in the as-grown crystal (curve 1), after irradiation
with 25-MeV protons with an integrated flux Φ = 8 ×

NV2

NV2
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Fig. 1. Dependences of electron concentration on the recip-
rocal temperature in the n-Si crystals (1) before irradiation,
(2) immediately after irradiation with 25-MeV protons with
a dose of Φ = 8 × 1012 cm–2, and after subsequent heat treat-
ments at Tann = (3) 120, (4) 190, (5) 235, (6) 300, and
(7) 400°C.
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Fig. 2. Dependences of (1, 3, 5) the A-center and (2, 4) diva-
cancy concentrations on the temperature of isochronous
heat treatments in the n-Si samples irradiated with 2-MeV
electrons. (a) The irradiation temperature is 300 K, and the
irradiation dose is Φ = 1.5 × 1014 cm–2; (b) the irradiation
temperature is 523 K, and the irradiation dose is Φ = 5 ×
1014 cm–2. Curve 5 corresponds to the heat-treatment dura-
tion of 60 min; in all other cases, it was 10 min.
1012 cm–2 (curve 2), and after postirradiation heat treat-
ments at Tann = 120, 190, 235, 300, and 400°C (curves
3–7, respectively). Curve 2 corresponds to the exhaus-
tion of the acceptor centers that have a level at Ec –
0.4 eV, i.e., the E centers or divacancies. This means
that all free electrons are trapped by the divacancies and
E centers, whereas the A centers are neutral; as a result,
it is impossible to determine NA from the N(1/T) curves.
After annealing a certain fraction of the E centers
(Tann ≥ 100°C), the E centers become charged, which
makes it possible to monitor the variation in the con-
centration of these defects in the course of isochronous
annealing (Fig. 1, curves 3–7). If we determine the
A-center concentration from curve 3 (after heat treat-
ment at 120°C) as NA = N(250 K) – N(100 K), i.e., as
the difference between electron concentrations (∆N) in
the conduction band in the regions of exhaustion of the
A centers and the phosphorus atoms, we can determine
NE by comparing curves 2 and 4 after the annealing out
of the E centers, which is completed at Tann < 190°C. It
is well known that, when a single E center is formed, it
removes two electrons from the conduction band [5] so
that NE = ∆N(250 K)/2. For larger irradiation doses,
when  ≥ N, the E centers are most probably in a neu-
tral state. After an E center is annealed, an electron is
returned to the conduction band so that NE = ∆N(250 K).
The value of  is governed by the variation in the
free-electron concentration at T = 250 K in the course
of isochronous annealing in the range Tann = 235–400°C
(curves 5–7). As is well known [5], a single divacancy
traps two electrons from the conduction band at T ≤
300 K. The corresponding trapping levels are located at
Ec – 0.4 eV and Ec – 0.54 eV; as a result,  =
∆N(250 K)/2. A further increase in N to its initial value
at 250 K in the course of heat treatment corresponds to
the annealing of the V2 + O complexes and makes it
possible to determine the concentration of these centers
(curves 7, 1).

As can be seen from Fig. 2a (curve 1), the A-center
concentration increases at Tann ≥ 120°C in the samples
irradiated with 2-MeV electrons (Φ = 1.5 × 1014 cm–2);
this phenomenon is attributed to interaction of the
vacancies released as a result of decomposition of the E
centers with oxygen impurity atoms. The ratio between
the concentrations of dissociated E centers and the pro-
duced A centers is ∆NE/∆NA = 1.75. Prior to annealing,
we have NE/NA = 3. After annealing at Tann ≥ 150°C,

/NA = 0.6, which is caused by an increase in NA as
a result of the dissociation of E centers in the region of
120°C. Under these conditions, an increase in NA as a
result of the dissociation of V2 is not observed in the
course of the heat treatment. In this case, the A centers
are annealed out at ~300°C (Fig. 2a, curves 1, 2).

The exhaustion of the E centers and of the second V2
level and also the E-center dissociation occur simulta-
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neously in the range of 100–150°C. Therefore, it is
impossible to monitor the variations in  using the
N(1/T) curves in the course of the E-center annealing.
At low electron-irradiation doses (Φ = 1.5 × 1014 cm–2),
the vacancies formed as a result of the E-center disso-
ciation are charged negatively. It may be assumed that,
due to electrostatic repulsion between negative vacan-
cies, the efficiency of introducing divacancies is negli-
gibly low; as a result,  does not increase.

In order to eliminate the effect of E centers, the sam-
ples were irradiated with electrons at a temperature of
250°C. It can be seen from Fig. 2b that the concentra-
tions of the A and V2 centers remain unchanged up to
Tann = 250°C. A further increase in the annealing tem-
perature brings about a decrease in the V2 concentration
and, correspondingly, an increase in the number of A
centers. An analysis of the experimental curves shows
that a single A center is formed as a result of the decom-
position of a single divacancy; i.e., ∆ /∆NA = 1 and

/NA ≈ 1.

If the heat-treatment duration is increased to 60 min,
the negative annealing of A centers is not observed
(Fig. 2b, curve 5). Evidently, vacancies formed as a
result of the dissociation of divacancies during the 1-h
annealing come to the crystal surface; as a result, addi-
tional A centers are not formed during the rapid cooling
of the samples.

In the crystals irradiated with 25-MeV protons (Φ =
2.7 × 1012 cm–2), the A-center concentration does not
change when the E centers dissociate, whereas the tem-
perature of the A-center annealing decreases to 240°C,
which is attributed to the formation of positively
charged disordered regions; the latter are efficient sinks
for vacancies (negatively charged in n-Si [6, 7]) and
reduce both the probability of the additional formation
of A centers and the annealing temperature Tann for
these centers (Fig. 3, curve 1). For the same reason, the
annealing temperature for divacancies decreases to
220°C (Fig. 3, curve 4). In this temperature range, an
increase in the A-center concentration is not observed
since /NA= 0.5.

In the samples irradiated with larger doses of pro-
tons (Φ = 8 × 1012 cm–2), the A-center concentration
increases in the temperature region corresponding to
E-center dissociation, in contrast to the samples irradi-
ated with smaller proton doses. The A-center concentra-
tion decreases at Tann = 190–220°C, a negative anneal-
ing of these centers is observed at Tann = 240–300°C,
and the A centers are completely annealed out at Tann =
300–400°C (Fig. 3, curve 2). An increase in the diva-
cancy concentration is observed at Tann = 190–210°C.
The temperature corresponding to the onset of anneal-
ing of divacancies increases to 210°C (Fig. 3, curve 3).

In the crystals irradiated with large doses of protons,
the electron concentration in the conduction band is
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NV2

NV2

NV2

NV2
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fairly low. Therefore, only a fraction of the vacancies
formed as a result of the E-center dissociation are
charged negatively in the early stages of isochronous
heat treatment. As is well known [8], the disordered
regions in n-Si are charged positively, which may
account for a decrease in the efficiency of adsorption of
vacancies by disordered regions. The supersaturation of
the crystal with monovacancies in the regions where the
E centers dissociate is relieved as a result of A-center
formation (Fig. 3, curve 2).

After the E centers are completely annealed out
(Tann ≥ 120°C), the free-electron concentration increases.
All vacancies formed in the course of heat treatment
can be charged negatively. This brings about an
increase in the efficiency of the adsorption of vacancies
by disordered regions and a decrease in the annealing
temperature for the A centers to 190°C (Fig. 3, curve 2).

As is well known [9], isolated disordered regions in
silicon crystals are annealed out at 260°C. Appreciable
annealing sets in at 200°C. Apparently, the disordered
regions are sources not only of monovacancies but also
of divacancies, which accounts for an increase in the
divacancy concentration (∆  = 6 × 1012 cm–3) in the
temperature range of 190–210°C (Fig. 3, curve 3). We
believe that, as the annealing temperature Tann
increases, the only products of the disordered-region
dissociation are monovacancies. The annealing of diva-
cancies V2 also sets in in the undamaged part of the sam-
ple, which brings about the negative annealing of more
stable A centers in the range Tann = 230–280°C. The
A-center annealing sets in at 300°C (Fig. 3, curve 2).

Thus, the kinetics of annealing of the A centers and
divacancies (the annealing temperature and rearrange-
ment of disordered regions in the situation where the
dissociation of one of these defects gives rise to more
stable centers) depends, in a complicated manner, on
the particle-energy and the dose and temperature of
irradiation; i.e., it depends on the relation between the
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Fig. 3. Dependences of the (1, 2) A-center and (3, 4) diva-
cancy concentrations on the temperature of isochronous
heat treatment in the n-Si samples irradiated with 25-MeV
protons. The dose of irradiation Φ = (1, 4) 2.7 × 1012 and
(2, 3) 8 × 1012 cm–2.
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concentrations of various point radiation defects and
the charged state of vacancies and disordered regions.
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Abstract—Structures, chemical properties, and chalcogen-dimer formation energies in silicon were investi-
gated using quantum-chemical ab initio calculations by the Hartree–Fock method. The equilibrium geometrical
configuration, electron-density distribution, and the parameters of the chemical bonding of lattice atoms were
determined. Lattice relaxation around impurity defects is shown to contribute substantially to the total energy
of a crystal. The chalcogen-dimer stability associated with a decrease in the total energy of a crystal, which
accompanies its formation, was predicted. Estimates obtained for the dimer-formation energy agree well with
available experimental data on their formation reactions. The geometrical configuration, and the electronic and
chemical properties of impurity clusters involving up to six chalcogen atoms are discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In the last decades, the system of chalcogen-doped
(with sulfur, selenium, and tellurium—group-VI ele-
ments) silicon has been actively investigated in connec-
tion with its sensitivity to infrared (IR) radiation. In the
present day, a vast experimental body of data associated
with the study of its properties and behavior in crystal
has been accumulated. The investigations were carried
out using a wide assortment of experimental methods:
deep-level transient spectroscopy (DLTS) [1–4], Hall-
effect measurements [3, 5, 6], IR-absorption and photo-
conductivity measurements [6–12], capacitance and
photocapacitance measurements [2, 3], secondary ion
mass spectrometry (SIMS) and Rutherford backscatter-
ing spectroscopy (RBS) [13–16], electron spin reso-
nance (ESR) [4, 17], electron–nuclear double reso-
nance (ENDOR) [18, 19], radioactive-isotope-decay
investigations [20], photoluminescence spectroscopy
[21, 22], etc.

As a result of these investigations, it was established
that isolated chalcogen atoms in silicon are deep-level
doubly charged donors. The ionization energies of their
ground states are equal to

for S0(S+): 0.32 (0.61 eV),

for Se0(Se+): 0.30 (0.59 eV),

for Te0(Te+): 0.20 (0.41 eV).

The atoms occupy silicon lattice sites and have the
point-group symmetry Td . The wave functions of
ground states are S-type functions and have the irreduc-
ible-representation symmetry A1. In the singly ionized
state, isolated chalcogen atoms are paramagnetic centers.

The chalcogen doping of silicon is accompanied by
the formation of by-product complexes of which the S2,
1063-7826/02/3610- $22.00 © 21083
Se2, and Te2 dimers have been most adequately studied.
The dimers are doubly charged donors with the follow-
ing ionization energies of their ground states:

for ( ): 0.187 (0.371 eV),

for ( ): 0.206 (0.248 eV), and

for : 0.158 eV.

Two chalcogen atoms occupying neighboring lattice
sites represent a dimer structure. The symmetry of these
complexes is D3d . The symmetry of the ground-state
wave functions is A1g . In the singly ionized state, the
dimers are paramagnetic centers. In the S–Se–Te
sequence, the dimer formation becomes gradually less
active.

The formation of more complicated complexes has
been virtually unstudied; still, for certain temperature-
treatment regimes for chalcogen-doped silicon wafers,
more shallow donor states were observed: their ioniza-
tion energy amounted to about 0.1 eV or less. These
states are likely associated with the formation of more
intricate complexes [3, 10, 12, 14, 23–28]. In many
respects, chalcogen-doped silicon can be considered as
a model for studying the processes of interaction
between impurity defects in crystals that lead to the for-
mation of impurity complexes [29, 30].

The purpose of this study is to calculate the energy
of chalcogen-atom bonding when dimers are formed in
silicon using nonempirical quantum-chemistry meth-
ods and to analyze the possibility of forming more com-
plicated complexes.
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2. CALCULATION METHOD

In this study, we calculated the electronic structure
and analyzed the chemical properties of impurity defects
in a silicon lattice using a cluster approximation of the
Restricted Hartree–Fock (RHF) method [31, 32] imple-
mented in the GAMESS (general atomic and molecular
electronic structure system) software package [33].

It is well known that, contrary to the band methods
for calculating impurity-defect properties in crystals,
for example, using the formalism of the Green’s func-
tions including the localized perturbation introduced
into a perfect crystal by an impurity atom [34–37], clus-
ter calculations (in particular, by the Hartree–Fock
method) yield only a qualitative description of the posi-
tion of impurity-atom energy levels in a band gap [38–
42]. Nevertheless, in recent years, calculations in “real
space” using well-developed quantum-chemistry meth-
ods [43] have found ever wider application in describ-
ing systems with total or partial violation of lattice peri-
odicity (crystals with isolated defects and deep-level
impurities, amorphous materials, solid surfaces, and
the interaction of these surfaces with molecules and
atoms). The cluster approaches are used most success-
fully for calculating the properties associated with a
variation in the total energy of a crystal containing
intrinsic and impurity defects [42]: the geometrical
configuration of the lattice around a defect (without
restrictions of symmetry), the energy of diffusion barri-
ers of defects in the crystal, the bonding energies of
impurity complexes, etc.

In this study, we calculate variations in the total
energy of a system when the arrangement of atoms in a
cluster is varied. Further, the calculated results are used
for analyzing the relaxation of a lattice around an impu-
rity defect and also for estimating the bonding energy
of impurity atoms in complexes. The character of the
electron-density distribution in a cluster, calculated in
various full-electron bases of atomic orbitals (AOs)
[44], is represented in conventional terms of chemical
bonding, i.e., of the bond orders between various atoms
and their valences and charges (total atomic popula-
tions) [45–47].

Since the simulation of the behavior of impurity
defects in a crystal is based on the local character of
variation in physical properties introduced in the lattice
by defects, it is necessary to use clusters of a reasonably
large size in order to evade the influence of boundary
atoms, whose dangling bonds are saturated by hydro-
gen atoms. In this study, the selection of cluster size,
which is sufficient for analyzing the formation of chal-
cogen dimers in silicon, is based on the results of calcu-
lating the relaxation of a lattice around isolated chalco-
gen atoms in clusters with a tetrahedral symmetry:
Si5H12, Si17H36, Si29H36, Si35H36, Si47H60, Si71H84,
Si87H76, Si99H100, and Si123H100. An increase in the clus-
ter size (beginning with SSi16H36, SeSi16H36, or
TeSi16H36 with impurity atoms arranged at the center)
does not profoundly affect the relaxation of the lattice
around a chalcogen atom. The cause of this is that the
AOs of an impurity atom are virtually totally located at
the nearest neighbors. The minimum cluster size neces-
sary for the calculation of properties of a crystal con-
taining several impurity atoms must be such that there
is no marked overlapping of contributions from the AOs
of boundary silicon atoms and impurity atoms in the
obtained self-consistent solution. For chalcogen atoms
in silicon, this means that the boundary atoms of silicon
in a cluster must be at least second neighbors.

3. RESULTS AND DISCUSSION

3.1. Homoatomic and Heteroatomic Molecules
of Chalcogen Atoms

In order to select an adequate AO basis, to estimate
the accuracy of calculations of physical properties, and
to reveal differences in the formation of chemical bonds
with the participation of chalcogen atoms in molecular
and crystalline systems, we previously calculated prop-
erties of well-known molecules composed of silicon
and chalcogen atoms. We calculated the following
properties of such molecules: equilibrium spacings;
eigenfrequencies; dissociation energies, which can be
easily compared with experimentally determined val-
ues; and also properties characterizing the formation of
chemical bonding—bond order, atomic valences in a
molecule, and atomic charge (characterizing the elec-
tronegativity of atoms in compounds). For the calcula-
tions, we used conventional full-electron bases of AOs
of various sizes—from STO-3G to 3-21G and 6-31G
with the inclusion of supplementary d and f orbitals. We
also carried out calculations in the SBK valence basis
[48, 49] (using the Stevens–Basch–Krauss effective
potential), which provided a level of accuracy for
ab initio calculations.

As a rule, the accuracy of the obtained results
increased with the size of the basis used. All the consid-
ered AO bases with the exception of the smallest ones
(STO-3G) provide an acceptable accuracy of calcula-
tion of the basic physical properties of the molecules
considered. In Table 1, we give the results of calculat-
ing equilibrium spacings, eigenfrequencies, and disso-
ciation energies of Si2, SiS, SiSe, SiTe, S2, Se2, and Te2
molecules in the 3-21G(+1d) basis with allowance for
correlation energies using the Møller–Plesset method
of the second order (MP2) [50, 51] in comparison with
experimental values of these quantities [52–54]. For all
these molecules, the difference between the calculated
and experimental values amounts to less than 2% for
equilibrium spacings of atoms in a molecule, less than
5% for frequencies of eigenmodes, and from 8 to 13%
for dissociation energies of molecules. The relatively
lower accuracy in determining the dissociation energy
is primarily associated with calculating the difference
in the energy of two quite different systems—the mol-
ecules and two isolated atoms.
SEMICONDUCTORS      Vol. 36      No. 10      2002
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Table 1.  Calculations of the ground-state symmetry, equilibrium spacings (r), eigenfrequencies (f), and dissociation energies
(D) for the Si2, SiS, SiSe, SiTe, S2, Se2, and Te2 molecules in the 3-21G(+1d) basis with allowance made for the energy cor-
rections by the MP2 method

Molecule
(symmetry) r, Å r, Å

experiment f, cm–1 f, cm–1

experiment D, eV D, eV
experiment

Si2

( )

2.2505 2.25 516 511.0 2.79 3.224

Si–S
(1Σ+)

1.936 1.929 774 749.5 5.87 6.45

Se–Se
(1Σ+)

2.072 2.058 599 580.0 5.52 5.58

Si–Te
(1Σ+)

2.31 – 491 – 4.44 –

S2

( )

1.91 1.8894 725 725.6 3.88 4.37

Se2

( )

2.2 2.166 388 385.37 3.70 3.411

Te2

( )

2.625 2.558 260 247.07 2.90 2.677

Σ3 –
g

Σ3 –
g

Σ3 –
g

Σ3 –
g

In heteroatomic molecules, the tendency toward a
decrease in the electronegativity is observed in the chal-
cogen S–Se–Te sequence and manifests itself as a
decrease in the negative charge at the chalcogen atom
in the molecule as the atomic number increases. The
formation of a stable chemical bond is characteristic of
all the molecules. The bond order varies insignificantly
for various chalcogen atoms and amounts to a value
approximately equal to 2. It should be noted that the
chalcogen atoms form stronger chemical bonds with
silicon atoms in comparison with those formed
between themselves.

3.2. Isolated Impurity Defects (S, Se, and Te)
in Silicon

For calculating the properties of impurity defects in
a crystal, chalcogen atoms were placed in a bounded
cluster of silicon atoms simulating a crystal lattice. The
dangling bonds of boundary silicon atoms were satu-
rated with hydrogen atoms. The relaxation of lattice
atoms around an impurity defect was determined by
minimizing the total energy of the cluster.

The minimum of the total energy for a cluster con-
taining a chalcogen atom corresponds to the displace-
ment of four neighboring silicon atoms in the 〈111〉
direction. In this case, the defect symmetry remains tet-
rahedral (Td). The relaxation proceeds almost entirely
within the first coordination sphere. In its turn, the dis-
placed silicon atoms only slightly change their spacing
and angles relative to their neighboring silicon atoms
(the displacement of silicon atoms in the second coor-
SEMICONDUCTORS      Vol. 36      No. 10      2002
dination shell is less than 0.01 Å). The displacement of
the nearest neighboring silicon atoms is different for
various chalcogen atoms (Fig. 1).

Lattice relaxation near an impurity atom leads to a
significant decrease in the energy relative to an unre-
laxed lattice, the interatomic spacings in which are
equal to 2.35 Å. The magnitude of lattice relaxation
increases in the S–Se–Te sequence (see Table 2 and
Fig. 1). The energy variation associated with relaxation
has the same tendency. For example, in the 3-21G(+1d)
basis, the energy of a relaxed lattice for a S atom is less
than the energy of an unrelaxed lattice by 0.17 eV; this
difference is 0.50 eV for an Se atom and 1.65 eV for a
Te atom (for a Si atom, this difference is less than
0.001 eV). As the basis size is varied, the qualitative
pattern of relaxation is retained. In Table 2, we list the

Table 2.  Equilibrium distances (in Å) from impurity atoms
to the nearest neighboring silicon atoms calculated using var-
ious bases for a ChSi16H36 (Ch = Si, S, Se, or Te) cluster with
the tetrahedral symmetry. In the upper row, the results of a
similar calculation for a silicon atom formally considered as
an impurity atom are listed

Impurities STO-3G SBK (+1d) 3-21G (1d) 6-31G (+1d)

Si 2.36 2.348 2.352 2.35

S 2.415 2.43 2.438 2.43

Se 2.50 2.50 2.475 2.486

Te 2.63 2.61 2.605 –
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Fig. 1. Energy of ChSi16H36 (Ch = Si, S, Se, or Te) clusters
calculated in the 3-21G(+1d) basis and reckoned from its
minimum value in the case of a displacement of four silicon
atoms neighboring the central impurity atom in the 〈111〉
direction; d is the spacing between a chalcogen atom and
the nearest silicon atoms.

Fig. 2. Cluster of the Ch2Si36H42 (Ch = Si, S, Se, or Te)
type. Crosshatched spheres represent the silicon atoms;
dark large spheres represent the chalcogen atoms (the
hydrogen atoms are not shown). Rods represent the chemi-
cal bonds in the lattice (the dashed line corresponds to their
absence). Also, a conditional cubic cell is singled out for the
diamond lattice. The arrows show the displacement direc-
tions for atoms during the lattice relaxation.
equilibrium distances from chalcogen atoms to the
nearest neighboring silicon atoms calculated in the
STO-3G, SBK, 3-21G, and 6-31G bases. Taking into
account the correlation corrections (MP2) leaves virtu-
ally intact the equilibrium spacings and the energies
associated with relaxation.

An analysis of calculated one-electron states of
chalcogen atoms in clusters shows that the highest
occupied molecular orbitals (HOMOs) of clusters con-
taining impurity atoms lie higher in energy than the
HOMOs of similar silicon clusters and lower than their
lowest unoccupied molecular orbitals (LUMOs); i.e.,
these states fall within a band gap. The energy neces-
sary for electron transfer from an “impurity” level to
the “conduction band” is much lower than the energy of
the “valence-band–conduction-band” transition in a
cluster. In spite of the fact that energies of one-electron
Hartree–Fock states in cluster calculations have only a
qualitative correspondence to the positions of levels in
a real crystal, nevertheless, the calculation well repro-
duces the tendency of arrangement of energies of the
ground state for isolated chalcogen atoms in silicon,
which corresponds to the donor character of centers and
to a decrease in the ionization energy for the ground
state of the center in the S–Se–Te sequence.

The tetrahedral symmetry of isolated impurity
defects and the symmetry A1 of their ground state cor-
respond to experimental data of investigations of ESR
and optical transitions at centers related to chalcogen
atoms in silicon. According to the calculations, the
wave function of the ground state (HOMO) of chalco-
gen atoms in the substitutional position of the silicon
lattice, which is virtually completely localized within
the first coordination sphere, is governed by the contri-
butions of the s states (with an insignificant admixture
of d states) of a chalcogen atom and the sp3 states of the
neighboring silicon atoms.

The chemical bonds of isolated chalcogen atoms
with the nearest neighboring silicon atoms in a lattice
are partially ionic, remaining predominantly covalent.
The electronegativity of chalcogens decreases in the
S−Se–Te sequence. All four bonds of an impurity atom
with neighboring silicon atoms are equivalent and have
a bond order of ~0.5 (insignificantly increasing in the
S–Se–Te sequence). The valence of chalcogen atoms in
the silicon lattice is equal to ~2. For silicon atoms, the
bond order between neighboring atoms is equal to ~1;
the valence of the silicon atoms is equal to ~4.

3.3. Dimers S2, Se2, and Te2

In order to calculate the properties of chalcogen
dimers in a silicon crystal, we mainly used clusters that
retained the D3d symmetry of these impurity defects, in
particular, the Ch2Si36H42 clusters shown in Fig. 2.

The minimum of the total energy of this cluster con-
taining two chalcogen atoms in the neighboring lattice
sites corresponds to the symmetrical displacement of
SEMICONDUCTORS      Vol. 36      No. 10      2002
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these atoms in the 〈111〉  direction, which leads to an
increase in the spacing between them. The three silicon
atoms closest to each chalcogen atom are also displaced
in the 〈111〉  direction. The symmetry of the defect
remains as D3d , and the displacement directions are
shown by arrows in Fig. 2. In Fig. 3, we show the sur-
face of total energy for a cluster (the potential-energy
surface) containing an Se2 dimer in relation to the dis-
tances r1 (between selenium atoms) and ∆r2 (relative
displacements of silicon atoms, which are neighbors
with an impurity atom, from their sites in a perfect lat-
tice). In Table 3, we give the results of calculations in
the SBK and 3-21G(+1d) bases for the equilibrium
spacings between chalcogen atoms in Ch2Si36H42 corre-
sponding to the minimum of the total energy of the
cluster.

The relaxation of the lattice around a chalcogen
dimer, as in the case of isolated impurity atoms, leads
to a significant decrease in the total energy of the clus-
ter. In the SBK(+1d) basis, the variation in energy is
equal to 2.20 eV for the S2, 3.13 eV for Se2, and
7.61 eV for the Te2 dimer; in the 3-21G(+1d) basis,
similar variations of energy are equal to 2.19 eV for S2,
2.82 eV for Se2, and ~6.4 eV for Te2.

The calculated one-electron values of the energies
of the highest occupied orbitals for the chalcogen-atom
dimers are located somewhat above the energy levels of
the highest occupied orbitals for the corresponding iso-
lated chalcogen atoms and remain within the “band
gap.” This fact is consistent with the experimentally
observed character of the formation of more shallow
donors in silicon when impurity centers involving two
chalcogen atoms are formed [2, 4, 6].

The analysis of the electron-density distribution in
clusters containing dimers reveals significant distinc-
tions in the character of chemical-bond formation as
compared with their chemical analogues—diatomic S2,
Se2, and Te2 molecules. The basic distinction consists
in the absence of chemical bonding between chalcogen
atoms in a dimer. The bond order between them is close
to zero. The chalcogen atoms tend to move farther apart
from one another and form stronger bonds with three
neighboring silicon atoms. In this case, the order of
bonds between chalcogen and silicon atoms becomes
~0.6–0.7 (in comparison with a value of ~0.5 for iso-
lated chalcogen atoms forming bonds with four neigh-
boring silicon atoms). The total valence of a chalcogen
atom remains ~2. 

To estimate the bonding energies of impurity atoms
in a dimer, we calculated the total energies of identical
clusters that differed in the mutual arrangement of chal-
cogen atoms in their lattices. Taking into account that
variations in the electron density introduced by impu-
rity defects are highly localized in space, even insignif-
icantly spaced chalcogen atoms can be considered as
isolated within a bounded cluster.
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A comparison between the total energies of clusters
in which chalcogen atoms reside at neighboring sites
(dimers) and those of clusters in which chalcogen
atoms are not nearest neighbors (two “isolated” atoms)
shows that the energy of clusters containing a dimer is
lower in comparison with that of similar clusters with
“isolated” chalcogen atoms; i.e., dimer formation is
energetically more favorable. For example, in the
SBK(+1d) basis with allowance made for the relaxation
of the lattice around impurity defects and with allow-
ance made for the correlation corrections (MP2), the
difference in energies associated with the formation of
a dimer from two isolated chalcogen atoms amounted
to 2.40, 1.90, and ~1.5 eV for S2, Se2, and Te2, respec-
tively. The obtained results are consistent with known
tendencies in the formation of donor centers in silicon
containing two chalcogen atoms. It is these tendencies
that explain an increase in the concentration of these
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Fig. 3. Total-energy surface for the Se2Si36H42 cluster con-
taining the Se2 dimer; r1 is the spacing between selenium
atoms, and ∆r2 is the displacement of a silicon atom neigh-
boring a selenium atom relative to its position in a perfect
lattice.

Table 3.  Equilibrium spacings r1 between two chalcogen
atoms located at the neighboring sites of the crystal lattice
and equilibrium spacings r2 between chalcogen atoms and
the nearest silicon atoms for the Ch2Si36H42 (Ch2 = S2, Se2,
or Te2) cluster with the symmetry D3d

Dimers
SBK 3-21G (1d)

r1, Å r2, Å r1, Å r2, Å

S2 3.13 2.36 3.08 2.33

Se2 3.14 2.42 3.10 2.38

Te2 3.27 2.53 3.20 2.50
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centers with decreasing the temperature of technologi-
cal treatment of chalcogen-doped samples and also an
increase in the activity of their formation in the Te–Se–
S sequence. The obtained estimates of dimer-formation
energies are apparently very close to real values. In par-
ticular, from an analysis of experimental temperature
dependences of the built-up kinetics of donor centers
composed of two selenium atoms, we previously deter-
mined that the energy of formation of these centers is
equal to ~1.4 eV [55]. It should be noted that the con-
tribution of energies associated with the relaxation of
the lattice around impurity defects to the dimer-forma-
tion energy is substantial and cannot be ignored when
obtaining quantitative estimates of this value for chal-
cogens in silicon.

3.4. More Complicated Complexes

It is known that donors with shallower levels are
observed in chalcogen-doped silicon under certain con-
ditions of its technological treatment in addition to the
donor centers associated with the isolated impurity
atoms and dimers. The established special features of
dimer formation enable us to assume that complexes
composed of a larger number of chalcogen atoms can
be formed in silicon; presumably, these complexes give
rise to the shallower donor centers.

There are a number of difficulties in performing the
calculation of complicated complexes with the methods
used in this study. First, when a complex becomes con-
siderably more complicated, the dimension of space of
coordinates of impurity atoms and also of neighboring
atoms of the lattice, which require optimization for
determining their equilibrium positions, increases con-
siderably. Second, for calculating the complex-forma-
tion energy as the energy difference for various spatial

Fig. 4. Complex composed of six chalcogen atoms closed in
a ring. The designations are the same as in Fig. 2.
positions of impurity atoms within a single cluster
(similar to the calculation of the dimer-formation
energy), very large-size clusters are required. The ab
initio calculations of clusters containing a large number
of atoms in the full-electron bases require enormous
computing resources and often are impracticable.

In these cases, an alternative is the calculations
using semiempirical methods, which do not provide,
however, the accuracy of the ab initio calculations and
can be considered as auxiliary for estimating the ten-
dencies in the properties of the systems under consider-
ation.

The calculations which do not require determining
the complex-formation energy, for example, when
determining the relaxation of a lattice around a com-
plex, can be fulfilled using relatively small clusters. For
restricting the field of search for an equilibrium lattice
configuration in the case of complicated complexes, the
general pattern and tendencies established in calcula-
tions of less complicated complexes help considerably.

The results of our preliminary calculations of com-
plicated complexes show that the formation of a com-
plex involving three chalcogen atoms at neighboring
lattice sites leads to an increase in the HOMO energy as
compared with dimers and isolated impurity atoms, i.e.,
it leads to the formation of a more “shallow” donor.

As a whole, the special features of forming chemical
bonds in a trimer are similar to those for chemical
bonds in a dimer. The chalcogen atoms also do not form
chemical bonds between them and tend to move farther
apart from one another. A certain special feature is
characteristic of the central impurity atom. In a trimer,
this atom has only two nearest neighboring silicon
atoms (contrary to three atoms for the boundary impu-
rity atoms). Therefore, the central chalcogen atom is
displaced in the 〈100〉  direction towards the nearest
neighbors, forms only two, but stronger, chemical
bonds, and remains bivalent in the silicon lattice.

The addition of each successive chalcogen atom to
the impurity complex affects only slightly the consid-
ered pattern of forming chemical bonds. The complex-
size increase leads to a steady increase in the HOMO
energy as compared with that of the original complex;
i.e., it leads to the formation of more and more shallow
donors.

A substantial distinction in properties manifests
itself in forming a closed complex. For the first time,
such a complex can be formed in the silicon lattice for
six impurity atoms topologically closed in a ring
(Fig. 4). In this case, all six chalcogen atoms displaced
in the 〈100〉  direction to the nearest silicon atoms and
spaced from one another form two bonds each with
neighboring silicon atoms. The relaxed cluster contain-
ing a ring of six chalcogen atoms features a much lower
HOMO energy as compared with the cluster, which
contains an isolated impurity atom. This means that the
manifestation of the properties of a very deep donor (or
a neutral center) should be expected for such a com-
SEMICONDUCTORS      Vol. 36      No. 10      2002
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plex. Furthermore, as follows from the calculations car-
ried out using the PM3 semi-empirical method [56], a
much greater energy must be released in the case of
forming a closed ring of isolated chalcogen atoms than
if a nonclosed complex involving the same number of
atoms is formed. Apparently, the complex enclosed in a
ring also represents a chemically inert formation in the
silicon lattice. The addition of a successive impurity
atom to the complex leads to the breaking of the exist-
ing bond between a chalcogen atom, and a silicon atom,
which is energetically unfavorable.

4. CONCLUSION

The aforementioned results of the ab initio calcula-
tions of the equilibrium configuration, electronic struc-
ture, and chemical properties of impurity defects com-
posed of chalcogen atoms in silicon enable us to make
the following conclusions.

For isolated chalcogen atoms, the nearest neighbor-
ing silicon atoms are displaced in the 〈111〉  direction
from an impurity atom, which retains the tetrahedral
symmetry of the defect. The calculated displacement
amounts to ~2.43 Å for S, ~2.48 Å for Se, and ~2.60 Å
for Te atoms. The one-electron states of isolated chal-
cogen atoms in silicon qualitatively correspond to
energy levels in the “band gap” of the corresponding
donor centers. The chalcogen atoms form four equiva-
lent chemical bonds with the nearest silicon atoms with
a bond order of ~0.5 and have a total valence of ~2.

For dimers involving two chalcogen atoms at the
neighboring lattice sites, these atoms are displaced
from one another in the 〈111〉  direction. The equilib-
rium spacings between them are equal to ~3.08 Å for S,
~3.10 Å for Se, and ~3.20 Å for Te atoms. Three silicon
atoms, closest to each chalcogen atom, are displaced (in
the 〈111〉  directions) so that the distance to an impurity
atom amounts to ~2.33 Å in S2, ~2.38 Å in Se2, and
~2.50 Å in Te2. The symmetry of the defect is D3d . The
one-electron states of dimers correspond to donor cen-
ters having a lower ionization energy in comparison
with isolated impurity atoms. It was shown that the
chalcogen atoms in a dimer do not form chemical bonds
between themselves (the bond order is close to zero)
and form three equivalent bonds with the nearest silicon
atoms (the bond order is ~0.6–0.7). The valence of each
chalcogen atom in the dimer remains equal to ~2. The
dimers in the silicon lattice are shown to be stable,
which is associated with a decrease in the total energy
of the crystal during dimer formation. The calculated
formation energies are equal to ~2.4 eV for S2, ~1.9 for
Se2, and ~1.5 eV for Te2. For calculating the dimer-for-
mation energy, consideration of the relaxation of the
lattice around impurity atoms is important.

In the case of the formation of more complicated
impurity defects containing chalcogen atoms, the man-
ifestation of special features in the properties of closed
complexes should be expected. In particular, they can
SEMICONDUCTORS      Vol. 36      No. 10      2002
differ by a substantially higher formation energy and
display properties of a very deep donor (or even neu-
tral) center.
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Abstract—The chemical bonding of GaP, InP, InAs, InSb, and InBi binary compounds was investigated as well
as the modification of the bonding in GaxIn1 – xP, InAsxSb1 – x , and InSb1 – xBix semiconductor alloys; this mod-
ification occurs as a result of variation in the composition characterized by the parameter x. An approach based
on the consideration of the total valence charge density, the chemical-bonding polarity, and the transverse effec-
tive charge was used. The elastic constants of the aforementioned ternary solid solutions were calculated, and
the influence of chemical-bonding modification on these constants was analyzed. Local strains and composition
disordering in the alloys under consideration drastically affect the dependences of the quantities under investi-
gation on solid-solution composition. Thus, the above effects cannot be neglected in investigating substitutional
solid solutions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Chemical bonding in III–V semiconductors is the
subject of intensive experimental and theoretical inves-
tigations [1, 2]. Recently, interest in ternary solid solu-
tions on the basis of III–V compounds has increased,
which is caused by their wide use in optoelectronic
devices and by the wide region of variation of their
electronic properties.

Despite the semiempirical nature of the models
which describe the chemical bonding in III–V materi-
als, scientists have managed to gain insight into the
diversity of properties of many compounds. In particu-
lar, the model of ionicity introduced by Phillips [4] pre-
dicted the existence of a critical ionicity value fc , which
separates more covalent tetrahedrally bonded crystals
(zinc blende and wurtzite) with an ionicity fi < fc from
more ionic octahedrally bonded crystals (rock salt)
with an ionicity fi > fc . It should be noted that, although
the approaches for determining the ionicity proposed
by Pauling [5], Phillips [4], and Harrison [6] yield good
results, they require knowledge of empirical para-
meters.

Another approach for describing the chemical bond-
ing is the notion of bonding polarity introduced in
terms of the pseudopotential theory in [7] as a measure
of the pseudopotential asymmetry. The introduced
chemical-bonding polarity αp made it possible to cor-
rectly explain many physical properties, in particular,
mechanical properties and elastic constants.

In [8], the authors proposed using the measurement
of asymmetry in the spatial distribution of a valence
charge g as a parameter which represented the ionicity
1063-7826/02/3610- $22.00 © 21091
of bonding. The evolution of charge density in upper
valence bands, as well as polarity and transverse effec-
tive charge, as a result of varying the composition of a
solid-solution can yield a realistic pattern of the influ-
ence of diverse alloying effects (composition disorder-
ing, local strains, etc.) on the character of chemical
bonding.

In this study, we present a theoretical analysis of the
chemical-bonding modification in GaxIn1 – xP, InAsxSb1 – x,
and InSb1 – xBix semiconducting solid solutions. Such a
choice of solid solutions is not accidental and is gov-
erned by the characteristic features of their band struc-
ture. For example, a band gap Eg(x) has a characteristic
minimum at x = 0.37 in InAsxSb1 – x; here, the value of
Eg is lower for a solid solution than it is for InAs and
InSb binary compounds. In GaxIn1 – xP, the dependence
Eg(x) has a transition point (x = 0.652) at which the
alloy transforms from a direct-gap one into an indirect-
gap one. A characteristic feature of the InSb1 – xBix solid
solution is the transition to the semimetallic state with
Eg = 0 at x = 0.4.

The purpose of this study is to investigate the modi-
fication of the character of bonding in semiconductor
alloys when the composition x is varied. We used an
approach based on the consideration of total valence
charge density, chemical-bonding polarity, and trans-
verse effective charge. Furthermore, in this study, we
calculated the elastic constants for the indicated ternary
solid solutions and analyzed the influence of modifica-
tion of chemical bonding on these constants.
002 MAIK “Nauka/Interperiodica”
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2. CALCULATION PROCEDURE

We obtained the electronic band structure of binary
III–V compounds by the method of local model
pseudopotential in the plane-wave basis with allowance
for spin–orbit interaction. The substitutional solid solu-
tions were simulated in the approximation of modified
virtual crystal, which takes into account the effects of
composition disordering and local strains arising in
alloys [9].

The total charge density ρ(r) of valence electrons
was calculated using a scheme of integration over sym-
metry points [10] according to

(1)

where ψn, k(r) is the electron wave function obtained
from the solution of the secular equation, and n is the
band number.

According to [8], the charge density can be divided
into symmetric ρS(r) and antisymmetric ρA(r) compo-
nents:

(2)

Passing to the Fourier series

(3)

we form the Fourier components ρS(G) and ρA(G):

(4)

The charge-asymmetry coefficient [8] is given by

(5)

where

(6)

and Ω is the unit-cell volume.

ρ r( ) 2e ψn k, r( ) 2,
n k,
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2 r( ) r,d

Ω
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SA ρA G( ) 2
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∑ 1
Ω
---- ρA

2 r( ) r,d

Ω
∫= =
The chemical-bonding polarity αp [7] represents the
asymmetry of the pseudopotential

(7)

where  and  are the antisymmetric and symmetric

form factors of the pseudopotential for G = (111).

The calculation of αp enables us to find the trans-
verse effective charge  [7]:

(8)

where

(9)

The quantity  characterizes the infrared activity of
phonons in materials and is a basic parameter which
describes the dielectric properties of solids and can be
used for classification of the crystal structure. Further-
more, this parameter is very sensitive to the influence of
the anharmonic crystal potential. The contribution of
anharmonic effects to the effective charge can manifest
itself in solid solutions due to the fact that the composi-
tion disordering gives rise to significant anharmonicity.
In addition, according to Harrison [6], the effective
charge is equal to 

(10)

The elastic constants of solid solutions are parame-
ters which give important information about the nature
of chemical bonding. We calculated them according
to [11] as

(11)

where d = a/4 is the bond length (a is the lattice con-
stant), and λ is the dimensionless parameter equal to
0.738 [11].
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3. RESULTS OF CALCULATIONS 
AND DISCUSSION

The special features of band-gap variation with a
change in the composition of In1 – xGaxP, InAsxSb1 – x,
and InSb1 – xBix solid solutions are shown in Fig. 1; in
our previous studies [9, 12, 13], we analyzed these fea-
tures in detail. However, the band gap doesn’t corre-
spond unambiguously to such an important parameter
as the degree of ionicity of the bonding introduced by
Phillips [4]. The search for a correlation between the
band structure and the ionicity of the chemical bonding
leads to the notion of a heterogeneous gap [14], which
corresponds to the energy discontinuity in the electron
density of states in the valence band at the point X of the
Brillouin zone. In Table 1, we list the heterogeneous-
gap values Eg in binary compounds obtained in our cal-
culations of the band structure. If we proceed in the
direction of the growth of the charge number of an
anion with the cation fixed, the well-known tendency to
decrease the degree fi of the ionicity of bonding (first
discovered by Phillips) is observed in the InP, InAs,
InSb, and InBi sequence. However, this tendency is vio-
lated with respect to the heterogeneous gap, which
somewhat incorrectly describes the special features of
the chemical bonding.

We can gain insight into the modification of the
chemical bonding for the tetrahedrally coordinated
binary compounds by analyzing the charge-density dis-
tribution for valence electrons (Fig. 2). If the charge
number of an anion increases, the maximum of the
charge density ρ(r) shifts to the bond midpoint leading
to an increase in the degree of covalency and, therefore,
to a decrease in the degree of ionicity. For the quantita-
tive characteristic of the chemical bonding, it is conve-
nient to use the notion of a charge-asymmetry coeffi-
cient g (5) as a direct measure of the ionicity of the
bonding. The values of g that we calculated for binary
compounds are given in Table 1 and agree satisfactorily
with theoretical data [8]. Small discrepancies can be
explained by differences in the methods used for the
calculation of the band structure. In Fig. 3, we show the
charge-asymmetry coefficient g as a function of the
SEMICONDUCTORS      Vol. 36      No. 10      2002
composition of the alloys under consideration. The
consideration of such characteristic alloying effects as
local strains and composition disordering leads to the
nonlinear behavior of g(x). The indicated factors only
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0 0.2 0.4 0.6 0.8 1.0
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InBi

~~
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Fig. 1. Concentration dependences of the band gap Eg for
(1) In1 – xGaxP, (2) InAsxSb1 – x , and (3) InSb1 – xBix solid
solutions. The calculation conditions: solid curves are the
virtual-crystal approximation, the dashed curves are calcu-
lated taking into account internal local strains, and the dot-
ted curves are obtained taking into account the internal local
strains and the composition disordering.
Table 1.  Lattice constant a, the band gap Eg, a heteropolar gap Eh, the degree fi of ionicity, the polarity αp, and the charge-
asymmetry coefficient g for binary compounds

Compound a, Å Eg, eV Eh, eV

fi αp g

[4] [15] our calcu-
lations [8] our calcu-

lations

GaP 5.45 2.53 5.07 0.327 0.31 0.438 0.371 0.398

InP 5.86 1.52 6.29 0.421 0.32 0.504 0.506 0.462

InAs 6.055 0.42 6.33 0.357 0.3 0.336 0.45 0.454

InSb 6.478 0.24 3.89 0.321 0.29 0.22 0.294 0.385

InBi 6.64 0 2.94 – – 0.174 – 0.344

Note: Data from study [15] are experimental.
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Fig. 2. Distributions of charge density for valence electrons in binary compounds along the [111] bond: (1) GaP, (2) InP, (3) InAs,
(4) InSb, and (5) InBi. The positions of atoms are indicated in atomic units.
slightly affect the behavior of Eg(x) in comparison with
the virtual-crystal approximation in In1 – xGaxP and
InSb1 – xBix , but their influence on the charge-density-
asymmetry coefficient is rather profound. At the same
time, the reverse situation is true for the InAsxSb1 – x
alloy. We also note that the characteristic points in the
reconstruction of the band structure for the solid solu-
tions under consideration can be noticed in the concen-
tration dependences g(x) (Fig. 3).

As was noted in the Introduction, these points corre-
spond to solid-solution compositions for which the fol-
lowing features can be observed:

(i) a transition of the conduction-band minimum
from the point Γ of the Brillouin zone to the point X for
x = 0.652 in In1 – xGaxP;

(ii) a minimum in the dependence Eg(x) for x = 0.37
in InAsxSb1 – x;

(iii) a transition to the zero-gap state for x = 0.4 in
InSb1 – xBix .

The polarity αp is a concept which is also related to
ionicity. However, as can be seen from expression (7),
contrary to the charge-density-asymmetry coefficient,
αp represents the asymmetry of the pseudopotential at
the point G(111). The concentration dependences of the
polarity in the alloys under consideration (Fig. 4) qual-
itatively resemble similar dependences g(x) in Fig. 3.
This fact can be attributed to a close correlation
between the pseudopotential form factors and the cor-
responding quantities (6) which determine the charge-
density asymmetry. In Fig 5, we compare the charge-
asymmetry coefficient g with the polarity αp for the
binary semiconducting compounds under consider-
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0 0.2 0.4 0.6 0.8 1.0
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g
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InP

InSb
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InBi

Fig. 3. Charge-asymmetry coefficient g as a function of a
solid-solution composition x for (a) In1 – xGaxP,
(b) InAsxSb1 – x , and (c) InSb1 – xBix . The conditions of
calculation for solid, dashed, and dotted curves are the same
as in Fig. 1.
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ation. The linear correlation between these quantities
justifies the use of the charge-density-asymmetry coef-
ficient as a measure of the ionicity of chemical bonding.
Furthermore, in our opinion, it is the quantity g that rep-
resents most completely the integral character of the
spatial distribution of the valence charge in a crystal, in
contrast to the polarity αp, which is the ratio between
antisymmetric and symmetric pseudopotential form
factors only at a single point of the reciprocal space.

The transverse effective charge  is a fundamental
quantity in the lattice dynamics of semiconductors; it
determines the long-range component of the elastic
constants in the long-wavelength region of the spec-
trum and can be measured experimentally. On the basis
of relationships (8) and (9), we calculated  both for
binary compounds and for the corresponding alloys.
Good agreement between the obtained values of the
transverse effective charge and experimental values
(Table 2) gives grounds for predicting its variation in a
solid solution. Evidently, this quantity is also influ-
enced profoundly both by local strains and by compo-
sition disordering which occur in the semiconducting
solid solutions and can be another quantitative charac-
teristic of the ionicity of bonding. Approximating the
calculated concentration dependence of the transverse
effective charge for solid solutions, we obtain

(12)

(13)

(14)

The obtained values of the polarity enable us to cal-
culate the elastic constants for both binary compounds
and their ternary substitutional solid solutions. In
Table 2, we list values of the elastic constants C11 and
C12 which we calculated for GaP, InP, InAs, InSb, and
InBi binary compounds according to (11). The good
agreement between these values and experimental data
enables us to carry out an approximation for the corre-
sponding solid solutions (C11 and C12 are given in units
of 10–11 dyn/cm2):

for In1 – xGaxP,

(15)

eT*

eT*

eT* 2.47x 2.607 1 x–( ) 0.7x 1 x–( ),–+=

for In1 x– GaxP,

eT* 2.21x 1.83 1 x–( ) 0.45x 1 x–( ),–+=

for InAsxSb1 x– ,

eT* 1.676x 1.83 1 x–( ) 0.35x 1 x–( ),–+=

for InSb1 x– Bix.

C11 14.3x 10.2 1 x–( ) 6.1x 1 x–( ),+ +=

C12 7.7x 5.49 1 x–( ) 3.3x 1 x–( );+ +=
SEMICONDUCTORS      Vol. 36      No. 10      2002
for InAsxSb1 – x,

(16)
C11 8.391x 6.967 1 x–( ) 1.4x 1 x–( ),+ +=

C12 4.518x 3.752 1 x–( ) 0.75x 1 x–( );+ +=
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Fig. 4. Concentration dependences of the degree of polarity
for the chemical bonding: (a) In1 – xGaxP, (b) InAsxSb1 – x ,
and (c) InSb1 – xBix .
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metry coefficient g for binary compounds.
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Table 2.  Transverse effective charge , effective charge Z*, and elastic constants C11 and C12 for binary compounds

Compound

Z* C11, 10–11 dyn/cm2 C12, 10–11 dyn/cm2

[16] our calcu-
lations [6] our calcu-

lations [3] our calcu-
lations [3] our calcu-

lations

GaP 2.04 2.47 1.01 1.526 14.39 14.3 6.52 7.7

InP 2.55 2.607 1.32 1.605 10.22 10.2 5.76 5.49

InAs 2.45 2.21 1.22 1.413 8.329 8.391 4.526 4.518

InSb 2.28 1.83 1.1 1.275 6.918 6.967 3.788 3.752

InBi – 1.676 – 1.226 5.75* 5.803 3.1* 3.124

Note: Data from studies [3, 6, 16] are experimental. * Values obtained by the linear interpolation of data for In and Bi [17].

eT*

eT*
for InSb1 – xBix ,

(17)

4. CONCLUSIONS

Local strains and composition disordering in the
alloys under consideration lead to an increase in elastic
constants and to the nonlinearity of their dependences
on the composition of a solid-solution. Thus, the above
effects cannot be neglected in calculations of both
effective charges and elastic constants for In1 – xGaxP,
InAsxSb1 – x , and InSb1 – xBix solid solutions. The
obtained variations in the transverse effective charge
and the elastic constants represent a variation in chem-
ical bonding and, as a consequence, in the electron
structure depending on the composition of an alloy.
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Abstract—The Ge island growth on the Si(100) and Si(111) surfaces was investigated through spectral ellip-
sometry in real time. It is found that both cases correspond to Stranski–Krastanov growth; i.e., a Ge wetting
layer is initially formed, and only then do the islands of the new phase grow on the surface of this layer. How-
ever, the island nucleation on the (100) surface is accompanied by a substantial decrease in the wetting layer
thickness, whereas, on the (111) surface, the islands nucleate and grow on the wetting layer of constant thick-
ness. The Ge atoms on the (100) surface transfer from the wetting layer to islands, thus substantially decreasing
the elastic energy of the system, but increasing the surface energy. For this reason, it is concluded that, in this
case, it is the elastic energy which represents the fundamental driving force of the island nucleation. Thermo-
dynamic and kinetic theories of island nucleation from the wetting layer under the effect of elastic energy are
developed. A new notion of overstress is introduced by analogy with supersaturation and overcooling. The time
evolution of the wetting layer thickness, the nucleation rate, and the island surface density of the new phase is
described. The theoretical results are compared to experimental data obtained through ellipsometric simulation,
and it is found that the theory and experiment are in good agreement. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the self-aligned Stranski–Krastanov
growth of coherent semiconductor islands, which con-
tain no lattice mismatch defects, is actively used for
obtaining ordered structures with nanodimensional
quantum dots (QDs) [1, 2]. The great interest in such
structures is due to the prospects of their practical imple-
mentation in optoelectronics in relation to the localiza-
tion of charge carriers in the vicinity of QDs [3]. In order
to control the island shape during island growth, it is
necessary to determine the driving force of nucleation.
Two principle mechanisms exist. The first mechanism
is the classic nucleation due to a high density of
adsorbed atoms on the wetting-layer surface. The sec-
ond mechanism is the nonclassic nucleation from the
atoms of the wetting layer itself under the effect of elas-
tic energy [1, 2, 4–7]. In the first case, the free energy
of the island decreases due to the difference in chemical
potentials of the atoms in the two-dimensional adsor-
bate gas and in the island itself. In the second case, the
free energy decreases due to the difference between
chemical potentials of the atoms in the wetting layer
and in the island. In this case, the chemical potential is
determined by the difference between the elastic energy
and wetting energy. The island growth by the first
mechanism occurs on a wetting layer of constant thick-
ness. In the second case, the thickness of the wetting
1063-7826/02/3610- $22.00 © 21097
layer should decrease during the nucleation. The reason
is that part of the atoms of the wetting layer transfer to
islands primarily to decrease the elastic energy [1, 7].

The purpose of this study is to determine the driving
force and the mechanism of island nucleation of a new
phase for one of the classic Stranski–Krastanov sys-
tems (Ge-on-Si) and to develop the respective theory.
The investigations were carried out for the growth on
the Si(100) and Si(111) surfaces. It is well known that
the growth mode for these surfaces is quite different
[2]. To measure the wetting layer thickness and the total
volume of islands in real time, spectroscopic ellipsom-
etry was used.

2. DIAGNOSTICS OF ISLAND FORMATION
BY SPECTROSCOPIC ELLIPSOMETRY

2.1. Experimental Procedure 

The Ge films were deposited by chemical vapor
deposition in a vacuum chamber equipped with a spec-
troscopy ellipsometer and a mass-spectrometer. Diger-
mane Ge2H6, which was diluted with pure He, was used
as the precursor in the pressure range from 4 × 10–6 to
3 × 10–5 mbar. The sample temperature was measured
with an infrared pyrometer. Island dimensions and den-
sities were measured using an atomic force microscope,
which operated in the contact mode with ultralevel tips.
002 MAIK “Nauka/Interperiodica”
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The p-Si(100) and p-Si(111) surfaces (ρ > 300 Ω cm)
with a cleavage angle less than 0.3° were used. The sur-
faces were cleaned using the Shiraki method and were
faceted in pure NH4F. The surfaces obtained, which
were terminated with H, were then tested using infrared
Fourier spectroscopy to obtain information on the
homogeneity of surface chemical bonds of H.

2.2. Spectroscopy Ellipsometry 

A Sopra-E54G-OMA ellipsometer with a rotating
polarizer was used in the photon energy range of 1.2–
4.7 eV. The angle of beam incidence was chosen close
to 77°, which corresponds to the Brewster angle for
crystalline Si at approximately the midpoint of the
energy range given. The exact value of the angle of inci-
dence was determined separately for each experiment
using the best agreement of measured optical constants
for Si and spectra given in the literature [8]. The optical
constants of the film and substrate materials, which are
necessary for ellipsometric simulation, were measured

400

200 200

400

Fig. 1. Image of the Ge coherent islands on Si(100) at T =
500°C and the average deposition rate of 2 monolayers per
minute; the image was obtained using an atomic force
microscope. Dimensions along the axes are expressed in
nanometers.

dIL

dWL

Island layer

Wetting layer

Substrate

Fig. 2. Two-layer growing-film model based on the optical
constants measured; dWL and dIL are the thicknesses of the
wetting layer (WL) and the island layer (IL), respectively.

0

20
at the deposition temperature over the entire photon
energy range. Ellipsometers with a time resolution
from 1.5 to 3 s per spectrum were used.

2.3. Results of Experiments
and Ellipsometric Simulation 

The images obtained using an atomic force micro-
scope demonstrate that the islands of the new phase are
formed both at the (100) surface and at the (111) sur-
face (Fig. 1). Specifically, for the Si(100) surface at T =
500°C, the average island height is about 10 nm and the
base size is about 50 nm for a deposition rate of
2 monolayers per minute (the height of the coherent Ge
monolayer on Si(100) h0 ≈ 0.145 nm). For the Si(111)
surface, the size of the Ge islands is larger by a factor
of 5–8. For example, at T = 570°C and a deposition rate
of 0.35 bilayers per minute (the height of the coherent
Ge bilayer on Si(111) h0 ≈ 0.357 nm), the island height
is approximately 50 nm and the base size is approxi-
mately 400 nm. This means that the growth rate for the
separate Ge island on the (111) surface is significantly
higher compared to that on the (100) surface. The island
surface density depends heavily on the precursor gas
pressure. For the experiments described, this density was
equal to 7 × 109 cm–2 for Si(100) and 0.5 × 109 cm–2 for
Si(111).

It was found that the optical constants measured in
real time agree best with simulation using the two-layer
model (Fig. 2). According to this model, the growing
film can be conventionally divided into two layers: the
wetting layer (WL) and the island layer (IL). Each of
these two layers consists of two Ge components and
voids.

In order to calculate the optical constants for each
layer, we used the Brüggemann approximation of the
effective medium [9], which mixes these two compo-
nents. Thus, four parameters of minimization were used
for the ellipsometric simulation. These were the wet-
ting layer thickness dWL, the Ge fraction in the wetting
layer cWL, the island layer thickness dIL, and the Ge
fraction in the island layer cIL. Mixing between Si and
Ge was neglected, since the films were deposited at
temperatures lower than the lowest temperature at
which the interdiffusion between Ge and Si is observed
(600°C). From the mathematical point of view, these
two layers differ only in that the Ge content in the wet-
ting layer (0.7–1.0) is noticeably higher compared to
that in the island layer (0–0.3). In order to minimize the
standard error, the quasi-Newton method was used,
which is the most suitable for the minimization of
ravine functions. This method makes it possible to
clearly separate the wetting and island layers and deter-
mine the thickness of the wetting layer and the Ge con-
centration in it. For the island layer, it is impossible to
separate the parameters dIL and cIL, since the correla-
tion between them is too strong. However, their product
dILcIL, which specifies the total Ge amount in islands,
SEMICONDUCTORS      Vol. 36      No. 10      2002
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shows no strong correlation with the parameters of the
wetting layer and can be determined easily. This is
obviously associated with the fact that the upper bound-
ary of the island layer is determined at a much lesser
accuracy compared with the interface between the wet-
ting and island layers.

The main results of the ellipsometry measurements
in real time are as follows. The island nucleation of the
new phase on the (100) surface is accompanied by a
considerable decrease in the wetting-layer thickness
(by ~1 monolayer) (see Fig. 3). Consequently, the
nucleation proceeds mainly owing to the atoms of the
wetting layer. This result is in good agreement with the
results in [10], which were obtained for the Ge/Si(100)
system at 600°C using Rutherford backscattering and
atomic force microscopy. The main cause of this phe-
nomenon consists in the fact that the wetting layer is in
the overstressed metastable state. The nucleation of
islands and an increase in their height is energetically
favorable despite weakening the attraction of atoms to
the substrate and increasing the free surface, since this
leads to a considerable lowering of the elastic energy
[1]. In other words, the dislocation-free mechanism of
relaxation of the elastic energy, which is caused by the
Si–Ge lattice mismatch (~4.2%), manifests itself in this
system.
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Fig. 3. Thickness of the wetting layer (WL) and the total Ge
amount in the islands measured in monolayer (ML) units in
relation to the deposition time for the Si(100) surface at T =
500°C. Experiment.
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The island nucleation on the (111) surface proceeds
in another way (Fig. 4). Here, the islands nucleate and
grow on the wetting layer, which virtually retains its
thickness. The growth apparently occurs due to the
supersaturation by the atoms adsorbed at the wetting-
layer surface; i.e., the classical growth mechanism is
observed [4, 5]. The possible causes of distinctions
between growth mechanisms were discussed, for exam-
ple, in [2, 11].

In what follows, we develop a theory of island
nucleation of the new phase from the overstressed
metastable wetting layer.

3. THEORY

The following mechanism of the formation of
coherent islands, which is based on our experimental
data on the Ge-on-Si(100) growth, is considered. Ini-
tially, the layer-by-layer growth of the Ge film on the Si
substrate occurs, since the Si surface energy is notice-
ably higher than the Ge surface energy, and wetting is
favorable. However, Ge and Si have different lattice
parameters, and the elastic energy increases with film
growth (the elastic energy per atom is constant). The
wetting energy per atom continuously decreases, since
the Ge atoms are removed farther and farther apart from
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the substrate. At the instant when the elastic energy per
atom is equalized to the wetting energy per atom for the
upper atoms of the wetting layer, the layer itself is in
equilibrium. However, the wetting layer continues to
grow and becomes metastable, making it possible for
the elastic energy to relax. One of the possible ways of
relaxation is nuclei formation on the wetting layer sur-
face, since the higher clusters have a higher elastic
energy compared with the lower clusters [11]. This pro-
cess sets in when the nucleation barrier becomes low
enough. Due to this, the nuclei formed grow and reduce
the elastic energy of the film, and the wetting layer
becomes thinner thus supplying the growing islands
with atoms. After some time, the nucleation process
will be completed, since a decrease in the wetting layer
thickness will lead to heightening of the nucleation bar-
rier. It is this process that will be described below.

3.1. Thermodynamic Model of the Formation
of Coherent Islands 

The free energy of the formation of a coherent island
from the wetting layer is represented by three sum-
mands:

(1)

Here, ∆Fsurf is an increase in the surface energy due to
the formation of an additional surface of the film mate-
rial, ∆Felas is a decrease in the free energy due to the
elastic energy relaxation within the island, and ∆Fatt is
an increase in the free energy due to weakening of the
attraction (wetting) of the island atoms to the substrate.
It is evident that the energy parenthesized in relation-
ship (1) is the only driving force of this nucleation pro-
cess. Each of the three quantities in relationship (1)
depends not only on the number of atoms in the island
but also on its shape. This is the distinction of this
model from the classic theory of nucleation [5]. To cal-
culate the ∆Fsurf , ∆Felas , and ∆Fatt quantities, the sim-
plest island configuration will be used below. Specifi-
cally, we assume that a parallelepiped-shaped island
with a square base L and height H lies on the wetting
strained layer with a height h. For such an island con-
figuration with two parameters L and H, all results can
be obtained in the analytical form. Let us calculate the
free energy F as a function of two parameters: L and H.

Since the film’s additional surface area caused by
the formation of the parallelepiped-shaped island is
equal to 4LH, then

(2)

where σf is the surface tension of the film material. The
∆Felas quantity can be calculated in the context of the
Ratsch–Zangwill model [12]. According to this model,
the effective parameter of the lattice mismatch
decreases as one passes from the bottom atomic layer to
the top layer. This is caused by the fact that the top layer
contains an additional number (Λ/2) of relaxed atoms at

F ∆Fsurf ∆Felas ∆Fatt–( ).–=

∆Fsurf 4σ f LH ,=
each island edge compared to the situation in the bot-
tom layer [12]. For such an island shape, this means
that the island elastic energy is equal to

(3)

since the effective parameter of the lattice mismatch for
the kth layer is equal to [12]

(4)

Here, ε0 = (df – ds)/ds is the lattice mismatch between
the film and a substrate, df is the lattice parameter for
the film, ds is the lattice parameter for the substrate, λ is
the elastic modulus, h0 is the height of the monolayer
film, and l0 is the average interatomic distance in the
same layer. The sum involved in relationship (3) consti-
tutes a geometric progression and, for this reason, can
be calculated analytically as

(5)

It was demonstrated that the results obtained from
this model are in good agreement with the results of
numerical simulation using the method of finite ele-
ments for Λ = 3π/2 [12]. For 3πl0/2L ! 1, it is possible
to use the approximation (1 – 3πl0/2L)4 ≈ 1 – 6πl0/L. For
large values 4H/h0, it is possible to assume that

The latter approximation means that all atoms on the
island top are relaxed, which is often observed experi-
mentally for sufficiently tall islands. Since the elastic
energy of the same number of atoms in the wetting
layer is equal to

(6)

the gain in the elastic energy with island formation is
equal to

(7)

The attraction energy of the film atoms to the sub-
strate can be calculated using the Müller–Kern model
[13]. According to this model, the attraction energy of
the film atoms, which lie immediately on the substrate,
is determined by the difference in the specific interfa-

Felas
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cial energies of the surfaces of the substrate (σs), the
film (σf), and the interface between them (σs – f ):

(8)

If k monolayers of the film are positioned between the
atoms of the film and the substrate, their attraction
energy is lowered. Specifically, it is possible to con-
sider that, for semiconductors, this lowering is expo-
nential [13]:

(9)

where k0 is the attenuation coefficient.

The expenditure of energy for island formation
equals the difference in the attraction energy of atoms
on the wetting layer surface,

(10)

and the attraction energy of island atoms,

(11)

The summation in relationship (11) is carried out ana-
lytically, since the sum represents a geometric progres-

sion. For H/h0 @ (  – 1)–1,  is much larger than

. Consequently,

(12)

Thus, the free energy of formation of the parallelepi-
ped-shaped island can be estimated as

(13)

The parenthesized expression in the last summand of
relationship (13) evidently represents the difference in
chemical potentials of the atoms on the wetting layer
surface and in the island. If this difference is positive,
island formation is possible in the system, since the
gain in the elastic energy can be larger than its expendi-
ture on overcoming the attractive forces and increasing
the free energy. Otherwise, the wetting forces are stron-
ger and the layer-by-layer growth of the film is
observed. According to classical nucleation theory, we
linearize this difference over the driving force of nucle-

Φ∞ σs σ f– σs f– .–=
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ation. For this purpose, let us introduce the equilibrium
thickness of the wetting layer

(14)

If h < heq, then, according to the Müller–Kern criterion
[13], layer-by-layer growth is observed. For h > heq, the
transition 2D  3D sets in, which is accompanied by
decreasing the free energy due to the gain in the elastic
energy. For this reason, the island formation depends on
the quantity ξ ≡ h/heq – 1 in this case. By analogy with
the concepts of supersaturation and overcooling, we
will refer to the ξ quantity as the overstress. In this case,
for small ξ, it is possible to use the approximation of the
classical theory of nucleation:

(15)

Finally, from relationships (13) and (15), we derive

(16)

It is convenient to rewrite expression (16) in the
dimensionless form using new variables: the number of

atoms in the island i = HL2/h0  and the characteristic
ratio β = H/L,

(17)

Here, kB is the Boltzmann constant, T is the tempera-
ture,

(18)

κ = λ h0 /kBT is the elastic-to-thermal energy ratio,

and γ = ln(Φ∞/λ h0) is the constant characterizing the
wetting-to-elastic force ratio. For the Ge island growth
on the Si(100) surface, we have σf = 800 erg/cm2, Φ∞ =
450 erg/cm2 = 1.27 × 1012 dyn/cm, ε0 = 0.042, h0 =
0.145 nm, and l0 = 0.395 nm. Consequently, κ ≈ 0.48,
γ ≈ 2.6, and

(19)

From here on, we use these quantities for estimations in
calculations. The dependence F/kBT on i and β for these
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values of constants and for ξ = 1.15 is shown in Fig. 5.
It can be seen that the free energy has a saddle point
through which the nucleation actually proceeds [14].

To find the parameters of the saddle point, it is nec-
essary to solve the set of equations ∂F/∂i = 0, ∂F/∂β =
0. In the case of the simplified expression (17) for the
free energy, this can be done analytically:

(20)

It can be seen from expressions (18) and (20) that H0 ∝
h0/l0. For this reason, the formation of coherent islands
on the (100) surface proceeds much more easily com-
pared to the (111) surface, since the (111) surface is
much denser. For example, h0/l0 = 0.37 for Ge/Si(100),
whereas h0/l0 = 1.4 for Ge/Si(111). When ξ = 1.15 and
the parameters a, b, and c have the above-indicated val-
ues, it is easy to estimate the parameters of the saddle
point from expression (18): ic ≈ 50, βc ≈ 0.02, and
H0 ≈ 24.

3.2. Nucleation Rate 

Let us now calculate the formation rate of coherent
islands. The main distinction from the classical one-
parameter model of nucleation [5] is the fact that the
free energy in this case depends on two parameters, i
and β, rather than on one parameter. For this reason,

ic
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Fig. 5. Free-energy surface for the formation of a coherent
island with a saddle point. The number of atoms in the
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along the axis in the horizontal plane.

0.10
thermal fluctuations affect both of these parameters,
which leads to the two-parameter Zel’dovich equation

(21)

Here, g is the distribution function of coherent islands
by their size and shape; t is time; and Di and Dβ are the
reciprocal times of variation per unit of i and β quanti-
ties, respectively (diffusivities in space of dimensions
and shapes). The initial and boundary conditions for
Eq. (21) are conventional; i.e.,

(22)

where geq = exp(–F/kBT ) is the equilibrium func-
tion of island distribution. To solve Eq. (21) with con-
ditions (22), it is sufficient to make allowance for the
behavior of the F/kBT function in the vicinity of the sad-
dle point. For this reason, it is convenient to bring this
function to the quadratic form

(23)

(24)

where H0 is the nucleation-barrier height in kBT units.

In order to eliminate the cross terms in Eq. (23) and,
consequently, in the boundary conditions, let us intro-
duce new variables

(25)

(26)

In this case, Eq. (23) takes the form

(27)

However, the cross terms now emerge in the kinetic
equation (21). In order to eliminate them, it is necessary
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to carry out the Lorentz transformation [15]

(28)

which leaves invariant quadratic form (27)

and then to choose the transformation parameter z so
that the cross term in Eq. (21) approaches zero. This
leads to the quadratic equation in z, which is solved
analytically. As a result, an equation with separable
variables is derived for the g function. This equation
can be easily solved in the steady-state case for ∂g/∂t =
0. This yields the steady-state nucleation rate

(29)

Here, D is the volume diffusivity in the wetting layer, and
Z is the dimensionless Zel’dovich factor, which is calcu-
lated by the above method. The estimations demonstrate
that this factor lies in the range of 0.1–10; for the above
constants and the condition Dβ(ic, βc)/Di(ic, βc) ! 1, we
have Z ≈ 1. For this reason, we assume in what follows
that Z = 1.

The estimations of the time of attaining the steady-
state solution (29) (they are performed similarly to the
one-parameter case) demonstrate that it is in the range
of 10–4–10–2 s. This is much shorter compared to the
characteristic time of nucleation of 1–10 s. For this rea-
son, the quasi-steady-state approximation can be used
for the nucleation rate

(30)

3.3. Evolution of the Overstress 

Thus, in order to describe the nucleation, it is neces-
sary to calculate the time dependence of overstress ξ(t).
It is possible to do this using the law of conservation of
matter on the substrate:

(31)

Here, J(t) is the flow of matter, which is directed to the
substrate and increases the wetting layer thickness and,
correspondingly, stresses in them; and v i ≡ di/dt is the
rate of island growth due to elastic stresses. The elastic
stresses in the wetting layer cause the diffusion of
atoms to the island, since the stresses in the island are
weaker than those in the layer. Let us estimate the rate
of such growth v i from the relationship

(32)

x
j zα+

1 z2–
-----------------, y

zj α+

1 z2–
-----------------,= =

F/kBT H0 x2– y2,+=

I ξ( ) Dl0
4– Ze

H0 ξ( )–
.=

I t( ) Dl0
4– ba3

c3ξ3 t( )
-----------------– 

  .exp=

dh
dt
------ J t( ) l0

2h0 v ig i t,( ) i.d

0

∞

∫–=

v i
D

kBTl0
2h0

-------------------∇µ S.=
SEMICONDUCTORS      Vol. 36      No. 10      2002
Here, D is the diffusivity; ∇µ  is the gradient of the
chemical potential, which is caused by the elastic
stresses, at the island boundary; and S is the area across
which the atoms are incorporated into the island. For
small islands, only the surface atomic flux across the
interface between the island and the wetting layer,
which has a length 4L and thickness h0, is significant.
The bulk flux is less important due to the small dimen-
sions of the island. The stress field around the island is
a complex function of coordinates. For this reason, let
us only roughly estimate the gradient of the chemical
potential at the interface as

(33)

Here, ∆µ is the difference between atomic chemical
potentials for the layer and for the island, which is equal
to kBTcξ for islands whose size is much larger than the
critical one. The λl quantity is the cutoff parameter of
the elastic stresses, which indicates the magnitude of
spread of the elastic perturbation from the island. Usu-
ally, λl @ 1; we will assume that λl = 10. Finally,

(34)

Substituting this expression into Eq. (31) and perform-
ing transformations, we obtain

(35)

where j0(t) = J/heq is the elastic stress flow, and

is the surface density of the islands. Dividing this equa-
tion by ξ and taking a derivative with respect to time
with allowance made for formula (30), we obtain the
final equation for the evolution of the wetting-layer 

(36)

where

(37)

This equation can be easily solved numerically for each
j0(t). In this study, the following expression was used:

it describes the transition from the flow j1 to the flow j2
( j1 > j2) in the time interval from t0 – t∗  to t0 + t∗ . This
expression approximately corresponds to the experi-
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mental results which were obtained by simulating the
ellipsometry data. A decrease in the flow during nucle-
ation is apparently associated with the fact that the wet-
ting layer becomes smoother and denser, which
decreases the probability of incorporating the atoms in
this layer. In addition, the formation of dislocations sets
in, which also decreases the elastic stress.

For the numerical calculations, the following
parameters were used: D = 10–11 cm2 s–1, j1 = 2, j2 = 1,
t∗ = 3 s (the t∗  quantity was chosen to be approximately
equal to the time of reaching the highest nucleation
rate), heq/h0 = 2, a = 20, b = 0.02, c = 1.3, and l0 =
0.395 nm. The largest overstress for these constants
equals ξmax = 1.15. The results of calculations based on
Eq. (36) are shown in Figs. 6 and 7. It can be seen that
the theoretical results are in good agreement with the
ellipsometric experimental data (see Fig. 3). The final
value of the surface density is also consistent with the
experimental data. The main distinction between exper-
iment and theory consists in the fact that the wetting
layer begins to grow again at the final stage of deposi-
tion in actual systems. This can be explained by two
factors. First, when the islands reach a certain size, the
elastic stresses give rise to a kinetic barrier for incorpo-
rating the atoms into the islands [16]. In this case of
self-restricting growth, the island growth rate v i

decreases and, correspondingly, the wetting layer thick-
ness increases. Second, dislocation formation can set in

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

0

1

2

3

4

Deposition time, min

T
ot

al
 v

ol
um

e 
of

 is
la

nd
s,

 M
L

W
L

 th
ic

kn
es

s,
 M

L

Fig. 6. Thickness of the wetting layer (WL) and the total Ge
amount in the islands measured in monolayer (ML) units in
relation to the deposition time for the Si(100) surface at T =
500°C. Calculation.
in actual systems. The dislocations reduce the elastic
stresses in the wetting layer and, correspondingly,
increase heq. This can also lead to an increase in the
wetting layer thickness.

4. CONCLUSION

Thus, based on the theoretical and experimental data
obtained, the following conclusions can be made. The
Ge islands on Si(100) nucleate from the atoms of the
wetting layer itself, whereas, on Si(111), they nucleate
from the atoms adsorbed on the wetting layer surface.
During the growth on the (100) surface, the elastic
stresses in the wetting layer constitute the driving force
of the growth. In this case, nucleation is accompanied
by a decrease in the wetting layer thickness. The ther-
modynamic model of the formation of coherent islands,
which is based on the notion of overstress (by analogy
with supersaturation and overcooling), adequately
describes the experimental data on the evolution of
coherent islands and a wetting layer.
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Abstract—The momentum distribution of electron–positron pairs in GaN and AlN has been investigated for
the first time by measuring the one-dimensional angular correlation of the annihilation radiation (1D-ACAR).
The characteristic parameter of the electron density  (the radius of the sphere occupied by an electron) esti-
mated from the experimental data differs noticeably from rs calculated in terms of a standard model of noninter-
acting particles: (AlN) ≈ 1.28rs, and (GaN) ≈ 1.66rs, where rs(AlN) ≈ 1.6091 au, and rs(GaN) ≈ 1.6568 au.
The chemical nature of atoms in the environment of the annihilating positron in AlN and GaN was identified
from the electron–positron ionic radius of Al3+, Ga3+, and N5+ cores, which were determined from the charac-
teristics of the high-momentum component of 1D-ACAR curves. The analysis was based on a comparison of
the electron–positron ionic radii with those considered standard for Al and Ga metals and the related com-
pounds GaP, GaAs, and GaSb. A conclusion is made that positron annihilation dominates in the regions of
vacancy-type “nitrogen antisite”–“vacancy” complexes, [ VGa] and [ VAl], in GaN and AlN, respectively.
© 2002 MAIK “Nauka/Interperiodica”.

rs'

rs' rs'

NGa
+ NAl

+

1. INTRODUCTION

As is known, positrons emitted from a radioactive
source into a sample under study are localized in the
course of their thermalization in regions with negative
effective charge [1]. This charge defines the electron
density around a positron [1, 2] and the electron–
positron ionic radius characterizing the chemical nature
of atoms in the nearest environment of an annihilating
positron [3, 4]. Different point defects in the material
under study exert their influence on the annihilation
parameters, so a positron can be regarded as a particle
probing the electronic structure of a defect [5–7].

In this study, we made a successful attempt at prob-
ing the lattice point defects in AlN and GaN with
positrons. Pairs of gamma quanta, emitted upon elec-
tron–positron annihilation from the vicinity of a defect,
were detected by means of the high-precision measure-
ment of angular correlations [8]. This technique for the
detection of annihilating pairs [9] enables an estimation
of the average density of the annihilating electrons and
definite conclusions concerning the configuration in
which Al and Ga ions are incorporated into the
positron-sensitive defects in AlN and GaN.
1063-7826/02/3610- $22.00 © 201106
2. EXPERIMENTAL PROCEDURE

The resolution of the precision spectrometer of
angular correlations was ≈0.9 mrad [3]. A configuration
with long collimator slits placed before the detectors of
the annihilation-produced gamma quanta provided for
the recording of the so-called one-dimensional angular
correlation of the annihilation radiation (1D-ACAR) [8,
9]. In the range of detected angles ∆θ ≈ 6–15 mrad, the
statistical error of measurements, which allows correct
determination of the electron–positron radius, varied
from ≈1.1 to ≈5.3%. The screening of detectors and the
device stability provided a very low background level,
less than 0.4% of the count rate at the peak of the
1D-ACAR curve [3, 5]. The 1D-ACAR curves were
recorded at a temperature of 18°C.

The derivative of the 1D-ACAR function with
respect to momentum, which is necessary for the deter-
mination of the momentum distribution density of the
electron–positron pairs, was calculated using a stan-
dard smoothing procedure of the 1D-ACAR spectra [8,
9]. An annealed chemically pure Al sample was used to
determine the electron–positron radius of the Al3+ ion
core, which served as a reference in the study of AlN.
To determine reliable values of the electron–positron
02 MAIK “Nauka/Interperiodica”
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ionic radius in GaN, its value was compared with the
relevant data obtained for chemically pure Ga and
binary semiconductors GaP, GaAs, and GaSb. Ga (of
99.99999% purity) samples were Czochralski-grown
n-type GaP:S, GaAsP:Te, and GaSbP:S with a carrier
density n ≈ (3–7) × 1017 cm–3 at T = 300 K, and with a
dislocation density no higher than ≈104 cm–2. The largest
full width at half-maximum (FWHM) of the 1D-ACAR
curves was θ1/2(GaP) ≈ 5.1 mrad, θ1/2(GaAs) ≈
4.95 mrad, and θ1/2(GaSb) ≈ 4.5 mrad, which is typical
of perfect crystals [4, 10].

3. 1D-ACAR AND THE ELECTRON MOMENTUM 
DISTRIBUTION IN ALN AND GAN

The 1D-ACAR curves for AlN and GaN are typical
of crystals with ionic–covalent atomic bonding in the
crystal lattice (see Fig.1). The absence of a specific
“narrow” component in the 1D-ACAR curves attests to
the very low probability of positronium formation and
annihilation in the nitrides under study. Evaluation of
the average density of valence electrons in terms of a
model of noninteracting particles in an isotropic Fermi
gas of electrons [1] yields rs(AlN) ≈ 1.6091 au and
rs(GaN) ≈ 1.6568 au (rs is the radius of a sphere occupied
by an electron). The FWHM (θ1/2) of the 1D-ACAR
spectral curve, which was calculated from the relation

θ1/2 (mrad) ≈ 9.923  (au) [10], is slightly larger for
AlN than for GaN: θ1/2(AlN) ≈ 6.17 mrad and
θ1/2(GaN) ≈ 5.99 mrad. In both materials, the experi-
mental θ1/2 values appeared to be smaller than the cal-
culated ones: θ1/2(AlN, exp.) ≈ 5.85 mrad and
θ1/2(GaN, exp.) ≈ 4.9 mrad.

For the electron densities specified above, the
positron screening length is only weakly dependent on
the chemical nature of atoms in the solid state; it equals
≈2 au [11]. The increased electron density around a
positron slightly enhances the annihilation rate. This
effect is manifested much more weakly in 1D-ACAR
parameters than in the positron lifetime measurements
[2], so it will not be discussed further.

A thermalized positron makes a relatively small
contribution to the total momentum of the annihilating
pair , and the principal parameters of the pair

momentum distribution are determined by the electron
momentum . The probability of detecting a pair of

annihilation quanta with a total momentum p ≈  ≈
 is proportional to the average momentum:

(1)

where ρ(p) is the momentum distribution density for
electrons, p ≈ pz ≈ θm0c; θ is the detection angle of a
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pair of annihilation gamma quanta; pz is the momentum
component perpendicular to the axis of detector rota-
tion that sets the angle of the recording of the annihi-
lation radiation by detectors (for details, see [8] and
references therein). In the nitrides under study, AlN
and GaN, the function ρ(p), reconstructed from the
1D-ACAR data, demonstrates a form typical of the
Fermi distribution, which is usually observed in mate-
rials with a high ionic component in their chemical
bonding (see Fig. 2 and Ref. [6]). The Fermi momen-
tum pF corresponds to the FWHM of the momentum
distribution, it is about (6.7–6.9) × 10–3m0c in AlN and
(5.0–5.2) × 10–3m0c in GaN.

The quantity , estimated from the relation pF ≈
13.99/  [1] using the above-listed pF , appeared to be
significantly smaller than rs predicted from the model

of noninteracting particles: (AlN) ≈ 1.28rs and

(GaN) ≈ 1.66rs (see Fig. 3). Noteworthy is the con-
siderable deviation of these data from the numerical
values of the ratio { /rs} for reference “defect-free”

materials, for which { /rs} ≈ 1. The discovery of a
strong decrease in the electron density around a
positron (≈28% for AlN and ≈66% for GaN) indicates
that positron annihilation proceeds in the vacancy-type
defects.
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Fig. 1. 1D-ACAR curves for AlN and GaN (shifted along
the ordinate axis for convenience): I(θ) is the count rate nor-
malized to its maximum, pz ≈ θm0c, and θ the detection
angle for a pair of annihilation-produced gamma quanta (pz
is the momentum component along the selected direction,
see the text and [8, 9]).
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Fig. 2. The electron–positron pair momentum distribution
density ρ(p) reconstructed from 1D-ACAR data for AlN
and GaN; pF is the Fermi momentum (see the text, and also
[9] and references therein).

0.9

GaN

3.0

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

3.5 4.0 4.5 5.0 5.5 6.0 6.5
Lattice constant, 10–8 cm

r's/rs, arb. units

AlN

Al Ga GaPGaAs GaSb

Fig. 3. The deviation of the electron density parameter 

obtained in 1D-ACAR measurements for nitrides and
related materials from the rs values calculated in terms of
the standard model of independent particles [1]. Arrows
indicate the decrease in electron density in AlN and GaN
due to the positron annihilation in the vicinity of vacancy-
type defects.

rs'
4. ANGULAR CORRELATION 
OF THE ANNIHILATION RADIATION EMITTED 

FROM THE VICINITY
OF ALN AND GAN ION CORES

Pairs of quanta with a high total momentum are gen-
erated in the annihilation of positrons with ion core
electrons; therefore, the momentum distribution den-
sity ρ(p) reconstructed from the 1D-ACAR data is not
limited by the Fermi momentum pF (see Figs. 1 and 2).
Since the ion core shell electrons largely retain the
atomic character of their wave functions, the momen-
tum range p > pF contains information related to the
chemical nature of atoms in whose cores positron anni-
hilation proceeds. The numerical values dI(p)/pdp ≈
ρ(p) reconstructed from the experimental data for the

range 0 ! r <  correlate well with the data calcu-
lated from the known relation [1, 4, 7, 12]:

(2)

where p = "k, pF = "kF , k is the electron wave vector,
and α is the most probable distance between the
nucleus and the electron at the moment of its two-quan-
tum annihilation with a positron. Usually, the electron–
positron ionic radius rm ≈ α is determined, which is a
parameter of the high-momentum component of an
1D-ACAR curve [1]. The data obtained in the investi-
gations of the mentioned 1D-ACAR component for
ionic crystals and oxides [1,12], metals [1, 4], diamond-
like semiconductors [4, 7], and high-temperature super-
conductors [6] show that the rm in the studied materials
is approximately equal to the ionic radius of a core hav-
ing the largest size and the smallest charge. To deter-
mine the chemical nature of atoms, the electron cores of
which experience position annihilation in the nitrides
under study, we have compared the rm values for GaN
and AlN with the data obtained from reference Al and
Ga, and from diamond-like GaP, GaAs, and GaSb semi-
conductors related to our nitrides.

It was established that the parameters rm(Al3+) ≈
0.519 ± 0.011 Å and rm(Ga3+) ≈ 0.584 ± 0.015 Å for Al
and Ga correlate well with commonly accepted ionic
radii, ri(Al3+) ≈ 0.53 Å and ri(Ga3+) ≈ 0.62 Å [13].
A similar situation was observed for the most perfect
GaP and GaAs crystals, which are the closest struc-
tural analogues of the studied nitrides AlN and GaN
(see Fig. 4). In this case, the ratios rm(GaP)/rm(Ga3+)
and rm(GaAs)/rm(Ga3+) are close to unity: 1.0086 and
1.054, respectively. If the value rm(Ga3+) ≈ 0.584 ±
0.015 Å in Ga metal is used as a reference, the devia-
tions are less than 1% for GaP and about 5% for GaAs.
A somewhat larger deviation (≈7%) was obtained for
GaSb, probably because of the presence of positron-
sensitive vacancy-type defects in the sample (this prob-
lem will be discussed elsewhere).
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Thus, the electron–positron ionic radius rm in the
studied semiconductors GaP, GaAs, GaSb is defined by
the chemical nature of the outer 3d electron shell of
Ga3+, rather than by that of the P5+, As5+, or Sb5+ ion
cores. The positron annihilation in Ga3+ ion cores is
reliably detected in 1D-ACAR measurements, because
a positron is localized during its lifetime in the region
of effective negative charge of the P, As, or Sb chemical
bonds and has four Ga atoms in the first coordination
sphere; a similar conclusion is also valid for In3+ ion
cores in “perfect” InP, InAs, and InSb single crystals [4].

Nevertheless, a different situation has been observed
in the studied AlN and GaN samples (see Fig. 4). In this
case, the ionic radius rm differs significantly from the ref-
erence value: the ratio rm(AlN)/rm(Al3+) is about 1.249,
and a somewhat smaller value of 1.108 is obtained for
rm(GaN)/rm(Ga3+). In other words, the electron–positron
radius of Al3+ and Ga3+ ion cores exhibits a consider-
able increase, by ≈25% in AlN and ≈11% in GaN. It is
necessary to note that a similar result was obtained for
GaN when related III–V compounds were used as ref-
erence samples: {rm(GaN)/rm(GaP)} = 1.0986 and
{rm(GaN)/rm(GaAs)} = 1.0986. These two circum-
stances, the electron–positron ionic radius rm increasing
with respect to the selected reference value and the
above-mentioned decrease of the electron density in the
interatomic space around the positron, indicate that the
annihilation of positrons with the electrons of Al3+ and
Ga3+ ion cores proceeds in the regions of vacancy-type
defects in AlN and GaN, respectively.

It should be emphasized here that, in spite of a con-
siderable increase in rm , its value characterizes the
positron annihilation with the electrons of the outer
shells of Ga3+ or Al3+ ion cores. This conclusion follows
from a comparison of rm with the ionic radius ri: the
ratio of these quantities is very close to unity,
{rm(GaN)/ri(Ga3+)} ≈ 1.044 and {rm(AlN)/ri(Al3+)} ≈
1.2147. Positrons virtually do not annihilate with the
electrons of the N5+ ion core owing to a stronger Cou-
lomb repulsion.

It is important to note that the obtained rm values
cannot be assigned to positron annihilation in isolated
vacancies in the crystal lattice of the studied nitrides.
Indeed, isolated Ga or Al vacancies do not include Ga3+

or Al3+ ions in their nearest environment, while positron
capture by a positively charged isolated nitrogen
vacancy is hardly probable.1 

Therefore, the consistent interpretation of the whole
set of experimental data demands that a hypothesis be

1 Calculations show that the wave function of a positron captured
by an anion vacancy in binary compounds tends to extend into the
interstitial space; bound states of a positron do not exist at all in
isolated N, C, and O vacancies in GaN, SiC, and MgO com-
pounds [2].
SEMICONDUCTORS      Vol. 36      No. 10      2002
put forward about positron annihilation in the region of
a vacancy–impurity complex.2 

Let us assume that in the nitrides under study the
complex consists of an anion vacancy and a cation and
that the latter occupies an antisite position. In this con-
figuration, a positron is localized in the free volume
formed by three nitrogen cores and one cation core.
Evidently, in this situation, positron annihilation in the
region of charge associated with nitrogen atoms domi-
nates, and the contribution to the angular correlation,
made by the annihilation emission from cations, must
be several times smaller than the observed one, which
is in the range of 21–28% for the nitrides under study
and the reference materials [4].

Thus, the discussed configuration of positron-sensi-
tive defects seems of little use for the interpretation of
experimental data.

In this context, a vacancy–impurity complex con-
sisting of a cation vacancy, which has captured the
nearest nitrogen atom with the formation of an antisite,
and a nitrogen vacancy, [NGaVN] in GaN and [NAlVN] in
AlN, may deserve consideration. It is reasonable to
assume that the effective charges of cation and anion
vacancies are mutually compensated in a “nitrogen

2 Theoretically [2], an anion–cation divacancy forms the volume
for the effective localization of a positron; the probability of the
formation of isolated divacancies seems low in GaN and AlN, as
well as in the majority of binary compounds whose chemical
bonds have a high ionicity, though different models for multi-
vacancy complexes are sometimes used for the interpretation of
experimental data on radiation defects in semiconductor com-
pounds (for more detail, see [14]).
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atom antisite” + “nitrogen vacancy” complex; in this
case, the free volume for a captured positron is formed
by three cation cores (Ga3+ in GaN, Al3+ in AlN) and
one nitrogen atom. This atomic environment provides
conditions for the observed positron annihilation in the
space between cation cores, where the characteristic
length rm is increased and the electron density is reduced.
Here, it is necessary to note that similar complexes in
GaN have been theoretically discussed in [15].

5. CONCLUSION

A pioneering study of 1D-ACAR curves in AlN and
GaN nitrides has been performed. The electron density
estimated from the obtained data on the electron–
positron pair momentum distribution yields consider-
ably lower values than the rs predicted by the model of
independent particles for an ideal Fermi gas: (AlN) ≈
1.28rs and (GaN) ≈ 1.66rs . The obtained data present
convincing evidence that positron annihilation pro-
ceeds in the vicinity of vacancy-type defects.

The data analysis that draws on the results of sys-
tematical 1D-ACAR studies in Al and Ga metals and
diamond-like GaP, GaAs, and GaSb semiconductors
leads to the conclusion that the annihilation of positrons
with the outer shell electrons of Ga3+ in GaN and Al3+

in AlN is dominant. A hypothesis of positron annihila-
tion in the vicinity of vacancy complexes with a “nitro-
gen atom antisite” + “nitrogen vacancy” configuration,
[NGaVN] in GaN and [NAlVN] in AlN, is suggested.
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Abstract—The influence of a shallow-level donor impurity on the temperature dependence of microhardness
and the photomechanical effect in single-crystal Si is investigated. It is demonstrated that, as the impurity con-
centration increases, the temperature dependence of the microhardness measured in the dark changes. The mag-
nitude of the photomechanical effect and the temperature range of its existence decrease. The data obtained are
explained on the basis of the mechanism of decreasing the microhardness with increasing the temperature due
to increasing the density of phonons and antibonding quasiparticles. In this case, the concentration redistribu-
tion of antibonding quasiparticles that are induced by band-to-band transitions and transitions from impurity
levels, which exert a different antibonding action, is responsible for the variations observed in the photomechan-
ical effect. © 2002 MAIK “Nauka/Interperiodica”.
The mechanism of the photomechanical effect in
semiconductors was suggested previously [1–5]. This
effect consists in the variation in the microhardness of
the material under illumination [6]. With the purpose of
further investigating this mechanism, the influence of
shallow-level impurities on the temperature depen-
dence of microhardness and the photomechanical effect
was investigated in this study using single-crystal Si.

Experiments were carried out using single-crystal
dislocation-free Si(100):P with a dopant concentration
of 2 × 1013, 6 × 1016, and 5 × 1018 cm–3. The procedure
for preparing the sample surface and microhardness
measurements in the dark and under irradiation with
white light were described previously [4]. The design
of the heater, which allows attainment of the required
temperatures of the samples under investigation, was
also described previously [1]. The indenting load was
equal to 25 g. For all measurements, the large diagonal
of the Knoop pyramid coincided with the 〈100〉  direc-
tion in the (100) plane.

The experimental results are shown in Fig. 1. In the
temperature range under investigation (T), it is conven-
tionally possible to distinguish the low- and high-tem-
perature regions, which are separated by the cross point
of the temperature dependences of microhardness (Hk)
for the intrinsic and extrinsic semiconductors. It can be
seen that at low temperatures, the higher the concentra-
tion of impurity atoms, the lower the dark microhard-
ness, whereas at high temperatures, the inverse relation-
ship is observed. With increasing the impurity concentra-
tion, the magnitude of the photomechanical effect, which
is determined as the difference between the dark micro-
hardness and the microhardness under illumination, is
1063-7826/02/3610- $22.00 © 21111
decreased. The temperature range where the photome-
chanical effect exists also decreased.

To explain the experimental data obtained, it should
be taken into account that a decrease in the microhard-
ness of a semiconductor as the temperature is increased
takes place due to an increase in the phonon density
and the concentration of antibonding quasiparticles
[3, 4, 7], which weaken chemical bonds.1 In this case,
thermally generated antibonding quasiparticles are
responsible for a decrease in the dark microhardness,
whereas the photogenerated antibonding quasiparticles
are responsible for decreasing the microhardness under
illumination.

Each electron or hole formed due to band-to-band
transitions weakens the interatomic bond by the magni-
tude of the energy difference between E0 and the rele-
vant band edge [5]. Here, E0 is the energy correspond-
ing to the energy level of noninteracting atoms [9]. For
this reason, the magnitude of this weakening is equal to
Eg(T)/2, where Eg(T) is the band gap of the semicon-
ductor under investigation at a given temperature.2 Due
to this, an increase in the specific energy of chemical
bonding for an intrinsic semiconductor crystal at a
given temperature is as follows:

(1)

1 For semiconductors, the valence band consists of bonding orbit-
als, whereas the conduction band consists of antibonding orbitals.
For this reason, free electrons and holes in antibonding and bond-
ing bands, respectively, are antibonding quasiparticles [8].

2 For simplicity, no allowance is made for the difference in the
weakening action of an electron and hole.

∆E ∆Ein≡ ni pi+( )Eg T( )/2.=
002 MAIK “Nauka/Interperiodica”
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Here, ni and pi are the equilibrium electron and hole
densities.

Additional antibonding quasiparticles, which are
formed due to the ionization of impurity atoms, exist at
room temperature in semiconductors which contain
shallow impurity centers. It was demonstrated previ-
ously that these antibonding quasiparticles cause the
microhardness of single-crystal Si to decrease [5]. In
this case, it should be taken into account that the weak-
ening of chemical bonds by antibonding quasiparticles
in the presence of ionized impurities is less than for the
antibonding quasiparticles formed only by band-to-
band transitions in an intrinsic semiconductor. This is
associated with the fact that the charge of the ionized
impurity is screened by free carriers, and the interaction
of antibonding quasiparticles with the bond charge is
reduced. This variation in the bond energy can be esti-
mated to a first approximation [10]. To do this, it is nec-
essary to assume that each singly charged impurity
atom effectively keeps one antibonding quasiparticle
only, whose bond-weakening effect is less than that of
antibonding quasiparticles which conventionally do not
interact with the impurity. In this case, we may formally
assume that there are two types of antibonding quasi-
particles with a differing bond-weakening action. The
antibonding quasiparticle, which is formed due to the
ionization of a shallow impurity center, will weaken the
interatomic bond by the magnitude Eim < Eg(T)/2. In
this case, Eim does not coincide with the impurity-level
energy.3 The density of electrons that exert the lesser
bond-weakening effect is equal to the impurity concen-
tration.

3 Evaluation of the bond-weakening effect of the electrons or holes
generated from impurity atoms and its temperature and concen-
tration dependence are the subjects of a special investigation
which is presently being conducted.
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Fig. 1. Temperature dependence of the “dark” microhard-
ness and the photomechanical effect in Si with a P concen-
tration of (1, 1') 2 × 1013, (2, 2') 6 × 1016, and (3, 3') 5 ×
1018 cm–3. (1–3) The measurements in the dark, and
(1'−3') the measurements under illumination.
The shallow-level impurities in semiconductors give
rise to an electron or hole concentration in excess of the
equilibrium one and, thus, change the ratio between the
equilibrium electron n and hole p concentrations, since

np =  [11]. As a result, as is demonstrated below,
these impurities affect the bond-weakening effect of
electrons and holes. Indeed, if a semiconductor con-
tains shallow-donor impurity atoms, which introduce
an electron density of nd into the conduction band, then
the total electron density n = ni + nd . At the same time,

the total hole density p = /n, which is less than pi . In
this case, the total decrease in the specific energy of
chemical bonds due to antibonding quasiparticles,
which are formed by both band-to-band transitions and
transitions from impurity levels, can be written for
donors (Eim = Ed) as follows:

(2)

Here, Ed is the energy by which one electron reduces
the binding energy of the crystal due to the ionization
of the impurity level.

Depending on the temperature of the semiconductor
under investigation and the concentration of the shal-
low-donor impurity atoms in this semiconductor, if the
inequality 

(3)

is fulfilled (or, similarly, niEg(T)/2 < nEg(T)/2 + paEa in
the case of acceptor impurities), then the presence of
impurities decreases the specific bond-weakening
effect of antibonding quasiparticles, whereas, with the
inverse inequality, this effect is enhanced. For the low-
temperature range, when the densities ni , pi are low
compared to nd, inequality (3) is fulfilled. In this case,
the microhardness in impurity semiconductors is deter-
mined mainly by antibonding quasiparticles with a
smaller bond-weakening effect due to the presence of
impurity atoms. However, if their concentration is suf-
ficiently high, the microhardness is lower compared to
that in an intrinsic semiconductor. For the high-temper-
ature range, the inverse variant of inequality (3) is valid.
In this case, the densities ni and pi are high enough to
affect the microhardness of an extrinsic semiconductor.
However, their bond-weakening effect, as was noted
above, is reduced due to the presence of impurities. In
a formal context, this is taken into account by decreas-
ing the density of holes formed by the band-to-band
transitions (in our experiment). For this reason, the
microhardness of extrinsic semiconductors is higher
compared to that in an intrinsic semiconductor at the
same temperature. To date, no rigorous quantitative
description of the microhardness dependence on the
chemical-bond energy exists. In this context, we can
rely on a qualitative comparison, i.e., on the correlation
between variations in these quantities in relation to
experimental conditions. The temperature dependences
1/∆E for Si with various concentrations of shallow

ni
2

ni
2

∆E ∆Eim≡ niEg T( )/2 pEg T( )/2 ndEd.+ +=

piEg T( )/2 pEg T( )/2 ndEd+<
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impurity atoms are shown in Fig. 2. The estimation
yields Ed = 10–4 eV, which is obtained from the equality
condition ∆Eim = ∆Eim for the cross point of the temper-
ature dependences of microhardness for the extrinsic
and intrinsic Si crystals. The comparison of Figs. 1 and
2 indicates that there is a correlation between variations
in microhardness and 1/∆E in relation to the tempera-
ture and concentration of shallow impurity atoms.

Based on this reasoning, it is possible to evaluate the
bond-weakening effect of antibonding quasiparticles

1
2
3

T, °C

4

100

10– 1

10– 2

10– 3

10– 4

10– 5

10– 6
0 50 100 150 200 250 300

1/∆E, eV–1 cm3

Fig. 2. Dependence of the inverse magnitude of a decrease
in the specific energy of chemical bonds on temperature for
Si with various concentrations of shallow donor impurities.
Notations (1)–(3) are the same as in Fig. 1; (4) corresponds
to an intrinsic semiconductor. As can be seen, the distinction
between samples (1) and (4) is negligibly small. For this rea-
son, sample (1) can actually be considered as intrinsic.
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that are photoexcited from ionized impurity atoms.
This effect plays the main role in reduction of the pho-
tomechanical effect as the concentration of shallow
impurity atoms increases, which was observed previ-
ously [5].
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Abstract—It is shown that the representation of neutron-irradiation-produced defects in the form of divacancy
D clusters with a tetravacancy core adequately describes the observed neutron-irradiation-produced effects in
float-zone silicon. It is also predicted that the complete-depletion voltage decreases for a dopant concentration
exceeding a critical value; this decrease is due to “contraction” of the outer region of the cluster’s space charge.
The magnitude of the expected effect is determined by the factor ~[1 – (rn/rcl)

3]–1, where rn and rcl are the radii
of the core and cluster, respectively. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Numerous theoretical and experimental studies of
ion-irradiated semiconductors [1–4] suggest that varia-
tion in the properties of these materials are generally
caused by composite defects (complexes, clusters, and
disordered regions) formed as a result of interaction of
mobile primary radiation defects (vacancies and inter-
stitial atoms) with each other and with previously
formed defects. However, progress in studying the
complex defects is retarded to a great extent by the lack
of experimental tools for the observation and identifica-
tion of the majority of complex defects, except for a
comparatively small number of simpler defects, such as
the A and E centers, divacancies, or the defects that pos-
sess specific properties (for example, paramagnetism in
the case of tetravacancies). This makes it impossible to
test quantitatively in full measure the existing theoreti-
cal models. As a result, theoretical models are, as a rule,
approximate. The diffusion–reaction model of the sta-
ble-cluster formation can also be treated as a certain
approximation because the role of the cascade stage of
defect formation is underestimated in this model [2, 3].
However, quantitative tests for the applicability of this
approximation have not been derived due to the severity
of the problem. It is these difficulties that are apparently
responsible for the lack of an adequate explanation of
various neutron-irradiation-induced effects in float-
zone silicon; these effects include the ultimate position
(pinning) of the Fermi level [5, 6], conductivity-type
inversion [7], the behavior of the effective concentra-
tion and the reverse current [8], and direct and reverse
annealing [8–10].
1063-7826/02/3610- $22.00 © 21114
The aim of this study is to present a model of neu-
tron-irradiation-produced defects in float-zone sili-
con which adequately describes neutron-irradiation-
induced effects.

Numerous experimental data indicate that [2, 11]
the radiation defects with the highest concentration are
divacancies, these being the main components of stable
vacancy clusters. In the diffusion–reaction approxima-
tion, the kinetics of formation of a divacancy D cluster
is governed essentially by the ratio between the vacan-
cies' recombination and diffusion times λ = τR/τD =
DV/βVVNVL2, where DV and NV are the diffusion coeffi-
cient and the concentration of vacancies, respectively;
βVV is the probability of an elementary recombination
event; and L is the characteristic vacancy-cluster (the V
cluster) size. In the case of a “freezing” V cluster, the
radius of a divacancy cluster (a D cluster) is given by
L2 ≈ L[1 – 2exp(1/λ)]. In the case of irradiation with
1-MeV neutrons, the linear dimension of a D cluster is
~50 Å [12].

However, the interpretation of neutron-irradiation-
induced effects on the basis of simple radiation defects
(vacancies [13], divacancies [14], and impurity–
vacancy pairs [15, 16]) using the “donor removal” and
compensation models [7] leads to a discrepancy between
the theory and experimental data [7, 17]. At the same
time, an analysis of the spectra of the electron spin reso-
nance (ESR) in irradiated silicon shows [18–20] that, in
addition to divacancies and impurity–vacancy pairs,
multivacancies are produced by fast neutrons. These
multivacancies represent a family of defects formed
from a chain of neighboring vacancies in a separate
(110) plane (a zigzag configuration). These defects are
002 MAIK “Nauka/Interperiodica”
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stable at room temperature and can give rise to local-
ized bound states in the vicinity of the midgap. Among
the multivacancies, the so-called Si-P3 centers were
identified as tetravacancies [18, 19] and the Si-P1 cen-
ters, as pentavacancies [18–20]. According to a recent
theoretical study [4] of the ring multivacancies Vm with
m = 1, …, 7, these defects, except for the hexavacancy,
introduce deep levels into the band gap. The hexava-
cancy V6 is not a vacancy-like defect and is electrically
inactive.

Processing of the ESR spectra corresponding to the
vacancy–oxygen (VO) complexes by the LCAO (linear
combination of atomic orbitals) method shows [21] that
bound states may appear in the band gap owing to split-
ting of the Si–Si molecular bond, which links the free
sp3 orbitals of two silicon atoms. The bound states cor-
respond to bonding and antibonding orbitals. In the
neutral charge state, there are two electrons with oppo-
site spins at the bonding orbital. An additional trapped
electron is located at the antibonding orbital. In this

model, a positively charged divacancy  is repre-
sented as a state with an unpaired electron at the bond-

ing orbital; for a negatively charged divacancy , such
an electron is localized at the antibonding orbital. The

ground state of a neutral divacancy  is a singlet.

Measurements of the Hall constant show that, in
float-zone silicon, the effect of pinning of the Fermi
level at Ev + 0.39 eV is observed after irradiation with
60Co γ quanta [5] or electrons [22, 23]; at the same time,
the Fermi level is pinned at Ev + 0.48 eV after irradia-
tion with fast neutrons [5, 24]. This effect was attrib-
uted to amphoteric properties of divacancies with the

levels  = Ev + 0.51 eV (or Ec – 0.54 eV) and  =
Ev + 0.27 eV [6, 22, 23]. However, the results of other
studies [24, 25] have indicated that divacancies intro-

duce the level  = Ec – 0.4 eV into the band gap; con-
sequently, the origin of the levels responsible for the
pinning of the Fermi level at Ev + 0.39 eV should differ
from that stated above. The pinning of the Fermi level
indicates that the dominant role in the cluster should be
played by multiply charged amphoteric centers. This
means that both the Fermi level position and the equi-
librium hole concentration in irradiated silicon are con-
trolled by multiply charged centers (for example, diva-
cancies or tetravacancies) and, at the same time, are
independent of the concentrations of these defects and,
consequently, of the integrated irradiation flux.

2. ELECTRONIC STRUCTURE 
OF MULTIVACANCIES

The one-electron approximation used in the analysis
of ESR spectra [13] makes it possible to describe quite
adequately the electronic structure of both isolated
vacancies and defects composed of several vacancies.

V2
+

V2
–

V2
0

E2
– E2

+

E2
–
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At the same time, it follows from theoretical estima-
tions that the many-electron effects should be no less
important than the Jahn–Teller effect itself; as a result,
it is impossible to develop a complete quantitative the-
ory without taking into account electron–electron inter-
action. However, the difficulty with taking into account
the many-electron effects consists in the fact that the
corresponding problem has to be solved self-consis-
tently. To date, no exact solution to such problems has
been found; various approximations have been used.
Certain simplifications, including the defect-molecule
model in the tight-binding approximation, make it pos-
sible to analyze systematically the dependence of the
results on the relative strength of the electron–electron
interaction. This strength depends only on the ratio
between two parameters ∆/U, where ∆ is the energy
splitting of the one-electron states and U is the effective
Coulomb energy of two electrons related to the defect;
these two parameters can be used to express all the
energy differences.

In the defect-molecule model, the multivacancies
Vm in the zigzag configuration are represented in terms
of the molecular bond Si(A)–Si(B) in the 〈111〉  direc-
tion with a distance dAB between the atoms A and B at
the end of the chain of vacancies in the (110) plane [19].
Corrections to the defect-molecule model specify the
one-electron self-consistent calculations, which take
into account both the charge state of the defects and the
correlation effects. In the Haldane–Anderson model
[26] used to study transition-metal impurities in cova-
lent crystals in the Hartree approximation, the shift of
the defect level Ed as the charge state of the defect is
changed by a unit charge is given by

(1)

where M0 is the charge population of the defect site; J
and J' are the intraatomic and interatomic Coulomb
integrals; a and b are the coefficients of linear interpo-
lation of contributions of the bands to the defect charge
state (a ≈ b ≈ 0.2); n is the number of defect states; and
θL is the degree of localization of the bound-state wave
function (θL ≈ 0.6). For remote atoms, interatomic Cou-

lomb terms J' vary in proportion to ~  (J – J' = U =
q2/εeffdAB , where εeff = ε is the dielectric constant). A
value of dM0/dq smaller than unity signifies that the
change in the defect charge by unity results in a small
variation in the electron occupancy of the lattice site at
which this defect resides. This change in the charge
state brings about a variation in the defect level Ed . As
a result, the shift dEL/dq is independent of the Coulomb
contribution U = J – J' and is equal to 0.22 eV for the
average value of n (n ≈ 6–12). This value of dEL/dq is
also corroborated by the results of more sophisticated
calculations (by the pseudopotential method in terms of
the local-density formalism; see, e.g., [27]) and is equal

dEL/dq θLdEd/dq θL J J'–( )dM0/dq= =

≈ Eg 1 2a–( )2/nb,

dAB
1–
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Fig. 1. Many-electron states of multivacancies in the neutral charge state . The distance dAB is calibrated by the number of vacan-

cies between Si atoms at the end of the vacancy chain in the (110) plane.

Vm
0

to 0.21–0.25 eV for a vacancy. The inference that sev-
eral charge states of the defect can give rise to localized
states is confirmed experimentally by the example of
vacancies and impurities of transition and other metals.

In the Hartree–Fock approximation and on the basis
of the Slater determinants, the eigenstates of a two-cen-
ter molecule are classified as ±(∆2 + U2/4)1/2 and ±U/2,
where ∆ is the one-electron splitting which corresponds

to the Si(A)–Si(B) bond and varies as ~  [28] (∆ ≈
1.2 eV for silicon). The symmetric and antisymmet-
ric functions, which form the Slater determinants,
are the basis functions of the representations Σg and
Σu of the point-symmetry group C2v . The multivacancies
V2(D3d  C2h) and V4 have the C2h symmetry, which
is isomorphic to C2v and, consequently, has the same
representation. Such an approximation, which is simple
to deal with in the two limiting cases corresponding to
weak (∆ @ U) and strong (∆ ! U) correlations, are
found to be extremely elaborate when the transition
region 0 < (∆/U) < 1 is to be considered carefully. The
limiting case of weak correlation (of negligibly small
intraatomic repulsion) ∆ @ U corresponds to a conven-
tional energy-band spectrum with one-electron levels.

If the distances between the atoms Si(A) and Si(B)
are large, we have ∆ ! U and the electron–electron
interactions should be taken into account. The limiting
case of strong correlation ((∆/U)  0) implies that
electrons tend to lower their energy and reside at differ-
ent atoms. The ground state turns out to be degenerate.
Excited states correspond to the pairing of electrons at

the same atomic orbital and are located at +U (for 

dAB
2–

Vm
+

and ) and at +2U (for ) in reference to the ground

state. The ground state of a neutral multivacancy  is
a singlet. The spin S = 1 in such a system arises from a
triplet excited state via thermal excitation. The many-

electron states of neutral multivacancies  are illus-
trated in Fig. 1. The ring-multivacancy levels, which are
closest to the midgap (Ei) and are obtained by the [4]
ab initio Hartree–Fock method and by the molecular-
dynamic calculation based on the density functional,
are also shown by the dotted line in Fig. 1. As can be
seen from Fig. 1, multivacancies in the ring configura-
tion do not form levels in the vicinity of the midgap.
Thin lines in Fig. 1 indicate the levels of multivacancies

 for εeff = (ε + 1)/2. An analysis of the ESR spectra
shows [18] that the difference between the spectra of
the V3 and V5 multivacancies may be due to nonequiva-
lence of the Si(A) and Si(B) atoms. An absence of the
effects of motion for the Si-P3 center in the temperature
range T = 77–300 K [18] is apparently also related to a
large distance dAB between the Si(A) and Si(B) atoms. If
the relative magnitude of the interaction effects is char-
acterized by a dimensionless ratio with the parameters
δ/U, where δ is a variation in the energy of the one-elec-
tron state under the effect of the given distortion, the
absence of motion effects for the Si-P3 centers signifies
that multiplet splitting dominates over the Jahn–Teller
effect when the distances between the Si(A) and Si(B)
atoms are large. The difference in the spins of the Si-P3
(S = 1) and Si-P1 (S = 1/2) centers is apparently due to
the fact that the pentavacancies have a ring configura-
tion. A pentavacancy has six nonequivalent configura-

Vm
0 Vm

–

Vm
0

Vm
0

Vm
0
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tions, five of which correspond to a configuration which
is not ringlike. One of these has a zigzag configuration
with a dissociation energy which is lower by 0.05 eV
than that of the ring configuration [4]. Consequently,
several metastable configurations can coexist. There is
a single symmetrically nonequivalent configuration for
a vacancy, divacancy, and trivacancy. A tetravacancy
has four nonequivalent configurations, three of which
correspond to a nonring configuration. This means that
at least two metastable configurations can coexist. Con-
sequently, the tetravacancy in the zigzag configuration
may represent the most probable defect that forms the
levels in the vicinity of the midgap and is responsible
for the pinning of the Fermi level at Ev + 0.39 eV. As
shown below, many experimental data can serve as
indirect corroboration of this result, although, to date,
there have been no direct measurements that identify
the levels in the vicinity of the midgap. Experimentally,
only the divacancy levels have been determined, in
which case the Fermi level is pinned at Ev + 0.48 eV.

3. A CLUSTER MODEL
FOR NEUTRON-IRRADIATION-INDUCED 

DEFECTS

A cluster model for the neutron-irradiation-pro-
duced defects in silicon was first suggested by Gossick
[29]. In combination with the effective-medium
method, this model (with certain corrections) is still
widely used because it is relatively simple [2]. In the
spherical approximation and for a uniform distribution
of defects, Gossick used Poisson and electroneutrality
equations for a system consisting of a cluster and a n-Si
matrix to obtain

(2)

for LDm ≤ rcl ! rscr ; the depth and width of the potential
shell were calculated to be

(3)

(4)

where LDm = (εε0kT/q2Nm)1/2 is the Debye screening
length; ε0 is the permittivity of free space; ε is the rela-
tive permittivity; ϕ(r) is the potential, which is a solu-
tion to the Poisson equation; ψ is the difference
between the Fermi energies outside and inside a cluster;
q is the elementary charge; k is the Boltzmann constant;
Nm is the electron concentration in a cluster; ND0 is the
dopant concentration; rscr is the outer radius of the
space-charge region (SCR); r0 is the inner radius of the
SCR; and rcl is the cluster radius. The asymptotic state
of neutron-irradiated silicon is that of compensated
intrinsic material. The quantities rcl and ψ are specified,
whereas the quantities r0 and rscr are unknown. It was
assumed initially [29] that the potential shells were
very deep, qψ @ kT, and that the penetration depth of

Nm rcl
3 r0

3–( ) ND0 rscr
3 rcl

3–( ),=

ϕ rscr( ) ϕ r0( )– ψ,=

rscr
3 3εε0rclψ/qND0,=
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electrons at the outer diameter r = rscr was negligibly
small, ∆r ! rcsr . In more accurate models accounting
for an additional contribution ~2kT/q made by the tails
of the majority-carrier distribution at the outer diameter
of the potential shell, the quantity ψ is replaced by ψ –
2kT/q.

A detailed study of the defect-production mecha-
nisms shows that the initial stage of the spatial–tempo-
ral separation of primary radiation defects (vacancies V
and interstitial atoms I) is no less important in the for-
mation of vacancy clusters than the diffusion–reaction
stage. The latter includes the intracascade annealing
(recombination) of closely spaced V–I pairs and the
subsequent diffusion–reaction mechanism, which
accounts for a large difference in the diffusivities of
vacancies and interstitial atoms. For both mechanisms
of the diffusion–reaction stage, only a small fraction of
the defects (V and I) initially formed in a cascade sur-
vives. In fact, the concentration of closely spaced V–I
pairs is higher than their average concentration since, as
the energy of the defect-producing particle becomes
lower, the mean distance between successive collisions
decreases. Therefore, there is a high probability that the
closely spaced V–I pairs annihilate or the closely
spaced vacancies combine into the V2 or Vm complexes.
Since the annihilation of V–I pairs is limited by diffu-
sion with an activation energy that is higher than the
barrier for the trapping of a vacancy by another vacancy
[30], the reaction V + V  V2 will be dominant. Ini-
tially, a divacancy D cluster is formed from a two-
vacancy V cluster (V + V  V2); then, a tetravacancy
T cluster is formed from two divacancy D clusters (V2 +
V2  V4). Since the divacancies are almost immobile
at room temperature, the V2 + V2  V4 reaction lim-
ited by the interaction event can proceed only for the
divacancies separated by a distance no larger than the
corresponding capture radius. The formation rate of tet-
ravacancies is proportional to the squared concentration
of divacancies, so that the main part of a T cluster is
formed in the D-cluster region where the divacancy con-
centration is highest (i.e., in the central region). For short-
range forces of interaction between identical defects
(divacancies) with concentration N2 ≈ 1020 cm–3, the tet-
ravacancy concentration is estimated at ~1019 cm–3. Con-
sequently, divacancies and tetravacancies will be mainly
formed in appreciable concentrations, with the diva-
cancy concentration being predominant. This is consis-
tent with the data on the ion irradiation of silicon (the
highest concentration of divacancies is ~7 × 1019 cm–3

[3], and that of tetravacancies is ~4 × 1019 cm–3 [31]).

The previous consideration indicates that a cluster
consists of divacancies with traces of tetravacancies at
the cluster center. A space-charge region (SPR) is
formed around the cluster as a result of a difference in
the Fermi level positions within and outside the cluster.

The energy diagram of a structure consisting of a
cluster and SPR is illustrated in Fig. 2. In the spherical



1118 ERMOLOV et al.
Ec

Ei

Ev rn

r0

rcl

rscr

qψn0

q(ψn0 – 2ψí)

Fig. 2. Potential contour of the conduction and valence bands in a cluster and in its surroundings. The region corresponding to the
electron penetration ~2kT is hatched.
approximation, this structure fills a (1 – η) fraction of
the crystal volume; here, η = exp(–v scrΣeffΦ) is the
undamaged fraction of the crystal volume, v scr is the
SCR volume according to (4), Σeff = nclΣ, Σ = σSiNSi is
the macroscopic scattering cross section of neutrons in
silicon, ncl is the average number of clusters, and Φ is
the integrated flux of neutrons. The product of the
donor concentration in n-Si by the undamaged fraction
of the n-Si volume is the effective donor concentration:

 = η.

Similarly, the fraction of the crystal volume unoccu-
pied by clusters is given by χ = exp(–vClΣeffΦ), and the
fraction of the crystal occupied by clusters is (1 – χ) ≈
v clΣeffΦ since v clΣeffΦ ! 1, where v cl is the cluster vol-
ume. The system consisting of a cluster and SCR occu-

pies the volume va = (4π/3) , which is governed by the
negative (inner) part of the SCR. According to (2)–(4),
the number of negatively charged defects in the unit
solid angle for rscr @ rcl and ∆r = rcl – r0 ! rcl is given by

(5)

where Nm is the average concentration of defects in a
cluster within the range ∆r = rcl – r0, ψn = ψn0 – 2ψT,
qψT = kT, and ψn0 is the Fermi level position in refer-
ence to the midgap in n-Si. The condition ∆r = rcl – r0 !
rcl implies a plane approximation to the solution of the
Poisson equation in the range r0 < r < rcl . It follows
from (5) that the inner radius of the SCR is given by

(6)

NDeff
ND0

r0
3

Nm rcl
3 r0

3–( ) ND0
rscr

3 rcl
3–( ) 3εε0rclψn/q,= =

r0 rcl 1 3εε0ψn/qNmrcl
2–( )1/3

.=
Taking into account that N2(  – ) > Nnm , where
Nnm is the defect concentration in the cluster core and rn

is the core radius, we obtain the effective acceptor con-
centration  as the product of the divacancy concen-

tration N2 by v anΣeffΦ, where v an = (4π/3)(  – ); i.e.,

(7)

The resulting effective carrier concentration up to
inversion is given by

(8)

where the acceptor-introduction constant is represented as

(9)

and the donor-removal constant is given by

(10)

After inversion (Φ > Φinv), the effective charge-car-
rier concentration is independent of impurities in Si and
is governed only by the cluster radius rcl and by the low-
est impurity concentration  (ψnmin = 2ψT) ≈ 2.4 ×
1011 cm–3 (T = 300 K) at which a depletion region can
exist; i.e., we have

(11)

r0
3 rn

3 rn
3

NAeff

r0
3 rn

3

NAeff

=  4π/3( )N2 rcl
2 1 3εε0ψn/qN2rcl

2–( ) rn
3–[ ]Σ effΦ.

Neff = Neff.c = NDeff NAeff.c+  = ND0 cΦ–( )exp bcΦ,+

b bc=

=  4π/3( )N2Σeff rcl
2 1 3εε0ψn/qN2rcl

2–( ) rn
3–[ ] ,

c v scrΣeff 4πεε0rclψnΣeff/qND0.= =

ND0min

Neff NAeff . a baΦ,= =
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where the acceptor-introduction constant b is given by

(12)

For  ≈ (2–50) × 1011 cm–3, rcl ≈ 20 Å, N2 ≈ 7 ×
1019 cm–3, and Σeff ≈ 0.33 cm–1, the values of c and b
calculated using formulas (9), (10), and (12) are in good
agreement with experimental data: c ≈ (5–80) ×
10−14 cm2, ba ≈ 0.05 cm–1, and bc ≈ 0.012–0.015 cm–1.
Since we do not specify a precise distribution of
defects, the defect concentration Nm and the radii of
the cluster rcl and SCR rscr are effective (average)
quantities.

Representation of neutron-irradiation-produced
defects as insulator inclusions is quite realistic if
v scr(cl)ΣeffΦ ! 1, and it is approximate in the vicinity of
inversion, in which case v scrΣeffΦ ≈ 1. The inversion-
inducing integrated flux Φinv can be determined from
the condition  = ; i.e.,

(13)

The value of Φinv can be determined approximately
from the condition  = 

(14)

It is also noteworthy that, according to (5), the clus-
ters are stable if the defect concentration in them and
the cluster radius satisfy the condition

(15)

i.e., if the cluster secures the equilibrium potential at a
value larger than 2ψT at the point r0 = 0.

The presence of the cluster core manifests itself if
the dopant concentrations ND0 are such that the SCR
inner radius reaches the core radius rn . As (ψn0)
increases, the depletion radius r0 (6) decreases; corre-
spondingly, the quantity ∆r0n = r0 – rn also decreases. If
∆r0n  0, a negative charge fills the entire cluster vol-
ume. This means that the amount of negative charge of
divacancies in a D cluster is insufficient for maintaining
the total potential ψ = ψn0. The dopant concentration
ND0n(ψn0n), at which the negative charge fills the entire
cluster volume, can be determined from equality (6) for
r0 = rn; i.e.,

(16)

A further increase in (ψn0) would result in a
decrease in the SCR radius: rscr n < rscr , where rscr n is the
SCR radius in the presence of the core. It follows from

b ba=

=  4π/3( )N2Σeff rcl
3 1 3εε0ψnmin/qN2rcl

2–( ) rn
3–[ ] .

ND0

NDeff
NAeff

ND0 cΦinv–( )exp bcΦinv.=

NDeff
ND0min

Φinv 1/c( ) ND0/ND0min( ).ln=

Nmrcl
2 106 cm 1– ,≥

ND0

ψnn qN2rcl
2 /3εε0( ) 1 rn/rcl( )3–[ ] .=

ND0
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(8) that the relative variations in the ratio (rscr/rscr n)3

and, correspondingly, in c and b [see (9), (10), (12)] are
defined by the quantity

(17)

For the core radius rn ≈ (0.7–0.9)rcl , we have R ≈
1.5–3.7; at the same time, ND0n ≈ 8 × 1012 cm–3 for rn =
0.8rcl . According to the effective-medium model, a
decrease in the SCR radius brings about an increase in
effective conductivity and a reduction in the charge-
carrier scattering; consequently, the charge collection
becomes more efficient. Conceivably, it is this effect
that causes the parameters c and b to decrease in the
samples with a resistivity of ρ ≤ 500 Ω cm [10, 32];
however, further experimental verification is needed.

The behavior of the reverse current is also consis-
tent with the suggested cluster model. In the Shock-
ley–Read approximation for recombination, the major
contribution to the generation current is made by clus-
ters; i.e.,

(18)

Here,

(19)

is the degradation constant; σ ≈ σn ≈ σp are the capture
cross sections for electrons and holes, respectively; Nm

(Nnm) is the multivacancy concentration in a cluster (the
cluster core); vT is the thermal velocity; ni is the charge-
carrier intrinsic concentration;  = (ex + e–x)/2;
and x = (Ei + Em)/kT, where Em and Ei are the multiva-
cancy energy level and the midgap energy, respectively.
Assuming that vT and ni have typical values, the level

 ≈ Ec – 0.5 eV, σ ≈ σp ≈ 2 × 10–14 cm2, rcl = 25 ×
10−8 cm, Σ = 0.165 cm–1, ncl = 2–3, and Nnm = 4 ×
1019 cm–3, we find that the degradation constant is
approximately equal to α ≈ 4 × 10–17 A/cm. At the same
time, assuming that the clusters consist mainly of diva-

cancies, the level  = Ec – 0.4 eV [14, 23], and Nm =
7 × 1019 cm–3, we find that the value of α is smaller by

more than two orders of magnitude: α( ) ≈ 10–18 A/cm.
Consequently, in the case of irradiation with neutrons,
the reverse current is governed by tetravacancies, which
are predominant in the central region of the clusters,
since the tetravacancy energy levels are located closer
to the midgap. In this situation, the degradation con-
stant α should be independent of the impurity concen-
tration in silicon and constant in the range of moderate
integrated fluxes of neutrons, protons, and pions [8].

R rscr/rscr n( )3 1 rn/rcl( )3–[ ] 1–
= =

=  qN2rcl
2 /3εε0ψnn.

∆I qσv TniNmv clnclΣΦ/2 x( ).cosh∝

α qσv TniNmv clnclΣ/2 x( )cosh=

x( )cosh

E4
–

E2
–

E2
–
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The suggested model includes a single variable
parameter, i.e., the D-cluster radius rcl . The constants c,
b, and Φinv are functions of Nm , rcl , and ψn( ). For
each type of irradiating particle and for each initial
n-Si, we have a unique set of the constants α, c, b, and
Φinv . The cluster model makes it possible to predict
qualitatively and quantitatively the behavior of neu-
tron-irradiated float-zone silicon in relation to the
inherent properties of this material, external conditions,
and time.

4. DIRECT AND REVERSE ANNEALING

In the cluster model, annealing is conceived as a
multistage process of cluster disintegration: direct
annealing is caused by the disintegration of the D-clus-
ter core (immediately after irradiation with neutrons,
the D-cluster core consists of tetravacancies), whereas
reverse annealing is related to D-cluster disintegration
with the subsequent formation of multivacancies. The
kinetics of the latter process has a mixed character rel-
ative to the reaction type. Evolution of the D-cluster
core may bring about both an increase and a decrease in
the number of vacancies, depending on which anneal-
ing process is dominant (i.e., whether it involves exter-
nal or internal annihilation) [3]. Predominance of one
or the other process is governed by the decomposition
of small-size defect complexes, which are the sources
of separate vacancies and interstitial atoms. The ESR
data indicate that both types of sources are present.
Such sources for vacancies can be the Si-A5 centers,
whereas, for interstitial atoms, these sources can be rep-
resented by di-interstitials (the Si-P6 centers), which
dissociate at the same temperatures T ≈ 150–170°C
(Ea ≈ 1.1 eV) [18, 20] as the Si-A5 centers and tetrava-
cancies. A low annealing temperature of tetravacancies,
which is equal to the activation temperature for the for-
mation of the Si-P1 centers (pentavacancies), T = 150–
170°C, indicates that the processes which involve inter-
nal annihilation are predominant; these processes result
in the disruption of tetravacancies and the formation of
trivacancies (V4 + I  V3). In this case, the decompo-
sition of the Si-P6 di-interstitial center into two intersti-
tial atoms (I2  I + I) at T = 150–170°C [33] leads to
the annihilation of a vacancy in a tetravacancy and to
the formation of trivacancies, which interact with stable
divacancies and form pentavacancies (V3 + V2  V5).
The pentavacancies that formed via external annihila-
tion according to the bimolecular reaction V4 + V 
V5 should have a low concentration since they possess
a lower enthalpy of formation and a lower concentra-
tion of the centers that act as sources of vacancies for
their formation. Apparently, the spin S = 1/2 of the
Si-P1 centers indicates that these centers (pentavacan-
cies) have, predominantly, the ring configuration. The
kinetics of the internal-annihilation processes is gov-
erned by the characteristics of the reactions Vm + I 
Vm – 1 , which accompany the decomposition of intersti-

ND0
tial defects (I2  I + I). The interstitial-generation
kinetics can be monomolecular, bimolecular, or diffu-
sion-controlled. Monomolecular reactions proceed
under the conditions of high thermal stability of inter-
stitial defects, so that the effective concentration of free
interstitial atoms is limited by the decomposition rate of
their sources. The final result of annealing is governed
by the total number of accumulated interstitial atoms.
Thus, the characteristics of the decomposition of the
point-defect source ultimately govern the annealing
kinetics for a multivacancy cluster.

However, it is hardly possible to observe such a
decomposition process in the explicit form, because
this process is accompanied by the disintegration of the
divacancy D cluster; the latter process occurs with the
subsequent diffusion-controlled buildup of separate
multivacancies, which are distributed throughout the
crystal. It can be shown [3] that, in this case as well, the
final result consists in the buildup of Si-P3 and Si-P1
centers. It follows from this reasoning that reverse
annealing is caused by the decomposition of the D clus-
ters and by the buildup of tetravacancies and pentava-
cancies. In the limiting case of high integrated fluxes of
neutrons, the buildup of multivacancies (mainly, penta-
vacancies) in the ring configuration should be the pre-
dominant process; as a result, the asymptotic state of
irradiated silicon will correspond to the compensated
intrinsic material.

5. RADIATION RESISTANCE

It follows from the foregoing analysis that one can
enhance the radiation resistance of a silicon detector by
varying the asymptotic state of the cluster. For example,
this can be attained by introducing centers that have
large capture cross sections for vacancies and intersti-
tial atoms and prevent the formation of divacancies and
tetravacancies. It has been shown [2] that, if the condi-
tions βVO > βVV and λ ! 1 are satisfied for the probabil-
ities of elementary events of reactions V + O  VO (O
is any impurity, including oxygen) and V + V  V2,
the cluster consists of divacancies, whereas the VO
complexes are dominant at the periphery of the cluster.
Competition of the correlated-pair (V–I) recombination
will affect the output of the reaction V + O  VO.
Consequently, the rate of the latter reaction will depend
on the energy of irradiating particles, i.e., on the sepa-
ration parameter δ, which appears in the generation
function for correlated pairs ϕ(r) = ϕ0exp[–δ(r – rV)]. If
the reaction rates are diffusion-limited, then, in order
for these rates to be comparable, the impurity (oxygen)

concentration should be NO ≥ ( δ/rO)NV , where rV and
rO are the radii of capture by a vacancy and oxygen
atom, respectively. In this case, it should be expected
that, if the reaction V + O  VO is not controlled by
the recombination of correlated pairs (V–I), the reaction
rate is proportional to ∝ NO, whereas, if this reaction is
controlled by the recombination, the rate is propor-

rV
2
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tional to ∝ , where 0 < x < 1. Since δn < δp (for neu-
tron and proton irradiation, respectively), the clusters
should be less sensitive to the introduction of oxygen
under neutron irradiation than in the case of proton irra-
diation, which is inconsistent with experimental data.
As was mentioned above, the cause of this might be
related to the fact that the initial stage of the spatial–
temporal separation of V and I defects was ignored; i.e.,
the dependence of the cross sections of reactions (or the
reaction rate constants) on the time and coordinates was
ignored. An increased probability of vacancy capture
by another vacancy and divacancy formation depend
predominantly on the characteristics of interaction of
the defect-forming particles with the crystal’s atoms
(i.e., on the impact parameter), rather than on the sepa-
ration parameter δ (i.e., on the energy of the above par-
ticles). As the energy of the defect-producing particle
decreases, the impact parameter and the collision rate
with the largest energy transfer, which differs for neu-
trons and protons, increase. The domination of the reac-
tion V + V  V2 over other reactions leads to the fact
that tetravacancies are formed in the central part of a
cluster, whereas vacancies are formed in the remaining
part of the cluster. This is confirmed by the indepen-
dence of the degradation constant on the oxygen con-
centration and by the dependence of the depletion volt-
age on the oxygen concentration in the case of irradi-
ation with protons. Indeed, since the reverse current is
governed by tetravacancies, which are dominant at the
center of the cluster, all variations in the characteristics
at the periphery of the cluster are of no importance. The
depletion voltage is governed by divacancies whose
concentration is low at the periphery of the clusters.
The presence of oxygen reduces the divacancy-forma-
tion rate due to the capture of vacancies and brings about
a decrease in the D-cluster radius and, correspondingly,
in the constants b [see (9), (12)] and c (10).

6. CONCLUSION

Agreement of the calculated values of the parame-
ters α, b, c, and Φinv with experimental data validates
the suggested cluster model. This model is based on the
representation of neutron-irradiation-produced defects
as divacancy D clusters with a tetravacancy core. The
energy structure is calculated in the defect-molecule
model. Identification of the energy levels in the vicinity
of the midgap is of fundamental importance since it is
these levels that govern the characteristics of irradiated
detectors. However, this issue has not been resolved
until now. Explaining the neutron-irradiation-induced
effects on the basis of divacancies or V2O oxygen com-
plexes has not been corroborated experimentally.

It follows from the suggested model that the main
defects responsible for radiation resistance and neu-
tron-irradiation-induced effects are divacancies and tet-
ravacancies. Tetravacancies are responsible for the
behavior of reverse current, whereas divacancies gov-

NO
x
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ern the depletion voltage. At the same time, the oxygen-
containing complexes do not give rise to observable
radiation effects; nevertheless, these complexes aid in
enhancing radiation resistance by reducing the forma-
tion rate of multivacancies, which control resistance to
radiation.

The proposed model makes it possible to predict
qualitatively and quantitatively the behavior of neu-
tron-irradiated float-zone silicon in relation to the
inherent properties of this material and external condi-
tions. The effect of contraction of a cluster’s outer
space-charge region if the dopant concentration
exceeds a certain critical value is also predictable (16).
This effect may reduce the depletion voltage by a factor
of R ~ [1 – (rn/rcl)3]–1.
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Abstract—The dependences of the electrical conductivity σ(T) and thermoelectric power S(T) of Cu2Te,
Cu2Se, Ag2Te, Tl2Te, and Tl2Se liquid semiconductors were experimentally studied at high temperatures and
pressures (up to 25 MPa). The melts were shown to exhibit a minima in the dependences σ(T) and a maximum
in S(T) at the stoichiometric composition M2X (where M = Tl, Ag, Cu; X = Te, Se). The results were interpreted
on the basis of the Mott model with sp–d hybridization, taking into account the metal d state position with
respect to the Fermi level. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of electronic properties of chalcogenide-
based melts is an important and, at the same time, diffi-
cult problem, since pure tellurium is intermediate
between a metal and semiconductor, while liquid sele-
nium changes its properties from dielectric to semicon-
ductor. Most tellurium- and selenium-based melts are
semiconductors that are metallized on heating. The
dependences of the electrical conductivity on the car-
rier concentration exhibit a minimum, while the corre-
sponding dependence of the thermoelectric power has a
maximum in the stoichiometric composition region.
Interest in Cu-, Ag-, and Tl-based melts is caused by the
fact that tallium, being a group-III element exhibits
properties of group-I elements, to which Cu and Ag
noble metals belong [1]. This is caused by the fact that
the valence 6d electrons of Tl have a very low energy.
Silver and (to a greater degree) copper differ from tal-
lium in that their populated d states have a sufficiently
high energy; therefore, in addition to the s electron, d
electrons can also be involved in bond formation. Many
papers [2–4] are dedicated to the sp–d hybridization
effect; however, deep insight into the electronic proper-
ties has not yet been achieved.

2. EXPERIMENTAL

The measurements were carried out by a contact
four-point probe method under pressure from argon (up
to 25 MPa) to preserve a constant composition of the
samples under study. We used multizone two-radius
measuring cells made of boron nitride and shaped as
vertical cylindrical containers. Point graphite elec-
trodes were embedded into the cell walls along the axis.
The temperature was measured using WRe5/WRe20
thermocouples connected to the electrodes. A high-
temperature furnace with three independently con-
1063-7826/02/3610- $22.00 © 21123
trolled heating elements allowed a uniform temperature
field over the sample height or the necessary tempera-
ture gradient to measure the thermoelectric power. The
equipment and measuring procedure used are described
in [5] in detail.

3. RESULTS

3.1. Cu2Te and Cu2Se Melts 

The experimental results on the temperature
dependence of the conductivity σ(T ) and the thermo-
electric power S(T) of Cu2Te and Cu2Se melts are
shown in Figs. 1 and 2. Immediately after melting, the
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Fig. 1. Temperature dependences of the Cu2Te melt conduc-
tivity (1) and thermoelectric power (2).
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quantity σ takes values of 500 Ω–1 cm–1 for Cu2Te and
120 Ω−1 cm–1 for Cu2Se. The activation energies E(0)
calculated from the experimental σ(T) data are 0.33
and 0.55 eV for Cu2Te and Cu2Se, respectively. In the
region of the melting point, the thermoelectric power is
equal to 130 µV/K for Cu2Te and 180 µV/K for Cu2Se.
As the temperature increases, the thermoelectric power
decreases and levels off at 70 and 100 µV/K at 1670 and
1620 K for Cu2Te and Cu2Se, respectively.

3.2. Ag2Te Melt 

The data on σ(T) and S(T) of the Ag2Te melt (see
Fig. 3) indicate that the conductivity retains semiconduc-
tor properties in the entire temperature range under con-
sideration with E(0) = 0.45 eV and that there is insignif-
icant deviation from the dependence σ(T) ∝  exp(1/T)
above 1600 K. The thermoelectric power dependence on
temperature S(T) is not typical of semiconductor melts.
The positive value of S indicates a dominant contribution
of holes to charge transport processes. Immediately after
melting, the thermoelectric power takes the value of
50 µV/K. Upon further heating, S(T) increases to
90 µV/K and then decreases. This behavior indicates that
complicated processes occur in the formation of the elec-
tron spectrum during heating. The absolute values of
σ(T) and S(T) and their character give grounds to argue
that the 4d band of silver is actively involved in the for-
mation of the Ag2Te electron spectrum.

3.3. Tl2Te and Tl2Se Melts 

The experimental data on the conductivity σ(T) and
the thermoelectric power S(T) of Tl2Te (Fig. 4) and
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Fig. 2. Temperature dependences of Cu2Se conductivity (1)
and thermoelectric power (2).
Tl2Se (Fig. 5) melts indicate that the conductivity
retains an exponential dependence typical of semicon-
ductors in almost the entire temperature range under
consideration, with the activation energy E(0) = 0.49
and 0.35 eV for Tl2Te and Tl2Se, respectively. Insignif-
icant deviations from the linear dependence  =
f (1000/T ) are observed only above 1400 K for Tl2Se
and above 1000 K for Tl2Te. In this case, the ther-
moelectric power S decreases in absolute value from
|–140| µV/K to the level of |–40| µV/K for Tl2Te with
E(0) = 0.28 eV. For Tl2Se, the value of S decreases in
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Fig. 3. Temperature dependences of Ag2Te conductivity (1)
and thermoelectric power (2).
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Fig. 4. Temperature dependences of Tl2Te conductivity (1)
and thermoelectric power (2).
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magnitude from |–290| µV/K to the level of |−80| µV/K
with E(0) = 0.5 eV. The negative value of S for both
alloys suggests a dominant electron contribution to the
charge transport mechanism. We also call attention to
the fact that both the behavior of σ(T) and S(T) for
Tl2Se in contrast to Tl2Te, is not typical of liquid semi-
conductors. This is probably caused by the fact that
Tl2Se is characterized by an appreciable fraction of the
ionic conduction component, which amounts to 6.8% at
710 K [6].

The results obtained for all the systems under con-
sideration call for a deeper analysis of the influence of
the d band on the formation of the electron spectrum of
the melts. However, we can already argue that the d
band of metals has a significant effect on electron spec-
trum formation for liquid semiconductors.

4. DISCUSSION

The results for all the melts conform well to previ-
ous data [1–4]; however, there is disagreement in their
interpretation. In our opinion, this is caused by different
approaches to the interpretation of the charge transport
properties. We calculated the Lorentz number (some
values of L/L0, where L0 = π2/3(k/e)2, are given in
Table 1) for the case of arbitrary degeneracy in the
approximation of scattering by acoustic vibrations
using thermoelectric power S data [7]. The very wide
variation in L (also taking into account the fact that
L/L0  1 as the temperature increases) indicates that
the degree of degeneracy of electron gas increases. The
calculated Lorentz numbers were used to evaluate the
electron component of the heat conductivity χel
(Table 2). The calculated values of χel(T) (see Fig. 6)
point to a certain role of bipolar heat transport, which
disappears as the density of states in the pseudogap
increases. Taking into account the increase in the
degree of degeneracy of electron gas, we can argue that
the system converts from the semiconductor state to the
metal one.

As is known [9], the conductivity and thermoelectric
power of a liquid semiconductor can be written as

(1)

where E(0) is the activation energy and γ is its temper-
ature coefficient. We note that insignificant downward
deviations from the linear dependence  =
f(1000/T) are observed for Tl2Te and Tl2Se melts above
900 and 1400 K, respectively, which is described in
[10] in detail.

The dependence of the thermoelectric power of all
the melts is more intricate. The linear dependence S =

σ T( ) σ0
E 0( ) 2γT–

2kT
---------------------------– 

  ,exp=

S T( ) k
e
--– 

  E 0( ) 2γT–
2kT

--------------------------- 1+ 
  ,=

σlog
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f(1000/T) is observed in the low-temperature region,
while an insignificant deviation from linearity followed
by leveling off is observed in the high-temperature
region. This behavior is characteristic of all the melts,
except for Ag2Te, where S initially increases and then
decreases. The dependence S(T) for all the melts levels
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Fig. 5. Temperature dependences of the Tl2Se conductivity
(1) and thermoelectric power (2).
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Fig. 6. Temperature dependences of the heat conductivity
(1) of Cu2Te, Cu2Se, Ag2Te, Tl2Te, and Tl2Se melts. Open
and closed symbols correspond, respectively, to the calcu-
lated electronic component of the heat conductivity and the
experimental data on the total heat conductivity of Cu2Te,
Cu2Se, Ag2Te [2], and Tl2Te [8] melts.
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Table 1.  Calculated values of the temperature dependence of the Lorentz number L and the density of states N(EF) at the
Fermi level for Cu2Te, Cu2Se, Ag2Te, Tl2Te, and Tl2Se melts

Tl2Te Tl2Se Ag2Te

T,
 K

L
/L

0

N
(E

F)
, 1

0–2
8

eV
–1

 m
–3

, 1
0–2

8
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–2
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–3

T,
 K

L
/L

0

N
(E

F)
, 1
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8

eV
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 m
–3
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8

eV
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–3

T,
 K

L
/L

0

N
(E

F)
, 1
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8

eV
–1

 m
–3

, 1
0–2

8

eV
–2

 m
–3

800 0.79 0.35 0.86 800 0.64 0.1 0.62 1200 0.89 0.38 0.35

900 0.85 0.47 0.77 900 0.68 0.17 0.68 1300 0.85 0.42 0.46

1000 0.89 0.56 0.62 1000 0.71 0.22 0.68 1400 0.84 0.48 0.53

1100 0.92 0.64 0.54 1100 0.74 0.29 0.68 1500 0.82 0.54 0.63

1200 0.93 0.69 0.48 1200 0.77 0.36 0.66 1600 0.85 0.61 0.55

1400 0.81 0.5 0.62

1600 0.83 0.59 0.58

1800 0.86 0.7 0.54

Cu2Te Cu2Se

T, K L/L0
N(EF), 10–28

eV–1 m–3
,

10–28 eV–2 m–3

T, K L/L0
N(EF), 10–28

eV–1 m–3
,

10–28 eV–2 m–3

1300 0.72 0.55 1.21 1500 0.68 0.33 0.79

1400 0.75 0.59 1.03 1600 0.71 0.37 0.69

1500 0.78 0.65 0.89 1700 0.74 0.42 0.63

1600 0.82 0.69 0.72 1800 0.75 0.47 0.64

1700 0.84 0.75 0.65

1800 0.86 0.8 0.62
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Table 2.  Calculated values of the temperature dependence of the electronic component of the heat conductivity of Cu2Te,
Cu2Se, Ag2Te, Tl2Te, and Tl2Se melts

Ag2Te Tl2Te Tl2Se Cu2Se Cu2Te

T, K χel,
W/(m K) T, K χel,

W/(m K) T, K χel,
W/(m K) T, K χel,

W/(m K) T, K χel,
W/(m K)

1250 0.57 800 0.26 800 0.2 1350 1.04 1500 0.88

1300 0.65 900 0.56 900 0.055 1400 1.21 1600 0.55

1400 0.91 1000 0.95 1000 0.12 1450 1.43 1700 0.77

1500 1.25 1100 1.39 1100 0.23 1500 1.63 1800 0.99

1550 1.44 1200 1.81 1200 0.39 1600 2.16

1600 1.7 1400 0.93 1700 2.71

1600 1.58 1800 3.1

1800 2.48
off at a value below 86 µV/K, which is interpreted in [8]
as a transition to the metal state. However, a somewhat
different approach to the determination of the transition
criterion is considered in [1], where it is based on the
specific dependence of the conductivity at the band
edge. We considered these approaches in [12] and rea-
son that these have no basic differences. In our opinion,
the variation in the properties in the transitional region
SEMICONDUCTORS      Vol. 36      No. 10      2002
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is of significance, since quantitative estimations are
rather subjective.

An important fact is that the degree of degeneracy of
electron gas increases, as well as the density of states at
the Fermi level, in the course of the heating of the melts
under study. In this case, we can write

(2)

where l is the free path length comparable to the inter-
atomic spacing and N(EF) is the density of states at the
Fermi level.

An analysis of formulas (2) shows that σ increases
due to an increase in the density of states at the Fermi
level, and S is given by

The absolute values of N(EF) and dN(EF)/dEF calcu-
lated using the data in [13] are listed in Table 1. The
density of states N(EF) increases with temperature for
all the melts. This factor controls the conductivity
behavior. A somewhat different pattern is observed
when analyzing the data on dN(EF)/dEF. For Tl2Te,
Cu2Te, and Cu2Se, the value of dN(EF)/dEF decreases as
temperature increases, which controls the dependences
S(T); in contrast, the run of the dN(EF)/dEF curves for
Tl2Se and Ag2Te is more intricate, which manifests
itself in the dependences S(T). In the latter melts, the
ion component probably plays a certain role; this com-
ponent is also involved in the transport processes.

5. CONCLUSION
An analysis of the electronic structures of copper,

silver, and tallium atoms shows that the filled 3d shell
of copper is closer to the 4d states than the 4d shell of
silver to the 5d states. Therefore, the 4d states of silver
and (to a greater degree) the 3d states of copper can

σ T( ) e2h3l

81πm2
---------------- N EF( )[ ] 2,=

S T( ) 2π2

3
--------k2T

e
-------- 1

N EF( )
---------------

dN EF( )
dEF

------------------,=

1
N EF( )
---------------

dN EF( )
dEF

------------------.
SEMICONDUCTORS      Vol. 36      No. 10      2002
overlap with the valence band, which results in a
change in the density of states near the band edge. The
density of states Nv in the valence band increases more
rapidly than that of Nc in the conduction band. This
probably explains the fact as to why the thermoelectric
power of Ag2Te, Cu2Te, and Cu2Se is positive, in con-
trast to Tl2Te and Tl2Se where it is negative. Thus, the
sp–d hybridization effect is more pronounced in the
sequence Tl, Ag, and Cu; and this controls the dynam-
ics of the electronic properties studied.
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Abstract—The dependence of the edge photoluminescence (PL) intensity on the excitation intensity in (0001)
HVPE-grown GaN samples has been studied. The specific behavior found is that, at a low excitation level, the
dependence is markedly superlinear, namely, superquadratic, and at high excitation levels it is nearly linear. A
model accounting for the observed superquadratic behavior is proposed which is based on the identity of the
recombination processes in the surface space charge region (SCR) under optical excitation with those in the
SCR of the Schottky barrier or a p–n junction under current flow conditions. The superquadratic dependence is
obtained analytically under the assumption that the nonradiative recombination channel is associated with mul-
tiple-hopping tunneling along a dislocation, which is formed by a chain of carrier localization centers and
crosses the SCR. The experimental dependence of the PL intensity on the excitation intensity is a power-law
function. The distance between the neighboring localization centers, i.e., the period of the potential along the
dislocation, is determined as ~ 4.1 nm. © 2002 MAIK “Nauka/Interperiodica”.
1. Epitaxial GaN layers are widely used in the pro-
duction of short-wavelength optoelectronic devices.
The luminescence quantum yield is related to the epi-
taxial layer (epilayer) quality through, among other
things, the ratio between the intensities of the radiative
and nonradiative recombination of carriers; however,
the mechanisms of nonradiative recombination in GaN
epilayers grown using different techniques (metal-
organic chemical vapor deposition (MOCVD), molec-
ular beam epitaxy (MBE), hydride-chloride vapor
phase epitaxy (HVPE)) are still unclear.

One of the factors affecting the epilayer quality is
the lattice mismatch between the wurtzite GaN epilayer
and 6H-SiC (~4%), Al2O3 (~15%), or Si (~22%) sub-
strate. This results in a high density of misfit disloca-
tions in GaN layers during heteroepitaxy. It is also
known that the misfit dislocation density increases as
the lattice mismatch between the layer and substrate
increases and decreases as the epilayer thickness
increases. In particular, HVPE epitaxy provides for the
fabrication of GaN layers more than 100 µm thick on a
sapphire (Al2O3) substrate, with the mismatch disloca-
tion density at the layer surface an order of magnitude
smaller than that at the heterointerface [1].

It is worth noting that in studies of luminescence
attention is usually drawn mainly to the spectral char-
acteristics of recombination radiation. However, in the
situations where the spectral bands are broad and
unstructured, the study of band shapes yields little
information. The goal of the present study is to investi-
gate nonradiative recombination by analyzing the
behavior of luminescence intensity as a function of the
intensity of excitation radiation.
1063-7826/02/3610- $22.00 © 21128
2. Samples with relatively intensive luminescence
were chosen for study. This allowed the recording of
emission–excitation characteristics in a luminescence
intensity range that varied by as many as three orders
of magnitude. GaN layers were grown by HVPE. The
GaN layer deposited on a sapphire substrate was more
than 100 µm thick, with an electron density nn = 5 ×
1018 cm–3; the respective values for the GaN layer on
the 6H-SiC substrate were 3 µm and 5 × 1017 cm–3.

The photoluminescence (PL) was excited with a
pulsed nitrogen laser (the emission wavelength λ =
337 nm, the pulse width was 6 ns). The luminescence
was excited and detected on the free surface of layers.
The measurements were done at room temperature. The
object of interest was the dependence of the PL inten-
sity Φ on the photoexcitation intensity I.

In our case, a specific problem complicating the
recording of Φ(I) dependences was the lack of standard
ultraviolet photodetectors of nanosecond pulses with
sufficient linearity in a wide range of intensities. We
used a special technical approach involving the simul-
taneous recording of the luminescence band and the
excitation line on one and the same scale. For this, a
portion of the exciting radiation was directed to the
monochromator input, with its intensity preliminarily
attenuated to the necessary value by an adjustable filter
for this wavelength. A family of luminescence spectra
was recorded at an excitation intensity that varied in the
range of 0.01–7 W cm–2 by the known neutral filters and
grids. Consequently, the ratio of the intensities of the
exciting and luminescent radiation was recorded each
time with the same detector under the same conditions.
002 MAIK “Nauka/Interperiodica”
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This method allowed us to minimize the possible influ-
ence of detector nonlinearity on the obtained data.

3. The samples under study exhibited luminescence
spectra typical of GaN. The photon energy in the PL
spectrum peak was hν = 3.397 eV for both GaN layers.
The full width at half-maximum (FWHM) for the
GaN/sapphire layer was significantly larger than that
for GaN/SiC (Fig. 1), which presumably can be related
to the effect of not only interband but also of donor–
acceptor recombination, which is in agreement with the
higher doping level of the GaN/sapphire layer.

For both layers, the dependence of the luminescence
intensity on the excitation intensity is superlinear at a
low excitation level and it can be described by the
power-law dependence Φ ∝  In, where n ≈ 3.3. At a high
excitation level, this dependence is nearly linear: n =
1.0 for the layers on SiC and n = 1 for the layers on sap-
phire. In this case, the small sublinearity of the Φ(I)
characteristic for the GaN/sapphire layer is presumably
defined by the contribution of donor–acceptor recombi-
nation. The relationship between the Φ and I intensities
can be approximated by a single simple formula
accounting for the existence of two portions (Fig. 2):

(1)

where the fitting parameters for the GaN/sapphire layer
are m1 = 1.1, m2 = 0.3, k1 = 0.4, and k2 = 1.3, and those
for GaN/SiC are m1 = 1.0, m2 = 0.3, k1 = 0.4, and k2 =
6.6. As is seen, the upper portions virtually coincide (m1
and k1 are nearly equal for both samples). The differ-
ence between the dependences for the two samples is
observed only at the lower superlinear portion, in the k2
value. The transition from the superlinear to the virtu-
ally linear portion in the layers on sapphire occurs at a
lower excitation level than for the GaN/SiC layers
(Fig. 2).

4. Superlinear dependences of the luminescence
intensity on the excitation intensity were observed in
GaN layers previously. For example, studies of cathod-
oluminescence from a 2-µm-thick MOCVD-grown
GaN layer on a sapphire substrate have shown that the
intensity of the edge luminescence increases with the
excitation level by the power law Φ ∝  In with the expo-
nent n = 2 [2]. To the authors' knowledge, dependences
with an exponent n > 2 were not observed.

In discussing the results, we shall use an analogy
between the luminescence under optical pumping in the
surface space-charge region (SCR) and the lumines-
cence under current pumping in the SCR of a p–n junc-
tion. Let us present the necessary data. The depth of
light absorption in GaN under the energy of exciting
photons (hν = 3.68 eV) is 0.1 µm. The SCR width W, in
our case, is not less than 0.05 µm, and the diffusion
length of the minority carriers is ~0.5 µm [3]. Thus, the
depth of the light absorption is less than the width of the

I k1Φ
m1 k2Φ

m2,+=
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carrier collection region (the photosensitive region)
W + Lp , where Lp is the diffusion length of holes.

The excitation radiation diminishes the band bend-
ing which existed in the dark and induces a photovolt-
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Fig. 1. PL spectra of GaN layers grown on (a) sapphire and
(b) SiC substrate.
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Fig. 2. Luminescence intensity vs. the excitation intensity
for GaN layers on sapphire and SiC. Points: experiment;
dashed lines: approximation (1); solid lines: asymptotes of
the approximating curves.
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age Uph equal to the difference between the quasi-Fermi
levels for electrons, Fee , and holes, Fh (Fig. 3). Since
the light is totally absorbed in the photosensitive region
W + Lp, the energy diagram of the surface region is the
same as in a forward-biased Schottky barrier. The
recombination processes in the surface SCR are the
same as in the SCR of a Schottky barrier or a p–n junc-
tion under forward bias. The nature of the recombina-
tion flows is identical in all these cases; therefore, to
obtain an analytical Φ(I) dependence, we shall regard
the intensity of optical pumping as an analogue of the
driving current, i.e., an analogue of the forward current
J in a p–n junction. In the case under consideration, the
equivalent forward current J consists of two compo-
nents associated with thermal injection and tunneling:

(2)

where ε > 2kT is the characteristic energy of the tunnel-
ing component. In turn, the interband luminescence is
defined by the thermal injection process; therefore, its
intensity Φ is described by a thermal-injection-like
dependence on the photovoltage Uph:

(3)

Excluding Uph from (2) and using (3), we obtain a rela-
tionship between the luminescence intensity Φ and the
forward current J:

(4)

where pA = J01/Φ0, p2 = J02/ .

The derived dependence (4) gives the sought-for
Φ(I) characteristic, since the forward current J is equiv-
alent to the optical excitation intensity I. The maximum
power density of the optical pumping I = 7 W cm–2

corresponds to the driving current density J = eI/hν ≈
2 A cm–2. Dependence (4) corresponds to the experi-
mental characteristics Φ(I) (1) for GaN/sapphire and

J J01 eUph/kT( )exp J02 eUph/ε( )exp ,+=

Φ Φ0 eUph/kT( ).exp=

J p1Φ p2Φ
kT /ε,+=

Φ0
kT /ε

LpW

Fh

Fe

Ec

Uph d

Ev

Fig. 3. The energy diagram of the surface region of an
n-type semiconductor in the absorption of exciting light in
the photosensitive region (W + L). Horizontal arrows: isoen-
ergetic tunneling hopping of an electron; vertical arrow:
electron–hole recombination.
GaN/SiC if we disregard the contribution of the donor–
acceptor recombination responsible for a small sublin-
earity in the upper portion and the broadening of the PL
spectrum.

Let us thoroughly consider the lower portions of the
Φ(I) characteristics. As follows from a comparison
of (1) with (4), kT/ε = m2 = 0.3. It is seen that ε = nkT,
where n = 1/m2 = 3.3, i.e., n > 2, which provides evi-
dence in favor of the tunneling recombination mecha-
nism. The value ε = 82.5 meV is the same for both lay-
ers, which infers one and the same tunneling mecha-
nism.

According to the well-known model of tunneling
across an SCR [4], ε depends on W and, consequently,

on the density nn (ε ∝  1/W ∝  ). In terms of multi-
ple-hopping tunneling along dislocations, where a dis-
location is modeled by a chain of potential wells sepa-
rated with parabolic barriers [5], ε is defined only by the
type of dislocation crossing the space charge region and
is independent of density nn . Therefore, the coinci-
dence of ε in two layers with different nn densities cor-
relates with the model of tunneling along the disloca-
tion.

Let us discuss this situation, namely, the equality of
ε and the difference between the k2 coefficients. The
model assumes a series of isoenergetic tunneling jumps
of an electron with subsequent recombination (Fig. 3).
The current along the dislocation line is defined by the
frequency of the last tunneling jump, since the barrier
is the highest and, consequently, the barrier penetrabil-
ity is the lowest for this jump. The current density is
proportional to the dislocation density. In terms of the
model [5], the quantity ε in (2) and, consequently, in (4)
is related to the parameter r, which characterizes the
dislocation type:

(5)

where r is the curvature of a parabolic barrier at its top,
and m* is the effective mass of a tunneling carrier (m* =
0.2m0 for an electron [6]). Hence, we can find the width
d of a barrier with its height equal to half the band-gap
width:

(6)

where Eg = 3.39 eV is the band gap [7]. The value ε =
82.5 meV yields r = 0.03 J m–2 = 0.2 eV nm–2, and the
width d = 4.1 nm. The equal ε values in both types of
layers indicate that the dislocations crossing the SCR
and defining the tunneling mechanism of recombina-
tion are of the same kind.

According to this model, the preexponential factor
J02 for the tunneling component of the current is pro-
portional to the density ρ of dislocations crossing the
space charge region, J02 ∝  ρ. Thus, we can see from (1)
and (4) that k2 ∝  p2 ∝  p, which allows for a comparison

nn

ε "
π
--- r

m*
-------,=

d Eg/r( )1/2,=
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of the dislocation densities near the surface of the lay-
ers. A comparison of parameters k2 in relation (1),
which describes the experimental characteristics,
shows that the dislocation density at the surface of the
GaN/sapphire layer is 5 times lower than for GaN/SiC.
We believe that this is due to the greater thickness of the
GaN layer on sapphire, since the density of the mis-
match dislocations at the GaN/sapphire interface is
known to be higher than at the GaN/SiC interface [8].
This explanation is in agreement with the known fact
that the spectral position of the edge photolumines-
cence band can depend on the thickness of the GaN
epilayer [9].

5. We conclude that GaN layers of different thick-
nesses grown on different substrates (sapphire and SiC)
exhibit similar Φ(I) characteristics. The dependence is
superquadratic (with the exponent above 2) at a low
excitation intensity, and at a higher intensity it is virtu-
ally linear. To account for this behavior, a model for the
multistage nonradiative recombination of carriers via
multiple-hopping tunneling along a dislocation was
proposed. The model makes it possible to compare the
dislocation densities in different layers and determine
the period of the potential along a dislocation.
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Abstract—Homogeneous crystals of CuIn3Se5, CuGa3Se5, and CuGa5Se8 ternary compounds were grown,
and their physical and chemical properties were investigated. Photosensitive structures were fabricated for the
first time on the basis of these compounds, and the spectral dependence of the relative quantum photoconversion
efficiency was measured. The bandgap of these compounds was also estimated, and it was shown that direct
interband transitions are typical in them. It was found that the content and chemical nature of atoms forming an
elementary cell in a I–IIIn–VIm ternary compound control the relevant band gap. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION 

Ternary I–III–VI2 semiconductor compounds and
their solid solutions have been widely investigated with
the aim of developing high-efficiency thin-film solar
cells. In particular, structures based on CuInSe2 with a
photoconversion efficiency as high as 18% have been
fabricated [1, 2]. Up to now, the fundamental properties
of I–III–VI2 compounds have been controlled mainly
by the formation of solid solutions. However, the study
of interactions in I–III–VI systems showed that, along
with well-known I–III–VI2 phases, they can also con-
tain many ordered phases of the I–IIIn–VIm type,
including phases with ordered vacancies [3–7]. Tsang
et al. [3] calculated from first principles the domains of
stability of such compounds and assumed that these
phases are formed due to a spatial translation of a single
cell of defect pairs for different numbers of I–III–VI2
cells. The wide investigation of such phases has been
recently started with the aim of using them as a basic
tool in controlling fundamental properties of ternary
chalcogenides [6, 7]. Evidently, the physical and tech-
nical investigations, aiming to synthesize such materi-
als, make it possible to relate the fundamental proper-
ties of these materials to their atomic composition and
analyze the possibility of forming nanostructures in
I−III–VI systems.

The aim of this study is to develop methods for the
formation of single-phase samples of I–IIIn–VIm com-
1063-7826/02/3610- $22.00 © 21132
pounds and to fabricate photosensitive structures on the
basis of these. The results of first investigations of the
photosensitivity spectra of Schottky barriers are
reported. These investigations made it possible to deter-
mine the band gap for a number of such phases and to
measure some of their photoelectric properties.

2. GROWTH OF CRYSTALS

In order to grow the crystals of CuIn3Se5,
CuGa3Se5, and CuGa5Se8 ternary compounds, high-
purity atomic components were used (Cu of 99.999%
purity, and In, Ga, and Se of 99.9999% purity). These
components in the ratios Cu : In (Ga) : Se = 1 : 3 : 5 for
CuIn3Se5 (CuGa3Se5) and Cu : Ga : Se = 1 : 5 : 8 for
CuGa5Se8 with a total mass of 20–25 g were loaded into
double quartz cells with conically shaped bottoms (for
CuIn3Se5 and CuGa3Se5). A quartz holder was sealed
into the cells from below to attach them to a vibrator.
After evacuation to the residual pressure of 10–3 Pa, a
cell was placed into a single-zone furnace with a preset
temperature gradient. First, the temperature in the fur-
nace was increased to 900 K at a rate of ~50 K/h, and
then the cell was kept at this temperature for 2 h with
the vibrator switched on. Then, the temperature was
increased at the same rate to 1280–1300 K (for
CuIn3Se5) and 1420–1450 K (for CuGa3Se5) with the
vibrator switched on, and the formed melt was kept in
002 MAIK “Nauka/Interperiodica”
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Table 1.  Results of X-ray spectroscopic microprobe analysis of CuIn3Se5, CuGa3Se5, and CuGa5Se8 ternary compounds

Compound
Cu, at. % In, at. % Ga, at. % Se, at. %

calculation experiment calculation experiment calculation experiment calculation experiment

CuIn3Se5 11.18 11.42 33.31 32.88 – – 55.51 55.70

CuGa3Se5 11.11 10.98 – – 33.33 33.16 55.56 55.86

CuGa5Se8 7.15 7.22 – – 35.71 35.43 57.14 57.35
these conditions for an hour. After that, the vibrator was
switched off and the melt was subjected to planar crys-
tallization by decreasing the furnace temperature to
1070 K at a rate of 2–3 K/h. A homogenizing annealing
was carried out at this temperature for 120 h.

Crystals of CuGa5Se8 were grown by the two-tem-
perature method (horizontal variant) with subsequent
planar melt crystallization. Metal components of the
above-mentioned purity were loaded into a quartz boat
that was then positioned in one of the cell ends. Sele-
nium, taken in excess (in order to form vapor pressure
of ~1 bar above the melt), was positioned in the oppo-
site end of the cell. After evacuation and sealing off, the
cell was positioned in a horizontal two-zone furnace in
such a way as to place the boat with metal components
in the “hot” zone, where the temperature was rapidly
(for ~2 h) increased to ~1400 K. Then, the temperature
of the “cold” zone was increased to 900 K and kept at
this value for 2 h to produce a reaction between the
metal components and the Se vapor. After being kept
constant for 2 h, the temperature was increased at the
same rate to 1100 K and kept at this value for an hour.
Then, planar melt crystallization was carried out by
decreasing the temperature to 1170 K at a rate of 2 K/h
with subsequent annealing of CuGa5Se8 crystals for
240 h.

As a result, we obtained single-crystal CuIn3Se5 and
CuGa3Se5 ingots of 12 mm in diameter and ~40 mm in
length. The ingots of CuGa5Se8 were homogenous
along their length and polycrystalline with large crys-
tallites (separate crystallites were as large as 8 × 4 ×
3 mm3 in size).

3. X-RAY MEASUREMENTS

The composition of the grown crystals was deter-
mined by X-ray spectroscopic microprobe analysis.
The results are listed in Table 1. It can be seen that the
experimental data are in agreement with the results of
calculations.

The structure and parameters of the unit cell were
determined by X-ray diffraction analysis. Diffraction
patterns were recorded using a DRON-3M diffractome-
ter (filtered X-rays emitted by a copper anode). The
measurements showed that the CuIn3Se5, CuGa3Se5,
and CuGa5Se8 ternary compounds crystallize in the
SEMICONDUCTORS      Vol. 36      No. 10      2002
defect-containing chalcopyrite structure. The parame-
ters of the unit cell, calculated by the least squares
method over lines, for which 2θ > 60°, are in good
agreement with available published data [8–10]. The
resolution of large-angle lines on the diffraction pat-
terns indicates that the grown crystals are in equilib-
rium.

4. SURFACE-BARRIER STRUCTURES

In order to fabricate photosensitive structures, we
used wafers that were cut from the grown crystals,
mechanically ground and polished, and then subjected
to polishing etching. Wafers with mirror-like cleavage
planes were also used. In this case, no surface treatment
was carried out.

The measurements we carried out showed that pho-
tosensitive structures can be fabricated by the thermal
vacuum deposition of thin In, Cu, or Au layers on the
surfaces of CuIn3Se5, CuGa3Se5, and CuGa5Se8 crys-
tals. Ohmic contacts were prepared by soldering the
wires using a Ga-based alloy. The spectra of the relative
quantum photoconversion efficiency η (ratio of a short-
circuit photocurrent to the number of incident photons)
were measured by using continuous or modulated (at a
frequency of 20 Hz) radiation from an incandescent
lamp with the subsequent filtering of monochromatic
radiation by a SPM-2 quartz-prism monochromator.
The formed structures made it possible to obtain a spec-
tral resolution of ≈1 meV.

5. RESULTS AND DISCUSSION

The measurements of static current–voltage (I–V)
characteristics of the surface-barrier structures revealed
that the contacts made by the deposition of pure In, Cu,
and Au on the surfaces of CuIn3Se5, CuGa3Se5, and
CuGa5Se8 crystals reproducibly show rectifying prop-
erties under a negative bias applied to the crystals. For
a reverse bias U of ≈10 V (in magnitude), the rectifica-
tion factor did not exceed 2. The forward portion of the
I–V characteristic follows the law

at U > 10 V.
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Typical values of residual resistance R0 are listed in
Table 2. In accordance with these data, CuIn3Se5,
CuGa3Se5, and CuGa5Se8 crystals that were used to
fabricate surface-barrier structures are compensated
semiconductors with a sufficiently high resistivity.

When the fabricated Schottky barriers are illumi-
nated, the photovoltaic effect is reproducibly observed.
It is worth noting that the photovoltage sign did not
depend on the geometric layout of the recording
scheme or on the changes in the location of the light
probe over the structure surface. This allowed us to
assume that photogenerated carriers are separated by an
active region, which is formed due to the deposition of
metal layers on ternary compounds. The values of high-
est photovoltaic sensitivity SU for Schottky barriers
formed on CuIn3Se5, CuGa3Se5, and CuGa5Se8 com-
pounds are listed in Table 2 for the first time. Generally,
the maximum value of SU was obtained when the illu-
mination source faced the metallized side. The highest

Table 2.  Photoelectric properties of In/CuIn3Se5, In/CuGa3Se5,
and In/CuGa5Se8 structures

Structure R0, Ω SU, V/W Eg , eV "ω, eV

In/CuIn3Se5 2 × 108 100 1.08 1.18

In/CuGa3Se5 2 × 109 400 1.70 1.8–2.5

In/CuGa5Se8 5 × 108 750 1.87 2.1–3.2

103

102

101

1 2 3
"ω, eV

η, arb. units
1.18 1.83 2.10

1
2 3

0.98

1 meV

Fig. 1. Spectral dependences of relative quantum photocon-
version efficiency of (1) In/CuIn3Se5, (2) In/CuGa3Se5, and
(3) In/CuGa5Se8 surface-barrier structures exposed at 300 K
to unpolarized light from a source facing the barrier side.
photovoltage (~0.3 V) was detected on In/CuGa3Se5
barriers illuminated with an incandescent lamp of
power P ≈ 80 W.

Figure 1 shows typical spectral dependences of the
relative quantum photoconversion efficiency η for
In/I–IIIn–VIm Schottky barriers under illumination at
300 K by a source facing the metallized side. What
engages our attention is the broad-band character of the
photosensitivity spectra of the Schottky barriers. The
location of the long-wavelength edge in the photosensi-
tivity spectra is determined by the atomic composition
and values of n and m in the chemical formula of the
semiconductors used to form the Schottky barriers. The
long-wavelength edge of the photosensitivity spectra in
(η"ω)2 = f("ω) coordinates can be linearly approxi-
mated (Fig. 2). On the basis of the data reported in [8],
this makes it possible to attribute the long-wavelength
edge to direct interband transitions in the semiconduc-
tor used to form the barrier. The energy value obtained
by the extrapolation of the (η"ω)2 curve to zero can be
attributed to the band gap Eg (see Table 2). As can be
seen, substituting In for Ga in the chemical composi-
tion of a semiconductor results in an increase in the
band gap, which is typical of I–III–VI2 compounds.
Similar behavior is characteristic of the band gap in
CuGa3Se5 and CuGa5Se8 compounds as n increases
from 3 to 5 and m increases from 5 to 8 (see Table 1).

In the case of In/CuIn3Se5 Schottky barriers, the
long-wavelength edge of the η spectrum has a clear

1

"ω, eV
1.5

2

3

4

2.01.0
0

(η"ω)2, arb. units

1 2 3

Fig. 2. Dependences (η"ω)2 = f("ω) for (1) In/CuIn3Se5,
(2) In/CuGa3Se5, and (3) In/CuGa5Se8 surface-barrier
structures.
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kink (Fig. 1, curve 1), which can be attributed to photo-
active absorption with the participation of deep levels
related to lattice defects (these levels are spaced at
0.2 eV from one of the free bands). It is worth noting
that the existence of such levels has been previously
pointed out for structures based on CuInSe2. No similar
features were detected in the η spectra of other ternary
compounds of this group (see Fig. 1, curves 2, 3).

The broad-band character of the photosensitivity
spectra of barrier structures based on I–IIIn–VIm ternary
compounds with ordered vacancies, recorded under
illumination using a source facing the contact side,
indicates that the quality of the Schottky barriers
formed for the first time on the new materials is rather
high. Indeed, the most clearly defined short-wavelength
falloff is only typical of structures based on CuIn3Se5
(Fig. 1, curve 1). The full width at half-maximum δ of
the spectra of these structures was found to be rather
large (≈900 meV). As for the other compounds of the
I−IIIn–VIm group, the value of this parameter is even
larger, because the η spectra of the barrier structures
based on them show virtually no short-wavelength fal-
loff in a wide spectral region (Fig. 1, curves 2, 3).

It is also worth noting that the photoelectric param-
eters of the Schottky barriers in the new semiconduc-
tors with ordered vacancies, listed in Table 1, are stable
(no degradation was observed). These parameters were
reproduced well for samples cut from different zones of
the grown crystals.

6. CONCLUSION
On the basis of pioneering physical and technical

investigations, homogenous crystals of CuIn3Se5,
CuGa3Se5, and CuGa5Se8 ternary compounds were
grown to fabricate photosensitive structures. It was
found that the band gap of these compounds is gov-
SEMICONDUCTORS      Vol. 36      No. 10      2002
erned by their atomic composition and the ratios
between atoms of Groups III and VI. This makes it pos-
sible to use these compounds for the fabrication of pho-
tosensitive structures capable of operating in controlled
spectral ranges.
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Abstract—The influence exerted by the thermal annealing of silicon, prior to the deposition of a palladium con-
tact, on the hydrogen sensitivity of palladium–〈natural oxide〉–silicon structures was studied. It is shown that
structures based on annealed silicon have a much higher sensitivity to hydrogen and a shorter response time
when compared with structures based on silicon not subjected to annealing. The results obtained are discussed
in terms of structural transformations occurring at the silicon–〈natural oxide〉  interface during thermal treat-
ment. © 2002 MAIK “Nauka/Interperiodica”.
It has been shown that palladium–〈natural oxide〉–
silicon structures can be used as effective detectors of
hydrogen [1–4]. As is known, mechanical stresses arise
at the silicon–〈natural oxide〉  interface because of the
lattice mismatch between the contacting phases [5].
These stresses may dramatically change the properties
of both the semiconductor and the oxide and thereby
affect the characteristics of device structures. These
stresses can be relieved by thermal annealing. This
communication presents the results obtained from
studying the influence exerted by the thermal treatment
of silicon prior to the deposition of a palladium contact
on the hydrogen sensitivity of palladium–〈natural
oxide〉–silicon structures.

Pd/n-Si structures were fabricated on the basis of
silicon epitaxial layers with a doping level of 1 ×
1012 cm–3. The barrier contact was formed by the ther-
mal evaporation of palladium in a vacuum at a residual
pressure of 10–3 Pa. The contact area was 1 × 10–2 cm2.
Two types of structures were studied. In fabricating the
structures of the first type, palladium was deposited
onto silicon with a thin layer of natural oxide on its sur-
face. In fabricating structures of the second type, on
whose surface natural oxide was also present, silicon
was subjected, prior to depositing palladium, to vac-
uum annealing at 500°C for 10 min. The current–volt-
age (I–V) characteristics of the structures were mea-
sured at room temperature in a hermetically sealed
chamber filled with air or a hydrogen/air gas mixture
containing 1 vol % H2.

Figure 1 shows the forward I–V characteristics of
structures of the first (curve 1) and second (curve 2)
types. At biases in the range 0.05–0.25 V, the forward
I–V characteristic is described by an exponential depen-
dence which can be represented analytically as

I SAT2 ϕB

kT
------– 

  qV
nkT
--------- 

  ,expexp=
1063-7826/02/3610- $22.00 © 21136
where S is the contact area; A, the effective Richardson
constant; T, absolute temperature; k, the Boltzmann
constant; ϕB, the barrier height; q, the elementary
charge; and n, the nonideality factor.

The coefficient n is 1.2 and 1.9 for structures of, the
first and second types respectively. The ΦB value found
from the I–V characteristics (at A = 110 A cm–2 K–2) is,
respectively 0.78 and 0.75 eV. Thus, the Pd/n-Si barrier
structures fabricated on the basis of annealed silicon are
characterized by a larger nonideality factor and a some-
what lower barrier height compared with the structures
obtained on unannealed silicon.

Upon letting hydrogen into the measuring chamber,
the forward current increased for both types of struc-
tures. The structures of the second type exhibited a

1

2

10–4

10–5

10–6

10–7

10–8
0.1 0.2 0.30

V, V

I, A

Fig. 1. Forward I–V characteristics of Pd/n-Si structures
based on (1) unannealed and (2) annealed silicon, measured
in air.
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much higher sensitivity to hydrogen than those of the
first type. For the latter, the forward current at a voltage
of 0.05 V increased 2–3-fold under the action of an air
mixture containing 1 vol % H2, whereas for the former,
the increase was by a factor of 20–30. The ratio of cur-
rents in a medium with and without hydrogen, IH/I,
decreased for both types of structures with increasing
bias. The maximum IH/I values were observed at volt-
ages of 0.05–0.10 V.

Figure 2 presents the time dependences of the rise in
current, ∆I = IH – I, upon letting hydrogen into the mea-
suring chamber. The current was measured under a for-
ward bias of 0.05 V. It can be seen that the time in which
a stationary value is attained (3–4 min) is an order of
magnitude shorter for structures of the second type
(curve 2) compared with that for structures of the first
type (curve 1).

Thus, Pd/n-Si structures based on silicon annealed
in a vacuum at 500°C have a much higher sensitivity to
hydrogen and a shorter response time compared with
structures based on unannealed silicon.

The results obtained can be accounted for in terms
of structural transformations occurring in the course of
annealing in the natural oxide layer and adjacent
regions of silicon. Thermal annealing leads to the relax-
ation of mechanical stresses at the silicon–〈natural
oxide〉  interface, which is accompanied by defect for-
mation. Since defects are, as a rule, gas adsorption cen-
ters on the real surface of silicon [6], an increase in their
concentration upon thermal treatment must improve the
sensitivity of Pd/n-Si structures to hydrogen. Indirect
confirmation of the increase in the defect concentration
at the silicon–〈natural oxide〉  interface in the experi-
ments carried out in this study is the fact that the non-
ideality factor increases and the barrier height in the
Pd/n-Si structures decreases upon the thermal treatment
of silicon.

The shorter response time of Pd/n-Si structures
based on annealed silicon is presumably due to a
decrease upon annealing in the density of slow states at
the silicon–〈natural oxide〉  interface. As noted in [7],
slow interfacial states, whose recharging times are as
long as minutes and even hours, virtually disappear
upon heating silicon samples in a vacuum at tempera-
tures higher than 230°C. Therefore, the time of equili-
bration in surface charging as a result of adsorption of
hydrogen atoms becomes shorter.
SEMICONDUCTORS      Vol. 36      No. 10      2002
Thus, the investigation performed demonstrated that
the thermal treatment of silicon prior to depositing a
palladium contact markedly improves the characteris-
tics of gas sensors based on Pd/n-Si barrier structures.

REFERENCES
1. A. Diligenti, M. Stagi, and V. Ciuti, Solid State Com-

mun. 45, 347 (1983).
2. M. C. Petty, Solid-State Electron. 29, 89 (1986).
3. G. G. Kovalevskaya, M. M. Meredov, E. V. Russu, et al.,

Zh. Tekh. Fiz. 63 (2), 185 (1993) [Tech. Phys. 38, 149
(1993)].

4. V. I. Gaman, P. N. Drobot, M. O. Duchenko, and
V. M. Kalygina, Poverkhnost’, No. 11, 64 (1996).

5. S. A. Litvinenko, V. V. Mitrofanov, and V. I. Sokolov, Zh.
Tekh. Fiz. 51 (4), 828 (1981) [Sov. Phys. Tech. Phys. 26,
490 (1981)].

6. V. G. Litovchenko, Poluprovodn. Tekh. Mikroélektron.,
No. 9, 92 (1972).

7. V. S. Vavilov, V. F. Kiselev, and B. N. Mukashev, Defects
in the Bulk and at the Surface of Silicon (Nauka, Mos-
cow, 1990).

Translated by M. Tagirdzhanov

1

2
700

600

500

400

300

200

100

0 5 10 15 20 25 30

140

120

100

80

60

40

20

0

∆I, nA ∆I, nA

t, min

Fig. 2. Variation of the current with time after letting hydro-
gen in the measuring chamber for Pd/n-Si structures based
on (1) unannealed and (2) annealed silicon.



  

Semiconductors, Vol. 36, No. 10, 2002, pp. 1138–1145. Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 36, No. 10, 2002, pp. 1217–1224.
Original Russian Text Copyright © 2002 by Kosyachenko, Markov, Ostapov, Rarenko, V. Sklyarchuk, Ye. Sklyarchuk.

                                                                                                   

SEMICONDUCTOR STRUCTURES,
INTERFACES, AND SURFACES

                   
Electrical Properties 
of Narrow-Gap HgMnTe Schottky Diodes

L. A. Kosyachenko*, A. V. Markov, S. É. Ostapov, I. M. Rarenko,
V. M. Sklyarchuk, and Ye. F. Sklyarchuk

Chernivtsi National University, Chernivtsi, 58012 Ukraine 
* e-mail: lakos@chv.ukrpack.net

Submitted January 30, 2002; accepted for publication March 11, 2002

Abstract—The electrical properties of Al/Hg1 – xMnxTe (x = 0.08–0.1) Schottky barriers have been studied.
Specific features related to a narrow band gap and to a strong difference between the effective masses of
carriers have been revealed. The principal parameters defining the characteristics of a diode structure, as well
as the tunneling and above-barrier (diffusion) carrier transport, are determined. The obtained experimental
and theoretical data demonstrate the high detectivity of the diodes under study. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The prospect of using a Hg1 – xMnxTe solid solution
as a material for IR detectors, which feature a higher
stability of the crystal lattice and surface than those
based on Hg1 – xCdxTe, was predicted theoretically [1]
and confirmed experimentally as early as the 1980s [2].
A detailed analysis of possible charge transport mecha-
nisms in Hg1 – xMnxTe p–n junctions has shown that,
judging by key photoelectric parameters, they should
not rank below Hg1 – xCdxTe detectors [3]. This conclu-
sion was confirmed by studies of Hg1 – xMnxTe photo-
diodes with n+–p junctions fabricated using ion etching
of single crystals with p-type conduction [4, 5].

However, the fabrication of multielement photode-
tectors with p–n junctions encounters the problem of
poor reproducibility of single element parameters in all
the steps of device fabrication: ion etching, multilayer
metallization, surface passivation, etc. Meanwhile, the
possibility of using Hg1 – xMnxTe Schottky diodes as IR
detectors, which are characterized by a simpler fabrica-
tion technology and, moreover, possess certain advan-
tages over p–n junctions (higher working frequency,
higher sensitivity in the short-wavelength spectral
range, etc.) have received virtually no attention.

In this communication, we report the results of a
study of the electrical properties and detectivity of
Schottky diodes based on Hg1 – xMnxTe with a band gap
Eg ≈ 0.1 eV, i.e., those suitable as detectors of radiation
in the 8–14 µm atmospheric window.

2. SINGLE CRYSTALS

The samples were fabricated from p-type
Hg1 − xMnxTe single crystals grown by modified zone
melting with subsequent annealing in mercury vapor.
1063-7826/02/3610- $22.00 © 21138
Wafers 0.8–1 mm thick were cut from an ingot of
15 mm in diameter, lapped, and thoroughly polished.
Though the Mn content in the synthesis was chosen so
as to obtain a band gap Eg = 0.1 eV at the liquid nitrogen
temperature, the Eg value appeared to be nonuniform in
the ingot, as well as over the area of single wafers. The
inhomogeneity of the Hg1 – xMnxTe composition is
demonstrated by Fig. 1, which presents optical absorp-
tion data obtained from different portions of the middle
part of the ingot at room temperature (T = 300 K). The
absorption coefficient α was determined from transmis-
sion data recorded with a beam of 1–2 mm in diameter
(with multiple reflections taken into account). The
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0.08 0.10 0.12 0.14 0.16 0.18
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α 2, 104 cm–2

Fig. 1. Optical absorption at different parts of wafers cut from
the central portion of the Hg1 – xMnxTe ingot. T = 300 K.
002 MAIK “Nauka/Interperiodica”
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coordinate system in the figure (α2 vs. the photon
energy hν) was chosen based on the assumption that
α ∝  (hν – Eg)1/2 near the fundamental absorption edge
in a semiconductor with direct interband transitions,
which is the case for Hg1 – xMnxTe [6].

As seen from Fig. 1, the cutoff at the photon energy
axis yields Eg values in the range 0.13–0.163 eV (T =
300 K), which, in accordance with the well-known
semi-empirical relation

(1)

corresponds to x = 0.088–0.100. At T = 77 K (the oper-
ation temperature for this type of diodes), Eg = 0.069–
0.111 eV, according to the same relation. So strong a
variation in the band gap with a relatively small (~1%)
variation in x is due to the step dependence of Eg on the
Mn content in narrow-gap Hg1 – xMnxTe compounds.

3. FABRICATION OF DIODE STRUCTURES

Schottky diodes were produced by sputtering Al in
a vacuum chamber with the residual pressure below
10−5 Torr. Prior to the rectifying contact formation, a
wafer was chemically treated in bromomethanol and
rinsed in deionized water. Immediately before the metal
sputtering, the wafer surface was etched for ~10 min
with Ar ions at an accelerating voltage of ~500 V and a
current density of 4–5 mA cm–2. When a metal is
deposited onto a surface treated in this manner, the
electrical properties of the contact depend on the work
function of the metal. An ohmic contact is formed with
metals with a high work function (Au or Ni), whereas
Al, whose work function is smaller, always forms a
nonlinear, and only in some cases a rectifying, contact.
This fact correlates with the general concept of pro-
cesses at the metal–semiconductor contacts. To form
the Schottky barrier, the work function of a semicon-
ductor with p-type conduction must be higher than the
work function of a metal (naturally, if the screening by
carriers captured by surface states is ignored). How-
ever, namely the presence of Mn in the material under
study causes a low density of these states [7].

At the same time, the observed dependence of the
metal–semiconductor contact properties on the nature
of a metal indicates that the ion etching performed
under the above-described conditions does not produce
an n-layer at the sample surface, which could happen
[4, 5]. If this did occur, the deposition of Au or Ni
would not eliminate the nonlinearity or rectification
caused by the p–n junction. Ohmic contacts on the sub-
strate were fabricated by sputtering Ni onto the area not
subjected to ion etching.

Eg x T,( ) 0.253– 3.446x+=

+ 4.9 10 4– T 2.55 10 3–×–× xT ,
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4. CURRENT–VOLTAGE CHARACTERISTICS 
OF Al/Hg1 – xMnxTe DIODES

The current–voltage (I–V) characteristics of the
studied Schottky diodes differ widely in their current
strength and type of dependence of current on bias,

Fig. 2. I–V characteristics of (a) several Al/HgMnTe diodes
at 77 K; (b) one of the diodes at 77 and 300 K; (c) forward
portions for the same diode in the range of high current.
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depending on the Mn content and acceptor density in
Hg1 – xMnxTe. Later, we present the results obtained in
the study of Al/Hg1 – xMnxTe diodes for a solid solution
with x ≈ 0.1, to which Eg = 0.11 eV corresponds at
77 K, i.e., the practically important cut-off wavelength
of ~ 11 µm.

Figure 2a shows typical I–V characteristics recorded
at T = 77 K for several diodes 150 µm in diameter. As
seen, the I–V curves are nonlinear in all the cases but
the rectification is weak. At best, the ratio of the for-
ward to reverse current does not exceed several units.

Another characteristic feature of the studied
Al/Hg1 − xMnxTe diodes is that the rectification becomes
worse at lower temperatures. This is illustrated by
Fig. 2b, where the I–V curves for one of the diodes are
plotted in convenient semilog coordinates, regardless of
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Fig. 3. Distribution of charge Q(x), electric field intensity F(x),
and potential energy of carriers ϕ(x) in a p-Hg1 – xMnxTe

Schottky diode. Eg = 0.1 eV, Na = 1016 cm–3, T = 77 K.
the bias voltage and current direction. As seen, at 77 K,
the forward and reverse currents virtually coincide. At
300 K, the forward current is several times higher than
the reverse, but only for an elevated bias. For other
diodes, the forward current can be slightly higher than
the reverse one, but sometimes the forward and reverse
portions intersect.

In Fig. 2c, the forward characteristics are plotted on
a linear scale, which allows us to reveal a linear portion
of the I(V) dependences under high current (the current
density of ~ 0.5 A cm–2 corresponds to the current of
100 µA). Consequently, in this range of currents, the
contact potential Vc is compensated by the applied bias
and, therefore, V ≈ Vc + IRs , where Rs is the series resis-
tance (in this case, the crystal resistance). Judging from
the offset in Fig. 2c, the barrier height at 300 K is
0.11 eV (Eg = 0.16 eV), and with the temperature low-
ered to 77 K, it decreases to 0.07 eV (Eg = 0.11 eV),
which seems quite probable and reasonably correlates
with the temperature variation of the band gap. It is nec-
essary to note, nevertheless, that full compensation of
the contact potential is impossible; therefore, it may
only be asserted that the barrier height at 300 and 77 K
is not lower than the cited values.

5. SPECIFICS
OF THE ELECTRIC FIELD DISTRIBUTION

IN A SCHOTTKY DIODE BASED 
ON A NARROW-GAP SEMICONDUCTOR

The simulation of the electrical characteristics of a
Schottky diode presumes a knowledge of the distribu-
tions of the carrier density Q(x), electric field intensity
F(x), and potential energy of carriers ϕ(x) in the SCR.
If the space charge density is assumed to be uniform (as
is usually done), the field intensity decreases linearly,
and the potential, quadratically, with the coordinate x
directed from the interface to the semiconductor bulk.
However, in a narrow-gap semiconductor, the unifor-
mity of the charge density can be distorted in the barrier
layer of the Schottky diode owing to the strong effect of
free carriers, which is similar to what occurs in a p–n
junction [5]. This assertion is confirmed by calcula-
tions, and the results are presented in Fig. 3.

The dependences Q(x), F(x), and ϕ(x) have been
found from the solution to the Poisson equation on the
assumption that the space charge in the depleted region
is defined by ionized acceptors, –eNa, and holes in the
valence band +eNv exp{–[|ϕ(x)| + ∆µ]/kT}, where Na is
the acceptor density; Nv and ∆µ, the effective density-
of-states in the valence band and the energy distance
between the Fermi level and the valence band top; e, the
elementary charge; and k, the Boltzmann constant. The
calculations were done for Eg = 0.1 eV, Na = 1016 cm–3,
and three values of the barrier height: ϕ0 = 0.03, 0.05,
and 0.07 eV. As seen, with holes in the valence band
taken into account, the space charge density in the
depleted region is not uniform but varies continuously
SEMICONDUCTORS      Vol. 36      No. 10      2002
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with the coordinate. Consequently, the field intensity
dependence on x deviates from linearity. The behavior
of the potential also deviates from the quadratic law
(naturally, this does not manifest itself so clearly).

It is evident that the special features of the Q(x),
F(x), and ϕ(x) dependences presented in Fig. 3 must be
taken into account in calculations of current, and the
approximation of the linear variation (and even more
so, uniformity) of the electric field in the Schottky
diode based on a narrow-gap semiconductor [8] is too
crude. In the strict sense, if the bands are strongly bent
near the interface, the space charge of electrons in the
conduction band must also be taken into account. How-
ever, in the case under study this effect is insignificant
even at maximal barrier height. This is accounted for by
a much lower density of states in the conduction than in
the valence band, due to the very small effective elec-
tron mass (~10–2m0 at Eg ≈ 0.1 eV). The Schottky bar-
rier in n-type Hg1 – xMnxTe presents the opposite case,
where the holes in the valence band can play a principal
role in the formation of a space charge (which is con-
firmed by our calculations). Naturally, similar calcula-
tions for Q(x), F(x), and ϕ(x) in a wide-gap semicon-
ductor (e.g., for Eg = 1 eV with equal electron and hole
effective masses me = mh = m0) shows that taking into
account free carriers of both types is quite unnecessary
in this case.

6. CALCULATION OF I–V CHARACTERISTICS

The observed poor rectification and relatively weak
temperature dependence of the forward and reverse
currents indicate that the electrical properties of the
diodes under study are primarily defined by the tunnel-
ing. Figure 4 shows an energy diagram of the
Al/Hg1 − xMnxTe contact and the discussed metal–semi-
conductor tunnel transitions. With an increase in the
forward bias, the range of tunneling gradually shifts
downwards and finally merges with the energy interval
of the above-barrier transport of carriers (in standard
terminology, this is the hole diffusion current). At the
same time, the contribution of the above-barrier elec-
tron current (the electron diffusion current), which is
usually ignored when the band curvature is moderate,
increases. A calculation similar to the one made for a
p−n junction [5] shows that the current defined by the
generation–recombination in the SCR (the depleted
layer) is negligible as compared with the tunneling and
diffusion components. Hence, in terms of an actual
model, the diode current is defined by the sum of tun-
neling and diffusion currents.

Using the dependence of potential ϕ(x) which was
determined in Section 5, we can calculate the tunnel
SEMICONDUCTORS      Vol. 36      No. 10      2002
transparency coefficient of a potential barrier for an
electron of energy E as [9]

(2)

where mr is the reduced electron mass, and x1 and x2 are
the so-called turning points. In the chosen reference
system (see Fig. 4, the energy is reckoned from the
Fermi level in a metal EFm),

(3)

where ∆µ is the distance between the Fermi level EFs in
the semiconductor and the valence band top Ev (defined
by the given acceptor density), x1 = 0, and x2 is found
from the condition of zero radicand in (3). When ϕ(x)
is known, the tunneling current can be calculated as

(4)
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Fig. 4. The band diagram of an Al/HgMnTe contact at (top)
forward and (below) reverse bias. Arrows indicate the dis-
cussed components of current: (1) tunneling, (2) above-bar-
rier electron, (3) above-barrier hole; the potential barrier for
electron tunneling is hatched.
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where A is the diode area, and fm(E) = ln{1 + exp(–E/kT)}
and fs(E) = ln{1 + exp[–(E + eV)/kT]} are the probabil-
ities of the occupation of the level E with an electron in
the metal and semiconductor, respectively. The expres-
sions for fm(E) and fs(E) differ from the Fermi–Dirac
function, because only the velocity component perpen-
dicular to the junction plane is important for tunneling,
while the lateral components can have arbitrary values
(these expressions are obtained through integration
over all the possible values of the transverse velocity
component, i.e., from –∞ to +∞). The difference
fm(E ) – fs(E) in relation (4) accounts for the counter-
flow of electrons from the semiconductor to the metal
at forward bias, and from the metal to the semiconduc-
tor at reverse bias, which is significant in the near-zero
range of voltages (|V | < kT/e) that are important for
detector applications. It is necessary to note, thereupon,
that frequently used relations obtained for tunneling
currents under the condition |eV | @ ϕ0 are inapplicable
at small biases [8].

100

10–2

10–4

103

101

10–1

10–3

–0.2 –0.1 0 0.1

V, V

Jtotal, A/cm2

–0.05 0 0.05

J, A/cm2

Jtotal

Jtun

Jdif

1017 cm–1

3 × 1016 cm–1

Na = 1016 cm–1

x = 0.08
ϕ0 = 0.05 eV

x = 0.1
ϕ0 = 0.1 eV

(a)

(b)

Fig. 5. (a) Calculated density of the tunneling and diffusion
current vs. bias, J(V), for an Al/Hg1 – xMnxTe diode with x =

0.09, ϕ0 = 0.1 eV, Na = 3 × 1016 cm–3, at T = 77 K; (b) total
current density, Jtotal(V), calculated with the parameters
specified.
Using the same approach, we now apply the rela-
tion (4) to calculate the above-barrier hole current; to
do this, we assume D(E,V) = 1 and set the integration
limits as –(ϕ0 + ∆µ) to –∞ (several kT below –(ϕ0 + ∆µ)
is enough). Naturally, this calculation yields a result
coinciding with the relation for the thermionic cur-
rent, I = A(emhk2/2π2"3)T2exp[–(ϕ0 + ∆µ)/kT] =
AA*T2exp[−(ϕ0 + ∆µ)/kT] [9], which is obtained
through the analytical integration of (4) (A* is the effec-
tive Richardson constant). A similar relation can also be
obtained for the above-barrier electron current by
replacing the effective hole mass mh with an electron
mass me and the barrier height for holes ϕ0 + ∆µ with
that for electrons Eg – ∆µ (see Fig. 4).

If we assume that the current in the diodes under
study is the sum of the tunneling and above-barrier hole
currents, the calculated values of current under high
forward bias are strongly overestimated as compared
with the experiment (by more than 3 orders of magni-
tude). It is necessary to assume, therefore, that the bar-
rier height is larger than the value obtained from the
cutoff in Fig. 2c. It is also necessary to keep in mind
that the above-barrier electron current becomes sub-
stantial when the band bending is strong. Since the
above-barrier hole current is proportional to
mhexp[−(ϕ0 + ∆µ)/kT], and the electron current, to
meexp[–(Eg – ∆µ)/kT], the latter can exceed the hole
current when ϕ0 > Eg – 2∆µ – kTln(me/mh). In general,
both the electron and hole currents must be considered.

Figure 5a presents the tunneling and above-barrier
currents calculated at 77 K and the acceptor density
Na = 3 × 1016 cm–3 with account taken for the aforesaid.
The figure presents, in an illustrative form, the relation
between the tunneling (Jtun) and diffusion (Jdif) compo-
nents of the current density. Under reverse and small
forward bias, the above-barrier current is considerably
less than the tunneling. However, the rise of the tunnel-
ing current becomes slower under higher forward bias,
and, at V approaching ϕ0/e, the tunneling current
decreases, which is accounted for by the above-men-
tioned narrowing of the tunneling region and its down-
ward shift on the energy scale. At the same time, the
contribution of the over-barrier diffusion current
increases, so that under a forward bias of 0.02–0.03 V
these current components become comparable, and
under a higher forward voltage the diffusion current
dominates. This circumstance allows us to determine,
with reasonable precision, the barrier height ϕ0 that
yields the best agreement between the calculated cur-
rent and the experimental data in the range of high for-
ward bias. As would be expected, in this case the band
curvature near the semiconductor surface becomes so
strong that the above-barrier electron current dominates
over the hole current (e.g., at Eg = 0.11 eV, ϕ0 = 0.1 eV,
instead of ϕ0 = 0.07 eV determined from the cut-off in
Fig. 2c). Strong band bending is also demonstrated by
the fact that the capacitance of the diodes under study
SEMICONDUCTORS      Vol. 36      No. 10      2002
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is virtually independent of the bias voltage. This fact is
accounted for by the influence of free carriers (in this
case, electrons), which are responsible for the deviation
from the standard dependence of the Schottky diode
capacitance C on bias, C ∝  (ϕ0 – eV)1/2, similarly to
what is observed in n+–p junctions in Hg1 – xMnxTe [5].

Now, when all the necessary parameters are
known, we can calculate the I–V characteristic of a
Al/Hg1 – xMnxTe diode as the sum of tunneling and
above-barrier currents (electron and hole), varying the
Mn content and the acceptor density to a reasonable
extent. The computer program is organized so that the
calculation begins from the determination of the charge
and potential distributions; to do this, we specify the
barrier height ϕ0 determined from the forward diode
characteristic in the range of high current (Fig. 3 only
illustrates the changes in the I–V curve at varied ϕ0).
With ϕ0 set in this way, the program accounts for both
the electron and hole above-barrier currents, and,
thereby, their relation to one another.

The results shown in Fig. 5b account for the experi-
mentally observed specificities of the diode character-
istics. As seen, the I–V characteristic changes drasti-
cally when x, ϕ0, and Na are varied. The diode exhibits
a reasonably fair rectification at x = 0.1, ϕ0 = 0.1 eV,
Na = 1016 cm–3 (the forward current is several orders of
magnitude higher than the reverse one); by contrast, the
reverse current exceeds the forward current at x = 0.08,
ϕ0 = 0.05 eV, and Na = 1017 cm–3. The main reason for
this evolution of the I–V characteristic is the increasing
role of tunneling as compared with the above-barrier
transport of carriers (the exceeding of the reverse cur-
rent over the forward current in the so-called backward
diodes is also accounted for by the tunneling [3, 9]).

As follows from Figs. 5b and 5a, the reverse and for-
ward currents become nearly equal at x = 0.09–0.1, ϕ0 ≈
0.07 eV, and Na = (3–10) × 1016 cm–3, which correlates
with the experimental data presented in Fig. 2b. The
model used also accounts for the temperature depen-
dences of the I–V characteristic of Al/Hg1 – xMnxTe
diodes. Figure 6 shows the calculated I–V characteris-
tics at 77 and 300 K for a diode with x = 0.1, ϕ0 =
0.1 eV, and Na = 1016 cm–3.

As seen, at 77 K, the rectification is absent, and, at
room temperature, of the forward current is several
times higher than the reverse current, which is actually
observed in the experiment (we do not show the current
in the range V > 0.08–0.10 V, because, in this case,
account must be taken of the voltage drop in the diode
bulk). A comparison of the data presented in Figs. 2 and
6 shows that the calculated and measured current values
are close to one another (the diode area was 2 ×
10−4 cm2). Evidently, even better coincidence between
the calculation and the experiment can be obtained with
parameter fitting. We believe that this would be too arti-
ficial, because many of the semiconductor parameters
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(especially the effective carrier mass, the band gap, and
the dielectric constant) are specified by inexact empiri-
cal relations. On the other hand, the consistency of the
calculated and experimental data in Fig. 6 shows that
the proposed model provides a convincing explanation
for describing the properties of the diodes under study.

7. DETECTIVITY 
OF Al/Hg1 – xMnxTe DIODES

Poor rectification and the deviation from an “ideal”
I–V characteristic (when the forward current no longer
behaves as I ∝  exp(eV/kT)) are commonly regarded as
evidence of low device quality. Nevertheless, we shall
estimate the possibility of using Al/Hg1 – xMnxTe diodes
as IR detectors for the wavelength range 8–14 µm.

The principal parameter of an IR detector is its
detectivity D*, defined by the conductance of a diode
structure and by the background radiation. Tradition-
ally, the detectivity of a detector is defined as the prod-
uct of its differential resistance under zero bias by the
active area, i.e., the so-called R0A product:

(5)

where η is the quantum efficiency of the detector and
φB , the irradiation from the environment (the number of
photons in the Planck radiation, which are incident per
unit area and absorbed by the semiconductor per unit
time, i.e., in the wavelength range below the λc cutoff).
Conventionally, η is assumed to be 0.5–0.7, and φB

equals 6.5 × 1017 cm–2 s–1 for λc = 11 µm at 300 K and
an angle of aspect of 180°.
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Figure 7 presents the measured differential resis-
tance of an Al/Hg1 – xMnxTe diode at two temperatures.
At 77 K and zero bias (the operating conditions for
these detectors), R0A ≈ 2 Ω cm2. For this value of R0A,
the first term in square brackets in relation (5) is
~8 times less than the second. This means that the
diode detectivity is defined by the background radiation
at 300 K and the angle of aspect of 180°; i.e., it is close
to its limiting value D* ≈ 3.6 × 1010 cm Hz1/2 W–1 (the
so-called background-limited infrared photodetector
mode (BLIP)) [3].

It might seem that the room-temperature detectivity
of an Al/Hg1 – xMnxTe detector is also high (R0A ≈
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Fig. 7. Differential resistance multiplied by the diode area
vs. bias for an Al/Hg0.9Mn0.1Te Schottky diode at 77 and
300 K.
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Fig. 8. Dependence of R0A on the acceptor density calcu-
lated for Al/Hg1 – xMnxTe diodes with different composi-
tions of the solid solution and, correspondingly, different
cutoff wavelengths of 10, 11, and 13 µm at 77 K.
0.6 Ω cm2). However, we should not forget that the
band gap of Hg1 – xMnxTe increases to 0.16 eV at 300K,
which means that the cutoff wavelength becomes λc ≈
7 µm. For this λc, the background irradiation φB decreases
by a factor of ~5 in comparison with λc = 11 µm. Conse-
quently, the room-temperature D* is far from the limit-
ing value.

It is noteworthy that the value R0A ≈ 2 Ω cm2 at 77 K
refers to a medium-quality sample (the diode with the
highest currents, Fig. 2a); for the best diodes, this quan-
tity can be several times higher. The sufficiently good
quality of Al/Hg1 – xMnxTe diodes as IR detectors is also
confirmed by the results of calculations. Figure 8 shows
R0A vs. the acceptor density Na at 77 K for three com-
positions of the solid solution: x = 0.095, 0.1, and 0.105,
which correspond to the industrially important range of
the cutoff wavelength λc ≈ 13, 11, and 10 µm, respec-
tively. As seen, the calculated R0A exceeds 10 Ω cm2 at
Na = 3 × 1016 cm–3, and even at Na = (5–10) × 1016 cm–3

it is over 2–3 Ω cm2 (which corresponds to the BLIP
mode).

Naturally, the Schottky diode on a 0.8- to 1-mm-
thick crystal with a ~1-µm metallic layer is not applica-
ble as a radiation detector. Nevertheless, the problem of
radiation input into the barrier region of a diode can be
resolved by several methods. The barrier structure can
be fabricated in a thin epitaxial Hg1 – xMnxTe layer
grown on a transparent substrate made of CdTe or, for
better lattice matching, Cd1 – xMnxTe. Another way to
resolve the problem is the fabrication of an Al contact
in the form of a thin-stripe grid. With an acceptor den-
sity of 3 × 1016 cm–3, the Fermi level in the crystal bulk
lies at about 0.03 eV above the valence band top. This
means that for a barrier height of 0.07 eV or more, the
Fermi level at the crystal surface lies close to the con-
duction band; i.e., the conductance of the surface layer
can be sufficient for the areas between the stripes of the
grid to be active.

8. CONCLUSION

The study of the optical properties of p-Hg1 – xMnxTe
single crystals shows considerable inhomogeneity in
the composition of the material and, correspondingly,
in the band gap in different parts of an ingot and even
within a single wafer. The specific features of the
Al/Hg1 − xMnxTe Schottky diodes under study are a non-
linear I–V characteristic, the lack of rectification at 77 K,
and poor rectification at 300 K. The calculations of the
tunneling and above-barrier currents with account
taken of the special features of the potential distribution
in the barrier region of the Schottky diode in a narrow-
gap semiconductor account for the behavior of the
diodes. The differential conductance of Al/Hg1 – xMnxTe
diodes corresponds to a detectivity of D* ≈ 3 ×
1010 cm Hz1/2 W–1, which is close to the limit for the
industrially important cutoff wavelength λc = 11 µm
SEMICONDUCTORS      Vol. 36      No. 10      2002
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under the conditions of background irradiation at 300 K
with an angle of aspect equal to 180°.
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Abstract—The magnetooptical properties of 〈quantum dot〉–〈impurity center〉  complexes formed in a transpar-
ent insulator host were studied. In order to describe one-electron states of a quantum dot, a parabolic model of
the confinement potential was used. In terms of the zero-range potential model in the effective-mass approxi-
mation, the coefficient of extrinsic absorption of light polarized parallel and perpendicular to the direction of
an external magnetic field (longitudinal and transverse polarizations, respectively) was calculated taking into
account variance in the quantum-dot size. It was shown that, in the case of longitudinal polarization, the edge
of the extrinsic-absorption band shifts in a magnetic field to shorter wavelengths and the absorption coef-
ficient increases several times. In the case of transverse polarization, the quantum-dimensional Zeeman
effect is observed in the extrinsic-absorption spectrum. It was also shown that the anisotropy of the mag-
netooptical absorption is a nonmonotonic function of the frequency of light and does not depend critically
on the impurity-level position. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetooptical properties of 〈quantum dot〉–
〈impurity center〉  (QD–IC) complexes formed in a
transparent insulator host are of interest in connection
with the problem of the development of photodetectors
with a controlled operating frequency and maximum
sensitivity in the extrinsic-absorption region. The mag-
netooptical absorption of multiwell quantum systems
(GaAs–Ga0.75Al0.25As) with the participation of D–

states was experimentally studied in [1]. In order to
analyze experimental data, the variational approach is
commonly used for describing the localized state of an
electron at a D– center [2]. This approach has a number
of well-known drawbacks, among which the most sig-
nificant is the uncertainty in choosing the trial wave
functions. The authors of [3] theoretically investigated
magnetooptical absorption in a semiconductor quan-
tum well (QW) which was caused by transitions of
electrons from the D– state to the Landau levels. The
bonding state was described in terms of the zero-range
potential model [4, 5]. However, when the absorption
coefficient was calculated, it was implicitly assumed
that a localized electronic state is formed only by the
states of the low-lying QW subband. Apparently, this is
correct only in the quantum-mechanical limit, when
L ! ad (L is the QW width, and ad is the effective Bohr
radius). In the case of semiconductor QDs, when R0 !
ad (R0 is the QD radius), the question arises as to the
applicability limits of the effective-mass concept when
the energy spectrum of an impurity electron is calcu-
lated. We have shown previously (see [6, 7]) that the
zero-range potential model makes it possible to derive
1063-7826/02/3610- $22.00 © 21146
an analytical solution for the wave function of a local-
ized carrier, as well as to analyze the effect of positional
disorder in semiconductor QWs and QDs, character-
ized by a parabolic potential profile, with no limitations
imposed on the number of QW or QD states participat-
ing in the formation of the localized state.

The aim of this work is to theoretically investigate
the magnetooptical absorption of QD–IC complexes
formed in a transparent insulator host. The cases of lon-
gitudinal and transverse polarization of light relative to
the magnetic field direction are considered. The impu-
rity potential is approximated by the zero-range poten-
tial of intensity γ = 2π/α [7]:

(1)

where α is determined by the binding energy Ei of an
electronic state localized at a similar IC in a massive
semiconductor; IC is located at a point Ra = (xa, ya, za).
As is known (see [5]), such a model is appropriate for
the description of D– states, which correspond to the
attachment of an extra electron to a shallow-level
donor. The Lippmann–Schwinger equation has an ana-
lytical solution for the wave function Ψλ(r, Ra) of an
electron localized at the QD short-range potential with
a parabolic profile [7]

(2)
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Here,

is the normalization factor; εa = |Eλ|/"ω0; Eλ =
−"2λ2/2m* is the IC binding energy; m* is the effective
electron mass; ω0 is the confinement-potential charac-
teristic frequency that is related to the QD radius R0 and
the amplitude of the QD potential U0 as follows: 2U0 =

m* ; and a = . The equation that
defines the dependence of the energy of the IC binding
state Eλ on the QD parameters and IC position Ra can
be written as [7]

(3)

where η2 = |Eλ|/Ed and  = |Ei|/Ed are parameters
describing the binding-state energy of an IC located in
a QD and bulk semiconductor, respectively; Ed =

m*e4/(32π2"2 ε2) is the effective Bohr energy with
allowance made for the effective mass m* and dielectric

constant ε; β = /4 ;  = 2R0/ad;  = U0/Ed;

and  = Ra/ad. In order to describe one-electron states
in a QD, we will use the confinement potential of the

form V(r) = m* r2/2. It is worth noting that, for the
theoretical description of one-electron states in a QD,
the hard-wall model is often used; i.e., the confinement
potential is chosen as a spherically symmetric potential
well with infinitely high walls. A more accurate
approach to the confinement-potential form requires
finding a self-consistent solution to Poisson and
Schrödinger’s equations. The analysis of the numerical
solutions of these equations for a QW [8] shows that the
confinement potential is nearly parabolic, but with the
lower part truncated. Therefore, the parabolic form of
the potential can be considered as quite realistic when
there is a choice of the confinement-potential form. The
parabolic potential form is convenient for the theoreti-
cal study of optical properties of quasi-zero-dimen-
sional structures in magnetic fields, because, as will be
shown below, such a potential makes it possible to
obtain explicit formulas for the coefficients of extrinsic
absorption of light in the cases of both longitudinal and
transverse polarization with allowance made for vari-
ance in the QD size. We consider the case of strong

×
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localization of an impurity electron when λa @ 1 (λ2 ≡
2m*|Eλ|/"2). This allows us to assume that the one-elec-
tron states in the quantizing magnetic field are not dis-
torted by the impurity potential. In the asymmetric
gauge of the vector potential A = [B, r]/2, the wave
functions of one-electron states (ρ, ϕ, z), which

are not perturbed by the impurity, and the relevant ener-
gies  take the form [9]

(4)

(5)

where ρ, ϕ, and z are cylindrical coordinates; Hn(x )
are Hermitean polynomials [10]; F(α, β, x ) is the

degenerate hypergeometric function [10];  =

a2/2 ; aB =  is the magnetic
length; n1, n2 = 0, 1, 2, … are quantum numbers associ-
ated with Landau levels and energy levels of a spheri-
cally symmetric oscillator potential well; and m = 0, ±1,
±2, … is the magnetic quantum number. In what fol-
lows, we will consider the case of a weak magnetic
field, so that the effect of the magnetic field on the
impurity ground state in a QD can be ignored. This
assumption is correct when |Eλ| + (3/2)"ω0 @ "Ω (Ω =
|e|B/m* is the cyclotron frequency, |e| is the elementary
charge, and B is the magnetic induction).1 Since posi-
tional disorder occurs in a QD containing IC [7]; i.e.,
the binding energy of IC is a decreasing function of its
coordinate, the above restriction imposed on B can be
somewhat relaxed in the case of an impurity located at
the center of a QD. In this case, substitution of Ra =

1 A theoretical study of the photoionization of deep-level ICs in a
bulk semiconductor in the presence of an external quantizing
magnetic field was carried out in [10, 11].
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(0, 0, 0) into (2) and the use of the integral representa-
tion of the Whittaker function [12] yield [7]

(6)

Here, Γ(x) is the gamma function, Wκ, µ(x) is the Whit-

taker function [12], C = {2 Γ(εa/2 + 7/4)a3[(εa/2 +
3/4)(Ψ(εa/2 + 7/4), and Ψ(εa/2 + 1/4)) – 1]/[(εa +
3/2)2Γ(εa/2 + 1/4)]}–1/2; Ψ(x) is the logarithmic deriva-
tive of the gamma function [12]. As far as we know, no
experimental study of the extrinsic absorption of light
in semiconductor structures with QDs in the presence
of an external quantizing magnetic field has been car-
ried out. However, the modern δ-doping technique (see
review in [13]) apparently makes it possible to carry out
such studies.

2. ABSORPTION OF LIGHT IN THE CASE 
OF LONGITUDINAL POLARIZATION

Let us consider the absorption of light of a QD–IC
complex when B || eλ (eλ is the unit polarization vector).
We assume that (i) the values of all characteristic
lengths of the problem are large compared with the lat-
tice constant and (ii) the location of the ground-state
level of the IC is rather asymmetric relative to the mid-
gap. It follows from this that the extrinsic absorption of
light in a QD can be considered in terms of the effec-
tive-mass method in the one-band approximation. The
effective Hamiltonian for interaction with the light-

wave field  in the case of longitudinal (relative to
the magnetic-field direction) polarization eλs can be
written as

(7)

where λ0 is the local-field coefficient, α* is the fine-
structure constant taking account of permittivity ε, I0 is
the intensity of light, ω is its frequency, q is the magni-

tude of the wave vector, and  is the electron-momen-

tum operator. The matrix element , which deter-
mines the oscillator strength of the optical dipole tran-
sition of an electron from the ground state of the
impurity center Ψλ(r) to states (ρ, ϕ, z) of the
discrete spectrum of a QD, is given by
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where F(α, β; γ, z) is the Gaussian hypergeometric

function [12], and  are binomial coefficients. Equa-
tion (8) accounts for selection rules that arise when cal-
culating the integral

(9)

It follows from (9) that, in the case of longitudinal
polarization of light, optical transitions from the impu-
rity level are possible only to states with odd values of
the quantum number n2. The coefficient of extrinsic
absorption of light K(s)(ω) with account of variance of
the QD size2 can be written as

(10)

where δm, 0 is the Kronecker delta:

2 It is assumed that the variance arises during phase decomposition
of a supersaturated solid solution and can be satisfactorily
described by the Lifshitz–Slyozov formula [14]

where e is the natural logarithm base; and R0 and  are the QD

radius and its mean value, respectively.
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N0 is the concentration of QDs in the insulator host;
P(u) is the Lifshitz–Slyozov function [14]; δ(z) is the
Dirac delta function; X = "ω/Ed is the photon energy in

units of effective Bohr energy; β* = /4 ;  =

2 /ad; and a* = aB/ad . In order to perform integration
in (10), the roots of the argument of the Dirac delta
function should be found. As a result, we obtain

(11)

It is easy to verify that only one root of Eq. (11), ,
satisfies the energy conservation law for the considered
optical transitions:

(12)

Taking into account (12), we can write the expression
for the coefficient of extrinsic absorption of longitudi-
nally polarized light as

(13)
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where K0 = (34 × 21/3)π3α* e N0 and  =

β*η2 /2. Figure 1 shows the spectral dependence of

the coefficient of extrinsic absorption of light K(s)(ω)
for the optical transition with the maximum oscillator
strength (n1 = 0, n2 = 1) in borosilicate glass with inclu-
sions of InSb crystallites. In this case, m* = 0.0133m0

(m0 is the free-electron mass), ε = 18,  = 35.9 nm,
U0 = 0.2 eV, |Eλ| = 5.6 × 10–2 eV, and N0 = 1015 cm–3.
Curves 1 and 2 in Fig. 1 are plotted for B = 0 and 12.8 T,
respectively. It can be seen that, in a magnetic field, the
edge of the extrinsic-absorption band (absorption thresh-
old) shifts to shorter wavelengths, which is caused by the
dynamics of the Landau level. The shift follows the law

1
2 2n1 1+( )

β* X η2–( )un n1,* 2 n1 n–( ) 1/2–+
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 2
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Fig. 1. Spectral dependence of the coefficient of extrinsic
absorption of longitudinally polarized light K(s)(ω) for the
optical transition with the maximum oscillator strength
(n1 = 0, n2 = 1, m = 0) in borosilicate glass colored with
InSb crystallites, for B = (1) 0 and (2) 12.8 T.
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Xth ≈ η2 + 8 (3/2 + )/3
and can be as large as ~0.034 eV (see curve 2). In addi-
tion, the coefficient of the extrinsic absorption of light
increases (compare curves 1 and 2). This effect can be
qualitatively explained by a decrease in the dimension-
ality of the oscillator spherical well with increasing
magnetic field. Indeed, since aB ! a, the confinement of
carrier motion in the xy plane, caused by “weakening”
of the QD potential, can be considered as a perturba-
tion. A decrease in the dimensionality of the QD poten-
tial increases overlap of the wave functions of the initial
and final states, increasing, correspondingly, the possi-
bility of the optical transition. Thus, the variation of B
makes it possible to change the lateral confinement of
the system and, therefore, control the extrinsic absorp-
tion of light.

3. ABSORPTION OF LIGHT IN THE CASE
OF TRANSVERSE POLARIZATION

Let us consider the absorption of light by a QD–IC
complex when B ⊥  eλ. The effective Hamiltonian for

interaction with the light-wave field  in the case of
transverse (relative to the magnetic-field direction)
polarization eλt can be written as

(14)

In the dipole approximation, the matrix element

 of the transition under consideration can be writ-
ten as

(15)
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Here, ϑ  is the polar angle of the transverse-polarization
vector eλt . In this case, selection rules arise when the
following integrals are calculated:

(16)

(17)

(18)

It can be seen from (16)–(18) that optical transitions
from the impurity level are allowed only to states with
the quantum number m = ±1 and even quantum num-
bers n2. The coefficient of extrinsic absorption of trans-
versely polarized light, K(t)(ω), can be written as

(19)

The equation for determining the roots of the argument
of the Dirac δ function is

(20)

In accordance with the selection rules for the mag-
netic quantum number, in the case of transverse polar-
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ization, Eq. (20) has only two roots  satisfying
the energy conservation law for the optical transition
under consideration:

(21)

(22)

As a result, the coefficient of extrinsic absorption of
transversely polarized light K(t)(ω) can be represented as

un1 n 1±, ,

un1 n 1–, ,  = 
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----------------------------------------------------------------------------------------------
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where  = β*η2 /2. Figure 2 shows the
spectral dependence of the coefficient of extrinsic
absorption of transversely polarized light K(t)(ω) calcu-
lated by formula (23) for the optical transition with the
maximum oscillator strength (m = ±1, n1 = n2 = 0) in
borosilicate glass with inclusions of InSb crystallites.
Curves 1 and 2 are plotted for the same values of the
parameters of a QD and impurity center, as in the case
of longitudinal polarization. It can be seen that, in a
magnetic field, the extrinsic-absorption band (curve 1)
splits into a Zeeman doublet (curve 2). Notably, the
height of the absorption peak associated with the opti-
cal transition to the state with m = –1 is several times
smaller than that of the peak associated with the transi-
tion of an electron to the state with m = +1. Apparently,
such asymmetry is due to displacement of the wave
function of an electron associated with the state with
energy E0, –1, 0 from the oscillator spherically symmetric
potential well. Indeed, since E0, –1, 0 < E0 (E0 is the QD
ground-state energy), in accordance with the uncer-
tainty relation, the electron-localization radius in this
case should exceed the characteristic oscillator length

a = . Figure 3 shows the spectral dependence
of the anisotropy of the magnetooptical absorption
K(s)/K(t) for the same two-phase system as in the previ-
ous case. The anisotropy is pronounced near the thresh-

+ 1 1
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old of the extrinsic absorption of longitudinally polar-
ized light (see curve 2) and depends only slightly on the
impurity-level location |Eλ| (compare curves 2 and 3).

4. CONCLUSION

We have carried out a theoretical study of the mag-
netooptical absorption of QD–IC complexes in an insu-
lator host. The zero-range potential model was used for
the impurity potential, while the QD was described in
terms of a parabolic confinement potential. The ampli-
tude of the QD potential U0 is an empirical parameter.
Characteristic features of the spectra of extrinsic
absorption of longitudinally and transversely (relative
to the magnetic-field direction) polarized light were
studied. It was found that, in the case of longitudinal
polarization, the edge of the extrinsic-absorption band
shifts in a magnetic field to shorter wavelengths, while
the light-absorption coefficient increases several times.
In the case of transverse polarization, the quantum-
dimensional Zeeman effect was observed in the extrin-
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Fig. 2. Spectral dependence of the coefficient of extrinsic
absorption of transversely polarized light K(t)(ω) for the
optical transition with the maximum oscillator strength
(n1 = 0, n2 = 0, m = ±1) in borosilicate glass colored with
InSb crystallites, for B = (1) 0 and (2) 3.7 T.
sic-absorption spectra. The anisotropy of magnetoopti-
cal absorption is a nonmonotonic function of the fre-
quency of light. As in the case of quasi-one-dimen-
sional nanostructures [15], a magnetic field can
appreciably affect lateral geometric confinement. This
is of particular interest in the context of the fabrication
of photodetectors based on two-phase systems with a
controlled extrinsic-absorption band.
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Abstract—The dependence of the optical gap of Si quantum dots, embedded in a SiO2 insulator host, on the
dot size was calculated in terms of an envelope-function approximation. It is shown that consideration of the
finiteness of the SiO2 band gap and an abrupt change in the effective mass at the Si–SiO2 interface significantly
decreases the optical gap of quantum dots in comparison with a model in which the potential barriers for elec-
trons and holes are assumed to be infinitely high. The obtained results are in good agreement with the experi-
mental data. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The optical properties of heterostructures with Si
quantum dots (QDs) of small size (a few nanometers)
have been intensively studied with the aim to obtain
emission in the near-infrared or even visible spectral
region. In connection with this, it is of interest to calcu-
late the energy of the basic optical transition in such
systems and analyze the dependence of this energy (or
frequency) on the QD size.

It is worth noting that a number of attempts to carry
out such calculations by using the effective-mass
approximation (or kp-method) [1–3] have already been
made in terms of a model with infinitely high potential
barriers. However, many authors (including those of
[3]) pointed out that this approximation yields highly
overestimated values when applied to small-size QDs
(smaller than 6–8 nm). Hence, more complex and pow-
erful methods were used for such QDs (which, how-
ever, are rather difficult to apply to larger QDs for dif-
ferent reasons, including an abrupt increase in the vol-
ume of computations). Examples of such methods are
the tight-binding model [3–8], pseudopotential method
[9–11], and local-density approximation [12]. In addi-
tion to this, several authors (see, for example, [5]),
pointed out that, for spherical dots, the dependence of
the optical gap on the QD radius R does not follow the
R–2 law, which is typical of the effective-mass approxi-
mation, but turns out to be weaker (R–1.39 law was
reported in [5]).

In this study, the optical gap of spherically shaped Si
QDs positioned in a layer of fused SiO2 was calculated
by the kp method. We will show that this method can
be used for QDs much smaller than 6–8 nm in size
under a number of conditions. Specifically, the anisot-
ropy of the dispersion law for electrons and holes
should be taken into account more strictly, compared
with the way it was done in [1–3]. In addition to this,
1063-7826/02/3610- $22.00 © 21154
one should take into account the finiteness of the poten-
tial-barrier height for both types of carriers (as it was
already pointed out in [12]) and the abrupt change in
the effective mass at the QD boundary.

MATHEMATICAL SIMULATION
AND CALCULATIONS

The calculations show that, as well as in bulk Si,
spin–orbit interaction rather weakly affects the energy
spectrum by forming two levels in the valence band, the
energy difference between which is 0.04 eV. Thus, this
interaction can be ignored, and, in terms of an enve-
lope-function approximation for the valence band, the
Hamiltonian can be written as follows [13]:

(1)

Here δij is the Kronecker delta; the indices i and j run
from 1 to 3; m0 is the free-electron mass; and the values
of L, M, and N are 6.8, 4.43, and 8.61, respectively [14].

The Hamiltonian  is an isotropic operator; i.e.,

(2)

where mh = 3m0/(L + 2M) is the effective hole mass
(~0.19m0), and the magnitudes of the wave vector and
the energy are reckoned from the Γ point.

For the conduction band of Si, a model in which the
constant-energy surface is assumed to have the form of
an ellipsoid of revolution with longitudinal and trans-
verse effective masses is commonly used. This model is

Ĥij
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obtained by expanding the dispersion relation in the
vicinity of one of six equivalent points related to the
energy minimum. However, this model is not appropri-
ate for our aims, because the characteristic values of
energies of dimensional quantization in a nanocluster
of a few nanometers in size appreciably exceed the dif-
ference between the energy at the X point, where two
energy branches cross each other, and that at the point
related to the energy minimum. For such energies, the
form of the constant-energy surface appreciably differs
from an ellipsoid of revolution and a deviation from the
parabolic dependence begins to play a significant role
in the dispersion law.

For this reason, we shall follow the author of [15]
and write the Hamiltonian for the conduction band in
the form of a 2 × 2 matrix operator in the vicinity of one
of three physically nonequivalent X points of the Bril-
louin zone, for example, in the vicinity of the X point
related to the [0, 0, 1] direction (for the other two X
points, the Hamiltonian can be written in a similar
way):

(3)

where mt and ml are the transverse and longitudinal
effective masses equal to 0.19m0 and 0.92m0, respec-
tively; the magnitude of the wave vector and the energy
are reckoned from the X point; and the Hamiltonian

 is also an isotropic operator

(4)

where me = 3mlmt/(2ml + mt) is the effective electron
mass. The value of k0 = 0.144(2π/a) (where a =
0.543 nm is the lattice constant) determines the dis-
tance in the k space from the X point to the nearest elec-
tron-energy minimum in the Brillouin zone. The matrix
form of the Hamiltonian in this case, as well as in the
case of the valence band, is the result of degeneracy of
the energy spectrum at the X point (but now each X
point is doubly degenerate).

In order to calculate the ground-state energies of
electrons and holes, we will use perturbation theory,
having chosen Hamiltonians (2) and (4), respectively,
as the basic approximation. We will consider as pertur-
bations the off-diagonal matrix elements of Hamilto-
nian operators (1) and (3), as well as the anisotropic
components of the main-diagonal elements. Thus, it is
necessary to solve the following matrix equation (the

Ĥ11
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Ĥ0e
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matrix dimension is 3 × 3 and 2 × 2 for the valence and
conduction bands, respectively):

(5)

where Fj(r) are envelope functions and % is the energy.
We will seek the envelope functions in the form of an
expansion in the eigenfunction basis |α〉 of the zero-
order-approximation Hamiltonian (2) or (4) for holes or
electrons, respectively:

(6)

Here, |α〉 stands for the states of the unperturbed prob-
lem and j is the Bloch function index.

The substitution of expansion (6) into Eq. (5) yields
an equation for the determination of energies % and
expansion coefficients Cjα:

(7)

where Eβ are the eigenvalues of the  or  opera-

tors in the |β〉 state and  = 〈α| |β〉 are the matrix
elements of the perturbation operator.

Direct calculation shows that, in spite of the strong
anisotropy of the electron and hole energy branches, the
perturbation series converge quite rapidly, and even the
first-order corrections do not exceed a few percent.
Therefore, we will ignore second-order corrections
from here on.

First of all, we will calculate the ground-state energy
of holes in the valence band. The zero-order approxi-
mation yields

(8)

where kh is the solution to the equation

(9)

the parameter  = 2mhVhR2/"2, Vh is the height of the
potential barrier for holes in the valence band, and m*
is the effective hole mass in the vicinity of the potential
barrier. In general, m–1(r)dΨ/dr differs from the effec-
tive hole mass in the QD. Deriving (9), we used the con-
dition for continuity of the wave function at the QD
boundary and the condition for continuity of the flow,
which can be reduced to the condition of continuity of
the m–1(r)dΨ/dr ratio when there is a coordinate depen-
dence of the mass. First of all, it is worth noting that, in
the zero-order approximation, the expression for
energy (8) and Eq. (9) can also be derived for electrons
of the conduction band by replacing the “h” subscript
with the “e” subscript in (8) and (9).
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The corrections to (8) can be calculated convention-
ally using the perturbation theory for degenerate states
[16], since even the ground state in the valence band is
triply degenerate. Notably, only one ground s state
should be retained on the right side of Eq. (7) in the sum
over α. However, the mean value of the perturbation
operator in the ground state vanishes; i.e., there are no
first-order corrections to the energy. The second-order

corrections (the d states of the  operator are
involved in the formation of these) differ from zero but
are too small, as was already mentioned above. Thus,
expression (8) should be considered as final for the
ground-state energy of holes.

The structure of the ground state of electrons in the
conduction band is more complicated. Since the pertur-

bation operator contains  components that are linear
in the operator, hybridization of the s and pz states of the
unperturbed system becomes possible (the px and py

states couple with each other but fail to couple with the
s and pz states). For this reason, both s and pz states
should now be retained in the sum in Eq. (7). The solu-
tion of the secular equation yields a doubly degenerate
ground-state energy (most likely, double degeneracy in
the conduction band is not removed due to the full sym-
metry of the constant-energy surface relative to the X
point)

(10)

where E and E1 are the energies of the s and p states,
respectively:

(11)

The value of ke is determined from Eq. (9), where the
“h” subscript should be replaced throughout with the
“e” subscript, as was already mentioned above. The
value of k1 can be derived from the equation

(12)

The parameters V and U are the magnitudes of the diag-
onal and off-diagonal perturbation matrix elements
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respectively. The values of these parameters are equal
to

where j0(t) and j1(t) are spherical Bessel functions of
the first kind with argument t,

The dependence %e(R), as well as %h(R), cannot be
written in an explicit form, because Eqs. (9) and (12)
are transcendental. However, the numerical solution of
these equations for different QD radii is not a particular
problem, and this makes it possible to calculate the
dependence of the optical gap on R:

(13)

where ∆ΓX is the difference in the energies at the X point
of the conduction band and at the Γ point of the valence
band. In accordance with the data reported in [15],
∆ΓX = 1.215 eV.

RESULTS AND DISCUSSION

The figure shows %g as a function of the inverse
radius of a QD. The solid line shows the dependence
%g(R) for the model with infinitely high potential barri-
ers Ve and Vh . Triangles 1 correspond to the model with
barriers of finite height and an effective mass in the
vicinity of the barrier, m*, which is equal to the effec-
tive mass of carriers in Si, i.e., to me and mh for elec-
trons and holes, respectively. Circles 2 show the depen-
dence %g(R) for the model with barriers of finite height
and m* equal to the free-electron mass m0 (which is,
apparently, realistic). The band gap of fused SiO2 is
8.7 eV. In accordance with the data reported in [17], the
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height of the potential barrier for electrons is 3.2 eV.
Hence, the barrier height for holes equals 4.3 eV (tak-
ing into account that ∆ΓX should be subtracted).

It is worth noting that, even in the infinite-barrier
approximation, the dependence of the optical gap on R
will not be of the const +R–2 kind due to hybridization
of the s and p states. It is easy to show that, in this case,
the energies E and E1 and the matrix element V depend
quadratically on R–1, and the matrix element U is pro-
portional to R–1, which, in accordance with (10), yields
some intermediate (between R–1 and R–2) dependence
for the optical gap.

In general, the potential barriers for both electrons
and holes are rather high and exceed the values of %e

and %h by an order of magnitude. However, as can be
seen from the figure, even such high barriers cannot be
assumed to be infinite with sufficient accuracy. Indeed,
the difference between the energies of electrons and
holes from the corresponding values yielded by the
model with infinite barriers ranges from 15 to 65%,
depending on R. Naturally, the effect of the finite-bar-
rier height is especially profound in the small-size
areas, where the deviation from the parabolic depen-
dence (on R–1) of both triangles 1 and circles 2 increases
with R–1, thus increasing the correction, which now con-
tains R–3 components and higher (in magnitude) powers
of R.

The abrupt change in the effective mass at the QD
boundary also appreciably affects the location of the
energy levels of electrons and holes. As can be seen
from the figure, when m* = m0, the correction for all
radii exceeds that obtained in the case of constant effec-
tive mass by a factor of 2.

A comparison of the results of this study with the
calculations carried out by more complex methods
shows very good agreement for QDs larger than 1.5 nm
in size. For example, the values of the optical gap, cal-
culated by the tight-binding method in [4, 5, 8], the
pseudopotential method in [11], and in the local-den-
sity-functional approximation in [12], virtually coin-
cide with the values of %g(R) obtained here for m* =
m0. The data obtained in [6] and [10] (using the tight-
binding and pseudopotential methods, respectively)
differ from that reported here by approximately 10–
15%, but in different ways: the tight-binding method
yields smaller values of the gap, while the pseudopo-
tential method yields larger values.

The experimental data reported in [5, 6, 10, 18–21]
are also in good agreement with the results of this study.
There is virtually complete agreement with the experi-
mental data on luminescence and optical absorption
reported in [5, 18] and [10], respectively. Somewhat
smaller values of the optical gap compared with the
results reported here (on the whole, by 10–20%) were
reported in [6, 19–21], where luminescence in Si
nanocrystals was experimentally studied. The scatter in
the experimental data may be caused by the different
SEMICONDUCTORS      Vol. 36      No. 10      2002
methods for preparating QDs, which can hardly be
taken into account in a theoretical model.

CONCLUSION

We have shown that, even for small-size QDs, the
envelope approximation yields good agreement with
the data derived from both experiments and other cal-
culation methods. The advantage of the envelope
approximation is that, being essentially an analytical
method, it does not require as large an amount of com-
putations as more complex calculation methods do.
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Abstract—The time of relaxation of quasi-two-dimensional electrons in a GaAs/AlxGa1 – xAs superlattice in
the case of scattering by acoustic phonons was calculated numerically in relation to the quantum-well width
and the width and height of the potential barrier. The probability of scattering for electrons of the lower mini-
band was calculated using an approximate envelope wave function without consideration of the dispersion of
the periodic component of the Bloch function in relation to the wave vector. A comparative analysis of the
calculated relaxation times and the values obtained using the well-known approximate formula was performed.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is well known [1–3], many specific and electrical
properties of superlattices (SLs) with a quasi-two-
dimensional (quasi-2D) electron gas manifest them-
selves at low temperatures, in which case the charge
carriers are mainly scattered by acoustic phonons. Typ-
ically, the following well-known formula for the relax-
ation time is used in calculations of the charge-carrier
mobility governed by this type of scattering [3–5]:

(1)

Here, a is the width of a rectangular quantum well
(QW) in the SL, cL is the elastic modulus for longitudi-
nal acoustic vibrations, Dc is the deformation-potential
constant at the conduction-band bottom, and m* is the
effective electron mass. The constants cL , Dc , and m*
have the same values as those in the semiconductor
material of the QW. The relaxation time defined by for-
mula (1) depends only on the QW width since this for-
mula was derived taking into account the envelope
wave function of charge carriers, which corresponds to
an infinitely deep QW. In this context, the question
arises as to whether this formula is applicable to an
analysis of the carrier mobility in SLs with fairly thin
barriers whose height is comparable to the energy of
electrons in the lower (main) miniband.

In this paper, we suggest a method for calculating
the relaxation time of quasi-2D electrons due to scatter-
ing by the deformation potential of acoustic phonons
with the envelope wave function accounting for the
finite height and width of the SL potential barriers. We
performed a numerical analysis of the relaxation-time

τ 2
3
---

a"
3cL

m*Dc
2k0T

-----------------------.=
1063-7826/02/3610- $22.00 © 21159
dependence on the design parameters of the
GaAs/AlxGa1 – xAs.

2. METHOD OF CALCULATION

In the tight-binding approximation, the probability
of elastic scattering of quasi-2D electrons in the lower
SL miniband by acoustic phonons from the state with
the wave vector k to the state with the wave vector k'
can be written as

(2)

where Nz is the number of SL periods,

(3)

is the energy of electrons in the low miniband in the
tight-binding approximation, d is the SL period,

(4)

C = Dc  is a parameter of interaction between
electrons and phonons (the value of this parameter is
different for the QW and for the barrier in the approxi-
mation of the volume phonon spectrum), and (z) is
the part of the periodic envelope Bloch function whose
period coincides with that of the SL.

w k k ',( ) 2π
"

------ Un kz' kz,( ) 2δ ε k '( ) ε k( )–( ),
n Nz/2–=

Nz/2

∑=

ε k( )
"

2k ⊥
2

2m*
-----------

∆
2
--- 1 kzd( )cos–[ ]+=

Un kz' kz,( ) 1
d
--- ei2πnz/dCukz'

*ukz
z,d

/2d–

/2d

∫=

k0T /cL

ukz
002 MAIK “Nauka/Interperiodica”



 

1160

        

BORISENKO

                                                
In order to calculate expression (4), one typically
uses the tight-binding approximation according to
which the function  is represented as the Bloch sum
over the lower localized state of an infinitely deep QW
[4, 5]; i.e.,

(5)

where ϕ(z) = cos(πz/a) is a function normalized
to the SL period; this function differs from zero in the
QW region for –a/2 ≤ z ≤ a/2. With allowance made for
function (5), the integral in (4) can be analytically
expressed as

(6)

where qn =  – kz + 2πn/d.

We now calculate the relaxation time, which is lon-
gitudinal or transverse in reference to the SL axis, using
the well-known formula

(7)

where the subscript i denotes ⊥  or || and v i(k) =
ε(k)/" is the electron-velocity component along the

i axis. Taking into account formulas (2), (3), and (6) and
using the quasi-2D approximation (∆ ! k0T, ε ≈ E =

"2 /2m*), we obtain

(8)

where integration is performed with respect to the
dimensionless variable x = aq/2,

and Ca = C for the parameters’ values corresponding to
the QW. With allowance made for (6), the integrals in
formulas (8) can be evaluated analytically, which yields
the well-known formula [1]

(9)

According to formula (9), the relaxation time of quasi-
2D electrons in an SL due to scattering by acoustic
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phonons is isotropic and depends only on the parame-
ters of the QW material and on the QW width.

In actual SLs, the relaxation time is bound to depend
on the height and width of potential barriers since their
values are finite (rather than infinite as was assumed
when deriving formula (9)). In order to determine this
dependence and estimate the applicability of formula (9)
to actual SLs of the GaAs/AlxGa1 – xAs type, we suggest
using the periodic component of the SL envelope Bloch
function for kz = 0 as the (z) function; this function
is to be calculated in the context of the Kronig–Penney
model as

(10)

where k = /"; χ = /"; V and b
are the height and width of potential barriers, respec-
tively; ma and mb are the effective masses of electrons
in the QWs and potential barriers, respectively; and E0
is the energy corresponding to the bottom of the SL low
miniband. The value of the latter energy is obtained as
a solution of the secular equation

(11)

In formula (10), the quantities A and B are normaliza-
tion constants defined as

(12)

Taking into account (10), we can represent formula (7)
for the longitudinal and transverse relaxation times as

(13)

where α(a, b, x) is a function of the QW width and of
the width and height (the alloy parameter x) of the
potential barrier; i.e.,

(14)
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Taking into account that the function u0(z) is even and
CAC is independent of the coordinate within both the
QW and the potential barrier, we can represent the for-
mula for Sn as

(15)

where

(16)

are integrals that can be expressed analytically and Cb

is the C constant for the values of parameters corre-
sponding to the potential barrier.

3. NUMERICAL ANALYSIS

Numerical analysis of the relaxation time was per-
formed using formula (13) for a GaAs/AlxGa1 – xAs SL.
In the calculations, the following values of the parame-
ters were used:

for GaAs;

for an AlxGa1 – xAs alloy; and

for the potential-barrier height.
Figure 1 illustrates the applicability of approxima-

tion (10), in which the dispersion of the periodic com-
ponent of the Bloch envelope function over kz is
ignored, to the SL under consideration. In Fig. 1, we
show the dependences of the squared magnitude of the
u0(z) function calculated using formulas (10)–(12) and
of the function (z) calculated according to the Kro-
nig–Penney model for the largest value kz = π/d [7].
Both functions were calculated for a symmetric SL
with a = b = 5 nm and x = 0.36. It can be seen from
Fig. 1 that the difference between the aforementioned
functions is indeed small in comparison with the differ-
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ence between the functions u0(z) and ϕ(z) for an infi-
nitely deep QW.

Figure 2 shows the dependences of the parameter
α = τ/τ0 on the QW width for several values of the
potential-barrier width b of an SL with x = 0.36. It fol-
lows from the curves plotted in Fig. 2 that there is an
appreciable dependence of the parameter α on the QW
width for a fixed value of b; generally, this dependence
is nonmonotonic. For b < 5 nm, the relaxation time far
exceeds τ0. Figure 3 shows the dependences of the
parameter α on the potential-barrier width for several
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Fig. 1. Dependences of the squared magnitude of the enve-
lope wave function |ψ|2 on the coordinate z for a superlattice
with a = b = 5 nm and x = 0.36. Curves 1–3 correspond to
the (1) |u0(z)|2, (2) |uπ/d(z)|2, and (3) |ϕ(z)|2 functions.
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Fig. 2. Dependences of the function τ/τ0 on the quantum-
well width a in a superlattice with x = 0.36. The potential-
barrier width b = (1) 3, (2) 5, (3) 6, (4) 7, and (5) 10 nm.
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Fig. 3. The function τ/τ0 in relation to the potential-barrier
width b of a superlattice with x = 0.36. The quantum-well
width a = (1) 3, (2) 5, and (3) 10 nm.
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Fig. 4. Dependences of the function τ/τ0 on the symmetric-
superlattice period d for the composition parameter x =
(1) 0.15, (2) 0.25, and (3) 0.35.
values of the QW width of a SL with x = 0.36. It follows
from Fig. 3 that, as b increases with the value of a kept
constant, the relaxation time decreases steadily. Depen-
dences of the parameter α on the SL period d for a sym-
metric SL (a = b) with several values of the composi-
tion parameter are shown in Fig. 4. It can be seen from
Fig. 4 that, as the composition parameter increases (i.e.,
primarily as the potential-barrier height increases) and
the potential-barrier and QW widths remain constant,
the relaxation times decreases steadily.

4. CONCLUSION

The above numerical analysis showed that the relax-
ation time of quasi-2D electrons due to scattering by
acoustic phonons in a GaAs/AlxGa1 – xAs superlattice
decreases as the potential-barrier width and height
increase. The consideration of this dependence may
appreciably affect the calculated charge-carrier mobil-
ity derived using approximate formula (1).
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Abstract—The experimental temperature dependence (4.2–300 K) of the conductance of mesoscopic quasi-
2D electronic systems under conditions of the insulator–metal percolation transition are discussed for the case
of metal–nitride–oxide–semiconductor silicon transistor structures with an inversion n channel and an
extremely high (≥1013 cm–2) built-in charge density (source of electrostatic fluctuation potential). Saddle
domains of the fluctuation potential are analyzed within the framework of the Landauer–Buttiker formalism.
These domains, being point quantum contacts between wells in the chaotic potential distribution, determine
both the nature of electron transport and the conditions of the insulator–metal transitions. The results of ana-
lyzing the dependence of the conductivity on temperature and field (on the gate voltage) are shown to be con-
sistent. The shape of the effective potential barrier for the electron tunneling transport across the saddle domains
is reconstructed. © 2002 MAIK “Nauka/Interperiodica”.
Interest in the electronic properties of quasi-2D
electronic systems undergoing metal–insulator–semi-
conductor transitions (e.g., the dependence of the con-
ductance G on gate voltage Vg and temperature) is
related to the study of the fundamental features of an
insulator–metal transition appearing due to the natural
randomness of the objects (see [1]). Modern low-
dimensional objects based on doped semiconductor
structures are disordered mainly due to the high content
of built-in charges (ionized impurities with a density of
about 1012–1013 cm–2), which induce a random poten-
tial distribution in the plane of 2D electrons: the so-
called fluctuation potential (FP) [2]. Then, the elec-
tronic transport is limited by the transition of charge
carriers between wells of the potential relief via tunnel-
ing or activated hopping across the FP saddle domains.
Such transitions determine both the field (as a function
of Vg) and temperature dependences of G.

Of special interest are mesoscopic objects, particu-
larly those whose length in the direction of the current
L is small in comparison with the correlation radius Lc

of a percolation cluster and the width W > Lc . The per-
colation cluster decomposes at these conditions into
isolated percolation paths, and the conductance via the
low-resistance path dominates in the transport. There-
fore, the entire sample conductance is determined by a
higher-resistance segment of such a path, which pro-
vides the possibility of studying the mechanism of elec-
tronic transport across a single FP saddle domain.
1063-7826/02/3610- $22.00 © 21163
We experimentally realized this situation that is
characteristic for contemporary field transistors with a
submicrometer gate length (see [3, 4]), in particular, for
the example of model objects: Si-MNOS (metal–
nitride–oxide–semiconductor) transistor structures
(L = 5, W = 50 µm [3, 4]). Using the method proposed
in [5] for the determination of the percolation cluster
correlation radius, we have established that Lc ≥ 10 µm
for these structures and, therefore, it satisfies the condi-
tions L ≤ Lc < W [4]. A quasi-plateau segment on the
G(Vg) dependence for characteristic values G ≈ e2/h
was found at sufficiently high (≥1012 cm–2) built-in
charge densities (at electron traps near the SiO2–Si2N4

interface) within the temperature range 4.2–300 K
(Fig. 1). The observed features demonstrate that the FP
saddle domains are really point quantum contacts
between wells of the chaotic potential relief [1]. These
domains were analyzed in [3] within the framework of
a model of parabolic saddle potential [6]. In particular,
the energy parameters characterizing the potential cur-
vature in the direction of electron motion ("ωx) and in
the transverse direction ("ωy ≈ 100 meV) were deter-
mined. The parameter "ωx was shown to decrease from
≈100 to ≤10 meV upon lowering the Fermi energy. This
means that the real FP shape in the saddle domains dif-
fers from the parabolic one at the Fermi energies corre-
sponding to weak inversion, when the Fermi level lies
at the density-of-states tail. The electron transport at the
insulator–metal transition is assumed to be totally con-
002 MAIK “Nauka/Interperiodica”



 

1164

        

DAVYDOV 

 

et al

 

.

                                                                                                         
trolled by features of the saddle domains of the FP,
which is characteristic of structures with two scales of
fluctuations.

In this paper, experimental data for the conductance
G temperature dependence are analyzed for Si-MNOS
structures. Conditions for the electron transport to be
controlled by the FP saddle-domains [3, 4] and for tun-
neling to be dominant in the transport across these
domains are considered [1, 6]. The shape of the effec-
tive potential barrier controlling the conduction of the
structures under conditions of the insulator–metal tran-
sition is analyzed.

Similarly to [3], the Si-MNOS transistor structures
with an inversion n-channel on lightly doped (100) p-Si
(L = 5 µm, W = 50 µm; thickness of the gate insulator
layers: about 3 nm for SiO2 and about 35 nm for Si3N4)
were studied. Such objects are promising for modeling
of electrostatically chaotic quasi-2D systems because
of the possibility of controlling the density of the FP
sources, i.e., nt by using the field injection of electrons
from the semiconductor into the traps at the SiO2–Si3N4
interface. The charge state of traps was set at room tem-
perature and the gate voltage 30 V (the current in the
circuit gate–source–drain did not exceed 3 nA), which
essentially exceeded the upper limit of Vg variation dur-
ing the measuring of G. The objects retained the preset
charge state of traps during the experiment, that is, for
more than 10 h at low temperatures.
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10–7

10–8

10–9

0 4 8 12 16 20

1

Vg, V

G, Ω–1

2e2/h
2 3

Fig. 1. Conductance G of the Si-MNOS structures as a func-
tion of the gate voltage Vg at various built-in charge densi-

ties: (1) nt ≤ 1010, (2) 5 × 1012, and (3) 1.3 × 1013 cm–2.
A typical dependence of the static conductance G on
Vg at fixed nt values within the range of 109–1013 cm–2

is shown in Fig. 1 (G = Id/Vd , where Id is the current, and
Vd ≤ 10 mV is the source–drain voltage). In the
“uncharged” state (curve 1, nt ≤ 1010 cm–2), the field
effect exhibits the classical mechanism [7] of forming
an inversion channel: the conductance exponentially
depends on Vg at small Vg , which is characteristic of the
weak inversion case. This dependence becomes linear
as Vg increases (the strong inversion case). An increase
in the built-in charge density (curves 2, 3) is followed
by the appearance of an almost flat portion in the G(Vg)
dependence at the characteristic value G ≈ e2/h. This
feature is observed within a wide range of temperatures
(4.2–300 K) and built-in charge densities (≈1011–
1013 cm–2), with an increase of nt and/or a decrease of
temperature accompanied by a clearer manifestation of
the quasi-plateau portion with the asymptotic value G =
2e2/h.

As was mentioned above (see [3–5]), the percola-
tion cluster correlation radius Lc in the structures under
consideration reaches values of ≥10 µm [3] in the weak
inversion regime, which exceeds the gate length L =
5 µm. This means that the structures are mesoscopic (in
terms of noncoherent mesoscopics [8]) objects; i.e., the
percolation cluster reduces at these conditions into a
system of parallel isolated percolation paths, and the
main contribution to the conductance of the entire sys-
tem comes from the one with the lowest resistance.
Conductance of the latter is determined by the highest
resistance portion of the path. In other words, the con-
ductance in the weak inversion regime is controlled by
a single saddle domain of the FP [3, 4]. The quantiza-
tion of G (in units of e2/h) means that this domain is a
point quantum contact (see [1]) and is determined by
the Landauer formula [9]

(1)

where εf is the Fermi energy, F is the Fermi–Dirac dis-
tribution function, and T(ε) is the tunneling transpar-
ency of the domain (see below). Following [6], i.e.,
approximating the FP saddle domain by the parabolic
saddle potential

(2)

for the dependence of the T factor on εf at conditions
{kT ≤ "ωy/2; εf ≤ Us + "ωy/2}, we obtain 

(3)

where Us is the potential at the saddle point, which
coincides with the classical percolation level; m is the
effective carrier (electron) mass; ωx and ωy are parame-
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ters characterizing the saddle potential curvature in the
direction of electron transport (x) and in the transverse
(y) direction.

The following estimates were obtained in [3] for the
saddle potential curvature parameters from the experi-
mentally obtained curves for the field effect G(Vg) at
low (liquid helium) temperatures near G ≈ e2/": "ωy ≈
"ωx ≈ 100 meV. A dependence of "ωx on Vg (at G <
e2/h) was found, thus indicating that the shape of the
saddle potential differs from the parabolic one [6].

Let us consider the character of the temperature
dependence of the conductance of these structures. The
conductance G of the saddle domain and, therefore, of
the whole structure, is thermally activated (because of
the thermal excitation of electrons to the classical per-
colation level Us), which is confirmed by the experi-
mental results (see [5, 7]). In this paper, we consider
another energy range, corresponding to conditions of
the insulator–metal transition, where εf – Us > 0. The
conductance G calculated within the framework of the
Buttiker [6] or Kamenev and Kohn [9] saddle-potential
approach has at T = 0 and at conditions 0 ≤ εf – Us !
"ωy/2, G ! e2/h a finite magnitude G0 determined by
the tunneling transparency T(3). As follows from (1)
and (3), a temperature increase at kT ≤ "ωx/2π leads to
the power-law increase of G (as distinct from the Mott
law [7, 10]):

(4)

this is a consequence of the power series expansion (1)
in the small parameter kT/"ωx taking into account the
dependence of T on the Fermi energy (2).

A further temperature increase ("ωy ≥ kT ≥ "ωx/2π)
must be accompanied by a transition to the quasi-acti-
vated G(T) dependence with an activation energy of
about ("ωy/2 – εf) and a preexponential factor of about
e2/h [11], which, in contrast to the concept of minimal
metal conductivity [7, 10], is a manifestation of the
Landauer [9] character of conduction of the FP saddle
domains (see (1)).

This qualitative reasoning is illustrated by the iso-
thermal dependence of G on Vg , which was measured at
a fixed built-in charge density nt ≈ 1.3 × 1013 cm–2

(Fig. 2), and by the temperature dependence of G (see
below, Fig. 3).

Three regions with different types of temperature
dependence of conductance are clearly seen in Fig. 2;
they are separated by intersections of the isotherms
G(Vg) at Vg ≈ 8 and 12 V.

In the first of these (weak inversion region, Vg ≤
8 V), the conductance G drops abruptly with T decreas-
ing, first by the Arrhenius law within the range of 300–
40 K, and then the G(T) dependence becomes weaker
(see Fig. 3a). Such behavior, which is, in principle,

G G0 1
2
3
---π4 kT

"ωx

--------- 
  2

+ ;≈
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characteristic of chaotic 2D systems, is usually related
(see [7]) to a transition to the Mott hopping conductiv-
ity law with a variable hopping range. Taking into
account real properties of the FP correlator [13], which
implies the existence both of small-scale (about 30 nm)
and large-scale smooth FP components, we shall con-
sider another mechanism of the low-temperature behav-
ior of G. The small-scale components are assumed to be
responsible for forming the saddle domains of FP, which
determine the electron transport features, while the
large-scale components provide a spatial separation of
these domains that exceed the electron free path. Thus,
we consider the Landauer [6, 9] mechanism of electron
transport in saddle domains of FP as controlling the
conductance of the object in this region.

G slowly decreases with T in the second region
(bounded from above by the intersection of isotherms
G(Vg) at the characteristic value G ≈ e2/h). We associate
(see below) the presence of this region, which shows
itself in experiments (see, e.g., [7]), with two points: (i)
the Fermi energy temperature dependence in the semi-
conductor bulk at fixed Vg and (ii) the specificity of the
electron tunneling transport, which is determined by
the local potential distribution in FP saddle domains.

A further increase in Vg , accompanied by a sharp
weakening of FP (due to the nonlinear electron screen-
ing of the potential fluctuations, beginning from the level
of about 200 meV in the weak inversion regime [2]),
leads to a transition from the initially percolation-type
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Fig. 2. Dependence of G on Vg for Si-MNOS structures at

nt ≈ 1.3 × 1013 cm–2 and various temperatures.
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quasi-1D medium to the weakly disordered 2D electron
system, which is indicated, in particular, by the thresh-
old behavior of the Hall effect with a characteristic con-
ductance threshold value of about e2/h [4]. The behav-
ior of G in the region of strong inversion, on the whole,
conforms to the classical picture [7].

Turning to a detailed analysis of the temperature
dependence of conductance in regions of weak and
intermediate (G ≤ e2/h) inversion, we shall consider a
range of small enough Vg values, bounded from above
by the condition Us – εf > 0. The expressions (1), (3)
define G as a function of the Fermi energy εf , but not of
the gate potential Vg . Here, εf is related to Vg by the rela-
tion

(5)

where C is the gate capacitance; Nss, the effective den-
sity of electron states at the Si–SiO2 interface; and Vg0,
the Vg magnitude at some fixed value of εf = εf0, which
is related to the temperature-independent point in the
G(εf) curves in [6], which must take place at G = e2/h.

Let us explain the necessity of introducing the val-
ues εf0 and Vg0. Analysis of experimental curves G(T) at
εf = const is usually carried out at Vg = const (see [7]),
implying that, at εf = εf0, Vg0 does not depend on T.
Meanwhile, this dependence exists, e.g., due to changes
of the Fermi level position in the bulk and of the mean
potential at the surface with temperature, because of a
redistribution of electrons in the space charge region
[12]. In other words, the relation between Vg0 and εf0
values needs to be known at every temperature value in

C Vg Vg0–( ) e Nss ε,d

ε f 0

ε f

∫=
order to plot G(T) for εf = const; this relation can be
established in the following way. The conductance G
has a constant value e2/h (expressions (1)–(3)) at εf =
Us + "ωy/2 within the formalism [1, 6]. We consider
this fact as a useful criterion for determining the εf0
value, which allows us to determine the dependence
Vg0(T). Indeed, if we put εf0 = Us + "ωy/2, the Vg(T) val-
ues will be determined by magnitudes of Vg(T) corre-
sponding to G = e2/h in the experimental field effect
curves (Fig. 2). We analyze the dependence G(T) on
these grounds at fixed Vg – Vg0, which is equivalent to
the condition εf = const.

G(T) curves plotted for the weak inversion region at
fixed Vg – Vg0(T) values, i.e., at the condition εf – (Us +
"ωy/2) = const, are presented in Fig. 3. According to the
reasoning presented above (see (1)–(3)), G is thermally
activated at sufficiently high temperatures (kT @
"ωx/2π, [3]) and has a preexponential factor of about
e2/h (Fig. 3a). The temperature dependence of G weak-
ens as the temperature decreases (kT ≤ "ωx/2π) to the
liquid-helium range (Fig. 3a). As was mentioned above,
unlike the classical picture [7, 10], we associate such
behavior of the conductance with the Landauer
mechanism of electronic transport, which is indicated
(Fig. 3b) by the power-law (4) temperature dependence
of G at low temperatures (kT ! "ωx/2π).

Estimates of the parameter "ωx for εf = const from
the range 0 < εf – Us < "ωy/2, obtained on these grounds
with the use of (4) from the temperature dependence of
G at low temperatures (Fig. 3b), are represented in
Fig. 4 by squares. Results of analysis (see [4]) of the
isothermal field effect curves for the temperature range
4.2–15 K—the parameter "ωxNss/D—are represented
by stars in Fig. 4. Here, D = 2m0/π"2 is the density of
SEMICONDUCTORS      Vol. 36      No. 10      2002
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states in the lower subband for the 2D electron channel
at the interface Si–SiO2. As was shown in [3], Nss/D ≈
1, i.e., "ωxNss/D ≈ "ωx under experimental conditions.

The qualitative agreement of results of the analysis
of independent experiments (G(Vg) and G(T) functions,
Figs. 2 and 3b) in a wide range of conductance values
(or εf) indicates the accuracy of estimates within the
framework of the Landauer–Buttiker formalism and the
prospects of applying the developed approach to the
study of fundamental features of the insulator–metal
transition in the topical electrostatically disordered
quasi-2D electronic systems.

Let us consider the shape of FP saddle domains con-
trolling the electronic transport in the intermediate and
weak inversion modes. Inspecting Fig. 4, we notice that
within the range G ≈ G0 ≤ e2/h (i.e., at εf – Us ≤ "ωy/2)
the parameter "ωx has a constant value (≈100 meV),
which is in agreement within the parabolic saddle
potential model [6] with the present experimental
results and with the experimental data and the results of
numerical calculation presented in [3]. Meanwhile, the
fall of "ωx observed upon a decrease of G means a devi-
ation of the potential distribution from the parabolic
law (2), which is enhanced as εf decreases in the direc-
tion εf – Us ≤ "ωy/2. We relate it to the nature of the gen-
eration and electronic screening of the chaotic potential
relief in the plane of the quasi-2D electrons [2]. This
implies the dominance of small-scale (on the order of
the SiO2 layer thickness, 3 nm in our case) FP compo-
nents under intermediate and strong inversion, and also
the subsequent manifestation of smoother (on the order
of the nonlinear screening radius Rs ≈ (nt/π)1/2/ns [2]; ns

is the density of quasi-2D electrons) large-scale compo-
nents at the transition (with a decrease of εf , i.e., ns) to
weak inversion.

We then analyze, using experimental data, the effec-
tive quasi-2D potential barrier shape characterizing the
electron transport at saddle domains of FP. We assume
that this dependence determines the transport proper-
ties of point quantum contacts (see [1]), i. e., the funda-
mental features of the insulator–metal transition in
modern quasi-2D electronic systems.

As was mentioned above, the temperature depen-
dence of G in the weak inversion mode (Fig. 3) charac-
terizes, at kT ! "ωx/2π, the tunneling mechanism of the
electron transport in the saddle domains of FP. We trace
this mechanism back to the transport of electrons under
the effective potential barrier U(x), assuming that, in
the limit T = 0, the resulting conductance G0 is deter-
mined by the transparency (transmission coefficient) T
of the barrier, which can be represented in the quasi-
classical approximation as the integral

(6)T ε f( ) 2
"
--- 2m U x( ) ε f–[ ] xd∫–exp≈
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over the region |x | ≤ x0, where x0 satisfies the condition
U(x0) – εf = 0. Correspondingly, G0 ≈ (2e2/h)T (T ! 1)
within the framework of the formalism used [6, 9].
Notice also the agreement between the present experi-
ments and those presented in [3] with the model [6] in
the vicinity of the point G ≈ e2/h, which indicates that
the barrier has a parabolic shape near the maximum

(7)

The calculation of T with the use of (6) and the sub-
stitution of (7) gives a solution that coincides with the
one obtained in [6] (3) within the range of applicability
of the quasi-classical approximation: at G0 ! e2/h in
our case.

Taking these facts into consideration, to determine
the effective barrier U(x) shape from the experimental
dependence G0(Vg) in the range of G0 ≤ e2/h, we used
the interpolation expression

(8)

which is reduced to (3) in the vicinity of the maximum
of the parabolic barrier (7), where G0  e2/h, and is
valid in the quasi-classical limit, i.e., at G0/(2e2/h) ≈
T ! 1.

The expressions (6) and (8) allow us to estimate the
effective barrier U(x) width, x = x0, at the level
U(x) = εf:

(9)

The value of εf is, in turn, related to Vg by the expres-
sion F(Us + "ωy/2 – εf ) ≈ C(Vg0 – Vg)/e, which was
obtained from (5) taking into account the relation Nss ≈
D [3], which relates x0 with the G0, Vg, and Vg0 values
being measured. (In the case of the parabolic barrier
(7), the estimate (9) is in agreement with the exact value
x0 = ±[2(Us + "ωy/2 – εf )/mωx]1/2 to within 20%).
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Fig. 4. Dependence of G0 on the parameters εx = "ωx and
εx(Nss/D) [3].
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The effective barrier profile U(x) for the electron
tunneling transport across the FP saddle domains deter-
mined on these grounds is presented in Fig. 5. It is
determined by a relationship of the parameter x0 (con-
sidered as the argument) with the reduced Fermi energy
εf – Us . The barrier does have a parabolic shape (7) in
the vicinity of the maximum (x0 ≤ 5 nm), which concurs
with the notions in [6], while it becomes smoother as εf

decreases, so that εf < Us – "ωy/2. This manifests itself,
in particular, in the abrupt fall of the "ωx value within
the range of G0 ! e2/h (Fig. 4). Such behavior of U(x)
has a simple qualitative explanation. As was shown
in [3], saddle points are formed between the peaks of
FP, which appear in regions of the quasi-2D channel,
where the local charge density exceeds the mean nt (the
corresponding potential distribution V(x, y) in the sad-
dle domain is presented in the inset of Fig. 5). Then, the
shape of the effective barrier U(x), on the whole,
reflects the potential distribution in the saddle domain
V(x, 0) in the direction of electron movement with cor-
rection for the nonparabolicity of the V(0, y) potential
in the transverse direction.

Thus, the presented results clearly indicate the Lan-
dauer [9] character of the electron transport in the FP
saddle domains controlling transport properties of dis-
ordered quasi-2D systems, including, in particular,
their conductance within a broad range of temperatures

0
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–20

–30

–40
–100 –60 –20 0 20 60 100

X0, Å
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Fig. 5. The effective profile of the potential barrier control-
ling the tunneling electron transport across the FP saddle
domains.
and gate voltages. A concrete potential distribution in
these regions determines the dependence of G on the
Fermi energy (it is sharper in our case than in [6] but
smoother than in [1]) and fundamentally influences the
insulator–metal transition features in the class of
objects under consideration.
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Abstract—Photoconductivity, photoluminescence (PL), and thermally stimulated luminescence of photocon-
ductive poly-N-epoxypropylcarbazole and poly-N-vinylcarbazole films and non-photoconductive polyvinylbu-
tyral, polyvinyl alcohol, polystyrene, and polyethylene films doped with cationic, anionic, and neutral dyes are
studied. It is found that the PL of cationic dyes in photoconductive polymer films is enhanced in comparison to
nonphotoconductive ones. The PL enhancement correlates with an increase in photoconductivity, with the
quenching effect of an external electric field on the PL intensity, and with an increase in the intensity of the
recombination luminescence. It is assumed that this enhancement is related to the presence of predimer traps
for holes in the vicinity of dye ions in the films of carbazolyl-containing polymers. A model describing the trap
formation upon the photoexcitation of holes into predimer states is suggested. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Amorphous molecular semiconductor (AMS) films
based on poly-N-epoxypropylcarbazole (PEPC) and
poly-N-vinylcarbazole (PVC) doped with polymethine
organic dyes [1] possess photoconductive properties,
which is of interest for their application as recording
media in electrography and holography [2–4]. These
media can also be used in electroluminescent devices,
since, at room temperatures, the bimolecular recombi-
nation of free charge carriers in dye molecules occurs
radiatively [5, 6]. The radiative nature of the charge
recombination at room temperatures is also evidenced
by results on thermally stimulated recombination lumi-
nescence obtained previously [7]. This enables one to
suggest that the luminescent properties of cyanines
embedded in AMS are related not only to radiative
transitions of excited dye molecules to the ground
state, but also to radiative recombination of the photo-
generated electron–hole pairs (EHPs) as well. To
develop media suitable for the recording and modula-
tion of optical radiation, it is important to understand
the impact of the photophysical properties of the poly-
mer matrix on the intensity of the polymethine photo-
luminescence (PL) and the dependence of the PL
intensity on the photon energy of the exciting radia-
tion. Thus, the purpose of this work is to study the
luminescent properties of AMS containing polyme-
thine dyes of different ionicity.
1063-7826/02/3610- $22.00 © 21169
2. EXPERIMENTAL

We investigated the photoconductivity, PL, and ther-
mally stimulated luminescence (TSL) of polymer films
doped with polymethine dyes of different ionicity and
chemical structure.

Photoconductive polymers were represented by
PEPC oligomers and PVC polymers [8], while nonpho-
toconductive ones were represented by polyvinylbu-
tyral (PVB), polyvinyl alcohol (PVA), polystyrene
(PS), and polyethylene (PE) [9]. The molecular weights
of the polymers under study are as follows: PEPC, 900;
PVC1, (6–7) × 103; PVC2, (1–2) × 104; PVC3, 7 × 104;
PVC4, 3 × 105; PS, 2.3 × 105; PVB, (0.7–1) × 105;
PVA, > 105; and PE, 1.25 × 105 amu.

The diagrams in Fig. 1 show cationic (1–3), anionic
(4, 5), cationic–anionic (6), and neutral (7) polymethine
dyes and cationic xanthene dye Rhodamine 6G (8) [1],
which were used as dopants.

Anionic cyanine 4 has the same chromophore as cat-
ionic dye 1, although the net charge of the colored ion
is –1 in the former case and +1 in the latter. This is
related to the fact that sulfo groups, responsible for the
negative net charge, are attached to the atoms that are
not involved in the conjugation chain. Cationic–anionic
dye 6 is composed of a cation and an anion from poly-
methines 2 and 5, respectively. Neutral (merocyanine)
dye 7 is a hybrid of the cationic and anionic polyme-
002 MAIK “Nauka/Interperiodica”
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1: n = 1, An– = BF4;
2: n = 2, An– = BF4;

1a: n = 1, An– = I–;
3: n = 3, An– = BF4
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Fig. 1. Dyes used as dopants in amorphous molecular semiconductors.

–

thines 1 and 5, respectively. Thus, cyanines 1–7 belong
to the same structural type of dyes but possess a differ-
ent ionicity and chemical constitution; this makes them
perfectly suited for studies of the photophysical proper-
ties of colored polymers.

The samples were prepared as free-surface struc-
tures [〈glass substrate〉–〈amorphous polymer film〉  or
〈glass substrate〉–〈conductive SnO2 layer〉  〈amorphous
polymer film〉] and sandwich structures [〈quartz
substrate〉SnO2/AMS/Al]. The dye content in the films
was 1 wt %. The colored films were obtained by drying
the polymer/dye solution in methylene chloride depos-
ited on glass substrates with or without a conductive
layer. The films were dried in a furnace for 3 h at a tem-
perature of +80°C. The film thickness, measured with
an MII-4 interference microscope, was 1 µm. In sand-
wich structures, an aluminum electrode was deposited
onto the polymer film by thermal evaporation in a vac-
uum chamber.

The absorption coefficient κ of the polymer films
was measured for the samples without a conductive
layer using a KSVIP-23 computerized spectrometer
complex. In the PL measurements, the films were
excited by visible light using glass optical filters. Both
the angle of incidence of the excitation beam and the
angle at which reemitted light is collected were 45° to
the sample surface. In the samples with a conductive
layer, we measured the PL intensity IPL and its relative
variation δIPL under the influence of an electric field E;
we used the relation δIPL = [IPL(E) – IPL(0)]/IPL(0) (here,
IPL(0) is the PL intensity without an electric field and
IPL(E) is the PL intensity under an applied electric field
of strength E). The following procedure was carried
out. First, IPL(0) was determined for a chosen value of
the wavelength λirr of the excitation light. Then, an elec-
tric field was applied to the polymer film, which
remained continuously irradiated. The temporal varia-
tion of IPL was recorded until some new quasi-steady
intensity level IPL(E) was established. After switching
off the electric field, the kinetics of the IPL recovery to
its initial level was recorded. The measurement runs
SEMICONDUCTORS      Vol. 36      No. 10      2002
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were repeated several times. Monochromator control,
recording of the light intensity, and data processing
were performed by a computer. For each λirr , the value
of IPL was determined as the average of five measure-
ment results. κ and IPL were measured in the wave-
length range λ = 400–1000 nm, where the long-wave
length dye absorption bands are present and the absorp-
tion in the polymers under study is absent. The mea-
surements were carried out at T = 293 K.

For the free-surface samples, an electric field in the
polymer film was induced by charging it in a corona
produced using a special electronic unit, with a metal
wire-shaped corona electrode placed above the sample
surface at the side where the film is located. At the
instant when the electric field between the wire elec-
trode and the conductive SnO2 layer is switched on, a
high voltage (of several kilovolts) is applied, which
leads to the ionization of the gas mixture with the for-
mation of a corona discharge above the film. As a result,
ions of a particular sign (e.g., positive ones) are uni-
formly deposited from the gas onto the free surface of
the film. The strength of the electric field induced in the
polymer film in the direction between the SnO2 layer
and the ions at the surface depends on the ion-charge
density and is controlled by the voltage between the
corona electrode and the SnO2 layer. The electric-field
strength in the film was E = 1 × 108 V/m; it was deter-
mined from the potential of the free polymer-film sur-
face with respect to the SnO2 layer at the instant the
voltage was switched off. This potential was measured
by an electrostatic probe based on a V7-30 electrome-
ter, with the probing electrode located above the free
polymer-film surface and the second electrode con-
nected to the conductive SnO2 layer. The probe was cal-
ibrated before the measurements; the surface potential
and the electric field were determined with an accuracy
not worse than 5%. The electronic unit for charging
polymer films in a corona and a measurement probe are
described elsewhere [2]; they are used in devices for
holography and electrography [2].

In the samples with a sandwich structure, the photo-
current was measured in the photoresistor mode using
a storage oscilloscope. The samples were irradiated
through the SnO2 electrode by monochromatic light
with a wavelength λ > 400 nm within the dye absorp-
tion region and outside the polymer matrix absorption
region. The field strength in these experiments was var-
ied from 2 × 107 to 2 × 108 V/m with the positive volt-
age on the aluminum electrode.

The TSL in free-surface samples was measured in
the same way as described in [7]. The integrated lumi-
nescence intensity ITL was measured with a photomul-
tiplier, which operated in the photon counting mode
and was placed in the immediate vicinity of the optical
window of the cryostat. The temperature of the samples
under study was varied linearly in the range T = 4.2–
330 K at a rate of 0.1 K/s. To record the ITL(T) depen-
SEMICONDUCTORS      Vol. 36      No. 10      2002
dences, the sample in the cryostat was cooled to Tirr =
5 K and irradiated for 60 s by light with a wavelength
λirr = 365 nm (in the absorption region of PVC and
PEPC) or λirr = 400 nm (in the dye absorption region).
After that, the sample was kept in the dark until the iso-
thermal recombination luminescence decayed, and then
linear warming-up was started. The duration of irradia-
tion corresponds to the saturation of the ITL dependence
on the irradiation dose. A DRSh-500M mercury lamp
with a set of optical filters was used as the light source.

3. RESULTS

Films of both photoconductive and nonphotocon-
ductive polymers grown without the admixture of dyes
1–8 do not absorb visible light. The addition of 1 wt %
of the dyes under study to these films leads to the
appearance of strong absorption bands. The PL spec-
trum of a colored polymer film excited with light in the
absorption band consists of a band whose shape is a
mirror image of the shape of the absorption spectrum.

Wavelengths  and  corresponding to the peaks
in the absorption and luminescence spectra of colored
PEPC and PS films are listed in the table. Replacement
of the PEPC polymer matrix with PVC or PS ones does
not have any significant effect on the position of
absorption and PL bands (see Fig. 2), which results
from a close coincidence of the refractive indices nD of
these polymers [8, 9]. The absorption spectrum of dye 6
has two bands, which correspond to the colored forms
of anion 5 and cation 2, respectively. However, there is
only a long-wavelength component in the PL spectrum,
both under excitation into short- and long-wavelength
absorption bands. This is an indication of the excitation
energy transfer from the anion to the cation.

λmax
a λmax

L

Spectral characteristics of PEPC and PS films doped with
1 wt % of different dyes

Dye
PEPC PS

, nm , nm , nm , nm

1 565 575 572 585

1a 565 575 572 585

2 667 678 675 687

3 755 762 760 775

4 665 672 673 687

5 557 585 560 592

6 563 565

673 693 680 700

7 535 592 540 603

8 543 557 552 566

λmax
a λmax

L λmax
a λmax

L
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For cationic polymethine dyes 1, 1a, 2, and 3 and for
xanthene dye 8, replacing the PS, PVB, PVA, or PE
matrices with PEPC or PVC ones leads to an increase
in the PL intensity under excitation in the short-wave-
length wing of the absorption band. This is illustrated
by Fig. 3, where, by the example of dye 1, the ratio of
the PL quantum yield ϕ in colored photoconductive
polymers to the quantum yield ϕPS in the PS matrix is
plotted as a function of λirr . In photoconductive films
(see curves 1–3), the relative quantum yield increases
with a decrease in λirr . The highest PL yield is achieved
in the PEPC films. In this case, the intensity of the lumi-
nescence depends linearly on the photoexcitation inten-
sity, while ϕ remains constant. In the chosen range of
the excitation and emission wavelengths, PL is not

1

ϕ/ϕPS

450 500 550400

2

3

λirr, nm

1

2

3
4

5 6

Fig. 3. Dependence of the relative quantum yield of photo-
luminescence in (1) PEPC, (2) PVC1, (3) PVC4, (4) PE,
(5) PVB, and (6) PVA films containing 1 wt % of dye 1 on
the excitation wavelength λirr . The luminescence was
detected at λ = 575 nm.
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Fig. 2. Spectra of (1, 2) optical absorption and (3, 4) photo-
luminescence of polymer films containing 1 wt % of dye 1.
Curves 1 and 3 correspond to PEPC and curves 2 and 4, to

PS.  denotes the maximum PL intensity.IPL
max
observed in the polymer films without the admixture of
dyes. The effect of the luminescence enhancement
becomes less pronounced when the polymethine chain
in the series of dyes 1–3 elongates (i.e., n increases) and
when the PEPC matrix is replaced by the PVC one (see
Fig. 4). This effect does not exist in polymer films
doped with anionic dyes 4 and 5 or with neutral dye 7,
but is observed in the cation band of the films contain-
ing cationic–anionic dye 6 under excitation both into
the cation and the anion absorption bands. Thus, the
anion PL itself is not enhanced in dye 5, but the anion
is involved in the enhancement of the cation PL in cya-
nine 6 due to excitation energy transfer in the cation–
anion pair. However, the intensity of the PL of cationic
dyes in photoconductive polymer films depends on the
nature of the anion An–. For example, the PL intensity

increases when the anion B  in compound 1 is
replaced with the I–.

The dependences of δIPL on λirr for the samples with
photoconductive polymer films are shown in Figs. 5
and 6. For a given film, the absolute value of δIPL does
not depend on the dye luminescence wavelength. This
means that application of an external electric field does
not change the spectral shape of the PL band, but leads
to a decrease in the PL intensity. In PEPC and PVC
films, electric-field quenching increases with a
decrease in λirr . In the samples with PS, PVB, PVA, and
PE films, no effect of the electric field on the dye PL
was observed. The field also has no effect on the PL of
polymer films with anionic dyes 4 and 5. Thus, it may
be assumed that, similar to what was observed in [10],
the quenching of the PL by an external electric field is

F4
–

1

ϕ/ϕ PS

500 600 700400

2

3

λirr, nm

1

2
3

4
5
6

7 8

Fig. 4. Dependence of the relative quantum yield of photo-
luminescence in the films of (curves 1–3, 6–8) PEPC and
(curves 4, 5) PVC1 containing 1 wt % of dyes (1, 4) 1,
(2, 5) 2, (3) 3, (6) 6, (7) 5, and (8) 7 on the excitation wave-
length λirr . The luminescence was detected at the wave-
length corresponding to the peak absorption of the dye.
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related to the separation of the charge carriers in photo-
generated EHPs accompanied by a decrease in the
probability of their radiative recombination.

In the samples with a sandwich structure based on
PS, PVB, PVA, and PE films doped with the dyes under
study, photoconductivity was not observed. In similar
samples based on PEPC and PVC with dyes 1–3 and
6−8, photoconductivity exists under excitation of the
samples in the region of the dye absorption. The j(E)
dependence is linear in the coordinates  = f(E1/2)
and can be represented by an analytical expression
often used to describe the photoconductivity in PEPC
and PVC [2, 10]: j ∝  exp[–(W0ph – βE1/2)/kTeff]. Here,
W0ph is the photoconductivity activation energy; β is a
constant, which is nearly equal to the Pool–Frenkel

constant;  = T–1 – ; and T0 is the characteristic

temperature, which usually amounts to (490 ) K
for PEPC. The experimentally determined value of β =
(4.2 ) × 10–5 eV (V/m)–1/2 agrees well with the
known published data [2, 11]. In the sandwich struc-
tures with dye 3, the values of j are smaller by two
orders of magnitude in comparison with the structures
with dye 1 and by one order in comparison to the struc-
tures with dye 2. In the samples with dyes 4 and 5, no
photoconductivity was observed.

The TSL curves recorded after irradiation at Tirr = 5 K
of the samples with undoped PEPC films and PEPC
films doped with dyes 1 and 7 are shown in Fig. 7.
Curve 1 corresponds to the sample that was kept in the
dark at room temperature for two days. In this case,
there is a single TSL band peaked at about Tmax 1 =
150 K. Curves 2–4 correspond to the samples that, prior
to their cooling, were irradiated with light of wave-
length λirr for 60 s at a temperature Tirr = 290 K. One can
see that, after irradiation at room temperature of the
PEPC film doped with dye 7, the corresponding TSL
curve (curve 5) does not differ considerably from
curve 1. For the PEPC film doped with dye 1, irradia-
tion at room temperature results in the appearance of a
high-temperature TSL arm in the range T = 200–300 K.
However, if this sample is first irradiated at Tirr = 290 K,
then, after switching the light off, it is rapidly (at a rate
of 5–10 K/s) cooled to T = 5 K and, finally, irradiated to
excite TSL, whereupon a new narrow band peaked at
Tmax 2 ≈ Tirr appears in the TSL curve. This band arises
in the range 250 K < Tirr < 320 K and varies with Tirr .
The magnitude of the TSL peak at Tmax 2 increases with
decreasing Tirr and attains a maximum value for Tirr =
250 K; the approximate equality Tmax 2 ≈ Tirr is valid
independent of the light wavelength and temperature at
which TSL is excited.

Another feature of the PEPC samples with dye 1 is
that the magnitude of the TSL peak in the temperature
range 250–320 K appearing near Tirr depends on λirr .
With a decrease in λirr , the TSL peak at Tmax 2 first
increases and then starts to decrease. Similar effects

jlog

Teff
1– T0

1–

 15+−

 0.1+−
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were observed in the TSL of the polymer films based on
PEPC and PVC doped with dyes 1a, 2, 3, 6, and 8.
However, upon replacement of PEPC with PVC, the
TSL at Tmax 2 decreases in intensity and vanishes for the
samples based on PVC4. In AMS films with dyes 4 and
5 irradiated with visible light, the TSL intensity both
around Tmax 1 and Tmax 2 is lower by many orders of
magnitude and is close to the noise level of the photo-
multiplier; thus, we failed to reveal any features of the
TSL in this case.

Commonly, the TSL in photoconductive polymers is
attributed to the radiative recombination of the charge
carriers upon annihilation of photogenerated EHPs. It is
assumed that photogenerated charge carriers are cap-
tured by traps and are released as the temperature is
raised. The activation energy WTL for the thermal
escape of charge carriers from traps in the PEPC-based
AMS samples was determined in the entire temperature
range under study using the method of fractional-heat-

δIPL

450 500 550400
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λirr, nm

1

2
3

4

Fig. 5. Dependences of δIPL on λirr in the films of (1) PEPC,
(2) PVC1, (3) PVC2, and (4) PVC4 containing 1 wt % of
dye 1. The luminescence was detected at λ = 575 nm.

δIPL

500 600 700400

0.05

0.10

λirr, nm

1

2

3

45

Fig. 6. Dependences of δIPL on λirr in PEPC films contain-
ing 1 wt % of dyes (1) 1, (2) 2, (3) 3, (4) 6, and (5) 7.
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ing TSL measurements. It was established that, inde-
pendent of high-temperature pre-irradiation, the WTL
varies linearly as a function of T and this dependence
remains unchanged around Tirr . Near Tirr = 250 K,
WTL = (0.82 ) eV; this value is close to the acti-
vation energy for β-relaxation in PEPC, which was
determined previously by another method [12].

4. DISCUSSION

Let us summarize the experimental results.

(i) Photoconductivity in the visible spectral range is
exhibited by the films of PEPC and PVC doped with
dyes 1–3 and 6–8. An increase in the length of the poly-
methine chain in the series of dyes 1–3 leads to a reduc-
tion of the photoconductivity effect. Photoconductivity
is not observed in the films doped with anionic dyes 4
and 5. Photoconductivity is not detected in the polymer
films of PS, PVB, PVA, and PE doped with the dyes
under study.

(ii) Cationic dyes exhibit more intense PL when
they are embedded in PEPC films in comparison to
PVC and PS, PVB, PVA, or PE films; the effect of the
PL enhancement increases with a decrease in λirr (for
dyes 1 and 1a, the magnitude of this effect attains a
maximum and then decreases). The PL enhancement

 0.01+−
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Fig. 7. Temperature dependences of ITL in the sample with
a PEPC film containing 1 wt % of dye 1: (1) upon irradia-
tion with light of wavelength λirr = 365 nm at Tirr = 5 K;
(2) upon irradiation with light of wavelength λirr = 600 nm
at Tirr = 290 K and subsequent TSL excitation with light of
the same wavelength, but at T = 5 K; (3) upon irradiation
with light of wavelength λirr = 546 nm at Tirr = 290 K and
subsequent TSL excitation with light of the same wave-
length, but at T = 5 K; (4) upon irradiation with light of
wavelength λirr = 436 nm at Tirr = 290 K and subsequent
TSL excitation with light of the same wavelength, but at T =
5 K. Curve 7 represents the temperature dependence of ITL
in the sample with a PEPC film containing 1 wt % of dye 7
upon irradiation with light of wavelength λirr = 546 nm at
Tirr = 290 K and subsequent TSL excitation with light of the
same wavelength, but at T = 5 K.
becomes less pronounced with an increase in the length
of the polymethine dye chain.

(iii) For anionic dyes 4 and 5 and for neutral mero-
cyanine 7, enhancement of the PL in the PEPC polymer
matrix in comparison with the PVC and PS, PVB, PVA,
or PE matrices is not observed.

(iv) For cationic dyes 1–3 and 8 embedded in photo-
conductive polymers, luminescence originating from
the recombination of the charge carriers captured after
their photogeneration by traps and subsequently
released due to thermal escape is observed even at room
temperature along with isothermal recombination lumi-
nescence. The intensity of the recombination lumines-
cence of this type increases with an increase in λirr (for
dyes 1 and 1a, the intensity first increases, reaches a
maximum, and then decreases) and is reduced as the
length of the dye polymethine chain increases or if the
PEPC matrix is replaced by a PVC one.

(v) The room-temperature recombination lumines-
cence decreases in intensity as cationic dyes 1–3 and 8
are replaced by neutral dye 7 and vanishes in the case
of anionic cyanines 4 and 5. It is also absent if photo-
conductive PEPC or PVC matrices are replaced with
PS, PVB, PVA, or PE ones.

We believe that, in the polymer films under study,
the dye luminescence includes conventional fluores-
cence and recombination luminescence originating
from photogenerated EHPs. This inference is corrobo-
rated by a comparison of the dependences of ϕ and δIPL
on λirr (Figs. 3, 5) for photoconductive and nonphoto-
conductive polymers. One may assume that there is a
correlation between the effects of the PL enhancement,
photoconductivity, and an increase in the PL quenching
by an electric field. When PS, PVB, PVA, or PE poly-
mer matrices are replaced with PVC or PEPC ones, the
photogeneration of EHPs from excited states of dye
molecules becomes possible. For all of the dyes under
consideration, there are two electrons in the highest
occupied molecular orbital (HOMO). These electrons
become unpaired upon excitation, since one of them is
transferred to the lowest unoccupied molecular orbital
(LUMO). The presence of unpaired electrons leads to a
sharp increase in the reactivity of a dye ion in the S1
state. Thus, an excited dye molecule can capture one of
the photogenerated electrons from PEPC or PVC mol-
ecules with the formation of an EHP. Taking into
account electrostatic forces acting between an ion and
a free electron, one can expect that the electron capture
probability will decrease sharply upon the replacement
of a cationic dye with a neutral dye and, still further,
with an anionic dye. Another reason for the decrease in
probability is that electron capture by the dyes from the
above sequence requires the formation of a neutral rad-
ical, an anion radical, and a dianion radical, respec-
tively, which is related to a corresponding increase in
the energy needed for the charge separation. As a result,
anionic dyes cannot accept valence electrons from
PEPC or PVC, and there is no photoconductivity and
SEMICONDUCTORS      Vol. 36      No. 10      2002
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no PL enhancement in the films with these dyes. The
ability of the neutral merocyanine 7 to capture an elec-
tron is higher, which leads to the existence of photocon-
ductivity. However, this is still insufficient for PL
enhancement. For cationic dyes, the process of EHP
photogeneration is most effective and, consequently, in
PEPC and PVC films doped with these dyes, both pho-
toconductivity and PL enhancement take place.

Annihilation of EHPs in PEPC and PVC occurs via
recombination of the charge carriers due to a transition
of the valence electron from the dye radical (a neutral
radical in the case of cationic dyes, and an anion radical
in the case of merocyanines) to the cation radical of the
carbazolyl ring. As a result, an excited state of com-
pound 1–3 or 6–8 is formed once again, its subsequent
decay being radiative. Thus, in PEPC and PVC films (in
contrast to PS, PVB, PVA, and PE ones), the emission
from excited states formed due to recombination of the
charges from photogenerated EHPs contributes to the
dye PL. Upon the application of an electric field, EHPs
dissociate and the charge carriers move from recombi-
nation centers to the collecting electric contacts, which
leads to a reduction in the luminescence intensity (see
Figs. 5, 6). It is known [2, 13] that the ability of dyes to
form EHPs under photogeneration in carbazolyl-con-
taining polymers is governed by the relation between
the energies of the valence orbitals of the dye and the
carbazolyl ring. The validity of this rule can be verified
using the dyes under study as an example. For instance,
upon increasing the polymethine chain length in the
series of dyes 1–3, the HOMO and LUMO come closer
to one another [1] and the energy difference between
the dye and the HOMO of the carbazolyl ring decreases
and may even become negative. Thus, replacing com-
pound 1 with compounds 2 and 3 leads to a reduction in
the photoconductivity of PEPC and PVC films.

The suggested model can be analyzed numerically.
It is common [1, 14] that, in organic dye molecules, the
first excited triplet state has a lower energy than the first
excited singlet state, with the allowed transitions
between S1 and S0 states being radiative and those
between T1 and S0 states being nonradiative. The dia-
gram in Fig. 8 illustrates the relation between the pro-
cesses of conversion and the effect of an electric field
on the PL. Here, P is the efficiency of photoexcitation
of molecules from the singlet ground state S0 to the

unrelaxed first excited singlet state  of the dye; N1

and N3 are the densities of the dye molecules in relaxed

singlet ( ) and triplet (T1) first excited states, respec-
tively; n1 and n3 are the densities of EHPs in the singlet
(S) and three triplet (T0, T–, T+) states, respectively [15];

kU is the rate constant of internal conversion –S0; kSU

and kS are the rate constants of nonradiative and radia-

tive transitions –S0, respectively; kT is the rate con-
stant of the transition T1–S0; k2 and k–2 are the rate con-

S1
u

S1
0

S1
u

S1
0
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stants of intramolecular intersystem crossing S1–T1 and
T1–S1; k1 and k–1 are the rate constants of the formation
and recombination of singlet EHPs; k3 and k–3 are the
rate constants of the formation and recombination of
triplet EHPs; kST is the rate constant of the EHP spin
conversion, which was estimated to be around 108 s–1 in
doped PEPC films [2]; and kη is the rate constant of the
EHP dissociation into a free electron (e–) and a free
hole (p+), which amounts to 106 s–1 for E = 1 × 108 V/m
(this estimate was obtained from the measurements of
the photocurrent rise time in doped PEPC films upon
their irradiation with light in the dopant absorption
region [2]). Note that, usually, a linear dependence of
the photocurrent on the excitation light intensity is
observed in photoconductivity studies of thin PEPC
films with low dopant concentrations (up to 1%). This
means that the bulk recombination of free electrons and
holes can be neglected in this model, which is thus
described by the following set of kinetic equations:

(1)

(2)

(3)

(4)

If k2 @ k–2, k3 @ k–3, and k1 = k3 and, in addition,
dN1/dt = dN3/dt = dn1/dt = dn3/dt = 0, we readily find
from (1)–(4) that

(5)

For the case E = 0, let us determine the ratio of the
PL intensity IPL in the presence of EHP photogenera-
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account in the model calculation. See text for details.
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tion to the PL intensity  in the case where EHP pho-
togeneration is absent and k1 = k3 = 0:

(6)

where a = 1 + k2/(1 + k1/kT). It follows from (6) that PL
enhancement should be observed if the ratio k1/kT

increases. This can be clearly seen from Fig. 9, where

the dependence of IPL/  on k1/kT is plotted. Thus, the
analysis of the kinetic model indicates that the observed
effect of PL enhancement upon the replacement of non-
photoconductive polymer matrices with photoconduc-
tive ones is mainly related to the ability of dyes to take
part in the EHP photogeneration process.

A difference between the PEPC and PVC matrices
is that, in the former case, the strongest PL enhance-
ment in cationic dyes is observed and the high-temper-
ature recombination luminescence of the charge carri-
ers formed due to photogeneration in these dyes is
present, with both effects increasing in magnitude in a
similar way as λirr decreases. We believe that these fea-
tures are related to the molecular mobility of carbazolyl
rings in PEPC and to the presence of predimer electron
states (traps) capable of capturing photogenerated
holes. After their thermal escape from the traps, these
holes recombine radiatively in the course of the annihi-
lation of the EHP. In what follows, we give our notion
on the nature of the traps.

4.1. Trap Formation 

AMS films based on PEPC and PVC are character-
ized by a broad energy spectrum of localized states of
nonequilibrium holes. A TSL peak near T = 150 K
(Fig. 7) is observed both in doped and nominally
undoped films. At the same time, a new narrow TSL
peak around T = Tirr exists in low-molecular PEPC films
and disappears with an increase in the polymer molec-
ular weight in the series PVC1, PVC2, PVC3, and
PVC4. Since neighboring carbazolyl rings belonging to
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Fig. 9. Dependence of IPL/  on k1/kT calculated by for-

mula (6).

IPL
PS
the same polymer chain are arranged coplanarly and
oriented by 180° with respect to the chain [8, 11], one
should expect that neighboring carbazolyl rings
belonging to different chains (segments) are involved in
the formation of new traps for holes. In PEPC, carba-
zolyl rings are located at a larger distance from the
chain, the chain is shorter, and the segment mobility is
higher [8]. This explains why PEPC represents a matrix
where predimer states, whose limiting form is a “sand-
wich” of carbazolyl rings, appear more readily.

Not only are the nature of the polymer and the col-
ored cation of the dye important for the formation of
traps, but so too is the nature of the dye anion. This is
demonstrated by the dependence of the PL enhance-
ment effect on the nature of An– observed in this study
(e.g., for dyes 1 and 1a). These traps appear in the
course of the photogeneration of charge carriers and
can exist only if they are being occupied. These traps
are formed as a result of the rotation of PEPC carba-
zolyl rings, which compose a predimer state near An– in
the situation where a hole from a photogeneration cen-
ter appears at these rings. The formation of such a trap,
the capture of a charge carrier by the trap, the destruc-
tion of the trap, and the release of the charge carrier
occur at the same temperature; the activation energy of
these processes is close to the activation energy of
β-relaxation in PEPC. Photogenerated holes may be
transferred to the predimer states located near An–,
which, under the influence of the anion electrostatic
field, may favor the transformation of predimer states
into dimer ones as a result of the rotation of carbazolyl
rings (β-relaxation). Thus, an occupied dimer trap for
holes appears, with the energy necessary for its forma-
tion from a predimer state at a given temperature being
supplied due to the polarization of the surrounding
medium by the hole and the electrostatic interaction of
this hole with An–. In the course of recombination or
dissociation, the hole leaves the trap, after which dimer
destruction occurs via the rotation of the carbazolyl
rings due to β-relaxation, and a predimer state (left
unoccupied) appears again.

It is important to note that, although the energy
spectrum of possible predimer states may be suffi-
ciently broad due to the existence of a large ensemble
of possible configurations of carbazolyl rings in amor-
phous PEPC films, only some of them are formed and
remain stable at a given temperature: it is necessary that
the thermal vibrational energy after the establishment
of thermal equilibrium is insufficient to destroy such a
state, while all states of a lower energy are thermally
destroyed. This means that the distribution of predimer
states over the energies W of traps created upon pre-
irradiation corresponds to the Boltzmann law. Then, the
distribution of the formed traps can be expressed as

(7)F W( ) 1 W /kBT irr–( ),exp–=
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and the probability density is given by

(8)

In the course of the formation of predimer states,
thermal equilibrium is not immediately established
after the absorption of a photon with the energy hν: if
hν exceeds the energy of the 0–0 transition hν0–0, then
the thermal energy U = hν – hν0–0 will flow out of the
photogeneration center. This thermal-energy flow may
facilitate the formation of predimer states with energies
W > W(kBTirr), resulting in an increased density Q of
formed traps even after the establishment of thermal
equilibrium. At the same time, if U exceeds the maxi-
mum allowed energy Wm of the spectrum of traps, then,
upon the formation of a trap, the thermally induced
escape of a hole from the trap may occur, the activation
energy of the escape process being WTL. Finally, if U >
Wm + WTL, the charge carrier will escape from the pred-
imer state immediately after being captured there, and
the trap becomes empty and is destroyed. It should be
noted that this mechanism of trap formation is unlikely
to be of importance at low temperatures, since, in addi-
tion to thermal vibrations of separate carbazolyl rings,
it requires involvement of the vibrations of entire seg-
ments.

Thus, the following formula can be used to express
the dependence of the density Q of predimer states
formed due to pre-irradiation on Tirr and λirr :

(9)

where Q0 is the density of all possible predimer states
and E[U/Wm] and E[U/WTL] are the integer parts of the
corresponding energy ratios. Taking this into account,
we arrive at the conclusion that Q increases with
increasing hν; however, when U exceeds the sum of the
energies needed for charge escape from the trap and for
trap destruction, a further increase in hν will lead to a
reduction in Q. It is such behavior that is observed for
PEPC films doped with dye 1: with decreasing λirr , the
TSL intensity first increases and then decreases.

4.2. Filling and Emptying of the Traps 

To analyze the processes in which the charge carri-
ers fill the formed predimer states and escape from
them, we consider a set of kinetic equations that is sim-
ilar to (1)–(4) but has one more equation added:

(10)
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,

dN1/dt

=  P k 2– N3 k 1– n1 kS kSU k2 k1+ + +( )N1,–+ +
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(11)

(12)

(13)

(14)

where q is the density of occupied predimer states at
time t, kq is the rate constant for the formation of occu-
pied traps, and k–q is the rate constant for charge release
from traps. Here, we have taken into account that kST @
k−q and EHPs composed of charge carriers captured by
traps are uniformly distributed over four possible spin
states prior to charge release [15].

When all of the traps are occupied, q = Q and the set
of Eqs. (10)–(14) becomes similar to (1)–(4). However,
the traps affect transient luminescence and photocon-
ductivity processes, especially those taking place for
different temperatures and λirr . The latter statement is
based on the following fact: when assuming the activa-
tion mechanism of filling, destruction, and charge
escape from traps, we need to take into account that not
only Q depends on T and λirr , but the rate constants kq

and k–q do as well. For purposes of illustration, let us
carry out a numerical calculation of the dependences of
ITL on t, T, and λirr for PEPC films with dye 1.

Considering the situation where traps are filled at
low temperatures, in which case k–q ! kq, kST , kS , kSU ,
k2, k–2, k3, k–3, k1, if dN1/dt = dN3/dt = dn1/dt = dn3/dt =
dq/dt = 0, we find from Eqs. (10)–(14) that, after the
irradiation is switched on, the density of the charge car-
riers on traps varies with time as

(15)

and after all traps are filled and the light is switched off

(16)

Here, the parameter k–q0 was chosen on the basis of
experimental conditions taking into account that, for
the warm-up rate dT/dt = 0.1 K/s, the entire TSL curve
falls within the range Tirr = (250 ) K (Fig. 7). kq was
also regarded as a model parameter; it was determined
taking into account that the results of the TSL measure-
ments described above do not depend on the dose of
irradiation at Tirr = 5 K for exposure times t > 60 s.

To calculate the dependences of ITL on t and T, we
used the relation

(17)

dN3/dt k2N1 k 3– n3 kT k 2– k3+ +( )N3,–+=

dn1/dt k1N1 kSTn3 kη k 1– 3kST+ +( )n1–+=

– kq 1 q/Q–( )n1 k q– q/4,+

dn3/dt k3N3 3kSTn1 kη k 3– kST+ +( )n3–+=

– kq 1 q/Q–( )n3 3k q– q/4,+

dq/dt kq 1 q/Q–( ) n1 n3+( ) k q– q,–=

q Q 1 kq– t( )exp–[ ] ,=

q Q kq0 WTL– /kBT( )texp–[ ] .exp=

 7+−

ITL dN1/dt dq t( )/dt.∝ ∝
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The quantity U = hν – hν0–0 was determined as the dif-
ference between the photon energy hν of the light irra-
diating the sample and the energy hν0–0 of an 0–0 tran-
sition in the dye, the latter being calculated from the
spectral position of the intersection point of the curves
κ/κmax and IPL/IPL max (Fig. 2). The value of Q was esti-
mated from formula (9) assuming that Tirr = 250 K,
WTL = 0.82 eV, and Wm = 0.21 eV. The value of Wm was
chosen taking into account that a maximum TSL effect
around Tirr is observed for λirr = 546 nm, and, thus, it
may be assumed that this corresponds to U = Wm .

Figure 10 shows the calculated dependences of q on
P (curves 1–3) and λirr (curves 4–6) and of ITL on t and
T (curves 7–9). One can see that an increase in the irra-
diation dose leads to a decrease in the trap filling time
and the steady-state density of charges captured by
traps is determined by the preirradiation wavelength. A
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Fig. 10. Dependences of q on t and T calculated for P =
(1) P0, (2) P0/2, and (3) P0/4; dependences of q on t and T
calculated for P = P0 and λirr = (4) 600 nm, (5) 546 nm, and
(6) 436 nm; dependences of ITL on t and T calculated for
P = P0 and λirr = (7) 600 nm, (8) 546 nm, and (9) 436 nm.
q0 and ITL0 denote, respectively, the values of q and ITL for
P = P0 and λirr = 546 nm.
narrow TSL peak occurs near Tirr = 250 K, and the vari-
ation in the magnitude of this peak with λirr correlates
with similar dependences in Fig. 7.

5. CONCLUSION

In this study, we established that the replacement of
nonphotoconductive polymers PS, PVB, PVA, and PE
with photoconductive ones PVC or PEPC leads to an
increase in the intensity and relative quantum yield of
the PL of cationic dyes 1–3 and 8 and cationic–anionic
dye 6 (in the cation band) embedded into these poly-
mers. This effect is not observed for anionic dyes 4 and
5 and neutral dye 7. With a decrease in the excitation
wavelength, the PL is enhanced, and so is the quench-
ing effect of an external electric field on the PL in PVC
and PEPC films. The electric field has no effect on the
PL in PS, PVB, PVA, and PE films doped with any of
the dyes under study and in PEPC and PVC films doped
with anionic dyes 4 and 5. The intensity of room-tem-
perature recombination luminescence in PEPC and
PVC is reduced as cationic dyes 1–3 and 8 are substi-
tuted for neutral dye 7 and vanishes in the case of
anionic cyanines 4 and 5; it also vanishes as photocon-
ductive polymers are replaced with nonphotoconduc-
tive ones. An increase in the polymethine chain length
in the series of dyes 1–3 leads to a reduction in the pho-
toconductivity effect, which is related to a decrease in
the energy difference between HOMOs in the hole pho-
togeneration centers (i.e., in dye molecules) and in car-
bazolyl rings. If cationic dyes are replaced with anionic
dyes 4 and 5, the photoconductivity in the dye absorp-
tion region disappears due to the existence of a high
potential barrier for the transition of a hole from an
excited anionic dye molecule to carbazolyl rings. The
enhancement of the PL of cationic dyes becomes
weaker as the polymer matrix is changed in the
sequence PEPC, PVC1, PVC2, PVC3, and PVC4; this is
related to an increase in the molecular weight of the
polymer. The enhancement of the PL of cationic dyes in
photoconductive polymers originates from the contri-
bution of charge-carrier recombination luminescence
that takes place upon the annihilation of EHP. This
effect is more pronounced in PEPC in comparison to
PVC, because predimer states are formed more readily
in the former case owing to the higher mobility of the
chromophore groups. Such states, located in the vicin-
ity of dye anions, represent effective traps for nonequi-
librium holes. The recombination of holes released
from these traps occurs radiatively. A model describing
trap formation and destruction, as well as trap filling
with nonequilibrium charge carriers and charge release
from traps, was suggested.
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Abstract—The possibility of using the magnetron-assisted silane decomposition technique for the deposition
of a-Si:H films as the basic materials for the production of polysilicon is analyzed. It is shown how specific
features of the film structure affect the crystallization process. © 2002 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

The current interest in polycrystalline silicon (poly-
silicon) is due to its possible application in thin-film
field-effect transistors, solar cells, and integrated cir-
cuits. It has been shown that polysilicon of device qual-
ity can be obtained though the crystallization of amor-
phous hydrogenated silicon (a-Si:H); the previously
used technique for the thermal decomposition of silane
and film deposition at the substrate temperature Ts =
625°C is unsuitable for this purpose [1].

Various methods for the crystallization of a-Si:H
films are known: prolonged annealing in vacuum at a
temperature of about 600°C, fast thermal treatment (with
a series of fast heatings) [2], laser annealing [3], and,
finally, the implantation of Si+ ions with an energy of
several tens of kV, which was recently demonstrated [4].

We must expect, however, that the properties of
a-Si:H crystallized with a given technique will depend
on the structure of the initial film, which depends, in
turn, on the conditions of its deposition. In the present
study, we consider the effect of structural characteris-
tics, such as the hydrogen content in a film and the pres-
ence of various nanoinclusions in its amorphous
matrix.

2. EXPERIMENT AND DISCUSSION

In the context of the above-listed problems, we ana-
lyze the potentialities of magnetron-assisted silane
decomposition (MASD) technology using a 25%SiH4 +
75%Ar mixture [4].

As is known, a-Si:H crystallization under an exter-
nal influence is to a large extent defined by the hydro-
gen content in a film (CH). First, the crystallization
becomes slower as CH rises [5]. Second, an intensive
effusion of hydrogen during the crystallization results
in mechanical damage in the film and, in extreme cases,

† Deceased.
1063-7826/02/3610- $22.00 © 21180
even its destruction [6]. From this point of view, MASD
seems highly promising, because it is one of the tech-
nologies that provides the lowest hydrogen content in a
film for a given Ts .

Indeed, as seen by comparing CH in films produced
by MASD [4] and plasma-enhanced chemical vapor
decomposition (PECVD) in a triode reactor with a
glow-discharge plasma at an RF of 13.56 MHz [7], the
CH values are 2 and 3 at. % at Ts = 380–400°C, respec-
tively. By contrast, in the films produced at the same Ts

using HF (70 MHz) PECVD, remote-plasma, and hot-
wire methods, CH = 7, 10, and 4 at. %, respectively, [7].

Later, we shall discuss and compare the depen-
dences of CH on Ts for MASD and PECVD a-Si:H films
with different structures. First, however, we will exam-
ine the methods used to control the film structure at Ts =
const.

For a fixed anode voltage, magnetic field intensity,
composition and feed rate of the gas mixture, the struc-
ture of MASD-films at Ts = const is controlled by vary-
ing the pressure of the gas mixture and by introducing
an additional grid electrode. As a result, the obtained
MASD films can be separated into three structural
groups: standard a-Si:H homogeneous films, inhomo-
geneous nanostructured a-Si:H films containing
(SiH2)n polymer chains in an amorphous matrix, and
inhomogeneous nanostructured a-Si:H films contain-
ing silicon nanocrystals in an amorphous matrix [4].

Groups of a-Si:H films with a similar structure can
also be obtained by PECVD. The conditions of stan-
dard a-Si:H deposition using undiluted SiH4 are well
known (see, e.g., [5]). Nanostructured films were
obtained in special conditions: films with (SiH2)n

chains, from silane strongly diluted with He (no more
than 1% SiH4 in He) [8]; and films with Si nanocrystals,
at a much higher discharge power and SiH4 pressure as
compared with those in standard a-Si:H deposition [9].
002 MAIK “Nauka/Interperiodica”
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Figure 1 shows CH vs. Ts dependences for standard
a-Si:H produced by MASD and PECVD (in both diode
and triode reactors). As seen, the MASD films (curve 1)
deposited with a gas pressure P = 7 mTorr and with a
floating-potential grid in the magnetron chamber (the
distance between the grid and the cathode d = 40 mm)
demonstrate smaller CH values as compared with
PECVD films deposited under different conditions: from
SiH4 in a diode (curve 2) and triode reactor (curve 3), and
also from 25%SiH4 + 75%He mixture (curve 4).

Figure 2 presents the CH vs. Ts dependence for nano-
structured a-Si:H films containing (SiH2)n chains
deposited by MASD at P = 7 mTorr without a grid
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Fig. 1. Hydrogen content in standard a-Si:H films as a func-
tion of the deposition temperature: (1) MASD films and
(2−4) PECVD films: (2) deposited from SiH4 in a diode and
(3) in a triode reactor; (4) deposited from a 25% SiH4 + 75%
He mixture in a triode reactor.
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Fig. 2. Hydrogen content in films with (SiH2)n nanoinclu-
sions as a function of the deposition temperature:
(1) MASD, (2) PECVD films.
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(curve 1) compared with films of similar structure
deposited by PECVD in a diode reactor [8]. We can
conclude that these dependences are alike, though CH is
slightly lower in MASD films than in PECVD films.

Figure 3 shows CH vs. Ts for nanostructured a-Si:H
films containing Si nanocrystals in an amorphous
matrix, deposited by MASD at P = 3.5 mTorr without a
grid (curve 1), and also by PECVD in a diode [9, 10]
(curve 2) and triode reactor [11] (curve 3). As seen, CH
values in nanostructured MASD films of this group are
lower than in PECVD films at Ts = const.

Thus, MASD provides a reduced hydrogen content
in films of all groups discussed; evidently this is due to
specific features of this technology, which combines
the silane decomposition process with the magnetron
cathode sputtering of a crystal silicon target with argon.
The interaction of argon species with the surface of a
growing film raises the effective temperature of deposi-
tion and, consequently, reduces CH in the films, thus
favoring the further formation of polysilicon. From this
position, the most interesting are the MASD films of
standard a-Si:H and the nanostructured films with Si
inclusions (the films with (SiH2)n inclusions have a
comparatively high CH content, so they will not be dis-
cussed here).

The results of Si+ ion implantation (the average ion
energy is 75 keV, doses (D) up to 1013 cm–2) performed
at room temperature, with subsequent vacuum anneal-
ing at 200°C for 1 h, were used as a test to determine
the tendency of films to crystallize.

It was shown earlier in the case of the partial crys-
tallization of a-Si:H films that, first of all, the tempera-
ture dependence of dark conductivity σ changes: bends
appear in the curves  = f(1/T); i.e., two activation
energies ∆E2 < ∆E1 are observed (∆E1 and ∆E2 refer to

σlog
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Fig. 3. Hydrogen content in films with Si nanoinclusions as
a function of the deposition temperature: (1) MASD;
(2) PECVD films deposited in a diode reactor from silane
diluted with hydrogen and (3) in a triode reactor from SiH4.
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the high and low temperature ranges, respectively).
Second, the photoconductivity σph falls [12]. Finally, as
mentioned above, the CH content decreases upon crys-
tallization.

Figure 4 demonstrates the effect of ion implantation
on the parameters of two “intrinsic” MASD films of
standard and nanostructured a-Si:H. Prior to implanta-
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Fig. 4. The effect of Si+ ion implantation (with dose D) on
the activation energy of dark conductivity at low tempera-
tures, photoconductivity (T = 300 K, the photon energy
2 eV, the rate of photocarrier generation 1019 cm–3 s–1), and
the hydrogen content in films: (1) standard a-Si:H MASD
film; (2) MASD film with Si nanoinclusions.
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Fig. 5. Dark conductivity normalized to its saturated value
vs. the time of annealing at 600°C: (1) standard a-Si:H
MASD film and (2) MASD film with Si nanoinclusions.
tion, the  = f(1/T) curves exhibit only one activa-
tion energy, which is equal to half the mobility gap, i.e.,
∆E1 = ∆E2 = 0.85 eV.

The data presented show that the effect of Si+

implantation on a-Si:H films strongly depends on their
initial structure.

Judging by the activation energy of the dark conduc-
tivity and CH, a standard a-Si:H film is not crystallized.
However, the strong enhancement of σph leads us to the
conclusion that, due to implantation, this film becomes
nanostructured (with Si nanoinclusions with such a
small size and such a low density that they cannot be
identified using Raman spectroscopy) [9–11]. As an
analogy, it is worth noting that the formation of carbon
nanocrystals distributed in an amorphous matrix of car-
bon film subjected to ion irradiation has been observed
recently [13].

We now discuss the impact of Si+ implantation on an
initially nanostructured film (Fig. 4). In this case, this
effect corresponds to ordinary crystallization: the acti-
vation energies of σ, σph, and CH are correspondingly
modified. Evidently, Si nanocrystals embedded in an
amorphous matrix are crystallization centers. From the
point of view of polysilicon fabrication, the MASD
films of this structure are of primary interest, despite a
hydrogen content substantially higher than in standard
a-Si:H MASD films (Figs. 1 and 3).

Figure 5 shows the difference in the kinetics of crys-
tallization under annealing between standard (curve 1)
and nanostructured (curve 2) a-Si:H deposited at the
same temperature Ts = 270°C. CH values are, respec-
tively, 6 and 10 at. %. The crystallization kinetics is
judged from the variation in dark conductivity as a
function of the annealing time. The conductivity
remains constant during some “incubation period,”
when the centers of crystallization are formed. In con-
trast to standard a-Si:H, this time is virtually zero for
nanostructured a-Si:H. However, the subsequent rate of
the increase in conductivity is lower for a nanostruc-
tured film, presumably owing to a higher hydrogen con-
tent. Nevertheless, this does not result in a substantial
increase in the crystallization time, which is defined as
the time necessary to reach a leveling-off of the curves
presented in Fig. 5.

3. CONCLUSION

The results obtained demonstrate the prospect of
using MASD for the deposition of a-Si:H films, which
can serve as a base in the fabrication of polysilicon. The
technological conditions have been determined for the
deposition of standard a-Si:H films with minimal
hydrogen content, and of nanostructured films with Si
inclusions in an amorphous matrix. The influence of
specific features of the film structure on the efficiency
of crystallization is demonstrated.

σlog
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Abstract—The temporal evolution of the spectra of cathodic electroluminescence from porous silicon in an

electrolyte containing persulfate ions S2  was studied in the galvanostatic mode. It was shown that irrevers-
ible changes in luminescence properties of porous silicon occur under cathodic polarization. These changes are
manifested in a decrease in the signal intensity and a long-wavelength shift of the electroluminescence (EL)
spectrum when the substrate potential remains virtually unchanged (pseudo-tuning). The irreversibility of the
change in luminescence parameters is related to a concurrent electrochemical oxidation of the surface of porous
silicon, which hinders the bipolar injection of carriers into luminescence-active crystallites. The results
obtained suggest that the degradation phenomena observed under cathodic polarization are due to those same
processes which are responsible for EL excitation, which casts doubt on the interpretation of the tuning effect,
known in the literature, as a consequence of a purely electronic process in porous silicon. © 2002 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION
The electroluminescence (EL) from porous silicon

(por-Si) under cathodic polarization in contact with an
electrolyte is observed in solutions containing strong

oxidizing agents, such as persulfate ions S2  [1–7].

In Si nanocrystallites, the source of EL is radiative
recombination of electrons supplied from a cathodi-
cally biased substrate with holes injected into por-Si by
sulfate radicals. It is assumed that the reduction reac-
tion of the persulfate ion comprises two stages:

(1)

(2)

In reaction (1), an electron in the conduction band of
the crystallite, ecb , is captured to form a sulfate radical

. The latter is a strong oxidizing agent and can
inject a hole hvb into the valence band of the crystallite
[reaction (2)]. Then, if an electron is present in the con-
duction band of the crystallite, the injected hole can
recombine with the electron, emitting a quantum of
light hν:

(3)

Of interest and importance for elucidating the mech-
anism of EL in por-Si is the so-called tuning effect,
which is manifested in the dependence of the spectral
position of the EL peak on applied potential: with
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increasing cathodic bias, the EL spectrum is shifted to
shorter wavelengths and the intensity of the EL signal
also changes [1, 3–6].

The mechanism of tuning of the cathodic EL was
studied in [4, 5]. In [4], a model was proposed which
attributes the tuning effect to a variation in the number
of electrons in the conduction band of crystallites as the
applied potential is varied. According to this model, the
EL signal from a crystallite of a given size appears at a
potential at which injection of electrons from the sub-
strate into the conduction band of the crystallite

becomes possible. Holes are injected by  radicals

formed in the reduction of S2  ions on the crystallite
surface. Then, electron–hole pairs recombine in the
crystallite emitting a quanta of light in the process.
With a further increase in the cathodic bias, the rate of
electron injection into the crystallite grows to such an
extent that the injection of an electron during the time
of existence of an excited state becomes possible. In
this case, the fast nonradiative recombination of an
electron–hole pair occurs with the transfer of energy to
a third carrier, i.e., an electron (Auger process). The
potential at which the onset of electron injection occurs
depends on the crystallite size, since the energy gap
and, consequently, the barrier to injection grow when
this size decreases. Thus, the excitation and quenching
of the EL occur successively with increasing cathodic
bias in crystallites of various sizes, from larger to

SO4

–.

O8
2–
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smaller sizes, which gives rise to the observed tuning
effect.

As stated by the authors of [4, 5], the EL peak posi-
tion is determined solely by applied voltage, with an
irreversible change in the EL signal intensity observed
in repeated potential sweeps. The authors related such
behavior of the EL signal to the oxidation of the por-Si
surface.

Contrary to [4], the irreproducibility of the EL tun-
ing effect under a repeated potential sweep was noted
in [7] not only for the EL intensity, but also for the
dependence of the EL peak position on bias. In the
same study, a long-wavelength shift of the EL spectrum
was observed when the substrate potential was kept
constant. Based on an analysis of secondary ion spec-
tra, the authors of [7] did not attribute the effect
observed to por-Si oxidation: profiles of the object,
obtained before and after the cathodic EL process, indi-
cated a constant concentration of oxygen in the por-Si
layer. However, this fact cannot serve as a conclusive
argument against por-Si oxidation in cathodic EL, since
the initial concentration of oxygen in the layer was high
and its influence could markedly exceed the possible
effect of oxidation in cathodic EL.

The data presented in this study indicate that irre-
versible degradation of the luminescence properties of
the object occurs during the cathodic polarization of
por-Si in an electrolyte containing persulfate ions. This
degradation is accompanied by a change in the chemi-
cal composition of the por-Si surface. This fact compli-
cates the interpretation of the tuning effect as some-
thing that results from a purely electronic process in
porous silicon.

2. EXPERIMENTAL

Porous silicon samples were obtained through the
anodic electrochemical etching of polished wafers of
n-type single-crystal silicon with a resistivity of 0.3 Ω cm
and (111) orientation. The etching was done for 5 min
under dc current with a density of 100 mA cm–2 in a
mixture of 49% hydrofluoric acid and isopropyl alcohol
taken in equal volumes. The wafers were illuminated in
the course of etching to create minority carriers. Then,
the samples were placed for 10 min in an evacuated
chamber to remove the liquid phase from pores.

The cathodic EL was studied on samples brought in
contact with an aqueous electrolyte with a composition
of 0.1 M K2S2O8 : 1 M H2SO4 = 1 : 1 (by volume) to
which isopropyl alcohol (propanol-2) was added in an
amount equal to 50% of the total solution volume; this
was done to improve the wettability of the por-Si sur-
face by the electrolyte. Platinum foil served as the
counter electrode. The area of a sample in contact with
the electrolyte was ≈1.3 cm2. All the potentials are
given relative to the platinum counter electrode.

Before and after measuring the EL response in the
electrolyte, the photoluminescence (PL) properties of
SEMICONDUCTORS      Vol. 36      No. 10      2002
the samples were recorded in a vacuum (residual pres-
sure 1 Pa). The PL was excited in a narrow range of
energies of quanta around 4 eV at an incident power of
≈1 mW cm–2. The PL and EL spectra obtained were
corrected for the sensitivity of the spectrometric sys-
tem.

IR transmission spectra of por-Si samples were
measured on a Specord M-80 double-beam spectropho-
tometer, with a silicon wafer without a por-Si layer
placed in the reference channel.

3. RESULTS AND DISCUSSION

Figure 1 presents a PL spectrum (thick solid line)
and a set of EL spectra (dashed lines) for a por-Si sam-
ple. The PL spectrum corresponds to the freshly pre-
pared state of the object and is normalized to the peak
value of the EL signal. The cathodic EL signal was mea-
sured under a dc current with a density of 0.77 mA cm–2

flowing in the circuit for 1.5 h. The EL spectrum shifted
steadily to longer wavelengths with the time of treat-
ment. The voltage across the cell was within –3.05 ±
0.05 V during the entire experiment.

The profile of the initial PL spectral line (normal-
ized to the peak of the EL signal) is an envelope of EL
spectra recorded at different instants of time after the
beginning of treatment (Fig. 1). It should be empha-
sized that an outwardly similar pattern was observed
in [6]; however, the set of EL spectra was obtained with
a varied substrate potential. In terms of the quantum-
confinement hypothesis for luminescence in por-Si, it
may be suggested that, in both cases, the EL is excited
in part of an ensemble of luminescing crystallites with
different sizes.
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Fig. 1. Original PL spectrum (solid line) of a por-Si sample
on an n-substrate and a set of EL spectra (dashed lines)
obtained under the action of dc current with a density of
0.77 mA cm–2. The numbering of the EL spectra starts from
the beginning of the treatment.
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The typical range of voltage variation, in which the
EL tuning was observed, is 0.5–0.6 V [4, 6]. Appar-
ently, the long-wavelength shift of the EL spectrum
(named here as pseudo-tuning) cannot be accounted for
in the given case by a change in potential, since the
voltage across the cell changed during the experiment
by no more than 0.1 V.

The given sample was subjected to two more suc-
cessive treatments in the dc mode at current densities of
3.85 and 7.7 mA cm–2 (at the corresponding voltages of
–4.75 ± 0.05 and –5.95 ± 0.05 V). The kinetics of the
changes in the position and intensity of the EL spec-
trum is presented in Figs. 2 and 3, respectively.

According to Fig. 2, raising the cathodic bias leads,
in successive treatments, to a short-wavelength shift of
the EL peak relative to its position at the end of the pre-
ceding treatment at lower voltage. However, the posi-
tion of the EL peak, recorded at the beginning of each
successive treatment, shifts irreversibly to longer wave-
lengths. The PL spectrum, measured after three of the
described treatments, exhibited a long-wavelength shift
of the peak position (from 1.88 to 1.82 eV) and a
decrease in the peak intensity by a factor of 3. Also
noteworthy is the fact that the EL signal decreases more
rapidly as the driving current increases (Fig. 3).

The probable reason for the observed degradation of
the luminescence properties of por-Si in cathodic EL is
the oxidation of the crystallite surface. The presence of
holes in the surface layer of silicon gives rise to the
electrochemical oxidation in electrolytes, which was
studied in detail for the case of anodic polarization [8].
In cathodic polarization, holes are injected into the

valence band of crystallites by sulfate radicals 
and, therefore, it would be expected that the surface of
the crystallites involved in EL is oxidized.
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Fig. 2. Evolution of the peak position of the EL spectrum in
three successive treatments in the dc mode. The arrow
denotes the peak position of the PL spectrum for the initial
state of the sample. The respective voltages across the cell:
–3.05, –4.75, and –5.95 V (±0.05 V). Current density:
(1) 0.77, (2) 3.85, and (3) 7.70 mA cm–2.
This assumption is confirmed by measurements of
IR transmission spectra in the absorption ranges of
Si−O (1000–1200 cm–1) and Si–H (2000–2200 cm–1)
bonds. Figure 4 presents the IR spectra of a por-Si sam-
ple in a freshly prepared state and after cathodic polar-
ization.

In the freshly prepared state, the por-Si surface is
passivated by hydride bonds, which is indicated by the
presence of a well-pronounced absorption band at
2050–2150 cm–1 consisting of three narrower bands
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Fig. 3. Variation of the peak intensity of the cathodic EL in
three successive treatments in the dc mode. Current density:
(1) 0.77, (2) 3.85, and (3) 7.70 mA cm–2.
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Fig. 4. Transformation of IR transmission spectra in the
ranges corresponding to vibrations of Si–O–Si (1000–
1200 cm–1) and Si–Hn (n = 1, 2, 3) bonds for a por-Si sam-
ple (1) in freshly prepared state and (2) after cathodic EL.
The “fine” structure in the transmission spectrum, clearly
seen in the long-wavelength band, is due to interference.
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corresponding to the stretching vibrations of Si–Hn

bonds (n = 1, 2, 3) on the silicon surface. The IR trans-
mission spectrum of a por-Si sample subjected to
cathodic polarization shows that absorption in the given
spectral range almost completely disappears.

The absorption in the band at 1000–1200 cm–1 is
determined by the concentration of Si–O–Si bonds. It
can be seen from Fig. 4 that the absorption in the given
spectral range of a por-Si sample subjected to cathodic
polarization increased by more than a factor of 100
when compared with the freshly prepared sample.

Thus, it may be assumed that an oxide phase grows
on the surface of luminescing crystallites in the course
of cathodic EL. This process is accompanied by the loss
of the hydride cover, which originally passivates the
crystallites. The change in the surface passivation leads
to the observed degradation of the luminescence prop-
erties of an object. The pseudotuning of EL under
invariable external conditions (bias, current) can be
accounted for by the exclusion of oxidized crystallites
from the EL process: the formation of the oxide phase
makes further charge exchange with ions in the electro-
lyte impossible. It may be assumed, in terms of the
model described in [4], that electron injection into the
oxidized crystallites is also hindered by an increased
energy barrier and that the electron density in the con-
duction band of crystallites of a given size decreases as
the oxide phase grows. Thus, crystallites with a higher
emission energy cease to luminesce, and those with a
lower energy become active. The probability of oxida-
tion is higher for presently luminescing crystallites,
since holes injected into the crystallites in which occu-
pancy with electrons is high recombine nonradiatively
(Auger recombination), having no time to cause oxi-
dation.

A comparison of the quantum efficiencies of PL and
EL shows that only a small number of luminescing
crystallites are excited in por-Si under cathodic polar-
ization. With the available data on the PL and EL signal
intensities recorded under equal conditions of emission
collection, it was possible to evaluate the ratio of the
external quantum efficiencies of PL and EL. The quan-
tum efficiency of PL, ηPL, is commonly defined as the
number of emitted quanta per a single quantum of
exciting radiation. The quantum efficiency of EL, ηEL,
is defined here as the number of emitted quanta per ele-
mentary charge passing through the external circuit. A
calculation in terms of these definitions gives a ηPL/ηEL
ratio of about 15 for the object in a state corresponding
to the beginning of the first treatment in Fig. 2, i.e., at
the lowest degree of degradation of the luminescence
properties.

This result correlates with the relatively small
decrease in the PL intensity when there is a substantial
SEMICONDUCTORS      Vol. 36      No. 10      2002
change in the EL efficiency. The same circumstance
accounts for the results reflected in Fig. 2, namely, the
possibility of observing, on raising the current and the
cathodic bias, an EL with a peak energy exceeding that
in the preceding measurement. At a given voltage, the
most accessible crystallites are involved in cathodic
polarization. With increasing current and voltage, the
excitation of EL becomes possible in por-Si fragments
that are less accessible to current flow.

4. CONCLUSION

The temporal evolution of spectra of cathodic EL
from por-Si on an n-Si substrate in an electrolyte con-

taining persulfate ions S2  was studied in the gal-
vanostatic mode. It was shown that an irreversible
change in the luminescence properties of por-Si occurs
in the course of polarization. This change is manifested
in a decrease in the EL signal intensity and in a long-
wavelength shift of the EL spectrum with treatment
time at a virtually constant potential of the silicon sub-
strate. The temporal drift of the luminescence parame-
ters is accompanied by changes in the IR transmission
spectra, which indicate that the hydride cover is
replaced by silicon–oxygen complexes on the por-Si
surface. The data obtained allow for the following
explanation of pseudotuning under cathodic polariza-
tion in the presence of persulfate ions. The formation of
an oxide phase hinders the bipolar injection of carriers
into luminescence-active crystallites. The change in the
percolation process is most pronounced for the small-
size fraction of the ensemble of luminescing crystal-
lites, thereby leading to a shift of the EL band.
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Abstract—A comparative study of the transient space-charge-limited current in porous silicon and porous ana-
tase (TiO2) has been carried out. The room-temperature drift mobilities of electrons in porous silicon and porous
anatase, determined from the transit times, are, respectively, 10–2 and 5 × 10–6 cm2 V–1 s–1. The specific features
of space-charge-limited currents in porous anatase are discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The strong interest in porous nanocrystalline mate-
rials is due to the possibility of their use in solar cells,
gas analyzers, and light-emitting diodes [1–4]. Porous
silicon (por-Si) is of interest, first of all, as a material
exhibiting electroluminescence properties [4]. Layers
of porous anatase (TiO2) are used in solar cells, in
which high quantum efficiency is achieved by using
organic dyes, and porous anatase (PA) serves as a trans-
port medium ensuring charge transfer in the space
between the electrodes [1]. To elucidate the nature of
photoelectric phenomena and optimize device charac-
teristics, knowledge of the fundamental aspects of car-
rier transport in porous materials is necessary. Investi-
gations show that the characteristics of carrier transport
in these materials are rather similar to those in disor-
dered materials [5, 6]. In this connection, the transport
in por-Si and PA was analyzed using the methods and
concepts developed in studying disordered materials.
As an effective means of determining the drift mobility,
the transient space-charge-limited current (TSCLC)
was employed. The advantage of this technique over
other methods consists in that it enables the determina-
tion of the mobility both from the transit time and from
the current strength [7, 8]. Crystalline TiO2, which, in
contrast to crystalline silicon, has been relatively poorly
studied, served as the starting material for obtaining
PA. This material belongs to bipolar semiconductors,
which are characterized by a high dielectric constant,
strong electron–phonon coupling, and a high probabil-
ity of the polaronic transport mechanism [9]. It seems
of interest in this connection to reveal specific features
of carrier transport in PA as compared with por-Si,
whose optical and electrical properties are compara-
tively well understood. A comparative study of TSCLC
in por-Si and PA may reveal both the general aspects of
transport in porous materials and the specificity of each
of these materials.
1063-7826/02/3610- $22.00 © 21188
2. SAMPLE PREPARATION AND METHOD
FOR STUDYING TSCLC

Porous silicon layers of thickness L ≈ 5 µm were
prepared electrochemically on a polished surface of n-
type silicon with a resistivity of 2 Ω cm. The samples
used in the measurements had a sandwich configura-
tion. Crystalline silicon was used as one of the elec-
trodes. A semitransparent chromium film deposited
onto por-Si in a vacuum served as the other electrode.
The sample resistance was 109–1010 Ω with an upper
electrode area of 0.19 cm2.

Porous anatase layers [1] were prepared from a
paste containing ~16-nm TiO2 nanoparticles and tur-
pentine oil. The paste was thinly distributed over a glass
substrate coated with a transparent SnO2:F layer and
then annealed in air at 450°C for 30 min. The layer
porosity was ~50%. The thickness of the layers studied
was 5–10 µm. The back contact was formed from the
same paste mixed with carbon powder. The mixture
was deposited over a preliminarily prepared TiO2 layer
and then annealed under the same conditions. Immedi-
ately before the measurements, the samples were kept
in an atmosphere of oxygen at 450°C for 30 min. The
measurements were also done in oxygen.

For TSCLC to be observed, it is necessary that the
entire amount of charge, q = CU, generated at the elec-
trodes of a sample with capacitance C enter the sample
on applying a voltage U across the electrodes. In the
case of effectively injecting electrodes, TSCLC can be
observed by simply applying a voltage step across the
electrodes. Since it is difficult to fabricate injecting
electrodes and large capacitive currents mask the
TSCLC, charge is commonly injected by a pulse of
strongly absorbed light.

The TSCLC measurements were carried out on a
setup for measuring transit times [11]; we used a volt-
age pulse of duration from 1 to 900 ms and a time delay
002 MAIK “Nauka/Interperiodica”
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from 0.1 to 500 ms between the instants of application
of voltage and the light pulse were applied to the sam-
ple. The charge was generated using a pulsed nitrogen
laser with an emission wavelength of 0.337 µm and a
pulse duration of 0.3 ns. The measurements were done
in the mode of single pulses of space-charge-limited
current (SCLC). On achieving the SCLC mode, the
photocurrent became independent of the light pulse
intensity.

3. RESULTS AND DISCUSSION

Figure 1 presents an oscillogram of TSCLC in
porous silicon. The oscillogram is close to the ideal
TSCLC shape [7, 8]. On applying a light pulse, an ini-
tial current I0 is generated, whose density (in A cm–2) is
given by [8]:

where ε is the dielectric constant, µ is the mobility, and
L is the sample thickness. Then, with the space between
the electrodes filled with electrons, the current grows
because of an increase in the field intensity at the front
of the carrier packet and a rise in the effective capaci-
tance, to Im = 2.7I0 in a time tm , which corresponds to
the time in which carriers reach the back electrode.
Since the carriers move in an increasing field, ttr is
shorter than the transit time tm in the absence of the
SCLC mode: tm = 0.78ttr . The drift mobility is found
from the transit time as µ = L2/(ttrU). For the sample
studied, µ = 10–2 cm2 V–1 s–1. At a constant carrier injec-
tion, the current falls to I = 2.3I0 at a certain time after
tm . When carriers are generated by a light pulse, the
injection is limited in time and the current falls to zero.
Figure 2 presents the dependence of SCLC on the
applied voltage in porous silicon. A quadratic depen-
dence of the current, characteristic of the SCLC mode,
is observed in a limited range of voltages below 2 V. At
voltages exceeding 2 V, the limited light-induced injec-
tion results in that the SCLC mode gives way to the
small charge mode, q < CU, to which corresponds a lin-
ear dependence of current on voltage.

The mobility calculated from the transit time coin-
cides with that found from the currents I0 and Im at ε =
4–5, a value typical of porous silicon. Such a coinci-
dence has been the case in all the known instances of
TSCLC observation in porous silicon [12–14].

A photocurrent of electrons, close in shape to
TSCLC, was also observed in porous anatase. As seen
from Fig. 3, the photocurrent is characterized by an ini-
tial current I0, with the subsequent gradual rise in cur-
rent to its maximum value Im . Commonly, the Im/I0 ratio
did not exceed 2. The current increased with voltage,
following a nearly quadratic power-law dependence.
The time elapsed from the instant of light pulse appli-
cation to the appearance of a maximum in the time
dependence of the current varied in inverse proportion

J 0( ) 4.4 10 14– εµU2/L3,×=
SEMICONDUCTORS      Vol. 36      No. 10      2002
I0

Im = 2.7 I0

tm = 0.78 ttr

0

–2

–4

–50 0 50 100

Time, µs

Current, µA
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Fig. 3. Oscillogram of TSCLC of electrons in porous ana-
tase. U = (1) 2.8 and (2) 5.7 V; L = 5.5 µm.
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to the voltage. As regards all the main parameters, the
behavior of the photocurrent was the same as that in the
case of TSCLC. The drift mobility found from the tran-
sit time was 5 × 10–6 cm2 V–1 s–1.

Commonly, the transit times are measured, for both
weak and strong injection (TSCLC), under small dark
currents. At the same time, the maximum in the time
dependence of the current, I(t), appeared in PA only in
the presence of a high dark injection current. With
blocking contacts and a thin insulating layer introduced
between the electrode and the TiO2 layer, transient cur-
rents decaying with time in ~100 µs were observed. The
I(t) dependences plotted in the log–log scale exhibited
no bends, which are commonly used to determine the
transit time in the case of dispersive transport. The
appearance of a peak corresponding to carrier transit
across the interelectrode space in the presence of dark
injection may be due to field redistribution and the fill-
ing of localized states which capture carriers.

Figure 4 presents oscillograms of both the dark cur-
rent, observed upon applying a varied voltage to a sam-
ple, and the photocurrent arising on applying a light
pulse after a delay time of ~500 ms relative to the
instant of voltage application to the sample. Figure 5
shows the initial photocurrent I0, dark current Id at the
instant of application of the light pulse, and the ratio of
these currents as functions of the voltage applied to the
sample. At the instant of application of the light pulse,
the dark current exceeds the photocurrent severalfold.
The nearly quadratic dependence on voltage indicates
the occurrence of the SCLC mode. In the presence of a
dark SCLC, the injecting electrode creates an infinite
reservoir of carriers and, at first glance, it seems that the
additional charge generated by a light pulse near the
injecting electrode cannot affect the current, since the
current is only determined by the voltage applied to the

Current, µA

Time, s

U on

U offLaser pulse10

5

0

–0.5 0 0.5

Fig. 4. Oscillograms of TSCLC generated by a laser pulse
in porous anatase on the background of dark injection cur-
rents on switching the voltage on (U on) and off (U off). The
voltage varies from 6 to 11 V with a step of 1 V; sample
thickness 8 µm.
sample. However, the photocurrent may appear because
of the existence of a layer with a certain finite thickness
in which light is absorbed. It was found in the present
study that the thickness of this layer is ∆ ≈ 0.3 µm. In
this case, it seems as if the electrode is shifted to the dis-
tance along which light is absorbed, creating a high
density of carriers. The effective thickness of the sam-
ple decreases instantaneously to become L – ∆. Simul-
taneously, the sample capacitance grows and an addi-
tional charge is introduced into the sample. The drift of
this charge causes a redistribution of the field and a fur-
ther increase in capacitance, with the result that the cur-
rent grows and a peak appears in the I(t) curve when
carriers reach the back electrode. In the absence of dark
injection, the decrease in the effective thickness of the
sample with increasing light pulse intensity leads to a
rise in TSCLC and a decrease in the transit time [15].
The photocurrent can be evaluated by assuming that its
value is equal to the difference between the SCLCs in
samples of thickness L – ∆ and L, where ∆ is the dis-
tance along which light is absorbed:

For a sample of thickness L = 8 µm with ∆ = 0.3 µm,
the I0/Id ratio is ~0.12. As seen from Fig. 5, the experi-
mental value of this ratio is 0.15–0.18, which is in good
agreement with the above estimate.

Another important feature of SCLC in PA is that the
mobility found from the transit time is much lower than
that determined from the current density at ε = 10 [16],
with the difference being occasionally as large as an
order of magnitude. Since the SCLC is proportional to
the dielectric constant, the behavior of the capacitance
was studied in a wide range of frequencies in relation to
the period of time during which voltage is applied to the
sample. A strong rise in the dielectric constant was

I0 Id L3/ L ∆–( )3 1–[ ] .=

Voltage, V

10–1

100

Slope 2

Id

I0

I0/Id

4 5 6 7 8 9 10 11

{Id, I0}, µA; I0/Id, arb. units

Fig. 5. Initial photocurrent I0, dark current Id at the instant
of application of a light pulse, and ratio of these currents
(I0/Id) vs. the voltage applied to a porous anatase sample.
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observed at frequencies lower than 102–103 Hz and
when the time during which voltage was applied to the
sample increased [17].

The delay and transit times in porous TiO2 corre-
spond to the frequency range in which the dielectric
constant greatly exceeds the value ε = 10 measured at a
frequency higher than 103 Hz, which leads to an over-
estimated value of mobility determined from the cur-
rent strength.

4. CONCLUSION

The investigation performed demonstrated that
porous materials are characterized by low drift mobil-
ity. The transient SCLC in porous anatase exhibits a
number of specific features. The appearance of light-
induced SCLC on the background of a dark injection
current and the disagreement between the mobilities
found by different methods can be accounted for quali-
tatively by a decrease in the effective sample thickness,
which occurs when carriers are generated by a light
pulse, and by an increase in the dielectric constant at
low frequencies. At the same time, a number of details
concerning SCLC in porous anatase remain ambigu-
ous. To these, in particular, belongs the contribution of
the frequency dependence of the dielectric constant to
TSCLC. Moreover, the reasons as to why the transit
time cannot be measured in the absence of a dark cur-
rent have not been revealed conclusively. These prob-
lems invite further investigation.
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Abstract—The influence of the design and material parameters on the current–voltage characteristics of single-
electron two-island chains of tunneling junctions was studied using a developed numerical model. It is ascer-
tained that these characteristics are most sensitive to variation in the largest width of a tunneling junction and
in the height of the potential barrier in the insulator. At the same time, variations in the background charges in
the islands, in the relative permittivity of the insulator, and in the operating temperature bring about various
transformations of the current–voltage characteristics. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The use of multiple-island chains of tunneling junc-
tions is promising for the development of various sin-
gle-electron device structures [1, 2]. The advantage of
these chains over single-electron one-island transistors
consists in a lower sensitivity of the characteristics of
such chains to the parasitic cotunneling effect and also
in the manifestation of both temporal and spatial corre-
lations for fixed applied voltages. In this context, the
use of many-island chains of tunneling junctions is jus-
tified for designing the memory elements [3, 4] of
quantum integrated circuits.

An analysis shows that a theoretical study of such
complicated structures as the chains under consider-
ation is possible only in the context of a semiclassical
approach. This is related to the fact that the models of a
quantum-mechanical approach are still being devel-
oped and require substantial computing resources for
their implementation. Therefore, the latter approach
enables one to simulate only some of the processes in
single-electron structures [5].

The known models of the semiclassical approach,
which are based either on solving the master equation
[1] or on the Monte Carlo method [6, 7], generally
make it possible to simulate fairly complex single-elec-
tron many-island chains of tunneling junctions. How-
ever, a serious disadvantage of the aforementioned
models is the fact that the capacitances and resistances
of tunneling junctions are used in these models as the
adjustable parameters to fit the calculation and experi-
ment together. As a result, it is very difficult to study the
effect of the design and material parameters on the
characteristics of single-electron structures. At the
same time, such studies would make it possible to
determine the required sizes, select the appropriate
1063-7826/02/3610- $22.00 © 21192
materials, and predict the characteristics of single-elec-
tron devices at the design stage.

In this paper, we report the results of the theoretical
study of two-island single-electron chains of tunneling
junctions made of various materials; we used a devel-
oped numerical model. We also identified the most crit-
ical factors that influence the current–voltage (I–V)
characteristics of these devices.

2. A MODEL

Abramov and Novik [8–10] suggested a two-dimen-
sional numerical model for a metal single-electron tran-
sistor with a single island. The model is based on a
semiclassical approximation and makes it possible to
evaluate the characteristics of a device in relation to its
design and material parameters; i.e., this model is
devoid of the aforementioned drawback. In this paper,
the suggested approach is generalized to the case of
multiple-island (in particular, two-island) chains of tun-
neling junctions.

Let us consider the essence of the developed model.
The input parameters in this model are the geometrical
parameters of the device (see Fig. 1); the parameters of
materials; the background charges at the islands; and
also the external factors, such as the source, drain, gate
voltages, and temperature T.

The model is based on the numerical solution of the
Poisson equation (the effect of magnetic field is
ignored); i.e., [8–10]

(1)

where ε is the permittivity; ϕ is the electrostatic poten-
tial; x and y are coordinates; and qM is the volume
charge density, which includes the density of charge

∇ε∇ϕ x y,( ) qM,–=
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carriers qt directly involved in tunneling and the back-
ground-charge density q0. The charge in the insulator is
ignored.

In the model under consideration, a transition is per-
formed from the continuous representation of the Pois-
son equation (1) to its discrete approximation in the
ABCD region in Fig. 1. As the boundary conditions, we
chose the Dirichlet conditions at the contacts and the
Neumann conditions at the free boundaries. Numerical
methods for the finite-difference approximation and for
the solution of the emerging system of linear algebraic
equations were described in detail elsewhere [9]. As a
result of solving the equation, we obtain the distribution
of potential in the structure in relation to the geometric
parameters, parameters of the material, external factors,
and also to the number of excess charge carriers at the
islands.

We then determine the values of voltages across the
tunneling junctions taking into account the electrostatic
potential distribution in the structure. In this model, the
partial currents through all tunneling junctions in the
forward and reverse directions are calculated using the
formula [1]

(2)

with

(3)

where Vi and Vf are the voltages before and after elec-
tron tunneling, respectively; kB is the Boltzmann con-
stant; and e is the elementary charge. The expression
for the tunneling junction resistance in relation to the
potential barrier height was reported elsewhere [9].
Thus, in contrast to the model suggested previously [8–
10], the model under consideration in this paper makes
it possible to take into account more naturally the tem-
perature effects using formulas (2) and (3).

In order to calculate the I–V characteristics of the
chain, we used the master equation for single-electron
structures [1]; however, we write this equation directly
for the currents through the tunneling junctions rather
than for the tunneling rates. As a result, this equation
takes the following form for the two-island structures:

(4)

I
V eff

R
-------- 1

eV eff

kBT
-----------– 

 exp–
1–

=

V eff

Vi V f+
2

-----------------,=

∂σ n1 n2,( )
∂t

------------------------- In1 1– n2 n1 n2,→, σ n1 1– n2,( )=

+ In1 n2 1– n1 n2,→, σ n1 n2 1–,( )

+ In1 1+ n2 n1 n2,→, σ n1 1+ n2,( )

+ In1 n2 1+, n1 n2,→ σ n1 n2 1+,( )

– In1 n2, n1 1+→ n2, In1 n2, n1→ n2 1+,+(

+ In1 n2, n1 1–→ n2, In1 n2, n1→ n2 1–, )σ n1 n2,( ).+
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Here, σ(n1, n2) is the probability of finding the excess
charge carriers at the islands; n1 and n2 are the numbers
of excess charge carriers at the first and second islands,
respectively; and  is the sum of partial
currents through the tunneling junctions as the number
of charge carriers in the first island changes as n1 –
1  n1.

Equation (4) was solved in the steady-state case. In
order to find a nontrivial solution, we used the Seidel
iteration method [11]. We will just note here that direct
methods and a number of iterative methods cannot be
used for the aforementioned purposes.

The total current through the structure was calcu-
lated using the formula

(5)

where I+(n1, n2) and I–(n1, n2) are the currents through
the tunneling junction in the forward and reverse direc-
tions, respectively.

The developed model was implemented using the
MJT-SET-NANODEV software package for the many-
island chains of tunneling junctions; this package was
included in a NANODEV system for simulating nano-
electronic devices [9].

3. ADEQUACY OF THE MODEL

In order to assess the applicability of the suggested
model to actual devices, we first compared the results of
simulation on the basis of this model with experimental
data for a number of two-island single-electron chains.

The results of calculations of the I–V characteristics
for the first of the studied two-island structures based
on the Au–Al2O3 film [12] are shown in Fig. 2a.
Curve 1 corresponds to the experimental characteristic
[12] obtained using a scanning tunneling microscope at
a temperature T = 4.2 K. In this case, the insulating
medium is aluminum oxide and the conducting islands
are gold particles. Curve 2 represents the results of cal-
culations performed according to the developed model,

In1 1– n2 n1 n2,→,

I σ n1 n2,( ) I+ n1 n2,( ) I– n1 n2,( )–[ ] ,
n2

∑
n1
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Fig. 1. Structure of a two-island single-electron chain.
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curve 3 corresponds to the calculations using the semi-
classical model [12], and curve 4 represents the results
of calculations carried out using the MOSES program
based on the Monte Carlo method [13]. It follows from
Fig. 2a that all three models of the semiclassical
approach make it possible to obtain satisfactory agree-
ment with the experiment for the chain under consider-
ation. However, it is appropriate to use the suggested
model for calculating the I–V characteristic of two-
island single-electron chains since, in this case, this
characteristic is more clearly related to the parameters
of both the design and the material (see Section 4).

The results obtained using the suggested two-
dimensional numerical model are also in good agree-
ment with other known experimental data on two-
island single-electron chains which are made from a
number of materials and operate at various tempera-
tures. As an example, Fig. 2b shows the I–V character-
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Fig. 2. Comparison of calculated I–V characteristics of two-
island chains with experimental data. (a) A structure based
on the Au–Al2O3 film: (1) experimental data [12]; (2) the
results of calculations based on the developed model;
(3) calculations based on a semiclassical model [12]; and
(4) calculations based on the MOSES software package [13].
(b) A structure based on the TlBa2(Ca0.8Y0.2)Cu2O7 film:
(1) experimental data [14] and (2) the results of calcula-
tions based on the developed model (for the sake of clarity,
curve 2 is shifted upward by 1 nA).
istics of a structure based on TlBa2(Ca0.8Y0.2)Cu2O7
film at T = 9.8 K. Note that the experimental data
(curve 1) obtained using a scanning tunneling micro-
scope [14] and the results of calculations based on the
suggested model (curve 2) almost coincide (for the sake
of clarity, curve 2 in Fig. 2b is shifted upward by 1 nA).

Results similar to those represented in Fig. 2 were
obtained for a chain based on Co36Al22O42 film [15] at
a temperature of 300 K. It is noteworthy that the model
used for calculations involved the third approach
(see [10]) for the consideration of the background
charge at the island. Specifically, we used a slightly
modified formula (6) from [10]; i.e.,

(6)

where Nti and N0i are the number of excess charge car-
riers involved in tunneling and in the formation of the
background charge at the ith island (i = 1, 2), respec-
tively; and kf is the coefficient that ensures the fit of the
results of calculations to experimental data. Other des-
ignations correspond to those used in [10]. We note that
the parameter kf was chosen to be the same for both
islands in each of the analyzed structures.

Thus, the suggested model makes it possible to
obtain adequate results of simulation in calculations of
the I–V characteristics of two-island single-electron
chains, which are made from a number of materials and
operate at various temperatures (including 300 K).

4. RESULTS AND DISCUSSION

We performed calculations for two-island single-
electron chains based on two different films; the results
of these calculations were compared with the experi-
mental data in Fig. 2. It is worth noting that values of all
variable numerical-model parameters that ensured the
best fit to experimental data for each structure were
used in the calculations, the results of which are
reported below. With such a choice of parameters, we
may anticipate with a high degree of confidence that the
results of a theoretical evaluation of the effects of the
design and material parameters on the I–V characteris-
tics of the two-island single-electron chains are trust-
worthy. We believe that the above fact is important
since all known models of single-electron structures
(including the model we suggested) include a number
of variable parameters that are used to fit calculations to
experiment; furthermore, this stage of simulation is
unfortunately still far from being sophisticated.

In Fig. 3a, we show the I–V characteristics of a chain
based on TlBa2(Ca0.8Y0.2)Cu2O7 film for Wd = Wb =
1.0 nm and Ws = 1.5 nm (curve 1). Figure 3b shows the
corresponding characteristic for a chain based on
Au−Al2O3 film (curve 1); in this case, Wd = Ws = 2.0 nm
and Wb = 2.3 nm. The results of calculations with vari-

F
k f Nti N0i+( )

kLchar
-------------------------------,=
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ation in the geometrical parameters of the chains are
also shown in Figs. 3a and 3b.

Let us analyze the obtained data. For the
TlBa2(Ca0.8Y0.2)Cu2O7-based structure (Fig. 3a), a
slight increase in the width of the junction between the
source and the second island Ws from 1.5 nm (curve 1)
to 1.55 nm (curve 2) brings about an appreciable
decrease in current (by ~30%). At the same time, vari-
ations in the widths of the other two junctions Wd

(curve 3) and Wb (curve 4) leave the current almost
unchanged (Fig. 3a). Similar behavior of the I–V char-
acteristic is also observed for the Au–Al2O3-based
structure (Fig. 3b). Thus, an increase in Wb from 2.3 nm
(curve 1) to 2.35 nm (curve 2) reduces the current by
about 40%, whereas, if the parameters Wd and Ws are
increased (curves 3, 4), the current varies insignifi-
cantly.

These results suggest that the current flowing
through a single-electron chain is very sensitive to vari-
ations in the maximal width of the tunneling junction.
This can be attributed to the fact that the current in the
system is mostly governed by the penetrability (the
probability of the tunneling of an electron through the
potential barrier) of the widest junction. Tunneling
through the other two junctions proceeds with a much
higher efficiency; consequently, slight variations in the
widths of the latter junctions do not affect the total cur-
rent. However, a variation in the range of the Coulomb
blockade (this can be clearly seen in Fig. 3a) is related
to the redistribution of voltages across the tunneling
junctions.

Consequently, in the fabrication of many-island
(two-island) single-electron chains, it is necessary that
the maximal tunneling junction width be carefully con-
trolled, since it is this width which most profoundly
affects the I–V characteristic.

In Fig. 4, we show a family of I–V characteristics for
a Au–Al2O3 two-island single-electron chain for several
values of background charge at the islands Q0i = eN0i .
The values of the parameters N0i were chosen in the
range typical of single-electron structures, i.e., –1/2 ≤
N0i ≤ 1/2. For the sake of clarity, the curves in Fig. 4 are
shifted relative to each other. Calculations were per-
formed for the widths of tunneling junctions Wd = Ws =
2.0 nm and Wb = 2.3 nm at an operating temperature of
T = 0.01 K. It can be seen from Fig. 4 that the charac-
teristics can be appreciably transformed by variations
in the pairs (N01, N02). In this situation, the range of the
Coulomb blockade can change (this range is widest for
N01 = N02 = 0); the width and height of the steps in the
Coulomb staircase can also vary. In addition, recur-
rence of the characteristics is observed if even one of
the values in the N01 and N02 pair differ by an integer (in
this case, by unity). In particular, this is valid for the
following pairs of characteristics: curves 1 and 7,
curves 2 and 6, and curves 3 and 5. The coincidence
between the characteristics for the second and third
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Fig. 3. The effect of widths of the tunnel junctions on the
I−V characteristics of two-island chains. (a) A structure
based on the TlBa2(Ca0.8Y0.2)Cu2O7 film: (1) fitting to the
experiment, Wd = Wb = 1.0 nm and Ws = 1.5 nm; (2) Ws =
1.55 nm; (3) Wd = 1.1 nm; and (4) Wb = 1.1 nm. (b) A struc-
ture based on the Au–Al2O3 film: (1) fitting to the experi-
ment, Wd = Ws = 2.0 nm and Wb = 2.3 nm; (2) Wb =
2.35 nm; (3) Wd = 2.1 nm; and (4) Ws = 2.1 nm.
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Fig. 4. The I–V characteristic of a two-island chain for several
values of background charges (in elementary-charge units):
(1) Q01 = 0.5 and Q02 = 0.5; (2) Q01 = 0 and Q02 = 0.5;
(3) Q01= 0.5 and Q02 = 0; (4) Q01 = 0 and Q02 = 0; (5) Q01 =
–0.5 and Q02 = 0; (6) Q01 = 0 and Q02 = –0.5; and (7) Q01 =
–0.5 and Q02 = –0.5.
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pairs is worth noting; in the case under consideration,
this coincidence is caused by the symmetry of the chain
(the islands are identical, so that Wd = Ws).

Thus, the calculations using the suggested numeri-
cal model showed that the shape of the I–V characteris-
tic for two-island chains can vary appreciably as a
result of changes in the background charge at the
islands; this is completely consistent with the known
data on a single-electron transistor [1].

The I–V characteristics of two-island single-elec-
tron chains were calculated using the suggested model
and are shown in Fig. 5a for the TlBa2(Ca0.8Y0.2)Cu2O7-
based structures and in Fig. 5b for the Au–Al2O3-based
structures; two electrical parameters, i.e., the potential
barrier heights of tunneling junctions φ and the relative
permittivity of the insulator εd , were slightly varied. It
is noteworthy that a possible variation in the aforemen-
tioned parameters of the material is characteristic of the
insulating layers under consideration. The operating
temperature was chosen to be 0.01 K. It can be seen
from Fig. 5a that the increase in φ from 1.0 eV (curve 1)
to 1.1 eV (curve 3) brings about an appreciable decrease
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Fig. 5. Influence of material’s electrical parameters (εd and
φ) on the I–V characteristics of a two-island chain based on
(a) the TlBa2(Ca0.8Y0.2)Cu2O7 film and (b) the Au–Al2O3
film. See the text for details.
in the current flowing through the structure (by about a
factor of 2). It follows from Fig. 5b that the increase in φ
from 1.65 eV (curve 1) to 1.75 eV (curve 3) leads to a
similar decrease in the current through the second
structure (by about a factor of 2.5). This tendency can
be explained by the fact that an increase in the poten-
tial-barrier height reduces the probability of electron
tunneling through this barrier and, consequently,
reduces the current through the structure. It is worth
noting that the Coulomb blockade range and the step
width in the Coulomb staircase remained virtually
unchanged.

Consequently, the potential-barrier heights in the
tunneling junctions in single-electron chains affect the
currents to a no lesser extent than does the tunneling-
junction width characterized by a maximal value.

At the same time, an increase in εd from 5 (curve 1)
to 6 (curve 2) in Fig. 5a and from 9 (curve 1) to 10
(curve 2) in Fig. 5b gives rise to only a slight variation
in the current. However, it is noteworthy that a decrease
in the range of the Coulomb blockade and in the step
width are observed as the relative permittivity εd
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Fig. 6. The I–V characteristics of two-island single-electron
chains based on (a) the TlBa2(Ca0.8Y0.2)Cu2O7 film and
(b) the Au–Al2O3 film for several values of operating tem-
perature: T = (1) 0.01, (2) 30, and (3) 300 K.
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increases. This can be attributed to the redistribution of
voltages across the tunneling junctions.

Thus, a variation in the relative permittivity of the
insulator brings about a transformation in the shape of
the I–V characteristic; in particular, this variation leads
to changes in the range of the Coulomb blockade and in
the step width.

We also calculated the I–V characteristics of
two-island single-electron chains based on
TlBa2(Ca0.8Y0.2)Cu2O7 (Fig. 6a) and Au–Al2O3 (Fig. 6b)
in relation to the operating temperature: T = 0.01, 30,
and 300 K. It can be seen that an increase in tempera-
ture also causes the shape of the I–V characteristic to
transform. However, in this case, the Coulomb staircase
becomes smoothed and the phenomenon of single-elec-
tron tunneling disappears. These results are also consis-
tent with known data on single-electron structures [1].

5. CONCLUSION

We developed a two-dimensional model for many-
island (two-island) single-electron chains of tunnel
junctions. This model makes it possible to obtain good
agreement between the results of calculations and
experimental data and predict the behavior of the I–V
characteristics of these chains in relation to the material
and design parameters. Using this model, we showed
that the I–V characteristics of two-island chains are
very sensitive to variations in the maximal width of the
tunnel junction and in the potential barrier height of the
insulator. Variations in the background charges at the
islands, the relative permittivity of the insulator, and the
operating temperature lead to diverse transformations
of the I–V characteristics.
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