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A phase transition associated with the rotational symmetry breaking in momentum space in a
Fermi liquid is considered. It is shown that the phase transition is connected with the
violation of one of the Pomeranchuk conditions, viz., the criterion of normal state stability. The
structure of flux densities of the additive integrals of motion is determined in the vicinity
of the phase transition point, and a physical interpretation of the phase under investigation is also
given. © 1999 American Institute of Physics.@S1063-777X~99!00103-6#
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INTRODUCTION

The phenomenological theory of a normal Fermi liqu
~the basic principles of this theory were presented in fun
mental works by Landau1 and Silin2! presumes the fulfill-
ment of the so-called Pomeranchuk conditions,3 i.e., the re-
lations determining the conditions for the stability of th
static equilibrium state of a normal Fermi liquid and impo
ing certain constraints on the interactions between quasi
ticles. If we make an attempt to remove such constraints,
leave the stability boundaries for the ground state of a n
mal Fermi liquid, a natural assumption concerning a spon
neous transition of the system to a new equilibrium st
should be made. In other words, the violation of the grou
state stability criteria must be associated with various ki
of phase transitions in the Fermi liquid~see, for example
Ref. 4!.

The description of new equilibrium states emerging a
result of such phase transitions necessitates a certain mo
cation of the Landau–Silin theory of a normal Fermi liqui
Above all, such a modification is dictated by the need
introducing new parameters describing the equilibrium s
~order parameters!. This is due to the fact that the symmet
of the new equilibrium state formed as a result of a ph
transition is lower than the symmetry of the Hamiltonian~the
state with spontaneously broken symmetry!.

In this paper, we analyze the phase transition associ
with the breaking of rotational symmetry in the momentu
space of a normal Fermi liquid. it will be proved below th
such a phase transition corresponds to the violation of
Pomeranchuk stability criterion for one of harmonics in t
series expansion of the Landau amplitude in Legendre p
nomials.

In the following analysis, we shall disregard th
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presence of an electric charge for a fermion, paying atten
mainly to the properties that are common for charged a
neutral Fermi liquids. The inclusion of effects connect
with the presence of an electric charge in fermions wo
have complicated the establishment of the possibility of s
a transition in various systems. One of the main goals of
publication is to demonstrate that such phase transitions
be described in principle.

1. STABILITY CRITERION FOR A NORMAL FERMI LIQUID

Before going over to a direct description of a phase tr
sition involving the breaking of rotational symmetry of th
momentum space, let us recall some basic concepts of
theory of a normal Fermi liquid, including the stability con
ditions for the normal state.

The theory of a normal Fermi liquid is based on t
assumption concerning the functional dependence of the
ergy E ~Hamiltonian! of the system on the one-particle fe
mion density matrix:

f p1s1 ;p2s2
5Tr r~ f !ap2s2

1 ap1s1
[ f 12,

where p is the quasiparticle momentum, and the indexs
labels the component of the fermion spin. The quantityr( f )
in this expression is the nonequilibrium statistical operator
an ideal gas of quasiparticles, defined as

r~ f !5expS V2(
1,2

a1
1A12a2D , ~1!

In this formula, the quantitiesV and A12 should be deter-
mined from the relations

Tr r~ f !51, f 125Trr~ f !a2
1a1

~the trace is taken in the secondary quantization space!.
© 1999 American Institute of Physics
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Another important concept in constructing the theory
a normal Fermi liquid is the general definition of the entro
of the system:

S52Tr r~ f !ln r~ f !.

The calculation of the trace for the statistical operator~1!
appearing in this formula leads to the combinatorial defi
tion of entropy:

S52tr@ f ln f 1~12 f !ln~12 f !# ~2!

~the trace is calculated in the space of one-particle state!.
It is well known that the equilibrium one-particle densi

matrix f 12 is determined from the condition of entropy max
mum for given values of energy functionalE( f ), the num-
ber of particlesN5tr f , and momentumPi5tr f pi . Intro-
ducing Lagrangian multipliersY corresponding to the
quantitiesE, N, and P, we reduce the problem on cond
tional entropy maximum to the problem on absolute mi
mum of potentialV( f ):

V~ f !52S~ f !1Y0E~ f !1Yi tr f pi1Y4 tr f ~3!

@since the statistical equilibrium state presumes that
space is spatially homogeneous, the quantitiesS, E, Pi , and
N are proportional to the volumeV of the system and to
V( f )5Vv( f ), where v( f ) is the density of potentia
V( f )]. This variational principle leads to the following sel
consistency condition:

f 5$exp~Y0«̂~ f !1Yi p̂i1Y4!11%21;

«12~ f !5]E~ f !/] f 21. ~4!

HereY05T21[b; Yi52Y0v i ; Y452Y0m; T is the tem-
perature,v i the velocity of the Fermi liquid, andm the
chemical potential. This nonlinear equation defines the e
librium one-particle density matrix for a Fermi liquid. Th
quantity «̂( f ) is a functional of the one-particle density m
trix and is the energy operator for a quasiparticle.

In order to impart a physical meaning to Eq.~4!, we
must specify the energyE( f ) of the system. This functiona
can be chosen in the form

E~ f !5(
1,2

«12f 211
1

2
~ f 0 ,F1f 0!1

1

2
~ f i ,F2f i !,

~ f 0 ,F1f 0!5
1

V (
p1 ...p4

f 0p1p2
F1~p1 ,p2 ;p3 ,p4! f 0p3p4

,

~ f i ,F2f i !5
1

V (
p1 ...p4

~ f i !p1p2
F2~p1 ,p2 ;p3 ,p4!~ f i !p3p4

,

~5!

where f 05trs f̂ , f i5trs f̂ s i , s i are the Pauli matrices, an
the quantitiesF1 andF2 are the amplitudes of the potenti
and exchange interactions of quasiparticles respectiv
which are known as Landau amplitudes~we assume tha
E( f ) is invariant to spin rotations!.

Let us now find the conditions under which the soluti
of the self-consistent equations leads to the minimum of
tential v( f ) for the normal state. For this purpose, we mu
define the second variationd2v( f ) whose positive value
f

-

-

e

i-

ly,

-
t

corresponds to the stability of the normal state of a Fe
liquid ~the first variation vanishes!. For this purpose, we con
sider the spatially homogeneous equilibrium one-parti
density matrix for the normal state:

f p1s1p2s2

0 5 f p1

0 dp1p2
ds1s2

,

f p
05$exp@b~«p~ f 0!2m!11#%21, ~6!

and define the spatially homogeneous density matrix ass
ated with a deviation from the equilibrium state by the fo
mula

d f p1s1 ;p2s2
5dp1p2

d f p1s1s2
.

It should be noted thatd f commutes withf 0, and hence we
can treat the matricesd f and f 0 as ordinary functions in the
calculation of the second variation of entropy. Varying~2!
and presentingd f p in the form

d f p5 f p
0~12 f p

0!~djp
01s idjp

i !,

we obtain

d2S52
V

~2p!3 E d3p fp
0~12 f p

0!$~djp
0!21djp

i djp
i %. ~7!

It can also be easily seen that the second variation of
energy functional~5! leads to the formula

d2E52VE d3pd3p8

~2p!6 f p
0~12 f p

0! f p8
0

~12 f p8
0

!

3$F1~p,p8!djp
0djp8

0
1F2~p,p8!djp

i djp8
i %, ~8!

where Fi(p,p8)[Fi(p,p;p8,p8), i 51,2. Thus, taking into
account relations~3!, ~7!, and ~8! and noting also that the
relation f p

0(12 f p
0).Td(«p2m), is valid in the low-

temperature regionT!m, we can write the second variatio
of potential densityv in the form

d2v5d2v11d2v2 , ~9!

where

d2v15
n~m!T

2 E dO

4p
~dj0~n!!2

1
n~m!2T

2 E dOdO8

~4p!2 F1~n,n8!dj0~n!dj0~n8!;

d2v25
n~m!T

2 E dO

4p
dj i~n!dj i~n!

1
n~m!2T

2 E dOdO8

~4p!2 F2~n,n8!dj i~n!dj i~n8!;

Heren5pF /pF ; n85pF8 /pF ;

n~m!52E d3p

~2p!3 d~«p2m!;

F1,2~n,n8![F1,2~p,p8!up5p85pF
; dj i~n!5djp

i up5pF
.

It follows from ~9! that the condition for the positive secon
variation of the potentialV5Vv leads to the inequalities
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11
n~m!Fl

~1!

2l 11
.0, 11

n~m!Fl
~2!

2l 11
.0, ~10!

whereFl
(1) andFl

(2) are the coefficients of expansion of th
amplitudesF1(n,n8) andF2(n,n8) in the Legendre polyno-
mials Pl(cosu), cosu5n–n8, i.e.,

F1~n,n8!5(
l 50

`

Pl~cosu!Fl
~1! ,

F2~n,n8!5(
l 50

`

Pl~cosu!Fl
~2! .

Relations~10!, which were obtained for the first time b
Pomeranchuk,3 are the stability conditions for the equilib
rium state if a normal Fermi liquid for allT.0. It was noted
above that Pomeranchuk conditions can be violated du
various phase transitions in a normal Fermi liquid. This p
per is devoted to the analysis of one of such phase tra
tions.

Let us recall preliminarily the theory of a magnet
phase transition in which the Pomeranchuk condition~10!
for the Landau amplitudeFl

(2) is violated for l 50. Noting
that

«ss85
]E~ f̂ !

] f s8s

and writing the quantitiesf ss8 and«ss8 in the form

f 5 1
2 ~ f 01 f is i !, «5 1

2 ~«01« is i !,

we obtain

«052
]E

] f 0
, « i52

]E

] f i
.

Consequently, in accordance with~5!, we can write the self-
consistency condition~4! in the form

« i5
2

V (
p8

F0
~2!~p,p8! f i~p8!, ~11!

where f i(p8) is defined, in view of~4!, from the relations

f i~p!5tr s i$expb~«2m!11%21,

«5 1
2 ~«01« is i !. ~12!

In the normal state,« i50. Consequently, the function« i(p)
plays the role of the order parameter. In accordance w
~12!, Eq.~11! in the region of small« i assumes the following
form in the main approximation in« i :

« i~p!5
2

V (
p8

F0
~2!~p,p8!

] f p8
0

]«p8
0 « i~p8!,

F0
~2!~p,p8!5

1

4p E dOF2~p,p8!,

where

f p
05$expbc~«02m!11%21.
to
-
si-

th

This homogeneous equation for« i(p) can be used to deter
mine the critical temperaturebc . If the amplitude
F0

(2)(p,p8) weakly depends onp andp8, the solution of this
equation can be written in the form

« i~p!5
F0

~2!~p,pF!

F0
~2!~pF ,pF!

« i ,

the critical temperaturebc being defined from the equation

1522F0
~2!

]n~bc ,m!

]m
,

where

F0
~2!5F0

~2!~pF ,pF!,

n~b,m!5
1

V (
p

$expb~«p
02m!21%21.

In order to find the functionsn(b,m) in the region of small
b21!m, we shall use the low-temperature expansion

] f p
0~b,m!

]m
5d~«2m!1

T2

6
p2d9~«2m!1...

which gives

Tc
25bc

2252
6

p

11F0
~2!n~m!

F0
~2!n9~m!

. ~13!

SinceTc!m ~the condition for the applicability of the theor
of a Fermi liquid! and n9(m);n(m)m22, we have
F0

(2)n(m)'21. Considering thatn9(m),0 andTc
2.0, we

obtain 11F0
(2)n(m),0, i.e., we are dealing with the situa

tion when the Pomeranchuk condition is violated, whi
leads to the emergence of a magnetically ordered phase
taining terms proportional to«3 («5u«u) in the expansion
~12! into a power series in« i , we can easily prove that

«2526
]2n/]b]m

]3n/]m3 ~b2bc!. ~14!

Using the above temperature expansion, we can easily ob
from ~14! the relation

«252Tc~Tc2T!. ~15!

Knowing the expression for«, we can find the expression fo
the ‘‘magnetization’’ density:

s5U1V (
p

tr s fU5U1V (
p

fpU52
]n

]m
«.

From Eq.~15! we obtain

s5
1

2
n~m!TcA12T2/Tc

2. ~16!

2. PHASE TRANSITION ASSOCIATED WITH ROTATIONAL
SYMMETRY BREAKING IN MOMENTUM SPACE

In this section, we study the phase transition associa
with rotational symmetry breaking in momentum spac
It will be proved in subsequent analysis that such a ph
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transition is associated with the violation of the Pomer
chuk condition~10! for the amplitudeFl

(1) of potential inter-
action.

Let us consider the equilibrium state of a stationa
(v i50) spatially homogeneous Fermi liquid. In zero ma
netic fields and under the assumption that the phase tra
tion is not associated with the emergence of spontane
magnetization, we present the quantities«p1s1p2s2

and
f p1s1p2s2

in the form

«p1s1p2s2
5«p1

~0!dp1p2
ds1s2

, f p1s1p2s2
5 f p1

dp1p2
ds1s2

.

In this case, the energy functional~5! is defined as

E~ f !52(
p

«p
~0! f p1

2

V (
p1 ,p2

f p1
F~p1 ,p2! f p2

,

f p[
1

2
f 0p , F1[F. ~17!

and formula~2! for combinatorial entropy assumes the for

S522(
p

@ f p ln f p1~12 f p!ln~12 f p!#.

Defining further the quasiparticle energy as

«~p!5
1

2

]E

] f p
, ~18!

we can easily obtain from the variational principle the se
consistency equation for the equilibrium distribution fun
tion f p :

f p5$expb~«~p!2m!11%21. ~19!

Formula~18! as well as expressions~17! and~19! lead to the
following nonlinear integral equation for«~p!:

«~p!5«p
~0!1

2

V (
p8

F~p,p8!$expb~«~p8!2m!11%21.

~20!

We shall seek the solution of this equation in the form

«~p!5«I ~p!1«~p!,

where

«I ~p!5«0~p!, «̃~p!5(
l 51

`

« l~p!Pl~cosu!,

and

«I ~p!5
1

4p E dO«~p!, E dO«̃~p!50.

Since «̃50 above the phase-transition pointT.Tc (Tc

is the critical temperature!, the value of«̃ is smaller than
«I (p) near the critical point. Averaging Eq.~20! over angles,
we obtain

«I ~p!5«p
~0!1

2

V (
p8

F0~p,p8!$expb~«I 81 «̃82m!11%0
21

~the index ‘‘0’’ in this formula indicates the zeroth harmon
in the expansion in the Legendre polynomials!, where the
following notation has been introduced:
-

-
si-
us

-

«I 8[«I ~p8!; «̃8[«̃~p8!;

F~p,p8!5(
l 50

`

Fl~p,p8!Pl~cosu!.

Expanding the distribution functionf («I 81 «̃8)5$expb(«8
1«̃82m)11%21 into a power series in«̃8, we obtain

«I ~p!5«p
~0!1

2

V (
p8

F0~p,p8!

3S f ~«I 8!1 (
n51

`
1

n!

]nf ~«I 8!

]«I 8n ~ «̃8n!0D . ~21!

Separating thel th harmonic in the Legendre polynomials
Eq. ~20! and using the addition theorem for the Legend
polynomials, we obtain forlÞ0

~2l 11!«̃ l~p!5
2

V (
p8

Fl~p,p8! (
n51

`
1

n!

]nf ~«I 8!

]«I 8n ~ «̃8n! l

5
2

V (
p8

Fl~p,p8!$ f ~«I 81 «̃8!2 f ~«I 8!% l ,

~22!

where«̃ l(p)[@«̃(p)# l and f («I 8)5$expb(«I82m)11%21. We
assume that the functionsFl(p,p8) vary slowly in p andp8.
In this case, according to Eq.~22!, the quantity«̃ l(p) also
varies slowly with p. Since the derivatives]nf («I 8)/]«I 8n

differ from zero atT!«F only for «I 8'«F , we can neglect
the derivatives of the quantitiesFl(p,p8) and «̃ l(p8) with
respect top8 and obtain

~2l 11!«̃ l~p!5
2

V
Fl~p,pF!(

p8
$ f ~«I 81 «̃8!2 f ~«I 8!% l .

~23!

In contrast to~22!, the quantity«̃8 in this expression is de
fined as«̃85 «̃(p8)p85pF

. It follows from ~23! that the order
parameter«̃ l[«̃ l(pF) satisfies the equation

~2l 11!«̃ l5
2

V
Fl(

p8
$ f ~«I 81 «̃8!2 f ~«I 8!% l , ~24!

where

«̃ l~p!5
Fl~p,pF!

Fl~pF ,pF!
«̃ l , ~24a!

andFl5Fl(pF ,pF). Introducing the function

n~b,m!5
1

V (
p8

f ~«I 8!, ~25!

we write Eq.~24! in the form

~2l 11!«̃ l52Fln~b,m2 «̃ ! l ; lÞ0. ~26!

The solution of this equation will be sought in the for
«̃ l5 «̃ l

(0)1« l
(1)1..., where«̃ l

(0)5 «̃ l 0
d l l 0

. In this case, in the
main approximation we have

~2l 011!«̃ l 0
522Fl 0

]n~bc ,m!

]m
«̃ l 0

~0! .
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Thus, the equation for determining the phase-transition t
peratureTc as a function ofl 0 (Tc5Tc( l 0)) has the form

~2l 011!522Fl 0

]n~bc ,m!

]m
. ~27!

Retaining higher-order terms in«̃ l 0
in the expansion on

the right-hand side of Eq.~26! as well as Eq.~27!, we write
~26! for l 5 l 0 in the form

2
]2n~bc ,m!

]bc]m
~b2bc!«̃ l 0

1
1

2

]2n~bc ,m!

]m2

3~ «̃2! l 0
2

1

6

]3n~bc ,m!

]m3 ~ «̃3! l 0
50. ~28!

It can easily be seen that in order to determine («̃2) l 0
, we

must take Eq.~26! for lÞ l 0 into account along with~28!:

~2l 11!«̃ l52Fl S 2
]n~bc ,m!

]m
«̃ l2

]2n~bc ,m!

]bc]m

3~b2bc!«̃ l1
1

2

]2n~bc ,m!

]m2 ~ «̃2! l D , lÞ l 0 ,

from which ~neglecting the second term on the right-ha
side! we obtain

«̃ l5
Fl

2l 1112Fl~]n/]m!

]2n

]m2 ~ «̃2! l1...,lÞ0, l 0 .

~29!

Thus, along with Eq.~27! for the phase-transition tempera
ture, we have Eqs.~28! and ~29! for determining the tem-
perature dependence of the order parameter«̃ l 0

.
Let us now determine the phase-transition point. For t

purpose, we present the quantityn(b,m) @see~25!# in the
form

n~b,m!5
1

2 E0

`

d«n~«!$expb~«2m!11%21,

where

n~«!5
2

~2p!3 E d3p8d~«2«I 8! ~30!

is the density of states. Noting further that atT!m the ex-
pansion

n~b,m!5
1

2 S E
0

m

n~«!d«1
p2

6
b22n8~m!1...D , ~31!

holds, we obtain

]n~bc ,m!

]m
5

1

2
n~m!1

p2

12
bc

22n9~m!.

Consequently, Eq.~27! assumes the form

2l 01152Fl 0S n~m!1
p2

6
bc

22n9~m! D ,

whence
-

is

bc
22[Tc

252
6

p2

2l 011

n9~m!Fl 0

S 11n~m!
Fl 0

2l 011
D .

Since the conditionTc!m in the vicinity of the phase-
transition point, we have

Tc
25

6

p2

n~m!

n9~m!
S 11n~m!

Fl 0

2l 011
D . ~32!

This approximation is valid due to the fact th
n(m)/n9(m);m2, and hencen(m)@Fl 0

/2l 011)]>21 at

Tc!m. Noting further thatTc
2.0 andn(m).0, n9(m),0,

we find that

11n~m!
Fl 0

2l 011
,0. ~33!

Condition ~33! shows that the Pomeranchuk criterio
~10! for the amplitude of a potential interaction does not ho
for the harmonicl 0 . Consequently, when condition~33! is
satisfied, in the temperature rangeT,Tc we are dealing with
a new phase differing from the normal phase.

In order to determine the temperature dependence of
order parameter, we return to Eqs.~28! and ~29!. We con-
sider separately the cases of even and oddl 0 . Presenting for
this purpose the order parameter«̃ in the form

«̃5 (
lÞ l 0

«̃ l Pl1 «̃ l 0
Pl 0

, ~34!

we can easily see that («̃2) l 0
'( «̃ l 0

2 Pl 0
2 ) l 0

5 «̃ l 0
2 (Pl 0

2 ) l 0
for even

l 0 . Consequently, it follows immediately from Eq.~28! that

«̃ l 0
5

]2n~bc ,m!

]bc]m
~b2bc!

2

@]2n~bc ,m!/]m2#~Pl 0
2 ! l 0

or, taking into account expansion~31!,

«̃ l 0
5B~ l 0!S 12

T

Tc
D , B~ l 0!52

2

3
p2Tc

2 n9~m!

n8~m!~Pl 0
2 ! l 0

.

~35!

Substituting~35! into ~24a!, we obtain in the main approxi
mation the expression determining the temperature dep
dence of the order parameter«̃(p,T):

«̃~p!5
Fl 0

~p,pF!

Fl 0
~pF ,pF!

B~ l 0!S 12
T

Tc
D Pl 0

~cosu!. ~36!

This formula is valid for evenl 0 .
In the case of oddl 0 , we obtain, using~34!,

~ «̃2! l 0
'2«̃ l 0 (lÞ l 0

«̃ l~Pl 0
Pl ! l 0

, ~37!

@( «̃ l 0
2 Pl 0

2 ) l 0
50 in view of the odd nature of the functionPl 0

3

for odd l 0]. Noting also that («̃2) l5 «̃ l 0
2 (Pl 0

2 ) l , we write~37!

taking into account~29! in the form
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~ «̃2! l 0
52«̃ l 0

3 ]2n~bc ,m!

]m2

3 (
lÞ l 0

Fl

2l 1112Fl@]n~bc ,m!/]m#
~Pl 0

2 ! l~Pl Pl 0
! l 0

.

~38!

Using the fact that

~ «̃3! l 0
5 «̃ l 0

3 ~Pl 0
3 ! l 0

, ~Pl 0
2 ! l~Pl Pl 0

! l 0
5

2l 011

2l 11
@~Pl 0

2 ! l #
2,

we write Eq.~28! in the form
r

us

It
ac
n
ct
r

as
to
o

cl

dd
]2n~bc ,m!

]bc]m
~b2bc!

5 «̃ l 0
2 H S ]2n~bc ,m!

]m2 D 2

(
lÞ l 0

Fl

2l 1112Fl@]n~bc ,m!/]m#

3
2l 011

2l 11
@~Pl 0

2 ! l #
22

1

6

]3n~bc ,m!

]m3 ~Pl 0
3 ! l 0J J , ~39!

which readily leads, on account of the low-temperature
pansion~31!, to the following expression for the quantity«̃ l 0
for odd l 0 :

«̃ l 0
5A~ l 0!A12T/Tc, ~40!

where
A~ l 0!5S 2p2Tc
2n9~m!

n9~m!~Pl 0
3 ! l 0

23n8~m!2~2l 011!( lÞ l 0

Fl

2l 111Fln~m!

@~Pl 0
2 ! l #

2

2l 11
D 1/2

. ~41!
the

i-
,

Finally, substituting~40! into ~24a!, we obtain in the main
approximation

«̃~p!5
Fl 0

~p,pF!

Fl 0
~pF ,pF!

A~ l 0!A12T/TcPl 0
~cosu!. ~42!

Thus, we see that in contrast to the case of evenl 0 , we
have a nonanalytic temperature dependence of the orde
rameter for oddl 0 ~see~42!!, which is typical of the Landau
theory for second-order phase transitions.

3. FLUXES OF ADDITIVE INTEGRALS OF MOTION NEAR
THE PHASE-TRANSITION POINT

In this section, we consider the variation of vario
physical quantities ~in the approximation linear in
@12(T/Tc)#1/2) in the phase transition under investigation.
can easily be seen that scalar quantities such as heat cap
thermodynamic potential, energy and entropy density do
change under the phase transition. On the contrary, ve
and tensor quantities such as flux densities of the numbe
particles, energy, and momentum density may change
result of phase transition in this approximation. In order
verify this, let us construct formulas for the flux densities
number of particles, momentum and energy.

Proceeding from the kinetic equation for the one-parti
density matrix f̂ in the approximationvt@1 (v21 is the
characteristic time of variation off and t the relaxation
time!, i.e.,

i
] f̂

]t
5@ «̂~ f̂ !, f̂ #, ~43!

we can derive the expressions for the flux densities of a
tive integrals of motion~see Ref. 5 in this connection!.
pa-

ity,
ot
or
of
a

f

e

i-

Using this kinetic equation, we can easily see that
time derivative of the density of a physical quantitya(x, f̂ )
5tr f̂ a(x) is defined by the formula

]a~x, f̂ !

]t
52

]ak~x, f̂ !

]xk
1 i tr f̂ @ «̂~x, f̂ !,Â#, ~44!

where

âk~x!5 i E d3x8xk8E
0

1

dj@«̂$x2~12j!x8; f̂ %,â~x1jx8!#;

Â5E d3xâ~x!;

«12(x, f̂ )5]«(x)/] f 21 is the energy density of a quasipart
cle, E(x) the energy density of the Fermi liquid
*d3x«(x, f̂ )5E( f̂ ). Formula~44! follows directly from the
kinetic equation~43! according to which

]a~x, f̂ !

]t
5 i tr f̂ @ «̂~ f̂ !,â~x!#,

and from the obvious relation

i @ «̂~ f̂ !,â~x!#5 i @ «̂~x, f̂ !,Â#2
]âk~x!

]xk
.

Putting in this formulaâ(x)5 r̂(x), where r̂(x)5d(x2 x̂)
( x̂ is the coordinate operator!, and noting that
Â[*r̂(x)d3x51, we obtain

]r~x, f̂ !

]t
52

] j k~x, f̂ !

]xk
, ~45!

where
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j k~x, f̂ !5 i E d3x8xk8 tr E
0

1

dj f̂ @ «̂$x2~12j!x8; f̂ %,

r̂~x1jx8!#. ~46!

In order to derive the expression for the momentum fl
densityp i(x), we note that the energy densityE(x, f̂ ) of the
Fermi liquid satisfies the property of invariance to trans
tions over the vectory:

«~x1y,ei p̂y f̂ e2 i p̂y!5«~x, f̂ !

( p̂ is the momentum operator!. Differentiating this expres-
sion with respect toy and puttingy50, we obtain

]«~x, f̂ !

]xk
5tr f̂ @ «̂~x, f̂ !,p̂k#. ~47!

Returning to formulas~44! and assuming that in these fo
mulas

â~x!5p̂ i~x![ 1
2 $ p̂i ,d~x2 x̂!%,

and also using~47!, we obtain

]p i~x f̂ !

]t
52

]t ik~x, f̂ !

]xk
, ~48!

where the momentum flux densityt ik(x, f̂ ) has the form

t ik~x f̂ !52«d ik1 i E d3x8xk8 tr E
0

1

dj f̂

3@ «̂$x2~12j!x8; f̂ %,p̂ i~x1jx8!#. ~49!

Finally, let us formulate the differential law of energy co
servation. Noting that

]«~x, f̂ !

] f 12
5«21~x, f̂ !,

and using the kinetic equation~43!, we obtain

]«~x, f̂ !

]t
5tr f̂ @ «̂~ f̂ !,«̂~x, f̂ !#.

Assuming now thatâ(x)5 «̂(x, f̂ ) in formulas~44!, we ob-
tain

]«~x, f̂ !

]t
52

]qk~x, f̂ !

]xk
, ~50!

where

qk~x, f̂ !5
i

2 E d3x8xk8 tr E
0

1

dj f̂ @ «̂$x

2~12j!x8; f̂ %,«̂~x1jx8; f̂ !#. ~51!

For spatially homogeneous states (@ f̂ ,p̂k#50), formulas
~46!, ~49!, and~51! are simplified and assume the followin
graphic form:

j k5
2

V (
p

f p

]«p

]pk
, ~52!
x

-

qk5
2

V (
p

f p«p

]«p

]pk
, ~53!

t ik52S «2
2

V (
p

f p«pD d ik1
2

V (
p

f ppi

]«p

]pk
, ~54!

where«p is the quasiparticle energy.
If the distribution functionf p is an equilibrium function

with the drift velocityu, i.e.,

f p5$expb~«p2p–u2m!11%21,

these formulas assume the form

j k5uk

2

V (
p

f p ,

qk5uk

2

V (
p

S f p«p2
1

b
ln~12 f p! D ,

t ik5ukp i1d ikS 2
1

b D 1

V S 2(
p

ln~12 f p!

1b«V22b(
p

f p«pD .

Using formula~3!, we can easily see that the thermodynam
potential densityv is defined as

v5
1

V S 2(
p

ln~12 f p!1b«V22b(
p

f p«pD
and hence the formulas fort ik , qk , and j k can be written in
the form

t ik5ukp i2
v

b
d ik , qk5uk~«2v/b!, j k5nuk . ~55!

Consequently, the quantity2(v/b)[p can be interpreted a
pressure, while the quantityw52(v/b)1E can be regarded
as the enthalpy density (n is the number density of fermi
ons!.

Let us now determine the density of the momentu
emerging as a result of phase transition. Sincep is the mo-
mentum of an individual particle, the momentum density
the system is defined by the formula

p5
2

V (
p

pf p

or, noting thatf («I 1 «̃)5 f («I )1(] f /]«I ) «̃, we have

p5
2

~2p!3 E d3pp
] f

]«I
«̃~p!.

Going over to integration with respect to angles and« and
noting thatd f /d«52d(«2m), we obtain

p i52
2

~2p!3 E dOS p2

v
pi «̃~p! D

pF

, v5
]«

]p
.

Since

n~m!5
2

~2p!3 E d3pd~«I 2m!5
1

p2 S pF
2

vF
D ,
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we have

pz52
n~m!

3
pFA~1!A12T/Tcd l 0,1 , px5py50,

~56!

where

A~1!5
10p2Tc

2n9~m!

3n9~m!2n82~m!@F2 /$51F2n~m!%#
, F2[Fu l 52 .

Thus, a nonzero momentum density appears only forl 051.
Let us now find expressions for the densities of flux

j i , qk , and t ik emerging as a result of the phase transitio
Since the drift velocity of particle does not appear in t
expression for the fermion distribution function in the ne
phase, these fluxesj i andqi vanish in accordance with~55!.

However, momentum must be conserved in the ph
transition. If the momentum of the system in the normal st
was zero, the momentum after the phase transition must
be zero. Consequently, the distribution function after
phase transition must have the form

f 5$expb~«I 1 «̃2p–u2m!11%21

'$expb~«I 1 «̃2m!11%211
] f ~«I !

]«I
~2p–u!

~u is the drift velocity of the system as a whole!. As a result,
the momentum density after the phase transition is given

p85p2
2

V (
p

d f~«!

d«
~p–u!p.

It was noted above that the momentum must vanish a
the phase transition (p850), i.e., the velocity of the Ferm
system will be determined from the relation

2

V (
p

d f~«!

d«
~p–u!p5p,

where the value ofp is defined by~56!. Going over from
summation to integration and evaluating the obtained in
gral, we obtain the following expression for the velocity
the Fermi liquid:

uz52
3

n~m!pF
2 pz52

A~1!

2pF
A12T/T0, ~57!

ux5uy50.

Thus, the fluxesj i , qk , andt ik are defined by formulas~55!
in which the drift velocity u is replaced by~57! ~since
p50 in the absence of a phase transition, the density of
momentum fluxTik also vanishes!.

If fermions are electrons of a metal, they interact w
the crystal lattice, and the momentum can be partially tra
ferred to the latter. The effect considered above is simila
s
.

e
e
lso
e

y

er

-

e

s-
o

the Einstein–de Haas effect, in which the body starts rota
as a result of magnetization in view of the angular mom
tum conservation law due to the fact that electrons acquire
additional angular momentum.

In conclusion, we formulate some considerations co
cerning physical objects in which the phase transition c
sidered by us here can take place. An analysis of experim
tal data on the measurements of Landau amplitudes for3He
~see, for example, Ref. 6! leads to the conclusion that th
phase transition described above is hardly possible in3He.
The available experimental data concerning the meas
ments of the parameters of an electron liquid in various m
als ~see, for example, Refs. 7, 8 in this connection! suggests
that such systems are most suitable for observing such p
transitions.

In all probability, the phase transition in the Fermi liqu
under investigation can be observed in some alloys.9 We
mean the experimental observation of ‘‘hopping’’ of samp
prepared from such alloys at a certain temperature du
cooling. This effect corresponds qualitatively to the conc
sion drawn by us here concerning the average momen
acquired by fermions as a result of the phase transit
which is transferred to the crystal lattice and causes a di
tional movement of the sample. However, additional expe
ments are required to confirm this assumption. We could
find in the literature any experimental results of measu
ments of parameters~Landau amplitudes! of an electron liq-
uid in such materials which would confirm or refute th
above assumption.
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Critical current density and granularity in crystals of K 3C60 fulleride
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The temperature dependence of the critical current densityJc(T) in superconducting fulleride
K3C60 crystals is investigated on the basis of magnetization measurements in these
materials. According to ac susceptibility data, the best crystals do not exhibit granularity for
supercurrent flows, and can be regarded as single crystals from this point of view. The obtained
results onJc in K3C60 are compared with those for other crystalline and powder-type
compounds AxByC60. Possible granularity of the crystals and its influence onJc are discussed in
detail. The irreversibility line for a K3C60 single crystal is also determined. ©1999
American Institute of Physics.@S1063-777X~99!00203-0#
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1. INTRODUCTION

After the discovery of superconductivity in fullerene
doped by alkali metals,1 considerable attention has been pa
to the analysis of the critical current in these materials. T
critical current densityJc is one of the most important pa
rameters for applications of superconductors in engineer
The measurement ofJc from the transport characteristics o
current is a difficult problem as such since such meas
ments require high current densities. Besides, consider
difficulties are encountered in preparing high-quality lo
resistance junctions on brittle materials as in fullerene su
conductors~FS! and earlier, in HTSC materials. Howeve
the most serious obstacle in transport measurements is
instability of superconductivity in FS when the mater
comes in contact with oxygen. For this reason, FS sam
are usually sealed in glass or quartz capsules, which ham
the preparation of electric junctions. Thus, the measurem
of magnetic susceptibility is one of the most importa
method of studying the critical current density. For this p
pose, the model of critical state proposed by Bean2 is used.
According to this model,Jc is proportional to the widthDm
of the hysteresis loop.

First measurements of the critical current density on
were made on powder samples in which intergranular su
currents played an important role. It has become possibl
make measurements on high-quality monocrystall
samples having a large size. Hence, an analysis of the
perature and field dependences of the critical current den
in these crystals and a comparison with the results obta
on powders are of special importance.~Here and below,
‘‘crystals’’ and ‘‘single crystals’’ are the terms applied t
crystalline samples of a large size of the order of mm3, for
which the volume of the superconducting phase is sma
1611063-777X/99/25(3)/6/$15.00
e
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than or equal to 100% in contrast to powder samples wh
in principle are also crystalline with a grain size of the ord
of mm3.)

In this paper, we describe the results of magnetic stud
of Jc carried out on K3C60 crystals. These results are com
pared with the data obtained for other AxByC60 compositions
of crystalline and powder samples.

2. OBJECT AND METHOD OF INVESTIGATION

The measurements were made on two SQUID magn
meters in magnetic fields 1–8 T. The first magnetome
~commercial Quantum Design! with a sensitivity up to
10210A•m2 ensured the control of the field trapped a sup
conducting magnet at a level not higher than 531028 T. The
same magnetometer was used for the measurement o
namic magnetic susceptibility~ac measurements! in the fre-
quency range from 3 Hz to 1.5 kHz and the ac magnetic fi
amplitude varying from 1026 to 531024 T. The second
magnetometer, equipped with a superconducting magnet
ducing a field up to 8 T, was used for measuring hystere
loops in the temperature range from 5 K to Tc .

The critical current density was studied on three lar
K3C60 crystals~K1, K2, and K3 samples! whose volume was
of the order of several cubic millimeters. The process
sample preparation and parameters of the samples are
scribed in detail in Ref. 3. However, we shall mention som
of these parameters here once again. For instance, the s
conducting phase (xsc) amounted to 100% in samples K
and K2, whilexsc for the K3 sample was 25%. In this pape
we shall mainly describe the results obtained for K1 and
single crystals. However, some results@e.g., dynamic~ac!
magnetizations andH irr(T)] will be given for all the three
samples.
© 1999 American Institute of Physics



te
d

r f
y
f

la

%
tu
d
c
th
re
ri
e

N
ce
dc
2
fi

ld

om
h
A
w

ss
h

ith

not
he
field

ri-
re
ple
ls
es
er-
cter-
till
hi-

-
y in
oted
om-
-
e-
igh-
nts

ea-
sed

f
or
he
tion
ld,
the
ter.

r K
epti-

162 Low Temp. Phys. 25 (3), March 1999 V. A. Buntar and A. G. Buntar
In order to establish the presence and effect of in
granular structure, we carried out the measurements of
namic magnetization. Such measurements were made fo
lerides in several laboratories.4–6 The presence of two clearl
distinguishable peaks on the temperature dependence o
imaginary component of susceptibility6 (x9) indicated un-
ambiguously the existence of inter- as well as intragranu
scattering mechanisms.

Only one peak is observed in sample K1 with a 100
screening of magnetic field. Figure 1 shows the tempera
dependences of the real and imaginary components of
namic susceptibility for this sample. These dependen
were measured in zero magnetic field. The peak on
x9(T) curve lies near the critical temperature and cor
sponds to energy dissipation in the superconducting mate
As the constant~dc! field increases, the peaks becom
slightly broader and shifts towards low temperatures.
other peaks are observed on the temperature dependen
x9 for K1 in the entire experimental range of ac and
fields. On the contrary, thex9(T) dependence for sample K
displays one more less clearly manifested peak near the
one and additional scattering at lower temperatures;15 K.

In contrast to samples with 100% screening of the fie
the temperature dependencex9(T) obtained for sample K3
has a much more complex structure. Figure 2 shows for c
parison thex9(T) dependences for all the three samples. T
sharp peak observed for K1 is also clearly seen for K3.
the same time, several other peaks corresponding to lo
temperatures are also seen clearly. These peaks are a
ated with energy dissipation at weak interphase links. T
formation of such links in K3 is undoubtedly associated w
the presence of nonsuperconducting inhomogeneities~un-
doped C60 or probably K1C60).

FIG. 1. Temperature dependence of dynamic magnetic susceptibility fo
sample.
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Thus, ac measurements show that sample K1 does
display granularity for supercurrents flowing through t
sample. This sample is 100% screened from a magnetic
and contains no other phases except K3C60. Nevertheless, the
sample still contains a mosaic structure with a block diso
entation angle of 3°. In all probability, this mosaic structu
does not hamper supercurrents. In this respect, K1 sam
resembles in its properties ‘‘melt-textured’’ HTSC materia
also exhibiting a weak disorientation of blocks, which do
not lead to granularity of the sample as a whole for sup
currents. Sample K2 possesses virtually the same chara
istics as K1. However, a weak effect of granularity is s
present in the sample. Sample K3 with a nonuniform stoic
ometry displays a strong effect of granularity.

3. DISCUSSION OF RESULTS

Almost the entire experimental information on the tem
perature and field dependences of critical current densit
FS was obtained from magnetic measurements. It was n
above that some peculiarities observed in FS strongly c
plicate the measurement ofJc from the transport character
istics of current. First, superconductivity in fullerides b
comes unstable after contact with oxygen. Second, h
quality crystalline samples required for such measureme
were not available until recently. Thus, magnetization m
surements in a magnetic field at various temperatures u
for obtaining information onJc on the basis of the model o
critical state2 were the only possible experimental method f
studying the critical current density in these materials. T
simplest version of Bean’s model is based on the assump
that the critical current density is independent on the fie
and hence the density distribution of the field penetrating
sample decreases linearly from the surface to the cen

1
FIG. 2. Temperature dependence of the imaginary component of susc
bility.
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TABLE I. Critical current density and parametersDM andm for K3C60 and Rb3C60 samples.

Compound R, mm
Jc ,

A/m2

DM ,
103 A/m

References
m

from ~2!
5 K,
0.5 T

5 K,
0.1 T

1023 109 0.7 1.97 6 1.47@25#
1023 1.2•109 – – 23 1.5 @3#

K3C60
1023 2109 20.7 – 24 –

102323•1021 – 3.4 7.63 12 –
1 107 14.6 25.33 11 –
1 6•107 9.3 25 K1* –
1 4•107 7.1 18.5 K2* –

1023 4•1010 0.68 0.97 13 1.59@25#
1023 1.5•1010 0.23 0.32 8 1.8-2@26#

Rb3C60
1023 2•1010 – – 10 –
1023 21010 – – 24 2.0 @27#

102323•1021 – 1.72 3.71 12 –
1 2107 19.7 – 11 –
1 6•108 21.9 – 14 –

Note: Asterisks mark our results.
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With increasing external magnetic field, magnetic vortic
penetrate the samples more and more deeply until they
proach its center at a certain value of the magnetic fieldH* .
On the magnetization curve,H* can be determined as th
field at which the magnetization attains its peak value.
further increase in the field leaves the magnetization
changed. As the applied field decreases, the sign of the
tribution density gradient is reversed. This model obviou
leads to a dependence of magnetization on the size and
ometry of the sample. The value ofJc can be determined
from the experimental curve obtained from dc magnetizat
on the basis of the equation2

Jc5A~M 12M 2!/R, ~1!

where A is the coefficient determined by the samp
geometry,2,7 M 1 and M 2 are the magnetizations measur
for the same value of magnetic field during its increase
decrease, respectively, andR is the sample radius. In Refs.
and 9, the value ofJc was determined simultaneously fro
dc and ac measurements, and good agreement of the re
was observed. This indicates that the critical state model
be used for FS.

Table I shows some values of critical current dens
obtained for fullerene superconductors in the powder
crystalline form with a crystal size up to several mm3. These
results were obtained from magnetic measurements and d
onstrate a considerable hysteresis of magnetization u
high values of magnetic field. This indicates a strong pinn
of vortex filaments, and hence high values of critical curr
density. For example, the value ofJc in Rb3C60

10 at
T523 K50.82Tc in a magnetic field of 0.5 T is still quite
large (53108 A/m2).

When the critical current density is calculated in po
ders, the sample is treated as an aggregate of uncouple
perconducting spheres. The averaged diameter of th
spheres is equal to the average diameter of a grain in
sample. In this case, the error in determining the abso
value of Jc can be quite large, which is due to, first, a n
s
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very accurate value of the geometrical coefficientA for
grains of a complex shape, and second, the indeterminac
the value ofR. The second factor is more significant. Th
problem of calculation of the critical current density for cry
talline samples is not less complicated than the problem
powders, especially for sample with the superconduct
fraction xsc smaller than 100%. For such samples, we m
make certain assumptions concerning their microsco
structure in order to obtain the values ofR.

Irons et al.11 were the first to study the critical curren
density in large crystalline samples. The value ofJc obtained
in these experiments was of the order of 106 A/m2, which is
much smaller than that observed for powder sample
(;109 A/m2). Boss et al.12 studied the dependence of th
critical current density on the grain size in the sample.
these experiments, the average radius of grains was 1, 3
30, 100, and 300mm in different samples. Bosset al., estab-
lished that the value ofJc is inversely proportional to the
grain size~see Table I in Ref. 12!. In our opinion, the ‘‘de-
crease’’ in the critical current density upon an increase in
average grain size observed by Bosset al.12 is due to an
incorrect value ofR used for calculatingJc on the basis of
formula ~1!. Otherwise, the linear dependenceJc}1/R, or
~which is the same! the constant width of hysteresis loops f
all the samples being measured, leads to only one poss
conclusion that the actual radiusR of the region in which the
screening current flows should not exceed the minimum
erage radius of grains in the sample. This means that
value ofR must be smaller than 1mm. This, however, con-
tradicts the results of magnetic measurements obtained
different authors for K3C60 as well as Rb3C60.

6,11,13,14Ac-
cording to these data, the width of hysteresis loops increa
with the grain size~see Table I!, although the dependence
not linear. For example, as the value ofR increases by three
orders of magnitude~from 1 mm to 1 mm!, the value of
DM5Dm/V, whereDm is the width of a hysteresis loop
and V the sample volume, increases only by a factor
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10–30. This can be due to a weaker pinning in single crys
as compared to powders in view of the fact that single cr
tals have a more perfect structure, a smaller number of st
tural defects, and hence a smaller number of pinning cen

It should be noted, however, that crystalline FS samp
synthesized at present are polycrystals rather than si
crystals. Many samples have a nonideal stoichiometry,
hence inclusions of a nonsuperconducting phase. Bes
the monocrystalline structure of C60 crystals is broken by
doping, giving rise to a mosaic structure. In this connecti
we can hardly expect that the pinning in such crystals will
much weaker than in powders. For this reason, the dis
portionally small increase inDM as compared to the in
crease inR cannot be attributed only to a weaker pinning
single crystals. We can also assume that the values oJc

calculated for powders are slightly exaggerated since we
sume that grains are absolutely isolated when we choosR
equal to the average radius of grains. It must be borne
mind, however, that the surfaces of grains are the first to
doped and become superconducting in the course of dop
Consequently, grains are often electrically coupled or exh
a weak Josephson coupling even in an unpressed pow
Naturally, this leads to values ofR larger than the averag
size of grains, and the value ofJc calculated by formula~1!
must accordingly be lower.

Irrespective of the nature of the phenomenon discus
above, it creates additional difficulties in the calculation
Jc and shows that the absolute values of critical current d
sity calculated from the results of measurements of irrev
ible magnetization should be taken with care, especiall

FIG. 3. Field dependence of the critical current density for K1 sample
various temperatures.
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the value ofR is not determined absolutely accurately. It w
noted above, however, that the qualitative form of the te
perature and field dependences of the critical current den
obtained from these experiments must be correct.

While calculating the critical current density in samp
K1 with 100% field screening, we assume thatR51 mm
~sample size! since it has been proved that the granularity
supercurrents in the sample was not observed. Using form
~1!, we obtain Jc563107 A/m2 at T55 K and
m0H50.05 T. This value is close to those obtained by Iro
et al.11 on K3C60 and Rb3C60 crystals of the millimeter size
However, the values ofJc obtained for Rb3C60

14 are 15 times
higher than our values. This difference can be due to
quality of crystals, and hence the pinning force.

The field and temperature dependences of critical cur
density for K1 are shown in Figs. 3 and 4. It can be seen
the critical current density decreases smoothly with incre
ing magnetic field and temperature. These values ofJc are
virtually two orders of magnitude lower than those obtain
on twinless YBCO single crystals~this material has the low-
est anisotropy among HTSC!.15 The reason behind this dif
ference in the values ofJc is unclear since the expecte
contribution of structure defects to the pinning of magne
vortices also depends on the thermodynamic critical fieldHc

and the coherence lengthj. Both these parameters have clo
values for FS and HTSC.

The influence of internal structure of the sample onR
can be seen clearly from the results obtained for K2
which the value ofDM is smaller by a factor of 1.3 than fo
K1. At first sight, this result appears as unexpected since
size of K2 is 1.5 times larger than that of K1. However, t

t
FIG. 4. Temperature dependence of the critical current density for
sample at different values of magnetic field.
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small value ofDM in K2 can be explained by the presen
of grains. It is well known~see the discussion of the quali
of single crystals in Ref. 3! that a mosaic structure is forme
in the sample as a result of doping. At the same time, gra
can also appear due to the formation of microcracks in
single crystal. Indeed, ac measurements in K2 indicate
presence of intergranular peaks on thex9(T) curve, which
are absent in the case of K1 sample~see Fig. 2!. Besides, the
dependence of the trapped magnetic flux on the exte
magnetic field~see the details of experiment in Ref. 16! for
K2 has a kink for the characteristic value of the fieldm0H*
of the order of several mT. This dependence is shown in
5. We relate the emergence of the kink to the instant of ti
when the applied field reaches the center of the sample~or
the center of grains!. This kink is not manifested in this
range of external fields for sample K1 whose size is sma
than that of K2, indicating the presence of grains for sup
currents in K2. The estimates of the average size of gra
obtained from the experimental values ofH* give a value of
the order of several tens of micrometers.17 These grains are
quite large and are formed in all probability due to the em
gence of microcracks during sample doping.

An important characteristic of HTSC materials is t
‘‘irreversibility point’’ ( Tirr or H irr) observed for the first
time in experiments by Mu¨ller et al.18 for La–Ba–Cu–O ce-
ramics. For various values of external magnetic field, it w
defined as the point at which ‘‘field-cooled’’~FC! and
‘‘zero-field-cooled’’ ~ZFC! temperature dependences mer
into one reversible curve. This effect is observed for
HTSC, and the irreversibility curveH irr(T) has become an
object of detailed investigations for many years. From
point of view of fundamental studies, theH irr(T) dependence
provides information on the type of pinning in a sample a

FIG. 5. Field dependence of the trapped magnetic momentmtr for K2
sample atT, K: 5 ~3!, 7 ~s!, and 12~j!.
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on structural peculiarities of the system of magnetic vortic
Most experimental results show that the irreversibility cur
can be described by the equation

H irr5H0~12T/Tc!
m, ~2!

whereH0 is the value ofH irr at zero temperature. In a the
mally activated flux flow ~TAFF! model with collective
pinning,19 the value ofm in Eq. ~2! is 1.5, whilem54/3 in
the vortex-glass~VG! model20 andm52 or 1.5 in the theory
of vortex lattice melting.21

The irreversibility curve is usually determined in expe
ments as the point of merging the ZFC and FC curves~as, for
example, for K3C60 and Rb3C60 powders in Ref. 22! or as a
characteristic value of the field at which current densit
drop below a certain value. The irreversibility curves f
fullerides obtained by these methods are also described
Eq. ~2! with the value ofm between 1.47 and 2.15~see Table
I!. However, the determination ofTirr and H irr from these
measurements is complicated and requires the applicatio
certain criteria in view of the fact that both temperature a
field dependences of magnetization gradually become rev
ible.

In our experiments, the irreversibility curve was dete
mined from field dependences of critical current dens
where 1/Jc is proportional toB in a wide range of externa
fields ~Fig. 6!. However, at certain values of field, the valu
of Jc decreases abruptly below the resolution limit of o
instrument~see Fig. 6!, the values of characteristic field be
ing the lower the higher the temperature. These values
magnetic field is regarded as the irreversibility fieldH irr .

The temperature dependences ofH irr ~irreversibility
curves! obtained by this method for K1 and K3 samples a
shown in the inset to Fig. 6. The irreversibility curves follo
the power law~2! with m51.5. Thus, the irreversibility
curve can be described on the basis of the TAFF model.19 It
should be noted, however, that this value of exponent in~2!
is also in accord with some models of vortex latti
melting.21

FIG. 6. Field dependence of 1/Jc . The inset shows the temperature depe
dences of the upper critical fieldHc2 and the irreversibility fieldH irr for
samples K1~dark symbols! and K3 ~light symbols!.
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4. CONCLUSION

Using the measurements of magnetization, we stud
the temperature and field dependences of the critical cur
density in single crystals of fulleride K3C60. On the basis of
the critical state model, we obtained the critical current d
sity Jc563107 A/m2 at T55 K andm0H50.05 T, which is
much smaller that the corresponding value for powders.
shown that the internal structure of the sample considera
affects the characteristic value ofR used for calculatingJc .

The irreversibility curve obtained in experiments follow
a power law with an exponentm51.5 and can be describe
on the basis of the TAFF model. However, the final answ
to the question about the nature of the irreversibility curve
FS cannot be obtained in view of insufficient amount of e
perimental data on theH irr(T) dependence.

*E-mail: buntar@ati.ac.at
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On the theory of Josephson effect in a diffusive tunnel junction
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Specific features of the equilibrium current-carrying state of a Josephson tunnel junction between
diffusive superconductors~with the electron mean free pathl smaller than the coherence
lengthj0) are studied theoretically in the 1D geometry when the current does not spread in the
junction banks. It is shown that the concept of ‘‘weak link’’ with the phase jumpF;1 of
the order parameter exists only for a low transmissivity of the barrierG! l /j0!1. Otherwise, the
presence of the tunnel junction virtually does not affect the distributions of the order
parameter modulus and phase. It is found that the Josephson current flowing in the vicinity of
the tunnel barrier induces localized states of electron excitations, which are a continuous
analog of Andreev’s levels in a ballistic junction. The depth of the corresponding ‘‘potential well’’
is much larger than the separation between an Andreev’s level and the continuous energy
spectrum boundary for the same transmissivity of the barrier. In contrast to a ballistic junction in
which the Josephson current is transported completely by localized excitations, the
contribution to current in a diffusive junction comes from the entire spectral region near the
energy gap boundary, where the density of states differs considerably from its unperturbed value.
The correction to the Josephsonj (F) in the second order of the barrier transmissivity,
which contains the second harmonic of the phase jumpF, is calculated and it is found that the
true expansion parameterj (F) of the perturbation theory for a diffusive junction is not
the tunneling probabilityG, but a much larger parameterW5(3j0/4l )G. This simplifies the
conditions for the experimental observation of higher harmonics ofj (F) in junctions with
controllable transmissivity of the barrier. ©1999 American Institute of Physics.
@S1063-777X~99!00303-5#
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1. INTRODUCTION

In recent years, considerable advances have been m
in the technology of preparing low-resistance tunnel ju
tions with a comparatively high barrier transmissivity~tun-
neling probability! G. This applies primarily to controlled
break- junctions1 as well as systems based on 2D electron
gas,2 whose conductivity undergoes a crossover from tunn
to metal-type conductivity upon a change in the barrier
rameters. The problem of calculation of the Josephson
rent through a junction with an arbitrary transmissivity in t
ballistic mode ~with the electron mean free pathl @j0 ,
where j0 is the coherence length! was solved by many
authors3 on the basis of the model of a one-mode juncti
with massive current-carrying banks ensuring a ra
‘‘spreading’’ of supercurrent and the equality of the ord
parameter modulusD at the barrier to its bulk value~the
‘‘rigidity’’ condition for D!.

In the 1D geometry~e.d., a planar junction or a supe
conducting channel with a tunnel barrier1!!, the problem is
complicated considerably due to the change in the order
rameter and the quasiparticle energy spectrum in the vici
of the junction, which makes a contribution to the pha
dependence of the currentj (F). Antsygina and Svidzinskii4

determined the corresponding corrections toj (F) of the
order ofG2 for a pure (l @j0) superconductor in the limit o
low transmissivityG!1:
1671063-777X/99/25(3)/8/$15.00
de
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d j ~F!52a~T!I ~D!GS sinF2
1

2
sin 2F D , a~T!;1,

~1!

I ~D!5
p

4
enFvFGD5I c~D!/tanh~D/2T!, ~2!

wherenF is the density of states,vF the Fermi velocity, and
I c(D) the critical current through the junction.

In a diffusive superconductor~the ‘‘dirty’’ limit l !j0

5AD/2D, D5vFl /3 is the diffusion coefficient!, the calcu-
lation of the Josephson current for an arbitraryG is hardly
possible2! even in a simple model disregarding the variati
of the order parameter in the vicinity of the junction, usin
the numerical methods of solving equations for Gree
functions averaged over the ensemble of scatterers. As a
ter of fact, the boundary conditions for isotropic Green
functionsĝ(r ,t1t2) at the junction, which were obtained fo
the first time by Kupriyanov and Lukichev,7, i.e.,

2 l ~ ĝ¹ĝ!L52 l ~ ĝ¹ĝ!R5
3

4 K md~m!

r ~m! L @ ĝL ,ĝR#,

r ~m!512d~m!, ~3!

where d(cosu) is the tunneling probability for an electro
impinging the barrier at an angleu, and the subscriptsR and
L mark the value to the right and left of the barrier, are va
© 1999 American Institute of Physics
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only in the first order of smallness of the angle-averag
transmissivityG5^md(m)&. Lambertet al.8 proved that the
derivation of the boundary conditions in the gene
case (d;1) is reduced to an analysis of a system of nonl
ear integral equations for the terms in the expansion
the averaged Green’s functionĝ(r ,p,t1t2)5ĝ(r ,t1t2)
1p–ĝ1(r ,t1t2)1... over Legendre polynomials. This prob
lem can be solved only forG!1 by writing the right-hand
side of~3! in the form of a power series inG, which was used
in Ref. 8 for calculating the corrections to the Josephs
current of the order ofG2.

In this paper, we pay attention to the fact that the pro
lem of calculation of the current–phase relation for a dif
sive junction in the 1D geometry has a meaning only in th
case of the low transmissivity of the barrier. Indeed, sim
estimates obtained on the basis of the well-known form
for j (F) in the first order inG, which coincides with the
Ambegaokar–Baratoff9 result for a pure superconductor o
account of the Anderson theorem, i.e.,

j 0~F!5I ~D!tanh
D

2T
sinF, ~4!

show that even forG; l /j0!1 the critical current through
the junction becomes of the order of the bulk thermodyna
critical currentnsevsc , wherevsc;1/mj0 is the critical ve-
locity of the condensate,ns;mnFDD its density,m the elec-
tron mass, and\51. Thus, forG@ l /j0 the tunnel junction
does not any longer play the role of ‘‘weak link’’ with th
jump of the order parameter phaseF and other features of a
Josephson element. This follows even from the bound
conditions~3! if we use the estimate¹ĝ;ĝ/j0 in the vicin-
ity of the junction, which leads to@ ĝL ,ĝR#;sinF→0 for
G@ l /j0 in the main approximation.3! This criterion of weak
link can be also formulated in terms of the conductance
the system in the normal state: the resistance of the junc
must be higher than the resistance of a layer of the curr
carrying metal of thickness;j0 .

It follows hence that the parameter

W5~3j0/4l !G@G ~5!

plays a fundamental role in the theory of Josephson effec
diffusive junction~the factor 3/4 is chosen for convenien
of notation!. We can attach to this parameter the meaning
the effective tunneling probability for Cooper pairs, which
higher than the conventional probabilityG of quasiparticle
tunneling. Small values ofW!1 correspond to ‘‘weak link’’
conditions~Josephson effect!. For W.1, the presence of a
tunnel barrier virtually does not affect the supercurrent fl
and the distribution of order parameter in a diffusive sup
conductor. Moreover, we can expect that it isW and notG
that it a true parameter of the expansion ofj (F) in the bar-
rier transmissivity since the Anderson theorem~in the given
case, the statement concerning the absence of a depen
of the Josephson current on the mean free path! is valid only
in the main approximation inG ~4!, and hence this depen
dence must be manifested in higher-order terms in
expansion ofj (F) in the emergence of an additional dime
sionless parameterj0 / l in them, which vanishes asl→`.
An analysis of corrections to the current–phase depende
d
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~3! carried out in Sec. 4 of this article in the next order inW
confirms these considerations and proves that the correc
;G2 to the boundary conditions~3! and Josephson curren
~4! obtained in Ref. 8 are insignificant indeed.

Another important result of the analysis of the curre
carrying state of a diffusive Josephson junction obtained
us here is the conclusion concerning the emergence of lo
ized states of electron excitations in the vicinity of the b
rier. This phenomenon is well known for a ballistic tunn
junction10,11 in which discrete energy levels

«n~F!56D~12d sin2 F/2!1/2, ~6!

associated with Andreev’s localization of electron exci
tions near the jump in the order parameter phase split fr
the continuous spectrum in the current-carrying state.
similar phenomenon also takes place in a diffusive junct
in which, however, isolated coherent energy levels can
exist due to electron scattering at impurities and defects
this case, The most adequate description of the variatio
the energy spectrum of excitations is the one in terms of th
local density of statesN(«,r )5Reu1(«,r ) ~u1 is the diago-
nal component of the retarded Green’s function for the
perconductor!, which is assumed for brevity to be norma
ized to its valuenF in the normal metal. In the absence
current, the density of states in a homogeneous super
ductor has the standard formN0(«)5u«uQ(«22D2)/
A«22D2 @Q(x) is the Heaviside function# with root singu-
larities at the gap boundaries. In the current state, the
mentumps of the superfluid condensate plays the role o
depairing factor smoothing the singularities ofN(«) and re-
ducing the energy gap 2«* by D2«* (ps);(Dps

2)2/3.12 In
the vicinity of a weak link, a similar~and main! factor sup-
pressing the energy gap is the phase jumpF which leads to
the formation of a ‘‘potential’’ well having a width of the
order ofj0 and containing localized excitations with an e
ergy u«u,D ~see Sec. 3!.

2. EQUATIONS FOR GREEN’S FUNCTION OF A JOSEPHSON
JUNCTION WITH A LOW TRANSMISSIVITY

In order to calculate the density of states and equilibri
supercurrent

j 5
1

4
enFvFDE

2`

1`

d« f 0~«!Tr sz~ ĝ1¹ĝ12ĝ2¹ĝ2!~«!

~7!

we must solve equations for the matrix retarded~advanced!
Green’s functionsĝ6(r ,«) averaged over the ensemble
scatterers:

@sz«1D exp~ iszx!isy ,ĝ#5 iD¹~ ĝ¹ĝ!, ~8!

ĝ251. ~9!

HereD andx are the modulus and phase of the order para
eter and f 0(«)5(1/2)@11tanh(«/2T)# is the equilibrium
distribution function.

According to the normalization condition~9! for a
Green’s function, the matrixĝ can be presented in the form
ĝ5s•u, wheres is the vector formed by Pauli matrices
Using the well-known relations (s•a)(s•b)5a•b1 is@a
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3b#, @sz ,s#52i @s3s#, wheres is the unit vector of ‘‘iso-
topic spin’’ directed along thez-axis in the space of Pau
matrices, we can obtain from~3!, ~8!, and~9! the following
equations and the boundary conditions for the vector Gre
function u:

«@s3u#1 iD@x3u#5~D/2!¹@u3¹u#, u251, ~10!

j0@u3¹u#L,R52W@uL3uR#, ~11!

wherex5(sinx,cosx,0) is the symbolic vector of the orde
parameter phase.

Singling out the component of the vectoru along the
direction s, i.e., u5su1 iv (v–s50), we project Eqs.~10!
onto the (x,y)-plane in the space of Pauli matrices:

«v2Dux5~ iD /2!¹~u¹v2v¹u!, u22v251 ~12!

and introduce the unit vectorc5(sinc,cosc,0) directed
alongv: v5cv, wherec~r ,«! is the phase of ‘‘anomalous’
Green’s functionv (¹c5@c3s#¹c). The obtained system
of scalar equations is a possible representation of Usa
equations:

«v2Du cos~c2x!5~ iD /2!@¹~u¹v2v¹u!2uv~¹c!2#,
~13!

Dv sin~c2x!5~ iD /2!¹~v2¹c!, ~14!

u22v251, ~15!

and its solutions determine the value of supercurrent~7! ac-
cording to

j ~F!52enFDE
2`

1`

d« f 0 Im~v1!2¹c1. ~16!

Choosing the coordinate axisx at right angles to the
contact planex50 (x(10)52x(20)5F/2) and taking
into account the continuity of Green’s function and antisy
metry of their derivatives, we can easily obtain from~11! the
boundary conditions to Eqs.~13! and ~14! for x→10:

j0~u¹v2v¹u!~0!54Wu~0!v~0!sin2 c~0!, ~17!

j0~v¹c!~0!52Wv~0!sin 2c~0!. ~18!

Away from the junction, the behavior of the order p
rameter phases and Green’s function is described by a li
asymptotic form corresponding to the given value of curr

j~1`!5c~1`!5x`12psx, ps5~W/j0!sinF,
~19!

i.e., of the superfluid momentumps whose magnitude is de
termined in the main approximation by the condition
equality of the current~4! through the junction to its value
j 5penFDpsD tanh(D/2T) in the bulk of the metal, and
Green’s functions tend to their asymptotic values satisfy
Eqs.~13!–~15! for c5x and¹u5¹v50.

Using the parametrizationu5coshu, v5sinhu, which
takes into account the normalization condition~15!, we can
put in correspondence to the vector Green’s functionu the
following visual geometrical image.13 The unit vectoru in a
normal metal is directed along the isospin axisz ~which cor-
responds to a purely electron or hole state of excitation o
Fermi gas!, while in a superconductor this vector is deflect
’s

ell

-

ar
t

g

a

from the axis through an imaginary angleiu and turned
about the isospin axis through the azimuthal anglec. In the
spatially homogeneous case, this angle obviously coinc
with the phase of the order parameter (c5x), and the scalar
Green’s functionsu andv are described by the formulas

u65coshus5
«

A~«6 i0!22D2
, ~20!

v65sinhus5
D

A~«6 i0!22D2
,

where 6 i0 defines the position of singularities of the r
tarded~advanced! Green’s function in the complex plane«,
and the square root in~20! is defined so thatu6→61 for
«→1`.

The equations~13!–~15! for Green’s functions should be
supplemented by the self-consistency conditions for
modulus and phase of the order parameter:

D5lE
2`

1`

d« f 0 Rev1, ~21!

E
2`

1`

d« f 0 Rev1 sin~c12x!50, ~22!

wherel is the constant of superconducting interaction. Ta
ing into account the current conservation law@Eqs.~14! and
~22!#, it is convenient to calculate the value of current at t
barrier (x→10) by expressing¹c~0! in ~16! with the help
of ~18! through the phase jump 2c~0!:

j ~F!52
e

2
nFvFGE

2`

1`

d« f 0 Im@v1~0!#2 sin 2c1~0!,

~23!

which allows us to single out explicitly the small parame
of the theory, i.e., the barrier transmissivityG. It can easily
be verified that in the main approximation using the unp
turbed values of Green’s function~20! and phasec(0)
'x(0)5F/2, formula~23! leads to the result~4!.

A simplifying factor in the case of a low transmissivit
of the barrier is that the quantitiesc2x and¹c proportional
to the current through the junction are small~see~18! and
~14!!, and hence we can omit in Eq.~13! the terms quadratic
in W and containing the phase. Replacingc(0)'x(0)
5F/2 in the boundary conditions~17! and ~18! to the same
degree of accuracy, we obtain the equation and the boun
conditions for the parameteru:

« sinhu2D~x!coshu5~ iD /2!¹2u, ~24!

j0¹u~0!52W sinh 2u~0!sin2 F/2,

u~1`!5us . ~25!

An attempt to apply the perturbation theory directly
the solution of Eq. ~24! ~u(x)5u01u1(x), D(x)5D0

1D1(x)) leads to an expression for the correctionu1(x)
containing nonintegrable singularities at the gap boundar
and as a consequence, to the divergence of the correspon
correction to the Josephson current~4!. This is associated
with the emergence of localized states of quasiparticles
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tunnel junction in the current-carrying state mentioned
Introduction. These states will be considered in the next s
tion.

3. LOCALIZED STATES AT A TUNNEL BARRIER

It will be proved below that the depth of the ‘‘potentia
well’’ in the vicinity of the barrier is much larger than th
scale of variation of the order parameter. Consequently,
sufficient to confine an analysis of the behavior of the d
sity of state to the model with a constantD, in which Eq.~24!
has a simple solution describing the attenuation of pertu
tions of Green’s functions at a distance;j0 from the barrier:

tanh
u~x!2us

4
5tanh

u~0!2us

4
exp~2k«uxu!,

k«
225 i j0

2 sinhus , Rek«.0. ~26!

The quantityu~0! satisfies the boundary condition fo
lowing from ~25! and ~26!:

k«j0 sinh
us2u~0!

2
5g sinh 2u~0!,

g5W sin2 F/2!1, ~27!

which can be reduced to the eighth-degree algebraic equa
in z5expu(0):

2z3~z2zs!
25 ig2~zs

221!~z421!2, zs5expus . ~28!

In the general case~for an arbitrary«!, the solution of
Eq. ~28! can be obtained only numerically, but the presen
of the small parameterg in ~27! and~28! makes it possible to
apply the perturbation theory. Far away from the spectr
boundary, we can putu(0)5us on right-hand side of~27!,
which leads to the following expression for the correction
the density of states at the barrier:

N~«,0!2N0~«!522g Re~Ai sinh3 us sinh 2us!, ~29!

that becomes obviously inapplicable foru«u→D, where
uusu→`. In this region, we must apply the modified pertu
bation theory~MPT! by putting uzu, uzsu@1 for an arbitrary
~not necessarily small! value ofz2zs . This not only reduces
the degree of the general equation~28!, but also allows us to
write it in a universal form free of the depairing parameterg:

~yAE21!25 iy5, y5z/b&,

E5b2~«2D!/D, b5~2/g!1/5@1. ~30!

Relations~30! show that the increase in the density
states is bounded by a quantity of the order ofb;W22/5 as
we approach the spectrum boundary, and the range of a
cability of the conventional perturbation theory~29! is deter-
mined by the condition («2D)/D@b22 and overlaps with
the region of applicability («2D)/D!1 of the MPT. The
boundary«* of the spectrum~the position of the bottom o
the potential well! below which the density of states vanish
corresponds to the emergence of a purely imaginary roo
the equation ~30! at the point E* 52(25/6)(2/3)1/5

'23.842
c-

is
-

a-

ion

e

li-

of

«* ~F!5DF12CS W sin2
F

2 D 4/5G ,
C5

25

3361/5'5.824. ~31!

The dependence of the position of the spectrum bou
ary on the phase jump at the junction is illustrated in Fig
in which a similar dependence of the position of the Andre
level ~6! in a junction between pure superconductors
shown for comparison. It should be noted that the scale
variation of «* (F) is much larger than the splitting of th
Andreev level from the boundary of the continuous spectr
for the same barrier transmissivity. This is associated w
the large value of the depairing parameterg in the diffusive
junction as compared to the splitting parameterG of the
Andreev level as well as with the large numerical value
the constantC defining the shift of the spectrum bounda
~31!. Figure 2 shows the results of numerical calculation
the density of states at the junction on the basis of the g
eral formula~28! for different values of the depairing param
eter, which prove that in addition of the root singularity
(;A«2«* ) at the spectrum boundary, the quantityN(«)

FIG. 1. Dependence of the position of the bottom of the ‘‘potential we
«* ~31! and the order parameterD~0! ~49! in the vicinity of the tunnel
junction on the phase differenceF ~solid curves! at T50, W50.01 and
j0 / l 55. The dashed curve shows for comparison the position of the
dreev level in a pure one-mode junction~5! for the same barrier transmis
sivity.

FIG. 2. Dependence of the density of statesN(«,F,0) at the tunnel junction
on the energy of quasiparticles for various values of the depairing param
g5W sin2(F/2) ~solid curves!. The dashed curve shows the energy dep
dence of the unperturbed density of statesN0(«).
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has a ‘‘beak-type’’ root singularity for«5D. Its physical
nature is associated with an indefinite increase in the atte
ation lengthk«

21 of the perturbation of Green’s function~26!
in the vicinity of the gap boundary in the bulk of the meta
For «* ,«,D, the density of states decreases exponenti
with increasing distance from the junction to>j0 ~Fig. 3!,
which corresponds qualitatively to the image of the poten
well of depthD2«* and of width;j0 with excitations lo-
calized in them.

It is well known that Josephson current is carri
through a ballistic junction by localized excitations only a
can be presented in the following visual form:

j ~F!522e(
n

]«n~F!

]F
tanh

«n~F!

2T
, ~32!

where the indexn labels Andreev’s levels. At the same tim
formula ~23! for current expressed in the MPT approxim
tion in terms of the reduced variables~30!, i.e.,

j ~F!'2I ~D!tanh
D

2T
sinFE

E
* ~F!

` dE

p
Im~y1!25 j 0~F!

~33!

shows that the charge transfer in a diffusive junction is p
formed not only by the states in the potential well (E,0,
«,D), but also by excitations with energy«.D in the re-
gion «2D;Db22, where the density of states differs si
nificantly from the unperturbed valueN0(«). It should be
noted in this connection that Argaman14 proposed an analog
of the formula ~32! for a diffusive system, which can b
obtained by the replacement of the energy«n(F) of
Andreev’s levels by the local value«(j,F,x) of the excita-
tion energy forx50, which is adiabatically deformed b
supercurrent, using instead of the discrete numbern the con-
tinuous variable

j5E
«
* ~F!

«~j,F,x!

d«8N~«8,F,x! ~34!

viz., the number of states with an energy smaller th
« (j5Q(«22D2)A«22D2 for a homogeneous superco
ductor!.4! We can propose that the contributions from t
bound and delocalized states to the Josephson curren
taken into account simultaneously by the formula

FIG. 3. Energy dependence of the density of statesN(«,F,x) for g50.01 at
different distancesx from a diffusive tunnel junction: 0~curve1!, j0 ~curve
2!, and 5j0 ~curve3!.
u-

ly

l

r-

n

are

j ~F!522enFE
0

`

dj
]«~j,F,0!

]F
tanh

«~j,F,0!

2T
, ~35!

which, however, leads to correct results only in the case
homogeneous current-carrying state~where¹x plays the role
of F! or a broadSNS-junction ~with a width L@j0 of the
normal superlayer! and is inapplicable for a narrow bridg
and tunnel junction. Nevertheless, the application of
function «(j,F,x) is useful in these cases also since th
allows us to visualize the variation of the energy distributi
of quasiparticle states in the vicinity of the junction~Fig. 4!.

4. CURRENT–PHASE DEPENDENCE FOR A JUNCTION IN
THE SECOND ORDER IN W

Although the modified perturbation theory for Green
function in the energy representation described in the prec
ing section is the most physically visual method operat
with actual excitation energies. it leads to considerable f
mal difficulties in the calculation of corrections to the J
sephson current~4!. Indeed, it was shown in the previou
section that the expression forj (F) calculated on the basi
of the MPT for Green’s functions~33! coincides with~4!
since the small MPT parameterb22 cancels out as we go
over to the reduced variables~30!. Thus, in order to calculate
the corrections to~4! we are interested in, we must leav
approximation~30! that describes the behavior of Green
functions correctly only in a narrow range of singularity
the density of states. For this purpose, it is convenient to
the formalism of temperature Green’s functions by goi
over from integration with respect to energy in~21!–~23! to
summation over the Matsubara frequenciesvn5pT(2n
11), n50,61,62,...:

j ~F!52penFvFGT (
vn.0

Rev2~0!sin 2c~0!, ~36!

D~x!522plT (
vn.0

Im v~x! ~37!

FIG. 4. Lines corresponding to the number of states of quasiparti
j(«,F,x)5const~34! for g50.01 and various values ofj in the vicinity of
the junction. The dashed line shows the position of the bottom of the ‘‘
tential well’’ (j50, «5«* (F)).
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and making the substitution«→ ivn in Eq. ~24!. This allows
us to avoid divergences of the type~29! in perturbation
theory which, unlike the MPT, makes it possible to take in
account the coordinate dependenceD(x).

It is expedient to use as the main approximation in
asymptotic expansionu5u01u11... the ‘‘adiabatic’’ value
of Green’s function corresponding to the local value
D(x)5D1D1(x)@D1(`)50#:

u0~x!5coshu0~x!5
vn

ṽn~x!
, v0~x!5sinhu0~x!5

D

ṽn~x!
,

ṽn~x!5Avn
21D2~x!. ~38!

In this case, the correctionu1(x) corresponds to the non
homogeneous equation

¹2u12kv
2 u15¹2u0 , kv

2 52ṽn /D ~39!

with the boundary conditions

¹u1~10!52W sinh 2us sin2 F/2, u1~`!50,

where coshus5vn /ṽn (ṽn5Avn
21D2) is the value of the

Green’s function far away from the junction with the unpe
turbed value ofD.

The self-consistency condition forD1(x) following from
the equation~21!, i.e.,

D1~q!T (
vn.0

D2

ṽn
3 52T (

vn.0

vn

ṽn
Im u1~ ivn ,q! ~40!

completes the system of equations for determining the
rectionsu1 andD1 , whose solution in the Fourier represe
tation has the form

D1~q!528WD
B~q!

j0A~q!
sin2

F

2
,

u1~ ivn ,q!58WD
ivn

ṽn

1

q21kv
2

A~0!

j0A~q!
sin2

F

2
, ~41!

A~q!5A~0!1q2B~q!, A~0!52pT (
vn.0

D2

ṽn
3 , ~42!

B~q!52pT (
vn.0

vn
2

ṽn
3

1

q21kv
2 ,

@u1~ ivn ,x!,D1~x!#5E
2`

1` dq

2p
eiqx~u1~ ivn ,q!,D1~q!!.

As regards the correction to the asymptotic value~19! of
the phasec(x) of the Green’s function, it is equal to zero i
this approximation. In order to prove this, we introduce t
quantityw5c2x!1, which, according to~14!, satisfies the
equation

¹2w2kv
2 w52¹2x1 , ~43!

wherex15x(x)2x(`) is a correction to~19! localized near
the junction. Taking into account the boundary conditi
e

f

r-

¹w(0)52¹x1(0) following from ~18! and ~19!, we find
that this equation has the simple solutionw( ivn ,q)
52q2x1(q)/(q21kv

2 ) which leads, after the substitutio
into the self-consistency condition~22!, to the following ho-
mogeneous integral equation forx1(q):

T (
vn.0

D

ṽn
E

2`

1`

dq
q2 cosqx

q21kv
2 x1~q!50. ~44!

The only nonsingular solution of Eq.~14! is x1(q)[0,
which proves the absence of a correction to the Joseph
current due to the deviation of the behavior of the phase
the order parameter and Green’s functions from the lin
law ~19!. This result can be explained as follows. The co
rectionx1(x) is obviously of the order of the small correc
tion ps1(x) to the constant valueps ~19! in the vicinity of the
junction, that ensures the conservation of the current upo
change inN(«) and D. Since the value ofps;W, the cor-
rection to this quantity, and hencex1(x) andw have a higher
order of smallness (;W2) than the corrections of the orde
of W we are interested in.

Substituting the obtained solution~41! and~42! into for-
mula~23!, we obtain the required correction to the Josephs
current:

d j 5 j ~F!2 j 0~F!52
4T

D
I ~D!sinF (

vn.0
ReS v21

D2

ṽn
2D

52I ~D!W0Z~T!S sinF2
1

2
sin 2F D , ~45!

Z~T!5
16

p
ADD0T (

vn.0

vn
2

ṽn
4 E

2`

1` dk

k21 k̃v
2
S 11

k̃v
2 B~k!

A~k!
D ,

k̃v5
ṽn

D
, ~46!

whereA(k) andB(k) are defined by formulas~42! upon the
substitutionkv→ k̃v , and W0 and D0 are the values ofW
andD at T50.

At low temperatures (T!D), the summation overvn in
formulas ~42! and ~46! can be replaced by integration wit
respect to the continuous variablev:

A~0!51,

B~k!5E
0

` tanh2 vdv
k21coshv

5
1

k4 Fp2 22A12k2

3arctanS 12k2

11k2D 1/2

2k2G ,
which leads to the following asymptotic value of the functio
Z(T) for T→0:

Z~T!5
8

p2 E
0

`

dkF pk2

~11k2!9/41
2B2~k!

11k2B~k!G'2.178,

T!D. ~47!
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In the vicinity of critical temperature (D!T), the quan-
tity A(0)'7z(3)D2/4p2T2 is small, and the main contribu
tion to integral~46! comes from the region of small wav
vectorsk;D/T corresponding to damping of perturbatio
at large distances of the order ofj(T);(Tc2T)21/2. This
allows us to replace the functionB(k) by its valuepD/4T
for k50:

Z~T!5
32ADD0

p3T (
n>0

1

~2n11!2 E
0

` B~0!dk

A~0!1k2B~0!

52pS pD0

7z~3!Tc
D 1/2

'5.099, D!T. ~48!

The results of numerical calculations of theZ(T) depen-
dence in the entire temperature range 0,T,Tc are pre-
sented in Fig. 5.

Similarly, by using~41! and ~42! we can calculate the
asymptotic values of the correctionD1(0) to the unperturbed
value of the order parameter at the junction:

D1~0!

D0
52a~T!W0 sin2

F

2
, a~0!53.037,

a~Tc!55.782. ~49!

The dependence of the order parameterD~0! on the
phase jump at the junction atT50 presented in Fig. 1 show
that the main contribution to the energy gap suppress
comes from the depairing mechanism considered in Sec
and the change in the order parameter is smaller t
«* (F).

The structure and the phase and temperature de
dences of the correction to the Josephson current~45! in a
diffusive superconductor virtually coincide with expressi
~1! for a junction between pure metals except the followi
circumstance noted in Introduction: the parameter of the
pansion of j (F) in the transmissivity of the junction fo
l !j0 is not the tunneling probabilityG, but a considerably
larger parameterW ~5!. This allows us to observe highe
harmonics of the current–phase dependence in diffusive
nel junction with a comparatively high resistance. Koo
et al.17 apparently reported on the first experimental resu
in this field.

FIG. 5. The functionZ(T) ~46! defining the temperature dependence of t
ratio d j (F)/I (D) ~45!.
n
3,
n

n-

x-

n-
s
s

The theory discussed above describes the current–p
dependence for a diffusive Josephson junction in the en
temperature range 0<T,TC except a narrow neighborhoo
of Tc in which D/Tc;W0 ~while in a pure superconducto
D/Tc;G), the magnitude of corrections~45! and ~1! be-
comes equal toJ0(F), while the correction~49! to D be-
comes equal to its unperturbed value. This means that in
definition of the parameterW ~5! near Tc the coherence
length j0(T) describing the characteristic scale of spat
variations of Green’s function and density of states should
replaced by the characteristic lengthj(T) of variation of the
order parameter~healing length! in the Ginzburg–Landau
theory, whose order of magnitude is the same asj0 far away
from Tc . Taking into account the results of calculations
j (F) for a pure superconductor in the vicinity ofTc ,5 we
can obtain the following interpolation estimate of the effe
tive transmissivityW suitable for any temperatures and me
free paths:

W;Gj~T!S 1

l
1

1

j~0! D . ~50!

As we approachTc , the value ofW increases unlimit-
edly, this is accompanied by a decrease in the phase jum
a given external current bounded by its critical value. Th
in the 1D geometry for an indefinitely large normal resi
tance of the junction, there exists a narrow region nearTc in
which the phase difference of the order parameter at
junction is small up to values of current of the order of t
bulk critical current.
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1!The transverse size of the junction is assumed to be smaller than

Josephson penetration depth, which ensures the uniform distribution o
current over the cross section of the junction.

2!The only exception is the case of temperatures close to critical, when
presence of the small parameterD/Tc makes it possible to formulate the
effective computational algorithm of the solution of this problem.5,6

3!Strictly speaking, in this relation contains the jump in the phase of Gree
function instead of the jump in the order parameter phase, but these q
tities virtually coincide forG!1 ~see Sec. 4!.

4!The concept of adiabatic deformation of ‘‘energy levels’’ in the continuo
spectrum of a superconducting diffusive system in the current-carry
state and their classification on the basis of the continuous ‘‘quantum n
ber’’ j was introduced for the first time in Ref. 15 and systematically us
in Ref. 16.
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Coherent current states in a mesoscopic four-terminal Josephson junction
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A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consists of
a mesoscopic two-dimensional normal rectangular layer which is attached on each side to
the bulk superconducting banks~terminals!. A relation is obtained between the currents through
the different terminals, that is valid for arbitrary temperatures and junction sizes. The
nonlocal coupling of the supercurrents leads to a new effect, specific for the mesoscopic weak
link between two superconducting rings: an applied magnetic flux through one of the
rings produces a magnetic flux in the other ring even in the absence of an external flux through
the other one. The phase dependent distributions of the local density of Andreev states, of
the supercurrents and of the induced order parameter are obtained. The ‘‘interference pattern’’ for
the anomalous average inside the two-dimensional region can be regulated by the applied
magnetic fluxes or the transport currents. For some values of the phase differences between the
terminals, the current vortex state and the two-dimensional phase slip center appear.
© 1999 American Institute of Physics.@S1063-777X~99!00403-X#
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1. INTRODUCTION

The Josephson multiterminal junction presents a mic
structure in which the weak coupling takes place betw
several massive superconducting banks~terminals!.1–3 Com-
pared with the conventional~2-terminal! Josephson
junctions4 such systems have additional degrees of freed
and a corresponding set of the control parameters. As a
sult, for example, the current- or voltage-biased and the m
netic flux-driven regimes can be combined in one multit
minal junction. The specific multichannel interference effe
were studied theoretically and experimentally in the no
superconducting device, a 4-terminal SQUID controlled
the transport current.5–7 Recently another system based on
Josephson 4-terminal junction was studied.8 It consists of
two superconducting rings, each interrupted by a Joseph
junction, which are at the same time weakly coupled w
each other. The macroscopic quantum states of such a c
posite system can be regulated by the difference of the m
netic fluxes applied through the rings, in analogy with t
phase difference between two weakly coupled bulk sup
conductors. The nonlinear coupling via the Joseph
4-terminal leads to the cooperative behavior of the rings
some region of the applied magnetic fluxes, which w
called8 magnetic flux locking.

The 4-terminal junction, which was studied in Refs. 5–
is a system of short microbridges going from a weak poin
massive superconducting banks~Fig. 1a!. The order param-
eter~both its amplitude and phase! in the common center is a
function of the currents through all the microbridges. T
supercurrent flowing into thei th bank is determined by th
1751063-777X/99/25(3)/7/$15.00
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phases of the order parameterw i ( i 51,...4) in all the banks5:

I i5
pD0

2~T!

4eTc

1

( j1/Rj
(

j

1

RiRj
sin~w i2w j !. ~1!

The relation ~1! was obtained in the frame of th
Ginzburg–Landau approach, which is valid for temperatu
T close to the critical temperatureTc . As was pointed in Ref.
8, the macroscopic interference effects due to coupling
supercurrents in different terminals are not restricted by
special kind of the 4-terminal junction~Fig. 1a!. In fact, any
mesoscopic 4-terminal weak link will produce a couplin
similar to the relation~1!. In the present paper, the micro
scopic theory of the mesoscopic ballistic 4-terminal juncti
is developed. We consider a Josephson weak coup
through the two-dimensional normal layer which is co
nected with four bulk superconducting terminals as is sho
in Fig. 1b. Such a S-2DEG-S structure was experiment
realized in Ref. 9 for the case of two terminals. It was sho
in9 that this new class of fully phase coherent Joseph
junctions demonstrate the nonlocal phase dependence of
soscopic supercurrents. We study the coherent current s
in such a 4-terminal structure within the quasiclassical eq
tions for transport-like Green’s functions. The relation b
tween the currents in the different terminals, that is valid
arbitrary temperatures and junction sizes, is obtained.
structure of current carrying states inside the mesosco
4-terminal junction is itself of interest. As is well know
~see, e.g., Ref. 10!, in ballistic Josephson junction with direc
conductivity the supercurrent flows through the local A
dreev levels. In the multiterminal case considered here,
© 1999 American Institute of Physics
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spatial distribution of current density and of the order para
eter, and hence the phase-dependent Andreev levels, ar
termined by the phase differences between all termin
Thus, they can be regulated by the external control par
eters, i.e., the transport currents and~or! the applied mag-
netic fluxes. In Section 2, we present the description of
system and formulate basic equations and boundary co
tions. In Section 3 the current-phase relations analogou
~1! are derived for the cases of small~as compared to the
coherence length! and also arbitrary junction sizes. The sp
tial distributions of the supercurrent density and of the
duced order parameter are studied in Section 4.

2. MODEL AND BASIC EQUATIONS

The studied system consists of 4 bulk superconduc
banks which are contacted with 4 sides of rectangular t
dimensional (2D) normal layer having the lengthL and
width W ~see Figs. 1b and 2!. The sizesL andW are assumed
to be much larger than Fermi wavelengthlF5h/pF . To
study the stationary coherent current states in the 4-term
ballistic junction we use the Eilenberger equations
j-integrated Green’s functions11

vF

]

]r
Ĝ1@vt̂31D̂,Ĝ#50, ~2!

FIG. 1. The superconducting 4-terminal Josephson junction. Four cou
superconducting microbridges, going from a point to the massive super
ducting banks~Ri is the normal resistance of thei th filament andj(T) is the
coherence length! ~a!. The mesoscopic 4-terminal Josephson junction. F
bulk superconductors are weakly coupled through a rectangular of
dimensional electron gas~2DEG! ~b!.

FIG. 2. Dashed line isi→ j trajectory passing through the pointr. All of
this type trajectories are confined in the angleu i j . L, Ware length and width
of the rectangular.
-
de-
s.
-

e
di-
to

-
-

g
-

al
r

where

Ĝv~vF ,r !5S gv f v

f v
1 2gv

D
is the matrix Green’s function, which depends on t
Matsubara frequencyv, the electron velocity on the Ferm
surfacevF and the coordinater ;

D̂5S 0 D

D* 0 D
is the superconducting pair potential. For the self-consis
off-diagonal potentialD~r ! and current densityj (r ) we have
the expressions

D~r !5l2pT (
v.0

^ f v&, ~3!

j ~r !524p ieN~0!T (
v.0

^vFgv&. ~4!

They determine the induced order parameterc[D/l
and the 2D current density in the normal layer;N(0)
5m/2p; ^...& is the averaging over directions of 2D vector
vF ; l is the constant of electron-phonon coupling.

Equations~2! are supplemented by the values ofD and
Green’s functions in bulk banks far from theSN-interfaces

D̂ i5D0~ t̂1 cosw i2 t̂2 sinw i !,

Ĝi5
vt̂31D̂ i

~v21D0
2!1/2, i 51,...4. ~5!

We solve Eqs.~2! by integrating over the ‘‘transit’’ tra-
jectories of the ballistic flight of electrons from one bank
another.12 These trajectories@characteristics of the differen
tial Eqs.~2!# are straight lines along the direction of electro
velocity ~see Fig. 2!. In the bulk superconducting banks th
order parameter can be taken as the constant value~5! up to
the SN-interface. In contrast to the case of 2D banks, these
‘‘rigid’’ conditions for D1,12 are valid for arbitrary sizesL
andW compared with the coherence lengthj0;yF /D0 , and
not only for L, W@j0 . At the same time, the Green’s func
tion along the given transit trajectory varies in a distance
aboutj0 when approaching theSN-interface.

Let us introduce the time of flight along the trajector
vF]/]r[d/dt, t i,t,`, where t5t i corresponds to the
point oni th SN-boundary andt5` to the point inside thei th
bank far from theSN-boundary. Then the general solution
Eqs. ~2! inside thei th bank satisfying the boundary cond
tions ~5! will be

Ĝi~ t !5
vt̂31D̂ i

V
1Ci@D0t̂32~v cosw i

1 i sign~vFni !V sinw i !t̂11~v sinw i

2 i sign~vFni !V cosw i !t̂2#e22V~ t2t i !. ~6!

Hereni is the outer normal to thei th side of the rectangula
boundary andV5(v21D0

2)1/2. The arbitrary constantsCi

must be found by matching of Green’s functions at

ed
n-
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coming and out-going points atSN-boundaries with the so
lution inside the normal layer along the trajectory which co
nects these points~see Fig. 2!. We consider here the simple
case when only Andreev reflection13 occurs atSN-interface.
In more realistic case, when usual reflection~e.g., due to the
potential barrier! or interface roughness are present, mo
general matching conditions must be used~see Ref. 14!.

3. CURRENT-PHASE RELATIONS

Inside the normal layer (D50), the Eilenberger equa
tions can be solved analytically. If we classify the electro
trajectories inside the normal layer according to the side
which they come in and go out, then the solution of Eq.~2!
can be written as

Ĝi→ j~ t !5
v

V
t̂31

D0

V
$cosh@2v~ t2t i !2 iw i #t̂1

2 i sinh@2v~ t2t i !2 iw i #t̂2%1Ai→ j$D0t̂3

2@v cosh~2v~ t2t i !2 iw i !#1V sinh@2v~ t

2t i !2 iw i #t̂11 i @V cosh$2v~ t2t i !2 iw i%#

1v sinh@2v~ t2t i !2 iw i #t̂2%, ~7!

whereĜi→ j (t) is the matrix Green’s function along the tra
jectory originating in thei th side and extending to thej th
side ~see Fig. 2!. We denote this trajectory byi→ j . Match-
ing ~7! with solution in the banks~6!, the corresponding
Ai→ j is obtained:

Ai→ j5
~D0 /V!sinh~vt j i 1 iw j i /2!

v sinh~vt j i 1 iw j i /2!1V cosh~vt j i 1 iw j i /2!
,

~8!

where t j i 5t j2t i and w j i 5w j2w i . From ~7! and ~8! we
have the expression for the matrix Green’s functi
Ĝv(r,vF) as a function of the coordinaterP( ~( is the
region of 2D rectangular weak link! and the direction ofvF .
In fact, we can write

Ĝv~r,vF!5Ĝi→ j , for vFPu i j ~r!, ~9!

where we have introducedu i j (r) as the angle in which al
i→ j trajectories, passing through the pointr, are confined
@see Fig. 2, Eq.~A1! in Appendix#. The diagonal and off-
diagonal terms ofĜi→ j (t) have the forms

gi→ j5
v

V
1D0Ai→ j

5
v cosh~vt j i 1 iw j i /2!1V sinh~vt j i 1 iw j i /2!

V cosh~vt j i 1 iw j i /2!1v sinh~vt j i 1 iw j i /2!
,

~10!

f i→ j5FD0

V
1~V2v!Ai→ j Gexp@22v~ t2t i !1 iw i #

5
D0 exp~vt j i 1 i ~w i1w j !/2!

V cosh~vt j i 1 iw j i /2!1v sinh~vt j i 1 iw j i /2!

3e22v~ t2t i !. ~11!
-

e

c
at

In the limit L, W!j0 the expressions~10! and ~11! for
Green’s functions are simplified and we have

gi→ j5
vV1~1/2!iD0

2 sin~w j i !

v21D0
2 cos2~w j i /2!

, ~12!

f i→ j5
D0

V cos~w j i /2!1 iv sin~w j i /2!
ei ~w i1w j !/2. ~13!

We can obtain the retarded and advanced Green’s fu
tions, ĜR,A(«), by analytical continuation of Matsubara’
Green’s functionĜ(v) @Eqs.~9!–~13!#. The poles of diago-
nal component of the retarded Green’s function,gR(«,r,vF),
determine the energies of local Andreev states in the sys
The local density of states in the normal layer is given by
formula

N~«,r!5N~0!^Reg~v52 i«,r,vF!&. ~14!

Using the expressions~9! and ~12! and the fact thatu i j (r)
5u j i (r) in the case of a small junction, we obtain

N~«,r,$w i%!5N~0!(
iÞ j

^Reg~v52 i«,r,vF!&u i j

5N~0!(
iÞ j

u i j ~r!Regi→ j~v52 i«!

5N~0!(
i , j

u i j ~r!Re@gi→ j~v52 i«!

1gj→ i~v52 i«!#5pD0N~0!(
i , j

u i j ~r!

3Usin
w j i

2 UdS u«u2D0 cos
w j i

2 D . ~15!

We can also use Eqs.~9! and~12! to obtain^vFg& at a point
of the i th side r i . Then, the resulting expression can
replaced in Eq.~4! to find the current densityj (r i). The
calculation of the current density at the arbitrary point of t
normal rectangular will come in the next section and t
Appendix. Here we calculate the total currentI i flowing into
the i th bank.

Let us start with the case of a small junction~L, W
!j0!. In order to findI i , we have to calculate the integra
I i5* (Si )

j (r i)•dsi , where the integral is taken over thei th
side of rectangular.

After calculation ofj (r i) from ~A3! and~A5! and taking
the integral overdsi , we obtain

I i5
epFD0d

2p (
j 51

4

g i j sinS w i2w j

2 D
3tanhH D0 cos@~w i2w j !/2#

2T J , ~16!

whered5AL21W2 andg i j 5g j i ;

g13512
k

A11k2
; g24512

1

A11k2
;
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g125g145g235g345
1

2 S 11k

A11k2
21D , ~17!

are geometrical form factors that depend on the width
length ratiok5W/L. The positive sign ofI i corresponds to
the direction of the current from the normal layer to thei th
bank. Note that

(
i 51

4

I i50.

The formula~16! for current-phase relations generaliz
the expression~1! to the case of a small mesoscop
4-terminal junction. It follows from~17! that the form factor
g i j cannot be factorized, i.e., presented in the formg i j

5g ig j , in contrast to the case of relation~1!, where g i j

5(1/Ri)(1/Rj ). This essential feature of the current-pha
relations reflects the nonlocal nature of the supercurrent
the mesoscopic multi-terminal Josephson junction.

The current-phase relations~16! are valid for arbitrary
temperatureT. In the limiting cases ofT50 and temperature
close toTc the expression~16! takes the forms

I i5
epFD0d

2 (
j 51

4

g i j sinS w i2w j

2 D for T50, ~18!

I i5
epFD0

2d

4pTc
(
j 51

4

g i j sin~w i2w j ! for T5Tc . ~19!

In the case of arbitrary lengthsL, W, we restrict the consid-
eration for the temperature close toTc . In this case current-
phase relations similar to the expression~19! can be ob-
tained. The difference is in geometrical form factors. In fa
we have the result

I i5
epFD0

2d

4pTc
(
j 51

4

g̃ i j ~k,L,W!sin~w i2w j !, ~20!

where the generalized form factors are given by

g̃415g̃215g̃235g̃435
4

p2A11k2

3E
2k/2

k/2

dyE
2arctan~~k/2!1y!

p/2

du cosu

3 (
n50

`
exp@2L~k/21y!~2n11!/~jN cosu!#

~2n11!2 ,

~21!

g̃425g̃24[
4

p2A11k2 E2k/2

k/2

dyE
2arctan~~k/2!1y!

arctan~~k/2!2y!

du cosu

3 (
n50

`
exp@2L~2n11!/~jN cosu!#

~2n11!2 ,

g̃125g̃145g̃325g̃345g̃41~L→W,W→L,k→1/k!,

g̃135g̃315g̃42~L→W,W→L,k→1/k!.

HerejN5vF/2pT. In the limit L, W!j0 , g̃ i j reduce tog i j .
-

e
in

,

4. SPATIAL DISTRIBUTION OF SUPERCURRENTS
AND INDUCED ORDER PARAMETER

In this section we will obtain the supercurrent dens
and the induced order parameter at an arbitrary point of
normal layer in the case of a small junction. At the giv
point of the normal layerr5xi1yj

^vFg&5(
i . j

~^vFg&u i j
1^vFg&u j i

!

5 i(
i . j

^vF&u i j

D0
2 sinw j i

v21D0
2 cos2~w j i /2!

, ~22!

where we have used̂ vFg&u i j
5^vF&u i j

gi→ j , ^vF&u j i
5

2^vF&u i j
andgj↔ i5gi→ j* .

The current density is obtained by replacing~22! in the
Eq. ~4!:

j ~r!52peN~0!D0(
i . j

^vF&u i j
sin

w j i

2

3tanhS D0 cos~w j i /2!

2T D . ~23!

The expression~23! describes the spatial distribution o
the current density inside the normal layer. In order to fi
the explicit expression for the coefficients^vF&u i j

in Eq. ~23!,
we have to consider four different regions in the normal re
angular and obtainj ~r! in each region separately~see Appen-
dix!. This calculation has been done in the Appendix and
result for j ~r! is given by~A3! and~A5!. Here we write Eq.
~23! in the more transparent form. Let us introduceû i j (r) as
the unit vector in the direction of thei→ j trajectory passing
through the bisector ofu i j (r); then^vF&u i j

can be written as

^vF&u i j 5E
0

u i j du

2p
vF5

vF

p
sinS u i j

2 D û i j . ~24!

Combining Eqs.~23! and ~24!, we obtain

j ~r!5
epFD0

2p (
i , j

sinS u i j

2 D û i j ~r!

3sinS w j2w i

2 D tanhFD0 sin@~w j2w i !/2#

2T G . ~25!

The distribution of the induced order parameter can be
tained in a way similar to what we have done forj ~r!. In this
case we need to calculate the average of off-diagonal
ment of the matrix Green’s function,f v(vF ,r), in the direc-
tion of vF :

^ f &5(
iÞ j

^ f &u i j
5(

iÞ j
u i j ~r! f i→ j . ~26!

Replacing~26! in ~3! and after the calculation, we obtain fo
c(x,y)5D(x,y)/l:

c~x,y!5
D0

l (
i 51

4

u i~x,y!eiw i. ~27!
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Hereu i(x,y) is the angle by whichi th side is seen from the
point r[(x,y). The anglesu i(x,y)’s are given by the rela-
tions

u15p2a~x,y!2a~2x,y!,

u25a~2x,2y!1a~2x,y!,
~28!

u35p2a~x,2y!2a~2x,2y!,

u45a~x,y!1a~x,2y!,

where the angle

a~x,y!5arctanS k/21y

1/21xD ~29!

is a function of the coordinate~normalized byL! and is
shown in Fig. 3. Equation~27! expresses the fact that, insid
the ballistic normal layer region, the linear superposition
four macroscopic wave functions~pair potentials! of the
banks occurs, where the weight of wave function of thei th
bank is determined by the geometrical factoru i(x,y).

5. CONCLUSIONS

The present study considers a 4-terminal microstruc
based on a new class of mesoscopic Josephson junct9

which are fully phase coherent and have comparable w
and length. The microscopic theory of the stationary coh
ent current states in ballistic multiterminals is developed.

We have calculated the current-phase relations~CPR!,
i.e., the total currents in each terminal as functions of
phases of the superconducting order parameter in all
banks. These relations describe the behavior of the sys
influenced by the external transport currents or the app
magnetic fluxes. The essential difference between the C
for mesoscopic@expression~19!# and conventional~relation
~1!! 4-terminals consists in the structure of the coefficients
couplingg i j . In the mesoscopic case considered here th
coefficients cannot be factorized~presented in the formg i j

5g ig j for all indexesi, j and arbitrary value of the width
to-length ratiok5W/L. Here we only outline the new effec

FIG. 3. The anglesu i j for a point in the region II. We have just shownu13 ,
u23 , u245u4 and also the anglea.
f
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r-

e
e
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specific for the mesoscopic 4-terminal junction, which fo
lows from such nonlocal coupling of the currents. Let
consider the configuration shown in Fig. 4. By using t
CPR ~19! with g i j given by ~17!, it can be shown that an
applied magnetic flux through one of the rings produc
magnetic flux in the other ring even in the absence of
external flux through the other one. The detailed theory
this effect will be reported in a separate publication.

The physical properties of the interior of the mesosco
4-terminal junction are of interest by themselves. The ab
calculated local density of Andreev states, the current den
and the order parameter distributions depend on the ph
differences between the four terminals and can be regul
by the applied magnetic fluxes. In particular, for some valu
of the phasesw, u and x ~see Fig. 4! the ‘‘vortex state’’
inside the mesoscopic 2D weak link exists. Figures 5 and
present the plots for distributions of the absolute value of
induced order parameter and the supercurrent density in
caseu5p/2, w53p/2, x50. The studying of the structure
of induced order parameter and local density of states
well as the dynamical behavior of the system will be t
object of further investigation.

FIG. 4. A configuration of the mesoscopic 4-terminal Josephson junct
The terminals1 with 2 and3 with 4 are short-circuited by the superconduc
ing rings ~dashed lines!. The phase differences areu5w22w1 , w5w3

2w4 , x5(w11w2)/22(w31w4)/2.

FIG. 5. Absolute value of the induced order parameteruc(x,y)u is plotted
vertically for the values of phase differencesu5w22w15p/2, w5w3

2w453p/2, x5(w11w2)/22(w31w4)/250. The lines of uc(x,y)u
5const are shown.
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APPENDIX

In this Appendix we present expressions for the ang
u i j and the vectorŝvF&u i j

. Using the expressions given her
one can calculate the density of statesN and the current
densityj @see Eqs.~15! and ~23!#.

According to the classification of the trajectories in te
of origin and destination sides, there are 12 different type
trajectories which are 1→2, 1→3, 1→4, 2→3, 2→4, 3
→4 and the corresponding reverse of these trajectories. F
given point, depending on the position, some of these tra
tories do not take place. In this respect we can consider
different regions in the normal rectangular:

I, wherey,0,uyu.kuxu, ~2→3, 3→4 and their reversed ar
absent!;
II, where x>0, uyu<kx ~1→4, 3→4 and their reversed ar
absent!,
III, where y>0, y.kuxu ~1→2, 1→4 and their reversed ar
absent!
and
IV, wherex,0, uyu<kx ~1→2, 2→3 and their reversed ar
absent!.

At the given pointr, for the absent trajectories we hav
u i j 50, and consequently the corresponding term in the
pressions ofN and j @Eqs. ~15! and ~23!# will vanish. We
shall calculatej at the given point of the region II and the
introduce the exchange rules of arguments to obtain i
other regions. Consider a point in region II; the possi
~non-vanishing! u i j are drawn in Fig. 6 and can be express
in termsu i ’s ~given by ~28! and ~29!! as

u125
1
2 ~u11u22u32u4!,

u135
1
2 ~u12u21u31u4!, ~A1!

FIG. 6. Vector field plot of the supercurrent density,j (x,y), inside the
normal layer. The values of phase differences are the same as in Fig.
c
n
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u235
1
2 ~2u11u21u32u4!, u245u4 .

Also we can use the relation̂vF&u i j
5*(du/2p)vF( i cosu

1j sinu) to obtain

^vF&u12
~x,y!5

vF

2p
$sin@a~2x,2y!#2sin@a~x,y!## i

1@cos@a~x,y!#2cos@a~2x,2y!## j%,

^vF&u13
~x,y!5

vF

2p
$sin@a~2x,y!#2sin@a~2x,2y!## i

1@cos@a~2x,y!#1cos@a~2x,2y!## j%,
~A2!

^vF&u23
~x,y!5

vF

2p
$sin@a~x,2y!#2sin@a~2x,y!## i

1@cos@a~x,2y!#2cos@a~2x,y!## j%,

^vF&u24
~x,y!5

vF

2p
$2sin@a~x,y!#1sin@a~x,2y!## i

1@cos@a~x,y!#2cos@a~x,2y!## j%,

wherea(x,y) is given by Eq.~29!. The corresponding rela
tions, valid for other regions, can be obtained from~A1! and
~A2!, using the appropriate rules of index and coordin
exchange~see below!. Replacing Eqs.~A1! and~A2! in ~23!,
we obtain for current density in a point of region II

j II ~x,y!5@2k~x,y!1 l~x,y!#P131@2k~2x,2y!

2k~x,y!#P122@k~x,y!1 l~2x,2y!#P24

1@ l~2x,2y!2 l~x,y!#P23, ~A3!

where

k~x,y!5sina~x,y!i2cosa~x,y!j ,

l~x,y!5sina~2x,y!i1cosa~2x,y!j , ~A4!

and Pi j 5(epFD0/2p)sin(wji/2)tanh@D0 cos(wji/2)/2T#. The
current density in other regions is obtained fromj II by ap-
plying the following rules of phase and coordinate exchan

j I5 j II ~x→2y/k,y→x/k,k→1/k; i→2 j , j→2 i;

w1→w4 ,w2→w1 ,w3→w2 ,w4→w3),

j III 5 j II ~x→y/k,y→2x/k,k→1/k; i→ j ,j→2 i;

w1→w2 ,w2→w3 ,w3→w4 ,w4→w1),

j IV5 j II ~x→2x,y→2y,k→k; ~ i→2 i,j→2 j !;

w1→w3 ,w2→w4 ,w3→w1 ,w4→w2). ~A5!

The same relations as~A5! can be used foru i j and ^vF&u i j

~the phase exchanges have to be replaced by correspon
index exchanges!.
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Resonant magnetic properties of gadolinium–gallium garnet single crystals
A. R. Bedyukh, V. V. Danilov, A. Yu. Nechiporuk, and V. F. Romanyuk

Taras Shevchenko University, 252022 Kiev, Ukraine*
~Submitted April 28, 1998; revised October 12, 1998!
Fiz. Nizk. Temp.25, 249–251~March 1999!

The results of experimental investigations of resonant magnetic properties of gadolinium–gallium
garnet~GGG! single crystals at temperatures 4.2–300 K in the frequency range 1.6–9.3
GHz are considered. It is found that magnetic losses in GGG are determined by the initial splitting
of energy levels for gadolinium ions in the garnet crystal lattice and by the dipole broadening.
The width and shape of the electron paramagnetic resonance~EPR! line in the GGG
crystal, whose asymmetry is manifested most strongly at low frequencies, can be explained by
the influence of these factors. Magnetic losses in GGG increase with frequency and upon
cooling. It is found that the EPR linewidth increases considerably with decreasing temperature
due to the presence of rapidly relaxing impurities. ©1999 American Institute of Physics.
@S1063-777X~99!00503-4#
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Single crystals of GGG Gd3Ga5O12 are widely used as
substrates for growing epitaxial films of magnetic garnets
various compositions. For instance, epitaxial films
yttrium–iron garnet~YIG! Y3Fe5O12 and gallium-substituted
YIG form the material basis of instruments used in sp
wave electronics in the microwave range.

In spite of the fact that the influence of magnetic pro
erties of a GGG substrate on damping and dispersion
magnetostatic spin waves~MSW! in a wide temperature
range was considered by us earlier,1–3 a detailed complex
investigation of GGG magnetic losses and their origin h
not been carried out so far. In this communication, a refin
information on magnetic resonant properties of indigen
GGG crystals grown by the Czochralski technique.

The permittivity and permeability of monocrystallin
GGG samples were studied on the basis of the standard
nator technique. The sensitivity of the method was improv
due to original instruments recording the variation of reso
tor parameters and allowing us to detect spontaneous v
tion of frequency to within 50 kHz and of theQ-factor to
within 2%.4 The permittivity measurements were made a
frequency of 9.3 GHz in a resonator withE020 type oscilla-
tions, while the permeability was measured in a resona
with H011 type oscillations for samples of size 232
375 mm and 231375 mm.

The real componentm8 of permeability of the GGG
single crystal was 1.07560.001 in zero external magneti
field and 1.07960.001 for H055 kOe; the permittivity
of the GGG in the frequency range under investigation w
«513.160.1.

The field dependences of magnetic lossesm9 in the fre-
quency rangef 51.62– 2.90 GHz~see Fig. 1! were studied at
room temperature on a radiospectrometer RE1301 mod
for the operation in the required frequency range.

At a frequency of 9.3 GHz, the magnetic lossesm9 of
1821063-777X/99/25(3)/2/$15.00
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the GGG single crystal were determined at room tempera
and liquid nitrogen temperature, while the EPR linewid
DH was measured in the temperature range 4.2–300 K.
field dependences ofm9 in this frequency range are shown
Fig. 2. Figures 1 and 2 also show them9(H0) dependences
from Ref. 5 ~curves5 and 3 respectively!. First of all, we
note the presence of absorption in zero external magn
field and clearly manifested asymmetry of absorption curv
which is observed up to frequencies of the order of 10 GH
On the other hand, the magnetic losses at liquid nitrog
temperature are approximately four times larger than
losses at room temperature~curve2 in Fig. 1!.

DISCUSSION OF RESULTS

In order to clarify the origin of magnetic losses in GGG
we must take into account, first, the structure of energy l
els of Gd31 ions in the garnet crystal lattice, and secon
their dipole–dipole interaction.

In spite of the fact that a free Gd31 ion has zero orbital
angular momentum in the ground state, the initial magne
(H050) splitting up to 8.5 GHz takes place in the cryst
lattice of garnets due to partial mixing with other state
Naturally, the strong dipole–dipole interaction of Gd31 ions
in a Gd3Ga5O12 crystal transforms this system of energy le
els into a continuous band which is responsible for init
losses and asymmetry of the EPR line at low frequencies
small values of the applied magnetic field. Thus, dipo
broadening amounting to;3 GHz makes a significant con
tribution to the EPR linewidth along with the initial splitting
With increasing frequency~and hence the applied magnet
field!, both these factors gradually generate a broad EPR
which is indeed observed in experiments.

The temperature dependence of the normalized E
linewidth of a GGG plate having a size 0.535 mm and a
© 1999 American Institute of Physics
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thickness of 400mm is shown in Fig. 3~the linewidth at
room temperature isDH.3 kOe). It is interesting to note
that the resonant EPR field did not change in the entire t
perature range and amounted to 3.1–3.2 kOe. A consider
increase in the linewidth upon cooling~approximately to
DH.6.7 kOe at liquid helium temperature! can be explained
by the fact that we used gadolinium oxide with a purity

FIG. 1. Magnetic losses in GGG single crystals at room temperatur
frequencies 1.62~curve 1!, 1.89 ~curve 2!, 2.25 ~curve 3!, and 2.90 GHz
~curve 4!; curve 5 corresponds to the results obtained in Ref. 5~at a fre-
quency of 2.1 GHz!.

FIG. 2. Magnetic losses in GGG single crystals at a frequency of 9.3 GH
liquid nitrogen temperature~curve 1! and at room temperature~curve 2!
in comparison with the results obtained in Ref. 5 at room tempera
~curve3!.
-
ble

99.5% to synthesize the GGG single crystal for our expe
ments. The presence of accompanying impurities of ra
earth ions creates a spin-lattice relaxation channel for G31

ions, whose efficiency increases upon cooling.6 The presence
of impurities is apparently also responsible for sligh
higher values ofm9 for the samples under investigation a
compared with the data obtained by Adam et al.5 at room
temperatures.

In conclusion, the authors are pleased to thank S.
Ryabchenko, Corresponding Member of the National Ac
emy of Sciences of the Ukraine, for his help in carrying o
this research and for fruitful discussions of the results.
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Exotic solitons in magnets with strongly anisotropic exchange interaction
A. S. Kovalev

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine* )

M. V. Gvozdikova

Kharkov State University, 310077 Kharkov, Ukraine
~Submitted September 18, 1998!
Fiz. Nizk. Temp.25, 252–262~March 1999!

Exotic magnetic solitons~compactons and peakons! in magnets with extremely anisotropic
exchange interaction are investigated on the basis of the classical Ising andXY-models. © 1999
American Institute of Physics.@S1063-777X~99!00603-9#
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INTRODUCTION

Intense studies of nonlinear dynamic physical syste
during the last 40 years have resulted in the formation o
new trend in theoretical and mathematical physics, viz.,
theory of solitons.1,2 As applied to the solid state physics, th
investigation of soliton dynamics in magnetically order
media is of special interest.3,4 Owing to a variety of struc-
tural and physical properties, magnets can exhibit nonlin
localized excitations of various types, such as magnetic s
tons and vortices, domain walls, and magnetization rota
waves.3,4 These systems are also interesting due to the
that some models in the theory of magnetism are comple
integrable, and the results of classical analysis permit a c
parison with the results of investigations of some on
dimensional quantum-mechanical models.

At the same time, the objects of investigation we
mainly simple 1D models in the long-wave limit~on the
basis of differential equations!. This made it possible to con
struct explicitly the solution for various types of magne
solitons in ferro- and antiferromagnets, ferrites, and s
glasses, and to carry out their classification. However,
theoretical results obtained for one-dimensional models
mit a comparison with experimental results only in the ca
of quasi-one-dimensional magnetic systems. A large num
of such compounds have been synthesized rece
among which the traditional quasi-one-dimensional fer
magnet CsNiCl3 ,5 new one-dimensional ferromagne
@~CH3!3NH#NiCl3•2H2O, ~C9H7NH!NiCl3•1.5H2O,6 layered
antiferromagnets (CH2)n~NH3!2MnCl4, (CnH2n11)
3~NH3!2MnCl4,

7–11 and most of HTSC compounds in th
stoichiometric phase and their isostructural analogs are w
mentioning. In view of an anomalously weak interaction b
tween layers, every magnetically ordered plane in the la
case of layered compounds can be regarded as an effe
spin and the array of layers as a model 1D spin system with
a weak exchange interaction.

However, actual low-dimensional magnets possess,
rule, peculiar physical properties differing from the magne
properties of 3D compounds. Above all, a large number
such magnets are essentially discrete in a magnetic res
1841063-777X/99/25(3)/8/$15.00
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and their description on the basis of differential equatio
i.e., systems with distributed parameters, is unjustified. T
discreetness of a magnetic subsystem is determined by
relation between the exchange interaction energy~Eex

;JS2/a2, whereJ is the exchange interaction constant,S
the unit cell spin, anda the atomic spacing! and the one-ion
anisotropy energy~Ea;bS2, whereb is the one-ion anisot-
ropy constant!. This relation involves the so-called ‘‘mag
netic length’’ l 05AJ/b determining the characteristic size o
the region of nonuniform distribution of magnetization.
the case of a weak exchange interaction~or large anisotropy!,
the value ofl 0 becomes of the order of atomic spacinga:
l 0;a(J;ba), and the system becomes essentially discr
in magnetic respect. The ratioJ/ba for the above com-
pounds can attain values of the order of or much smaller t
unity ~e.g.,J/ba;1 for HTSC compounds, whereJ is the
interlayer exchange12!, while this ratio for compounds inves
tigated in Refs. 7–11 attains the value of 1022 for large
numbersn. It was proved in Refs. 13–15 that the structu
and dynamics of nonlinear localized excitations~solitons and
domain walls! in such discrete systems changes significan
they become compact and assume a collinear form.

On the other hand, low-dimensional magnets in so
cases exhibit a considerable anisotropy of exchange inte
tion ~g-factor anisotropy!, while most theoretical~classical!
models take into account, as a rule, only one-ion or we
exchange anisotropy. The actual anisotropy of exchange
be of the order of the exchange interaction itself. For e
ample, the g-factor anisotropy in the compound
KDy~MoO4!2 and KEr~MoO4!2 is of the order of 101.16,17 In
this case, we can introduce several magnetic leng
l i5AJi /b associated with intensities of exchange interact
for different spin components. In extremely anisotrop
cases, when some components of this interaction vanish
arrive at the classical Ising model or theXY model. It was
proved by us earlier4,18,19that the structure of magnetic sol
tons and domain walls in this limit also changes consid
ably. Among other things, their ‘‘compactization’’ and th
formation of exotic nonlinear local excitations~compactons
and peakons! also become possible.

In spite of the apparent difference between the ab
© 1999 American Institute of Physics
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two circumstances, they possess the following property
common: the dispersion of elementary excitations~spin
waves! may become anomalously small in systems with
change interaction comparable with one-ion anisotropy
well as in systems with an anisotropy of exchange interac
comparable with the exchange itself. In a narrow sense of
word, dispersion is defined asD5d2v(k)/dk2, where
v5v(k) is the energy-momentum relation for elementa
excitation. It was found thatD;J for systems with an iso-
tropic exchange interaction,D;Jx5Jy!Jz for an Ising
magnet with the preferredz-axis, while D;AJxJzk (Jz

!Jx ,Jy) in the XY model with the same symmetry. Thu
the dispersion of linear waves becomes weak forJ, Ji,b.

It is well known that the reason behind the existence
nonlinear localized excitations is the competition of the s
tem nonlinearity and its spatial dispersion.2 For this reason,
the form of the energy-momentum relationv5v(k) for lin-
ear waves affects significantly the properties of soliton sta
Rosenau20,21 was the first to pay attention to the relatio
between the existence of compact solitons and the absen
dispersion of linear waves. He proposed a new version of
Korteweg–de Vries~KdV! equation with a nonlinear disper
sion term and obtained compact soliton solutions with a
tionary profile. At the same time, Kosevich22,23 also consid-
ered compact envelope solitons in nondispersve me
Later, Holm and Kamassa~1994! proposed their own modi
fication of the KdV equations permitting for a certain val
of velocity ~corresponding to the vanishing of dispersion! a
soliton solution with a peculiar exotic profile, which wa
called a peakon. A semiclassical interpretation of exotic s
tons ~compactons and peakons! was proposed by us
recently.18,19

In this paper, we consider a uniaxial ferromagnet w
one-ion and exchange anisotropies in the limit of strong
change anisotropy~Ising andXY magnets! and of one-ion
anisotropy of the easy-axis and easy-plane type on the b
of the classical one-dimensional Heisenberg model. All p
sible types of solutions for compactons and peakons are
tained for domain walls, dynamic magnetic solitons, a
magnetization rotation waves.

1. FORMULATION OF THE MODEL AND EQUATIONS OF
MAGNETIZATION DYNAMICS

Let us consider a uniaxial ferromagnet with exchan
and one-ion anisotropies of the same symmetry, whose
ergy density in the 1D case has the form3

E5
J

2 S ]M

]x D 2

1
J1

2 S ]Mz

]x D 2

2
b

2
Mz

2, ~1!

where M is the magnetization vector,Jx5Jy5J, Jz5J
1J1 are the exchange interaction constants along the co
sponding axes, andb is the constant of one-ion anisotrop
associated with thez-axis ~b.0 for an easy-axis ferromag
net andb,0 for an easy-plane ferromagnet!.

The equations of magnetization dynamics~Landau–
Lifshitz equation! in the angular variablesu andw specifying
the orientation for the vectorM5M0 ~sinu cosw, sinu sinw,
cosu! have the form3
in

-
s
n
e

f
-

s.

of
e

-

ia.

i-

-

sis
-
b-
d

e
n-

e-

sinu
]u

]t
52

2m0

\M0

dE

dw
, sinu

]w

]t
5

2m0

\M0

dE

du
, ~2!

whereM0 is the nominal magnetization andm0 Bohr’s mag-
neton. In fact, Eqs.~2! are Hamilton equations for canon
cally conjugate quantitiesw andMz .

For the special case of uniaxial ferromagnet with t
energy density~1!, Eqs.~2! assume the form

@ l 21~L22 l 2!sin2 u#
]2u

]x2 2Fs1 l 2S ]w

]x D 2

2~L22 l 2!

3S ]u

]xD 2Gsinu cosu1
1

v0
sinu

]w

]t
50, ~3!

l 2
]

]x S sin2 u
]w

]x D2
1

v0
sinu

]u

]t
50, ~4!

where we have introduced the notation for the homogene
ferromagnetic resonance frequencyv052m0M0ubu/\;
l 25J/b; L25(J1J1)/b and the sign coefficients equal to
11 or 21 for the easy-axis and easy-plane cases, res
tively.

The system of equations~3! and~4! can be written in the
form of a single equation in the complex quantityC5(Mx

1 iM y)/M0 :

i
]C

]t
2 l 2m

]2C

]x2 1L2C
]2m

]x2 1smC50, ~5!

where m5A12uCu2 is the dimensionlessz-component of
magnetization, and time is measured in the units of 1/v0 .

It should be noted that we have used the phenomenol
cal expression for energy~1!, which implies that the long-
wave approximation (]/]x!1/a) is valid for static solutions
if the inequalitiesJx ,Jz@ba2 ( l ,L@a) are satisfied. If how-
ever, we proceed from the discrete Hamiltonian with the
change interactionEex52S i ,nJiM i

nM i
n11/a2, wheren is the

number of the lattice site spin, we must substituteb2(Jx

2Jz)/a
2 for b in Eq. ~1! in the long-wave limit. In this case

the long-wave approximation is valid when the inequalit
Jx ,Jz@ba22(Jx2Jz) are satisfied. In other words, in ex
tremely anisotropic cases withJx5Jy50 ~Ising’s limit! and
Jz50 ~theXY limit !, this approximation holds for close va
ues of one-ion anisotropy and nonzero exchange interac
component.~Conversely, in the case of an isotropic e
change interaction the system becomes essentially disc
~see above!, and the long-wave approach is inapplicable.!

Equations~3!–~5! and their soliton solutions were ana
lyzed completely only for a ferromagnet with an isotrop
exchange interaction for whichL5 l . In this case, the system
becomes completely integrable3,4 both in the easy-axis and
the easy-plane cases, and all soliton solutions of Eq.~5! have
an explicitly analytic form: domain walls and dynamic ma
netic solitons can exist in an easy-axis ferromagnet, wh
dynamic solitons and magnetization rotation waves can
observed in an easy-plane ferromagnet.3,4 In the general case
for LÞ l , soliton solutions for an easy-axis ferromagnet c
be presented implicitly in terms of elliptic integrals3 or ana-
lyzed numerically.24 To our knowledge, soliton states wit
LÞ l in the easy-plane case have not been investigated.
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2. MAIN TYPES OF SOLITON EXCITATIONS IN A
FERROMAGNET

The classification of soliton excitations of a uniaxial fe
romagnet is determined essentially by the type of one-
anisotropy since the nature of the ground state of the sys
changes with its sign. The ground state of an easy-axis
romagnet is doubly degenerate and corresponds to a con
ration with m561, while the ground state in an easy-pla
ferromagnet, which corresponds tom50, is degenerate con
tinuously in the phase of the complex functionC. As a re-
sult, the spectra of spin waves in these two cases differ
nificantly.

In an easy-axis magnet (s51), the spectrum of nonlin-
ear spin waves withC.exp@i(vt2kx)# has the form

v5m~11k2l 2!. ~6!

The dispersion of these waves isD52ml2. We see that
the dispersion of spin waves in the Ising limit~Jx5Jy50,
l 50! vanishes. On the other hand, in the limit of theXY
model (Jz50) the dispersion vanishes~together with fre-
quency! at a definite amplitude of the spin waveC051 (m
50). In a reference frame moving with the group veloc
V52mkl2, the energy-momentum relation for linear wav
~with m51!, i.e.,

ṽ512
V2

4l 2 ~7!

defines the range of soliton solutions on the (ṽ,V) plane:
v,ṽ(V). In the Ising limit (l 50), this region collapses
into a line v,1,V50, and hence only stationary doma
walls ~as in the case of an isotropic exchange interaction! and
stationary magnetic solitons exist. On the other hand,
region of existence of solitons in theXY model (L50) is the
same as for an isotropic exchange, but the lineṽ,0,V50
becomes singular~the dispersion vanishes on it!.

In the isotropic case (L5 l ), domain walls correspond to
the point v50,V50, and the relevant solution is we
known:

m5tanh
x

l
, ~8!

while the simplest solution for a stationary magnetic solit
(V50) has the form3,4

m512
2~12v!

v sinh2~x/ lA12v!11
, v.0,

m511
2~12v!

v cosh2~x/ lA12v!21
, v,0. ~9!

In the case of an easy-plane one-ion anisotropy~s521!,
linear spin waves have the following energy-momentum
lation:

v5 lkA11L2k2. ~10!

With such a dispersion relation, the group velocity a
dispersion have the form

V5 l ~112L2k2!~11L2k2!21/2,
n
m
r-
u-

g-

e

-

D5L2lk~312L2k2!~11L2k2!23/2.

It can be seen that the dispersion vanishes in the Isingl
50) andXY (L50) limits. Besides, the group velocity als
vanishes in the Ising limit. In a reference frame moving w
the group velocity, the dispersion relationsṽ5ṽ(V) for lin-
ear waves can be written implicitly in the form

ṽ52 lL 2
k3

A11L2k2
, V5 l

112L2k2

A11L2k2
. ~11!

The parabolas

ṽ.2~2/3!3/2~V2 l !3/2/LAl

corresponding to~11! and the segment~ṽ50, uVu, l ! bound
the region of existence of dynamic magnetic solitons on
(ṽ,V) plane. It follows from~11! that in the Ising limit this
region ‘‘collapses’’ into a line~V50, v,0!, and hence only
stationary solitons exist. The range of dynamic solitons
the XY model is bounded by the straight lines~v50,
uVu, l ! and ~V56 l , v,0!.

In the case of an isotropic exchange interaction (L5 l ),
the segment~ṽ50, uVu, l ! corresponds to magnetization ro
tation waves for which the solution has the form3,4

C5tanhj1 i ~V/ l !
1

coshj
, m5

A12V2/ l 2

coshj
, ~12!

wherej5A12V2/ l 2(x2Vt)/ l .
Solutions for dynamic solitons exist in the entire ran

of parameters under parabolas~11! and the line of magneti-
zation rotation waves, and are cumbersome even in the
of a stationary center of mass of such a wave3,4:

m5
2 sinh~kx/ l !sinvt~k221!

~k221!sinh2~kx/ l !1k22sin2 vt
,

C5
~k221!sinh2~kx/ l !2k21sin2 vt

~k221!sinh2~kx/ l !1k22sin2 vt

1 i
2kAk221 sinh~kx/ l !cosvt

~k221!sinh2~kx/ l !1k22sin2 vt
, ~13!

whereuvu5kAk221.
Let us consider the transformation of magnetic solito

domain walls, and magnetization rotation waves in fer
magnets with extremely anisotropic exchange interaction

3. EXOTIC SOLITONS IN AN EASY-PLANE FERROMAGNET

3.1. Compactization of localized excitations in an easy-
axis Ising magnet

The magnetization dynamics in an easy-axis ferromag
with anisotropic exchange interaction is described by
system of equations~3! and ~4! with s511. For soliton
solutions of the general form

u5u~x2Vt!, w5C~x2Vt!1ṽt ~14!

Eq. ~4! is integrable. Using the relation betweenC andu and
integrating Eq.~3! we obtain3
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du

dx
Al 21~L22 l 2!sin2 u

52 tan
u

2
Acos4~u/2!2~V/2l !22ṽ cos2~u/2!. ~15!

This first-order equation permitting the integration in quad
tures and analysis on the phase plane can be conveni
written in terms of the variablem:

S dm

dx D 2

5~12m!2
~11m!~122ṽ1m!2~V/ l !2

~L22 l 2!~12m2!1 l 2 . ~16!

In the case of an isotropic exchange interaction (L51), Eq.
~16! can be reduced to

l 2S dm

dx D 2

5~12m!2F ~11m!222ṽ~11m!2S V

l D 2G .
~17!

The phase profile of this equation is shown in Fig. 1a. T
standard separatrix loop1 here corresponds to a solution
the general form~in particular, solution~9! for ṽ.0!, sepa-
trices2 and28 correspond to solution~8! for a domain wall
with v50,V50, while separatrix loop 3 corresponds to s
lution ~9! for a magnetic soliton with negative frequency.

In the limit of Ising ferromagnet for whichl→0 ~it was
proved above thatV→0 andV/ l→0 in this case!, Eq.~16! is
transformed as follows:

~12m2!FL2S dm

dx D 2

1~m2v!22~12v!2G50. ~18!

Its phase profile differs significantly from the same for E
~17! and is presented in Fig. 1b. It consists of ellipse1 for
positive-frequency solitons, half an ellipse2 or 28 for do-
main walls of different signs withv50, and a part of an
ellipse and a segment of the straight linem521 ~loop 3! for
negative-frequency solitons.~It should be noted that the am
plitudes of a stationary soliton in a ferromagnet with an is
tropic exchange interaction and in an Ising magnet coinc
m(x50)52112v. It follows from ~15! that in the genera
case this quantity is independent of the parameterL and l
also forV50.!

The solution of Eq.~18! for positive-frequency solitons
(v.0) has the simple form4

m5v2~12v!cos~x/L !, uxu,pL,

m51, uxu.pL, ~19!

and its profile is shown in Fig. 2a.
Comparing this soliton solution with solution~9!, we see

that the amplitude is proportional to the quantity (12v) as
before, which is typical of dynamic solitons, but the loca
ization region is now independent of frequency and fix
D52pL.

The most interesting property of the obtained solution
that m[1 in the regionsuxu.pL, and all variations of the
magnetization field are concentrated in a finite region
space. Later, such solutions were called ‘‘compactons.’’20,21

The physical reason behind the existence of such exotic
citation is as follows: since the dispersion of linear waves
-
tly

e

-

.

-
e:

:

s

f

x-
s

equal to zero in the limiting case under investigation, t
asymptotes of a localized solution withm→0 at infinity ~for
uxu→`! can only be identically equal to zero. However,
the center of a localized excitation, where the amplitude d
fers from zero, nonlinear dispersion terms in the equation
responsible for the dispersion of a nonlinear wave.

The following two circumstances should be noted in th
connection. First, the compacton solution~19! can be ex-
pressed in terms of a trigonometric function which is usua
a solution of the linear equation.~Indeed, the factor in brack
ets in ~18! is the integral of the linear equationL2mxx1m
5v.! However, the amplitude of the solution is not arb
trary, but is a certain function of frequency, as is usually
case in nonlinear equations.

Second, although solution~19! is ‘‘sewn’’ from several
function and is a piecewise solution, the functionm(x) itself
and its first derivative are continuous function. Moreov

FIG. 1. Phase profiles of dynamic solitons and domain walls in the cas
an easy-axis magnet with an isotropic exchange interaction~a! and an easy-
axis magnet with Ising exchange interaction~b!. Curves1, 2 and 3 corre-
spond to positive-frequency solitons, domain walls, and negative-freque
solitons respectively.
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solution ~19! is a limit ~for l→0! of the analytic function
without any singularities. For example, a small-amplitu
soliton with 12m!1 in a magnet withl /L!1 andV50 can
be described by the approximate equation

4L2S du

dxD
2

5u2
2~12v!2u2

l 2/2L21u2 ~20!

for the functionu5A12m. Solution~20!, which is analytic
in the entire region of space, has the following implic
form18,19:

x

L
5

1

AA
ln

AA2 f

AA1 f
2arcsin

f 221

f 211
, ~21!

whereA5(2L/ l )2(12v) and

f 5F4L2~12v!22L2~12m!

l 212L2~12m! G1/2

.

FIG. 2. Profiles for a dynamic compacton with positive~a! and negative~c!
frequencies and for a compact domain wall~b! in an Ising easy-axis magne
In the limit v50, the soliton solution~19! is transformed
into the solution for a domain wall4:

m51, x.pL/2,

m5sin~x/L !, uxu,pL/2, ~22!

m521, x,2pL/2

~see Fig. 2b!. This solution also has the form of a compacto
but a topological one. It corresponds to separatrices2 and28
in Fig. 1b. A solution of this type was recently obtained
Remussineet al. for the mechanical model proposed b
them. It can be seen from~19! and ~22! that the width of a
compact domain wall is equal to half the width of a dynam
compacton.

Finally, for negative frequencies of magnetization pr
cession in a soliton, the solution also has the compac
form:

m52uvu2~11uvu!cos@~x1x0!/L#, 0,x,x1 ,

m51, x.x1 , ~23!

where x05arccos@(12uvu)/(11uvu)#, x15Lp2x0 and m(x)
5m(2x) ~see Fig. 2c!.

In this case, however, solution~23! has a derivative
jump at the center of a soliton. But the amplitude of t
solution is not arbitrary and is equal to a quite definite va
of m521, the valuem521 being a solution of the nonlin
ear equation~18!. Nevertheless, the derivative of the angu
variable u at zero has a singularity: du/dx
'4Auvu/ALx(11uvu), and the long-wave approach be
comes meaningless at this point. However, solution~23! is
the limit of the analytic solution of Eq.~16! with l !L for
l→0 as in the previous case. Such a behavior is typica
so-called peakons~see below!, and hence negative-frequenc
solitons in the Ising limit are combinations of a compact
and a peakon.

In contrast to positive-frequency solitons, the region
localization in negative-frequency solitons is not fixed a
depends on frequency: D52L(p2arccos@(12uvu)/(1
1uvu)#). As uvu→`, the solution is transformed to the poin
like singularity. At large frequencies, the frequency depe
dence of the soliton widthD.4L/Auvu is the same as in the
case of an isotropic magnet for whichD.4l /Auvu.

Finally, let us consider the relation between integrals
motion of compactons. Besides the energy~1! which has the
form

E5
b

2 E
2`

`

dxS L2S dm

dx D 2

2~m221! D , ~24!

in the Ising limit, the system possesses an additional inte
of motion, viz., the total number of spin deviations

N5E
2`

`

dx~12m!. ~25!

The frequency dependence of the compacton energy and
number of bound magnons in the compacton are descr
by the formulas

E5bpL~12v2!, v.0, ~26!
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E5bLF ~12v2!S p2arccos
12uvu
11uvu D12~1

1uvu!AuvuG ,
v,0

and

N52pL~12v!, v.0, ~27!

N52L~11uvu!Fp2arccos
12uvu
11uvu

2
2Auvu
11uvuG ,

v,0.

These formulas lead to the relationdE/dN5bv typical of
soliton solutions, and the dependencesE5E(v) and N
5N(v) resemble qualitatively the same dependences
magnets with isotropic exchange.3 However, in contrast to
conventional solitons in magnets with an isotropic excha
interaction, for which the value ofN increases indefinitely a
v→0, the value ofN(v50)52pL in the given case re
mains finite~as in the case of magnets with biaxial one-i
anisotropy!. The relation between integrals of motion has t
following simplest form for positive-frequency compacton

E5bN2
b

4pL
N2. ~28!

This dependence is unusual and differs from the stand
relationE5bN2O(N3) for small-amplitude solitons. How
ever, corrections to energy quadratic in the numberN are
typical of anharmonic oscillators. Thus, compactons poss
certain properties of such an isolated anharmonic oscill
in view of their extraordinarily strong localization.~For
negative-frequency solitons, formulas~26! and ~27! lead to
the asymptotic dependenceE5E(N) for large values of
uvu:E.14bL2/N, which is in qualitative agreement with
similar asymptotic form for solitons in a magnet with a
isotropic exchange:E}b l 2/N.!

3.2. Localized excitations in an easy-axis XY ferromagnet

Let us consider the other limiting case of anisotropy
exchange interaction of theXY-type, for whichL50. In this
case, Eq.~16! can be simplified as follows:

l 2m2S dm

dx D 2

5~12m!2@m212m~12ṽ !1~122ṽ

2~V/ l !2!#. ~29!

For small deviation of the soliton parameters from the d
persion relation for linear waves, the small-amplitude soli
has the standard form

m'12@11~V/2l !2#
j

2 cosh2~Aj~x2Vt!/ l !
, ~30!

wherej512(V/2l )22ṽ. However, the solution is modified
significantly in the vicinity of the parabolaṽ51/2
2V2/(2l 2) on whichm vanishes at the center of the solito
r

e

rd

ss
or

f

-
n

On this curve, the functionm(x) has a singularity at zero
m(x)'@3uxuA12ṽ/(& l )#2/3, although the quantityC re-
mains smooth: 12C2;(uxu/ l )4/3. In the entire range of pa
rametersṽ,1/22V2/(2l 2), the profile of the soliton solu-
tion has singularities at the points6x* , where the quantity
m vanishes:m'6@2A2ṽ21ux2x* u/ l #1/2. In this case, the
function C(x) exhibits a jump at these points in the deriv
tive: C'12A2ṽ21ux2x* u/ l . Let us analyze qualitatively
this solution on the curve~V50, ṽ,1/2!, i.e., for stationary
solitons. The phase profile of the system is depicted in Fig
where the separatrix loop1 corresponds to the soliton solu
tion with ṽ.1/2, while solutions with 0,ṽ,1/2, ṽ50,
andṽ,0 correspond to curves2,28, 3,38, and4,48, respec-
tively. The profiles of the functionsm(x) and C(x) are
shown in Fig. 4. It can be seen that the solution withṽ50
corresponds to a 180° domain wall. However, the profile
this wall in the case under consideration is unusual. Equa
~5! in this limit has the following simple form:

FIG. 3. Phase profiles of dynamic solitons and domain walls in an easy-
XY ferromagnet forṽ.1/2 ~curve 1!, 0,ṽ,1/2 ~curves 2,28!, ṽ50
~curves3,38 for a domain wall!, andṽ,0 ~curves4,48!.

FIG. 4. Profiles of the functionsm(x) and C(x) for a domain wall and
dynamic solitons with different frequencies in an easy-axis magnet in
XY model.
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A12C2S l 2
d2C

dx2 2C D50. ~31!

The phase profile of this equation for domain walls is a
culiar separatrix in the form of a triangleC856C/ l ,
C51. Such a phase picture is typical of peakon states~see
Refs. 18 and 19!. In this case, the solution has the form

C~x!5exp~2uxu/ l !, ~32!

typical of peakons. As in the case of compactons, the s
tion can be expressed in terms of the function~exponential in
the given case! which is usually a solution of the linear equ
tion. However, in the case of a peakon the nonlinearity
manifested in that the amplitude is not arbitrary but fixed
can be seen from Fig. 4 that a soliton solution of the gen
type with ṽ,1/2 is a bound state of two peakons~like an
ordinary magnetic soliton which is the bound state of t
domain walls!. However, in the general caseṽÞ0, the solu-
tion cannot be expressed in terms of exponential functio
For example, in the limituṽu@1, the soliton solution can be
represented in the implicit form

Arctanh
Am11

&
2&Am115Auṽu

x

l
. ~33!

This formula shows that the solution is smooth at the cen
of the soliton, wherem521, and has a vertical tangent
the pointsx* 56 l (Arctanh(1/&)2&)/Auṽu wherem50.

4. EXOTIC SOLITONS IN AN EASY-PLANE FERROMAGNET

4.1 Magnetization rotation waves in an easy-plane
Ising magnet

In an easy-plane ferromagnet with anisotropic excha
interaction, the magnetization dynamics is described by E
~3! and ~4! with s521, but solutions for dynamic soliton
do not have the simple form~14! as in the easy-axis case
which follows from the explicit form of solution~13! even in
the case of isotropic exchange. For this reason, we cons
only the limiting case of an Ising ferromagnet with an ea
plane one-ion anisotropy. Forl 50, Eq. ~4! implies that
u5u(x) and is independent of time. This is in accord wi
the conclusion concerning the absence of mobile excitatio
which follows from the dispersion relation~11! for linear
magnons in the limitl 50. Moreover, it follows from Eq.~3!
that the variablew can only be a linear function of time
which is impossible for localized excitations with a fixe
orientation of magnetization in the easy plane at infinity~for
x→6`!.

Thus, In the limit of an Ising magnet, only one type
localized excitations is possible, i.e., stationary magnet
tion rotation waves. However, for this type of excitations E
~3! is solvable in the general case of an arbitrary anisotr
of exchange interaction also. Forw5const, after the first
integration we have

L2S dm

dx D 2

5m2
12m2

12m21~ l /L !2m2 . ~34!

In the Ising limit, this equation can be reduced to the follo
ing trivial equation:
-

u-

s
t
al

s.

r

e
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s,

-
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-

~12m2!FL2S dm

dx D 2

2m2G50. ~35!

The phase profile of the separatrix loop on the pla
(dm/dx,m) in this case degenerates into the triang
L(dm/dx)56m, m51 ~see solid triangle in Fig. 5a!. As in
the case of compactons in an easy-axis Ising magnet,
~35! is again connected with the first integral of motion of
linear equation~in the brackets!, but with the factor (1
2m2) which just determines the nonlinearity of the solutio
It can be expressed in terms of exponential functions~as in
the case of a linear equation!:

m5exp~2uxu/L !, ~36!

but the amplitude of the solution is fixed:m(0)51. Since

FIG. 5. Phase picture~a! and profiles of the coordinate dependence f
different magnetization components~b and c! corresponding to a magneti
zation rotation wave of the peakon type in an easy-plane Ising ferromag
The dashed curve corresponds to the phase picture of a localized
taking into account weak exchange interaction between theX- and
Y-components of the spins.
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Eq. ~35! has an additional solutionm[1, the exponential
functions can be sewn at the center of the magnetiza
rotation wave.

Solution~36! has a typical for of an exotic soliton~pea-
kon! and is presented in Fig. 5b. In contrast to the magn
zation rotation wave~12! in an isotropic magnet with
m51/cosh(x/l), the peakon width depends on the magne
length L, ant it has a ‘‘peak’’ at the center. The functio
C(x) in this case is defined asC56A12exp(22uxu/L) and
has an infinite derivative at zero in contrast to the solut
C5tanh(x/l) for an isotropic magnet~see Fig. 5c!. Although
the peakon solution has a singularity at zero, it is a limit
an analytic function. It can be seen from Eq.~34! that the
separatrix loop corresponding to a soliton forlÞ0 is smooth
on the phase plane~dashed curve in Fig. 5a!, and solution
~34! can be written in an analytic, although implicit, form:

x

L
5 lnS 12G

11GD2B lnF S 1

G
2BD 2

~12m2!G , ~37!

whereB5A12 l 2/L2 andG5A(12m2)/(12B2m2).
A comparison of Figs. 4 and 5 shows that the profiles

the domain wall in an easy-axisXY magnet and magnetiza
tion rotation waves in an Ising magnet have the same app
ance under the substitutionl↔L andC↔m. In other words,
there exists an ‘‘invariance’’ associated with simultaneo
change in the symmetry of exchange and one-ion anisotr

4.2. Compact waves of magnetization rotation in an
easy-plane XY magnet

Let us consider the case of an easy-plane ferroma
with exchange anisotropy of theXY type (L50). Appar-
ently, dynamic solitons withṽ,0,V, l and magnetization
rotation waves withṽ50,V, l exist in this limit. However,
we could not find the corresponding solutions even under
simplifying assumption that the rotation of magnetizati
vector occurs, as in the isotropic case, in a fixed plane fo
rotation wave and in a rotating plane for a soliton~see solu-
tion ~13!!.

An exception is the limit of a stationary magnetizatio
rotation wave for which Eq.~5! acquires the trivial form

mS l 2
d2C

dx2 1C D50, ~38!

differing from formula~31! in the sign ofC.
Equation~38! has a compact solution:

C51, x.p l /2,

C5sin
x

l
, uxu,p l /2, ~39!

C521, x,2p l /2.

~In the case of isotropic exchange interaction, the co
sponding solution for a magnetization rotation wave has
form C5tanh(x/l).
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Thus, we see that there exists a symmetry of proper
of exotic solitons in the case of simultaneous change in
type of exchange and one-ion anisotropy. Compact dom
walls and dynamic solitons exist in an easy-axis Ising fer
magnet, while compact waves of magnetization rotation
observed in theXY model of an easy-plane magnet. On t
other hand, magnetization rotation waves of the peakon t
exist in an easy-plane Ising magnet, and the same pea
domain walls and dynamic solitons can exist in an easy-a
ferromagnet with exchange anisotropy of theXY type.
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Chaotic regimes of antiferromagnetic resonance in a quasi-two-dimensional easy-axis
antiferromagnet „NH3…2„CH2…4MnCl4

M. M. Bogdan, M. I. Kobets, and E. N. Khats’ko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine* )

~Submitted October 23, 1998!
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Chaotic regimes of the microwave energy absorption are observed experimentally and analyzed
for two-dimensional metallorganic antiferromagnet~NH3!2~CH2!4MnCl4 at low
temperatures under the conditions of nonlinear antiferromagnetic resonance. Relaxation oscillations
of energy absorption are investigated in detail. Their frequency spectra, frequency–amplitude
characteristics, and dependences of absorbed power on driving power and static magnetic
field are studied. It is shown that the dynamics of relaxation oscillations undergoes a transition to
chaos by ‘‘irregular periods.’’ Peculiarities of the transition are described consistently.
Among other things, the conditions for the emergence of energy absorption regimes with a spike-
like and a saw-tooth signal structure are determined, and the characteristics of chaotic
oscillations such as the dimensions of strange attractors are calculated. The chaotic dynamics is
found to be high-dimensional with a large contribution from noise which is of deterministic
origin in the antiferromagnet under investigation. ©1999 American Institute of Physics.
@S1063-777X~99!00703-3#
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INTRODUCTION

Chaotic resonant phenomena in magnets have bec
an object of intense experimental studies in the l
decade.1–19 These investigations were stimulated by t
progress made in the mathematical theory of chaos, pre
ing the universal character of chaotic phenomena irrespec
of the character of the physical object being studied a
demonstrating a nonlinear behavior.20–22

Magnetic compounds possessing the properties requ
for the emergence of nonlinear oscillations include first of
the crystals exhibiting an extremely weak relaxation of s
excitations. Yttrium–iron garnet~YIG! with a low threshold
for a parametric excitation of spin waves even at room te
perature has been studied most thoroughly.1,5,8,9,11–13Since
YIG behaves as a ferromagnet in magnetic respects, no
ear chaotic effects were studied, as a rule, under the co
tions of ferromagnetic resonance~FMR! in transverse as wel
as longitudinal driving fields.

The total number of investigated nonlinear magnets is
large, and some of them exhibit nonlinear properties only
low temperatures of the order of a few kelvins, at whi
phonons are frozen out, and their interactions with magn
becomes very weak.

The effective dimensionality of crystals plays an impo
tant role for the suppression of relaxation process
Stepanovet al.14–18 investigated the class of metallorgan
compounds that are quasi-two-dimensional ferro- and an
romagnets in the magnetic respect. It was found that lo
dimensional magnets at low temperatures go over to a s
with an anomalously low spin–lattice relaxation virtual
with a threshold, which makes it possible to excite sp
waves parametrically at microwave pumping power of
1921063-777X/99/25(3)/11/$15.00
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order of a few milliwatts.18 Among other things, it was found
that in addition to YIG, nonlinear ferromagnetic crystals i
clude metallorganic compounds with a structure similar
the ~CH3NH3!2CuCl4 crystal.19 On the other hand, it was
established that chaotic oscillations are generated in the c
tals CuCl22H2O,2 CsMnF3,

6,10 ~CH2NH3!2CuCl4.
9 under the

conditions of antiferromagnetic resonance~AFMR!.
The range of nonlinear effects that have been discove

and thoroughly investigated in ferro- and antiferromagnet
quite large. These include spin-wave instabilities~Suhl insta-
bilities of the first and second order!,23 auto-oscillations of
absorbed microwave power,24,25and the observation of thre
known scenarios of a transition to chaos: by peri
doubling ~Feigenbaum scenario!, quasiperiodicity, and
intermittency.20–22

Apart from the interpretation of these nonlinear effec
and the determination of the conditions for their observati
it was found that real magnetic crystals can demonstra
more complex pattern of transition to chaotic regimes
resonance experiments. None of the known scenarios is
alized in pure form in such cases,26 and we must conside
new mechanisms of chaotization.3,5,27

Hartwik et al.28 were the first to discover long ago th
so-called relaxation chaotic oscillations of microwave pow
in YIG with which a new scenario of a transition to chaos
irregular periods has been associated in last decade.3,8,9,29

This effect lies in the emergence, instead of purely perio
auto-oscillations, of irregular chaotic bursts of absorb
power in the form of spike-like peaks or pulses with a ste
leading front and relaxing rear front under certain conditio
of magnetic resonance upon an increase in the pump
power. Theoretical approaches to the description of s
© 1999 American Institute of Physics
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oscillations and mechanisms of their formation were mad
Refs. 9, 29, and 30, but a systematic analysis of temp
series of experimental signals as well as of the results
numerical simulation of relaxation oscillations was carri
out only recently.31,32

In this work, we study experimentally the regimes
chaotic behavior of the microwave power absorbed in a tw
dimensional easy-axis antiferromagnet~NH3!2~CH2!4MnCl4
under the AFMR conditions. This compound is a typical re
resentative of the family of layered Heisenberg antiferrom
nets @NH3-~CH2!m-NH3#MnCl4~2CmMn!, studied by
Stepanovet al.14–18 The structure of these metallorgan
crystals is formed by almost quadratic layers of magne
ions in the octahedral environment of chlorine ions betwe
which long chains of alkylene–ammonia molecules are
cated. The small value of interlayer exchange associated
a large separation between the spins of adjacent layers l
to a quasi-two-dimensional behavior of these systems. At
temperatureTN542.6 K,33 the compound 2C4Mn is trans
formed into antiferromagnetic states with the easy magn
zation axis directed at right angles to the planes of the lay
A detailed analysis of linear antiferromagnetic resonance
2C4Mn revealed16 that this compound has a four-sublatti
noncollinear antiferromagnetic structure with a weak fer
magnetic moment. The antiferromagnetism vector of e
layer is deflected successively from the normal to the pl
of a layer through an angle of616° so that the total vecto
is perpendicular to the layer, and the weak antiferrom
netism vector lies in the layer. According to estimates,
strength of interaction between the layers~26 Oe! is ex-
tremely small as compared to both the intralayer excha
(2He.1360 kOe) and the intralayer uniaxial anisotro
(Ha.0.8 kOe) so that 2C4Mn can be regarded as an alm
two-dimensional antiferromagnet.

At low temperatures~of the order of a few kelvins!, the
related compound~NH3C2H5!2MnCl4~1C2Mn! revealed a
number of interesting nonlinear phenomena in the beha
of the absorbed microwave power, e.g., the emergenc
periodic auto-oscillations and chaos.18 Here we carry out a
systematic analysis of chaotic regimes of antiferromagn
resonance in a 2C4Mn crystal. For a driving power below
mW at a temperature below 2.18 K, we observed a nonlin
absorption of the microwave field and the emergence of
laxation oscillations with typical~extremely low! average
frequencies of the order of a few hertz. These oscillatio
were recorded and analyzed as temporal series of data
the help of an analog-digital device and computer progra
which made it possible to describe in detail the scenario
transition to chaos by irregular periods. As a result, we h
analyzed qualitative changes in the behavior of temporal
ries of absorbed power as a function of variation of the
rameters of static and varying magnetic fields and carried
the Fourier analysis, obtained the spectra of oscillatio
studied the structure of strange attractors of chaotic regim
and calculated the quantities characterizing chaotic dyn
ics, i.e., dependences of frequencies of auto-oscillations
the driving power~in particular, we determined their perio
doubling threshold! and the dimension of chaotic attractor
and discussed the origin and role of noise in relaxat
in
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oscillations as well as a possible theoretical model for
scribing relaxation oscillations in 2D antiferromagnets.

EXPERIMENTAL TECHNIQUE

Single crystals of~NH3!2~CH2!4MnCl4 were grown at
room temperature from a saturated aqueous solution in
form of thin rectangular plates with clearly manifested late
faces and with a typical size 53530.3 mm. The compound
~NH3!2~CH2!4MnCl4 possesses a monoclinic symmetry
crystal lattice with the space groupP21 /b.34 Organic chains
of NH3~CH2!4NH3 separate two-dimensional, almost squa
layers of octahedra Mn-Cl6. The unit cell parameters area
510.77 Å, b57.177 Å, c57.307 Å. Experiments were car
ried out on a reflection spectrometer with a pumping f
quency 70.39 GHz at a temperature below 2.18 K. We u
a cylindrical resonator with theQ- factor ;1000. The
sample was placed in the resonator region with predomin
parallel polarization of external static and rf fieldsHih.

In resonance experiments, the field is usually app
along the easy axis of the crystal. With such an orientati
the splitting of AFMR branches follows the law

v65g$A~2HE1HAHA6H%. ~1!

For the frequency mentioned above, the resonance c
ditions are satisfied for the lower frequency branchv2 ,
which was observed in our experiments. The maxim
power of the source was 5 mW. The applied magnetic fi
was scanned along the contour of the AFMR line, and
driving power was varied from 0 to220 dB. The magnetic
field orientation relative to the anisotropy axis and equil
rium directions of antiferromagnetism vectors in adjace
planes also varied. It was found that the most intense abs
tion corresponds to the symmetric orientation of the fie
along the crystallographic axisb.

In all experiments, low-frequency modulation of electr
magnetic field of frequency 50 Hz was observed. This f
quency had to play the role of the reference frequency in
experiments. It was found later that these oscillations part
pated in all nonlinear processes, and the emergence of
higher harmonics was regarded as a natural criterion of
emergence of nonlinearity in resonance effects. The refle
signal after detection in an analog-digital device P
ADDA-14 with a 14-bite resolution was transformed into
computer data file. These temporal series were subsequ
analyzed by using the standard and original packets of p
grams created for a quantitative analysis of chaotic phen
ena.

DISCUSSION OF MAIN RESULTS

A typical form of resonant curves for the antiferroma
net 2C4Mn atT51.8 K are shown in Fig. 1. For a low~less
than215 dB! microwave field power, a typical pattern from
a linear AFMR is observed, i.e., two lines from two cente
~neighboring planes!. The separation between the peaks
the resonant curve can vary depending on the orientatio
the static magnetic field, and the lines can coincide when
field is directed along the crystallographic axisb. For a
power exceeding215 dB, free relaxation oscillations ar
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generated in the range of external magnetic fields near
peak of the high-field line above as well as below the re
nant fieldH59.34 kOe~this region is shown by the bold lin
on the upper curve in Fig. 1!. The amplitude of these oscil
lations increases with power until they become chaotic.
shall consider this regime in detail later, and now we p
attention to another effect associated with instability of re
nance at high pumping levels. As the driving power
creases above25 dB ~see two lower curves in Fig. 1!, a
jump and a discontinuity of both resonant lines are obser
with a considerable hysteresis in the static magnetic field
we move towards higher and lower fields, respectively.

This phenomenon is well known in the theory of nonli
ear resonance and is associated with the dependence o
frequency of nonlinear oscillations on their amplitude.
magnets, this effect is manifested in that the resonant cu
must become asymmetric and multiple-valued for a pump
field h exceeding the critical value, i.e., the peak must
inclined towards lower or higher fields depending on the ty

FIG. 1. Amplitude–field dependences of nonlinear antiferromagnetic r
nance for a 2C4Mn crystal for different values of driving power. The b
segment on the upper curve in the vicinity of the high-field peak denotes
range of relaxation oscillations. The hysteresis loop observed for a po
exceeding25 dB increases with driving power.
he
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of interaction between magnons. In actual experiments,
stability is observed upon a change in the static magn
field, and the resonant curve experiences a discontinuity
jump. This effect was observed for the first time in disks
yttrium-iron garnet single crystals by Weiss.35

It follows from Fig. 1 that the jump is observed in stron
fields in an increasing field, while discontinuity takes pla
in weaker fields in a decreasing field. With increasing pow
the hysteresis loop increases, and the steepness of line
creases~the scales of conditional units for absorbed power
Fig. 1 are different for the three resonant curves: it decrea
with increasing amplitude of pumping!.

It was noted above that oscillations of observed pow
on the segment of the resonant curve near 9.34 kOe ap
even at very low driving powers of the order of215 dB. The
criterion of a transition to the nonlinear regime is the em
gence of the second harmonic peak in reference oscillat
with frequency 100 Hz. At the point of maximum on th
resonant curve, this peak exceeds the background noise
power P.215 dB, and first spike-like peaks of absorbe
power appear at the same instant.

In the case of a resonant curve with spaced peaks
increase in the driving power induces relaxation oscillatio
in the vicinity of the second peak also. As the peaks c
verge, the mutual effect of the centers increases, whic
noticeably reflected in the form of oscillations of absorb
power. In the cases of closely spaced peaks for the valu
the fieldHm58.37 kOe corresponding to a local minimum
the center of the resonant curve, relaxation oscillations
come irregular even for a low driving power. As the pow
increases, the oscillations become more and more cha
The time dependence of the signal typical of the entire se
of these measurements and its spectrum for the maxim
value of power are shown in Fig. 2a.

In order to find out whether such a dependence is a c
sequence of additive or dynamic noise, stochastic proces
is due to a determinate chaos, we varied in the experim
the orientation of magnetic field and its magnitude. T
variations affected strongly the type of oscillations.

It was found that oscillations become less chaotic for
minimum deviation of the magnitude of magnetic field fro
the extremal valueHm . By way of an example, Fig. 2b
shows the time behavior and spectrum of oscillations forH
58.4 kOe and the maximum driving power.

It also turned out that the degree of chaotization o
signal decreases considerably, and its shape changes qu
tively when the magnetic field is directed along the cryst
lographic axisb, when the resonant lines from two cente
coincide. In this case, the characteristic pattern of the em
gence and transformation of relaxation oscillations upo
change in the driving power is of the form shown in Fig.
for H58.4 kOe~small deviation of the field from the reso
nant value! and the powerP varying from210 to 0 dB. First
spikes of absorbed power appear against the backgroun
almost linear oscillations of frequency 50 Hz. For sm
pumping amplitudes, the frequency corresponding to
emergence of spike-like peaks is low, and the intervals
tween them are quite large and vary with an obvious peri
icity. For a driving power of the order of26 dB, the signal
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FIG. 2. Chaotic oscillations of absorbe
power and their frequency spectrum for
driving power of 5 mW for a resonant curve
with closely spaced peaks in fieldsHm

58.37 kOe~a! and 8.4 kOe~b!.
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has the form of a periodic structure of spike-like close
spaced peaks. As the pumping amplitude increases furth
power values of the order of23 dB, the frequency corre
sponding to the emergence of spike-like peaks changes
significantly, and subsequently decreases rapidly and
comes virtually equal to half the previous value. In th
region, the shape of the signal changes qualitatively from
spike- like to the saw-tooth, i.e., the change in the regime
chaotic oscillations takes place. Figure 4 shows the dep
dence of the fundamental frequency of these oscillations
the driving power in the range from26 to 0 dB ~dark
circles!. The doubling of the period of relaxation oscillation
can be seen clearly in the figure. In order to plot this dep
dence, we analyzed the spectra of oscillations for fix
pumping levels. It should be noted that doubling of this p
riod does not indicate the emergence of subharmonics of
fundamental frequency as is usually the case in the Feig
baum scenario, and corresponds to a change from one o
latory mode to another mode, their fundamental frequen
differing by a factor of two. It was proved that this effect
preserved for other values of magnetic field which natura
affects the values of frequencies themselves. It should
be noted that apart from the main peaks and multiple h

FIG. 3. Evolution of time dependences of absorbed power for a chang
the microwave power level from210 to 0 dB for a static magnetic field
H58.4 kOe.
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monics, all spectra contain a large contribution from no
responsible for the ‘‘grass-like’’ continuous spectrum. In t
subsequent analysis, we shall analyze in detail the dyna
and spectral structure of these oscillations and the origin
their stochastic form.

When the power changes in the opposite direction, i
the amplitude of pumping decreases~light circles in Fig. 4!,
the frequency–amplitude dependence exhibits a hyster
with a displacement of the region of period doubling towar
lower powers~saw-tooth pulses exist up to24.5 dB!. The
existence of essentially chaotic modes near a certain fi
values of power, in particular upon an increase in the driv
power for P521, 22.25, and22.75 dB is an interesting
feature of the observed transient process.

For this reason, it was natural to analyze oscillations
these selected pumping levels, but in a wide range of app
magnetic field near the resonance point. We chose the pu
ing level of 21 dB and studied the variation of the shape
the absorbed power signal and its spectrum upon a chang
the static magnetic field within a few ten oersteds near
resonant valueHr58.37 kOe. The direction of the field wa
maintained along the crystallographic axisb.

in
FIG. 4. Frequency of relaxation oscillations as a function of driving pow
Dark and light circles correspond to an increase and decrease in the dr
power, respectively. The threshold effect of oscillation period doubling is
the hysteresis type.
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FIG. 5. Temporal series of absorbed power and their spectra for different values of static magnetic field for the driving powerP521 dB; ~a! H
58.51 kOe, relaxation oscillations with a spike-like structure and a high stochastization level;~b! H58.47 kOe, the result of transformation of spike-lik
signals into saw-tooth signals;~c! H58.44 kOe, saw-tooth relaxation oscillations with linearly increasing and decreasing segments;~d! H58.39 kOe, chaotic
temporal series with an intense ‘‘grass-like’’ frequency spectrum;~e! H58.34 kOe, nearly regular anharmonic oscillations of absorbed power of a spike
shape. All the spectra contain the peak of the fundamental frequency of relaxation oscillations of the order of several hertz and its higher harmon
as the peak of the reference frequency 50 Hz and combination frequencies.
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The corresponding results are presented in Fig. 5
should be noted that relaxation oscillations occur again
background of a considerable average absorbed power
must make a contribution to the frequency spectrum in
form of a large central peak at zero frequency. In all cal
lations of the spectra analyzed here, this average value
subtracted, and hence the given huge contribution to the
tral peak is absent, which allows us to see the detailed st
ture of relaxation oscillations proper. It should also be no
that frequency spectra are given in the form of frequen
dependences of the amplitude of the Fourier transform of
signal and not as logarithmic spectra of power in order
improve detailization.

Another feature in common with all the spectra cons
ered below is the presence of oscillations of frequencyn0

550 Hz. These low-frequency oscillations were present a
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source of reference frequency, but they became involve
free oscillations in view of the nonlinearity of the medium
This follows from the presence of second harmonic with f
quencyn5100 Hz and the peaks that are algebraic sums
frequencies of fundamental harmonics of relaxation osci
tions and the reference frequency.

Far away from the resonant field, the absorbed powe
virtually constant if we disregard extremely low backgrou
noise in which, however, oscillations with frequencyn0

550 Hz were always manifested~in the frequency spectrum!
in our measurements. As the field approaches the reso
level, these small-amplitude oscillations become wea
nonlinear~a second harmonic appears in the spectrum!, and
nearly periodic spike-like peaks of absorbed power cor
sponding to peaks of the order of a few hertz in the f
quency spectrum and clearly distinguishable against
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‘‘grass-like’’ background noise appear almost simul
neously.

A typical example of such a behavior of absorbed pow
is shown in Fig. 5a for the field valueH58.51 kOe. It can be
seen that periodic relaxation oscillations with a spike-l
structure have been formed completely. Small anharmo
modulation of peak amplitudes is manifested in the f
quency spectrum in the form of higher harmonics of the fu
damental frequency. All the remaining peaks can be ide
fied as algebraic sums of these harmonics and frequencien0

and 2n0 .
As we approach the resonant field further, the shape

absorbed power peaks experiences rapid qualitative chan
Figure 5b shows the result of transformation of spike-l
signals into typical saw-tooth temporal series forH
58.47 kOe. In addition to the increase in the amplitude a
relative height of frequency peaks, the emergence of line
increasing and decreasing segments on the time depend
of absorbed power is also worth noting. It is remarkable t
such oscillations are almost indistinguishable from class
relaxation oscillations that are frequently encountered
electrical engineering.

A subsequent decrease in the field leads to the tende
to the formation of periodic rectangular pulses of absorb
power. Signals of such a shape are shown in Fig. 5c foH
58.44 kOe. It should be noted that the amplitude of osci
tions does not increase any longer, while the periodicity
enhanced, which is manifested in the frequency spectrum

Relaxation oscillations become completely chaotic
field values close to resonance. Figure 5d shows the co
sponding temporal series of absorbed power and a typ
‘‘grass-like’’ frequency spectrum forH58.39 kOe. It can be
seen that the amplitudes of oscillations are much sma
than those in Fig. 5c, and the frequency distribution of os
lations has become almost continuous with a sharp decr
in the maximum peak heights to the amplitude of the 50-
peak of the fundamental harmonic.

As the field decreases further from the resonant va
relaxation oscillations again acquire the spike-like shape,
ing essentially nonlinear. Figure 5e shows forH58.34 kOe
the temporal series for such anharmonic oscillations of
sorbed power and their frequency spectrum with clea
manifested peaks of multiple harmonics. A distinguishi
feature of these oscillations is that their fundamental f
quency is almost half the frequency of similar spike-like o
cillations presented in Fig. 5a. The frequency of relaxat
oscillations in general decreases as the field decreases t
resonant value, and starts increasing after the passage o
resonance peak.

In the magnetic field scanning in the opposite direct
~i.e., upon its increase!, the regimes described above appe
in the reverse order, but a hysteresis loop takes plac
complete accord with the picture shown in Fig. 1.

It was mentioned above that the selection of other val
of power ~for example, the maximum powerP50 dB! fol-
lowed by scanning in the static magnetic field results in c
otic nonlinear oscillations whose frequency structure c
tains higher harmonics of the fundamental frequency as w
as subharmonics against the background of a high-inten
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continuous noise spectrum~see Figs. 2a and b!.
A comparison of temporal series also leads to the c

clusion concerning clearly manifested temperature dep
dence of the degree of stochastization of oscillations. T
higher the temperature, the higher the noise level in the
cillatory spectra and the extent of their nonregularity, a
vice versa. At low temperatures, we could observe relaxa
oscillations in the form of nearly rectangular pulses~such
a mode was realized forP55 mW, H58.3 kOe, and
T51.7 K!.

Another interesting feature is the observation of the
gime of an abrupt and virtually complete disappearance
free oscillations with simultaneous doubling of the period
nonlinear reference oscillations and the emergence of t
subharmonic at a frequency 25 Hz. We can try to explain
latter effect from the point of view of the theory of chao
control and the emergence of higher~multiple! resonances.
However, we shall not consider this problem here and a
lyze the structure of chaotic attractors of relaxation osci
tions.

ANALYSIS OF EXPERIMENTAL RESULTS

The method of a nonlinear analysis of experimental te
poral series has been worked out intensely during the
decade and is described in detail in a number of reviews
monographs.19,36–38We shall use this method which involve
the determination of the linear autocorrelation function
temporal series, the determination of ‘‘time delay,’’ the co
struction of phase portraits of attractors in the correspond
‘‘time delay’’ coordinates, the construction of a sequence
interspike intervals, and their analysis, computation of
correlation dimension of attractors, the determination of
noise contribution to temporal series, the source of the no
and possibilities of its reduction, and the discussion of th
retical models of the observed chaotic oscillations.

The temporal series is a discrete set of values of
physical quantity~the absorbed powerV(tn) in our case!,
measured in equal intervals of time. A traditional charact
istic of temporal series of signals is the linear autocorrelat
function37

CL~t!5

1

N
(m51

N @s~m1t!2 s̄#@s~m!2 s̄#

1

N
(m51

N @s~m!2 s̄#2

, ~2!

where the average value of the signals(m) is defined in the
standard manner:s̄5(1/N)(m51

N s(m).
Since we usually subtract the average value of the se

from the initial series in an analysis of spectra, we calcula
autocorrelation function for time dependences presente
Fig. 3 for modified seriess̄50. As a function oft, it exhibits
qualitatively identical behavior for all values of power: th
is an oscillating function with a slowly decreasing amplitud
The period of these oscillations coincides with the fund
mental period of oscillations of the signal being measured
an analysis of nonlinear signals, autocorrelation function
also useful for estimating ‘‘time delay.’’ It is chosen19,37

equal to the value oft for which the autocorrelation function
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vanishes for the first time. In our measurements, this t
delay is approximately equal to a quarter of the fundame
period of observed oscillations.

Figure 6 shows the dependence of timet on the driving
power P. ~The unit of measurements oft is the principal
interval Dt54.9 ms of our temporal series.! It can be seen
that this dependence obviously correlates with the dep
dence of the frequency of oscillations on the driving pow
presented in Fig. 4 and confirms the existence of a thres
transition from one regime of chaotic oscillations to anoth
It should be noted that the period of the correlation funct
corresponds to oscillations of frequency 50 Hz for low po
ers and to the fundamental period of saw-tooth oscillati
for the maximum power.

The obtained value oft can now be used for plotting
phase portraits of nonlinear oscillations. For this purpose,
shift the temporal series byt and plot the dependence o
V(tn1t) on V(tn). These functions are just the time dela
coordinates. For the temporal series corresponding to
maximum power in Fig. 3, the phase picture is shown in F
7a ~the value oft is chosen equal to 49 ms, and the avera
value of absorbed power is subtracted from the given ser!.
It can be seen that the process is periodic on the whole
occurs in several stages with their own characteristic tim
In order to obtain a more detailed concept of the attrac
structure, we constructed a 1D mapping from the sequenc
of minimum values of the Poincare´ sections of the given
attractor. These values were determined as negative valu
V(tm1t) taken at instantstm for which V(tm)50. This de-
pendence is shown in Fig. 7b and demonstrates the exist
of the internal structure of the attractor and an obviou
large contribution of noise.

A detailed analysis of the time dependenceV(t) indi-
cates that the noise contribution is not additive. Indeed,
regular amplitude jumps as well as periodic oscillations
frequency 50 Hz have different values at different stages
variation of the functionV(t). This indicates a nonlinea
enhancement of both factors and their participation in
chaotic process.

In order to describe the chaotic behavior of relaxat
oscillations and the effect of noise on them quantitative
we consider a sequence of time intervals between adja
peaks of the signal and the sequence of maximum value

FIG. 6. Dependence of ‘‘time delay’’t on the pumping powerP. The value
of t is measured in units of the temporal series periodDt54.9 ms.
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peak amplitudes as characteristics of this process.
These dependences of amplitude peaks and inters

intervals for the series under investigation are compared w
the relevant sequences for the series shown in Fig. 5a. It
be seen that the amplitude peaks of oscillations of the
sorbed power~Figs. 8a and b! behave quite chaotically in the
vicinity of a resonance and far away from it. At the sam
time, the interspike intervals~Figs. 8c and d! exhibit a
clearly manifested tendency to a quasiperiodic mode
away from the resonance~Fig. 8d!, but random forces acting
on the system result in the chaotization of oscillations, wh
is accompanied by chaotic jumps in the period of oscillatio
between its four principal values.

We can try to determine whether a noise is stochastic
dynamic by calculating the correlation dimensionD of the
attractor under investigation. This quantity is defined throu
the pair correlation integral:

Cm~r !5
2

N~N21! (iÞ j

N

Q~r 2uym~ j !2ym~ i !u!, ~3!

whereN is the number of measurements,r the correlation
radius,ym( i ) the vector of dimensionsm in the embedding
space, whose coordinates are$V(t),V(t i1t),...

FIG. 7. Dynamic characteristics of relaxation oscillations for the drivi
powerP50 dB andH58.4 kOe, whose time dependence is shown in F
3: ~a! phase portrait in the time delay coordinates (t549 ms) and~b! one-
dimensional mapping constructed from the sequence of minimum value
the Poincare` cross section of the phase picture taken at the instants of t
tm at whichV(tm)50.
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FIG. 8. Amplitude peaks and interspike in
tervals for relaxation oscillations for driving
powerP51 dB andH58.4 kOe~see Fig. 3!
~a,c! and P521 dB, H58.51 kOe ~see
Fig. 5a! ~b,d!.
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V@ t i1(m21#t%; and u(r ) is the theta function. This func
tion in fact determines the number of pairs of vectors in
m-dimensional space, the separation between which
smaller than the preset distancer . While determining the
distance, we presume that the cells into which the ph
space is divided have the cubic shape.39 The dimensionD is
the limit of the expression

D5 lim
m→`

d ln Cm~r !

d ln r
~4!

and is usually calculated on the intervalr in which the values
of the correlation function are not very small.

The sequence of calculated correlation functions for
initial temporal series corresponding to the maximum pow
in Fig. 3 is presented in Fig. 9 on logarithmic scale~the

FIG. 9. Dependences of logarithms of correlation integrals on the logar
of the distance between vectors in them-dimensional embedding space ca
culated from the initial integral data for the attractor presented in Fig. 7
e
is

se

e
r

curves correspond to the variation ofm from 1 to 9 from top
to bottom!. Numerical differentiation reveals a flat segme
according to which the dimension of a strange attractor
be estimated. It was found that it is slightly larger than tw
(2.2560.1), but the strong effect of dynamic noise follow
ing from the characteristic increase in the steepness of
curves for ln(r),2.5 does not allow us to establish the ex
tence of the exact limit. We are inclined to interpret the lat
quantity as the dimension of a regular attractor. On the ot
hand, the slope of the curves in the region 1, ln(r),2.5 also
demonstrates the tendency to a limit that can be estimate
4.960.1. Such a limiting value can be regarded as the to
dimension of the attractor, containing the contribution from
regular attractor and a deterministic noise. A slight incre
in the dimension for large values ofm for small r is associ-
ated with the contribution of ‘‘white’’ instrumental noise
The above comparative analysis of functional dependen
of temporal series and their spectra also confirms this c
clusion. Thus, the analysis of the correlation dimension le
to the conclusion concerning the dynamic nature of noise
the relaxation oscillations under investigation and indicate
multidimensional chaotic dynamics and, generally speak
multimode excitations in the resonance system in quest
The extent of its stochastization is quite high, which follow
from the estimate of correlation dimension in the range
small r . It should be noted that recent investigations of pa
metric resonance in a related metallorganic antiferromagn31

also confirms the deterministic origin of noise in these co
pounds.

The existing theories of relaxation oscillations3,8,9,29,32

make it possible to describe the emergence of a hi
dimensional chaos on the basis of multimode models. T
main idea behind the mechanism of emergence of relaxa
oscillations can be demonstrated even by using a two-m
model in which it is assumed that the resonance excita
conditions are satisfied for one mode and are not obse
for the other mode. Under the action of pumping, such a p
of coupled nonlinear oscillators reproduces quantitatively
behavior of relaxation oscillations. A quantitative theory
this effect for antiferromagnets has not been developed
yet. However, a theoretical description of this phenomen

m
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FIG. 10. Phase portraits and one
dimensional mapping for relaxation os
cillations for the driving power 5 mW in
the field H58.4 kOe in the case of
closely spaced peaks on the resona
curves~see Fig. 2b! for original data on
temporal series~after the subtraction of
the average value! ~a,b!, for doubly av-
eraged data for five nearest neighbo
~c,d!, and for data ‘‘improved’’ by the
optimized method of noise suppressio
as a result of ten iterations~e,f!.
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in the approximation of two spins simulating the sublattic
subjected to resonant transverse and longitudinal pum
appears as promising. Consequently, chaotic relaxation o
lations can be described qualitatively as the dynamics o
nonlinear oscillator under resonance conditions, but un
the action of certain random forces~the inclusion of the ef-
fect of the second oscillator!. Such a system may have
least two stable states the transition between which can
to the emergence of spike-like and saw-tooth time dep
dences of absorbed power. The features and diversity of
isting chaotic modes are obviously determined by the time
residence of the system in the equilibrium states and the
of transient processes. Such a system can obviously ha
high degree of stochastization, an attempt to create reg
attractors in it will lead to regimes in which such attracto
coexist with a well-developed dynamic noise. However
quantitative theory of such chaotic oscillations should app
ently be constructed on the basis of a multimode model
cording to the numerical analysis carried out by Mos
et al.32

The theorem on dimensionality that has been formula
recently for systems with a dynamic noise indicates in
simplified formulation the additivity of the dimension of
regular attractor and a noise.40 In this sense, these can b
separated, and the question of elimination of noise from
signal, noise reduction, and isolation of a regular signal fr
the data on temporal series appears as justified.

There are effective methods of noise reduction in
useful signal.38 These methods are extremely effective f
s
g
il-
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er

ad
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r
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suppressing external additive noise, but their application
the case of a dynamic noise should be verified in each s
cific case. The algorithm of purification of a signal in th
simplest form can be described as follows. In the cho
embedding space whose dimension is larger than the su
the predicted dimension of the regular attractor and dyna
noise, the nearest neighbors of the preferred vector of s
are selected, and its central coordinate is averaged ove
values of relevant coordinates of the found neighbors. T
obtained sequence of new data is the result of one itera
that can be repeated. Such an algorithm can be optimize
well as the choice of required parameters~correlation radius,
dimension, etc.; see Ref. 38!. Such an algorithm will be used
below for analyzing the chaotic temporal series measured
us.

On the other hand, the above algorithm in the simpl
form includes the conventional method of data averag
over nearest and next to nearest neighbors in the serie
this case, the dimension of the embedding space is equ
unity, and the number of neighbors is fixed. It can easily
verified that, in spite of its very simple form, the procedu
operates as a high-frequency filter and does not change
complex low-frequency spectrum of chaotic oscillations. W
shall apply this procedure also to analyze the results.

We chose the object of investigation in the form of
chaotic attractor obtained from the temporal series prese
in Fig. 2b. The results of analysis are shown in Fig. 10~it
should be noted that the average value is subtracted from
terms of the series!. Figures 10a and b show the phase p
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trait on the plane$V(t),V(t1t)%, where t529.5 ms, and
simultaneously the mapping for the data on the Poinc´
cross section~see above!, while Figs. 10c, d, e, and f contai
the dependences for the data ‘‘corrected’’ by the method
averaging and the optimized method of noise reduction
scribed above respectively~averaging was carried out twic
over five points, and tenfold iterations were used in the
timized method!.

Figures 10e and f clarify the internal structure of a reg
lar attractor. After the effect of noise becomes weaker,
phase portrait resembles a strange multiband attractor.
analysis of correlation dimension makes it possible to ch
acterize quantitatively both the regular attractor as well
the residual contribution of deterministic noise. The resu
of analysis are presented in Fig. 11. It should be noted t
prior to calculation of correlation functions for the tempor
series under consideration, we initially normalized all valu
to a unit interval by the formula V(tn)5@V(tn)
2Vmin#/(Vmax2Vmin), whereVmin andVmax are the minimum
and maximum values of the signal in the series. It was fou
that the dimensionality of a regular attractor can be estima
as 2.1560.05, and the total dimensionality with the cont
bution of deterministic noise as 3.2560.05. Spectral analysi
of these ‘‘improved’’ results also indicate that the quanti
tive contribution of noise remained quite large, and the
sultant attractor possesses a high dimensionality as befo

Thus, chaotic dynamics in the nonlinear antiferroma
netic resonance in low-dimensional antiferromagnets is h
dimensional, the extent of stochastization of oscillations
high, and noise has a deterministic origin and serves a
decisive factor in nonlinear dynamics of these magnets.

FIG. 11. Dependences of logarithms of correlation functions on the lo
rithm of the distance between vectors in them-dimensional embedding
space calculated for data ‘‘improved’’ by the optimized method~see Figs.
10e and f!.
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Finally, we formulate the following conclusions follow
ing from our analysis.

~1! Peculiarities of a transition to chaos by ‘‘irregular pe
ods’’ in a 2D metallorganic antiferromagnet with a
‘‘easy axis’’ type anisotropy are experimentally ob
served and studied in detail under conditions of nonl
ear antiferromagnetic resonance.

~2! It is shown that relaxation oscillations of absorbed pow
are generated for very low energy levels of microwa
field and have a low frequency of fundamental harmo
~of the order of a few hertz!. No multiple harmonics are
observed experimentally at kilohertz and higher frequ
cies.

~3! Relaxation oscillations at low values of driving pow
exist in the form of generally periodic sequence of spik
like peaks of absorbed power. The frequency spectr
contains components of fundamental frequency co
sponding to the emergence of spikes as well as mult
harmonics, which demonstrates the nonlinear nature
the process.

~4! As the pumping amplitude increases, the phenomeno
period doubling is observed in the time dependence
absorbed energy of microwave field. The shape of
signal is simultaneously transformed from the spike-li
to the saw-tooth type having segments with linearly
creasing and linearly decreasing absorption. An analy
of the frequency-amplitude dependence of oscillatio
and their linear autocorrelation function gives quanti
tive characteristics of this transition.

~5! A similar effect is observed at a fixed level of pumpin
but upon a change in the value of static magnetic fi
near its resonant value.

~6! With increasing power, relaxation oscillations becom
chaotic. The spectrum of such oscillations is continuo
and has a ‘‘grass-like’’ form, but the peaks of fundame
tal harmonics are still distinguishable. The phase port
of these oscillations has the form of a strange attrac
experiencing a strong influence of noise. Stochastiza
of oscillations, however, is not a result of influence of
additive instrumental noise.

~7! The quantitative characteristics of such a strange att
tor are calculated. The one-dimensional mapping co
sponding to the given attractor demonstrates a tende
to regular movement in spite of chaotic time depende
of relaxation oscillations. An analysis of correlation d
mension indicates the high-dimensional chaos dynam
and the deterministic nature of noise in the magne
system under investigation. The possibility of form
separation of the regular movement and the noise con
bution with the help of nonlinear methods of noise r
duction being developed is considered.

~8! The applicability of the theoretical model of finite num
ber of coupled spins under the action of the parame
and transverse pumping to the construction of a qua
tative theory of the scenario of transition to chaos
‘‘irregular periods’’ is discussed briefly. The transitio
can be regarded as a universal phenomenon in l

-
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dimensional ferro- and antiferromagnets under nonlin
resonance conditions.
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for valuable advice and help in carrying out a number
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Nonlinear electromagnetic waves in metals under strong magnetism of conduction
electrons
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Wave processes in noncompensated metals in a quantizing magnetic fields are investigated
theoretically. It is shown that small-amplitude nonlinear electromagnetic waves can propagate
when the magnetic susceptibility is close to 1/4p. Nonlinear solutions of the system of
Maxwell equations are obtained under the conditions of strong magnetism of conduction electrons.
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Weakly attenuating electromagnetic waves of freque
v much lower than the cyclotron frequencyV of conduction
electrons can propagate in pure metals at liquid helium t
peratures in a strong magnetic fieldH0 .1,2 In classically
strong magnetic fieldsVt@1, wheret is the electron mean
free time, the nonlinearity region in metals is difficult
create in actual practice. High electrical conductivity ha
pers the creation of a strong electric field, while nonline
effects caused by the influence of the magnetic fieldH; of
the wave are suppressed by the external fieldH0 and are
significant only whenH; is comparable withH0 . However,
nonlinearity can be significant even for small-amplitu
waves at low temperatures at which charge carrier quan
tion levels in a magnetic field must be taken into account
the separationD«'\V between the Landau levels is muc
larger than their width\/t and than the temperature o
charge carriers, the quantum oscillating component of m
netic susceptibilityx can attain values of the order of unit
~\ is Planck’s constant!. In this case, the difference betwee
the magnetic fieldH and magnetic inductionB is significant
even in conductors without any magnetic ordering, and
inclusion of magnetism is a self-consistent problem. Qu
tum energy levels of charge carriers in a metal are de
mined by the value of the microscopic fieldH averaged over
regions of the order of the Larmor radius for electron, a
hence the magnetizationM is a function of the magnetic
inductionB5B01B2(r ,t), whereB0 is its uniform compo-
nent andB;(r ,t) is the field of the wave. Fork2[u1
24px(B0)u!1, the linear term of the expansion of the ma
netic fieldH5B24pM into a power series inB;(r ,t) may
be of the same order of magnitude as nonlinear terms,
Maxwell’s equations will be essentially nonlinear.

The influence of strong magnetism of conduction el
trons on wave processes in compensated metals was st
in Ref. 3. In this communication, we consider the propa
2031063-777X/99/25(3)/4/$15.00
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tion of nonlinear waves in noncompensated metals with
ferent numbers of electrons (ne) and holes (nh) under the
following conditions

vt!1, kr0!1,

kzl !1, 0,124px!1,

wherek5(0, k sinu, kcosu) is the wave vector,r 0 the ra-
dius of curvature of the electron trajectory in the unifor
field B05(0,0,B0), l 5vFt, vF being the Fermi velocity.

A varying electromagnetic field in an infinite metal
defined by the system of Maxwell’s equations

curlB5
4p

c
J, curlE52

1

c

]B

]t
, div B50, ~1!

supplemented with constitutive relations for the current d
sity and magnetization. HereJ5 j1c curlM is the density of
total current including the conduction currentj and the cur-
rent j 85c curlM induced by the magnetic field,c being the
velocity of light.

In the quasi-stationary casevt!1, the system of con-
duction electrons has time to tune itself to the instantane
values of varying fields, and we can use static express
for j andM substituting into them the values of the fieldsE
and B; at the given instant of time. Forkzl !1, we can
neglect spatial dispersion in the expression forj and write
the conduction current density in the form

j i5s ik~B0!Ek , ~2!

where s ik(B0) is the static conductivity tensor in uniform
fields. In the semiclassical approximation in which the se
ration between Landau levels is much smaller than the Fe
energy«F , quantum corrections to the electrical conduct
ity of a metal proportional to (\V/«F)1/2 are usually small.4

Their inclusion does not affect the existence of natural os
© 1999 American Institute of Physics
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lations of electromagnetic field and is reduced to a chang
the damping decrement of the wave. Since the ultraquan
limit \V*«F is attainable only in semimetals of the bismu
type, the semiclassical description of electron phenomen
metals with the number of charge carriers of the order of
carrier per atom is valid in a wide range of actually attaina
magnetic fields. In the further analysis, we shall use the
pression for the conductivity tensor in classically stro
magnetic fields.

Using the local form of current density~2!, we can easily
obtain from the system of equations~1! the vector equation
for the components of the transient fieldB;(r ,t):

]B˜

]t
52

c2

4p
curl~ r̂ curlH!, ~3!

where (r curlH)k5rki(curlH) i , H5B24pM (B).
In noncompensated metals, the diagonal component

the resistivity tensorrki(s
21)ki have the same order of mag

nitude. Without any loss of generality in the analysis of wa
processes, we assume that all of them are the same, equ
r051/s0 , wheres0'vp

2t/4p is the static electrical conduc
tivity of the metal in zero magnetic field andvp is the fre-
quency of plasma oscillations of charge carriers. This allo
us to reduce Eq.~3! to the form

]B˜

]t
52

c2

4p
~b•“ !curlH2

c2

4p
r0~grad divH2DH!,

~4!

wherebj5(1/2)« jkirki is the vector dual to the tensorrki . If
we take into account the difference betweenr i i , Maxwell’s
equation retains the form~4! under appropriate transforma
tion of coordinate axes. The largest component of the ve
b is bz determined by the Hall component of the resistiv
tensorrxy5B0 /ce(ne2nh). If Vt cosu@1, the remaining
components of vectorb in the first term on the right-hand
side of ~4! can be neglected for any type of the electr
energy spectrum, and the asymptotic expression for the
tor b have the following form accurate to an insignifica
dimensionless factor of the order of unity:b5(0,0,Vtr0).

The densityj 8 of the current induced by the magnet
field is mainly determined by the magnetization compon
Mz since the vectorM is directed predominantly alongB0 ,
and Mx ,M y!Mz . We write the expansion of the induce
current density into a power series inB;(r ,t) and its deriva-
tives in the form3,5

j x85c~curlM !x5cx~B0!
]Bz

˜

]y
2cj

]Bz
˜ 3

]y
1car 0

2
]3Bz

˜

]y3 ,

~5!

wherej5(b/B0
2)(«E /\V)2, anda andb are dimensionless

coefficients of the order of unity. The second and third ter
in formula ~5! are determined by the nonlinear and nonu
form correction to magnetization.

After simple transformations, we obtain the followin
equation forBz

;(y,z,t):
in
m

in
e
e
x-

of

e
l to

s

or

c-

t

s
-

S vp
2

c2V D 2 ]2Bz
˜

]t2 1
]2

]z2 S ]2Hz
˜

]y2 1
]2Bz

˜

]z2 D
5

1

Vt

vp
2

c2V
D

]Bz
˜

]t
1

1

Vt S vp
2

c2V

]

]t
2

1

Vt
D D

3S ]2Hz
˜

]y2 1
]2Bz

˜

]z2 D . ~6!

In the linear approximation, this equation describes wave
the helicoid type with frequency

v l5
k2c2V

vp
2 cosuAk2 sin2 u1cos2 u, ~7!

differing from the frequency of a helicon in a classical
strong magnetic field by the factorAk2 sin2 u1cosu. It can
easily be seen that, fork2!1 and cosu;k, linear and non-
linear terms inBz

; are quantities of the same order of ma
nitude, and the wave process is essentially nonlinear.
attenuation length

l d.k~vt!21/2~Vt cosu!3/2
c

vp
.kk21Vt cosu ~8!

in this case must be considerably larger than the wavelen
which is observed under the condition

kVt cosu@1.

Inclusion of the term proportional toBz
;3 in the expres-

sion for

Hz
˜ 5k2Bz

˜ 14pjBz
˜ 324par 0

2
]2Bz

˜

]y2 ~9!

leads to the emergence of elliptic functions in the solution
Eq. ~6! which has the following form in the dimensionles
variables u5Bz

˜ /b0 , y15y/L, z15kz/L, t15(k2/L2)
3(c2V/vp

2)t:

]2u

]t1
2 1

]2

]z1
2 S ]2W~u!

]y1
2 1

]2u

]z1
2 D 5

g

k2 D1

]u

]t1
1gS ]

]t1
2

g

k2 D1D
3S ]2W~u!

]y1
2 1

]2u

]z1
2 D . ~10!

Here

W~u!5S u1u32d
]2u

]y1
2D ;

g5
1

Vt
; d5

4par 0
2

L2k2 ;

b05B0Ak2/4pj.kB0~\V/«F!;

D15
]2

]y1
2 1k2

]2

]z1
2 ,

whereL andk21L are the characteristic scales of nonunifo
mity of the nonstationary field in they- and z-directions.
Dissipative terms on the right-hand side of Eq.~10! are small
when the inequalityVtk2@1 is satisfied. In this case, Eq
~10! in the zeroth approximation in the small parame
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h5g/k2 has a wave solution, and the functionu(r1 ,t) can
be sought in the formu5u(c), where c5n1y11n2z1

2Vt1 .
Substituting this expression into Eq.~10! and neglecting

terms of the order ofh, we obtain

V2

n2
2

d2u

dc2 1
d2

dc2 S s2u1n1
2u32n1

4d
d2u

dc2D50, ~11!

wheres25n1
21n2

2.
In the case of large wavelengths, the solution of t

equation can be written in a simple parametric form. IfL
}k21 is quite large andd;(kr0 /k)2!1, the last term in the
parentheses can be neglected. Integrating thrice the obta
equation with respect toc and puttingu5u(w), wherew
5*udc, we obtain after transformations the following equ
tion connectingu andw:

V2

n2
2 w25C22s2u22

3

2
n1

2u4, ~12!

whereC2 is the integration constant. This leads to the i
plicit dependenceu(c):

dc5
dw

u
52

n2

V

~s213n1
2u2!du

~C22s2u223/2n1
2u4!1/2. ~13!

Transforming this expression, we putu5n21(A112n2A2

21)1/2cosw, A[C/s, n[)n1 /s5@3k2 sin2 u/(k2 sin2 u
1cos2 u)#1/2, which gives

V

n2s

dc

~112n2A2!1/452A12m2 sin2 wdw

2
dw

~12m2 sin2 w!1/2,

m25
1

2 S 12
1

~112n2A2!1/2D .

Introducing the notationa[Vn2
21s21(112n2A2)21/4 and

going over from the variablesy1 ,z1 ,t1 to the variablesy,z,t,
we can write the solution of Eq.~6! in parametric form:

Bz
˜ 5Bm

˜ cosw~Q~r ,t !!, ~14!

Q~r ,t ![kyy1kzz2vNt1Q052E~w,m!2K~w,m!,
~15!

where

vN5~112n2A2!1/4v l ;

ky[k sinu5an1 /L; kz5k cosu5kan2 /L;

Bm
˜ 5~b0 /n!~A 112n2A221!1/2; ~16!

K~w,m!5E
0

w dw

~12m2 sin2 w!1/2;

E~w,m!5E
0

w

~12m2 sin2 w!1/2dw

are elliptic integrals of the first and second kind andQ0 is
the initial phase. Equation~15! defines implicitlyw as a func-
tion of Q(r ,t).
s

ed

-

-

Using the property

KS n
p

2
,m D5nKS p

2
,m D[nK~m!,

ES n
p

2
,m D5nES p

2
,m D[nE~m!

of elliptic integrals, wheren is an integer, we can easil
verify that the magnetic field of the wave is a periodic fun
tion of the variableQ with the period 4f (m), where f (m)
52E(m)2K(m). With variation ofQ, the functionBz

;(Q)
oscillates, assuming the maximum value1Bm

; and the mini-
mum value2Bm

; at the pointsQ154n f(m) andQ52(2n
11) f (m) respectively and vanishing atQ5(2n11) f (m).

The varying fieldBz
;(r ,t) depends on the arbitrary pa

rameterA having the following physical meaning: the prod
uct b0A is the amplitude of a linear wave. The extent
nonlinearity of the wave process is characterized by
quantity n2A2. If n2A2!1, the functions m(A,u) and
Bm

;(A,u) can be expanded into power series inn2A2:

m25
1

2
n2A2S 12

3

2
n2A2D ,

Bm
˜ 5b0AS 12

1

4
n2A2D . ~17!

In the main approximation inn2A2, we have w(r ,t)
5Q(r ,t), and formula~14! is transformed into a harmoni
wave with amplitudeb0A. The range of values cos2 u @k2

corresponds to a weakly nonlinear mode. In this case,n2

;k2/cos2 u, and we can easily obtain from~14! and~15! the
following expression for values ofA of the order of unity
~accurate ton2A2!:

Bz
˜ ~r ,t !5Bm

˜ H S 11
3

16
m2J D cosQ1~r ,t !

2
3

16
m2 cos 3Q1~r ,t !J , ~18!

where

Q1~r ,t !5S 11
3

4
m2DQ~r ,t !.

As the value of cosu decreases, a transition is made to t
nonlinearity region. The wave process is essentially non
ear for cosu;k for waves with amplitudeBm

; of the order of
kB0(\V/«F). For example, for values ofB0;104 G,
\V/«F;1024– 1023, k2;1021, nonlinear distortions of the
wave profile are observed forBm

;;1 G.
In order to take dissipations into account, we can use

standard theory of perturbations, assuming that the solu
of Eq. ~6! in the zeroth approximation in the small parame
h has the form~14! and ~15!, the only difference being tha
the parameterA is a slowly varying function of time. The
explicit form of the functionA(t) is difficult to determine in
view of a complex dependence ofBz

; on A. However, we
can easily derive simple analytic expressions forA(t) in the
limiting case of t@Vt cosu/vl . Dissipation leads to a de
crease in the wave amplitude with time, and the functionA is
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a solution of the linearized problem fort@Vt cosu/vl . Ne-
glecting nonlinear terms in Eq.~6!, we obtain

A~ t !5A~0!e2v8t, ~19!

where

v85
1

2
g

k2c2V

vp
2 ~11k2 sin2 u1cos2 u!

is the damping decrement for the linear wave.
The determination of the remaining components of el

tromagnetic field is reduced to elementary operations of
tegration and differentiation. In the main order inh, the elec-
tromagnetic field of the wave has the following structure:

By
˜ 52Bz

˜ cotu,

Bx
˜ 52

vNvp
2

k2c2V sinu cosu
Bm
˜ sinw~12m2 sin2 w!1/2,

E52
cV

vp
2 ~ez3curlH~B!!, ~20!

whereez5(0,0,1) is the unit vector directed along thez-axis,
and the functionw~Q! is defined by formula~15!. In the
linear approximation, the varying field is a helicoid wave

We have considered the effect of strong magnetism
conduction electrons on the propagation of electromagn
waves for 0,124px!1. For x.1/4p, the transient field
Bz

; is described by Eq.~6! wherek2→2uku2. Linearizing
this equation and assuming thatBz

˜ }exp(2ivt1ik•r ), we
can easily find that the dispersion equation forukusinu
.cosu has purely imaginary roots, and the magnetic ind
-
-

f
ic

-

tion distribution is unstable. The field will increase until th
process is compensated by the nonlinear term. Ultimat
the evolution of instability leads to the emergence of
steady-state domain structure.6 If dissipative effects are
weak, i.e.,Vt is quite large, the stabilization of a steady-sta
domain structure must apparently be accompanied by we
attenuating oscillations of electromagnetic field. The amp
tude and wave numberky are not independent paramete
any longer, but are determined by the quantityuku2[1
24pxu. Equation~6! for x.1/4p is not integrable in the
known elementary and transcendental functions. Howe
we can explain qualitatively the behavior of the system in
limiting caset→`. On account of weak dissipative effect
the frequency and wave vector are slowly varying functio
of time, such thatv→0 andkz→0 for t→`. As a result,
Eq. ~6! is transformed into the time-independent equat
]Hz(Bz)/]y50 which can easily be integrated and dete
mines the steady-state nonuniform distribution of magne
induction.
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5I. A. Privorotski�, Zh. Éksp. Teor. Fiz.52, 1755~1967! @Sov. Phys. JETP
25, 1167~1967!#.

6J. Condon, Phys. Rev.145, 526 ~1965!.

Translated by R. S. Wadhwa



LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 3 MARCH 1999
LOW-DIMENSIONAL AND DISORDERED SYSTEMS

Atomic structure of interfaces between amorphous and crystalline phases in tungsten
A. S. Baka , I. M. Mikha lovski , E. V. Sadanov, T. I. Mazilova, and E. I. Lugovskaya
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The atomic structure of the interfaces in amorphous–crystalline tungsten obtainedin situ by
ultrafast quenching to low temperatures from the liquid phase are investigated by the methods of
field ion microscopy. A high degree of localization of imperfections and interfacial
incoherence is established. The coordinates of atoms at interfaces correspond either to the
crystalline or to the amorphous phase. Transition regions with intermediate positions of atoms were
observed only in the vicinity of boundary regions between closely packed crystallographic
planes and paraplanes. ©1999 American Institute of Physics.@S1063-777X~99!00903-2#
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INTRODUCTION

Amorphous–crystalline materials possess unique ele
cal, magnetic, and mechanical properties which are inter
ing both from the scientific and technological points of vie
Peculiar physical properties of crystalline–amorphous m
rials are associated to a considerable extent with the pres
of a developed network of interfaces in them.1,2 The regu-
larities of the formation of these materials by nanocrysta
zation of metallic glasses are essentially determined by
cesses on the interfaces between the amorphous
crystalline phases.2,3 However, the interfaces in strongly dis
ordered systems have not been investigated practicall
spite of the application of the entire arsenal of hig
resolution microscopic methods in view of the difficulties
deciphering microdiffractograms. In this communication,
use the methods of field ion microscopy to obtain for the fi
time the information on the structure of interfaces betwe
the amorphous and the crystalline phases on atomic lev

EXPERIMENTAL TECHNIQUE

The experiments were made on a two-chamber field
microscope with sample cooling to liquid hydrogen tempe
ture. Helium under a pressure of 1023 Pa was used as th
image gas. The residual gas pressure in the working cham
of the microscope was 1025– 1027 Pa. Needle-shaped tung
sten samples with a radius of curvature 10–15 nm and
cone angle 2 – 10° were prepared by electrochemical etc
from a tungsten wire of purity 99.98%. After sample fixatio
in the microscope, the surface was polished by lo
temperature field evaporation4,5 until the formation of an
atomically smooth hemispherical tip with a radius of curv
ture in the interval 15–50 nm. Amorphization of need
shaped samples was carried out directly in the work
chamber of the microscope by ultrafast quenching from
liquid phase,6 created by local melting of the tip of needle
shaped samples. Amorphous and crystalline–amorph
samples were created with the help of pulse generators
2071063-777X/99/25(3)/7/$15.00
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a pulse duration in the interval 231028– 531028 s and an
amplitude 5–70 kV. Pulse generators were connected in
ries with a high-voltage~0–25 kV! dc generator. The metho
of obtaining amorphous microtips by ultrafast quenchi
from the liquid phase in a strong electric field was describ
and discussed by Zaitsev and Suvorov.6,7

Field ion microscopic images of crystalline-amorpho
samples were analyzed by using the geometrical metho
computer simulation of the images.3 In the approximation of
the model of thin envelope, it was assumed that the con
bution to the formation of the ion-microscopic image com
from atoms located in a surface layer of a certain finite thi
nessd. The amorphous state was simulated by specify
random displacement in the limits typical of the crystalli
state of compact polyhedra. Repeated random displacem
was performed in the case of overlapping of atoms. It w
taken into account that the thickness of the envelope im
da for amorphous tungsten was smaller than the correspo
ing parameterdc for samples in the crystalline state.8 The
geometrical model of field ion images is simplified and ca
not ensure, among other things, a correct description of
surface radial distribution function in the amorphous sta
At the same time, it will be shown below that this mod
satisfactorily reflects the main regularities of variation
atomic configurations at the interfaces in crystalline
amorphous metals. The simultaneous observation of
crystalline and amorphous phases allows us to determine
cal magnification to a high degree of accuracy~with an error
up to 2–5%!, which eliminates difficulties in the interpreta
tion of field emission images of amorphous metals cons
ered by Nordentoft.9

Characteristic atomic displacements at internal interfa
in solids normally occur in the range up to 0.1 nm,1 which is
beyond the standard resolution of the field ion microsco
~0.27 nm!. However, In accordance with the analysis carri
out by Mikhailovskij,10 subatomic displacements can also
detected during the passage of the interface in the vicinity
© 1999 American Institute of Physics
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poles of crystallographic planes with low Miller indices wi
the help of indirect magnification method. This method c
be applied for an analysis of the atomic structure of int
faces in the boundary regions between closely packed c
tallographic planes and paraplanes in the amorphous ph
In this case, the component of the displacement vectoT
normal to the crystallographic plane can be determined:

T•n5rDr /R1pdhkl , ~1!

where n is the unit vector of the normal to the crystallo
graphic plane,r the radius of an atomic step in the crystallin
phase,R the radius of sample curvature at the tip,dhkl the
separation between the planes, andp the integral part of the
ratio T•n/dhkl . HereDr corresponds to the difference in th
radii of atomic steps on the boundary region between
crystallographic plane and the paraplane.

Relation ~1! shows that the minimum value of atom
displacements normal to the surface is

~T•n!min5r«/R, ~2!

where« is the resolution of the microscope. In the course
field evaporation, the radius of an atomic step decreases
the resolution of the indirect magnification method increa
accordingly. However, the radius of the atomic step can
be smaller than

r min5~Rdhkl/2!1/2. ~3!

due to the effect of collective evaporation of atoms
closely packed faces.11 Relations~2! and ~3! show that the
minimum displacement in the@HKL# direction recorded on
(hkl) faces by ion microscopy is given by

DTmin5«~h21k21 l 2!1/2~H21K21L2!1/2

3@dhkl /~2R!#1/2/~hH1kK1 lL !. ~4!

Only the paraplanes that are analogs of the most clo
packed crystallographic planes$110% with dhkl50.22 nm are
formed in the amorphous phase. Accordingly, the displa
ment on interfaces between the crystalline and amorph
phases in typical samples withR550 nm is DTmin51.1
31022 nm. Expression~1! can also be used for determinin
the displacement of individual atoms relative to the crys
lographic plane in incoherent segments of interfaces
amorphous–crystalline materials. In this case,Dr corre-
sponds to the difference between the radius of an atomic
on a crystallographic face and the distance to the pole of
face of the atom being analyzed in the amorphous phas
geometrical analysis shows that the accuracy of the meas
ments of atomic displacements on incoherent segment
interfaces with the help of indirect magnification method
slightly lower. While estimating the minimum resolution o
atomic displacement, we must take into account the inde
minacy in the position of atoms along the normal to t
surface within the thickness of the envelope image:DTmin

5(T•n)min1da , whereda is the thickness of the envelop
image in the amorphous phase. In this case, however
limitations associated with the effect of collective fie
evaporation are absent, and the thickness of the enve
image is relatively small~see above!. Thus, the minimum
n
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resolvable displacements along the normal to the surfac
interfaces of crystalline–amorphous materials in the indir
magnification method lie in the interval (1 – 2)31022 nm.

DISCUSSION OF RESULTS

A. Amorphization of needle-shaped microcrystals

Our experiments proved that melting of tips of need
shaped microcrystals by pulses of duration approxima
equal to half the amplitude (4 – 5)31028 s with the voltage
drop time;1028 s is optimal for obtaining amorphous an
crystalline–amorphous structure. As the duration of puls
increases, the melting of needle-shaped samples leads
increase in the radius of curvature by more than an orde
magnitude, which complicates their ion-microscopic ana
sis. The optimum amplitude of pulses was varied from 5
30 kV depending on the radius of curvature and was cho
so that the electric field strength was 15–25% higher than
threshold voltage of low-temperature evaporation. T
threshold voltage of the evaporating field of tungsten at 21
amounts to 5.83108 V/cm. A comparison with the data pre
sented in Ref. 12 shows that the ponderomotive for
emerging in this case exceed considerably the ultim
strength of the metal.4 As a result, most of samples wer
destroyed under pulse loading. The observations in field
croscope~mass analyzer!,13 the detachment of the tips of th
samples was accompanied by a strong increase in the cu
of multiply charged ions. Most of atoms evaporated in t
form of 2–4-fold ions, but 5–6-fold ionized atoms were al
observed. The ion current of density (2 – 5)3106 A/cm2

flowing at the sample tip resulted in a vacuum breakdow
melting of the tip of the needle-shaped sample, and an
crease in its radius of curvature by an order of magnitude
higher. The estimates of the time of cooling of a conical
show that it does not exceed 1028 s due to the emergence o
high temperature gradients. The cooling rate of tips can b
high as 1010– 1011deg/s, which is considerably higher tha
the quenching rate during the stabilization of the amorph
state in macroscopic volumes.14 The structure obtained as
result of ultrafast quenching is stable at least at 21–78
The stabilization of the amorphous state can be associ
with microscopic doping of surface layers during the vacu
breakdown accompanied by an intense mass transfer
tween the electrodes.15

As a result of pulse melting and ultrafast quenching,
tips of more than 80% of the samples were smoothed to
radii of curvature at the tip from the interval 102– 104 nm and
did not ensure the level of field strength required for t
ionization of the image gas for the maximum working vo
age. As a result of competing action of surface tension
electric field strength, microtips7 were formed on the surfac
of the samples. The radii of curvature of a part of the t
were smaller than 50 nm, which ensured the obtaining
stable ion-microscopic images. Most of microtips has
crystalline structure under optimal conditions of pulse tre
ment, but approximately 10% of newly formed microtip
were in the amorphous or amorphous–crystalline states.
ures 1a and b show typical ion-microscopic images
needle-shaped samples before and after the transition to
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FIG. 1. Field-ion microscopic images of a tungsten sample bef
~a! and after~b! transition to the amorphous–crystalline state.
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amorphous–crystalline state respectively. The images of
amorphous phase are characterized by almost complete
of regularity in the arrangement of atoms in the surface la
and are described satisfactorily on the basis of the geom
cal model~Fig. 2!. As in the case of amorphous alloys of th
transition metal–metalloid type,9,16 a decrease in the concen
tration of surface atoms contributing to the formation of io
microscopic images is observed. Figure 3 shows the di
butions off r over local concentrationsr of surface atoms in
the amorphous~curve 1! and crystalline~curve 2! phases.
The ratio of half-widths of distributions for the crystallin
and amorphous phases is 2.8. The average density of at
images in the crystalline state is 2.2 times higher than
corresponding value in the amorphous state. This confi
the conclusion on the comparatively small thickness of
atomic layer in the amorphous phase, participating in
formation of the field ion image.9 According to our results,
the thicknessesda anddc of envelope images in a compute
simulation of field ion images were assumed to be equa
831023 and 231022 nm, respectively.

Microtopography of interfaces

An analysis of the morphology of interfaces
crystalline–amorphous tungsten revealed their structural
topographic nonuniformity. Microtopography of interfac
reconstructed from the series of ion-microscopic ima
obtained during field evaporation was characterized

FIG. 2. Computer model of an ion-microscopic image of crystallin
amorphous tungsten formed by low-temperature field evaporation.
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alternation of extended plane regions~see Fig. 1b! and mi-
croscopically rough regions with nanosteps having a he
1–5 nm and width 2–15 nm~Fig. 4!. Crystallogeometric
analysis proved that extended plane regions are orie
along planes with low Miller indices. For example, a fra
ment of a plane region of the interface presented in Fig. 1
oriented along the closely packed plane$101%. An important
feature of microtopography of interfaces in crystalline
amorphous tungsten and grain boundaries in the initial c
talline material is the perfect atomic smoothness of exten
plane regions of interfaces. Under ordinary working con
tions of field ion microscopes, which correspond to the fie
strength of the best image,4 the contribution to image forma
tion comes only from 25–30% of surface atoms in view
the above-mentioned small thicknessd of the surface layer
image~especially in the amorphous phase!. This complicates
the nanotopographic analysis of interfaces. However,
analysis of a series of micrographs obtained under cont
lable evaporation shows that traces of interfaces are str
rectilinear, indicating the atomic smoothness of the exten
plane interface.

In microscopically rough regions, no tendency to pref
ential orientation along low-index planes was observed. A
rule, planes cannot be identified in view of a small length
nanosteps. However, the presence of a broad and ne
continuous spectrum of angles between the traces of

FIG. 3. Distribution of concentration of surface atoms in the amorph
~curve 1! and crystalline~curve 2! phases in crystalline–amorphous tun
sten.
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FIG. 4. Ion-microscopic image~a! and stereo-
graphic projection ~b! of a microscopically
rough region of the interface.
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emergence of steps on the surface~Fig. 4b! indicate that
most steps are oriented along high-index planes.

Incoherence of interfaces

Regularity in the arrangement of atoms in the crystall
phase is preserved up to the interface~Fig. 5!. The configu-
ration of concentric atomic steps corresponds to comp

FIG. 5. Ion-microscopic image~a! and schematic diagram~b! illustrating
the presence of subatomic displacements at the interface. Figures d
atoms in the amorphous phase, that are the closest to the interface.
e

er

images of perfect single crystals obtained by using the g
metrical model~see Fig. 2!. This indicates the incoherence o
the interface between the crystalline and amorphous pha
In the case of a coherent conjugation, the existence o
transition layer and the presence of local distortions of cr
tal lattice should be expected in the boundary region.

Atomic displacements were determined from the lo
deformation at the boundary of concentric atomic steps
closely packed atomic faces by using the indirect magnifi
tion method. The atomic displacements in the crystall
phase along the normal to the$110% face in the region of the
core of the interface having a width up to a lattice parame
did not exceed 531022 nm. Such displacements can be r
garded as small deformations that do not change the cry
line type of atomic packing in the boundary region. A com
parison with computer images~see Fig. 2! shows that the
pattern of arrangement of boundary poles and atomic s
on closely packed faces typical of bcc lattices does
change in this case.

The absolute valuesDuhu of atomic displacements in th
direction normal to the$110% plane in the boundary region
were calculated by the method of indirect magnification
the basis of formula~1! ~Fig. 6!. Here N is the number of
atoms in the crystalline (N,0) and amorphous (N.0)
phases, which are nearest to the interface~see the diagram in
Fig. 6!. In the crystalline phase, the displacementsDuhu
,0.02 nm were observed. It can be proved that the grad
of displacements does not exceed the deformation level g
erated by a lattice dislocation at the center of the$110% face.
Thus, atomic displacements in the boundary region of
crystalline phase are, as a rule, in the elastic region and
not violate crystallogeometric regularity in the atomic pac
ing. In the boundary regions of the amorphous phase no c
jugation effects are observed as a rule. Irregular displa
ments are typical even for atoms nearest to the bound
The displacements increase abruptly up to 0.1 nm, and
form of distribution of atomic displacements does not chan
as we move away from the interface. Thus, the structu
width of the interface determined from the length of the
gion with a peculiar morphology of atomic packing in th
core of the interface can be assumed to be zero.

The observed incoherence and small width of interfa
ote
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between the crystalline and amorphous phases may pl
significant role in diffusive transport of atoms and in t
formation of mechanical properties of crystalline
amorphous materials. It can be stated on the basis of
above peculiarities of the interfaces under investigation
proceeding from the topological–geometrical considerati
similar to those proposed in Ref. 2 that the network
boundary lattice sites contains coinciding and noncoincid
sites. Boundary sites cannot form translation-invariant str
tures either in view of the lack of translational invariance
the amorphous structure. Consequently, the structure
properties of crystalline–amorphous interfaces must be s
lar to those on intercluster boundaries in amorphous allo
Among other things, we can expect that at high temperatu
when diffusive transport over the boundaries of atoms
comes significant, the main mechanism of plastic deform
tion in crystalline–amorphous metals and alloys is
diffusive–viscous flow over internal interfaces as in meta
glasses.2

Local atomic conjugation at interfaces

The methods of high-resolution transmission elect
microscopy17 and field ion microscopy18 were used earlier to
detect the regions of intermediate ordering in amorphous
loys. These regions had a size of 1.5–2.5 nm and conta
closely packed but noticeably distorted atomic planes~para-
planes!. The available data indicate the coherent integrat
of paraplanes with the amorphous matrix and the presenc
comparatively large strains. Similar paraplanes were also
served in our experiments.

In the cases when crystallographic planes with l
Miller indices intersected an interface at an angle close
90°, microscopic regions in which atoms formed close
packed planar groups~paraplanes! were observed in the
boundary region of the amorphous plane.

FIG. 6. Subatomic displacements near the interface between the cryst
(N,0) and amorphous (N.0) phases~N is the number of an atom closes
to the interface!.
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Figure 7 shows an ion-microscopic image of the int
face containing the pole@110#. A semicircular atomic step a
the~110! face of the crystal conjugates at the interface with
deformed atomic layer~paraplane! in the amorphous phase
The absence of detectable ion-microscopic fractures
atomic steps at the interface indicates a high extent of or
tational correspondence of contacting crystallographic pla
and paraplanes.

In contrast to planes in the crystalline phase, parapla
were characterized by the presence of small displacemen
atoms. The emergence of atomic images within a semicir
lar step in the amorphous phase in accordance with the
metrical model of the formation of field ion images indicat
a displacement of atoms along the normal to a parapla
The magnitude of the displacement is proportional to
difference between the step radius and the distance betw
the atom under investigation and the pole of the parapla
The distribution off d over atomic displacementsDh normal
to paraplanes and calculated by the indirect magnifica
method on the basis of an analysis of a series of i
microscopic images is shown in Fig. 8. We analyzed d
placements in the boundary paraplanes~see Fig. 7! whose
length was normally 2–3 nm. DisplacementsDh can be re-
garded as a measure of deviation from planarity in

ine

FIG. 7. Conjugation of the crystallographic plane$110% with a closely
packed paraplane.

FIG. 8. Distribution of atomic displacements in the boundary closely pac
paraplanes.
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arrangement of atoms in paraplanes in the boundary reg
of the amorphous phase. It should be noted that the distor
of atomic paraplanes in the regions of coherent conjuga
with the amorphous environment was observed with the h
of high-resolution electron microscopy17 as well as low-
temperature field ion microscopy.2,18 The estimates obtaine
by the indirect magnification method show that mutual d
placement of planes and paraplanes does not excee
31022 nm. Alternation of mismatched regions and doma
of orientational correspondence of closely packed planes
paraplanes was usually preserved during field evaporatio
the sample to a depth of 102– 104 nm.

Width of interfacial core

Physical and mechanical properties of interfaces are
termined to a considerable extent not only by the structu
width, but also by the size of the region with an elevat
level of deformation energy. For example, while determin
the width of interfaces, we must take into account the pe
liarities of the deformation field beyond the structural wid
of the interface.2,19

Considering that atomic displacements in the region
cores of the interfaces1 are comparable with the thicknessd
of the envelope image, we can use the effect of variation
d under amorphization of metals in order to estimate qua
tatively the width of the core of the interface. Thus, the wid
of the interface core can be determined from the width of
region of continuous variation of the thickness of the en
lope image in the intervalda,d,dc . The inhomogeneity of
the structure of interfaces between the crystalline and am
phous phases mentioned above is also manifested in the
ence of a considerable dispersion in the values of local w
of interfacial cores. Among other things, interfacial regio
with a virtually jump-like variation of density are observe
in regions of width 0.3–0.4 nm.8 The width of the core of
such an interface can be assumed to be equal to a la
parameter, which is much smaller than the width of the c
of crystallite boundaries.20 In some cases, the width of th
region with varying values ofda attained 1.0 nm. Figure 9
shows a typical dependence of the average surface dens
atoms on the distanced to the interface. Negative value

FIG. 9. Dependence of the local concentration of surface atoms on
distanced to the interface.
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correspond to the crystalline phase as before. A consider
variation of the surface density is observed in a region h
ing a width corresponding to three atomic spacings. Th
the width of the core of the interface between the crystall
and amorphous phases in different regions amounts to
atomic spacings.

CONCLUSIONS

The method of indirect magnification in the field io
microscopy ensures the detection of subatomic displa
ments at the interface between the crystalline and amorph
phases with an accuracy exceeding the resolution of the
croscope by an order of magnitude and higher. The appl
tion of this method in our experiments has made it poss
to obtain for the first time the experimental information o
the structure of the interfaces between the amorphous
crystalline phases at atomic and subatomic levels.

~1! Microscopic topography of interfaces was characteriz
by alternation of extended plane segments oriented
dominantly along the planes with low Miller indices an
microscopically rough regions containing nanosteps. E
tended plane regions were perfectly atomically smoo

~2! Atomic displacements in the boundary region of t
crystalline phase do not disturb the crystallogeometri
regularity of atomic packing. As a rule, conjugation e
fects are not observed in the boundary regions of
amorphous phase: irregular displacements are typ
even for atoms closest to the interface. The structu
width of the interface determined from the width of th
region with a peculiar morphology in atomic packing
the interfacial core can be assumed to be equal to ze

~3! The effect of conjugation of crystallographic planes a
paraplanes was observed in separate regions of the i
face, and a high extent of their orientational correspo
dence was indicated.

~4! It is shown that the width of interfacial region in whic
peculiarities of deformation field were observed with t
help of ion microscopy is considerably larger than t
structural width of the interface.

Thus, the high-resolution methods of field ion micro
copy are used in this work to establish the incoherence
atomic sharpness of the interface between the amorphous
crystalline phases. Structural inhomogeneity of the interfa
was observed. Noncontracting regions alternate with the
gions of orientational correspondence of closely packed c
tallographic planes and paraplanes in the amorphous ph
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Photocurrent generation in single electron tunneling transistors
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A single-electron tunneling transistor~SET! with a non-equilibrium mode population in one of
the leads is analyzed theoretically. We model transport through a dot coupled to a channel,
both formed by gates from the two-dimensional electron gas of a GaAs/AlGaAs heterostructure.
The non-equilibrium mode population, which is induced by coherent THz-pumping in the
channel, produces empty states below the Fermi level for electrons to tunnel into. A photocurrent
arises, which is periodically saw-tooth peaked with respect to the voltage on a central gate.
For intense THz-fields the peaks display plateaus that reflect the energy dependence of the mode
population. We also predict a high-gainVin /Vout transfer-characteristic, similar to that of a
current biased SET. ©1999 American Institute of Physics.@S1063-777X~99!01003-8#
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1. INTRODUCTION

Charging effects are becoming increasingly importan
transport experiments, as fabrication technology for na
scale systems develops. These effects appear in diffe
kinds of circuits that have one thing in common—they
incorporate a small semi-isolated island in which the num
of electrons is strongly quantized.1–3 At low driving voltage,
fluctuations of the charge on this island are suppressed du
Coulomb interaction, except if the electrostatic potential
the island is carefully tuned.4 This Coulomb blockade
mechanism is utilized in the Single Electron Transis
~SET!, to modulate the conductance through the island
varying the potential on a nearby gate electrode.5

When alternating fields are introduced in SETs and
lated systems, interesting effects arise, and large amoun
physical information can be gained. By applying MH
signals to one or several gates, one can generate precise
rents in the pA-range,6–8 and by monitoring the reflection o
a microwave signal from the SET, one can follow char
fluctuations with high accuracy.9 In these examples the alte
nating field acts in a quasi-static way, but if the frequency
raised further, then high-frequency effects appear. For
ample, if a microwave signal in the range 10–75 GHz is
to the gate of a planar semiconductor SET, both photon
sisted tunneling across the barriers and photo-excitations
side the island, can be observed.10

So far, no special attention has been paid to utiliz
ac-fields for inducing a non-equilibrium electron distributio
inside the leads of a SET. Such a distribution can clea
open new ways of tunneling into and out of the island. In
metallic lead of typical dimensions this will have a negligib
effect because of strong screening and poor s
quantization. However, in a quasi one-dimensional cond
tor, such as a split-gate channel in the two-dimensional e
tron gas (2DEG) of a GaAs/AlGaAs heterostructure, th
situation is different. Recent transport experiments empl
ing THz-fields touch upon this issue.11,12
2141063-777X/99/25(3)/6/$15.00
n
-
nt

l
r

to
f

r
y

-
of

ur-

e

s
x-
d
s-
n-

g

ly
a

-
c-
c-

-

In this work we consider, theoretically, how the perfo
mance of a SET will be influenced by the application of
electric THz-field in one of the leads. The important ne
ingredient is a non-equilibrium mode-population, which r
sults in a photocurrent generation in the SET. For inte
THz-fields we find a short-circuit current that reveals info
mation about the non-equilibrium distribution function in th
lead. Considering instead weak THz-fields in an open circ
configuration, we find aVin /Vout transfer characteristic simi
lar to that of the current biased SET.

2. THEORY

The system under consideration is described in Fig
We choose to have a gated-2DEG realization in mind when
modeling the system. Such a realization allows bo
Coulomb-blockade effects and ballistic motion over ma
electron wavelengths.13,14 When applying a negative voltag
to the gates, the electrons are confined to a dot and a cha
plus to reservoirs on the two sides. We shall refer to
channel-side reservoir as the collector and to the reservoi
the other side as emitter. The emitter is grounded to a ba
gate and the collector is also grounded but via a load resi
RL . Our aim is to calculate the currentI through, or the
voltageV across this load resistor, as a function of the el
trostatic potential on the dot, which can be tuned via
voltage Vg . We use the standard approach, ignore
tunneling and calculate the current from a mas
equation.15,16 The influence of discrete states in the dot w
be ignored in order to highlight the influence o
THz-pumping.17 We take the band-bottom in the emitter
our reference of energy.

As long as the width of the channel varies slowly on t
scale of the electron wavelength, elastic scattering betw
transverse modes may be ignored.18 The resulting mode-
potentials are sketched in the lower part of Fig. 1. We cho
the width of the channel such that only the lowest mo
enters the channel. However, by the application of a cohe
© 1999 American Institute of Physics
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electric THz-field of strengthÊ, across the channel, we ex
cite higher modes inside the channel, provided that the
gular frequencyv is chosen to match the mode-potent
separation there fairly well.

We consider a situation in which, even if higher mod
are brought to life by absorption of a number of energ
quanta\v from the THz-field, only the lowest mode is in
volved in the tunneling process. This is realistic for a sp
gate induced tunneling barrier. If\v matches the mode
potential separation inside the channel, the kinetic energ
an excited mode will be the same as in the lowest mo
However, at the end of the channel, where the transv
confinement is made stronger by separate split-gates, th
netic energies will differ. The stronger confinement leads
a larger mode potential separation, as indicated in Fig
Consequently, the kinetic energies decrease more in exc
modes. For this reason it is realistic to assume a suppre
tunneling for excited modes.

Population of collector modes

We assume a parabolic confining potential in t
channel.19 Introducing the parameterU0 , which describes a
lifting of the bottom of the well, andV, which describes how
narrow the channel is, we write

U~y!5U01 1
2 m* V2y2, ~1!

wherem* is the effective mass andy is the transverse coor
dinate. The problem of finding the population of differe
modes in a pumped straight parabolic channel has been
dressed previously.20 It was shown that if the deviation from
perfect parabolicity is sufficiently large we can forget abo
coupling to higher modes. We assume that this is the c
and confine our interest to the lowest two modes. It is th
straightforward to find an analytical solution.

Starting from the following expression~in which e.0
is the elementary charge! for the kinetic energyKn(E) in
moden:

Kn~E!5E1eV2U02S n2
1

2D\V1~n21!\v, ~2!

using the known expression20 for the coupling energyVv :

FIG. 1. Sketch of the model system and the corresponding energy diag
A coherent electric THz-field, polarized across the collector-channel indu
a non-equilibrium mode population.
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eÊ

2v S \V

2m* D 1/2

, ~3!

and assuming thatu\(v2V)u!K1(E), K2(E) and thatVv

!\v we get for the populationj(E) of the lowest mode at
the end of the channel

j~E!512g sin2@q~E!L#. ~4!

Here

g5F11S \~v2V!

2Vv
D 2G21

, ~5!

q~E!5q̄~E!F S \~v2V!

4K̄~E!
D 2

1S Vv

2K̄~E!
D 2G 1/2

,

q̄~E!5F2m* K̄~E!

\2 G1/2

,

K̄~E!5
K1~E!1K2~E!

2
.

There is a strong similarity between Eq.~4! and Rabi’s
formula for the time developments of a two-level syste
Rabi’s formula describes population oscillations in time in
two-level system, while our Eq.~4! describes population os
cillations between transverse modes, as a function of the
tial coordinate along the channel. The wave-vector of os
lation along the channel is given byq(E) and the resonance
strength byg.

Master equation approach

By Ed(E,N) we denote the energy, relative to the bo
tom of the well in the dot, of an electron that has tunne
into the dot starting from an energyE, when the number of
electrons on the dot increases fromN21 to N. If an electron
is to tunnel out of the dot into a lead at energyE, thereby
decreasing the number of electrons fromN to N21, it must
start at this very same energyEd(E,N). We use the follow-
ing capacitance model for relatingEd(E,N) to E:

Ed~E,N!5E2N
e2

CS
1eVg

Cg

CS
1eV

Cc

CS
1const. ~6!

HereCS is the total capacitance of the dot;Cg is the capaci-
tance between the gate electrodes and the dot;Cc is the
capacitance between the collector and the dot. The elec
static potential of the dot can be continuously tuned via
gate potentialVg and it is dependent also on the electrosta
potentialV in the collector. In addition there are contribu
tions to the potential energy on the dot from the point cont
gates and from the rest of the surroundings, in particu
from random offset charges. We treat this as an unkno
constant in Eq.~6!. It corresponds to a shift inVg , which we
shall not try to determine.

We assume that the electrons inside the dot, after e
tunneling event, quickly thermalize to a Fermi–Dirac dist
bution with a temperatureT given by the surrounding and
with a chemical potentialm(N) given by the number of elec
trons inside the dot. It then makes sense to introduceP(N),

m.
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the probability for havingN electrons on the dot. Further
more, we can usef @Ed2m(N)# for the probability of finding
an electron in a single-electron energy-levelEd , given that
there areN electrons on the dot, where

f ~x!5@ex/kT11#21. ~7!

By assuming thatkT@DE we are allowed to use a con
tinuum description in the dot, and we take the density
states there,rd , to be constant. Moreover, we assume th
DE!e2/CS and therefore ignore the variation ofm(N) with
N. For simplicity we assume thatm is so large (.EF2U0)
that its actual value has no influence other than adding to
constant in Eq.~6!.

The probability distributionP(N) is found from the fol-
lowing balance equation:

P~N!@We→d~N11!1Wc→d~N11!#5P~N11!

3@Wd→e~N11!1Wd→c~N11!# ~8!

plus the normalization condition

(
N

P~N!51. ~9!

In Eq. ~9! we have used the following definitions of the tot
tunneling rates: byWe→d(N) we denote the rate at whic
electrons tunnel from the emitter into the dot when there
N21 electrons on the dot to start with and thusN electrons
on the dot in the final state; byWd→e(N) we denote the rate
for the reversed process, in which electrons leave the
when there areN electrons on it to start with; we denote th
corresponding collector rates byWc→d(N) andWd→c(N).

The currentI, as defined in Fig. 1, can be found b
summing the rates for tunneling out of and into the emitt

I 52e(
N

P~N!@We→d~N11!2Wd→e~N!#. ~10!

Tunneling rates

The barriers are formed by split gates and the voltage
these gates is held constant. We crudely choose to ignore
dependence of the barriers on both the photovoltageV and
the number of electrons on the dotN. We start from golden-
rule expressions for the tunneling rates. ByGe(E) we denote
the rate at which electrons leave the emitter at an abso
energyE and tunnel into the dot. The same rate is used
the reverse process. ByGc(E) we denote the correspondin
tunneling rates from and into the collector,

Ge/c~E!5
2p

\
uMe/c~E!u2rd . ~11!

Here Me(E) and Mc(E) are tunneling matrix element
which are given by some overlap integral between initial a
final states. Since we are not interested in the details
these matrix elements we choose to describe tunneling
resistanceRe for the emitter barrier and a resistanceRc for
the collector barrier. Both resistances are defined at
Fermi-level.

However, the tunneling resistancesRe andRc are energy
dependent. In our case this dependence must be mod
f
t
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because the pumping mechanism will depopulate the col
tor and allow for tunneling far belowEF . We assume an
exponential decay in the tunneling rates when the energ
lowered and we introduce a tunneling-decay scaleET for this
purpose. The following form is used for the matrix elemen

uMe/c~E!u25
\e~E2EF!/ET

2pe2rdre/cRe/c
, ~12!

where re/c is the density of states in the emitter/collecto
which we take to be constant. With this choice all densit
of states cancel and we instead introduce the tunneling re
tances, which can be measured in an experiment by ope
one point contact at a time.

The total rates are given by sums of partial rates ass
ated with the different energies. Turning to a continuum d
scription we get

We→d~N!5E
0

`

ref ~E2EF!Ge~E!$12 f @Ed~E,N!2m#%dE,

Wd→e~N!5E
0

`

ref ~Ed~E,N!2m!Ge~E!@12 f ~E2EF!#dE,

~13!

Wc→d~N!5E
U01\V/22eV

`

rcf ~E1eV2EF!j~E!

3Gc~E!$12 f @Ed~E,N!2m#%dE,

Wd→c~N!5E
U01\V/22eV

`

rcf @Ed~E,N!2m#

3Gc~E!@12 f ~E1eV2EF!j~E!#dE.

3. SHORT-CIRCUIT CURRENT

When RL50 we know thatV50 and we can find the
current from Eq.~10!. In our numerical calculations we var
three important experimental variables,Vg , Ê and ET . For
the rest of the parameters we use the following realis
values: Re5Rc5200 kV, CS5100 aF, Cg50.4CS , T
50.1 K, Ef514 meV, U0510 meV, \V54 meV and L
52.5mm. We assume that the frequency, or equivalently
voltage on the gates that form the channel, is tuned to re
nance, i.e.,u\(v2V)u!2Vv @seeg in Eq. ~5!#.

With our definition in Fig. 1 the currentI is negative. In
order to avoid confusion in our explanations we shall alwa
plot 2I . In Fig. 2 we plot2I , as a function ofVg , for a set
of field strengthsÊ ranging from 0 to 500 V/cm for three
different values of the tunneling-decay scaleET : 0.2, 0.5,
and 1.0 meV. Upon increasingVg , at some point2I in-
creases abruptly and then decays more slowly, until the n
point of increase. For largeET plateaus are seen on the d
caying side, especially whenÊ is large.

We explain this behavior in Fig. 3. An enlargeme
of one of the curves is shown to the left, the one w
ET50.5 meV andÊ5600 V/cm. In the right part we illus-
trate the population of both charge-states and lead-sta
corresponding to the cross-hair point on the curr
curve. Because of the pumping, depopulation appears in
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collector which means that not all levels below the Ferm
level are occupied. Such depopulation enables tunneling
of the dot.

IncreasingVg corresponds to lowering all charge-stat
in the dot. The dramatic increase in2I occurs when a charg
state falls belowEF in the emitter so that there is a way to fi
the dot. To start with the inflow from the emitter limits2I ,
and therefore2I rises in proportion to the lowering of thi
charge state.

After the top, the outflow will limit2I . The slow decay
of the current is understandable since the outflow takes p
at many different energies and we must thus bring
charge-state far down in order to shut2I off completely.
The tunneling-decay scaleET determines this decay rate.

Also, the plateaus in the decay can be understood f
the population diagram. The first plateau appears when
charge state passes the first population maxima as show
the right in Fig. 3. Since the charge-state is occupied mos
the time, the outflow rate from this charge-state limits t

FIG. 2. Short-circuit current2I (Vg) for three different values of the
tunneling-decay scaleET . Each curve corresponds to a particular value
the field strengthÊ. For clarity the curves are separated by a constant off

FIG. 3. Short-circuit current2I (Vg) for the ET50.5 meV and Ê
5600 V/cm ~a! and population diagram corresponding to the cross-h
point ~b!. The energy dependence in the population of collector levels g
rise to plateaus in2I (Vg). Note that a population peak is aligned with
charge state for this particular choice ofVg .
-
ut

ce
e

m
he

to
of
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2I . But at the population maxima there are no empty sta
to tunnel into, which means that the outflow is insensitive
a change inVg there. The reason why the plateau is n
perfectly flat, is that as we pass a population peak there i
increasing back-flow from the collector, which tends to r
duce the net flow.

As we continue increaseVg and thus lower the charge
states,2I drops when we pass population minima and
steady when we pass a population maximum in a repeti
manner. The steps get smaller and smaller as the ene
period of population oscillations decreases.

4. VOLTAGE GAIN

In this section we deal with photovoltaic effects. W
now assume the collector loadRL to be in the MV-range,
allowing a significant negative collector-potentialV to build
up relative to the grounded emitter. The loadRL , which
simulates either a voltmeter or the input of another transis
is varied in order to demonstrate the driving capability
the device. We must now solve for the particular value ofV
that gives rise to a currentI given by Eq.~10! that fulfills
V/I 5RL .

We make two assumptions about the system that mus
fulfilled in an experiment, if the voltage swing is not to b
limited. First, we assume that the mode spectrum in
channel is robust to changes in the channel-gate potentia
it is not, the system is brought out of resonance asV
changes, which makes the pumping ineffective. In the A
pendix we elaborate a bit more on this point. Second,
assume that the tunneling barriers are relatively high and
and allow for tunneling far below the top. To this end we s
ET50.5 meV andRe5Rc51 MV. The high values of the
tunneling resistances assure that the charge-states are
quantized even whenV rises. A promising technique fo
achieving high barriers is Inplane gating.21

Figure 4 shows the transfer characteristic2V(Vg), for
Ê540 V/cm, whenCg50.4CS and Cc50.1CS . Note that
we plot 2V, which is positive, in order to avoid confusio
in the explanations. The result is not very sensitive to

t.

ir
s

FIG. 4. Transfer-characteristic, whenÊ540 V/cm, for different values of
the load resistance. ForRL51000 MV the voltage gain exceeds 3, but it i
smaller for smallerRL .
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variation of Ê. Each curve corresponds to a particular va
of RL . The voltage gain, which can be read off as the ste
est slope of a curve, is ideallyCg /Cc . This can be under-
stood from Fig. 5~a!, where we analyze the rising edge f
the caseRL51000 MV.

Let us for the moment putT50, RL5` and ignore all
but one charge-state. When this charge state is exactly
eled with EF , in the emitter the current is blocked sinc
there can be no flow between the emitter and the cha
state. However, whenVg is slightly raised the charge-state
lowered via capacitive coupling. Now electrons start to flo
from the emitter into the charge-state. The flow from t
charge-state into the collector is already made possible
to the depopulation in the collector. Since the collector is
isolated region, such a flow will accumulate electrons on
collector, and accordingly its electrostatic potentialV will
become more negative. Because the dot is also coupled
pacitively to the collector, the decrease inV tends to lift the
charge-state back again. This accumulation stops when
charge-state again is leveled withEF . This way the electro-
static potential of the dot is regulated to be constant,
from Eq. ~6! it is then clear that]V/]Vg52Cg /Cc . In re-
ality there will be corrections to this simple description th
reduces the voltage gain. An estimation of the maxim
slope of theRL51000 MV curve in Fig. 4 indicates that th
gain is about 3.3 and not exactly 4.

The falling edge in2V(Vg) is governed by a differen
mechanism. As illustrated in Fig. 5~b!, a strong back-flow
sets in whenEF in the collector tries to rise above the ne
higher charge-state. This back-flow drains the collector
electrons, andEF in the collector is thus bound to follow th
higher charge-state on its way down. By a considerat
similar to that for the rising edge we find a slope:]V/]Vg

52Cg /(CS2Cc).

5. DISCUSSION

An interesting aspect of our findings is that not on
Fermi-level properties are probed. The plateaus in the sh
circuit current, reflect the energy dependence of the mo
population. If a plateau can be observed for some ene

FIG. 5. Level diagrams for two different points on the transfer-character
for RL51000 MV. In a! the mechanism behind the rising edge of2V is
illustrated. A charge state is aligned withEF in the emitter. WhenVg is
raised slightly, the charge state is lowered viaCg andV starts to decrease
This decrease inV tends to lift the charge state back again viaCc . Ideally
the gain isCg /Cc . In b! the mechanism behind the falling edge of2V is
illustrated. HereEF in the collector has reached a higher charge state. N
a lowering of the charge states is allowed.
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below the Fermi-level, then we know that a single partic
description without phase-breaking works well at that e
ergy. The influence of phase breaking is most pronoun
for slow electrons since they spend more time inside
channel. Therefore, we expect the smallest plateaus in
short-circuit current to disappear first. There is room for
ture work on how to account for phase-breaking.

The photovoltage result of section 4 seems less sens
to the details in the depopulation and it requires a compa
tively small field-strength of the THz-field.11 Photovoltage
generation relies in principle only on there being depop
lated states in the collector for electrons to tunnel out
Even though the precise energy-dependence of the dep
lation determines the current-driving capability, it does n
have much influence on the open-circuit voltage.

The transfer characteristic for largeRL in Fig. 4 is very
similar to that of the current biased SET with a large lo
resistance.22 In particular it has the same voltage gain, a
the underlying mechanisms are similar. This kind of trans
characteristic seems attractive from the application persp
tive since it allows for poor precision in fabrication of ca
caded devices for logic applications. It has good gain, la
voltage-swing and shows a saturation-like behavior. S
properties in combination make the precise value of
Vg-threshold, within limits, irrelevant.

A pumped SET has the potential of giving a very simp
circuit architecture. Each device works as a tiny voltag
controlled battery, which takes its energy from the THz-fie
There is thus no need for power-lines on a chip. Nor do
need clock-signal lines since in principle we can synchron
the devices by modulating the frequency of the THz-field.
similar vision has been presented for devices consisting
chains of islands.23

Future research on material science and fabrication te
nology may bring other ways of realizing a pumped SE
than the one we have in mind. The key ingredient is a ch
nel, adiabatically connected to reservoirs, in which the el
trons preserve their coherence for 50 wavelengths or so
would be advantageous to define the boundaries of the
vice without metallic gate electrodes, using for examp
etching and regrowth techniques, focused ion-beam imp
tation or perhaps—many years from now—by tailoring
carbon nanotube.3,24,25

CONCLUSIONS

We have analyzed the influence of THz-pumping in o
of the leads of a SET. THz-induced depopulation opens
possibility for electrons to leave the dot below the Ferm
level allowing a photocurrent to flow. As the gate voltage
changed, the charge state in the dot acts as a probe o
energy dependence of this depopulation. From the appl
tion perspective we present a new way of obtaining volta
gain from a SET.

APPENDIX

If the walls of the channel move as the electrostatic p
tential in the collector changes relative to that in the chann
gates, it may result in a limited output voltage swing. Fro

ic
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Eq. ~7! we find that the system is brought out of resonanc
the mode-spacing\V changes by more than 2Vv . In a typi-
cal experiment26 it takes a change in the split-gate voltage
about 100 mV to go from the threshold of mode 1 to t
threshold of mode 2. Assuming a parabolic potential a
considering the worst case, in whichU0 does not change a
all, we find that this corresponds to a 40% change in
mode-spacing\V. From this we conclude that if the mode
spacing is allowed to change only by an amount 2Vv then
the voltage swing must not exceed 2Vmax

5(100 mV)2Vv/0.40\V. With our choice of parameters i
section 4, we get:2Vmax53 mV. Thus, we can not rule ou
such an influence in a gated-2DEG realization of the syst
To get good performance it may be necessary to look fo
different fabrication technique, for example an etching a
regrowth technique.24
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Structure and lattice parameters of thin C 60 films
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The structure and lattice parameters of C60 fullerite films evaporated in vacuum on the~100!
cleavage plane of NaCl at the substrate temperature 290–400 K are investigated in the temperature
range 300-5 K by electron-optical methods. Fullerite films have an fcc lattice at room
temperature. The film structure changes with the temperature of condensation from epitaxial with
the ~111! orientation to a disordered and highly nanodisperse structure with a grain size of
4–5 nm. The crystallographic conditions of conjugation of the~100! surface of NaCl and epitaxial
C60 fullerite films are determined, and the four-position type of their structure is established.
The fcc–sc transition temperature and the observed jump in the lattice parameter are close to the
corresponding characteristics of bulk fullerite. The temperature dependence of the lattice
parameter in the temperature range 100–260 K is used to determine the average linear thermal
expansion coefficienta of the films. An increase ina for small thicknesses is a size
effect associated with a considerable influence of the surface. A mechanism of formation of the
structure of condensed C60 fullerite films is proposed on the basis of the obtained results.
© 1999 American Institute of Physics.@S1063-777X~99!01103-2#
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INTRODUCTION

The discovery of stable polyatomic molecules, vi
fullerenes Cn (n5...,60,70,...) in theform of convex poly-
hedrons, led to a new class of carbon-based solids~fullerites!
possessing peculiar properties. The C60 molecule having the
shape of regular truncated icosahedron was of special in
est. The structure and properties of fullerite C60 have been
investigated by many authors.1,2

Pure fullerite C60 whose molecules are bound by we
Van der Waals forces at room temperature and under
normal pressure is an orientationally disordered crystal w
a face-centered cubic~fcc! lattice. At 260 K, the fcc lattice is
transformed into a simple cubic~sc! lattice. In this transition,
C60 molecules remain in the same positions, but their thi
order axis starts being oriented along the@111# direction of
the crystal. As a result of an increase in pressure and t
perature and also irradiation by visible and ultraviolet lig
fullerite C60 can be transformed to the well-known phases
carbon ~graphite and diamond! as well as other one- an
two-dimensional polymerized structure simulating the orth
rhombic, tetragonal, and rhombohedral phases.2,3 Investiga-
tions of C60 in the thin-film state is of independent intere
due to the possibility to vary the structure, substructure,
morphology by varying the condensation conditions.4

This paper is devoted to an analysis of the structu
orientation, and lattice parameter of thin C60 fullerite films
2201063-777X/99/25(3)/5/$15.00
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condensed on NaCl. For small thicknesses, the structur
condensed films can be determined not only by the type
the substance being evaporated, but also by the structu
the substrate. The lattice parameter of NaCl (a50.564 nm)
is smaller than not only the C60 lattice parameter~a
51.42 nm, but also the diameter of the molecule itself~0.7
nm!. At the same time, the given film–substrate system
characterized by crystallographically favorable relations
the epitaxial growth of films5 in spite of considerable differ-
ence in the lattice parameters for fullerite and NaCl. F
instance, two periods of the C60 lattice are equal to five pe
riods of the NaCl lattice to within 1%, while two diagona
of the C60 fullerite lattice correspond to seven periods
NaCl lattice to within 2%. For this reason, we can expe
either parallel or 45°-orientation in condensed films of C60.
The information on the lattice parameter of C60 films of
thickness of a few molecular layers is also of considera
interest.

EXPERIMENT

The films of C60 fullerite were obtained by evaporatio
and condensation of C60 single crystal of purity not worse
than 99.9% in a vacuum of;1023 Pa. Fullerite crystals
were evaporated from a quartz crucible heated by a mo
denum spiral to a temperature;800 K. Cleavage
surfaces~100! of NaCl served as substrates. The substr
© 1999 American Institute of Physics
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temperatureTs changed from 290 to 400 K. Individual crys
tals whose mass did not exceed;1023 g were evaporated
The thicknesses of the films under investigation varied fr
3 to 30 nm. The thickness of the films, which was det
mined preliminarily by the mass of the sample and
evaporation geometry, was calculated from the change in
frequency of quartz resonator and from the size of the re
rocal lattice site in a direction normal to the plane of t
film.6

The films intended for electron diffraction and electr
microscopy studies were separated in water and recovere
copper electron-microscope meshes so that the film edg
dicating the@100# direction in NaCl was parallel to a side o
the mesh. The mesh with the film was photographed o
photographic plate with an electron diffraction pattern
electron diffractometer. The photographing conditions
sured the absence of rotation between the mesh and its
age. For this reason, the photographic plate with the elec
diffraction pattern also contained information on the@100#
direction of NaCl. This experimental approach simplified t
subsequent analysis of electron diffraction patterns and
lowed us to establish the crystallographic directions alo
which the fullerite film was conjugate to the substrate.

The lattice parameter of films was determined by
method of transmission high-energy electron diffraction
ing a standard grating. The latter was in the form of a t
annealed aluminum film of thickness;50 nm. The sample
and the standard grating were placed in an attachment o
electron diffractometer, whose temperature could be chan
controllably from room to liquid helium temperature.7 The
sample and the standard grating were in the same plane
pendicular to the electron beam which passed simultaneo
through the sample and the standard. The electron diffrac
patterns from the sample and the standard were ph
graphed on the same plate. The electron diffractometer c
stant 2Ll ~L is the distance between the sample under
vestigation and the photographic plate andl the electron
wavelength! was determined at each temperature. For t
purpose, the available data on the temperature dependen
the lattice parameter for bulk aluminum were used.8,9

DISCUSSION OF RESULTS

According to the results of electron diffraction an
electron-microscopic experiments, the films of C60 fullerite
were continuous in the given range of thickness and temp
tures and had a fcc lattice at room temperature. Elec
diffraction patterns (Ts5370 K) contained reflexes of th
~220! and~422! type, which are typical of the~111! orienta-
tion ~Fig. 1a!. It should be specially noted that when the fil
was displaced by63 mm under the electron beam, the for
of the diffraction pattern did not change, indicating that t
sample had a monocrystalline structure. However, the
tained electron diffraction pattern of C60 films differed con-
siderably from that predicted theoretically for the~111! ori-
ented monocrystalline film~Fig. 1b!. The difference can be
described as follows: we observed 24 reflexes of the~220!
and ~422! type instead of 6 reflexes expected for the giv
orientation; according to the results of precision measu
-
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ments, the angles between neighboring reflexes were
60.2° and 23.3°60.1°; reflexes of the type~220! and~422!
were located on the same radius vectorrhkl drawn from the
zeroth site of the reciprocal space~the center of the electron
diffraction pattern!; reflexes forbidden by the structural fac
tor for an fcc lattice and characterized by the interplan
distancesd50.86 and 0.43 nm reproducing the arrangem
of the main reflexes were present.

According to Fig. 1a, the@100# direction in NaCl is par-
allel to the radius vector containing the reflexes~220! and
~422!. This means that the~111!-oriented C60 film is conju-
gate with the substrate according to the following orien
tional relations:

~111!@110#C60i~100!@100#NaCl, ~1!

~111!@11̄2#C60i~100!@100#NaCl. ~2!

The simultaneous fulfillment of relations~1! and ~2! in-
dicates that the film contains two types of~111!-oriented
crystals turned through 90° relative to one another. The e
tron diffraction pattern from such a film must be a superp
sition of two electron diffraction patterns from~111!-

FIG. 1. Experimental electron diffraction pattern from C60 films condensed
on ~001! NaCl at Ts5370 K; the side of a mesh cell indicates the@100#
direction of NaCl, 2Ll513.25 nm•mm ~a! and theoretical diffraction pat-
tern for a~111! monocrystalline film with the fcc lattice~b!.



to
m
xe
s
c

th
a
o
u
n

s
r

ion

io
u

be
a

e

.

ith
h
s

e

in
x-
as

r-
for

ol-
n
es.

ic
the

s
of
ked

t

ion

c-

ns

l
.

222 Low Temp. Phys. 25 (3), March 1999 Pugachev et al.
oriented monocrystalline films turned through 90° relative
each other. However, electron diffraction patterns from fil
with such a two-position structure must contain 12 refle
of the ~220! and ~422! type instead of 24 observed reflexe
Thus, neither parallel, nor 45°-orientation is realized for su
an epitaxial conjugation of the C60 films under investigation
and the~100!-surface of the NaCl single crystal.

The presence of 24 reflexes~220! and~422! on electron
diffraction patterns and the fact that these reflexes lie on
same radius vector indicate that the electron diffraction p
tern of the C60 film can be regarded as the superposition
four diffraction patterns. This means that the film has a m
tiposition structure, and the following orientational relatio
of a more general form must hold:

~111!@110#C60i~100!@hK0#NaCl. ~3!

This relation permits the nucleation and growth of cry
tallites in four equivalent orientations, ensuring the fou
position structure of thin C60 fullerite films.

The information on the@hk0# direction can be obtained
if we know the exact position of the direction@100# in NaCl
on the electron diffraction pattern. The@100# direction in
NaCl was determined experimentally on electron diffract
patterns to within65°. In this case, the@hk0# direction was
determined by comparing the obtained electron diffract
patterns with the theoretically constructed patterns for a m
tipositional nucleation. It should be noted that the angle
tweenr220 andr422 on the electron diffraction pattern from
monocrystalline film with the~111! orientation is 30°~Fig.
1b!. For this reason, taking into account the abov
mentioned error in determining the@100# direction in NaCl,
we analyzed the direction@hk0# the angle between which
and the@100# direction in NaCl was in the interval 25– 35°
Such directions were@210#, @320#, and @740#. For these di-
rections of conjugation of the C60 film and NaCl, theoretical
electron diffraction patterns were constructed for films w
four-position structure. The model of the structure of suc
film is shown in Fig. 2. By way of an example, Fig. 3 show
an electron diffraction pattern for the~111!-oriented C60 film
in which the closely packed direction@110# is parallel to a
direction of the@210# type in NaCl. The electron diffraction
pattern contains only the most intense reflexes of the~220!
and~422! type. The electron diffraction patterns in which th
@110# direction is parallel to the@320# and @740# direction

FIG. 2. Epitaxial four-position orientations of~111! nuclei on the~100!
surface of NaCl.
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have the same form. These diffraction patterns differ only
the anglesw1 andw2 . For this reason, a comparison of e
perimental and theoretical electron diffraction patterns w
carried out for the anglesw1 andw2 . Table I generalizes the
results of precision measurements of anglesw1 and w2 be-
tween adjacent reflexes on experimental~Fig. 1a! and theo-
retically constructed electron diffraction patterns for a fou
position nucleation. The table contains only the results
the directions@210# and@320# for which the values ofw1 and
w2 are close to the experimentally observed values. It f
lows from the table that@hk0# corresponds to the directio
@210# to within the error in the measurements of the angl

The four-position structure of epitaxial films of C60 ful-
lerite is in accord with the results of electron microscop
studies. According to the data on dark-field images in
light of reflexes ~220!, the films were polycrystalline in
structure ~Fig. 4!. The average size of crystallites wa
;35 nm. Thus, an epitaxial film contains four types
~111!-oriented crystals each of which has the closely pac
direction @110# parallel to a direction of the@210# type in
NaCl. The formed nuclei of C60 fullerite are oriented so tha
their ~111! plane is parallel to the~100! plane of NaCl in four
equivalent azimuthal positions characterized by a rotat
through the angles 36.87° and 53.13° relative to the@111#
axis ~see Fig. 2!. For this reason, the films with such a stru
ture give an electron diffraction pattern~see Fig. 1a! which

FIG. 3. Theoretical electron diffraction pattern of~111!-oriented C60 films
with a four-position structure defined by the orientational relatio

u11̄0uC60i@210#NaCl ~d,s!; u11̄0uC60i@120#NaCl ~.,>!; u11̄0uC60i@1̄20#NaCl

~m,n!; u11̄0uC60i@2̄10#NaCl ~j,h! for reflexes of the~220! type ~dark sym-
bols! and ~422! ~light symbols!.

TABLE I. Values of anglesw1 and w2 on theoretical and experimenta
diffraction patterns from~111!-oriented films with a four-position structure

Angles, rad.

Orientation~theory! w1 w2

u11̄0uC60iu210uNaCl 6.8 23.2

u11̄0uC60iu320uNaCl 7.4 22.6

Experiment 6.660.2 23.360.1
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can be regarded as a superposition of four electron diff
tion patterns from monocrystalline films~Fig. 1b! rotated
through the above angles relative to the@111# axis.

Thus the emergence of additional reflexes of~220!- and
~422!-types and their mutual arrangement on electron
fraction patterns from thin C60 fullerite films with ~111!-
orientation can be explained successfully by the model of
structure formed as a result of nucleation and growth
~111!-oriented C60 crystalliltes in four equivalent position
on the~100!-surface of NaCl.

It was noted above that electron diffraction patterns c
tained reflexes forbidden by the structural factor for the
lattice, which can be identified as reflexes of the type
~422! and 2/3~422! associated with stacking faults.10,11 For
the ~111! orientation, a film with an fcc lattice can be pre
sented as a sequence of alternating layerABC,ABC,... . If
the number of layers over the film thickness is not equa
3n, wheren is an integer, the above-mentioned addition
reflexes are formed. It follows hence that for small thic
nesses~;10 nm and smaller! and interplanar spacesd111

50.82 nm in fullerite, the intensity of these reflexes can
comparable with the intensity of the main reflexes and m
decrease with increasing thickness. Such a situation is
served experimentally in the C60 fullerite films under inves-
tigation. The multipositional type of the structure is respo
sible for the increase in the number of extra reflexes to
and they reproduce the arrangement of matrix reflexes.

It should be noted that in spite of the point-like form
electron diffraction patterns recorded in a wide electr
beam, the perfection of the epitaxial films of C60 fullerite
under investigation is intermediate between texturized
monocrystalline films.

Figure 5 shows the temperature dependence of the la
parameter for a fullerite film with a four-position structur
The film thickness was 4.5 nm. It follows from Fig. 5 that th
lattice parameter changes from 1.418 nm (T5300 K) to

FIG. 4. Electron microscopic dark-field image in the light of~220! reflexes
of a C60 fullerite film of thickness 4.5 nm. Magnification3120000.
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1.404 nm (T55 K). The phase jumpDa/a50.35% ob-
served atT5260 K is associated with a phase transition fro
the fcc to sc lattice. The obtained dependencea(T), the
fcc–sc transition temperature, and the observed jump in
lattice parameter of the films are close to similar data
bulk fullerite.

The average thermal expansion coefficienta is deter-
mined from thea(T) dependence for the temperature ran
260–100 K. The value of this coefficient for the oriente
phase isa53331026 K21, which is almost twice the value
of a51931026 K21 for bulk fullerite12 and is in good
agreement with the estimates obtained earlier.13 The value of
a increases with decreasing thickness. Such a size effec
thermal expansion is apparently due to the effect of the s
face.

Figure 6 shows a typical electron diffraction pattern
C60 films condensed on~100! NaCl atTs5290 K. The form
of the electron diffraction pattern did not change when
sample was tilted through an angle of630° relative to the
electron beam, indicating the absence of any orientation.
electron diffraction pattern contained broad halo-shap
rings typical of the amorphous, nanodisperse, or amorpho

FIG. 5. Temperature dependence of the lattice parameter of a C60 film of
thickness;4.5 nm: circles and triangles correspond to independent exp
ments.

FIG. 6. Electron diffraction pattern of C60 films condensed on~100! NaCl at
Ts5290 K, 2Ll513.25 nm•mm.
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nanodisperse states. Crystallites of the size 4–5 nm ca
resolved on dark-field electron images, which is an evide
of the nanodisperse state. The rings observed on elec
diffraction patterns can be identified in the fcc structure
fullerite. For example, the first three rings correspond to
terplanar distancesd.0.82, 0.45, and 0.30 nm. The rin
with d;0.82 nm is close to the~111! position of the line
from C60, while the second and third rings are superpositio
of rings ~220!, ~311!, and ~222! with d50.502, 0.428, and
0.410 nm and~331!, ~420!, and~422! with d50.326, 0.317,
and 0.290 nm, respectively. The line~200! was missing due
to size relation between the diameter of the C60 molecule and
the parameter of the fcc lattice of fullerite.14

The above-mentioned size of blocks in disoriented f
lerite films corresponds to three parameters of the C60 lattice.
This means that crystals of such a size contain;102 mol-
ecules of C60. According to theoretical calculations,15 icosa-
hedral, i.e., quasi-crystalline structure is favorable for cr
tallites with such a degree of dispersion. It can easily
verified that the size of the icosahedron constructed from
C60 molecules is;2 nm. In other words, each block contain
8 icosahedrons if we presume that the shape of the block
isotropic. A more detailed analysis of the obtained resu
from the point of view of the quasi-crystalline structure r
quires additional experimental data.

Thus, the structure of thin C60 films may change over a
wide range from a disordered nonodisperse~amorphous-
type! to well-oriented epitaxial structure upon the variati
of condensation conditions.

A typical feature of the obtained films is their continui
for small thicknesses (;3 nm), which was monitored in ex
periments by the method of high-resolution (;0.2 nm) elec-
tron microscopy. The continuity for small thicknesses of t
films is attained either by layer-by-layer monocrystalli
growth, or by the formation of the amorphous structure
the film. The observed structure contradicts the layer-
layer growth concept. The amorphous state is formed in
films under the conditions of confined mobility of atom
molecules, or clusters of the substance being deposited
substances with a monatomic composition of vapor~e.g.,
be
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metals!, the amorphous structure is observed only at l
~helium! temperatures of the substrate. At higher temperat
of the substrate including room temperature, the amorph
structure is observed for substances with a continuous c
position of vapor~carbon, germanium, or silicon!.4

The large mass of C60 molecules is an important facto
limiting the mobility of fullerene during condensation. The
considerations and experimental data~continuity for small
thicknesses and the four-position type of the structure! sug-
gest that condensed fullerite films are formed according
the mechanism vapor→disordered ~amorphous!
state→ordered state. The amorphous phase is formed at
stages of condensation followed by crystallization and
crystallization at higher temperatures under the orienting
fect of the substrate.
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