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A phase transition associated with the rotational symmetry breaking in momentum space in a
Fermi liquid is considered. It is shown that the phase transition is connected with the

violation of one of the Pomeranchuk conditions, viz., the criterion of normal state stability. The
structure of flux densities of the additive integrals of motion is determined in the vicinity

of the phase transition point, and a physical interpretation of the phase under investigation is also
given. © 1999 American Institute of Physids$1063-777X99)00103-4

INTRODUCTION presence of an electric charge for a fermion, paying attention
mainly to the properties that are common for charged and

The phenomenological theory of a normal Fermi liquid neutral Fermi liquids. The inclusion of effects connected

(the basic principles of this theory were presented in fundawith the presence of an electric charge in fermions would

mental works by Landduand Silirf) presumes the fulfill- have complicated the establishment of the possibility of such

ment of the so-called Pomeranchuk conditidn., the re-  a transition in various systems. One of the main goals of this

lations determining the conditions for the stability of the publication is to demonstrate that such phase transitions can

static equilibrium state of a normal Fermi liquid and impos-be described in principle.

ing certain constraints on the interactions between quasipar-

ticles. If we make an attempt to remove such constraints, i.€4 sTABILITY CRITERION FOR A NORMAL FERMI LIQUID

leave the stability boundaries for the ground state of a nor-

mal Fermi liquid, a natural assumption concerning a sponta-  Before going over to a direct description of a phase tran-

neous transition of the system to a new equilibrium statesition involving the breaking of rotational symmetry of the

should be made. In other words, the violation of the groundMomentum space, let us recall some basic concepts of the

state stability criteria must be associated with various kindgheory of a normal Fermi liquid, including the stability con-

of phase transitions in the Fermi liquidee, for example, ditions for the normal state. S
Ref. 4. The theory of a normal Fermi liquid is based on the

The description of new equilibrium states emerging as f£ssumption (_:onc_erning the functional dependence_of the en-
result of such phase transitions necessitates a certain modifif9y E (Hamiltonian of the system on the one-particle fer-
cation of the Landau—Silin theory of a normal Fermi liquid. Mion density matrix:

Above a_lll, such a modification is_d_ictated by 'Fhe_need of fpyoyipr,= T p(f )agg ap,o, =f12,

introducing new parameters describing the equilibrium state 2z

(order parameteysThis is due to the fact that the symmetry where p is the quasiparticle momentum, and the index
of the new equilibrium state formed as a result of a phaséabels the component of the fermion spin. The quant(tf)
transition is lower than the symmetry of the Hamiltonigime  in this expression is the nonequilibrium statistical operator of

state with spontaneously broken symmgtry an ideal gas of quasiparticles, defined as
In this paper, we analyze the phase transition associated
with the breaking of rotational symmetry in the momentum  p(f )=eXp(Q—22 aIAlZaZ), (1)
T

space of a normal Fermi liquid. it will be proved below that

such a phase transition corresponds to the violation of thén this formula, the quantitie§) and A;, should be deter-

Pomeranchuk stability criterion for one of harmonics in themined from the relations

series expansion of the Landau amplitude in Legendre poly- Trp(f)=1, f,=Trp(f)a a,

nomials.
In the following analysis, we shall disregard the (the trace is taken in the secondary quantization gpace

1063-777X/99/25(3)/8/$15.00 153 © 1999 American Institute of Physics



154 Low Temp. Phys. 25 (3), March 1999 Peletminsky et al.

Another important concept in constructing the theory ofcorresponds to the stability of the normal state of a Fermi
a normal Fermi liquid is the general definition of the entropyliquid (the first variation vanishesFor this purpose, we con-

of the system: sider the spatially homogeneous equilibrium one-particle
S=—Trp(f )Inp(F). density matrix for the normal state:
The calculation of the trace for the statistical oper&igr fgmpzvz: fglaplpzéaloz'

appearing in this formula leads to the combinatorial defini- fSZ{GXL[B(sp(fO)—,u)Jr1]}’1, ©)

tion of entropy:
_ B _ and define the spatially homogeneous density matrix associ-
S=-ulfinf+(1=1)in(1=1)] @ ated with a deviation from the equilibrium state by the for-
(the trace is calculated in the space of one-particle states mula
It is well known that the equilibrium one-particle density sf
matrix f 1, is determined from the condition of entropy maxi- P

mum for given values of energy functionB(f), the num-  t shqui1d be noted thasf commutes withf®, and hence we
ber of particlesN=trf, and momentunP;=trfp;. Intro-  can treat the matricesf andf° as ordinary functions in the

ducing Lagrangian multipliersY corresponding to the c5icyjation of the second variation of entropy. Varyi(&)
quantitiesg, N, and P, we reduce the problem on condi- 54 presentingf , in the form

tional entropy maximum to the problem on absolute mini- o
mum of potential()(f): 5fp=fg(1—fg)(5§8+ o' 6§'p),

Q(f)==S(f )+ YE(F)+Ytrfp;+ Y, trf 3 we obtain

101:P202 5p1p2 of Pyo103°

[since the statistical equilibrium state presumes that the 5 Vv 320 o 02 .
space is spatially homogeneous, the quantiieg, P;, and 6°S=- (2m)3 d°pFo(1—F)i(66p)°+ 66,6601 (7)

N are proportional to the volum¥ of the system and to ] o
Q(f)=Vw(f), where o(f) is the density of potential It can also be easily seen that the second variation of the

Q(f)]. This variational principle leads to the following self- energy functiona(5) leads to the formula

consistency condition: d3pdp’
. . . PE=2V | ———f21-19f%,(1-1°)
f={exp(Yoe(f)+Ypi+Ys)+1}77 (2m)8 P p/'p p
e ) =9E()/of 5. @ X{F1(p.p') 8000, +Fa(p.p') 88,86, 1, (8)

HereYo=T '=p8; Y;=—Youi; Ys=—You; Tis the tem-  where F,(p,p’)=Fi(p,p:p’,p’), i=1,2. Thus, taking into

perature,v; the velocity of the Fermi liquid, angk the  account relationg3), (7), and (8) and noting also that the

chemical potential. This nonlinear equation defines the equirelation fg(l—fg):T(S(gp—M), is valid in the low-

librium one-particle density matrix for a Fermi liquid. The temperature regioi<u, we can write the second variation

quantitye(f ) is a functional of the one-particle density ma- of potential densityw in the form

trix and is the energy operator for a quasipatrticle. N 5
In order to impart a physical meaning to E@), we w=05"wt+ 5wy, ©)

must specify the energli(f) of the system. This functional \yhere

can be chosen in the form

e L

1 1 0°wy -—
E(f)=2) exofort 5 (fo,Fafo) + 5 (Fi Fafi), 2 ) 4w

v(p)?T [ dOdO
i f

a7 Fann)5E%m sn);

1
(fo,F1fo)= \_/p;m fOplszl(plyp2;p3:p4)f0p3p4y

T (dO
So=" 00 [ 42 s (mot(n)

1
(i, Fafi)= vpgm (1) pp,F2(P1,P2:P3.Pa) (F)pyp,

v(w)?T [ dOdO
) ) ©® + (”2) f @ F2(nn)3E(maE(n');
wherefy=tr,f, f;=tr, fo;, o; are the Pauli matrices, and
the quantities; andF, are the amplitudes of the potential Heren=pe/pe; n'=pg/pg;
and exchange interactions of quasiparticles respectively, d%p
which are known as Landau amplitudése assume that v(,u)zzf ?5(%—#);
E(f) is invariant to spin rotations (2m)
Let us now find the conditions under which the solution FiAnn)=FiAp.p)poprops  0&(N)= 5§ip|p:pp_
of the self-consistent equations leads to the minimum of po-
tential w(f ) for the normal state. For this purpose, we mustlt follows from (9) that the condition for the positive second
define the second variatiod?w(f) whose positive value variation of the potentiaf) =V leads to the inequalities
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v(u)FY v(u)F? This homogen_e_ous equation fey(p) can be used to _deter—
—rr1 00 W50 (10 mine the critical temperature.. If the amplitude
F{?)(p,p’) weakly depends op andp’, the solution of this
whereF(") andF{?) are the coefficients of expansion of the equation can be written in the form
amplitudesF,(n,n") andF,(n,n") in the Legendre polyno-

mials P,(cos#), cosf=n-n’, i.e., 8-(|0)=M8i,
Fo ' (PF.PF)
Fl(n,n’)=|=z0 P, (cos@)F{", the critical temperaturg, being defined from the equation
o 1= —ZFBZ)M,
Fz(n,n’)=|§0 P (cos8)F(? . Ip
where

Relations(10), which were obtained for the first time by
PomeranchuR, are the stability conditions for the equilib-
rium state if a normal Fermi liquid for all > 0. It was noted 1
above that Pomeranchuk conditions can be violated due to n(B,u)= VE {expB(sg—,u)—l}*l.
various phase transitions in a normal Fermi liquid. This pa- P

per is devoted to the analysis of one of such phase transjn order to find the functions(3,«) in the region of small

tions. B~ 1<u, we shall use the low-temperature expansion
Let us recall preliminarily the theory of a magnetic 0 )
phase transition in which the Pomeranchuk conditid) afo(B.w) — S(e—p)+ T_Trz&,,(g_ )+
for the Landau amplitud&(? is violated forl=0. Noting e w6 BT
that . .
which gives
sw,=—(§(f) Tz:B-z:_E 1+FPv(p) 13
oo ¢ ¢ ™ F(Oz)V”(,lL) '
and writing the quantities,,,» ande, in the form SinceT.< u (the condition for the applicability of the theory
f=L(fo+fi0), e=3(eptea), of2 a Fermi liquid and V() ~v(p) w2, we have
_ F®)p(u)~—1. Considering that”(u)<0 andT2>0, we
we obtain obtain 1+ F{?u(u)<0, i.e., we are dealing with the situa-
tion when the Pomeranchuk condition is violated, which
JE JE .
g0= ZT’ z_f leads to the emergence of a magnetically ordered phase. Re-
to J taining terms proportional te® (e=|g|) in the expansion
Consequently, in accordance wits), we can write the self- (12) into a power series i;, we can easily prove that
consistency conditiofd) in the form , 7nlaBau
g°=—6—3 3 (B~ Bc). (14)
2 2 ) , a“nldu
ei=y 2 F&(p.p")fi(p"), ay _ N
p’ Using the above temperature expansion, we can easily obtain

from (14) the relation
e2=2T(T—T). (15)

wheref;(p’) is defined, in view of(4), from the relations

fi(p)=tr oi{expB(e—p)+1} 71,
. Knowing the expression far, we can find the expression for
e= 3 (goteio). (120 the “magnetization” density:

In the normal stateg;=0. Consequently, the functias(p)

plays the role of the order parameter. In accordance with UZvE trof|= 2 fo :__/-LS
(12), Eq.(11) in the region of smalk; assumes the following P
form in the main approximation ig; : From Eq.(15) we obtain
0 1
ei(p)=o Z FZ(p,p ) ei(p), o=V TeV1-TAT.. (16)
p/
@) ) 1 ) 2. PHASE TRANSITION ASSOCIATED WITH ROTATIONAL
Fo'(p,p')= EJ dOF,(p,p’), SYMMETRY BREAKING IN MOMENTUM SPACE

where In this section, we study the phase transition associated
0 . with rotational symmetry breaking in momentum space.
={expBc(e"—p)+1} " It will be proved in subsequent analysis that such a phase
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transition is associated with the violation of the Pomeran-
chuk condition(10) for the amplituder(*) of potential inter-
action.

Let us consider the equilibrium state of a stationary
(vi=0) spatially homogeneous Fermi liquid. In zero mag-
netic fields and under the assumption that the phase transE-Xpand'”g the distribution functlorﬁ(e +%')={expp(e’

g'=g(p'); E'=E(p');

F(|0,|0’)=Z6 Fi(p,p’) P (cosé).

tion is not associated with the emergence of spontaneou® —#)+1} " into a power series i&’, we obtain
magnetization, we present the quant|t|e§lglng2 and ©
fpjoipyer, N the form g(p)=ep + v% Fo(p,p’)
_ .0
spl(rlpz(rz_spl 5p1p250'1(r21 fplulpzoz f 5p1p2 010" e (8 ) .
In this case, the energy function@) is defined as x| fle)+ 2 T (%o @D
2 S ing théth h ic in the Legendre pol ials i
_ O 4 = eparating t armonic in the Legendre polynomials in
B 22;,“ ep T vp%z To,F(P1:P2) Ty Eq. (20) and using the addition theorem for the Legendre
1 polynomials, we obtain for+#0
fo==f F,=F. 7 * f(g'
Pl T 1)
21+ 1) (p)=g E Fip.p) 2 — ——m (B'")
—1 nl Jde

and formula(2) for combinatorial entropy assumes the form

S=—22 [fInfy+(1—fy)In(1—fy)].
p

Defining further the quasiparticle energy as

1 0E
S(D):Eﬁp, (18

=VZ Fi(p.p){f(e'+2")— (")},
pI

(22

whereZ (p)=[%(p)], andf(g') ={expB(e'—w)+1} . We
assume that the functiois(p,p’) vary slowly inp andp’.
In this case, according to ER2), the quantityg,(p) also

we can easily obtain from the variational principle the self-yaries slowly withp. Since the derivativeg"f(e’)/de’"
consistency equation for the equilibrium distribution func- gitfer from zero atT<er only for &’ ~eq, we can neélect

tion f,:
fo={expB(e(p)—un)+1} 1. (19

Formula(18) as well as expressior{d7) and(19) lead to the
following nonlinear integral equation far(p):

e(p)=s<p°)+%§ F(p.p"){expp(a(p’)—p)+1} "
(20)
We shall seek the solution of this equation in the form
e(p)=¢(p)+&(p),
where

g(p)=¢o(p), “é(p)=|§1 &,(p)P,(cosb),

and

1
§(|0)=Efd08(p), deE(IO)ZO-

Sincez=0 above the phase-transition poift-T; (T,
is the critical temperatuje the value ofg is smaller than
g(p) near the critical point. Averaging E¢0) over angles,
we obtain

_ .0
§(p)_8p +

2
V% Fo(p,p'){expB(e’' +3' —p)+1}o*

(the index “0” in this formula indicates the zeroth harmonic

in the expansion in the Legendre polynomjal&here the
following notation has been introduced:

the derivatives of the quantitieS(p,p’) and&,(p’) with
respect tgp’ and obtain

<2I+1)s|<p>— Fi(p, pF>2 {f(e

+8")—f(e"H}h.

(23)
In contrast to(22), the quantityz’ in this expression is de-
fined asE’=“é(p’)p,:pF. It follows from (23) that the order

parameteE|;=7%,(pg) satisfies the equation

.2 -
(2+1)7 =g Fi2 {f(e'+3)—f(e)}, (24
P

where

~ Fi(P.PF)

8|(p):ﬁ8|. (249
andF,=F(pg,pg). Introducing the function

1
n(B.u)=y 2 fg), (25
pI

we write Eq.(24) in the form

(21+1)g,=2Fn(B,n—%);; I|#0. (26)

The solution of this equation will be sought in the form
5 =3"+eM+..., whereg(V=%, 5 . In this case, in the
main approximation we have

an(ﬁc l/'l'),_é(o)
g *

(2|0+l)§|0: aM

—2F
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Thus, the equation for determining the phase-transition tem-

peratureT . as a function ol (T.=T.(ly)) has the form

an(B.,
(2I0+1)=—2F|0#. 27)

Retaining higher-order terms ?no in the expansion on

the right-hand side of Eq26) as well as Eq(27), we write
(26) for I =14 in the form

Zn(BCvﬂ) _ 1 zn(IBCaP«)
DBt 2 (B=BJE T 27 ok

3
X(82)|0—5M(Ea)|0=0- (29

It can easily be seen that in order to determiﬁé)(), we
must take Eq(26) for 1 #1, into account along witt{28):

- N(Be.p).,  *n(Be.p)
(2|+1)8|:2F| - n(fﬂlu &1~ gl(gﬁaﬂlul
2
cobt)
X(B-BEi+ 2—(i#< 2|, 1#1o,

from which (neglecting the second term on the right-hand

side we obtain

F
2|+1+2F|(an/,m)

&=

(s TP

(29
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Fi,
2lp+1

6 2lo+1

_?W)FIO +v(p) 57—

Since the conditionT.<x in the vicinity of the phase-
transition point, we have

Fi,
2lp+1

26 v(p)

Cc ’7T V”( )

1+v(w) 5r——= (32

This approximation is valid due to the fact that
v(u)/v'(u)~u? and hencev(w)[F /2o+1)]=-1 at
Te<u. Noting further thatT2>0 and »(u)>0, v"(u)<O0,

we find that
F

Lrv(p) 2|0421

<0. (33

Condition (33) shows that the Pomeranchuk criterion
(10) for the amplitude of a potential interaction does not hold
for the harmonid,. Consequently, when conditiof33) is
satisfied, in the temperature ranfe T, we are dealing with
a new phase differing from the normal phase.

In order to determine the temperature dependence of the

order parameter, we return to Eq28) and (29). We con-
sider separately the cases of even and lgddPresenting for
this purpose the order parametein the form

E:E E|P|+E|OP|O, (34)

%o

Thus, along with Eq(27) for the phase-transition tempera-

ture, we have EQqs(28) and (29 for determining the tem- we can easily see tha}%)| ~ (& P2)|0 € (PI )| for even

perature dependence of the order paranigter l,. Consequently, it follows immediately from Ec28) that
Let us now determine the phase-transition point. For this

purpose, we present the quantityg,u) [see(25)] in the - n(Be,p)

form

1 5
(b= 5 fo dev(s){expBle—p) + 1)1,

where

v(e)= fdgp'as—g') (30

(2m)°
is the density of states. Noting further thatTak u the ex-
pansion

2

1 Iz T
n(B'M):E(L V(s)ds+€3721/'(,u«)+... , (31

holds, we obtain

an(ﬂcvﬂ) _ 1 2 2 L
T——V(M)+ 12,3c ().

Consequently, Eq27) assumes the form
2

™ - "
2o+ 1=—Fy | v(w)+ 5 B V" (1) |,

whence

(ﬁ_ Bc)

0= T Buip [on(Be. )l ap?1(PY ),

or, taking into account expansidfl),

T 2 Y
A AN
@)

Substituting(35) into (248, we obtain in the main approxi-

mation the expression determining the temperature depen-

dence of the order paramefetp,T):

Flo(pva)

T
W 1 T_c) PIO( cos6). (36)

&(p)= B(lo)(

This formula is valid for even,.
In the case of odd,, we obtain, using34),

(%)~ 8|0|§|: E1(P1 Py (37)
[ s|0P| )1,=0 in view of the odd nature of the functid?nf0
for oddlo] Noting also that%2), =E|O(P,20)| , we write (37)
taking into account29) in the form



158 Low Temp. Phys. 25 (3), March 1999 Peletminsky et al.
n(Be, ) I*n(Be . 1)
~2\ _ =3 c c _
(E )|0 28|0T —(9’8(:(9# (B—Be)
Fi 2 o[ [n(Be.m)\? F
X;O AT 11 2R [an(Be.m)iap] i (PP ﬂ%[( ouZ | S, 20+ 1+ 2F,[an(Be. )l 9]
(38) 2lp+1 1 (B, )

X7 LPEIP -5 &—M%,wfo).o”, (39

Using the fact that ) )
which readily leads, on account of the low-temperature ex-

pansion(31), to the following expression for the quantiy_

2lp+1
3),=80(PY)1,  (POIPIP )= 5o [(PR)12, foroddlo:
5, = Al V1-T/T,, (40)
we write Eq.(28) in the form where
27T2T(2:V”(,u,) 1/2
Aly) = (42)
(o) N (AN

" 3 _ ’ 2
(P, =30 (W2l D S v 1o

Using this kinetic equation, we can easily see that the
time derivative of the density of a physical quantitgx, f)
=trfa(x) is defined by the formula

Finally, substituting(40) into (243, we obtain in the main
approximation

F (P,
E(p)=LpF)A(IO) V1-=TI/T.P, (coséb). (42 R R
Fi,(PF.PF) 0 da(x,f) day(x,f)
Thus, we see that in contrast to the case of dyerwe ot Xk
have a nonanalytic temperature dependence of the order P&here
rameter for odd (see(42)), which is typical of the Landau
theory for second-order phase transitions.

+itrf[a(x,f),A] (44)

l ~
ék(x)=ij d3x’xéfo defa{x—(1—&)x';t L a(x+&x)];

3. FLUXES OF ADDITIVE INTEGRALS OF MOTION NEAR A f d3xA(x):
THE PHASE-TRANSITION POINT ’

In this section, we consider the variation of various e ,(x,f)=de(x)/df,, is the energy density of a quasiparti-
physical quantities (in the approximation linear in cle, &x) the energy density of the Fermi liquid,
[1-(T/T¢)]*?) in the phase transition under investigation. It g3y (x,f)=E(f). Formula(44) follows directly from the
can easily be seen that scalar quantities such as heat capacifipetic equation(43) according to which
thermodynamic potential, energy and entropy density do not
change under the phase transition. On the contrary, vector
and tensor quantities such as flux densities of the number of gt
particles, energy, and momentum density may change as a
result of phase transition in this approximation. In order toand from the obvious relation
verify this, let us construct formulas for the flux densities of .
number of particles, momentum and energy. i[2(1).a0]=i[2(x.7),A]- day(x)

Proceeding from the kinetic equation for the one-particle IXk
density matrixf in the approximationw>1 (o~ ! is the

Putting in this formulad(x) =p(x), where p(x)= 6(x—X)

Errl]aer)aci:tgristic time of variation of and 7 the relaxation (X is the coordinate operator and noting that
ren A= [p(x)d3x=1, we obtain
of -
i—-=[&(f).f], (43 ap(x,f aj(x,f
ot p( )=_ Ji( ), (45)

ot oX
we can derive the expressions for the flux densities of addi- K

tive integrals of motior(see Ref. 5 in this connectign where
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~ 1 A
jk(x*f):if A3 X tr JO déf[a{x—(1-&)x';1},

p(x+&x")]. (46)

In order to derive the expression for the momentum flux

density;(x), we note that the energy dens#yx,f ) of the

tions over the vectoy:
e(x+y,dMfe PY)=¢(x,f)

(p is the momentum operaforDifferentiating this expres-
sion with respect ty and puttingy=0, we obtain

de(x,f)
(9Xk

=trf[8(x,1),pul. (47)

Returning to formulag44) and assuming that in these for-
mulas

a(x) = ri(x)= z{pi, 8(x—%)},
and also usind47), we obtain

&tik(X,’f)
Xy

gm(xt)
a

: (48)
where the momentum flux dens'rtM(x,f) has the form
~ 1 ~
tik(Xf):_85ik+iJ d3X’X|itrf dgf
0

X[3{x— (1= Ox;Tham(x+&x)]. (49
Finally, let us formulate the differential law of energy con-
servation. Noting that

ge(x,f) :
Tt g21(X%,f),
and using the kinetic equatidd3), we obtain

r?s(x,f)

S =trifad el

Assuming now thafi(x)=&(x,f) in formulas(44), we ob-
tain

as(x,f)_ aqk(x,f)
ke (50
where
qk(x,?)=|§f d3x x, tr J:dgf[é{x
—(1-9x;FLaxrex ;). (51)

For spatially homogeneous stat¢$,p,]=0), formulas
(46), (49), and(51) are simplified and assume the following

graphic form:
2 de,
Jk—vzp fpﬂ—pk. (52
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2 de
- P
qk—\/zp fpspapk’ (53
2
- s—vE foep | Skt o 2 fpp,alo (54)

whereeg, is the quasiparticle energy.
Fermi liquid satisfies the property of invariance to transla-

If the distribution functionf, is an equilibrium function

with the drift velocityu, i.e.,

fo={expB(e,—p-u—p)+1} 71,
these formulas assume the form

) 2
lk:Ukvzp fo,

1
p——ln(l—fp)),

2
U=y 2 (f"8 B

ti= U7+ Six

1)1
‘E)v(2§ In(1—f,)

+ﬂ8V_ZBZ foep
p

Using formula(3), we can easily see that the thermodynamic
potential densityw is defined as

= E(zE In(1—fy)+BeV—28> fpsp)
\% ) p

and hence the formulas foy , g, andj, can be written in
the form

w

B ik »
Consequently, the quantity (w/8)=p can be interpreted as
pressure, while the quantity= — (w/B) + £ can be regarded
as the enthalpy densityn(is the number density of fermi-
ons.

Let us now determine the density of the momentum
emerging as a result of phase transition. Sipds the mo-
mentum of an individual particle, the momentum density of
the system is defined by the formula

2
w= vzp pfp
or, noting thatf (e +%g)=1(g) + (df/de)€, we have
2 f of
(277_)3 pp_é‘(p)

Going over to integration with respect to angles andnd
noting thatdf/de = — §(e — ), we obtain

2 2
Wi:_(zT)sf dO(%piZ‘(p)

Since

ik = Ui — Qx=U(e—w/B), jx=nug. (55

wT=

de
L] V= —_——

ap’

pe
UF

Pr

2 1
v(p)= (ZT)3J d*pd(e—u)= —2(
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we have the Einstein—de Haas effect, in which the body starts rotating
() as a result of magnetization in view of the angular momen-
= 3’“ PeA(1)V1— T/Tc5|0,1, m=m,=0, tum conservation law due to the fact that electrons acquire an

additional angular momentum.

(56) In conclusion, we formulate some considerations con-
where cerning physical objects in which the phase transition con-
1072T20" () sidered by us here can take place. An analysis _of experimen-
A(l)= =— — ¢ . Fo=F|_,. tal data on the measurements of Landau amplitudesHer
3v" () = v (w)[F2 {5+ Fav(u)}] (see, for example, Ref.)8eads to the conclusion that the

Thus, a honzero momentum density appears On|yd:gr_‘]_. phase transition described above is hardly pOSSIbI%HIEI

Let us now find expressions for the densities of fluxesThe available experimental data concerning the measure-
ji, 0, andt;, emerging as a result of the phase transition.ments of the parameters of an electron liquid in various met-
Since the drift velocity of particle does not appear in theals(see, for example, Refs. 7, 8 in this conneclisnggests
expression for the fermion distribution function in the new that such systems are most suitable for observing such phase
phase, these fluxgs andq; vanish in accordance witfp5).  transitions.

Howe\/er, momentum must be conserved in the phase In all probability, the phase transition in the Fermi |IC]U|d
transition. If the momentum of the system in the normal statéinder investigation can be observed in some alfoyse
was zero, the momentum after the phase transition must algpean the experimental observation of “hopping” of samples
be zero. Consequently, the distribution function after thePrepared from such alloys at a certain temperature during

phase transition must have the form cooling. This effect corresponds qualitatively to the conclu-
_ _ 1 sion drawn by us here concerning the average momentum
f={expB(e+E—p-u—p)+1} acquired by fermions as a result of the phase transition,
ot (g) which is transferred to the crystal lattice and causes a direc-

~{expB(e+E—u)+1} 1+ F(—D'U) tional movement of the sample. However, additional experi-

ments are required to confirm this assumption. We could not
(u is the drift velocity of the system as a whplé\s a result, find in the literature any experimental results of measure-
the momentum density after the phase transition is given bynents of parameterdandau amplitudesof an electron lig-
2 df(e) uid in such materials which would confirm or refute the
T =a—— (p-u)p. above assumption.
VS de

This research was carried out under the financial support
m the Ukrainian State Foundation of Fundamental Studies
(grant No. 24/378

It was noted above that the momentum must vanish afte]{ro
the phase transitionsf’ =0), i.e., the velocity of the Fermi
system will be determined from the relation

2 E df(e) *E-mail: slusarenko@kipt.kharkov.ua
v > de (p' u)p_ ,
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The temperature dependence of the critical current dedgffly) in superconducting fulleride

K3Cgp Crystals is investigated on the basis of magnetization measurements in these

materials. According to ac susceptibility data, the best crystals do not exhibit granularity for
supercurrent flows, and can be regarded as single crystals from this point of view. The obtained
results onJ; in K;Cqo are compared with those for other crystalline and powder-type

compounds 4B, Cg,. Possible granularity of the crystals and its influencelpmare discussed in
detail. The irreversibility line for a KCg, single crystal is also determined. €999

American Institute of Physic§S1063-777X99)00203-0

1. INTRODUCTION than or equal to 100% in contrast to powder samples which

in principle are also crystalline with a grain size of the order
After the discovery of superconductivity in fullerenes of um?d.)

doped by alkali metalsconsiderable attention has been paid  In this paper, we describe the results of magnetic studies

to the analysis of the critical current in these materials. Theof J. carried out on KCg, crystals. These results are com-

critical current density). is one of the most important pa- pared with the data obtained for othegByCg, compositions

rameters for applications of superconductors in engineeringf crystalline and powder samples.

The measurement af;, from the transport characteristics of

current is a difficult problem as such since such measure-

ments require high current densities. Besides, considerabfe ©BJECT AND METHOD OF INVESTIGATION

difficulties are encountered in preparing high-quality low- The measurements were made on two SQUID magneto-
resistance junctions on brittle materials as in fullerene supefneters in magnetic fields 1-8 T. The first magnetometer
conductors(FS) and earlier, in HTSC materials. However, (commercial Quantum Designwith a sensitivity up to
the most serious obstacle in transport measurements is th® '°A.m? ensured the control of the field trapped a super-
instability of superconductivity in FS when the material conducting magnet at a level not higher than B 8 T. The
comes in contact with oxygen. For this reason, FS samplesame magnetometer was used for the measurement of dy-
are usually sealed in glass or quartz capsules, which hampefiamic magnetic susceptibilittac measurementén the fre-
the preparation of electric junctions. Thus, the measurementquency range from 3 Hz to 1.5 kHz and the ac magnetic field
of magnetic susceptibility is one of the most importantamplitude varying from 10° to 5x10 *T. The second
method of studying the critical current density. For this pur-magnetometer, equipped with a superconducting magnet pro-
pose, the model of critical state proposed by Bearused. ducing a field up to 8 T, was used for measuring hysteresis
According to this model), is proportional to the widtdAm  loops in the temperature rangeincd K to T .
of the hysteresis loop. The critical current density was studied on three large
First measurements of the critical current density on FXK;Cq, crystals(K1, K2, and K3 samplgsvhose volume was
were made on powder samples in which intergranular supeif the order of several cubic millimeters. The process of
currents played an important role. It has become possible tseample preparation and parameters of the samples are de-
make measurements on high-quality monocrystallinescribed in detail in Ref. 3. However, we shall mention some
samples having a large size. Hence, an analysis of the tenof these parameters here once again. For instance, the super-
perature and field dependences of the critical current densityonducting phasext) amounted to 100% in samples K1
in these crystals and a comparison with the results obtaineand K2, whilex,. for the K3 sample was 25%. In this paper,
on powders are of special importandgélere and below, we shall mainly describe the results obtained for K1 and K2
“crystals” and “single crystals” are the terms applied to single crystals. However, some resulesg., dynamic(ac
crystalline samples of a large size of the order of infor ~ magnetizations anéf;(T)] will be given for all the three
which the volume of the superconducting phase is smallesamples.

1063-777X/99/25(3)/6/$15.00 161 © 1999 American Institute of Physics
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FIG. 2. Temperature dependence of the imaginary component of suscepti-
FIG. 1. Temperature dependence of dynamic magnetic susceptibility for Kility.

sample.

Thus, ac measurements show that sample K1 does not

In order to establish the presence and effect of interyigpiay granularity for supercurrents flowing through the
granular structure, we carried out the measurements of dys

) e Y%ample. This sample is 100% screened from a magnetic field
namic magnetization. Such measurements were made for fi

' h 46 “é'nd contains no other phases exceglfds. Nevertheless, the
lerides in several laboratoriés® The presence of two clearly

N : sample still contains a mosaic structure with a block disori-
distinguishable peaks on the temperature dependence of fiGation angle of 3°. In all probability, this mosaic structure

imaginary component of susceptibifityx") indicated un- g0 not hamper supercurrents. In this respect, K1 sample
ambiguously the existence of inter- as well as intragranulaesempies in its properties “melt-textured” HTSC materials
scattering mechamgms. . . also exhibiting a weak disorientation of blocks, which does
Only one peak is observed in sample K1 with & 100%y,4t |ead to granularity of the sample as a whole for super-
screening of magnetic field. Figure 1 shows the temperaturg, rrents, Sample K2 possesses virtually the same character-
depe_ndences Qf _t_he real a_nd imaginary components of dygjics a5 K1. However, a weak effect of granularity is still
namic susceptibility for this sample. These dependencegresent in the sample. Sample K3 with a nonuniform stoichi-

were measured in zero magnetic field. The peak on th%metry displays a strong effect of granularity.
x"(T) curve lies near the critical temperature and corre-

sponds to energy d|ssu_)at|or_1 in the superconducting matena&._ DISCUSSION OF RESULTS
As the constant(dc) field increases, the peaks become
slightly broader and shifts towards low temperatures. No  Almost the entire experimental information on the tem-
other peaks are observed on the temperature dependencepafrature and field dependences of critical current density in
x" for K1 in the entire experimental range of ac and dcFS was obtained from magnetic measurements. It was noted
fields. On the contrary, thg”(T) dependence for sample K2 above that some peculiarities observed in FS strongly com-
displays one more less clearly manifested peak near the firglicate the measurement df from the transport character-
one and additional scattering at lower temperaturds$ K. istics of current. First, superconductivity in fullerides be-
In contrast to samples with 100% screening of the fieldcomes unstable after contact with oxygen. Second, high-
the temperature dependeng®&(T) obtained for sample K3 quality crystalline samples required for such measurements
has a much more complex structure. Figure 2 shows for comwere not available until recently. Thus, magnetization mea-
parison they”(T) dependences for all the three samples. Thesurements in a magnetic field at various temperatures used
sharp peak observed for K1 is also clearly seen for K3. Affor obtaining information orl. on the basis of the model of
the same time, several other peaks corresponding to loweritical staté were the only possible experimental method for
temperatures are also seen clearly. These peaks are assatitdying the critical current density in these materials. The
ated with energy dissipation at weak interphase links. Theimplest version of Bean’s model is based on the assumption
formation of such links in K3 is undoubtedly associated withthat the critical current density is independent on the field,
the presence of nonsuperconducting inhomogeneitiess  and hence the density distribution of the field penetrating the
doped G or probably KCg). sample decreases linearly from the surface to the center.
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TABLE |. Critical current density and parametekM andm for K;Cgy and RRCgy samples.

AM,
10° A/m
Je, 5K, 5K, m
Compound R, mm A/m? 05T 01T References from (2)
103 10° 0.7 1.97 6 1.47[25]
1073 1.2.10° - - 23 1.5[3]
KaC 1073 -10 -0.7 - 24 -
s~e60 103-3.10¢ - 3.4 7.63 12 -
1 10 14.6 25.33 11 -
1 6-10 9.3 25 K1+ -
1 4.10 7.1 18.5 KZ -
1073 4.101° 0.68 0.97 13 1.5925]
103 1.5-10'° 0.23 0.32 8 1.8-726]
1073 2-10% - - 10 -
Rb:Ceo 10°3 1010 - - 24 2.0[27]
103-3.10°¢ - 1.72 3.71 12 -
1 -10 19.7 - 11 -
1 6-1C° 21.9 - 14 -

Note: Asterisks mark our results.

With increasing external magnetic field, magnetic vorticesvery accurate value of the geometrical coefficighatfor
penetrate the samples more and more deeply until they arains of a complex shape, and second, the indeterminacy in
proach its center at a certain value of the magnetic fitfld  the value ofR. The second factor is more significant. The
On the magnetization curvéd* can be determined as the problem of calculation of the critical current density for crys-
field at which the magnetization attains its peak value. Atalline samples is not less complicated than the problem for
further increase in the field leaves the magnetization unpowders, especially for sample with the superconducting
changed. As the applied field decreases, the sign of the digraction x,, smaller than 100%. For such samples, we must
tribution density gradient iS reVersed. Th|S model ObViOUSlymake certain assumptions Concerning their microscopic
leads to a dependence of magnetization on the size and ggyycture in order to obtain the values Rf
ometry of the sample. The value df can be determined Irons et al'* were the first to study the critical current
from the experimental curve obtained from dc magnetizatioraensity in large crystalline samples. The valuglgbbtained
on the basis of the equatibn in these experiments was of the order of 20m?, which is
J:=AM,.—M_)/R, ) much smaller than that observed for powder samples
(~10° A/m?). Bosset al? studied the dependence of the
critical current density on the grain size in the sample. In
hese experiments, the average radius of grains was 1, 3, 10,
0, 100, and 30@um in different samples. Boss al,, estab-
lished that the value od; is inversely proportional to the

where A is the coefficient determined by the sample
geometry>’ M, and M _ are the magnetizations measured
for the same value of magnetic field during its increase an
decrease, respectively, aRds the sample radius. In Refs. 8

and 9, the value of. was determined simultaneously from . - -
¢ Y Sain size(see Table | in Ref. 2 In our opinion, the “de-

dc and ac measurements, and good agreement of the res o o . . :
rease” in the critical current density upon an increase in the

was observed. This indicates that the critical state model caft o 12 -
be used for FS. average grain size observed by Baxtsal“ is due to an

Table | shows some values of critical current densityMcOMect value oiR used for calculatinglc on the basis of
obtained for fullerene superconductors in the powder andormula (1). Otherwise, the linear dependendg<1/R, or
crystalline form with a crystal size up to several farfihese ~ (Which is the samiethe constant width of hysteresis loops for
results were obtained from magnetic measurements and derdl! the samples being measured, leads to only one possible
onstrate a considerable hysteresis of magnetization up tgPnclusion that the actual radi&sof the region in which the
high values of magnetic field. This indicates a strong pinningScreening current flows should not exceed the minimum av-

of vortex filaments, and hence high values of critical currenrage radius of grains in the sample. This means that the
density. For example, the value of, in RbCyl® at  Value ofR must be smaller than Am. This, however, con-

T=23K=0.82T, in a magnetic field of 0.5 T is still quite tradicts the results of magnetic measurements obtained by
large (5x 108 A/m?). different authors for KCqo as well as RECgo 211314 Ac-
When the critical current density is calculated in pow-cording to these data, the width of hysteresis loops increases
ders, the sample is treated as an aggregate of uncoupled swith the grain sizgsee Table), although the dependence is
perconducting spheres. The averaged diameter of thegwt linear. For example, as the valueR®increases by three
spheres is equal to the average diameter of a grain in therders of magnitudéfrom 1 um to 1 mm, the value of
sample. In this case, the error in determining the absolutda M =Am/V, where Am is the width of a hysteresis loop
value ofJ. can be quite large, which is due to, first, a notand V the sample volume, increases only by a factor of
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FIG. 4. Temperature dependence of the critical current density for K1
FIG. 3. Field dependence of the critical current density for K1 sample atsample at different values of magnetic field.
various temperatures.

the value ofR is not determined absolutely accurately. It was
10-30. This can be due to a weaker pinning in single crystalaoted above, however, that the qualitative form of the tem-
as compared to powders in view of the fact that single crysperature and field dependences of the critical current density
tals have a more perfect structure, a smaller number of stru@btained from these experiments must be correct.
tural defects, and hence a smaller number of pinning centers. While calculating the critical current density in sample

It should be noted, however, that crystalline FS sample&1 with 100% field screening, we assume th#1 mm
synthesized at present are polycrystals rather than singlsample sizgsince it has been proved that the granularity for
crystals. Many samples have a nonideal stoichiometry, andupercurrents in the sample was not observed. Using formula
hence inclusions of a nonsuperconducting phase. Beside§), we obtain J,=6x10"A/m?> at T=5K and
the monocrystalline structure ofggcrystals is broken by woH=0.05T. This value is close to those obtained by Irons
doping, giving rise to a mosaic structure. In this connectiongt al!! on K;Cgo and RRCq, crystals of the millimeter size.
we can hardly expect that the pinning in such crystals will beHowever, the values af, obtained for RgCq,l* are 15 times
much weaker than in powders. For this reason, the disprdiigher than our values. This difference can be due to the
portionally small increase idMM as compared to the in- quality of crystals, and hence the pinning force.
crease irR cannot be attributed only to a weaker pinning in The field and temperature dependences of critical current
single crystals. We can also assume that the value$; of density for K1 are shown in Figs. 3 and 4. It can be seen that
calculated for powders are slightly exaggerated since we ashe critical current density decreases smoothly with increas-
sume that grains are absolutely isolated when we chBose ing magnetic field and temperature. These valued cére
equal to the average radius of grains. It must be borne iwirtually two orders of magnitude lower than those obtained
mind, however, that the surfaces of grains are the first to ben twinless YBCO single crystalshis material has the low-
doped and become superconducting in the course of dopingst anisotropy among HTSE® The reason behind this dif-
Consequently, grains are often electrically coupled or exhibiference in the values al. is unclear since the expected
a weak Josephson coupling even in an unpressed powdearontribution of structure defects to the pinning of magnetic
Naturally, this leads to values & larger than the average vortices also depends on the thermodynamic critical fé&ld
size of grains, and the value df calculated by formuldl) and the coherence lengéhBoth these parameters have close
must accordingly be lower. values for FS and HTSC.

Irrespective of the nature of the phenomenon discussed The influence of internal structure of the sample Rn
above, it creates additional difficulties in the calculation ofcan be seen clearly from the results obtained for K2 for
J. and shows that the absolute values of critical current denwhich the value oAM is smaller by a factor of 1.3 than for
sity calculated from the results of measurements of irreverskK1. At first sight, this result appears as unexpected since the
ible magnetization should be taken with care, especially ifsize of K2 is 1.5 times larger than that of K1. However, the
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FIG. 5. Field dependence of the trapped magnetic momentor K2 Most experimental results show that the irreversibility curve
sample aff, K: 5 (x), 7 (O), and 12(H). can be described by the equation

Hir=Ho(1-T/To)™, @

small value ofAM in K2 can be explained by the presence whereH is the value oH,;, at zero temperature. In a ther-
of grains. It is well known(see the discussion of the quality mally activated flux flow (TAFF) model with collective
of single crystals in Ref.)&hat a mosaic structure is formed pinning?® the value ofm in Eq. (2) is 1.5, whilem=4/3 in
in the sample as a result of doping. At the same time, grainthe vortex-glas§VG) modef® andm=2 or 1.5 in the theory
can also appear due to the formation of microcracks in thef vortex lattice melting’!
single crystal. Indeed, ac measurements in K2 indicate the The irreversibility curve is usually determined in experi-
presence of intergranular peaks on & T) curve, which  ments as the point of merging the ZFC and FC cufassfor
are absent in the case of K1 samfdee Fig. 2 Besides, the example, for KCgy and RRCgy powders in Ref. 2Por as a
dependence of the trapped magnetic flux on the externalharacteristic value of the field at which current densities
magnetic field(see the details of experiment in Ref.)¥6r  drop below a certain value. The irreversibility curves for
K2 has a kink for the characteristic value of the figlgH* fullerides obtained by these methods are also described by
of the order of several mT. This dependence is shown in FigEg. (2) with the value ofm between 1.47 and 2.1See Table
5. We relate the emergence of the kink to the instant of timé¢). However, the determination df;, and H;, from these
when the applied field reaches the center of the sarfgple measurements is complicated and requires the application of
the center of grains This kink is not manifested in this certain criteria in view of the fact that both temperature and
range of external fields for sample K1 whose size is smallefield dependences of magnetization gradually become revers-
than that of K2, indicating the presence of grains for superible.
currents in K2. The estimates of the average size of grains In our experiments, the irreversibility curve was deter-
obtained from the experimental valuestbf give a value of mined from field dependences of critical current density,
the order of several tens of micrometéfsThese grains are where 1J, is proportional toB in a wide range of external
quite large and are formed in all probability due to the emerdields (Fig. 6). However, at certain values of field, the value
gence of microcracks during sample doping. of J. decreases abruptly below the resolution limit of our
An important characteristic of HTSC materials is the instrument(see Fig. 8, the values of characteristic field be-
“irreversibility point” ( T;, or H;,) observed for the first ing the lower the higher the temperature. These values of
time in experiments by Mier et al® for La—Ba—Cu—O ce- magnetic field is regarded as the irreversibility fiélg, .
ramics. For various values of external magnetic field, it was The temperature dependences ldf, (irreversibility
defined as the point at which “field-cooled(FC) and curves obtained by this method for K1 and K3 samples are
“zero-field-cooled” (ZFC) temperature dependences mergeshown in the inset to Fig. 6. The irreversibility curves follow
into one reversible curve. This effect is observed for allthe power law(2) with m=1.5. Thus, the irreversibility
HTSC, and the irreversibility curvel,,(T) has become an curve can be described on the basis of the TAFF mbtkl.
object of detailed investigations for many years. From theshould be noted, however, that this value of exponer2in
point of view of fundamental studies, ti,(T) dependence is also in accord with some models of vortex lattice
provides information on the type of pinning in a sample andmelting?!



166 Low Temp. Phys. 25 (3), March 1999

4. CONCLUSION

V. A. Buntar and A. G. Buntar

12R. D. Boss, J. S. Briggs, E. W. Jacogssal, Physica C243 29 (1995.
13C. Politis, V. Buntar, W. Krauss, and A. Gurevich, Europhys. L&,

Using the measurements of magnetization, we studied ;75 1997,
the temperature and field dependences of the critical curremts, chu and M. E. McHenry, Phys. Rev.35, 11722(1997.

density in single crystals of fulleride §C¢o. On the basis of

15F, M. Sauerzopf, H. P. Wiesinger, W. Kritsclea al, Phys. Rev. B43,

the critical state model, we obtained the critical current den- 3091(1991.

sity J,=6%x10" A/m? at T=5 K and uqH=0.05T, which is
much smaller that the corresponding value for powders. It is;

V. Buntar, F. M. Sauerzopf, and H. W. Weber, Phys. Re\6B R9651
(1996.
M. W. McElfreshet al, Physica A168 308(1990.

shown that the internal structure of the sample considerably. a. miiller, M. Takashige, and J. G. Bednorz, Phys. Rev. L58;.1143

affects the characteristic value Bfused for calculating,. .

(1987).

The irreversibility curve obtained in experiments follows *°Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Le0, 2202 (1988;
a power law with an exponemb= 1.5 and can be described M- Tinkham, Phys. Rev. Lett61, 1658 (1988; C. W. Hagen and R.

on the basis of the TAFF model. However, the final answek,

Griessen, Phys. Rev. Leti2, 2857(1989.
D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev43 130

to the question about the nature of the irreversibility curve in (1991 P. L. Gammel, L. F. Schneemeyer, and D. J. Bishop, Phys. Rev.

FS cannot be obtained in view of insufficient amount of ex-

perimental data on the;,(T) dependence.
*E-mail: buntar@ati.ac.at

IA. F. Hebard, M. J. Rosseinsky, R. C. Haddenal, Nature(London
350 600(199).

2C. P. Bean, Phys. Rev. Le8, 250(1962.

3V. Buntar, F. M. Sauerzopf, H. W. Webet al, Phys. Rev. B54, 14952
(1996.

4G. S. Boebinder, T. T. M. Palstra, A. Passeerl, Phys. Rev. B16, 5876
(1992.

5G. Sparn, J. D. Thompson, S.-M. Hauegal.,, Science252, 1829(1991);
G. Sparn, J. D. Thompson, R. L. Whettenal, Phys. Rev. Lett68, 1228
(1992.

5M. Baenitz, M. Heinze, E. Straubet al, Physica C228 181 (1994.
"W. A. Fietz and W. W. Webb, Phys. Ret78 657 (1969.

8M. W. Lee, M. F. Tai, S. C. Luo, and J. B. Shi, Physic®245, 6 (1995.
V. Buntar, Physica Gin press.

10C. Politis, V. Buntar, and V. P. Seminozhenko, Int. J. Mod. P/,
2163(1993.

1S, H. Irons, J. Z. Liu, P. Klavins, and R. N. Shelton, Phys. Re\62B
15517(1995.

Lett. 66, 953 (199)); R. H. Koch, V. Foglietti, W. J. Gallaghegt al,
Phys. Rev. Lett63, 1511(1989.

ZIA. Houghton, R. A. Pelcovits, and A. Sudbo, Phys. Rev4® 6763
(1989; E. H. Brandt, Phys. Rev. Let63, 1106(1989; D. E. Farrel, J. P.
Rice, and D. M. Ginsberg, Phys. Rev. L&, 1165(199)); R. G. Beck
et al, Phys. Rev. Lett.68, 1594 (1992; L. I. Glazman and A. E.
Koshelev, Phys. Rev. B3, 2835(199)); M. F. Schmidt, N. E. Israeloff,
and A. M. Goldman, Phys. Rev. Left0, 2162(1993; G. Blatter and B.
Ivlev, Phys. Rev. Lett70, 2621(1993.

22E. Zeldov, D. Majer, M. Konczykowsket al, Nature(London 375 373
(1995.

K. Holczer, O. Klein, G. Gruneet al, Phys. Rev. Lett67, 271(1991).

243. D. Thompson, G. Sparn, K. Holczet al, in Physical and Material
Properties of High-Temperature Superconduct@s. by S. L. Malic and
S. S. Shah Nova Science Publishers, Commack, (4994.

25C. L. Lin, T. Mihalisin, N. Bykovetzet al, Phys. Rev. B49, 4285(1994).

M. Warden, R. Schauwecker, P. Erhattal, Physica C235-24Q 2505
(1994.

27y. Buntar, F. M. Sauerzopf, H. W. Webat al, Recent Advances in
Chemistry and Physics of Fullerenes and Related MateriaJs1021
(1997.

Translated by R. S. Wadhwa



LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 3 MARCH 1999

On the theory of Josephson effect in a diffusive tunnel junction
E. V. Bezuglyi, E. N. Bratus’ and V. P. Galaiko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraiffé
(Submitted September 16, 1998

Fiz. Nizk. Temp.25, 230—239(March 1999

Specific features of the equilibrium current-carrying state of a Josephson tunnel junction between
diffusive superconductor@vith the electron mean free pathsmaller than the coherence

length &;) are studied theoretically in theDLgeometry when the current does not spread in the
junction banks. It is shown that the concept of “weak link” with the phase jubnp1 of

the order parameter exists only for a low transmissivity of the baltigt/¢,<1. Otherwise, the
presence of the tunnel junction virtually does not affect the distributions of the order

parameter modulus and phase. It is found that the Josephson current flowing in the vicinity of
the tunnel barrier induces localized states of electron excitations, which are a continuous
analog of Andreev’s levels in a ballistic junction. The depth of the corresponding “potential well”
is much larger than the separation between an Andreev’s level and the continuous energy
spectrum boundary for the same transmissivity of the barrier. In contrast to a ballistic junction in
which the Josephson current is transported completely by localized excitations, the

contribution to current in a diffusive junction comes from the entire spectral region near the
energy gap boundary, where the density of states differs considerably from its unperturbed value.
The correction to the JosephspftP) in the second order of the barrier transmissivity,

which contains the second harmonic of the phase jdmps calculated and it is found that the

true expansion parametgf®) of the perturbation theory for a diffusive junction is not

the tunneling probability”, but a much larger paramet@&/=(3£,/41)I". This simplifies the
conditions for the experimental observation of higher harmonicg (df) in junctions with
controllable transmissivity of the barrier. @999 American Institute of Physics.
[S1063-777X%99)00303-5

1. INTRODUCTION

. . 1
In recent years, considerable advances have been made 5](¢):_Q(T)I(A)F(Sm¢_ Zsin 2(1))’ a(T)~1,

in the technology of preparing low-resistance tunnel junc- (1)
tions with a comparatively high barrier transmissivitun-
neling probability I'. This applies primarily to controlled I(A)=%evFvFFA=IC(A)/tanr(AIZT), 2

break- junctions as well as systems based ob Zlectron

gas? whose conductivity undergoes a crossover from tun”e|wherevF is the density of states,- the Fermi velocity, and

to metal-type conductivity upon a change in the barrier paj (A) the critical current through the junction.

rameters. The problem of calculation of the Josephson cur- |y a diffusive superconductoithe “dirty” limit <&,
rent through a junction with an arbitrary transmissivity in the = /5724, D=uv¢l/3 is the diffusion coefficient the calcu-
ballistic mode (with the electron mean free patt™Z&,,  |ation of the Josephson current for an arbitrdrys hardly
where &, is the coherence lengthwas solved by many possibl@ even in a simple model disregarding the variation
authors on the basis of the model of a one-mode junctionof the order parameter in the vicinity of the junction, using
with massive current-carrying banks ensuring a rapithe numerical methods of solving equations for Green’s
“spreading” of supercurrent and the equality of the orderfynctions averaged over the ensemble of scatterers. As a mat-
parameter modulud at the barrier to its bulk valuéthe  ter of fact, the boundary conditions for isotropic Green's
“rigidity” condition for A). functionsg(r,t;t,) at the junction, which were obtained for

In the 1D geometry(e.d., a planar junction or a super- the first time by Kupriyanov and Lukichéyii.e.,
conducting channel with a tunnel barfigy the problem is

complicated considerably due to the change in the order pa- _ | ,avay _ _1/ava _§ r“d(:“)> A

rameter and the quasiparticle energy spectrum in the vicinity 1(@Ve).= I(ng)R—4< r(m) 80wl

of the junction, which makes a contribution to the phase _

dependence of the curref(id®). Antsygina and SvidzinsKii r(p)=1=d(u), @)
determined the corresponding correctionsj{@) of the  whered(cosé) is the tunneling probability for an electron
order ofI'? for a pure (> &,) superconductor in the limit of impinging the barrier at an angk and the subscript® and
low transmissivityl'<1: L mark the value to the right and left of the barrier, are valid

1063-777X/99/25(3)/8/$15.00 167 © 1999 American Institute of Physics
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only in the first order of smallness of the angle-averaged3) carried out in Sec. 4 of this article in the next ordeMih
transmissivityl' = (ud(ux)). Lambertet al® proved that the confirms these considerations and proves that the corrections
derivation of the boundary conditions in the general~I'? to the boundary condition€3) and Josephson current
case (~1) is reduced to an analysis of a system of nonlin-(4) obtained in Ref. 8 are insignificant indeed.
ear integral equations for the terms in the expansion of Another important result of the analysis of the current-
the averaged Green's functiorg(r,p,t;t;)=8(r,t,t,) carrying state of a diffusive Josephson junction obtained by
+p-0,(r,t t,)+... over Legendre polynomials. This prob- us here is the conclusion concerning the emergence of local-
lem can be solved only foF <1 by writing the right-hand ized states of electron excitations in the vicinity of the bar-
side of(3) in the form of a power series i, which was used rier. This phenomenon is well known for a ballistic tunnel
in Ref. 8 for calculating the corrections to the Josephsonunctiont®!!in which discrete energy levels
current of the order of 2. _ . 2

In this paper, we pay attention to the fact that the prob- en(®)==A(1-dsi /)™ ©)
lem of calculation of the current—phase relation for a diffu-associated with Andreev’s localization of electron excita-
sive junction in the D geometry has a meaning only in the tions near the jump in the order parameter phase split from
case of the low transmissivity of the barrier. Indeed, simplethe continuous spectrum in the current-carrying state. A
estimates obtained on the basis of the well-known formulsgimilar phenomenon also takes place in a diffusive junction
for j(®) in the first order inI', which coincides with the in which, however, isolated coherent energy levels cannot
Ambegaokar—Baratotfresult for a pure superconductor on exist due to electron scattering at impurities and defects. In

account of the Anderson theorem, i.e., this case, The most adequate description of the variation of
A the energy spectrum of excitations is the one in terms of their
jo(®)=1(A)tanh==sin® (4) local density of statesl(e,r)=Reu’(e,r) (u” is the diago-
2T '

nal component of the retarded Green’s function for the su-
show that even fol’ ~1/£y<1 the critical current through Perconductar which is assumed for brevity to be normal-
the junction becomes of the order of the bulk thermodynamidzed to its valuevg in the normal metal. In the absence of
critical currentngev ., wherev .~ 1/mé&, is the critical ve- current, the density of states in a homogeneous supercon-
locity of the condensat@,~mv-DA its densitym the elec-  ductor _has the standard fornNo(e)=|e|© (s?—A%)/
tron mass, and = 1. Thus, forl'>1/¢, the tunnel junction V&> —A? [O(x) is the Heaviside functiohwith root singu-
does not any longer play the role of “weak link” with the larities at the gap boundaries. In the current state, the mo-
jump of the order parameter phadeand other features of a Mentumps of the superfluid condensate plays the role of a
Josephson element. This follows even from the boundar§i€pairing factor smoothing the singularitiesNs) and re-
conditions(3) if we use the estimat&§~§/&, in the vicin-  ducing the energy gape3 by A—z,(p)~(Dp2)#* In
ity of the junction, which leads t§§, ,dx]~sin®—0 for  the vicinity of a weak link, a similatand main factor sup-
I'>1/&, in the main approximatiof. This criterion of weak Pressing the energy gap is the phase julnhich leads to
link can be also formulated in terms of the conductance ofhe formation of a “potential” well having a width of the
the system in the normal state: the resistance of the junctiofrder of§; and containing localized excitations with an en-
must be higher than the resistance of a layer of the currenfr9Y|e[<A (see Sec.B
carrying metal of thickness- &,.

It follows hence that the parameter 2. EQUATIONS FOR GREEN'S FUNCTION OF A JOSEPHSON

JUNCTION WITH A LOW TRANSMISSIVITY
W= (3&)/4HT'>T (5)

i In order to calculate the density of states and equilibrium
plays a fundamental role in the theory of Josephson effect f°§upercurrent
diffusive junction(the factor 3/4 is chosen for convenience
of notation. We can attach to this parameter the meaning of _ 1 tee A oAt A oA
the effective tunneling probability for Cooper pairs, which is’ = 2 8vrveD o defo(e)Tro(§" Vg ~g=Vg )(e)
higher than the conventional probability of quasiparticle (7)

tunneling. Small values aV<1 correspond to “weak link” . .
" we must solve equations for the matrix retardadvanceyl
conditions(Josephson effectFor W>1, the presence of a \ Sy
o Green’s functiongy=(r,e) averaged over the ensemble of
tunnel barrier virtually does not affect the supercurrent flow .
T : Oy scatterers:
and the distribution of order parameter in a diffusive super-
conductor. Moreover, we can expect that ifisand notI’ [o,e+Aexpiox)io,,q]=iDV(GVQ), (8
that it a true parameter of the expansionj 6P) in the bar- 62— 1 )
rier transmissivity since the Anderson theorémthe given g =L
case, the statement concerning the absence of a dependetitere A andy are the modulus and phase of the order param-
of the Josephson current on the mean free)patialid only  eter andfy(e)=(1/2)[1+tanhE/2T)] is the equilibrium
in the main approximation i’ (4), and hence this depen- distribution function.
dence must be manifested in higher-order terms in the According to the normalization conditiof9) for a
expansion of (®) in the emergence of an additional dimen- Green’s function, the matri§ can be presented in the form
sionless parametefy/l in them, which vanishes ds—o. §=o0-u, where o is the vector formed by Pauli matrices.
An analysis of corrections to the current—phase dependenddsing the well-known relations &-a)(o-b)=a-b+iofa
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xb], [0, 0]=2i[ X s], wheresis the unit vector of “iso- from the axis through an imaginary angié and turned
topic spin” directed along the-axis in the space of Pauli about the isospin axis through the azimuthal anglén the
matrices, we can obtain froif8), (8), and(9) the following  spatially homogeneous case, this angle obviously coincides
equations and the boundary conditions for the vector Green'with the phase of the order parameteés<x), and the scalar

function u: Green'’s functionas andv are described by the formulas
e[sXu]+iA[ xXu]=(D/2)V[uxVu], u?=1, (10 . €
[ ] L] [ ) u- =coshfy=——x—, (20
E[uX VU], g=2W[u_ X Ug], (11 V(exi0)2—A?
where y = (siny,cosy,0) is the symbolic vector of the order L
parameter phase. v :S'”hesz\/ﬁ’
Singling out the component of the vectaralong the (8+i0)
directionss, i.e., u=su+iv (v-s=0), we project Eqs(10) where +i0 defines the position of singularities of the re-
onto the §,y)-plane in the space of Pauli matrices: tarded(advanceyl Green’s function in the complex plang
ev—Auy=(iD/2V(UVV—vVu), w*—v?=1 (12 andff square root if20) is defined so that—— +1 for
E— .

and introduce the unit vectog=(siny,cosy,0) directed The equation$13)—(15) for Green’s functions should be
alongv: v=yw, wherey(r,e) is the phase of “anomalous” supplemented by the self-consistency conditions for the
Green’s functiorv (V¢=[¢Xs]V¢). The obtained system modulus and phase of the order parameter:

of scalar equations is a possible representation of Usadell

. e
equations: A=)\f defoRev ™, (21)
sv— AU cog ¢— x) = (iD/2)[V(UVv —vVu) - uo(V)?], -
13 +eo
13 f defoRev ™ sin(y"—x)=0, (22)
Av sin(p— x)=(iD/2)V(v2V ), (14) —
u2—p2=1, (15)  Where\ is the constant of superconducting interaction. Tak-

) ) _ ing into account the current conservation Iggs. (14) and
and its solutions determine the value of supercurf@nic-  (22)] it is convenient to calculate the value of current at the
cording to barrier (x— +0) by expressing/#(0) in (16) with the help

+oo of (18) through the phase jump/20):
j(@):—eyFDf defolm(v")2Vyt. (16) ..
j(D)=— EvFvFrf dsfoImlv*(0)]2sin 24 (0),

Choosing the coordinate axis at right angles to the 2 —w
contact planex=0 (x(+0)=—x(—0)=®/2) and taking (23
into account the continuity of Green’s function and antisym-which allows us to single out explicitly the small parameter
metry of their derivatives, we can easily obtain frobi) the  of the theory, i.e., the barrier transmissivify It can easily

boundary conditions to Eq¢13) and(14) for x— +0: be verified that in the main approximation using the unper-
&(UVu—VUu)(0)=4Wu(0)v(0)sir? ¢(0), (17) turbed values of Green’s functiof20) and phasey(0)
~x(0)=®/2, formula(23) leads to the resul@).
&o(vV ) (0) =2Wu (0)sin 2¢4(0). (18 A simplifying factor in the case of a low transmissivity

Away from the junction, the behavior of the order pa- of the barrier is that the quantities— y andV proportional

rameter phases and Green'’s function is described by a Iineé? the current through the junction are smeee(18) and

asymptotic form corresponding to the given value of curren_14))’ and hence we can omit in ECL3) the te_rms quadratic
iIn W and containing the phase. Replacing0)~ x(0)

§(+o)=th(+2)=x.+2psX, Ps=(W/§)sind, =®/2 in the boundary condition&7) and(18) to the same
(19 degree of accuracy, we obtain the equation and the boundary

i.e., of the superfluid momentum, whose magnitude is de- conditions for the paramete
termined in the main approximation by the condition of & sinh6— A(x)coshe=(iD/2) V26, (24)
equality of the current4) through the junction to its value
j=meveDpA tanh(A/2T) in the bulk of the metal, and £V 0(0)=2W sinh 2¢(0)sir? ®/2,
Green'’s functions tend to their asymptotic values satisfying
Egs.(13)—(15) for y=x andVu=Vuv=0. 0(+)=0s. (25

Using the parametrization=coshé, v =sinh#, which An attempt to apply the perturbation theory directly to
takes into account the normalization conditid®), we can  the solution of Eq.(24) (8(x)=60p+ 61(X), A(X)=A,
put in correspondence to the vector Green's functiothe  +A;(Xx)) leads to an expression for the correctiég(x)
following visual geometrical imag®. The unit vectoru in a  containing nonintegrable singularities at the gap boundaries,
normal metal is directed along the isospin axi@vhich cor-  and as a consequence, to the divergence of the corresponding
responds to a purely electron or hole state of excitation of @orrection to the Josephson currgd). This is associated
Fermi ga$, while in a superconductor this vector is deflectedwith the emergence of localized states of quasiparticles at a
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tunnel junction in the current-carrying state mentioned in 1.00L -----------
Introduction. These states will be considered in the next sec- - W
tion. [
0.95} A(®,x=0)
< !

3. LOCALIZED STATES AT A TUNNEL BARRIER ¢ o 90-

It will be proved below that the depth of the “potential [ £.(®
well” in the vicinity of the barrier is much larger than the [ W=0.01 *
scale of variation of the order parameter. Consequently, it is 0.850 EEEE— ; At 3
sufficient to confine an analysis of the behavior of the den- ®/x

sity of state to the model with a constantin which Eq.(24)
has a simple solution describing the attenuation of perturbarIG. 1. Dependence of the position of the bottom of the “potential well”

tions of Green’s functions at a distanee, from the barrier: &« (3D and the order parametex(0) (49 in the vicinity of the tunnel
junction on the phase difference (solid curve$ at T=0, W=0.01 and

&, /1=5. The dashed curve shows for comparison the position of the An-

0(x) — 6y 0(0)— 6,
tanh 2 =tanh 4 exp(— k8|X|), dreev level in a pure one-mode juncti¢®) for the same barrier transmis-
sivity.

k; 2=i&2sinhd;, Rek,>0. (26)

The quantity 6(0) satisfies the boundary condition fol- _ 45
lowing from (25) and (26): g, (P)=A11-C W5|n2? ;

K . has_ 0(0) . inh

¢&o Sinh———— =y sinh 26(0), C= 35 gus~5824. (31

y=Wsin’ ®/2<1, (27) The dependence of the position of the spectrum bound-
which can be reduced to the eighth-degree algebraic equatidiy on the phase jump at the junction is illustrated in Fig. 1
in z=exp#(0): in which a similar dependence of the position of the Andreev

3 o . 22 4 a2 _ level (6) in a junction between pure superconductors is
22°(z=2) =iy~ 1(Z'-1)%, zs=expbs. (29 shown for comparison. It should be noted that the scale of
In the general caséfor an arbitrarys), the solution of variation ofe, (®) is much larger than the splitting of the
Eq. (28) can be obtained only numerically, but the presencéAndreev level from the boundary of the continuous spectrum
of the small parametey in (27) and(28) makes it possible to  for the same barrier transmissivity. This is associated with
apply the perturbation theory. Far away from the spectrunihe large value of the depairing parametein the diffusive
boundary, we can puf(0)= 6 on right-hand side of27),  junction as compared to the splitting paramelernf the

which leads to the following expression for the correction toAndreev level as well as with the large numerical value of
the density of states at the barrier: the constanC defining the shift of the spectrum boundary

__ . (31). Figure 2 shows the results of nhumerical calculation of

N(e,00=No(e)=—2yRe(\i sinl’ ssinh 205), (29 he density of states at the junction on the basis of the gen-
that becomes obviously inapplicable fog|—A, where eral formula(28) for different values of the depairing param-
|6/— . In this region, we must apply the modified pertur- €ter, which prove that in addition of the root singularity
bation theory(MPT) by putting|z|, |z>1 for an arbitrary (~ve—eg,) at the spectrum boundary, the quantiye)
(not necessarily smallvalue ofz—z,. This not only reduces
the degree of the general equati@8), but also allows us to
write it in a universal form free of the depairing parameger

(YWE-1)%=iy®, y=2/pv2,
E=pB%ec—A)IA, B=(2ly)Y>>1. (30)

Relations(30) show that the increase in the density of
states is bounded by a quantity of the ordeBef W~ 2 as
we approach the spectrum boundary, and the range of appli-
cability of the conventional perturbation thed®9) is deter-
mined by the condition{—A)/A> B2 and overlaps with 1
the region of applicability §—A)/A<1 of the MPT. The 06 08 10 12 14
boundarye, of the spectrunithe position of the bottom of e/A
the potential well below which the density of states vanishes ) o
corresponds to the emergence of a purely imaginary root ;2 Depenence of e derly of s b ) o e el o

the equation (30) at the point E, = —(25/6)(2/3}® y=W sir’(®/2) (solid curves. The dashed curve shows the energy depen-
~—3.842 dence of the unperturbed density of statgge).

1=0,
\

- \

0.002 '.‘

=0)

0.01
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N{e,®, x
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FIG. 3. Energy dependence of the density of states,®,x) for y=0.01 at °
different distances from a diffusive tunnel junction: Qcurvel), &, (curve  FIG. 4. Lines corresponding to the number of states of quasiparticles
2), and %, (curve3). &(e,®,x) =const(34) for y=0.01 and various values gfin the vicinity of
the junction. The dashed line shows the position of the bottom of the “po-
tential well” (£=0, e=¢,(P)).
has a “beak-type” root singularity foe=A. Its physical
nature is associated with an indefinite increase in the attenu-
ation lengthk_ * of the perturbation of Green’s functid@6) .
in the vicinity of the gap boundary in the bulk of the metal. j(P)= _ZeVFf dé
Fore, <e<A, the density of states decreases exponentially 0
with increasing distance from the junction ¢, (Fig. 3),
which corresponds qualitatively to the image of the potent|a|1
well of depthA — ¢, and of width~ &, with excitations lo-
calized in them.
It is well known that Josephson current is carried
through a ballistic junction by localized excitations only and
can be presented in the following visual form:

de(§,,0)  £(§,P,0)
D tanh o7 (35
which, however, leads to correct results only in the case of a
omogeneous current-carrying statéereVy plays the role
of @) or a broadSNSjunction (with a width L> &, of the
normal superlaygrand is inapplicable for a narrow bridge
and tunnel junction. Nevertheless, the application of the
function e(&,®,x) is useful in these cases also since this
allows us to visualize the variation of the energy distribution
b en(P of quasiparticle states in the vicinity of the junctidfig. 4).
(CD)——ZE ( ) tanh rgT), (32) q p y J g

where the indexi labels Andreev’s levels. At the same time,
formula (23) for current expressed in the MPT approxima-
tion in terms of the reduced variabl€30), i.e.,

4. CURRENT-PHASE DEPENDENCE FOR A JUNCTION IN
THE SECOND ORDER IN W

A » dE Although the modified perturbation theory for Green’s
J(P)~—1 (A)tanhﬁsindbj 7Im(y+)2=jo(d>) function in the energy representation described in the preced-
Ex(®) 33) ing section is the most physically visual method operating
with actual excitation energies. it leads to considerable for-
shows that the charge transfer in a diffusive junction is permay difficulties in the calculation of corrections to the Jo-
formed not only by the states in the potential w0,  sephson current4). Indeed, it was shown in the previous
e<A), but also by excitations with energy>A in the re-  section that the expression fp¢®) calculated on the basis
gion e —A~ApB~2, where the density of states differs sig- of the MPT for Green's function£33) coincides with(4)
nificantly from the unperturbed Va'UNO(S). It should be since the small MPT paramet@f_z cancels out as we go
noted in this connection that Argamiémroposed an analog over to the reduced variablé30). Thus, in order to calculate
of the formula(32) for a diffusive system, which can be the corrections tq4) we are interested in, we must leave
obtained by the replacement of the energy(®) of  approximation(30) that describes the behavior of Green’s
Andreev’s levels by the local valug(§,®,x) of the excita-  functions correctly only in a narrow range of singularity in
tion energy forx=0, which is adiabatically deformed by the density of states. For this purpose, it is convenient to use
supercurrent, using instead of the discrete nunnbiiye con-  the formalism of temperature Green’s functions by going

tinuous variable over from integration with respect to energy(1)—(23) to
e(£,D.%) summation over the Matsubara frequencieg= =T (2n
:f “ de’'N(eg’,®,x) (39 +1),n=0,x1,+2,...:
viz., the number of states with an energy smaller than  j(®)=— ey I'T D, Rev?(0)sin 2y4(0), (36)
e (é=0(s2—A?)e?—A? for a homogeneous supercon- >0

ducto).”’ We can propose that the contributions from the
bound and delocalized states to the Josephson current are A(x)=—27\T 2 Imuv(x) (37)
taken into account simultaneously by the formula
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and making the substitutiost—iw, in Eq. (24). This allows  V¢(0)=—Vx;(0) following from (18) and (19), we find

us to avoid divergences of the tyg@9) in perturbation that this equation has the simple solutiop(iw,,q)

theory which, unlike the MPT, makes it possible to take into= —q?y;(q)/(q?+k?) which leads, after the substitution

account the coordinate dependend). into the self-consistency conditid@2), to the following ho-
It is expedient to use as the main approximation in themogeneous integral equation fg5(q):

asymptotic expansiofi= 6y+ 0, + ... the “adiabatic” value

of Green’s function corresponding to the local value of TS A (+= g*cosgx

= d 0. 44

A=A+ A400[A4(=) =O]: Zoy ) g 9T (49

_ Wy . B The only nonsingular solution of E¢14) is y41(q)=0,
Uo(X) =cOshdio(x) = @n(X)’ vo(X)=sinhfo(x) = @p(x)’ which proves the absence of a correction to the Josephson
current due to the deviation of the behavior of the phases of
?I)n(x)=\/wzn+A2(X). (38)  the order parameter and Green'’s functions from the linear

law (19). This result can be explained as follows. The cor-
In this case, the correctiofy(x) corresponds to the non- rection y,(x) is obviously of the order of the small correc-
homogeneous equation tion ps;(x) to the constant valugg (19) in the vicinity of the
junction, that ensures the conservation of the current upon a

2 2 ~
VZ01-k,0.=V*0o, K,=20,/D (39 change inN(e) andA. Since the value op,~W, the cor-
with the boundary conditions rection to this quantity, and hengg(x) and¢ have a higher
order of smallness~W?) than the corrections of the order
V 6,(+0)=2Wsinh 204 sir? ®/2, 6()=0, of W we are interested in.

o ) Substituting the obtained solutigdl) and(42) into for-
where cost¥s=w, /@, (®,=w,+A?) is the value of the myia(23), we obtain the required correction to the Josephson
Green’s function far away from the junction with the unper- ¢ rrent:

turbed value ofA.

The self-consistency condition fdr;(x) following from o ) 4T ) ) A2
the equation(21), i.e., Oj=j(®)—jo(P)=— Xl(A)Sln‘beO Re v+ 22
. 1
q)T%0 o3 =—Twn2>0 o “1m 6y (i w,,9) (40) =—I(A)WOZ(T)(S|n<I>—§sm 2@), (45)
completes the system of equations for determining the cor- s
rectionsé; andA;, whose solution in the Fourier represen- 71 _ /AA - 2 e dk N ki,B(k)
tation has the form "o of ) 242 A(k)
B(a) . <I> ~
=—8WA n2 >z @
Aa@) EoA(d) Ko=7 (46)
0.(iw,,q) = 8WA Ty 5 1 — A(0) sian' (41) whereA(k) andli(k) are defined by formulag}2) upon the
q°+k;, €0A(Q) substitutionk ,—k,,, andW, and A, are the values oW
A2 andA at T=0.
A(Q)=A(0)+q?B(q), A(0)=2#T 2 —, (42) At low temperaturesT<A), the summa_uon ovew, in.
wy>0 Wy formulas(42) and (46) can be replaced by integration with
o2 respect to the continuous variahle
1
B(q) 277Twn2 ~ﬁ e A(0)=1,
rodq Bk—f tanl’f’:vdv_lﬁ'21k2
[0x(i@n,%),A1(0]= f 5 €% (01(iwn,0),A1(0)). 0= |5 ke coshy 7| 2
_k2 1/2
As regards the correction to the asymptotic vali@ of X arctars | - kz}’
the phase)(x) of the Green’s function, it is equal to zero in 1+k

this approximation. In order to prove this, we introduce the . . . .
quantity o= y/— y<1, which, according t@14), satisfies the which leads to the following asymptotic value of the function

equation Z(T) for T—0:
8
Vip—kie=—Vx1, (43 Z(T)= Zf dk
r

whereyx ;= x(X) — x() is a correction tq19) localized near
the junction. Taking into account the boundary condition  T<A. (47)

mk? 2B2(k)
(1+ k2)9’4 1+k?B(k)

}%2.178,
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The theory discussed above describes the current—phase
dependence for a diffusive Josephson junction in the entire
temperature range<9T<T. except a narrow neighborhood
of T, in which A/T.~W, (while in a pure superconductor
A/T.~T), the magnitude of correction@5) and (1) be-
comes equal tdy(®), while the correction49) to A be-

- comes equal to its unperturbed value. This means that in the
definition of the parametew (5) near T, the coherence
length &,(T) describing the characteristic scale of spatial
1 1 . . variations of Green'’s function and density of states should be
0 02 04 0.6 08 1.0 replaced by the characteristic lengtfil') of variation of the
T/Te order parametefthealing length in the Ginzburg—Landau
theory, whose order of magnitude is the samégafar away
from T.. Taking into account the results of calculations of
j(®) for a pure superconductor in the vicinity at.,> we
can obtain the following interpolation estimate of the effec-
tive transmissivityW suitable for any temperatures and mean

In the vicinity of critical temperature<T), the quan-  free paths:

tity A(0)~7£(3)A%/47w>T? is small, and the main contribu-

- N W a0 N
¥

FIG. 5. The functiorZ(T) (46) defining the temperature dependence of the
ratio 8j(®)/1(A) (45).

tion to integral(46) comes .from the region of small wave W~T&(T) E+ i) (50)
vectorsk~A/T corresponding to damping of perturbations I &(0)
at large distances of the order 6(T)~(T,—T) % This As we approaclT;, the value ofW increases unlimit-
allows us to replace the functidd(k) by its valuemA/4T gy this is accompanied by a decrease in the phase jump for
for k=0: a given external current bounded by its critical value. Thus,
32JAA, 1 = B(0)dk in the 1D geometry for an in(_JIefiniter large n_ormal r_esis-
Z(T)= e ngo (2n+1)? fo A(0) +KZB(0) tance of the junction, there exists a narrow region Agan

which the phase difference of the order parameter at the
junction is small up to values of current of the order of the

A 1/2
' 0 e
) ~5.099, A<T. (48 bulk critical current.

2”(75(3)&
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The results of numerical calculations of th€T) depen-
dence in the entire temperature range D<T,. are pre-
sented in Fig. 5.

Similarly, by using(41) and (42) we can calculate the
asymptotic values of the correctidn (0) to the unperturbed
value of the order parameter at the junction:

*)E-mail: bezugly@ilt.kharkov.ua

Al(o) _ _nzq) _ YThe transverse size of the junction is assumed to be smaller than the
An - a(T)WO SI 7, «(0)=3.037, Josephson penetration depth, which ensures the uniform distribution of the

0 current over the cross section of the junction.

IThe only exception is the case of temperatures close to critical, when the
presence of the small parametefT, makes it possible to formulate the

a(T.)=5.782. (49)
The dependence of the order parame&éﬁ) on the effective computational algorithm of the solution of this probRfn.
3strictly speaking, in this relation contains the jump in the phase of Green’s

phase jump f':lt the JU_nCtlf)n &t=0 presented in Fig. 1 ShOWS. function instead of the jump in the order parameter phase, but these quan-
that the main contribution to the energy gap suppressiontities virtually coincide forT <1 (see Sec. %
comes from the depairing mechanism considered in Sec. 3The concept of adiabatic deformation of “energy levels” in the continuous

and the change in the order parameter is smaller thansPectrum of a superconducting diffusive system in the current-carrying
state and their classification on the basis of the continuous “quantum num-

e, (P). ber” & was introduced for the first time in Ref. 15 and systematically used
The structure and the phase and temperature depenm ref. 16.

dences of the correction to the Josephson curbtin a
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A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consists of
a mesoscopic two-dimensional normal rectangular layer which is attached on each side to

the bulk superconducting bankerminalg. A relation is obtained between the currents through

the different terminals, that is valid for arbitrary temperatures and junction sizes. The

nonlocal coupling of the supercurrents leads to a new effect, specific for the mesoscopic weak
link between two superconducting rings: an applied magnetic flux through one of the

rings produces a magnetic flux in the other ring even in the absence of an external flux through
the other one. The phase dependent distributions of the local density of Andreev states, of

the supercurrents and of the induced order parameter are obtained. The “interference pattern” for
the anomalous average inside the two-dimensional region can be regulated by the applied
magnetic fluxes or the transport currents. For some values of the phase differences between the
terminals, the current vortex state and the two-dimensional phase slip center appear.

© 1999 American Institute of Physids$S1063-777X99)00403-X]

1. INTRODUCTION phases of the order parameter(i=1,...4) in all the banks
The Josephson multiterminal junction presents a micro- wAS(T) 1 ]

structure in which the weak coupling takes place between li= 4eT, 1R, EJ: RR: sin(ei— ¢;). @

several massive superconducting bafttksminald.' 3 Com- = !

pared with the conventional(2-termina) Josephson The relation (1) was obtained in the frame of the

junctioné such systems have additional degrees of freedon@inzburg—Landau approach, which is valid for temperatures
and a corresponding set of the control parameters. As a rerclose to the critical temperatufie . As was pointed in Ref.
sult, for example, the current- or voltage-biased and the mags, the macroscopic interference effects due to coupling of
netic flux-driven regimes can be combined in one multiter-sypercurrents in different terminals are not restricted by the
minal junction. The specific multichannel interference effectsspecia| kind of the 4-terminal junctioffFig. 1. In fact, any
were studied theoretically and experimentally in the novelmesoscopic 4-terminal weak link will produce a coupling
superconducting device, a 4-terminal SQUID controlled bysimilar to the relation(1). In the present paper, the micro-
the transport current.” Recently another system based on ascopic theory of the mesoscopic ballistic 4-terminal junction
Josephson 4-terminal junction was studielt. consists of is developed. We consider a Josephson weak coupling
two superconducting rings, each interrupted by a Josephsafirough the two-dimensional normal layer which is con-
junction, which are at the same time weakly coupled withnected with four bulk superconducting terminals as is shown
each other. The macroscopic quantum states of such a cornr Fig. 1b. Such a S-2DEG-S structure was experimentally
posite system can be regulated by the difference of the magealized in Ref. 9 for the case of two terminals. It was shown
netic fluxes applied through the rings, in analogy with thein® that this new class of fully phase coherent Josephson
phase difference between two weakly coupled bulk superjunctions demonstrate the nonlocal phase dependence of me-
conductors. The nonlinear coupling via the Josephsososcopic supercurrents. We study the coherent current states
4-terminal leads to the cooperative behavior of the rings irin such a 4-terminal structure within the quasiclassical equa-
some region of the applied magnetic fluxes, which wagions for transport-like Green’s functions. The relation be-
called magnetic flux locking. tween the currents in the different terminals, that is valid for
The 4-terminal junction, which was studied in Refs. 5-8,arbitrary temperatures and junction sizes, is obtained. The
is a system of short microbridges going from a weak point tostructure of current carrying states inside the mesoscopic
massive superconducting banlgg. 18. The order param- 4-terminal junction is itself of interest. As is well known
eter(both its amplitude and phasm the common center is a (see, e.g., Ref. 20in ballistic Josephson junction with direct
function of the currents through all the microbridges. Theconductivity the supercurrent flows through the local An-
supercurrent flowing into theth bank is determined by the dreev levels. In the multiterminal case considered here, the

1063-777X/99/25(3)/7/$15.00 175 © 1999 American Institute of Physics



176 Low Temp. Phys. 25 (3), March 1999 M. Zareyan and A. N. Omelyanchuk

where
S . 9o fo
R Gw(VFir):<f+ _ )
s |20EG| s o
L is the matrix Green’s function, which depends on the
s Matsubara frequencw, the electron velocity on the Fermi

surfacevg and the coordinate;

0 A
FIG. 1. The superconducting 4-terminal Josephson junction. Four coupled A :( )
superconducting microbridges, going from a point to the massive supercon- A* 0

ducting bankgR; is the normal resistance of thth filament andt(T) is the i i i i .
coherence lengih(@). The mesoscopic 4-terminal Josephson junction. FouriS the superconducting pair potential. For the self-consistent

bulk superconductors are weakly coupled through a rectangular of twoeff-diagonal potentialA(r) and current densitj(r) we have

dimensional electron gaﬁDEG) (b) the expre58|0ns

spatial distribution of current density and of the order param- A(r):AZWTZ,O (fo), )
eter, and hence the phase-dependent Andreev levels, are de-

termined by the phase differences between all terminals. . = _

Thus, they can be regulated by the external control param- j(r= _47T'eN(O)TwZO (VeQo)- )

eters, i.e., the transport currents afud) the applied mag- ] ]

netic fluxes. In Section 2, we present the description of the ~1hey determine the induced order parameferA/A
system and formulate basic equations and boundary cond®d the D current density in the normal layeM(0)
tions. In Section 3 the current-phase relations analogous to ™27; (..) is the averaging over directions ob2vector
(1) are derived for the cases of smédls compared to the VF: A i the constant of electron-phonon coupling.
coherence lengjtand also arbitrary junction sizes. The spa-  Eduations(2) are supplemented by the values/dfand
tial distributions of the supercurrent density and of the in-Green’s functions in bulk banks far from ti&\interfaces

duced order parameter are studied in Section 4. A= Ag(7, coSg;— T, SiNeY),

~ (1)’7\'34‘ Ai .

. . . Gi:2—21/21 i=1,..4. 5)
The studied system consists of 4 bulk superconducting (0°+ A7)

bgnks yvhich are contacted with 4 s?des of rectangular two-  \va solve Eqgs(2) by integrating over the “transit” tra-

dimensional (D) normal layer having the length and o oo of the ballistic flight of electrons from one bank to

width W (see Figs. 1b and)2The_S|zesL andWare assumed  nntherd? These trajectoriefcharacteristics of the differen-

to be much Igrger than Fermi wavelen@tla.:h/pF. To __tial Egs.(2)] are straight lines along the direction of electron

study the stationary coherent current states in the 4'term'”"i‘)elocity (see Fig. 2 In the bulk superconducting banks the

ballistic junction we use the Eilenberger equations forOrder parameter can be taken as the constant &ugp to

2. MODEL AND BASIC EQUATIONS

&-integrated Green's functiotts the SNinterface. In contrast to the case dD2anks, these
d . . “rigid” conditions for A2 are valid for arbitrary sizes
Ve GHlo7s+A4,G]=0, (20 andW compared with the coherence leng¥r- v /A, and

not only forL, W>&,. At the same time, the Green’s func-
tion along the given transit trajectory varies in a distance of
Yy abouté, when approaching th8Ninterface.
Let us introduce the time of flight along the trajectory,
w/2 vedlor=d/dt, t;<t<ew, where t=t; corresponds to the
point onith SNtboundary and =« to the point inside théth
bank far from theSN-boundary. Then the general solution of

Egs. (2) inside theith bank satisfying the boundary condi-
\ tions (5) will be
X

O ~ 0T+ A;
8"~ Sij Gi(t)= 5 + C[Agh— (v 00y,
S e

) =
i 8° +i sign(ven)Q sing;) 7+ (w sing;

—W/2 —i sign(ven;)Q cose;) 7,]e 220, (6)

FIG. 2. Dashed line i$—] trajectory passing through the poipt All of Heren; is the outer normal to thith side of the rectangular

(20 A2 ;
this type trajectories are confined in the angle. L, Ware length and width boundary and=(w +Ao)_ . The arbitrary Con.Stantsi .
of the rectangular. must be found by matching of Green’s functions at in-
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In the limit L, W< ¢, the expression§l0) and(11) for

lution inside the normal layer along the trajectory which con-Green’s functions are simplified and we have
nects these poinisee Fig. 2 We consider here the simplest

case when only Andreev reflectiroccurs atSNinterface. «Q+(1/2)iAgsin(e;i)

- == , 12
In more realistic case, when usual reflectierg., due to the = w2+A§co§(cpji/2) (12
potential barrier or interface roughness are present, more
general matching conditions must be ugsede Ref. 13 f Ao dleit o2 (19

-7 0 cog ¢;i/2) +iw sin(¢;;/2)

3. CURRENT-PHASE RELATIONS We can obtain the retarded and advanced Green’s func-

Inside the normal layer=0), the Eilenberger equa- tions, GRA(¢), bAy analytical continuation of Matsubara’s
tions can be solved analytically. If we classify the electronicGreen’s functionG(w) [Egs.(9)—-(13)]. The poles of diago-
trajectories inside the normal layer according to the sides dtal component of the retarded Green’s functigi(e,p, V),

which they come in and go out, then the solution of E2).  determine the energies of local Andreev states in the system.
can be written as The local density of states in the normal layer is given by the

~ w Ao . .
Gi_j(t)=5 T3t ﬁ{cosmzw(t_ti)—l%]ﬁ

Q
—isinf2o(t—t) —ig 172} + A _{AoTs

—[wcosH2w(t—t;)—ie;)]+Q sinf 2w(t
—t)—igi T +i[Q cosH2w(t—t) —igi}]
+osinf 2w(t—t;) —ig;]72}, (7

whereéiﬂj(t) is the matrix Green'’s function along the tra-
jectory originating in theith side and extending to thgh
side (see Fig. 2 We denote this trajectory by—j. Match-
ing (7) with solution in the bankg6), the corresponding
A;_.j is obtained:

=17 w sinh wtj; +i¢;i/2) + Q cosiwtji +i¢;i/2)’

)
where tjj=t;—t; and ¢;;=¢;—¢;. From (7) and (8) we
have the expression for the matrix Green's function

G,(p,vg) as a function of the coordinatee> (2 is the
region of 2D rectangular weak linkand the direction of .
In fact, we can write

Go(p.Ve)=G;_j, for Vee 6;(p), C)

where we have introduced;(p) as the angle in which all
i— ] trajectories, passing through the pomtare confined
[see Fig. 2, Eq(Al) in AppendiX. The diagonal and off-

diagonal terms oéiﬁj(t) have the forms
w

gIHJ:Q +A0A

i~
o cosl{wtj; +i¢;i/2) + Q sinNwtji +i¢;/2)

_Q COSHth‘i +Icp]|/2)+w Sinl’(wtji +|QD]|/2) ’
(10

Ao

fiﬂ: O

_ AoeXF(a)tji‘f'i((,Di‘f'(Pj)/Z)
Q COSHwtji +|(P]|/2)+(1) Sink((x)tji +|(p]|/2)

X g 20t 11

formula

Me,p)=N(0)(Reg(w=—ig,p,Vg)). (14

Using the expression®) and (12) and the fact tha®;;(p)
= 0;i(p) in the case of a small junction, we obtain

Me.p.fei})=N(0) 2% (Reg(w=~iz.p.Ve)),,
:N(O); ij(p)Regi_j(w=—ie)
:N(O); 0ii(p)RE gi_j(w=—ig)

g i(w= —ig)]:onN(O)Z:j 0ij(p)

J

We can also use Eq&9) and(12) to obtain(vgg) at a point

of the ith side p;. Then, the resulting expression can be
replaced in Eq.4) to find the current density(p;). The
calculation of the current density at the arbitrary point of the
normal rectangular will come in the next section and the
Appendix. Here we calculate the total currénflowing into
theith bank.

Let us start with the case of a small junctidh, W
<&g). In order to findl;, we have to calculate the integral
Ii:f(si)j(pi)-ds, where the integral is taken over tlhth
side of rectangular.

After calculation ofj(p;) from (A3) and(A5) and taking
the integral oveds , we obtain

|

6(|s|—A0cosﬁ

X
2

(19

sinﬂ
2

4

2 ’yll Sin(
j=1

Aqcog (@i~ ¢;)/2]
2T

¢~ ¢
2

i

eprAod
"o

X tanr{

whered=/LZ+W? and Yii = Vi

(16)

1
:1_—; :1_—;
712 k2 1+k?
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Y12= Y14 V23T V34 2 \/m )
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4. SPATIAL DISTRIBUTION OF SUPERCURRENTS
AND INDUCED ORDER PARAMETER

In this section we will obtain the supercurrent density

are geometrical form factors that depend on the width-toang the induced order parameter at an arbitrary point of the
length ratiok=W/L. The positive sign of; corresponds 10 normal layer in the case of a small junction. At the given

the direction of the current from the normal layer to flie

bank. Note that

4
> 1,=0.
i=1

The formula(16) for current-phase relations generalizes
the expression(l) to the case of a small mesoscopic
4-terminal junction. It follows from(17) that the form factor
¥j cannot be factorized, i.e., presented in the fogm

=77;, in contrast to the case of relatidd), where y;;

=(1/R))(1/R;). This essential feature of the current-phase
relations reflects the nonlocal nature of the supercurrents i

the mesoscopic multi-terminal Josephson junction.

The current-phase relatior{d6) are valid for arbitrary
temperaturd. In the limiting cases o =0 and temperature

close toT,. the expressioril6) takes the forms

epsAyd 4 ©i— @i
li= ° > VijSin(—' J) for T=0, (18
2 = 2
4
eprASd _
=T, & Yisiei—e) for T=Te. (19

In the case of arbitrary lengtis W, we restrict the consid-
eration for the temperature closeTg. In this case current-
phase relations similar to the expressi@®) can be ob-
tained. The difference is in geometrical form factors. In fact

we have the result

epeAZd & .
=g le ¥ij (KL, W)sin(¢; — ¢)), (20

where the generalized form factors are given by

4
Y41= Y21~ Y23= 743—m

ki2 w2
X dy f décosé
—ki2 —arctari(k/2) +y)

“ exd —L(k/2+y)(2n+1)/(£ycosh)]
X2, (2n+1)2 ’
(21

décoso

4 Jk/Z arctari(k/2)—y)
== d
Yazm v w21+ k2 J -k Y| arctari(k/2) +y)

x 2
n=0

exg —L(2n+1)/(£&ycosh)]
(2n+1)? ’

Y12= V14= V32~ Y34= Yar(L—= W, W—L k—1/k),
Y13=Y31= Yad L= W,W—L k—1/K).
Hereéy=ve/27T. In the limitL, W<&;, ;; reduce toy;; .

point of the normal layep=xi+yj

(Veg)= 2 ((VF9>0”- + <VF9>0H)

. AcZ)Siiji
- .2>J (Vedo, 73 Az co(¢;i/2)’

(22)

where we have used(v,:g)gij =<VF>0ingj , <VF>0“:
_<VF>(9” andngFQi’;j-
The current density is obtained by replacit&®) in the

rI%q. (4):

i(p)= 27reN(0)AoiE>j <VF>9ij sin%

(23

AO COiqui/Z)
Xtanl‘(T .

The expressioli23) describes the spatial distribution of
the current density inside the normal layer. In order to find
the explicit expression for the coefﬁcier{lszs’,:}aij in Eq. (23,
we have to consider four different regions in the normal rect-
angular and obtaij(p) in each region separate{gee Appen-
dix). This calculation has been done in the Appendix and the
result forj(p) is given by(A3) and(A5). Here we write Eq.

(23) in the more transparent form. Let us introdLﬁ;F(p) as

'the unit vector in the direction of thie— | trajectory passing

through the bisector of;;(p); then(v,:)gij can be written as

b, - (24)

(v,;)Hij:fo 5 VE="—sin -

Combining Egs(23) and(24), we obtain
. eprly .
i(p) =~ 2 sin

(Pj_‘Pi)t Ao sin(¢;— ¢i)/2]
5 an .

eijda (= (9”

0” ~
> 0ij(p)

X sin| (25

2T

The distribution of the induced order parameter can be ob-
tained in a way similar to what we have done f@s). In this
case we need to calculate the average of off-diagonal ele-
ment of the matrix Green’s functiof,,(vg ,p), in the direc-

tion of vg:

(=2 (fg, =2 8i(p)fi;. (26)

1#] 1#]

Replacing(26) in (3) and after the calculation, we obtain for
P(X,y)=A(XYy)/\:

A 4
xy) =2 bxy)en 27
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FIG. 3. The angleg;; for a point in the region Il. We have just showis,
0,3, 0,4= 0, and also the angle.

Here 6,(x,y) is the angle by whiclith side is seen from the
point p=(x,y). The angles;(x,y)’s are given by the rela-
tions

91:77_51’()(')/)_01(_)(,)/),
O,=a(—X,—y)+a(—X,)y),

28
03= 7 a(x,~y)—al~%,~Y), @8
94=a(X7Y)+01(Xa_Y)7
where the angle
_ ki2+y 29
a(x,y)=arctan 75— (29

is a function of the coordinaténormalized byL) and is

M. Zareyan and A. N. Omelyanchuk 179

o 12)/2

L - — S (e-2V2 B G2 372 —— -l

(-0+1y2

FIG. 4. A configuration of the mesoscopic 4-terminal Josephson junction.
The terminalsl with 2 and3 with 4 are short-circuited by the superconduct-
ing rings (dashed lines The phase differences a®=¢,—¢1, ¢=¢3

— @1, X=(@1+ @) 12— (@31 ¢4)/2.

specific for the mesoscopic 4-terminal junction, which fol-
lows from such nonlocal coupling of the currents. Let us
consider the configuration shown in Fig. 4. By using the
CPR (19) with v;; given by (17), it can be shown that an
applied magnetic flux through one of the rings produces
magnetic flux in the other ring even in the absence of an
external flux through the other one. The detailed theory of
this effect will be reported in a separate publication.

The physical properties of the interior of the mesoscopic
4-terminal junction are of interest by themselves. The above
calculated local density of Andreev states, the current density
and the order parameter distributions depend on the phase
differences between the four terminals and can be regulated
by the applied magnetic fluxes. In particular, for some values
of the phasesp, # and y (see Fig. 4 the “vortex state”
inside the mesoscopic® weak link exists. Figures 5 and 6

shown in Fig. 3. Equatiof27) expresses the fact that, inside Present the plots for distributions of the absolute value of the
the ballistic normal layer region, the linear superposition ofinduced order parameter and the supercurrent density in the

four macroscopic wave function§air potentialy of the
banks occurs, where the weight of wave function of ittihe
bank is determined by the geometrical factofx,y).

5. CONCLUSIONS

casef=ml2, =32, x=0. The studying of the structure

of induced order parameter and local density of states, as
well as the dynamical behavior of the system will be the
object of further investigation.

The present study considers a 4-terminal microstructure

based on a new class of mesoscopic Josephson jurittions
which are fully phase coherent and have comparable width
and length. The microscopic theory of the stationary coher-
ent current states in ballistic multiterminals is developed.
We have calculated the current-phase relatit®BR),
i.e., the total currents in each terminal as functions of the
phases of the superconducting order parameter in all the
banks. These relations describe the behavior of the system
influenced by the external transport currents or the applied
magnetic fluxes. The essential difference between the CPR
for mesoscopig¢expression19)] and conventionalrelation
(1)) 4-terminals consists in the structure of the coefficients of
coupling y;; . In the mesoscopic case considered here these
coefficients cannot be factorizégresented in the formy;;

FIG. 5. Absolute value of the induced order paraméigix,y)| is plotted
vertically for the values of phase differencés= ¢,— ¢1=7/2, ¢=¢;

=7;v; for all indexesi, j and arbitrary value of the width-  _, —372 \=(¢,+ )2~ (¢s+¢4)/2=0. The lines of |¢(x,y)|
to-length ratiok=W/L. Here we only outline the new effect, =const are shown.
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y VP as —— N\ O25=3(— 01+ 02+ 03— 64),  024= 0.
04r/ /=N Also we can use the relatiofvg), = [(d#/2m)ve(i cosd
ij
[ / 7/ - — — ~ N A\ \ +j sin 6) to obtain
0.2*—[///»\\'\ ve
S N S T (Ve) o, (xy) =5 {sima(—x,—y)]=siMa(xy)]i
0..
by o ro +[cog a(x,y)]~cog a(—x,~y)1lj},
-02L \ NN~ s / o
\, NN~~~/ 7 (VE) o (xy)= 5 _{sia(=xy)]=sifa(=x,—y)]li
-0.4_\\\\“*—-"/// _ . .
\.\‘\, S +[cod a(—x,y)]+cog a(—X, y)]gaj\}é,)

04 -02 0 02 04 x

FIG. 6. Vector field plot of the supercurrent densiiyx,y), inside the
normal layer. The values of phase differences are the same as in Fig. 5.

(Ve) 0, (%Y) = 5 (s a(x, ~ y)] = sin{a( ~x,y)]]

+[cod a(x,~y)]-coga(=x.y)]li},
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Ouboter and I. O. Kulik for usefull discussions. wherea(x,y) is given by Eq.(29). The corresponding rela-
tions, valid for other regions, can be obtained frohi) and

APPENDIX (A2), using the appropriate rules of index and coordinate

In this Appendix we present expressions for the angle§Xchangésee below Replacing EqsiAl) and(A2) in (23),
6ij and the vectorgve),, . Using the expressions given here, "' obtain for current density in a point of region Il

one can calculate the density of stat®sand the current L) =T — KXV) + 1OV TP At [ — K(— X —
densityj [see Eqs(15) and (23)]. JnGY)=[=k(X,y) +1(x,y) P13+ [—k(=Xx,~Y)

According to the classification of the trajectories in term —K(X,Y) IP1o— [K(X,y) +1(—=X,—Y) P24
of origin and destination sides, there are 12 different types of VN
trajectories which are 42, 1-3, 1-4, 23, 2—4, 3 X =) =106y Pas, (A3)

—4 and the corresponding reverse of these trajectories. Fordhere

given point, depending on the position, some of these trajec-

tories do not take place. In this respect we can consider four  k(x,y)=sina(x,y)i—cosa(x,y)j,
different regions in the normal rectangular:

|, wherey<O0,|y|>k|x|, (2—3, 3—4 and their reversed are I(x,y)=sina(—=X,y)i+cosa(—=X,y)j, (A4)
abseny; )
II, wherex=0, |y|<kx (1—4, 3—4 and their reversed are 2N Pij=(€peAo/2m)sin(g;/2)tantiA, cosk;/2)/2T]. The
absen, current density in other regions is obtained frgm by ap-
I, wherey=0, y>k|x| (1—2, 1—4 and their reversed are plying the following rules of phase and coordinate exchange:
Zgzen)t =i (o —ylky—xik k=LK, =, j——i;
IV, wherex<0, |y|<kx (1—2, 2—3 and their reversed are
absenk P17 P4, P2 Q1,93 P2, P4 ¢3),

At the given pointp, for the absent trajectories we have im=in(x=ylky——xik,k—1k; i—jj——i
0;;=0, and consequently the corresponding term in the ex-
pressions ofA/ andj [Egs. (15) and (23)] will vanish. We ©1— P2, 02— P3, 03— Pu, Pa— C1),

shall calculatg at the given point of the region Il and then

introduce the exchange rules of arguments to obtain it in  j,=j,(x——X,y——-y,k=k; (i—=—ij——j);
other regions. Consider a point in region II; the possible

(non-vanishing ¢;; are drawn in Fig. 6 and can be expressed  ¢;— @3, 92— ¢4, 03— @1,04— ¢2). (A5)
in terms6;’s (given by (28) and(29)) as

The same relations g#\5) can be used fo;; and(Vvg),
01,=73(01+ 6,— 63— 6,), J < F>0"

(the phase exchanges have to be replaced by corresponding
015=3(0,— 0,+ O3+ 6,), (A1)  index exchanges
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LOW-TEMPERATURE MAGNETISM

Resonant magnetic properties of gadolinium—gallium garnet single crystals
A. R. Bedyukh, V. V. Danilov, A. Yu. Nechiporuk, and V. F. Romanyuk

Taras Shevchenko University, 252022 Kiev, Ukraine
(Submitted April 28, 1998; revised October 12, 1998
Fiz. Nizk. Temp.25, 249-251(March 1999

The results of experimental investigations of resonant magnetic properties of gadolinium—gallium
garnet(GGGQ) single crystals at temperatures 4.2—-300 K in the frequency range 1.6—9.3

GHz are considered. It is found that magnetic losses in GGG are determined by the initial splitting
of energy levels for gadolinium ions in the garnet crystal lattice and by the dipole broadening.

The width and shape of the electron paramagnetic reson&®R® line in the GGG

crystal, whose asymmetry is manifested most strongly at low frequencies, can be explained by
the influence of these factors. Magnetic losses in GGG increase with frequency and upon
cooling. It is found that the EPR linewidth increases considerably with decreasing temperature
due to the presence of rapidly relaxing impurities. 1®99 American Institute of Physics.
[S1063-777X99)00503-4

Single crystals of GGG G#a,0,, are widely used as the GGG single crystal were determined at room temperature
substrates for growing epitaxial films of magnetic garnets ofand liquid nitrogen temperature, while the EPR linewidth
various compositions. For instance, epitaxial films of AH was measured in the temperature range 4.2—-300 K. The
yttrium—iron garnetYIG) Y 3Fe;0,, and gallium-substituted field dependences @f” in this frequency range are shown in
YIG form the material basis of instruments used in spin-Fig. 2. Figures 1 and 2 also show tp&(H,) dependences
wave electronics in the microwave range. from Ref. 5(curves5 and 3 respectively. First of all, we

In spite of the fact that the influence of magnetic prop-note the presence of absorption in zero external magnetic
erties of a GGG substrate on damping and dispersion dield and clearly manifested asymmetry of absorption curves,
magnetostatic spin wavedSW) in a wide temperature which is observed up to frequencies of the order of 10 GHz.
range was considered by us earfiet,a detailed complex On the other hand, the magnetic losses at liquid nitrogen
investigation of GGG magnetic losses and their origin hagemperature are approximately four times larger than the
not been carried out so far. In this communication, a refinedosses at room temperatugeurve 2 in Fig. 1).
information on magnetic resonant properties of indigenous
GGG crystals grown by the Czochralski technique.

The permittivity and permeability of monocrystalline
GGG samples were studied on the basis of the standard reso- In order to clarify the origin of magnetic losses in GGG,
nator technique. The sensitivity of the method was improvedve must take into account, first, the structure of energy lev-
due to original instruments recording the variation of resonaels of G#* ions in the garnet crystal lattice, and second,
tor parameters and allowing us to detect spontaneous varigeir dipole—dipole interaction.
tion of frequency to within 50 kHz and of th@-factor to In spite of the fact that a free &8 ion has zero orbital
within 2%.* The permittivity measurements were made at aangular momentum in the ground state, the initial magnetic
frequency of 9.3 GHz in a resonator wilhyy, type oscilla-  (Hy=0) splitting up to 8.5 GHz takes place in the crystal
tions, while the permeability was measured in a resonatokattice of garnets due to partial mixing with other states.
with Hgq; type oscillations for samples of size X2 Naturally, the strong dipole—dipole interaction of Gdons
X75mm and X 1X75mm. in a GGa0,, crystal transforms this system of energy lev-

The real componeni’ of permeability of the GGG els into a continuous band which is responsible for initial
single crystal was 1.0750.001 in zero external magnetic losses and asymmetry of the EPR line at low frequencies and
field and 1.07%0.001 for Hy=5 kOe; the permittivity small values of the applied magnetic field. Thus, dipole
of the GGG in the frequency range under investigation wadbroadening amounting te-3 GHz makes a significant con-
e=13.1+0.1. tribution to the EPR linewidth along with the initial splitting.

The field dependences of magnetic losgésin the fre-  With increasing frequencyand hence the applied magnetic
guency rangd =1.62—2.90 GHZsee Fig. 1 were studied at field), both these factors gradually generate a broad EPR line
room temperature on a radiospectrometer RE1301 modifiedhich is indeed observed in experiments.
for the operation in the required frequency range. The temperature dependence of the normalized EPR

At a frequency of 9.3 GHz, the magnetic losges of  linewidth of a GGG plate having a size X5 mm and a

DISCUSSION OF RESULTS

1063-777X/99/25(3)/2/$15.00 182 © 1999 American Institute of Physics
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FIG. 1. Magnetic losses in GGG single crystals at room temperature at 0 100 T K 200
frequencies 1.6Zcurve 1), 1.89 (curve 2), 2.25 (curve 3), and 2.90 GHz '
(curve 4); curve 5 corresponds to the results obtained in Refaba fre- 5 3 Temperature dependence of normalized EPR linewidth of a GGG
quency of 2.1 GHg

monocrystalline plate at a frequency of 9.3 GHz.

thickness of 40@”“. is shown in F|g. S(the I|r!eW|dth al 9959 to synthesize the GGG single crystal for our experi-
room temperature iIdAH=3 kOe). It is interesting to note

. . ) ) ments. The presence of accompanying impurities of rare-

that the resonant EPR field did not change in the entl're tMs4rth ions creates a spin-lattice relaxation channel fo¥"Gd

perature range aqd amounted to 3'1_,3'2 kOe. A consMerab%nS, whose efficiency increases upon coofifithe presence

increase in the _Imgmdth upon coolm@approxmately 0 o impurities is apparently also responsible for slightly

AH=6.7kOe atliquid helium te_m_peratl)r_ean b_e explamed higher values ofu” for the samples under investigation as

by the fact that we used gadolinium oxide with a purity of compared with the data obtained by Adam ef at room
temperatures.

30 In conclusion, the authors are pleased to thank S. M.
Ryabchenko, Corresponding Member of the National Acad-
1 emy of Sciences of the Ukraine, for his help in carrying out
this research and for fruitful discussions of the results.

20

*E-mail: chipa@boy.rpd.univ.kiev.ua

ur 1073

1v. V. Danilov, D. L. Lyfar’, Yu. V. Lyubon’ko, et al., Izv. Vuzov, Fizika
10 32, 48(1989.

2 Y 2M. G. Balinski, V. V. Danilov, and A. Yu. Nechiporuk, Radiotekh. Ele-
>r—o—& -\ ktron. 38, 1319(1993.
p 3V. V. Danilov, A. Yu. Nechiporuk, and L. V. Chevnyuk, Fiz. Nizk. Temp.

22, 1052(1996 [Low Temp. Phys22, 802(1996)]. i
4D. D. Pilipko, V. F. Romanyuk, and E. N. Smirnov, Pribory i Teklksh.
0 1 H. KO 4 5 No. 5, 150(1983.
o' ¢ 5J. D. Adam, J. H. Collins, and D. I. Cruikshank,Rmoceedings 21 Annual

) ) ) Conf. Magn. and Magn. MatePhiladelphia(1976p. 643.
FIG. 2. Magnetic losses in GGG single crystals at a frequency of 9.3 GHz atSA. G. Gurevich,Magnetic Resonance in Ferrites and Ferromagriéts

liquid nitrogen temperaturécurve 1) and at room temperatur@urve 2) Russian, Nauka, Moscow(1973.
in comparison with the results obtained in Ref. 5 at room temperature

(curve3). Translated by R. S. Wadhwa




LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 3 MARCH 1999

Exotic solitons in magnets with strongly anisotropic exchange interaction
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Exotic magnetic solitongcompactons and peakgna magnets with extremely anisotropic
exchange interaction are investigated on the basis of the classical IsingYantbdels. ©1999
American Institute of Physic§S1063-777X99)00603-9

INTRODUCTION and their description on the basis of differential equations,
i.e., systems with distributed parameters, is unjustified. The

Intense studies of nonlinear dynamic physical systemsgliscreetness of a magnetic subsystem is determined by the
during the last 40 years have resulted in the formation of aelation between the exchange interaction enef§y,
new trend in theoretical and mathematical physics, viz., the-JS%/a?, whereJ is the exchange interaction constast,
theory of solitons-? As applied to the solid state physics, the the unit cell spin, anc the atomic spacingand the one-ion
investigation of soliton dynamics in magnetically orderedanisotropy energyE,~ 8S?, whereg is the one-ion anisot-
media is of special interedf: Owing to a variety of struc- ropy constant This relation involves the so-called “mag-
tural and physical properties, magnets can exhibit nonlineafietic length”l,= 3/ 8 determining the characteristic size of
localized excitations of various types, such as magnetic solithe region of nonuniform distribution of magnetization. In
tons and vortices, domain walls, and magnetization rotatiofhe case of a weak exchange interactionlarge anisotropy
waves> These systems are also interesting due to the faghe value ofl, becomes of the order of atomic spaciag
that some models in the theory of magnetism are completely,~a(J~ Ba), and the system becomes essentially discrete
integrable, and the results of classical analysis permit a conin magnetic respect. The ratid/ Ba for the above com-
parison with the results of investigations of some one-pounds can attain values of the order of or much smaller than
dimensional quantum-mechanical models. unity (e.g.,J/Ba~1 for HTSC compounds, wher& is the

At the same time, the objects of investigation wereinterlayer exchangé), while this ratio for compounds inves-
mainly simple D models in the long-wave limiton the tigated in Refs. 7-11 attains the value of £Ofor large
basis of differential equatiopsThis made it possible to con- numbersn. It was proved in Refs. 13—15 that the structure
struct explicitly the solution for various types of magnetic and dynamics of nonlinear localized excitatidaslitons and
solitons in ferro- and antiferromagnets, ferrites, and spirdomain wall in such discrete systems changes significantly:
glasses, and to carry out their classification. However, théhey become compact and assume a collinear form.
theoretical results obtained for one-dimensional models per- On the other hand, low-dimensional magnets in some
mit a comparison with experimental results only in the caseases exhibit a considerable anisotropy of exchange interac-
of quasi-one-dimensional magnetic systems. A large numbefon (g-factor anisotropy, while most theoreticalclassical
of such compounds have been synthesized recentlynodels take into account, as a rule, only one-ion or weak
among which the traditional quasi-one-dimensional ferro-exchange anisotropy. The actual anisotropy of exchange can
magnet CsNiGl,> new one-dimensional ferromagnets be of the order of the exchange interaction itself. For ex-
[(CH3)sNHINICI3-2H,0, (CgH;NH)NICl3-1.5H,0,° layered ample, the g-factor anisotropy in the compounds
antiferromagnets (CPIL(NH3),MnCl,, (CiHzni1)  KDy(MoO,), and KEKM0O,), is of the order of 18.2617|n
X (NH3),MnCl,, "' and most of HTSC compounds in the this case, we can introduce several magnetic lengths
stoichiometric phase and their isostructural analogs are worth= \/J;/ 8 associated with intensities of exchange interaction
mentioning. In view of an anomalously weak interaction be-for different spin components. In extremely anisotropic
tween layers, every magnetically ordered plane in the lattetases, when some components of this interaction vanish, we
case of layered compounds can be regarded as an effectiggrive at the classical Ising model or th&¥ model. It was
spin and the array of layers as a mod&l $pin system with  proved by us earlié®*°that the structure of magnetic soli-
a weak exchange interaction. tons and domain walls in this limit also changes consider-

However, actual low-dimensional magnets possess, asably. Among other things, their “compactization” and the
rule, peculiar physical properties differing from the magneticformation of exotic nonlinear local excitatiofsompactons
properties of ® compounds. Above all, a large humber of and peakonsalso become possible.
such magnets are essentially discrete in a magnetic respect, In spite of the apparent difference between the above

1063-777X/99/25(3)/8/$15.00 184 © 1999 American Institute of Physics
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two circumstances, they possess the following property in 96 2uo OE . de  2ug SE

common: the dispersion of elementary excnatlo(rwm SIHGE— - AV smeﬁ— Mg 58" ()
waves may become anomalously small in systems with ex-

change interaction comparable with one-ion anisotropy awhereM is the nominal magnetization and, Bohr's mag-
well as in systems with an anisotropy of exchange interactiometon. In fact, Eqs(2) are Hamilton equations for canoni-
comparable with the exchange itself. In a narrow sense of theally conjugate quantitiegp andM,.

word, dispersion is defined aB=d%w(k)/dk? where For the special case of uniaxial ferromagnet with the
w=w(k) is the energy-momentum relation for elementaryenergy density1), Egs.(2) assume the form

excitation. It was found thaD ~J for systems with an iso- 720
tropic exchange interactionD ~J,=J,<J, for an Ising [124+(L2=1?)sir? 0] — —
magnet with the preferred-axis, while D~J,J,k (J, X
<Jy,Jy) in the XY model with the same symmetry. Thus,

the dispersion of linear waves becomes weakJfod; < 8. X

It is well known that the reason behind the existence of
nonlinear localized excitations is the competition of the sys- d
tem nonlinearity and its spatial dispersidfor this reason, '2&
the form of the energy-momentum relatiar w(Kk) for lin-
ear waves affects significantly the properties of soliton stategvhere we have introduced the notation for the homogeneous
Rosenaf??! was the first to pay attention to the relation ferromagnetic resonance frequencyo=2uoMo|B|/%;
between the existence of compact solitons and the absence!§=J/8; L?=(3+J;)/8 and the sign coefficient equal to
dispersion of linear waves. He proposed a new version of thé1 or —1 for the easy-axis and easy-plane cases, respec-
Korteweg—de VriegsKdV) equation with a nonlinear disper- tively.
sion term and obtained compact soliton solutions with a sta-  The system of equatior8) and(4) can be written in the
tionary profile. At the same time, Kosevi@tSalso consid-  form of a single equation in the complex quantity= (M,
ered compact envelope solitons in nondispersve mediat iMy)/Mo:

Later, Holm and Kamassd 994 proposed their own modi- P P2 ?m

fication of the KdV equations permitting for a certain value i — —17m—5 +L%¥ —5 + om¥ =0, (5)

of velocity (corresponding to the vanishing of dispergien at X X

soliton solution with a peculiar exotic profile, which was where m:\/]_——|\lf|2 is the dimensionlesg-component of
called a peakon. A semiclassical interpretation of exotic solimagnetization, and time is measured in the units afy1/

tons (compactons and peakgnsvas proposed by us It should be noted that we have used the phenomenologi-
recem'y-lg'lg cal expression for energgl), which implies that the long-

In this paper, we consider a uniaxial ferromagnet withwave approximationd/ 9x<1/a) is valid for static solutions
one-ion and exchange anisotropies in the limit of strong exif the inequalities), ,J,> Ba? (I,L>a) are satisfied. If how-
change anisotropylsing andXY magnetg and of one-ion  ever, we proceed from the discrete Hamiltonian with the ex-
anisotropy of the easy-axis and easy-plane type on the basipange interactio&,= —3; ,J;MM"* /a2, wheren is the
of the classical one-dimensional Heisenberg model. All posnumber of the lattice site spin, we must substitgte (J,
sible types of solutions for compactons and peakons are ob-J.)/a? for B in Eq. (1) in the long-wave limit. In this case,
tained for domain walls, dynamic magnetic solitons, andthe long-wave approximation is valid when the inequalities
magnetization rotation waves. J,,J,> Ba’—(J,—J,) are satisfied. In other words, in ex-

tremely anisotropic cases with=J,=0 (Ising’s limit) and
1. FORMULATION OF THE MODEL AND EQUATIONS OF J,=0 (theXY Iimit.), this approximation holds for clqse val-'
MAGNETIZATION DYNAMICS ues of one-ion anisotropy and nonzero exchange interaction
component.(Conversely, in the case of an isotropic ex-

Let us consider a uniaxial ferromagnet with exchangechange interaction the system becomes essentially discrete

and one-ion anisotropies of the same symmetry, whose efisee abovg and the long-wave approach is inapplicable.

o+12

Zah 2_ 12
5) —(L“=19)

X

50)2

. 1 de
sin@ cosf+ —sinf—=0, 3
(O] at

) do 1 06
sir? 0&)_60_03”105_0’ (4)

ergy density in the D case has the forin Equations(3)—(5) and their soliton solutions were ana-
J(oM\2 3 (oM,\2 B lyzed completely only for a ferromagnet with an isotropic
=5 a_x) ?( axz -5 Mi, (1) exchange interaction for whidh=1. In this case, the system

becomes completely integrabfeboth in the easy-axis and
where M is the magnetization vector],=J,=J, J,=J the easy-plane cases, and all soliton solutions ofBchave
+J; are the exchange interaction constants along the corren explicitly analytic form: domain walls and dynamic mag-
sponding axes, ang@ is the constant of one-ion anisotropy netic solitons can exist in an easy-axis ferromagnet, while
associated with the-axis (8>0 for an easy-axis ferromag- dynamic solitons and magnetization rotation waves can be
net andB<0 for an easy-plane ferromaghet observed in an easy-plane ferromaghtin the general case
The equations of magnetization dynami@lsandau— for L #1, soliton solutions for an easy-axis ferromagnet can
Lifshitz equation in the angular variableg and ¢ specifying  be presented implicitly in terms of elliptic integrélsr ana-
the orientation for the vectdvl = M (sin §cose, sinfdsine, lyzed numerically’* To our knowledge, soliton states with
cos#) have the form L#I in the easy-plane case have not been investigated.



186 Low Temp. Phys. 25 (3), March 1999 A. S. Kovalev and M. V. Gvozdikova

2. MAIN TYPES OF SOLITON EXCITATIONS IN A D=L2k(3+2L2Kk?)(1+L2k?)"372
FERROMAGNET . _ _ .
It can be seen that the dispersion vanishes in the Ising (

The classification of soliton excitations of a uniaxial fer- =0) andXY (L=0) limits. Besides, the group velocity also
romagnet is determined essentially by the type of one-iowvanishes in the Ising limit. In a reference frame moving with
anisotropy since the nature of the ground state of the systetthe group velocity, the dispersion relatic@as= @(V) for lin-
changes with its sign. The ground state of an easy-axis ferear waves can be written implicitly in the form
romagnet is doubly degenerate and corresponds to a configu- s o o
ration withm=+ 1, while the ground state in an easy-plane  _ _ _ > K Vel 1+2L°k 11)
ferromagnet, which correspondsno=0, is degenerate con- J1+L%? J1+L%K2
tinuously in the phase of the complex functigh As a re-
sult, the spectra of spin waves in these two cases differ sig- 1€ parabolas

nificantly. - - = — (2/3) 3/2(V_ I )3/2/L \/|—
In an easy-axis magnetr& 1), the spectrum of nonlin- _
ear spin waves with? = exdi(wt—kx)] has the form corresponding t¢11) and the segmerii»=0, |V|<I) bound

22 the region of existence of dynamic magnetic solitons on the
w=m(1+k%). ®) (®,V) plane. It follows from(11) that in the Ising limit this
The dispersion of these wavesls=2mI2. We see that region “collapses” into a lingV=0, »<0), and hence only

the dispersion of spin waves in the Ising lintlt,=J,=0, stationary solitons exist. The range of dynamic solitons in

|=0) vanishes. On the other hand, in the limit of ti&¢  the XY model is bounded by the straight lind&=0,
model (J,=0) the dispersion vanishe$ogether with fre- |V|<I) and(V=*I, ©<0).

guency at a definite amplitude of the spin wadg,=1 (m In the case of an isotropic exchange interactibr=(),

=0). In a reference frame moving with the group velocity the segmentm =0, |V|<I) corresponds to magnetization ro-

V=2mkl, the energy-momentum relation for linear wavestation waves for which the solution has the fdrh

(with m=1), i.e., . 1 V1-V2/I2
V2 W =tanh&+i(V/l) coshe’ ™= " coshe (12
b=1-7m ()
where&=\1-VZ/1%(x—V1i)/l.
defines the range of soliton solutions on tl&, V) plane: Solutions for dynamic solitons exist in the entire range

o<w(V). In the Ising limit (=0), this region collapses of parameters under paraboldg) and the line of magneti-

into a line w<1V=0, and hence only stationary domain zation rotation waves, and are cumbersome even in the case
walls (as in the case of an isotropic exchange interag@ml  of a stationary center of mass of such a wive

stationary magnetic solitons exist. On the other hand, the

. . 2_
region of existence of solitons in theY model (L=0) is the 2 sinf(xx/l)sinwt(«"—1)

m= - . ,

same as for an isotropic exchange, but the Ene0 V=0 (k= 1)sint?(kx/1)+ k*~sir? wt

becomes §mgu|a(rthe dlspgrsmn van!shes on.it (12— 1)sinF(kx/1) — K2+ Sir? oot
In the isotropic casel(=1), domain walls correspond to V=-— : s

the point w=0,V=0, and the relevant solution is well (k%= 1)sink(kx/l) + k= sir? wt

known:  2Kk\JKZ—1 sinh( kx/l)coswt

+1 - - , 13
(k?—1)sintf(kx/l)+ k?—sir? wt (13

where|o|=rkk?—1.

while the simplest solution for a stationary magnetic soliton  Let us consider the transformation of magnetic solitons,

(V=0) has the form* domain walls, and magnetization rotation waves in ferro-

magnets with extremely anisotropic exchange interaction.

X
m= tanhl—, (8)

m=1— 2(1~w) >0
o sinfB(x/11-w)+1’ '
2(1_ w) 3. EXOTIC SOLITONS IN AN EASY-PLANE FERROMAGNET
m=1+ w<0. )

Rx/11I—w)—1" 3.1. Compactization of localized excitations in an easy-
@ costr(x/ 2 axis Ising magnet
In the case of an easy-plane one-ion anisotreEpy —1), o L .
. . y-p . '( ) The magnetization dynamics in an easy-axis ferromagnet
linear spin waves have the following energy-momentum re- . : : : R .
with anisotropic exchange interaction is described by the

lation: system of equation$3) and (4) with o=+ 1. For soliton
w=1k\1+L%> (10)  solutions of the general form
With such a dispersion relation, the group velocity and 0=0(x—V1t), =¥ (x—Vi)+ ot (19

dispersion have the form Eq. (4) is integrable. Using the relation betwe#hand # and

V=1(1+2L%k?)(1+L%k?) 2, integrating Eq(3) we obtairt
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£¢|2+(L2—|2)sin2.9

=2 tang Jeog(60/2)— (VI21)?>— D cog(0/2). (15

This first-order equation permitting the integration in quadra-
tures and analysis on the phase plane can be conveniently

written in terms of the variablen:
dm (1+m)(1—2@+m)—(V/I)?
dx (L2=1%)(1-m?)+1?

In the case of an isotropic exchange interactibrs=(L), Eq.
(16) can be reduced to

2

)2

=(1-

|2

2
(1+m)2=2m(1+ m)—(lx) }
17

dm)z_ )
rr

The phase profile of this equation is shown in Fig. 1a. The

standard separatrix loop here corresponds to a solution of
the general formiin particular, solution(9) for @w>0), sepa-
trices2 and2’ correspond to solutiofB) for a domain wall
with «=0,V=0, while separatrix loop 3 corresponds to so-
lution (9) for a magnetic soliton with negative frequency.

In the limit of Ising ferromagnet for which— 0 (it was
proved above that —0 andV/I—0 in this casg Eq.(16) is
transformed as follows:

dm)?

(1-m?) L2<a) +(M—w)?—(1-w)?|= (18

Its phase profile differs significantly from the same for Eq.
(17) and is presented in Fig. 1b. It consists of elligséor
positive-frequency solitons, half an ellip@or 2’ for do-
main walls of different signs withw=0, and a part of an
ellipse and a segment of the straight lime= — 1 (loop 3) for
negative-frequency solitonét should be noted that the am-
plitudes of a stationary soliton in a ferromagnet with an iso-
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FIG. 1. Phase profiles of dynamic solitons and domain walls in the case of
an easy-axis magnet with an isotropic exchange intera¢tioand an easy-

tropic exchange interaction and in an Ising magnet coinCideayis magnet with Ising exchange interactitm. Curvesl, 2 and 3 corre-

M(x=0)=—1+2w. It follows from (15) that in the general
case this quantity is independent of the parametemd |
also forvV=0.)

The solution of Eq(18) for positive-frequency solitons
(w>0) has the simple forfn

m=w—(1l—w)cogx/L), [x|<mL,

m=1, |x|>L, (19

and its profile is shown in Fig. 2a.

Comparing this soliton solution with solutidf), we see
that the amplitude is proportional to the quantity«{&) as
before, which is typical of dynamic solitons, but the local-
ization region is now independent of frequency and fixed
A=27L.

spond to positive-frequency solitons, domain walls, and negative-frequency
solitons respectively.

equal to zero in the limiting case under investigation, the
asymptotes of a localized solution with— 0 at infinity (for
|x|—) can only be identically equal to zero. However, at
the center of a localized excitation, where the amplitude dif-
fers from zero, nonlinear dispersion terms in the equation are
responsible for the dispersion of a nonlinear wave.

The following two circumstances should be noted in this
connection. First, the compacton soluti¢t®) can be ex-
pressed in terms of a trigonometric function which is usually

:a solution of the linear equatiofindeed, the factor in brack-

ets in (18) is the integral of the linear equatide?m,,+m

The most interesting property of the obtained solution is= w.) However, the amplitude of the solution is not arbi-

thatm=1 in the regiongx|>=L, and all variations of the

trary, but is a certain function of frequency, as is usually the

magnetization field are concentrated in a finite region ofcase in nonlinear equations.

space. Later, such solutions were called “compactoffs?t

Second, although solutiof19) is “sewn” from several

The physical reason behind the existence of such exotic exXunction and is a piecewise solution, the functiofx) itself
citation is as follows: since the dispersion of linear waves isand its first derivative are continuous function. Moreover,



188 Low Temp. Phys. 25 (3), March 1999 A. S. Kovalev and M. V. Gvozdikova

m In the limit w=0, the soliton solution19) is transformed
- into the solution for a domain wéll

m=1, x>wlL/2,
a m=sin(x/L), |x|<mL/2, (22
m=—1, x<-aL/2

0 X (see Fig. 2l This solution also has the form of a compacton,

A but a topological one. It corresponds to separatricaad?2’

in Fig. 1b. A solution of this type was recently obtained by

Remussineet al. for the mechanical model proposed by

them. It can be seen froifl9) and (22) that the width of a

compact domain wall is equal to half the width of a dynamic

compacton.

b Finally, for negative frequencies of magnetization pre-
cession in a soliton, the solution also has the compacton

) X form:

m=—|w|—(1+]|w|)cog (X+Xg)/L], 0<x<Xq,

m= 11 X>Xl1 (23)

where xo= arcco$(1—|w|)/(1+|w|)], X;=Lm7—x, and m(x)
=m(—Xx) (see Fig. 2¢
In this case, however, solutiof23) has a derivative
m jump at the center of a soliton. But the amplitude of the
1 solution is not arbitrary and is equal to a quite definite value
of m=—1, the valuen= —1 being a solution of the nonlin-
c ear equatior{18). Nevertheless, the derivative of the angular
variable # at zero has a singularity: do/dx
~4\|w|/JLx(1+]w|), and the long-wave approach be-
comes meaningless at this point. However, soluti@8) is
1 the limit of the analytic solution of Eq(16) with [<L for
|—0 as in the previous case. Such a behavior is typical of
so-called peakon&ee below, and hence negative-frequency
solitons in the Ising limit are combinations of a compacton
-1 ’ and a peakon.

- A > In contrast to positive-frequency solitons, the region of

FIG. 2. Profiles for a dynamic compacton with positi& and negativéc) localization in negative-irequency solitons is not fixed and

frequencies and for a compact domain whllin an Ising easy-axis magnet. depends — on  frequency: _A :_ZL(TT_ arcco$(1— |w|)/(1-
+|w|)]). As |w|— =, the solution is transformed to the point-

like singularity. At large frequencies, the frequency depen-
_ _ o _ _ dence of the soliton width=4L//|w| is the same as in the
without any singularities. For example, a small-amplitude  Finally, let us consider the relation between integrals of
soliton with 1-m<1 in a magnet with/L<1 andV=0 can  motion of compactons. Besides the eneftlywhich has the

Xh——————
PO T,

be described by the approximate equation form
du ,2(1—w)—u? » 2
2 _ B dm
AL dx) BT 20 E=§f_de(L2<&) —(mz—l)). (24)

for the functionu=+/1—m. Solution(20), which is analytic

) X . e ITEin the Ising limit, the system possesses an additional integral
in the entire region of space, has the following implicit

formi819 ' of motion, viz., the total number of spin deviations
X 1 JA-f f2— sz dx(1—m). (25)
L= \/Kln \/K+f arcsin—— f2+1 (21 o
The frequency dependence of the compacton energy and the
whereA=(2L/1)*(1- ) and number of bound magnons in the compacton are described
4L2(1— w)—2L2(1—m) 12 by the formulas

[°+2L%(1—m) ' E=B7L(1-w?), >0, (26)
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E=AL|(1-w? Lolel) oa | m
=BL|(1-w)| 7 arccosm (
+lwlol|,
w<0
and
N=27L(l-w), >0, (27 m
1-|o|  2V|o|
N—ZL(1+|LL)|) w—arccosl+—|w|—l+—|w| )
w<0.
These formulas lead to the relatiolE/dN= Bw typical of
soliton solutions, and the dependendés-E(w) and N

=N(w) resemble qualitatively the same dependences for ] o ) ) )
magnets wilh isotropic exchaneiowever, in conrast to 122, Phase proes o yrame soters and foan wale sy
conventional solitons in magnets with an isotropic exchangcyrvess,3 for a domain wall, and@<0 (curvesa,4')
interaction, for which the value df increases indefinitely as

w—0, the value ofN(w=0)=2xL in the given case re-

mains finite(as in the case of magnets with biaxial one-ion
anisotropy. The relation between integrals of motion has the

following simplest form for positive-frequency compactons:
B

—AN— " N2
E=8N 47TLN' (29

On this curve, the functiom(x) has a singularity at zero:
m(x)~[3|x| V1—®/(v21)]?®, although the quantity¥ re-
mains smooth: W2~ (|x|/1)*3. In the entire range of pa-
rametersm < 1/2—V?/(21?), the profile of the soliton solu-
tion has singularities at the pointsx, , where the quantity

_ . _ m vanishesm~ +[22%— 1|x—x,|/I]1*2 In this case, the
Thls.dependence is unusual and dn‘fers from the Sta“darﬂmction\lf(x) exhibits a jump at these points in the deriva-
relationE= BN— O(N?) for small-amplitude solitons. How- tive: W ~1— 2@ —1|x—x, |/I. Let us analyze qualitatively
ever, corrections to energy quadratic in the numNeare  his sojution on the curveV=0, w<1/2), i.e., for stationary
typical of anharmonic oscillators. Thus, compactons posses$yjitons. The phase profile of the system is depicted in Fig. 3,

certain properties of such an isolated anharmonic oscillatofhere the separatrix loop corresponds to the soliton solu-
in view of their extraordinarily strong localizationFor 454 with ©>1/2. while solutions with & o<1/2. ©=0

negative-freql_Jency solitons, formuléa6) and (27) lead to ;4= <0 correspond to curvea 2, 3,3, and4,4', respec-
the asymptotic dependende=E(N) for large values of el The profiles of the functionsn(x) and ¥(x) are
|w|:E=14BL2/N, which is in qualitative agreement with a g,qun in Fig. 4. It can be seen that the solution Vit 0
similar asymptotic form for solitons in @ magnet with an .,rresnonds to a 180° domain wall. However, the profile of
isotropic exchangeE« I%/N.) this wall in the case under consideration is unusual. Equation
3.2. Localized excitations in an easy-axis XY ferromagnet (5) in this limit has the following simple form:

Let us consider the other limiting case of anisotropy of
exchange interaction of theY-type, for whichL=0. In this

case, Eq(16) can be simplified as follows: 4
22 dm)? 2r m2 ~ ~
I“m I =(1-mIm°+2m(l-o)+(1- 2w 0
-X.\
= (V). (29 —
For small deviation of the soliton parameters from the dis- ~
; i . : ) 0<w<1/2
persion relation for linear waves, the small-amplitude soliton
has the standard form 1
m~1—[1+(V/2))2] d (30) /\
2 cosR(VE(x—Vi/)’ X,

—1_ 2_~ PR i
whereg=1—(V/2)"—. However, the solution is modified FIG. 4. Profiles of the functions(x) and ¥ (x) for a domain wall and

significantly in .the ViCir_“ty of the parabolaw= 1/2 dynamic solitons with different frequencies in an easy-axis magnet in the
—V?/(21?) on whichm vanishes at the center of the soliton. XY model.
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42w
\/1—\p2(|2w—xy>=o. (31) m

The phase profile of this equation for domain walls is a pe-
culiar separatrix in the form of a triangl@'==V¥/l,
¥=1. Such a phase picture is typical of peakon stétes
Refs. 18 and 1P In this case, the solution has the form

P (x)=exp —|x|/1), (32

typical of peakons. As in the case of compactons, the solu-
tion can be expressed in terms of the functierponential in

the given casewhich is usually a solution of the linear equa-
tion. However, in the case of a peakon the nonlinearity is
manifested in that the amplitude is not arbitrary but fixed. It
can be seen from Fig. 4 that a soliton solution of the general
type with @<1/2 is a bound state of two peakofliike an
ordinary magnetic soliton which is the bound state of two m
domain wall$. However, in the general cage# 0, the solu- 1
tion cannot be expressed in terms of exponential functions.

For example, in the limitw|> 1, the soliton solution can be

represented in the implicit form

ym+1 X —
Arctanh7—x/§\/m+ 1= \/WI—. (33 0 X

This formula shows that the solution is smooth at the center W
of the soliton, wheren=—1, and has a vertical tangent at ‘ 1
the pointsx, = =1 (Arctanh(14#2) —v2)//|@| wherem=0.

4. EXOTIC SOLITONS IN AN EASY-PLANE FERROMAGNET

4.1 Magnetization rotation waves in an easy-plane Y X
Ising magnet

In an easy-plane ferromagnet with anisotropic exchange
interaction, the magnetization dynamics is described by Eqs.
(3) and (4) with o= —1, but solutions for dynamic solitons -1
do not have the simple forrfil4) as in the easy-axis case,
which follows from the explicit form of solutiofil3) even in FIG. 5. Phase picturéa) and profiles of the coordinate dependence for

. . . . different magnetization components and ¢ corresponding to a magneti-
the case of Isotropic exchange. For this reason, we ConSIdggion rotation wave of the peakon type in an easy-plane Ising ferromagnet.

only the limiting case of an Ising ferromagnet with an easy-the dashed curve corresponds to the phase picture of a localized wave
plane one-ion anisotropy. Fdr=0, Eg. (4) implies that taking into account weak exchange interaction between Xheand

6= 6(x) and is independent of time. This is in accord with Y-components of the spins.

the conclusion concerning the absence of mobile excitations,

which follows from the dispersion relatiofill) for linear

magnons in the limit=0. Moreover, it follows from Eq(3)

that the variablep can only be a linear function of time, dm 2
which is impossible for localized excitations with a fixed (1_m2)[|_2(_> —m?2
orientation of magnetization in the easy plane at infiifity dx

X— £ ). The phase profile of the separatrix loop on the plane
Thus, In the limit of an Ising magnet, only one type of (dm/dx,m) in this case degenerates into the triangle

localized excitations is possible, i.e., stationary magnetizat (dm/dx)=+m, m=1 (see solid triangle in Fig. 5aAs in

tion rotation waves. However, for this type of excitations Ed.the case of compactons in an easy-axis Ising magnet, Eq.

(3) is solvable in the general case of an arbitrary anisotropy3s,) is again connected with the first integral of motion of a

of exchange interaction also. Fgr=const, after the first |inear equation(in the brackets but with the factor (1

=0. (35

integration we have —m?) which just determines the nonlinearity of the solution.
dm) 2 1—m? It can be expressed in terms of exponential functi@ssin
2l | —m2 N
L dx) m T2+ (I/L)2me (34)  the case of a linear equatipn

In the Ising limit, this equation can be reduced to the follow- m=exp(~ [x|/L), (36
ing trivial equation: but the amplitude of the solution is fixedh(0)=1. Since
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Eqg. (35 has an additional solutiom=1, the exponential Thus, we see that there exists a symmetry of properties
functions can be sewn at the center of the magnetizationf exotic solitons in the case of simultaneous change in the
rotation wave. type of exchange and one-ion anisotropy. Compact domain

Solution(36) has a typical for of an exotic solitofpea-  walls and dynamic solitons exist in an easy-axis Ising ferro-
kon) and is presented in Fig. 5b. In contrast to the magnetimagnet, while compact waves of magnetization rotation are
zation rotation wave(12) in an isotropic magnet with observed in theXY model of an easy-plane magnet. On the
m= 1/coshg/l), the peakon width depends on the magneticother hand, magnetization rotation waves of the peakon type
lengthL, ant it has a “peak” at the center. The function exist in an easy-plane Ising magnet, and the same peakon
W (x) in this case is defined ak = + \1—exp(—2[x//L) and  domain walls and dynamic solitons can exist in an easy-axis
has an infinite derivative at zero in contrast to the solutiorferromagnet with exchange anisotropy of K& type.
¥ =tanhf/l) for an isotropic magneisee Fig. 5& Although
the peakon solution has a singularity at zero, it is a limit of
an analytic function. It can be seen from E84) that the
separatrix loop corresponding to a soliton Fer0 is smooth
on the phase plan@dashed curve in Fig. 3aand solution *'E-mail: kovalev@ilt kharkov.ua
(34) can be written in an analytic, although implicit, form:

O L | - (37)
—=In| ——= —— -m°)|,
L 1+G G ( )
V. E. Zakharov, S. V. Minakov, S. P. Novikov, and A. P. Pitaevskfie
whereB=1-1%/LZ andG= V(1—m?)/(1-B?m?). Theory of SolitonsConsultants Bureau, 1984.

A Comparison of Figs. 4 and 5 shows that the profi|es of 2A. M. K(_)se_vich an_d A. S. Kovalevl,ntroduc_tion to Nonlinear Physical
the domain wall in an easy_aX)SY magnet and magnetiza_ 3% el(\:/lhaKnclgse[\I/ri]cﬁugsIZI)VI\’/\I'aa;uolilovaan(Ij3 lj-\mgava)l\i\;Ig?c?ﬁlinear Magnetiza-
tion rota;[jlon ‘;:’avesb'n an (Lsmg madgnet have thehsame 3ppear'tion Waves. Dynamic and Topological Solitofis Russiail, Naukova
ance under the substitutibr> L and¥«+m. In other words, Dumka, Kiev(1983.
there exists an “invariance” associated with simultaneous“(A- 'V'(-) Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rej24, 117

: . . 1990.
change in the symmetry of exchange and one-ion an|sotropy5A_ Achiva, J. Phys. Soc. Jpa7, 561 (1969.
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Chaotic regimes of the microwave energy absorption are observed experimentally and analyzed
for two-dimensional metallorganic antiferromagngtiHs),(CH,),MnCl, at low

temperatures under the conditions of nonlinear antiferromagnetic resonance. Relaxation oscillations
of energy absorption are investigated in detail. Their frequency spectra, frequency—amplitude
characteristics, and dependences of absorbed power on driving power and static magnetic

field are studied. It is shown that the dynamics of relaxation oscillations undergoes a transition to
chaos by “irregular periods.” Peculiarities of the transition are described consistently.

Among other things, the conditions for the emergence of energy absorption regimes with a spike-
like and a saw-tooth signal structure are determined, and the characteristics of chaotic
oscillations such as the dimensions of strange attractors are calculated. The chaotic dynamics is
found to be high-dimensional with a large contribution from noise which is of deterministic

origin in the antiferromagnet under investigation. 1®99 American Institute of Physics.
[S1063-777X99)00703-3

INTRODUCTION order of a few milliwatts-® Among other things, it was found
that in addition to YIG, nonlinear ferromagnetic crystals in-

Chaotic resonant phenomena in magnets have becom#ude metallorganic compounds with a structure similar to

an object of intense experimental studies in the lasthe (CH;NH,),CuCl, crystal’® On the other hand, it was

decade*® These investigations were stimulated by theestablished that chaotic oscillations are generated in the crys-

progress made in the mathematical theory of chaos, predicfy|g CuCh2H,0,% CsMnk, %% (CH,NH,),CuCl,.° under the

ing the universal character of chaotic phenomena irrespectivggnditions of antiferromagnetic resonar(@FMR).

of the character of the physical object being studied and  The range of nonlinear effects that have been discovered

demonstrating a nonlinear behav?&r?z _ _and thoroughly investigated in ferro- and antiferromagnets is
Magnetic compounds possessing the properties required e jarge. These include spin-wave instabiliishl insta-

for the emergence of nonlinear oscillations include first of allijisies of the first and second ordé? auto-oscillations of

the _cry_stals exh_|b|t|ng an extremely wgak relaxation of spinjp <o bead microwave pow&25and the observation of three
excitations. Yttrium—iron garndlYlG) with a low threshold

. L . known scenarios of a transition to chaos: by period
for a parametric excitation of spin waves even at room tem-

: . i (Fei : e
perature has been studied most thoroudtil§®11-13Since %?g?rr:?t?en(c eigenbaum - scenayio quasiperiodicity, - and

0-22
YI hav ferromagnet in magnetic r nonlin- . . .
G behaves as a ferromagnet agnetic respects, no Apart from the interpretation of these nonlinear effects

ear chaotic effects were studied, as a rule, under the Condzia_nd the determination of the conditions for their observation
tions of ferromagnetic resonan@eMR) in transverse as well '

as longitudinal driving fields it was found that real magnetic crystals can demonstrate a

The total number of investigated nonlinear magnets is n&tore complex pf':lttern of transition to chaotic regllmes n
large, and some of them exhibit nonlinear properties only aféSonance experiments. None oé%the known scenarios is re-
low temperatures of the order of a few kelvins, at which@lized in pure form in such cas€Sand we must consider

s . i i 3827
phonons are frozen out, and their interactions with magnon8€W mecr_\anlsmszgof chaotlzat_léﬁ. _
becomes very weak. Hartwik et al=® were the first to discover long ago the

The effective dimensionality of crystals plays an impor- SO-called relaxation chaotic oscillations of microwave power
tant role for the suppression of relaxation processesh YIG with which a new scenario of a transition to chaos by
Stepanovet al*-18 investigated the class of metallorganic irregular periods has been associated in last det&dé’
compounds that are quasi-two-dimensional ferro- and aniferThis effect lies in the emergence, instead of purely periodic
romagnets in the magnetic respect. It was found that lowauto-oscillations, of irregular chaotic bursts of absorbed
dimensional magnets at low temperatures go over to a stagower in the form of spike-like peaks or pulses with a steep
with an anomalously low spin—Ilattice relaxation virtually leading front and relaxing rear front under certain conditions
with a threshold, which makes it possible to excite spinof magnetic resonance upon an increase in the pumping
waves parametrically at microwave pumping power of thepower. Theoretical approaches to the description of such

1063-777X/99/25(3)/11/$15.00 192 © 1999 American Institute of Physics
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oscillations and mechanisms of their formation were made iroscillations as well as a possible theoretical model for de-
Refs. 9, 29, and 30, but a systematic analysis of temporaicribing relaxation oscillations in2 antiferromagnets.

series of experimental signals as well as of the results of

numerical simulation of relaxation oscillations was carriedEXPERIMENTAL TECHNIQUE

1,32
out only recently’ Single crystals of(NH3),(CH,),MnCl, were grown at

In this work, we study experimentally the regimes of L
. . . . room temperature from a saturated aqueous solution in the
chaotic behavior of the microwave power absorbed in a two;

dimensional easy-axis antiferromagr(&tH;),(CH,),MnCl, ;gggsogggnwrifﬁ t:r:gu:?;ﬂg:;g@;fﬁg rprﬁgn;e;rtr:adollzj\:%ral
under the AFMR conditions. This compound is a typical rep- yp : . P

resentative of the family of layered Heisenberg antiferromag—f:':l |_s|?)azl(EﬁizgéMvCitchuthpeo;szizesro?ﬂgc;gog“l 'g'rc ;r)lli?g]he;irr{s of
nets [NHg(CHy),-NHs]MnCl,(2CmMn), studied by = pace groti, /b. = rg

. of NH3(CH,),NH; separate two-dimensional, almost square
Stepanovet al'*~*® The structure of these metallorganic 3(CHuNH; sep 9

. . . layers of octahedra Mn-gl The unit cell parameters age
crystals is formed by almost quadratic layers of magnetic_ 10.77A,b=7.177 A,c=7.307 A. Experiments were car-
ions in the octahedral environment of chlorine ions between. " 0+ on a reflection spectrometer with a pumping fre-

wh;c(l; Iﬁ?g cha|||ns IOf all;yletnel—ammonhla molecule§ ?rg Io{ uency 70.39 GHz at a temperature below 2.18 K. We used
cated. The smalfl value ot Interiayer exchange associate ng cylindrical resonator with theQ- factor ~1000. The

a large sgparatic_)n betyveen the spins of adjacent layers lea ﬁmple was placed in the resonator region with predominant
IO a quafl-tv_\:_o-gllrlnzegs}é%r;ailhbehawor of 'éhezsce4ls\3l/st§mts Al thEarallel polarization of external static and rf fieldgh.

emperaturely=4s.51, the compoun nistrans- = n resonance experiments, the field is usually applies
formed into antiferromagnetic states with the easy magnet'élong the easy axis of the crystal. With such an orientation,

zation axis directed at right angles to the planes of the Iayerﬁhe splitting of AFMR branches follows the law
A detailed analysis of linear antiferromagnetic resonance in

2C4Mn revealetf that this compound has a four-sublattice w+=y{V(2Hg+HAHA = H}. (D)

noncollinear antiferromagnetic structure with a weak ferro- For the frequency mentioned above, the resonance con-
magnetic moment. The antiferromagnetism vector of eac'?jitions are satisfied for the lower frequency bransh
layer is deflected successively from the normal to the plang i1 \was observed in our experiments. The maximum

.Of a layer through an angle o£16° so that the tota] vector power of the source was 5 mW. The applied magnetic field
is perpendicular to the layer, and the weak antlferromagwas scanned along the contour of the AFMR line, and the

netism vector lies in the layer. According to estimates, thedriving power was varied from 0 te- 20 dB. The magnetic

strenglth of |Ir|1teract|on bet(;/veer;) tf;:a rllayf:(% IOQ IS exr; field orientation relative to the anisotropy axis and equilib-
tremely small as compared to both the intralayer exchangg,m girections of antiferromagnetism vectors in adjacent
(2H,=1360kOe) and the intralayer uniaxial anisotropy

H.—0.8KO hat 2C4AM b ded I ganes also varied. It was found that the most intense absorp-
( a- - _e) sot ‘.’ﬂ n can be regarded as an almosf,, corresponds to the symmetric orientation of the field
two-dimensional antiferromagnet.

along the crystallographic axts.
At low temperaturegof the order of a few kelvins the g 4 grap

In all experiments, low-frequency modulation of electro-
related compoundNH3C,Hs),MnCI,(1C2Mn) revealed a magnetic field of frequency 50 Hz was observed. This fre-

n;thr;]ber gf mlt)erdestlr_@ nonlinear phenomer:;\ in the behavio uency had to play the role of the reference frequency in our
of Ihe apsorbed microwave powet, €.g., the emergence xperiments. It was found later that these oscillations partici-

periodic guto-oscﬂ_latlons anc_i chajc_?SHere we carry outa .pated in all nonlinear processes, and the emergence of their
systematic analysis of chaotic regimes of annferromagnetlﬁigher harmonics was regarded as a natural criterion of the

resonance in a 2CAMn crystal. For a driving power below 5emergence of nonlinearity in resonance effects. The reflected

mw atgtemperaturg below 2'.18 K, we observedanonlmeaéignal after detection in an analog-digital device PC
absorption of the microwave field and the emergence of reappa 1 4 with a 14-bite resolution was transformed into a

]Icaxatlon 0 SC'"???] ns V(\j”th t¥plc?KeereTeI¥I_r:ow averf'lallgﬁ computer data file. These temporal series were subsequently
requencies ot the order ot a Tew hertz. These osciila 'On,Eralyzed by using the standard and original packets of pro-

were recorded and ana_ly_zed as_temporal series of data wi ams created for a quantitative analysis of chaotic phenom-
the help of an analog-digital device and computer programs, -

which made it possible to describe in detail the scenario of a
transition to chaos by irregular periods. As a result, we have
o . ! DISCUSSION OF MAIN RESULTS
analyzed qualitative changes in the behavior of temporal se-
ries of absorbed power as a function of variation of the pa- A typical form of resonant curves for the antiferromag-
rameters of static and varying magnetic fields and carried outet 2C4Mn aff = 1.8 K are shown in Fig. 1. For a logess
the Fourier analysis, obtained the spectra of oscillationsthan— 15 dB) microwave field power, a typical pattern from
studied the structure of strange attractors of chaotic regimes, linear AFMR is observed, i.e., two lines from two centers
and calculated the quantities characterizing chaotic dynamneighboring plangs The separation between the peaks on
ics, i.e., dependences of frequencies of auto-oscillations othe resonant curve can vary depending on the orientation of
the driving power(in particular, we determined their period the static magnetic field, and the lines can coincide when the
doubling thresholdand the dimension of chaotic attractors, field is directed along the crystallographic axis For a
and discussed the origin and role of noise in relaxatiorpower exceeding—15dB, free relaxation oscillations are
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of interaction between magnons. In actual experiments, in-
stability is observed upon a change in the static magnetic
field, and the resonant curve experiences a discontinuity or a
jump. This effect was observed for the first time in disks of
yttrium-iron garnet single crystals by Wei$s.

It follows from Fig. 1 that the jump is observed in strong
fields in an increasing field, while discontinuity takes place
in weaker fields in a decreasing field. With increasing power,
the hysteresis loop increases, and the steepness of lines de-
creasesthe scales of conditional units for absorbed power in
\ Fig. 1 are different for the three resonant curves: it decreases

with increasing amplitude of pumping

It was noted above that oscillations of observed power
l l on the segment of the resonant curve near 9.34 kOe appear

even at very low driving powers of the order 6fl5 dB. The
criterion of a transition to the nonlinear regime is the emer-
gence of the second harmonic peak in reference oscillations
1 -3dB with frequency 100 Hz. At the point of maximum on the

-10dB

Absorption

1 J resonant curve, this peak exceeds the background noise for a
___=; power P>—15dB, and first spike-like peaks of absorbed
power appear at the same instant.

In the case of a resonant curve with spaced peaks, an
increase in the driving power induces relaxation oscillations
in the vicinity of the second peak also. As the peaks con-
1 verge, the mutual effect of the centers increases, which is

noticeably reflected in the form of oscillations of absorbed
power. In the cases of closely spaced peaks for the value of
the fieldH ,,=8.37 kOe corresponding to a local minimum at

|
—
7

f ? the center of the resonant curve, relaxation oscillations be-
P=0dB come irregular even for a low driving power. As the power

] T e increases, the oscillations become more and more chaotic.

6 8 9 10 " The time dependence of the signal typical of the entire series
H, kOe of these measurements and its spectrum for the maximum

FIG. 1. Amplitude—field dependences of nonlinear antiferromagnetic resoyalue of power gre shown in Fig. 2a. .
nance for a 2C4Mn crystal for different values of driving power. The bold In order to find out whether such a dependence is a con-

segment on the upper curve in the vicinity of the high-field peak denotes thgequence of additive or dynamic noise, stochastic process, or

range qf relaxatiqn oscillation_s. The_ hysteresis loop observed for a Powefs due to a determinate chaos, we varied in the experiments

exceeding-5 dB increases with driving power. the orientation of magnetic field and its magnitude. The
variations affected strongly the type of oscillations.

It was found that oscillations become less chaotic for the
generated in the range of external magnetic fields near theinimum deviation of the magnitude of magnetic field from
peak of the high-field line above as well as below the resothe extremal valueH,,. By way of an example, Fig. 2b
nant fieldH =9.34 kOe(this region is shown by the bold line shows the time behavior and spectrum of oscillationsHor
on the upper curve in Fig.)1The amplitude of these oscil- =8.4kOe and the maximum driving power.
lations increases with power until they become chaotic. We It also turned out that the degree of chaotization of a
shall consider this regime in detail later, and now we paysignal decreases considerably, and its shape changes qualita-
attention to another effect associated with instability of resotively when the magnetic field is directed along the crystal-
nance at high pumping levels. As the driving power in-lographic axisb, when the resonant lines from two centers
creases above-5 dB (see two lower curves in Fig.)la coincide. In this case, the characteristic pattern of the emer-
jump and a discontinuity of both resonant lines are observedence and transformation of relaxation oscillations upon a
with a considerable hysteresis in the static magnetic field ashange in the driving power is of the form shown in Fig. 3
we move towards higher and lower fields, respectively. for H=28.4kOe(small deviation of the field from the reso-

This phenomenon is well known in the theory of nonlin- nant valug and the poweP varying from— 10 to 0 dB. First
ear resonance and is associated with the dependence of thgikes of absorbed power appear against the background of
frequency of nonlinear oscillations on their amplitude. Inalmost linear oscillations of frequency 50 Hz. For small
magnets, this effect is manifested in that the resonant curveumping amplitudes, the frequency corresponding to the
must become asymmetric and multiple-valued for a pumpinggmergence of spike-like peaks is low, and the intervals be-
field h exceeding the critical value, i.e., the peak must beween them are quite large and vary with an obvious period-
inclined towards lower or higher fields depending on the typdcity. For a driving power of the order of 6 dB, the signal
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has the form of a periodic structure of spike-like closelymonics, all spectra contain a large contribution from noise
spaced peaks. As the pumping amplitude increases further tesponsible for the “grass-like” continuous spectrum. In the
power values of the order of 3 dB, the frequency corre- subsequent analysis, we shall analyze in detail the dynamic
sponding to the emergence of spike-like peaks changes imnd spectral structure of these oscillations and the origin of
significantly, and subsequently decreases rapidly and beheir stochastic form.

comes virtually equal to half the previous value. In this  When the power changes in the opposite direction, i.e.,
region, the shape of the signal changes qualitatively from théhe amplitude of pumping decreadgight circles in Fig. 4,
spike- like to the saw-tooth, i.e., the change in the regime ofhe frequency—amplitude dependence exhibits a hysteresis
chaotic oscillations takes place. Figure 4 shows the deperwith a displacement of the region of period doubling towards
dence of the fundamental frequency of these oscillations otower powers(saw-tooth pulses exist up te 4.5dB). The

the driving power in the range from-6 to O dB (dark existence of essentially chaotic modes near a certain fixed
circles. The doubling of the period of relaxation oscillations values of power, in particular upon an increase in the driving
can be seen clearly in the figure. In order to plot this depenpower for P=—1, —2.25, and—2.75dB is an interesting
dence, we analyzed the spectra of oscillations for fixedeature of the observed transient process.

pumping levels. It should be noted that doubling of this pe-  For this reason, it was natural to analyze oscillations for
riod does not indicate the emergence of subharmonics of thinese selected pumping levels, but in a wide range of applied
fundamental frequency as is usually the case in the Feigemagnetic field near the resonance point. We chose the pump-
baum scenario, and corresponds to a change from one oscihg level of —1 dB and studied the variation of the shape of
latory mode to another mode, their fundamental frequenciethe absorbed power signal and its spectrum upon a change in
differing by a factor of two. It was proved that this effect is the static magnetic field within a few ten oersteds near the
preserved for other values of magnetic field which naturallyresonant valuéi,=8.37 kOe. The direction of the field was
affects the values of frequencies themselves. It should alsmaintained along the crystallographic akis

be noted that apart from the main peaks and multiple har-
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FIG. 4. Frequency of relaxation oscillations as a function of driving power.
FIG. 3. Evolution of time dependences of absorbed power for a change iDark and light circles correspond to an increase and decrease in the driving
the microwave power level from-10 to O dB for a static magnetic field power, respectively. The threshold effect of oscillation period doubling is of
H=8.4 kOe. the hysteresis type.
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FIG. 5. Temporal series of absorbed power and their spectra for different values of static magnetic field for the drivind®powkdB; (a) H

=8.51 kOe, relaxation oscillations with a spike-like structure and a high stochastization(l®vel=8.47 kOe, the result of transformation of spike-like

signals into saw-tooth signal&) H=8.44 kOe, saw-tooth relaxation oscillations with linearly increasing and decreasing sediaieits;8.39 kOe, chaotic

temporal series with an intense “grass-like” frequency spectrii@ntd = 8.34 kOe, nearly regular anharmonic oscillations of absorbed power of a spike-like
shape. All the spectra contain the peak of the fundamental frequency of relaxation oscillations of the order of several hertz and its higher harmonics as well
as the peak of the reference frequency 50 Hz and combination frequencies.

The corresponding results are presented in Fig. 5. Isource of reference frequency, but they became involved in
should be noted that relaxation oscillations occur against &ee oscillations in view of the nonlinearity of the medium.
background of a considerable average absorbed power th@his follows from the presence of second harmonic with fre-
must make a contribution to the frequency spectrum in thejuencyr=100 Hz and the peaks that are algebraic sums of
form of a large central peak at zero frequency. In all calcufrequencies of fundamental harmonics of relaxation oscilla-
lations of the spectra analyzed here, this average value wa®ns and the reference frequency.
subtracted, and hence the given huge contribution to the cen- Far away from the resonant field, the absorbed power is
tral peak is absent, which allows us to see the detailed struaArtually constant if we disregard extremely low background
ture of relaxation oscillations proper. It should also be notechoise in which, however, oscillations with frequenay
that frequency spectra are given in the form of frequency=50Hz were always manifestéoh the frequency spectrum
dependences of the amplitude of the Fourier transform of théx our measurements. As the field approaches the resonant
signal and not as logarithmic spectra of power in order tdevel, these small-amplitude oscillations become weakly
improve detailization. nonlinear(a second harmonic appears in the specjriand

Another feature in common with all the spectra consid-nearly periodic spike-like peaks of absorbed power corre-
ered below is the presence of oscillations of frequengy sponding to peaks of the order of a few hertz in the fre-
=50Hz. These low-frequency oscillations were present as guency spectrum and clearly distinguishable against the
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“grass-like” background noise appear almost simulta-continuous noise spectrufeee Figs. 2a and)b
neously. A comparison of temporal series also leads to the con-
A typical example of such a behavior of absorbed powerclusion concerning clearly manifested temperature depen-
is shown in Fig. 5a for the field valud=8.51 kOe. It can be dence of the degree of stochastization of oscillations. The
seen that periodic relaxation oscillations with a spike-likehigher the temperature, the higher the noise level in the os-
structure have been formed completely. Small anharmonicillatory spectra and the extent of their nonregularity, and
modulation of peak amplitudes is manifested in the fre-vice versa. At low temperatures, we could observe relaxation
guency spectrum in the form of higher harmonics of the fun-oscillations in the form of nearly rectangular puls@sich
damental frequency. All the remaining peaks can be identia mode was realized foP=5mWw, H=8.3kOe, and
fied as algebraic sums of these harmonics and frequengies T=1.7 K).
and 2vg. Another interesting feature is the observation of the re-
As we approach the resonant field further, the shape ofime of an abrupt and virtually complete disappearance of
absorbed power peaks experiences rapid qualitative changdtge oscillations with simultaneous doubling of the period of
Figure 5b shows the result of transformation of spike-likenonlinear reference oscillations and the emergence of their
signals into typical saw-tooth temporal series fét  subharmonic at a frequency 25 Hz. We can try to explain the
=8.47 kOe. In addition to the increase in the amplitude andatter effect from the point of view of the theory of chaos
relative height of frequency peaks, the emergence of linearlgontrol and the emergence of high@nultiple) resonances.
increasing and decreasing segments on the time dependerfdewever, we shall not consider this problem here and ana-
of absorbed power is also worth noting. It is remarkable thatyze the structure of chaotic attractors of relaxation oscilla-
such oscillations are almost indistinguishable from classicalions.
relaxation oscillations that are frequently encountered in
electrical engineering. ANALYSIS OF EXPERIMENTAL RESULTS
A subsequent decrease in the field leads to the tendency

to the formation of periodic rectangular pulses of absorbecbOral series has been worked out intensely during the last

power. Signals of such a shape are shown in Fig. Sdfor decade and is described in detail in a number of reviews and

=8.44kOe. It should be noted that the amplitude of OSC'Ila'monograph§9'36‘38We shall use this method which involves

tions does not' Increase any Ionger, while the periodicity 'She determination of the linear autocorrelation function for
enhanced, which is manifested in the frequency spectrum. temporal series, the determination of “time delay,” the con-

Relaxation oscillations become completely chaotic forstruction of phase portraits of attractors in the corresponding

field values close to resonance. Figure 5d shows the COIMeq e delay” coordinates, the construction of a sequence of

sponding temporal series of absorbed power and a typlcz#ﬂerspike intervals, and their analysis, computation of the

grass-like” frequency spectrum for =8.39 kOe. It can be correlation dimension of attractors, the determination of the

seen that the amplitudes of oscillations are much smallerrloise contribution to temporal series, the source of the noise

than those in Fig. 5¢, and the frequency distribution of oscil-

i . . and possibilities of its reduction, and the discussion of theo-
lations has become almost continuous with a sharp decrea?&ical models of the observed chaotic oscillations

in the maximum peak heights to the amplitude of the 50-Hz The temporal series is a discrete set of values of the

pea'lz\ofttt]heffulr:jdgmental ha][m;)hnlc.f h t val physical quantity(the absorbed powev(t,) in our casg
s he Tield decreases further from he resonant valu€y, o 5qred in equal intervals of time. A traditional character-
relaxation oscillations again acquire the spike-like shape, b

8stic of temporal series of signals is the linear autocorrelation
ing essentially nonlinear. Figure 5e shows kb= 8.34 kOe P 9

; . o functiort’
the temporal series for such anharmonic oscillations of ab-

sorbed power and their frequency spectrum with clearly

The method of a nonlinear analysis of experimental tem-

—_— N — J—
manifested peaks of multiple harmonics. A distinguishing NEmzl[S(m+ 7)—s][s(m)—s]
feature of these oscillations is that their fundamental fre- CiL(7)= : (]
guency is almost half the frequency of similar spike-like os- NZr’\r‘]:l[s(m) —5)?

cillations presented in Fig. 5a. The frequency of relaxation

oscillations in general decreases as the field decreases to tiwbere the average value of the sigséin) is defined in the

resonant value, and starts increasing after the passage of tendard manneE=(1/N)2r’\r',zls(m).

resonance peak. Since we usually subtract the average value of the series
In the magnetic field scanning in the opposite directionfrom the initial series in an analysis of spectra, we calculated

(i.e., upon its increagethe regimes described above appearautocorrelation function for time dependences presented in

in the reverse order, but a hysteresis loop takes place iRig. 3 for modified series=0. As a function ofr, it exhibits

complete accord with the picture shown in Fig. 1. qualitatively identical behavior for all values of power: this
It was mentioned above that the selection of other valuess an oscillating function with a slowly decreasing amplitude.
of power (for example, the maximum powét=0 dB) fol- The period of these oscillations coincides with the funda-

lowed by scanning in the static magnetic field results in chamental period of oscillations of the signal being measured. In
otic nonlinear oscillations whose frequency structure conan analysis of nonlinear signals, autocorrelation function is
tains higher harmonics of the fundamental frequency as weklso useful for estimating “time delay.” It is choskt?’

as subharmonics against the background of a high-intensitgqual to the value of for which the autocorrelation function
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FIG. 6. Dependence of “time delay? on the pumping powelP. The value -100 Y 100 200 300
of 7is measured in units of the temporal series pedde-4.9 ms. Vit
80 [ o 5
vanishes for the first time. In our measurements, this time 40} .:: N
delay is approximately equal to a quarter of the fundamental
period of observed oscillations. - [
Figure 6 shows the dependence of timen the driving + 0r
power P. (The unit of measurements afis the principal s
interval At=4.9ms of our temporal serigdt can be seen -40} : .
that this dependence obviously correlates with the depen- | LN ' * e .
dence of the frequency of oscillations on the driving power -80 . A © .t
presented in Fig. 4 and confirms the existence of a threshold PP o 8
transition from one regime of chaotic oscillations to another. T S S T S ST SRS SUN S|
It should be noted that the period of the correlation function -100 -60 -20 0 20 60
corresponds to oscillations of frequency 50 Hz for low pow- vn
ers and to Fhe fundamental period of saw-tooth OSCIIIatIOnng—IG. 7. Dynamic characteristics of relaxation oscillations for the driving
for the maximum power. powerP=0 dB andH=28.4 kOe, whose time dependence is shown in Fig.

The obtained value of can now be used for plotting 3: (a) phase portrait in the time delay coordinates=@9 ms) andb) one-

phase portraits of nonlinear oscillations. For this purpose, wéimensional mapping constructed from the sequence of minimum values of

hift the t | . b d plot the d d f the Poincarecross section of the phase picture taken at the instants of time
shi e temporal series by and plot the dependence of | "\ ichv(t y=o.
V(t,+7) onV(t,). These functions are just the time delay
coordinates. For the temporal series corresponding to the
maximum power in Fig. 3, the phase picture is shown in Fig. K litud h .  thi
7a(the value ofr is chosen equal to 49 ms, and the averagé)ea_”?mp 'tc;" es 35 c arac;erlstlci; od this pliocesz. ) i
value of absorbed power is subtracted from the given Series, ese dependences of amp |t_u € peaks an lntersp_l €
It can be seen that the process is periodic on the whole ar{ﬁtervals for the series under investigation are compared with

occurs in several stages with their own characteristic timesi) € relevagt seﬁuence? fodr the Si”esfShov.\lT n Fig. f5 aﬁ It csn
In order to obtain a more detailed concept of the attractoP€ S€€N that the amplitude peaks of oscillations of the ab-

structure, we constructed éD1mapping from the sequence spr_bgd powe(Figs. 8a and bbehave quite che_lotically in the
of minimum values of the Poincarsections of the given \{|C|n|ty of a resonance and far- away from it. At t.h? same
attractor. These values were determined as negative values §f'e: the interspike intervalgFigs. 8c and d exhibit a
V(t,+ 7) taken at instants,, for which V(t,)=0. This de- clearly manifested tende_ncy to a quasiperiodic modg far
pendence is shown in Fig. 7b and demonstrates the existen@4/@Y from the resonandgig. 8d, but random forces acting
of the internal structure of the attractor and an obviouslyon the system result in the chaotization of oscillations, which
large contribution of noise is accompanied by chaotic jumps in the period of oscillations

A detailed analysis of the time dependené@) indi- betwvsen its four pcrjmmpal_ vaIuEs.h . hasti
cates that the noise contribution is not additive. Indeed, ir- € can try to determine whether a noise is stochastic or

regular amplitude jumps as well as periodic oscillations Ofdynamlc by calculating the correlation dimensiDnof the

frequency 50 Hz have different values at different stages ofttractor under investigation. This quantity is defined through

variation of the functionV(t). This indicates a nonlinear the pair correlation integral:

enhancement of both factors and their participation in the ) N
chaotic process. Cn(r)= m; O(r=[ym(j) = ym()]), (€)

In order to describe the chaotic behavior of relaxation
oscillations and the effect of noise on them quantitatively whereN is the number of measurementsthe correlation
we consider a sequence of time intervals between adjacermadius,y(i) the vector of dimensionm in the embedding
peaks of the signal and the sequence of maximum values space, whose coordinates are{V(t),V(t;+7),...
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V[t;+(m—1]7}; and 6(r) is the theta function. This func- curves correspond to the variationroffrom 1 to 9 from top
tion in fact determines the number of pairs of vectors in theto bottorm). Numerical differentiation reveals a flat segment
m-dimensional space, the separation between which iaccording to which the dimension of a strange attractor can

smaller than the preset distance While determining the

be estimated. It was found that it is slightly larger than two

distance, we presume that the cells into which the phasg2.25+0.1), but the strong effect of dynamic noise follow-

space is divided have the cubic shdp@he dimensiorD is
the limit of the expression
dInC(r
D= lim N Cnl(0) (4)
moe dinr
and is usually calculated on the intervah which the values
of the correlation function are not very small.

ing from the characteristic increase in the steepness of the
curves for In)<<2.5 does not allow us to establish the exis-
tence of the exact limit. We are inclined to interpret the latter
guantity as the dimension of a regular attractor. On the other
hand, the slope of the curves in the regionlh(r)<2.5 also
demonstrates the tendency to a limit that can be estimated as
4.9+ 0.1. Such a limiting value can be regarded as the total

The sequence of calculated correlation functions for thedimension of the attractor, containing the contribution from a
initial temporal series corresponding to the maximum poweregular attractor and a deterministic noise. A slight increase

in Fig. 3 is presented in Fig. 9 on logarithmic scdthe

Ln C{r)

Lnr

FIG. 9. Dependences of logarithms of correlation integrals on the logarithm

in the dimension for large values of for smallr is associ-
ated with the contribution of “white” instrumental noise.
The above comparative analysis of functional dependences
of temporal series and their spectra also confirms this con-
clusion. Thus, the analysis of the correlation dimension leads
to the conclusion concerning the dynamic nature of noise in
the relaxation oscillations under investigation and indicates a
multidimensional chaotic dynamics and, generally speaking,
multimode excitations in the resonance system in question.
The extent of its stochastization is quite high, which follows
from the estimate of correlation dimension in the range of
smallr. It should be noted that recent investigations of para-
metric resonance in a related metallorganic antiferromadgnet
also confirms the deterministic origin of noise in these com-
pounds.

The existing theories of relaxation oscillatiGfis %3
make it possible to describe the emergence of a high-
dimensional chaos on the basis of multimode models. The
main idea behind the mechanism of emergence of relaxation
oscillations can be demonstrated even by using a two-mode
model in which it is assumed that the resonance excitation
conditions are satisfied for one mode and are not observed
for the other mode. Under the action of pumping, such a pair
of coupled nonlinear oscillators reproduces quantitatively the
behavior of relaxation oscillations. A quantitative theory of

of the distance between vectors in tiedimensional embedding space cal- this effect for antiferromagnets h.as. not bee_n developed as
culated from the initial integral data for the attractor presented in Fig. 7. yet. However, a theoretical description of this phenomenon
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in the approximation of two spins simulating the sublatticessuppressing external additive noise, but their application in
subjected to resonant transverse and longitudinal pumpinthe case of a dynamic noise should be verified in each spe-
appears as promising. Consequently, chaotic relaxation oscitific case. The algorithm of purification of a signal in the
lations can be described qualitatively as the dynamics of aimplest form can be described as follows. In the chosen
nonlinear oscillator under resonance conditions, but undeembedding space whose dimension is larger than the sum of
the action of certain random forcéthe inclusion of the ef- the predicted dimension of the regular attractor and dynamic
fect of the second oscillatorSuch a system may have at noise, the nearest neighbors of the preferred vector of state
least two stable states the transition between which can leaate selected, and its central coordinate is averaged over the
to the emergence of spike-like and saw-tooth time depernvalues of relevant coordinates of the found neighbors. The
dences of absorbed power. The features and diversity of exsbtained sequence of new data is the result of one iteration
isting chaotic modes are obviously determined by the time ofhat can be repeated. Such an algorithm can be optimized as
residence of the system in the equilibrium states and the ratsell as the choice of required parametésrrelation radius,
of transient processes. Such a system can obviously havedimension, etc.; see Ref. B&uch an algorithm will be used
high degree of stochastization, an attempt to create reguldrelow for analyzing the chaotic temporal series measured by
attractors in it will lead to regimes in which such attractorsus.
coexist with a well-developed dynamic noise. However, a  On the other hand, the above algorithm in the simplest
guantitative theory of such chaotic oscillations should apparform includes the conventional method of data averaging
ently be constructed on the basis of a multimode model acever nearest and next to nearest neighbors in the series. In
cording to the numerical analysis carried out by Moserthis case, the dimension of the embedding space is equal to
et al®? unity, and the number of neighbors is fixed. It can easily be
The theorem on dimensionality that has been formulatederified that, in spite of its very simple form, the procedure
recently for systems with a dynamic noise indicates in itsoperates as a high-frequency filter and does not change the
simplified formulation the additivity of the dimension of a complex low-frequency spectrum of chaotic oscillations. We
regular attractor and a noié2.In this sense, these can be shall apply this procedure also to analyze the results.
separated, and the question of elimination of noise from a We chose the object of investigation in the form of a
signal, noise reduction, and isolation of a regular signal fronchaotic attractor obtained from the temporal series presented
the data on temporal series appears as justified. in Fig. 2b. The results of analysis are shown in Fig.(&0
There are effective methods of noise reduction in theshould be noted that the average value is subtracted from the
useful signaf® These methods are extremely effective forterms of the serigsFigures 10a and b show the phase por-
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Finally, we formulate the following conclusions follow-

ing from our analysis.

)

)

)

4

FIG. 11. Dependences of logarithms of correlation functions on the loga-

rithm of the distance between vectors in thedimensional embedding
space calculated for data “improved” by the optimized metlisee Figs.
10e and ¥.

trait on the planeg{V(t),V(t+ 1)}, where 7=29.5ms, and

simultaneously the mapping for the data on the Poincare

cross sectiorisee abovg while Figs. 10c, d, e, and f contain

the dependences for the data “corrected” by the method o

&

averaging and the optimized method of noise reduction de-

scribed above respectivelgveraging was carried out twice 6)
over five points, and tenfold iterations were used in the op-

timized methodl

Figures 10e and f clarify the internal structure of a regu-
lar attractor. After the effect of noise becomes weaker, its
phase portrait resembles a strange multiband attractor. The
analysis of correlation dimension makes it possible to char-
acterize quantitatively both the regular attractor as well as
the residual contribution of deterministic noise. The results
of analysis are presented in Fig. 11. It should be noted tha@

prior to calculation of correlation functions for the temporal

series under consideration, we initially normalized all values

to a wunit interval by the formulaV(t,))=[V(t,)
= Vinind/(Vimax— Vinin)» WhereV i, and V4, are the minimum

and maximum values of the signal in the series. It was found
that the dimensionality of a regular attractor can be estimated

as 2.15-0.05, and the total dimensionality with the contri-
bution of deterministic noise as 3.2%.05. Spectral analysis

of these “improved” results also indicate that the quantita-

tive contribution of noise remained quite large, and the re-
sultant attractor possesses a high dimensionality as before(8)
Thus, chaotic dynamics in the nonlinear antiferromag-
netic resonance in low-dimensional antiferromagnets is high-
dimensional, the extent of stochastization of oscillations is
high, and noise has a deterministic origin and serves as a

decisive factor in nonlinear dynamics of these magnets.

Peculiarities of a transition to chaos by “irregular peri-
ods” in a 2D metallorganic antiferromagnet with an
“easy axis” type anisotropy are experimentally ob-
served and studied in detail under conditions of nonlin-
ear antiferromagnetic resonance.

It is shown that relaxation oscillations of absorbed power
are generated for very low energy levels of microwave
field and have a low frequency of fundamental harmonic
(of the order of a few herjz No multiple harmonics are
observed experimentally at kilohertz and higher frequen-
cies.

Relaxation oscillations at low values of driving power
exist in the form of generally periodic sequence of spike-
like peaks of absorbed power. The frequency spectrum
contains components of fundamental frequency corre-
sponding to the emergence of spikes as well as multiple
harmonics, which demonstrates the nonlinear nature of
the process.

) As the pumping amplitude increases, the phenomenon of

period doubling is observed in the time dependence of
absorbed energy of microwave field. The shape of the
signal is simultaneously transformed from the spike-like
to the saw-tooth type having segments with linearly in-
creasing and linearly decreasing absorption. An analysis
of the frequency-amplitude dependence of oscillations
and their linear autocorrelation function gives quantita-
tive characteristics of this transition.

A similar effect is observed at a fixed level of pumping,
but upon a change in the value of static magnetic field
near its resonant value.

6) With increasing power, relaxation oscillations become

chaotic. The spectrum of such oscillations is continuous
and has a “grass-like” form, but the peaks of fundamen-
tal harmonics are still distinguishable. The phase portrait
of these oscillations has the form of a strange attractor
experiencing a strong influence of noise. Stochastization
of oscillations, however, is not a result of influence of an
additive instrumental noise.

The quantitative characteristics of such a strange attrac-
tor are calculated. The one-dimensional mapping corre-
sponding to the given attractor demonstrates a tendency
to regular movement in spite of chaotic time dependence
of relaxation oscillations. An analysis of correlation di-
mension indicates the high-dimensional chaos dynamics
and the deterministic nature of noise in the magnetic
system under investigation. The possibility of formal
separation of the regular movement and the noise contri-
bution with the help of nonlinear methods of noise re-
duction being developed is considered.

The applicability of the theoretical model of finite num-
ber of coupled spins under the action of the parametric
and transverse pumping to the construction of a quanti-
tative theory of the scenario of transition to chaos by
“irregular periods” is discussed briefly. The transition
can be regarded as a universal phenomenon in low-
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Wave processes in noncompensated metals in a quantizing magnetic fields are investigated
theoretically. It is shown that small-amplitude nonlinear electromagnetic waves can propagate
when the magnetic susceptibility is close to &/4Nonlinear solutions of the system of

Maxwell equations are obtained under the conditions of strong magnetism of conduction electrons.
© 1999 American Institute of Physid$1063-777X99)00803-9

Weakly attenuating electromagnetic waves of frequencyion of nonlinear waves in noncompensated metals with dif-
o much lower than the cyclotron frequen€yof conduction  ferent numbers of electrons) and holes ) under the
electrons can propagate in pure metals at liquid helium temfollowing conditions
peratures in a strong magnetic fiel,.2? In classically
strong magnetic field§) =1, wherer is the electron mean
free time, the nonlinearity region in metals is difficult to k<1, 0<l-4my<l,
create in actual practice. High electrical conductivity ham- ) )
pers the creation of a strong electric field, while nonlinearVherek=(0, ksing, kcos) is the wave vector, the ra-
effects caused by the influence of the magnetic fiéld of Q|us of curvature of the electro_n trajectory in the _unlform
the wave are suppressed by the external fidjdand are field Bo=(0,0Bo), | =ve7, ve being the Fermi velocity.
significant only wherH ~ is comparable wittH,. However, _A varying electromagnetic field in an infinite metal is
nonlinearity can be significant even for small-amplitudedefined by the system of Maxwell's equations
waves at low temperatures at which charge carrier quantiza- 4 19
tion levels in a magnetic field must be taken into account. If ~ curlB= TJ’ curlE=— e divB=0, (0]
the separatiole ~#() between the Landau levels is much
larger than their width#/7 and than the temperature of supplemented with constitutive relations for the current den-
charge carriers, the quantum oscillating component of magsity and magnetization. Hete=j+ ¢ curl M is the density of
netic susceptibilityy can attain values of the order of unity total current including the conduction currgnand the cur-
(A is Planck’s constait In this case, the difference between rentj’=c curlM induced by the magnetic field, being the
the magnetic fieldd and magnetic inductioB is significant  velocity of light.
even in conductors without any magnetic ordering, and the In the quasi-stationary caser<1, the system of con-
inclusion of magnetism is a self-consistent problem. Quanduction electrons has time to tune itself to the instantaneous
tum energy levels of charge carriers in a metal are detervalues of varying fields, and we can use static expressions
mined by the value of the microscopic figitlaveraged over for j andM substituting into them the values of the fields
regions of the order of the Larmor radius for electron, andand B™ at the given instant of time. Fdk,I<1, we can
hence the magnetizatiokl is a function of the magnetic neglect spatial dispersion in the expression jfand write
inductionB=By+ B~ (r,t), whereBy is its uniform compo- the conduction current density in the form
nent andB~(r,t) is the field of the wave. Fok?=|1 -

- : Ji=oi(Bo)Ex, 2

—47yx(By)| <1, the linear term of the expansion of the mag-
netic fieldH=B—4=M into a power series iB~ (r,t) may  where o (Bg) is the static conductivity tensor in uniform
be of the same order of magnitude as nonlinear terms, aniields. In the semiclassical approximation in which the sepa-
Maxwell's equations will be essentially nonlinear. ration between Landau levels is much smaller than the Fermi

The influence of strong magnetism of conduction elec-energyeg, quantum corrections to the electrical conductiv-
trons on wave processes in compensated metals was studiieg of a metal proportional to#{Q/e¢)? are usually smalt.
in Ref. 3. In this communication, we consider the propaga-Their inclusion does not affect the existence of natural oscil-

wT<l, Kkrg<l,
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lations of electromagnetic field and is reduced to a change in ( wf) )2 32|§Z 92 (92H”Z 92 Z)

the damping decrement of the wave. Since the ultraquantum | 2~ | 2t 2| =2+ ===

e ) : . . ) cQ) ot az=\ ay dz

limit #Q = ¢ is attainable only in semimetals of the bismuth

type, the semiclassical description of electron phenomena in 1 wf, &EIZ 1 wf, J 1

metals with the number of charge carriers of the order of one T0rc20” ot + Or ( 20t Qr )

carrier per atom is valid in a wide range of actually attainable _ _

magnetic fields. In the further analysis, we shall use the ex- P*H, °B,

pression for the conductivity tensor in classically strong X ay? + 922 | ©)

magnetic fields.

Using the local form of current densif®), we can easily
obtain from the system of equatiof®) the vector equation
for the components of the transient fiedd (r,t): k2c2Q)

In the linear approximation, this equation describes waves of
the helicoid type with frequency

0=z cosé\/kZ sir? 6+ cod 6, (7
B c? . P
i Ecurl(p curlH), (3)  differing from the frequency of a helicon in a classically

strong magnetic field by the factafx? sin? 6-+cosé. It can
easily be seen that, for?<1 and co$~«, linear and non-
Iipear terms inB, are quantities of the same order of mag-

In r_‘oﬁ‘?‘)mpensated _n’lletals, the diagonal components %itude, and the wave process is essentially nonlinear. The
the resistivity tensop,;(o~ ),; have the same order of mag- attenuation length

nitude. Without any loss of generality in the analysis of wave
processes, we assume that all of them are the same, equal to
po= 1oy, whereoy~ wf,r/47r is the static electrical conduc-
tivity of the metal in zero magnetic field and, is the fre-
guency of plasma oscillations of charge carriers. This allow
us to reduce Eq3) to the form

where  curlH) = pyi(curlH);, H=B—47M(B).

c
IdzK(wr)fl/Z(QTCOSH)mw—ZkalQTCOSG (8)

P
én this case must be considerably larger than the wavelength,
which is observed under the condition

k() TCOSH>1.
>} 2 2
B =— C_(b. V)curlH— C—po(grad divH—AH), ~ Inclusion of the term proportional tB; 2 in the expres-
at 4w 4m sion for
H,=«?B,+4m¢B2— 4 r2‘9—2—2B~Z 9)
whereb;=(1/2)e;pyi is the vector dual to the tensp; . If 2= KB T ATEE, a0 ay

we take into account the difference betw Maxwell’'s _ . . .
&0 leads to the emergence of elliptic functions in the solution of

equation retains the fort) under appropriate transforma- Eq. (6) which has the following form in the dimensionless
tion of coordinate axes. The largest component of the vector ~

i — — — — (22

b is b, determined by the Hall component of the resistivity Var'?gtfszu__BZ/bo’ yi=ylb, z=wzll, t=(k7L%)

tensorp,,=By/ce(n,—ny). If Q7cos>1, the remaining X (Y wp)t:

components of vectob in the first term on the right-hand 5%u  ¢% [#®W(u) J%u) 1y du Y

side of (4) can be neglected for any type of_ the electronfi“Lﬁ_Zi((;—yi Tzi) :?AlmjL?’((yTl_PAl)

energy spectrum, and the asymptotic expression for the vec-

tor b have the following form accurate to an insignificant JPPW(u) ¢u

dimensionless factor of the order of unity= (0,00} 7pg). ayf +(9_Z§ :
The densityj’ of the current induced by the magnetic

field is mainly determined by the magnetization component

(10

Here

M, since the vectoM is directed predominantly along, . J%u
and M, ,M,<M,. We write the expansion of the induced =~ W(u)=|u+u°— EY: ;
current density into a power seriesBi (r,t) and its deriva- !
tives in the forni® 1 4mark
- - - YT ar T
. B, 9B} , B,
Jx=c(curlM),=cx(Bg) 3y cé 3y +cCarg YT bo=BoVk2/Amé=kBy(hQleg);
(5 52 , 52

A =——+ k",
whereé= (B/B3) (e /7Q)?, anda and B are dimensionless N1 Iz
coefficients of the order of unity. The second and third termavhereL and« L are the characteristic scales of nonunifor-
in formula (5) are determined by the nonlinear and nonuni-mity of the nonstationary field in thg- and z-directions.
form correction to magnetization. Dissipative terms on the right-hand side of EtQ) are small
After simple transformations, we obtain the following when the inequalitf) 7«?>1 is satisfied. In this case, Eq.

equation forB; (y,z,t): (10) in the zeroth approximation in the small parameter
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7=yl k? has a wave solution, and the functiafr,,t) can
be sought in the formu=u(y), where ¢=n,;y,+n,z;
_th

Substituting this expression into EQ.0) and neglecting
terms of the order of;, we obtain

V2 d2u N d?

ns dy?  dy?

wheres?=n2+n3.

d?u

2 2 3 _ .4 —
s“u+nju n15d¢2 =

0, (12)

In the case of large wavelengths, the solution of this

equation can be written in a simple parametric formLIf
«k~Lis quite large and~ (kro/k)?<1, the last term in the
parentheses can be neglected. Integrating thrice the obtain
equation with respect t¢y and puttingu=u(w), wherew
= fudy, we obtain after transformations the following equa-
tion connectingu andw:
2

V—2W2= C?-s%u

nz
where C? is the integration constant. This leads to the im-
plicit dependencei(#):

2

2.4
Enlu y

2— 12

n (s?>+3n2u?)du
V (C?—s?u?—3/2n5u) V>
Transforming this expression, we put= v~ 1(\/1+ 21°A?

—1)Y2cosp, A=Cls, v=v3n,/s=[3«?sir?6l(«>sir? 0
+co€ 6)1¥2, which gives
\ d
v 2\/1—,u,zsinz<pdgo

N,S (14 22AZ) A~
de

n,s (1
T A-uZsif o)™

dW_

dy=—-=

13

ZIE 1—
2

Introducing the notatiora=Vn,'s™1(1+2»%A%) Y4 and

going over from the variableg,; ,z, ,t; to the variabley, z,t,

we can write the solution of Ed6) in parametric form:

B,=B,,cose(0(r,1)), (14)

1

K (1+22A%)12)

O(r,t)=kyy+k,z—ont+0q=2E(p,u) —K(ep,u),

(15
where
on=(1+20°A%) Yoy, ;
ky=ksing=an,/L; k,=kcosf=«kan,/L;
B,=(bo/v)(V 1+212A2—1)12 (16)

o= | e

E(sa,m:f:(l—ﬂzsinz o) Vg

are elliptic integrals of the first and second kind &g is
the initial phase. Equatiofl15) defines implicitlye as a func-
tion of ®(r,t).
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Using the property
Klne,u|=nklZ u|=nK
nZ.u|=nK| 5 u=nK(w),

ks

=nE( 5 ,M)Enam

E a
nE,,LL

of elliptic integrals, wheren is an integer, we can easily
verify that the magnetic field of the wave is a periodic func-
tion of the variable® with the period 4(u), wheref(uw)
=2E(u) —K(u). With variation of ®, the functionB, (®)
oscillates, assuming the maximum valtd , and the mini-

mpm value—B,, at the points® . =4nf(x) and®=2(2n

+1)f(u) respectively and vanishing &= (2n+1)f(w).

The varying fieldB, (r,t) depends on the arbitrary pa-
rameterA having the following physical meaning: the prod-
uct bpA is the amplitude of a linear wave. The extent of
nonlinearity of the wave process is characterized by the
quantity »?A2. If »?A%2<1, the functions u(A,d) and
B(A,6) can be expanded into power seriesvfiA?:

(g

2 2p2
- 1
BmzboA(l— ZVZAZ . (17

3
mo= 1— = 1v°A?

2 2

In the main approximation in¥?A2, we have ¢(r,t)
=0(r,t), and formula(14) is transformed into a harmonic
wave with amplitudeb,A. The range of values cb§>«?
corresponds to a weakly nonlinear mode. In this cage,
~ k?/cog 6, and we can easily obtain frofi4) and(15) the
following expression for values oA of the order of unity
(accurate ta’A?):

1+3 2
T6H

Mzcosaal(r,t)],

B,(r,t)=B,, cosO(r,t)

16 (18

where

@1(I’,t)=

1 3 2 0
+ZILL (r,t).

As the value of co# decreases, a transition is made to the
nonlinearity region. The wave process is essentially nonlin-
ear for cog~« for waves with amplitudé,,, of the order of
kBo(hQ/ep). For example, for values oBy~10°G,
hQlep~104-103, k>~10"1, nonlinear distortions of the
wave profile are observed f&_,~1 G.

In order to take dissipations into account, we can use the
standard theory of perturbations, assuming that the solution
of Eq. (6) in the zeroth approximation in the small parameter
7 has the form(14) and (15), the only difference being that
the parameteA is a slowly varying function of time. The
explicit form of the functionA(t) is difficult to determine in
view of a complex dependence Bf on A. However, we
can easily derive simple analytic expressionsAg¢t) in the
limiting case oft>()7cosd/w,. Dissipation leads to a de-
crease in the wave amplitude with time, and the funcfias
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a solution of the linearized problem fo® () r cosf/w,. Ne-
glecting nonlinear terms in E6), we obtain

A(t)=A(0)e “'t, (19
where
1 K% ZQ
w'=5y (1+ k2 sir? 6+ cog )

p
is the damping decrement for the linear wave.

The determination of the remaining components of elec-
tromagnetic field is reduced to elementary operations of in-

tegration and differentiation. In the main orders;jnthe elec-

tromagnetic field of the wave has the following structure:

B,=—B,cot,

(UN(UZ
s 12
Bx ~ k%c2Q) sinf cosé B sing(1—p?sirt )

cQ
E=—-—(e,XcurlH(B)), (20
@p

wheree,=(0,0,1) is the unit vector directed along thexis,
and the functiong(®) is defined by formula(15). In the

linear approximation, the varying field is a helicoid wave.

V. G. Peschanskil and D. |. Stepanenko

tion distribution is unstable. The field will increase until this
process is compensated by the nonlinear term. Ultimately,
the evolution of instability leads to the emergence of a
steady-state domain structdrelf dissipative effects are
weak, i.e.Q)7is quite large, the stabilization of a steady-state
domain structure must apparently be accompanied by weakly
attenuating oscillations of electromagnetic field. The ampli-
tude and wave numbek, are not independent parameters
any longer, but are determined by the quantii}?=1

—4my|. Equation(6) for x> 1/4s is not integrable in the
known elementary and transcendental functions. However,

we can explain qualitatively the behavior of the system in the
limiting caset—o. On account of weak dissipative effects,
the frequency and wave vector are slowly varying functions
of time, such thatv—0 andk,—0 for t—c. As a result,
Eqg. (6) is transformed into the time-independent equation
dH,(B,)/dy=0 which can easily be integrated and deter-
mines the steady-state nonuniform distribution of magnetic
induction.
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The atomic structure of the interfaces in amorphous—crystalline tungsten obiaisi¢al by

ultrafast quenching to low temperatures from the liquid phase are investigated by the methods of
field ion microscopy. A high degree of localization of imperfections and interfacial

incoherence is established. The coordinates of atoms at interfaces correspond either to the
crystalline or to the amorphous phase. Transition regions with intermediate positions of atoms were
observed only in the vicinity of boundary regions between closely packed crystallographic

planes and paraplanes. €999 American Institute of Physid$§1063-777X99)00903-3

INTRODUCTION a pulse duration in the interval>210 8-5x10 8s and an

Amorphous—crystalline materials possess unique electr@MPplitude 570 kV. Pulse generators were connected in se-
cal, magnetic, and mechanical properties which are interesties With a high-voltage0—25 kV) dc generator. The method
ing both from the scientific and technological points of view. Of obtaining amorphous microtips by ultrafast quenching
Peculiar physical properties of crystalline—amorphous matefrom the liquid phase in a strong electric field was described
rials are associated to a considerable extent with the presendgd discussed by Zaitsev and Suvofdv.
of a developed network of interfaces in théfmThe regu- Field ion microscopic images of crystalline-amorphous
larities of the formation of these materials by nanocrystalli-samples were analyzed by using the geometrical method of
zation of metallic glasses are essentially determined by prosomputer simulation of the imagésn the approximation of
cesses on the interfaces between the amorphous atide model of thin envelope, it was assumed that the contri-
crystalline phase%® However, the interfaces in strongly dis- bution to the formation of the ion-microscopic image comes
ordered systems have not been investigated practically ifrom atoms located in a surface layer of a certain finite thick-
spite of the application of the entire arsenal of high-nessé. The amorphous state was simulated by specifying
resolution microscopic methods in view of the difficulties of random displacement in the limits typical of the crystalline
deciphering microdiffractograms. In this communication, westate of compact polyhedra. Repeated random displacements
use the methods of field ion microscopy to obtain for the ﬁrSt\NaS performed in the case of 0\/er|apping of atoms. It was
time the information on the structure of interfaces betweenaken into account that the thickness of the envelope image
the amorphous and the crystalline phases on atomic level. 5 for amorphous tungsten was smaller than the correspond-

ing parameters, for samples in the crystalline stdteThe
EXPERIMENTAL TECHNIQUE geometrical model of field ion images is simplified and can-
Ipot ensure, among other things, a correct description of the

The experiments were made on a two-chamber field io ‘ dial distribution function in th h tat
microscope with sample cooling to liquid hydrogen tempera-Sur ace radial distribution function in the amorphous state.

ture. Helium under a pressure of 10Pa was used as the At the same time, it will be shown below that this model
image gas. The residual gas pressure in the working chambgptisfactorily reflects the main regularities of variation of
of the microscope was 10—10 7 Pa. Needle-shaped tung- atomic configurations at _the interfaces in crystallme—
sten samples with a radius of curvature 10~15 nm and th@Mmorphous metals. The simultaneous observation of the
cone angle 2—10° were prepared by electrochemical etchingfystalline and amorphous phases allows us to determine lo-
from a tungsten wire of purity 99.98%. After sample fixation cal magnification to a high degree of accuraajth an error

in the microscope, the surface was polished by low-Up to 2-5%, which eliminates difficulties in the interpreta-
temperature field evaporation until the formation of an tion of field emission images of amorphous metals consid-
atomically smooth hemispherical tip with a radius of curva-ered by Nordentoft.

ture in the interval 15-50 nm. Amorphization of needle- Characteristic atomic displacements at internal interfaces
shaped samples was carried out directly in the workingn solids normally occur in the range up to 0.1 Anvhich is
chamber of the microscope by ultrafast quenching from théeyond the standard resolution of the field ion microscope
liquid phasé® created by local melting of the tip of needle- (0.27 nm. However, In accordance with the analysis carried
shaped samples. Amorphous and crystalline—amorphousut by Mikhailovskijl° subatomic displacements can also be
samples were created with the help of pulse generators wittletected during the passage of the interface in the vicinity of
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poles of crystallographic planes with low Miller indices with resolvable displacements along the normal to the surface at
the help of indirect magnification method. This method caninterfaces of crystalline—amorphous materials in the indirect
be applied for an analysis of the atomic structure of inter-magnification method lie in the interval (1—2)X10 2 nm.

faces in the boundary regions between closely packed crys-

tallographic planes and paraplanes in the amorphous phas§scyssion OF RESULTS

In this case, the component of the displacement vettor

normal to the crystallographic plane can be determined: A Amorphization of needle-shaped microcrystals

T-n=rAr/R+pdy, 1) Our ex'periments proved that melting pf tips of ngedle-
shaped microcrystals by pulses of duration approximately

wheren is the unit vector of the normal to the crystallo- equal to half the amplitude (4—%)10 8s with the voltage
graphic planer the radius of an atomic step in the crystalline drop time~10"8s is optimal for obtaining amorphous and
phaseR the radius of sample curvature at the tifp,, the  crystalline—amorphous structure. As the duration of pulsed
separation between the planes, anthe integral part of the increases, the melting of needle-shaped samples leads to an
ratio T-n/dy,,. HereAr corresponds to the difference in the increase in the radius of curvature by more than an order of
radii of atomic steps on the boundary region between thenagnitude, which complicates their ion-microscopic analy-

crystallographic plane and the paraplane. sis. The optimum amplitude of pulses was varied from 5 to
Relation (1) shows that the minimum value of atomic 30 kV depending on the radius of curvature and was chosen
displacements normal to the surface is so that the electric field strength was 15-25% higher than the

threshold voltage of low-temperature evaporation. The
(T-Mmin=re/R, 2 threshold voltage of the evaporating field of tungsten at 21 K
wheree is the resolution of the microscope. In the course ofamounts to 5.8 10° V/cm. A comparison with the data pre-
field evaporation, the radius of an atomic step decreases, agénted in Ref. 12 shows that the ponderomotive forces
the resolution of the indirect magnification method increaseg¢merging in this case exceed considerably the ultimate
accordingly. However, the radius of the atomic step cannostrength of the metdl.As a result, most of samples were
be smaller than destroyed under pulse loading. The observations in field mi-
B 12 croscopgmass analyzér the detachment of the tips of the
Fmin= (RChi/2) ™ 3) samples was accompanied by a strong increase in the current
due to the effect of collective evaporation of atoms on©Of multiply charged ions. Most of atoms evaporated in the
closely packed faces. Relations(2) and (3) show that the form of 2—4-fold ions, but 5-6-fold |or_1|zed atoms were also
minimum displacement in theHKL] direction recorded on 0bserved. The ion current of density (2-8)0° Alem?

(hkl) faces by ion microscopy is given by flowing at the sample tip resulted in a vacuum breakdown,
s o iz 2Lt melting of the tip of the needle-shaped sample, and an in-

ATmin=e(h*+k+19)7(H"+K"+L?) crease in its radius of curvature by an order of magnitude and
X[y /(2R) Y2 (hH+ KK +1L). 4) higher. The estimates of the time of cooling of a conical tip

show that it does not exceed 10s due to the emergence of

Only the paraplanes that are analogs of the most closellgigh temperature gradients. The cooling rate of tips can be as
packed crystallographic plan¢s10 with d,=0.22nm are high as 16°-10''deg/s, which is considerably higher than
formed in the amorphous phase. Accordingly, the displacethe quenching rate during the stabilization of the amorphous
ment on interfaces between the crystalline and amorphoustate in macroscopic volumé$The structure obtained as a
phases in typical samples witR=50nm is AT;,=1.1 result of ultrafast quenching is stable at least at 21-78 K.
X 10~ 2nm. Expressior{l) can also be used for determining The stabilization of the amorphous state can be associated
the displacement of individual atoms relative to the crystal-with microscopic doping of surface layers during the vacuum
lographic plane in incoherent segments of interfaces irbreakdown accompanied by an intense mass transfer be-
amorphous—crystalline materials. In this cade, corre- tween the electrodés.
sponds to the difference between the radius of an atomic step As a result of pulse melting and ultrafast quenching, the
on a crystallographic face and the distance to the pole of théps of more than 80% of the samples were smoothed to the
face of the atom being analyzed in the amorphous phase. fadii of curvature at the tip from the interval 2010* nm and
geometrical analysis shows that the accuracy of the measurdid not ensure the level of field strength required for the
ments of atomic displacements on incoherent segments dbnization of the image gas for the maximum working volt-
interfaces with the help of indirect magnification method isage. As a result of competing action of surface tension and
slightly lower. While estimating the minimum resolution of electric field strength, microtidsvere formed on the surface
atomic displacement, we must take into account the indetemf the samples. The radii of curvature of a part of the tips
minacy in the position of atoms along the normal to thewere smaller than 50 nm, which ensured the obtaining of
surface within the thickness of the envelope imadé&:,,,, stable ion-microscopic images. Most of microtips has the
=(T-n)mint Ja, Where &, is the thickness of the envelope crystalline structure under optimal conditions of pulse treat-
image in the amorphous phase. In this case, however, nment, but approximately 10% of newly formed microtips
limitations associated with the effect of collective field were in the amorphous or amorphous—crystalline states. Fig-
evaporation are absent, and the thickness of the envelopges la and b show typical ion-microscopic images of
image is relatively smallsee above Thus, the minimum needle-shaped samples before and after the transition to the
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FIG. 1. Field-ion microscopic images of a tungsten sample before
(a) and after(b) transition to the amorphous—crystalline state.

amorphous—crystalline state respectively. The images of thalternation of extended plane regiofsee Fig. 1b and mi-
amorphous phase are characterized by almost complete lackoscopically rough regions with nanosteps having a height
of regularity in the arrangement of atoms in the surface layel—5 nm and width 2—-15 nn(Fig. 4). Crystallogeometric
and are described satisfactorily on the basis of the geometranalysis proved that extended plane regions are oriented
cal model(Fig. 2). As in the case of amorphous alloys of the along planes with low Miller indices. For example, a frag-
transition metal—metalloid type'®a decrease in the concen- ment of a plane region of the interface presented in Fig. 1b is
tration of surface atoms contributing to the formation of ion-oriented along the closely packed plai®1}. An important
microscopic images is observed. Figure 3 shows the distrifeature of microtopography of interfaces in crystalline—
butions off , over local concentrations of surface atoms in  amorphous tungsten and grain boundaries in the initial crys-
the amorphougcurve 1) and crystalline(curve 2) phases. talline material is the perfect atomic smoothness of extended
The ratio of half-widths of distributions for the crystalline plane regions of interfaces. Under ordinary working condi-
and amorphous phases is 2.8. The average density of atontions of field ion microscopes, which correspond to the field
images in the crystalline state is 2.2 times higher than thastrength of the best imadethe contribution to image forma-
corresponding value in the amorphous state. This confirm8on comes only from 25-30% of surface atoms in view of
the conclusion on the comparatively small thickness of theéhe above-mentioned small thicknedof the surface layer
atomic layer in the amorphous phase, patrticipating in themage(especially in the amorphous phas€his complicates
formation of the field ion imag@.According to our results, the nanotopographic analysis of interfaces. However, an
the thicknesse$, and . of envelope images in a computer analysis of a series of micrographs obtained under control-
simulation of field ion images were assumed to be equal téable evaporation shows that traces of interfaces are strictly

8% 10 2 and 2x 10”2 nm, respectively. rectilinear, indicating the atomic smoothness of the extended
plane interface.
Microtopography of interfaces In microscopically rough regions, no tendency to prefer-

. . . ential orientation along low-index planes was observed. As a
An analysis of the morphology of interfaces in g P

. . rule, planes cannot be identified in view of a small length of
crystalline—amorphous tungsten revealed their structural anr§‘§J

topographic nonuniformity. Microtopography of interfaces anosteps. However, the presence of a broad and nearly
pograp y- 1 pography o continuous spectrum of angles between the traces of the
reconstructed from the series of ion-microscopic images

obtained during field evaporation was characterized by

0.2}

0.1+

16

2

P, 10cm”

FIG. 3. Distribution of concentration of surface atoms in the amorphous
FIG. 2. Computer model of an ion-microscopic image of crystalline— (curve 1) and crystalline(curve 2) phases in crystalline—amorphous tung-
amorphous tungsten formed by low-temperature field evaporation. sten.
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FIG. 4. lon-microscopic imagéa) and stereo-
graphic projection(b) of a microscopically
rough region of the interface.

emergence of steps on the surfaddg. 4b indicate that images of perfect single crystals obtained by using the geo-

most steps are oriented along high-index planes. metrical modelsee Fig. 2 This indicates the incoherence of
the interface between the crystalline and amorphous phases.
Incoherence of interfaces In the case of a coherent conjugation, the existence of a

Regularity in the arrangement of atoms in the crystallinetrans't'on layer and the presence of local distortions of crys-

phase is preserved up to the interf4Bay. 5. The configu- tal lattice should be expected in the boundary region.

ration of concentric atomic steps corresponds to computer Atom_lc displacements were determlqed f“’”.‘ the local
deformation at the boundary of concentric atomic steps on

closely packed atomic faces by using the indirect magnifica-
tion method. The atomic displacements in the crystalline
phase along the normal to th&10 face in the region of the
core of the interface having a width up to a lattice parameter
did not exceed %10 2nm. Such displacements can be re-
garded as small deformations that do not change the crystal-
line type of atomic packing in the boundary region. A com-
parison with computer imagesee Fig. 2 shows that the
pattern of arrangement of boundary poles and atomic steps
on closely packed faces typical of bcc lattices does not
change in this case.

The absolute values|h| of atomic displacements in the
direction normal to thg110 plane in the boundary region
were calculated by the method of indirect magnification on
the basis of formulgl) (Fig. 6). Here N is the number of
atoms in the crystalline N<0) and amorphous N>0)
phases, which are nearest to the interf@s® the diagram in
Fig. 6. In the crystalline phase, the displacementgh|
<0.02 nm were observed. It can be proved that the gradient
of displacements does not exceed the deformation level gen-
erated by a lattice dislocation at the center of {h&Q face.
Thus, atomic displacements in the boundary region of the
crystalline phase are, as a rule, in the elastic region and do
not violate crystallogeometric regularity in the atomic pack-
ing. In the boundary regions of the amorphous phase no con-
jugation effects are observed as a rule. Irregular displace-
ments are typical even for atoms nearest to the boundary.
The displacements increase abruptly up to 0.1 nm, and the
form of distribution of atomic displacements does not change
as we move away from the interface. Thus, the structural
width of the interface determined from the length of the re-

FIG. 5. lon-microscopic imagéa) and schematic diagrartb) illustrating gion with a peculiar morphology of atomic packing in the

the presence of subatomic displacements at the interface. Figures dendi@r€ oOf the interfage can be assumed to be. 2€ro.
atoms in the amorphous phase, that are the closest to the interface. The observed incoherence and small width of interfaces
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<
<
- FIG. 7. Conjugation of the crystallographic plaf&l0 with a closely
packed paraplane.
Figure 7 shows an ion-microscopic image of the inter-
face containing the polgl10]. A semicircular atomic step at
L L L . L L the (110 face of the crystal conjugates at the interface with a
-8 -4 0 4 : :
N deformed atomic layefparaplangin the amorphous phase.

The absence of detectable ion-microscopic fractures in
FIG. 6. Subatomic displacements near Fhe interface between the crystallingtomic steps at the interface indicates a high extent of orien-
Ec')\';g)i n"’lg:’f ;::rgorphousl\{>0) phasesN is the number of an atom closest 40| correspondence of contacting crystallographic planes
and paraplanes.

In contrast to planes in the crystalline phase, paraplanes
between the crystalline and amorphous phases may play were characterized by the presence of small displacements of
significant role in diffusive transport of atoms and in the atoms. The emergence of atomic images within a semicircu-
formation of mechanical properties of crystalline— lar step in the amorphous phase in accordance with the geo-
amorphous materials. It can be stated on the basis of theetrical model of the formation of field ion images indicates
above peculiarities of the interfaces under investigation an@ displacement of atoms along the normal to a paraplane.
proceeding from the topological—-geometrical considerationdhe magnitude of the displacement is proportional to the
similar to those proposed in Ref. 2 that the network ofdifference between the step radius and the distance between
boundary lattice sites contains coinciding and noncoincidinghe atom under investigation and the pole of the paraplane.
sites. Boundary sites cannot form translation-invariant strucThe distribution off y over atomic displacementsh normal
tures either in view of the lack of translational invariance into paraplanes and calculated by the indirect magnification
the amorphous structure. Consequently, the structure armdethod on the basis of an analysis of a series of ion-
properties of crystalline—amorphous interfaces must be simimicroscopic images is shown in Fig. 8. We analyzed dis-
lar to those on intercluster boundaries in amorphous alloysplacements in the boundary paraplarisse Fig. 7 whose
Among other things, we can expect that at high temperaturesgength was normally 2—3 nm. Displacemedtb can be re-
when diffusive transport over the boundaries of atoms begarded as a measure of deviation from planarity in the
comes significant, the main mechanism of plastic deforma-
tion in crystalline—amorphous metals and alloys is a
diffusive—viscous flow over internal interfaces as in metallic tq
glasses.

Local atomic conjugation at interfaces

The methods of high-resolution transmission electron
microscopy’ and field ion microscop were used earlier to
detect the regions of intermediate ordering in amorphous al-
loys. These regions had a size of 1.5-2.5 nm and contained
closely packed but noticeably distorted atomic plafmsa-
planes. The available data indicate the coherent integration
of paraplanes with the amorphous matrix and the presence of
comparatively large strains. Similar paraplanes were also ob-
served in our experiments.

In the cases when crystallographic planes with low

L 1
Miller indices intersected an interface at an angle close to 0 0.05 0.1 0.15

90°, microscopic regions in which atoms formed closely Ah,nm

packed planqr groupsparaplanels were observed in the g g pistribution of atomic displacements in the boundary closely packed
boundary region of the amorphous plane. paraplanes.
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correspond to the crystalline phase as before. A considerable
variation of the surface density is observed in a region hav-
ing a width corresponding to three atomic spacings. Thus,
the width of the core of the interface between the crystalline
and amorphous phases in different regions amounts to 1-3
atomic spacings.

CONCLUSIONS

° The method of indirect magnification in the field ion
microscopy ensures the detection of subatomic displace-
ments at the interface between the crystalline and amorphous
phases with an accuracy exceeding the resolution of the mi-
croscope by an order of magnitude and higher. The applica-
FIG. 9. Dependence of the local concentration of surface atoms on théion of this method in our experiments has made it possible
distanced to the interface. to obtain for the first time the experimental information on
the structure of the interfaces between the amorphous and

. . . crystalline phases at atomic and subatomic levels.
arrangement of atoms in paraplanes in the boundary regions

of the amorphous phase. It should be noted that the distortiofl) Microscopic topography of interfaces was characterized

d,nm

of atomic paraplanes in the regions of coherent conjugation
with the amorphous environment was observed with the help
of high-resolution electron microscofyas well as low-
temperature field ion microscopy? The estimates obtained

by the indirect magnification method show that mutual dis-(2)
placement of planes and paraplanes does not exceed 2
X 10~ 2 nm. Alternation of mismatched regions and domains
of orientational correspondence of closely packed planes and
paraplanes was usually preserved during field evaporation of
the sample to a depth of 4910* nm.

Width of interfacial core

Physical and mechanical properties of interfaces are deF;
termined to a considerable extent not only by the structura
width, but also by the size of the region with an elevated
level of deformation energy. For example, while determining
the width of interfaces, we must take into account the pecu 4)
liarities of the deformation field beyond the structural width
of the interface!®

Considering that atomic displacements in the region of
cores of the interfacésare comparable with the thickness
of the envelope image, we can use the effect of variation of

by alternation of extended plane segments oriented pre-
dominantly along the planes with low Miller indices and
microscopically rough regions containing nanosteps. Ex-
tended plane regions were perfectly atomically smooth.
Atomic displacements in the boundary region of the
crystalline phase do not disturb the crystallogeometrical
regularity of atomic packing. As a rule, conjugation ef-
fects are not observed in the boundary regions of the
amorphous phase: irregular displacements are typical
even for atoms closest to the interface. The structural
width of the interface determined from the width of the
region with a peculiar morphology in atomic packing in
the interfacial core can be assumed to be equal to zero.

) The effect of conjugation of crystallographic planes and

paraplanes was observed in separate regions of the inter-
face, and a high extent of their orientational correspon-
dence was indicated.

It is shown that the width of interfacial region in which
peculiarities of deformation field were observed with the
help of ion microscopy is considerably larger than the
structural width of the interface.

Thus, the high-resolution methods of field ion micros-

& under amorphization of metals in order to estimate quanticopy are used in this work to establish the incoherence and
tatively the width of the core of the interface. Thus, the widthatomic sharpness of the interface between the amorphous and
of the interface core can be determined from the width of therystalline phases. Structural inhomogeneity of the interfaces
region of continuous variation of the thickness of the enveWas observed. Noncontracting regions alternate with the re-
lope image in the intervad, < < &.. The inhomogeneity of 9ions of or_|entat|onal correspondenc_e of closely packed crys-
the structure of interfaces between the crystalline and amoiallographic planes and paraplanes in the amorphous phase.
phous phases mentioned above is also manifested in the pres-
ence of a considerable dispersion in the values of local Widthg 4i1; mikhailovskij@kipt. kharkov.ua
of interfacial cores. Among other things, interfacial regions
with a virtually jump-like variation of density are observed
in regions of width 0.3-0.4 nfh The width of the core of 1A. P. Sutton and R. W. Balluffinterfaces in Crystalline Material<Clar-

- ) ’ ) . _endon Press, Oxfortl995.
such an 'nterface. can be assumed to be equal to a IattlceA. S. Bakai, inGlassy Metals Ill(ed. by H. Beck and H.-J. Gunthergdt
parameter, which is much smaller than the width of the core Springer, Heidelberg1994.
of crystallite boundarie® In some cases, the width of the z:\\/fv T’\;IJHHQ, B. i-T|3i$9,TH- Gd:-_li?;?t a’bi_J- Appl. PPIL)_/SI-ZSI, 654(1994. ]
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. . ield Evaporation Pergamon Press, New Yo(k978.
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A single-electron tunneling transist68ET) with a non-equilibrium mode population in one of

the leads is analyzed theoretically. We model transport through a dot coupled to a channel,

both formed by gates from the two-dimensional electron gas of a GaAs/AlGaAs heterostructure.
The non-equilibrium mode population, which is induced by coherent THz-pumping in the

channel, produces empty states below the Fermi level for electrons to tunnel into. A photocurrent
arises, which is periodically saw-tooth peaked with respect to the voltage on a central gate.

For intense THz-fields the peaks display plateaus that reflect the energy dependence of the mode
population. We also predict a high-gaify,/V; transfer-characteristic, similar to that of a

current biased SET. €999 American Institute of Physids$$1063-777X99)01003-§

1. INTRODUCTION In this work we consider, theoretically, how the perfor-
mance of a SET will be influenced by the application of an

Charging effects are becoming increasingly important inelectric THz-field in one of the leads. The important new

transport experiments, as fabrication technology for nanoingredient is a non-equilibrium mode-population, which re-

scale systems develops. These effects appear in differestilts in a photocurrent generation in the SET. For intense

kinds of circuits that have one thing in common—they all THz-fields we find a short-circuit current that reveals infor-

incorporate a small semi-isolated island in which the numbemation about the non-equilibrium distribution function in the

of electrons is strongly quantizéd® At low driving voltage,  lead. Considering instead weak THz-fields in an open circuit

fluctuations of the charge on this island are suppressed due tonfiguration, we find &;,/V,, transfer characteristic simi-

Coulomb interaction, except if the electrostatic potential oflar to that of the current biased SET.

the island is carefully tuneli.This Coulomb blockade

mechanism is utilized in the Single Electron Transistor

(SET), to modulate the conductance through the island bf' THEORY

varying the potential on a nearby gate electrdde. The system under consideration is described in Fig. 1.
When alternating fields are introduced in SETs and r'e\we choose to have a gate(ﬂ)EG realization in mind when
lated systems, interesting effects arise, and large amount @fodeling the system. Such a realization allows both
physical information can be gained. By applying MHz- Coulomb-blockade effects and ballistic motion over many

signals to one or several gates, one can generate precise Chlectron wavelengths:**When applying a negative voltage
rents in the pA-rang&® and by monitoring the reflection of 1o the gates, the electrons are confined to a dot and a channel,
a microwave signal from the SET, one can follow chargeplus to reservoirs on the two sides. We shall refer to the
fluctuations with high accuracyin these examples the alter- channel-side reservoir as the collector and to the reservoir on
nating field acts in a quasi-static way, but if the frequency isthe other side as emitter. The emitter is grounded to a back-
raised further, then high-frequency effects appear. For exgate and the collector is also grounded but via a load resistor
ample, if a microwave signal in the range 10—75 GHz is fedR . Our aim is to calculate the currehtthrough, or the
to the gate of a planar semiconductor SET, both photon asoltageV across this load resistor, as a function of the elec-
sisted tunneling across the barriers and photo-excitations inrostatic potential on the dot, which can be tuned via the
side the island, can be obsen/d. voltage Vy. We use the standard approach, ignore co-
So far, no special attention has been paid to utilizingtunneling and calculate the current from a master
ac-fields for inducing a non-equilibrium electron distribution equation>*® The influence of discrete states in the dot will
inside the leads of a SET. Such a distribution can clearlype ignored in order to highlight the influence of
open new ways of tunneling into and out of the island. In aTHz-pumping’ We take the band-bottom in the emitter as
metallic lead of typical dimensions this will have a negligible our reference of energy.
effect because of strong screening and poor size- Aslong as the width of the channel varies slowly on the
quantization. However, in a quasi one-dimensional conducscale of the electron wavelength, elastic scattering between
tor, such as a split-gate channel in the two-dimensional eledransverse modes may be ignofédThe resulting mode-
tron gas (DEG) of a GaAs/AlGaAs heterostructure, the potentials are sketched in the lower part of Fig. 1. We choose
situation is different. Recent transport experiments employthe width of the channel such that only the lowest mode
ing THz-fields touch upon this issd&!? enters the channel. However, by the application of a coherent

1063-777X/99/25(3)/6/$15.00 214 © 1999 American Institute of Physics
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emitter E@ E W collector V,= :—;)E ( %) 1/2, 3
N

T Ecos(wr) .
R, )V and assuming tha# (o — Q)|<K,(E), K,(E) and thatV,,
<hw we get for the populatiod(E) of the lowest mode at

K the end of the channel
&(E)=1-ysin[q(E)L]. 4
Here
el ©
emitter collector sz ,
ﬁ(w—Q) 2 Vw 271/2

FIG. 1. Sketch of the model system and the corresponding energy diagram. q(E) = q(E)

A coherent electric THz-field, polarized across the collector-channel induces 4K(E) 2K(E)
a non-equilibrium mode population. 5 *R(E) 12
_ m
Sl
electric THz-field of strengtHl%, across the channel, we ex-
cite higher modes inside the channel, provided that the an- K(E)= Kl(E)+K2(E)_
gular frequencyw is chosen to match the mode-potential 2
separation there fairly well. There is a strong similarity between Eg) and Rabi's

We consider a situation in which, even if higher modessormyla for the time developments of a two-level system.
are brought to life by absorption of a number of energy-papji's formula describes population oscillations in time in a
quantafio from the THz-field, only the lowest mode is in- {o-level system, while our Eq4) describes population os-
volved in the tunneling process. This is realistic for a split-gjjjations between transverse modes, as a function of the spa-
gate induced tunneling barrier. fio matches the mode ia| coordinate along the channel. The wave-vector of oscil-

potential separation inside the channel, the kinetic energy ij4tion along the channel is given lnfE) and the resonance
an excited mode will be the same as in the lowest mOdestrength byy.

However, at the end of the channel, where the transverse

confinement is made stronger by separate split-gates, the ki- _

netic energies will differ. The stronger confinement leads td¥aster equation approach

a larger mode potential separation, as indicated in Fig. 1. By E4(E,N) we denote the energy, relative to the bot-
Consequently, the kinetic energies decrease more in excitadm of the well in the dot, of an electron that has tunneled
modes. For this reason it is realistic to assume a suppress@sto the dot starting from an enerdy, when the number of
tunneling for excited modes. electrons on the dot increases frova-1 to N. If an electron

is to tunnel out of the dot into a lead at energythereby
decreasing the number of electrons frohto N—1, it must

We assume a parabolic confining potential in thestart at this very same ener@y(E,N). We use the follow-
channel® Introducing the parametad,, which describes a ing capacitance model for relatiriy(E,N) to E:

lifting of the bottom of the well, and}, which describes how ) c c
narrow the channel is, we write E4q(E,N)=E—N & +eV,—2 +eV—=+const. (6)
Cy ~ 9Cy Cs
U(y)=Uo+ zm*Q%?, () . : . .
HereCy is the total capacitance of the d@; is the capaci-
wherem* is the effective mass anglis the transverse coor- tance between the gate electrodes and the @ptjs the
dinate. The problem of finding the population of different capacitance between the collector and the dot. The electro-
modes in a pumped straight parabolic channel has been agtatic potential of the dot can be continuously tuned via the
dressed previousf. It was shown that if the deviation from gate potentiaV/, and it is dependent also on the electrostatic
perfect parabolicity is sufficiently large we can forget aboutpotential V in the collector. In addition there are contribu-
coupling to higher modes. We assume that this is the casgons to the potential energy on the dot from the point contact
and confine our interest to the lowest two modes. It is thergates and from the rest of the surroundings, in particular
straightforward to find an analytical solution. from random offset charges. We treat this as an unknown
Starting from the following expressiofin which e>0  constant in Eq(6). It corresponds to a shift iy, which we
is the elementary charydor the kinetic energyK,(E) in shall not try to determine.
moden: We assume that the electrons inside the dot, after each
tunneling event, quickly thermalize to a Fermi—Dirac distri-
A+ (n—-1iow, (2 bution with a temperaturd@ given by the surrounding and
with a chemical potentigl(N) given by the number of elec-
using the known expressithfor the coupling energy/,, : trons inside the dot. It then makes sense to introdRids),

Population of collector modes

1
Kn(E)=E—I—eV—U0—(n— 5
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the probability for havingN electrons on the dot. Further- because the pumping mechanism will depopulate the collec-
more, we can us8 E4— u(N)] for the probability of finding  tor and allow for tunneling far beloviEr. We assume an

an electron in a single-electron energy-letgl, given that  exponential decay in the tunneling rates when the energy is
there areN electrons on the dot, where lowered and we introduce a tunneling-decay sé&gldor this
purpose. The following form is used for the matrix elements:

f(x)=[e/*T+1]7L. (7)
. # e(E-Ep)/Er
By assuming thakT>AE we are allowed to use a con- IMgo(E)|%= (12)
. . . . . e/c( 2 2 R ’
tinuum description in the dot, and we take the density of TE PdPe/cRelc

states Ztherepd, to be constant. Moreover, we assume thatyhere p,,. is the density of states in the emitter/collector,
AE<e?/Cy and therefore ignore the variation p{N) with  \yhich we take to be constant. With this choice all densities
N. For simplicity we assume that is so large &Er—Uo)  of states cancel and we instead introduce the tunneling resis-
that its actual value has no influence other than adding to thgynces, which can be measured in an experiment by opening

constantin Eq(6). _ one point contact at a time.
The probability distributiorP(N) is found from the fol- The total rates are given by sums of partial rates associ-
lowing balance equation: ated with the different energies. Turning to a continuum de-
P(N)[We_g(N+1)+W,_q(N+1)]=P(N+1) scription we get
HX[Woo(NF 1)+ Wy o(N+1)] ® W q(N)= JO pef (E—Ep)To(E){1~ f[E4(E.N) - p]}dE,
plus the normalization condition
% P(N)=1. o) Wdﬂe(N)Zfo pef(Eq(E,N) — )T (E)[1—-f(E—Ef)]dE,

(13

In Eq. (9) we have used the following definitions of the total .
tunneling rates: by, . 4(N) we d_enote the rate at which Wcﬂd(N):j pf(E+eV—Egp)&E)
electrons tunnel from the emitter into the dot when there are UgthQ/2—eV
N—1 electrons on the dot to start with and tid®lectrons
on the dot in the final state; Bi,_.(N) we denote the rate
for the reversed process, in which electrons leave the dot o
when there ard\ electrons on it to start with; we denote the Wdec(N):J
corresponding collector rates by, . 4(N) andWy_,.(N).

The currentl, as defined in Fig. 1, can be found by XTJ(E)1-f(E+eV—Eg)&(E)]dE.
summing the rates for tunneling out of and into the emitter:

3. SHORT-CIRCUIT CURRENT

XT(E){1—f[E4(E,N)— u]}dE,

Ug+hQI2—eV

I=—=e2, P(N)[We_q(N+1)—Wy_(N)]. 10
% (NTWe—dl ) ae(N)] (10 WhenR =0 we know thatV=0 and we can find the

current from Eq(10). In our numerical calculations we vary
three important experimental variablé4,, E andEy. For

The barriers are formed by split gates and the voltage otthe rest of the parameters we use the following realistic
these gates is held constant. We crudely choose to ignore thalues: R,=R;=200K), Cy=100aF, C;=0.4Cy, T
dependence of the barriers on both the photovoltdgend  =0.1K, E;=14meV, Uy=10meV, 7Q =4 meV andL
the number of electrons on the dgt We start from golden- =2.5um. We assume that the frequency, or equivalently the
rule expressions for the tunneling rates. BYE) we denote  voltage on the gates that form the channel, is tuned to reso-
the rate at which electrons leave the emitter at an absoluteance, i.e.|n(0—Q)|<2V,, [seey in Eq. (5)].
energyE and tunnel into the dot. The same rate is used for ~ With our definition in Fig. 1 the curreritis negative. In
the reverse process. Hy.(E) we denote the corresponding order to avoid confusion in our explanations we shall always

Tunneling rates

tunneling rates from and into the collector, plot —I. In Fig. 2 we plot—1I, as a function oW, for a set
5 of field strengthskE ranging from 0 to 500 V/cm for three
Lere(E)= %|Me/c(E)|2Pd- (11)  different values of the tunneling-decay sc#e: 0.2, 0.5,

and 1.0 meV. Upon increasing,, at some point-1 in-

Here M(E) and M.(E) are tunneling matrix elements Creases abruptly and then decays more slowly, until the next
which are given by some overlap integral between initial and?0int of increase. For largér plateaus are seen on the de-
final states. Since we are not interested in the details igaying side, especially wheh is large.
these matrix elements we choose to describe tunneling by a We explain this behavior in Fig. 3. An enlargement
resistanceR, for the emitter barrier and a resistanRg for ~ of one of the curves is shown to the left, the one with
the collector barrier. Both resistances are defined at th&;=0.5meV andE=600V/cm. In the right part we illus-
Fermi-level. trate the population of both charge-states and lead-states,

However, the tunneling resistand@sandR, are energy corresponding to the cross-hair point on the current
dependent. In our case this dependence must be modeledrve. Because of the pumping, depopulation appears in the
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Short-circuit current [nA]

ET =0.2meV ET =0.5meV ET =1.0meV

4 I 0.05 nA separation

0.05 nA separation I 0.05 nA saparation

600 V/em g

7} 0.1 nA separation
95 V/em

FIG. 4. Transfer-characteristic, whd=40 V/cm, for different values of
the load resistance. Fét, = 1000 M) the voltage gain exceeds 3, but it is
smaller for smalleR, .

0123456 0123 456 0123456

Vg {(mV] Vg (mV] Vg (mV] . .
£ 5 —1. But at the population maxima there are no empty states

FIG. 2. Short-circuit current—1(V,) for three different values of the to tunnel into, which means that the outflow is insensitive to

tunn_eling-decayAscalET. E_ach curve corresponds to a particular value of g Change ian there. The reason Why the plateau is not

the field strengttE. For clarity the curves are separated by a constant Oﬁsetperfectly flat, is that as we pass a population peak there is an
increasing back-flow from the collector, which tends to re-
duce the net flow.

collector which means that not all levels below the Fermi-  aq \we continue increasé, and thus lower the charge-
level are occupied. Such depopulation enables tunneling OWkates,— | drops when we pass population minima and is
of the dot. steady when we pass a population maximum in a repetitive

IncreasingVq corresponds to lowering all charge-statesanner. The steps get smaller and smaller as the energy-
in the dot. The dramatic increase+ occurs when a charge period of population oscillations decreases.

state falls belovE in the emitter so that there is a way to fill
the dot. To start with the inflow from the emitter limitsl, 4 oL TAGE GAIN

and therefore—1 rises in proportion to the lowering of this ) _ _ )
charge state. In this section we deal with photovoltaic effects. We

After the top, the outflow will limit—1. The slow decay NOw assume the collector lod®_to be in the Ml-range,

of the current is understandable since the outflow takes placdllowing a significant negative collector-potenfilto build

at many different energies and we must thus bring theé/P relative to the grounded emitter. The lo&q, which

charge-state far down in order to shutl off completely. _S|mul<';.\tes.e|ther a voltmeter or the input of gnothertran_&stor,

The tunneling-decay scalg; determines this decay rate. is varleq in order to demonstrate the dr|V|.ng capability of
Also, the plateaus in the decay can be understood frorf€ device. We must now solve for the particular value/of

the population diagram. The first plateau appears when thigat gives rise to a currentgiven by Eq.(10) that fulfills

charge state passes the first population maxima as shown ¥ =Ry )

the right in Fig. 3. Since the charge-state is occupied most of _We make two assumptions about the system that must be

the time, the outflow rate from this charge-state limits thefulfilled in an experiment, if the voltage swing is not to be
limited. First, we assume that the mode spectrum in the

channel is robust to changes in the channel-gate potential. If
1 nA] a O b it is not, the system is brought out of resonance \as
changes, which makes the pumping ineffective. In the Ap-
pendix we elaborate a bit more on this point. Second, we
assume that the tunneling barriers are relatively high and thin
and allow for tunneling far below the top. To this end we set
E;=0.5meV andR,=R.=1 MQ. The high values of the
tunneling resistances assure that the charge-states are well
quantized even wheW rises. A promising technique for
A achieving high barriers is Inplane gatify.
Flg%(-m?/-/ Short-cirguit Culrrt?nt*dl_(Vg) for the Erz_0-5 me\; and E - Figure 4 shows the transfer characteristi&/(V,), for
point(b).C;Tu(eazenaer:gypdoeppueizzrrllcel?r? rtir:pi)c;)rtzlla;t?c?nno;ncgolfgcfoflg\;gf‘ssgi\iler =40Vicm, when(?g=0.fl§32 a‘_nd CC:O']'CE ) _NOte thajt
rise to plateaus in-1(V,). Note that a population peak is aligned with a W€ plot —V, which is positive, in order to avoid confusion
charge state for this particular choice . in the explanations. The result is not very sensitive to a
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below the Fermi-level, then we know that a single particle
description without phase-breaking works well at that en-
ergy. The influence of phase breaking is most pronounced
for slow electrons since they spend more time inside the
channel. Therefore, we expect the smallest plateaus in the
short-circuit current to disappear first. There is room for fu-
ture work on how to account for phase-breaking.

The photovoltage result of section 4 seems less sensitive
7 to the details in the depopulation and it requires a compara-

) ] ) _tively small field-strength of the THz-fielth Photovoltage
FIG. 5. Level diagrams for two different points on the transfer-characteristic

for R_.=1000 M. In & the mechanism behind the rising edge-o¥ is generation rglies in principle only on there being depopu-
illustrated. A charge state is aligned wify in the emitter. WherV,, is lated states in the collector for electrons to tunnel out to.
raised slightly, the charge state is lowered @aandV starts to decrease. Even though the precise energy-dependence of the depopu-
This decrease iV tends to lift the charge state back again @Ga. Ideally  |ation determines the current-driving capability, it does not
Fhe gain isC4/C;. _In b) the mechanism behind thg falling edge-oV is have much influence on the open-circuit voltage.
illustrated. HereEr in the collector has reached a higher charge state. Now - . . .
a lowering of the charge states is allowed. The transfer characteristic for largg in Fig. 4 is very
similar to that of the current biased SET with a large load
resistancé? In particular it has the same voltage gain, and
variation of E. Each curve corresponds to a particular valuethe underlying mechanisms are similar. This kind of transfer
of R_ . The voltage gain, which can be read off as the Steepcharacteristic seems attractive from the application perspec-
est slope of a curve, is ideallgy/C.. This can be under- tive since it allows for poor precision in fabrication of cas-
stood from Fig. Ba), where we analyze the rising edge for caded devices for logic applications. It has good gain, large
the caseR, =1000 M. voltage-swing and shows a saturation-like behavior. Such
Let us for the moment puE=0, R, == and ignore all Properties in combination make the precise value of the
but one charge-state. When this charge state is exactly le¥g-threshold, within limits, irrelevant.
eled with Er, in the emitter the current is blocked since A pumped SET has the potential of giving a very simple
there can be no flow between the emitter and the chargédrcuit architecture. Each device works as a tiny voltage-
state. However, whe¥W, is slightly raised the charge-state is controlled battery, which takes its energy from the THz-field.
lowered via capacitive coupling. Now electrons start to flow There is thus no need for power-lines on a chip. Nor do we
from the emitter into the charge-state. The flow from theneed clock-signal lines since in principle we can synchronize
charge-state into the collector is already made possible du&e devices by modulating the frequency of the THz-field. A
to the depopulation in the collector. Since the collector is arfimilar vision has been presented for devices consisting of
isolated region, such a flow will accumulate electrons on th&hains of islands’
collector, and accordingly its electrostatic potentaiwill Future research on material science and fabrication tech-
become more negative. Because the dot is also coupled cBology may bring other ways of realizing a pumped SET
pacitively to the collector, the decrease\rtends to lift the ~ than the one we have in mind. The key ingredient is a chan-
charge-state back again. This accumulation stops when tHeel, adiabatically connected to reservoirs, in which the elec-
charge-state again is leveled wilz . This way the electro- rons preserve their coherence for 50 wavelengths or so. It
static potential of the dot is regulated to be constant, and/ould be advantageous to define the boundaries of the de-
from Eq. (6) it is then clear thapV/dVy=—Cy/C,. Inre-  Vice without metallic gate electrodes, using for example
ality there will be corrections to this simple description thatetching and regrowth techniques, focused ion-beam implan-
reduces the voltage gain. An estimation of the maximunfation or perhaps—many years from now—by tailoring a
slope of theR, = 1000 M} curve in Fig. 4 indicates that the carbon nanotub?*2°
gain is about 3.3 and not exactly 4.
The falling edge in—V(V,) is governed by a different CONCLUSIONS

mechanism. As illustrated in Fig.(ty, a strong back-flow We have analyzed the influence of THz-pumping in one
sets in wherEg in the collector tries to rise above the next ¢ o |eads of a SET. THz-induced depopulation opens the
higher charge-st_ate. This back-_flow drains the collector 0E)ossibility for electrons to leave the dot below the Fermi-
electrons, andtr in the collector is thus bound to follow the o6 ail0wing a photocurrent to flow. As the gate voltage is
h}gher charge-state on _|ts way down: By a ConSIderatlorJ:hanged, the charge state in the dot acts as a probe of the
similar to that for the rising edge we find a slopd//dV, energy dependence of this depopulation. From the applica-
=—Cg/(Cx—Cy). tion perspective we present a new way of obtaining voltage-
gain from a SET.

a)
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5. DISCUSSION

An interesting aspect of our findings is that not only APPENDIX

Fermi-level properties are probed. The plateaus in the short- If the walls of the channel move as the electrostatic po-
circuit current, reflect the energy dependence of the modeential in the collector changes relative to that in the channel-
population. If a plateau can be observed for some energgates, it may result in a limited output voltage swing. From
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Eq. (7) we find that the system is brought out of resonance if L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, and J. E. Mooij, Phys.

the mode-spacin§i{) changes by more than\z, . In a typi-
cal experimerff it takes a change in the split-gate voltage o
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The structure and lattice parameters @f @illerite films evaporated in vacuum on t(#00)

cleavage plane of NaCl at the substrate temperature 290-400 K are investigated in the temperature
range 300-5 K by electron-optical methods. Fullerite films have an fcc lattice at room
temperature. The film structure changes with the temperature of condensation from epitaxial with
the (112) orientation to a disordered and highly nanodisperse structure with a grain size of

4-5 nm. The crystallographic conditions of conjugation of tb@0 surface of NaCl and epitaxial

Cqo fullerite films are determined, and the four-position type of their structure is established.

The fcc—sc transition temperature and the observed jump in the lattice parameter are close to the
corresponding characteristics of bulk fullerite. The temperature dependence of the lattice
parameter in the temperature range 100-260 K is used to determine the average linear thermal
expansion coefficient of the films. An increase i for small thicknesses is a size

effect associated with a considerable influence of the surface. A mechanism of formation of the
structure of condensedggfullerite films is proposed on the basis of the obtained results.

© 1999 American Institute of Physid$1063-777X99)01103-2

INTRODUCTION condensed on NaCl. For small thicknesses, the structure of
condensed films can be determined not only by the type of
The discovery of stable polyatomic molecules, viz.,the substance being evaporated, but also by the structure of
fullerenes G (n=...,60,70,..) in theform of convex poly- the substrate. The lattice parameter of Na&+0.564 nm)
hedrons, led to a new class of carbon-based sdlidierites) is smaller than not only the (g lattice parameter(a
possessing peculiar properties. Thg Golecule having the =1.42nm, but also the diameter of the molecule it$el7
shape of regular truncated icosahedron was of special intenm). At the same time, the given film—substrate system is
est. The structure and properties of fulleritg,@ave been characterized by crystallographically favorable relations for
investigated by many authot$. the epitaxial growth of filmsin spite of considerable differ-
Pure fullerite Gy whose molecules are bound by weak ence in the lattice parameters for fullerite and NaCl. For
Van der Waals forces at room temperature and under thiastance, two periods of thegglattice are equal to five pe-
normal pressure is an orientationally disordered crystal withiods of the NaCl lattice to within 1%, while two diagonals
a face-centered cubiécc) lattice. At 260 K, the fcc lattice is  of the Gy fullerite lattice correspond to seven periods of
transformed into a simple cubiso) lattice. In this transition, NaCl lattice to within 2%. For this reason, we can expect
Cgo molecules remain in the same positions, but their third-€ither parallel or 45°-orientation in condensed films @§.C
order axis starts being oriented along fi4 1] direction of ~ The information on the lattice parameter ofy(ilms of
the crystal. As a result of an increase in pressure and tenthickness of a few molecular layers is also of considerable
perature and also irradiation by visible and ultraviolet light, interest.
fullerite Cgq can be transformed to the well-known phases of
carbo_n (graphlte and dla_mor)das well as othe_r one- and EXPERIMENT
two-dimensional polymerized structure simulating the ortho-
rhombic, tetragonal, and rhombohedral phastBivestiga- The films of Gy fullerite were obtained by evaporation
tions of Gy in the thin-film state is of independent interest and condensation of (g single crystal of purity not worse
due to the possibility to vary the structure, substructure, anthan 99.9% in a vacuum of-10 °Pa. Fullerite crystals
morphology by varying the condensation conditiéns. were evaporated from a quartz crucible heated by a molyb-
This paper is devoted to an analysis of the structuredenum spiral to a temperature~800K. Cleavage
orientation, and lattice parameter of thiggQullerite films  surfaces(100 of NaCl served as substrates. The substrate

1063-777X/99/25(3)/5/$15.00 220 © 1999 American Institute of Physics
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temperaturd ¢ changed from 290 to 400 K. Individual crys-
tals whose mass did not exceedl0 g were evaporated.
The thicknesses of the films under investigation varied from
3 to 30 nm. The thickness of the films, which was deter-
mined preliminarily by the mass of the sample and the
evaporation geometry, was calculated from the change in the
frequency of quartz resonator and from the size of the recip-
roca{lﬁ lattice site in a direction normal to the plane of the
film.

The films intended for electron diffraction and electron
microscopy studies were separated in water and recovered by K
copper electron-microscope meshes so that the film edge in-
dicating the[100] direction in NaCl was parallel to a side of
the mesh. The mesh with the film was photographed on a
photographic plate with an electron diffraction pattern in
electron diffractometer. The photographing conditions en-
sured the absence of rotation between the mesh and its im-
age. For this reason, the photographic plate with the electron o @ ]
diffraction pattern also contained information on §€0] 404 224 044
direction of NaCl. This experimental approach simplified the
subsequent analysis of electron diffraction patterns and al- o ®
lowed us to establish the crystallographic directions along 422 202 0
which the fullerite film was conjugate to the substrate.

The lattice parameter of films was determined by the @ o ® o o
method of transmission high-energy electron diffraction us- 440 220 000 220 440
ing a standard grating. The latter was in the form of a thin
annealed aluminum film of thickness50 nm. The sample o o ® o
and the standard grating were placed in an attachment of the 242 022 202 422
electron diffractometer, whose temperature could be changed
controllably from room to liquid helium temperatufefhe ® L o
sample and the standard grating were in the same plane per- 044 224 404 b
pendicular to the electron beam which passed simultaneously
through the sample and the standard. The electron diffractioh!G- 1. Experimental electron diffrgction pattern frorgo_cﬂlms condensed
patters from the sample and the Siandard were_photdf % NAIC ATSSTOKS e s o2 meen cel e (100
graphed on the same plate. The electron diffractometer coRgrn for a(111) monocrystalline film with the foc latticéb).
stant 2.\ (L is the distance between the sample under in-
vestigation and the photographic plate axdhe electron
wavelength was determined at each temperature. For thism
purpose, the available data on the temperature dependencegg
the lattice parameter for bulk aluminum were uééd. -

1/3 (422)

(220)
2/3 (422)

(422)

nts, the angles between neighboring reflexes were 6.6°
.2° and 23.3%0.1°; reflexes of the typ&20) and (422
were located on the same radius veatgy drawn from the
zeroth site of the reciprocal spattbe center of the electron
DISCUSSION OF RESULTS diffraction patterm; reflexes forbidden by the structural fac-
tor for an fcc lattice and characterized by the interplanar

According to the results of electron diffraction and yistancesi=0.86 and 0.43 nm reproducing the arrangement
electron-microscopic experiments, the films afy@llerite o the main reflexes were present.

were continuous in the given range of thickness and tempera- According to Fig. 1a, th§100] direction in NaCl is par-
tgres a_\nd had a fcc lattice at room_temperature. Electron)ie| to the radius vector containing the reflex@20 and
diffraction patterns Ts=370K) contained reflexes of the (422). This means that thél11)-oriented G film is conju-

(220 and(422) type, which are typical of thel1l) orienta-  gate with the substrate according to the following orienta-
tion (Fig. 19. It should be specially noted that when the film ;541 relations:

was displaced by- 3 mm under the electron beam, the form

of the diffraction pattern did not change, indicating that the ~ (11D[110/C0l(100[100|NaCl, @
sample had a monocrystalline structure. However, the ob- —

tained electron diffraction pattern ofg&films differed con- (112[112]C49l(100[100NaCI. 2
siderably from that predicted theoretically for tfiel1) ori- The simultaneous fulfillment of relatiorg) and(2) in-
ented monocrystalline filngFig. 1b. The difference can be dicates that the film contains two types (f11)-oriented
described as follows: we observed 24 reflexes of (%0 crystals turned through 90° relative to one another. The elec-
and (422 type instead of 6 reflexes expected for the giventron diffraction pattern from such a film must be a superpo-
orientation; according to the results of precision measuresition of two electron diffraction patterns frongl11)-
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:t::g:t[ﬁolcso
(210] NaCl

' S

[100] NaCli o

FIG. 2. Epitaxial four-position orientations @i11) nuclei on the(100) ’ )
surface of NaCl. I"‘ ¢

oriented monocrystalline films turned through 90° relative to _ S . ,

h other. However. electron diffraction patterns from film FIG. 3. Theoretical electron diffraction pattern @f11)-oriented G films
ef_ic ’ . P ) Swith a four-position structure defined by the orientational relations
with such a two-position structure must contain 12 reflexe§1ﬁcﬁd‘[2m,\,ac| (®,0); [110/Cogl[120INaCl (k%) |110|Cog[120NaC

of the (22.0) and (422 type inStea_d of 2_4 O_bserV?d reflexes. (A,A); |110|Cdl[210]NaCl (m,0) for reflexes of thg220) type (dark sym-
Thus, neither parallel, nor 45°-orientation is realized for suclbols) and (422 (light symbols.

an epitaxial conjugation of theggfilms under investigation
and the(100)-surface of the NaCl single crystal.

The presence of 24 reflex¢820) and(422) on electron  have the same form. These diffraction patterns differ only in
diffraction patterns and the fact that these reflexes lie on théhe anglesp, and ¢,. For this reason, a comparison of ex-
same radius vector indicate that the electron diffraction patperimental and theoretical electron diffraction patterns was
tern of the G film can be regarded as the superposition ofcarried out for the angleg; and¢,. Table | generalizes the
four diffraction patterns. This means that the film has a mul+esults of precision measurements of angfgsand ¢, be-
tiposition structure, and the following orientational relation tween adjacent reflexes on experimerifiy. 13 and theo-
of a more general form must hold: retically constructed electron diffraction patterns for a four-

position nucleation. The table contains only the results for

(111[110]Cel(100[ hKO]NaCI. © the directiong210] and[320] for which the values o, and

This relation permits the nucleation and growth of crys-¢, are close to the experimentally observed values. It fol-
tallites in four equivalent orientations, ensuring the four-jows from the table thathk0] corresponds to the direction
position structure of thin g fullerite films. [210] to within the error in the measurements of the angles.

The information on th¢hkO] direction can be obtained The four-position structure of epitaxial films of,§ful-
if we know the exact position of the directi¢f00] in NaCl |erite is in accord with the results of electron microscopic
on the electron diffraction pattern. TH&00] direction in  studies. According to the data on dark-field images in the
NaCl was determined experimentally on electron diffractioniight of reflexes (220), the films were polycrystalline in
patterns to withint5°. In this case, thghkO] direction was  structure (Fig. 4). The average size of crystallites was
determined by comparing the obtained electron diffraction~35nm. Thus, an epitaxial film contains four types of
patterns with the theoretically constructed patterns for a mul¢111)-oriented crystals each of which has the closely packed
tipositional nucleation. It should be noted that the angle bedirection [110] parallel to a direction of th§210] type in
tweenr 5,0 andr 42, on the electron diffraction pattern from a NaCl. The formed nuclei of g fullerite are oriented so that
monocrystalline film with thg111) orientation is 30°(Fig.  their (111 plane is parallel to thé100) plane of NaCl in four
1b). For this reason, taking into account the above-equivalent azimuthal positions characterized by a rotation
mentioned error in determining th&00] direction in NaCl,  through the angles 36.87° and 53.13° relative to [thkl]
we analyzed the directiophk0] the angle between which axis(see Fig. 2 For this reason, the films with such a struc-

and the[100] direction in NaCl was in the interval 25-35°. ture give an electron diffraction pattetsee Fig. 1awhich
Such directions werg210], [320], and[740]. For these di-

rections of conjugation of the &film and NaCl, theoretical
electron diffraction patterns were constructed for films withTABLE I. Values of anglese, and ¢, on theoretical and experimental
four-position structure. The model of the structure of such gliffraction patterns from{111-oriented films with a four-position structure.
film is shown in Fig. 2. By way of an example, Fig. 3 shows
an electron diffraction pattern for tHé11)-oriented G film

in which the closely packed directidi10] is parallel to a  Orientation(theory ¢ ®2
direction of the[210] type in NaCl. The electron diffraction |170|Cogl 210 NaCl 6.8 23.2
pattern contains only the most intense reflexes of(216) 1170|Cqgl[320NaCl 7.4 226
and(422) type. The electron diffraction patterns in which the Experir‘;em 6.60.2 23.3-0.1
[110] direction is parallel to th¢320] and[740] direction

Angles, rad.
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FIG. 5. Temperature dependence of the lattice parameter @f &él@ of
thickness~4.5 nm: circles and triangles correspond to independent experi-
ments.

1.404 nm T=5K). The phase jumpa/a=0.35% ob-
served all =260 K is associated with a phase transition from
the fcc to sc lattice. The obtained dependema¢d), the
of a G fullerite film of thickness 4.5 nm. Magnificatior 120000. lattice parameter of the films are close to similar data for
bulk fullerite.

can be regarded as a superposition of four electron diffrac- 1he average thermal expansion coefficienis deter-
tion patterns from monocrystalline film@ig. 1b rotated ~Mined from thea(T) dependence for the temperature range
through the above angles relative to fid 1] axis. 260-100 K. The value of this coefficient for the oriented
Thus the emergence of additional reflexeg280- and ~ Phase '5“:33_>é 10__16 K™%, which is glmzost twice the value
(422-types and their mutual arrangement on electron dif0f @=19x10"°K™* for bulk fullerite* and is in good
fraction patterns from thin & fullerite films with (112)-  agreement with the estimates obtained eatfidihe value of
orientation can be explained successfully by the model of the increases with decreasing thickness. Such a size effect of
structure formed as a result of nucleation and growth ofhermal expansion is apparently due to the effect of the sur-
(111)-oriented G, crystalliltes in four equivalent positions face._ _ . _
on the(100)-surface of NaCl. Figure 6 shows a typical electron diffraction pattern of
It was noted above that electron diffraction patterns conCeo films condensed of100) NaCl atTs=290K. The form
tained reflexes forbidden by the structural factor for the fccOf the electron diffraction pattern did not change when the
lattice, which can be identified as reflexes of the type 1/3ample was tilted through an angle 030° relative to the
(422 and 2/3(422) associated with stacking fauldllFor  electron beam, indicating the absence of any orientation. The
the (111) orientation, a film with an fcc lattice can be pre- e_Iectron . diffraction pattern containe_d broad halo-shaped
sented as a sequence of alternating |ayBIC,ABC,.... If  rings typical of the amorphous, nanodisperse, or amorphous—

the number of layers over the film thickness is not equal to
3n, wheren is an integer, the above-mentioned additional
reflexes are formed. It follows hence that for small thick-
nesses(~10nm and smallgerand interplanar spaces;;;
=0.82nm in fullerite, the intensity of these reflexes can be
comparable with the intensity of the main reflexes and must
decrease with increasing thickness. Such a situation is ob-
served experimentally in theggfullerite films under inves-
tigation. The multipositional type of the structure is respon-
sible for the increase in the number of extra reflexes to 24,
and they reproduce the arrangement of matrix reflexes.

It should be noted that in spite of the point-like form of
electron diffraction patterns recorded in a wide electron
beam, the perfection of the epitaxial films ogfullerite
under investigation is intermediate between texturized and
monocrystalline films.

Figure 5 shows the temperature dependence of the lattice
parameter for a fullerite film with a four-position structure.
The film thickness was 4.5 nm. It follows from Fig. 5 that the g 6. Electron diffraction pattern of gfilms condensed ofL.00) NaCl at
lattice parameter changes from 1.418 nM=300K) to  T,=290K, 2LA=13.25 nmmm.

o.82nm11)
-0.45nm(220),(341),(222)
.30 NM (331),&20),(422)
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nanodisperse states. Crystallites of the size 4-5 nm can bretalg, the amorphous structure is observed only at low
resolved on dark-field electron images, which is an evidencéhelium) temperatures of the substrate. At higher temperature
of the nanodisperse state. The rings observed on electrasf the substrate including room temperature, the amorphous
diffraction patterns can be identified in the fcc structure ofstructure is observed for substances with a continuous com-
fullerite. For example, the first three rings correspond to inposition of vapor(carbon, germanium, or silicos

terplanar distanced=0.82, 0.45, and 0.30 nm. The ring The large mass of & molecules is an important factor
with d~0.82nm is close to thél1ll) position of the line limiting the mobility of fullerene during condensation. These
from Cgp, while the second and third rings are superpositionsonsiderations and experimental ddt@ntinuity for small

of rings (220), (311), and (222 with d=0.502, 0.428, and thicknesses and the four-position type of the strugtscey-
0.410 nm and331), (420), and(422) with d=0.326, 0.317, gest that condensed fullerite films are formed according to
and 0.290 nm, respectively. The li(200 was missing due the mechanism vaperdisordered  (amorphous

to size relation between the diameter of thg @olecule and state—ordered state. The amorphous phase is formed at first
the parameter of the fcc lattice of fullerité. stages of condensation followed by crystallization and re-

The above-mentioned size of blocks in disoriented ful-crystallization at higher temperatures under the orienting ef-
lerite films corresponds to three parameters of thgl&@tice.  fect of the substrate.

This means that crystals of such a size contaib®® mol-

ecules of G, According to theoretical calculatiodSjcosa-  E-mail: solodovnik@ilt kharkov.ua

hedral, i.e., quasi-crystalline structure is favorable for crys-—_______

tallites with such a degree of dispersion. It can easily bel\lfé’\’hgcz';{:gé;iz- Nizk. Temp18, 217(1992 [Sov. J. Low Temp. Phys.
verified that thg size of the icosahedron constructed from 12,\,"\, Brazhkin and A. G. Lyapin, Usp. Fiz. Nauk66 893 (1996 [sic.
Cso molecules is~2 nm. In other words, each block contains 3a. M. Rao, Ping Zhou, Kai-An Wanet al, Science259, 955 (1993.

8 icosahedrons if we presume that the shape of the blocks i&L. S. Palatnik, M. Ya. Fuks, and V. M. Kosevichlechanism of Forma-
isotropic. A more detailed analysis of the obtained results Eifg;;”d Substructure of Condensed Filfits Russiar, Nauka, Moscow
from the point of view of the quasi-crystalline structure re- 5L.s. I5alatnik and I. |. Papirorientational Crystallizatior{in Russia,
quires additional experimental data. Metallurgiya, Moscow(1964.

Thus, the structure of thin g films may change over a  °P. Hirsch, A. Howie, R. Nicholsort al, Electron Microscopy of Thin
wide range frqm a dISQrered nonOdlspel(mnorphogsf 7g.ryﬁtaKI(szI;I):r?|S§gr?§5\)/.. A. GodovaniyPrib. Tekh.'Rsp. No. 2 235
type) to well-oriented epitaxial structure upon the variation (1967).
of condensation conditions. 8B. F. Figgins, G. O. Jones, and D. P. Riley, Philos. MBg747 (1956.

A typical feature of the obtained films is their continuity °M. E. Str.aumanis and C. L. Woodard, Acta Crystallogr., Sect. A: Cryst.
for small thicknesses~3 nm), which was monitored in ex- mghys" Diffr., Theor. Gen. Crystallogh27, 549 (1971.

. . . . Cherns, Philos. Mag0, 549 (1974).
periments by the method of high-resolution @.2nm) elec- 11y B zhao, X.-D. Zhang, K. J. Luet al, Thin Solid Films232, 149
tron microscopy. The continuity for small thicknesses of the (1993.
films is attained either by layer-by-layer monocrystalline “’L. S. Fomenko, V. D. Natsik, S. V. Lubenet$ al, Fiz. Nizk. Temp.21,
groth, or by the formation of the amorphous structure Of“i(.s?rfll?l?ga[ch%v\\ll,Lérg?-ghhu{sazkivzéigldgﬁl?]l: Gorbenko, Fiz. Nizk. Temp.
the film. The observed structure contradicts the layer-by- 23 g54 (1997 [Low Temp. Phys23, 642 (1997)].
layer growth concept. The amorphous state is formed in th&s. Amelinckx, C. van Heurck, D. van Dyck, and G. van Tendeloo, Phys.
films under the conditions of confined mobility of atoms, , Status Solidi A131, 589 (1992.
molecules, or clusters of the substance being deposited. Fof V- v de Waal, J. Chem. Phya, 4909 (1993.

substances with a monatomic composition of vapeg., Translated by R. S. Wadhwa
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