
LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 5 MAY 1999
QUANTUM LIQUIDS AND QUANTUM CRYSTALS
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A general theoretical approach is developed for describing the dynamic properties of
semiquantum fluids on the basis of the nonequilibrium statistical operator technique. A set of
equations of generalized hydrodynamics is derived and the particular case of thermo-
viscoelastic model of a fluid is analyzed in details in the hydrodynamic limit. The case of
intermediate and large values of the wave vector is also discussed. The Markov approximation for
transport kernels is used to obtain a closed set of equations for dynamic correlation
functions. The problem is considered in the context of relation with the experimental data on
neutron scattering and the theoretical results known previously in the literature. ©1999
American Institute of Physics.@S1063-777X~99!00105-X#
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1. INTRODUCTION

Liquid 4He is a classical example of a quantum liqu
which has drawn the attention of experimental and theor
cal scientists for a long time.1–3 Being an object obeying
Bose–Einstein statistics, liquid4He requires, like many othe
Bose- and Fermi-systems, the application of the quant
mechanical apparatus for describing its thermodynamic
nonequilibrium~dynamic! properties.3,4

It is well known that any quantum system can be ch
acterized by specifying certain effective parameters that
important for understanding its properties. One of such ch
acteristic parameters is the quantum degeneracy temper
Td5\/t which depends on the number densityn of particles
and the effective massm* of a particle:Td}n2/3/m* . The
quantityt can be treated as the quantum delocalization t
of the particle. Another characteristic temperature describ
the role of phonon processes in a quantum system is
Debye temperatureTD5\VD .3 It can be estimated throug
the relationTD}cn1/3, wherec is the adiabatic velocity of
sound.

Quantum systems usually obey the inequalityTd!TD .
Depending on the value of the equilibrium temperatureT, all
quantum fluid~whose melting point is much lower thanTD!
can be divided into two main classes:

~a! fluids for whichT,TD , and hence the quantum e
fects play a dominating role in them;

~b! liquids ~and gases! for which Td,T!TD .
According to Frenkel’s model,5 a significant point in the

description of kinetic processes in liquids belonging to cl
~a! is that the vibrational frequencyv of the atoms around
their equilibrium position is much higher than the reciproc
t21 of ‘‘hopping’’ of the particle between two adjacen
states. Thus, we can use the phenomenological model f
system of particles having a fairly high vibrational frequen
and located at the bottom of the potential well, which pa
2951063-777X/99/25(5)/8/$15.00
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over to the nearest equilibrium state after a timet. In Fren-
kel’s description, transitions of particles of a liquid in a
asymmetric potential well play the role of elementary ex
tations. Such phonon-type excitations have been defi
quite adequately under the conditionvt@1, and must con-
tribute to the thermodynamics as well as dynamics of
system. Since long-range order does not exist in a liquid
the local equilibrium positions are distributed unevenly, su
liquids must possess a number of properties characterist
low-temperature glasses, the only difference being that
barriers are penetrable in the case of a quantum system.
a phenomenological description enabled Andreev to in
duce in scientific terminology the concept of ‘‘semiqua
tum’’ fluids and to determine a number of thermodynam6

and kinetic7 properties of such systems. In particular, he o
tained a linear temperature dependence of specific heat in
interval characteristic for fluids belonging to class~b!, which
differs from the phonon behaviorcV(T)}T3 which is char-
acteristic for quantum objects of class~a! ~e.g., for a degen-
erate nonideal Bose gas8!. As regards the dynamic propertie
of semiquantum liquids, the following dependences w
obtained7 in the frequency range\v!T for viscosityh and
thermal conductivityl: h}T21, andl}T. The absorption
of ultrasound in semiquantum liquids was also studied
Ref. 9. The frequency dependence of the absorption co
cient was estimated under the assumption of a weak de
dence of the density of states on the excitation energy.

Naturally, it can be asked whether such weakly dispe
excitations can be detected in experiments on scattering,
in which range of wave vectorsk can they be expected. In
this context, we can mention that Crevecoeuret al.10,11 car-
ried out their investigations for two thermodynamic states
4He, viz., T54 K, p51 bar andT58 K, p518.7 bar, the
object of investigation being the symmetrized dynamic str
tural factor Ssym(k,v). The results of these investigation
© 1999 American Institute of Physics
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will be described in detail in subsequent sections. For
present, we merely remark that these authors used the
cept of generalized modes to construct a se
phenomenological model for describing the experimen
data using the formalism of two~damped harmonic oscillato
model! or three variables~hydrodynamic model!. In these
models, the unknown parameters forSsym(k,v) played the
role of fitting parameters. These models do not explain fu
the essence of dynamic processes occurring in a sys
hence we can accept the statement of Griffin12 that the spec-
trum of strongly damped phonons may quite turn out to be
artifact of a certain fitting.

In another important publication from the point of vie
of the dynamics of semiquantum systems, Montfrooijet al.13

have presented the experimental data for gaseous heliu
T513.3 K, p5203 bar in the interval 3 nm21<k
<11 nm21, as well as results of calculations obtained in t
five-variable formalism~thermoviscous model!. The general-
ized dynamic matrix was determined for intermediate val
of the wave vector as well as in the hydrodynamic lim
k→0 where the corresponding nondissipative elements t
to their thermodynamic values while the transport coe
cients can be treated as experimental values. It was
shown that unlike classical liquids, the dynamic structu
factor in this case has a clearly traceable side resonanc
the region of intermediate wave vectors. However, the c
clusion drawn by the authors13 about the purely thermal ori
gin of propagator excitation which is transformed into or
nary sound in the limitk→0 seems to be quite strange.

The present paper aims at studying the nature of col
tive excitations in semiquantum4He proceeding from micro-
scopic premises. For this purpose, we use the concep
generalized collective modes, which was found to be qu
effective for studying dense classical liquids.14–16Analyzing
the spectrum of a simple Lennard–Jones liquid,17 it can be
assumed that weakly disperse excitations observed ex
mentally in semiquantum helium are actually kinetic prop
gator modes emerging as a result of interaction between
cous and thermal processes. These modes are stro
damped in classical liquids, but can be observed in a num
of cases in simple liquids15,16as well as binary mixtures18–20

in which they generate interesting phenomena named ‘‘
sound.’’

The material of this paper is divided into the followin
sections. Dynamic correlation functions and their interre
tion with experimentally observed quantities are defined
Sec. 2. Equations for dynamic correlation functions as w
as expressions for generalized thermodynamic quantities
transport kernels are presented in Sec. 3 in terms of the
responding microscopic densities and fluxes. Section 4 is
voted to an analysis of the spectrum of collective excitatio
in the hydrodynamic limit. Certain problems emerging wh
studying the intermediate region of wave vectors and sh
wave limit are also considered. The obtained results are
cussed in Conclusion.
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2. CORRELATION FUNCTIONS AND EXPERIMENTALLY
OBSERVED QUANTITIES

The object of our investigation are time correlation fun
tions ~TCF! FAB(k,t) which can be defined as follows:

FAB~k,t !5~Â~k,t !,B̂~2k!!0

5E
0

1

dtSp@DÂ~k,t !r0
tDB̂~2k!r0

12t#,

DÂ~k,t !5Â~k,t !2Sp@r0Â~0,0!#, ~1!

where r0 is the equilibrium statistical operator, while th
time dependence is introduced in terms of Heisenberg re
sentation.

The functionsFAB(k,t) emerge naturally in the metho
of nonequilibrium statistical operator21 and are directly con-
nected with Green’s correlation functions. The Fourier tra
form Fnn(k,v) of the functionFnn(k,t) formed by using
the operatorsn̂k of the number density of particles, i.e.,

FAB~k,v!5
1

2p E
2`

`

dt exp~ ivt !FAB~k,t !, A,B5n, ~2!

can be connected with the experimentally observed dyna
structural factor

S~k,v!5
1

2p E
2`

`

dt exp~ ivt !Sp@r0n̂k~ t !n̂2k# ~3!

through the relation

Fnn~k,v![Ssym~k,v!5
12exp~2b\v!

b\v
S~k,v!, ~4!

where Ssym(k,v) is the symmetrized dynamic structur
factor10,11 and b51/kBT, wherekB is the Boltzmann con-
stant. Note that the identity~4! follows directly from the
definition~1! of TCF. In the following analysis, we shall dea
only with symmetric TCF defined by formulas~1! and ~2!.

Let us write the relation between symmetrized sta
structural factorSsym(k) andSsym(k,v):

Ssym~k!5E
2`

`

dvSsym~k,v!. ~5!

It can be shown easily that in the limitk→0, the familiar
relation Ssym(k→0)5kBTkT ~where kT is the isothermal
compressibility of the system! from the theory of classica
liquids holds just forSsym(k).

3. EQUATIONS FOR TIME CORRELATION FUNCTIONS

In order to describe thermodynamic and dynamic pro
erties of semiquantum4He, we define a set of basic dynam
variables including the hydrodynamic number densityn̂k of
particles, longitudinal componentJk of momentum, and the
generalized enthalpyĥk :

n̂k5
1

AN
(

p
âp2k/2

1 âp1k/2 , ~6!
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Ĵk5
1

AN
(

p

kk•p

k2 ap2k/2
1 âp1k/2 , ~7!

ĥk5 «̂k2~ «̂k ,n̂2k!0~ n̂k ,n̂2k!0
21n̂k , ~8!

where

«̂k5
1

AN
(

p
S p2

2m
2

k2

8mD âp2k/2
1 âp1k/2

1
1

2V (
p

(
q

n~q!ap1~q2k!/2
1 n̂qâp2~q2k!/2

is the energy density, as well as ‘‘kinetic’’ variables defin
by the expressions

p̂k5~12P0! J̇̂k , ~9!

Q̂k5~12P0! ḣ̂k . ~10!

As usual,âp
1 and âp in Eqs. ~6!–~10! are the creation and

annihilation operators for quasiparticles with momentump,
which satisfy the transposition relations@ âp

1 ,âq#

5 dpq , @ âp ,âq# 5 @ âp
1 ,âq

1# 5 0; n(q) 5 * exp(iqr )F(ur u)

3dr is the Fourier transform of the potentialF~ur u! of inter-
action between particles,V is the volume of the system, an
N the number of particles. The quantitie
( «̂k ,n̂2k)0 , (n̂k ,n̂2k)0 in formula ~8! are equilibrium
~static! quantum correlation functions~SCF! defined as fol-
lows:

FAB~k!5~Â~k!,B̂~2k!!05SpS DÂ~k!E
0

1

dtr0
tDB̂

3~2k!r0
12tD . ~11!

The operatorsp̂k andQ̂k are connected with the micro
scopic stress tensor and the enthalpy flux projected onto
space of hydrodynamic variablesB̂(k)5$n̂k ,Ĵk ,ĥk%. In this
respect,p̂k and Q̂k , being fast variables, are defined as
netic variables. In Eqs.~9! and~10!, P0 is Mori’s projection
operator constructed on hydrodynamic variables, and its
tion is defined as

P0Â5(
l 51

3

(
k

~Â,B̂l~2k!!0~B̂l~k!,B̂l~2k!!0
21B̂l~k!. ~12!

The Liouville operatori L̂ is defined in the standard man
ner:

Ȧ̂[ i L̂ Â5
i

\
@Â,Ĥ#, ~13!

where

Ĥ55(
p

p2

2m
âp

1âp1
1

2V (
k

(
p

n~k!âp1k/2
1 n̂kâp2k/2 . ~14!

The nonequilibrium statistical operator technique21 can
be used to obtain22 a system of equations for Laplace tran
he

c-

forms of TCFF̃AB(k,z)5*0
` exp(2zt)FAB(k,t)dt(z5iv1«,«

510), which can be presented in matrix form as follows

zF~k,z!2 iV~k!F̃~k,z!1w̄~k,z!F̃~k,z!5F~k!, ~15!

where the notation

iV i j ~k!5~ i L̂ Ŷi~k!,Ŷj~2k!!0~Ŷj~k!,Ŷj~2k!!0
21,

Ŷi~k!5$n̂k ,Ĵk ,ĥk ,p̂k ,Q̂k% ~16!

has been used for elements of the frequency matrixiV(k)
and

w̃ i j ~k,z!5S ~12P!Ẏ̂i~k!,
1

z2~12P!iL
~12P!Ẏ̂j~2k! D

3~Ŷj~k!,Ŷj~2k!!0
21 ~17!

for elements of the matrix of memory functionsw̃(k,z). The
projection operatorP acts in the same manner as~12!, but is
defined on the complete set of base variables$Ŷi(k)%,
i 51,...,5. It can be shown easily that the only nonzero e
ments of the matrix of memory functions arew̃pp(k,z),
w̃pQ(k,z), w̃Qp(k,z), and w̃QQ(k,z), which are constructed
on kinetic variables~9! and ~10!. The system of equation
~15! ~or a similar system of transport equations! can be
solved in kinetic variables and the initial problem can
reduced to the three-variable formalism after substitution
the obtained results into the first equations. The general
transport coefficients, which depend on the modulus of w
vector and frequency, will be expressed in terms of high
order memory functions constructed on kinetic transp
coefficients.23 In turn, the elements of the frequency matr
for longitudinal fluctuations can be written in terms of ge
eralized thermodynamic functions

iVJn~k!5
ik

nkT~k!
, iVnJ~k!5

ik

m
,

iVJh~k!5
ik

ncV~k!

a~k!

kT~k!
,iVhJ~k!5

ik

mnb

a~k!

kT~k!
, ~18!

where the following notation has been used:cV(k)51/kBT2

3(ĥk ,ĥ2k)0 for the generalized specific heat at constant v
ume,a(k) for the generalized thermal expansion coefficie
andkT(k) for the generalized compressibility.

The following remarks can be made regarding the c
nection between our results and those obtained
Crevecoeur:11

~1! the explicit form of the hydrodynamic matrix in Ref. 1
follows directly from Eq.~15! in the Markov approxima-
tion;

~2! nondiagonal elements of the matrix of memory functio
w̃pQ(k,z) and w̃Q,p(k,z), which were disregarded by
Crevecoeur,11 are quite important in the intermediate r
gions of k and v. This is confirmed by computation
made for a Lennard–Jones liquid;14,15

~3! transition from a five-variable description to three-
two-variable description was carried out not quite co
rectly in Ref. 11. As a matter of fact, the disregard
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‘‘superfluous’’ variables results in the emergence
space and time dispersion of transport coefficien
which is quite important for describing the dynamics o
system for finitek andv.16,17

4. SPECTRUM OF COLLECTIVE EXCITATIONS

In order to close the chain of equations~15! for DCF, we
use the Markov approximation for the memory function~17!:
o
in

te

ta

-

e-
f
, w̃ i j ~k,z!'w̃ i j ~k,0!5E

0

`

w i j ~k,t !dt. ~19!

The system of equations~15! can then be presented in th
form

zF̃~k,z!1T̃~k!F̃~k,z!5F~k!, ~20!

where the generalized hydrodynamic matrixT̃(k) has the
following structure:
T̃~k!5F 0 2 iVnJ 0 0 0

2 iVJn 0 2 iVJh 2 iVJp 0

0 2 iVhJ 0 0 2 iVhQ

0 2 iVpJ 0 w̃pp 2 iVpQ1w̃pQ

0 0 2 iVQh 2 iVQp1w̃Qp w̃QQ

G . ~21!
e

c-
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In the Markov approximation, the solution of the system
equations for DCF can be written in an analytic form
terms of the eigenvaluesza and eigenvectorsXa5uuXiauu of
the matrixT̃(k),15,22 i.e.,

w̃ i l ~k,z!5 (
a51

5 Ga
i l ~k!

z1za~k!
, ~22!

where the amplitudesGa
i l (k) can be presented in the form

Ga
i l ~k!5Xia~k!@X~k!21# laF l l ~k,0!, ~23!

X21 is the matrix inverse toX5uuXiauu. In the time repre-
sentation, we obtain

F i j ~k,t !5 (
a51

5

Ga
i j ~k!exp$2za~k!t%, ~24!

and hence DCF are a sum of weighted exponents, each
corresponding to some collective mode.

We shall now analyze the spectrum of collective exci
tions for different values of the wave vector.

4.1. Hydrodynamic region

In the limit k→0, we have the following collective ex
citation modes:

the thermal modedefined by

zh~k!5DTk21o~k4!; ~25!

two complex conjugateacoustic modes

z6~k!56 ick1Gk21o~k3!; ~26!

and twokinetic modesthat do not vanish atk50:

zp~k!5wpp~0,0!1o~k2!, ~27!

zQ~k!5wQQ~0,0!1o~k2!. ~28!

The following notation has been used in formulas~25!–
~28!: DT is the thermal diffusion defined as coefficient d
fined as
f

rm

-

DT5
1

mkBT2cp~0!

F̃QQ~0,0!

w̃QQ~0,0!
5

l~0,0!

nmcp~0!
; ~29!

cp(0) is the specific heat at constant pressure~the zero in
parentheses indicates the thermodynamic limitcp(k→0)),
l~0,0! is the generalized thermal conductivity fork50,
z50, c5g/mnTkT is the adiabatic velocity of sound, wher
g5cp(0)/cV(0),

G5
1

2
~g21!DT1

1

2
h i ~30!

is the sound attenuation coefficient, where

h i5
F̃pp~0,0!

mnw̃~0,0!
5S 4

3
h~0,0!1z~0,0! D Y nm, ~31!

h~0,0! andz~0,0! being the shear and bulk viscosity respe
tively.

An analysis of Eqs.~25!–~28! readily shows that nondi-
agonal elements of the matrix of memory functions are
manifested in the limitk→0 ~it can be shown that they ar
proportional tok!. However, as mentioned above, they m
be quite significant in an analysis of the experimental d
even for small values ofk. For example, having presente
the expression for the dynamic structural factor at zero
quency in an explicit form, we can see that the te
(2 iVQp1w̃Qp) appears inSsym(k,0) in the same order in
k(;k0) as the quantityw̃pp . On the other hand, therma
processes~associated with a consideration ofw̃QQ! dominate
in the limit of small values of the wave vector and make
contribution;1/k2 to the functionSsym(k,0). Going over to
an analysis of the experimental data, we note that a cor
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description of the behavior of the dynamic structural fac
for small values ofk andv is possible only if we take into
consideration all nonzero elements of the matrix of
memory functionsT̃(k).

The experimental data forSsym(k,v) obtained by
Crevecoeur11 for k51 – 4 nm21 are shown in Fig. 1. It can be
seen that a purely hydrodynamic behavior typical of class
fluids is observed for small values ofk(k,2 nm21):
Ssym(k,v) consists of the Rayleigh–Brillouin triplet whos
central line characterizes the entropy fluctuations, while
side peaks are associated with the processes of sound p
gation. The central line vanishes fork.3 nm21. It is inter-
esting to note that atT58 K, the thermal peak vanishes
higher values of the wave vector. Helium remains nondeg
erate at both temperatures, and no Bose-condensa
formed. It should be remarked, however, that on the dyna
level, the system begins to feel the ‘‘approaching’’ pha
transition even at these temperatures, which is indeed
served in the behavior of the central peak. The cluster s
corresponding to the emerging asymmetry are natur
larger atT54 K. Hence a transition at this temperature fro
the Rayleigh–Brillouin triplet to a more complex form of th
dynamic structural factor occurs for lower values ofk.

On the other hand, an increase ink leads to a change in
the form of the dynamic structural factor due to the effect
kinetic modes also. In particular, it is well known that sta
ing from a certain valuek* , the kinetic processes in
Lennard–Jones liquid lead to the emergence of a new pr
gator excitation with a weak dispersion for large values
k.17 Depending on the form of the interaction potential a
the thermodynamic point, these excitations may be ma
fested in the dynamic structural factor in the form of ne
side peaks. Such an effect is known in literature as ‘‘fas
sound.15 A similar picture was also observed in bina
mixtures.20 The value ofk* corresponding to a transitio
from two relaxation kinetic modes~27! and~28! to a pair of
kinetic propagator modes is often defined as the limit
applicability of hydrodynamic description.

FIG. 1. Symmetrized dynamic structural factorSsym(k,v) for 4He at
T54 K ~a! and T58 K ~b! for k51,2,3,4 nm21. The vertical lines corre-
spond to the experimental results, the solid curve shows the results of fi
for three-variable formalism, while the dashed line corresponds to t
variable formalism~borrowed from Ref. 11!.
r

e

al

e
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In order to verify the assumption concerning the effe
of kinetic propagator excitations on the behavior of the d
namic structural factor in semiquantum helium, we carr
out computations whose results are presented in Fig. 2.
proceed from expressions~20! and~21! in the limit of small
but finite values ofk. The figure shows the contributions o
thermal, acoustic, and kinetic modes toSsym(k,v) which can
be defined using formulas~22! and ~23!. For the initial data
for the matrix T̃(k), we chose thermodynamic paramete
associated with the elements of the frequency matrix~18! in
the limit of small k, as well as transport coefficients bo
rowed from Ref.~11!. The three unknown quantitiesw̃pp ,
w̃QQ and2 iVpQ1w̃pQ were determined by a self-consiste
solution of the system of equations for three experimen
points atk51 nm21, viz., the values ofSsym(k,v) for v50
as well as the points of maximum and minimum values
Ssym(k,v) for v. Further, the results for the next two value
of the wave vectork52,3 nm21 were also obtained by as
suming the quasi-hydrodynamic nature ofSsym(k,v).

Figure 3 shows the dispersion of propagator excitatio
at T54 and 8 K. In order to analyze the origin of collectiv
excitations and their contribution to the dynamic structu
factor, let us consider in greater detail Figs. 2 and 3.

First, it follows from Fig. 3 that the behavior of kineti
propagator excitation of gaseous4He atT58 K has a closer
resemblance to that of classical liquids.15 Although the ki-
netic propagator excitation appears at this temperature
lower values ofk, its dispersion curve lies below the acous
curve. At T54 K, a typical ‘‘fast sound’’ behavior is ob-
served even atk;2.7 nm21, i.e., the kinetic propagator mod
intersects the dispersion curve of acoustic excitation and
mains much higher upon a further increase in the value ok.
On the other hand, it can also be seen from Fig.~2! that the
amplitude of this mode falls rapidly atT54 K for
k53 nm21. The situation becomes entirely opposite
T58 K, when the contribution of the kinetic mode becom
dominant fork53 nm21 in the interval of smallv.

Second, it should be interesting to observe the charac
istic behavior of the thermal mode whose amplitude
T54 K decreases sharply with increasingk and which makes
a small contribution, even fork52 nm21, to the dynamic
structural factor whose shape is determined mainly by
acoustic excitation. It is the actual vanishing of the therm
mode that is responsible for the emergence of a ‘‘platea
on the dynamic structural factor atT54 K, serving as a pre-
cursor of the emerging violation of symmetry of the Bo
system. AtT58 K, the contribution of the thermal excitatio
can be traced for all values of wave vectors, and the beha
of Ssym(k,v) is more classical.

Note that the procedure for determining the parame
w̃pp , w̃QQ and2 iVpQ1w̃pQ is quite sensitive to variation
in the values of the dynamic structural factor at referen
points. However, our computations are in good agreem
with the experimental data within the accuracy of the expe
ment ~see Fig. 1!.

4.2. Intermediate values of k

In order to study the dynamic structural factor in th
intermediate region, we must know the dependence of

ng
-
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FIG. 2. Symmetrized dynamic structura
factor Ssym(k,v) for 4He atT54 K ~a! and
T58 K ~b! for k51,2,3 nm21 for five-
variable formalism ~solid curve!. The
dashed, dot-and-dash, and dotted curv
show the contributions from the therma
mode, acoustic mode, and kinetic modes r
spectively toSsym(k,v).
u
e

er
r.

a
h
a

an
matrix elements~21! on k. While carrying out specific cal-
culations, these data can be obtained either from comp
experiments15–17 or by approximation based on some ph
nomenological approach.13,24

Figure 4 shows the results of neutron scattering exp
ments obtained for intermediate values of the wave vecto11

The following characteristic features are worth noting:

~1! the central line vanishes at both temperatures upon
increase ink. The side peaks are associated with t
strongly damped propagator mode and form two bro
lines which merge practically fork.10 nm21;

FIG. 3. Dispersion of propagator excitations of4He at T54 K ~a! and
T58 K ~b! The solid and dotted curves correspond to the acoustic
kinetic modes respectively.
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FIG. 4. The same as in Fig. 1 fork>4 nm21.
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~2! in the region of the static structural factor maximu
k520 nm21, de Gennes narrowing characteristic of cla
sical liquids is observed;

~3! upon a further increase ink, the secondary peaks ar
formed once again, their localization depending wea
on k. Thus, we observe new weakly disperse propaga
excitations which, unlike classical liquids, are clea
separated.

A somewhat different picture was observed in expe
ments on scattering atT513.3 K.13 The behavior of the dy-
namic structural factor in this case is more like in the case
a classical liquid. The behavior of side peaks in the reg
k53 – 10 nm21 is especially interesting. Two pairs of com
plex conjugate propagator excitations are encountered in
range, one of them being associated the generalized so
and the other being the kinetic propagator mode. Montfro
et al.13 tried to identify both types of excitations with spe
cific physical processes. In particular, an analysis of the c
tributions from various excitations in the ‘‘density–density
‘‘momentum–momentum’’ and ‘‘energy–energy’’ TCF le
the authors to the conclusion that the propagator mode w
higher frequency can be identified with thermal process
Although such an interpretation is quite interesting in itse
the transformation of a thermal wave into an acoustic w
in the hydrodynamic limit seems to be quite strange.

4.3. Shortwave limit

For large values ofk andv, scattering experiments pro
vide information about the movement of atoms over sm
distances and time intervals.25 In this case, the wavelength o
an impinging neutron is small in comparison with the atom
spacing, and hence the neutron can effectively interact w
just one atom, the scattering becomes incoherent, and
particle effects are observed. The incoherence limit in liq
helium is attained atk>15 Å21, although the effect of the
atomic surroundings also becomes significant for quite la
values ofk. Andersenet al.26 have derived expressions fo
the nonsymmetrized dynamic structural factor on the basi
cumulative expansion in~3!. The authors took into accoun
both the environment effect~through moments of the inter
particle interaction potential! and the deviation from Max-
well distribution of particles in the momentum space. T
emergence of nonzero odd moments of purely quantum
gin shifts theS(k,v) resonance by the free recoil frequen
v r5\k2/2m of a 4He particle. Note that the results of shor
wave scattering are normally used for determining the dis
bution functionn(p) in the momentum space.26

The dynamics of semiquantum4He can also be studie
in a different manner by using formulas~20! and~21!. In the
limit k→`, the matrix elementsT̃(k) attain their asymptotic
values for which we can obtain the necessary analytic
pressions. The analysis for simple liquids shows14,15 that in
the shortwave limit, all modes acquire a linear dependen
za}k. Moreover, it was shown27 that within the concept of
generalized collective modes, there exists a one- to-one
respondence between the set of dynamic variables use
the analysis, and the first frequency moments. In particu
in the thermoviscous model considered in our work, the fi
-
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five frequency moments for the dynamic structural factor
reproduced correctly. Naturally, the odd moments are eq
to zero in the case of the symmetrized dynamic structu
factor.

CONCLUSION

In this work, we have studied the spectrum of collecti
excitations of semiquantum4He. The thermoviscous mode
is used to obtain the results for the dispersion of propag
excitations as well as the expressions forSsym(k,v), and to
analyze the contributions from all collective modes. Calc
lations show that the quasihydrodynamic description is s
applicable for values;2 – 3 nm21 of the wave vector, al-
though the contribution of kinetic excitations becomes qu
significant. The behavior of the contribution from the the
mal mode clearly indicates that the system begins to ‘‘fee
the impending phase transition to the superfluid state eve
the high-temperature phase.

As the value ofk increases, we must have a knowled
about the spatial dispersion of the matrix elementsT̃(k) over
the entire range of values ofk. In the analysis of classica
liquids, the authors of Refs. 15–17, 20 used the results
computer experiment for this purpose. Such an analysis
comes more complicated in the quantum case, since c
puter techniques have not been worked out so well for c
culating higher-order TCF. The importance of investigatio
in the region of intermediate and high values ofk is associ-
ated with the fact that this is the only way in which reliab
information can be obtained about the role of kinetic prop
gator excitations and the dominant physical proces
singled out.

Note that as a rule, one-particle and many-particle re
nances can be separated in superfluid helium. This was
served clearly in experiments,1,25 the coupling between hy
drodynamic and one-particle variablesâk and âk

1 due to the
presence of Bose condensate occurring at the leve
SCF.1,8,25 In the case of semiquantum4He, however, such a
coupling can also be obtained on dissipative levels only
decoupling memory functions in the framework of the mo
coupling theory.28 This leads to a set of equations for TCF
hydrodynamic levels together with equations for the on
particle nonequilibrium function (âk

1 ;âk).
We plan to continue the analysis of the above proble

in our subsequent publications.
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On phase transitions in a Fermi liquid. II. Transition associated with translational
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The phase transition in a Fermi liquid, associated with translational symmetry breaking and the
formation of periodic structures is considered. Special attention is paid to the formation of
one-dimensional long-periodic structures in a three-dimensional Fermi liquid. The relation between
the formation of such structures and kinetic and thermodynamic stability of the normal state
of the Fermi liquid is analyzed. ©1999 American Institute of Physics.@S1063-777X~99!00205-4#
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1. INTRODUCTION

The term ‘‘normal Fermi liquid’’ is traditionally applied
to a degenerate~charged or neutral! Fermi liquid possessing
main properties of a system of noninteracting fermions in
case of a quasiparticle description. Such a definition o
normal Fermi liquid presumes that the equilibrium state
the Fermi liquid is the most symmetric, i.e., the distributi
function describing this state is invariant to spatial trans
tions and rotations in the spin and momentum spaces.

In spite of natural differences in the behavior of charg
and neutral Fermi liquids, basic concepts of the Landa
Silin theory of the normal Fermi liquid1,2 studying low-lying
excitations against the background of the equilibrium st
make it possible to disregard the electric charge of quasi
ticles in the description of some phenomena in charged
neutral systems of interacting fermions. Apart from the m
condition of applicability of the theory of the normal Ferm
liquid, i.e., the smallness of temperatureT as compared to
the Fermi energy«F(T!«F), the main postulate of the
theory which is common for neutral and charged syste
concerns the functional dependence of the energy of the
tem on the fermion distribution functionf (p,r).1! This en-
ergy can be expanded into a functional Taylor series in
distribution function:

E~ f ~p,r !!5 (
n51

`

En~~p,r !!,

where the quantity

En~ f ~p,r !!5
~2S11!n21

n!Vn (
p1 .....pn

E d3r 1 ...d3r n

3F~p1 ,...,pn ;r12r2 ,...,r12rn!

3 f ~p1 ,r1!...f ~pn ,rn!
3031063-777X/99/25(5)/11/$15.00
e
a
f

-

d
–

e
r-
d

n

s
s-

e

can be treated as ann-quasiparticle interaction. In this cas
the quasiparticle energy which is a functional of the dis
bution function is defined as

«~p,r !5V
dE~ f !

d f ~p,r !
.

Neglecting interactions between three and more quasip
cles, we have

«~r ,p!5«p1
2

V (
p8

E dr 8F~r2r 8;p,p8! f ~r 8,p8!,

S51/2, ~1!

whereF(r2r 8,p,p8) is the Landau amplitude characterizin
two-particle interactions, and«p[F(p) is the fermion en-
ergy in the absence of interaction between quasiparticles
the absence of magnetic ordering, the existence of the
mion spinS51/2 is important only for the calculation of th
fermion density of states, which is reflected in the fac
2S1152 in the second term of formula~1! The equilibrium
state of the normal Fermi liquid is described by the Ferm
Dirac distribution function

f ~p,r ![ f 0~p!5@expb~«~p!2m!11#21 ~2!

~b215T is the reciprocal temperature andm the chemical
potential!. Together with Eq.~1!, this equation determine
the dispersion relation«(p,r )[«(p) for quasiparticles in the
equilibrium state.

Strictly speaking, in the construction of thermodynam
of a normal Fermi liquid, the Landau amplitude is defined
the second variational derivative of the energy functio
with respect to the distribution function in equilibrium a
T50. However, second variational derivatives are insu
cient for an analysis of the new phase structure, and hig
order variational derivatives must be introduced. The dis
gard of such derivatives in our analysis is equivalent to
neglect of the interaction between quasiparticles of an or
higher than the second.
© 1999 American Institute of Physics
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An important aspect of the theory is the determination
the stability conditions for an equilibrium state of a norm
Fermi liquid. This problem was solved for the first time
the spatially homogeneous case by Pomeranchuk3 who for-
mulated the stability criterion for the normal state down
the temperatureT50:

11
n~m!Fl

2l 11
.0, ~3!

whereFl are the coefficients of thel th harmonic in the ex-
pansion of the spatially homogeneous Landau amplitude

F~p,p8!5E dr 8F~r2r 8;p,p8! ~4!

into a series in Legendre polynomials near the Fermi surf
(p'p8'pF). The quantityn~«! appearing in formula~3! is
the density of energy states defined as

n~«!5
2

~2p!3 E d3pd~«2«~p!!. ~5!

Another important circumstance is worth noting. Pom
anchuk’s criteria~3! were obtained at zero temperature. F
this reason, it cannot be generally stated that the equilibr
state of the normal Fermi liquid~2! is obviously unstable a
any temperature when conditions~3! are violated, i.e., when
n(m)Fl<2(2l 11). On the contrary, we can prove~which
will be done later! that the state of statistical equilibrium of
normal Fermi liquid in the case when Pomeranchuk’s crite
are violated is stable down to a certain temperatureT0 and
becomes unstable at lower temperaturesT,T0 ~naturally,
we presume that the main conditionT!m for the applicabil-
ity of the theory of a normal Fermi liquid is fulfilled!. Such
an instability of the ground state indicates the possibility
phase transitions in the Fermi liquid, which are associa
with the violation of Pomeranchuk’s stability criteria.

This research is devoted to an analysis of such a ph
transition, i.e., the transition involving the violation of th
stability condition ~3! for the zeroth harmonic (l 50), for
which the following relation holds:

n~m!F0<21. ~6!

We shall prove that condition~6! characterizes a phase tra
sition in a Fermi liquid, associated with translational symm
try breaking for the equilibrium state. It will be clear from
the subsequent analysis that the solution of this problem
quires a modification of basic concepts of the theory o
normal Fermi liquid considered here.

However, before going over to a description of a sp
tially periodic structures formed as a result of a phase tr
sition in a Fermi liquid associated with violation of conditio
~6!, we shall consider in greater detail some aspects of
behavior of the Fermi liquid in the case when the tempe
ture of the system approaches the critical value on the sid
the normal phase, i.e.,T>T0 .
f
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2. ON KINETIC AND THERMODYNAMIC THEORY OF
STABILITY OF THE NORMAL STATE

First of all, we shall illustrate the connection between t
violation of stability of the equilibrium state of a norma
Fermi liquid and the attenuation of zeroth sound. Zero
sound in a normal Fermi liquid is the term applied to t
high-frequency collective longitudinal mode associated w
density fluctuations of the substance.1,2 Zero sound can exis
in the frequency rangevt r@1 ~t r is the relaxation time!.
For this reason, we can analyze the dispersion of ze
sound by using the kinetic equation for the nonequilibriu
distribution functionf (r ,p,t) in the collisionless approxima
tion:

]

]t
f ~r ,p,t !1

]«~r ,p, f !

]p

] f ~r ,p,t !

]r

2
]«~r ,p, f !

]r

] f ~r ,p,t !

]p
50. ~7!

In order to simplify calculations, we assume here that
Landau amplitude is independent of momenta, i.e.,

F~r2r 8;p,p8![F~r2r 8!, ~8!

and hence the dispersion relation~1! for quasiparticles as-
sumes the form

«~r ,p, f !5«p1
2

V E dr 8F~r2r 8!(
p8

f ~r 8,p8,t !. ~9!

The inclusion the dependence of the Landau amplitu
on momenta in~8! and ~9! would not lead to fundamenta
difficulties, but would make calculations more cumberso
without changing significantly the final results.

Linearizing the kinetic equation~7! taking into account
~9! near the equilibrium state~2! and going over in the lin-
earized equation to Fourier transforms in time and coo
nates in accordance with formulas

d f ~r ,p,t !5
1

~2p!3 E dkE
2`

`

dv exp~ ikr 2 ivt !d f ~k,p,v!,

F~r !5
1

~2p!3 E dk exp~ ikr !F~k! ~10!

we obtain

d f ~k,p,v!~2v1kv!2F0k
] f 0~p!

]p

2

V (
p8

d f ~k,p8,v!50,

~11!

where the following notation has been introduced:

v[
]«~p!

]p
, F0[F~k50!5E drF~r !. ~12!

According to~1!, the quantity«(p) appearing in the defini-
tion of v in formula ~12! satisfies the relation

«~p!5«p1F0

2

V (
p8

f 0~p8!, ~13!

which is the self-consistency equation for a normal Fer
liquid in the spatially homogeneous case. The presence
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the quantityF0 and notF(k) in formula ~11! ~see formulas
~9! and ~10!! reflects the fact that zeroth sound represe
long-wave oscillations with small wave vectorsk. It should
also be noted that if we include the momentum depende
of the Landau amplitude~see ~4!!, the quantityF0 corre-
sponds to the zeroth harmonic in the expansion of the L
dau amplitude in the Legendre polynomials near the Fe
surface in the spatially homogeneous case, i.e., coinc
with the quantity appearing in relation~6!.

The solution of Eq.~11! can be presented in the form
~see, for example, Ref. 4 in this connection!

d f ~k,p,v!5dA~p,k!d~v2kv!2F0J21~k,v!

3
] f 0~«!

]«

kv

v2kv1 ih

2

V (
p8

3dA~p8,k!d~v2kv8!, ~14!

where dA(p,k) is an arbitrary function which is restricte
only by the conditions that the value of the quant
d f (r ,p,t) calculated according to~10! and ~14! must be
smaller than the equilibrium distribution function~2!. The
quantityJ~k,v! appearing in~14! and defined as

J~k,v!511F0

2

V (
p

] f 0~«!

]«

kv

v2kv1 ih
, ~15!

is the permittivity of the system in the case of a charg
Fermi liquid ~see, for example, Ref. 5!. The dispersion rela-
tion for zeroth sound obtained from the equationJ(k,v0)
50 has the form

v05skvF , ~16!

wherek is the magnitude of the wave vector andvF the value
of the velocityv(«)5v(«(p)) ~see~12!! at the Fermi surface
~we assume that the Fermi surface is isotropic!, and the
quantitys can be found from the equation

12
1

2
F0E

0

`

d«n~«!
] f ~«!

]« E
0

p d~cosu!@v~«!/vF#cosu

s2@v~«!/vF#cosu1 ih
50.

~17!

After the evaluation of integrals with respect to momentu
the parameterh in formulas~14!, ~15!, and~17! taking into
account attenuation of oscillations with the dispersion re
tion ~16! must tend to zero from the side of positive valu
taking into account the formula

1

z1 i0
5P

1

z
2 ipd~z!

~P is the symbol of the principal value of integral!.
In the range of positive values of the Landau amplitu

(F0.0), Eq. ~17! for determining the parameters has the
well-known form

11n~m!F05n~m!F0

s

2
ln

s11

s21
, ~18!

and the decrement of collisionless attenuation of zer
sound becomes noticeable~nevertheless remaining smalle
than the frequencyv0! only for smallFo.0, F0n(m)!1.4
s

ce

n-
i

es

d

,

-

e

h

In the range of negative values of the Landau amplitu
satisfying the relation

21,n~m!F0,0,

zeroth sound attenuates strongly, and the parameters be-
comes complex-valued with the real and imaginary com
nents of the same order of magnitude. In this range of val
of the quantityF0 , Eq. ~18! should be used with care~see
Ref. 6 in this connection!. It can be stated, however, that th
magnitude of the coefficients determining the dispersion o
zeroth sound becomes small forF0n(m).21 and vanishes
for F0n(m)521, i.e., at the point where Pomeranchuk
criterion is violated. It should be noted that in view of th
smallness of the parameters for n(m)F0.21, we must gen-
erally take into account in Eq.~18! thermal corrections tha
can be of the same order of magnitude as the quan
n(m)F011. But it can be easily seen that the inclusion
these corrections forn(m)F0>21 does not lead to a quali
tatively new result since the system is stable down to z
temperature under these conditions. However, the inclus
of thermal corrections in Eq.~18! in the case when Pomer
anchuk’s criterion is violated and relation~6! is valid leads to
the vanishing of the parameters for a certain nonzero tem
perature. Such a vanishing of some thermodynamic and
netic parameters at a certain~critical! temperature is a typica
effect in the theory of phase transitions~see, for example,
Ref. 7!.

In this connection, let us analyze in greater detail t
behavior of the dispersion relation for zeroth sound in
case when Pomeranchuk’s criterion is violated, i.e., the L
dau amplitudeF0 satisfies relation~6!. The latter circum-
stance suggests the smallness of the parameters in Eq. ~17!.
Expanding the second term in Eq.~17! in smalls taking into
account thermal corrections determined by the tempera
dependence of the equilibrium distribution function, we a
rive in the main approximation to the following equation f
determining the parameters:

11n~m!F01
p2

6
n9~m!F0T252 i

p

2
sn~m!F0 . ~19!

It can be seen from this equation that the parameters van-
ishes at a temperatureT0 defined as

T0
252

6

p2

11n~m!F0

F0n9~m!
,

or, considering thatn(m)F0.21,

T0
25

6

p2

n~m!

n9~m!
@11n~m!F0#, ~20!

where the quantityn~m! is defined by formula~5! as before.
The positive value of the right-hand side of~20! is ensured
by the fulfillment of condition~6! and the fact thatn9(m)
,0. In the vicinity of the temperatureT0 , the quantitys
obtained from~19! taking into account formula~20! has the
form

s5 i
2p

3

n9~m!

n~m!
T0~T2T0!, ~21!
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i.e., the parameters determining the dispersion relation fo
zeroth sound in accordance with~16! is purely imaginary in
the given approximation. Formula~21! taking into account
~16! and ~10! readily shows that zeroth sound atT.T0 be-
comes a purely attenuating mode (Ims,0). In other words,
the state of the system remains stable even when the Po
anchuk’s criterion is violated atT.T0 , but naturally under
the main conditionT!m of the applicability of the theory of
the normal Fermi liquid.

At T,T0 , the imaginary component ofs becomes posi-
tive, which corresponds to ‘‘building-up’’ of zeroth soun
i.e., the state of the system becomes unstable. It was n
above, however, that such an instability can indicate a tr
sition of the system to a new stable state, i.e., a phase
sition with the critical temperatureT0 defined by formula
~20!.

Let us now consider the region of existence of solutio
of the self-consistent equation corresponding to the nor
state of a Fermi liquid in the plane of parametersT,m. We
assume that the rotational symmetry is not broken in
momentum space, i.e., the quasiparticle energy«(p) and the
distribution functionf 0(p) in Eq. ~13! are independent of the
direction of the momentump. The case associated with ro
tational symmetry breaking in the momentum space is a
lyzed in detail in Ref. 8.

Taking into account what has been said above and in
ducing the quantity«5«(p)2«p , we can write Eq.~13! in
the form

«5
2F0

V (
p8

$expb~«1«p82m!11%21

or

n~b,m0!5
m2m0

F0
, ~22!

where

n~b,m0!5
2

V (
p8

$expb~«p82m0!11%21,

m05m2«. ~23!

For testing the self-consistent equation~22! for the existence
of solutions corresponding to the normal state of the Fe
liquid, we consider the following two cases:F0.0 and
F0,0. Noting that (]n(b,m0))/]m0.0 andn(b,2`)50,
in accordance with~13!, we find that the self-consisten
equation~22! for positive F0 always has a solution in th
plane of the parametersT andm corresponding to the norma
state of the system~see Fig. 1!. In the case of negativeF0 ,
the region of existence of the normal state@normal solutions
of Eq. ~22!# is determined by the inequality~see Fig. 2!

2
1

F0
.

]n~b,m0!

]m0
. ~24!

Carrying out the low-temperature expansion for the funct
n(b,m0) for b215T!m, i.e.,

n~b,m0!5n~0,m0!1
p2

6
T2n08~m0!1..., ~25!
er-

ed
n-
n-

s
al

e

a-

o-

i

n

wheren0(m0) is the density of states of a Fermi gas with t
dispersion relation«p and the chemical potentialm0 and not-
ing that

]n~`,m0!

]m0
5n0~m0!,

]n~b,m0!

]m0
5n0~m0!1

p2

6
T2n09~m0!, ~26!

we can write condition~24! for the existence of normal so
lutions of the self-consistent equation~22! for F0,0 in the
form

1

F0
1n0~m0!,2

p2

6
n09~m0!~m0!T2. ~27!

~It should be emphasized that the density of statesn0(m0)
5n0(m2«)[n(m) coincides with the density of statesn~m!
corresponding to the true dispersion relation«(p)5«p1«;

FIG. 1. Definition of the region of existence of normal solutions of Eq.~22!
for F0.0.

FIG. 2. Definition of the region of existence of normal solutions of Eq.~22!
for F0,0.
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see formula ~5!.! If 1/F01n(m)5(11F0n(m))/F0,0,
which corresponds to the fulfillment of Pomeranchuk’s s
bility criterion 11F0n(m).0 for the normal state for
l 50, inequality ~27! always holds sincen9(m),0, and
hence normal solutions exist in the entire range of the
rameters m and T. If, however, 1/F01n(m)5(1
1F0n(m))/F0.0 which corresponds to the violation of Po
meranchuk’s criterion 11F0n(m),0 for l 50, normal solu-
tions exist, according to~27! in the temperature range de
fined by the condition

T2.T0
252

6

p2

11F0n~m!

F0n9~m!
.0. ~28!

It should be emphasized that Eq.~22! has no solutions a
temperatures that do not satisfy condition~28!. Thus, the
thermodynamic and kinetic stability criteria coincide for t
normal state.

Let us illustrate the above arguments by an example
quadratic dispersion relation«p5p2/2m for quasiparticles.
In this case, the density~5! of energy states is given by

n0~m0!5
mA2mm0

p2 , ~29!

and the self-consistent equation~22! taking into account the
low-temperature expansion~25! as well as~26! and~29! ac-
quires the form

2mA2m

3p2 m0
3/21

p2

6
T2

mA2m

2p2m0
1/25

m2m0

F0
. ~30!

The condition starting with which solutions of Eq.~22!
~‘‘point of tangency,’’ see Fig. 2! appear can be written in
the form

1

F0
1

mA2mm0

p2 5
p2

6
T2

mA2m

2p22m0
3/2. ~31!

Introducing instead ofm, m0 , andT the dimensionless quan
tities m̃, m̃0 , andT̃ defined as

m5
p4

m3F0
2 m̃, m05

p4

m3F0
2 m̃0 , T5

p4

m3F0
2 T̃,

we can write Eqs.~30! and ~31! in the following simple
form:

m̃5m̃02
2&

3
m̃0

3/22
p2

6&

T̃2

m̃0
1/2, ~32!

12A2m̃052
p2

12&

T̃2

m̃0
3/2. ~33!

Let us consider the case whenT50. In this case, the
self-consistent equation~32! m̃5m̃02(2&/3)m̃0

3/2 has a so-
lution only for m̃<1/6. The point of tangency~see Fig. 2! is
defined by Eq.~33! which gives m̃051/2. Consequently
m̃51/6 at this point. Thus, the region of existence of so
tions of the self-consistent equation~32! for T50 is deter-
mined by the inequalitym̃<1/6.

For TÞ0 (T̃!1), the solution of Eqs.~32! and~33! has
the form
-

a-

f

-

m̃05
1

2
1

p2

6
T̃2, m̃5

1

6
2

p2

6
T̃2.

The last equation describes a curve in the plane of par
etersm̃, T̃ separating the region in which the self-consiste
equation~22! has a solution from the region in which n
solution exists. Since a solution forT50 exists for
m̃<1/6, the regionm̃,1/62p2T̃2/6 is the region of exis-
tence of normal solutions forT̃!1. It will be proved below
that the regionm̃.1/62p2T̃2/6 corresponds to spatially pe
riodic solutions atT̃!1.

3. PHASE TRANSITION ASSOCIATED WITH VIOLATION OF
TRANSLATIONAL INVARIANCE

This section is devoted to an analysis of violation
Pomeranchuk’s stability criterion~see~6!! for the harmonic
l 50. The violation of this criterion will be put in correspon
dence with a phase transition of the Fermi liquid to a st
with spontaneously broken translational symmetry, i.e.
state with a spatially periodic structure.

The self-consistent equation for determining spatia
periodic solutions can be obtained from Eq.~1! by substitut-
ing into it a Fermi–Dirac distribution function with the spa
tially inhomogeneous dispersion relation

«~r ,p!5«p1
2

V (
p8

E d3r 8F~r2r 8;p,p8! f 0~p8,r 8!,

f 0~r ,p!5$expb~«~r ,p!2m!11%21. ~34!

We shall seek the solution of Eq.~34! in the form of func-
tions periodic inr , i.e.,

«~r ,p!5(
q

«q~p!eiqr5«0~p!1 «̃~r ,p!,

where

«̃~r ,p!5 (
qÞ0

«q~p!eiqr, «0~p!5^«~r ,p!&

and the angle bracketŝ...& denote the averaging over per
ods. Consequently, Eqs.~34! can be written in the form

«0~p!5«p1
2

V (
p8

F0~p,p8!

3S 1

exp$b~«0~p8!1 «̃~r 8,p8!2m!%11D
0

, ~35!

«̃q~p!5
2

V (
p8

Fq~p,p8!

3S 1

exp$b~«0~p8!1 «̃~r 8,p8!2m!%11D
q

,

qÞ0, ~36!

where Fq(p,p8)5*3rF (p,p8;r )eiqr is the Fourier compo-
nent of the Landau amplitude. We shall assume that the
pendence of the amplitudeFq(p,p8) on the direction of vec-
tors p andp8 is determined only by their dot productp•p8.
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In this case, the solution of Eq.~36! can be sought in the
form for which the quantity«q(p)[«q(p) is independent of
the direction of vectorp. Besides, we assume that the fun
tions Fq(p,p8) vary slowly with p and p8, and hence the
quantity «̃q(p) also varies slowly with the variablep. Since
the function (exp$b(«0(p8)1«̃(r 8,p8)2m)%11)q

21 has a
sharp peak atp85pF for qÞ0, we can putp85pF in the
quantityFq(p,p8) appearing in Eq.~36!, which gives

«̃q~p!5
Fq~p,pF!

Fq~pF ,pF!
«̃q~pF!,

Fq~p,p8![
1

4p E dOFq~p,p8!, ~37!

where«̃q(pF)[«̃q satisfies the equation

«̃q5Fq$n~b,m2 «̃~r ,p!!%q ,

Fq5Fq~pF ,pF!, qÞ0, ~37a!

and the functionn(b,m) is defined by the expression

n~b,m!5
2

V (
p

@expb~«0~p!2m!11#21. ~38!

For the sake of simplicity, we shall confine our subs
quent analysis to one-dimensional periodic structures i
three-dimensional Fermi liquid. We assume that the perio
structure appearing in this case has a perioda along the
x-axis, so that

«̃q~p!5dqy80dqx80«̃q~p!, qx5q5
2pn

a

~n are integers!. In this case, Eq.~37a! acquires the form

«̃q5Fq$n~b,m2 «̃~x,p!!%q , qÞ0, ~39!

where

Fq5E d3reiqxF0~pF ,pF ;r !.

Equation~39! obtained in the approximation of a slow vari
tion of the amplitudeF(p,p8) with p andp8 is in complete
accord with the model~8! used by us earlier for analyzin
the properties of the normal state.

Let us now go over to the solution of Eq.~39! near the
phase-transition point, where the quantity«̃q describing the
order parameter is small. Expanding Eq.~39! into a power
series in«̃(x) as well as in (b2bc) taking into account~38!
~bc

21[Tc is the transition temperature!, we obtain

«̃q5FqS 2
]n~bc ,m!

]m
«̃q2

]2n~bc ,m!

]bc]m
~b2bc!«̃q

1
1

2

]2n~bc ,m!

]m2 ~ «̃2~x!!q2
1

6

]3n~bc ,m!

]m3

3~ «̃3~x!!q1...D . ~40!

We shall seek the solution of this equation in the fo
«q5 «̃q

(0)1 «̃q
(1)1..., where
-
a
ic

«̃q
05 «̃q

~0!$D~q2q0!1D~q1q0!% ~41!

~D(q) is the Kronecker symbol!. In the main approximation
we have

11Fq0

]n~bc ,m!

]m
50. ~42!

This equation determines the transition temperat
bc5bc(q0). Carrying out in this equation the low
temperature expansion~25!, we obtain

Tc
252

6

p2

11Fq0
n~m!

Fq0
n9~m!

. ~43!

Since n9(m),0, it can be easily seen that the inequal
Tc

2.0 holds only when the relation

11n~m!Fq0
,0,

reflecting the violation of the criterion of stability of th
equilibrium state of a normal Fermi liquid is valid.

Let us now find the expression for the order paramete«̃.
Noting in this connection that

~ «̃~x!!q5 «̃q ,

~ «̃~x!!q5 (
q8,q9

«̃q8«̃q9D~q81q92q!,

~ «̃3~x!!q5 (
q8,q9,q-

«̃q8«̃q9«̃q-D~q81q91q-2q!,

and taking into account the fact that the relations

~ «̃2~x!!q0
'2«̃q0

~0!«̃q0

~1! , ~ «̃3~x!!q0
'3~ «̃q0

~0!!3,

hold in the main nonvanishing approximation, we can wr
Eq. ~40! taking into account~41! and ~42! for q5q0 in the
form

2
]2n~bc ,m!

]bc]m
~b2bc!«̃q0

~0!1
]2n~bc ,m!

]m2 «̃q0

~0!«̃2q0

~1!

2
1

2

]3n~bc ,m!

]m3 ~ «̃q0

~0!!350. ~44!

It can be easily seen that along with Eq.~44!, we must also
write Eq. ~40! for qÞ6q0 :

«̃q5FqS 2
]n~bc ,m!

]m
«̃q1

1

2

]2n~bc ,m!

]m2 ~ «̃2~x!!qD .

Puttingq52q0 in this equation, we obtain

«̃2q0
5F2q0S 2

]n~bc ,m!

]m
«̃2q0

1
1

2

]2n~bc ,m!

]m2 ~ «̃2~x!!2q0D .

~45!

Noting further that in the main approximation we have

~ «̃2~x!!2q0
'~«̃q0

~0!!2, «̃2q0
'«̃2q0

~1! ,

we write Eq.~45! in the form

«̃2q0

~1! 5F2q0S 2
]n~bc ,m!

]m
«̃2q0

~1! 1
1

2

]2n~bc ,m!

]m2 ~ «̃q0

~0!!2D ,
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whence

«̃2q0

~1! 5
F2q0

2

]2n~bc ,m!

]m2 S 11F2q0

]n~bc ,m!

]m D 21

~ «̃q0

~0!!2.

Substituting the expression obtained for«̃2q0

(1) into ~44!,

we obtain the following equation for determining«̃q0

(0) :

F2q0

2 S ]2n~bc ,m!

]m2 D 2S 11F2q0

]n~bc ,m!

]m D 21

~ «̃q0

~0!!2

2
1

2

]3n~bc ,m!

]m3 ~ «̃q0

~0!!25
]2n~bc ,m!

]bc]m
~b2bc!. ~46!

Taking into account the low-temperature expansion~25! as
well as ~42!, we obtain

«̃q0

~0!5A~2q0!A12T/Tc, ~47!

where

A~2q0!

5H 2n2

3

Tc
2n9~m!

n9~m!2F2q0
~n8~m!!2~12F2q0

/Fq0
!21J 21/2

.

The quantity«̃q0
(p) is defined by formula~37!.

It should be noted now that the perturbation theory
veloped by us becomes inapplicable in the region of sm
q0 . This follows even from the fact that the quanti
12F2q0

/Fq0
appearing in the denominator of Eq.~46! and

formula ~47! vanishes forq0→0. For this reason, the case
smallq0 corresponding to a large period of spatially period
functions analyzed by us requires a separate analysis. S
all quantities vary slowly withx in the case of a large lattic
period ~low gradients!, it is more convenient to solve th
problem in the coordinate representation.

We shall proceed from the equation

«̃~x!5E dxF~x2x8!$n~b,m2 «̃~x8!!

2^n~b,m2 «̃~x8!!&%,

«̃~p,x![«̃~x!, ~48!

where

F~x2x8!5E Fqeiq~x2x8!dq

and the angle brackets^...& denote the averaging of a quanti
over the lattice period, while the quantityn(b,m2 «̃(x)) is
defined by the formula~38!. This equation is equivalent to
Eqs.~35! and~36! if we consider that̂ «̃(x)&50. Noting that
the quantityF(x2x8) has a sharp peak atx5x8 and also
considering that the quantity«̃(x) varies slowly on accoun
of the large lattice period, we can write Eq.~48! in the form

«̃~x!5F0$n~b,m2 «̃~x!!2^n~ b̃,m2 «̃~x!!&%

1F2

]2n~b,m2 «̃~x!!

]x2 , ~49!

where
-
ll

ce

E dx8F~x2x8!5F0 ,

1

2 E dx8F~x2x8!~x2x8!25F2 ~50!

~while deriving Eq.~49!, we assumed that the functionF(x
2x8) is even!. Carrying out the power expansion in«̃(x)
and (b2b0) in the last equation~b0 corresponds to the tran
sition temperature forq50! and taking into account the
equation for determiningb0

11F0

]n~b0 ,m!

]m
50 ~51!

as well as the fact that̂«̃(x)&50, we obtain

F0H 2~b2b0!
]2n~b0 ,m!

]b]ṁ
«̃~x!1

1

2

]2n~b0 ,m!

]m2 ~ «̃2~x!

2^«̃2~x!&!J 2F2

]n~b0 ,m!

]m

]2«̃~x!

]x2 50. ~52!

It was proved above that the equation for determining
transition temperature as a function ofq has the form

11Fq

]n~bc ,m!

]m
50.

Considering thatFq5F(q2) and F8(0)52F2 , F05F(0)
~see~49! and~50!!, we can write this equation for smallq in
the form

11~F02F2q2!S ]n~b0 ,m!

]m
1~bc2b0!

]2n~b0 ,m!

]b]m D50

or, taking into account~51!,

bc2b05q2
F2

F0

]n~b0 ,m!

]m Y ]2n~b0 ,m!

]b]m

52q2
F2

F0
2 Y ]2n~b0 ,m!

]b]m
. ~53!

This equation defines the transition temperature as a func
of q in the range of smallq. Making the natural assumptio
that b0,bc ~a long-periodic structure branches at high
temperatures! and considering that (]2n(b0 ,m))/]b]m.0
~see the low-temperature expansion~25!!, we obtainF2,0,
which corresponds to attraction between fermions. Equa
~52! used for defining the quantity«̃(x) can be written in
another form more convenient for the subsequent analy
For this purpose, we introduce the quantity«(x)52 «̃(x)
that can be regarded as a correction to chemical pote
~see~35! and ~36!!. Then Eq.~52! assumes the form

]2«~x!

]x2 1g~«~x!!50,

g~«~x!!5A«~x!1B~«2~x!2^«2~x!&!, ~54!

where

A52
F0

2

F2
~b2b0!

]2n~b0 ,m!

]b0]m
,
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B52
1

2

F0
2

F2

]2n~b0 ,m!

]m2 . ~55!

We shall seek periodic solutions of Eq.~54! which gives

«856A2~E2U~«!!, x56E« d«

A2~E2U~«!!
, ~56!

where

U~«!5E
0

«

g~«!d«5
1

3
B«31

1

2
A«22Bd2«,

d25^«2~x!&

and E is the integration constant. The cubic polynom
E2U(«) can be written in the form

E2U~«!5E2
1

3
B«32

1

2
A«21Bd2«

52
1

3
B~«2«1!~«2«2!~«2«3!.0. ~57!

The points of extrema of the functionU(«) are defined as

«652
A

2B
6AA2/4B21d2, «1.0, «2,0.

Figure 3 shows schematically the functionU(«) ~we take
into account the fact thatB.0!. SinceE2U.0, periodic
solutions of Eq.~54! correspond to the region«2,«,«1 ,
and sincê «&50, we have«2,0 and«1.0. Consequently,
we have

x~«!52E
«

«1 d«

A2~E2U~«!!
, x,0,

x~«!5E
«

«1 d«

A2~E2U~«!!
, x.0 ~58!

~see Fig. 4 showing a period of the function«(x)!. The pe-
riod of this function is defined by the formula

FIG. 3. Schematic dependence of ‘‘potential’’U(«) on the order paramete
«.
l

X52E
«2

«1 d«

A2~E2U~«!!
52x~«2!. ~59!

Substituting expression~57! for E2U(«) into the formula
~58! for x(«) for x.0 and transforming the correspondin
integral, we obtain

x~«!5A6/B
1

A«12«3
E

0

w dw

A12k2 sin2 w
,

k25
«12«2

«12«3
, w5arcsinA~«12«!/~«12«2!.

Taking into account the definition of the first-order elliptic
integral

F~k,w!5E
0

w dw

A12k2 sin2 w
, ~60!

we can writex(«) in the form

x~«!5A6/B
1

A«12«3

F~k,w!. ~61!

In accordance with~59!, in this case we have

X5A6/B
2

A«12«3

F~k!, F~k![F~k,p/2!. ~62!

Let us now determine the quantities«1 , «2 , and«3 . For
this purpose, we note that

^«~x!&5
1

X E
0

X/2

«~x!dx1
1

X E
X/2

X

«~x!dx

5
2

X E
0

X/2

«~x!dx,

or, going over to integration with respect to«,

^«~x!&5
2

X E
«2

«1
«

d«

A2~E2U !
. ~63!

Equation~54! implies that̂ «&50. Transforming the integra
appearing in~63! and taking into account~57!, we obtain

FIG. 4. Dependence of the order parameter« on the coordinatex.
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E
0

p/2

dw
«12~«12«2!sin2 w

A12k2 sin2 w
50, k25

«12«2

«12«3

.

Using the definition of the second-order elliptical integral

E~k!5E
0

p/2

dwA12k2 sin2 w, ~64!

we obtain

E~k!1S k2
«1

«12«3
21DF~k!50.

This expression can also be written in the form

«1

«12«2

5
F~k!2E~k!

k2F~k!
,

«1

«12«3
5
F~k!2E~k!

F~k!
. ~65!

These formulas indicate that the ratios«1 /«2 , «1 /«3 , «2 /«3

can be expressed only in terms of the parameterk. Let us
now find the expression for the quantity«1 in terms ofk. For
this purpose, we note that, according to~56!,

«11«21«352
3

2

A

B
[g~b2b0!, ~66!

where

g523
]2n~b0 ,m!

]b]m
Y ]2n~b0 ,m!

]m2 ~67!

in accordance with~55!. Using further formulas~65!, we
obtain the following expression for the quantity«1 :

«15
g~b2b0!

32~11k2!F~k!/@F~k!2E~k!#
. ~68!

Taking into account this relation and~65!, we can easily
determine the quantity 1/A«12«3 appearing in the expres
sion ~62! for the period:

1

A«12«3

5F S 3
F~k!2E~k!

F~k!
2k221D Y g~b2b0!G1/2

.

~69!

Noting that k25(«12«2)/(«12«3), and introducing the
new variable«[«12«3 , we obtain

«12«25«k2, «15«
F~k!2E~k!

F~k!

or

«15«S 12
E~k!

F~k! D ,

«25«S 12k22
E~k!

F~k! D ,

«352«
E~k!

F~k!
. ~70!
Since «.0 and g(b2b0),0 ~see~66! and ~67!!, the in-
equality 3@(F2E)/F#2k221,0, must hold in accordance
with ~69!, which givesk,k0.0.95.

The periodX of the function«(x) is connected with the
quantityq through the formula

X5
2p

q
52A6/B

1

A«
F~k!. ~71!

The variablesk and « can be taken as independent therm
dynamic variables instead ofb andq. The phase curve in the
b,q space, separating the regions of the normal phase
the spatially periodic phase is given by formula~53!. It can
be easily seen from formulas~69! and ~70! taking into ac-
count ~60! and ~64! that the same curve in the space of t
variablesk and« has the form

k50. ~72!

Let us now find the expression for«(x). The definitions
~60! and ~62! of the functionsF(k,w) andF(k) lead to the
relation

F~k,w1p!52F~k!1F~k,w!. ~73!

SinceF(k,w) is a monotonically increasing function ofw,
we can introduce the reciprocal functionw(k,y) such that

F~k,w~k,y!!5y.

Taking into account~73!, we have

F~k,w~k,y!1p!5y12F~k!,

s~k,y!1p5w~k,y12F~k!!,

whence

sin2 w~k,y!5sin2 w~k,y12F~k!!.

Thus, the function sin2 w(k,y) is a periodic function ofy with
the period 2F(k). Noting further that

2F~k!
x

X
5F~k,w!,

w5arcsinA~«12«!/~«12«2!,

in accordance with~61! and ~62!, we obtain

«~x!5«12~«12«2!sin2 wS k,2F~k!
x

XD
or, taking into account~70!, we finally get

«~x!5«S 12
E~k!

F~k!
2k2 sin2 wS k,2F~k!

x

XD D , ~74!

where the quantityX is defined by~71!. It should be noted
that the function sinw(k,u) is connected with the elliptica
sine sn(u,k) through the relation

sinw~k,u!5sn~u,k!.

Formula ~74! determines the long-periodic structure of th
system under investigation at temperatures close to the t
sition temperatureT0 .
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4. STRUCTURE OF LONG-PERIODIC SOLUTIONS AT T50

Let us find one-dimensional periodic solutions of t
self-consistent equation~34! far away from the phase
transition point, namely, atT50. In this case, it is not expe
dient to use the parameter«̃(x) since this quantity is no
small atT50. Thus, we shall seek the solution of Eq.~34! in
the form

«~p,x!5«~x!1«p ,

where«(x) is a periodic function of the variablex. In the
approximation of small gradients~large period, see below!,
Eq. ~34! can be written in the form

«~x!5F0n~b,m2«~x!!1F2

]2n~b,m2«~x!!

]x2 , ~75!

where

F05E d3rF ~r !, F25
1

2 E d3rx2F~r !.

Introducing the quantitymI (x)5m2«(x) and considering
Eq. ~75! as an equation for determining the functionn
~n(mI (x))5n(x), mI 5mI (n)!, we obtain

]2n

]x2 5
1

F2
~m2mI ~n!2F0n!.

Integration of the last equation leads to the following expr
sion for x5x(n):

x56En dn

AE2U
, ~76!

where

U5
2

F2
En

dn~mI ~n!2m1F0n! ~77!

andE is the integration constant. Noting that

n~mI !5
2

~2p!3 E d3pu~mI 2«~p,x!!,
]n

]uI
5n~mI !,

at T50, we obtain

n5E
2`

mI

n~«!d«, n~2`!50

and hence, in accordance with~77!, we obtain

U5
2

F2
S E

2`

mI

«n~«!d«2mE
2`

mI

n~«!d«

1
1

2
F0S E

2`

mI

n~«!d« D 2D ~78!

~we consider in this case that

En

m~n!dn5Em

m~dn/dmI !dm5Em

mn~m!dm,

and choose the integration constant in a quite definite form
view of the arbitrariness of the integration constantE in for-
mula ~76!!. Thus, we can finally write
-

in

x56EmI n~«!d«

AE2U~«!
, ~79!

whereU(«) is defined by~78!.
Let us now consider the algorithm of determining t

periodX of the function«(x) for a quadratic dispersion re
lation. In this case, the quantityn~«! is defined by formula
~29!, and the quantityU(«) defined by relation~78! assumes
the form

U~«!5
2

F2

&m3/2

p2 H 2

5
«5/22

2

3
m«3/21

2

9
F0

&m3/2

p2 «3J ,

~80!

It can be easily proved that the functionU(«) defined by
formula ~80! has one maximum and two minima forF0,0
and F2,0; One minimum corresponds to the point«50,
while the point«0 corresponding to the second minimu
satisfies the equation

a«0
3/21«05m, a5F0

~2m!3/2

3p2 ,0. ~81!

In order to find the periodX of the function«(x), we can
find the roots of the equationsE2U(«)50 defining the so-
called turning points. The equation for determining the tu
ing points near the minimum«0 of the functionU(«) can be
written in the form

Ẽ2~«2«0!250,

Ẽ5
2~E2U~«0!!

]2U~«0!/]«0
2 .0,

whence

«65«06AẼ, «1.«2 .

On the other hand, the period of the function«(x) is defined,
in accordance with~79!, by the formula

X52E
«2

«1 n~«0!d«

AE2U~«0!21/2@]2U~«0!/]«0
2#~«2«0!2

,

n~«0!5
&m3/2

p2 A«0.

After evaluating the integral appearing in this formula, w
find that

X52F F2~2m!3/2

2«0
21/213a

G 1/2

,

or, introducing the dimensionless quantity«̃0 through the
relation

«05
p4

m3F0
2 «̃0 ,

we finally obtain

X52pAF2 /F0F 1

~2«̃0!21/221
G1/2

,
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where, in accordance with~81!, «̃0 satisfies the following
equation:

m̃5 «̃02
2&

3
«̃0

3/2, m̃5
m3F0

2

p4 m.

This equation has a solution only form̃,1/6, and«̃051/2
for m̃51/6. According to the definition of the quantityF2 ,
we haveF2'x0

2F0 , wherex0 determines the region in whic
the functionF(x)5*dy dz F(r ) differs from zero. The slow
variation of the function«(x) ~small values of the gradients!
presumed above means thatx0!X or A2«̃0.1. This means
that the approximation used by us is valid only in the vicin
of m̃51/6.

5. CONCLUSION

It should be noted that the description of spatially pe
odic structures formed in strongly interacting systems w
proposed for the first time by Vlasov9 by using the method
based on the application of the self-consistent field appr
mation. Actually, he made an attempt to construct a class
~and not quantum-mechanical! theory of crystal since the
analysis was based on determining spatially periodic s
tions of the equation for the self-consistent interaction pot
tial with the help of Boltzmann’s equilibrium distribution
Such an approach disregarding the quantum-mechanica
ture of crystallization was criticized by many authors, a
there is no need to do this again. It should only be noted
the conditions for the existence of spatially periodic stru
tures obtained by Vlasov9 presume that attractive forces ac
ing between particles of the system dominate over repul
forces, which is observed for normal crystals.

Crystalline structures can also be formed in the c
when neighboring particles~or quasiparticles! forming such
a periodic structure repel and not attract one another. H
ever, in this case there must be some external~relative to the
given system! agencies compensating the effect of repuls
forces. The possibility of the existence of such crystal str
tures was illustrated by Wigner10 as early as in 1934 for the
crystallization of a three-dimensional low-density electr
gas in the field of a spatially homogeneous positive cha
The role of the agency compensating the action of repuls
forces is played in this case just by the field of the homo
neous positive charge. The description of phenomena a
ciated with three-dimensional Wigner crystallization rema
an important problem in spite of the fact that the conditio
for experimental observation of this effect have not be
created yet~see, for example, Ref. 11!.

It should be noted in this connection that the conditio
for the formation of spatially periodic structures in a Fer
liquid, which were analyzed by us here, also presume
-
s

i-
al

-
-
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at
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e

e
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e
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e.
e
-
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s
n

s
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domination of attractive forces acting between quasipartic
over repulsive forces~the condition of violation of Pomeran
chuk’s criterion; see~6!!. Since the explicit form of the Lan-
dau amplitude is not specified in our analysis, we can ass
that the Landau function plays the role of effective poten
of interaction between quasiparticles, which takes into
count the action of attractive as well as repulsive forces w
out specifying their origin, but with predominant contribu
tion of attraction. Such conditions are most likely fo
electron liquids in various metals. For this reason, we c
expect that our results can be used in a description of th
dimensional Wigner crystallization~naturally taking into ac-
count the difference between the model of Fermi liquid us
by us in order to simplify calculations and the electron liqu
in real metals!.

It is well known that the conditions of two-dimension
Wigner crystallization can be created quite easily for t
electron gas over the surface of liquid helium.11 However,
the approach developed by us requires a certain modifica
to be applied for describing spatial lattices formed in a tw
dimensional Fermi liquid, which is beyond the scope of th
paper.
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Conductivity of normal metal with phase-coherent excitations in the presence
of NS boundary

Yu. N. Chiang and O. G. Shevchenko
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Ukraine, 310164 Kharkov, Ukraine*
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Resistive properties of 3D systems formed by a normal metal and type I superconductor
~Cu–Sn! with a large electron mean free path in the normal metal are investigated in the liquid-
helium temperature region. A number of new types of temperature behavior of the normal
metal conductivity is revealed at temperatures below the superconducting transition temperature
of the superconductor in contact with the normal metal for distances commensurate with a
typical mesoscopic scale of electron transport trajectories in the normal metal, in which the phase
memory of wave functions is retained. ©1999 American Institute of Physics.
@S1063-777X~99!00305-9#
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1. INTRODUCTION

The resistance of a metal is a parameter reflecting
averaging of conduction electron scattering over the distri
tions of scatterers within a chosen spatial scale, e.g., betw
measuring probes or in the entire sample in the case of
tactless methods of measurements. At low temperatures
scale within which the coherence of electron wave functio
is preserved in metals with predominantly elastic scatte
plays a special role, leading to quantum-interference effe
~QIE! in conductivity. Its characteristic length is the inelas
electron mean free pathl N, inel ~phase-break length for wav
functions! associated with inelastic processes in electro
phonon scattering or with attenuation due to Fermi-liqu
effects. The quantityl N, inel and another characteristic lengt
viz., elastic~ballistic! mean free pathl N,el , can attain mac-
roscopic values in a pure metal at low temperatures, wh
makes it possible to install measuring probes for experim
tal investigation of the contribution of quantum-interferen
effects to the conductivity of a metal within these lengths

Till now, ‘‘macroscopic’’ experiments have not bee
carried out in this field. Quantum-interference phenome
were studied on samples with a size of the order of 1mm.
Samples of this size and the effects observed in them
referred to as mesoscopic according to the classifica
based on the ratioD«/kBT ~D« is the separation betwee
energy levels andkB Boltzmann’s constant!. The size of a
system is regarded as mesoscopic if the value of the ratio
it is of the order of unity or slightly smaller~the system is
microscopic if D«/kBT@1 and macroscopic ifD«/kBT
!1). Since the mean free paths, and hence the phase c
ence lengths in metals can attain macroscopic values,
entire class of possible quantum-interference effects in z
and nonzero magnetic field cannot be studied on sample
a mesoscopic size. This especially applies to the balli
3141063-777X/99/25(5)/13/$15.00
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scale which is very small (; l N,el;1022 mm) as a rule for
such samples in view of specific methods of their prepa
tion.

In our samples with macroscopically long mean fr
pathsl N,el;10– 100mm) and sizesL satisfying the criterion
of 3D systems (L@ l N,el), almost entire characteristic regio
in which quantum-interference phenomena are manifes
was accessible for experimental investigations since the
of this region was large enough for installation of measur
probes at distances of the order of inelastic as well as ba
tic mean free paths from one to another. The samples w
singly connected. The existence of phase-coherent ex
tions ~electrons and ‘‘Andreev’s holes’’! in zero magnetic
field was ensured by the presence of theNSboundary, viz.,
the junction of a normal metal~copper! with a supercon-
ductor ~tin!. The formation and scattering properties of t
junction were controlled by temperature variation near
superconducting transition temperature in tin.

In the presence of theNS boundary, new anomalies in
the temperature dependence of the resistivity of the nor
metal in the QIE mode with the help of precision measu
ments were registered. A peculiar mesoscopic effect was
served in the conductivity of the region of the normal me
in the immediate vicinity of theNSboundary when the sepa
ration between measuring probes in copper and their sep
tion from the interface with the superconductor were com
rable with the ballistic mean free path: after the transition
tin to the superconducting state, the resistance of such a l
of ballistic thickness increased abruptly~up to 60%! upon
cooling, while the resistance of copper decreased as u
when tin was in the normal state. The quantum-interfere
nature of this effect follows from the restoration of the cla
sical temperature dependence of resistance when
measuring probes were removed from theNS boundary to
© 1999 American Institute of Physics
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TABLE I. Schematic diagram of samples and arrangement of experimental probes relative to theNSboundaries.

Sample No.
Sample

configuration
NS-junction
area,mm2

Separation ofN-probes
from the boundarymm

Separation ofS-bands
from the boundaryLS , mmLN1 LN2

Sp 1 2003200 13 45 31

Sp 2 15031500 36 414 375

Sp 3 10310 20 2600 ,10

Sp 4 100032500 70 100 ,5;20
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the bulk of the normal metal over distances exceeding
inelastic mean free path.

If the probes are mounted in the normal metal at mac
scopic distances from theNS boundary, which are smalle
than the inelastic mean free path, but much larger than
ballistic length, another effect of quantum interference o
gin, i.e., a strong decrease in resistance with tempera
was observed. The change in the resistance in the same
perature range was an order of magnitude stronger than
classical change measured by probes separated by dist
exceeding the inelastic mean free path.

In a series of experiments, measuring probes were
stalled on different sides of the contact in the geometry n
mally used for studying the conductivity ofNS systems. In
this case, the contribution of mesoscopic effects to the c
ductivity of normal regions is difficult to observe against t
background of accompanying effects including primarily t
excess boundary resistance~BR!, especially nearTc where
the BR has the maximum value. A method of estimating
accompanying effects was proposed in order to analyze
contribution of mesoscopic effects in the normal region
such an arrangement of probes.

Special measurements with probes located in the su
conductor at distances from theNSboundary of the order o
the elastic mean free path did not reveal any resistive co
bution of the superconductor to the excess resistance oNS
systems with a developed area of theNS junction, indicating
the affiliation of the origin of excess resistance to theNS
boundary itself.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The basis of the bimetallicNSsystems under investiga
tion was a copper single crystal with a ‘‘macroscopically
large elastic mean free pathl N,el . The single crystal was in
contact with a type I superconductor~tin!. Tunnel properties
were not manifested in view of the large area of the juncti

Copper and tin used as initial materials were charac
ized by RRR5300 (l N,el.10– 20mm) and 103 ( l S,el

.100mm) respectively. Bimetallic samples were obtain
by spreading molten tin over a face of monocrystalline c
e
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-
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per. The size and configuration ofNS samples are given in
Table I ~shaded regions highlight the equality of cross s
tions of samples and current leads for all samples exc
Sp4!. Table I gives two values ofLS for sample Sp4. The
first value corresponds to the case when the thickness o
superconductor layertSn,jCu (T,0.9Tc), while the second
value corresponds to the case whentSn.jCu (jCu is the co-
herence length in the normal metal!. Measuring probes were
fixed to the samples by a fusible superconducting solder w
Tc@4.2 K. The transverse size of contact areas of pro
was 20–30mm ~the distances given in Table I are measur
from the boundaries of area elements.!

A reliable recording of mesoscopic conductivity, inclu
ing the conductivity of a layer of the normal metal of thic
ness of the order ofl N,el for the given geometric paramete
of the samples and separations between probes, require
measurements of resistance with an accuracy to within
percent ofRN;1029 V ~characterizing the sample with th
largest area of theNS junction!. For currents whose value
ruled out the emergence of nonlinear effects (<1 A), the
required accuracy in the measurements of potential dif
ence at a level of 10211V was ensured by a superconductin
modulator.1

3. EXPERIMENT

3.1. Results of measurements with NS probes

Figure 1 shows the temperature dependences of re
tanceRNS(T)/RNS ~4.2 K! of samples Sp1–Sp3~rectangles!
~for Sp4, the dependences ofdRNS(T)/RNS(2 K)) for tSn

.jCu ~curve1! and tSn,jCu which were measured by pair
of probes embracing theNSboundaries. Triangles in Fig. 1
illustrate the temperature variation of resistance of the su
conductor proper in samples Sp1–Sp3, measured by a pa
probes which are separated from the boundary by distan
LS150 – 50mm (; l S,el! l S, inel) andLS2 ~indicated in Table
I! respectively. Circles represent the initial resistance of
normal region~copper! at the boundaries@LN1 ; x50] prior
to the contact with the superconductor. All the three curv
for each sample in the region belowTc are shown on the
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FIG. 1. Temperature dependences of the resistance of theNSsystem copper–tin and its individual regions normalized to the resistance of the system
K ~at 2 K for Sp4!: probes@LN1 ;LS# including theNS boundary~h,* !; probes@0;Ls# on the tin side~n!, and probes@LN1 ;0# in copper regions before its
contact with tin ~s!. R[LN1 ,Ls]

(4.2 K)58.05731027 V ~Sp1!, 1.54631026 V ~Sp2!, 3.13731027 V ~Sp3!, 2.4431028 V ~Sp4! (tSn.jCu), 3.06
31028 V ~Sp4! (tSn.jCu), R[LN1,0](4.2 K)56.0331029 V ~Sp1!, 5.8831029 V ~Sp2!, and 2.06331027 V ~Sp3!.
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same scale; it can be seen that ordinary temperature de
dences of the superconductor and of the normal metal w
is not in contact with the former virtually make no contrib
tion to theRNS(T) dependence belowTc : RN(TC)2RN(0)
'1022RN<1023(R0NS1RN). Here R0NS is the tempera-
ture-independent contact resistance, which is at least an o
of magnitude higher than the resistance of normal regions
all the NS systems under investigation, including samp
Sp4. The position ofTc on the temperature scale corr
sponded to the position of the jump in the normalized deri
tives dRNS/dT shown in Fig. 2.

In spite of simple method of preparing theNS junction
~by spreading molten metals!, there were no indications o
the existence of a nonzero potential in a three-dimensio
superconductor at distances from theNS boundary even of
the order of the elastic mean free path.

3.2. Results of measurements with NN probes

Figure 3 shows temperature dependences of coppe
sistance in theNS systems with tin under investigation
en-
ch

er
or

-

al

re-

which was measured outside theNSboundary in the norma
region by pairs of probes@LN1 ;LN2# with LN1 andLN2 sepa-
rated from theNS junction by distances of one and two o
ders of magnitude respectively relative tol N,el ~see Table I!,
i.e., in the limits of the ballistic and inelastic mean free pa
~according to estimates,l N, inel'102l N,el). It can be seen tha
the temperature below which the resistanceRN(T) of the
normal part of the system with such an arrangement
probes relative to theNS boundary displays a behavior dif
fering from the known variation, correlates with the supe
conducting transition temperature for tin~with the position
of the jump in the derivativedRNS/dT in Fig. 2!. Moreover,
for such an arrangement of probes,RN(T) behaves in a pe-
culiar way not observed earlier in the pure normal metal:
the temperature decreases belowTc for tin, the values of
RN(T) increases abruptly in the interval;0.1Tc(;0.3 K),
continuing to increase slowly or decrease depending on
value of LN2 upon a further decrease in temperature.
should be recalled that the temperature dependence o
resistance of copper in the absence of theNSboundary could
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FIG. 2. Temperature dependence of the derivatives ofRNS(T)[R[LN1 ,LS] (T) with respect to temperature for samples Sp1–Sp4.
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be neglected completely on a scale comparable with
served variations~as well as in the case ofNS probes; see
Sec. 3.1!.

Some experimental results were reported in Ref. 2.

4. DISCUSSION

A comparison of the temperature dependencesRNS(T)
of the resistance ofNSsystems measured with the help ofNS
probes in all samples with the form of correspondi
dependences for individual parts of the system~see Sec. 3.1!
undoubtedly indicates the leading role of theNSboundary in
the formation of the temperature dependence of conducti
of bimetallicNSsystems after a transition of one of the me
als to the superconducting state. The pointsTc for RNS(T)
corresponding to the positions of jumps on the derivati
dRNS/dT ~see Fig. 2! are typical points at which one temper
ture dependence is replaced by another~this follows from the
strong difference in the values of the derivatives before
jump and after it!. The results obtained for sample Sp4 a
most remarkable in this respect. In the case whentSn,jCu,
when the proximity of the normal metal suppresses the o
parameter in a thin layer of the superconductor, the value
b-

ty

s

e

the derivative before and after the jump are practically id
tical ~see curve1 in Fig. 2!, indicating the absence of
resistive transition. The curves acquires the shape typica
curves with a point of cessation only after an increase in
thicknesstSN of the superconducting layer in the sample S
to values;jCu ~curve2 in Fig. 2!. For Sp1–Sp3 samples fo
which tSn@jCu, peculiarities in the temperature behavior
the resistance of the normal metal measured withNN probes
mounted at mesascopic distances from theNSboundary are
observed just in the region belowTc .

The role of theNS boundary in the emergence of th
peculiarities in question can be clarified if we take into a
count the fact that theNSboundary plays the role of a mirro
reflecting multiply phase-coherent excitations~electrons and
Andreev holes!, thus creating the conditions for their inte
action with one another and with impurities in a certain
gion in the normal metal near the boundary. This region c
be referred to as a region of mesoscopic phenomena. Acc
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FIG. 3. Temperature dependence of the copper resistance in the copper–tin system measured with theNN probes@LN1 ;LN2#: h and n correspond to
experimental results, curves2 for Sp1–Sp3 describe the calculated boundary resistance, curves3 for Sp1 and Sp2 correspond to the difference between cu
1 and 2 for Sp3 ~proximity effect!, and curve4 describes copper resistance in the absence of theNS boundary.R[LN1 ,LN2] (4.2 K)51.5931028 V ~Sp1!,
9.3631028 V ~Sp2!, 4.42131026 V ~Sp3!, and 2.0431029 V ~Sp4!.
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ing to experiments, its scale can also be macroscopic
macroscopic mean free paths. The conditionl N,S@jN,S of
pure limit required for manifestation of interaction of phas
coherent excitations in conductivity (jN,S is the coherence
length in the normal metal in contact with the superco
ductor and in the superconductor respectively! can also be
realized easily for large mean free paths.

Let us write the temperature-dependent componen
the resistance of the normal metal within mesosco
distances from theNS boundary (T,Tc) for an arbitrary
arrangement of a pair of probes relative to the boundary
the form

dRN~T!5dRb~T!1dRN
mes~T!2dRN

prox~T!, ~1!

wheredRb(T) is the contribution from the boundary resi
tance,dRN

mes(T) the mesoscopic contribution to the res
tance of the normal metal, associated with the prese
of phase-coherent excitations near theNS boundary, and
dRN

prox(T) the contribution from the proximity effect; the ba
indicated averaging. The most general considerations c
or
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of
c
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n-

cerning the temperature dependence of the boundary r
tance~BR! and proximity effect imply that as we move from
Tc towards lower temperatures, the resistance of the nor
metal can only decrease due to the BR and proximity eff
~excluding the singularity at the pointTc itself; see below!.
Consequently, the increase inRN(T) upon cooling observed
by us ~see Sec. 3.2! directly indicates the presence and pr
dominant contribution of a special mechanism of variation
conductivity of the normal metal in the region of mesosco
effects near theNS boundary. According to Eq.~1!,
a quantitative estimate of such a contribution (dRN

mes(T)) can
be obtained by subtracting the contributions of the BR a
proximity effect from the experimental results, which is e
pecially important for the results of measurements with
pair of NS probes@LN1 ;LS# for which dR(T).dRN

mes(T) in
the entire temperature range belowTc . Calculations show
that for the results obtained withNN probes@LN1 ;LN2# in-
stalled beyond theNS boundary,dRb(T)!dRN

mes(T) in the
most part of the same temperature region excluding a nar
region in the immediate vicinity ofTc (;0.1Tc). The
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FIG. 4. Variation of the electric fieldE and
electrochemical potentialF in the given current
mode j as a result of intersection of theNS
boundary for the energy gapD50 ~b! and D
Þ0 ~a,c! for the results obtained in Ref. 4~a!
and for our results~c!.
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boundary resistance and proximity effect will be calcula
below for the three-dimensionalNSsystems under investiga
tion.

4.1. Excess boundary resistance and proximity effect

It was noted long ago3 that the temperature behavior o
the resistance of a system formed by a normal metal an
type I superconductor does not correlate with the form
temperature dependences of the resistances of the indiv
metals constituting the system at temperatures below the
perconducting transition temperatureTc for the supercon-
ductor. In the absence of experimental data on thr
dimensional samples ofNSsystems for which any dimensio
of the superconducting component is larger than the b
mean free path typical of high-purity metals~including our
samples!, an opinion was subsequently formed concern
the existence of a nonzero potential attenuating exponent
towards the bulk of the superconductor in the direction p
pendicular to theNSboundary even in type I superconduct
under stationary nonequilibrium conditions and for a fin
gapD. It was assumed that the effect is observed at ma
scopic distancesl̄ S of the order of the root-mean-square ela
tic and inelastic mean free path in the superconductor
exceeding considerably the characteristic scale of varia
of the order parameterj(T) in the Ginzburg–Landau theor
~Fig. 4a!. This led to the concept of boundary resistance
the resistive contribution of the superconducting layer
tended over the distancel̄ S from the NS boundary in the
indicated direction. Our experimental results forSSprobes
~curves2 In Fig. 1! did not confirm this opinion:no potential
difference is observed in the superconductor in thr
dimensional samples in a direction perpendicular to the
boundary even at distances from the boundary of the or
of the elastic mean free path. These results are in comple
accord with the remark made in Ref. 5 that the phenome
d
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ogy of superconductors must be conserved under nonequ
rium conditions also: the current in the bulk of the superco
ductor must be zero in the direction perpendicular to theNS
boundary beyond the Meissner layer, although the total c
rent along this boundary is determined by the mechanism
transformation of the normal current to supercurrent s
pressing the initial current, which is manifested in the fo
of boundaryresistance rather thanexcess resistance on th
side of the superconductor.

Boundary resistance can be calculated by using vari
methods. We follow the method proposed by Blonderet al.6

and based on the thermodynamic approach in which only
jump in potentialV is taken into account for a transition from
the normal metal to superconductor at the boundary betw
them in a region of widthd ~Fig. 4c!. Although this approach
appears as speculative when applied to large-areaNS junc-
tions, its application can be justified by the ratio ofV to the
potential difference in the normal part, whose value w
10– 102 for our samples. For this reason, while estimati
the BR, the distribution functionf 0(«) ~« is the energy mea-
sured from the Fermi level! in the normal metal can be re
garded as an equilibrium function to a high degree of ac
racy. In this case, the value of BR is determined only by
probabilities of intersection of theNS boundary by excita-
tions with different energies under nonequilibrium cond
tions emerging as a result of passage of current~a similar
approach was used, for example, by Hardinget al.7!.

We shall first assume that the superconductor is in
normal state. In this case, the unified electrochemical po
tial of the system in thermal equilibrium does not posses
spatial gradient in view of electroneutrality and is consta
over the coordinate. When an external source of electros
field is connected to opposite ends of the bimetallic syste
so that its thermodynamic equilibrium is violated, the ele
trochemical potential of the system is not constant a
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longer, so that the voltages measured with a pair of probe
any region of the system will be a measure of the differe
between local electrochemical potentials at correspond
test points. We shall assume that field are small enoug
leave the density of states unchanged at any point includ
the contact region since we were dealing with exactly s
fields. As one of the metals in the system goes over to
superconducting state, the gradient of electrochemical po
tial of this metal beyond the Meissner layer must vanish
any finite value of the order parameter in accordance with
electrodynamics of type I superconductors.

It is well known that the constancy of electrochemic
potential over the coordinate in a superconductor follo
from the London equation8

]vs

]t
5

e

m
E2gradFC1

vs
2

2 G , ~2!

wherevs is the velocity of the superfluid component of cu
rent, E the electric field strength,mC the thermodynamic
potential per electron, which is a function of concentratio
of the normal (n2ns) and superconducting (ns) electrons (n
is the total electron concentration!, momentum of the system
and temperature,t the time, ande andm electron charge and
mass. According to~2!, the stationary mode of current flow
in the superconductor, which is determined by the consta
of electrochemical potential

mC1 1
2mvs

21eF5const~}n/ns! ~3!

~F is the electrostatic potential!, of intensity (1/2)¹vs
2 sets in

due to the mutual compensation of gradients of the conc
tration of the normal and superconducting electrons:

¹~nC!52 1
2¹~nsvs

2!. ~4!

The energy corresponding to these fields~zeroth approxima-
tion of the Bernoulli potential! nearTc is given by

eFB52
1

2

ns

n
mvs

2'
D2

«F

(«F is the Fermi energy!.9–11 This is just the quantity by
which the ground-state energy of the normal metal chan
upon its transition to the superconducting state:12

«s2«n52
1

2
Nn~«F!D2'

D2

«F
~5!

(«n and Nn(«F) are the energy and density of states of t
metal in the normal state, and«s is the energy of the metal in
the superconducting state.!

Thus, condition~3! in the superconductor at an arbitra
temperature must be satisfied due to the temperature v
tion of the level of its electrochemical potential in acco
dance with formula~5!. It is well known that a variation of
chemical potential of one of the metals in contact lead
change in the initial level of the contact potential differenc
This circumstance was noted earlier during the study of B
noulli’s effect.13,14Since the field in the junction experience
a jump, the emerging correction to the contact potential
ference is concentrated in the junction. In this case, we h
complete analogy with the situation with a semiconducto
at
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metal junction, leading to the formation of a Schottky ba
rier. The possibility of the emergence of such a barrier in
case of a normal metal–superconductor system is ensure
the magnitude of the correction to the field corresponding
the variation of the ground-state energy~5! of the supercon-
ductor: at atomic distances, energies of the order
D2(0)/«F correspond to the field strength of the order of te
V/cm, which is quite sufficient for the formation of a poten
tial barrier of the Schottky type, which cannot be disregard
in large-area junctions with a low distributed resistance
spite of a comparatively low barrier height.

Thus, in addition to other barriers at theNSboundary in
bimetallic NS systems with a large contact area, it is al
reasonable to take into account an energy barrier of
Schottky type with the height

uDFud~x!5
1

2
Nn~«F!D2~T!, ~6!

whered(x) is the delta-function reflecting the barrier loca
ization at the boundary (x is the coordinate along the field!.

We shall follow further the computational method deve
oped by Blonderet al.6 and based on the probabilistic ratio
for quasiparticle states in the formalism of the Bogoliub
equation and the boundary conditions of Andreev’s and n
mal reflection at theNS boundary. For a nonequilibrium
mode of current flow, the ‘‘probabilistic’’ current throug
the NSboundary must obviously meet the ordinary requi
ment

A~«!1B~«!1C~«!1D~«!51, ~7!

where A, B, C, and D are the probabilities of filling the
corresponding branches of quasiparticle spectrum in the
mal (A,B) and superconducting (C,D) half-spaces. After
the mutually consistent determination of these probabilit
from the conservation laws and electroneutrality condition
accordance with~7!, the calculation of total current in the
nonequilibrium region (l N,el1 l̄ S) containing the boundary
becomes independent of the choice of the half-space
which it is carried out.

For example, the expression for current calculated on
side of the normal half-space within the ballistic distan
from theNS junctions and depending only on the probabi
ties of Andreev’s (A) and ordinary (B) reflection of indi-
vidual quasiparticles in the absence of supercurrent can
written in the form

JNS52Nn~«F!evFE
2`

1`

@ f 0~«2eV!

2 f 0~«!#@11A~«!2B~«!#d«, ~8!

wherevF is the Fermi velocity andf 0(«2eV) is the distri-
bution function in the boundary region of the normal me
whose potential experiences a jumpV ~see Fig. 4c! at theNS
boundary~it should be recalled that this method of calcul
tion is valid only in the approximationV@VN , whereVN is
the potential difference in the boundary region of the norm
metal!. For eV!kBT observed in experiments with pur
metals, the first factor in the integrand in~8! can be replaced
by (eV)(2] f 0 /]«). The second integrand is referred to
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the ‘‘current transmission coefficient’’K j which, according
to Blonderet al.,6 is a function ofD, «, andz, wherez the
potential barrier height in the dimensionless normalizati
z5kFH/2«F . HerekF is the Fermi wave vector,H the re-
pulsive potential localized at the boundary, e.g.,uDFu from
formula ~6!. At T50, we haveuDFu;1023 K•cm which
corresponds toz.1 for the copper–tin pair.

The calculation of~8! leads to the following most typica
results.

In the normal state of the superconductor (T>Tc), in the
absence of Andreev’s reflection,A50, K j5(11z2)21 ~see
Ref. 6 for details!, and

JNS5JNN52Nn~«F!e2vFV~11z2!21 ~9!

In the region nearTc , T<Tc and D/kBT→0, K j («
,D)→0, K j («.D)→(11z2)21, and

JNS

JNN
→E

D

1`S 2
] f 0

]« DK jd«5
1

2
,

i.e., for a transition to temperatures belowTc , the boundary
resistanceRb5V/I NS (I NS5JNSS, where S is the cross-
sectional area of the boundary! increases jumpwise by a fac
tor of two.

At low temperatures, in the limitkBT/D→0 andz@1,
K j («.D)→0, K j («,D)→z22@11(«/D)2# and

JNS

JNN
5E

2`

D S 2
] f 0

]« DK jd«'
eD/kBT

11eD/kBT 1S kBT

D D 2

. ~10!

The boundary resistance decreases upon cooling to its v
in the normal state of the superconductor.

The limit of applicability of approximation~8! for
samples with a large area of theNS junction follows directly
from ~9!. Forz50, formula~9! can be reduced to the expre
sion I NS5JNSS[V/Rb which leads to the existence~even in
the absence of a barrier! of a certain finite boundary resis
tanceRb with voltageV across it, which is higher than th
potential difference in the boundary layer of the norm
metal. Since the currentI NS increases with the contact are
the value ofRb is obviously limited by the value of resis
tance RN0 of the layer of the normal metal:Rb* 5RN0@1
1Rb /RN0#, which leads to the condition restricting curre
to the preset levelI 0 :

1

I b*
5

1

I 0
1

1

I NS
. ~11!

The physical meaning of expression~8! in contrast to
that of the boundary resistance in other theories is tha
associates the excess resistance of the region of anNSsystem
with a boundary mainly with the type of conductivity of th
boundary itself. It should be recalled that the initi
assumption of the computational model used by us
the assumption on complete compensation of the fi
Eq5u2eNs

n(«F)u21¹a, transported to the superconductor
excitations with energy«.D and the total nonequilibrium
chargeq by the gradient of the chemical potential of supe
conducting electronsEp52(1/e)¹mS beyond the Meissne
layer in the direction normal to theNS boundary. In other
words, although the BR can be evaluated numerically as
:

lue

l

it

is
ld

-

e

contribution of nonequilibrium region of the superconduct
the results of our experiments proved that the real chang
the potential alongx corresponding to the boundary resi
tance can be fixed only in the normal half-space at distan
of the order of elastic mean free paths~nonequilibrium re-
gion on the ballistic scale!, i.e., incommensurately smalle
than the predicted size of the region of nonequilibriu
charge in the superconductor~Fig. 4c!.

The contribution of theNS boundary to limitation of
current in the system can be regarded as a result of reflec
of a certain electron flow from the boundary to the bulk
the normal metal in the direction opposite to that of the i
tial current. Consequently, we can expect that this contri
tion is also reflected in the resistance of the normal me
at distances LN from the boundary with a weigh
exp(2LN /lN,el) (LN is the distance between theNSboundary
and the corresponding measuring probe!.

Formally, the decrease in current in the presence of
NSboundary can be presented in the form

I b* 5I 02I 0,ref, ~12!

whereI 0,ref is the flux of particles reflected from the boun
ary in the immediate vicinity from it~for x50), which can
be determined from condition~11!.

Taking into account the exponential nature of atten
tion of the currentI 0,ref(T) with increasing distance from th
boundary, we can write the following expression for the
gion of normal half-space with the coordinatex along the
current:

I ref~T,x!5a~x!I 0,ref~T!;

a~x!512expS 2
l N,el

x D .

As a result, the local value of current in the normal ha
space in the region of a probe located at the distancex from
the boundary decreases to

I b* ~T,x!5I 02a~x!I 0,ref~T!,

which corresponds to an increase in the resistance of
normal metal in this region.

In actual practice, the effective~averaged! resistanceR̄
is measured. In the region confined between a pair of pro
its value exceeds the initial valueR0 by a factor of

R̄

R0

'
I 0

I b~T,x!
5I 0~xi2xk!F E

0

xi
I b* ~T,x!dx

2E
0

xk
I b* ~T,x!dxG21

5H 12
I 0,ref

I 0
F12~xi

2xk!
21E

xk

xi
expS 2

l N,el

x
D dxG J 21

~13!

( i andk correspond to different probes in the pair!. For a pair
of probes withxi ,xk.0, R05RN(Tc), while for a pair with
xi.0, xk,0 we haveR05RNS(Tc)2RS

N5R0NS1RN(Tc),
whereRNS is the resistance of the bimetallic system betwe
the probes embracing the boundary,RS

N the value of the re-
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FIG. 5. Temperature dependences of the resistances of Cu–Sn systems in the temperature rangeT,Tc for probes@LN1 ;LS#: experiment~curve1, boundary
resistance calculated forz(T)Þ0 ~curve2!, curve3 ~for Sp1! and n ~for Sp2! is the same withz50, curve4 ~for Sp1! and s ~for Sp2! is the boundary
resistance calculated according to the theories,4,5 and curve5 describes the proximity effect.
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sistance of the superconductor immediately before the t
sition to the superconducting state,RN the resistance of the
normal region between the probes outside the boundary,
R0NS the residual resistance of a narrow contact reg
formed during the preparation of the bimetallic sample. T
conditionR0NS@RN(0) was satisfied for all the samples in
vestigated by us. As in the model of a ‘‘small-area channe
R0NS is just the maximum resistance in the system
T,Tc at which almost the entire voltageV applied to the
bimetallic sample and undergoing a jump as we go ove
the superconducting half-space is concentrated~Fig. 4c!. We
shall assume that the effect of barriers at the boundar
completely taken into account in the parameterz2 so that the
transmission coefficient for this layer is taken equal to un

Expression~13! implies that the correction to the bound
ary resistance in the normal state of the superconductor
the maximum value forT→Tc when only the normal reflec
tion takes place (I 0,ref→I 0) and tends to zero in the case
total Andreev’s reflection (I 0,ref→0). The arrangement o
probes relative to the boundary and one another is taken
account by the expression in the second brackets in~13!.

It can easily be verified that the contribution of theNS
boundary to the resistance of the system considered a
must be noticeable if at least one of the probes is separ
from the boundary by a distance of the order of a few me
free paths. For large values ofl N,el , this distance become
macroscopically large, the magnitude of the effect increas
in the presence of additional barriers at the boundary.

Along with the change in the resistance of the norm
half-space considered above, strictly speaking, we must
into account a slight decrease in the same resistance
cooling belowTc due to the ‘‘expansion’’ of theNSbound-
ary associated with the proximity effect, especially in t
case when a pair of probes embraces theNSboundary, and
the normal probe is separated from it by a distance comm
surate with the coherence lengthjN . Estimating the curren
in the perturbed layer of the normal metal on the basis of
microscopic theory of the effect,12 we find that this contribu-
tion to the resistance of the normal half-space belowTc for
the superconductor must be of the order of
n-
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udRN
prox~T,xN!u5RN

12exp~2D/kBT!

11exp~2D/kBT!

jN~T!

jS~T!1jN~T!

3
1

xN
E

0

xN
exp@2x/jN~T!#dx. ~14!

The first two fractional factors are associated with the te
perature variation of the order parameter in the normal h
space in the diffusion region of Cooper pairs, while the th
factor is the result of averaging of the spatial distribution
the order parameter in this region. If we take into account
fact that the region of Andreev’s transformation~physicalNS
boundary! is a region of the sizejN(T)1jS(T), the inclu-
sion of the proximity effect in the form~14! indicates that the
displacement of the boundary between the purely normal
gion and the ‘‘NSregion,’’ i.e., the change in the size of th
normal region confined between theN-probe and the norma
region boundary, is taken into account.

Attempts made to describe the temperature depende
RNS(T) of the samples under investigation using the conc
sions of the theory of boundary resistance revealed not
able systematic discrepancy between the experimental
theoretical data for BR. This follows from a comparison
curves1 and2 in Fig. 5, where the regions of curves1 from
Fig. 1 in the temperature range belowTc are shown on a
magnified scale for each of the samples Sp1–Sp3. The
crepancy persists for any theory used for the boundary re
tance. Curves2 in Fig. 5 are calculated in accordance wi
formula ~13! taking into account the temperature-depend
contribution of theNS Schottky barrierz(T). Besides, the
results of calculations of the boundary resistance for sam
Sp1 and Sp2 disregarding this contribution are also prese
~curve3 for Sp1 and triangles for Sp2! as well as the results
of calculation of the same quantity on the basis of t
Artemenko–Volkov–Zaitsev–Hsiang–Clarke theory4,5

~curve4 for Sp1 and circles for Sp2! and the contribution of
the proximity effect in the normal region of sample Sp1 c
culated by formula~14! ~curve5, circles!.

The coefficients for calculating the BR curves were d
termined by the universal method from the normalization
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FIG. 6. Temperature dependence of the correction of the resistance of the normal metal~Cu! corresponding to the mesoscopic effect associated with
difference in the efficiencies of scattering of normal electrons and holes undergoing Andreev’s reflection at impurities located within the ballistic m
path from theNSboundary:NScurves are calculated on the basis of experimental data forNSprobes@LN1 ;LS#, NN curves are calculated for Sp1 and Sp
on the basis of data obtained by usingNN probes@LN1 ;LN2# ~the same as curves3 for Sp1 and Sp2 in Fig. 3. Solid curves correspond to the theory~formula
~17!!, and* mark the temperature dependence of the resistance of the copper single crystal used in the samples.
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the valuedR̄b(Tc) calculated from the condition]R̄b(Tc)I 0

5RS
NI 0 of continuity of the potential at the boundary

T5Tc .
A comparison of experimental and theoretical curves

probes embracing theNSboundary~Fig. 5! leads to the con-
clusion that the inclusion of the well-known effects changi
the conduction of theNSsystem, such as the boundary res
tance~irrespective of the method of its estimation! and the
proximity effect is insufficient for describing the actual tem
perature behavior of the resistance of three-dimensionaNS
systems with long mean free paths belowTc , indicating the
presence of additional mechanisms of conductivity ass
ated with theNSboundary in such systems. Figure 5 sho
that the contributions of the BR and proximity effect a
small over a considerably large temperature region for
geometry of the arrangement of probes under considera
The absolute value of the above-mentioned contributions
NN probes in the same temperature region is still sma
~see curves2 ~BR! for Sp1–Sp3 and curve3 ~proximity ef-
fect! for Sp3 in Fig. 3!. Thus, we have all grounds to assum
that the temperature region far away fromTc is the region of
manifestation of mesoscopic effects analyzed below. Ho
ever, it is just the jump in the boundary resistance nearTc

that explains the astonishingly sharp increase in the re
tance of the normal metal measured withNN probes after the
transition of the metal in contact to the superconduct
state.

4.2. Conductivity in the presence of phase-coherent
excitations

The hypothesis resulting from the data obtained w
probes embracing theNS boundary were confirmed in ex
periments on the resistance of the normal metal with
probes@LN1 ;LN2# installed only in the normal region at me
soscopic distances from theNSboundary.

4.2.1. Ballistic scale

Curves3 in Fig. 3 show the results of subtraction of th
boundary resistance~curves2! from the experimental data
~curve1! normalized from the values of the resistance m
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sured by the same pair of probes atT.Tc for samples Sp1
and Sp2 in units ofdRNN(T). Temperature dependences
BR ~curves2! were calculated by formula~13!. The contri-
bution of the proximity effect for the investigated values
LN2 for all the samples does not exceed its contribution
sample Sp3 shown in the same figure~curve 3!. It can be
seen that the theoretical curves~* ! for samples Sp1 and Sp
are similar to the experimental curves1 except in the narrow
temperature region nearTc . A distinguishing feature of these
samples is that the values ofLN1 for them is of the order of
~for Sp2! or even smaller than~for Sp1! the ballistic~elastic!
mean free path, while the values ofLN2 remain much smaller
than the inelastic mean free path.

The results of measurements with the probes@LN1 ;LN2#
for sample Sp4 are presented in the form in which they w
obtained~without subtracting BR!.

CurvesNS in Fig. 6 show the results of the same oper
tion of subtraction for the results of measurements with
probes @LN1 ;LS# for samples Sp1–Sp3, whileNN curves
correspond to measurements with the probes@LN1 ;LN2#
~similar to curves3 in Fig. 3 for Sp1 and Sp2!. While calcu-
lating NScurves, we took into account the fact that

dRN
mes~T![dRCu

LN1 ;0
~T!5dRLN1 ;LS~T!@11g#21, ~15!

where g5R0NS
LN1 ;Ls/RCu

LN1 ;0(Tc) (gSp1517; gSp251.13102;
gSp3541.3).

For sample Sp3 with the largest value ofLN2 , the con-
tribution of the BR as well as of the proximity effect to th
resistance of the region@LN1 ;LN2# is negligibly small~see
Fig. 3!.

A comparison of the data presented in Figs. 3, 5, an
shows that in spite of the apparent difference in the form
temperature dependences of resistance measured with
probes arranged in different ways relative to theNSbound-
ary in a bimetallic sample, a general regularity in the beh
ior of the resistance of normal regions adjoining theNS
boundary and having a mesoscopic size is revealed w
accompanying effects are taken into account, i.e., the p
ence of a contribution to resistance with a temperature
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pendence closely related to the temperature dependenc
the gap in the superconductor in contact.

The existence of effects such as the increase in the
sistance of a layer of the normal metal contacting the su
conductor and having a thickness of the order of the ther
lengthlT'\vF /kBT or the increase in the conduction of
layer of thickness of the order of the inelastic mean free p
upon cooling belowTc was predicted in Refs. 15 and 1
respectively. Among other things, it was proved in Ref.
and later in Ref. 17 that the mesoscopic correctiondRN

mes(T)
to the normal resistance~subsequently referred to asdRN

Andr)
leading to an increase in the metal resistance upon coo
within ballistic distances from theNSboundary can be due t
the increase in the cross section of electron scattering
impurities during multiple interaction of phase-cohere
electron and Andreev excitations with impurities and w
the NSboundary. The calculations made in the publicatio
mentioned above give doubled value of this cross sectio

We shall use the results obtained by Kadigrobovet al.17

who obtained the solution of kinetic equation for the lat
case in order to present the expected temperature depend
of the resistance of a layer of the metal at a mesosco
distance from theNS boundary and to compare it with th
experimentally observed dependence. According to Ka
grobov et al.,17 the relative increase in the resistance o
layer of thicknessLN measured from theNS boundary and
having a resistanceRN prior to the formation of this bound
ary must be equal to

dRN
Andr

RN
5

l N,el

LN
$Tp%, ~16!

where$Tp% is the effective probability of electron scatterin
by a layer of thickness of the order of ‘‘coherence length’’l t

taking into account Andreev reflection and the conditio
lT< l N,el,LN . The quantity$Tp% can be obtained18 by inte-
gratingTp5\vF /« l N,el , viz., the probability that the particle
is scattered by impurity and reflected as an Andreev part
with energy« ~the energy is measured from the Fermi leve!,
making a contribution to the resistance over the lengthl N,el ,
in the entire energy range from the minimum energy«min

5\vF /lN,el to the maximum energy of the order of the g
energyD(T):

$Tp%5E
\vF / l N,el

D~T! S 2
] f 0

]« DTpd«.

Integration to within the second approximation gives t
following analytic result for the correction to the resistan
of the layer under investigation as a function of temperatu

dRN
Andr

RN
5

1

2

lT

LN
H 11 ln

D~T!l N,el

TlT
1F tanh~D~T!/2T!

D~T!/2T

2
tanh~lT/2l N,el!

lT/2l N,el
G2

1

6 F S D~T!

2T D 2

2S lT

2l N,el
D 2G J 5aNF~T!, ~17!

whereaN5LN/2.
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For a pair of probes@LN1 ;LN2#(LN1,2. l N,el), we have

dRLN1 ;LN2

Andr

RLN1 ;LN2

'
F~T!

LN22LN1
E

LN1

LN2 dL

L
5F~T!

ln~LN2 /LN1!

LN22LN1

5aN2NF~T!. ~18!

The approximationLN1,2. l N,el>lT of the theory is
valid for both values ofLN for sample Sp2 and the value o
LN1 for sample Sp3. Solid curves in Fig. 6 are calculated
formulas ~17! and ~18! for Sp2 with l N,el510mm and ~17!
for Sp3 with l N,el520mm, while the symbols correspond t
experimental data.

In the case when a probe is separated from theNS
boundary by a distance smaller than the ballistic path (LN

, l N,el), the estimates ofRN(LN), and hence of the coeffi
cients a can only be approximate. We shall assume t
RN(LN)'(LN / l N,el)RN( l N,el), so thataN'LN/2 and aN2N

'( l N,el /LN)21. The temperature dependencesdRLN1

Andr/RLN

and dRLN1 ;LN2

Andr /RLN1 ;LN2
, calculated with these coefficient

for sample Sp1 withl N,el520mm are also shown in Fig. 6
by solid curves.

Thus, it can be seen that the theory of scattering
phase-coherent excitations at ballistic distance from theNS
boundary considered above is confirmed both qualitativ
and quantitatively in our experiments.

4.2.2. Phase coherence length scale

A quite different behavior of resistance is observed
the region of the normal metal of sample Sp3 bounded by
probe separated from the boundary by a distanceLN2 of the
order of l N, inel'102l N,el for LN2@LN1' l N,el and for sample
Sp4 whose normal region confined betweenLN1 and LN2

(L̄N'5l N,el) in other two measurements has the same sc
; l N, inel with nonzero current components along these dir
tions in view of the small cross section of current leads~see
Table I!. The results obtained for these geometrical situatio
indicate the emergence of another mesoscopic conduct
mechanism reducing the resistance of the normal meta
the scale of inelastic mean free path upon cooling under
condition when this mechanism obviously dominates as
Sp4 sample with probes separated by distances of the o
of the ballistic mean free path~curve1 in Fig. 3!, or remains
in fact the only mechanism in the case when the contribut
from all other mechanisms changing the conductivity of t
metal is negligibly small as in the case of sample Sp3 and
probeLN2 (NN curve in Fig. 6!. The results obtained for the
probes@LN1 ;LN2# in sample Sp2, for whichdRN

Andr/RN has
the lowest value~only 4%; see Fig. 6! apparently reflect the
intermediate situation.

The existence of such a mesoscopic conductivity mec
nism was predicted by van Weeset al.16 on the basis of the
assumption concerning the interference of phase-cohe
excitations on trajectories formed as a result of multiple
herent reflections at theNS boundary and having the relax
ation ~diffusion! length ldiff5(\D/kBT)1/2 of the order of
the inelastic mean free path. It is assumed that the interac
of excitations with impurities on these trajectories is elas
without a loss in the phase memory. Van Weeset al.16 ob-
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tained an expression for differential conductivity of th
boundary region in the normal metal, from which it follow
that the correction to the resistance in this mesoscopic re
can be presented in the form

dRN
mes~T!/RN~Tc!'2

S

11S
~19!

for

S5 (
m51

`

P~m!I ~m,Z~T!,D/kBT!, ~20!

wherem is the number of reflections of phase-coherent
citations at theNSboundary, andP(m) the fraction of inter-
ference trajectories with such reflections~which will be
henceforth referred to asm-trajectories! reaching the bound
ary of the equilibrium region located within the inelast
mean free path from theNSboundary, i.e., relaxing alongE
over a distance; l N, inel :

P~m!5H 12Tp ~m50!

Tp
2~12Tp!m21 ~mÞ0!

. ~21!

HereTp; l N,el / l N, inel is the probability of traversing the dis
tancel N, inel by an electron reflected from theNS boundary
provided that the transverse dimension of theNS junction is
not smaller than this scale, andI @m,Z(T),(D/kBT)# is the
quantity reflecting the temperature-dependent mean contr
tion to the current from a charge on them-trajectory in the
presence of a barrier of heightZ at theNS boundary~this
quantity has the same meaning as the integrand in~8! upon
the substitution A→A(m) and B→B(m)). Van Wees
et al.16 considered the limiting case ofI (T50). The form of
the temperature dependenceI (T) is similar to that of the
temperature dependence of expression~10! corresponding to
m51. A decrease in temperature ‘‘shifts’’ the boundary
the equilibrium region from theNS junction and increase
the number of excitations undergoing Andreev reflection d
to the temperature dependence of the gap. Thus, the co
bution to the current from trajectories elevating the cond
tivity of a metal layer of the order of the inelastic~e.g.,
electron–phonon! mean free path increases effectively due
multiple coherent reflections of electrons at theNSboundary
and interference of phase-coherent excitations on these
jectories~the weight ofm-trajectories with large values ofm
increases: the value ofP from ~21! increases upon cooling a
T;D and upon a decrease inTp at the expense of the secon
factor!.

Although the calculation by formula~19! can be carried
out only by using a numerical method in the random w
model, the qualitative pattern is obvious. The contribution
the mechanism in question to the change in the conducti
must be negligibly small for measurements with the pro
LN,ball installed at a ballistic distance from the bounda
(LN,ball; l N,el! l N, inel) ~contribution~19! decreases by a fac
tor of l N, inel /LN,ball) as compared to contribution~16!. This
situation corresponds to the conditions of measurements
all combinations of pairs of probes in samples Sp1 and
~see Table I andNN andNScurves in Fig. 6, although one o
the transverse dimensions of sample Sp2 is commensu
on
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with l N, inel , but in a direction orthogonal toE! and in sample
Sp3 with a pair of probes@LN1 ;LS# (NScurve in Fig. 6!. For
LN; l N, inel , when, conversely, the contribution~16! is negli-
gibly small, the correction to the resistance of a layer
metal of the order ofl N, inel must behave in accordance wit
~19!. In particular, sinceTp; l n,el / l N, inel!1, P(T)}Tp

2}T6

in the temperature range;(0.8Tc2Tc) in which the prob-
ability of Andreev reflection is small, and the maximum co
tribution to current comes from trajectories with small valu
of m, while the value ofI @m,Z(T),(D/kBT)# increases ex-
ponentially upon cooling~see formula~10!!. In this connec-
tion, we could expect that both dependencesP(T) and I (T)
compensate each other significantly in this temperat
range. At lower temperatures, whenI @m,Z(T),(D/kBT)# at-
tains saturation and the contribution fromm-trajectories with
large m increases, the temperature dependencedRN

mes(T)'
2S(T)1S2(T) is mainly determined by the temperatu
dependenceP(T)}(12Tp)m21, which corresponds to a de
crease indRN

mes(T) upon cooling forS(T),1. This situation
is observed most clearly in the results obtained for the pro
@LN1 ;LN2# in sample Sp4 with a large area of the NS jun
tion and nonzero components of the fieldE along all three
dimensions of the normal region due to incommensurate
eas of current leads and sample cross section~see the con-
figuration in Table I!. Since the value ofL̄N in this sample
alongEx is of the order ofl N,el , both effects~~16! and~19!!
should generally be added in this situation. Then we obt
the following temperature dependence of the correction
resistance at temperatures;(0.7– 0.8)Tc and below:

dRN~T!

RN~Tc!

'5
lT /L̄N , 0.8Tc,T,Tc

~lT /L̄N!2S~T!1S2~T!5K1T21

2K2~12DT3!m211K2
2~12DT3!2~m21!,

T,0.7Tc

~22!

(K1 is a constant!, which satisfactorily corresponds to th
results obtained for sample Sp4~curve 1 in Fig. 3! with a
peak near (0.7– 0.8)Tc , m5100, andK2.2.

A somewhat different behavior which can also be eas
explained is observed for a pair of probes@LN1 ;LN2# in
sample Sp3. The characteristic sizer of contact cross section
in sample Sp3 is commensurate withl N,el so that the prob-
ability of passage ofm-trajectories to the equilibrium region
along E should be reduced to a value of the order ofTp(1
2 l N,el /r ) under the assumption of diffusive scattering at t
lateral faces in the normal region near the contact~the con-
figuration of sample Sp3~see Table I! ensured the fulfillment
of the conditionr @ l N,el at distances from the contact ex
ceeding l N,el). This noticeably suppresses the temperat
dependenceS(T) in the region below 0.8Tc without affect-
ing, however, the general tendency in the behavior of
effect following from formula~22!, which is probably mani-
fested in the sample under investigation~curveNN in Fig. 6!.
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5. CONCLUSION

Thus, we can conclude that the conditions for a mac
scopic manifestation of some quantum-mechanical phen
ena are created inNSbimetallic systems investigated by u
including

~1! the proximity effect leading to a decrease in the res
tance of the normal region,

~2! the emergence of the boundary resistance as a corre
to the resistance of the normal region unaffected by
proximity effect on the ballistic scale~the magnitude of
the correction is determined predominantly by the e
ergy of excitations interacting with the boundary, i.
the value of the jump in the potentialV at the boundary!,
and

~3! mesoscopic effects one of which is associated with
ferent efficiencies of scattering of phase-coherent exc
tions, electrons, and holes undergoing Andreev’s refl
tion at impurities closest to theNS boundary~on the
ballistic scale! and the other is connected with the inte
ference of the same excitations on them-trajectories due
to a strong increase in the probability of Andreev’s r
flection during multiple coherent reflection of electro
at theNSboundary provided that a sufficient number
m-trajectories exists in a layer of the normal metal w
a characteristic scale of the order of the inelastic m
free path.

The existence of long enough mean free paths which ma
possible, first, to install measuring probes within these len
and, second, to ensure the fulfillment of the pure limit co
dition l @jN is of fundamental importance for the manifest
tion and observation of the last two effects in the norm
metal. Calculations show that these effects must be insig
cant for l !jN , which is the case for mesoscopic conducto
of the size;1 mm, except the boundary resistance as sho
by calculations. We cannot rule out that ‘‘strange’’ effects
the type of a jumpwise increase in resistance nearTc , which
were reported by some authors,19,20are just manifestations o
the jump in the boundary resistance as a result of the for
tion of theNSboundary.
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Nature of anomalous behavior of the surface resistance of YBa 2Cu3O72d films
in a microwave field
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The temperature dependence of the surface resistance of overdoped YBCO films is studied
experimentally. It is shown that the observed unusual behavior of the surface resistance can be
described within the framework of spin-flip scattering of carriers, which leads to pair-
breaking and the emergence of the gapless state. ©1999 American Institute of Physics.
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The interest towards the investigation of physical pro
erties of HTSC films in a microwave field is associated w
the possibility of their potential application in radioelectron
devices. Above all, this concerns the development of pas
elements in mobile, cellular, and satellite communication
high value of the residual resistance at low temperatures
a strong field dependence of the impedance even for r
tively low values of the incident radiation intensity are t
main factors obstructing immediate practical application
these elements.

In spite of the fact that a large number of works ha
been devoted to the study of microwave losses in HT
compounds, the physical nature of this phenomenon con
ues to defy a complete understanding. Among the
proaches used for describing the unusual behavior of the
face impedanceZ(H,T,v), the following two are the mos
widespread. The first one is based on the concepts abou
dx22y2 symmetry of the superconducting order parameter1–3

In the second case, the HTSC materials are treated as
tially nonhomogeneous superconductors with weak links
tween crystallites4–6 or with a nonsuperconducting thin laye
at their surface.7

However, a strong effect of the oxygen concentration
the form of temperature dependence of the surface resist
Rs(T) was observed in many experiments.6,8 In this case, the
mechanism of microwave losses cannot be explained in
framework of the weak-link model, or d-wave pairing. Th
perfection of crystal structure of HTSC compounds is de
mined by the mechanisms of nucleation and growth, wh
the type of symmetry of the order parameter must rem
unchanged over the entire concentration range of the su
conducting state.

In the present work, we describe the results of exp
mental measurements of the temperature dependence o
face resistance for YBa2Cu3O72d films obtained by magne
tron sputtering technique in an atmosphere of pure oxyg
The Rs(T) dependence displays a number of peculiarit
which cannot be explained correctly by any of the exist
3271063-777X/99/25(5)/5/$15.00
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theoretical models. A new concept for the emergence of
crowave losses in HTSC compounds based on breakin
superconducting electron pairs as a result of spin-flip sca
ing at magnetic impurities is proposed.9

2. EXPERIMENTAL RESULTS

We used the dc magnetron sputtering technique to ob
YBa2Cu3O72d films in an elevated pressure of the workin
gas in the chamber. This was done in order to reduce
effect of bombardment of the substrate by negative oxy
ions and to avoid backsputtering of the growing film laye

The sputtering device was based on the commer
complex VUP-5M. Pressed ceramic disks of diameter 58 m
and thickness 5 mm made of YBa2Cu3O72d of stoichiometric
composition were used as targets. For a better thermal
tact with cooled cathode, the target was soldered to the c
ode by using Wood’s alloy. Standard magnetrons compris
the device VUP-5M were used for sputtering. Sputtering
films was carried out under a pressure of 2–3 Torr, a cath
voltage 300–350 V, and in a plasma current of about 20 m
The separation between the target and the substrate
8–10 mm. The substrate temperature during film deposi
was 720–750 °C. The substrate was made of monocrysta
SrTiO3 with a working surface~100!. The average deposition
rate was 0.1–0.5 nm/min. Unlike the case of magnetron s
tering of HTSC films, where a mixture of argon and oxyg
was used as the working gas, we used pure oxygen for
deposition. The investigated films had a thickness of 10
120 nm.

X-ray diffraction studies revealed that all the obtain
films had an excess oxygen concentrationd.0.04–0.05.

The superconducting transition temperature of the
tained samples wasTc.91 K, the transition width
DTc51 – 2 K, and the room-temperature resistivi
r3005200– 250mV•cm ~in the best samples!.

The surface resistance of the obtained films was m
sured by using the resonance technique withH011 mode. In
this method, film samples of diameter 8–10 mm replac
© 1999 American Institute of Physics
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one of the end faces of a cylindrical copper cavity. All me
surements were made at a frequency of 32.4 GHz.

It can be seen from Fig. 1 that the curvesRs(T) have a
well-defined nonmonotonic nature with a sharp minimum
a temperature close toTc and a broad peak at lower temper
tures. Such a behavior of the surface resistance is basi
different from the experimental dependences obtained
monocrystalline samples7 and most of the films.3,6 By way of
an example, the dependenceRs(T) is plotted for a
YBa2Cu3O72d film with parameterd.0.09, i.e., with a
chemical composition quite close to the optimal oxygen c
centration.

3. DISCUSSION OF RESULTS

The temperature dependence of the surface resistan
a microwave field is usually described by the empirical re
tion

Rs~T!5Rst~T!1Rres, ~1!

whereRs(T) andRst(T) are the experimental and theoretic
surface resistance respectively, andRres is the residual sur-
face resistance associated with the presence of various
fects and impurities in the sample. The quantityRst(T) can
be obtained either in the BCS theory or by using the Gor
Casimir two-liquid phenomenological model.

Near the superconducting transition temperature, we
use a local approximation of the BCS theory which does
take into consideration the variation in the number of qua
particles, and the expression for the surface impedance
be written in the form10

Zst5Rn$2i /@11 idn
2/2l~T!2#%1/2, ~2!

FIG. 1. Temperature dependences of the surface resistance for
YBa2Cu3O72d films with different residual resistivitiesr0 ,'3.5mV•cm:
~curve1!, ;1.1 ~curve2!, ;0.1 ~curve3!, and;0 ~curve4!.
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whereRn anddn denote the surface resistance in the norm
state and the classical skin-depth respectively.

The temperature dependence of the magnetic field p
etration depth for the entire temperature range can be
sented in integral form as follows:

l~T!225l~0!22H 122E
D

`

2
] f F

]E

E

AE22D2
dEJ , ~3!

where l~0! is the magnetic field penetration depth at ze
temperature,D the energy gap, andf F the Fermi function.

In this case, the surface resistance can be presente
the form

Rst~T!5Rn

2l~T!

dn
, ~4!

while its temperature dependence is determined comple
by the temperature dependence ofl. For the skin depth, we
obtain the expression

dn5~2rn /m0v!1/2. ~5!

Generally speaking, the conditiond!dn must be satis-
fied for thin films, whered is the sample thickness. In thi
case, the resistivity can be determined from the simple r
tion rn5Rnd. However, it would be appropriate to use
more rigorous expression by assuming that in this case
determine, instead of surface resistivity, the bulk resistiv
which takes into account the interference of the incident
crowave:

Rn5~m0vrn/2!1/2. ~6!

Here m0 is the permeability of the vacuum, andv is the
microwave radiation frequency.

In order to describe the temperature dependence of
surface resistance with the help of Eqs.~3! and ~4!, we use
l~0! andD~0! as fitting parameters. All the remaining cha
acteristics can be obtained from the experimental data.
one of the investigated films~curve3 in Fig. 1!, the follow-
ing values were obtained with the help of formulas~5! and
~6!: rn559.5mV•cm, dn554mm. Note that the obtained
value ofrn is in good agreement with the results obtained
Jacobset al. for single crystals of YBa2Cu3O72d .8

The solid curve in Fig. 2 shows the theoretical depe
denceRst(T) obtained from formulas~3! and ~4! by com-
puter analysis taking into account the temperature dep
dence of the energy gap and the following values of fitti
parameters:l~0!5140 nm,D(0)52.1kBTc .

The real part of the impedance can be presented in te
of the two-liquid model parameters:11

Rst~T!5
2pvl~T!2

c2

nn

ns
t, ~7!

wherenn and ns are the numbers of normal and superco
ducting electrons respectively,t215vF / l is the frequency of
electron collisions,vF the electron velocity at the Fermi su
face, andl the electron mean free path. Naturally,n5nn

1ns is the total number of conduction electrons.
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Using the well-known empirical expression for the ma
netic field penetration depthl(T)5l(0)(12t4)21/2, which
is valid for temperature interval close toTc , we arrive at a
simple expression forRst(T):

Rst~T!5
2pv2l

c2 l~0!
t4

~12t4!3/2, ~8!

wheret5T/Tc .
The electron velocity at the Fermi surface is determin

from the formulavF5kBTcj0 /(0.18\), assuming the coher
ence lengthj052 nm.6 The electron mean free pathl for
these compounds is put equal to 5 nm.6

The dashed curve in Fig. 2 shows the theoretical dep
denceRst(T) obtained from formula~8! for the magnetic
field penetration depthl~0!5140 nm and superconductin
transition temperatureTc588 K. It can be seen from the fig
ure that both theoretical approaches lead to almost iden
results which can be used to explain the decrease in sur
resistance at temperatures close toTc . However, neither the
BCS theory nor the Gorter–Casimir approximation can
plain the sharp increase in resistance upon an increas
temperature.

Many authors~see, for example, Refs. 4–6! associate the
emergence of a sharp peak on theRs(T) dependence with the
microstructural inhomogeneity of the investigated obje
and the existence of weak links, where superconducti
may be suppressed or completely destroyed. As a rule, g
or twin boundaries are often treated as weak links. Howe
a reliable experimental confirmation has not been obtai
so far showing the direct influence of the density of crys
defects on the observed effect. On the other hand, the p
on the Rs(T) curves may be observed in monocrystalli
YBa2Cu3O72d samples as well as on films prepared by d
ferent methods and having various degrees of perfectio
their microstructure. However, it was shown by Jaco
et al.6 that the above-mentioned peak on theRs(T) depen-
dence appears in YBa2Cu3O72d films prepared by nonaxia
magnetron sputtering technique only after holding them

FIG. 2. Temperature dependence of the surface resistance fo
YBa2Cu3O72d film with r0.100 mV•cm: theoretical curves obtained in th
BCS theory~solid curve! and in the two-liquid model~dashed curve! ~curve
1!, the theoretical curve obtained for scattering of carriers at magnetic
purities with spin flip~curve2!, and the theoretical curve obtained for sca
tering of carriers at correlated magnetic impurities~curve3!.
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air for two weeks. It is hard to believe that such a low
temperature treatment can lead to noticeable variations in
microstructure of the film. Hence it can be concluded that
observed anomalies in the behavior ofRs(T) shown in Fig. 1
are probably not related to microstructural inhomogenei
and the formation of weak bonds.

For the same reasons, the attempt to attribute the
served increase inRs(T) to d-wave mechanism of electro
pairing seems to be quite controversial.1–3 The change in the
conditions of sample preparation can hardly lead to a cha
in the type of symmetry of the superconducting order para
eter. On the other hand, an analysis of the temperature
pendence of the surface resistance for monocrystal
YBa2Cu3O72d samples based on thed-wave pairing model3

shows a poor agreement with the experimental data.
Apparently, the existence of residual surface resista

in the superconducting state can be explained by the me
nism of emergence of losses in a microwave field associa
with the interference of incident waves due to interface
flection proposed by some authors.21 However, this mecha-
nism presumes a strong dependence of the effect on the
metrical size of the samples, which is not observed in ac
practice.

Many experimental facts indicate that the residual s
face resistance and the temperature dependenceRs(T) are
quite sensitive to the concentration of oxygen atoms in th
compounds. It is well known that the optimal concentrati
of oxygen atoms in YBa2Cu3O72d corresponds tod50.08.
The excess or deficiency of oxygen atoms can lead to pe
liar variations in the electron properties of the material as
ciated with the possibility of charge transport. The physi
nature of this phenomenon is still unclear on account of
extreme complexity of the electronic structure of these co
pounds. It was shown by Koldiset al.12 that in YBa2Cu3O72d

compounds overdoped with oxygen~for 0.05,d,0.03!, two
superconducting phases can emerge with critical temp
tures differing by just 2.5 K. According to Gusakov,13 an
increase in oxygen concentration is accompanied by
change in the magnitude and sign of charge at the O~4! po-
sition from 22.07 to 0.67, which must lead to the formatio
of uncompensated magnetic moments localized in the Ba
layer. The recently discovered phase separation effect~see,
for example, Ref. 14! can also lead to the formation of tin
spin-polarized clusters in compounds of this type.

Taking into consideration all that has been stated abo
we can propose an entirely different explanation for the
usual behavior of theRs(T) dependence on the basis of th
following assumptions.

~1! Two superconducting energy gaps, say, in Cu–O pla
and Cu–O chains, can appear in HTSC compoun
However, other versions for the formation of the tw
phase superconducting state are also possible. At t
peratures close toTc , a strong increase in the coheren
length and overlapping of the wave functions of sup
conducting electrons in adjacent planes and chains tr
form both gaps into a single gap which determines
superconducting transition temperature of the co
pound. The overlapping of wave functions weake
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upon a decrease in temperature~the manifestation of the
proximity effect becomes less pronounced!, and the be-
havior of the two gaps can be treated independently.

~2! The excess or deficiency of oxygen atoms in the co
pound YBa2Cu3O72d can lead to the formation of mag
netic impurities. At high temperatures~close toTc!, the
magnetic impurities can be treated as independent
ters at which spin-flip scattering of carriers tak
place.15–17 This process is accompanied by depairing
electrons due to the law of conservation of total spin, a
leads to the emergence of gapless superconduc
state.9,18

~3! A decrease in temperature can lead to the enhancem
of interaction between impurities and a tendency towa
ordering of the magnetic subsystem. In this case,
spin-flip scattering of carriers becomes less proba
and the electron pair breaking effects beco
impossible.9 Ordering of magnetic impurities may be o
the type of phase transition at the final temperature, o
continuous type with a transition to the spin-glass sta
It can be hoped that the mechanism of formation of m
netic order in cuprates will not differ significantly from
that proposed for doped manganites which became q
popular after the discovery of ‘‘giant magnetores
tance’’ in them.19,20 For example, such a mechanis
may emerge owing to indirect anisotropic exchan
through oxygen orbitals.

The situation described above is presented schematical
Fig. 3.

In this work, we do not specify the physical nature
magnetic ordering, but rather assume that the magnetic
system may exist in two states, viz., high-temperature n
correlated state~in which the impurities can be treated a
independent!, and the low-temperature correlated state~in
which magnetic ordering sets in!. In this case, the numbe
Nm of noncorrelated magnetic impurities will decrease w

FIG. 3. Schematic diagram for scattering of charge carriers at magn
impurities with and without spin flip.
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temperature to zero according to the simple law

Nm~T!}Nm0 exp~2T0 /T!, ~9!

whereNm0 is the number of independent magnetic impuriti
at high temperatures,T0 the energy of impurity interaction
leading to magnetic ordering~or the correlation energy o
magnetic impurities!.

Thus, a decrease in temperature may lead to the em
gence of three successive processes in the supercondu
compound YBa2Cu3O72d , resulting in a considerable rea
rangement of the energy spectrum and affecting losses in
microwave field. In the close proximity ofTc , the entire
sample is in the phase-coherent state and begins to go ov
the superconducting state as a single entity. In this case
temperature behavior of the surface resistance can be
scribed quite correctly by the BCS theory or the Gort
Casimir two-liquid model as shown by the solid curve a
dashed curve1 in Fig. 2. Further decrease in temperatu
must lead to the separation of superconducting energy g
in Cu–O planes and chains due to a sharp decrease in
coherence length. Hence a situation may arise in which
concentration of magnetic impurities that are invariab
present in the compound exceeds the critical concentra
for the superconducting component of electrons localiz
along the Cu–O chains. In this case, the spin-flip scatte
of carriers results in the transition of a part of the sample
the gapless superconducting state. Since this process i
companied by breaking of superconducting electron pa
the temperature dependence of the surface resistance c
presented in a form inverse to formula~7!. Indeed, the num-
ber of normal electrons in this case will increase with d
creasing temperature, while the number of superconduc
electrons will decrease. Taking into account the tempera
dependence of the electron mean free path6 and assuming
that the magnetic field penetration depth varies weakly in
temperature range in which we are interested, we calcula
the theoretical dependenceRst(T) keeping in view the pair-
breaking of a part of the superconducting electrons~see
curve2 in Fig. 2!. It can be seen from the plot that the sha
minimum observed experimentally on theRst(T) depen-
dence~see Fig. 1! may be described by the given mod
without the introduction of any additional fitting paramete
Upon a further decrease in temperature, the resulting co
lation between magnetic impurities leads to a termination
the spin-flip scattering of electrons and to a restoration of
superconducting energy gap along the Cu–O chains. In
case, the expression for the temperature dependence of
face resistance must contain two cofactors, viz., the temp
ture dependence of the number of the normal and super
ducting electrons, which can again be expressed in term
the BCS theory~2! and~3! or the Gorter–Casimir model~7!,
and the probability of existence of independent magnetic
purities described by formula~9!:

Rst~T!'R0 exp~2T0 /T!F t4

12t4G1R1 , ~10!

whereR0 is a constant parameter which can be determin
from formulas ~7! and ~9!, and R1 is the residual surface
resistance.
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The best agreement with the experiment is obtain
~curve 3 in Fig. 2! by choosing the parameterT05130 K,
which can characterize the correlation energy of spin in
action of impurity atoms.

4. CONCLUSION

In this work, we have shown that the frequently o
served peculiar temperature dependence of the surface r
tance of HTSC materials in a microwave field can be as
ciated with the concentration and the extent of ordering
oxygen atoms, and not with the structural inhomogeneitie
nontraditional type of electron pairing. The idea of the ex
tence of magnetic impurities and mechanism of inela
spin-flip scattering of carriers is used to propose a qualita
model of the emergence and peculiar temperature de
dence of the microwave losses in HTS films at low tempe
tures.
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Spectrum of Andreev states in asymmetric S1NS2 junction
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A completely asymmetricS1NS2 junction with different Fermi surfaces in the layers is
considered. The transfer matrix is constructed, and the spectrum of localized states is obtained.
The weakening of the phase dependence with increasing difference in the Fermi momenta
in the layers is of a slow power type. ©1999 American Institute of Physics.
@S1063-777X~99!00505-8#
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It is well known that the formation of discrete Andreev
levels is the main mechanism determining the phase de
dence of superconducting current flowing through anSNS
junction under the conditions of stationary Josephs
effect.1–5

The spectrum of the junction is usually determined fro
an analysis of the one-dimensional scattering problem
joining solutions for three regions with piecewise-const
values of physical parameters. Starting from the fundame
work by A. F. Andreev,2 it is assumed that the values of th
Fermi momentum componentskFx

normal to the interfaces

between the media are the same for all waves participatin
joining. In Ref. 2, this was dictated by physical conditions
the problem on the intermediate state of a homogene
sample. In subsequent publications onSNSjunctions andSN
superlattices,6–9 this condition is presumed automaticall
which should be regarded as an essentially model assu
tion ~Andreev approximation7!.

In actual broad asymmetricS1NS2 junctions formed by
different metals, the Fermi surfaces corresponding to dif
ent regions obviously have different sizes and shapes, w
must be taken into account in joining the corresponding
lutions and for determining current. Old theories based
the model of tunnel Hamiltonian4 described this circum-
stance just by the product of energy densities of state
junctions with reciprocal root singularities at their superco
ducting gap thresholds. In recent publications on ballis
Josephson junctions,6,9 asymmetricS1NS2 junctions were
considered, in which the absolute valuesD1 and D2 of the
pairing potential on the left and on the right were assume
be different for the same Fermi momentumkFx , and the
spectrum of such junctions as well as the current thro
them were analyzed. In the presence of additional dielec
barriers at the boundaries of theN region, ordinary scattering
of quasiparticles and the situation not covered by Andree
approximation must be taken into account along with A
dreev scattering.10

In this communication, we study and analyze nume
cally the equation for the spectrum of Andreev states fo
completely asymmetricS1NS2 junction taking into accoun
the difference in transverse Fermi momenta in the layers
addition of Andreev reflection which by definition involves
3321063-777X/99/25(5)/3/$15.00
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small change in the quasiparticle momentumdk;kFD/m,
wherem is the Fermi energy, ordinary reflection of quasipa
ticles at the boundary between metals occurs with a la
change of momentumdk;kF . This scattering channel is
always present in actual systems, and we must take it
account in order to describe completely the phase dep
dence of current. We shall prove that the dependence of
energy of Andreev states on the coherent phase differe
disappears smoothly with increasing difference in the Fe
momenta in the layers. It follows hence that the pha
dependent contribution to the superconducting curr
through such junctions is proportional to the product of t
areas of quasi-cylindrical strips with the same value ofkFx

on the Fermi surfaces for different media.
In real metals, conduction electrons have a complex d

persion relationE5E(k), wherek is the quasimomentum
and the Fermi surface may have an intricate shape.11,12 In
order to describe quasiparticles in a superconductor wit
complex topology of conduction bands, we write th
Bogoliubov–de Gennes equation in the form11

S Ĥ~2 i\¹1ps!2m2« 2D

D Ĥ~2 i\¹2ps!2m1«
D S u

v D50.

~1!

Here we replace the electron kinetic energy opera
(2\2¹2/2m) by the Hamiltonian operatorĤ(2 i\¹) whose
eigenfunctions are plane waves enveloping Bloch functio
i.e.,

Ĥ~2 i\¹!eikr 5E~k!eikr . ~2!

Such a substitution for metals is justified with the help of t
Wannier representation12 or in analogy with the description
of optical spatial dispersion in the electromagnetic wa
equation if the phase velocity of light is a function of wav
length. A weak magnetic field in crystals can be described
the vector potential A5A(r ) through the Peierls
substitution12 into the dispersion relation of quasimomentum
In this connection, we have introduced in~1! the gauge-
invariant superfluid momentumps5\¹F/22eA/c, and the
calibration of A is chosen so that the pairing potenti
D5D(r ) is real-valued, i.e., its phaseF is equal to zero.
© 1999 American Institute of Physics
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In a one-particle spectral problem, we can often assu
~for a@j, wherea is the width of theN region andj the
correlation length! that E(k),D andps are preset piecewise
constant functions in the relevant regions, and Eq.~1! is a
linear differential equation. We direct thex-axis at right
angles to the layers along the currentps so that the left
boundary of theN region corresponds tox50 and the right
boundary to x5a. Particular solutions of the one
dimensional problem have the formeikx. We confine our
analysis to a typical case when the Fermi surfaces have
one cavity and have an inversion centerE(kF)5E(2kF),
and the characteristic equation for~1! in each medium has
four roots~this is obvious for a spherical Fermi surface!:

k1,35kf6~\vF!21A~«2vFps!
22D2,

k2,452kF7~\vF!21A~«1vFps!
22D2. ~3!

Herek1 andk2 correspond to electron-type andk3 andk4 to
hole-type excitations, and the transverse Fermi momen
kF can be determined from the equationE(kF ,ki)5m,
whereki is the Fermi momentum parallel to the boundari
the transverse group velocityvF5]E(kF ,ki)/]kF , and
vF ,kF@«,D,vFps almost on the entire Fermi surface.

The solution at an arbitrary point can be written with t
help of the transfer matrixC(x)5MxC(0), where C(x)
5col(u,du/dx,v,dv/dx) andC~0! is the column of bound-
ary conditions at the pointx50.13 The transfer matrixMx in
a homogeneous layer has the form

Mx5LMDxL
21, ~4!

where L is the diagonalization matrix, i.e.,C(x)
5LCD(x), and CD(x)5col(A1eik1x,A2eik2x,A3eik3x,
A4eik4x), MDx5diag(eik1x,eik2x,eik3x,eik4x). in the diagonal
representation. The continuity of the current density impl
that the superfluid momentumps of particles is large in theN
region, where the condensate density is low, and convers
can be approximately put equal to zero in theSregions. Then
the modulus of phase lead of the wave functions for qu
particles in the normal region, which predominantly det
mines the disbalance of spectra of forward and backw
currents, isw/25psa.3 This parameter automatically appea
in the exponential factors of the transfer matrix through
N region, which allow us~for the chosen simple calibratio
~1!! to use only the ordinary continuity conditions for wav
functions and their derivatives at the boundaries instead
the Kulik condition1 introduced for equations with a
complex-valued D(x). In this approximation ~D1Þ0,
ps50!, matricesL j in Sj regions (j 51,2) are given by the
direct product

L j5S 1 l j

l j 1 D ^ S 1 1

ikF j 2 ikF j
D , ~5!

wherel j5(g j2«)/D j52D j /(g j1«) are coherence factor
for partial u- and v-waves, andg j5A«22D j

2. In the N re-
gions, matricesL can be obtained from~5! for D j5 l j50,
kF j5kF0 ; in this case, the transfer matrix~4! has the form
e

ly

m

,

s

ly,

i-
-
rd

e

of

MNx5S N1e2 ipsx 0

0 N3eipsxD , ~6!

N1,35S cosk1,3x
1

kF0
sink1,3x

2kF0 sink1,3x cosk1,3x
D ,

wherek1,35kF06«/\vF0 .
Specifying the boundary conditionsC(a) at the second

point x5a also, we arrive at the equationC(a)
5MaC(0). For subbarrier states of an asymmetricS1NS2

junction D1.D2.«, retaining at the boundaries only th
wavesC(0)5L1col(0,A2 ,A3,0), C(a)5L2col(A1,0,0,A4),
attenuating to the left and right, we obtain the following fo
equations for amplitudes:

S A1

0
0
A4

D 5L2
21MNaL1S 0

A2

A3

0
D . ~7!

Equating the determinant to zero, we obtain the requi
equation for the spectra of Andreev states coupled in
junction:

D1D2 cosw5
1

4
g̃1g̃2t1t2 cos 2kF0a

1S «22
1

4
g̃1g̃2h1h2D cos

2«a

\vF0

1
«

2
~ g̃1h11g̃2h2!sin

2«a

\vF0
, ~8!

where

t i5
kF0

kFi
2

kFi

kF0
, h i5

kF0

kFi
1

kFi

kF0
,

g̃ i5AD i
22«2, i 51,2. ~9!

For kF15kF25kF0 , this equation is transformed into th
equation obtained in Refs. 6 and 9~Fig. 1a!. Besides the
additional asymmetryt1Þt2Þ0, h1Þh2Þ2, the first term
on the right-hand side of~8!, which oscillates with the varia-
tion of the parameterkF0a and is especially significant nea
the bottom of the well«!D2,D1 , is new qualitatively. The
emergence of this term is in fact associated with

FIG. 1. Characteristic asymptotic forms of Andreev states inN region.
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inclusion of the ordinary scattering channel at the poten
barriers ofSNboundaries. It can be seen that the behavio
the spectrum strongly depends on the structure of the Fe
surface in all the three regions. Ift i;h i@1, the dependence
of the energy of Andreev’s levels onw disappears, band
contract to discrete levels, but the asymptotic form can
different. For example, for processes withkF15kF2ÞkF0

~Fig. 2!, where t5h1/221, the calculations based on fo
mula ~8! for D15D251023, a53•1027 m, kF055.8
•108 m21, vF05\kF0 /m! t15t2@1 andh15h2@1 we ob-
tain the spectrumk1,3a5np (n50,61,62,....) consisting
of equidistant doublets~see Fig. 1b! of standing waves with
k5k1,3 confined in a rectangular well. IfkF0a5np/2, the
lines in the doublets merge: we have«5 lD« for evenn ~Fig.
1c1! and «5( l 11/2)D« for odd n ~Fig. 1c2!, where D«
5p\vF /a and l is an integer. For processes withkF1

ÞkF25kF0(t250,h252) for h1@1, we have Andreev’s
spectrum with zero currentw501–3 in a well of double width
2a:

tan
2«a

\vF0
5

g̃2

«
. ~10!

According to the Bohr–Sommerfeld quantization rule, th
corresponds to specular reflection of the wave incident fr
the right at the left well, the separations between lines be
almost identical~Fig. 1d!. Pay attention to the fact that thes
asymptotic forms are independent of the relation betweenkFi

and of the signs oft i . The dependence of the spectrum onw
disappears quite smoothly in the phase space for value
the parameters

h;t;t;
D

g̃
5H 1, «!D2

A1

2

D2

D22«
@1, «<D2 ~11!

near the top of the well at a much lower rate than near
bottom.

The spectral equation~8! derived by us takes into ac
count the difference in the transverse Fermi momenta of
ticles in all regions along with the difference in pairin
potentials at theS banks of the junction. Besides Andreev

FIG. 2. Evolution of the phase dependence of the energy of states
increasing difference between transverse Fermi momenta inS- and
N-regions~calculations were made by using formula~8!!.
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scattering channel, the ordinary scattering at theSN
boundaries is also taken into account. The method of tran
matrix13 allows us to automatize the procedure of joining t
solutions and to leave easily the limits of Andreev’s appro
mation.

For determining the current through the junction, t
summation over the states involves the integration o
phase volumes near Fermi surfaces in all the three me
The estimate~11! and Figs. 1 and 2 show that the calculatio
of the phase-dependent component of current~both subbar-
rier and above the barrier! must be carried out with the hel
of careful numerical summation. Our analysis shows, ho
ever, that this current component is determined roughly
the presence of regions with the same value ofkFx , i.e.,
strips of a quasi-cylindrical shape with a height determin
by the surface with the smallest area on all the three Fe
surfaces and gives information on the area of these strips
their orientation relative to crystallographic axes.

The results obtained for taking into account addition
scattering channels can be easily generalized to the case
more complex topology of the Fermi surface~the absence of
inversion center, nonconvexity, lack of simple connectivi
self-intersection, magnetic splitting, and so on!, when the
roots of the characteristic equation for~1! in a layer have
different values ofkF andvF , or the number of these roots i
greater than four. In the latter case, we must supplement
vector of stateC(x) with rows containing higher-order de
rivatives corresponding to the number of the roots, and
matricesMx andL have dimensions equal to the number
the roots.
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Dynamics of electronic excitations in YBCO at low temperatures
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We present the results of low-temperature optical experiments~absorption and reflection! in
visible and middle infrared frequency regions with epitaxial films of copper oxide materials like a
Y1Ba2Cu3O61x . Based on our data and reference data, we consider the anomalous spectral
effects in HTSC having no analogy with conventional BCS superconductors:~1! the optical
response to superconducting transition atTc ; ~2! the spectral weight redistribution induced
by chemical doping and temperature;~3! the drastic enhancement of low-temperature photodoping;
~4! the long spin-structure relaxation via temperature variations seen in the optical spectra.
The thorough analysis of the results obtained is fully compatible with the concept of two-
component system of light and heavy carriers~holes!, being in dynamical coexistence
with each other. The dynamical coexistence of the intraband carriers occurs on the background
of strongly correlation interrelation of the heavy quasiparticles with the optical interband
~charge transfer! excitations. ©1999 American Institute of Physics.@S1063-777X~99!00605-2#
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INTRODUCTION

In recent years the optical spectroscopy of HTSC at
quencies much higher than the superconducting g
\v@D, has been found to be informative for understand
the nature of high-Tc superconductivity, in particular, fo
studying the anomaly of the normal-state properties
HTSC. With regards to room temperature (RT) optical ex-
periments, the following distinct features of the HTSC sp
tra, which were originally associated with the unusual el
tron structure, deserve mention:~i! the pronounced optica
effect of strongly correlated electrons~holes! under doping,
manifesting itself in spectral weight redistribution betwe
the high-energy~interband! region of spectra and the low
energy~intraband! one;~ii ! the declination of the optical con
ductivity from the Drude-like behavior~standard for free car
riers! and the appearance of an additional band in the mid
infrared region;~iii ! the inherent potentiality of photodoping
which results in pumping of carriers under irradiation w
light quanta at the frequencies of interband charge tran
transitions above the optical gap\v.\vg>1.6 eV; ~iv! the
optical relaxation of the reflection coefficient in the course
aging and the oxygen ordering of HTSC samples after co
ing from high temperature (T<450 K) to RT.

The mentioned important results for different HTSC a
presented, for example, in.1–6 All the above features were
measured in the optical range from 1022 to 5 eV with dif-
ferent doping regimes of Y1Ba2Cu3O61x : the dielectric
phase, x,0.3; the strange metal phase at underdopi
0.35,x,0.8; the metal at optimal doping,x'0.9; the over-
doped metal with depressed superconductivity,x.0.95. Be-
cause there are two different cuprate structures in theab
geometry of Y1Ba2Cu3O61x2CuO2 ~active plane and CuOx
~chain structure along theb axis!, it is essential that the
3351063-777X/99/25(5)/9/$15.00
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contributions from these planes to absorption and reflec
should be separated in experiments with light polarizati
This can be most easily done in polarization experime
with Eia and Eib on untwinned crystals. In this respe
most intriguing are the data of polarization spectrum m
surements on untwinned single crystals of YBaCuO foa
andb axes.2,6 For example, the optical conductivity spectru
of Y1Ba2Cu3O61x for different doping amounts at RT
according2 is shown in Fig. 1. Below the energy of th
charge transfer optical gap,E>1.6 eV, separating the lowe
valent and the upper Hubbard bands there are intraband
sitions. Above this energy,E.Eg , one can observe inter
band absorption bands with charge transfer from O22 to
Cu21—CT1, CT3, CT4 which are most prominent at lo
doping. Still higher in energy, atE54.1 eV, there is a band
which belongs to the transition (d2p) in the local center of
Cu1 of CuOx plane. Figure 1 clearly shows the evolution
optical conductivity spectra with doping from the dielectr
to a superconducting state. The correlation effect in the sp
tra with doping is revealed in the form of integral spect
weight redistribution from the interband charge transfer~CT!
transitions in the visible~VIS! region to the intraband tran
sitions in the middle infrared one~MIR!. The spectral change
indicates that the conduction and valence band state
YBCO insulator are redistributed by doping to construct n
states which give rise to low-energy excitations below cro
over point\vcr . As seen from Fig. 1, there is the crossov
point vcr at whichs1(v) is constant with doping. It should
be mentioned that in general the existence of the dop
independent crossover pointvcr suggests that the optical ga
in Y1Ba2Cu3O61x is not generated by the charge dens
wave~the spectrum of optical excitations associated with
charge density wave shifts dramatically to a red region a
whole on doping!. The optical spectra of YBaCuO in th
vicinity of intraband transitions have a Drude peak, cente
© 1999 American Institute of Physics
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336 Low Temp. Phys. 25 (5), May 1999 Fugol et al.
at v50 with width of 1/T and additional spectral weight i
the MIR region~with the MIR maximum at 0.6 eV!. It is the
occurrence of additional absorption in the MIR region th
results in the difference of the frequency dependences~v!
from the laws(v);v22 expected for the ordinary Ferm
liquid. And that once entailed the need for development
new concepts of HTSC electronic spectrum~for instance, the
concept of ‘‘marginal’’ and ‘‘nesting’’ Fermi-liquid7!. It
should be emphasized that in conventional BCS-sup
conductors no radically new optical effect were observed
low temperatures~LT! as compared to RT in the regio
\v@D, moreover, no optical response to the emergenc
the SC state was detected. In the case of HTSC the LT
namics of charges displays new effects which would signa
on precursory processes to superconductivity.

This paper presents the experimental results of la
years on some nonordinary spectral properties of the nor
phase of Y1Ba2Cu3O61x in VIS and MIR, revealed at differ-
ent regimes of doping and temperature variations within
LT range belowT5200 K down to 20 K. In the main thes
are the data of investigations under the Program of
National Academy of Sciences of Ukraine. All optical me
surements were carried out on thin epitaxial filmsl
'2000– 3000 Å in thickness oriented parallel to theab
plane. The films were grown in German scientific cent
~University of Erlangen; Munich Technical University!. The
films were tested for their electrical, magnetic and struct
characteristics. Some details of the LT optical measurem
were described in.8

At present it can be said with confidence that the h
subsystem dynamics in HTSC materials is largely de
mined by the Fermi-liquid effects and the strong correlat
interaction between intra- and interband transitions. Ho
ever, up to now the correlation redistribution along spec
has been studied only for the doping effect at RT and has
been considered for other processes of charge dynamics
cording to the data8 and the results presented here, the in
gral redistribution of spectral weight in HTSC also occurs
experiments with temperature variations, in photoinduc
spectra, in experiments with provocation of spin-struct
instability and so on. Therefore, the LT spectral data sho

FIG. 1. Optical conductivity of untwinned YBCO crystals for various com
positionx at RT:2 along a axis~ !; along b axis~ !.
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be analyzed from the general viewpoint. We would like
stress that all LT features in the MIR and VIS spectra can
naturally examined in terms of the Mott-Hubbard model
2D strongly correlated electrons with taking into account
intense spin fluctuations at LT.

OPTICAL RESPONSE TO SC TRANSITION AT Tc AND
TEMPERATURE DEPENDENCES OF SPECTRAL FUNCTIONS

One of the unexpected spectroscopic results in cop
oxides was the finding of sensitivity to the onset of sup
conductivity for the transmitted electromagnetic field of o
tical frequencies\v@D. The optical response in absorptio
and reflection toTc was detected both in VIS and MIR.9–12

The subsequent experiments confirmed the occurrence of
peculiar effect in YBaCuO and other HTSC in a wide ran
of doping. It was shown that the response arose under op
transitions belonging to the conducting plane of CuO2. TheT
dependence of the differential absorption coefficient at fix
frequency Dav(T) l 5@av(T)2av(T0)# l ~for the CT
maxima at 2.6 eV! is shown in Fig. 2a and that for the dif
ferential absorption coefficient of the MIR maximum at 0
eV is shown in Fig. 2b. As it can be seen, theTc point
coincides closely with the kink of the functionsav(T). Note
that the optical response to the SC transition in HTSC w
also detected in luminescence spectra on oxygenF centers at
frequencies near 2–3 eV.13

The temperature behavior of the optical spectra
YBaCuO was found to be uncommon. BelowTc one can

FIG. 2. Temperature dependences of the differential absorption coeffic
for VIS ~a! and MIR ~b! with different x ~in ~a! shown are magnetic mea
surements of the film for ZFC regime also!.
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337Low Temp. Phys. 25 (5), May 1999 Fugol et al.
observe a continuous freezing of theT dependences. Particu
larly striking is theT behavior ofav(T) andRv(T) for the
normal state atT.Tc : for the regimes of underdoping an
optical doping theT dependences of the absorption and
flection coefficients have different signs in the VIS and M
region: bothav(T) andRv(T) are increasing functions ofT
in VIS and they are decreasing ones ofT in MIR ~see Fig. 2a
and b and Refs. 8 and 10!. However, in the overdoping re
gime (x50.95) the CT transitions in VIS undergo fund
mental changes with temperature and the VIS spectral fu
tion ~T! measured decreases with temperature similar to
MIR one.8 It is like that the correlation spectral weight re
distribution is terminated in the overdoping regime whe
YBaCuO becomes an uncorrelated metal, in which the up
and lower Hubbard bands are merged together.

Take note that the dependencesav(T) andRv(T) have
no selective character in frequency and theT changes touch
on the whole wide region in the VIS and MIR spectra. T
differential absorption spectraDa(v) l 5(a f(v)2a i(v)) l
~where f and i mark the final and initial conditions of th
measurements! are shown in Fig. 3a for doping and in Fig
3b for cooling from 250 to 80 K~for comparison!. In both
cases one can observe a decrease in the integral sp
weight of the CT absorption in favor of the MIR absorptio
under cooling as well as under doping~but the scale of theT
effect is much smaller than that of the doping one!. Another
remarkable common feature of the spectral evolution un
doping andT variations is the existence of the crossov

FIG. 3. The differential absorption spectra in YBCO in the CT interba
region of frequencies: on doping fromx50.3 to 0.7 at RT~a!: on cooling
from T5250 K to 80 K forx50.85 ~b!.
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point vcr positioning nearEg and dividing the VIS interband
and the MIR intraband transitions:vcr51.55 eV at doping
and vcr51.4 eV atT variations~Fig. 4!. It is seen that the
overall integral spectral weight redistribution from VIS
MIR occurs on around the crossover point at whichDav

50.
The above data on sensitivity of spectral functions toTc

and on their different signs of the temperature dependen
above and below the crossover point are in agreement
the results in Ref. 14. In this work the ratio of reflectio
coefficients for the superconducting and the normal pha
nearTc was measured by applying the temperature modu
tion of HTSC samples. The data of the measurements
shown in Fig. 5 for a BiCaCuO film. As is evident, the r
sponse of the reflection spectra to the SC transition is pro
nent for the 1.0–2.5 eV region, within which there is a
crossover point (\v>1.4 eV). Since the temperature mod
lation range nearbyTc was quite narrow~65 K!, it is be-
lieved that the peculiarity nearbyTc is jumplike in character.
It should be noted that by the data on reflection shown in F
5 the jump scale isDR/R>0.3% while by our data on ab
sorption~Fig. 4! it is equal toDa/a>1 – 2%.

The data shown suggest an idea of theT-induced corre-
lation redistribution between VIS and MIR spectra and t
strong coupling of oscillators at CT and MIR transitions. O

FIG. 4. Temperature dependences of the differential absorption coeffic
for two frequencies in the vicinity of the crossover point~the upper curve for
\v,\vcr , the lower curve for\v.\vcr).

FIG. 5. The superconducting to normal-state reflectance ratio,Rs /Rn of
Bi-contained HTSC atT590 K (Rs /Rn deviates significantly from unity at
energies 0.5–2.5 eV!.14
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data are interesting because they were obtained at LT u
the conditions where the charge transfer between CuO2 and
CuOx planes is hindered. It is known that with decrease
temperature down to the pseudogap state, the interaction
tween the CuO2 and the CuOx planes is sharply diminishe
~there occurs a strengthening of the two-dimensionality
the CuO2 plane!, as evidenced by the considerable reduct
in the optical conductivity along thec axis at frequencies o
the scale of the pseudogap value\v,40 meV.6 It is obvious
that this process reflects the freezing of charge transfer
tween the different planes of the YBCO cell.

So, there exists an optical response of all the spec
functions at frequencies hundreds times higher than
superconducting gap which is opened under the transitio
HTSC systems to a superconducting state. It may be
sumed that this nonconventional effect in HTSC is resp
sible for by a high ratio (D/«F)2>1022 which determines
the effect scale and is hundreds times more than that in
ventional BCS materials. The optical response mechan
was considered theoretically from different viewpoints
Refs. 15 and 16 and still remains debatable. Moreover,
sensitivity of spectral functions toTc occurs against the
background of temperature-induced correlation mixture lo
and high-frequency excitations. Therefore, the optical
sponse suggests that either~i! superconductivity stimulate
an extra additional correlation redistribution of excitations
~ii ! high-frequency excitations of 1 eV are directly involve
in the mechanism of high-Tc superconductivity.

PHOTODOPING AT LOW TEMPERATURES

One of the important questions of the optical spectr
copy of HTSC is the question of photoirradiation critic
dose,D0 , and the threshold spectral energy,\v th , which
determine permissible doses and energies of photoirradia
without persistent photoinduced effects in the lattice str
ture and in the current characteristics. It is known tha
HTSC material is sensitive to exposure dose in VIS w
the threshold spectral energy\v th.\vg ~in the region of
the CT transitions! and with the doses D.D0

>1019– 20photon/cm2. That is, using these conditions of ph
toirradiation at RT it becomes possible to observe an
hancement of Tc in HTSC underdoped samples aft
photopumping.5,17,18The accepted explanation of the phot
induced conductivity is based on the assumption that
photoexcitation at RT causes the ordering of oxygen vac
cies in the CuOx chains that in turn leads to a subseque
transfer of electrons between the CuO2 and the CuOx planes
and the emergence of excess holes in CuO2.

17

At the same time in some works it is found that t
threshold dose of photoinduced effects become less by a
two orders of magnitude if photopumping is carried out
low temperatures,D0'1017photon/cm2.9,19 The progressive
increase of photodoping and the LT photoinduced ph
transition of Y1Ba2Cu3O6.35 from the dielectric to a metallic
state can be traced by the dose dependence of the abso
coefficient. Figure 6 shows the changes in the absorp
coefficient as compared to the initial moment of irradiati
with a light of J5231013photon•s21 cm22 at 80 K of
er
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Y1Ba2Cu3O61x (x50.35). As is evident, there occurs
sharp passage of the dependenceDav(t) to saturation at
D.Jt'1017photon•cm22, suggesting the insulator—meta
phase transition. It should be mentioned that the phase t
sition under LT photopumping follows the pattern of th
second-kind phase transition. In Fig. 7 the process mani
tation of YBaCuO metallization under LT photopumping
seen from the temperature dependence of the absorption
efficient. The upper curve~on cooling the sample! corre-
sponds to the dielectric state of YBaCuO withx50.35 prior
photopumping. As is evident, in this case the behavior
a(T) is temperature independent, which is typical of t
insulator phase. After exposure of the sample to the light fl
of D51017photon•cm22 at 80 K and with subsequent in
crease in temperature, one can observe a temperature d
dence of absorption typical of HTSC metals~compare with
Fig. 2b!. At T5135 K a sharp reduction in the photopump
holes occurs due to their recombination with electrons so
the sample reverts to the original initial insulator state. T
temperature of the reduction in the photopumped carr
~the threshold temperature! is dependent on doping o
samples. The threshold temperatureTth5135 K was also

FIG. 6. Dose dependence of the absorption in YBCO withr 50.35 under
irradiation and at measurements with\v52.64 eV. At dosesD5Jt
.1017 photon•cm22 the sharp decrease of VIS absorption occurs due
photoinduced insulator-metal phase transition.

FIG. 7. Temperature dependences of the differential absorption coeffic
in YBCO with x50.35 before~the upper curve! and after~the lower curve!
LT photopumping with\v52.64 eV,D51017 photon•cm22.
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observed in4 by the decrease weakening of metallization
the curvesa(T).

The effect of photodoping is also observed at immedi
pumping into the superconducting phase. The experime
results for a two-phase sample with SC transitions atTc1

550 K andTc2575 K are illustrated in Fig. 8. After the LT
photopumping the sample is seen to become more trans
ent and with subsequent heating it returns to the initial st
The sharp decrease in the nonequilibrium concentration
photopumped holes is occurring at superconducting tra
tion temperatures. We assume that the superconducting
is favorable to the retention of photopumped holes. As
seen from Fig. 9, the photopumping results in the correla
spectral weight redistribution between VIS and MIR, i.e.,
acts like chemical doping. We can see a decrease in
integral absorption coefficient in Y1Ba2Cu3O6.8 after LT pho-
topumping, i.e., due to the generation of nonequilibrium
tra holes.

Our understanding of the process of persistent photod
ing at LT is distinguished from the accepted ones at RT
is as follows. We think that the photoinduced holes app
in the valence band as a result of the charge-tran

FIG. 8. Temperature dependences of the absorption in YBCO withx50.8
before~the upper curve! and after~the lower curve! LT photopumping into
SC phase with\v52.7 eV, D>1017 photon•cm22.

FIG. 9. The differential absorption spectra of YBCO withx50.8 in the CT
interband region of frequencies after LT photopumping.
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excitations in the CuO2 plane with \v.Eg51.6 eV

(Cu21O21→
\v

Cu1O2). Thus photopumping will be persisten
if some obstacles to a reversible process exist. We sug
that a new process arises at LT photopumping that ham
the reversible recombination. This new process is conside
in.20 It is based on the concept of appropriate generation
low-temperature heavy quasi-particles—fluctuons. T
physical concept of fluctuons was first introduced in t
physics of solids by I. Lifshitz,21 and their phenomenologica
model was developed in Ref. 22. In HTSC systems a h
fluctuon in the active CuO2 plane is easily generated throug
hole trapping by spin fluctuations inherent in the pseudo
state atT,T* . In the 2D case particularly deep fluctuo
wells are generated with reduction in temperature, the w
depth increasing asT22.20 It is the hole trapping by these
spin fluctuons that results in the retention and accumula
of photoinduced holes. As the number of photoinduced ho
increases, the fluctuon-fluctuon interaction determines a n
linear process of photopumping~Fig. 6! and gives rise to an
infinite metallic cluster following the pattern of the secon
order phase transition.

So, the LT photopumping of HTSC atT,T*
'150– 200 K~in the pseudogap state! with reduced thresh-
old doses may be attributed to the effective hole trapping
spin fluctuations followed by generation of heavy fluctuon
It is likely that it is heavy fluctuons that determines
temperature- and photo-dependent addition to the spe
weight of the MIR region at LT, resulting in the correlatio
redistribution in the CuO2 plane.

THE LT RELAXATION IN YBCO SAMPLES OBSERVED IN
OPTICAL SPECTROSCOPY

Yet another low-temperature peculiarity in the behav
of spectral functions of HTSC atT,T* was observed with
varying direction and velocity ofT scanning of the samples
namely, hysteresis effects in absorption and reflection.
hysteresis loop under cooling and heating of YBaCuO w
mentioned in our former work for VIS absorption~Fig. 10!12

FIG. 10. Nonreversible effect in VIS absorption upon cooling and heating
the underdoped YBCO. Curves1 and2 were measured with uninterrupte
cooling and heating. Curve3 was measured after a long pause at 20
(Dt'40 min before heating!.
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and then subsequently the same effect was observed in
surements of MIR absorption~Fig. 2! and reflection~Fig.
11!. As is evident from Figs. 10 and 11, as the samples
cooled, there occurs an accumulation of nonequilibrium t
may be discarded~completely or partially! if the sample is
held at LT forDt. The set of our data suggests that the up
temperature boundary of instability is a temperature in
vicinity of the phase transition from the pseudogap state
states with disordered spins,T* . The most pronounced hys
teresis~electron-structure instability! is displayed by under-
doped samples. With increasing doping, the loop area in
spectral function-temperature coordinates reduces, and
loop itself shifts towards lower temperatures. For sample
optimal doping, the hysteresis effects are minimum and m
be observed with rather fast temperature cycling between
SC and N phases solely within theT,Tc range. Generally
speaking, the occurrence of hysteresis effects is assoc
with the existence of relaxation processes within a hyster
loop temperature range. It is important to stress that the h
teresis loop in the MIR spectra is temperature inverse to
of the VIS spectral measurements. This means that the
sorption~reflection! coefficient undergoes changes in diffe
ent directions in VIS and MIR during relaxation~Figs. 10
and 11!. All the experiments with instabilities of spectr
were performed with low light doses (D,D0). We also car-
ried out a special test-measurement with a dark window d
ing relaxation and therefore we are convinced that the in
bilities observed are not associated with the photoindu
effect. Note that the resistive measurements in differ
HTSC films exhibited no hysteresis effects with a loop sp
of several percents.

The differential spectra of VIS absorption of a samp
with x50.4 ~in the vicinity of dielectric—metal transition!
measured for two relaxation times (t155700 s and t2

57200 s) after cooling from 220 to 88 K are plotte

FIG. 11. The reflection spectra of YBCO in MIR region at\v50.6 eV
upon cooling and heating.
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in Fig. 12. It can be seen that the absorption decrea
through the whole VIS region, i.e., the integral bleaching
the CT transitions occurs. The characteristic time of L
relaxation could be estimated ast>(1 – 2)•103 s. Time
modifications in the absorption and reflection spectra are
observed in the MIR region after rapid cooling down to
certain temperature. These modifications occur with incre
ing both the integral MIR absorption and the MIR reflectio
i.e., during relaxation the MIR and VIS optical character
tics undergo changes in different directions just as it occ
under chemical or photodoping. At the same time, in the n
UV region for \v54.1 eV, in which there are optical tran
sitions (3d24p) on local centers of Cu1, one cannot ob-
serve relaxation effects in absorption at LT, i.e., the conc
tration of monovalent Cu1 ions in the chain structure o
CuOx remains unchanged after temperature variations in
T,T* region ~Fig. 13!.

Figure 14 presents relaxation curves for the underdo
metal film of Y1Ba2Cu3O61x with x50.7 atTc570 K. The
data for different temperatures were obtained in sequen
measurements upon cooling from 250 K. Differential abso
tion Da l 5(a f2a i) vs. T is plotted relative to the initial
moment of temperature stabilization (Ti) of a i(t50). After
each previous case where the curve~t! reached saturation at

FIG. 12. The differential absorption spectra of YBCO withx50.4 in CT
interband region of frequencies at different time of relaxation after f
cooling.

FIG. 13. Time dependence of the differential absorption coefficient at\v
54.1 eV after fast cooling of YBCO from 220 K to 180 K~s! and to 80 K
~m!.
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certain temperature, the temperature was quickly decre
to a next level and relaxation was measured once again
so on. On this slow cooling, upon reaching the equilibriu
state~saturation! one can see that relaxation is absent bel
T,Tc .

It seems to be likely that theT-induced time instability
revealed in VIS optical absorption of CT transitions, whi
belong to the CuO2 plane, reflects the inherent electro
~spin!-structure relaxation in the active CuO2 plane at LT
variations. In the course of this relaxation the spectral wei
redistribution from the VIS to the MIR region occurs. If w
accept this assumption, two questions arise immediately!
what is the nature of the electron-structure relaxation at
temperatures? 2! what is the reason why the LT relaxation
not so clearly observed in experiments on the dc resistiv

Let us remember that theT-induced structure relaxatio
resulting in ortho-ordering and variations of spectral fun
tions of HTSC samples after fast cooling from high tempe
ture ~400 °C! down to RT are described in a series
papers.3,23 The commonly accepted model of RT relaxati
of an order parameter is based on the mechanism of diffu
rearrangement of oxygen vacancies making the cop
oxygen chain~Cu–O–Cu! along theb-axis in CuOx longer
and following the charge transfer between the CuOx and
CuO2 planes. One of the arguments in favor of this mod
was the evidence for the variations of the Cu1 concentration
~the variations observed in the optical reflection of the (d
24d) transitions of the Cu1 ions at 4.1 eV vs. time3!.

In contrast to the RT relaxation of the spectral functio
the LT relaxation of the CT interband and MIR intraba
spectral weights is not accompanied by variations of the C1

concentration~Fig. 13!. This result is against the electron
structure rearrangement in CuOx , where the Cu1 ions reside,
and the evidences that the LT relaxation occurs exactly in
CuO2 plane without any charge transfer between the pla
~the interplane charge transfer is likely to be hindered at L!.
We assume that the most reliable explanation of the LT
laxation of the spectral functions in VIS and MIR is th

FIG. 14. Time dependences of the differential absorption coefficien
\v51.49 eV in process of relaxation after cooling to different temperatu
T.Tc570 K andT,Tc .
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temperature-induced spin structure rearrangement in the1

plane due to the formation of hole-spin fluctuons at L
Strong influence of the system prehistory and its cooling r
on the LT state and long relaxation times in underdop
HTSC suggest that these are similar to irreversible effect
nonergodic systems with competing interactions~for ex-
ample, to structural or spin glasses24!. From this viewpoint,
the transition to the pseudogap state atT* may be considered
as a transition to a nonergodic system where ordering reg
alternate with disordering ones. In the fluctuon model
ordering occurs within a region round a hole trapped
spins. Note also that the concept of holes trapped in a s
bag25 as well as the concept of holes trapped in the^string&
potential created by AF background,26 or the model of
stripes, that is the subject of wide speculation,27 are not dra-
matically different from our pattern of hole-spin fluctuons

Thus, we think it quite reasonable to associate the
instability of optical spectra and the effective photodoping
low temperatures with two processes—the hole trapping
spin fluctuations at low temperature and the induced spec
weight redistribution from VIS to MIR~due to strong corre-
lation!.

In parallel with the fluctuon domains where the trapp
heavy holes reside, there exists a current network for li
holes. Therefore, the light and heavy holes are in dyna
equilibrium resulting from the competition between the s
perexchange energy lost near a trapped hole and its kin
energy. The spectral weight of intraband transitions is d
tributed between the contributions from light and heavy c
riers. Note that in the MIR region the contribution from
heavy holes is dominant while in the far low-frequency r
gion (v→0) the contribution from light holes is prevalen
The measurements of HTSC sample resistivity (v→0) re-
veal mainly the contribution of light carriers not related
the spin-structure relaxation. d.c. conductivitys~0! is defined
by plasma frequencyvp

2;nL(T,t) and dampingG(T,t)
~wherenL is the number of light carriers!: s(0);n/G. The
relative changesDs/s in the experiments with varyingT ~or
due to relaxation! are Ds/s5Dn/n2DG/G. As is evident
from the optical measurements,Dn/n;Da/a.5%. At the
same timeDG/G;DT/T and amounts to 50%. Therefore
unlike the optical measurements, the resistive ones do
sense relaxation and temperature variations associated
the number of carriers and show mainly theT variations in
damping of light carriers.

So, the optical data reveal the dramatic effects of n
equilibrium inherent in HTSC systems after their fast cooli
to the pseudogap state region belowT* . The effects are mos
pronounced for underdoped samples and much weaker
the optimal doping regime. Generally speaking, the h
nonequilibrium resulted from the competitive interactio
occurring in the HTSC system which bring two types
carriers~holes! with different spin surrounding into dynami
coexistence: light~coherent! holes and heavy holes trappe
in a spin bag. As a result, the optical conductivity is det
mined by two contributions—a coherent part at the expe
of Drude-like light carriers and a noncoherent one at
expense of heavy hole fluctuons. The optical relaxation
served arises from the self-consistent hole trapping by s

t
s
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fluctuations and the subsequent spin ordering inside a fl
tuon. In this case the ordering time is supposed to bt
.exp(aAN), whereN@1, the number of spins in a fluctuon
may be rather high.

CONCLUSION

After the discovery of high-Tc superconductivity a grea
number of works were concentrated on the problem of
equate description of the behavior of electrons in anisotro
cuprates. For the analysis of the above optical results
used the consequences of the theoretical concepts deve
in a series of theoretical works as a basis. These works
directly or indirectly connected with a broader Hubbard-li
model of strongly correlated 2D electrons submerged in spi
media.26,28–33One of the important general results of the
theories is that the behavior of holes in the AF backgroun
accounted for by the competition between the superexcha
energy lost near a hole and its kinetic energy. Thus,
Hubbard-like model evidences that there is a dynamical
existence of mobile~coherent! holes and heavy holes trappe
in a spin bag. The impressive calculations of the tempera
evolution of DOS in terms of the Hubbard model are carr
out in.33 Away from half-filling of a lower Hubbard band a
sharp resonance peak appears near the chemical potenti
the doping is increased the resonance width also incre
and it starts to merge with the lower Hubbard band. For
overdoping regime, both low-energy peaks are indistingu
able, implying that the system has become an uncorrel
ordinary metal. The narrow peak in DOS evolves like t
MIR band in the optical spectra. The narrow peak appear
be strongly temperature dependent, thus it is pronoun
only in the region of low temperatures and within a regim
that extends from underdoping to optical doping.

Recent low-temperature experimental and theoret
works have made it clear that in HTSC materials there
pears a state belowT,T* that is precursory to supercondu
tivity. The temperatureT* coincides with the temperature o
the pseudogap opening with spin singlet ordering. This
precursory region turns out to be optically active in the a
sorption and reflection spectra. Using the basic conseque
of the theory of correlated electrons and the optical exp
mental findings, we propose the following principal ansat

1. The consistent concept of strongly correlated hole
citations interacting with spin fluctuations in the CuO2 plane
is attractive for understanding and interpreting the anom
lous optical effects in HTSC at LT having no analogue w
conventional BCS superconductors~the sensitivity toTc , the
T-induced spectral weight redistribution, the LT relaxation
optical functions, the LT-enhanced photodoping!.

2. A nontrivial consequence of the correlation model
the intermediate regime is the coexistence of light~Drude-
like! and heavy~hole-spin-fluctuons! holes, the latter being
generated in the LT region below the temperature of s
ordering~opening spin gap!. Thus, the high-Tc superconduc-
tive scenario is realized in dynamical two-component s
tems of carriers.

3. Subsystems of light and heavy carriers are in dyna
cal equilibrium upon doping orT variations. If the doping of
c-
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HTSC is increased the localization effects are weaken
while if the temperature is decreased, the localization effe
become stronger and the density of heavy trapped holes
creases. Thus, the temperature serves as fine tuning for h
Tc superconductivity.
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Critical properties of the model of antiferromagnet Cr 2O3
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The critical properties of the model of real antiferromagnet Cr2O3 are investigated by the Monte
Carlo method. The static critical exponentsa, b, andg are calculated for systems with
periodic boundary conditions containing from 500 to 4000 spins. It is shown that the values of
critical exponents, the type of critical behavior, and crossover effects are determined to a
considerable extent by the relation between the interaction and anisotropy constants. The results
are compared with the theoretical data and with the results of laboratory investigations of
Cr2O3. The critical parameters calculated by approximating the data by traditional exponential
functions are compared with the values obtained on the basis of the finite-size scaling
theory. © 1999 American Institute of Physics.@S1063-777X~99!00705-7#
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INTRODUCTION

An analysis of phase transitions and critical phenom
on the basis of three-dimensional microscopic Hamiltoni
remains a central problem in modern statistical physics.1,2 In
recent years, the attention of the researches has been div
towards more realistic models which take into account pe
liarities existing in real systems but disregarded in the s
plest models~such as classical Ising and Heisenberg m
els!. We are speaking of the effects associated with
presence of various types of anisotropy, dipole–dipole,
many-spin interaction and a number of other phenome
The inclusion of such factors becomes especially impor
near critical temperatures. A rigorous investigation of thr
dimensional microscopic Hamiltonians of complex real s
tems by the methods of modern theoretical physics is
extremely complicated problem.

In this connection, the role of the computational metho
such as the Monte Carlo~MC! method increases
significantly.3 These methods make it possible to investig
~to a high degree of accuracy and over a wide range of v
ous physical parameters systems that are not accessible
ily for theoretical investigations. Till recently, the critica
region for various systems undergoing phase transitions
investigated by the methods of numerical experiment onl
a qualitative level. In recent years, MC methods have a
been used for studying the critical region for an analysis
critical exponents~CE! and critical amplitudes~CA!. The
accuracy attained is not worse, and is sometimes even be
than in best results obtained by other methods.4–8 Such im-
pressive results naturally could not be ensured only by
proving computational abilities of modern computers wi
out application of some new ideas and approaches, am
which we must mention the development of powerful clus
algorithms of the MC method9–11 and histogram methods o
data analysis12–14 on one hand and the application of th
3441063-777X/99/25(5)/7/$15.00
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ideas underlying the theory of finite-size scaling~FSS! for
calculating critical parameters.15–17

Till now, ordinary ferromagnetic systems with intera
tion between nearest neighbors and with simple lattices h
mainly been investigated,5–7 while more complex and realis
tic antiferromagnetic models and the models for spec
magnetic materials taking into account their peculiarities a
specific properties were studied less comprehensively.

Another important aspect of an analysis of models
real magnetic materials by the MC methods is associa
with the possibility of comparing the results of numeric
analysis not only with theoretical predictions, but also w
experimental results. This is especially important when
results of laboratory investigations of critical phenomena
contradictory and cannot provide an unambiguous answe
some important questions.

In this paper, we analyze critical phenomena in mod
of the real antiferromagnet Cr2O3. The interest to this mate
rial is due to the following circumstances.

~1! Cr2O3 is a multisublattice uniaxial weakly anisotrop
AFM with a complex crystallographic structure, i
which the interactions of each Cr ion~spin! not only
with first, but also with second nearest neighbors
significant. Critical phenomena of this type virtual
have not been investigated by the numerical experim
method.

~2! The AFM Cr2O3 has a phase-transition temperatu
TN5307 K convenient for laboratory experiments a
has been studied in detail. However, the results of la
ratory investigations of the critical properties of Cr2O3

do not lead to a complete and rigorous pattern of
critical behavior of Cr2O3

18,19 and do not allow us to
determine the dependence of critical parameters on t
modynamic quantities. This problem can be solved b
© 1999 American Institute of Physics
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numerical experiment in which all the quantities are co
trolled.

MODEL AND METHOD OF INVESTIGATIONS

It was found that Cr2O3 is an AFM of the easy-axis type
with the Neel temperature;307 K. It has the structure o
corundum and a rhombohedral unit cell. Four magnetic
ions are located on the spatial diagonal@111#, and the easy
magnetization axisz coincides with this direction.18,19 It was
found from the experiments on neutron scattering and
spin wave theory that interactions between first and sec
nearest neighbors are most significant in Cr2O3.

20 Taking
into account these peculiarities, we can write the Ham
tonian of Cr2O3 in zero magnetic field in the form21,22

H52
1

2 (
i , j

J1~m im j !2
1

2 (
k,l

J2~mkm l !2D(
i

~m i
2!2,

umu51, ~1!

whereJ1 is the parameter of exchange interaction of each
ion with a nearest neighbor at a distancer i j 52.65 Å andJ2

a similar parameter of interaction with three next neighb
at a distancer kl52.89 Å ~J152.2J2 , J1,0, J2,0!.20

Foner23 proved that the anisotropy in Cr2O3 is due to dipole–
dipole interaction and magnetic crystallographic anisotro
while calculations made by Artmanet al.24 demonstrated
that the second type of anisotropy is almost twice as str
as the first type. For this reason, relativistic interactions
various types were approximated by the effective single-
anisotropyD.0.

In our opinion, it is necessary to consider the followin
values of the ratio of anisotropyD and exchangeJ1 :

D/uJ1u52.5•1024, corresponding to real Cr2O3 samples
and D/uJ1u52.531022, typical of small magnetic system
with axial anisotropy and a size of a few tens
angstroms.24,25

The former case will be referred to as model I and
latter as model II. All crystallographic, exchange, and oth
data used for model I correspond to real Cr2O3 samples. In
model II, the value of anisotropy constantD corresponds to
small magnetic systems~particles! since the system simu
lated by the MC method have finite linear dimensio
~L!`, L}N1/3! in spite of periodic boundary condition
~PBC! imposed on them and exhibit some properties typi
of small systems.

The calculations were made for systems with PBC
the Monter Carlo method on the basis of the standard M
tropolis algorithm.3 The systems under investigation conta
N5500, 864, 1372, 2048, 2916, and 4000 spins. In orde
attain thermodynamic equilibrium in each system, we cut
a segment of Markov’s chain having a length up
33104 MC steps/spin, which is longer than the nonequil
rium segment by a factor of several units. Then averag
was carried out over an equilibrium region
123105 MC steps/spin. The accuracy of the results was c
trolled by carrying out test experiments in which these val
were doubled. A noticeable improvement of the results
calculations was not observed.
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RESULTS OF CALCULATIONS

The temperature dependence of heat capacityC and sus-
ceptibility x were analyzed by using the following expre
sions based on the fluctuation–dissipation theorem:6

C5~NK2!~^U2&2^U&2!, ~2!

x5~NK!~^m2&2^m&2!, ~3!

whereK5uJ1u/kBT,U is the internal energy, andm the sub-
lattice magnetization.

Figure 1 shows the dependences of heat capacityC and
susceptibilityx for systems with different number of spin o
temperatureT ~here and below, the temperature is given
the units for whichkB /uJ1u51!. It can be seen from Fig. 1a
that the maximum values of heat capacityCmax for systems
with different number of spins in the Cr2O3 model coincide
on the temperature scale to within experimental error. As
value of N increases, only the absolute values ofCmax be-
come higher. Similar peculiarities are also manifested in s
ceptibility ~see Fig. 1b!. Such systems usually exhibit effec
associated with a displacement ofCmax and xmax upon a
change in the numberN of spins ~or L}N1/3! even under
PBC. The absence of such peculiarities indicates the
method of imposing PBC used by us successfully remo
various boundary effects. Nevertheless, the temperatures
responding to the peaks of heat capacityCmax and suscepti-
bility xmax do not coincide. Figure 2 shows the dependen
of the sublattice magnetizationm on the temperatureT for
two systems withN5864 and 2916. We observe a mon
tonic decrease inm. It should be noted that the effects ass
ciated with a finite numberN of spins ~including residual
magnetization in the high-temperature phase, are weake
strongly with increasingN. The critical temperature deter
mined from the data presented in Figs. 1 and 2 contain
large error.

In the general case, the MC method also encounters c
siderable difficulties in determining the true phase-transit
temperatureTc(L5`) in such systems. This is also due
the fact that the effective transition temperatureTc is often a
function of L even in the presence of PBC. Besides, t
values of Tc determined from the peaks of hact capac
Tc(Cmax) and susceptibilityTc(xmax) virtually do not coin-
cide as in our case. Various difficulties are encountered w
Tc is determined by other methods.

Obviously, the situation has changed since Binder25 pro-
posed the method of fourth-order cumulants of magnet
tion UL for determiningTc :

UL512
^m4&

3^m2&2 , ~4!

wherem is the magnetization per spin.
This method can be used for determining the transit

temperature of systems with different linear sizes. As a m
ter of fact, the cumulantsUL calculated accurately for sys
tems of any size must intersect at a point with temperat
T5Tc(L) according to the finite-size scaling~FSS!
theory.15–17 Many aspects of determination ofTc by this
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method are considered in Refs. 5 and 6 for ferromagn
Ising and Heisenberg models with interactions between n
est neighbors.

For the model considered by us, the temperature dep
dence of Binder’s cumulant for two systems withN5500
and 4000~model I! is shown in Fig. 3. A similar dependenc
is also observed for model II. Transition temperatures de

FIG. 1. Dependences of the heat capacityC/kB ~a! and susceptibilityx ~b!
~model II! on normalized temperatureT for systems with different numberN
of spins.
ic
r-

n-

r-

mined in this way for models I and II have the valu
TN50.466(2) and 0.480~2!. These values of temperatur
were used by us here as the critical temperatures. The s
increase in the value ofTN for model II is in accord with the
well-known fact that the value ofTc for Ising systems is
higher than for Heisenberg systems. The value of anisotr
D/uJ1u52.5•1022 used for model II enhances Ising prope
ties of the model and will affect the values of all critic
parameters~see below!.

In order to approximate the critical behavior of heat c
pacity, we used the following expressions:19–28

C5
A

a
utu2a~11Dsutux!, ~5!

C5
A

a
~ utu2a21!1Dsutux, ~6!

where t5(T2TN)/TN , and a, A, and Ds , are the critical
exponent of heat capacity, critical amplitude, and the am
tude of correction to scaling respectively. The value ofx was
assumed to be equal to 0.55, which corresponds to
Heisenberg model.29

FIG. 2. Dependence of sublattice magnetizationm on temperatureT ~model
II !.

FIG. 3. Dependence of cumulantUL on temperatureT ~model I!.
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The data obtained by the MC method were processed
the nonlinear least-squares method. The values minimiz
the sum of mean square deviations were used as opt
values ofa, A, andDs .

The results of approximation of the data obtained on
basis of formulas~5! and ~6! correlate well. However, pref
erence was given to formula~6! which ensured a higher ac
curacy of the results. The values ofa, A, andA8 calculated
for models I and II are given in Table I~the value ofA8 for
T,TN was calculated by using the prediction of static sc
ing a85a!.1 All values of a in model I have the negative
sign typical of the Heisenberg model, are virtually indepe
dent of the number of spins in the system, and are in g
agreement with the theoretical valuea520.126~28! ob-
tained for the isotropic Heisenberg model with short-ran
forces.29 The ratio of the critical amplitudesA andA8 deter-
mined according to the above algorithm belong to the in
val 0.90<A/A8<1.10 for all the systems. The situatio
changes radically for model II in which the values ofa are
positive as in the Ising model. The theoretical value ofa in
the Ising model obtained on the basis of«-expansion is
0.108~9!.29 Obviously, the relatively high value of one-io
anisotropy typical of small magnetic particles25,26 and as-
sumed by us for model II allows us to treat systems w
PBC as Ising systems. It should be noted that systems
free surfaces with the same value of anisotropy preserved
Heisenberg type of critical behavior.22 The ratio of critical
amplitudes belong to the interval 0.75<A/A8<0.9.

The values of critical exponenta for Cr2O3 determined
from the results of laboratory experiments are quite con
dictory and vary from 0.1430 to 20.129 depending on the
method of investigation, the interval of variation oft, the
choice ofTN , and some other parameters.

TABLE I. Effective values of critical exponenta and critical amplitudesA
andA8 in the interval of reduced temperatures 531023<t<7.531021.

Number of
spinsN

D/uJ1u52.531024 D/uJ1u52.531022

a A A8 a A A8

500 20.15~3! 0.61~2! 0.60~2! 0.11~3! 0.53~3! 0.70~3!
864 20.15 0.56 0.56 0.12 0.43 0.61

1372 20.16 0.51 0.49 0.10 0.44 0.57
2048 20.12 0.47 0.46 0.13 0.44 0.52
2916 20.15 0.53 0.53 0.10 0.38 0.42
4000 20.14 0.47 0.48 0.15 0.42 0.43
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The Hamiltonian under investigation contains one-i
anisotropy, and hence such a system must exhibit a cross
from the Heisenberg critical behavior to the Ising behav
for t→0.1 The theoretical values of the crossover tempe
tures for models I and II calculated from our results are eq
to tcr.0.0013 and 0.052 respectively. The values ofa ob-
tained in model I do not exhibit a crossover for 531023

<t<7.531021. Model II is of the Ising type in all tempera
ture intervals.

In order to get a more clear idea of the critical behav
of the models under investigation, we must consider te
perature dependences of the sublattice magnetization
susceptibility. Both these quantities are inconvenient for
vestigations by the MC method.22 Figure 2 shows that the
magnetization decreases monotonically upon an increas
temperature, but differs from zero even for values ofT much
higher thanTN .

The approximation of the critical behavior ofm was
based on the expression

m5Butub~11amutux!, ~7!

whereb, B, andam are the critical exponent, critical ampli
tude, and the amplitude of scaling correction respectively

Table II contains values ofb for different temperature
rangest. It should be noted that the value ofb in model I for
the same temperature interval is slightly higher than in mo
II. In contrast to the other two exponents~a and g!, the
exponentb has the following two peculiarities:

~1! the absolute value ofb increases withN, and
~2! the values ofb increases withtmin also.

Both these peculiarities are apparently associated with sh
range effects which are manifested in high-temperature m
netization ‘‘tails’’ in Fig. 2.

The dependence of the sublattice magnetizationm on the
reduced temperaturet plotted on the log-log scale in model
at tcr.0.05 displays a kink typical of crossover. This depe
dence is presented in Fig. 4a for two values ofb.0.31~2! at
t<tcr andb.0.36~2! at t.tcr for a system withN51372. In
model I, a similar situation is observed for all systems ir
spective ofN. These data probably indicate a crossover fro
the Heisenberg critical behavior in model I withb.0.36~the
theoretical value of b for the Heisenberg model is
b.0.367!29 to the Ising behavior withb.0.31~b50.326 for
TABLE II. Effective values of critical exponentb, tmax57.531021.

Number of
spinsN

D/uJ1u52.531024 D/uJ1u52.531022

tmin

531023 131022 231022 431022 831022 531023 131022 231022 431022 831022

500 0.24~3! 0.25 0.26 0.28 0.28 0.18 0.21 0.23 0.24 0.25
864 0.25 0.26 0.27 0.29 0.29 0.20 0.23 0.24 0.25 0.26

1372 0.27 0.29 0.32 0.35 0.36 0.21 0.24 0.25 0.26 0.27
2048 0.28 0.28 0.32 0.33 0.34 0.21 0.24 0.25 0.26 0.28
2916 0.31 0.34 0.35 0.36 0.37 0.25 0.26 0.27 0.29 0.30
4000 0.33 0.35 0.36 0.38 0.38 0.27 0.27 0.28 0.29 0.31
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the Ising model!,29 which is not observed in the behavior o
heat capacity.

Figure 4b shows the characteristic dependence ofm on t
in model II for a system withN52916. It can be seen that n
peculiarities typical of model I are observed in this case. T
value ofb.0.30~2! obtained for this model are quite close
the theoretically predicted values for the Ising model.

The experimental value ofb in the temperature rang
331025<t<331022 amounts to 0.3531 and is close to the

FIG. 4. Dependence of sublattice magnetizationm on reduced temperaturet
on the log–log scale: model I~a! and model II~b!, t5(T2TN)/TN .
e

theoretical value obtained for the Heisenberg model as w
as to the precrossover value calculated by us in model I

Typical dependences of susceptibilityx on temperature
T are presented in Fig. 1b. These dependences were app
mated by using the simple power function

x5Gutu2g, ~8!

whereg andG are the critical exponent and the critical am
plitude of susceptibility. Table III contains the values ofg
andg8 obtained in model I on the basis of formula~8! irre-
spective of each other from the data obtained atT.TN and
T,TN respectively. It should be noted thatg andg8 as well
asa are independent of the numberN of spins in the system
under investigation, but their values increase withtmin . It is
difficult to judge whether the critical behavior of susceptib
ity is of the Heisenberg~g51.39!29 or the Ising type
~g51.24!29 from the absolute values ofg and g8. Similar
data obtained in model II coincide with those from Table
within the admissible error. Such a behavior ofg andg8 is
probably associated with the insufficient resolution of t
method of processing of a strongly fluctuating quantity su
as susceptibility. It will be proved in the next section that
analysis of the same results on the basis of another appr
gives a more clear pattern of the critical behavior of susc
tibility.

FINITE-SIZE SCALING

Basic concepts of the theory of finite-size scaling~FSS!
are reduced to taking into account finite (L!`) size of the
systems being simulated since the systems analyzed by
MC method are just of this type. Such systems reprod
successfully the thermodynamic properties of infinitely lar
systems as long as the correlation lengthj is smaller than the
linear sizeL of the system. In the vicinity of the critical poin
j>L, the properties of the systems depend considerably
the type of periodic boundary conditions. In the case of PB
fluctuations can be ‘‘switched’’ to opposite sides which
not observed in real systems. This results in ‘‘roundin
effects, e.g., long-range effects aboveTc , smoothing of heat
capacity and susceptibility peaks, and their displacemen
the temperature scale. The ideas underlying the FSS th
make it possible to extrapolate the MC data obtained
finite-size systems to the thermodynamic limit (N5L3
TABLE III. Effective values of critical exponentsg and g8 for a system with PBC,tmax57.531021,
D/uJ1u52.531022.

Number of
spinsN

g g8

tmin

131022 231022 431022 831022 131022 231022 431022 831022

500 0.86 1.05 1.08 1.17 0.92 1.07 1.15 1.29~4!
864 0.87 1.07 1.10 1.17 0.93 1.08 1.20 1.31

1372 0.89 1.09 1.13 1.19 0.94 1.10 1.15 1.32
2048 0.90 1.11 1.15 1.21 0.96 1.12 1.19 1.31
2916 0.89 1.10 1.11 1.18 1.03 1.14 1.21 1.34
4000 0.93 1.12 1.17 1.23 1.03 1.15 1.22 1.33
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→`) and are used widely.5–11 According to this theory, the
free energy for a large system with PBC at a tempera
close enough to the transition temperatureTc can be scaled
as follows:15–17

F~T,L !5L2dF~ tL1/n!, ~9!

whereTc5Tc(L→`),d is the dimension of the space, andn
the static critical exponent of the correlation length of
infinitely large system (L5`). Expression~9! leads to simi-
lar dependences for heat capacity, magnetization, and
ceptibility per spin:

C~T,L !2La/nC0~ tL1/n!, ~10!

m~T,L !2L2b/nm0~ tL1/n!, ~11!

x~T,L !2Lg/nx0~ tL1/n!, ~12!

where a, b, and g are static critical exponents connect
through the hyperscaling relations 22a5dn52b2g.1

Equations~10!–~12! successfully reproduce the critical b
havior of infinite systems for largetL1/n ~t!1 andL→`!.
The validity of basic concepts of the FSS theory was pro
by many authors.5–8

According to this theory, the magnetization and susc
tibility of a system of sizeL3L3L at T5TN and large
values ofL satisfy the relations

m;L2b/n, ~13!

x2Lg/n. ~14!

An analysis of our results on the basis of relations~13!
and~14! also makes it possible to determine the values ob
andg. For this purpose, the dependences ofm andx on the
linear lattice sizeL were plotted on the log–log scale. Th
slope of the straight line determines the value ofb/n andg/n.
The values of the ratios obtained in this way in model I a
b/n50.544 andg/n51.985. If we assume that model I ex
hibits a clearly manifested Heisenberg behavior and
n50.706,29 we obtainb50.38~2! and g51.38~2!. It should
be noted that these values ofb andg are in accord with the
theoretical values calculated for the Heisenberg mo
~b50.368 andg51.39!.29 For model II, we haveb/n50.426
andg/n51.791. Since this model exhibits the Ising behavi
while the initial Hamiltonian is of the Heisenberg type, w
determine the exponents both forn50.706 ~Heisenberg
model! and for n50.63 ~Ising model!.29 Thus, b50.30~2!,
g51,26~3!, for n50.706 and b50.27~2!, g51.13~3! for
n50.63. It should be noted that the results obtained in mo
II for any n is closer to the theoretical values of the Isin
model ~b50.326 andg51.24!29 although they do not com
pletely coincide with them.

For a clearly manifested peak-type shape of heat ca
ity, the following expression is normally used for scaling6,32

Cmax:

Cmax~L !5Cmax~L5`!2aLa/n, ~15!

wherea is a certain coefficient. Approximation of the data o
the basis of formula~15! gives the value of critical exponen
a520.14~3! in model I anda50.16~3! for n50.706 and
a50.14~3! for n50.63 in model II. These results are also
re
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good agreement with the data obtained for the Heisenb
~a520.126!29 and Ising model~a50.108!29 as well as with
the results of analysis of the data given by MC calculatio
on the basis of traditional power functions.

CONCLUSION

Our results obtained by the MC method applied to inv
tigations of models of the real antiferromagnet Cr2O3 indi-
cate that model I with anisotropyD/uJ1u52.5•1024 exhibits
Heisenberg critical behavior. The critical exponentsa of heat
capacity determined by approximating the data by pow
functions and from the relations of the FSS theory are
good agreement with each other and with theoretical valu

The exponentsb andg determined by traditional meth
ods from formulas~7! and~8! exhibit peculiarities typical of
MC data and can hardly be used to determine the type of
critical behavior. The results obtained fora, b, andg from
the processing of the same data in accordance with the
theory indicate unambiguously that model I belongs to
Heisenberg class of universality with the critical expone
a520.14~3!, b50.38~2!, g51.38~2!.

An analysis of the results obtained forD/uJ1u52.5
•1022 ~model II! and processed by using both approach
indicates that model II exhibits the Ising mode of critic
behavior.

It should be noted that although the values of critic
exponentsa, b, and g obtained on the basis of the FS
theory are in better agreement with the theoretical and
perimental results, the analysis of the same data base
approximation by power functions makes it possible to o
tain rich additional information. In our opinion, an analys
of the results of the results of MC simulation by these tw
methods is required for the formation of the most compl
pattern of the critical behavior of such systems.
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Photoinduced changes in magnetostriction of Y 3Fe5O12 single crystals
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A decrease in the value of the magnetostriction constantl111 is observed at 78 K in YIG~Ba!
and YIG~Si! single crystals exposed to light in the spectral range 0.65– 2mm. Exposure
to infrared light leads to a decrease in the value ofl111 for YIG~Si!, but causes no change for
YIG~Ba!. © 1999 American Institute of Physics.@S1063-777X~99!00805-1#
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The magnetic and optical properties of yttriumiron ga
nets~YIG! change as a result of exposure to light. Earlier,
reported on the spectral sensitivity of the photoinduced o
cal effect1 as well as a change in the permeability2 of
Y3BaxFe52xO12 ~YIG~Ba!! and Y3SixFe52xO12 ~YIG~Si!!
single crystals. In this work, we present the results of inv
tigation of the photoinduced variation of magnetostriction
monocrystalline YIG samples with different dopings e
posed to light of different spectral composition.

EXPERIMENTAL TECHNIQUE AND SAMPLES

Measurements were made by the bridge technique u
film-type chromium strain gauges formed directly on the s
faces of monocrystalline disks~110! in ^111&-type direc-
tions. Single crystals of Y3Fe5O12 grown from BaO–B2O3

~YAG~Ba!! and PbO–PbF2 :SiO2 ~YAG~Si!! solutions in the
melt were investigated. The samples were immersed in liq
nitrogen in the course of the experiments. YIG~Si! was illu-
minated by light passing from a KGM 12-100 lamp throu
a condenser and optical filters IKS-3~transmission range 1–
2 mm) and KS-3~transmission range 0.65–2mm). An IKS
filter from the monochromator MDR-12~transmission range
1.5–2.5mm) or KS 17 was used for YIG~Ba!. The main aim
of the experiments was to obtain the dependence of the m
netostrictive deformation (DL/L) ^111& on the direction of the
applied constant saturating fieldH in the ~110! plane. The
direction ofH was defined by the anglec measured from the
@001# direction.

The angular dependences of (DL/L) ^111&2(DL/L)c
^111& ,

i.e., the change in relative elongation of the sample in
@111# direction upon a rotation of the saturating field in t
~110! plane were measured.

The curves were plotted after intial and repeated ex
sure to red and infrared light, as well as to the infrared lig
alone. Samples were exposed for 15 minutes in a satura
magnetic field oriented along the@001# direction in the
sample cut plane. The experimental conditions correspon
the largest photoinduced variation of magnetostriction c
stants obtained earlier for YIG~Si!.3 The saturation of photo
induced effects in these crystals was attained in a perio
about three minutes,1 but a more prolonged exposure mak
it possible to avoid the effect of time dependences. The m
condition determining the experimental results is that
3511063-777X/99/25(5)/3/$15.00
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saturating magnetic fieldH52000 Oe be directed along th
@001# axis during illumination to ensure a symmetrization
the arrangement of photoactive centers along the trigo
axes.

EXPERIMENTAL RESULTS

Figure 1 shows the dependence of the variation of
magnetostrictionDL/L for YIG~Si! along @111# direction as
a result of magnetization along the directionc in the ~110!
plane of the sample. The shape of the curve changes u
illumination: it can be seen that the amplitude of the pe
~separation between the end points along the ordinate a!
decreases as a result of exposure to red and infrared ra
tion, while exposure to infrared light alone causes an
crease in the peak amplitude. The obtained experimenta
pendences can be described by the expression4

DL/L ^111&2DL/Lc
^111&5lsS 2

3
2sin2 c D

1l111S 2
A2

2
sin 2c2

1

2
sin2 c D ,

where ls is a coefficient andl111 is the magnetostriction
constant.

For YIG~Si!, the magnetostriction constantl111 de-
creases upon exposure to red light:l111

d 520.1131025 and
l111

l 520.0931025 before and after the action of light from
KS-17. Exposure to infrared radiation through the optic
filter IKS-3 increases the value ofl111:l111

l 520.13
31025. The dark value of the coefficientls for unexposed
~dark! sample isls

d520.1331025 , while the coefficient is
equal tols

l 520.1131025 under simultaneous exposure
red and infrared light, andls

l 520.1431025 upon exposure
to infrared light only. Partial reproducibility of the effect i
observed upon an alternation of optical filters. The expe
mental data were processed with the help of the Sigma
software, and the standard error in determining the const
did not exceed 0.5%.

The action of red light together with IR radiation o
YIG~Ba! is analogous to the effect of white light. No chang
was observed experimentally in the magnetostriction c
stants for YIG~Ba! after exposure to light in the spectra
range 1.5–2.5mm.
© 1999 American Institute of Physics
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DISCUSSION OF RESULTS

The obtained experimental results can be interpreted
photoinduced variation of internal elastic stresses produ
by heterovalent Fe ions occupying octahedral positio
Zaikova and Shur5 studied the effect of internal elasti
stresses on magnetostriction variations by considering
example of iron silicide single crystals. Heterovalent Fe io
in YIG produce local elastic stresses which affect the m
netoelastic properties of the surrounding Fe31 ions. A mag-
netoelastic center containing a heterovalent Fe21 (Fe41) ion
and the surrounding Fe31 ions can be treated as a macr
scopic center. The averaging of nonuniform macrosco
stresses and the possibility of their replacement by m
elastic stress parameters was considered theoretically
Livshits.6

The dependence of the magnetostriction constants
YIG on elastic stresses along trigonal and tetragonal crys
lographic axes resulting from the emergence or redistribu
of magnetoelastic centers was obtained earlier by us3:

l1115l111* 1
2

9
DS 1

6c44
2

1

c112c12
D1

4

27

K

c44
,

where l111* is the magnetostriction constant for a samp
without elastic stresses caused by heterovalent ions,K is the
symmetric part of the stressess i5Ki cos2 u along trigonal
axes (K15K, K25K1D, K35K45K1«; u is the angle
between the direction of the magnetic field andi th diagonal
of the cube!, D the asymmetry of stresses along the trigo
axes in the~110! plane, andc11,c12 and c44 are the elastic
moduli.

The value of the constantls depends only on nonuni
form distribution of the number of magnetoelastic cent
over octahedral and tetrahedral sites3:

FIG. 1. Angular dependences of magnetostriction for YIG~Si!: DL/L ^111&

2DL/Lc
^111& recorded during rotation of field in the~110! plane. The sym-

bols correspond to the experimental results and the curves to theory~curve
1– dark curve before illumination (d); curve2 – after primary action of red
light (h); and curve3– after primary exposure to infrared light (D). Ex-
posure time 15 min;T578 K.
as
d

s.

e
s
-

ic
n
by

in
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n

l

s

ls5
2

9
~«2D!S 1

6c44
2

1

c112c12
D1

1

c112c12

4

3
«8,

where« is the asymmetry of stresses along trigonal axes
belonging to the~110! plane, and«8 is the asymmetry of
stresses along tetragonal axes.

The change in the cubic constantl111 as a result of illu-
mination of YIG~Ba! and YIG~Si! is determined by the
change in the symmetric part of the trigonal elastic stres
K. An increase or decrease in the total number of center
octahedral positions leads to a change in the value ofK and
hence ofl111.

The quantityls changes as a result of variation of th
asymmetryD,«, distribution of magnetoelastic centers b
tween trigonal axes for YIG~Ba! and YIG~Si!, and due to a
possible variation of the asymmetry in tetragonal stresses«8
Upon an increase in the asymmetry of stresses, the num
of centers distributed equiprobably along the axes decrea
leading to a corresponding variation inK andl111.

For YIG~Si!, the magnetostriction constantl111 de-
creases as a result of exposure to both red and white lig

According to the conclusions drawn by Dillonet al.,7 an
increase in the occupancy of positions by Fe21 ions in
YIG~Si! leads to an elongation of the sample placed in
saturating magnetic field along the trigonal axis for whi
the number of active centers increases. In other word
decrease in magnetostriction is observed. It was also sh
by us3 that K.0 for YIG~Si!. This means that heterovalen
Fe ions in YIG~Si! produce a tensile stress. The value ofl111

decreases upon an increase in the value ofK, which means
that the tensile stress increases along all trigonal axes u
exposure to red or white light. This corresponds to an
crease in the total number of Fe21 ions occupying octahedra
positions. Exposure to infrared radiation causes an incre
in the value ofl111, i.e., to a decrease in the internal elas
stresses.

CONCLUSION

It can be assumed on the basis of the experimental
obtained for YIG~Si! that redistribution of heterovalent iro
ions from ‘‘near’’ and ‘‘far’’ positions under the action of IR
radiation leads to a decrease in internal trigonal equiproba
and symmetric stresses in the crystal and to an increase in
value ofl111.

Mack and Smith8 have studied the effect of close prox
imity of Fe21 and Si41 ions on the minimization of elastic
energy and magnetostriction. They found that the magn
striction increases upon annealing along the^100& direction
on account of the possibility of redistribution of active ce
ters at 78 K, thus indicating a difference in the magnetoe
tic properties of Fe21 ions ‘‘near’’ and ‘‘far’’ from the Si41

ions.
An increase in the number of photoactive centers

‘‘near’’ positions for YIG~Si! under the action of red ligh
leads to an increase in trigonal stresses and a decrease
value ofl111. The formation of heterovalent iron ions und
the action of red light leads to a decrease in internal stre
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in YIG~Ba!.The smallness of the effect may hamper the o
servation of the influence of IR radiation on this sample.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

On correlation effects in a narrow-band model with electron–hole asymmetry
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Some correlation effects are studied in a narrow-band model with electron–hole asymmetry. A
peculiar feature of the model is that it takes into account the hopping integral associated
with electron–electron interaction~correlated hopping!. The method of Green’s functions is used
to find the quasiparticle energy spectrum, as well as expressions for the upper and lower
Hubbard subband widths. It is shown that the specific features of the model lead in a number of
cases to consequences differing significantly from those following from the Hubbard
model. The obtained results mainly illustrate the peculiarities of the model in the low-
temperature region and are used for interpreting the physical properties of systems with narrow
energy bands. ©1999 American Institute of Physics.@S1063-777X~99!00905-6#
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INTRODUCTION

One of the characteristic properties of the Hubba
model1 which is used widely for describing correlation e
fects in narrow conduction bands~review articles in Refs.
2–4, to mention a few! is the electron–hole symmetry: sy
tems withn,1 andn.1 have identical physical propertie
~n is the electron concentration in the band!. This symmetry
is associated with the disregard of electron–electron inte
tion matrix elements

J~ ik jk !5E E w* ~r2Ri !w~r2Rj !
e2

ur2r 8u

3uw~r 82Rk!u2drdr 8 ~1!

in the Hamiltonian of the model~the matrix elements~1!
describe electron transitions betweeni th and j th crystal lat-
tice sites, andw-functions are the Wannier functions!.

However, the experimental data reflecting the electro
hole asymmetry in narrow-band materials on the one ha
and the results of theoretical analysis on the other hand, p
towards the need to take the correlated hopping~1! into ac-
count in the generalized Hubbard model.5,6 As a result, the
hopping integrals describing transitions to the lower and
per Hubbard subbands in such a generalized Hubbard m
differ from one another as well as from the hopping integ
corresponding to transitions between Hubbard’s subba
~among other things, the lower and upper Hubbard subba
are not equivalent in this model!. Such models have bee
studied quite intensively in recent years~see, for example
Refs. 7–9 and the literature cited therein!.

In our earlier publications,10 we studied correlation ef
fects and, in particular, metal– insulator transition in t
narrow-band model with electron–hole asymmetry for
half-filled band (n51) and zero temperature, using the a
proach presented in Refs. 11 and 12. The approximation u
3541063-777X/99/25(5)/5/$15.00
d

c-

–
d,
int

-
el
l
ds
ds

-
ed

by us defines exact atomic and band boundaries in Hubba
model, and also describes the metal–insulator transition.

It seems interesting to continue these studies to narr
band materials with partially filled narrow bands (nÞ1).
Such investigations should be useful from theoretical po
of view ~it was mentioned in Refs. 2–4 that this importa
case has not been analyzed quite extensively!, as well as for
a possible interpretation of the experimental data for so
narrow-band materials. This is the main aim of the pres
research.

ONE-PARTICLE ENERGY SPECTRUM

The Hamiltonian of the model can be presented in
form11

H52m(
is

ais
1 ais1~ t01nT1!(

i j s
8ais

1 aj s

1T2(
i j s

8 ~ais
1 aj sni s̄1H.c.!1U(

i
ni↑ni↓ , ~2!

wherem is the chemical potential,ais
1 (ais) the operator of

creation~annihilation! of an electron with spins(s5↑,↓) at
the i th site ~s̄ indicates spin projection opposite tos, nis

5ais
1 ais the operator of the number of electrons with spins

at the i th lattice site,n5^ni↑1ni↓& the electron concentra
tion at the site,U the intraatomic Coulomb repulsion, and

t05E w* ~r2Ri !(
l

V~r2Rl !w~r2Rj !dr , ~3!

T15(
kÞ i
kÞ j

J~ ik jk !, T25J~ i i i j ! ~4!

are the integrals of electron transitions between nea
neighbors at i th and j th lattice sites (V(r2Rl) is the
© 1999 American Institute of Physics
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potential energy of an electron in the field of an ion at thel th
lattice site!. The primes on the sums in Hamiltonian~2! in-
dicate thatiÞ j .

A distinguishing feature of Hamiltonian~2! is that it
takes into account the correlated hoppingT1 , which leads to
a concentration dependence of the transition integ
t01nT1 in the proposed model of narrow-band materi
with electron–hole asymmetry in contrast to the simi
models considered in Refs. 6–9.

In order to determine the one-particle Green’s functio

Gpp8
s

~E!5^^apsuap8s
1 && ~5!

we use the generalized version of the Hartree–F
approximation13–15 proposed by us in Refs. 11 and 12.
should be observed that the use of the generalized Hart
Fock approximation in the form13 in the range of energy
parameters for which a metal–insulator transition can oc
is fraught with considerable difficulties~see Refs. 15 and 16
for details of such problems!. In the k-representation, the
Green’s function~5! obtained in this way has the followin
form for the paramagnetic case:

Gk~E!5
1

2p S Ak

E2E1~k!
1

Bk

E2E2~k! D , ~6!

Ak5
1

2
2

~n21!~U2«~k!1 «̃~k!!2~22n!«2~k!2n«1~k!

2Q~k!
,

~7!

Bk5
1

2
1

~n21!~U2«~k!1 «̃~k!!2~22n!«2~k!2n«1~k!

2Q~k!
,

~8!

E1,2~k!52m1
U

2
1

«~k!1 «̃~k!

2
7

1

2
Q~k!, ~9!

Q~k!5A@«~k!2 «̃~k!2U#214«1~k!«2~k!. ~10!

The Fourier transforms of the quantities determining form
las ~7!–~10! can be defined by the expressions

«~k!5atk~n!, «̃~k!5ã t̃ k~n!, «1~k!5a1tk8~n!,

«2~k!5a2tk8~n!, ~11!

a52n12d1
2~12d!2

22n
2

2d~d2n11!

22n

t̃ ~n!

t~n!
, ~12!

ã5n22d1
2d2

n
2

2d~d2n11!

n

t~n!

t̃ ~n!
, ~13!

a15n212
2d

n
, a25212n1

2~12d!

22n
, ~14!

whereE1(k) (E2(k)) is the electron energy in lower~upper!
Hubbard subband,d is the concentration of doubly occupie
sites ~doublons!, t(n)5t01nT1 and t(n)5t(n)12T2 de-
scribe the transitions of quasiparticles to the lower and up
Hubbard subbands respectively~hopping of holes and dou
blons!, and t8(n)5t(n)1T2 is the integral of transition of
quasiparticles between the lower and upper subbands~pro-
cesses of creation and annihilation of pairs of holes
al

r

k

e–

r

-

er

d

doublons!. In the model described by the Hamiltonian~2!,
the following four states can exist: the stateu0& of a site not
occupied by an electron corresponds to a hole,us&[ais

1 (0)
is the state of a site occupied by an electron with spins, and
u2&[ai↑

1ai↓
1u0& is the state of a lattice site~doublon! with

double occupancy~two electrons with opposite spins!.
The chemical potential is defined by the expression

n

2
5

1

N (
k
E

2`

1`

Jk~E!dE, ~15!

whereJk(E) is the spectral intensity of Green’s function~6!.
Let us consider now the common features of formu

~6! and ~9!. For n,1 andU→`, we obtain

E1~k!52m1S 2

22n
2nD tk~n! ~16!

~lower Hubbard subband!. If n.1 and only the upper Hub
bard subband is important, we obtain

E2~k!52m1U1S 2

n
221nD t̃ k~n!. ~17!

For the Hubbard model, (t(n)5 t̃ (n)5t8(n)5t0)E1(k) for
n→0 andE2(k) for n→2 acquire a band form. Moreove
formulas~6! and ~9! describe the exact atomic boundary f
t050 and the band situation forU50.

The following important situation is worth noting. Ow
ing to a difference in the hopping integralst(n) and t̃ (n),
the energy width of the upper subband may be much sma
and the effective mass of carriers in this subband m
larger, than for the lower subband. Thus, the concepts
‘‘narrow’’ and ‘‘wide’’ subbands, ‘‘light’’ and ‘‘heavy’’
charge carriers are introduced in a natural way~as a conse-
quence of electron–electron interactions! in the model under
consideration.

The peculiarity of the common expression for the qua
particle energy spectrum~9! is the dependence on doublo
concentration~and hence on temperature!.

The doublon concentration is defined by the equation

d5
1

N (
k
E

2`

1`

J̃k~E!dE

5
1

2N (
k

S Ck

exp~E1~k!/u!11
1

Dk

exp~E2~k!/u!11D , ~18!

where

Ck5
1

2
2

U1 «̃~k!2«~k!

2Q~k!
;

Dk5
1

2
1

U1 «̃~k!2«~k!

2Q~k!
; ~19!

u5kBT, N is the number of sites in the crystal lattice, an
J̃k(E) the spectral intensity of the Green’s function

^^aisni s̄uais
1 &&k5

n/2

2p S Ck

E2E1~k!
1

Dk

E2E2~k! D . ~20!

We assume that the density of states is rectangular
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1

N (
k

d~E2t~k!!5
1

2w
u~w22E2! ~21!

u(x)51(x.0) and u(x)50(x,0); w5zut(n)u; z is the
number of nearest neighbors of a lattice site!. Formula~18!
leads to an equation describing the doublon concentra
(d>0) at T50:

F2~12d!

22n
21G 4

n
22

5
b

b21g

Q~«1!2Q~«2!

w
1

U

w

g

@~b21g!3#1/2

3 lnUAb21g

Ab21g

Q~«2!1~b21g!«22Ub

Q~«1!1~b21g!«12UbU , ~22!

whereE1,2(«),Q(«) are obtained from formulas~9! and~10!

as a result of the substitutiontk(n)→«, t̃ k(n)
→@ t̃ (n)/t(n)#«; tk8(n)→@ t8(n)/t(n)#«; b5a2ã@ t̃ (n)/
t(n)#; g54a1a2@ t8(n)/t(n)#2; «1 , «2 are the roots of the
equationsE1,2(«)50, and«2.«1 .

The hole concentrationc is defined by the expressio
c5d2n11, which is obtained from two conditionsc1d
1n↑1n↓51 andn↑1n↓12d5n, n↑ andn↓ being the con-
centrations of sites occupied singly~by electrons with spin
s5↑ ands5↓ respectively!.

Figure 1 shows the dependence of the doublon conc
tration d on the parameterU/w0 , wherew05zut0u, for dif-
ferent values ofn. The parameterst15T1 /ut0u, t25T2 /ut0u
characterize the magnitude of the correlated hopping~1!. It
can be seen that the doublon concentrationd decreases rap
idly with increasingU/w0 for n,1.

FIG. 1. Dependence of doublon concentrationd on U/w0 for various elec-
tron concentrationsn: 1.2 ~1!, 0.8 ~2!, and 0.5~3!. The upper curves corre
spond to t15t250 ~Hubbard’s model!, and the lower ones tot15t2

50.2.
n

n-

SOME CORRELATION EFFECTS IN NARROW ENERGY
BANDS

Let us consider some of the consequences of the ab
results.

1. Using formula~9!, we obtain the energy differenc
between the bottom of the upper and top of the lower H
bard subbands for the quasistatic energy spectrum:

DE52~aw1ãw̃!1
1

2
~Q11Q2!, ~23!

Q15A~aw2ãw̃1U !214a1a2@zt8~n!#2, ~24!

Q25A~aw2ãw̃2U !214a1a2@zt8~n!#2, ~25!

wherew̃5zu t̃ (n)u.
At zero temperature and forn51, the energy gap~23!

vanishes for

U<w1w̃, ~26!

in accordance with Mott’s general physical consideration17

For t850 ~i.e., for t52T2!, the exact criterion for the
metal–insulator transition was obtained by several author18

The condition~26! obtained by us coincides with this exa
result. For t8Þ0(tÞ2T2), the metal–insulator transition
criterion has not been determined so far~see, for example,
Refs. 8 and 9!. Gaglianoet al.8 obtained a criterion for the
metal–insulator transition, which coincides with~26!. Using
the methods of auxiliary bosons,19 Bulka9 found that the sys-
tem goes over from metallic to insulating state f
Uc54zut1T2u. However, this leads to the natural proble
of matching the result with the exact criterion for meta
insulator transition obtained in Ref. 18~for t52T2!. It is
also worthwhile to note that as in the Hubbard model, the
of Hubbard’s approximation-I1 in this model does not lead to
a description of the metal–insulator transition.

The dependence ofDE on the electron concentrationn
at T50 is shown in Fig. 2. It can be seen that for values
n close to 0 and 2, the difference in the energies between

FIG. 2. Concentration dependence ofDE for U/w052; t15t250.3 ~curve
1!, t15t250.2 ~curve2!, andt15t250 ~Hubbard’s model! ~curve3!.
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bottom of the upper and the top of the lower Hubbard s
bands depends weakly on the correlated hopping param
t1 and t2 . For n.1, DE depends significantly ont1 and
t2 . The value ofDE increases upon a departure from ha
filling ~DE has a minimum forn51!. Hence it is easy to
understand that in the metallic phase, the ‘‘metallic’’ natu
of vanadium oxides VkO2k21 (k>3) with a nonintegral
number of electrons per cation is manifested less stron
than in oxides VO2 and V2O3 ~having an integral number o
electrons per lattice site!.20

On account of the dependence ofDE on the doublon
concentration, the energy gap~23! depends on temperature
The dependenceDE(T) shows that an increase in temper
ture may lead to a transition from the state withDE<0 to
the state withDE.0. It should be noted in this connectio
that a transition from the paramagnetic metallic state to
state of a paramagnetic Mott-Hubbard insulator is obser
in NiS2 upon an increase in temperature.21

The model~2! can be used for describing doped narro
band materials. Apparently, it can be assumed~see, for ex-
ample, Refs. 2, 4 and 22! that in transition metal compound
of the type (M1)12x(M2)xX(M1,M2) denote the transition
metal and X stands for oxygen, sulphur, selenium!, the main
effect of substitution M1→M2, where M1 and M2 are neigh-
bors in the Periodic Table, boils down to a variation of t
electron concentration in the narrowd-band ~especially for
small values ofx!. Thus, the obtained temperature depe
dence of the energy gap~23! can be used for explaining th
metal–insulator transition observed upon an increase in t
perature in the paramagnetic phase of the compo
(V12xCrx)2O3

17,23 for x50.04.
2. Using the one-particle energy spectrum~16! and~17!,

we find that in the state withU→`, the lower Hubbard
subband has a width

DE15E1~w!2E1~2w!52wS 2

22n
2nD , ~27!

for n,1, while the width of the upper subband forn.1 is

DE25E2~w̃!2E2~2w̃!52w̃~n2212/n!. ~28!

These two formulas lead to a dependence of the ene
width of subbands on electron concentration~Fig. 3!. The
concentration dependence of subbands is associated, i
first place, with the correlation effect of narrowing of su
bands~the expression within brackets in formulas~27! and
~28!!, and in the second place by the concentration dep
dence of hopping integrals in the lower (t(n)) and upper
( t̃ (n)) Hubbard subbands~a peculiarity of the model unde
consideration!. It can be seen that if we take into account t
correlated hopping~1!, the subbands become considerab
narrower, the decrease in the width increasing with elect
concentration. It can also be seen from Fig. 3 that in cont
to the electron–hole symmetry in the Hubbard model,
cases withn,1 andn.1 are not equivalent in the mode
under consideration.

A peculiar feature of formulas~27! and~28! for the con-
centration dependence of energy widths of subbands is
existence of minima shown in Fig. 3~for the Hubbard model,
-
ers

ly

e
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in the case whent15t250, for n1.0.6 andn2.1.4!. The
observed variation of the energy subband widths can be
plained as follows. In the concentration range 0,n,n1 ,
transitions to the lower Hubbard subband can be interpre
as a hopping of theus&-states with effective hopping integra
whose value increases~and henceDE1 also increases!. In
other words, the electron-type conductivity changes i
hole-type conductivity forn5n1 . The concentration depen
dence of the width of the upper Hubbard subband can
explained in a similar manner. Such an interpretation of
pendences shown in Fig. 3 is in complete accord with
concentration dependence of the conductivity in partia
filled narrow energy bands described in Ref. 11.

In the case of weak electron–electron interactions,
Hamiltonian~2! also leads to a number of serious departu
from the Hubbard model, as was shown in Refs. 6 and
Among other things, the use of Eq.~2! allows us to explain
the dependence of the binding energy of 3d-systems on the
concentration ofd-electrons, viz., the existence of a min
mum for Mn and two nonequivalent peaks~V, Co! ~resulting
from a consideration of the correlated hopping~1!!.11

CONCLUSION

We have studied some correlation effects in the narro
band model with electron–hole asymmetry with the help
the technique proposed in Refs. 11 and 12. A character
feature of this model is a systematic consideration
electron–electron interactions describing the hopping
electrons~correlated hopping!.

The one-particle Green’s function and the energy sp
trum of quasiparticles are determined. A distinguishing fe
ture of these expressions is the dependence on doublo
hole concentration~and hence on temperature!, and the non-
equivalence of concentration-dependent widths of upper
lower Hubbard subbands.

FIG. 3. Dependence of the energy width of lower (DE1) and upper (DE2)
subbands on electron concentrationn: t15t250 ~curve 1!, t15t250.2
~curve2!, andt15t250.3 ~curve3!.



in

w

pa

n
at

ar
th
of
if

e

a

ys

s

B
.

’

z.

358 Low Temp. Phys. 25 (5), May 1999 L. D. Didukh and V. V. Hankevych
The quasiparticle energy spectrum is used for determ
ing the expressions for the energy gap~the difference be-
tween energy values corresponding to the top of the lo
and the bottom of the upper Hubbard subbands! and the
widths of the upper and lower subbands.

It is shown that the energy gap increases upon a de
ture from the half-occupancy.

The temperature dependence of the energy gap ca
used for studying the temperature-induced metal–insul
transition.

The concentration dependence of the width of Hubb
subbands is studied. It is found that a consideration of
correlated hopping~1! leads to a considerable narrowing
the subbands, the effect associated with this factor intens
ing with the electron concentration.

The obtained results can be used to explain certain
perimental data for narrow-band materials.

The authors are indebted to Prof. D. Khomskii for
discussion of some of the results presented in this work.

E-mail: didukh@tu.edu.te.ua
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Generation of nonequilibrium phonons and phonon–electron drag in bismuth
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A directed flow of nonequilibrium phonons generated in crossed electric and magnetic field
during supersonic drift of charge carriers in a high-quality bismuth single crystal is observed
directly for the first time. Special geometry of the experiment makes it possible to measure
the signal of acoustomagnetoelectric effect which is a result of the drag of charge carriers by
nonequilibrium phonons. The measurement of acoustomagnetoelectric effect enables us to
determine the part of electric power supplied to the sample, which is transformed into acoustic
power. © 1999 American Institute of Physics.@S1063-777X~99!01005-1#
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INTRODUCTION

The acoustoelectric effect is a manifestation of t
phonon–electron interaction.1,2 Local electric fields emerg
ing in a conducting medium under the action of a propag
ing acoustic wave trap charge carriers and lead to the e
tation of a direct electric current in the direction of wa
propagation as a result of momentum~and energy! transfer.
The relation connecting the acousto-emfEae and the coeffi-
cient ae of electron absorption of sound was derived
Weinreich3 from elementary considerations of conservati
of total momentum of the electron and phonon systems
is valid both in the hydrodynamic (ql@1) and in the colli-
sionless (ql!1) approximation~q is the acoustic wave vec
tor andl the electron mean free path!:

aeI s5nevsE
ae, ~1!

where aeI s is the power per unit volume, supplied by th
acoustic wave to conduction electrons. It was assumed
each phonon transfers to an electron the momentum\v/vs

~v and vs are the frequency and velocity of acoustic wa
respectively!. The density of induced electric curren
j ae5ne(\v/vsm), and the acoustic wave intensity
I s5\vNqvs ~Nq is the number of phonons per unit volum!
andae5n/Nqvst.

The number of electrons in bismuth is equal to the nu
ber of holes, and hence the resulting acoustoelectric cur
~for a closed circuit! or acousto-emf~for a disconnected cir-
cuit! is small since they are determined only by the diffe
ence between electron and hole mobilities. However, e
trons and holes dragged by an acoustic wave in a magn
field H applied perpendicularly to the direction of propag
tion of sound are deflected in opposite directions at ri
angles to the direction of sound and to the magnetic fie
creating the resultant emf~acoustomagnetoelectric~AME!
effect!.

The AME effect was investigated theoretically in Re
4–7 and was observed experimentally for the first time
bismuth.6 The expression for the acousto-emf in the AM
effect derived by Jamada6 under the conditionsql@1, when
3591063-777X/99/25(5)/7/$15.00
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the acoustic wave propagates along the directionY and the
static magnetic field is parallel to directionZ has the form

Ex
ame52mH

S

rvs
3

m

D S Sn2Sp

e D 2 vtR

11v2tR
2 , ~2!

wherer is the density,m5(mn
211mp

21)21 and D5(mnDp

1mpDn)(mn1mp)21 are the ambiopolar mobility and diffu
sion coefficient~the subscriptsn and p correspond respec
tively to electrons and holes!, Sn andSp are the deformation
potential constants for electrons and holes,tR is the effective
relaxation time, andS the acoustic energy density. A com
parison of formula~2! with the expression for the acousto
electric field calculated by Weinreich3 carried out by
Jamada6 leads to the relationEame52mHEae for the AME
field and accordingly to the relation with the electron abso
tion coefficient~modified Weinreich relation!

aeI s52nevsE
ame/mH. ~3!

This relation remains valid in a constant electric fieldE0

parallel toX. In this case, we have

ae5
ne

S

Eame

mH
5

ne

rns
3 S Sn2Sp

e D 2 m

D

vvefftR

11veff
2 tR

2 , ~4!

whereveff5v@12(E0 /H)/vs#. It can be seen from formula~4!
that the electron absorption coefficientae reverses its sign
when the electron moves at the supersonic veloc
vd5E0 /H.vs , i.e, the absorption of sound by electrons
replaced by its enhancement, and the acousto-emf in
AME effect also changes its sign.

If no acoustic power is supplied to the crystal, the m
tion of charge carriers at a supersonic velocity is accom
nied by spontaneous emission of phonons,8 leading, among
other things, to a change in the conduction, and hence
nonlinearity in the current–voltage characteristics~IVC!.
Nonlinear current–voltage characteristics were observed
the first time in bismuth by Esaki:9,10 the transverse magne
toconductivity increases abruptly, while the velocity
charge carriers in the direction@E3H# of Hall drift attains
the value of the velocity of sound. This fact enabled Esak
© 1999 American Institute of Physics
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propose a hypothesis concerning the interrelation betw
the observed effect and the generation of phonons in
muth. In experiments11,12aimed at direct observation of pho
non generation in bismuth, acoustic noise was detecte
principle when the conditionvd'vs was satisfied. The inter
pretation of the results was complicated by the fact that
duration of the ultrasonic signal was larger than the dura
of the driving current pulse by a factor of several uni
Later, many authors13–16 proposed different versions of the
oretical substantiation of the Esaki effect, which, howev
described IVC nonlinearity only qualitatively. Bogod an
Valeev17 proposed a phenomenological model of the Es
effect, which successfully explained the experimentally o
served peculiarities in the magnetoresistance of bismuth
der nonlinear conditions. The model is based on the con
of acousto-emf associated with the number of nonequi
rium phonons. Bogod and Valeev17 used the Weinreich rela
tion ~1! in which the flux density of acoustic energy incide
on the sample is replaced by the average powergW liberated
by electrons during the generation of nonequilibriu
phonons, i.e.,Eae5gW/nevs ~g is the generation coefficien
indicating the fraction of electric power supplied to th
sample, which is transformed into acoustic flux!. In a large
number of publications devoted to experimental investi
tion of bismuth under nonlinear conductivity conditions~see,
for example, Refs. 18–22!, a large body of new information
concerning the Esaki effect was obtained by measuring
ther the longitudinal voltage drop in the sample, or Hall vo
age depending on various extrinsic parameters. It should
noted, however, that these experiments have a conside
drawback: the information on the system of nonequilibriu
phonons gained from these experiments is only indirect.

In the present work, the directed flow of nonequilibriu
phonons generated during supersonic drift of charge car
and propagating in a sample is observed directly for the
time. We propose a special experimental geometry
makes it possible to observe in the same samples of B
negative AME signal, which is associated with the gene
tion of acoustic power by charge carriers, as well as a p
tive AME sinal, which is a result of drag of charge carrie
by the flow of nonequilibrium phonons. The measuremen
the magnitude of the AME effect allowed us to determi
directly the fraction of electric power supplied to the samp
which is transformed into acoustic power.

EXPERIMENTAL RESULTS

Measurements were made at 4.2 K and involved the
tection of the response signal formed as a result of pas
through the sample of a solitary current pulse of the rect
gular ~with an elevation front;0.3ms! or saw-tooth shape
~increasing linearly with time! of durationtp from 2 to 20ms
on a storage oscilloscope, followed by the recording on anxy
recorder.

The sample was cut from a high-quality bismuth sing
crystal~the ratio of resistances at room and helium tempe
tures was;300! and had the shape of a rectangular bar w
a size 4.536.532 mm along the bisector (C1iX), binary
(C2iY), and trigonal (C3iZ) crystallographic axes
en
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The experimental geometry is shown in Fig. 1. The magn
field is oriented along the third-order crystallographic ax
Digits 1–1, . . . ,5–5 denote pairs of potential contacts distri
uted uniformly along the sample, anda-a are current con-
tacts.

The employment ofa-a contacts fixed at the endface o
the sample as current contacts naturally leads to nonun
mity of electric current. The current density at face I near
current contacts~see Fig. 1! is always higher, and ford!L is
much higher than at face II at the opposite end of the sam
~d is the separation between current contacts andL the
sample length!. With such an experimental geometry, th
electric field strengthE, and hence the drift velocity
vd5cE/H of charge carriers in the sample, are positi
functions, and the conditionvd.vs for a transition to acous-
toelectronic nonlinearity is realized only in the range of ele
tric field E.Ek near the endface I~Ek corresponds to the
onset of the transition to nonlinear conductivity!. At the
same time, the linear dependence of current on voltage,
Ohms law, is preserved in the remaining part of the sam
Thus, the conductivity of the sample becomes nonunifo
for a certain currentI .I k .1!

The asymmetry of the experiments in the above se
determined two versions of measurements characterize
opposite directions of the drift velocity vector. Reversing t
direction of current and magnetic field, the drift velocity ve
tor for charge carriersvd5c@E3H#/H2, and accordingly the
flow of nonequilibrium phonons generated by charge carr
for vd.vs were directed either to the endface I (2vd) con-
taining current contacts or to the opposite endface
(1vd). Figure 1 shows copies of oscillograms of potentia
U11

(6) measured across contacts1–1 with the help of ‘‘saw-
tooth’’ current pulses for6vd , i.e., directly in the region of

FIG. 1. Copies of oscillograms ofU11
(6) signals:2vd ~curve 1! and 1vd

~curve2!; H54.1 T. The upper scale corresponds to values of current p
portional to time sweep,Uk andI k are the voltage and current correspondin
to the onset of the transition to the nonlinear conductivity mode. The in
shows the experimental geometry,1–1, . . . ,5–5 are pairs of potential con-
tacts,a-a are current contacts.
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current contactsa-a.The timet laid along the abscissa axis
proportional to the measuring currentI, and oscillograms are
in fact current–voltage characteristicsU11

(6)(I ). TheU11
(6)(I )

dependences have a characteristic inflection associated
the generation of phonons in the direction of Hall drift
charge carriers forvd.vs . The slight mismatching of IVC
in Fig. 1 is determined by the so-called nonreciprocity eff
~NE!,20 i.e., nonreproducibility of the nonlinear region o
IVC upon inversion of the drift velocity vector of charg
carriers. The nonreciprocity effect was observed earlier
the conventional experimental geometry,20 when the electric
current is uniformly distributed along the sample, and in
case of nonuniform flow of current.22,23 It should be noted in
this connection that a kink was also observed on the osc
gramsUii

(2)(t)( i>2) measured together withU11(t), but not
on oscillogramsUii

(1)(t) ~this will be proved below!. This
kink, however, should not be identified with the generat
of nonequilibrium phonons in the corresponding region
the sample. As a matter of fact, the emergence of a regio
nonlinear~higher! conductivity near the current contactsa-a
limiting the voltage drop to;Uk ~Fig. 1! and ‘‘accumulat-
ing’’ the major part of current forI 5I k leads to restriction of
the part of current flowing through the periphery region
the sample, while the response signalsUii

(6) are recorded on
the oscillograph as a function of timet, i.e., of the total
currentI .

Figures 2 and 3 give examples of copies of oscillogra
for nonlinear response signalsUii

(6) measured by passin
through the sample the rectangular current pulses of am
tude 7.2 A corresponding to the nonlinear segment of I
~see Fig. 1!. Voltage drop at the beginning of the respon
signal corresponds to relaxation process of transition t
nonlinear regime and is characterized by the timetb .20,24

Response signalsUii
(2) ~i>1, Figs. 2a and 3a! have the same

shape similar to the shape of current pulse~except the relax-
ation maximum at the beginning of response signals! and the
amplitude decreasing monotonically with increasing dista
between potential and current contacts. The horizontal s
ment of the response signal following the relaxation volta
drop characterizes the stationary mode of nonlin
conductivity.2!

A completely different situation is observed for respon
signals Uii

(1) ~i>2, Figs. 2b and 3b!. Their shape differs
from that of the current pulse: instead of the flat peak,
observe an increase in voltage after the relaxation volt
drop ~in time tb after the beginning of the pulse! ~Fig. 2b,
segmentb-m!. As the distance between the measuring p
tential and current contacts increases, the timetbm during
which the voltage increases to the maximum value incre
monotonically, and the peak amplitude decreases~however,
much more slowly than the amplitude of the response sig
Uii

(2) . Besides, response signalsUii
(1) can still be registered

during a certain timetps while the response signalsUii
(2)

cease upon switching off the current, the value oftps in-
creases~like the timetbm! with increasing numberi - i of the
measuring pair of potential contacts. Figure 3 shows
comparison the copies of oscillogramsU11

(6) andU55
(6) . It can

be clearly seen that small difference~of the order of a few
percent! between the signalsU11

(6) , i.e., the nonreciprocity
ith

t

n

e

-

f
of

f

s

li-

a

e
g-
e
r

e

e
e

-

se

al

r

effect, attain 400% forU55
(6) signals. Figure 3b also show

the time delaytps on theU55
(1) signal.

The degree of nonuniformity of current in the samp
can be judged from the ratioUii ( i>2)/U11 of signals mea-
sured in the range of currentsI ,I k corresponding to linear
conductivity ~see Fig. 1!: 0.5, 0.29. 0.12, and 0.06 respe
tively for contacts2–2, . . . ,5–5. Almost the same ratios ar
also preserved between response signalsUii

(2) for I .I k ~see
Figs. 2a and 3a!. However, similar relations between re
sponse signalsUii

(1) for I .I k are not observed. The values o
Uii

(1) are always higher than the corresponding values
Uii

(2) , the difference increasing significantly with increasin
distance between potential contacts and the region of non
ear conductivity~Figs. 2 and 3!.

An unexpected result was obtained during measurem
of response signalsU34

(1) at contacts 3–4 arranged along th
sample. The copies of oscillogramsU34

(6) are shown in Fig. 4.
It can be clearly seen that the signalU34

(1) can still be

FIG. 2. Copies of oscillograms ofUii
(2) ~a! andUii

(1) ~b! signals:U22 ~curve
1!, U33 ~curve2!, U44 ~curve3!, U55 ~curve4!, tp is the instant of switching-
off the current,H54.1 T, I 57.2 A.
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registered during the timetps after switching off the current
but it does not become zero as a result of decrease~as in the
case of the signalUii

(1)), passing through zero and reversin
its sign.

DISCUSSION OF RESULTS

The experimental results concerning the behavior
nonlinear response signalsUii

(1)( i .1) can be explained by
making the following assumptions that are quite natural
bismuth.

~1! Nonlinear conductivity regime is formed in the samp
region directly adjoining current contacts.~This region at
the endface of the sample will be henceforth referred
as the nonlinear conductivity region~NCR!, and the re-
maining part as the linear conductivity region~LCR!.
The mechanisms of instability stabilization upon

FIG. 3. Copies of oscillograms ofU11
(6) ~a! andU55

(6) ~b! signals:2vd ~curve
1! and1vd ~curve2!; H54.1 T, I 57.2 A.
f

r

o

transition to the phonon generation mode and the size
the NCR in a similar experimental geometry are cons
ered in detail in Ref. 23.!

~2! A front ~;0.5ms! of the acoustic pulse propagating
the sample in the direction of the endface II is formed
the NCR during the time interval equal to the timetb

.1 – 2ms of relaxation to the nonlinear mode.20,25

~3! Bismuth exhibits a strong phonon–electron interact
leading to the drag of charge carriers by nonequilibriu
phonons.

~4! The energy of an acoustic pulse attenuates during
propagation along the sample.

Thus, having created two regions with different condu
tivity in the sample and treating NCR as a generator
acoustic pulse probing LCR, we obtain a standard geom
for observing the acoustomagnetoelectric effect: an acou
magnetoelectric voltage is formed in the directionX as the
acoustic pulse propagates along the directionY in the pres-
ence of the magnetic fieldHiZ.

The nonuniformity of potential distribution in the samp
is determined by the experimental geometry at the ini
instant and almost till the end of relaxation to the nonline
regime, i.e., during the timetb ~see Fig. 2b, index b!. How-
ever, starting from the instanttb'tb , the acoustic wave
front begins to form in the LCR an acoustomagnetoelec
signal which is stronger~see Figs. 2 and 3! than the corre-
sponding signal associated with the initial (t,tb) nonunifor-
mity of the current flow. In other words, starting from th
instanttb , the potential distribution in the sample varies si
nificantly, and the magnitudes of voltagesUii

(1)( i .1) being
measured are determined completely by the AME effect. T
time tbm of the increase in the AME voltage to its maximu
value ~dark circlesm in Fig. 2b! is determined just by the
propagation of the front of the acoustic wave formed in t
NCR region. The values of timetbm observed experimentally
at contactsi - i ( i .1) correlate with the corresponding value

FIG. 4. Copies of oscillograms ofU34
(6) signals:2vd ~curve 1! and 1vd

~curve2!; H54.1 T, I 57.2 A.
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calculated from the relationtbm5Li /vs , whereLi is the dis-
tance between the NCR to the contactsi - i , and vs50.85
3105 cm/s is the velocity of sound for the directionYiC2 .26

The measured values of voltageUii
(1)( i .1) are com-

pletely determined just by the AME effect rather than
percolation currents since, in contrast to the response sig
Uii

(2)( i>1), switching-off the current~indexp in Fig. 2b! is
manifested in response signalsUii

(1)( i .1) not immediately,
but only after a timetps ~see Figs. 2b and 3b!. During the
time tps , the rear front of the acoustic pulse formed af
switching-off the current traverses the distance from
NCR region to the given pair of contactsi - i . The observed
phenomenon is typical of ‘‘postsounding’’ effect whos
manifestation in our case can be formulated as follows. A
the removal of electric field whose valueE>Ek corresponds
to supersonic drift of charge carriers, and hence to
completion of generation of the acoustic pulse in the NC
the potential difference observed in the LCR and caused
the drag of charge carriers by sound can still be detec
during the time of existence of acoustic flux in the samp
The values of ‘‘postsounding’’ timetps observed experimen
tally at contactsi - i ( i .1) correlate with corresponding va
ues calculated from the relationtps5Li /vs . It should also be
noted that the values of timetbm and tps required for the
leading and rear fronts of an acoustic pulse to traverse
relevant distancesLi are close, i.e.,tbm'tps ~see Figs. 2b
and 3b!.

Since the duration of current pulse (;tp2tb) in our case
is longer than the time of its passage through the sam
(L/vs), an increase in voltage to the maximum value af
the relaxation to the nonlinear mode at response sig
Uii

(1)( i .1) corresponds to the stabilization of the stationa
value of voltage of the AME effect, and hence a horizon
plateau must be observed in the response signals dow
zero values of current. It can be seen from Figs. 2b and
however, that the voltage decreases monotonically after
taining its maximum value. Experiments show20,22,23that in
such experimental conditions~magnitudes of current an
magnetic field as well as size and quality of the samp!
Joule heating starts being manifested in nonlinear respo
signal after the time interval;7–10ms, which is manifested
in deviation of the voltage being measured from the stati
ary value towards higher values23 ~suppression of nonlinear
ity!. Indeed, Joule heating is manifested in nonlinear
sponse signalsUii

(2) determined by the NCR in the form of
typical increase in voltage at the end of the pulse~see Figs.
2a and 3a!. At the same time, the decrease in the acou
power emitted from the NCR upon heating must lead to
corresponding suppression of the AME effect, which is
tually observed in the signalsUii

(1)( i .1). This statement is
also confirmed in Fig. 5 containing oscillograms of respon
signalsU55

(6) measured in different magnetic field. As th
magnetic field increases, the condition for a transition
nonlinear conductivity mode (vd5cE/H>vs) is satisfied in
stronger electric fields.9 This leads to an increase in th
power supplied to the sample and to a stronger heating o
sample for a given current. It can easily be seen from Fig
that an increase in magnetic field leads to a stronger decr
in the U55

(1) after attaining the peak value and to a strong
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increase in the signalU55
(2) . It should noted that basically

different response of the signalsUii
(2) and Uii

(1) to Joule
heating of the sample confirms once again the correctnes
the above interpretation of experimental results.

The above arguments explain the experimental re
presented in Fig. 4, where the positive ‘‘postsounding’’ s
nal measured on longitudinal contacts3–4 changes to a
negative signal. The presence of a nonzero signalU34

(1) is a
direct consequence of attenuation of acoustic pulse as a
sult of its propagation along the sample and correspond
the difference in the AME effectU33

(1) andU44
(1) ; before and

immediately after switching-off the current,U33
(1).U44

(1) ~see
Fig. 2b!. However, this relation, and hence the signalU34

(1)

reverse sign when the rear front of the acoustic pulse pa
through the line of contacts 3–3.

FIG. 5. Copies of oscillograms ofU55
(2) ~a! andU55

(1) ~b! signals recorded for
I 57.2 A and different values of magnetic field, T: 1.76~curve 1!, 2.93
~curve 2!, 4.1 ~curve 3!, and 8.79 ~curve 4! ~a! and 1.76 ~curve 1!,
2.34 ~curve 2!, 2.93 ~curve 3!, 4.1 ~curve 4!, 5.86 ~curve 5!, and 8.79
~curve6! ~b!.
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Analyzing processes associated with the generation
sound by charge carriers drifting with ultrasonic velocitie
we must know the part of electric power supplied to t
sample, which is transformed into the acoustic power.
example, the introduction into the expression for IVC17,20 of
the sound generation coefficient in explicit form

j 'sHE~11GcE/Hvs! ~5!

has made it possible to explain a number of electric prop
ties of bismuth17–19associated with the transition to the no
linear conductivity mode.~Here sH is the linear magneto
conductivity, G5g2d,d being the coefficient associate
with attenuation of sound!. Experimental data on IVC ob
tained by Bogodet al.18,19at different temperatures and ma
netic fields, as well as relation~5! provided rich but unfortu-
nately indirect information on the generation coefficie
Although the value ofG is always smaller than unity by
definition, its absolute values calculated by Bogod a
Valeev17 at helium temperature proved to be absurdly h
~1–10!. In Ref. 23, where we studied transverse galvanoth
momagnetic~Ettingshausen! effect during the transition o
bismuth to the phonon generation mode, the value of
experimentally determined sound generation coefficient
;0.3. The experimental values of AME voltage obtained
us here allow us in principle to determine directly the va
of acoustic power generated in the sample in the nonlin
conductivity region. For this purpose, we can use the va
of U22

(1) measured in the sample region directly adjoining
source of sound, i.e., NCR, and formula~2! connecting the
acoustic energy density with the AME signal, as well as
results obtained by Jamada6 who measured the ratio of th
acoustic power supplied to the sample to the correspon
AME signal in a similar experimental geometry and in
samples of the same degree of purity as in our experime
In our calculations, we assume that the ambiopolar mob
for HiC3m2151/2(mx

211my
21)1vx

2152.33106cm2/
(V•s), is wheremx ,my , andnx are the components of th
mobility tensors for electrons and holes,27 the velocity of
sound for the directionYiC2 is vs50.853105 cm/s,26 D/m
5(2/3e)(«F

n1«F
p), where«F

n525 meV and«F
p512 meV are

the Fermi energies for electrons and holes,28 tR't53
31028 s,29 vtR@1, the difference between the deformatio
potential constants for electrons and holes forqiC2 deter-
mined experimentally by Jamada6 is Sn2Sp50.3 eV, and
the densityr510 g/cm3. As a result, we obtain the intensit
of sound I s5Svs5700 W/cm2 for U22

(1)512 V and H
54.1 T. The corresponding electric power supplied to
sample~see IVC in Fig. 1! is equal to 130 W or, if we
assume that the entire supplied power is transformed into
acoustic flux,I 051300 W/cm2 for the cross-sectional area o
the sample;0.1 cm2. Thus, the generation coefficient
g5I s /I 0.0.5.

Let us consider again theUii
(2) signals measured in th

case when the drift velocity vector for charge carriers, a
hence the flow of nonequilibrium phonons generated
charge carriers in the NCR, was directed to the endface
the sample. In this situation, the AME effect associated w
the sound reflected at the endface I could be observe
principle in the LCR. However, no AME voltage is observ
of
,

r

r-

.

d

r-

e
s

y

ar
e

e

e

ng

ts.
y

e

he

d
y
of
h
in

at Uii
(2)( i>2) signals~see Fig. 2a!. It should also be noted

that no peculiarities associated with the acoustic momen
reflected at the endface II of the sample are observed at
nalsUii

(1)( i>2) either. In this case, additional AME voltag
could be manifested in the main signal in the form of
voltage decrease following the peak~point m in Fig. 2b! after
a time required for the acoustic pulse front to traverse
distance from the corresponding pair of contacts to face
and back. We assume that the absence of the AME ef
associated with the sound reflected at the endfaces is fir
all a consequence of strong dissipation of sound at rou
nesses. The endfaces of the sample usually contain a la
number of crystal lattice defects emerging during its elect
spark erosion and leading to the formation of a rough surf
after subsequent etching.

In order to confirm the correctness of the interpretat
of the above results, we made an additional experiment
the same sample in a different geometry. A current pulse
passed through a pair of contacts2–5 at the lateral~long!
face of the sample, while contacts3–4 mounted on the op-
posite face~Fig. 1! were used as potential contacts. It w
assumed that the small separation between the source of
equilibrium phonons~NCR between the current contac
2–5! and the opposite face of the sample on which the
tential contacts3–4 are mounted will enable us to observe
the given experimental geometry an AME signal associa
with phonons emitted directly in the LCR as well as wi
phonons reflected from the sample surface. These expe
tions were also based on the fact that unlike endfaces,
lateral surfaces are smooth and do not contain roughnes
The results of experiments are presented in Fig. 6. As in
previous experiments, the response signalU34

(2) is similar in
shape to the current pulse. At the same time, the signalU34

(1)

has a complex shape which, however, can easily be ca
lated on the basis of the treatment of experimental data
posed above. After the initial voltage drop corresponding
the transition to the regime of generation of nonequilibriu

FIG. 6. Copies of oscillograms ofU34
(6) signals:2vd ~curve 1! and 1vd

~curve2!; I 2557.2 A.
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phonons, the oscillogram displays a nonmonotonic reg
b-n-m-p demonstrating the process of stabilization of AM
voltage in the LCR. The increase in the AME voltage~seg-
ment b-m! is a consequence of the propagation of acou
front from the NCR region to the opposite face of t
sample, while the subsequent decrease in voltage~segment
m-n! is associated with the motion of acoustic pulse reflec
from the sample surface and with the corresponding comp
sation of the part of the main AME sinal. Pay attention to t
fact that the time periodstbm and tmn corresponding to an
increase and decrease in the AME voltage are virtu
equal:tbm'tmn . The next flat segment corresponds to sta
lized AME voltage in the sample. A comparison with th
total signal amplitudeU34

(1) ~point m in Fig. 6! and the am-
plitude of the compensating partm-n shows that approxi-
mately 20% of the incident phonon flux is reflected from t
sample surface. The existence of a noticeable reflected
non flux and the AME voltage associated with it also follow
from the fact that after switching-off the current~point p in
Fig. 6!, not only a positive, but also a negative ‘‘postsoun
ing’’ signal is observed on theU34

(1) signal. In analogy with
experiments in the main geometry, no AME voltage is o
served in theU34

(2) signal. In all probability, not more than
5% of nonequilibrium phonons emitted in the NCR attain
in this case the sample surface containing potential cont
according to our estimates. While obtaining the estimate,
assumed that the sample surface containing current con
reflects approximately 20% of emitted acoustic power, wh
subsequently attenuates over a length of 4.5 mm~sample
width! to 1/4 of the initial value~in analogy with the ratio of
the signalsU22

(1) and U55
(1) in Fig. 2b!. Naturally, such a

small value of the AME voltage is not manifested in t
much stronger signalU34

(2) whose value is determined by th
voltage drop associated with nonuniform current flow in t
sample, i.e., the sample geometry.

The authors are grateful to V. D. Fil’ for critical re
marks.

*E-mail: krasovitsky@ilt.kharkov.ua
1!Detailed experimental investigation of bismuth in the acoustoelectric n

linearity mode under the conditions of nonuniform distribution of elect
field was carried out in Ref. 22. The distribution of potential for a sem
infinite plate into which the direct current flows and leaves the sam
through a pair of contacts is also calculated in Ref. 22.

2!For all response signalsUii
(2) ~Fig. 2a!, a transient effect associated with

periodic time dependence of voltage across the sample is observed. S
voltage oscillations were observed and analyzed in Refs. 9, 17, 20 an
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devoted to investigation of electrical properties of bismuth in the regime
elastic wave generation. In Ref. 22, it is shown experimentally that aco
toelectric oscillations emerge in the case of a nonuniform current fl
through the sample, when charge carriers drift to the surface contai
current contacts. Oscillations obtained in this way can be observed fo
arbitrary combination of current, magnetic field, and temperature co
sponding to the conditions for the existence of nonlinear conductiv
mode in the sample.

1R. N. Parmenter, Phys. Rev.89, 990 ~1953!.
2G. Weinreich, T. Sanders, Jr., and H. G. White, Phys. Rev.114, 33 ~1959!.
3G. Weinreich, Phys. Rev.107, 317 ~1957!.
4A. A. Grinberg, Fiz. Tverd. Tela6, 2010~1964! @Sov. Phys. Solid State6,
1586 ~1964!#.

5A. A. Grinberg and N. I. Kramer, Dokl. Akad. Nauk SSSR157, 79 ~1964!
@Sov. Phys. Dokl.9, 552 ~1964!#.

6T. Jamada, J. Phys. Soc. Jpn.20, 1424~1965!.
7M. I. Kaganov, Sh. T. Mevlyut, and I. M. Suslov, Zh. E´ ksp. Teor. Fiz.78,
376 ~1980! @Sov. Phys. JETP51, 189 ~1980!#.

8V. I. Pustovo�t, Usp. Fiz. Nauk97, 257 ~1969! @Sov. Phys. Usp.12, 105
~1969!#.

9L. Esaki, Phys. Rev. Lett.8, 4 ~1962!.
10L. Esaki, Proc. JEEE50, 322 ~1962!.
11A. M. Toxen and S. Tansal, Phys. Rev. Lett.10, 481 ~1963!.
12K. Walther, Phys. Rev. Lett.15, 706 ~1965!.
13J. I. Hopfild, Phys. Rev. Lett.8, 311 ~1962!.
14S. J. Miyake and R. Kubo, Phys. Rev. Lett.9, 62 ~1962!.
15R. Abe, Prog. Theor. Phys.30, 149 ~1963!.
16V. P. Kalashnikov, Fiz. Met. Metalloved.18, 171 ~1964!.
17Yu. A. Bogod and R. G. Valeev, Fiz. Nizk. Temp.3, 874 ~1977! @Sov. J.

Low Temp. Phys.3, 424 ~1977!#.
18Yu. A. Bogod, R. G. Valeev, and G. P. Onokienko, Fiz. Nizk. Temp.1,

636 ~1975! @sic#.
19Yu. A. Bogod and R. G. Valeev, Fiz. Nizk. Temp.2, 897 ~1976! @Sov. J.

Low Temp. Phys.2, 441 ~1976!#.
20Yu. A. Bogod, Fiz. Nizk. Temp.8, 787 ~1982! @Sov. J. Low Temp. Phys.

8, 393 ~1982!#.
21S. V. Bengus, Yu. A. Bogod, and P. E. Finkel’, Fiz. Nizk. Temp.16, 738

~1990! @Sov. J. Low Temp. Phys.16, 434 ~1990!#.
22S. V. Bengus, Vit. B. Krasovitski�, and P. E. Finkel’, Fiz. Nizk. Temp.18,

30 ~1992! @Sov. J. Low Temp. Phys.18, 19 ~1992!#.
23Vit. B. Krasovitski� and S. V. Bengus, Fiz. Nizk. Temp.19, 805 ~1993!

@Low Temp. Phys.19, 576 ~1993!#.
24T. Jamada, J. Phys. Soc. Jpn.20, 1647~1965!.
25P. Finkel, S. V. Bengus, and Vit. B. Krasovitsky, Physica B194–196, 435

~1994!.
26G. Eckstein, A. W. Lawson, and D. H. Reneker, J. Appl. Phys.31, 1534

~1960!.
27Yu. A. Bogod and Vit. B. Krasovitski�, in Physics of Condensed State@in

Russian#, Khar’kov ~1974!, p. 37.
28V. S. Edel’man, Usp. Fiz. Nauk123, 257~1977! @Sov. Phys. Usp.20, 819

~1977!#.
29R. N. Zitter, Phys. Rev. Lett.14, 14 ~1965!.

Translated by R. S. Wadhwa



LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 5 MAY 1999
LOW-DIMENSIONAL AND DISORDERED SYSTEMS

On vortex phase of systems with pairing of spatially separated electrons and holes
S. I. Shevchenko and V. A. Bezugly 
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~Submitted December 4, 1998!
Fiz. Nizk. Temp.25, 496–508~May 1999!

The possibility of the emergence of a macroscopic amount of planar vortices with identical
circulation in systems with pairing of spatially separated electrons and holes was predicted by us
recently@S. I. Shevchenko, Phys. Rev.B56, 10355~1997!; ibid. B57, 14809~1998!#. In the
present work, we consider a structure formed by planar vortices in a disk-shaped sample in a
magnetic field whose two-dimensional divergence differs from zero. The total number of
vortices and the energy of a system of vortices are determined as functions of the external magnetic
field and the sample size. It is found that the energy of the vortex structure is proportional
to the volume of the system, and hence a vortex state is a new thermodynamic phase of the
investigated system~analogous to the Shubnikov phase in conventional superconductors!.
© 1999 American Institute of Physics.@S1063-777X~99!01105-6#
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1. INTRODUCTION

In recent years, several publications have appea
which contain the results of experimental investigations
double-layered 2D-electron-hole and electron-electron sy
tems and report on the observation of several effects p
ably associated with the emergence of spontaneous inter
coherence~‘‘condenser’’ superconductivity! in these sys-
tems. Thus, Cooperet al.1 have attributed the increase in th
longitudinal resistance of three-layered InAs/GaSb/AlSb h
erostructures for identical densities of electrons in the In
layer and holes in the AlSb layer to the formation of bou
electron-hole pairs. Lillyet al.2 have studied the drag o
electrons in one layer by the current of electrons in the ot
layer in the system GaAs/AlxGa12xAs in a strong magnetic
field for a half-filled lower Landau level in each layer. The
observed a number of anomalies in the drag current and
tributed them to a strong correlation between electrons
adjacent layers. Butovet al.3,4 studied the time evolution o
luminescence of indirect excitons in double quantum we
AlAs/GaAs after pulse laser excitation in strong magne
fields (B<12 T) at low temperatures (T>1.3 K). Butov
et al.3 observed an anomalous increase in the diffusion co
ficient with increasing field and decreasing temperature,
interpreted it as the onset of superfluidity of excitons a
result of their condensation. The anomalously rapid trans
of indirect excitons detected by Butov and Filin4 was also
attributed by them to the emergence of superfluidity of ex
tons.

Many authors have reported the results of theoretical
vestigations of systems with spontaneous interlayer corr
tions. The possibility of superfluidity of electron-hole pai
in systems with pairing of spatially separated electrons
holes~PSSEH! was predicted about two decades ago5–7 ~see
also Ref. 8!. A large number of theoretical works9–30 have
3661063-777X/99/25(5)/10/$15.00
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been published in recent years describing the effect o
strong uniform magnetic field on pairing of spatially sep
rated electrons and holes, as well as the peculiarities of
perfluidity in such fields. However, the fact that a nonu
form magnetic field can produce qualitatively new effec
remained unnoticed.

One of the authors of the present work31,32 studied the
behavior of systems with PSSEH in a magnetic field bel
the point of transition of electron-hole pairs into superflu
state and showed that a nonuniform magnetic field with
nonzero two-dimensional divergence (div2 H) may produce
in the system a macroscopic amount of planar vortices w
identical circulation. The term planar vortex stands for a v
tex in which electron-hole pairs rotate as a single entity
the plane of the structure. Although planar vortices are
many respects similar to the well-known Onsager-Feynm
vortices or Abrikosov vortices, they do not form a lattic
unlike these vortices. It was shown in Refs. 31 and 32 tha
the limit when planar vortices can be treated as continuou
distributed, their density is proportional to div2 H. It follows
hence that the total number of planar vortices is proportio
to the magnetic flux across the sample boundary. The la
quantity is proportional to the perimeter of the system a
not its area, and hence one can ask whether the pred
effect of emergence of planar vortices in superconduct
systems with PSSEH is two- or three-dimensional. It will
shown in the present work that this effect is thre
dimensional, and hence the vortex state is a new thermo
namic phase analogous to the Shubnikov Phase in con
tional superconductors.

Returning to the problem of experimental confirmati
of the transition of indirect excitons to the superfluid state
must be remarked that certain difficulties are encountere
the direct measurement of conductivity of each layer. In t
© 1999 American Institute of Physics
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respect, the emergence of planar vortices is also interes
because it may provide a direct evidence for the transition
electron-hole pairs to the superfluid state since planar vo
ces carry a magnetic flux31,32which may be detected by con
tactless method.

It was shown in Ref. 31 and 32 that the energy of t
superconducting phase in a magnetic field in systems w
PSSEH is defined by the expression

E5E F\2ns

2M
~¹w!22

\nsed

Mc
¹w~H3 ẑ!Gd2r. ~1!

Herens is the superfluid density of pairs,M their mass,
w the phase of the order parameter,d the separation betwee
layers with electron and hole conductivity, andẑ a unit vec-
tor along the normal to the conducting layers.

Let us explain the emergence of the second term in
mula ~1!. If electrons and holes are separated in space,
electron-hole pairs form a system of dipoles~see Fig. 1!
whose dipole moments are parallel~or antiparallel! to the
z-axis. In a magnetic fieldH, the energy of a dipole moving
with a velocityvs is equal tovs(ed3H)/c ~plus the kinetic
energyMvs

2/2!. Since the velocityvs can be assumed to b
equal to (\/M )¹w within the accuracy desired by us, w
arrive at the required result~after replacingd by dẑ!. It is the
presence of the second term in~1! that may lead to the emer
gence of a macroscopic number of vortices with identi
circulation in superconducting systems with PSSEH. Inde
assuming that the fieldH is a two-dimensional ‘‘hedgehog’
~i.e., the magnetic field diverges radially from a certain ce
ter!, we find that the second term makes the emergenc
circular currents around this center more advantageous f
the energy point of view~for a quite large value ofH!. How-
ever, since the phasew may acquire only a quantum incre
ment 2pn ~wheren is an integer!, the mechanism of realiza
tion of these circular current loops involves the emergenc
quantized planar vortices with identical circulation in t
system.

As in our previous works,31,32 we consider an exactly
solvable case in which a system with PSSEH is placed in
external magnetic field produced by a two-dimensional
cular current loops. We assume that the electron-hole sys
is a disk of radiusR, and consider the case when the circu
currents producing the field lie in a plane parallel to the pla
of the disk, and the axis around which they circulate pas
through the center of the disk~Fig. 2!. Let us consider some
important properties of such a magnetic field. Let a system
circular current loops with a constant azimuthal compon
of the two-dimensional current densityI 5const fill a circle
of radiusR8. In this case, at distances much smaller thanR8
from the plane in which the currents flow, the components

FIG. 1. Electron–hole pair in a system with PSSEH~schematic diagram!.
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the magnetic field will be equal toHu50 andHr52pI /c
5const everywhere except in small regions at the cente
the circle and at its periphery where the edge effects bec
significant ~Fig. 3!. Such a current also leads to the eme
gence of the componentHz which, however, does not affec
the value of the superfluid velocity. As in Refs. 31 and 3
we consider the caseR!R8 ~in order to eliminate the effec
of the boundary of the system of circular current loops!, and
assume that the distance between the plane of the cur
and the disk-shaped sample is much smaller thanR but much
larger thand.

Using formula~1!, it can be shown31,32that the energy of
a solitary vortex at a distancer from the center of the disk is
defined as

Ev~r!5
p\2ns

M S ln
R22r2

Rj
2

R2r

l D , ~2!

where j is the size of the vortex core. The magnetic fie
appears in this expression through the lengthl defined by
the relation

l215
4pIed

\c2 , ~3!

whereI is the two-dimensional density of circular currents
Assuming that the first quantum vortex emerges at

center of the disk~i.e., for r50! and equatingEv(0) to zero,

FIG. 2. Schematic diagram of a two-dimensional circular current loop.

FIG. 3. Magnetic field of the current shown in Fig. 2: top view~a!, and
sectional view~b!.
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we obtain the critical currentI c1 beyond which the emer
gence of vortices in the system becomes advantageous. I
be verified easily that the currentI c1 satisfies the relation

lc1
21[

4pI c1ed

\c2 5
1

R
ln

R

j
. ~4!

This current is quite small. Thus, in the particular ca
when the separationd between the conducting layers is
the order of 1026 cm and the disk radiusR.1 cm, the mag-
netic field H52pI /c corresponding to the currentI c1 is of
the order of 1 G.

For I .I c1 , the number of vortices and their distributio
in space are determined by the interaction of vortices wit
magnetic field as well as with one another. It is obvious fro
symmetry considerations that in the magnetic field produ
by circular current loops, the vortices must lie on circl
which are concentric with the disk. The energy of a syst
of vortices in which the radius of thei th circle is equal tor i

and the number of vortices on this circle is equal toNi can be
defined by the following expression if the inequalityNi@1 is
satisfied:31,32

E5(
i

H Ev~r i !1
p\2ns

M F2 (
j ~, i !

Nj S ln
R

r i

1
1

Ni
ln

12exp~2Ni ln ~R2/r ir j !!

12exp~2Ni ln ~r i /r j !! D2 ln Ni

1~Ni21! ln
R

r i
1 lnS 12expS 22Ni ln

R

r i
D D

2 lnS 12
r i

2

R2D G J Ni . ~5!

Note that the last term in braces was not taken into
count in our earlier work.31,32 However, this term become
significant only in a narrow regionR2r i!R near the edge
of the disk, and can be disregarded in an analysis of
problems in which we are interested.

2. VORTEX STRUCTURE AS A FUNCTION OF MAGNETIC
FIELD

The main difference between the planar vortices con
ered here and the familiar Onsager-Feynman or Abriko
vortices lies in that the structure formed by them is spatia
inhomogeneous. It will be shown below that if the currenI
exceeds the lower critical currentI c1 but is quite close to it,
the energetically advantageous situation is one in which
nar vortices are formed not all over the disk, but only near
center. In order to find such currents, we shall consider
low only the caseR@r i@l. This leads to a much simple
expression~5! for vortex energy which can be presented
the form
an

e

a

d

-

e

-
v
y

a-
s
e-

E5
p\2ns

M (
i

H ln
r i

j
2

R2r i

l
2 ln Ni

1S Ni12 (
j ~, i !

Nj D ln
R

r i
22 (

j ~, i !

Nj

Ni

3 lnF12expS 2Ni ln
r i

r j
D G J Ni . ~6!

The dependence of the radiusr i of the i th circle and the
numberNi of vortices on this circle oni can be obtained
from condition~6! of minimum energy with respect tor i and
Ni . The first minimization condition gives

r i

l
52 (

j ~< i !
Nj2Ni2112 (

j ~, i !

Nj

exp$Ni ln~r i /r j !%21

22 (
j ~. i !

Nj

exp$Nj ln~r j /r i !%21
. ~7!

while the minimization condition for the energyE with re-
spect to the numberNi of vortices leads to the equation

R2r i

l
2 ln

r i

j
52 ln Ni2112 (

j ~< i !
Nj ln

R

r i

12 (
j ~. i !

Nj ln
R

r j

22 (
j ~, i !

Nj ln~r i /r j !

exp$Ni ln~r i /r j !%21

22 (
j ~. i !

lnF12expS 2Nj ln
r j

r i
D G . ~8!

The system of equations~7! and ~8! can be analyzed
quite easily by writing an equation analogous to~8! for the
( i 11)th circle and subtracting Eq.~8! from it. As a result,
we obtain

r i 112r i

l
2S 2 (

j ~< i !
Nj21D ln

r i 11

r i

5 ln
Ni 11

Ni
12 (

j ~, i 11!

Nj ln~r i 11 /r j !

exp$Ni 11 ln~r i 11 /r j !%21

22 (
j ~, i !

Nj ln~r i /r j !

exp$Ni ln~r i /r j !%21
12 (

j ~. i 11!

3 lnF12expS 2Nj ln
r j

r i 11
D G22 (

j ~. i !

3 lnF12expS 2Nj ln
r j

r i
D G . ~9!

Let us write down the solution of the system of equ
tions ~7! and ~9!. Denoting the last two terms on the righ
hand side of~7! as 2Si , we can write Eq.~7! in the form

r i

l
52 (

j ~< i !
Nj2Ni2112Si . ~10!
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Assuming that the functionsN( i ) and r( i ) vary insig-
nificantly in one step, i.e., (Ni 112Ni)!Ni and (r i 112r i)
!r i we can show~see Appendix 1! that

Si52F S Ni

d2r i

di2
2

Ni

r i
S dr i

di D 2

1
dNi

di

dr i

di D Ni

r i
2

dNi

di G
3expS 2

Ni

r i

dr i

di D . ~11!

This expression can be simplified considerably. It w
found in Refs. 31 and 32 thatNi5(r i 112r i)/2l1O(1) and
(r i 112r i)

2;lr i for the discrete model. A dependence
the same type~but with a different coefficient! was obtained
in the continual approximation also. We shall use these
sults and present them in the following form:

Ni5a
r i 112r i

2l
1O~1!; ~12!

2 (
j ~< i !

Nj5bNi
2; ~13!

~r i 112r i !
25glr i . ~14!

It is assumed that the coefficientsa, b, andg are of the order
of unity.

Formula ~13! can be obtained from~12! and ~14!, and
hence coefficientsa,b,g are interrelated. Indeed, it follow
from ~12! that

2 (
j ~< i !

Nj52
a

2l (
j ~< i !

~r i 112r i !5a
r i

l
,

while from ~12! and ~14! we obtain

bNi
25ba2

~r i 112r i !
2

4l2 5ba2
gr i

4l
.

Taking into consideration Eq.~13!, we obtain from the above
system of equations

abg54. ~15!

It can be shown with the help of~12! and ~14! that the
following relations hold in the main approximation:

r i5
gl

4
i 2; ~16!

Ni5
ag

4
i . ~17!

For this purpose, it is sufficient to replace (r i 112r i) by
dr( i )/di in ~14! and solve the resulting differential equatio
The solution of this equation is given by~16!. Substituting
this equation into~12! and disregarding the small correctio
we obtain formula~17!.

Substituting ~16! and ~17! into ~11! and the obtained
result for Si into ~10!, we obtain the first of the equation
describing the structure of the system of vortices~instead of
Eq. ~7!!:

r i

l
52 (

j ~< i !
Nj2Ni212age2ag/2. ~18!
s

e-

This equation is much simpler than the initial equati
~7!. It contains two unknown constants, one of which can
determined straightaway. We write Eq.~18! for the
( i 11)th circle and subtract~18! for the i th circle from the
obtained equation. This gives

Ni 111Ni5
r i 112r i

l
. ~19!

Hence, taking into consideration the slow variation ofNi

with numberi, we obtain

Ni5
r i 112r i

2l
1O~1!. ~20!

A comparison of~20! and ~12! leads to the conclusion tha
a51. In this case, it follows from~15! that bg54.

We can simplify Eq.~9! in an analogous manner~see
Appendix 2!. As a result, we can replace the cumberso
equation~9! by

r i 112r i

l
2S 2 (

j ~< i !
Nj21D ln

r i 11

r i

5 ln
Ni 11

Ni
2

g2

4Ni
~g22!e2g/2. ~21!

The system of equations~18! and ~21! leads to an equation
for the coefficientg ~see Appendix 3!:

1

12
1~g24!e2g/25

1

g
. ~22!

This equation can be solved numerically. It has one r
which is given by

g55.55, ~23!

correct to the second significant digit. Accordingly, f
b54/g we obtain

b50.72. ~24!

Substituting~23! into ~14!, we arrive at the final expres
sion describing the law of variation of distance between
jacent circles upon a change in the radius of the circle:

~r i 112r i !
255.55lr i . ~25!

Thus, we have derived the laws of variation of the rad
r i of i th circle and of the numberNi of vortices on this circle
with the circle numberi ~formulas~20! and~25!!. It follows
from these expressions that the vortex density at thei th
circle decreases with increasingi ~since Ni /2pr i

;(lr i)
21/2!, while it follows from ~25! that the density of

circles also decreases with increasingi ~since the separation
between adjacent circles increases withi!.

The dependence of the number of vortices on a circle
the number of this circle can be obtained explicitly by usi
the obtained values ofa andg in ~17!:

Ni51.4i . ~26!

This result indicates that the number of vortices on
circle increases withi by 1.4 on the average (Ni 112Ni

51.4). Such a seemingly paradoxical result~DNi is not an
integer! was obtained on account of the fact that wh
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deriving Eq.~8! we assumed the variableNi to be continu-
ous, which is actually a correct assumption under the co
tionsNi@1 andDNi!Ni . Naturally, the number of vortice
will increase by an integer~1 or 2! as we go over from one
circle to the next, and the system itself will choose an alt
nation of DNi

(1)51 andDNi
(2)52 which is more advanta

geous from the energy point of view~computations can be
made only numerically!. The continuous variablesr i will be
slightly ‘‘tuned.’’ This indeterminacy is taken into conside
ation in the exact formula~19! as follows:

Ni 111Ni615
r i 112r i

l
6

D~r i 112r i !

l
.

It follows from this formula that the ‘‘tuning’’ of the
radius of one circle relative to the adjacent circle is qu
small:

D~r i 112r i !;
1

Ni
~r i 112r i !,

which means that the error associated with such a ‘‘tunin
is just a small correction in formulas~20! and~25! describing
the structure of a system of vortices.

Let us now consider the problem of mutual arrangem
of vortex chains on adjacent circles. It is well known that t
lattice structure of Abrikosov vortices in a uniform magne
field is determined to a considerable extent by the energ
interaction of a vortex with the nearest neighbors. In
present work, we consider planar vortices in a nonunifo
magnetic field having a central symmetry, and assume
vortices lie on concentric circles. The vortex chains on
circle can rotate relative to each other as a single en
choosing a mutual arrangement that is most advantag
from the energy point of view. While deriving formula~5! in
our earlier works,31,32 we disregarded the term associat
with such a rotation of one circle relative to another as
small correction. In the present work, however, the sm
term ~last term in~6!! which was disregarded in Refs. 31 an
32! plays a significant role in the derivation of Eq.~22! for
the coefficient g. Hence we must make an order-o
magnitude estimate for the contribution to the energy~5!
made by the correction associated with the mutual arran
ment of vortices on adjacent circles. It can be seen~see Ap-
pendix 4! that this correction is equal to

DE5
p\2ns

M (
i

H 2 (
j ~, i !

NjFp2a2

Ni
3 expS 2Ni ln

r i

r j
D G J Ni ,

wherea is a coefficient of the order of unity. It can be se
that the quantityDE is smaller than the smallest term in~6!
by a factor of (Ni /pa)2. Thus, the correction to the energ
(DE) considered here is negligible.

The following important circumstance is worth notin
The gain in energy due to the emergence of vortices is a
ciated with the interaction of electron-hole dipoles with t
magnetic field. The corresponding term in formula~6! for
energy~i.e., the second term! decreases with increasingr i .
Hence, for a currentI;I c1 , it is advantageous from the en
ergy point of view if the vortex structure occupies only a p
of the disk. Consequently, the obtained solution forr i andNi
i-

r-

’’

t

of
e

at
a
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us

a
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e-

o-

t

will be valid only for values ofr i smaller than a certain
critical valuerm which can be found easily with the help o
Eq. ~8! if we consider that allNi50 for r i.rm . In this case,
Eq. ~8! assumes the following form for themth circle:

2 ln Nm12 (
j ~<m!

Nj ln
R

rm
5

R2rm

l
2 ln

rm

j
. ~27!

We have disregarded the second and fifth terms on the ri
hand side of~8! as small corrections. Using~18!, we can
write this equation in the form

2 ln Nm12S Nm1
rm

l D ln
R

rm
5

R2rm

l
2 ln

rm

j
. ~28!

SinceNm}(rm /l)1/2 in view of ~20! and~25!, it can be
seen easily that the following inequalities are satisfied:

rm

l
@Nm@ ln Nm@1.

Taking these inequalities into consideration and using
definition of lc1 from ~4!, we obtain from~28!

rm5
lc12l

lc1

R

11 ln R/rm
. ~29!

It can be seen from the above equation that the quan
rm is actually proportional to the radiusR of the disk ~pe-
rimeter of the sample! since the term lnR/rm in the denomi-
nator varies only slightly with increasingR, and we can as-
sume in the main approximation that this logarithm
constant. It also follows from~29! that rm depends on the
magnetic fieldH appearing in the equation through the p
rameterl. As the current producing the magnetic field i
creases, the parameterl decreases while the radius of th
outer circlerm increases. The dependence ofrm on the cur-
rent I is hyperbolic.

3. ENERGY OF THE VORTEX SYSTEM

Thus, we have a complete picture of the vortex struct
in the system under consideration: planar vortices are s
ated on concentric circles, filling the disk from the center
a certain outer circle of radiusrm ~see Fig. 4! which in-
creases with magnetic field in accordance with~29!. The
number of vortices on a circle, the radius of the circle, a
the separation between two adjacent circles are conne
through relations~20! and ~25!.

We can now determine the total number of vortices
the system:

N5(
i 51

m

Ni .

Such a sum can be evaluated easily by using formula~20!.
As a result, we obtain

N5(
i 51

m
r i 112r i

2l
5

rm

2l
. ~30!

Here, we have omitted the termr1/2l, assuming thatrm

@r1 . Substituting~29! into ~30!, we arrive at the required
dependence of the number of vortices on the sample siz
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N5
lc12l

lc1

R

2l ln eR/rm
. ~31!

Thus, the total number of vortices is indeed proportiona
the perimeter of the sample.

Let us now compute the energy of the system of vo
ces. In order to calculate the energy in the main approxim
tion, we can neglect the third and the last terms in form
~6!, and also the quantityNi in comparison with (

j ,( i )
Nj

5bNi
2. The expression for energy then assumes the form

E5
p\2ns

M (
i

S ln
r i

j
2

R2r i

l
1bNi

2 ln
R

r i
DNi . ~32!

These sums can be evaluated exactly. However, we ca
over from summation over the circle numbers to integrat
with respect to the continuous variablei since the evaluation
of sums in the main approximation does not differ in a
way from integration~see Appendix 5!. As a result of inte-
gration, we obtain

E5
p\2ns

M E
1

mS ln
r i

j
2

R2r i

l
1bNi

2 ln
R

r i
DNidi

52
p\2ns

M

rm
2

2l2 S lc1

l
ln

eR

rm
2

3

4D . ~33!

Obviously, the energy of the system of vortices is alwa
negative. Indeed, even for values ofl close tolc1 ~i.e., for
(lc12l)!lc1!, we have

lc1

l
ln

eR

rm
'

lc1

l
ln

lc1

lc12l
.1,

while the expression within parentheses on the right-h
side of ~33! increases with current I, i.e., with decreasingl.

Substituting~29! into ~33!, we arrive at the required ex
pression for the energy of the system of vortices:

E52
p\2ns

2M
R2S 1

l
2

1

lc1
D 2S lc1

l
ln

eR

rm
2

3

4D ln22
eR

rm
. ~34!

FIG. 4. Vortex structure in the field of a circular current.
o

-
a-
a

go
n

s

d

Let us analyze the obtained result. The energy of
system of vortices is negative forI .I c1 , i.e., the emergence
of vortices is indeed advantageous from the energy poin
view if the currentI exceeds the critical valueI c1 . The mag-
nitude of the energy increase upon an increase in the cur
I ~i.e., upon a decrease in the parameterl!. Finally, the en-
ergy of the system of vortices is proportional toR2, i.e., to
the ‘‘volume’’ of a two-dimensional sample, and it can b
stated that the vortex state is a new thermodynamic phas
the system under consideration.

4. CONCLUSIONS

We have shown in this work that the emergence o
macroscopic quantity of planar vortices with identical circ
lation becomes energetically advantageous in a system
PSSEH at temperatures below the superconducting trans
temperature and in a nonuniform magnetic field~in the form
of a two-dimensional ‘‘hedgehog’’! when the current pro-
ducing this field exceeds a certain critical valueI c1 . In a
disk-shaped sample of radiusR, vortices lie on circles whose
centers coincide with the center of the disk, thus filling t
disk from the center to a certain valuerm ~radius of the
biggest circle! defined by formula~29!. The quantityrm in-
creases linearly with the sample radiusR, as well as with the
currentI, i.e., the vortex system expands from the center
the disk towards its edges upon an increase inI. The number
of vortices on a circle, the radius of the circle, and the se
ration between two adjacent circles are connected thro
relations~20! and~25!. The total number of vortices and th
energy of a system of vortices are determined~formulas~31!
and ~34!! and it is shown that although the total number
vortices is proportional to the perimeter of the sample,
energy of the system of vortices is proportional toR2, i.e.,
the effect under consideration is not a surface effect, bu
bulk effect and hence the vortex state is a new thermo
namic phase of the system under consideration.

This research was supported by INTAS~Grant No. 97-
0972!.

APPENDIX 1

In accordance with the notation introduced in Sec. 2,
can write

Si5 (
j ~, i !

Nj

exp$Ni ln~r i /r j !%21

2 (
j ~. i !

Nj

exp$Nj ln~r j /r i !%21
.

Because of the presence of an exponential factor in the
nominator, the main contribution to these sums comes fr
terms with numbersj that are close toi, hence we obtain in
the main approximation
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Si5 (
k51

p F Ni 2k

exp$Ni ln~r i /r i 2k!%21

2
Ni 1k

exp$Ni 1k ln~r i 1k /r i !%21G , ~A1.1!

where the upper limit of summationp must be quite smal
(p! i ) since we shall carry out an expansion ofi-dependent
r

e
er
riv

tin
t

functions into a Taylor series in the small incrementk. How-
ever, the limitp must be large enough so that the disregard
part of the series is negligible. Estimates show that the o
mal value ofp is equal to six.

Expanding the expression within brackets in~A1.1! into
a Taylor series, we obtain after cancellation of the first a
proximation terms
Si5 (
k51

p ecikF S Ni

r i

d2r i

di2
2

Ni

r i
2 S dr i

di D 2

1
1

r i

dNi

di

dr i

di DNik
222

dNi

di
kG12

dNi

di
k

~exp $Ni ln~r i /r i 2k!%21!~exp $Ni 1k ln~r i 1k /r i !%21!
, ~A1.2!
of

ns
n-

l in
where we have introduced the notation

ci5
Ni

r i

dr i

di
. ~A1.3!

In order to calculate the sumSi in the main approxima-
tion, we disregard the last term in the numerator of~A1.2!
~sinceci.2 which can be verified by substituting~16! and
~17! and ~23! into ~A1.3!, and by equating the denominato
to exp(2cik). For calculatingSi in this approximation, we can
make the upper limit of summation tend to infinity. The s
ries simplified in this way can be evaluated easily by diff
entiating with respect to the parameter. As a result, we ar
at formula~11!.
-
-
e

APPENDIX 2

For the second and third terms on the right-hand side
~9!, we introduce the notation 2S2( i ). This gives

S2~ i !5 (
j ~, i !

Nj 11 ln~r i 11 /r j 11!

exp $Ni 11 ln~r i 11 /r j 11!%21

2
Nj ln~r i /r j !

exp $Ni ln~r i /r j !%21
. ~A2.1!

As in Appendix 1, we shall use the fact that the functio
N( i ) andr( i ) vary slowly over one step, and the main co
tribution to these sums comes from terms with numbersj that
are close toi on account of the presence of an exponentia
the denominator. Reducing the fractions in~A2.1! to a com-
mon denominator and expanding thei-dependent functions
into a Taylor series in the small incrementu i 2 j u! i , we
obtain
S2~ i !5 (
j ~, i !

1

r i

dr i

di
~ i 2 j ! exp H Ni

r i

dr i

di
~ i 2 j !J FdNi

di
2

Ni

r i

dNi

di

dr i

di
~ i 2 j !G

~exp $Ni 11 ln~r i 11 /r j 11!%21!~exp $Ni ln~r i /r j !%21!

5 (
k51

p
1

r i

dr i

di
exp H Ni

r i

dr i

di
kJ FdNi

di
2

Ni

r i

dNi

di

dr i

di
kGk

~exp $Ni 11 ln~r i 11 /r i 2k11!%21!~exp $Ni ln~r i /r i 2k!%21!
. ~A2.2!
nd

ith
tain
In order to calculate the sumS2( i ) in the main approxi-
mation, we can use the expressions~16! and~17! and equate
the numerator to exp(2cik). Making the upper limit of sum-
mation on the right-hand side of~A2.2! tend to infinity, we
can evaluate the series obtained in this way by differentia
with respect to the parameter. As a result, we arrive a
formula for S2( i ):

S2~ i !52
g

2i
~g21!e2g/252

g2

8Ni
~g21!e2g/2. ~A2.3!
g
a

Let us now consider the last two terms on the right-ha
side of ~9!, and denote them by 2S3( i ):

S3~ i !5 (
j ~. i !

F lnS 12exp H 2Nj 11 ln
r j 11

r i 11
J D

2 lnS 12exp H 2Nj ln
r j

r i
J D G .

Using the smallness of the exponent in comparison w
unity and expanding into a Taylor series as above, we ob
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S3~ i !5 (
k51

p
1

r i

dNi

di

dr i

di
ke2cik.

Making the upper limit of summation tend to infinity, we ca
evaluate the infinite series obtained in this way by differe
tiating with respect to the parameter. Using~16! and~17!, we
obtain

S3~ i !5
g

2i
e2g/25

g2

8Ni
e2g/2. ~A2.4!

Substituting ~A2.3! and ~A2.4! into ~9!, we arrive at
~21!.

APPENDIX 3

The system of equations~18! and~21! leads to the equa
tion

Ni 111Ni2S 2 (
j ~< i !

Nj21D ln

3
2( j ~< i 11!Nj2Ni 11212ge2g/2

2( j ~< i !Nj2Ni212ge2g/2

5 ln
Ni 11

Ni
2

g2

4Ni
~g22!e2g/2. ~A3.1!

Expanding the logarithm of the left-hand side of this equ
tion

ln
2( j ~< i 11!Nj2Ni 11212ge2g/2

2( j ~< i !Nj2Ni212ge2g/2

5 lnS 11
Ni 111Ni

2( j ~< i !Nj2Ni212ge2g/2D
into a Taylor series up to third-order terms, and the fract

1

2( j ~< i !Nj2Ni212ge2g/2

5
1

2( j ~< i !Nj21

1

12~Ni1ge2g/2!/~2( j ~< i !Nj21!

up to second order terms, we substitute the result into~A3.1!.
After reducing like terms on the left-hand side of~A3.1!,
terms of the order ofNi and terms of the order of unity wil
cancel out, leaving only terms of the same order as on
right-hand side of~A3.1!. Expanding the logarithm on th
right-hand side into a series in the small increment

ln
Ni 11

Ni
5

Ni 112Ni

Ni

and using formula~17!, we arrive at Eq.~22!.

APPENDIX 4

While calculating the interaction energy for vortices b
longing to different circles,31,32 we encountered the term
-

-

n

e

-

p\2ns

2M (
i , j

(
nj 51

Nj

(
ni51

Ni

lnF122
r j

r i
cos~u~ni !2u~nj !!1

r j
2

r i
2G

5
p\2ns

M (
i

(
j ~, i !

Nj (
ni51

Ni

lnF122
r j

r i
cosS 2pni

Ni

2a i~nj ! D1
r j

2

r i
2G , ~A4.1!

wherea i(nj ) is the minimum angle between radii drawn
the vortex center on both vortices. The quantitya i(nj ) lies in
the interval between 0 andamax(i). The value ofamax(i) can
be determined as follows.

The energy of interaction of vortices belonging to diffe
ent circles decreases exponentially with increasing dista
~in proportion to exp$2Ni ln(ri /rj)%!, hence it is sufficient to
consider vortices from the nearest circles. We shall cons
two circles withNi andNi2a vortices, wherea is a coeffi-
cient of the order of unity. The radius drawn from the vort
center to one of the circles in Fig. 5 passes through the v
tex center on the other circle also, i.e.,a i(nj )50. The mini-
mum angled through which one of the circles must be turn
relative to the other so that the vortices lie on the same ra
again is given by the expression

d5a12a25
2p

Ni2a
2

2p

Ni
'

2pa

Ni
2 ,

while the angleamax(i) is equal to half this angle. In order t
obtain the ‘‘upper’’ estimate of the correction to the ener
associated with the tuning of the vortex chain of one circle
the other, we replace the anglesa i(nj ) in ~A4.1! by their
maximum valuesamax(i). In this case, the expression~A4.1!
can be presented in the form

p\2ns

M (
i

(
j ~, i !

Nj (
ni51

Ni

ln F122xS cos
2pni

Ni
cos

pa

Ni
2

1sin
2pni

Ni
sin

pa

Ni
2 D 1x2G , ~A4.2!

where we have introduced the notationx5r j /r i . In order to
isolate in this expression the energy increment in which
are interested, we must note that (pa/Ni

2)!1 and expand

FIG. 5. Fragment of the vortex structure for two adjacent circles.
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sin(pa/Ni
2) and cos(pa/Ni

2) into a power series in (pa/Ni
2),

after which we expand the logarithm into a Taylor series
the small increment

22x
pa

Ni
2 sin

2pni

Ni
1xS pa

Ni
2 D 2

cos
2pni

Ni

up to second-order terms. As a result, we find that the c
rection to energy associated with the mutual arrangemen
vortex chains at the adjacent circles does not exceed

DE5
p\2ns

M (
i

(
j ~, i !

Nj (
ni51

Ni F22x
pa

Ni
2

3
sin~2pni /Ni !

122x cos~2pni /Ni !1x2

1xS pa

Ni
2 D 2 cos~2pni /Ni !

122x cos~2pni /Ni !1x2

22x2S pa

Ni
2 D 2 sin2~2pni /Ni !

~122x cos~2pni /Ni !1x2!2G .
~A4.3!

Let us compute the sums appearing in this express
For the first term in brackets, we can write

22x
pa

N2 (
n51

N
sin~2pn/N!

122x cos~2pn/N!1x2 50, ~A4.4!

since the summation is carried out over a periodic odd fu
tion over its period. For the summation of second and th
terms in~A4.3!, we use Poisson’s sum rule. In particular, w
obtain for the second term

xS pa

N2 D 2

(
n51

N
cos~2pn/N!

122x cos~2pn/N!1x2

5xS pa

N2 D 2E
0

N cos~2pn/N!dn

122x cos~2pn/N!1x2 12xS pa

N2 D 2

3 (
k51

` E
0

N cos~2pkn!cos~2pn/N!dn

122x cos~2pn/N!1x2 . ~A4.5!

The third term can be written in an identical manner. Af
this, we integrate both terms in~A4.5! in parts and add the
result to the expression for the third term. The obtained
pression is integrated by parts once again. This gives

2S pa

N D 2

(
k51

`

k2E
0

N

cos~2pkn! ln ~1

22x cos~2pn/N!1x2!dn. ~A4.6!

Considering that33

E
0

N

cos~2pkn! ln ~122x cos~2pn/N!1x2!dn

52
1

k
exp ~2kNu ln•xu!,

we can write~A4.6! in the form
r-
of

n.

-
d

r

-

S pa

N D 2

(
k51

`

k exp ~2kNu ln xu!

'S pa

N D 2

exp ~2Nu ln xu!. ~A4.7!

Substitution of~A4.7! and ~A4.3! finally gives

DE5
p\2ns

M (
i

H 2 (
j ~, i !

Nj S p2a2

Ni
3 exp H 2Ni ln

r i

r j
J D J Ni .

APPENDIX 5

For the first term, we obtain from Eq.~32!

(
i

Ni ln
r i

j
5(

i
Ni ln

r i

l
1

rm

2l
ln

l

j
, ~A5.1!

where we have used the result~30!. Using the expression
~20!, we can present the first term in~A5.1! in the form

(
i

Ni ln
r i

l
5

1

2l S (
i

r i 11 ln
r i

l
2(

i
r i ln

r i

l D .

However, forr i 112r i!r i 11 , we have

ln
r i

l
5 ln

r i 11

l
1 lnS 12

r i 112r i

r i 11
D' ln

r i 11

l
2

r i 112r i

r i 11
,

and hence

(
i

Ni ln
r i

l
5

1

2l F(
i

S r i 11 ln
r i 11

l
2r i ln

r i

l D
2(

i
~r i 112r i !G

5
rm

2l
ln

rm

l
2

rm

2l
. ~A5.2!

Substituting~A5.2! into ~A5.1! and using Eqs.~4! and ~29!,
we finally obtain

(
i

Ni ln
r i

j
5

Rrm

2llc1
. ~A5.3!

The same result can be obtained by going over fr
summation to integration. In this case,

(
i

Ni ln
r i

j
5E

1

m

N~ i !ln
r~ i !

j
di.

Using formulas~4!, ~16!, ~17!, and~29!, we obtain

E
1

m

N~ i ! ln
r~ i !

j
di5

Rrm

2llc1
. ~A5.4!

It can be seen that the results~A5.3! and ~A5.4! coincide.
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Misfit dislocation superlattices in IV–VI multilayered compounds as zero-dimensional
quantum boxes

A. Yu. Sipatov

Kharkov State Polytechnic University, 21 Frunze St., Kharkov, 310002, Ukraine*
~Submitted June 20, 1998; revised December 8, 1998!
Fiz. Nizk. Temp.25, 509–511~May 1999!

Quantum dots can be generated by a new method based on the formation of misfit dislocations
in a perfectly periodic array network during the epitaxial growth of IV–VI compound
superlattices. Infrared photoluminescence spectra of IV–VI superlattices are measured at
temperaturesT55 – 90 K. A large blue shift and temperature independent line positions and width
were observed in PhSe–PbS/~001!KCl superlattices with a three-dimensional periodic arrays
of misfit dislocations. It is supposed that these features are due to quantum dot luminescence.
© 1999 American Institute of Physics.@S1063-777X~99!01205-0#
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1. INTRODUCTION

Any new attempt to create quantum dots is great imp
tance because, compared with 2D-structures, it is more dif-
ficult to build up both 0D and 1D objects. Recently a new
way has been found to create quantum dots of InAs with h
of self-organizing processes in Stranski–Krastanov isl
growth during molecular beam epitaxy on a GaAs substra1

Another example is the creation of 1D wires by dislocation
slipping induced reduction in dimensionality of 2D structure
down to one dimension.2 The present contribution is devote
to the investigation of the photoluminescence spectra
IV–VI superlattices with features due to lattice misfit disl
cation. These superlattices reveal the specific propertie
0D systems such as a remarkable blue shift and tempera
independent line positions and width. Thus it is a new way
creating quantum dots in IV–VI superlattices via misfit d
location generation during the epitaxial growth process. I
known that there exists a nearly ideal periodic grid of int
face misfit dislocations~MD! in strained IV–VI super-
lattices.3,4 The lead and rare-earth chalcogenides are q
suitable for preparation of such misfit dislocation super
tices. These materials have NaCl-crystal structure, and
vide a wide range of lattice misfit (f 50.5– 13%) as well as
of misfit dislocation periods (D53 – 50 nm).

2. SAMPLE CHARACTERIZATION

The multilayers were prepared by thermal or electr
beam evaporation of lead and rare-earth chalcogenide
vacuum (1024– 1025 Pa) and alternate deposition of tw
compounds onto a~001!KCl substrate at the temperatu
500–550 K. The layer thickness and the growth rate w
controlled by quartz resonator. Superlattices with perio
5–500 nm and number of periodsN52 – 50 were grown.
Structure investigation by X-ray diffraction~XRD! and
transmission electron microscopy~TEM! shows that growth
in ^001& direction is going on to the layer-by-layer~Frank–
3761063-777X/99/25(5)/3/$15.00
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van der Merwe! mechanism and square grids of misfit disl
cations are formed at the interfaces with a peri
D53 – 50 nm. The MD grid periodicity is much better for
sufficiently large layer lattice misfit (f .2%). Such MD grid
may be considered as a new kind of superlattice—mi
dislocation superlattice ~MDSL!. The MDSL is the
3-dimensional superlattice with periodic modulation by m
fit dislocation arrays in the plane of multilayer structure a
composition modulation along growth direction. The MDS
of above type with multilayers of PbSe–PbS was prepa
by thermal evaporation and alternate deposition of PbSe
PbS on ~001!KCl substrate. The specimen has 40 laye
each 7.0 nm in thickness, and MD periodic grids w
D513.5 nm. The structural properties were checked
XRD and TEM. X-ray diffraction investigations supporte
the evidence of periodicity along the superlattice growth
rection and where a TEM proved the existence of high qu
ity inplane MD grids and thus gave evidence for furth
dimen-sion reduction. The electron microscope image
two-layer PbSe–PbS film with thickness PbSe—30 nm a
PbS—30 nm is shown in Fig. 1a. X-ray diffraction patter
of PbSe–PbS superlattices with different periods are sho
in Fig. 1b–1d.

3. RESULTS OF MEASUREMENTS AND DISCUSSION

Photoluminescence spectra of PbSe–PbS superlat
were earlier discussed in Ref. 5 forT580 K where two-
dimensional size quantizing effects were observed~blue shift
in photoluminescence spectra!. In the above paper only
PbSe–PbS/~111! superlattices without misfit dislocation
were investigated. In the present work the infrared photo
minescence spectra atT55 – 90 K in~001!-oriented superlat-
tices with misfit dislocation grids are investigated and t
results are shown in Fig. 2. There are four main lines, wh
positions and widths do not depend on temperature for
temperature range in which they exist. A MDSL has a co
© 1999 American Institute of Physics
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positional modulation along the plane normal to superlat
and additionally a deformation induced, band gap modu
tion by periodic MD arrays in the plane. The MD stress
have been calculated using methodics4 and it appears that th
amplitude of the oscillations of the MD stresses near
interface are as high as 109 Pa ~Fig. 3.a!. The local position
dependence of the energy gap is schematically shown in
3b. The coordinates~x,y! demote the position in the interfac
plane and in the perpendicular direction, respectively. O
can see from this picture that lattice deformation and g
modulation decrease with distance from the interfacey. The
strain variation of the band gap widthDEg5(dE/
dP)s11, where (dE/dP) for PbSe equals—8•10211eV/Pa.6

From the above estimation it is clear that if we consider
real values of normal strains11 near interface PbSe–Pb
~Fig. 3a! the variation in the magnitude of the band g
width DEg PbSe~Fig. 3b! can achieve 30%–15% for dis
tance from interface 1 nm and 2 nm, respectively. Tha
why the modulation of the energy gap is deep enough
form a quantum well in the interface plane and confines p
ticles in 0D quantum boxes. It is very important that, for
certain sign of the misfit in PbSe–PbS interfaces,
deformation-changed PbSe energy gap has minima in
tween two dislocation lines that are separated by a dista

FIG. 1. Electron-microscope image of two-layer PbSe–PbS film~a! with
thickness of PbSe and PbS equal to 30 nm and~200! x-ray diffraction
pattern of PbSe–PbS superlattices with periodsDSL528 nm ~b!, 15.8 nm
~c!, 8.1 nm~d!. Sn—satellite reflections, MD—misfit dislocations.
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of 13.5 nm. It means that each optically active PbSe reg
bounded by four MD planes and two interface planes, is f
of traps that are placed close along to dislocation lines
thus the properties are sufficient for photoluminescence
nal observation. The blue shifts of referenceEg(T) on 15–30

FIG. 2. Photoluminescence emission spectra of PbSe–PbS superlatt
temperature T55 – 90 K. The superlattice periodDSL5dPbSe1dPbS

514 nm (dPbSe5dPbS), the number of periods—20.

FIG. 3. Normal stresss11 distribution ~a! in two-layer PbSe-PbS film nea
the interface and PbSe energy band gap modulation~b! by misfit dislocation
stresses at 300 K. Y—distance from PbSe–PbS interface;'—position of the
misfit dislocation; C—compressed region; S—stretch region.
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meV were observed in the emission spectra of superlatt
in Fig. 2 (Eg5145 meV for bulk unstrained PbSe
T55 – 10 K). The positions as well as the width of the fo
lines observed in luminescence spectra do not depend
temperature, which is probably due to the 0D size quantiza-
tion of the PbSe quantum boxes. In the model of quant
dots7 there exist four ‘‘intraband’’ dipole transitions whic
change only the state of one particle in the electron-h
pairs. The energy of such transitions should not depend
the band gapEg(T) and consequently on the temperature
is reasonable to suppose that the width of the lines is cau
mainly by quantum dot size fluctuations and does not dep
on temperature. A temperature increase leads to more e
tive phonon-induced suppression of photoluminescence s
that low-lying excitations have not been observed in
emission spectra at high temperature~Fig. 2!. Thus it is pos-
sible to consider the epitaxial growth induced dislocat
superlattices as an interesting new object of extremely
duced dimensionality. The MDSL described above requ
further investigation to make clear not only the optical pro
erties but the set of special properties which have been
served as, for instance, unusual highTC-like superconductiv-
ity in IV–VI MDSL. 8–10

The author wishes to thank K. M. Herrmann and J.
Tomm from Humboldt University of Berlin for help in pho
toluminescence measurements.
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Determination of low-energy electronic levels of the Tm 31 ion in the compound
KTm „MoO4…2

M. I. Kobets, V. V. Kurnosov, V. A. Pashchenko, and E. N. Khats’ko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
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A complex measuring technique is used for reconstructing the structure of electron energy levels
of the Tm31 ion in a KTm(MoO4)2 crystal in the frequency range 0 – 300 cm21. It is
shown that the first excited state is very close to the ground state (DE52.3 cm21). © 1999
American Institute of Physics.@S1063-777X~99!01305-5#
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INTRODUCTION

The compound KTm(MoO4)2 belongs to the class o
layered low-symmetry magnetically concentrated magnet
the type MRE(MoO4)2, where M5K, Cs, Li, . . . , RE5Gd,
Dy, Er, Yb, Ho, . . . . One of themain problems encountere
in the theoretical and experimental investigations of magn
cally concentrated crystals belonging to this family is t
restoration of their energy spectrum, since the ground sta
characterized by orbital and spin quantum numbers o
than 0 and 1/2 respectively. However, the calculation of
energy spectrum of concentrated crystals taking into acco
all possible types of contributions is severely hampered.

Under the effect of temperature or external magne
fields, low-temperature structural phase transformations
observed in these compounds,1,2 where the low-lying elec-
tron energy states of rare-earth ion play the dominating r
The present paper aims at using experimental methods
obtaining quantitative information about the energy gapDE
between the ground state and excited levels of the elec
spectrum of the compound KTm(MoO4)2. The authors have
not come across any information concerning the low-ly
electron energy levels of the Tm31 ion in the compound
KTm(MoO4)2.

EXPERIMENTAL TECHNIQUE

Single crystals of KTm(MoO4)2 were grown by the
method of spontaneous crystallization from solution in
melt.3 The obtained samples were in the form of lamina
plates~like mica! of light-green color and had a very hig
degree of structural perfection. X-ray studies
KTm(MoO4)2 were carried out by Klevtsova and Borisov4

and by Spitsyn and Trunov.5 The crystal belongs to the clas
D2h

14 of rhombic type with the following parameters of th
unit cell: a55.05 Å,b518.31 Å,c57.89 Å,z54. The Tm31

ion belongs to the category 4f 12 of ions with an even numbe
of electrons and the ground state3H6(L55,S51,J56).
Measurements of the angular dependence of the EPR sp
showed that the symmetry of local environment of the Tm31

ion in KTm(MoO4)2 is not higher than rhombic. In a crysta
field of such a low symmetry, the degeneracy of Stark lev
of the Tm31 ion is completely removed. The energ
3791063-777X/99/25(5)/2/$15.00
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spectrum of the electron excitations of the Tm31 ion in the
KTm(MoO4)2 crystal was reconstructed by using the resu
of measurements based on various experimental techniq
Low-frequency measurements~25–180 GHz! of the EPR
spectrum of the KTm(MoO4)2 crystal were made by using
reflection- type radiospectrometer with detachable reson
cells. Raman scattering of light was used in the quest
electron excitations in the KTm(MoO4)2 crystal in the fre-
quency interval 2 – 10 cm21. Raman spectrum in the samp
was excited by using a 40 mW He–Ne laser, and was
corded by using the Jobin Yvon U1000 spectrome
equipped with a cooled photoelectric multiplier and a pho
counter circuit. The excited energy levels in the frequen
interval 10– 300 cm21 were sought by using a Fourier spe
trometer whose spectral resolution was 1 cm21.

EXPERIMENTAL RESULTS

The EPR energy spectrum of the ion Tm31 was not ob-
served in the frequency interval 25–65 GHz. An undistor
magnetic resonance line in KTm(MoO4)2 was observed only
at a frequency 76 GHz for an external magnetic field orie
tation along thec-axis. The condition of resonance is th
orientation of the ultrahigh-frequency~UHF! field h perpen-
dicular to the static fieldH. A very narrow absorption line
(DH5450 Oe) is observed. Such a small linewidth is u
usual for magnetically concentrated paramagnets of this f
ily, in which strong local dipole fields considerably broad
the EPR lines. Hence their analysis requires the use of
limeter and submillimeter frequencies. Our subsequent
perimental studies of the EPR spectrum of the Tm31 ion in
the frequency interval 75–190 GHz showed that the E
linewidth is practically independent of frequency. Figure
shows the dependence of the square of frequency on
square of resonance field obtained from EPR spectral stu
in KTm(MoO4)2 along thec-axis. This dependence can b
described quite satisfactorily by the model formulan25D2

1(gH/2)2. The ‘‘intercept’’ on theY-axis defines the nu-
merical value of the separation from the first excited leve
KTm(MoO4)2 : D569.95 GHz(2.3 cm21). This means that
the ground state of the Tm31 ion is a split ‘‘quasidoublet,’’
and the observed EPR spectrum is associated with transi
© 1999 American Institute of Physics
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between components of the principal ‘‘quasidoublet.’’ T
slope of the straight line gives the effectiveg-factor gc

513.9560.05 for thec-axis of the crystal.
In order to verify the results and to obtain new data

KTm(MoO4)2, we made a quest for electron excitations
the Tm31 ion by using the Raman spectrum technique
frequency interval 2–10 cm21 at T52 K. The results of
these experiments are shown in Fig. 2. The hatched re
corresponding to the interval 3 cm21 60.5 cm21 is attributed
to the electron excitation in KTm(MoO4)2, since optical
phonons with such a low energy were not observed in in
ganic crystals, and the absence of scattering by acou
phonons at the temperature of superfluid helium is associ
not only with a strong symmetry prohibition for the Ram
process near the center of the Brillouin zone, but also w
the fact that the frequency position of such peaks can
exceed 1 cm21 for the investigated compound. The slig
discrepancy between Raman and EPR frequencies ma
caused, for example, by a strong dispersion of the elec
branch near the center of the Brillouin zone. In this case,
difference in the real wave vector for EPR and Raman sp
tra comes into play. Such an analysis was carried out by
and Staut,6 who interpreted the difference in the IR and R
man frequencies of electron transitions as the momen
dependence of the transition frequency. We did not obse
any other excitations in this frequency range.

The IR spectra of the KTm(MoO4)2 crystal were studied
in the frequency interval between 10 and 300 cm21 at a tem-
peratureT54.2 K and for a magnetic field orientation alon

FIG. 1. Frequency vs. field dependence of the EPR spectrum of the T31

ion in the compound KTm(MoO4)2 (T54.2 K,Hic). The straight line cor-
responds to the formulan25D21(gH/2)2 with the parametersD525 kOe
andg513.95.
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thec-axis. The results of measurements carried out in the
region using a Fourier spectrometer indicate the presenc
an absorption band (200 cm21) which is sensitive to the ap
plied magnetic field.

Thus, summarizing the experimental results, it can
stated that two electron energy levels~2.3 and 200 cm21) of
the Tm31 ion in the compound KTm(MoO4)2 exist in the
frequency interval 0–300 cm21. An extremely small value of
the splittingDE52.3 cm21 allows us to assume that for
certain orientation of the applied magnetic field (Hia in the
present case!, a structural phase transition can be induced
the applied magnetic field in this compound, as in other co
pounds of this family such as KEr(MoO4)2 , CsEr(MoO4)2 ,
KDy(MoO4)2 . Further experimental investigations are ce
tainly called for in this direction.

*E-mail: khatsko@ilt.kharkov.ua
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FIG. 2. Raman scattering spectral region for KTm(MoO4)2 at T52 K.
Curve1 corresponds to the polarization of the incident and scattered ra
tion of the typeaa(bb)1ab, and curve2 to ac1bc. Symbol P on the
spectra indicates the percolating line of the gaseous plasma laser, whL
denotes the low-frequency scattering line referred to the electron excita
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On a possible reason behind the anisotropy observed in the superconducting
properties of underdoped cuprates

V. M. Loktev,1,2 R. M. Quick,2 and S. G. Sharapov1,3
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An attempt is made to interpret the experiments in which the superconducting transition
temperature in underdoped HTSC was found to depend on the direction of the current passing
through the sample. It is suggested that one~higher! temperature approximately
corresponds to the pointTBKT of the two-dimensional transition, while the other is the temperature
Tc corresponding to 3D ordering between layers. For conditions whenTc>TBKT ~relatively
high values of carrier concentration and interlayer coupling!, the anisotropy of the superconducting
properties becomes negligible and the layered system possesses only one critical temperature.
© 1999 American Institute of Physics.@S1063-777X~99!01405-X#
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1. During investigations of the electrical resistance
Bi2Sr3CaxCu2O81d

1 and YBa2Cu3O72d
2 single crystals un-

derdoped in oxygen~or, in other words, with a less-than
optimal concentration of delocalized holes!, a ‘‘splitting’’ of
the superconducting transition~SCT! temperature was ob
served: its value for the currentj in the CuO2 layers (j'c)
exceeds noticeably the corresponding value forj ic. Such a
behavior was predicted by Friedel3 and must be manifeste
in layered SC with Josephson-type coupling between lay
At the same time, it was shown by Korshunov4 and
Rodriguez5 that the necessary condition for the emergence
different values ofTc ~depending on the direction ofj ! in
stacks of planes with Josephson-type of tunneling of carr
between them is a random distribution~inequivalence! of SC
properties of layers. However, these authors did not disc
any concentration dependences of the above-mentioned
isotropy.

In this work, we shall use the results of our earli
publication6 to provide a different interpretation of the ph
nomenon observed in Refs. 1 and 2. According to this in
pretation, one SCT~for j'c! which, however, is not accom
panied by a spontaneous symmetry breaking~see Ref. 7!,
may be caused by Berezinsky–Kosterliz–Thouless transi
at the crossover temperatureTBKT . In this case, the SC cor
relations in layers decrease according to a power law, w
the correlations between layers decrease exponentially
consideration of the three-dimensionalization, which alwa
occurs even in strongly anisotropic~including layered! media
restoresTc or, in other words, leads to the formation of
condensate with long-range 3D-order and breaking of charg
symmetry. Although it was shown long ago~on an example
of quasi-one-dimensional conductors! that three-
dimensionalizing one-particle tunneling rapidly makes
BCS ~mean-field! theory ~in which Tc'Tc

MF! valid for
3811063-777X/99/25(5)/3/$15.00
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describing SCT, two-dimensional phenomena may still p
sist in a finite range of parameters ensuring thr
dimensionalization. Thus, 2D- ~nearTBKT! and 3D- ~at Tc!
SC states may be formed separately in principle in qu
two-dimensional systems~if the parameters carrier concen
tration and tunneling constant are such thatTc,TBKT!.

2. The simplest model Hamiltonian of a regular layer
metallic system can be presented in the form

H52cs
1~x!F ¹2D

2

2m'

1
1

mid2 cos~ i¹ id!1mGcs~x!

2Vc↑
1~x!c↓

1~x!c↓~x!c↑~x!, ~1!

wherecs(x) is the Fermi field with spins;x[t,r2D ,z;m'

andmi are effective carrier masses in a layer and along
c-direction respectively,V is the attraction constant,d the
separation between layers, andm the chemical potential de
fining the fermion densitynf

3D([nf
2D/d). We also assume

that mi@m' ~weak tunneling! and\5kB51. Note that Eq.
~1! does not consider incoherent~Josephson! tunneling
~which is often used for stabilizing 2D-fluctuations! for at
least two reasons. In the first place, this is done in orde
show~in contrast to the conclusions drawn in Refs. 3–5! that
even coherent one-particle transition between planes can
sure the anisotropy observed in Refs. 1 and 2. Second,
true nature of tunneling of particles between cuprate lay
of HTSC compounds has not been established so far,
hence it is justified to consider both types of tunneling on
model level.

Further calculations do not differ significantly from
those carried out in Ref. 6, where the effective thermo
namic potentialV of the system was determined by using t
standard Hubbard–Stratanovich technique in which auxili
Bose-fields w(x)5Vc↓c↑ and their conjugates are use
© 1999 American Institute of Physics
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instead of the Fermi fields. After eliminating the latter, w
obtain the following expression for the density of the pote
tial part V:

Vpot~m,T,uwu2!>Vpot
MF~m,T,uwu2!1V11

~1!~m,T,uwu2!, ~2!

where Vpot
M ,F5V(m,T,w(x),w* (x))uw,w5const is the mean-

field potential obtained in the tree approximation, and

Vfl
~1!~m,T,uwu2!5

T

2
~Tr Ln G1

211Tr Ln G2
21! ~3!

is the one-loop correction, in which

G6
21~x!5

1

T F d2V

dw* ~x!dw~0!

6
d2V

dw* ~x!dw* ~0!G
w5w* 5uwu5const.

~4!

It must be noted that factorization~3! is valid only for low
frequencies and momenta,10 while representation~2! can be
used conveniently for describing phases with a long-ra
order. In the absence of such an order~e.g., in the 2D-case,
whenTc50!, potential~2! is found to be insufficient and th
system can be described in the parametrizat
w(x)5r(x)exp(iQ(x)), taking into consideration its kinetic
part. Being a function of¹2DQ(x), such a parametrization
leads to an equation defining the SCT temperature in aD
metal.6 In the general case, bothTBKT andTc

MF are sublinear
functions of«F , where«F5pnf

2D/m' is the Fermi energy of
free fermions. In this case,TBKT2«F , Tc

MF;«F
1/2, in the

local pairing region, andTBKT→Tc
MF;«F

1/2 for Cooper pair-
ing. It must be noted that in spite of the fact that the te
perature is the same, BKT-type SCT occur in differe
planes independently~the differences between their phas
Q(x) are coincidental!. The effect of tunneling onTBKT and
its renormalization were studied in Ref. 11.

3. In order to find the critical temperature of a 3D SCT,
we must use potential~2! corresponding to a quasi-2D sys-
tem and presented in the Gaussian approximation. In
case, the required equation forTc has the form

]Vpot
MF~m,Tc ,uwu2!

]uwu2 1
]Vfl

~1!~m,Tc ,uwu2!

]uwu2 U
w5w* 50

50, ~5!

wherem is an unknown parameter defined by the equalit12

nF
3D~m,Tc!12nB

3D~m,Tc!5nf
3D . ~6!

It can be seen that the retention of fluctuational terms in
~2! ~see Eqs.~3! and ~4!! modifies the equation for the gap
while Eq.~6! shows that the Fermi subsystem is divided in
intrinsic fermions with densitynF

3D and Bose fluctuations
with densitynB

3D ~the expressions fornF
3D andnB

3D are pre-
sented in Ref.~13!!.

The complete solution of the self-consistent system~5!
and ~6! can be obtained only numerically; an analytic so
tion requires approximations that are controlled by the c
dition Tc→0 for mi→`. Thus, in the Bose limit, where
m,0 andnF

3D50, formula~5! leads to an expression forTc

which coincides with the temperature of condensation of
ideal quasi-2D Bose gas.14
-
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-
t
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-

n

However, a more important situation closer to the re
HTSC materials arises when the conditionm5«F is satisfied.
This means thatTc for these materials is determined by E
~5! whose first term is the same as the BCS equation
leads to the mean-field valueTc

MF5(g/p)(2«Fu«bu)1/2 @Ref.
6# ~here,g is the Euler constant, and«b is the energy of a
two-particle bound state which is always nonzero in 2D sys-
tems with attraction!. The fluctuational contribution can b
estimated in the longwave approximation. In this case,
Fourier transform

G2
21~0,K !uw5wmin

5
m'

2pd
@aK'

2 1b~12cosK id!#;

a5
7z~3!

~4p!2

«F

m'T2 ; b5
7z~3!

~4p!2

1

mi
2d4T2 ~7!

of the principal function from~4! at the minimumVpot can
be used to determine the derivative

]G2
21~0,K !

]w2 U
w5wmin

'
m'c

2pd
; c5

7z~3!

8p2T2 ~8!

~z~3! in Eqs.~7! and~8! is the Riemann function.! Integrating
with respect toK , we first arrive at the required correction

U]Vfl
~1!~«F ,T,uwu2!

]w2 U
w5wmin

'
m'

4pd

T

«F
u ln ku, ~9!

and then, after its substitution into~5!, at the final equation

Tc52
u ln~Tc /Tc

MF!u
u ln ku

«F , ~10!

where the dimensionless parameterk is defined by

k2154&mi
2d4u«bu1/2«3/2. ~11!

It can be easily verified that Eq.~10! leads to the dependenc
of Tc on nf

3D with a fairly high degree of precision. Thi
dependence is found to be nearly linear, which is in acc
with the dependenceTc(nf

3D) in underdoped HTSC
compounds.15 For the present communication, the fact th
Tc may turn out to be lower thanTBKT ~see Eqs.~10! and
~11!! is more significant. This may be due to a weak tunn
ing constant~large values ofmi or d! since the slope of the
curveTc(nf

3D) is defined by this constant,1! or ~which is un-
doubtedly more significant! to a decrease in the carrier con
centrationnf

3D which can be varied rather easily in HTS
compounds. Hence the same HTSC compound with a gi
~but small! amplitude of hopping between planes may
characterized by the anisotropy in the SC propert
(Tc,TBKT) or by its absence (Tc→TBKT) for different dop-
ing levels of the compound. Note that if the initial consta
of ~coherent or incoherent! tunneling turns out to be large
the above anisotropy does not appear in such a compo
irrespective of doping, sinceTc is always higher thanTBKT

in this case.
4. Naturally, the interpretation presented in this work

only qualitative. The theory of SC properties of real HTS
must also take into account their other properties also, v
strong correlation between electrons, spin degrees
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freedom, pairing anisotropy, etc. However, the sharply ma
fested two-dimensionality of electronic properties cannot
disregarded either. We have analyzed here one of the co
quences of this circumstance.

Eventually, we consider the region of algebraic order
quasi-2D metals whose existence is determined entirely
the carrier concentration in these materials. If such a reg
does exist, the sample resistance to the current in the p
must vanish before the resistance in the perpendicular d
tion. The model considered by us does not require any
sumption concerning the inequivalence of planes for such
effect,4,5 or about the Josephson nature of coupling betw
the layers.3

*E-mail: vloktev@bitp.kiev.ua
1!An identical result was obtained in Ref. 16 for the case of Joseph

~bifermion! tunneling between layers.
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The results of microwave transmittance measurements of crystalline high-Tc YBaCuO film under
the influence of an external magnetic field are presented. Generally, in high-Tc

superconductors dissipation mechanisms different from those in conventional superconductors
may take place as well as transport current. Josephson-junction and anisotropy resistance-
connected processes. Measurements of transmittance induced by the magnetic field demonstrate
the dominance of flux flow dissipation mechanism and nonlinear transmittance dependence
when approachingTc . This makes possible to detect and characterize all the mechanisms
mentioned above. ©1999 American Institute of Physics.@S1063-777X~99!01505-4#
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Our measurements were carried out in the 2-mm w
range. Under these conditions the transmittance is sens
to the presence of ‘‘normal’’ electrons, whereas infrar
measurements sense the superconducting energy gap
backward-wave tube was used as a microwave gener
with the radiation channeled through a measurement cell
consists of two ~in and out! symmetrical quasioptica
waveguides inside the pulse solenoid. The sample
placed between the waveguides in the region of the m
mum, homogeneous magnetic field. Finally, the radiat
was detected after the measurement cell which was place
a cryostat with special windows to transmit the microwav
To obtain the best sensitivity a liquid helium cooledn-InSb
detector was used.1 Such a technique produces ultrahigh fr
quency ~130–150 GHz! current densities in the samp
which are much smaller in magnitude than the critical c
rent, and thus avoids test current inside the sample that
consequence of direct current investigations.

The sample under study was made using magne
sputtering procedure. The 1000 Å YBaCuO~123! film,
which was deposited on the surface of a 0.5 mm-th
SrTiO3 substrate, exhibited a micro-twinned crystallin
structure with itsC-axis perpendicular to the surface. Pr
liminary testing determined a superconducting transition
87.8 K with 1 K width.

The experimental dependences of the magnetic fi
induced transmittance at different temperatures are show
Fig. 1. As can be seen, the transmittance value rises m
tonically when the temperature rises from 4.2 K toTc . At
low temperatures a linear behavior of the transmittance
sus the external field with a slope of 1%.T21 was exhibited,
which is consistent with results reported in Refs. 3 and
where the bolometric and reflectance measurements w
3841063-777X/99/25(5)/2/$15.00
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performed. This linear dependence of microwave transm
tance on magnetic field may be explained in terms of fl
flow dissipation. In contrast, the slope value at temperatu
approaching theTc rised to 3%•T21 and the behavior was
strongly nonlinear. Evidently, this region is dominated by t
influence of the magnetic field on the superconducting ph
transition.

Normal electron transmittance includes dissipation
sulting from the Lorentzain-like force motion due to th
transport current normal to applied magnetic fieldH. For the
HTSC the microwave frequency range is higher than the
pinning frequency. Consequently, electromagnetic inter
tion is much stronger than the pinning force, and the ma
source of the dissipation is due to the free-moving vortic

In the London electrodynamics approach it is possible
represent the current densityJ as

J52
1

ivml2~E2 f nB! , ~1!

wherel is the London penetration depth;E is the microwave
electric field;f is the fraction free vortices.2 Writing the vor-
tex velocity asn5J f /n, the expression for the flow resistiv
ity may be obtained as

r5w0

f B

h
2 i v̄ml2, ~2!

which is true forH smaller than critical field and tempera
tures that are not too high. Taking into account that a typi
HTSC critical field is of order 100 T, the limit representatio
for surface resistanceRs demonstrates a linear dependen
on H:
© 1999 American Institute of Physics
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Rs5w0

f B

2lh
. ~3!

This approximation is based on the pure flow regime a
neglects the normal electron contribution, so the model is
valid in the region very close toTc . A more detailed con-
sideration of high frequency magneto-absorption was de
oped based on the equation of motion for a flux line in
sinusoidal pinning well under an alternating field and a r
dom driving force due to thermal fluctuations.5

FIG. 1. Magnetic field effect on transmittance of the HTSC thin film
different temperatures.
d
ot

l-

-

The granularity and various inhomogenities of t
sample can produce a weak-like structure or, if there is
intrinsic Josephson junction inside, either effect may dom
nate in the microwave response. We assume the obse
behavior of microwave properties nearTc may be due to the
domination of dissipation effects from losses related to
Josephson junctions. To clarify this problem a set of ad
tional measurements on other HTSC thin films are expec
to be carried out. Attention will be given to the hysteres
phenomena due to the thermal and magnetic history
samples with different crystalline properties.

This work was supported by CRDF of USA and Go
ernment of Ukraine through the research project UP2-3
and by ONR N00014-92-J-1159.

*E-mail: pishko@ilt.kharkov.ua

1V. V. Eremenko, S. A. Zvyagin, V. V. Pishko, Yu. A. Pashkevich, an
V. V. Shakhov, Fiz. Nizk. Temp.18, 255 ~1992! @Sov. J. Low Temp.
Phys.18, 175 ~1992!#.

2A. M. Portis, K. W. Blazey, and K. A. Muller, Europhys. Lett.5, 467
~1988!.

3Y. Masuda, N. P. Ong, Y. F. Yan, J. M. Harris, and J. B. Peterson, P
Rev. B49, 4380~1994!.

4P. B. Tharane, G. Dumas, C. Schlenker, and R. Buder, Physica C127, 147
~1997!.

5M. W. Coffey and J. R. Clem, Phys. Rev. Lett.58, 1143~1991!.

This article published in English in the original Russian journal.


	295_1.pdf
	303_1.pdf
	314_1.pdf
	327_1.pdf
	332_1.pdf
	335_1.pdf
	344_1.pdf
	351_1.pdf
	354_1.pdf
	359_1.pdf
	366_1.pdf
	376_1.pdf
	379_1.pdf
	381_1.pdf
	384_1.pdf

