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The problem of evolution of strong heat pulses in He II interacting with quantum vortices
induced by these pulses is investigated numerically on the basis of equations of hydrodynamics
of superfluid turbulence. In order to study nonlinear effects, the initial equations are
expanded to the second order in the amplitudes of pulses. The one-dimensional case in the
absence of mass transport~second sound! is considered. The initiation of vortices was simulated
by the generation term in the Vinen equation. The results on the dynamics of pulses in
various temperature ranges are presented. It is shown that the Feynman–Vinen theory is applicable
in the phase-transition region. ©1999 American Institute of Physics.@S1063-777X~99!00107-3#
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INTRODUCTION

Quantum turbulence is a manifestation of quantum
fects in superfluid helium. This concept is used for an agg
gate of chaotic quantized filaments~vortex tangle! formed
when the superfluid helium flux~or counterflow! exceeds a
certain critical value. Ever since the evolution of the vort
filament density was described by Feynman,1 the interest of
physicists in this object remains undiminished. Most of e
perimental methods of investigation of superfluid turbulen
~ST!, such as probing by first and second sounds, meas
ment of hydrodynamic parameters as well as heat and m
fluxes, are of hydrodynamic type. On the other hand,
known methods of creating ST~ST generation by a flow o
counterflow, acoustic waves, etc.! are also hydrodynamic
methods. This means that we are dealing with mutual in
ence of hydrodynamic quantities and parameters of a vo
tangle.

At the beginning of the eighties, a series of publicatio
concerning the study of interaction of high-intensity seco
sound waves with a vortex tangle induced by this sou
appeared. Commingset al.,2 Lutsetet al.,3 and Turner4 were
the first to discover a disagreement in the dynamics of hi
intensity second-sound waves with the theory of nonlin
waves. The results of these publications indicated indire
the formation of a vortex structure. Nemirovskii and Tso5

verified these assumptions directly. They proved that a v
tex tangle~VC! evolves in the bulk of a liquid~rather than at
the shock front as was assumed earlier! during the propaga-
tion of the pulse. A similar experiment was carried out
Torczynskii6 who demonstrated convincingly the generati
of a VC in the bulk of a liquid.

Another series of experiments on the study of inten
short heat pulses revealed boiling of helium. According
the Landau two-fluid hydrodynamic model, temperature p
turbation does not exceeddT;0.05– 0.1 K even for very
strong heat pulses of 100 W/cm2 ~see Khalatnikov7 and
4751063-777X/99/25(7)/8/$15.00
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Putterman8!. This temperature perturbation is insufficient f
attaining the ‘‘liquid–vapor’’ phase equilibrium curve. Boil
ing of He II was studied, for example, by Van-Sciver,9 Tsoi
and Lutset,10 Miklaev et al.,11 Sidyganovet al.,12 Ruppert
et al.,13 and Danil’chenkoet al.14 These experiments als
confirmed indirectly the formation of a vortex structure th
changes radically the hydrodynamic properties of superfl
helium.

In order to describe the above experiments quant
tively, we must take into account the effect of ST on t
dynamics of hydrodynamic variables. The inclusion of th
effect modifies significantly the hydrodynamic paramete
which in turn affects the dynamics of a vortex tangle.
consistent approach to this problem follows from the hyd
dynamics of superfluid turbulence~HST! combining the
‘‘conventional’’ two-velocity hydrodynamics of superfluid
helium ~see, for example, Ref. 7! and the macroscopic phe
nomenological theory of a vortex tangle. The phenome
logical theory of the vortex tangle dynamics described
terms of the vortex filament densityL(t) was developed by
Feynman and Vinen. According to this theory, the dynam
of the quantityL is determined by the value ofL itself and
satisfies the Vinen equation15

dL

dt
5avuWuL3/22bvL2,

where W5Vn2Vs , and W, Vn , and Vs are the relative,
normal, and superfluid velocities respectively, andav andbv
are the phenomenological coefficients. The increase in
value ofL can be associated with the action of the Magn
force, while its decrease is due to the reconnection of vor
filaments, leading to a cascade fragmentation of loops
their subsequent conversion into thermal excitations. In
Vinen theory, a problem associated with the timetv of for-
mation of a vortex tangle is considered. If, following Vine
we definetv as the time required for the evolution of th
© 1999 American Institute of Physics
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density of vortex filaments to its half valueL`/2
5av

2W2/(2bv
2) corresponding to the stationary case, t

Vinen equation gives

tv5E
0

L`/2 dL

avuWuL3/22bvL2 .

This integral diverges at the lower limit, i.e.,tv˜`.
This divergence is due to the fact that the Vinen equation
the equation of the balance between the growth and dec
position of the existing tangle gives no information conce
ing the initiation of vortices. Experiments made in Ref.
prove thattv ~which is naturally finite! is a function of the
applied counterflow. The empirical dependence has the f
tv5a(T)W23/2 In order to correct the emerging discre
ancy, Vinen proposed that a generating termguWu5/2, where
g is a certain quantity depending strongly on temperatu
should be introduced to account for the mechanism of
initiation of a vortex tangle. The inclusion of this generati
term in the equation has made it possible to describe s
factorily the experimental results for low-intensity he
fluxes.

The next step in the construction of the macrosco
theory was made in the eighties, when the Feynman–Vi
phenomenological theory was included in the two-veloc
hydrodynamics of superfluid helium. Three different me
ods, viz., phenomenological~Nemirovskii–Lebedev17!,
variational ~Guerst18!, and stochastic method~Jamada
et al.19!, were used to obtain a complete system of equati
describing the hydrodynamics of superfluid turbulent heliu
This system essentially combines the classical equation
two-velocity hydrodynamics and the Vinen equation and
quite cumbersome. The problem was mainly solved num
cally even in the simplified case when only the second so
is investigated. An attempt at an analytic description w
made by one of the authors~see Nemirovskii20!, who ex-
plained~qualitatively and even semi-quantitatively! many re-
sults and also described the mechanisms leading to ce
effects. Numerical solutions of these equations are give
some publications devoted to boiling of He II and to the d
namics of thermal pulses. For example, linearized HST eq
tions were solved in Refs. 21–23 for describing the pro
gation of small-amplitude thermal pulses, for which t
vortex tangle density has time to tune itself to the change
hydrodynamic parameters. For example, the dependenc
the time of He II boiling on the heat flux, which successfu
describes experiments made in Ref. 9 was obtained in
21. However, in the above publications, an approximation
used which presumes that the initial evolution of a vor
tangle does not affect the processes occurring in this c
For this reason, the Vinen equation is not used in the ab
calculations to the fullest extent.

A more interesting case is the propagation of a lar
amplitude heat pulse~see experimental work24–28!, which
can be described only by taking into account the entire
namics of a vortex tangle. Besides, nonlinear distortions a
become significant, and hence we must take into acco
second-order terms in HST equations. The correspond
calculations were made by Fiszdonet al. ~Gottingen, FRG!,
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Nemirovskii et al. ~Novosibirsk, USSR!, and Murakami and
Iwashita~Tsukuba, Japan!. The research made by the Gottin
gen group, in which calculations were supplemented by
perimental measurements, deserve special attention.

Fiszdon et al.25,29 analyzed in detail the influence o
various factors for which the HST theory developed ear
failed to give an unambiguous answer, e.g., the effect of d
velocity of VC and the generating term in the Vinen equ
tion. Since the mechanism of the initiation of a vortex tang
remains unclear, two approaches are used for an analys
dynamics of heat pulses:~a! it is assumes that a certain bac
ground density of VC already exists in the bulk of helium
and in this case the balance equation forL is used for de-
scribing the experimental data, and~b! it is assumed that VC
evolves in the bulk of He II according to a certain~yet un-
known! mechanism, and this evolution is described by t
generating term introduced by Vinen in the equation forL.
Among other things, Fiszdonet al.25,29 found out that the
expression proposed by Vinen for the generating term is
significant and does not lead to any significant change in
pulse dynamics. For this reason, they chose a different
proach, assuming that an initial vortex tangle density~VTD!
already exists in the bulk of helium. It should be noted th
Fiszdonet al.25,29used in their calculations the fitting param
eters for an adequate description of experimental data, s
as the preset initial VTD level, an appropriate choice
boundary conditions, and the variation of parameters in
Vinen equation.

The HST equations were also analyzed numerically
Murakami and Iwashita.23 In contrast to the above
mentioned publications by the Go¨ttingen group, they did not
expand the system of HST equations into a power serie
deviations from equilibrium. Such an approach, however,
quires the knowledge of the dependence of thermodyna
quantities onW2, which are known only in the first orde
~this was used by the authors in complete equations!. The
results of these publications are close quantitatively.

In spite of the fact that the interaction of second sou
pulses and VC were analyzed quite intensely, both num
cally and analytically some problems remain unsolved.
particular, the temperature region in which the second so
nonlinearity coefficient is negative or assumes zero va
was not considered at all, although corresponding exp
mental results are available.27,28 For example, Goldner
et al.28 observed the behavior of nonlinear second sou
pulses near thel-point, which differs significantly from the
dynamics of heat pulses in the low-temperature region. I
unclear whether this is due to superfluid turbulence or
closeness toTl , and hence peculiarities typical of the give
region. However, this is important from the point of view
applicability of the Feynman–Vinen theory in the vicinity o
the phase-transition region. In addition, the mechanism
initiation of the vortex structure in the bulk of He II remain
unclear.

In connection with what has been said above, we m
an attempt to clarify some aspects in the description of
accumulated experimental results. We derived HST eq
tions in the second approximation in the deviation ofW, L,
andT from their equilibrium values. It was found, howeve
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that these equations differ slightly from the equations p
sented in Refs. 25 and 29. Namely, it will be proved bel
that several significant expansion terms are omitted in
hydrodynamic equations used in Ref. 25. In this connect
we solved the problem on propagation of low-intensity h
discontinuities in the absence of a vortex tangle. We deri
a formula for the velocity of propagation of these heat d
continuities coincides with the familiar Khalatniko
expression,7 confirming the correctness of our equations. O
the other hand, the equations proposed in Ref. 25 canno
used for obtaining such a solution. This circumstance ne
sitated repeated numerical calculations for interpreting
experimental data obtained in Ref. 25.

In Sec. 1 of this paper, we derive the HST equations
the second order for a planar geometry in the absenc
mass transfer and solve the problem on propagation o
finite-amplitude temperature perturbation in vortex-free
lium. In Sec. 2, the results of numerical solutions of t
obtained system of equations by the ‘‘discontinuity deca
method~Godunov method30! are considered. This system o
equations describes the propagation of high-intensity h
pulses in various temperature regions of unperturbed heli
The effect of the generating term in the Vinen equation
the dynamics of a heat pulse is analyzed simultaneously

1. HYDRODYNAMIC EQUATIONS OF SUPERFLUID
TURBULENCE

The HTS equations derived by different authors a
slightly different. However, these differences are insign
cant when we describe the evolution of high-intensity h
pulses. We write the system of equations derived when
phenomenological method of constructing HST was used17:

]S

]t
1div~SVn!5

1

T
ua1LW21«bbL2u, ~1!

]Vs

]t
1¹S m~p,s,W!1

Vs
2

2 D 5
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1div j50, ~4!

]L

]t
1div VLL5x1

Brn

r
uWuL3/22x2kL2. ~5!

In these relations, the following notation has been us
S5rs ~s is the entropy per unit mass!, r5rs1rn ~r, rs ,
andrn are the density of liquid and the superfluid and n
mal densities of liquid, respectively,j5rnVn1rsVs ; p ik

5rnVni•Vnk1rsVsi•Vsk1pd ik :

t ik52hS ]Vni
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a15Arsrnb2/a2; b5kx2/2p; «b5rsk
2;

A5x1
2pB3rn

2mHE/6x2
2r3h is the Gorter–Mellinck constant

VL the velocity of a vortex tangle,x1 andx2 are the param-
eters in the Vinen equation,B is the Hall–Vinen coefficient,
andk52p\/mHe the circulation quantum.

Putting furthers5s01s8, T5T01T8 ~T8 ands8 are
the deviations from equilibrium values! and using the well-
known relationss(p,T,W)5s(p,T)1(1/2)W2](rn /r)/]T
and dm52sdT1dp/r2(rn /r)WdW, we obtain the sys-
tem of equations in the absence of a mass flux~j5rnVn

1rsVs50 is the condition satisfied in our experiments! in
the second order of deviations in the planar geometry:
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In these equations, we consider thatVL5Vs according to the
available data of measurements.31

It can be seen that these equations do not coincide w
those given in Refs. 25 and 29. Namely, the equation for
velocity W8 does not contain the terms

rsT

rn

]T82

]x82
and 2

s0rs

2sTrrn

]rn

]T

]W82

]x82
,

while the expression for the temperatureT8 does not contain
the terms

S s0

sTrn

]rn

]T
1

s0

sTr

]rn

]T DW8
]T8

]x8

and

S 12
s0sTTrs

sT
2r DT8

]W8

]x8
.

In order to verify the validity of the derived equation
we consider the propagation of the finite-amplitude pertur
tion in vortex-free helium. We shall find the velocityc2 of a
point corresponding to the deviation ofT8 from the equilib-
rium temperature. In the one-dimensional case, all par
eters of motion with a constant amplitude obey the relat
]/]t52c2(]/]x). Substituting this relation into the system
of equations~6! and~7!, from the compatibility condition we
obtain
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c25S rss0
2

rnsT
D 1/2

1F3rs

r
23sS ]rn

]T D 1

2rnsT

2
s0sTTrs

2sT
2r GW85c201a2W8,

where c20
2 5rss0

2/rnsT , and a253rs /r23s(]rn /]T)/
2rnsT2sosTTrs/2sT

2r is the second sound nonlinearity c
efficient. The convolution of this expression gives the we
known Khalatnikov formula.7,8 At temperatures above 1.88
K and in the temperature range 0.4–0.9 K, the coeffici
a2,0, while in the remaining regiona2.0. In temperature
regions wherea2.0, the discontinuity surfaces are forme
at the leading front of the wave, in the temperature reg
where a2,0, they are formed at the trailing edge of th
wave, while the shape of the pulse does not change at
perature for whicha2 assumes zero value. It can be verifi
easily by analyzing the system of equations used in Refs
and 29 that this expression for the velocity of second so
cannot be derived.

Thus, the propagation of heat pulses of various am
tudes and duration can be analyzed numerically on the b
of the set of equations~6!–~8! by the discontinuity decay
method30 at the unperturbed helium temperatures 1.4, 1
and 1.884 K fort5(Tl2T)/Tl51025, i.e., in the regions in
which the second sound nonlinearity coefficient is positi
negative, or equal to zero, respectively. The influence of
generating term in the Vinen equation on the dynamics
temperature pulse is also studied.

2. NUMERICAL ANALYSIS OF DYNAMICS OF HIGH-
INTENSITY HEAT PULSES IN VARIOUS TEMPERATURE
REGIONS

2.1. Propagation of strong heat pulses in the temperature
range where a2>0

It should be recalled that discontinuities are formed
the leading front of the wave in the temperature range
which the second sound nonlinearity coefficient assum
positive values. Fiszdonet al.25 found that the temperatur
evolution at points separated by different distances from
heater proceeds in different ways~see Fig. 1c!. Such a be-
havior of pulses is due to the mutual influence of VC a
hydrodynamic quantities. In the description of the obtain
experimental results presented in Ref. 25, we solved
problem under the following initial and boundary conditio
corresponding to the experimental conditions:a rectang
heat pulse is supplied at one end of a long channel filled w
unperturbed helium:

T8~x8!50, W8~x8!50 for t850,

W8~ t8!5Q/rST for x850, 0,t8,tH ,

W8~ t8!50 for x850, t8.tH ,

whereQ is the heat flux andtH the pulse duration. In ou
analysis of the influence of the initial level of the VTD a
well as the generating term in the Vinen equation on
dynamics of heat pulse during the solution of the probl
formulated above, we used the following two approaches:~a!
-
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we assumed that a certain initial distribution of the vort
tangle densityL(x8,t850)5L0 already exists in the bulk o
the liquid at the initial stage, and in this case the Vin
balance equation was used for describing the dynamics oL;
and ~b! we assumed thatL050 in unperturbed helium, and
the initial evolution of the VC is described completely by th
generating term, i.e., the Vinen equation with this extra te
is used in the solution.

Case~a!. In order to find the distributions of temperatu
T8, velocity W8, and the vortex tangle densityL8 as func-
tions of time and coordinate, we used~as in Ref. 25!, a
certain preset valueL0 as a fitting parameter. Figure 1
shows the results of numerical calculations of time dep
dence of temperature at the points separated by 1, 2, and
mm from the heater forL0533106 cm22 ~solid curves! and
L0533107 cm22 ~dashed curves! for T51.4 K, Q
55 W/cm2 and tH51 ms. Figures 1b and 1c show expe
mental data and the results of numerical calculations25 for
the same parameters. It can be seen that the theore
curves obtained by us~for L0533106 cm22! and in Ref. 25
are close: the dependences have the same typical form
peaks on the curves are observed at the same instant of

FIG. 1. Temperature evolution at points located at distances 1, 2, and
mm from the heater. The temperature of unperturbed helium isT051.4 K,
heat fluxQ55 W/cm2, and pulse durationtH51 ms. TheT(t) dependences
obtained by us~a! and in Ref. 25: experimental~b! and theoretical~c!.
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and the curves attain the same asymptote. At the same
a certain difference is observed: the peaks on the redu
curves differ numerically. Both these theoretical curves
scribe experimental results qualitatively. However, the po
tions and heights of the peaks on the curves do not coinc
Figure 2 shows the experimental curve25 and numerical
curve obtained by us, which describe theT8(t8) dependence
at a point located at a distance of 5.4 mm from the heater
a heat pulse of the amplitudeQ56 W/cm2 and duration
tH52 ms for L0533106 cm22. A comparison of these
curves demonstrates a discrepancy similar to that in the
vious case, i.e., the positions and heights of the peaks on
curves do not coincide. Having analyzed the effect of
dissipative terms in the equations, we conclude that since
dissipation of the temperature pulse~see the experimenta
curve! is observed at a later instant of time, and the values
the amplitude are quite close, the discrepancy is rather du
inaccuracy in determining the Gorter–Mellinck constant.

Case~b!. Varying the coefficientg of W85/2 in the Vinen
equation, namely, increasing its value by a factor of 104 as
compared to the coefficient proposed by Vinen~since the
characteristic timetv of evolution of a vortex tangle behave
approximately as a reciprocal cubic root of heat flux, t
increase approximately corresponds to a decrease intv ap-
proximately by a factor of 30!, we obtained good agreeme
between the theoretical curves with the calculated curves
scribed above~Fig. 3!.

Thus, numerical and experimental curves are in acc
with one another if we use in calculations the backgrou
VTD valueL0533106 cm22 or a coefficient in the generat
ing term exceeds the value proposed by Vinen by four ord
of magnitude. Naturally, these situations do not corresp

FIG. 2. Time dependence of temperature for different times of heating
point located at a distance of 5.4 mm from the heater. The theoretical c
obtained by us~a! and experimental results obtained in Ref. 25~b!.
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to physical reality, i.e., neither of these approaches to
solution of the problem of initiation of vortex filaments i
the bulk of the liquid lead to reasonable physical results.
our opinion, the presence of such a strong background
bulence in the bulk of the liquid is due to the fact that he
pulses in the experiments described above were initiated
der periodic conditions. For this reason, the dynamics
each pulse is determined by the conditions of generation
the entire series of pulses, in particular, the ‘‘duty factor’’
the sequence of pulses. It should be noted that the attem
of numerical calculations on the basis of period
conditions25,29 did not lead to reasonable results. This is a
parently due to the fact that the Vinen equation fails to d
scribe free decay of a vortex tangle.32

Generation of pulses under periodic conditions is co
plicated by experimental difficulties in the observation
solitary pulses. This difficult problem was solved by Sh
mazakiet al.33 who observed the evolution of virtually soli
tary heat pulses. The time of expectation between two c
secutive pulses was 120 s. This time is quite sufficient for
decay of a vortex tangle. Unfortunately, the results of exp
ments made in Refs. 25 and 33 cannot be compared sinc
experiments were made at different temperatures of un
turbed helium. Shimazakiet al.33 found that the time of evo-
lution of a vortex tangle for strong second sound pulses
approximately one third the time period proposed by Vine
We used this fact to describe the experimental data, corr
ing appropriately the generating term. Figure 4 shows
numerical results and experimental data33 on the time depen-
dence of temperature for a point located at 30 mm from
heater at bath temperatureT51.7 K for various densities of
the heat fluxQ for the heat pulse durationtH5500ms. It can
be seen that the numerical and experimental values of
pulse amplitude are approximately the same.

We also made calculations using the background va
L0 of the VTD as well as the combinations of the bac
ground value and the initial term. Figure 5 shows the num
cal results obtained for different combinations of the ba

a
ve

FIG. 3. Comparison of theoretical curves obtained using different
proaches to the description of the initial evolution of vortex filament dens
The temperature of unperturbed helium isT051.4 K, heat flux
Q55 W/cm2, pulse durationtH51 ms, and the distance to the heat
d55.4 mm.
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ground value ofL0 and g. It can be seen that these curv
differ significantly from the curve described above.

Thus, the obtained results can be regarded as a proo
the fact that the additional generating term increased in

FIG. 5. Calculated time dependences of temperature. The temperatu
unperturbed helium isT051.7 K, heat fluxQ520 W/cm2, pulse duration
tH50.5 ms, and the distance to the heaterd530 mm; g5gv , L050 ~1!;
g5gv , L05100 cm22 ~2!; g5gv325, L050 ~3!.

FIG. 4. Comparison of experimental data obtained in Ref. 33~1! and the
time dependence of temperature~2! obtained numerically:Q540 W/cm2 ~a!
andQ520 W/cm2 ~b!.
of
c-

cordance with the experimental data33 describes the initiation
of a vortex tangle. The shape of pulses matches with
remaining coefficients in the Vinen equations, which can
different for powerful heat pulses.

2.2. Propagation of powerful heat pulses in the region of
negative nonlinearity, a2<0

It was noted above that the temperature region in wh
the second sound nonlinearity coefficient is negative was
considered in the above-mentioned publications where
numerical method was used. As regards experimental wo
the only publication28 known to us covers the temperatu
range nearTl , t512T/Tl51025, where a2 assumes a
negative value. Shock front had time to be formed at

of

FIG. 6. Calculated~a! and experimental28 ~b! results: T0 /Tl5231025

~curve1!. The shape of the pulse generated at the heater is half sinus
with frequencyn51387 Hz. The peaks of heat fluxesQ, mW/cm2: 0.81
~curve 1!, 4.01 ~curve 2!, 8.12 ~curve 3!, 15.6 ~curve 4!, 20 ~curve 5!, 25
~curve6!, and 30~curve7!.
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trailing edge of high-intensity second sound pulses gener
in these experiments when the detector arranged on the
posite side of the channel was reached. It can be seen~Fig.
6b! that experimental dependences of temperature on
differ significantly from those obtained earlier in the regi
of positive nonlinearity. The region nearTl is known to have
typical singularities, and it is hence unclear whether suc
behavior of pulses is due to proximity toTl or due to super-
fluid turbulence. However, this is important to determine
applicability of the Feynman–Vinen theory in the vicinity o
the phase-transition region.

In order to find answers to these questions, we solved
problem under the following initial and boundary conditio
corresponding to the experimental conditions28: a heat pulse
of frequencyn52387 Hz having a shape of half-sinusoid
supplied at one end of a long channel filled with unperturb
helium. Numerical count was made on the basis of the Vin
equation with an additional generating term. The coefficie
used in the first two terms on the right-hand side of t
equation were obtained by direct extrapolation of the te
perature dependences ofB, and thermodynamic paramete
to the region ofTl according to Refs. 34 and 35 The coe
ficient of W5/2 was chosen so that the heights of the peaks
the theoretical and experimental dependences ofT8 on t8
coincided forQ515.6 mW/cm2. Figure 6a shows the theo
retical curves of the time dependence of temperature at
point of location of the detector for the following values
heat flux: Q150.81 mW/cm2, Q254.01 mW/cm2, Q3

58.12 mW/cm2, Q4515.6 mW/cm2, Q5520 mW/cm2, and

FIG. 7. Oscillograms of second sound waves27: pulse duration tH

5100ms, distance from the heater is 2.7 mm~a–e! and 15.1 mm~f–g!; Q,
W/cm2: 21.7~a!, 24.6~b!, 30.3~c!, 37.1~d!, 51.2~e!, 21.7~f!, 24.9~g!, 30.2
~h!, 37.1 ~i!, and 52~j!; 20 and 50ms/div.
ed
p-

e

a

e

e

d
n
ts
s
-

f

he

Q6525 mW/cm2. It can be seen from the figure that disco
tinuity of pulses corresponding to different values ofQ oc-
curs for close values of time. This can be explained as
lows. In the temperature range under investigation,
leading fronts of pulses with different amplitudes are alm
identical, and hence the evolution of a vortex tangle occ
virtually under the same conditions. According to the Vin
equation, the density of the vortex tangle at first increa
slowly, and then its increase becomes very rapid. Con
quently, the tangles generated by pulses of different am
tudes grow to size virtually terminating the temperature
crease during the same time. Goldneret al.28 also observed
the termination of temperature increase for pulses of diff
ent amplitudes approximately during the same time peri
~see Fig. 6b!. However, the subsequent time dependence
temperature differs from the theoretical dependence. It w
mentioned above that the shape of pulses is determine
the coefficients in the Vinen equation, which were not d
fined exactly for high-intensity heat fluxes. The obtained th
oretical curves describe experimental data only qualitative
However, we can conclude that such a peculiar behavio

FIG. 8. Propagation of a heat pulse along the channel;Q, W/cm2: 30, 35~a!
and 40, 45~b!.
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pulses is associated with superfluid turbulence, and
Vinen equation is applicable in this region, although the
trapolation of coefficients to the region ofTl is only of quali-
tative nature. Besides, the additional generating term in
equation describes the initiation of vortex filaments.

2.3. Propagation of high-intensity heat pulses in the
temperature region where a250

No numerical calculations have been made earlier
temperatures at which the nonlinearity coefficient assum
zero value. It was mentioned above that Lutset and Ts27

studied experimentally powerful heat pulses at the heli
bath temperatureT51.884 K. Figure 7 shows oscillogram
of second sound waves.27 It should be noted that the ob
served experimental dependenceT8(t8) ~see Fig. 7! has the
shape of the curves obtained in the region of negative n
linearity of second sound. Such a qualitative coincidence
the observed dependences can be explained as follows
first, the authors sent a moderate-amplitude heat pulse a
the channel, and the second pulse whose dynamics wa
vestigated was sent in the wake of the first pulse. The
heat pulse propagating along the channel generated a v
structure in the bulk of helium, simultaneously heating it to
certain extent. This led to a departure from the initial va
of helium temperature of 1.884 K to the region of negat
nonlinearity. Besides, the error in determining the tempe
ture of unperturbed helium~see Ref. 27 for details of exper
ments! also leads to the conclusion that their measureme
were made in the negative nonlinearity region.

The results of numerical calculations of the coordin
dependence of temperature at various instants of time
shown in Fig. 8 for the following values of heat fluxQ ~in
W/cm2!: 30, 35, 40, and 45 and fortH50.001 s. Note that
the two peaks are observed for heat fluxes of 40
45 W/cm2, while for smaller heat fluxes the temperature d
creases monotonically. It should be recalled that such a
havior of pulses is observed in the region of positive non
earity coefficient.

CONCLUSION

The numerical analysis based on the equations of hy
dynamics of superfluid turbulence proved that

~1! the mutual influence of the vortex tangle parameters
hydrodynamic quantities leads to a change in the dyn
ics of high-intensity heat fluxes observed in a series
experiments;

~2! the generating term introduced by Vinen and additio
ally corrected according to experimental data33 describes
the initial evolution of vortex filaments in the bulk of th
liquid, and

~3! the Feynman–Vinen theory can be used in the vicinity
the phase-transition temperature.

This research was carried out under the support of R
sian Fund for Fundamental Research~Grant No. 96-02-
19414!.
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Expressions for the velocities of acoustic excitations in relativistic two-condensate superfluid
systems are derived taking into account the reciprocal drag of superfluid motions~drag effect!. The
influence of drag effect on acoustic modes in this system is considered. It is shown that the
inclusion of drag effect does not change the nature of acoustic excitation vibrations, but changes
the velocities of second, third and fourth sounds. ©1999 American Institute of Physics.
@S1063-777X~99!00207-8#
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Although the nonrelativistic theory of superfluidity ha
been developed for over fifty years since its creation,
question of its relativistic generalization has recently beco
significant.1–9 Characteristic velocities in superfluid helium
including critical velocity, are much smaller than the veloc
of light. Consequently, ‘‘relativization’’ of the theory of su
perfluidity remained a trivial problem until the time when
was established reliably that the core of a neutron star c
tains a superfluid phase associated with the Cooper pairin
nucleons.10 The parameters of neutron stars~radius of the
order of 10 km, density of the inner liquid cor
;1014– 1015g/cm3! are such that the ratio of gravitation
radius to the radius of the star is of the order of unity.
other words, neutron stars have a strong gravitational fi
and relativistic effects must be taken into consideration in
investigation of such stars. Owing to the high density of
neutron star core, the Fermi velocity of the nucleons as w
as the velocity of sound become of the order of the veloc
of light c. These circumstances necessitate an analysi
relativistic equations of the theory of superfluidity with on
condensate. As a result of accretion, the evolution of a bin
star may lead to the coexistence and interaction of two r
tivistic superfluid phases with different order parameters
the case when the binary star is formed by neutron stars
the equations of two-condensate relativistic superfluid
theory are used for describing this process. Nonrelativi
superfluid systems in which two or more types of cond
sates can coexist were considered in Refs. 7, and 11
Equations for describing a multicondensate relativistic sup
fluid system were derived in Refs. 7, 19, and 20. Historica
the main attention in two-condensate theories of superflui
was paid to fundamental problems while the applied pr
lems remained practically untouched. The aim of the pres
research is to study the reciprocal drag of superfluid moti
~drag effect!, which was first predicted by Andreev an
Bashkin13 and analyzed for nonrelativistic and relativistic s
perfluid systems,7,13,14and its effect on the nature and velo
ity of acoustic excitations in a relativistic quantum system
which normal and two superfluid components~condensates!
coexist. Equations describing the propagation of acou
4831063-777X/99/25(7)/5/$15.00
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waves in such a system were derived and solved by21

using the approach developed in our earlier work19 and not
taking into account the drag effect. In a separa
publication,20 the author has derived phenomenologically t
equations of relativistic theory of superfluidity with tw
types of condensates in the nondissipative approxima
taking into account the reciprocal drag of superfluid motio
In the present work, these equations are used, together
the approach and notation of Ref. 21, to determine and a
lyze the expressions for the velocities of acoustic excitati
in such a system. The results are compared with those
tained in Ref. 21.

BASIC EQUATIONS

Let us write down the equations describing a relativis
quantum system in the state of local equilibrium below t
critical point containing two superfluid components~two
condensates!, each with its own gas of ‘‘excitations.’’ The
gas of ‘‘excitations’’ has densitiesrn1 and rn2 , and hence
two flows are conserved. The velocities of the gas of ‘‘ex
tations’’ are equalized by viscosity. We use the followin
notation:P(x) is the pressure,T(x) the temperature,vn(x)
the normal velocity,m1(x) andm2(x) are the chemical po-
tentials, E(x) is the energy density,g(x) the momentum
density, andr1 , r2 are the mass densities of the comp
nents of the system. The condensates are described by
plex scalar order parameters, viz., by the effective wa
functions

c1~xm!5h1~xm!exp@ ia1~xm!#,
~1!

c2~xm!5h2~xm!exp@ ia2~xm!#.

The two superfluid velocitiesvs1 andvs2 are connected with
the phases of the corresponding wave functions in suc
way that the following relations are observed in the abse
of vortices:

vs15¹a1~x!, vs25¹a2~x!. ~2!

Here, we putc51, \51 and choose the Lorentz metric
© 1999 American Institute of Physics
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gmn5S 1 0

0 2d ik
D .

Let us write the equations that we shall be requiring late20

The two continuity equations have the form

¹m j 1
m50, ¹m j 2

m50. ~3!

Here we have introduced the four-dimensional notationj m

5(r,j ):

j 1
m5 j 11

m 1 j 21
m 5S ]C

]I 1
D v1

m1S ]C

]I 3
D v2

m1S ]C

]I 4
Dwm,

j 2
m5 j 12

m 1 j 22
m 5S ]C

]I 2
D v2

m1S ]C

]I 3
D v1

m1S ]C

]I 5
Dwm,

where the four-dimensional vectors are defined as follow

v1n5~m11vs1•vn ,2vs1!,

v2n5~m21vs2•vn ,2vs2!, ~4!

wn5~T1vn•w,2w!.

In view of invariance, the pressureP can be presented in th
form

P5C~ I 1 ,I 2 ,I 3 ,I 4 ,I 5 ,I 6!, ~5!

where

I 151/2gmnv1mv1n , I 251/2gmnv2mv2n ,

I 35gmnv1mv2n , I 45gmnv1mwn ,

I 55gmnv2mwn , I 651/2gmnvmwn .

In this case,

]C

]I 1
5r11,

]C

]I 2
5r22

and

r125r215
]C

]I 3

are three independent quantities appearing in the th
velocity relativistic hydrodynamics instead of the densities
superfluid parts. The quantitiesr125r21 describe the drag
effect. The density of the ‘‘gas of excitations’’ in the com
ponents of the system can be presented in the form

]C

]I 4
5r12r112r215rn1 ,

]C

]I 5
5r22r222r125rn2 .

The quantity

]C

]I 6
5s

describes the entropy density. The vectorw is introduced in
accordance with the expression

g5r11vs11r22vs21sw1r21vs11r12vs2 . ~6!
e-
f

The equation of entropy conservation has the form

¹m~Sm!50, ~7!

whereSm5(s,svn) is the 4-flux density of entropy, which is
defined as

Sm5S ]C

]I 4
D v1

m1S ]C

]I 5
D v2

m1S ]C

]I 6
Dwm.

The energy–momentum conservation law is defined
the equation

¹mTn
m50, ~8!

where

Tmn5
]C

]I 1
v1

mv1
n1

]C

]I 2
v2

mv2
n1

]C

]I 3
~v1

mv2
n1v1

nv2
m!

1
]C

]I 4
~v1

mwn1v1
nwm!1

]C

]I 5
~v2

mwn1v2
nwm!

1
]C

]I 6
wmwn2gmnP. ~9!

The equations

¹mv1n2¹nv1m50, ¹mv2n2¹nv2m50 ~10!

for velocities of the superfluid components together with
equation

sm~¹mwn2¹nwm!50 ~11!

contain the conditions curlvs150 and curlvs250. The fol-
lowing thermodynamic equations hold:

dP5 j 1
mdv1m1 j 2

mdv2m1smdwm , ~12!

dE5v1md j1
m1v2md j2

m1wmdsm. ~13!

SOUNDS

We shall seek the solution of the system of equatio
~1!–~13! for acoustic processes in the linear approximatio
The superscript ‘‘0’’ will indicate the equilibrium values o
the quantities, while the superscript ‘‘1’’ reflects small d
partures from the equilibrium values. The equilibrium valu
are assumed to be independent of coordinates and time
addition, we shall assume that

~i! the superfluid and normal components have the sa
velocity in the equilibrium state:

w0n5v1
0n5v2

0n ;

~ii ! in the linear approximation,w1n, v1
1n , andv2

1n are
orthogonal tow0n:

wn
0w1n5wn

0v1
0n5wn

0v2
0n50.

After linearization of equations and elimination of d
rivatives of w1n, v1

1n , and v2
1n , we arrive at a system o

three equations describing the propagation of acoustic e
tations in this system:

]v
2«11QP150;

]v
2s11bQP11a1Qm1

11a2Qm2
150;
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]v
2~r1

11r2
1!1n]v

2s11
r1

0

m1
0 Qm1

11
r2

0

m2
0 Qm2

150. ~14!

Here,« is the invariant energy density defined by the equ
ity «[vn

0vm
0 Tnm, and

]v
2[vn

0]n, Q[~gnm2vn
0vm

0 !]n]m;

b[
s0s1~r11

0 1r12
0 !1s0s2~r22

0 1r21
0 !

~r1
01r2

0!~T0s01m1
0rn1

0 1m2
0rn2

0 !
;

s1[12
rn1

0

r1
0 ; s2[12

rn2
0

r2
0 ; n[2

rn1
0 1rn2

0

s0 ;

a1[2
s0~r11

0 1r12
0 !

m1
0~r1

01r2
0! F11

m1
0~r11

0 1r12
0 1r21

0 1r22
0 !

T0s01m1
0rn1

0 1m2
0rn2

0 G ;
l-

a2[2
s0~r21

0 1r22
0 !

m2
0~r1

01r2
0! F11

m2
0~r11

0 1r12
0 1r21

0 1r22
0 !

T0s01m1
0rn1

0 1m2
0rn2

0 G .

We shall consider the solution of the system~14! in the
form of plane waves~all thermodynamic quantities vary ac
cording to the law exp(iknxn), wherekn is a four-dimensional
wave vector!. We chooseP, m1 , and m2 as independen
variables. The compatibility condition for the system~14!
leads to a dispersion equation in the wave vectork which
defines the square of the velocity of sound and can be
duced to the following form after cumbersome transform
tions:
k62k4H ]T

]s
s2~r1112r121r22!~Ts1m1r11m2r2!

m1r11m2r2
1S ]P

]« D1

~r11r222r12r21!S m1r1

]m1

]r2
1m2r2

]m2

]r1
D

s1
2~r12rn1!1s2

2~r22rn2!1r1r2S ]m1

]r1
1

]m2

]r2
D J

1k2H S ]P

]« D
]T

]s
s2~r1112r121r22!~Ts1m1r11m2r2!

m1r11m2r2
1S ]P

]« D ~r11r222r12r21!S m1r1

]m1

]r2
1m2r2

]m2

]r1
D

s1
2~r12rn1!1s2

2~r22rn2!1r1r2S ]m1

]r1
1

]m2

]r2
D

1F ]T

]s
s2~r1112r121r22!~Ts1m1r11m2r2!

m1r11m2r2

GF ~r11r222r12r21!S m1r1

]m1

]r2
1m2r2

]m2

]r1
D

s1
2~r12rn1!1s2

2~r22rn2!1r1r2S ]m1

]r1
1

]m2

]r2
D G J 1S ]P

]« D

3F ]T

]s
s2~r1112r121r22!~Ts1m1r11m2r2!

m1r11m2r2

GF ~r11r222r12r21!S m1r1

]m1

]r2
1m2r2

]m2

]r1
D

s1
2~r12rn1!1s2

2~r22rn2!1r1r2S ]m1

]r1
1

]m2

]r2
D G50. ~15!
he
ence
ve.

bles
if we assume, as in Ref. 21, that

1

r i

]r i

]T
!1,

T

m i
!1, F12

]P

]«

]s

]m i
G!1,

~16!

T

m1r11m2r2

]P

]«

]P

]T

S 11
Ts

m11m2
D !1.

This equation has the following roots:

k1
25S ]P

]« D ~17!

viz., the square of the first sound velocity,
k2
25F ]T

]s
s2~r1112r121r22!~Ts1m1r11m2r2!

m1r11m2r2

G ~18!

the square of the second sound velocity, and

k3
25F ~r11r222r12r21!S m1r1

]m1

]r2
1m2r2

]m2

]r1
D

s1
2~r12rn1!1s2

2~r22rn2!1r1r2S ]m1

]r1
1

]m2

]r2
D G

~19!

the square of the third sound velocity.
In order to determine the nature of vibrations in t

acoustic modes obtained above, we consider the depend
between the thermodynamic variables in an acoustic wa
For this purpose, we substitute the expressions for varia
in the form of plane waves into the linearized equations~3!,
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~7!–~13!. After elimination ofr1
1, r2

1, m1
1 andm2

1, we arrive
at the following relations betweenP1, T1, v1

1nkn , v2
1nkn and

w1nkn .

kuP152k2~wn
0w1nkn1ws1

0 v1
1nkn1ws2

0 v2
1nkn!,

w1nkn5
1

wn
0 S ak211

bk221D ~ws1
0 v1

1nkn1ws2
0 v2

1nkn!,

kuT152k2
~rn1

0 1rn2
0 !

~r1
01r2

0!
S ws1

0 v1
1nkn

r11
0 1r12

0

1
ws2

0 v2
1nkn

r21
0 1r22

0 2
wn

0w1nkn

rn1
0 1rn2

0 D , ~20!

where

ku[wn
0kn, vn[Ts1m1rn11m2rn2 ;

vs1[m1~r111r12!, vs2[m2~r211r22!,

a[
1

s S rn1
0

rs1
0 1

rn2
0

rs2
0 D S ]«

]TD
P

2S ]«

]PD
T

,

b[
1

s S ]«

]TD
P

2S ]«

]PD
T

.

Substituting formula~17! for the first sound velocity into
~20! and disregarding small terms in accordance with~16!,
we obtain

P1.2S ]P

]« D
T
F ~r1

01r2
0!wn

0

ku~rn1
0 1rn2

0 !Gw1nkn , T1.0,

~21!
vs1

0

r11
0 1r12

0 v1
1nkn1

vs2
0

r21
0 1r22

0 v2
1nkn.

vn
0

rn1
0 1rn2

0 w1nkn .

It follows from here that the first sound waves are sm
oscillations of density and pressure and are analogous to
dinary sound waves in which temperature oscillations do
occur. The last equation indicates that the superfluid ‘‘l
uid’’ oscillates in the first sound wave as a single entity, t
normal and superfluid components moving together. Sub
tuting formula ~18! into ~20! for the second sound velocit
and disregarding small terms, we obtain

T1.
s2

ku
S ]s

]TD S v1s
0

rs1
0 v1

1nkn1
v2s

0

rs2
0 v2

1nknD
3F11

Ts

m1r11m2r2
G , P1.0, ~22!

vs1
0

r11
0 1r12

0 v1
1nkn1

vs2
0

r21
0 1r22

0 v2
1nkn.2

vn
0

rn1
0 1rn2

0 w1nkn .

Consequently, temperature and entropy oscillate in sec
sound waves, there are no pressure oscillations, and the
mal and superfluid components in second sound waves m
towards each other. Similarly, substitution of formula~19!
for the third sound velocity into~20!, we arrive at the expres
sion
ll
r-
t

-
e
ti-

nd
or-
ve

r1
1r2

1S ]m1

]r2
1

]m2

]r1
D.S m1

0r1
0 ]m1

]r1
1m2

0r2
0 ]m2

]r2
D

3S v1s
0

rs1
0 v1

1nkn1
v2s

0

rs2
0 v2

1nknD ,

kum1
1.

S r1
0 ]m1

]r1
D S a1a2vn

0

~a11a2!b
w1nknD

Fs1
2~r1

02rn1
0 !1s2

2~r2
02rn2

0 !1r1
0r2

0S ]m1

]r1
1

]m2

]r2
D G ,

~23!

kum2
1.

S r2
0 ]m2

]r2
D S a1a2vn

0

~a11a2!b
w1nknD

Fs1
2~r1

02rn1
0 !1s2

2~r2
02rn2

0 !1r1
0r2

0S ]m1

]r1
1

]m2

]r2
D G ,

whence it can be concluded that the third sound consist
density and chemical potential oscillations.

Let us now consider the propagation of the fourth sou
waves emerging in the system when the normal compon
is retarded. While linearizing the system~1!–~13! in this
case, we must take into account the fact thatwn

150 due to
the retardation of the normal component, and only two th
modynamic variables are independent. Omitting cumb
some calculations, we can directly write the expressions
the squares of fourth sound velocities:

k41

2 5
r11~11r1s1j1!

m1r1S ]r1

]P
2j1

]r1

]T D 1
2r12r21~11r2s2j2!

m2r2
2S ]r1

]P
2j2

]r2

]T D ,

k42

2 5
r22~11r2s2j2!

m2r2S ]r2

]P
2j2

]r2

]T D 1
2r12r21~11r1s1j1!

m1r1
2S ]r2

]P
2j1

]r1
2

]T D ,

~24!

where

j1[

s1S ]r1

]P D1r1S ]s1

]P D
s1S ]r1

]T D1r1S ]s1

]T D , j2[

s2S ]r2

]P D1r2S ]s2

]P D
s2S ]r2

]T D1r1S ]s2

]T D ,

~25!

and the expression

kuT1.
j1~r111r12!m1

11a1s1~r111r12!
v1n

1 kn

1
j2~r211r22!m2

11a2s2~r211r22!
v2n

1 kn, ~26!

according to which the fourth-sound waves are oscillatio
of temperature, entropy and density for the case when
normal component is retarded.

DISCUSSION OF RESULTS

The following conclusions can be drawn from the resu
obtained in this work. The drag effect does not influence
nature or the magnitude of the first sound velocity. Nor do



n
ga
o
r
n
of
ci

e
-
th

ag
e

-

ide

the
ions
tion

s-

.

. 6

.

487Low Temp. Phys. 25 (7), July 1999 S. I. Vil’chinski 
the drag effect change the nature of oscillations of seco
third and fourth sound waves, but the velocities of propa
tion of these sounds may change. A comparison of the
tained expressions for the velocities with the analogous
sults obtained in Ref. 21~where the drag effect was not take
into consideration! allows us to conclude that as a result
the drag effect, the square of the second sound velo
changes by an amount

k2d
2 52r12

F ]T

]s
s2~Ts1m1r11m2r2!

m1r11m2r2

G ,

while the square of the third sound velocity decreases:

k3d
2 5~r12r21!

3F S m1r1

]m1

]r2
1m2r2

]m2

]r1
D

s1
2~r12rn1!1s2

2~r22rn2!1r1r2S ]m1

]r1
1

]m2

]r2
D G .

The ratio k of the contribution of the drag effect in th
squarekd

2 to the squarekn
2 of the velocity of sound calcu

lated without taking the drag effect into consideration has
following form for the second sound:

k2[
kd2

2

kn2
2 5

r121r21

r111r22
,

For the third sound, this ratio is defined as

k3[
kd3

2

kn3
2 5

r12r21

r11r22
.

In other words, the influence of the drag effect on the m
nitude of the velocities depends on the ratio of the drag d
sity r125r21 to the densitiesr11 andr22.

The velocities of fourth sounds change by

2r12r21~11r2s2j2!

m2r2
2S ]r1

]P
2j2

]r2

]T D and
2r12r21~11r1s1j1!

m1r1
2S ]r2

]P
2j1

]r1

]T D ,

while the value ofk for each velocity is defined by the fol
lowing relations:

k41
5

2r12r21m1r1

r11r2m2r2
S 11r2s2j2

11r1s1j1
D S ]r1

]P
2j2

]r2

]T D
S ]r1

]P
2j1

]r1

]T D ,

k42
5

2r12r21m2r2

r22r1m1r1
S 11r1s1j1

11r2s2j2
D S ]r2

]P
2j1

]r1

]T D
S ]r2

]P
2j2

]r2

]T D .
d,
-

b-
e-

ty

e

-
n-

In the absence of a drag effect (r125r2150), the above
corrections vanish and the expressions for velocities coinc
with the results obtained in Ref. 21.

Thus, reciprocal drag by superfluid components in
system does not change the number or nature of oscillat
of acoustic excitations of the system, but leads to a varia
of the second, third and fourth sound velocities.

The author is indebted to P. I. Fomin for fruitful discu
sions.
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Three-phonon interactions and initial stage of phonon pulse evolution in He II
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An expression for the characteristic rate of three-phonon processes in superfluid4He, which is
valid in the entire range of phonon energies where three-phonon processes are allowed is
derived proceeding from the hydrodynamic Landau Hamiltonian. Possible limiting cases are
analyzed and compared with the results of previous investigations. It is found that three-
phonon processes completely govern the initial relaxation of a phonon pulse injected into He II
by a heated solid. As a result, the equilibrium form of phonon distribution is established
in the anomalous region of phonon dispersion over a time interval of the order of 10210s.
© 1999 American Institute of Physics.@S1063-777X~99!00307-2#
of
ta

s

um
-
t-

d

pe
r

d

he
i

P
h

n
ri

l
r

e

or
on

eld
of

ntal

as-

er-
r-

non
m
the

olid
16
gy
c-
a

ing
of

ax-
of

alid

e
rela-
ion
eld
it-
ous
1. INTRODUCTION

It is well known that the phonon spectrum in He II is
the decay type in the range of low energies right to a cer
critical energy«c.10 K,1,2 three-phonon processes~3pp! be-
ing allowed for energies 0,«,«0.8.5 K.3 In the region of
intermediate energies«0,«,«c , higher-order processe
with nonconserved number of phonons are allowed.

The prediction of the decay type of the phonon spectr
made by Maris and Massey4 and the experimental confirma
tion of this prediction1,5 necessitated a revision of the exis
ing concepts concerning collective processes in HeII . In par-
ticular, all dissipative processes in superfluid4He were
investigated previously on the basis of the concepts of a
cisive role of the four-phonon relaxation time6 since decay
processes~including 3PP! are forbidden by the momentum
and energy conservation laws in the case of a normal s
trum. It should be noted that even before the result of Ma
and Massey were published,4 the phonon lifetime determine
by the decay processes was obtained by Beliaev7 on the basis
of the model of a weakly nonideal Bose gas in which t
quasiparticle spectrum is known to be of the decay type
the low-frequency range. The characteristic frequency 3
obtained by Beliaev7 turned out to be proportional to the fift
power of the phonon energy. For a real phonon spectrum
HeII, such a problem was apparently solved by Havlin a
Luban,8 who obtained an expression for the 3PP characte
tic rate in the form

n3
~HL !~«!5

~u11!2

240c5r0
«5, ~1!

where the Gru¨neisen constant isu5(r0 /c)(]c/]r0)'2.84
under the saturated vapor pressure,9 r0 the equilibrium den-
sity of HeII , and c the velocity of first sound. It is natura
that formula~1! has the same energy dependence as the
sult obtained by Beliaev,7 but the computational techniqu
used by Havlin and Luban8 unfortunately did not allow to
4881063-777X/99/25(7)/5/$15.00
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establish the conditions of applicability of the results. F
example, the dependence of three-particle relaxation time
the characteristic temperature of the thermal phonon fi
distribution remains unclear. Further progress in the study
3PP was associated with attempts to explain experime
data concerning various dissipative processes in HeII .10–13

Maris10,11obtained the characteristic relaxation frequency
sociated with 3PP in the form

n3
~M !~«!5

p3~u11!2

15c5r0
T4«, ~2!

whereT is the characteristic temperature of background th
mal phonons. As regards the region of applicability of fo
mula ~2!, the method of calculations used by Maris10,11 indi-
cates that it describes the absorption of an ultrasonic pho
in the gas of equilibrium thermal phonons. It is clear fro
these considerations that the region of applicability of
result ~2! is limited to energies«!T.

Processes occurring in phonon beams injected by a s
heater to HeII were analyzed systematically in Refs. 14–
Among other things, the effect of generation of high-ener
phonons («.10 K) by a cold phonon beam with the chara
teristic temperatureT.1 K during its propagation through
HeII bath having a temperature of the order of 1022K was
discovered in Ref. 14. In order to explain this astonish
effect, we must analyze in detail all the stages of evolution
such a beam. For example, the description of initial rel
ation of the phonon being injected requires the knowledge
the expression for the 3PP characteristic rate, which is v
in the entire range of admissible energies~i.e., in the anoma-
lous spectral region!. It is this necessity that stimulated th
present research. In Sec. 3, we derive the most general
tion for the 3PP rate on the basis of the kinetic equat
using the Landau Hamiltonian of the quantized phonon fi
in HeII. Section 4 is devoted to an analysis of various lim
ing cases and to a comparison with the results of previ
© 1999 American Institute of Physics
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investigations.7,8,10,11Finally, the initial relaxation of a pho-
non beam in superfluid4He is considered in Sec. 5.

2. QUANTIZATION OF PHONON FIELD IN He II

In order to study various processes occurring in the p
non subsystem of superfluid4He, the Landau Hamiltonian17

HL5E
V
H 1

2
r~r !v2~r !1E~r!J d3r , ~3!

suitable for describing HeII dynamics in the hydrodynami
limit as traditionally used, wherev„r … andr~r ! are the veloc-
ity and local density of helium andE(r) is the internal en-
ergy per unit volume in HeII, which is a function of local
density. An explicit expression forE(r) can be derived from
simple thermodynamic considerations. Indeed, the w
done during isothermal compression of helium must be eq
to the change in its internal energy. In the differential for
this can be written asd(VE)52PdV, which leads after
elementary transformation to the following relation:

E~r!5rE P

r2 dr.

In order to describe the dynamics of long-wave exci
tions, we can use the smallness of deviations from equ
rium and expand Hamiltonian~3! into a power series in fluc
tuations of density and velocity field. In this case, we use
well-known relation]P/]P5c2. After the formal quantiza-
tion procedure, the Hamiltonian correct to the fourth-ord
term in the expansion has the form

Ĥph5Ĥ01Ĥint , Ĥint5V̂31V̂4 . ~4!

Here

Ĥ05
1

2 EV
H r0v̂21

c2

r0
~dr̂~r !!2J d3r ~5!

is the Hamiltonian describing a gas of noninteracti
phonons confined in volumeV anddr̂5 r̂(r )2r0 is the op-
erator of local deviation of density from its equilibrium valu
r0 . In the componentĤint describing the interaction in th
phonon system, we retained the terms containing the thi

V̂35
1

2 EV
H v̂~r !dr̂~r !v̂~r !1

1

3 S ]

]r0

c2

r0
D @dr̂~r !#3J d3r

~6!

and fourth

V̂45
1

24S ]2

]r2

c2

r0
D E

V
@dr̂~r !#4d3r ~7!

powers of the small quantitiesv̂(r ) anddr̂(r ).
The quantization of the phonon field described

Hamiltonian ~4! was carried out in the conventional wa
using a transition to the phonon creationâp

1 and annihilation
âp operators in the state with momentump:

dr̂~r !5(
p

S r0

2«pV
D 1/2

p~ âpe
ip–r1âp

1e2 ip–r !, ~8!
-

k
al
,

-
-

e

r

v̂~r !5(
p

S «p

2r0VD 1/2

n~ âpe
ip–r1âp

1e2 ip–r !, ~9!

where «p'cp is the phonon energy andn5p/p the unit
vector in the direction of the phonon momentum. After t
substitution of Eqs.~8! and ~9! into ~4!–~7!, we obtain the
Hamiltonian of the phonon subsystem of HeII in the repre-
sentation of secondary quantization. The Hamiltonian co
ponentV̂3 ~6! describes the three-phonon interaction we
interested in, whileV̂4 ~7! corresponds to four-phono
processes.18

3. THREE-PHONON PROCESS RATE

In order to obtain the characteristic time of 3PP, we u
the kinetic equation method. The equation describing
evolution of the phonon distribution functionn(p) in the
presence of 3PP can be written in the form6,13

dn

dt
5

1

2 (
p8,p9

2pu^p8•p9uV̂3up&u2d~«p81«p92«p!

3@n8n9~11n!2n~11n8!~11n9!#

1 (
p8,p9

2pu^p8uV̂3up–p9&u2d~«p1«p92«p8!

3@n8~11n9!~11n!2nn9~11n8!#, ~10!

wheren85n(p8) andn95n(p9). It should be noted that we
take into account only 3PP processes on the right-hand
of Eq. ~10!, i.e., we disregard higher-order interactions, a
suming that the rate of 3PP is the highest in the syst
Three-phonon processes are allowed only at angles tha
small in view of the smallness of deviation of the phon
spectrum from linearity. In this case, superdiffusion in t
space of angles19,20takes place, which is not considered he

Using Eqs.~6!, ~8!, and ~9!, we obtain the following
expression for the matrix element:

^p8p9uV̂3up&5S 1

8r0VD 1/2H S «p«p9
«p8

D 1/2

p8n–n9

1S «p«p8
«p9

D 1/2

p9n–n81S «p8«p9
«p

D 1/2

pn8•n9

1c2~2u21!
pp8p9

~«p«p8«p9!
1/2J dp,p81p9 .

~11!

In order to determine the 3PP characteristic rate, we
in Eq. ~10!

n5n01dn, n85n08 , n95n09 , ~12!

where the subscript ‘‘0’’ indicates the equilibrium distribu
tion anddn the deviation of distribution function from lin-
earity. In particular, the latter can be due to phonons injec
by a heater to the bulk of HeII . Substituting relations~12!
into the kinetic equation~10! and going over from summa
tion to integration@«p[«(p) is now a function of continuous
argument#, we obtain the following relation:
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2
d

dt
ln~dn!5

1

2n0
E W~pup8•p9!d~«p2«p8

2«p9!n08n09dG81E W~p8up–p9!

3d~«p82«p2«p9!$n092n08%dG8, ~13!

where

W~pup8•p9!52pVu^p8•p9uV̂3up&u2 ~14!

is the transition probability density in the phase space
dG5d3p/(2p)3 is an element of the phase volume of t
system.

It was mentioned above that 3PP processes are allo
only in a small angular range close to zero. This allows us
assume that all scalar products of unit vectors in Eq.~11! are
equal to unity. As a result, we obtain the following simp
expression for the transition probability density appearing
~13!:

W~pup8•p9!5
cp

r0
~u11!2pp8p9D~p,p81p9!, ~15!

whereD(p,p81p9) is the Kronecker symbol of a continuou
argument.

Further, the 3PP characteristic rate can be naturally
termined by the relation

n3~p!52
d

dt
ln~dn!. ~16!

Equations~13!–~16! lead to

n3~p!5
~u11!2

4pr0
H 1

2
J1~p!1J2~p!J , ~17!

where

J1~p!5
cp

n0~p!
E

0

p

dp8E
cosuc

1

d~cosu8!

3p83up2p8un0~p8!n0~p2p8!

3d~«~p!2«~p8!2«~ up2p8u!!; ~18!

J2~p!5cpE
p

p0
dp8E

cosuc

1

d~cosu8!p83up82pu$n0~p82p!

2n0~p8!%d~«~p!2«~p8!2«~ up2p8u!!. ~19!

Hereu8 is the angle between the vectorsp andp8,uc is the
maximum angle for which 3PP are still allowed, andp0

'«0 /c is the momentum above which 3PP are forbidden
should be noted that, in view of the asymptotic smallness
the Bose–Einstein distribution function in the momentu
rangep.p0 , the integration with respect top8 in relation
~19! can be extended to infinity to an exponential accura

Eliminating d-functions in Eqs.~18! and ~19! by inte-
grating with respect to the angleu8 and introducing dimen-
d

ed
o

n

e-

It
f

.

sionless variables, we obtain the following expression
n3(p) from ~16!:

n3~x!5
~u11!2

4pr0
S T

c D 5H 1

2
z~x!1b~x!J , ~20!

wherex5«(p)/T, and

z~x!5E
0

x

y2~x2y!2
n0~y!

n0~x!
n0~x2y!dy; ~21!

b~x!5E
x

`

y2~y2x!2$n0~y2x!2n0~y!%dy. ~22!

Expression~20! taking into account~21! and ~22! com-
pletely determines the characteristic rate of three-phonon
laxation. It should be noted that the final result~20! does not
contain parameters of nonlinearity of the phonon spectrum
HeII in spite of the fact that 3PP processes are due to
deviation of the spectrum from linearity. This fact can
expressed analytically as the existence of a nonzero vol
of possible states in the space of anglesu8 @see Eqs.~18! and
~19!#, which resulted in the appearance of a zero in
d-functions. In the next section, we shall analyze some l
iting cases following from formula~20!.

4. THREE-PHONON PROCESSES FOR HIGH AND LOW
ENERGIES

According to our method of calculating the 3PP chara
teristic time, result~20! can be interpreted as the reciproc
lifetime of a phonon with momentump,p0 ~energy«(p)
,«0!, which is determined for 3PP in the equilibrium fie
of thermal phonons with temperatureT. Let us consider the
limiting cases following from the general formula~20!. First
of all, we consider the hyperacoustic limit. For this purpo
we must putx@1 («(p)@T) in formula ~20!. This gives

b~x!.0 ~23!

and

z~x!.E
0

x

y2~x2y!2dy5
x5

30
. ~24!

Substituting relations~23! and ~24! into ~20!, we obtain

n3
~`!~p!5n3

~HL !~p!, ~25!

which coincides with the result~1! obtained for the first time
by Havlin and Luban.8 This explains why formula~1! does
not contain the temperature of background. A hyperacou
phonon just ‘‘does not feel’’ the difference between a dec
to zero and to a finite temperature. This fact was also p
sumed by Beliaev,7 and naturally led to the same momentu
dependence. Relations~23! and ~24! show that such a limit-
ing case corresponds to purely decay processes of the
p˜p8,p9. It should be noted that formula~25! actually has a
limited applicability region. This is due to the fact that tw
conditions must be satisfied simultaneously:«(p)@T, but
«(p),«0 . For this reason, formula~25! can be actually used
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for obtaining numerical estimates only at ultralow tempe
tures.

Another limiting casex!1 («(p)!T) corresponds to
absorption of an acoustic wave by an equilibrium phon
field with temperatureT. In this case, we have

z~x!.0 ~26!

and

b~x!.xE
0

` y4ey

~ey21!2 dy5
4p4

15
x. ~27!

While deriving relation~27!, we have used the expan
sion

n0~y2x!'n0~y!1xn0~y!@11n0~y!#, ~28!

which is valid for smallx. The substitution of~26! and~27!
into ~20! gives

n3
~0!~p!5n3

~M !~p!, ~29!

i.e., we arrive at the result~2! obtained by Maris.10,11 In
contrast to the absorption of a high-energy phonon con
ered above, the limiting result~29! corresponds, according t
relations~26! and ~27!, only to the capture processesp8,p
˜p9. Formula ~29! was used many times for describin
various relaxation processes both in pure HeII and in super-
fluid 3He–4He mixtures~see the review in Ref. 21!.

Figure 1 shows the dependence of the 3PP rate on
phonon momentum at 0.8 K. The same figure shows
comparison the curves corresponding to limiting cases~1!
and ~2!. It can be seen clearly from Fig. 1 that the range
applicability of formula~1! is limited at relatively high tem-
peratures.

Concluding the section, we must mention that the n
tron scattering technique was used quite recently for mea
ing the phonon lifetime in HeII determined by the 3PP
processes.22 A comparison with the theoretical result~1!

FIG. 1. Dependence of the rate of three-phonon processes on the ph
momentum~solid curve! calculated by formula~20! for T50.8 K. The
dashed curve and dotted line correspond to the limiting cases~1! and ~2!
respectively.
-
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showed a discrepancy by a factor greater than two, In
opinion, this is due to the fact that the measurements in R
22 were made at a temperature of the order of 0.9 K,
which all relaxation processes in helium are virtually det
mined by interactions in the roton gas. The phonon lifetim
in this case can depend considerably on the interaction
tween the phonon and roton subsystems and on the re
ation in the roton gas. Result~20! can be directly verified in
experiments on sound absorption for various ratios betw
its frequency and helium temperature. For example, the
sorption of sound of frequency 109 Hz at a helium tempera
ture below 10 mK is determined by formula~1!, while at
temperatures above 100 mK it is determined by formula~2!.
For intermediate temperatures, relation~20! should be used.

5. INITIAL EVOLUTION OF A PHONON BEAM INJECTED
BY A SOLID INTO He II

A number of extremely interesting effects were observ
in experiments14–16on propagation of phonon pulses injecte
by a solid heater into superfluid4He at a temperature fo
which the interaction of the phonons in the pulse with th
mal phonons can be neglected. In order to describe the
served phenomena theoretically, we must study consiste
all the interactions determining the dynamics of the syste
The results described in the previous sections give the
of processes occurring in the phonon pulse at the initial st
of its propagation in HeII .

Phonons injected by the heater into superfluid4He can
be divided into two groups depending on the emission ch
nel. First, these are phonons emitted along the elastic cha
and propagating in a narrow cone of anglesVp , whose axis
is perpendicular to the heater surface. These phonons
form the main pulse propagating to the detector. Phonon
the second group are emitted almost isotropically in the
tire half-space and are known as background phonons.
existence of the first group of phonons was predic
theoretically by Khalatnikov23 and soon confirmed experi
mentally.24 The possibility of the existence of an inelast
channel was investigated theoretically in Refs. 25 and
This channel was discovered independently by Sherl
et al.24,27 in experiments on phonon emission by cleav
crystals. Experiments made in Ref. 28 proved that the t
energy carried out by background phonons is an order
magnitude higher than the energy in the pulse, but the ene
density in the pulse is much higher than in the gas of ba
ground phonons in view of the smallness of the solid an
Vp . The energy of emitted phonons is equal to or sma
than the temperature of the heater depending on the emis
channel ~elastic or inelastic!.29 It was found in the
experiments15 in which a gold film was used as a heater th
the phonons emitted through the elastic channel propa
within the cone angleVp50.115 srad. In order to estimat
the final temperature of such a pulse in helium~after the
establishment of the Bose energy distribution!, we must use
the formula

gW5
VppT4

120c2 , ~30!

on
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whereg is the relative part of the energyW supplied to the
heater, which is emitted within the cone angleVp , andT the
temperature of the thermalized pulse. ForVp50.115 srad
andgW50.7 mW/mm2, relation~30! givesT50.81 K. Cal-
culations based on formula~20! show that the entire puls
attains the equilibrium distribution over a time of the ord
of 10210s, which is more than three orders of magnitu
smaller than the time of pulsationtp5 l p /c ~l p is the pulse
length! and the remaining characteristic times
experiments.14–16 For this reason, the initial physical obje
in these experiments is a phonon beam with a Bose distr
tion characterized by the temperature determined in ac
dance with relation~30!.

CONCLUSION

We investigated three-phonon processes in superfl
4He. Proceeding from the Landau hydrodynamic Ham
tonian~3!, the general expression~20! is obtained for the rate
of 3PP processes, which is valid for any phonon energy
the spectral range where 3PP processes are allowed. Ex
sions~25! and~29! obtained in the limiting cases of high an
low energies are in accord with the results~1! and ~2! ob-
tained by using earlier theories.8,9,11 The general approac
developed by us has made it possible to define more
cisely the range of applicability of the limiting formulas~1!
and ~2! derived earlier. An experiment for a direct verific
tion of the results of the theory is proposed.

The derived general formula~20! has made it possible to
describe the initial evolution of a phonon beam injected b
solid heater into HeII . It is found that the energy distributio
function for the emitted phonons attains equilibrium for
over a time much shorter than the characteristic times
experiments with phonon pulses.14–16

The results of this research were partially reported at
XXXI Conference on Low Temperature Physics in Mosco
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On transfer of motion in a system of two-dimensional superfluid Bose-gases separated
by a thin layer
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The effect of transfer of motion between superfluid 2D Bose gases separated by a thin layer is
predicted on the basis of microscopic calculations. It is shown that the effect exists at
nonzero temperatures as well as atT50 only for a closed secondary circuits. The dependence of
the drag current on temperature and thickness of the layer is determined for charged Bose
gases. An experiment is proposed for measuring the predicted effect. ©1999 American Institute
of Physics.@S1063-777X~99!00407-7#
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Electron or electron–hole systems in which two tw
dimensional conducting layers are separated by a thin in
lating layer have aroused considerable interest during the
decade. Several interesting effects caused by the intera
of carriers separated in space were predicted for such
tems. For example, the possibility of pairing of spatia
separated electrons and holes, and a transition of the sy
to a peculiar superconducting state in which the supercur
in the electron region is accompanied by an equal and op
site supercurrent in the hole region, were predicted way b
in 1976 for the case when electrons are the carriers in
layer, and holes in the other layer.1,2 Swierkowski and
Nelson3 observed mutual polarization of spatially separa
carriers and proposed that correlations between layers
facilitate Wigner crystallization in adjacent layer
Shimshon4 discussed the peculiarities of the mechanism
coupling between plane vortices in parallel superconduc
films. A large number of publications were devoted to t
effects of mutual friction or transfer of motion between a
jacent conducting layers. Friction between two electr
gases was studied experimentally in Refs. 5–8, betwee
electron gas and a hole gas in Ref. 9, and between elec
in normal and superconducting films in Refs. 10 and 11.

Theoretically, the problem of drag between two electr
gases separated in space was first considered
Pogrebinski�12 and later by Price.13 They studied the cas
when drag is caused by direct Coulomb interaction betw
electrons from different films. Gurzhi and Kopeliovich14 pre-
dicted the possibility of transfer of motion between spatia
separated carriers due to phonon exchange. Drag induce
Coulomb interaction was later studied in Refs. 15–23, wh
the drag induced by exchange of phonons, both real
virtual, was studied in Refs. 24 and 25.

While studying the transfer of motion from one supe
conducting film to another, it must be borne in mind th
such a transfer may occur owing to two quite differe
mechanisms. One mechanism is effective in the case w
the films are placed in a magnetic field exceeding the fi
Hc1 . In this case, the transfer of motion is associated ma
with the entanglement of vortex lattices in the driving fil
4931063-777X/99/25(7)/10/$15.00
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and the driven film. The other mechanism is realized in
absence of vortices, when the motion is induced by dir
~Coulomb! or indirect ~through exchange phonons! interac-
tion between electrons from different films. The first mech
nism has been studied for a long time, starting from
pioneering work of Giaever.26 In the present work, we shal
consider only the second mechanism of transfer of motio

To our knowledge, this mechanism was studied theor
cally only in Refs. 27 and 28. Kamenev and Oreg27 devel-
oped the diagrammatic technique for evaluating the curr
induced in film 2 by an external field applied to film 1. Th
authors detected a significant increase in the friction coe
cient upon a transition of both films to the superconduct
state. They studied only the case when the film tempera
is close to the superconducting transition temperature. H
ever, the authors failed to observe an important circumsta
that the supercurrent flowing in the driving film 1 will induc
a supercurrent in the driven film 2 only if the electric circu
in film 2 is closed. This important circumstance was fi
noted by Duan and Yip.28 Besides, Kamener and Oreg d
not take into account the collective modes associated w
electron density oscillations. These oscillations, which do
exist in bulk superconductors due to the presence of a pla
gap in the spectrum, become possible in thin films since
electric fields accompanying density oscillations in films a
mainly concentrated not in the superconductor but in
space surrounding it. The contribution of collective vibr
tions to the transfer of motion between superconduct
films was determined by Duan and Yip.28 However, they did
not carry out a consistent microscopic computation, a
hence a number of important problems like the depende
of the force of friction between superconducting films on t
pairing potential of superconducting electrons remained
solved.

We shall consider the problem of transfer of motion b
tween two identical superconducting films at temperatu
that are low in comparison with the superconducting tran
tion temperature. At low temperatures, the number of o
particle excitations is exponentially small and such exc
tions can be neglected altogether in the first approximat
© 1999 American Institute of Physics
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In this case, qualitatively correct results can be obtaine
the problem on the friction force between superconduct
electron gases caused by collective excitation, is replace
the problem on the friction force between superfluid charg
Bose gases. Such a replacement allows us not only to ob
the exact solution of the problem in the limit of weak cu
rents, but also to determine the variation of results obtai
by Duan and Yip28 upon an increase in the pairing potentia

A brief summary of the results obtained here was p
lished earlier in Ref. 29.

1. DRAG CURRENT AT T50

Let us consider the problem of transfer of momentu
motion between two two-dimensional superfluid Bose ga
separated by a thin partition at zero temperature. Altho
we shall be interested in charged Bose gases, we shal
specify initially the form of the interaction potential betwee
bosons and derive a number of expressions that are valid
the general case. We shall assume that Bose gases are
tical, and proceed from the Hamiltonian

Ĥ5 (
a51,2

(
k

«~k!âa
1~k!âa~k!

1
1

2S (
a,b51,2

(
k,p,q

gab~k!âa
1~p2k!âb

1

3~q1k!âb~q!âa~p!. ~1!

Here,«(k)5\2k2/2M is the energy of a free boson,gab(k)
the Fourier component of boson interaction potential in
layer ~for a5b! and between layers~for aÞb!, andâa

1(k),
âa(k) are the creation and annihilation operators of a bo
with momentum\k in the layera.

We shall determine the energy spectrum of a two-la
Bose-system described by Hamiltonian~1!. Since Bose-
Einstein condensation takes place in a two-dimensional B
gas atT50, the energy spectrum can be determined by us
the well-known Bogoliubov procedure of separating the c
densate operatorsâa

1(0) and âa(0) of creation and annihi-
lation of bosons in the state with momentump50 and re-
placing them byAN0, whereN0 is the number of bosons in
the condensate. The obtained expression should be form
expanded in powers of small quantitiesâa

1(k), âa(k) (k
Þ0) and only the quadratic terms should be retained in
expansion. Such an expansion implicitly assumes the sm
ness of the number of bosons over the condensate, an
shall formulate below the conditions under which such
expansion is valid.

It is convenient to go over to new creation and annihi
tion operators

â6~k!5
1

&
@ â1~k!6â2~k!#. ~2!

Like operatorsâ1,2(k), the operatorsâ6(k) satisfy Bose
commutation relations. After transition to new operators,
Hamiltonian can be regarded as the sum of two compone
each containing only one kind of operatorsâs(k), where
s56 @the numerical factor is omitted in~3!#:
if
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Ĥ5(
s

H(
k

«~k!âs
1~k!âs~k!

1
n

2 (
kÞ0

@g~k!1sg12~k!#@2âs
1~k!âs~k!

1âs
1~k!âs

1~2k!1âs~k!âs~2k!#J . ~3!

Here n is the number density of bosons, andg(k)5g11(k)
5g22(k). Diagonalization in~3! is carried out with the help
of Bogoliubov’s standarduv transformations:

âs~k!5us~k!b̂s~k!1vs~k!b̂s
1~2k!, ~4!

whereb̂s
1(k), b̂s(k) are the creation and annihilation oper

tors of Bose quasiparticles. As a result of diagonalization,
obtain

Ĥ5E01 (
s,kÞ0

Es~k!b̂s
1~k!b̂s~k!, ~5!

where

E05
N2

2S
@g~0!1g12~0!#1

1

2

3 (
s,kÞ0

@Es~k!2«~k!2ng~k!#, ~6!

is the ground state energy, and

Es~k!5A«2~k!12n«~k!@g~k!1sg12~k!#. ~7!

is the energy of elementary excitations. The coefficie
us(k) andvs(k) are presented in terms of the energies«(k)
andEs(k) in the conventional manner:

us
2~k!5

1

2 H «~k!1n@g~k!1sg12~k!#

Es~k!
11J ,

vs
2~k!5

1

2 H «~k!1n@g~k!1sg12~k!#

Es~k!
21J . ~8!

It follows from formulas~2!, ~4! and~5! that an elemen-
tary excitation belongs to the entire system, and canno
attributed to an individual layer. As a result of interactio
between layers, the system acquires a single coherent gr
state in which the phases of superfluid Bose gases are c
lated.

Let us consider in detail the case when both Bose ga
are charged. In this case, the interaction potentials have
form

Vaa5
Q2

e0r
, Vaā5

Q2

e0Ar 21d2
, ~9!

whereQ is the boson charge,e0 the permittivity of the me-
dium, andd the separation between two-dimensional lay
in which Bose gases are localized. The corresponding F
rier components are defined as

g~k!5
2pQ2

e0k
, g~0!50,

g12~k!5
2pQ2

e0k
e2kd, g12~0!50. ~10!
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The equalitiesg(0)5g12(0)50 reflect the existence of
positively charged substrate compensating the average b
charge in a layer in such a way that the system on the wh
is electrically neutral. Substituting expression~10! into ~7!,
we obtain the dispersion relation for elementary excitatio
of ‘‘ 1’’ and ‘‘ 2’’ modes. In the longwave limit~to be more
precise, forkd!1!, it follows from ~7! and ~10! that

E25S 2p\2nQ2d

Me0
D 1/2

k; E15S 4p\2nQ2

Me0
D 1/2

Ak.

~11!

It can be seen from the definition~2! of modes ‘‘-’’ and ‘‘1’’
that the mode ‘‘1’’ corresponds to vibrations of the Bos
gas in two films as a single entity, while the mode ‘‘-’’ i
associated with density oscillations in one film relative
another for a fixed value of the total density.

It is interesting to note that formulas~11! are identical to
those obtained by Flensberg and Hu30 for the spectrum of
collective excitations in a two-layer normal Fermi system~in
which the fermion chargee and massm are replaced by the
boson chargeQ52e and massM52m!. The authors of Ref.
30 took into account the renormalization of initial fermio
interaction associated with screening effects. For the sys
under consideration, there is no need for additionally tak
into account the screening effects owing to the fact t
Hamiltonian~1! is exactly diagonalized.

It should be also observed that the spectrum of a char
two-dimensional~one-layer! Bose gas was studied by Apa
et al.31 using the variation technique. They obtained an
pression for plasma oscillations in the longwave limit co
ciding with ~11! after replacement of the two-dimension
density of bosons by double the boson density in a two-la
system considered in the present work.

Knowing the energy spectrum, we can easily determ
the momentum distribution function for real bosons in t
layer a:

Na~k!5^âā
1~k!âa~k!&5

1

2 (
s

^âs
1~k!âs~k!&. ~12!

Here the angle brackets indicate averaging over the gro
state. Replacing the operatorsâs by their expressions in
terms ofb̂s and b̂s

1 from ~4! and considering that there ar
no elementary excitations~i.e., ^b̂s

1b̂s&50! in the case of
zero temperature considered here, we obtain

Na~k!5
1

2 (
s

vs
2~k!5

1

8 (
s

@Es~k!2«~k!#2

«~k!Es~k!
. ~13!

The total number of bosons over the condensate in the l
a is given by

dNa5Na2Na05 (
kÞ0

Na~k![
1

2 (
s

dNs . ~14!

Let us find out the number of particles over the cond
sate for Coulomb-type Bose gases. In this case, the exp
sion for the number of bosons over the condensate dep
on the relation between the thicknessd of the insulator sepa
rating the Bose gases and the lengthd0 defined by the ex-
pression
on
le

s

m
g
t

ed

-
-

r

e

nd

er

-
s-
ds

d0
35

\2e0

8pMnQ2 5
a0

8pn
, ~15!

wherea0 is the effective Bohr radius. Using the expressio
~13! and ~14!, we obtain the following relation ford@d0 :

dN1

N
5

dN2

N
5~na0

2!21/3. ~16!

The difference in the energy spectra for ‘‘1’’ and ‘‘ 2’’
modes is not manifested in this case since the part of
modeE2(k) linear in k does not make a significant contr
bution to the integral in~14! for d@d0 . For d!d0 , we ob-
tain

dN1 /N5~na0
2!21/3, ~17!

dN2 /N5d/a0 . ~18!

The theory constructed here is based on the fact that
number of particles over the condensate is small in comp
son with the number of particles in the condensate, a
hence the theory is applicable fordNa /N!1. It follows from
~16!–~18! that this inequality is satisfied for

na0
2@1 and d/a0!1. ~19!

The constraintd/a0!1 appears only ford!d0 . It can be
verified easily that forna0

2@1 and d!d0 , the condition
d/a0!1 is automatically satisfied. Thus, for the two-lay
system of charged Bose gases, the condition of applicab
of the theory constructed here is a high density of the B
gas:na0

2@1.
Let us now consider the transfer of motion from th

superfluid Bose gas in one layer to the Bose gas in the o
layer. If a superfluid flux emerges in layer 1, the field ope
tor

ĉ1~r ![
1

AS
(

k
eik–râ1~k! ~20!

in this layer acquires an additional factor exp(iks1•r ), where
the wave vectorks1 is connected with the superfluid velocit
vs1 through the relationvs15\ks1 /M . This leads to the
emergence of an additional term proportional to this flux
the Hamiltonian~1!. Introducing the particle flux density
vector in the layera

ĵa~r !5
i\

2M
@~¹ĉa

1~r !!ĉa~r !2ĉa
1~r !~¹ĉa~r !!#, ~21!

we can present the correctionĤ1 to the Hamiltonian~1! in
the form

Ĥ15E d2r ĵ1~r !•vs1 . ~22!

Owing to the interaction between Bose gases in adjac
layers, the flow of current in layer 1 leads to the flow
current in layer 2. The drag current in layer 2 can be de
mined easily by calculating the linear response of the sys
to the perturbation~22!. As a result, we arrive at the relatio
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j25^0u ĵ2u0&2 (
nÞ0

^0uĤ1un&^nu ĵ2u0&
En2E0

2 (
nÞ0

^0u ĵ2un&^nuĤ1u0&
En2E0

. ~23!

Going over from the operatorsâa
1 and âa of creation and

annihilation of bosons in the layera to the operatorsb̂s
1 and

b̂s of creation and annihilation of elementary excitations
the expression for the current density operatorĵ2(r ) and con-
sidering that the ground state of operatorsb̂s is vacuum~i.e.,
b̂su0&50!, we can easily show that the density of drag c
rent is defined as

j25
vs1

2S (
k

«~k!
@v1~k!u2~k!2u1~k!v2~k!#2

E1~k!1E2~k!
. ~24!

Substituting the explicit expressions for th
uv-transformation coefficients from~8!, we obtain

j25
vs1

8S (
k

«~k!@E1
2 ~k!2E2

2 ~k!#2

E1~k!E2~k!@E1~k!1E2~k!#3 . ~25!

Subsequent calculations will be carried out for tw
charged Bose gases. We shall confine the analysis to the
when the thicknessd of the insulating layer separating th
Bose gases and the lengthd0 introduced above@see Eq.~15!#
satisfy the inequality

d@d0 . ~26!

Numerical estimates show that this inequality will be sa
fied for those values ofd for which tunneling of carriers
from one layer to the other can be disregarded~see Sec. 3 for
a detailed discussion of the constraints imposed ond in real
experiments!.

If the inequality ~26! is satisfied, the first term in the
radicand in the expression~7! for energyEs(k) can be dis-
regarded. It can be shown easily that the density of the d
current is defined as

j25CS \2

2p3MQ2nd2D 1/2
vs1

8d2
. ~27!

The coefficientC appearing in this expression can be det
mined by numerical integration:

C[E
0

`

dx
x5/2e22x

A12e22x~A11e2x1A12e2x!3
'0.0406.

~28!

Thus, we have shown that even at zero temperature,
superfluid liquid must entrain during its movement anoth
superfluid liquid from which it is separated by a partitio
through which tunneling does not take place, but interact
of particles belonging to different liquids is possible.
should be emphasized that, like formula~25!, this conclusion
is valid for all types of interaction between bosons.

It should be expedient to replace the expression~27! for
drag current obtained from microscopic calculations for
case of Coulomb interaction by the expression derived
-

ase

-

g

-

ne
r

n

e
y

Duan and Yip28 for the drag current between two superco
ductors from qualitative considerations. According to Du
and Yip,28 the ratio of the drag currentj 2 to the currentj 1

flowing into layer 1 must be equal to&\/(48pnmvFd3) at
zero temperature, wherem is the fermion mass andvF the
velocity at the Fermi surface. In view of the fact that th
modeE2 is the acoustic mode for smallk and the velocity of
sound for this modec25A2pnQ2d/Me0 @see Eq.~11!#, our
results for the ratio j 2 / j 1 can be written in the form
\/(200pnMc2d3). In this connection, the result obtained
Ref. 28 seems to be valid only in the weak bond approxim
tion. Upon an increase in the electron–electron attraction,
expression derived in Ref. 28 must be modified and
Fermi velocity of pairing electrons in the limit of two Bos
gases should be replaced by the velocity of the modeE2 .
Note that the results obtained by us and by Duan and Y28

differ not only numerically, but also in their functional de
pendence. In particular, since the velocityc2 depends on the
separationd between Bose gases,j 2 / j 1;d27/2 in our case,
while the authors of Ref. 28 found thatj 2 / j 1;d23.

2. COLLECTIVE VARIABLES

The Bogoliubov technique becomes inapplicable at n
zero temperature since there is no Bose condensate in a
dimensional system forTÞ0. The absence of such a conde
sate is guaranteed by Bogoliubov’s theorem on singulari
of the type 1/q2. The applicability of Bogoliubov’s technique
is also limited by another circumstance. The terms not c
taining condensate operators and disregarded in the Ha
tonian~1! may make a significant contribution to the ener
even atT50, i.e., in the presence of a macroscopic num
of particles in the condensate. This circumstance was
noted by Nepomnyashchii32 who showed that the correction
to the eigenenergy parts associated with terms contain
triples and quadruples of operators over the condensate
verge for small momenta. Thus, the behavior of the sys
for k˜0 remains unclear.

The method of describing a Bose gas in terms of den
and phase operatorsr̂ andŵ does not suffer from the above
mentioned drawbacks. In the coordinate representation,
relation between the new variables and field operators
Boson annihilation in the layera has the form

ĉa~r !5exp$ i ŵa~r !%Ar̂a~r !. ~29!

The most convincing arguments in favor of the description
the system in terms of operatorsr̂ and ŵ can be formulated
as follows. In the same way as the consideration of Pau
exclusion principle is very important for degenerate Fer
systems, the symmetry requirements for the wave functio
the density matrix upon a transposition of pairs of identi
bosons are vital for degenerate Bose systems. This symm
can be taken into account automatically by writing the de
sity matrix in terms of the operatorsr̂. Indeed, the Fourier
component of the density operator can be represented in
form

r̂~k!5
1

S (
j 51

N

exp$2 ik•r j%, ~30!
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wherer j is the coordinate of thej th particle. This expression
clearly indicates the symmetry of the operatorr̂(k) relative
to transposition of a boson pair. However, the Hamilton
cannot be written in terms of the density operators, only,
phase operatorsŵ conjugate to the operatorsr̂ must also be
taken into account. In a two-layer system, these opera
satisfy the following commutation relations:

r̂a~q!r̂b~p!2 r̂b~p!r̂a~q!5ŵa~q!ŵb~p!2ŵb~p!ŵa~q!50,
~31!

r̂a~q!ŵb~2p!2ŵb~2p!r̂a~q!5
i

S
dabdq,p , ~32!

wherea is the layer number.
A transition to collective variablesr̂ and ŵ actually in-

dicates a decomposition of excitations emerging in the s
tem into density waves with wave vectork. Collective vari-
ables correctly reflect the structure of excitations in
longwave region and are therefore quite effective for desc
ing the properties associated with the inclusion of the lo
range part of the interaction. In particular, this is valid f
systems with Coulomb interaction.

Decomposition into density waves becomes inapplica
for describing one-particle excitations with wavelengths
the order of, or smaller than, the mean separation betw
particles. The most consistent solution of the problem
volves the decomposition of the field operatorĉa(r ) into
two components corresponding to small and large boson
menta ~see Refs. 32 and 33 for details!. However, in the
range of temperatures considered by us which are small c
pared to the critical temperatures, i.e.,

T!Tc , ~33!

the contribution of one-particle excitations~e.g., due to
breaking of Cooper pairs! is small, and it is sufficient to
consider excitations of collective type only for a correct d
scription of the system.

The Hamiltonian of the system can be presented in te
of the density and phase operators~29! in the following form

H5
\2

2M (
a51,2

E d2r FAr̂a~¹ŵa!2Ar̂a1
~¹r̂a!2

4r̂a

1
i

2 S ¹r̂a

Ar̂a

¹ŵaAr̂a2Ar̂a¹ŵa

¹r̂a

Ar̂a
D G

1
1

2 (
a,b51,2

E E d2rd2r 8r̂a~r !Vab~r2r 8!r̂b~r 8!

2
1

2 (
a51,2

E d2r r̂a~r !Vaa~0!. ~34!

The density operator can be presented in the form of the

r̂a~r !5n1dr̂a~r !, ~35!

where theC-numbern5^r̂a(r )& describes the mean densi
of bosons in the layer. Representation~29! turns out to be
useful if the fluctuations density in the system are small
to be more precise, if
n
d

rs

s-

e
-
-

le
f
en
-

o-

m-

-

s

m

r,

n2@^@dr̂~r !#2&. ~36!

If the system contains vortices, inequality~36! is obviously
violated near the vortex core, wheren(r )˜0. Hence the
density-phase representation is not valid if the system c
tains vortices. However, if the condition~33! is satisfied, the
probability of emergence of vortices is exponentially lo
and we shall assume that there are no vortices in the sys
Inequality ~36! will also be violated if we take into accoun
density oscillations with howsoever large vectors on
right-hand side of~36!. Within the framework of the ap-
proach used here, this is due to the divergence of zero-p
vibration in the system at small wavelengths. In a more c
sistent description, the contribution of zero-point vibrati
will be finite and condition~36! will be satisfied.

Inequality ~36! allows us to expand the kinetic terms
the Hamiltonian~34! into powers ofdr̂/n. Retaining terms
upto and including second-order terms, considering t
^dr̂(r )&50, and going over to the Fourier components of t
operatorsr̂ and ŵ, we obtain

Ĥ5
N2

2S
@g~0!1g12~0!#2(

k
@«~k!1ng~k!#

1S(
k

H (
a51,2

Fn«~k!ŵa
1~k!ŵa~k!

1
«~k!

4n
r̂a

1~k!r̂a~k!G
1

1

2 (
a,b51,2

r̂a
1~k!gab~k!r̂b~k!J . ~37!

As in the preceding section, we first go over to the sum a
difference of the initial operators

r̂6~k!5
1

&
@ r̂1~k!6 r̂2~k!#,

ŵ6~k!5
1

&
@ŵ1~k!6ŵ2~k!#. ~38!

In this case, the Hamiltonian is decomposed into a sum
two terms, each of which depends only on variables with
same value ofs:

Ĥs5
N2

2S
@g~0!1g12~0!#2

1

2 (
k

@«~k!1ng~k!#

1S(
k

H n«~k!ŵs
1~k!ŵs~k!1F«~k!

4n

1

2
@g~k!

1sg12~k!#G r̂s
1~k!r̂s~k!J . ~39!

Going over from operatorsr̂s(k) and ŵs(k) to the op-
eratorsb̂s

1 andb̂s of creation and annihilation of elementar
excitations with the help of the relations

r̂s~k!5S «~k!n

Es~k!SD 1/2

@ b̂s~k!1b̂s
1~2k!#,
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ŵs~k!5
1

2i S Es~k!

«~k!nSD 1/2

@ b̂s~k!2b̂s
1~2k!#, ~40!

we can easily diagonalize the HamiltonianH5SsHs of the
system to the form~5!. The ground state energyE0 and the
energy of elementary excitationsEs(k) are described in this
case by the same expressions~5! and ~7!, respectively.

Unlike the Bogoliubov technique, the applicability o
this method is based on the smallness of the ratio

^udr̂u2&
n2 5

1

2 (
s

E d2k

~2p!2

1

n

«~k!

Es~k!
@2^b̂s

1~k!b̂s~k!&11#.

~41!

In contrast to the preceding section, the angle brackets in
equation indicate thermodynamic averaging. Neglecting d
sity fluctuations caused by zero-point vibrations~which do
not emerge in a more consistent approach!, this expression is
found to be small at temperatures that are low in compari
with the characteristic boson interaction energy.

We shall now consider the method of determining t
density of particles in the condensate atT50 by using the
formalism described above. For this purpose, we shall de
the relation between the operatorsr̂(q) and ŵ(q) and the
operatorsâa

1 and âa of creation and annihilation of rea
bosons. The expression for the operatorr̂ apparently follows
from the equalityr̂(r )5ĉ1(r )ĉ(r ). Going over to Fourier
components, we obtain

r̂a~q!5
1

S (
p

âa
1~p2q/2!âa~p1q/2!. ~42!

The expression for the phase operator can be foun
follows. The current density operator in ther–w representa-
tion has the form

ĵa~r !5
\

M
An1dr̂a~r !~¹ŵa~r !!An1dr̂a~r !. ~43!

If the assumption concerning the small value of density fl
tuations ~36! is valid, the current density operator can
expressed in the first approximation through the phase op
tor gradient and the average densityĵa5(\n/M )¹wa of
bosons in a layer. On the other hand, the relation between
current density operator and the operators of creation
annihilation of particles is defined by the familiar express

ĵa~q!5
\

MS (
p

qâa
1~p2q/2!âa~p1q/2!. ~44!

Equating both expressions for the current density opera
we can define the phase operatorŵ as a function ofâa

1 and
âa :

ŵa~q!52
i

nS

q

q2 (
p

pâa
1~p2q/2!âa~p1q/2!. ~45!

Since this is an approximate expression, the phase ope
defined by it satisfies commutation relations differing fro
~31! and~32!. Considering that the operatorsâa

1 andâa sat-
isfy Bose commutation relations, we can easily find with t
help of Eqs.~42! and ~45! that
is
n-

n

e

as

-

ra-

he
d

r,

tor

e

ŵ~q!ŵ~p!2ŵ~p!ŵ~q!5
i

N

~p22q2!qp

q2p2 ŵ~q1p!, ~46!

r̂~q!ŵ~p!2ŵ~p!r̂~q!52
i

N
r̂~q1p!. ~47!

We shall show that in the thermodynamic limit, i.e., f
N˜` andS˜`, n5N/S is a finite quantity and commuta
tion relations~46! and ~47! are transformed into~31! and
~32!. For qÞ2p, the right-hand sides of formulas~46! and
~47! contains a quantity of the same order as the quantity
the left-hand sides divided by the total number of particl
Hence in this case, the right-hand side of the equalities
be treated as equal to zero forN˜`. For the caseq52p,
we obtain formula~32! from ~47! since r05n[N/S. As
q˜2p in ~46! it must be noted that for low values of mo
menta, the phase operatorŵ(q);1/q. This divergence of
ŵ(q1p) on the right-hand side of~46! is compensated by
the factorp22q2. Hence, if N˜`, formula ~46! is again
transformed into~31! asq˜2p.

The obtained expressions for the operatorsr̂(q) and
ŵ(q) can be simplified forT50. Since the system asT50
has a Bose condensate, and the number of particles ove
condensate is small in comparison with the total number
particles, we can retain in the sums overp in ~42! and ~45!
only terms for which the argument of one of the operat
vanishes. In this case, the operatorâa

1(0) or âa(0) can be
replaced by theC-numberAN0'AN. hence it can easily be
seen that

r̂s~k!5
AN

S
@ âs

1~2k!1âs~k!#, ~48!

ŵs~k!5
i

2AN
@ âs

1~2k!2âs~k!#. ~49!

Using these relations, we arrive at the expression

1

2S
@ âs

1~k!âs~k!1âs
1~2k!âs~2k!11#

5nŵs
1~k!ŵs~k!1

1

4n
r̂s

1~k!r̂s~k!. ~50!

Averaging both sides of~50! over the ground state~it should
be recalled that we are considering the caseT50! and con-
sidering that

Ns~k![^âs
1~k!âs~k!&5^âs

1~2k!âs~2k!&, ~51!

we obtain the following expression for the distribution fun
tion of real bosons:

Na~k!5
S

2 (
s

Fn^ŵs
1~k!ŵs~k!&1

1

4n
^r̂s

1~k!r̂s~k!&2
1

2SG .
~52!

Presentingr̂ and ŵ in terms of the operatorsb̂ and b̂1 of
elementary excitations and considering that^b̂1b̂&50, we
arrive at an expression for the distribution function of re
bosons, which is identical to the distribution function~13!
obtained by using the Bogoliubov technique.
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Thus, we have shown that a transition to ther-w repre-
sentation makes it possible to solve the problem about
energy spectrum of a 2D Bose gas for the case when th
system does not contain a Bose condensate. AtT50, the
results coincide with the results obtained by using the fam
iar Bogoliubov method.

3. DRAG CURRENT FOR TÞ0

Before deriving an expression for the drag current
nonzero temperatures, we must note an important circ
stance which distinguishes the drag in superfluid and su
conducting systems from the drag in normal systems. I
well known that phase coherence in superfluid and super
ducting systems allows us to introduce theC-number com-
plex order parameter. The phase of the order paramete~to
be more precise, its gradient! determines the value of th
supercurrent flowing in the system. Earlier, we took into
count the emergence of theC-number phase in layer 1 b
introducing the factor eiks1•r in the field operatorŵ1 acting in
layer 1. In the general case, a similar factor eiks2•r must also
be introduced for the field operatorŵ2 acting in the second
layer. The vectorks must be determined from the conditio
of minimum energy~to be more precise, free energy! of the
system.

The case of open circuit terminals in layer 2 must
distinguished from the case of closed circuit terminals, wh
layer 2 becomes a multiply connected system. It will
shown below that for the case of open circuit terminals,
value of ks2 following from the condition of minimum en-
ergy leads to zero drag current, i.e.,j s2[0. In view of the
circulation quantization r¹w•dl52pn, ~where n
50,1,2,...) for closed circuit terminals, the vectorks can
assume only a discrete series of values. Consequently
currentj s2 will be nonzero in the general case. In the follow
ing, we shall assume everywhere that the quantityks1 is
defined by external conditions whileks2 is defined by the
system depending on whether the terminals are closed,
also on remaining parameters affecting the drag current.

The correction to the Hamiltonian~5!, which is con-
nected with the superconducting currents and is linear inks1

andks2 has the form

ME d2r @vs1ĵ1~r !1vs2ĵ2~r !#5
\2

M E d2r @ks1Ar̂1~r !

3@¹ŵ1~r !#Ar̂1~r !1ks2Ar̂2~r !@¹ŵ2~r !#Ar̂2~r !#.

~53!

After transition to creation and annihilation operators
excitationsb̂s

1 and b̂s , we can write the following expres
sion for the Hamiltonian of the system, taking the curre
components~53! into consideration:

Ĥ5Ĥ01Ĥ8, ~54!

where

Ĥ05E01(
s,k

S Es~k!1
\2k•~ks11ks2!

2M D b̂s
1~k!b̂s~k!,

~55!
e

l-

t
-
r-

is
n-

-

n

e

he

nd

f

t

Ĥ85(
k

\2k•~ks12ks2!

4MAE1E2

$~E12E2!@ b̂1
1~k!b̂2

1~2k!

1b̂1~k!b̂2~2k!#1~E11E2!@ b̂1
1~k!b̂2~k!

1b̂2
1~k!b̂1~k!#%. ~56!

Let us first consider the case when the terminals in la
2 are closed. Assuming thatks250, we shall determine the
current emerging in this layer as a response to the pertu
tion of the system induced by current in layer 1. At nonze
temperatures, the expression for the linear response to
perturbation~Kubo formula! has the form

^ ĵ2&5^ ĵ2~ t !&01E
2`

t dt8

i\
^~ ĵ2~ t !Ĥ8~ t8!

2Ĥ8~ t8! ĵ2~ t !!&0 , ~57!

where the angle bracketŝ...&0 now stand for thermody-
namic averaging with the HamiltonianĤ0 . The operators
ĵ (t) and Ĥ8(t) can be written in terms of the interaction

Â~ t !5eiĤ 0t/\Âe2 iĤ 0t/\. ~58!

We introduce the following notation for the quasiparticle d
tribution functions:

^b̂s
1~k!b̂s~k!&0[ns~k!

5FexpS Es~k!1\2k•ks1/2M

T D21G21

. ~59!

Expanding the distribution function in powers ofks1 up to
linear terms

ns~k!'ns
0~k!1

\2k•ks1

2M

]ns
0

]Es
, ~60!

we arrive at the following expression for the drag curre
density:

j25
1

S (
k

\ks1

4M
«~k!H ]n1

0

]E1
1

]n2
0

]E2

1
~E12E2!2

2E1E2~E11E2!
@n1

0 ~k!1n2
0 ~k!11#

2
~E11E2!2

2E1E2~E12E2!
@n1

0 ~k!2n2
0 ~k!#J . ~61!

At T50, there are no quasiparticles in the system~i.e.,
ns

0(k)50!, and formula~61! is transformed into the expres
sion ~25! obtained by the Bogoliubov method.

In order to compute the drag current for closed as wel
open circuit terminals in the second layer, let us determ
the free energy of the system. Nondiagonal component
Ĥ8 are taken into account according to the perturbat
theory

F5F02 (
nÞm

^muĤ8un&^nuĤ8um&
En

02Em
0 exp

F02Em
0

T
, ~62!

where
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F052T lnFTr expS 2
Ĥ0

T
D G5E01T

3(
k,s

lnF12expS 2
Es~k!1\2k•~ks11ks2!/2M

T D G ,
~63!

Em
0 5E01(

k,s
S Es~k!1

\2k•~ks11ks2!

2M Dns~k!, ~64!

ns(k) being the occupancy of states with momentum\k.
After simple calculations, we arrive at the following expre
sion for free energy:

F5E01T(
k,s

lnF12expS 2
\2k•~ks11ks2!/2M

T D G
2(

k
S \2k•~ks12ks2!

4M D 2 1

2E1E2

3H ~E12E2!2

E11E2
@n1~k!1n2~k!11#

2
~E11E2!2

E12E2
@n1~k!2n2~k!11#J . ~65!

The average flux densityja of particles in the layera is
expressed in terms of the free energy with the help of
familiar thermodynamic relation

ja5
1

\S

]F

]ksa
. ~66!

Differentiating~65! with respect toks2 , puttingks250 in the
obtained expression~which corresponds to the regime wit
closed circuit terminals!, and retaining only terms propor
tional to the first power ofks1 , we arrive exactly at formula
~61! for current in the layer 2.

In the case of open terminals, we proceed from the f
energy minimum and consider the factoreiks2r as a response
of the system to the current in layer 1. we must calculate
derivative]F/]ks2 and equate it to zero. The resulting equ
tion will define the value of the wave vectorks2 . In view of
the relation~66!, however, the condition]F/]ks250 means
that the current in layer 2 will be equal to zero.

Let us dwell on this problem in greater detail. We sh
describe the emerging situation in terms of two currents

the field operator acting in the layera has the formĈa

5exp$iksa•r%ĉa , we can go over in formula~21! for the

particle flux density operatorj from operatorsĈa andĈa
1 to

ĉa and ĉa
1 . This gives

ĵa@Ĉ~r !#5
\ksa

M
ĉa

1~r !ĉa~r !1 ĵa@ĉ~r !#. ~67!

The first term on the right-hand side of~67! depends on the
quantityksa and defines the superfluid current componen
the layera, which is connected directly with the differenc
in the phases of the order parameter at the ends of the la
The second term on the right-hand side of~67! does not
depend on the quantityksa and is determined by the interac
tion between the layers. In the case of open circuit termin
-

e

e

e
-

l
If

n

er.

s,

it follows from the free energy minimum that these tw
terms exactly compensate each other. However, if the te
nals of the structure are closed, the first term assumes a
crete series of values and the second term is continuou
this case, their sum may not be equal to zero.

Let us determine the drag current densityj2 for the case
of Coulomb Bose gases. For this purpose, we shall ass
that the following inequalities are satisfied:

d@d0 , T!T0[S 2pnQ2\2

Me0d D 1/2

. ~68!

The first of these inequalities allows us to neglect the te
«2(k) under the radicand in the expressions for the ene
spectrum~7!. When the second inequality is satisfied, we c
disregard the excitations of ‘‘1’’ modes at nonzero tempera
tures. The latter statement follows from the fact that mod
with E(k)<T are excited at a given temperatureT. The
limiting wave number satisfying this condition is defined

kc'S Me0T2

2pQ2n\2dD 1/2

, ~69!

while the ratioE1
2 /E2

2 .T0/2T@1 for k,kc .
Estimates show that the condition~68! can be easily sat-

isfied in experiments. Thus, for characteristic valu
n51015cm22, M52m0 , where m0 is the mass of a free
electron, Q52e, e0510, d51026 cm we have d056
31029 cm, T0'4•103 K.

Taking ~68! into account, we obtain the following ex
pression from~61! for the drag current density of charge
Bose gases:

j25
1

8pns

\2

Md4

1

T0
H 0.040622z~3!S T

T0
D 3J j1 . ~70!

Herez(y) is Riemann’s zeta-function, andT0 is the tempera-
ture introduced in~68!.

Before discussing the experiments on the detection
drag between electrons in spatially separated supercond
ing systems, let us note the fundamental features of this
fect. For normal systems, current is passed through one
ducting layer, and the potential difference is measured in
other layer whose ends are open. This method is not ap
cable for superconducting layers since electric current can
exist in superconductors. The closure of the secondary cir
is a necessary condition for theexistenceof the effect. Un-
like normal systems, the effect of transfer of motion is as
ciated not with the transfer of momentum from one layer
the other~the Hamiltonian does not contain dissipative co
ponents in the approximation under consideration!, but with
the redistribution of supercurrent between the layers. T
statement follows from the fact that the correction to t
current in layer 1 calculated in analogy with~61! is equal and
opposite to the current in the layer~2!.

The peculiarities of the drag effect in two-layer supe
conducting systems necessitate the experimental mea
ment of, say, the magnetic flux produced in the second
circuit by the circular supercurrent. We shall determine
value of the flux for the case shown in Fig. 1. The compl
expression for the electric current densityJ2 in layer 2 ~we
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shall denote it by a capital letter to distinguish it from t
particle flux densityj 2! contains an additional term assoc
ated with the magnetic field produced by this current:

J25
Q\ks2

M
ns1Qj22

Q2ns

Mc
A, ~71!

whereA is the vector potential of this field. Estimates~70!
show that the quantityj2 is quite small, and the energy min
mum corresponds toks250.

The total current in the lower and upper films must
equal to 2(Q2ns /Mc)AL1Qj2 and 2(Q2ns /Mc)AH

whereAL and AH denote the vector potential in the lowe
and upper films. Solving the Maxwell equation curlH
54pJ/c, we can easily find that

J25
Q j2
21g

, where g5
4pnsQ

2D

Mc2 . ~72!

HereD is the separation between the upper and lower fi
in the secondary circuit~see Fig. 1!. The magnetic flux be-
tween the films, which is related to the currentJ2 , is defined
as

F[HDL5
4p

c

Q j2
21g

DL. ~73!

For g!1, the magnetic flux increases linearly withD. It
attains saturation forg'1, and the fluxF no longer depends
on D for g@1. In this case,

F5Fmax5
0.02e\LJ1

Q2T0~2pnsd
2!2 F0 , ~74!

whereF05hc/2e is the magnetic flux quantum.
Let us now present the numerical estimates. Forns5n

51015cm22, Q52e, M52m0 the dimensionless constantg
is of the order of unity forD'1024 cm. ForD@1024 cm,
g@1 and the fluxF5Fmax. While estimating the flux
Fmax, it must be remembered that it depends strongly
d (Fmax;d27/2), and hence the chosen value ofd should be
as small as possible. At the same time, it must be la
enough so that we can disregard the tunneling of electr
through the insulating layer separating the primary and s
ondary circuits. Ford'50 Å, L51 cm, andvs15104 cm/s,
the flux Fmax'331025

•F0 .
Thus, microscopic computations carried out with t

help of Bogoliubov’s technique and by using the formalis
of collective variables establish the existence of the effec

FIG. 1. Schematic diagram of the experiment for detecting the drag betw
superconducting layers. The lower superconducting layer is bent to pre
current excitation in the upper layer due to the magnetic field of the lo
layer.
s

n

e
ns
c-

f

transfer of motion between two-dimensional Bose ga
separated by a thin interlayer. The results are obtained fo
arbitrary type of interaction between layers, and the case
charged Bose gases is considered in detail. We assume
the situation with charged Bose gases provides a qua
tively correct description of the drag between tw
dimensional films from ‘‘Cooper’’ superconductors. The d
pendence of the drag current on temperature and thickne
the partition is determined for the case of charged B
gases. The effect exists for zero and nonzero temperatur
any type of interaction potential, the value of the drag curr
decreasing with increasing temperature in the case of B
gases. Unlike normal systems, the transfer of motion
tween superfluid layers takes place only when the termin
of the secondary circuit are closed. It is associated not w
the transfer of momentum from one layer to the other,
only with the establishment of a single coherent state a
result of interaction between layers, the phases of the o
parameter being correlated in both layers in this coher
state. An experimental setup is proposed for detecting
predicted effect. Calculations show that the value of
magnetic flux emerging in the secondary circuit as a resul
drag lies within the range that is accessible to measurem
with the help of modern techniques.
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Power-law low-temperature asymptotics for spatially nonhomogeneous s-wave
superconductors

A. M. Gabovich and A. I. Voitenko
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It is shown that low temperature asymptotics of various thermodynamic and transport properties
of s-wave superconductors can become power-law ones if wide distributions of gap values
exist, originating from structure domains, charge stripes, charge-density waves or other mesoscopic
nonhomogeneities. The relevant experimental data for high-Tc oxides are analyzed on the
basis of the developed theory. ©1999 American Institute of Physics.@S1063-777X~99!00507-1#
i
nd
s
be
e
er
o

u
r.

flu
ra

en

-

ith
f

-
l-

e

in
pe
t

is
th

ov
a-

tics
-

fea-
the

-
-
em
gu-
hson

am-

ob-
ere

in
eri-

the
s-

p

law
e
-

ast
e

1. INTRODUCTION

The controversy over the order parameter symmetry
cuprates constitutes a great challenge to investigators a
far from being resolved,1–3 contrary to what is sometime
claimed.4,5 Really, the relevant experimental data may
divided into three main groups. The first group includ
phase-sensitive methods, e.g., the phase-sensitive obs
tions of the half-flux quantum spontaneous magnetization
the three-grain boundaries4,6 and of the anomalousp-phase
shift across thec-axis junction straddling a single twin.7

These experimental results are often considered as an
equivocal evidence of thed-wave order parameter characte
Nevertheless, as discussed in Ref. 2, the ordinarys-wave
order parameter suppression at twin boundaries, the
trapping there or in the corners, and meanderings of the g
boundaries on the scale of 100–1000 Å8 can reproduce such
a behavior as well. Moreover, the most recent measurem
~see discussion in Ref. 9! of the c-axis ~perpendicular to the
layers!Josephson critical currentI c between twisted bicrys
tals of Bi2Sr2CaCu2O81y ruled out the purported ‘‘naive’’
identification of the order parameter symmetry there w
dx22y2 wave form. Namely, there was no dependence oI c

on the twist anglew0 , whereas in thed-wave case it would
have beenI c} cos 2w0. At the same time,c-axis tunneling
between Bi2Sr2CaCu2O81y and Pb shows a distinct Fraun
hofer pattern appropriate tos-wave order parameter, a
though the magnitude of theI c is very small.10

Two other groups are phase-insensitive. One of th
probes the gap features, if any, at the Fermi surface~FS!. It
includes, in particular, the angle-resolved,11 tunnel,12 and
point-contact13 spectroscopies. The results obtained, mak
use of these methods for a number of specific hole-do
oxides, are also usually interpreted as manifestations of
d-wave pairing. However, this interpretation may be m
leading. Namely, the emergence of the dielectric gap on
nesting FS sections due to the charge-density wave~CDW!
formation may mimic the superconducting pseudogap ab
the critical temperatureTc and severely hamper various me
5031063-777X/99/25(7)/6/$15.00
n
is
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m
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d
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e

surements of the superconducting gap belowTc .2,14–16 For
example, the predicted current-voltage characteris
~CVC’s! asymmetricity for junctions involving CDW super
conductors withs-type pairing16 resemble those of theab-
plane tunnel CVC’s for Bi2Sr2CaCu2O81y .17 The same can
be said about the persistence of the smeared pseudogap
tures in this experiment, so that the CDW’s rather than
d-wave scenario withV-shaped conductance show them
selves. The investigations18 of inelastic Cooper pair tunnel
ing for various phases of the Bi–Sr–Ca–Cu–O syst
clearly demonstrated the existence of the Riedel-like sin
larity and the subsequent steep reduction of the Josep
current inherent to Bardeen–Cooper–Schrieffer~BCS! iso-
tropic superconductors,19 whereas thed-wave picture lacks
such a threshold behavior.20 The indications of thed-wave
inconsistency with measured photoexcited relaxation dyn
ics in YBa2Cu3O72x were also found.21 The direct evidence
of the s-wave pairing in YBa2Cu3O72x and YbBa2Cu3O72x

using tunnel and point-contact measurements was also
tained in Ref. 22, where clear classical gap features w
seen.

It is also claimed that the type of pairing can be,
principle, deduced as well from the phase-insensitive exp
ments by analyzing the properties of high-Tc oxides in the
low-temperature limit. Indeed, the BCS theory leads to
following asymptotics for various thermodynamic and tran
port propertiesPs of superconductors at temperaturesT far
below Tc :23

Ps
asympt~D0 ,T!5AD0

mTl expS 2
D0

T D . ~1!

HerekB5\51, D0 is the value of the superconducting ga
at T50 and the quantitiesm andl are specific to the property
concerned. Instead, a lot of investigations reveal power-
T-dependences.1,2,4 Such a behavior was explained on th
basis of the assumedd-wave symmetry of the order param
eter with gap point or line nodes of the FS.1,4 Our article is
devoted just to this kind of experiment. However, in contr
to the traditional viewpoint, it is shown below that, if on
© 1999 American Institute of Physics
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takes into account the wide distribution of the supercondu
ing order parameter magnitudes always existing in comp
nonhomogeneous structures of high-Tc oxides,24–26the same
results can be explained by the conventionals-wave pairing.

2. EXPERIMENTAL LOW-TEMPERATURE ASYMPTOTICS
FOR CUPRATES

To be more specific, let us consider some experime
low-T data for cuprates. In particular, for YBa2Cu3O72x the
specific heatCs}T,2 although the recent experiment21 shows
additional contribution}T2 and Schottky anomalies}T22,
making the whole picture uncertain. At the same time,
results for thed-wave gap function would have been propo
tional to T2 for hexagonal orT3 for cubic lattices.27,28

For dlL(T)5@lL(T)2lL(0)#lL
21(0), wherelL(T) is

the constant magnetic field penetration depth, the experim
tal data are quite ambiguous. For nominally pu
YBa2Cu3O72x samples linear dependences onT are
observed,29 whereas for Zn- and Ni-doped as well as nonh
mogeneous crystalsdlL}T229–33 in a formal accordance
with the theory ofd-wave superconductors, either dirty one4

or those with surface-induced Andreev bound states.33 There
are also data showing two-gap low-T asymptotics ofdlL(T)
in YBa2Cu3O72x .34 The authors of Ref. 34 claim that thi
dependence is intrinsic, whereas the results of Ref. 29
due to a non-uniform sample oxygenation. For electr
doped oxide Nd1.85Ce0.15CuO42d which always reveals
s-wave features,dlL(T) follows the exponential law.1 At the
same time, the initiald-wave picture withdlL(T˜0)}T
was shown to be inconsistent with the third law
thermodynamics.35 Further modifications36,37 ~see reply in
Ref. 38! changed the electromagnetic response of thed-wave
superconductor in such a way that the calculated in-pl
dependencedlab(T˜0)}T2 holds, not violating thermody-
namics but destroying the apparent agreement with the
periment.

Unfortunately, it is hard to extract the electronic therm
conductivity componentke from the experiment due to th
complex action of electrons, phonons, and impurities.39,40

Nevertheless, the experiments indicate thatke}T in Zn-
doped YBa2Cu3O72x

41 and below Tc* 5200 mK in
Bi2Sr2Ca~Cu12xNix)2O8.

42 The ultrasonic attenuation coeffi
cient as also exhibits a power-lawTn decrease forT!Tc

both for YBa2Cu3O72x
43,44 and La1.8Sr0.2CuO42x

43 with a
large scatter of the exponentn for each substance. As for th
nuclear relaxation rateT1

21, it demonstrates power-law de
pendences with 1<n<3.4

This experimental material shows that the universal
pendence for any phenomenon discussed does not e
Moreover, the agreement with the theories based on the
function with point or line nodes is superficial. Even wi
additional assumptions being made, the equality between
perimental and theoretical power-law exponents still can
be ensured. It is usually considered as a basis for the a
tion of thed-wave concept.1,4 At the same time, while ana
lyzing local structures observed in the nonstoichiometric
perconducting and nonsuperconducting oxides,24–26,45 we
drew the conclusion that there is a quite different solution
t-
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the problem. Our approach starts from the assumption o
wide distribution of order parameterD values in the bulk of
the samples at eachT,Tc .

3. THEORY

The key idea of the theory is that not only a polycryst
line but even a single crystal superconducting oxide sam
can be considered asmesoscopically nonhomogeneous, i.e.,
consisting of domains. This domain structure is suppose
be T-independent, with each domain having the followin
properties:

~A! at T50 it is described by a certain superconducti
order parameterD0 ;

~B! up to the relevant critical temperatureTc0(D0)
5gD0p, where g51.7810... is the Euler constant, it be
haves as a true BCS superconductor, i.e., the tempera
dependenceD(T) of the superconducting order parameter
the Mühlschegel functionD(T)5dBCS(D0 ,T); any property
P under investigation is characterized in this interval by t
function Ps(D,T);

~C! at T.Tc0 it changes into the normal state, and t
relevant property isPn(T).

At the same time, the values ofD0 scatter for various
domains. The current carriers move freely across doma
and inside each domain acquire the respective proper
Thus, possible proximity effects resulting in the correlati
of the properties of adjacent domains are neglected. The
rent carrier density is assumed constant all over the sam
so transient processes are excluded from consideration.

The averaging procedure considered below requires~i!
the effective sample sizeL to be much larger than the mea
size of the domainsdmeanand~ii ! the size of each domaindi

to be larger than the relevant coherence lengthj i . The first
condition is needed to regard the superconductor ma
scopically homogeneous. The second one stems from
property~B! indicated above. In the opposite case, whendi

!j i , we are led to the lattice model of superconductor w
a local atomic disorder.46,47Such a model was applied to th
description of YBa2Cu3O72x in Ref. 48. In essence, the do
main size there is comparable to that of the elementary c
However, in this limiting case we go beyond the scope of
BCSs-wave picture based on the long-range character of
phonon-induced interaction between electrons23 ~see discus-
sion in Sec. 4!. In contrast, the actually adopted conditio
di.j i is fully in line with the basic concept.

Under these conditions, we consider the current car
liquid to involve normal, rn(T), and superconducting
rs(T), fractions withrn(T)1rs(T)51, and the supercon
ducting fraction to be multicomponent. Each supercondu
ing component corresponds to domains with a certainD0 .
They possess the properties~A!, ~B!, ~C! mentioned above.
The superconducting fraction atT50 can be described by
distribution functionf 0(D0) in the interval 0<D0<D0

max.

rs~0!5E
0

D0
max

f 0~D0!dD0512rn~0!. ~2!
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The distribution is assumed wide, i.e.,f 0(D0) is non-zero at
every point of the interval. In principle,f 0(D0) can be ran-
dom or not, but the former case seems more frequently
curring.

At TÞ0 the superconducting components withTc0,T,
i.e., with D0,D* (T)5pT/g, lose their superconductin
properties. The normal fraction of the current carriers in
sample is

rn~T!5rn~0!1E
0

D* ~T!
f 0~D0!dD0 , ~3!

whereas the remaining superconducting part is

rs~T!5E
D* ~T!

D0
max

f 0~D0!dD0 . ~4!

Due to the condition~B!, the components, possessing
T50 order parameters within the interval@D0 ,D01dD0#, at
TÞ0 acquire order parameters within the interval@D,D
1dD#, where D5DBCS(D0 ,T). This conversion is ex-
pressed by an equation

f ~D,T!dD5 f 0~D0!dD0 . ~5!

Here f (D,T) is a function characterizing a new distributio
of components in the interval 0,D,Dmax(T) where
Dmax(T)5DBCS(D0

max,T). This equation is a consequence
~i! the supposed domain structure permanence,~ii ! the con-
stant current carrier density, and~iii ! the independence be
tween superconducting components. Then, the func
rs(T) takes the form

rs~T!5E
0

Dmax~T!
f ~D,T!dD. ~6!

As for any investigated propertyP, each component, be
ing superconducting or not, makes its contribution to
measured~averaged! value ^P&:

^P~T!&5Pn~T!rn~T!1E
0

Dmax~T!
Ps~D,T! f ~D,T!dD.

~7!

This formula is valid~with restriction given above! for
additive quantities, such as, e.g., the specific heat. But w
about, for example, the penetration depthlL? Really, in the
situation when the superconducting gap changes~and in fact
goes to zero! on a very short length scale, even the notion
the penetration depth becomes questionable. Moreover, s
each of our elementary volumes includes an ensemble
domains with different parameterslL,i ’s, the matter be-
comes much more entangled. Nevertheless, even in this
ation one may introduce an effective penetration depthlL

eff

and measure itsT-dependence. Really, the measured elec
magnetic response of the nonhomogeneous supercond
is the sum of individual domain responses from the sam
surface layer. The quantitylL

eff is a parameter that is ex
tracted from the essentially averaged experimental d
treated as obtained for a homogeneous BCS supercondu
In the specific case of cuprates the domain sizesdi are sub-
stantially smaller than the intrinsic penetration depthslL,i

for each domain and, therefore, the effectivelL
eff . We con-
c-

e

t

n

e

at

f
ce
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tu-

-
tor

le

ta
tor.

ceive that within such a context the calculation oflL
eff(T) as

a weighted quantity is at least qualitatively reasonable.
The first term in Eq.~7! describes the contribution

^P(T)&n of the normal fraction. It is well-known and will no
be considered below. The last term corresponds to the c
tribution ^P(T)&s of the superconducting electrons~holes!.
Sincef (D50,T)5 f 0@D05D* (T)#Þ0, for eachT there is a
nonvanishing portion of superconducting components w
D˜0. It is their contribution that leads to the deviation
the temperature behavior^P(T)&s from the classical one. To
make our statement even more sound, we suggest tha
low-T asymptotics~1! holds true for each superconductin
component up to the relevant critical temperatureTc0 , i.e.,

Ps~D,T!5Ps
asympt~D0 ,T!. ~8!

The allowance for the exact dependences may o
strengthen our standpoint.

Note thatPs
asympt(D0 ,T) in the framework of the BCS

scheme depends onT and onD0 rather than onD value.
Accordingly, due to Eq.~5! the contribution̂ P(T)&s can be
rewritten as follows:

^P~T!&s5E
D* ~T!

D0
max

Ps
asympt~D0 ,T! f 0~D0!dD0 . ~9!

The distribution functionf 0(D0) can be expanded into th
series

f 0~D0!5
1

D0
max (

k5k0

`

BkS D0

D0
maxD k

, ~10!

wherek0 is the order of the leading expansion term. Subs
tuting Eqs.~1! and ~10! into Eq. ~9! we obtain

^P~T!&s5
ATl 1m11

D0
max (

k5k0

`

BkS T

D0
maxD kE

D* ~T!
T

D0
max

T xm1ke2xdx.

~11!

Within an accuracy of the made approximations and for te
peraturesT!D0

max we may extend the upper limit of integra
tion to infinity, so

^P~T!&s'ATl 1mS T

D0
maxD (

k5k0

`

BkS T

D0
maxD k

3GFm1k11,
D* ~T!

T G , ~12!

where G(a,x) is the incomplete gamma function.49 Since
D* (T)/T5p/g, the apparently dominant exponential d
pendence of̂ P(T)&s on (21/T) resulting from the second
argument ofG(a,x) disappears altogether, whatever the p
ticular value ofk0 .

One more important result of this formula is that in th
framework of the proposed model the measured propertie
the superconducting components^P(T)&s at low tempera-
tures are insensible to the particular profile of the distribut
function f 0(D0) at largeD0 . Hence, forT!D0

max a few first
terms of the series~12! constitute a good approximation
Restricting ourselves to the leadingk0-term we obtain
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^P~T!&s5ABk0
~D0

max! l 1mGS m1k011,
p

g D S T

D0
maxD M

,

~13!

with M5k01 l 1m11. The corrections to this expressio
are of the next order inT/D0

max. This justifies the validity of
substituting the upper limit of the integral in Eq.~11! by
infinity. At the same time, this makes eligible the evaluati
of the ^P(T)&s contribution in Eq.~7! using the low-T as-
ymptoticsPs

asympt(D0 ,T) in the integrand instead of the exa
value Ps(D,T). Indeed, theT-dependences of various pa
rameters in the BCS theory are induced by theT-behavior of
the gapD,23 e.g., the exponential multiplier in Eq.~1! origi-
nates from that in the low-T asymptotics ofD(T). Since
D(T˜Tc)}(Tc2T)1/2 in the BCS theory, the considered p
rameters have atT˜Tc the power-like asymptotics as wel
Thus, the use of exact functional dependencesPs(D,T) re-
sults not in exponential but power-law dependen
^P(T)&s .

One should note that in each specific experiment on
certain lowest temperatureTlim is accessible, so that, accor
ing to the Eq.~9!, only gap values down toD0

lim5pTlim/g
are relevant. Hence, the restriction imposed above on
distribution functionf 0(D0) to extend down toD050 may
be weakened. Namely,f 0(D0) should be nonzero forD0

.D0
lim . In the case when the domain ensemble possesse

minimal value D0
min and the lowest accessibleTlim

,gD0
min/p, the valueD0

min will manifest itself as the expo
nential factor exp(2D0

min/T) in ^P(T)&s ~cf. Ref. 23!.
Returning to Eq.~13!, we see that the actual distributio

function reveals itself in the final result only through th
expansion parametersBk0

and k0 . The most popular distri-
bution functions,50 namely, normal Gaussian

f G~D0!5
1

D0
maxS 2

ps2D 1/2F2FS 1

s D11G21

3expF2
1

2 S D02D0
max

sD0
max D 2G , ~14!

exponential f E(D0)5(a/D0
max)exp(2aD0 /D0

max), and uni-
form f U(D0) ones, wherea ands are dimensionless param
eters andF(x) is the error function,49 have finite values a
D050, so the leading term~13! in the series has thek050
order of smallness. At the same time, different distribut
functions have different values of coefficientB0 . Now it is
impossible to make a choice in favor of one of them. T
analysis of the heat capacity measurements for var
oxides51,52 makes us suggest that the functionf 0(D0) is
mainly concentrated in a narrow interval nearD050, which
is beneficial for our hypothesis.

Applying the general approach to the properties c
cerned taking their actual low-T expressions,23 and compar-
ing them with Eq.~1! we come to the following dependence
for the chosen casek050: for the specific heat

^Cs~T!&'B0A2pN~0!D0
maxGS 7

2
,
p

g D S T

D0
maxD 2

, ~15!
s

a

e

the

e
s

-

where N(0) is the electron density of states at the Fer
level; for the penetration depth

^dlL~T!&'B0Ap/2GS 3

2
,
p

g D T

D0
max; ~16!

for the thermal conductivity

^ke~T!&'B0

2net tr

me
D0

maxGS 3,
p

g D S T

D0
maxD 2

, ~17!

wherene is the normal state electron density,t tr is the trans-
port collision time, andme is the electron mass; for the rati
da5as /an of the ultrasonic attenuation coefficients in s
perconducting,as , and normal,an , states

^da~T!&'2B0GS 1,
p

g D T

D0
max. ~18!

These results correlate well with experimental data~see Sec.
4!. For other possible distribution functions withk0.0 the
preceding results will remain power-law, although wi
largerM. In 2D-superconductors, such as cuprates, the va
k050 corresponds to linear objects, i.e., lines or edges
normal regions, consisting of ‘‘nodes’’ (D050) in the real
space. Point-like zeros would lead tok051, so that the rel-
evant power-law exponents would increase by one.

From the methodological point of view it is of interest
indicate an analogy between our approach dealing with
D-distribution in the real space and the Abrikosov
introduction53 of the distribution function for the order pa
rameterD anisotropic in the momentum space, with the a
isotropy being quite general and including bothd-wave and
extendeds-wave symmetries.

4. DISCUSSION

The inhomogeneities leading to the spread ofD magni-
tudes over the sample may be of different nature. As
possible driven forces of these structural and/or electro
domains in high-Tc oxides one should mention~i! composi-
tion irregularities, especially the inherent disorder in oxyg
vacancy positions, observed, e.g., for BaPb12xBixO3,

51,54

La22x@Sr~Ba!#xCuO42y
54,55 and YBa2Cu3O72x

26,54,56 and
~ii ! the phase separation of the electronic origin with imp
rity atoms frozen because of the kinetic barriers.57 In oxides
both mechanisms apparently act together.45,56,58

Vacancy disorder comprise point-like defects. As w
indicated in Sec. 3, an attempt to allow for such irregularit
was made in Ref. 48 where it was shown that only for
anomalously great dispersionW of the site order parameter
D i it is possible to obtain the gapless-like behavior of t
quasiparticle density of states. Considering the condit
W@D i

max for the maximal quantityD i
max very improbable,

the cited authors, in order to explain the experimental d
argued that YBa2Cu3O72x is a d-wave object.

The inhomogeneities attributed above to the seco
group are of typical sizes exceeding the coherence length
latter being extremely small in cuprates. The experimen
evidence exists of the minority phase domains
La22xSrxCuO4 being as large as several hundred Angstro¨ms
in size.58 For YBa2Cu3O72x the x-ray and neutron diffraction
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measurements supplemented by the lattice gas Monte C
simulations revealed not only tetragonal and ortho-I pha
with the long range order but also a rich variety of structu
phases with anisotropic correlation lengths of mesosco
size.56 The domain finiteness preserved even after annea
and kinetic barriers turned out to be large enough to sec
the logarithmic time ordering. The crystal field neutron sp
tra of ErBa2Cu3O72x

59 and the Raman spectra o
YBa2Cu3O72x

60 which reflect the local region properties als
revealed oxygen structure domains, indicating the ph
separation and the percolation character of conductivity
superconductivity. It was pointed out in Ref. 61 as well th
the percolative network of intermediate size hole-induc
polarons~clusters! may lead to the difference between loc
and global~crystal! symmetry.

In contrast to YBa2Cu3O72x , the electron-doped supe
conducting oxide. Nd22xCexO42y is a random alloy.62 Such
an atomic-scale disorder may prevent the formation of str
tural domains, thus making our hypothesis of averaging
applicable in this case. On the other hand, the in-plane
herence length in Nd22xCexO42y is jab'70– 80 Å. which
exceeds substantiallyjab'10– 15 Å in YBa2Cu3O72x .62

Also, making allowance that superconductivity of the form
substance exists in the narrow range 0.14,x,0.15 and
y<0.01,63 it is natural to conclude that the spread ofD as-
sumed in our model is not large enough to validate the
eraging procedure. Thus, Nd22xCexO42y should manifest its
intrinsic exponential low-T asymptotics which is indeed th
case.62

At the same time, tunnel spectra of YBa2Cu3O72x show
a large spread ofD magnitudes64 which is favorable for our
interpretation. The growth withx of structural domains with
different nonoptimal~for a nominal stoichiometry! D’s and
the attended widening of the distribution functionf (D) may
explain the increase of the numerical factor in the obser
linear-T term of dlL(T) for YBa2Cu3O72x .65 Another im-
portant source of theD scatter is the CDW emergence
superconducting oxides.2,15,16,26,51All factors listed above,
taken together or separately, may be responsible for the t
sition from the exponential to the power-law behavior of t
quantities under consideration.

To summarize the comparison with experiment, we m
state that our theory accurately describes the respec
power-law exponents. At the same time, at the quantita
level it is at least not worse than thed-wave picture of the
low-T asymptotics. To show this, let us compare our res
for ^dlL& with those of thed-wave approach. The choice o
this quantity was made because it serves as a sensitive p
to test different pairing mechanisms. According to Ref.
dlL'(T ln 2)/D0, which is consistent with the experimen
for YBa2Cu3O72x ,29 and corresponds to the valueB0

'1.96 in Eq. ~16!. This value of B0 is reproduced for
f E(D0) anda'0.69, whereasB0'0.29 for f G(D) if s51,
andB0[1 for f U(D). These values ofa ands seem quite
realistic. The observations of different exponents fordlL(T)
in various samples1,29–33may reflect their dissimilar nonho
mogeneous structures, leading to a change-over from
f 0(D0) to another with differentk0’s.

Note that there is also another approach,3 valid both for
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s- and d-order parameter symmetry, which is based on
proximity effect in theS–N layer structures of cuprates an
fits the experimental data onlL(T). A possibility of the
transformation of the dependence~1! into the power-law one
with M<1 due to the proximity effect was demonstrated
Ref. 66 for Nb/Al bilayer films.

Of course, the theory outlined above can be applied
only to cuprate oxides but to other materials as well. But
main requirement for them to exhibit power-law asymptot
remains the same, namely, the mesoscopic nonhomoge
characteristic size ought to exceed the coherence length.
erwise, the exponential behavior forT!Tc would survive
and the critical temperatures would be slightly renormaliz
in full accordance with the Anderson theorem.23
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The influence of oxygen content on the Tc of HTS Hg-1245
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We have observed an extraordinary behavior of the HgBa2Ca4Cu5O121d layered HTS~phase
1245! in the overdoped state. Earlier we have synthesized the phase Hg-1245 with different oxygen
content and consequently different values of the lattice parametera. We have observed a
coincidence ofa values when theTc(a) cupolas reach their maxima for phases Hg-1223, 1234,
and 1245, and a merging of their overdoped parts together with abrupt falling off of the
Tc values. The Hg-1245 phase has shown the most unusual behavior. Contrary to other phases,
this one contains three types of CuO2 layers in a unit cell. We supposed that, in the case
of the Hg-1245 phase, the holes coming from the reservoir, which is the Hg–O plane, cannot reach
the ‘‘far’’ CuO2 layer which is notable for this phase. We have calculated the hole
concentration for each layer for 1223, 1234, and 1245 phases. The results obtained confirm our
assumption. The hole concentration appears negligibly small for the overdoped 1245
phase. We can consider the ‘‘fifth’’ CuO2 layer as not taking part in superconductivity. The
analysis of the behavior of theTc(a) cupolas for the phases with different number of CuO2 layers
and of hole density distribution between the layers has been carried out. ©1999 American
Institute of Physics.@S1063-777X~99!00607-6#
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INTRODUCTION

The first goal in the study of the HTSC layered cupra
is to find out the optimum structure and content to reach
maximum possible critical temperatureTc . Up to now the
maximum value of theTc5135 K was reached for Hg-base
cuprates in their Hg-1223 phase. Numerous attempts at
thesis of layered cuprates with different elements added
stead of mercury in recent years have failed to enlarge
Tc

max.
We have synthesized the Hg-based cuprates withn53,

4, and 51,2 and measured theTc
max and thedTc

max/dp for
phases withn51 – 5.3 The largestTc

max remained to be the
value atn53.

To understand the nature of the HTSC the study
samples whose parameters lay far away from the opti
ones is necessary. Here we present and discuss the da
Tc for phases Hg-1223, Hg-1234 and Hg-1245 with differe
oxygen content.

When studying the overdoped and underdoped cupr
the agreement was attained that different approaches sh
be used to describe their properties. The first—the overdo
state—may be considered as a Fermi liquid which is not t
for the underdoped state. The problem of overdoped and
derdoped states was considered by Laughlin4 in a most im-
pressive way. He proposed the existence of a quantum c
cal point on the way from an antiferromagnetic insula
~underdoped! to a normal metal~overdoped!.

EXPERIMENT

The phases Hg-1223, 1234, and 1245 were synthes
under high pressure at different pressures, temperatures
time intervals. The oxygen content in the starting mixtu
5091063-777X/99/25(7)/4/$15.00
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was varied by changing the BaO/BaO2 ratio, which allowed
us to obtain the overdoped Hg-1223, 1234, and 1245 ph
in as-preparated states. The technology of synthesis was
scribed in detail in Refs. 1 and 2. Special attention was p
to getting single phase ceramic specimens. When the ph
with n>3 are synthesized, the kinetics of the process is
portant. First the previous phases are formed where then
fragments of CaCuO2 take root. The phase composition wa
checked by the x-ray study.

The temperature dependence when an abrupt chang
ac and dc susceptibility takes place was measured by
induction method. The temperature was measured by
(Cu10.15%Fe)/Cu thermocouple. Measurements were
ried out in the Institute for High Pressure Physics~IHPP! and
at the Chemical Faculty of the Moscow University by diffe
ent people and on different installations. The results obtai
are qualitatively the same, having sometimes some unim
tant quantitative difference. As was mentioned above, in
cases the maximum values of theTc were achieved for the
phase Hg-1223.

Here we lay stress on the behavior of different phase
the overdoped states. The measuredTc values as a function
of lattice parametera ~the spacing Cu–O in the layer! are
shown in Fig. 1.

The underdoped states correspond to greater value
the parametera. These states appear under heat processin
the as-preparated samples.2 The change ofa is caused by
oxidation of copper because of nonstoichiometric oxygen
the Hg–O layer~the reservoir!, that is, because of the hol
densityd in the sample. TheTc’s for phases Hg-1234 and
Hg-1245 have a tendency in the overdoped state to me
with the overdoped phase Hg-1223 and to fall off abruptl2
© 1999 American Institute of Physics
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DISCUSSION

Earlier we have compared results forTc
max for phases

with n5126 and for dTc
max/dp (n5125)3 with data ob-

tained from the model proposed by Anderson~the so-called
RWB model5!, see Figs. 2 and 3. In the RWB model theTc

max

is determined mainly by the coupling between CuO2 layers
and it is assumed that the holes, which are responsible
high Tc values, are homogeneously distributed between
CuO2 layers.

DiStasio, Müller, and Pietroneru in Ref. 6 have consi
ered the charge distribution of holes among the various C2
layers up ton54 and found that this distribution is highl
nonhomogenous forn>3. ‘‘A natural consequence of thi
distribution is that the density of states available for sup
conductivity can have a maximum as a function ofn, as

FIG. 1. The dependence ofTc vs. parametera for Hg-based superconduct
ors: Hg-1201~h!, Hg-1212 ~n!, Hg-1223 ~l!, Hg-1223 ~L!,1 Hg-1234
~s!, Hg-1245~m!.

FIG. 2. Experimental and calculated values ofTc
max as a function of CuO2

sublayers numbern. Full circles and full rhombs—experiment at ambie
pressure~j! and under pressure 1 GPa~l!, open circles and rhombs—th
calculated data for ambient~s! and 1 GPa~L! pressure, respectively.3
or
ll

r-

observed experimentally forTc ’’. 6 Beginning withn53 the
nonequivalent CuO2 layers exist—the outer ‘‘o’’ and inner
‘‘ i’’ ~see Fig. 4!. The hole distribution inside the sheet
proposed to be homogeneous. In Ref. 6 the band~a parabolic
band was assumed! and electrostatic energies were calc
lated. The total energy is minimized with respect tox—the
fraction of charge in thei-layer (12x in the o-layer!. If d is
the total density of holes coming from the reservoir then
concentration of charge carriersnh in the i-layer is equal to
xd/(n22) and (12x)d/2 in theo-layer. In the simplest em-
pirical case

Tc~nh!5Tc
max@12b~nh2nh

max!#,

whereTc
max andb do not depend onnh but on the structure

parameters only.7 This expression leads to the well know
cupola-like dependenceTc(nh) that was observed in the ex
periment up ton55.2 The electrostatic interaction with th

FIG. 3. Experimental~1! and calculated~L! data for pressure derivative
dTc

max/dp as function of sublayers numbern.3

FIG. 4. Idealized structures of HgBa2Ca2Cu3O81y ~Hg-1223! ~a!,
HgBa2Ca3Cu4O101y ~Hg-1234! ~b!, HgBa2Ca4Cu5O121y ~Hg-1245! ~c! with,
respectively, three (n53), four (n54) and five (n55) CuO2 layers per
unit cell. The structure withn55 has inequivalent inner (i 1 and i 2) and
outer ~o! CuO2 layers. The copper atoms of the inner CuO2 layers have a
fourfold oxygen coordination, the copper atoms of the outer CuO2 layers
have a fivefold oxygen coordinations(1)—in the layeri, s(2)—in the
layer o. s(3)—in thelayer BaO;~4!—in the layer HgOy.
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layer—reservoir of holes is considered in Ref. 6 for t
structure where all layers are equally spaced. Joveret al.7

have considered the Hg-bearing cuprates up ton54 on the
basis of the model6 ~see Figs. 4a and 4b!.

Let us consider the results shown in Fig. 1. The cupo
shaped dependence of theTc(a) for phases withn51 – 5 is
clearly seen. It can be assumed that these five first Hg-b
cuprates have the same cupola-like shape of theTc(a) de-
pendence due to the nonstoichiometric oxygen, like there
reason for their structure identity. The implanting of an a
ditional (CaCuO2)-layer in the unit cell leads to contractio
of layer parameters and to a stronger interaction in the C2
plane. For phases with low number of layers in the unit c
the change ofTc takes place in a rather extended range
a-values converging at largern.

The last three phases show nearly the samea-values in
their overdoped states in contrast with the two first of th
~Fig. 1!. The value ofTc for phases Hg-1223, Hg-1234, an
Hg-1245 appears to be very different at the samea. The
Tc(a) cupolas go down whenn changes from 3 to 5. More
over, the left part of theseTc(a) curves corresponding to
overdoped states merge to a common curve where theTc’s
go down from a maximum value 135 K forn53 to almost
90 K. The cupolas narrow down withn increasing mostly
because of their right sides.

Accumulating the experimental results we note the f
lowing peculiarities:

1! Critical temperature goes down both in underdop
and overdoped states showing a cupola-shapedTc(a) depen-
dence;

2! The overdoped parts of theTc(a) curves merge to a
common curve atn53, 4, and 5;

3! The values ofTc
max most likely continue to fall off at

n.5;
4! The pressure derivative (dTc

max/dp)(n) shows a non-
monotonic behavior that can be described inside the R
model.

All these peculiarities should be connected with so
features of the crystal structure of the layered cuprates u
consideration. The principal one of these is the fact that
holes cannot reach the sole inner CuO2 layer in case of the
5th phase (n55) and hence in case of phases withn.5.

We have carried out a calculation of the hole density
different layers similar to that of Ref. 6, generalizing t
latter to the existence of third kind of CuO2 layer in the unit
cell of the system HgBa2Ca4Cu5O12 and taking into accoun
hole reservoir distance. The main goal of the calculation w
to find out the hole densities for the 5th phase. This ph
should have two kinds of inner layers~see Fig. 4c! and the
model6 should be appropriate. We think as well that the i
model8 describes correctly the phase Hg-1223 having
maximum Tc within the entire Hg-cuprates series.6 Both
models Ref. 6 and Ref. 8 give the same expressions for
band energy as a function ofx for the phases Hg-1223 an
Hg-1234 and different ones for the Madelung energy. T
latter is of no importance for our problem.

Our calculation is based on the model.6 For the band
energy we get

for n53
-

ed

a
-

ll
f

-

d

B

e
er
e

s
e

a

he

e

UB51/2Ad2~3x222x11!S ~1!

and forn54

UB5Ad2~x22x11/2!S, ~2!

whereA5ph2/2m* a2; S is the layer area.
The Madelung energy is the same forn53 and 4:

UM5Bd2~x21 l /d!S. ~3!

Here B5pe2/ed; d is the distance between CuO2 lay-
ers;l—the distance between the layer Hg–O~4! and the near-
est CuO2 plane;« is the dielectric constant. Minimizing the
total energy with respect tox we get

for n53

x5A/~3A12B! ~4!

and the concentration of the charge carriers~the holes
nh) in the layer

nh
i 5dx and nh

o5d~12x!/2.

For n54

x5A/2~A1B! ~5!

andnh
i 5dx/2 ~see Fig. 4!.

In case ofn55 one more inner layer exists—thei 2 layer
and two variational parameters should be put in
consideration—x0 and x1 representing two kinds of inne
layers.

That is: nh
i (5)5dx0—~layer i 2) and nh

i (3,4)5dx1/2
~two identical layersi 1).

In the outer layers

nh
o5d/2~12x02x1!5dx2/2,

wherex25(12x02x1) ~see Fig. 4c!.
Then for the band and Madelung energy we get

UB5Ad2~1/22x02x113/2x0
21x1

21x0x1!S, ~6!

UM5Bd2~2x0
212x0x11x1

21 l /d!S. ~7!

Minimization of total energy gives

x05A2/~5A2110AB14B2!, ~8!

x15~2A216AB14B2!A/~A12B!~5A2110AB14B2!

5
2x0~A13B12B2/A!

~A12B!
.2x0 . ~9!

Thus

x2/2.x1/2.x0 .

Our assumption that holes do not reach the inner layei 2

gets a quantitative confirmation.
Considering the experimental and calculated results

conclude that the phase Hg-1223 is optimal for the highTc .
For this phase only the hole distribution between the Cu2

layers is nearly uniform.8

Apparently this uniformity leads to the highestTc

5135 K within all layered HTSC. The inner layers of phas
with n54 and 5 contain much less carriers than the ou
ones. For the phase withn55 we find out that the inneri 2
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layer contains a few of the carriers and all of them are c
centrated in the outer layers. The distance between the o
layers increases withn and that decreases the interaction b
tween layers. Thus, theTc’s fall off due to both the hole
density decrease and the interaction weakening. There
experimental data on theTc

max measured up ton58.9 In spite
of a rather large spread the decrease inTc with n is evident.

The real absence of holes in the inner layer of the ph
Hg-1245 causes the disagreement between experimenta
ues ofTc

max got for largen and calculated ones in the frame
of RWB model ~see Fig. 2!. The latter proposes a uniform
carrier distribution on the CuO2 layers.

A sharp increase ofdTc
max/dp for the 5th phase in com

parison with the 4th one~Fig. 3! was explained in Ref. 3
within the frame of the RWB model.

Let some hole densitynh
max correspond to theTc

max. The
hole densities less thannh

max increase linearly with increas
of d in all layers.6,8 The Tc(a) shows a cupola-shaped d
pendence anda is connected withd.1 To each value of hole
density for all the three kinds of layers of the phase Hg-12
corresponds its own contribution of the ‘‘layer—Tc’’ to the
Tc

max.7 The Tc of the layer decrease with the hole density
the layer. The relative contribution of theseTc to the Tc

max

may be distinctly changed under pressure that leads to
nonmonotonicn dependence of the (dTc

max/dp)(n) observed.
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LOW-TEMPERATURE MAGNETISM

Spectra of coupled magnetoelastic waves of a biaxial strongly anisotropic ferromagnet
with biquadratic interaction

Yu. N. Mitsa , Yu. A. Fridman, O. V. Kozhemyako, and O. A. Kosmachev

Simferopol State University, 333036 Simferopol, Ukraine
~Submitted October 13, 1998; revised February 23, 1999!
Fiz. Nizk. Temp.25, 690–698~July 1999!

The spectra of coupled magnetoelastic waves in a biaxial ferromagnet with biquadratic
interaction are investigated. The phase diagrams of the system under investigation are constructed
as functions of biquadratic exchange. It is shown that for a strong Heisenberg exchange
~exceeding the biquadratic interaction!, phase transitions in the system occur only through a
decrease in the magnitude of the magnetization vector. For a strong biquadratic exchange
~exceeding the Heisenberg interaction!, orientational phase transitions are possible, which
are reduced to a reorientation of the principal axis of the tensor of quadrupole magnetic moments.
© 1999 American Institute of Physics.@S1063-777X~99!00707-0#
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1. Spectral and thermodynamic properties of magn
with a more complex interaction between magnetic ions t
the Heisenberg exchange have recently become an obje
intense investigation.1–6 This interest is dictated primarily by
the synthesis and experimental investigations of magnet
which the magnetic ordering temperatures are quite low.
Heisenberg interaction in such systems with the spinS>1 of
a magnetic ion can be comparable with or even weaker t
the interaction described by higher-order invariants. Magn
possessing such properties include, for example, rare-e
intermetallides TmGd,7,8 TmZn,9 and some other com
pounds.

The role of carriers of magnetism in non-Heisenbe
magnets is often played by rare-earth ions~Tm31 and
Ge21!.1 The existence of a nonfrozen orbital angular mom
tum and spin-orbit coupling in such systems leads to la
values of the one-ion anisotropy~OA! constant, which can
compete with the exchange interaction constant. This spe
role of OA leads to the emergence of peculiar~purely
quantum-mechanical! properties of magnets, such as t
emergence of phases with a tensor order parameter,1 viz.,
quadrupole~Q! phases. These effects are studied in detail
Heisenberg magnets with OA possessing different sym
tries ~see, for example, the review by Loktev an
Ostrovskii6!. In such systems, phase transitions occur wit
simultaneous change in the modulus of magnetization ve
and its rotation. The inclusion of the magnetoelastic~ME!
interaction is known to result in a radical change in the sp
tral properties in the vicinity of orientational phase tran
tions. To be more precise, the phonon excitation branch
comes a soft mode, and the magnon spectrum acquires a
gap.10

A similar situation also takes place for more compl
moduli, e.g., biaxial ferromagnets with biquadratic exchan
interaction.11 However, Q phases can be realized in su
models in zero magnetic field also,5 i.e., phase transitions in
5131063-777X/99/25(7)/7/$15.00
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material constants~OA constants as well as the constants
Heisenberg and biquadratic exchange! are possible in such
systems. Although the OA and ME interaction have the sa
origin, the influence of ME interaction of the spectral pro
erties of non-Heisenberg magnets is studied insufficiently

In this communication, we consider the realization
coupled ME waves in a biaxial ferromagnet with biquadra
exchange. The spectra of the system are studied in zero m
netic field, i.e., the spectral properties of the magnet are a
lyzed in the vicinity of phase transitions~PT! in material
constants.

2. The system under investigation has the form of a f
romagnetic crystal with biaxial OA and biquadratic e
change. The Hamiltonian of such a crystal can be written
the form

H52
1

2 (
n,n8

$I ~n2n8!SnSn81K~n2n8!~SnSn8!
2%

2B2
0(

n
$3~Sn

z!22S~S11!%2B2
2(

n

1

2
$~Sn

1!2

1~Sn
2!2%1v(

n
Sn

i Sn
j ui j ~n!1E drH l1h

2
~uxx

2

1uyy
2 1uzz

2 !1h~uxy
2 1uxz

2 1uyz
2 !1l

3~uxxuxy1uyyuzz1uxxuzz!J , ~1!

whereSn
a are spin operators at the siten(a51,2,z), I (n

2n8).0 is the Heisenberg exchange constant,K(n2n8)
.0 the biquadratic exchange constant,B2

0 andB2
2 are the OA

constants,n is the ME coupling constant,ui j (n) are the
strain tensor components, andl andh elastic moduli.

It is proved in Refs. 12 and 13 that in the general ca
Hamiltonian ~1! must be written in the rotational-invarian
© 1999 American Institute of Physics
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form. Among other things, the inclusion of rotational inva
ance leads to a new mechanism of ME coupling, which
directly associated with OA. For bulk samples, this is ma
fested only in the renormalization of coefficients in the fr
quency spectrum of ME waves and some mate
constants.14 Even the presence of a strong OA leads to
same effects.15 The inclusion of rotational invariance be
comes significant, for example, for thin magnetic films
wires, or when we take into account mechanical bound
conditions.16,17For this reason, bulk samples are investiga
here without taking into account rotational invariance.

In order to simplify calculations, we shall consider
system with spinS51. However, the computational algo
rithm proposed by us is also valid forS.1.

Without any loss of generality, we can assume t
B2

2.0 since forB2
2,0, after a rotation of the reference fram

about thez-axis through an anglep/2 we would obtain
Hamiltonian~1! in which the following substitution is made
B2

2
˜uB2

2u.
The OA and ME interactions can be taken into acco

exactly by using the Hubbard operators technique. These
erators are constructed on the basis of one-ion states de
by the one-ion Hamiltonian including the self-consistent fie
effects. In the general case, apart from the molecular fi
associated the magnetic moment ordering, additional
lecular fields determined by quadrupole magnetic mome
are induced in the magnet under investigation.2–6

Separating in the exchange component in~1! the self-
consistent field̂Sx& associated with magnetic moment orde
ing and the additional fieldsq2

p (p50,2) determined by the
quadrupole magnetic moments, we obtain the following
pression for the one-site HamiltonianH0(n):

H0~n!52HxSn
x2B̃2

0O2n
0 2B̃2

2O2n
2 1vSn

i Sn
j ui j ~n!, ~2!

where

Hx5(
n8

H I ~n2n8!2
1

2
K~n2n8!J ^Sx&;

B̃2
05B2

01
1

6 (
n8

K~n2n8!q2n
0 ;

B̃2
25B2

21
1

2 (
n8

K~n2n8!q2n
2 ;

q2n
0 5^O2n

0 &; q2n
2 5^O2n

2 &;

O2n
0 53~Sn

z!222; O2n
2 5

1

2
$~Sn

1!21~Sn
2!2%.

It was proved by Val’kovet al.5 and confirmed by the
subsequent analysis that nonzero values of average valu
other operatorsO2n

t (t5xy,xz,yz) are not observed.
Hamiltonian ~2! expressed in terms of Hubbard oper

tors constructed on eigenfunctions of the opera
L52HxSn

x2B̃2
0O2n

0 2B̃2
2O2n

2 assumes the form

H0~n!5(
n

H(
M

PMHn
M1(

a
PaXn

aJ , ~3!
s
-
-
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where Xn
M8M[ucn(M 8)&^cn(M )u is the Hubbard

operator,6,13 Hn
M[Xn

MM is the diagonal Hubbard operato
the indexM assumes the values2, 0, and1, a is the root
vector, andcn(M ) are the eigenfunctions of the operatorL:

cn~1 !5cosuu1&1sinuu0&;

cn~0!52sinuu1&1cosuu0&; cn~2 !5u2&. ~4!

Here,u6&5(1/&)(u1&6u21&), u0&, u1&, u21& are the eigen-
functions of the operatorSz, and

sinu5S x023B̃2
02B̃2

2

2x0
D 1/2

;

cosu5
2Hx

@2x0~x023B̃2
02B̃2

2!#1/2
;

x0
25Hx

21~3B̃2
01B̃2

2!2. ~5!

For a magnet withS51, the general form of the wave
functions~4! was established in Refs. 18 and 19.

Since thePM (a) in ~3! have a cumbersome form, we d
not write these expressions here~see Ref. 11!.

Solving the one-ion problem with Hamiltonian~3!, we
obtain the energy levels for a magnetic ion taking into a
count the ME interaction~in the first nonvanishing approxi
mation inn!:

E15
B̃2

02B̃2
2

2
1nS uxx

~0!1
uyy

~0!1uzz
~0!

2 D 2
x

2
;

E05
B̃2

02B̃2
2

2
1nS uxx

~0!1
uyy

~0!1uzz
~0!

2 D 1
x

2
;

E25B̃2
22B̃2

01n~uyy
~0!1uzz

~0!!;

x25$x02n~uzz
~0!2uyy

~0!!cos 2u%21n2~uyy
~0!

1uzz
~0!!2 sin2 2u14n2uxy

~0!2
. ~6!

Spontaneous deformationsui j
(0) are determined from the

condition of the minimum density of free energyF5F0

2T ln Z, where

F05
l1h

2 ( ui j
2 1h(

iÞ j
ui j

2 ~n!1l (
iÞ j
lÞm

ui j ulm

is the density of the elastic energy of the system and

Z5 (
M51,0,2

expS 2
EM

T D
is the partition function.

In the limit of low temperatures~T!Tc , Tc is the Curie
temperature!, ui j

(0) have the simplest form and are defined
the formulas

uxx
~0!52

n~l1h!

h~h13l!
; uyy

~0!52
n~h2l!

h~h13l!
sin2 u;

uzz
~0!52

n~h2l!

h~h13l!
cos2 u; ui j

~0!50, iÞ j . ~6a!
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It can be easily seen that Hamiltonian~3! is nondiagonal
in the basis of the eigenfunctions of the operatorL. In order
to diagonalize this Hamiltonian, we introduce new Hubba

operators Yn
M8M[uc̃n(M 8)&^c̃n(M )u constructed on the

eigenfunctionsc̃n(M ) of Hamiltonian~3!:
ar

rm
s

f
tic

g-

.
.e

is
d

c̃n~1 !5cosdcn~1 !1sindcn~0!;

c̃n~0!52sindcn~1 !1cosdcn~0!;

c̃n~2 !5cn~2 !, ~7!

where
cosd5
n~uyy

~0!2uzz
~0!!sin 2u

$@x2x02n~uyy
~0!2uzz

~0!!cos 2u#21n2~uyy
~0!2uzz

~0!!2 sin2 2u%1/2.
n

ly
tors
rg

op-
es-

era-

nce
ar-
The relation between the spin operators and ‘‘new’’ Hubb
operators has the form

Sn
15~Yn

112Yn
00!sin 2ũ1~Yn

101Yn
01!cos 2ũ

1~Yn
212Yn

1!sinũ1~Yn
202Yn

02!cosũ;

Sn
25~Sn

1!1; Sn
z5~Yn

121Yn
21!cosũ2~Yn

02

1Yn
20!sinũ; ũ5u1d. ~8!

We write the components of the strain tensor in the fo
ui j 5ui j

(0)1ui j
(1) , where ui j

(0) are spontaneous deformation
defined by formulas~6a!, andui j

(1) the dynamic component o
the strain tensor, which describes vibrations of crystal lat
sites. Having quantized the dynamic componentui j

(1) in the
standard manner,20 we obtain from Hamiltonian~3! the fol-
lowing Hamiltonian describing the transformation of ma
nons into phonons and the inverse transformation:

Htr5(
n

H(
M

P̃MYn
M1(

a
P̃aYn

aJ . ~9!

Here

P̃M ~a!5
1

N1/2 (
k,l

~bk,l1b2k,l
1 !Tn

M ~a!~k,l!;

b2k,l
1 (bk,l) are the creation~annihilation! operators for

phonons with polarizationl,Tn
M (a)(k,l) transformation am-

plitudes, andN is the number of sites in the crystal lattice
3. Defining Green’s function in the standard manner, i

Gaa8~n,t;n8,t8!52^T̂Ỹn
a~t!Ỹn8

a8~t8!&. ~10!

we obtain the following equation of the Larkin type for th
function11:

Gaa8~k,vn!5Saa8~k,vn!2
1

2
Saa1~k,vn!

3$c~2a1!,Â~k!c~a2!%Ga2a8~k,vn!

1Saa1~k,vn!T2a1~k,l!Dl~k,vn!

3Ta2~2k,vn!Ga2a8~k,vn!,

where
d

e

.,

Dl~k,vn!5
2vl~k!

vn
22vl

2~k!

is the Green’s function of a freel-polarized phonon with the
dispersion relationvl(k)5clk ~cl is the velocity of the
l-polarized sound!. The eight-dimensional vectorc~a! has
the following components:

c~a!5$g1
i
~a!,g1

'~a!,g1
'* ~2a!,g2

i
~a!,g2

'~a!,

3g2
'* ~2a!,g3

'~a!,g3
'* ~2a!%

and the 838 matrix Ânn8 splits into the direct sum of two
matrices:

Ânn85Ânn8
~3!

% Ânn8
~5! ;

Ânn8
~3!

5H I ~n2n8!2
1

2
K~n2n8!J S 1

0
0

0
0

1/2

0
1/2
0
D ;

Ânn8
~5!

5
K~n2n8!

2 S 1
0
0
0
0

0
0

1/2
0
0

0
1/2
0
0
0

0
0
0
0

1/2

0
0
0

1/2
0

D . ~11!

The functionsg i
i(')(a) are determined from the relatio

between the spin operators and Hubbard operators.
The inclusion of the biquadratic interaction is formal

manifested in the increase in the dimensions of the vec
c~a! and the matrixÂnn8 as compared to the Heisenbe
exchange. The eight-dimensionality of the vectorsc~a! is
due to the fact that the number of linearly independent
erators for the biquadratic exchange is five, while in the pr
ence of biquadratic and Heisenberg interaction~the structure
of the latter is determined by three independent spin op
tors Sn

i ), we must use the eight-dimensional basis.
This equation can be solved from the split depende

on a. Considering that the component irreducible in the L
kin sense in the mean-field approximation has the form

Saa85daa8b~a!G0
a~vn!; b~a!5^aY&0 ,
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whereG0
a(vn)5@ ivn1(a•E)#21 is the zero-order Green’

function, we obtain the dispersion equation for coupled M
waves:

detid i j 1xi j i50; i , j 51,2,3,...,8, ~12!

where

xi j 5G0
ab~a!ci j ~a!

1B0~k,l,l8!T2a~k,l!G0
a~vn!b~a!

3Tb~2k,l!G0
b~vn!b~b!ci j ~a,b!;

B0~k,l,l8!5
Dl~k,vn!

12Qll8Dl~k,vn!
;

Qll85Ta~2k,l!G0
a~vn!b~a!T2a~k,l8!;

ci j ~a,b!5aik~a,b!Ak j ; aik~a,b!5ci~a!ck~2b!.

It should be noted that Eq.~12! is valid for arbitrary
temperatures~up to the Curie temperature!, arbitrary values
of OA constants, and arbitrary relations betweenI 0 andK0 .
We shall confine our analysis to the case of low temperatu
(T!Tc).

4. Let us analyze Eq.~12! for the case when the Heisen
berg exchange constant exceeds the biquadratic exch
constant (I 0.K0), and the wave vectorkiy. In such a ge-
ometry, nonzero components of the unit vector of phon
polarization areel

y ,et
x ,ei

z .
It was proved by Val’kovet al.5 that in the system unde

investigation ~in the absence of the ME interaction! four
types of magnetic phases can exist, two of which are ch
acterized by the vector order parameter~FMz for ^S&iz and
FMx for ^S&ix!, and the other two by the tensor order p
rameter~Q1 and Q2!.

In the case of low temperatures,E1 is the lowermost
energy level, and hence we can confine ourselves only to
inclusion of this level in subsequent calculations. It sho
be noted that in contrast to the situation analyzed earli21

and characterized by a simpler form of the OA energy
erator, no inversion of energy levels is observed in
present case upon a transition to Q phases.

Let us analyze Eq.~12! for the Q1 phase ~near the
Q12FMx and Q12FMz phase transition lines! and for the Q2

phase~near the Q22FMx line!.
In the Q1 phase, the dispersion equation~12! splits into

two equations

$~11x11!~112x55!22x15x51%

3$~112x22!~112x77!24x27x72%50. ~13!

We consider the first equation

$~11x11!~112x55!22x15x51%50. ~14!

whose solution has the form

v1
2~k!5@E121K~k!#@E1212I ~k!2K~k!#

1a0

vt
2~k!@E1212I ~k!2K~k!#

vt
2~k!2@E121K~k!#@E1212I ~k!2K~k!#

;

~15a!
es

ge

n

r-

-

he
d

-
e

v2
2~k!5vt

2~k!

2a0

vt
2~k!@E1212I ~k!2K~k!#

vt
2~k!2@E121K~k!#@E1212I ~k!K~k!#

.

~15b!

It should be noted that only the amplitudes of transf
mationsTa4(k,t)52Ta3(k,t) have nonzero values in th
case under investigation, i.e., onlyt-polarized phonons inter
act with the magnetic subsystem.

In Eqs.~15a! and~15b!, we have introduced the follow
ing notation:E125E12E2522B2

22K02a0 ; a05n2/h;
vt(k)5ctk is the spectrum of a noninteractingt-polarized
phonon, andct

25h/(2m) is the square of the velocity o
sound.

It can easily be seen from~15a! that the quasimagnon
spectrum has the form

v1~k!5A~2B2
21a01gk2!~B2

22I 01K01a0!, ~16a!

while the spectrum oft-polarized quasiphonons is defined b
formula ~15b! and has the form

v2
2~k!5vt

2S 12
a0

I 02K0
D , ~16b!

whereg5R0
2K0 , R0 being the radius of biquadratic interac

tion.
Expression~16a! defines the PT line Q12FMz-phase

~Fig. 1!

B2
25I 02K02a0 , ~17!

which is displaced bya0 as compared to the case when t
ME interaction is absent.5 The magnon branch in this cas
plays the role of a soft mode, and the PT occurs along
excitation branch. It follows from~16b! that the quasiphonon
branch weakly interacts with the magnon subsystem, wh
is manifested only in a slight renormalization of the veloc
of sound:

c̃t
25ct

2S 12
a0

I 02K0
D .

FIG. 1. Phase diagram of a biaxial FM forI 0.K0 . Dashed lines are PT
lines without ME interaction, solid lines are PT lines taking into account M
interaction. At pointC, the PT lines Q12FMx-phase and Q12FMz-phase
average. The PT line Q22FMx-phase passes through pointA. The dot-and-
dash line passing through the FMx-phase and pointO; the average value of
magnetic moment is equal to unity.
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Besides, the second equation

$~112x22!~112x77!24x27x72%50. ~18!

in the vicinity of the PT line Q12FMz-phase describes th
high-frequency magnon branch which does not interact w
the elastic subsystem. However, this equation becomes d
sive in the behavior of the system in the vicinity of the P
line Q12FMx-phase.

In this case, only the amplitudes of transformatio
Ta2(k,t)52Ta1(k,t) have nonzero values.

The solutions of Eq.~18! have the form

v1
2~k!5@E101K~k!#@E1012I ~k!2K~k!#

1a0

v t
2~k!@E1012I ~k!2K~k!#

v t
2~k!2@E101K~k!#@E1012I ~k!2K~k!#

;

~19a!

v2
2~k!5v t

2~k!

2a0

v t
2~k!@E1012I ~k!2K~k!#

v t
2~k!2@E101K~k!#@E1012I ~k!2K~k!#

,

~19b!

whereE105E12E0523B2
02B2

22K02a0 ; v t(k)5ctk is
the spectrum of at-polarized phonon.

Expression~19a! defines the magnon spectrum

v1~k!

5A~3B2
01B2

21a01gk2!@3B2
01B2

222~ I 02K0!1a0#,

and ~19b! defines the spectrum oft-polarized phonons

v2
2~k!5v t

2S 12
a0

I 02K0
D .

These expressions show that the elastic and magn
subsystems interact weakly. This interaction leads to a sl
decrease in the velocity oft-polarized sound and to a dis
placement of the Q12FMx-phase PT line bya0 ~relative to
the case when ME coupling is absent5!: B2

2523B2
012(I 0

2K0)2a0 .
In the vicinity of the Q12FMx-phase PT line, Eq.~14!

describes the high-frequency branch that does not inte
with the elastic subsystem.

It can easily be seen that sinũ50 and cosũ51 for the PT
Q12FMx-phase and the Q12FMz-phase, and hence th
ground state realized on these PT lines is the statec(1)
5(1/&)(u1&1u21&) in accordance with~1!. The realization
of such a ground state indicates that the Q1 phase is formed
as a result of a purely quantum effect of ‘‘sp
contraction.’’6,22 In this case,̂ S& decreases in magnitude
each site.

In addition, an analysis of formulas~15a! and ~15b! on
the lineB2

25I 02K0 , i.e., the line of the PT under investiga
tion without the ME interaction,5 shows that the quasiphono
spectrum assumes the form

v2~k!5vt
2~k!

gk212B2
2

gk212B2
21a0

.

h
ci-

s

tic
ht

ct

and for 2B2
2,gk2,2B2

21a0 we obtain v2(k)
5vt

2(k)gk2/(2B2
21a0).

On the line B2
2523B2

012(I 02K0), the quasiphonon
spectrum can be presented in the form

v2~k!5v t
2~k!

gk213B2
01B2

2

gk213B2
01B2

21a0
,

while for 3B2
01B2

2,gk2,3B2
01B2

21a0 we have v2(k)
5v t

2(k)gk2/(3B2
01B2

21a0).
In the quasimagnon spectrum, the above-mentioned

lines acquire gaps defined as

v~0!5Aa0~ I 02K01a0!;

v~0!5Aa0@2~ I 02K0!1a0#.

A similar analysis of the dispersion equation~12! in the
Q2-phase leads to the following result.

The nonzero transformation amplitudes areTa2(k,t)
52Ta1(k,t), i.e., onlyt-polarized phonons interact with th
magnetic subsystem.

The spectrum of coupled ME waves in the Q2-phase has
the form

v1
2~k!5@E101K~k!#@E1012I ~k!2K~k!#

1a0

v t
2~k!@E1012I ~k!2K~k!#

v t
2~k!2@E101K~k!#@E1012I ~k!2K~k!#

;

~20a!

v2
2~k!5v t

2~k!

2a0

v t
2~k!@E1012I ~k!2K~k!#

v t
2~k!2@E101K~k!#@E1012I ~k!2K~k!#

,

~20b!

whereE105E12E053B2
01B2

22K02a0 .
An analysis of these expressions similar to that carr

out above shows that the magnetic and elastic subsys
interact weakly. This interaction leads to a small renorm
ization of the velocity of thet-polarized sound

v2
2~k!5v t

2S 12
a0

2~ I 02K0! D
and to a displacement of the PT line Q22FMx-phase bya0 :
B2

2523B2
022(I 02K0)1a0 as compared to the case whe

the ME coupling is absent.5

In this phase, sinũ51 and cosũ50, and hence the
ground state of the system isc(1)5u0&. Thus, in contrast to
the Q1-phase, the Q2 phase is realized in the standa
manner.6,18 Moreover, no peculiarities in the quasiphono
spectrum, which take place in the Q1-phase, are observed i
the Q2-phase on the lineB2

2523B2
022(I 02K0) line.

Consequently, the PT FMx2Q2-phase cannot occur as
reorientational PT, but is realized though a decrease in
modulus of ^Sx& as the PT lineB2

2523B2
022(I 02K0)

1a0 is approached.
The above analysis of the dispersion equation~12! ~for

I 0.K0! makes it possible to construct the phase diagram
a biaxial ferromagnet with biquadratic exchange~Fig. 1!.
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Solid lines on the diagram correspond to the inclusion of
ME coupling, while the dashed lines correspond to the
sence of ME coupling.5 The dot-and-dash line in the
FMx-phase, we havêSx&51. As we move from this line to
the PT lines FMx2Q1 and FMx2Q2-phase,̂ Sx&˜0, while
^Sx&50 on these lines. However, it was proved above t
the mechanisms according to which^Sx& tends to zero as
well as the ground states of the system for the PT un
investigation are different for transitions to the Q1- and
Q2-phases.

5. Let us now analyze the spectra of coupled ME wav
in the case when the biquadratic interaction is stronger t
the Heisenberg exchange (I 0,K0). As before, we shall con
sider the case of low temperatures and assume that the
vectorkiy.

According to ~8!, ^S&50 for K0.I 0 , and hence only
phases with tensor order parameters~Q-phases! can be real-
ized in the system. It was proved in Ref. 5~in the absence o
the ME interaction! that in the Q1 and Q2-phases that can b
realized in this case, the order parameters and the way
realization are the same as in the case considered abov~I 0

.K0 , see Sec. 4!. Let us analyze the spectra of coupled M
waves in these phases.

Equation~12! for the Q1 phase splits into two equation
one of which describes the spectrum of high-frequency m
non branch that does not interact with the elastic subsys
The second equation

~112x22!~112x77!24x27x7250 ~21!

gives the spectra of coupled ME waves.
Using the notation introduced above, we can write

solutions of Eq.~21! in the form

v1
25@E101K~k!#@E1012I ~k!2K~k!#

1
a0v t

2~k!@E1012I ~k!2K~k!#

v t
2~k!2@E101K~k!!~E1012I ~k!2K~k!#

,

~22!

v2
2~k!5v t

2~k!

2
a0v t

2~k!@E1012I ~k!2K~k!#

v t
2~k!2@E101K~k!!~E1012I ~k!2K~k!#

,

~23!

whereE105E12E0523B2
02B2

22K02a0 .
Formula~22! determines the quasimagnon spectrum

v1~k!

5A~gk213B2
01B2

21a0!@3B2
01B2

21a012~K02I 0!#,
~24!

and expression~23! defines the spectrum oft-polarized qua-
siphonons:

v2
2~k!5v t

2~k!

3
~gk213B2

01B2
2!@3B2

01B2
212~K02I 0!#

~gk213B2
01B2

21a0!@3B2
01B2

212~K02I 0!1a0#
.

~25!
e
-

t

er

s
n

ve

of

g-
m.

e

It follows from ~25! that the quasiphonon spectrum
the vicinity of the line B2

2/(K02I 0)523B2
0/(K02I 0) is

‘‘softened’’ in the long-wave limit (gk2!a0) and acquires
the form

v2
2~k!5v t

2~k!
2gk2

a0@2~K02I 0!1a0#
,

while the quasimagnon spectrum acquires the ME gap:

v1~0!5Aa0@2~K02I 0!1a0#.

Thus, as we ‘‘move’’ in the Q1-phase to the lineB2
2/(K0

2I 0)523B2
0/(K02I 0), the role of the ME coupling in the

system becomes more significant, and the quasipho
branch is ‘‘softened’’ on this line~in the long-wave limit!,
while the quasimagnon spectrum acquires an ME gap. S
a behavior of the spectra indicates that an orientational P
the material parameters occurs in the system.

A similar analysis of Eq.~12! in the Q2-phase makes it
possible to determine the spectra of ME waves in this st

v1
2~k!5@E101K~k!#@E1012I ~k!2K~k!#

1
a0v t

2~k!@E1012I ~K !2K~k!#

v t
2~k!2@E101K~k!#@E1012I ~k!2K~k!#

,

~26!

v2
2~k!5v t

2~k!

2
a0v t

2~k!@E1012I ~k!2K~k!#

v t
2~k!2@E101K~k!#@E1012I ~k!2K~k!#

,

~27!

whereE105E12E053B2
01B2

22a02K0 .
Expression~27! for the quasiphonon spectrum show

that for B2
2/(K02I 0)523B2

0/(K02I 0), the phonon branch
in the Q2-phase in the long-wave limit (gk2!a0) is ‘‘soft-
ened,’’ i.e.,

v2
2~k!5v t

2~k!
2gk2

a0@2~K02I 0!1a0#
,

while the quasimagnon spectrum acquires an ME gap:

v1~0!5Aa0@2~K02I 0!1a0#.

The obtained results indicate that the system experien
an orientational PT Q12Q2-phase along the lineB2

2/(K0

2I 0)523B2
0/(K02I 0). In contrast to the case considere

in Ref. 5 ~without ME interaction!, the role of the soft mode
is played by the quasiphonon branch and not by the mag
branch. The phase diagram corresponding to this cas
shown in Fig. 2.

6. Thus, in the case of a strong Heisenberg excha
interaction (I 0.K0), the system can exist in the magnet
phases~FMx and FMz! as well as in phases with tensor ord
parameters. Phase transitions in this case occur only thro



e-
tie
o
al
ec
es

rd
ft
ir
fo
ta

he
n
te
th
y
in

8,
rsk

6,

5,

la

,

519Low Temp. Phys. 25 (7), July 1999 Mitsa  et al.
a decrease in̂S& and not through the rotation of the magn
tization vector. This is also manifested in spectral regulari
of elementary excitations: the soft mode is the magn
branch along which PT occur, while only a weak renorm
ization of the velocity of sound occurs in the phonon sp
trum. The inclusion of ME coupling displaces the PT lin
by ;a0 /(I 02K0).

A more interesting situation takes place forK0.I 0 . In
this case, the system contains only phases with tensor o
parameters~Q1 and Q2!. The quasiphonon mode is a so
mode in the PT, while the quasimagnon spectrum acqu
an ME gap. Such a behavior of spectra is typical only
orientational PT. In the case under investigation, reorien
tion is reduced to the rotation of the principal axis of t
tensor of quadrupole moments. Thus, orientational PT ca
realized not only in systems with a vector order parame
but also in more complicated situations. Consequently,
behavior of the spectra of ME waves can be used not onl
judge about the presence of PT, but also to determ
whether the transition is of the orientational type.

FIG. 2. Phase diagram of a biaxial FM forK0.I 0 .
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Macroscopic magnetoelastic domain structure of the defectless layered antiferromagnet of
CoCl2-type with the ‘‘easy-plane’’ magnetic anisotropy is studied theoretically in the framework
of phenomenological approach. In assumption of mobile domain walls, the finite-size
effects are shown to result in the formation of a stable domain structure that changes reversibly
under the action of the external magnetic field and can be treated as equilibrium. It is
found that in antiferromagnets, where~in contrast to ferromagnets! long-range forces of magnetic
origin are absent, the domain structure and its collective behavior are governed by elasticity.
Field dependence of a domain structure, magnetostriction and low-frequency AFMR of poly- and
monodomain samples are calculated, the external magnetic field being directed perpendicular
to the main symmetry axis of the crystal. The results obtained are in qualitative agreement with the
available experimental data. ©1999 American Institute of Physics.@S1063-777X~99!00807-5#
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INTRODUCTION

The origin of equilibrium domain structure~DS! in anti-
ferromagnetic~AFM! insulators is studied for a long time,1,2

but the question is still obscure, despite a well develop
theory for the close vicinity of the magnetic 1-st order pha
transitions@in particular, for the field-induced spin-flop tran
sitions in the easy-axis antiferromagnets~see the review3 and
recent paper4 where this theory has been generalized for
case of the hexagonal AFM with the easy-plane magn
anisotropy#. The DS of the pure antiferromagnets is usua
treated as the result of structural imperfections~such as dis-
locations, twins, impurities, etc.! that cause the so-calle
sprout AFM domains~including 180° domains!. Sometimes,
the origin of the DS is attributed to the entropy factor, whi
decreases the free energy of the sample in the vicinity of
critical temperature in the case of spatially inhomogene
ordering.

Both mentioned and some other possibilities were a
lyzed in a recent paper5 where numerous experimental ev
dences of the equilibrium~almost insensitive to growth con
ditions! domain structure in dihaloids of transition meta
MX2 (M5Mn, Co, Ni:X5Cl, Br) were given. According to
observations, the domain structure changes almost rever
under the action of the external magnetic field; it gradua
disappears when the field is switched on and recovers aft
is switched off. Such a behavior evidently points to the eq
librium nature of the DS observed in these compounds.1!

The authors5 also suggested that magnetoelastic inter
tions play a dominant role in formation of the equilibriu
DS in the layered easy-plane antiferromagnets
CoCl2-type. However, the only condition pointed out is n
5201063-777X/99/25(7)/7/$15.00
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sufficient and there is an additional requirement necess
for DS formation, namely, the account of the sample surfa
The finite size effects bring about the appearance of the
during ferromagnetic and ferroelastic phase transitions
well as the magneto-elastic interactions.

These effects should play an important role in the AF
and particularly, in dihaloids of transition metals, where t
antiferromagnetic domains bear a magnetostrictive chara
and are of rather small size. In fact, the width of the antif
romagnetic domain wall can be evaluated asd0

;a(2HE /HA)1/2;a(2HE /Hs f);15– 20a, wherea is inter-
atomic distance,HE , HA andHs f are the exchange field, th
interplane anisotropy field and the spin-flop field, corr
spondingly~for CoCl2 Hs f52 kOe6 and spin-flip field 2HE

532 kOe!.7 Small thickness and low energy of the doma
walls (2.1024 mJ/m2, compared with the typical value 4
mJ/m2 for a ferromagnet! give grounds for expecting the
small size of AFM domains and assume that the surf
properties of the sample do strongly depend upon the a
age strain.

It should be mentioned that an equilibrium DS is o
served in the martensites in the course of a thermoela
phase transition. It arises from the condition of strain co
patibility of martensitic and austenitic phases. The pecu
feature of this structure is that the domain~twin! size is very
small ~21000 Å see Ref. 8! and compatibility conditions
relate only with the average-strain.

The present paper is aimed at the theoretical invest
tion of the macroscopic magnetoelastic domain structure
the defectless easy-plane layered AFM of CoCl2-type with
the account of finite-size~surface! effects. In the framework
of the phenomenological model, we calculate the dom
© 1999 American Institute of Physics
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structure, sample magnetostriction and AFMR frequency
the presence of an external magnetic field directed perp
dicular to the main symmetry axis of the crystal.

1. Model

We consider a thin plate of a layered easy-plane rho
bohedral antiferromagnet of CoCl2-type. The crystal symme
try group isD3d

5 . The plate is oriented perpendicular to th
3-rd order crystal axis, labeled asz, x-axis is chosen along
the 2nd order in-plane symmetry axis. Below the Ne´el tem-
perature, the magnetic structure of the crystal can be
scribed with two orthogonal dimensionless vectors: fer
magnetic,m, and antiferromagnetic,l, m21 l251. In the
absence of externalm50 and l has 3 equivalent
orientations2! in the basis plane~directed along three 2nd
order symmetry axes!. In the in-plane external magneti
field, the magnetic structure is described by two paramet
the modulusm of the ferromagnetic vector, and the anglew
between thel andx-axes, neglecting small deflections of th
magnetic vectors from the basis plane~see Fig. 1!. The bulk
free energy of the crystal in this case can be written in
simplest form~see, e.g., Ref. 9!:

Fvol5E dvH 2 JM0
2m212b~2!M0

2mz
22

2

3
b'

~6!M0
2

3~12m2!3 cos 6w14M0
2@lme

~ l ! ~12m2!1lme
~m!m2#

3@~uxx2uyy!cos 2w12uxy sin 2w#1
1

2
c66

3@~uxx2uyy!
214uxy

2 #22M0H0m sin~w2C!J , ~1!

where the constantJ describes the interplanar AFM ex
change;b (2), b'

(6) are the effective anisotropy constan
2M0 is the saturation magnetization;lme are the magneto
strictive constants;uik ( i ,k5x,y) are the strain tensor com
ponents;c66 is the elastic modulus, principal for the ca
under consideration, and the external magnetic field is
fined asH05uH0u, tanC5H0y /H0x . In the expression~1! we
have omitted the isotropic part of strain tensor,uxx1uyy ,

FIG. 1. Orientation of1 vectors inside the domains,H0 is the external
magnetic field.
n
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qualitatively insignificant for the present problem. The effe
tive magnetostrictive constantslme

( l ) andlme
(m) originate from

the relativistic~dipole-dipole or spin-orbit! interactions and,
as was shown in Ref. 10, can essentially depend upon
concrete electronic and crystal structure of a compound.

Herein we consider the model in which the surface
fects are accounted through the surface tension. The sh
dependent part of the surface energy for the simplest cas
disk with radiusR and thicknessh is given by the expression

Fsurf5
pRh

2
ssurf@^uxx2uyy&

214^uxy&
2#, ~2!

where ssurf is the surface tension coefficient for the~100!
and ~010! faces, notion̂ ...& means the averaging over th
sample volume:

^ui j &5
1

pR2h E ui j dv ~3!

and we have neglected the contribution from the disc si
~001! ~which is appropriate ifh!R). In the expression~1!,
~2! we have neglected the magnetostatic energy which c
tribution, as will be shown below, is much smaller than th
from the surface energy.

For small external fields,H0!JM0 , the ferromagnetic
momentm!1 can easily be excluded from~1!. So, neglect-
ing b (2)!J,

Fvol5E dvH 2
2

3
b'

~6!M0
2 cos 6w2

H0
2

2J
sin2~w2C!

14M0
2lme

~ l ! @~uxx2uyy!cos 2w12uxy sin 2w#

1
1

2
c66@~uxx2uyy!

214uxy
2 #J . ~4!

The local orientation of the vectorl can then be found by
minimization of the functional

F5Fvol1Fsurf ~5!

with respect tow(r ), u(r ) functions. The corresponding in
tegral equations have the form:

5 uxx2uyy52
4M0

2lme
~ l !

c66
cos 2w1

4M0
2lme

~ l ! ssurf

c66~c66R1ssurf!
^cos 2w&

2uxy52
4M0

2lme
~ l !

c66
sin 2w1

4M0
2lme

~ l ! ssurf

c66~c66R1ssurf!
^sin 2w&

,

~6!

1

3
Hs f

2 sin 6w5sin 2w@H0
2 cos 2C12HMD

2 ^cos 2w&#

2cos 2w@H0
2 sin 2C12HMD

2 ^sin 2w&#. ~7!

Here we have introduced the characteristic fields conven
for further calculations:Hs f52M0A6b'

(6)J—spin-flop field,
and HMD54M0

2lme
( l ) @(2Jssurf)/c66(c66R1ssurf)#1/2— the

field of monodomenization.
Equation~7! evidently shows that the surface produc

the same effect as an external magnetic field, the effec
internal field being defined as
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Heff
2 5AH0

414HMD
4 ~^cos 2w&21^sin 2w&2!12H0

2HMD
2 ^cos 2~w2C!&2 ~8!

tan 2Ceff5
H0

2 sin 2C12HMD
2 ^sin 2w&

H0
2 cos 2C12HMD

2 ^cos 2w&
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Thus, it can be stressed that in the case of AFM it is
elastic strain that plays the role similar to the magneto-dip
interaction in ferromagnets.

Note, that for infinite sample (R˜`)HMD˜0 and ef-
fective field identically coincides with the external fieldH0 ;
for such a situationCeff˜C.

Equation ~7! has different solutions depending on th
physical situation considered below.

1.1. Mobile domain walls. In this case the average stra
can follow the changes caused by an external magnetic fi
Up to a certain field value,H05H1c , specified below, the
effect of the magnetic field is compensated by the aver
strains, so that the effective field inside the sampleHeff50.3!

Equation ~7! has three non-trivial solutionsw150, w2,3

562p/3, corresponding to 3 equivalent equilibrium orie
tations of thel vector, i.e., to three magnetoelastic doma
~as was already pointed out before!. Evidently, each of them
is distorted orthorhombically@in correspondence with Refs
11 and 12, see formulas~6!#. Such a distortion for easy-plan
AFM was observed in Ref. 13. Moreover, magnetoelastic
proves to be a crucial factor for the existence of an equi
rium DS.

In neglecting the domain wall energy, one can find t
relative volumej j ( j 51,2,3) of each domain from the fol
lowing equations, obtained from~8!:

H0
2 cos 2C12HMD

2 ^cos 2w&50 ~9!

H0
2 sin 2C12HMD

2 ^sin 2w&50, ~10!

we take it into account that:

^cos 2w&5(
j

j j cos 2w j , (
j

j j51. ~11!

The ultimate expression forj j is

j j5
1

3 F12
H0

2

HMD
2

cos 2~w j2C!G , j 51,2,3. ~12!

Note, that in this casej j are the thermodynamic variables
well as strain components andw; the equality of the chemica
potentials~free energy densities! of different ‘‘phases’’~do-
mains! is satisfied automatically.

According to ~12!, the volume fraction of the domain
depends upon the value of the external magnetic fieldH0 . At
zero field,H050, all three types are equally distributed,
that the symmetry of the sample does not change after
transition into the polydomain antiferromagnetic state.
nonzero field the fraction of the most energetically ‘‘unf
vorable’’ domain~l vector lies closely to the direction of th
magnetic field, say, domain 1 for 0,C,p/6, see Fig. 1!
diminishes. AtH05H1c5HMD /cos 2C)1/2 the domains of
the 1st type disappear. Further behavior of the system
e
le

ld.

e

s

y
-

e

he

at

H0.H1c can be found out from the equations~7!, ~10! and
~11! with j 52,3. In this case the internal effective field is n
longer zero, but it is directed alongx-axis (Ceff50),4! so,
w252w35w, and

cos 2w5
3HMD

2

4Hs f
2

2
1

2 F S 11
3HMD

2

2Hs f
2 D 2

13
H0

22H1c
2

Hs f
2

cos 2CG 1/2

, ~13!

j2,35
1

2 F17
H0

2 sin 2C

HMD
2 sin 2w

G . ~14!

In other words, in the two-domain structure thel vectors
inside the domains start to rotate and simultaneously
fractions of the different domains change. The process
monodomenization is completed at some critical fieldH0

5Hc which can be found from equation~13! along with the
conditionj250 or in other words,

Hc
2 sin 2C5HMD

2 sin 2w. ~15!

For the caseC50 both domains 2 and 3 disappear simul
neously at

H05H2c[AHs f
2 12HMD

2 , ~16!

when all thel vectors achieve the direction perpendicular
the external field. Effective field~16! of monodomenization
is defined both by the magnetic anisotropy~due toHs f) and
by the surface effect~due toHMD). For the symmetric case
C5p/6 monodomenization is completed atH05H1c when
domains 1 and 2 disappear andl vector in the third domain is
aligned perpendicular to the external field. For the gene
case, 0,C,p/6, critical field H1c,Hc,H2c ; after the
process of monodomenization is finished, further change
w angle can be calculated from the equation

1

3
Hs f

2 sin 6w5H0
2 sin 2~w2C!. ~17!

The considered model gives rise to thermodynamica
equilibrium domain structure at any magnetic field valu
Really, the difference in free energy of the polydomain a
monodomain state calculated from~1! and ~2! at the same
external field value,

Fpoly2Fmono52
V

2J FHMD
2 1

1

2
H0

2 cos 2~w2C!

1
1

18
Hs f

2 ~12cos 6w!G<0 ~18!
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is nonpositive, which makes the polydomain state thermo
namically preferable. So, in the model proposed the beha
of the DS in the external magnetic field is absolutely reve
ible.

1.2. Immobile domain walls. The domain walls canno
move freely, so, the ratio of the domains is fixed and only
rotational processes take place inside the domains. Orie
tion of l vectors can be calculated from equations~7! and
~11! with the givenj j values which are defined by techn
logical factors. For small external field the equation~7! has 3
solutions corresponding to different domains. Monodome
zation of the sample is completed when all thel vectors are
aligned perpendicular to the external field direction.

For illustration let us consider the symmetrical ca
C50. If initially the domains have been produced by str
field at random, thenj15j25j351/3 and

w150, w252w35w,

cos 2w5
HMD

2

2Hs f
2

2
1

2 F S 11
HMD

2

Hs f
2 D 2

13
H0

2

Hs f
2 G 1/2

. ~19!

The field of monodomenizationHc
immob5(Hs f

2 12/3HMD
2 )1/2

in this case is smaller than the corresponding value for
case of mobile domain walls@Hc

immob,H2c , compare with
formula ~16!#. For arbitraryC the value of monodomeniza
tion field can be much greater.

After the magnetic field is removed, such a doma
structure will not restore, at least, in principal, becausl
vectors will tend to lie along the nearest easy axis, which
general field orientation is the only one. So, once cycled
the magnetic field, the sample becomes monodomain and
behavior of the DS in this case is absolutely irreversible.

In the real experiments, the behavior of the DS in an
ferromagnets of CoCl2-type are partly irreversible, so, w
can assume some intermediate case when most of the do
walls are mobile but some of them are pinned by the defe
or different imperfections of a crystal and contribute to t
certain irreversibility mentioned and observed.

2. Magnetostriction

In the experiments5,7 the magnetic field was arbitrarily
oriented in the easy plane of the crystal, and magnetos
tion was measured along and perpendicular to the field
rection. Corresponding macroscopic elongations, (D l / l ) i and
(D l / l )' can be calculated according to the general formu

~D l / l !n5( ni^uik&nk , ~20!

where n is a unit vector in the direction of measureme
^uik& is the averaged strain tensor. Substituting~6! into ~20!
and neglecting of isomorphous strain (uxx1uyy) one readily
obtains:

S D l

l D
i

52S D l

l D
'

52

4M0
2RFlme

~ l ! 1~lme
~m!2lme

~ l ! !S H0

2HE
D 2G

c66R1ssurf

3^cos 2~w2C!&, ~21!
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whereHE5JM0 , is the exchange field. In the formula~21!
we have taken into account the dependencem(H0)
'H0/2HE , which is significant atH0<2HE .

Field dependence of elongation (D l / l ) i calculated from
~21! for CoCl2 with C50, Hs f52 kOe; HMD53.3 kOe,
2HE532 kOe, 4M0

2lme
( l ) 524M0

2lme
(m)536 MPa, c66

534.7 GPa7 is shown in Fig. 2. We have considered tw
cases: mobile~solid curve! and immobile~dash curve! do-
main walls. Figure 3 shows the same dependences
squared magnetic field,H0

2; the points correspond to exper
mental data.7 The difference between two theoretical curv
is significant at low field value. In the case of mobile doma
walls the theoretical dependence~solid curve! is in good
agreement with the experimental data. TheHMD value was
taken to fit the experimental slope (Dl/l)' vs H0

2 at H0

,3 kOe.
The behavior of magnetostriction as seen from form

~21! and Fig. 2 is governed by two processes. At small fie
H0<Hc!HE , magnetostriction of the sample is chang
due to the process of monodomenization that influences

FIG. 2. Field dependence of magnetostriction of polydomain crystal: s
line—theoretical, mobile domain walls; dash line—theoretical, immob
domain walls; points—experimental.7

FIG. 3. Magnetostriction vs squared magnetic field in polydomain crys
solid line—theoretical, mobile domain walls: dash line—theoretical, imm
bile domain walls; points—experimental.7
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average cos 2(w2C) value ~increasing section of the curv
in Fig. 2!. After this process is finished, variation o
monodomain magnetostriction is defined only by an incre
of magnetization in the external magnetic field~decreasing
section of the curve in Fig. 2!. It is seen from~21! that in the
monodomain state the slope (D l / l )' vs H0

2 depends upon the
differencelme

(m)2lme
( l ) only, that must be considered as a ph

nomenological parameter.

3. AFMR spectra

Experimentally measured field dependence of the lo
frequency AFMR7 shows that below 5 kOe the resonan
frequency is approximately two times lower than the va
extrapolated from measurements at higher frequency. In
interval H0;5 – 7 kOe field dependence of AFMR is prac
cally vertical and starting from 7 kOe it turns out to be
agreement with high-frequency measurements. The cha
teristic field value coincides with the value of monodome
zation fieldHc observed in magnetostriction experiments.

The observed peculiarity in the AFM spectra can be
terpreted in the framework of the equilibrium magnetoelas
domain model developed above. Indeed, for the infin
samples the low AFMR frequency is contributed by the m
netic anisotropy field and magnetoelastic field as well, du
the fact, that the crystal lattice is ‘‘frozen.’’ On the oth
hand, it was shown by Gann and Zhukov14 that for small
samples the lattice relaxes together with the antiferrom
netic vectors, and then, the resonance frequency is defi
mainly by the local anisotropy field.

The similar effect of ‘‘unfreezing’’ of crystal lattice can
be achieved in the AFM with the magnetoelastic DS, if t
domain size is quite small. To catch the effect, let us c
sider the in-plane oscillations of the magnetic moments
gether with acoustic waves in the polydomain sample w
mobile domain walls. Low-frequency AFMR can be foun
on the basis of Lagrangian formalism with a Lagrang
taken in a standard form:15

L5E dvS ẇ2

2Jg2
1

1

2
ru̇2D 2Fvol , ~22!

whereg is gyromagnetic ratio,r is a crystal density,u is a
displacement vectorFvol is given by formula~4!. Corre-
sponding Euler–Lagrange equations have the form:

5
ẅ2

g2

2
H0

2 sin 2~w2C!1
g2

3
Hs f

2 sin 6w216g2lme
~ l !

3JM0
2@~uxx2uyy!sin 2w22uxy cos 2w#50

üx2s2F ]2

]x2
1

]2

]y2Gux2
4lme

~ l ! M0
2

r F] cos 2w

]x
1

] sin 2w

]y G50

üy2s2F ]2

]x2
1

]2

]y2Guy2
4lme

~ l ! M0
2

r F] sin 2w

]x
2

] cos 2w

]y G50,

~23!
wheres5(c66/r)1/2 is the in-plane sound velocity and equ
librium w value depends upon thex andy coordinates. Equa
tions ~23! describe the perturbations over inhomogene
~polydomain! state of the sample.
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The low-frequency branch of AFMR forH0,H1c can
be then calculated from the following equation

v25g2H Hs f
2 1HME

2 F12E k2~ uaku21ubku2!

k22~v2/s2!
dkG J ,

~24!

whereHME58M0
2lme

( l ) AJ/c66 is a magnetostriction field;ak ,
bk are the Fourrier components of the functions sin 2w(r )
and cos 2w(r ), correspondingly,*(uaku21ubku2)dk51.

The relation~24! shows that resonance frequency d
pends upon the average domain sized. For macroscopic do-
mains with d@l[s/(gHs f) characteristic value ofk;1/d
!s/v and the last term in~24! can be neglected. In this cas
the domain can be treated as infinite, corresponding AF
frequency is

VAFMR
~`! 5gAHs f

2 1HME
2 ~25!

and we arrive to a standard situation with the ‘‘frozen’’ la
tice, AFMR gap is defined by anisotropy and magnetoel
ticity as well. In the opposite case withd!l, the Fourrier
spectrum of functions sin 2w(r ) and cos 2w(r ) has two sig-
nificant contributions withk50 and k5p/d. The corre-
sponding expression for AFMR frequency is

VAFMR5gS Hs f
2 1

H0
4HME

2

4HMD
4 D 1/2F11

g2HME
2 d2

2p2s2

3~ uap/du21ubp/du2!G,VAFMR
~`! , ~26!

where we have taken into account that

ua0u21ub0u25^cos 2w&21^sin 2w&25
H0

4

4HMD
4 .

So, in the magnetically inhomogeneous sample the cry
lattice does follow the oscillations of the magnetic mome
and thus diminishes the magnetoelastic contribution to
resonance frequency@see formula~26!#. This effect should
be more pronounced in CoCl2, where magnetoelastic contr
bution into AFMR spectrum is of the same order as an
isotropy one.

The field dependence of AFMR spectrum in CoCl2 can
be thus explained as follows. Suppose, at zero field
sample has a well developed DS with the average s
d<l ~for CoCl2 l;1027 m). The lattice then proves to b
partially ‘‘unfrozen’’ and frequency is defined mainly by an
isotropy field @see expression~26!#. The external magnetic
field affects the AFMR frequency in two ways: through th
variation of average cosine and sine values and through
increase of the average domain size4! d(H0) @last term in
~26!#. As a result, the frequency grows smoothly with t
field H0 . After the domain size achieves macroscopic va
d;R@l, the lattice becomes frozen, and resonance
quency steeply jumps to the value corresponding to infin
homogeneous sample@formula ~25!#. Tentative behavior of
AFMR vs magnetic field calculated from~25! and~26! with
g56, Hs f52 kOe, HME51.5 kOe,HMD53.3 kOe is shown
in Fig. 4.



o-
a
he

in
re

et
rro
n
o

ag
th
te
e
re
t

ra

-

on
a
ith
u

us
na

n-
e of
he
el
etic

ac-
rgy
lting

to-
tion

gle
l
tic

ion
per.
al-

oted
are
com-

n-
ted
o-
tic

n.
re
the
ys.

es
the
o-
e,

etic

g-
-
o-

g-
e

red
up-

f

na-

nc
us

525Low Temp. Phys. 25 (7), July 1999 E. V. Gomonaj and V. M. Loktev
Additional decrease of AFMR frequency in the polyd
main sample can also result from the damping of the dom
wall motion, stimulated by reassembling of the DS in t
external magnetic field.16 The ultimate value of AFMR fre-

quency,ṼAFMR5AVAFMR
2 2d2, whered is the damping co-

efficient, can be significantly lower thanVAFMR
(`) .

It can be shown that the model of immobile doma
walls gives another form of spectrum which does not cor
late with the experimental data.

4. Discussion

Above we propose the model which naturally interpr
the antiferromagnetic domains in the easy-plane antife
magnets as equilibrium. The model is based on the mag
toelastic origin of the domains, supposition of mobile d
main walls and additional condition imposed on the aver
strain of the sample. For illustration we have considered
simplest example when the condition in question was rela
with the surface tension of the sample which was the cas
the surface energy made a significant contribution into f
energy of the sample. As a consequence of the model,
value of monodomenization field depends upon the cha
teristic sizeR of the sample and thus vanishes whenR tends
to infinity.

The results obtained could be generalized ifR implies
the characteristic size of substructure unit of the sample~i.e.,
dislocation-free region or crystallite!, defined by the techno
logical factors. In the case of fixed~glued! sample expression
~2! should be substituted with corresponding boundary c
ditions for the sample faces. Anyway, finite-size effects c
play a crucial role in the behavior of antiferromagnets w
significant magnetostriction and should be taken into acco
in interpretation of experimental results.

The predicted behavior of the DS of AFM is analogo
to that of ferromagnetic. Namely, up to some critical exter

FIG. 4. Theoretical field dependence of resonance AFMR freque
~scheme!: solid line—polydomain sample; dash line—infinite homogeneo
sample.
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field value, the effective internal magnetic field is compe
sated due to the reassembling of the domains. The valu
critical field is defined by the geometry and size of t
sample. It is interesting and important that in AFM mod
considered the long range interactions include no magn
component and are completely provided by elasticity.

The size of the domains can be calculated with the
count of short-wavelength contribution to the surface ene
which compensates the increase of volume energy resu
from the domain walls.

In our calculations we have not considered the magne
static effects and domain walls themselves. Demagnetiza
factor influences the DS in the region of 1st order~spin-flop!
phase transition which takes place in narrow interval of an
C'0 ~see Ref. 4!. For arbitrary orientation of the externa
magnetic field in the easy plane of AFM the magnetosta
contribution is (HMD/2HE);0.06!1 times smaller than the
surface energy and thus can be neglected.

The account of domain walls is necessary for evaluat
of the domain size that is out of scope of the present pa
The structure of domain walls can be calculated in an an
ogy with general approaches~see Ref. 3! by taking into ac-
count magnetic and elastic subsystems. It should be n
that in the defect-free sample the interdomain boundary
ideally conjugated and no stresses appear because of
patibility conditions.

CONCLUSIONS

1. The domain structure of easy-plane AFM with dege
erated orientation of antiferromagnetic vector can be trea
as equilibrium in the finite-size sample with the mobile d
main walls. The effect originates from the magnetoelas
nature of the domains with the account of surface tensio

2. At zero magnetic field all types of the domains a
equally represented. The external magnetic field effects
magnetic and elastic properties of the sample in two wa
At small field value variation of the domain structure giv
rise to additional average strain field which compensates
external magnetic field, the orientation of the magnetic m
ments inside domains being fixed. At some critical valu
H05Hc , the sample becomes monodomain and magn
field results in reorientation of the magnetic moments.

3. Experimentally observed magnetostriction vs ma
netic field dependence for CoCl2 crystal is adequately de
scribed in terms of the model under consideration with m
bile domain walls.

4. AFMR frequency of polydomain crystal can be si
nificantly lowered due to ‘‘unfreezing’’ of the crystal lattic
if the size of domain is quite small.

5. The above mentioned calculations can be conside
as a basis for the following important and quite general s
position: variation of the surface energy~that is of Coulomb
nature and so is not small! can result in the formation o
equilibrium inhomogeneous state~or in other words, the
equilibrium domain structure of magnetoelastic or elastic
ture!.

y
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1!We cannot exclude another possibility, when, for example, due to the

defect concentration, the internal stresses govern the local equilibrium
entation of AFM vector. After the magnetic field is removed, this vec
reverts to the initial state or to the nearest easy direction. On the o
hand, observations5 point to the regular DS rather than to the stochasti

2!We don’t distinguish between the states with 1 and21. Besides these thre
directions are usually provided by hexagonal anisotropy, as it was
gested in Ref. 4: but in rhombohedral AFM this anisotropy can be a
caused by the difference in strain componentsuxz•uyz that results in 60°
in-plane anisotropy for1 vector. In what follows, however, we shall sup
pose that there is an in-plane magnetic anisotropy which effectively
cludes both these factors. So, corresponding strain components wi
omitted for simplicity.

3!The similar equality holds true for DS corresponding to the so-called
termediate state that exists in the vicinity of the 1st order spin-reorienta
phase transition in the easy-axis AFM.3

4!It is easy to check that another solution of~7! and ~8! with Ceff5p/2 is
energetically unfavorable.

5!We suppose that the change of the DS proceeds by the growth o
domains of certain type at the expense of others.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Orientational effect in ultrasonic attenuation in metals under the conditions of
magnetoacoustic resonance

A. V. Yeremenko, O. V. Kirichenko, and V. G. Peschanski * )
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Ukraine, 310164 Kharkov, Ukraine
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Fiz. Nizk. Temp.25, 708–711~July 1999!

Ultrasonic absorption in metals~degenerate conductors! in a strong magnetic field is investigated
theoretically. Peculiarities in the orientational magnetoacoustic resonance are discovered
and compared with the known Reneker tilt effect. Special role of open Fermi surfaces is
emphasized. ©1999 American Institute of Physics.@S1063-777X~99!00907-X#
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Absorption of ultrasonic waves in conducting media in
strong magnetic fieldH is of the resonance type if the radiu
of curvaturer of the trajectory of charge carriers is muc
smaller than their mean free pathl , but exceeds significantly
the acoustic wavelength 1/k. Magnetoacoustic resonance
metals is connected with a drift of charge carriers along
acoustic wave vectork for

kl@kr@1. ~1!

Charge carriers that move for a long time in phase w
the acoustic wave interact effectively with its field. The r
gion of effective interaction in the magnetic field is conce
trated near the turning point on the electron orbit, wh
k–v50. The number of wavelengths over which the electr
drifted along the wave vector to meet the wave at the sa
phase at the turning point is immaterial. Consequently,
condition of resonant interaction or charge carriers with
wave has the form

~k• v̄2v!T52pn, n50,1,2,3, ~2!

whereT52p/V52pm* c/eH is the period of motion of a
charge in the magnetic field,e, v, and m* are the charge
velocity, and cyclotron effective mass of electron in vacuu
the bar over the letter indicates averaging over the timeT.

As a rule, the frequencyv of the acoustic wave is muc
smaller than the collision frequency 1/t of charge carriers
and naturally much smaller than the frequencyV of electron
rotation in a strong magnetic field (Vt@1) so that the quan
tity vT for a nonzeron can be disregarded in the resona
condition ~2!. In this case, the resonance is manifested m
strongly when conduction electrons drift alongk in open
trajectories forH'k,1 and charge carriers belonging to th
entire layer of open cross sections of the Fermi surf
«(p)5«F by the planepH5p–H/H5const participate in the
formation of resonant peaks in the dependence of the da
ing decrement of acoustic waves on the magnitude of
magnetic field.

Resonance is observed for values of magnetic field,
which the drift alongk over the timeT, i.e.,
5271063-777X/99/25(7)/3/$15.00
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k• v̄T/k5E
0

T

dtk• v̄~ t !/k5cP0 sinw/eH ~3!

is multiple to the acoustic wavelength:k• v̄T/k52pn. Here
P0 is the period of the Fermi surface along the directionpx

of its ‘‘openness,’’ i.e., the direction of drift of charge carr
ers along the trajectory in the momentum spacepH5const,
andw is the angle between thex-axis and the acoustic wav
vector.

For kr@1, attenuation of acoustic waves in metals
mainly associated with electron viscosity and is determin
by the deformation mechanism of dissipation.2 Damping
decrement for acoustic waves, i.e.,

G5Q/ru̇2s ~4!

can be easily found from the dissipative functionQ deter-
mined by the nonequilibrium distribution function for charg
carriers in a reference frame moving with the deformed cr
tal lattice with velocityu̇. Herer is the crystal density,s the
velocity of sound, andu the displacement of ions under th
action of deformation.

The solution of the kinetic equation for the charge c
rier distribution function f 5 f 0@«(p)1 ivp•u#2c] f 0 /]«
linearized in a weak perturbation of conduction electro
i.e.,

v
]c

]r
1

]c

]t
1S 1

t
2 iv Dc5g ~5!

allows us to write the dissipative function in the form

Q5E 2d3p

~2ph!3 d@«~p!2«F#cc* /t5^cc* /t&. ~6!

The collision operator in Eq.~5! is taken in the approxi-
mation of the relaxation timet of charge carriers,f 0 is the
equilibrium Fermi function of the conduction electron dist
bution, and

g52 ivL i j ~p!ui j eẼ•v. ~7!
© 1999 American Institute of Physics
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The timet determines the position of a charge on its traje
tory in a magnetic field in accordance with the equation
motion

]p

]t
5

e

c
@v3H#. ~8!

The renormalization of the energy spectrum of charge ca
ers under the action of crystal deformation, i.e.,

d«5l i j ~p!ui j ~9!

is contained in the kinetic equation in the form taking in
account the conservation of charge carriers, namely,

L ik~p!5l ik~p!2^l ik~p!&/^1&. ~10!

Here l i j (p) are the tensor components of the deformat
potential, and the electric field

Ẽ5E2
iv

c
@u3H#1

muv2

e
, ~11!

accompanying the acoustic wave is taken into account
reference frame moving with the vibrating crystal lattice.

Using relations~4!–~9!, we can easily find the dampin
decrement of acoustic waves:

G~H !5G0

r

l E dpH /pF

coshT/t2cos~k• v̄T2vT!
. ~12!

Here pF is the characteristic Fermi momentum andG0

5v/v is the absorption coefficient of sound in zero magne
field. In formula~12!, we have omitted insignificant numer
cal factors of the order of unity as well as small correctio
oscillating with 1/H and proportional to (kr)21/2.3–6

It follows from formula ~3! that the drift of charge car
riers alongk over a period of motion in an open orbit in
plane orthogonal to the magnetic field is the same for
conduction electrons in the entire layer of open cross s
tions of the Fermi surface by the planepH5p•H/H. Accord-
ing to formula~12!, all charge carriers belonging to the lay
of open cross sections of the Fermi surface forvT!1 par-
ticipate in the formation of a resonant peak of absorption
acoustic energy of heightG0l /r for

Hn5
kcP0 sinw

2pne
. ~13!

It should be borne in mind that this result is valid for
sufficiently wide layer of open electron trajectories, f
which the contribution of charge carriers with open cro
sections of the Fermi surface close to a self-intersecting o
to acoustic energy absorption is negligibly small. The per
of motion of charge carriers in a magnetic field increa
unlimitedly as we approach the boundary self-intersect
cross sections of the Fermi surface, which separate the l
of open cross sections from closed electron orbits, attain
the minimum value somewhere inside this layer. Con
quently, the functionT(pH) always has at least one extr
mum ~minimumTmin!. The divergence ofT(pH) near a self-
intersecting orbit is logarithmic, and hence the number
charge carriers for whichvT>1 is proportional to exp
(21/vTmin) for vTmin!1, and their contribution to the
-
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acoustic damping decrement is negligibly small. If the lay
of open cross sections of the Fermi surface is narrow, i.e.,
separation between self-intersecting orbits is rather small,
conditionvT!1 cannot be satisfied even for quite large v
ues of magnetic field. In this case, the contribution of aco
tic waves to damping comes mainly from charge carri
with close orbits.

For certain orientations of the wave vector, for whic
sinw is of the same order of magnitude as the ratio of
velocity of sounds5v/k to the Fermi velocity of conduction
electrons, an absorption peak is observed forn50. This peak
is of the same origin as the abrupt increase in the dampin
sound in the absence of open cross sections of the F
surface in a strong magnetic field (kr!1), which takes place
when the vectorsH and k deviate from orthogonality
through a small angleu of the order of the ratio of the ve
locity of sounds to the extremal value of the drift velocity
v̄H of charge carriers along the magnetic field~tilting
effect!.7–10

In contrast to resonant absorption of acoustic energy
n differing from zero, the zero line of absorption~peak at
n50! is possible when the drift velocity of charge carrie
coincides with the velocity of sound. Its position does n
depend on the magnetic field and is determined only by
orientation of the acoustic wave vector relative to the m
netic field and the direction of charge carrier drift in op
trajectories. In this case, the distance at which the amplit
of acoustic vibrations decreases by a factor ofe ~and equal to
1/G! is the same as forH5Hn .

When the orthogonality of the vectorsH and k is vio-
lated, the condition of resonant interaction of conducti
electrons with the acoustic wave assumes the form

c

eH S kP0 sinw1k
]S

]pH
sinu22pm* v D52pn, ~14!

whereS is the area of the cross section of the Fermi surfa
by the planepH5const.

For kr sinu!1 andvT!1, the last two terms in formula
~14! are small, and their inclusion does not affect sign
cantly the shape of resonant curves in the energy absorp
of acoustic waves withn differing from zero. However, the
height of absorption peaks decreases sharply forkr sinu
>1. In the case when]S/]pH has an extremum at the Ferm
surface, the peak height has the form

G res5
G0l /r

~kl sinu!1/2. ~15!

for

Hn5
kc

2pne S P0 sinw1
]S

]pH
0 sinu D . ~16!

This absorption peak is formed by a small fraction
electrons from the neighborhood ofpH5pH

0 , where the dis-
placement of electrons over a period along the magnetic fi
has an extremum, i.e.,

]2S

]pH
2 U

pH5p
H
0

50. ~17!
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If ]2S/]pH
2 does not vanish anywhere and is bound

everywhere on the Fermi surface, the absorption coeffic
for acoustic energy has the same form forkr sinu>1

G5
G0

kr sinu
~18!

in the absence of open cross sections of the Fermi surfac
well as in the presence of such cross sections for any or
tation of charge carrier drift in a plane orthogonal to t
magnetic field. A considerable decrease in the height of
resonant peak is due to the fact that the variation ou
‘‘shifts,’’ the role of effective charge carriers from one typ
to another.

For vt>1, the last term in formula~14! cannot be dis-
regarded any longer. If the charge carrier drift along
wave vectork is associated only with the presence of op
cross sections of the Fermi surface for a given orientation
magnetic field, i.e., foru50, the absorption peak is displace
and is observed for

Hn5
kc

2pne
~P0 sinw22pm0s!, ~19!

wherem0 is the extremal effective mass of charge carrie
and the heightG of the peak decreases with increasingvt by
a factor of (vt)1/2.

If the cyclotron effective mass has not one but seve
extrema, the number of acoustic energy absorption peaks
creases in the same proportion.

An orientational acoustic energy absorption peak in
pendent of the magnitude of the magnetic field is obser
when conduction electrons do not lead the acoustic wa
and their drift velocity alongk is equal to the velocity of
sound. When the orthogonality of the vectorsk and H is
violated, the resonant peak forn50 is formed by charge
d
nt

as
n-

e

e

f

,

l
e-

-
d
e,

carriers corresponding to the extremal values of the quan
(]s/]pH)sinu22pm*s, i.e., satisfying the condition

]2S

]pH
2 sinu2s

]2S

]pH]«
50. ~20!

Thus, the height and position of resonant peaks of aco
tic energy absorption by charge carriers in metals and deg
erate conductors are very sensitive to the orientation of m
netic field and acoustic wave vector.

Magnetoacoustic effects sensitive to the shape of
Fermi surface1,3,4,7were successfully used as a reliable sp
troscopic method for studying the electron energy spectr
of metals. The aim of this communication is to emphas
once again the potentialities of this method, which make
possible to obtain additional information on the spectrum
charge carriers in metals and conductors with metal-t
conductivity ~in particular, to analyze in detail the effectiv
masses of electrons with open trajectories in the momen
space!.
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Bifurcations and a chaos strip in states of long Josephson junctions
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Stationary and nonstationary, in particular, chaotic states in long Josephson junctions are
investigated. Bifurcation lines on the parametric bias current-external magnetic field plane are
calculated. The chaos strip along the bifurcation line is observed. It is shown that
transitions between stationary states are the transitions from metastable to stable states and that
the thermodynamical Gibbs potential of these stable states may be larger than for some
metastable states. The definition of a dynamical critical magnetic field characterizing the stability
of the stationary states is given. ©1999 American Institute of Physics.
@S1063-777X~99!01007-5#
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INTRODUCTION

Dynamical chaos in long Josephson junctions is of gr
interest because it can be a source of a dynamical nois
devices based on them, in particular, in SQUIDs, limiting t
sensitivity of these devices. Furthermore, dynamical chao
long Josephson junctions~LJJ! is a very interesting physica
phenomenon taking place in nonlinear systems in the
sence of an external stochastic force.1–9 Dynamical chaos in
a LJJ is easily excited and therefore it may also be inve
gated experimentally rather easily.10,11

In our previous works12,13 we have shown that among
set of solutions of the Ferrell–Prange equation describ
stationary states of the LJJ in an external magnetic field14 are
both stable and unstable ones. At the same time, these
tionary states are asymptotic solutions of the nonstation
sine-Gordon equation and we have also shown that a se
tion of the stable solutions can be governed by a rapid da
ing in time of the initial perturbation entering into the no
stationary sine-Gordon equation through the bound
conditions. Changing the intensity of this perturbation
fixed shape, we can obtain various stationary states for
LJJ without a bias current or three clusters of states~station-
ary, and time dependent regular and chaotic! in the presence
of a bias current. It turned out that asymptotic states are v
sensitive to an external perturbation, its value and shape
fine the state~stationary, regular or chaotic! to which the
system will tend att˜` ~we have called this influence o
the selection of asymptotic states of the small rapidly dam
ing initial perturbation in time an effect of memory!. The fact
of coexistence of all these three characteristic asympt
states selected only by the form of the initial perturbat
seems to be astonishing. It is evidently enough that
Ferrell–Prange equation will not have solutions at a la
bias currentb. Therefore the question arises: at which valu
of b do stationary states of a LJJ disappear or what will b
boundary in the parametricb-H0 plane (H0 is an external
magnetic field! that separates this plane on the regions wh
stationary states do and do not exist? Since the numbe
solutions of the Ferrell–Prange equation changes at varia
5301063-777X/99/25(7)/5/$15.00
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of the parameters (H0 ,b), another question arises: what
the form of bifurcation lines in the planeb2H0 that separate
the parametric plane on the regions with a different num
of stationary solutions of the Ferrell–Prange equation?

The existence of several stable solutions of the Ferre
Prange equation is equivalent to the fact that thermodyna
cal Gibbs potentialG associated with the distribution of th
magnetic field along the junction has minima, and each m
mum corresponds to a certain solution of the Ferrell–Pra
equation. Does a global minimum ofG correspond to the
most stable state~e.g., in the Lyapunov sense!? In the case of
the junction of the finite length both Meissner and one-flux
states are thermodynamically advantageous simultaneo
so it is interesting to investigate dynamical properties
these states. Answering this question, we introduce a
namical critical field that describes the stability characteris
of the junctions.

In Sec. 1 bifurcation lines on the parametricb2H0

plane are calculated. In Sec. 2 the definition of the dynam
critical magnetic field is given and the dependence of t
field on b and the length of the junctionL is calculated. In
Sec. 3 transitions between states are described. It is show
Sec. 4 that a chaos strip arises along the bifurcation line
the parametricb2H0 plane. The last Sec. 5 contains th
discussion of our calculation and brief conclusions.

1. Bifurcation lines

Stationary states of a LJJ are investigated using the
merical integration of the Ferrell–Prange equation:

wxx~x!5sinw~x!2b, ~1!

wherew(x) is the stationary Josephson phase variable,b is
the dc bias current density normalized to the critical curr
j c , x is the distance along the junction normalized to t
Josephson penetration lengthlJ5ACF0/8p2 j cd, F0 is the
flux quantum,d52lL1b, lL is the London penetration
length,b is the thickness of the dielectric barrier. The boun
ary conditions for Eq.~1! have the form

wx~x!ux505wx~x!ux5L5H0 , ~2!
© 1999 American Institute of Physics
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whereL is the total length of the junction normalized tolJ

and H0 is the external magnetic field perpendicular to t

junction and normalized toH̃5F0/2plJd.
Numerical integration of Eqs.~1!–~2! allows us to find

the regions with a certain number of solutions on the pa
metricb2H0 plane~Fig. 1!. It is easy to show that the set o
points corresponding to the even number of solutions fo
two-dimensional domains on this plane, whereas the set
responding to the odd ones may form just one-dimensio
curves. Mostly, the lines corresponding to the odd numbe
the solutions of the Ferrell–Prange boundary problem co
cide with the bifurcation lines. Using the shooting meth
for solving of the boundary problem one can prove that
2p-periodicity of the functionH(w0) expressing the depen
dence of the magnetic field at the right side of the junct
(x5L) on the phase taken at the left side (x50) results in
the appearing of the odd number of solutions only when
H(w0) touches the lineH5H0 in an extreme point, i.e.
]H(w0)/]w050. As an illustration, we have plotted in Fig.

FIG. 1. Bifurcation lines. The number of solutions of the Ferrell–Pran
equation~1!–~2! are pointed out. The number of stable states is indicate
brackets.M denotes a stable Meissner state and 1f denotes a stable one
fluxon stateL55.

FIG. 2. Dependence of the magnetic field atx5L on the phase taken at th
left side of junctionx50 at H050.5, L55, b50.25 andb50.45.
-
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the function H(w0) at H050.5, L55, b50.25 and b
50.45.

Boundaries between the regions—bifurcation lines
define an essential modification of the system. The bifur
tion lines in Fig. 1 are obtained forL55; here a step byb is
equal to 5•1023 and a step byH0 is equal to 2.5•1023. In
this figure the numbers of solutions of Eq.~1!–~2! are
pointed out, the numbers of stable solutions are given in
brackets, whileM and 1f denote a stable Meissner and on
fluxon states, respectively. It is seen that a Meissner sta
stable at small values ofH0 and at large values ofH0 a one
fluxon state is stable. It should be noted that the region wh
there are no stationary solutions~region 0! bounds with the
region having a minimum of stationary solutions, bei
equal to 2~region 2!. In approaching the boundary of regio
0 and 2 the number of stationary solutions decreases: 6˜4
˜2˜0, on the other hand, a number of nonstationary sta
which are the asymptotic solutions of the sine-Gordon eq
tion, increases. Our calculations have shown that one of
stationary solutions in region 2 is stable, and another is
stable~metastable!. We noted earlier12 that the stable state
are symmetrical. The presence of bias currentb leads to a
symmetry violation that results, evidently, in the instabili
of the states.

The problem of the stability of stationary statesw(x)
was solved in the following way:13 the sine-Gordon equation
was linearized in the vicinity of stationary solution:w(x,t)
5w(x)1u(x,t), whereu(x,t) is the infinitesimal perturba-
tion. The equation foru(x,t)—the linearized sine-Gordon
equation—we can solve by means of the expansion of
function in terms of a complete system of eigenfunctions
the Schro¨dinger operator with potential cos@w(x)#:

u~x,t !5(
n

elntun~x!, ~3!

whereun(x) are eigenfunctions of the Schro¨dinger operator
of the problem:

2uxx~x!1u~x!cosw~x!5Eu~x!, ~4!

ux~x!ux505ux~x!ux5L50,

and

ln52g6Ag22En, ~5!

where g is the dissipative coefficient in the sine-Gordo
equation. We note that values ofl coincide with correspond-
ing values of Lyapunov exponents in the case when per
bations are considered with respect to the stationary s
tions. In the general case, Lyapunov exponents are calcul
in the same way as in Ref. 13. Thus, in the presence of a
current we have the different picture of a LJJ states than
b50 ~this case has been examined in Ref. 12!. For example,
at H051.9 the increasing ofb from 0 to 0.22 leads to the
changing of the stationary states number 6˜4˜2˜0, i.e.,
to a consecutive losing of the stationary solutions. Simu
neously, an increasing of the number of nonstationary st
occurs that we found by directly solving the nonstationa
sine-Gordon equation.

e
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2. Dynamic critical field

In the literature the critical magnetic fieldHc1 in a LJJ is
defined as a field value, at which an existence of a Josep
vortex ~fluxon, soliton! becomes advantageous thermod
namically for the first time~see, for example, Refs. 10 an
11!. In the case of an infinitely long junction the critical fie
is Hc1(`)54/p51.274. Essentially, this field correspond
to the global minimum of the thermodynamic Gibbs pote
tial for the one-fluxon state. However, in a junction of fini
length there are some local minima that coexist with
global one and every minimum corresponds to the solu
of Eqs. ~1!–~2!. Some of these solutions are stable, anot
unstable in the sense discussed in Sec. 1.

We write down the thermodynamic Gibbs potential
the form

G5E
0

L

dxF1

2
wx

2~x!112cosw~x!2bw~x!2H0wx~x!G .
~6!

HereG is the thermodynamic Gibbs potential per unit leng
along an external magnetic field and normalized toG̃
5F0/16p3l jd. The Ferrell–Prange equation is an extrem
of the functional~6!. An investigation of the second variatio
of G shows that all extrema of this functional satisfy to t
necessary and sufficient conditions of a strong minimum15

Thus, all solutions of Eqs.~1!–~2! ~both stable and unstabl
ones! correspond to minima of the thermodynamic Gib
potential; one of them is global, the others are local. O
calculations of the thermodynamic Gibbs potential~6! show
that, for example, atb50, L55 andH050.67 the Meissner
state has a global minimum (GM520.44), but the stable
one-fluxon state has a local one (G1 f54.03). The one-fluxon
state has a global minimum ofG starting atH051.57 (G1 f

522.582) and at the same value ofb andL. At this value of
H0 a Meissner state has a local minimumGM522.58. At
H0>2.09 the Meissner state disappears. Thus, at a field
than the critical oneHc1 , the stable one-fluxon state exist
We shall further call the minimum value of a magnetic fie
at givenL andb, at which the stable one-fluxon state appe
for the first time and which corresponds to the local mi
mum of the thermodynamic Gibbs potential as the dynam
critical field Hdc . It is interesting that the dynamical critica
field Hdc makes up on the parametric plane a line that co
cides with the bifurcation lineBC ~see Fig. 1!. Our calcula-
tions show that the bias current increases the dynamical c
cal field Hdc . Evidently, it is connected with a symmetr
violation of a state by the bias currentb. In Fig. 3 two stable
one-fluxon states atb50 and b50.1 (L55,H051.4) are
shown. It is seen that the state withb50.1 is asymmetric.
The dynamical critical field atL55 areHdc50.67 atb50
andHdc51.4 atb50.1. Upon increasingL the value ofHdc

is changed (b50): Hdc(L55)50.66, Hdc(L56)50.4,
Hdc(L57)50.26, Hdc(L58)50.15, Hdc(L510)50.06,
i.e. theHdc decreases. In this case the critical fieldHc1 has
the values: Hc1(L55)51.57, Hc1(L56)51.45, Hc1(L
57)51.38, Hc1(L58)51.34, Hc1(L510)51.28, i.e., the
Hc1 decreases also approaching to the value ofHc1(L5`)
51.274.
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3. Transitions between states

As it has been shown in the previous section, every s
tionary state of LJJ, i.e., the solution of Eqs.~1!–~2!, corre-
sponds to a minimum of the thermodynamic Gibbs poten
and these minima are not equivalent with respect to the p
lem of instability. For example, in Fig. 4 stationary states
LJJ atH052.035,b50.001 andL55 are shown. The value
of the Gibbs potential calculated using Eq.~6! are as follows:
G1525.03, G2524.52, G3524.61, G4524.64, G5

524.61,G6526.7. States 4~Meissner! and 6~one-fluxon!
are stable, the other ones are metastable. It should be n
that unstable state 1 corresponds to deeper minimum than
stable state 4. This property contradicts the naive idea
more stable states occur at deeper minima. Now we s
consider this question in detail.

The sine-Gordon equation with dissipation and bias c
rent describing an evolution of the initial state has the for

w tt~x,t !12gw t~x,t !2wxx~x,t !52sinw~x,t !1b, ~7!

wheret is a time normalized to the inverse of the Josephs
plasma frequencyvJ5A2pc jc /CF0, C is the junction ca-
pacitance per unit area,g5F0vJ/4pcR jc is the dissipative

FIG. 3. One-fluxon states atH051.4 andL55 for b50 andb50.1.

FIG. 4. Stationary states of LJJ atH052.035,b50.001 andL55. States1,
2, 3, 5 are unstable, states4 and6 are stable.
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coefficient per unit area,R is the resistance of junction pe
unit area. We write down the boundary conditions for Eq.~7!
in the form

wx~x,t !x50[H~0,t !5wx~x,t !ux5L[H~L,t !

5H0~12ae2t/2t0 cos 0,5t !. ~8!

The integration of Eqs.~7!–~8! for H052.035, b
50.001,L55 ~the same as in Fig. 4! andg50.26 gives: the
metastable state 1 passes to the stable state 6 at any valu
perturbation parametera, 2̃ 4 at a50, 2˜6 at a51,
3˜4 at a50.05, 3̃ 6 at a50.07, 4̃ 6 at a50.5 and so
on. Every transition from the metastable state to the sta
one, m˜n, is a transition from the state with the certa
value of local minimumGm to another state with smalle
value of minimumGn . These transitionsm˜n with Gm

.Gn are realized by certain values of the parameter of
initial perturbationa in expression~8!. One can say that the
local minima ofGl are connected with each other by a ce
tain disintegration channel along the coordinatea. From this
point of view one can say also that stationary states conta
specific ‘‘latent’’ parameter, by which a connection with di
ferent local minimaGl may be realized. In particular, th
perturbation parametera appears here as a ‘‘latent’’ param
eter. It is possible, there are several ‘‘latent’’ parameters c
necting the stationary states. One of the most important c
acteristics of ‘‘latent’’ parameters is that the stationary st
does not depend on them directly; however, the form of
asymptotic state and the rate of disintegration depend es
tially on them. The presence of a ‘‘latent’’ parameter app
ently explains, a nonequivalence of the different loc
minima with respect to the stability, especially in the ca
when a stable local minimum is above a nonstable local o
In Table I results of the integration of Eqs.~1!, ~2! and the
calculation of G for every one of these solutions atH0

51.174, b50, L58 are represented. The transitions b
tween statesm˜n are defined as follows: themth solution
of the stationary Ferrell–Prange equation~1!–~2! was taken
as an initial condition of the sine-Gordon Eqs.~7! and~8!. If
this mth state was unstable then it fell into thenth stable
state.

The scheme of the transitions between statesm˜n is
represented in Fig. 5. It is seen thatGm.Gn for all the

TABLE I. Transitions between states.

Number
of State Stability G

Transitions
m˜n

Sort of
Stable States

1 unstable 2.34 1̃ 10
2 unstable 2.78 2̃ 8
3 unstable 0.64 3̃ 8
4 unstable 14.69 4̃ 10
5 unstable 14.98 5̃ 10
6 unstable 14.69 6̃ 10
7 unstable 13.53 7̃ 10
8 stable 21.42 8̃ 8 Meissner
9 unstable 0.64 9̃ 8
10 stable 20.44 10̃ 10 1 fluxon
11 unstable 2.34 11̃10
12 stable 2.29 12̃ 12 2 fluxon
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transitions~we note thatG3 andG9 for the metastable state
3 and9 are less thanG12; the state12 is stable!. The stable
states—Meissner, one-fluxon, and two-fluxon—are shown
Fig. 6 at the same parameters as in Fig. 5.

4. Chaos strip

As we noted above, the number of stationary states
creases with approach to the bifurcation line 0–2, but
number of nonstationary asymptotic states is increased
multaneously. Changing the perturbation parametera we can
obtain three sorts of typical states: stationary, regular
chaotic.13 These states are distinguished not only by a fo
of the field distribution in the junction and a variation
time, but also by values of the Lyapunov exponentl: for the
stationary statesl,0, for the regular statesl<0 and for the
chaos statesl.0. The Lyapunov exponents were calculat
in the same way as in Ref. 13. However, as the calculati
have shown, chaotic states may be excited not in the wh
region 2~see Fig. 1!, but only in the bounded region in clos
to the bifurcation line 0–2. This region is extended in t
form of a narrow strip along the bifurcation line 0–2 a
proximately from 0.7 to 1.6 inH0 and in the range of 0.002–

FIG. 5. The scheme of transitions between statesm˜n. States8, 10 and12
are stable~8—Meissner,10—one fluxon.12—two fluxon!, others are un-
stable.H051.174,L58, b50.

FIG. 6. The stable states:M—Meissner, 1f —one-fluxon, and
2 f —two-fluxon at the same parameters at those in Fig. 5.
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0.015 inb. We note that the chaos strip is arranged mos
under the bifurcation line in the region 2, but not in th
region 0, as it may be expected because of all states in
region 0 are nonstationary. The chaos strip is outlined on
parametricb2H0 plane in Fig. 1.

This chaos strip along the bifurcation line 0–2 calls
mind ~to a certain extent! the separatrix of a nonlinear osci
lator, where a chaos motion is observed.

5. Discussion and conclusions

In the present work we have shown that the parame
b2H0 plane of a LJJ is separated on series of regions w
the different number of solutions of the stationary Ferre
Prange equation. The boundaries between these regio
bifurcation lines—characterize an essential modification
the system. A chaos strip arises along the bifurcation
0–2. We have found that the chaos strip is arranged in
main below the bifurcation line 0–2, where stationary sta
take place.

We have introduced the definition of a dynamical critic
field as the lowest field at which the one-fluxon state
comes stable for the first time in the Lyapunov sense.
addition, the Meissner state may also be stable at some
rameters. Because both the Meissner and the one-flu
states may be thermodynamically advantageous simu
neously, our definition based on the stability in the Lyapun
sense characterizes an important feature of the statio
states of the LJJ.

We have shown that disintegration of the metasta
states and the transition to some stable statesm˜n occur for
Gm.Gn . A metastable state corresponds to the local m
mum of the Gibbs potential, and also this minimum may
lower than this one of a stable state. A nonequivalence
these local minima we explain by means of existing o
‘‘latent’’ parameter not detecting in a stationary state,
y
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which, for example, two local minima may be connected a
a channel of the disintegration of the upper state may ar
In our case the perturbation parameter plays a role of a ‘
tent’’ parameter, however, the number of these parame
may be much greater. We note the analogy between
quantum transitions and the transitions mentioned above
though the system is described by the classical Ferre
Prange and sine-Gordon equations.

We are aware that we could not touch upon all questi
concerning the properties of a LJJ. We hope to return to
problems of a LJJ in our next work.

These investigations are supported by the Russian F
for Fundamental Research~Project No. 96-02-19321!.
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Helicons and magnetoimpurity waves in layered conductors
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It is shown that local electron states, caused by impurities in a layered conductor placed in an
external magnetic field, give rise to resonant correctionsdsab(v) to the high-frequency
conductivity tensordsab(v) of the layers. These corrections appear due to the resonant transitions
of electrons between the Landau levels and the local states and change dramatically the
spectrum of collective electromagnetic oscillations in the system because of the ‘‘branch crossing’’
nearby the frequencyv0 (\v0 is the local state energy!. As a result, a new magnetoimpurity
wave,v2(k), appears in the spectrum in addition to the helicon mode,v1(k), which
is known to exist in a pure layered conductor in a perpendicular magnetic field~k is the wave
vector along the magnetic field!. In the long wavelength limit,ka!1, the helicon-like
modev1(k) has a gap of the order ofv0 , whereas the magnetoimpurity mode in this limit goes
to zerov2(k);(ka)2 ~a is the distance between adjacent layers!. The small damping of
these modes due to the broadening of the Landau levels and the magnetoimpurity levels are also
calculated. ©1999 American Institute of Physics.@S1063-777X~99!01107-X#
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1. INTRODUCTION

Impurities in metals play a twofold role. First, they d
crease the free path of electrons and thereby damp ele
magnetic waves.1,2 On the other hand, impurities may crea
bound states which result in a dramatic change in the e
tron energy spectrum and create new electromagnetic m
in conventional metals.

The effect of impurities on the electronic energy spe
trum becomes much more pronounced in an external m
netic field which effectively decreases the dimensionality
the system and assists the localization of electrons by at
tive impurities. Local and quasi-local magnetoimpurity sta
~i.e., the ones localized nearby the impurity in an exter
magnetic field! were studied long ago in convention
metals3,4 and recently in two-dimensional~2D! conductors.5

Impurities break down the spatial homogeneity of a s
tem, they lift up the degeneracy of the electronic ene
spectrum on the Landau orbit center position and split
one local state from each Landau level. The magnitude
splitting, D, is equal to the energy of a bound state. Thus
new resonant frequencyvs5D1sV (V5eH/mc is the cy-
clotron frequency and the integers50,1,... numerates the
resonances! related to electron transitions between the La
dau levels and the magnetoimpurity ones appears in the
ductivity tensorsab(v) and gives rise to the resonant a
tenuation of the electromagnetic waves in metals.5

The conductivity tensor, as is well known, is the k
quantity in the theory of electromagnetic waves in metals
determines the dispersion of the electromagnetic wave
conventional1,2 and layered metals6–13 and supercon-
ductors.14
5351063-777X/99/25(7)/6/$15.00
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The high-frequency conductivity tensor of a 2D electr
gas with magnetoimpurity states in quantizing perpendicu
magnetic field was calculated in Ref. 5 and we are going
apply in what follows the results of these calculations
studies of magnetoimpurity electromagnetic waves in l
ered conductors.

Electromagnetic waves in layered conductors and su
lattices in a quantizing external magnetic field have be
studied in a number of works.6–13 It was found that a quasi
two-dimensional nature of layered conductors brings so
specific features compared to the results obtained for con
tional 3D metals. In particular, a new type of spiral waves
layered conductors under the conditions of the quantum H
effect have been predicted theoretically.9,11–13In these works
a model for layered electron gas was employed which
nores electron hopping across the layers because the q
tum Hall effect takes place in purely 2D systems. Thus,
most interesting case of quasi-two-dimensional behavio
electrons in superlattices corresponds to the model with
electron dispersion across the layers. In this model elec
magnetic waves can propagate only owing to the interla
electromagnetic correlations described by the Maxwe
equations. The relationship between the electromagnetic
and the current within the layer is determined by the cond
tivity tensor which depends on the layer structure and de
mines the shape of the electromagnetic wave dispersio
layered conductors.

The purpose of the present paper is to calculate the
persion relation for a new weakly damped electromagn
wave caused by the resonant transitions between magnet
purity levels and the Landau levels in layered conductors
perpendicular to layers quantizing magnetic field.
© 1999 American Institute of Physics
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In Sec. 2 we discuss the physics of the high-freque
conductivity in a 2D conductor with magnetoimpurity state
Section 3 is devoted to calculations of the dispersion re
tions for helicons and magnetoimpurity electromagne
waves in layered conductors. Summary of the results
tained and the discussion are given in Sec. 4.

2. THE CONDUCTIVITY TENSOR IN A 2D CONDUCTOR
WITH MAGNETOIMPURITY STATES

The helicons in layered conductors at low temperatu
have a dispersion along the magnetic field that is descr
by the function9

v~k!5VW~ka!. ~1!

It turned out that their damping15 depends on the wave vecto
k by dint of the same functionW(ka) ~see Sec. 3 for details!:

g~k!5vW~ka!, ~2!

where

W~ka!5
sin2~ka/2!

~v* /2!21sin2~ka/2!
. ~3!

Herev is the electronic collision frequency due to impuriti
and lattice defects;v* 5vpa/c, a stands for the interlaye
spacing;c is the velocity of light andvp is the plasma fre-
quency. We have assumed above thatv is a smooth function
of the energy near the Fermi level. This holds true, in p
ticular, for potential scattering of electrons by impurities.

Generally, the role of impurities is more complicate
because of the possibility of creating bound states. This p
sibility is enhanced in an external magnetic field and in lo
dimensional systems. In the 2D system, an isotro
potential-well of arbitrary small intensity produces a bou
state with the energy16

« l52
\2

2mb2 expS 2
\2

2mb2U0
D . ~4!

Hereb is the radius andU0 is the depth of the potential well
m stands for the electron mass.

The external magnetic field applied perpendicular to
2D conductor with impurities produces a host of local stat
Impurities lift up the degeneracy on the Landau orbit cen
position and split off one level from each of the Land
levels. Depending on the sign of the potential the local i
purity level may appear either above or below Landau le
~correspondingly, for repulsive and attractive potentia!.
Therefore, the energy spectrum of considered systems
sists of a series of two sets of levels: the impurity levels a
the Landau ones. The separation between the impurity l
and the nearest Landau level in case of a weak attrac
potentialU0!\V is equal to

D52U0S b

l D
2

, ~5!

herel denotes the magnetic lengthl 5(\c/eH)1/2.
The local energy levels«k

l correspond to poles of th
scattering amplitude of electrons on the complex ene
plane and cannot be treated perturbatively. Therefore,
y
.
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necessary to take into account exact values of the scatte
amplitudeC~«! for calculations of the conductivity tensor o
a 2D conductor in the quantizing magnetic field.

Near the pole it becomes equal to

C~«!'
Rk

«2«k
l
. ~6!

Rk in Eq. ~6! is the residue of the scattering amplitudeC~«!
at the energy«5«k

l . If D!\V, then

Rk52p~ lD!2. ~7!

This quantity determines corrections to the conductivity te
sor sab(v,H) of a 2D electron gas in quantizing perpe
dicular magnetic field due to the localization of electro
nearby the impurity atoms. Such corrections in linear a
proximation on the impurities concentrationni have been
calculated in the paper.5 The corresponding results for th
diagonaldsxx and the Halldsxy components of the conduc
tivity tensor are

dsxx5 i
e2ne

mv F (
s50

`

axx
~s!

vs

v2vs1 iv
1 (

p51

`

bxx
~p!

vp

v2vp1 ivG ,

~8!

dsxy5
e2ne

mv F (
s50

`

axy
~s!

vs

v2vs1 iv
1 (

p51

`

bxy
~p!

vp

v2vp1 ivG .

~9!

Here vs and vp are the frequencies of electron transitio
between the Landau and the local levels,G5\v stands for
their broadening and determines thereby the quantityv.
Symbolsa ik

(s) andb ik
(p) denote the oscillator strength for th

resonant transitions. These quantities depend on the w
vectorq by dint of terms of the orderni(ql)2 which may be
discarded in the limitni(ql)2!1 ~q is the absolute value o
the in-plane wave-vector!.

Under above conditions, we have

axx
~s!5a0(

k
Rk@ f ~«k

l !2 f ~«k1s!#Pks
1 , ~10!

axy
~s!5a0(

k
Rk@ f ~«k

l !2 f ~«k1s!#Pks
2 , ~11!

Pks
6 5F k1s

~vs2V!2 6
k1s11

~vs1V!2G , ~12!

a05
ni

2p\ml4vsne
. ~13!

Here«n5\V(n11/2) andf («) is the Fermi function.
We do not use any specific form of the impurity pote

tial in Eqs. ~10!–~13! so that the quantities«k
l , G, and Rk

may be considered as fitting parameters of the theory or m
be calculated for some particular scattering potential.

In all above equations, frequenciesvs5v01sV corre-
spond to transitions from the local levels to Landau leve
whereas frequenciesvp5pV2v0 correspond to transitions
in the opposite direction (v05D/\). The summation in Eqs
~10! and~11! is only taken over those local levels which a
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involved into transitions at given frequency. Near the re
nant frequencyv5v0 only resonant terms withs50 are
left, so that

dsxx' i
e2ne

mv
axx

~0!
v0

v2v01 iv
. ~14!

dsxy'
e2ne

mv
axy

~0!
v0

v2v01 iv
. ~15!

The number of the terms in the sum overk in Eqs.~10! and
~11! depends on the chemical potential valuem. For ex-
ample, in case of an attractive impurity potential and a
under the condition«N

l ,m,«N only one term withk5N
contributes to the sums~10! and ~11!. Thus, taking into ac-
count Eq.~7! and the inequalityv0!V we have, from Eqs.
~10! and ~11!,

axx
~0!52

ni

ne

v0

V
~2N11!, ~16!

axy
~0!5

ni

ne

v0

V
. ~17!

N is the number of filled Landau levels,N5@m/\V#. The
symbol @X# here denotes the integer part ofX.

3. HELICONS AND MAGNETOIMPURITY WAVES

Having at hand the conductivity tensor of a 2D electr
gas in quantizing magnetic field17

sxx5s0~11g2!21, sxy52s01gsxx , ~18!

sxx5syy , sxy52syx , ~19!

where

s0~H !5
nee

2

mV
, g5~v2 iv!/V, ~20!

and corrections tosab due to the magnetoimpurity boun
states~14!–~17!; we now turn to the problem of the electro
magnetic wave propagation in layered conductors in an
ternal magnetic field. The dispersion equation for elect
magnetic waves in a uniform layered conductor in
perpendicular to conducting layers external magnetic fieldH
was obtained in a number of works.9,10,15According to Ref.
15, it says

detFdab2
2p iv

c2qv
sab~q,v,H !VabS~q,k,v!G50. ~21!

Heresab is the 2D conductivity tensor of a layer~the model
employed neglects electron hopping between the layers
that they are correlated only via the electromagnetic field!;
S(q,k,v) stands for the structural factor:

S~q,k,v!5
sinhqva

coshqva2coska
, ~22!

qv
2 5q22

v2«0

c2 , ~23!
-

o

x-
-

so

V115V1251, V225V2152
c2qv

2

v2«0
, ~24!

q is the in-plane wave vector;k is the wave vector compo
nent perpendicular to the layers~i.e., parallel to the fieldH!;
«0 is the dielectric constant of a substance between the
ers.

The dispersion equation~21! is rather general since i
determines the frequencyv5v(q,k,H) of a wave which
can propagate in the volume of a layered conductor a
function of the wave vectorq, k and the fieldH provided that
the conductivity tensor of the constituent layers is known

Substituting Eqs.~18!–~20!, ~14!, and ~15! in Eq. ~21!,
we have

11g21 igSs0~b2a!1ab~Ss0!25V~a i ,a'!, ~25!

V~a i ,a'!52ab~Ss0!2F2
ga i2 ia'

g1g0
1

11g2

~g1g0!2

3~a i
22a'

2 !G2Ss0~b2a!
ia i~11g2!

g1g0
.

~26!

We have introduced here the following notations:

a5
2pv

qvc2 , b5
2pqv

v«
, g05

iv0

V
, ~27!

a'5
ni

ne
g0 , a i5a'~2N11!. ~28!

The left-hand side in Eq.~25! is nothing but the dispersion
equation for electromagnetic waves in layered conduc
without the corrections due to the magnetoimpurity bou
states. The quantityV(a i ,a') depends on the impuritie
concentrationni /n« and vanishes whenni50.

Consider first the case of waves propagating along
magnetic field. These waves have zero component along
planes, q50 and, therefore, the structure form-fact
S(q,k,v) ~22! becomes

S~q,k,v!'
iv* ṽn0

12cos~ka!
, ~29!

whereṽ5v/vp , vp54pnee
2/ma is the plasma frequency

n05A«0 is the refraction index of the matter between t
layers.

The form-factor ~29! is small elsewhere except fo
ka!1 because of the smallness of the parameterv* ṽn0

!1. Putting ni50 and substituting Eq.~29! into ~25! we
found

11~g2 iX !22 i ~g2 iX !2AX2A2X250, ~30!

g5
v
V

, X5
v

V
, A5S v*

2 D 2

sin22~ka/2!. ~31!

The dispersion equation~30! has exact solutions~1! and
~2!, that is typical for helicons. The resonances atv5v0

brought into the system, owing to the magnetoimpur
bound states, should modify the helicons dispersion near
intersection of the dispersion curvesv(k) ~1! and v5v0 .
Qualitatively, the impact of this ‘‘crossing event’’ on th
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wave spectrum is well known:18 a twofold degeneracy is
lifted up, causing the appearance of two new branches in
dispersion law of helicons, one above and another belowv0 .
To consider this phenomenon in more detail, we should
clude theV-term ~26! in the right-hand side of dispersio
equation~30!.

Taking into account the smallness of the impurity co
centration and the conditionv0 /V!1, we have

11~g2 iX !22 i ~g2 iX !2AX2A2X2

5
2a'

X2X01 ig0
AX~AX2B!. ~32!

Here

B52N11, X05
v0

V
, g05

v0

V
,

andv0 is the broadening of the bound statev0 .
We see that the right-hand side of Eq.~32! ~which is due

to the magnetoimpurity bound states! enhances the degree o
algebraic Eq.~32! compared with Eq.~30! and bring forth an
additional rootX5X(k,A,g,g0), i.e., a new branch in the
wave dispersion equation.

The results of numerical calculations for the dispers
curves given by Eq.~32! are shown in Fig. 1.

The most dramatic changes are seen to take place
the crossing point of two branches: the helicon dispers
branch v(k), given by Eq.~1!, and the magnetoimpurity
~bound state energy! branch v5v0 . They are shown in
more detail in Fig. 2. We see that two new modes appea
consequence of this crossing: the low-frequency m
v2(k) and the high-frequency modev1(k). The low-
frequency mode dispersion forka!1, g50, g050 is given
by

v2~k!'V2~ka!2
2a'B

v
*
2 v0

H F11S v0

Va'BD 2G1/2

21J . ~33!

For ka.1, g50, g050 it behaves as

FIG. 1. The high-frequency helicon-like modev1(k) and the low-
frequency magnetoimpurity modev2(k) calculated numerically from the
dispersion equation~32! for v* 50.01, X050.1, a'50.1, a i510, g5g0

50.
he

-

-

n

ar
n

in
e

v2~k!'v02
Vv

*
2 a'B

sin~ka/2!
. ~34!

In the same fashion one can easily obtain explicit relatio
for the high-frequency modev1(k). In the case of zero
broadening (g5g050), we have

v1~k!'v022a'VF12
BV

v0v
*
2 ~ka!2G for ka!1

~35!

and

v1~k!'VF11
a'Bv

*
2

4 sin2~ka/2!
G for ka.1. ~36!

From the numerical calculations shown in Fig. 2, it follow
that there is no gap between the branchesv1(k) andv2(k)
for v50, sincev1(0),v0 . This gap appears for nonzer
Landau levels broadening as one can see from Fig. 2~b!,
where calculations are made forv50.01 and it is found that
v1(0).v0 , which is the upper limit of the low-frequenc
modev2(k).

FIG. 2. Thev1(k) andv2(k) modes~as in Figs. 1! shown in more detail
near the crossing point of helicons~dashed line! with the magnetoimpurity
frequencyv0 ~dots!. In difference to Fig. 1 parametersa' anda i are taken
to be a'50.01 anda i5100 for more descriptiveness of the picture. Th
absence of the gap between modesv1(k) and v2(k) is seen in Fig. 2a
~whereg50) sincev1(0),v0 . For slightly damped Landau levelsgÞ0
the above gap may appear, as is the case in Fig. 2b, where Rev1(0).v0 and
g50.01.
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In case of nonzerog and g0 both modes,v1(k) and
v2(k), are damped. In fact, only weakly damped modes
propagate in a layered conductor, which implies parame
g andg0 should be much less than unity. Writing the wa
frequency in the complex formv5Rev2i Im v ~i.e., taking
into account its damping! we found from Eq.~30! in the
linear ong andg0 approximation,

Im v6~k!5
V

2 H v6~k!

V Fb2d
v6~k!

V G1g0J
3H a12

v6~k!

V Fc23e
v6~k!

V G J 21

, ~37!

where

a5112a'AB, b52gX0~11A!,

c5X0~11A!222a'A2,

d5g0~122A2A2!12g~11A!, e5~11A!2. ~38!

The numerical calculations for damping of the low
frequency,v2(k) and high-frequency,v1(k), modes are
shown in Fig. 3.

4. SUMMARY AND CONCLUSIONS

We have shown above that magnetoimpurity sta
which appear in layered conductors in a quantizing exte
magnetic field are favorable for the propagation of the el
tromagnetic waves across the layers. These new modes c
into being near the frequencies of the electron resonant t
sition between the magnetoimpurity levelv0 and the Landau
levels. Physically, the magnetoimpurity modes do exist
cause of the electron localization at the impurity ato
which is favored by the external magnetic field and the tw
dimensional nature of the electron dynamics within the l
ers. This localization made conductors closer to dielect
which are known to be transparent for the electromagn
waves. The magnetoimpurity waves in conventional 3D m
als have been predicted by Kaner and Ermolaev19,20and then
considered theoretically in the so-called noncompensa
metals in which the electric charges are carried both by e

FIG. 3. The damping of thev1(k) and v2(k) modes shown in Fig. 1
calculated forg50.01 andg050.01.
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trons and holes.18 The quasi-two-dimensional character
the problem considered in this paper makes the whole p
nomenon more pronounced, because of more strong
Hove singularities in the density of electronic statesg(v) in
2D systems compared to 3D ones. The latter facilitates
creation of a bound statev0 ~i.e., the eigenvalue of the Lif-
shitz equation, which we took for granted above! and, in
particular, enhances the singularity in the frequency dep
dences of thedsxx(v) in Eqs.~14!–~15! compared to the 3D
case. Recall, that quantitiesdsxx(v) and dsxy(v) have
square-root singularities in the 3D case that arise due to
appropriate singularities of theg(v) at the Landau levels
and do not depend on the details of the attractive potentia
the impurities.

The spiral magnetoimpurity waves, to the best of o
knowledge, have not yet been observed, although the e
tence of the magnetoimpurity bound states was surely es
lished in some doped Bi compounds21–23 and semicon-
ductors.24

In layered conductors, the conditions for bonding
electrons by the attractive impurities in an external magn
field are more favorable than in 3D metals, which enhan
the chance of finding magnetoimpurity waves in such s
tems. Currently, a good deal of layered conductors~natural
and artificially fabricated! are under study and attraction o
researchers to the problem of magnetoimpurity waves
them is one of the purposes of this paper. Unfortunately,
most popular new layered systems, namely Bi- and Tl-ba
high-Tc cuprates, should be, to all appearances, exclu
from the list of candidates for observation of the magneto
purity modes in them because of the large dampingv.v
found in these materials aboveTc .25
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We present a detailed theory of induced persistent current~PC! produced by hyperfine interaction
in mesoscopic rings based on a 2D-electron~hole! gas in the absence of external magnetic
field. PC emerges due to combined action of the hyperfine interaction of charge carriers with
polarized nuclei, spin-orbit interaction and Berry phase. ©1999 American Institute of
Physics.@S1063-777X~99!01207-4#
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INTRODUCTION

The current situation in solid state physics is charac
ized in particular by a hectic search of various macrosco
topological quantum effects. The most popular of these
the persistent current~PC! phenomena~the oscillations of the
diamagnetic moment! in a non-simply connected mesoscop
conductor. PC is produced by a sensibility of a single part
wave function to a force-free field which is taken into a
count via the twisted boundary conditions:

Cuw505eiDwCuw52p , ~1!

where w is an angular variable, andDw is the topological
phase shift.

In multiparticle systems, Eq.~1! results in the oscillatory
dependence of the thermodynamic and kinetic characteri
on Dw. If Dw is governed by any varying external parame
g, e.g. the magnetic field, the response of a system is
oscillatory function ofg.

Normally, the actual experiments are performed on t
quasi-one-dimensional submicron metallic or semicondu
based1 loops pierced by a magnetic fluxF, andDw reveals
the Aharonov–Bohm effect~ABE!2,3

DwAB5
q

\c R A•dl52p
F

F0
, ~2!

whereF05hc/q, q is the charge of a conduction particle1!

The ABE-oscillations of the diamagnetic moment~the
PCs! reflect the broken clockwise-anticlockwise symme
of charge carriers momenta caused by the external ve
potential. The PC is defined as
5411063-777X/99/25(7)/5/$15.00
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I PC52c~]F/]F!, ~3!

whereF is the free energy of the loop.
In a recent publication,4 we have proposed a new mech

nism for the observation of adiabatically slow oscillations
PC with time specific for 2D quantum Hall systems. Th
mechanism does not apply to an external magnetic field,
the oscillatory currentI PC @Eq. ~3!# exists even atF50.4 The
bottomline physics behind these spontaneous PC can be
derstood along the following lines.

The time reversal symmetry breaking is in gene
achieved as the combined action of the ABF and topolog
spin-orbit interactions. It was shown in Ref. 5 that the top
logical phase shiftDw in Eq. ~1! is the sum of the ABE,
Aharonov–Casher6 and Berry7 phases providing the topo
logically nontrivial spatial charge carriers spins distributio

Dw5DwAB1DwAC1DwB , ~4!

where

DwAC5
mB

\c R dl•~E3s!, ~5!

DwB5sp~12cosx!, ~6!

heremB is the Bohr magneton,E is the electric field,s is the
charge carrier spin vector,x is the tilt angle of a magnetic
texture,s561 is the spin projection on a magnetic field.

As (d/dF)(Dw)52p/F0 , the PC can be a nonzer
function of DwAC1DwB even atDwAB50.
© 1999 American Institute of Physics
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It was proposed in Ref. 4 to create a spatial distribut
of the charge carriers spins through the hyperfine interac
with polarized nuclei. The contact hyperfine interaction is8

Hh f5
8p

3
gmBmn(

i
I i•sd~r2Ri !, ~7!

wheremn is the nuclear magneton,g is the g-factor, I i , s,
Ri , r are the nuclear and the charge carrier spins and
position vectors, respectively. Once the nuclear spins are
larized, i.e., if^( i I i&Þ0, the charge carriers feel the effectiv
field Bh f(t) which lifts the spin degeneracy even in the a
sence of an external magnetic field. At low temperatures,
nuclear relaxation rates are inconveniently small,9 in particu-
lar in GaAs/AlGaAs the nuclear spin relaxation times are
the order of 103 sec.10 The Zeeman splitting reaches on
tenth of the Fermi energy.11,12 The Aharonov–Casher phas
~5! arises from the spin-orbit interaction13 which in GaAs/
AlGaAs 2D-gas has the form14

HSO5
a

\
~s3p!•v, ~8!

wherep is the charge carrier momentum,v is the normal to
the surface, a50.25•1029 eV•cm for holes14 and a
50.6•1029 eV•cm for electrons,15 and

DwAC5
m*

\2 R a~v3s!•dl. ~9!

The combinationDwAC1DwB itself does not depend
on Bh f explicitly, the oscillatory dependence onBh f(t)
emerges in the PC through the mesoscopic fac
cos(2pAms(Bh f)/D)5 wherems(Bh f) is the Zeeman shifted
chemical potential of the charge carriers with the spin p
jections, andD is the spacing between the quantized elect
levels in a 1D-ring. The effect of Berry phase in 2DEG bas
AlSb/InAs/AlSb heterostructure was observed in Ref. 16

In this paper we consider PC in two cases: i! when nu-
clei are polarized along a certain direction in the plane and!
when nuclear spins form an out-of-plane crown texture.
show that:

i!. In this caseDwB50, andDwACÞ0 only if the spin-
orbit coupling is inhomogeneous@a5a(w)# such that

E
0

2p

dwa~w!eiwÞ0. ~10!

The inhomogeneity of the spin-orbit coupling plays t
same role as the topologically nontrivial spin texture.4,17

ii !. In this case the PC exists ata5const and even a
a50 the PC is nonzero due toDwB .

CALCULATION OF PERSISTENT CURRENTS

The induced PC is given by the Eq.~3! at F50. The
standard algebra~see the Appendix! gives the following
equation for theI PC:

I PC>
eT

\
(
l 51

`

(
j

sin~2p lnF
~ j !!

sinh~ lT/T̃~ j !!
U

F50

, ~11!
n
n

e
o-

-
e

f

r

-
n
d

i
e

whereT is the temperature, indexj numerates the roots of th
equation:

«~nF
~ j !!5m. ~12!

Here « is the eigenvalue of the Schro¨dinger equation,m is
the chemical potential and

T̃~ j !5
1

2p2 U]«

]nU
n5n

F
~ j !

, ~13!

is the crossover temperature.
In what follows we solve the Schro¨dinger equation for

the charge carriers confined to a 1D-ring with the radiusr,
obtainnF

( j ) and T̃( j ), and analyzeI PC in various geometries.
i). The in-plane polarized nuclei, DwB50. The charge

carriers Hamiltonian takes the form

Ĥ5
p̂2

2m*
1

1

2\
$as•n,p̂%12gmBBh fsx , ~14!

hereBh f is oriented along thex-axis in thexy-plane,m* is
the effective mass,g is the g-factor, $...%1 stands for the
anticommutator,

s•n5sx cosw1sy sinw,

p̂52~ i\/r!~]/]w2 i ~F/F0!!, F05hc/e.

Consider weak spin-orbit couplinga!Dr, where D
5\2/2m* r2.

The spectrum linear ina is

«n
6>DS n2

F

F0
D 2

7gmBBh f62DS n2
F

F0
D ^a cosw&

2Dr
,

~15!

where

^a cosw&5
1

2p E
0

2p

dwa~w!cosw. ~16!

The PC takes the form

I PC>
4peT

\Dr
^a cosw&(

l 51

`

l
sin~2p lAm/D!sin~p lb/ADm!

sinh~p2lT/ADm!
,

~17!

whereb5gmBBh f(t).
At low temperaturesT!ADm/p2 the r.h.s. of Eq.~17!

takes the form of the series rectangles:

I PC>
4e

\
Am/D

^a cosw&
r H d̃F2pAm/DS 12

b

2m D G
2 d̃F2pAm/DS 11

b

2m D G J , ~18!

whered̃(x) is the rectangle with the heightADm/pT and the
width p2T/ADm!1 centered at the pointsx52pk, wherek
is an integer. The magnitude ofI PC ~17! is of the order of

I PC;
a

Dr
I 0 , ~19!
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whereI 05eVF/2pr is the magnitude of a normal ABE pe
sistent current. At high temperatures,T@ADm/p2[T̃, the
PC decreases with temperature in a standard expone
way:

I PC>
8peT

\Dr
^a cosw&e2p2T/ADm

3sin~2pAm/D!sin~pb/ADm!. ~20!

In submicron rings, the opposite limita*Dr is more
favorable. In this case we can perform the perturbat
scheme over the ‘‘parity’’ of the spin-orbit coupling. On
can achieve slowly varying on the scale ofkF

21 coordinate
dependenta~w! by means of a controlled distribution of im
purities. If the ‘‘even’’ component̂a cosw& is made much
larger than the ‘‘odd’’ onê a sinw& the unperturbed Hamil-
tonian takes the form

Ĥ5
p̂2

2m*
1

1

2\
$asx cosw,p̂%12gmBBh fsx , ~21!

and the Schro¨dinger equation can be solved exactly. T
spectrum is

«n
65DS n6

^a cosw&
2Dr D 2

7gmBBh f . ~22!

The perturbation potential is

V̂5
1

2\
$asy sinw,p̂%1 . ~23!

One can easily see that the first correction overV̂ to the
spectrum is zero, and the second correction is negligibl
b@(a/r)Am/D.

The PC is

FIG. 1. Dependence ofI PC uponb when nuclei are polarized along a certa
direction in the plane form;104, a/r;2. ~m, a/r, b andT are expressed
here in units of D; I in units of I 0 ; for real submicron ringsD
51023– 1022 K.)
tial

n

at

I PC>
4eT

\

3(
l 51

` sinS p l
^a cosw&

Dr
D sin~2p lAm/D!sin~p lb/ADm!

sinh~p2lT/ADm!
.

~24!

In mesoscopic devicesb decreases with time exponen
tially b;b0 exp(2t/t1). The time scalet1 is macroscopically
long at low temperatures.10 The dependence of theI PC on b
~i.e., ont! for Eq. ~24! is shown at Fig. 1.

Equation~24! differs from Eq.~17! provided ^a cosw&
;Dr. If the fluctuating component̂a cosw&!Dr, the result
~24! is reduced to~17!.

ii !. The polarized nuclear spins form a crown,DwBÞ0.
Consider Bh f directed along the cylindrically symmetri
crown ~Fig. 2! tilted to thez-axis by the anglex. The elec-
tron spectrum can be obtained exactly following the pape18

We represent the Hamiltonian in the form

Ĥ5DS 2 i
]

]w
1

F

F0
D 2

1
1

2 H S 0 e2 iw

eiw 0 D ,

a

r S 2 i
]

]w
1

F

F0
D2b sinxJ

1

2b cosxsz . ~25!

The solution to the spectral equation is

C5S C1 ei ~m21/2!w

C2 ei ~m11/2!wD , ~26!

wherem5n11/2, n is an integer.

FIG. 2. Bh f directed along the cylindrically symmetric crown tilted to th
z-axis by the anglex.
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The spectrum is

«m
65DS lm

2 1
1

4D6F S D21
a2

r2 Dlm
2 12Dkblm1b2G1/2

,

~27!
g

al

s

co

n

wherelm5m1(F/F0), k5cosx2(a/Dr)sinx. The depen-
dence of the PC@Eq. ~36!# on b calculated numerically with
the spectrum~27! is plotted at Fig. 3.

After some straightforward but cumbersome calculatio
we get atk,1 the asymptotic expression forI PC
I PC>
4eT

\ (
l 51

`

~21! l
sin~p lk/A11~ma2/Dr2b2!!sin~2p lAm/D!sin~p lb/ADm!

sinh~p2lT/ADm!
. ~28!
m
of

re
Consider the case of a ‘‘strong’’ Zeeman splittin
b@(a/r)Am/D. In this limit one can easily see that

~21! l sin~p lk!5sin~DwAC1DwB!, ~29!

where

DwAC52p
am*

\2 r sinx. ~30!

Equation ~30! is evidently obtained from the gener
definition ~5! by the substitutions

~v3s!˜sr˜sinx, ~31!

which means that in a ‘‘strong’’ hyperfine field all the spin
are aligned to the crown direction.

In a ‘‘weak’’ hyperfine fieldb!(a/r)Am/D, the topo-
logical phases are expressed in terms of averaged spin
ponents:

DwAC52p
am*

\2 r^sr&, ~32!

where^sr&>bAD/m(r/a)sinx!1, and

DwB5p~12cosx!^sx&, ~33!

where^sx&[bAD/m(r/a)!1.

FIG. 3. Dependence ofI PC uponb in the case when nuclear spins form a
out-of-plane crown texture. (k;0.5, m;104, a/r;2, quantitiesb, T, m,
a/r are expressed here in units ofD; I in units of I 0 ).
m-

The remarkable feature of the Eq.~28! is that I PCÞ0
even ata50 whenDwBÞ0,6p, i.e. atxÞ0,p/2, (modp).

APPENDIX

In this chapter, following the lines of Ref. 19 we perfor
the derivation of the PC for the arbitrary dispersion law
charge carriers.

At a fixed chemical potential, the PC is

I PC5 (
n52`

`
i n

e~«n2m!/T11
, ~A1!

wherei n is the partial current of thenth orbital:

i n5
e

h

]«

]n
. ~A2!

Making use of the Poisson summation formula we
present the r.h.s. in~A1! in the form

I PC5
e

h E2`

`

dn
]«/]n

e~«~n!2m!/T11

12
e

h (
l 51

` E
2`

`

dn
~]«/]n!cos~2pnl !

e~«~n!2m!/T11

52
eT

h
log~e2~«~n!2m!/T11!u2`

`

14pT
e

h (
l 51

`

(
Im~nk!.0

Im e2p i ln k, ~A3!

where«(nk)5m12ipT(2k21), which gives atT!m:

nk>nF1
ipT~2k21!

]«/]nun5nF

. ~A4!

Eventually, we arrive to Eqs.~11!–~13!:

I PC>
eT

\
(
l 51

`

(
j

sin~2p ln F
~ j !!

sinh~ lT/T̃~ j !!
U

F50

, ~A5!

where

T̃~ j !5
1

2p2 U]«

]nU
n5n

F
~ j !

, «~nF
~ j !!5m. ~A6!
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SinceT̃( j ) for various j vary insignificantly,2! we safely
replaceT̃( j ) by some averagedT̃>T̃( j ) and get

I PC>
eT

\
(
l 51

`

sinh21S lT

T̃
D(

j
sin~2p lnF

~ j !!. ~A7!

* !Deceased
** !E-mail: vagner@labs.polycnrs-gre.fr
1!The external flux is swept adiabatically slowly with time, and, in fact, o

observes oscillations with a certain temporal period connected withF0 .
2!E.g. for in-planeBh f-configurationT̃65Am6b, so the difference between

different T̃( j ) is of the order ofBh f /m.

1D. Mailly, C. Chapelier, and A. Benoit, Phys. Rev. Lett.70, 2020~1993!.
2L. P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchlak, Phys. Rev. Lett.64,
2074~1990!; V. Chandrasekhar, K. A. Webb, M. J. Brady, M. B. Ketche
W. J. Gallagher, and A. Kleinsasser, Phys. Rev. Lett.67, 3578~1991!.

3Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
4I. D. Vagner, A. S. Rozhavsky, P. Wyder, and A. Yu. Zyuzin, Phys. R
Lett. 80, 2417~1998!.

5E. N. Bogachek, I. V. Krive, I. O. Kulik, and A. S. Rochavsky, Mod
Phys. Lett. B5, 1607~1991!.

6Y. Aharonov and A. C. Casher, Phys. Rev. Lett.53, 319 ~1984!.
.

7M. V. Berry, Proc. R. Soc. London, Ser. A392, 45 ~1984!; D. Loss,
P. Goldbart, and A. V. Balatsky, Phys. Rev. Lett.65, 1655 ~1990!; D.
Loss and P. Goldbart, Phys. Rev. B45, 13544~1992!.

8C. P. Slichter,Principles of Magnetic Resonance, Springer-Verlag, Berlin
~1991!, 2nd eddition.

9F. Bloch, Phys. Rev.70, 460 ~1946!.
10A. Berg, M. Dobers, R. R. Gerhardts, and K. V. Klitzing, Phys. Rev. Le

64, 2563 ~1990!; I. D. Vagner and T. Maniv, Phys. Rev. Lett.61, 1400
~1998!.

11K. Wald, L. P. Kouwenhoven, P. L. Euen, N. C. Van der Vaart, and C.
Foxon, Phys. Rev. Lett.73, 1011~1994!.

12S. E. Barret, A. Schmeller, J. P. Elsemstein, L. N. Pfeiffer, and K.
West, Phys. Rev. Lett.75, 4290~1995!.

13H. Mathur and A. D. Stone, Phys. Rev. Lett.68, 2964~1992!.
14Yu. A. Bychkov and E. I. Rashba, J. Phys. C17, 6039~1984!; P. Pfeiffer

and W. Zawadzki, Phys. Rev. B32, R14332~1995!.
15D. Stein, K. v. Klitzing, and G. Weimann, Phys. Rev. Lett.51, 130~1983!.
16A. F. Morpargo, -J. P. Heide, B. J. van Wess, -J. J. Kulpers, T.

Klapwijk, and G. Borghs, Phys. Rev. Lett.80, 1050~1998!.
17A. G. Aronov and Y. B. Lyanda-Geller, Phys. Rev. Lett.70, 343 ~1993!.
18A. V. Chaplik and L. I. Magaril, Superlattices Microstruct.18, 321~1995!.
19H. F. Cheung, Y. Gefen, E. K. Riedel, and W. H. Shih, Phys. Rev. B37,

6050 ~1988!.

This article was published in English in the original Russian journal. It w
edited by R. T. Beyer.



LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 7 JULY 1999
LATTICE DYNAMICS

Thermal disorder of proustite cationic sublattice
N. A. Borovo , Yu. P. Gololobov, and I. N. Salivonov
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Temperature dependences of acoustic emission and relative intensity of some structural x-ray
peaks for proustite (Ag3AsS3) samples are investigated in the temperature range 100–300
K. Anomalous behavior of the obtained dependences is observed atT;150 K. The experimental
results have been analyzed by using different models of positional disorder of the silver
sublattice. The entire body of the obtained data can be explained assuming that an increase in
temperature starting fromT;150 K leads to predominant disordering of the part of the
cationic sublattice of proustite, that is formed by right spirals (AgS)` . © 1999 American
Institute of Physics.@S1063-777X~99!01307-9#
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Unique physical properties of proustite (Ag3AsS3) crys-
tals at low temperatures are mainly due to it labile catio
sublattice. For example, the instability of the silver ion
subsystem is responsible for the well-known phase tra
tions ~PT!, namely, PT-1 (T1;60 K) leading to the forma-
tion of the incommensurate phase, PT-2 (T2;50 K) accom-
panied by a change in the magnitude and direction of
structure modulation vector, and PT-3 (T3;28 K), viz., a
ferroelectric transition resulting in a field-reoriented spon
neous polarization. In addition, Smolenskiiet al.,1 who dis-
covered the splitting ofE-mode in the Raman spectra atT
;150 K, concluded that proustite crystals also display P
accompanied by a lowering of symmetry to the monocli
symmetry~hypothetically,C3V˜CS!. The PT-4 temperature
(T;200 K) was determined by extrapolation of the obtain
experimental dependences to higher temperatures.1,2 At the
same time, independent analysis based on the same R
scattering method did not confirm the existence of this PT
Ag3AsS3 crystals.3,4 Thus, not only the origin, but also th
existence of PT-4 remain unclear. In this connection, we
cided to carry out a complex investigation of proustite in t
temperature range 100–300 K.

Since the PT-4 is determined by external effects such
the electromagnetic field,5 we chose the acoustic emissio
method for our experiments. It was proved earlier that t
method is not only extremely sensitive to various PT, b
also makes it possible to make measurements without
external effect on the sample.6,7 Moreover, x-ray diffraction
patterns of proustite~in particular, temperature dependenc
of the relative intensity of a number of structural peaks! were
investigated in the temperature range indicated above.

Synthetic single crystals of Ag3AsS3 were grown in
Uzhgorod ~Ukraine! by the Bridgman–Stockburger tech
nique. The samples intended for acoustic measurements
in the form of plane-parallel plates of a Y- or Z-cut of thic
ness 0.8–1.7 mm and the surface area 30– 56 mm2. The
method of measurements of temperature dependence
acoustic emission is described in detail in Ref. 6. X-ray m
5461063-777X/99/25(7)/4/$15.00
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surements were made on polycrystalline samples obtaine
grinding proustite single crystals. Ag3AsS3 powders were
sieved through a screen with 400 mesh/inch. The sam
were prepared by using nitrocellulose varnish in the form
disks of 1 mm thickness and 15 mm diameter. X-ray diffra
tion patterns were obtained on monochromatized CoKa ra-
diation ~operating conditions for the x-ray tube BSV-29 C
are as follows:U535 kV and I 530 mA! in the scanning
mode with a stepD(2u)50.02°, build-up time 10–30 s, an
sample rotation in the plane of the reflecting surface a
frequency of 2 s21 ~on a diffractometer DRON-4-07 with
Bragg-Bretano focussing!. The integral intensity of structura
peaks was determined as the area under the correspon
curve on diffraction patterns. The error in determining t
peak intensity did not exceed 5%. In the temperature ra
100–293 K, diffraction patterns were obtained on the lo
temperature attachment URNT-180 in the standard fo
The error in maintaining the temperature did not exce
60.5 K. The x-ray measuring technique was on the wh
similar to that used earlier in Ref. 8.

The temperature dependenceN(T) of the acoustic emis-
sion intensity of a proustite crystal obtained for a relative
slow variation of temperature (;1 K/min) is shown in Fig.
1. It can be seen that theN(T) dependence has a clear
manifested peak atT;150 K ~which is reproduced success
fully in repeated measurements!, indicating structural varia-
tions occurring in proustite at this temperature.

In order to determine the possible variation of the pro
tite structure, we analyzed its x-ray diffraction patterns
four different temperatures: 100, 130, 170, and 293 K. T
analysis of the diffraction pattern geometry carried out by
leads to the conclusion that the spatial groupC3V

6 of the
crystals Ag3AsS3 does not change in the temperature ran
100–293 K, which is in accord with the results obtain
earlier.9 At the same time, along with the conventional d
crease in the intensity of diffraction peaks upon heat
© 1999 American Institute of Physics
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~which is typical of most of reflexes for proustite!, we ob-
served an anomalous temperature dependence of the re
intensity of four structural peaks with indices~12.2!, ~23.2!,
~31.2!, and~20.2!. For each of these reflexes, we obtained
temperature dependences of relative intensity with a t
perature step 6–8 K~Fig. 2!. It can be seen that there are tw
temperature regions with basically different types of this
pendence:the relative intensity decreases as the temper
increases from 100 to 140–160 K~normal region!, and in-
creases at higher temperatures~anomalous region!. This is
manifested especially clearly for the diffraction peak~23.2!
whose intensity changes by more than 25%.

Let us analyze the obtained experimental data. Hexa
nal unit cell of Ag3AsS3 contains six structural units. Th

FIG. 1. Temperature dependence of the acoustic emission intensity
proustite crystal withZ-cut. The heating rate is'1 K/min.

FIG. 2. Temperature dependences of relative integral intensity of diffrac
peaks for proustite with different (hkl) indices: ~23.2! ~dark triangles!,
~20.2! ~n!, ~31.2! ~s!, and~12.2! ~j!.
tive

e
-

-
ture

o-

core of a cell is determined by anionic pyramidal grou
AsS3 whose vertices are oriented in the direction of the po
axis C. Octahedral voids located between AsS3 complexes
form helical channels parallel to theC-axis. A hexagonal
unit cell contains 36 voids of this type, only 18 of them bei
occupied by Ag1 ions. A completely ordered silver subla
tice corresponds to the equilibrium position of Ag1 at the
center of every second void. As a result, Ag1 ions form right
and left helical chains (AgS)` with a stepc/3, which are
parallel to the third-order axis. The nearest ions in two nei
boring chains are not coupled with one another and are
placed byc/2 in the direction of theC-axis. Thus, two mu-
tually penetrating sublattices are formed in the structure
proustite, one of which~denoted byA! contains only left
spirals (AgS)̀ , and the other (B) contains only right spirals.
Vacant crystallographic positions and those occupied
Ag1 ions alternate in the case of complete ordering. W
denote byVA andVB the combinations of vacant position
in the sublatticesA andB, respectively. Consequently, in th
crystal structure of proustite we can single out four groups
positions for silver ions, two of which~A and B! are com-
pletely occupied by Ag1 ions in a perfect crystal, while the
other two~VA andVB! are vacant~see the figures in Refs. 2
and 4!.

However, some of vacant positions in a real crystal
occupied by Ag1 ions.3 For this reason, the ionic occupanc
of each sublattice will be specified by the average occupa
of the positionsPi5ni /Ni , whereni is the average numbe
of Ag1 ions in thei th sublattice andNi the number of avail-
able crystallographic positions in the given sublattice. Fo
hexagonal unit cell of proustite, we can obviously wri
N(A)5N(B)5N(VA)5N(VB)59. Then the structural am
plitude SAg(q) of the silver sublattice we can present in th
form of four terms reflecting the filling of the indicate
groups of positions. Consequently, the structural amplitu
S~q! of proustite has the form

S~q!5SAg~q!1SAs~q!1SS~q!5 f Ag~q!BAg~q!

3F PA(
j 51

9

exp@22p iq•R~A! j #

1PB(
j 51

9

exp@22p iq•R~B! j #

1PVA(
j 51

9

exp@22p iq•R~VA! j #

1PVB(
j 51

9

exp@22p iq•R~VB! j #G
1 f As~q!BAs~q!(

j 51

6

exp~22p iq•R~As! j !

1 f S~q!BS~q!(
j 51

18

exp~22p iq•R~S! j !, ~1!

whereq is the scattering vector,BAg(q)5exp(2MAg), MAg

being the Debye–Waller factor for Ag1 ions, R(A) j ,

a

n
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R(B) j , R(VA) j , R(VB) j are the radius-vectors of crysta
lographic positions of the corresponding sublattices, a
f Ag(q) is the atomic scattering function for the Ag1 ion. The
corresponding quantities for S and Ag are denoted in
same way. The values of the Debye–Waller factor and
coordinates of all atoms of each species required for ca
lating uS(q)u2 are determined in Refs. 10 and 11. The co
dinates of vacancies for Ag1 ions were calculated on th
basis of the results reported in these publications.

The effect of the temperature dependence of the Deb
Waller factor ~in the Debye approximation! on the relative
intensity of each of the four peaks indicated above for inva
able occupancies of atomic positions in the proustite str
ture was analyzed at the first stage. Calculations base
formula ~1! proved that, from the four diffraction peaks, a
anomalous behavior of relative intensity can be due to
verse temperature dependence only for the peak~20.2! ~the
same dependence was observed earlier for some o
compounds!.12 As regards the reflexes~12.2!, ~23.2!, and
~31.2!, an increase in their relative intensity with temperatu
can be explained only by a change in population of crys
lographic positions by individual atoms. Arsenic and sul
atoms in Ag3AsS3 crystals are coupled through a quite stro
covalent bond, while silver atoms are coupled by a relativ
weak ionic bond, which is manifested, for example, in a h
ionic conductivity of proustite, attaining value
;1023 Sm/m at room temperature.13 For this reason, we
considered the influence of possible migration of silver io
on the structural amplitude of proustite. An analysis of va
ous possible types of disordering in the cationic sublattice
proustite made it possible to single out twelve limiting ve
sions of disordering presented in Table I. Unfortunately,
cannot analyze directly the temperature dependence
uS(q)u2 for each type of disordering since the temperat
dependenceP(T) of population of the main positions b
Ag1 ions for Ag3AsS3 crystals differs from the exponentia
dependence and has not been determined in the general
to our knowledge. For this reason, we calculated the dep
dences ofuS(q)u2 of the reflexes~23.2!, ~12.2!, and~31.2! on

TABLE I. Possible limiting types of disorder of cationic sublattice f
proustite crystals.

Type Transition Population of positions

I A1B˜VA1VB P5PA5PB , PVA5PVB512PA

II A1B˜VA P5PA5PB , PVB50, PVA52(12PA)
III A1B˜VB P5PA5PB , PVA50, PVB52(12PA)
IV A1B˜surface P5PA5PB , PVA5PVB50
V A˜VA1VB P5PA , PB51, PVA5PVB50,5(12PA)
VI A˜VA P5PA , PB51, PVB50, PVA512PA

VII A˜VB P5PA , PB51, PVA50, PVB512PA

VIII A˜surface P5PA , PB51, PVA5PVB50
IX B˜VA1VB P5PB , PA51, PVA5PVB50,5(12PB)
X B˜VA P5PB , PA51, PVB50, PVA512PB

XI A˜VB P5PB , PA51, PVA50, PVB512PB

XII B˜surface P5PB , PA51, PVA5PVB50

Remark. A and B are sublattices with left and right spirals,VA and VB
vacant positions in sublatticesA andB, Pi5ni /9 is the average population
of positions in thei th sublattice.ni the average number of silver ions in th
i th sublattice~the number of positions for each sublattice is 9!.
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the populationP of the main positions in the range ofP
50.5– 1.0 for each type of disordering for the same Deby
Waller factor. Figure 3 shows the calculated dependence
uS(q)u2 on P for the reflex ~23.2!. It can be seen that an
increase in the intensity of this reflex with temperature
possible only in three cases~we assume that the heating o
the crystal is accompanied by a decrease inP!. Subsequent
calculations proved that an increase in the intensity of d
fraction peaks~23.2!, ~12.2!, and~31.2! with temperature and
a simultaneous decrease in relative intensity of the remain
observed reflexes can be explained only for one of the th
types of disordering, namely, III, IX, or XI.

Moreover, for each of the types indicated above, we c
culated the dependences ofuS(q)u2 on the population of po-
sitions for all other structural peaks observed on x-ray d
fraction patterns. It was found that for the case III,
increase in the relative intensity of the reflex~51.1! with
temperature must be almost an order of magnitude hig
than the increase in the relative intensity of the reflex~23.2!,
which contradicts the experimental data. Thus, the ano
lous behavior of the intensity of diffraction peaks can
explained for the IX or XI type of disordering. It is interes
ing to note that both these models are connected with di
dering of Ag1 ions with right spirals. In the former case
disordering occurs equiprobably over all vacant positio
while in the latter case it takes place only over free positio
in right spirals. A numerical comparison of experimental r
sults~see Fig. 2! with calculated values of the change in th
intensity of peak~23.2! ~see Fig. 3! speaks in favor of the XI
model of disordering. Thermal disorder occurs in all pro
ability over all possible positions, but the probabilities
populating vacant positions in different spirals are obviou
different.

Since the motion of ensembles of point defects is a po
erful source of acoustic emission,7 the onset of thermal dis
order for right spirals must be accompanied by the em

FIG. 3. Dependences of the structural factor on the population of posit
by Ag1 ions for the diffraction peak~23.2!. The figures on the curves indi
cate the number of the corresponding type of disorder~see Table I!.
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gence of considerable acoustoemission noises. This prob
explains the peak on theN(T) dependence observed atT
;150 K.

Thus, our experimental results provide a qualitative
planation under the assumption that the part of the catio
sublattice of proustite crystals, which is formed by right s
rals (AgS)̀ is predominantly disordered upon an increase
temperature starting fromT;150 K. If this is true, only a
fraction of the cationic sublattice of proustite undergoes
150 K a sort of the phase transition typical of superio
crystals of class III according to O’Keefe classification.14 It
should be noted that the approach proposed here does
claim to unambiguity, and the verification of its validity re
quires additional investigations.

At the same time, structural changes in proustite aT
;150 K also follow from the results obtained earlier b
other authors, for example, a change in the activation ene
of charge carriers at this temperature,15 a considerable in-
crease in the pyroelectric coefficient,16 and also the clearly
manifested kink on the temperature dependence of the ve
ity of longitudinal ultrasonic waves propagating along t
C-axis.17

The authors are grateful to S. M. Ryabchenko for va
able remarks made during the discussion of the results of
research.
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Peculiarities of dynamics of one-dimensional discrete systems with interaction
extending beyond nearest neighbors, and the role of higher dispersion in soliton
dynamics

A. M. Kosevich* ) and S. E. Savotchenko
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In the analysis of dynamics of an ideal system as well as a system with point defects, the role of
interaction is considered not only for the nearest neighbors. The Green’s function is
constructed for steady-state vibrations of a chain at all possible frequencies. It is shown that, if
the interaction with the next-to-nearest neighbors is taken into account, the Green’s
function inevitably becomes double partial, the nature of its two components depending
significantly on its eigenfrequency. It is found that the Green’s function for frequencies of the
continuous spectrum of small vibrations has one component of the plane wave type,
while the other component is localized near the source of perturbations. Such a Green’s function
describes the so-called quasilocal vibrations. At certain discrete frequencies falling in the
continuous spectrum, the quasilocal vibration is transformed into local vibration~that does not
propagate to infinity!. The conditions of applicability of differential equations with fourth
spatial derivative are analyzed for describing the longwave vibrations of the atomic chain.
Relations between parameters of atomic interactions permitting the use of such equations
are formulated. Asymptotic forms of soliton fields in a nonlinear medium with spatial dispersion
are discussed. It is shown that most of the soliton parameters are determined by the
dispersion relation for the linearized equation. ©1999 American Institute of Physics.
@S1063-777X~99!01407-3#
he
em
ito
a
t
t
n

an

r-
es
lu
th
tl
a

rs
l a
r
a

d

pe
e
ys
e
th

-
le-

cal

n
the

de-
ing
ped
n
eter
in-
ion,
eter.
c-
his
sent
the

ne-
inly
-

y-
INTRODUCTION

An important question in the recent investigations of t
nonlinear mechanics of discrete one-dimensional syst
concerns the manifestations of discreteness in sol
dynamics.1 Nonlinear dynamics of an isolated soliton in
discrete chain is determined to a considerable extent by
spatial structure, and hence a moving soliton experiences
influence of a certain effective potential. This potential ge
erates a Peierls force for a soliton in classical dynamics,
a free quasiparticle motion band in quantum dynamics~see
Ref. 2!. As regards soliton interaction, the possibility of fo
mation of nonradiative soliton complexes, nature of regr
sion of the corresponding fields, as well as admissible va
of soliton parameters, they are mainly determined by
dispersion relation for linearized equations. Consequen
the first stage of investigation of this problem requires
analysis based on linear dynamic equations whose dispe
relations can be derived quite easily in discrete as wel
continual models. This requires the discussion of certain
lations between the discreteness of mechanical systems
the specific features of the functional dynamic equations
scribing these systems.

On account of the discreteness of the system, the dis
sion relation for small vibrations differs from that for th
continual description of a distributed one-dimensional s
tem. In the longwave approximation, this difference is tak
into account by higher dispersion, i.e., higher powers of
5501063-777X/99/25(7)/8/$15.00
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wave numbersk in the expansion of the frequencyv ~or
energy! in powers ofak, wherea is the period of the dis-
crete structure~lattice constant!. In the coordinate represen
tation, higher dispersion is taken into account by supp
menting the ordinary differential equations of mathemati
physics with spatial derivatives of, say, the fourth order.

It is well known that the limiting longwave descriptio
of the mechanics of a discrete system, which is based on
use of differential equations with second-order spatial
rivatives, remains the same for any number of interact
neighbors. Hence such an approximation can be develo
quite effectively by using the model involving the interactio
of only the nearest neighbors and containing one param
of interaction between particles. If, however, the aim of
vestigations is to study the supplementary higher dispers
the latter must be characterized by an independent param
Such a parameter can be ‘‘earned’’ only if we take into a
count the interaction of not just the nearest neighbors. T
circumstance prompted the authors to undertake the pre
analysis of the role of interaction of second neighbors in
crystal lattice.

We shall confine the discussion to the dynamics of o
dimensional systems described by equations obtained ma
as a result of linearization of the following two finite- differ
ence equations:

~1! generalization of the well-known equation of the d
© 1999 American Institute of Physics
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namics of a discrete atomic chain, which leads to the s
Gordon equation

]2un

]t2 1v0
2 sinun1a~2un2un112un21!

2b~2un2un122un22!50, ~1!

wherea andb are the constants of interaction with the ne
to-nearest neighbor;

~2! a discrete analog of the nonlinear Schro¨dinger equa-
tion ~NSE!

i
]cn

]t
2E0cn1ucnu2cn2a8~2cn2cn112cn21!

1b8~2cn2cn122cn22!50, ~2!

where the parametersa8 andb8 apparently have dimension
alities differing from those of the corresponding constants
Eq. ~1!.

In Sec. 1, we shall study the dynamics of the syst
defined by the linearized equation~1!. Note that the Green’s
function for such a system is always double-partial, i.e., c
sists of two independent components. In Green’s function
steady-state vibrations with frequencies lying in the conti
ous spectrum, one of the component belongs to the local
states. This means that quasilocal vibration is the typ
state of the system under consideration. The double-pa
Green’s function causes an interesting peculiarity of
forced vibrations in the system. The forced harmonic vib
tion with a frequency lying in the continuous spectrum m
have distributions which result in the generation of localiz
vibrations. This is due to the fact that the interference
diverging waves away from the region of application of t
distributed force leads to a complete mutual suppressio
these waves.

Section 2 is devoted to the derivation of continual d
namic equations in the longwave approximation. It is sho
that while differential equations with second-order spa
derivatives always have a region of applicability as the lo
wave approximation for discrete equations, the applicabi
of equations with fourth-order spatial derivatives is confin
by rigid constraints imposed on the parameters of the in
equation. In particular, a consistent derivation of the fu
tional equations with fourth-order spatial derivatives can
carried out in the description of steady-state vibrations
taking into account the interaction with nearest as well
next-to-nearest neighbors in the atomic chain.

It is shown by considering a simple example that t
main parameters of the soliton solution of the NSE~if such
an equation exists! are determined by the linearized equatio
irrespective of the structure of the nonlinear term in the eq
tion.

1. LINEAR DYNAMICS OF A DISCRETE ATOMIC CHAIN

Green’s function of a discrete system.For the harmonic
steady-state atomic vibrationsun(t)5un exp(2ivt), the lin-
earized equation~1! can be written in the form
e
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~v0
22v2!un1a~2un2un112un21!

2b~2un2un122un22!50. ~3!

The dispersion relation for these vibrations, correspo
ing to the solutionun5u0 exp(ikn) is defined as

v2~k!5v0
214a sin2

k

2
24b sin2 k, ~4!

where it is assumed that the atomic spacinga51. The con-
tinuous vibrational spectrum is the frequency bandv0,v
,vm , wherevm

2 5v0
214a.

In the n-representation, the Green’s function for th
equation of steady-state vibrations of an infinite atomic ch
can be presented as follows:

Gn~v!5
1

2p E
2p

p dkeikn

v22v2~k!
. ~5!

The peculiarities of the Green’s function are defined
the poles of the integrand on the complexk plane, i.e., by the
roots of the characteristic equation

16bz414s2z21v0
22v250, ~6!

wherez5sin(k/2) ands25a24b. Equation~6! has the fol-
lowing roots:

z1,2
2 5

1

8b
@2s26As424b~v0

22v2!#, ~7!

where the subscript 1 corresponds to the plus sign and
the minus sign. We shall assume thats25a24b.0.

The roots of the characteristic equation determine
type of the Green’s function~5!. Depending on the frequenc
range of vibrations, the roots~7! may be real, complex, o
purely imaginary.

Let us first consider the peculiarities of the dynamics
a chain in the frequency range outside the continuous s
trum band. We begin with the frequenciesv,v0 . Such fre-
quencies are important in the description of the dynamics
an atomic chain in the presence of a defect or asympt
forms of bion-type soliton fields. Localized vibrations ma
emerge in this case.

In the frequency intervalvc,v,v0 , where vc
25v0

2

2s4/4b, the roots~7! will be purely imaginary:

zj5 i z j5 i sinh
k j

2
~ j 51,2!,

z1,2
2 5

1

8b
@s26As424b~v0

22v2!#. ~8!

The Green’s function~5! for frequencies below the continu
ous spectral band in the intervalvc,v,v0 can be calcu-
lated easily:

Gn~v!5
1

16b~z1
22z2

2! H e2k1unu

z1~11z1
2!1/22

e2k2unu

z2~11z2
2!1/2J ,

~9!

wherek j52 sinh21 z j ( j 51,2) are the parameters characte
izing the spatial regression of the amplitudes of local vib
tions with increasing distance from the defect. Note tha
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next- to-nearest neighbors are considered in the ato
chain, the Green’s function becomes double-partial, i.e
consists of two partial components that decrease expo
tially in different ways.

Note that in addition to the uniform vibration withk1

50, which is the only one existing for a purely quadra
dispersion law, a nonuniform state withk2Þ0 (sinh2(k2/2)
5s2/4b) supported by certain boundary conditions may e
ist at the limiting frequencyv5v0 corresponding to the
lower edge of the continuous spectrum. In particular, t
means that there exists a basic possibility of the existenc
dynamic solitons for nonlinear equations of the type~1! or
~2! even with an eigenfrequencyv5v0 .

For v,vc , the roots~8! become complex, i.e.,k1,2

5k6 iq, wherek andq are defined by the relations

coshk cosq5
a

4b
, sinhk sinq5S vc

22v2

4b D 1/2

.

Beginning from the frequencies lower thanvc , a transi-
tion takes place from ordinary to generalized local vib
tions. By generalized local vibrations we mean vibratio
whose amplitude decreases in an oscillating manner with
creasing distance from the defect. In this case, the Gre
function can be presented in the form

Gn~v!52
exp~2kunu!sin~qunu1w!

~vc
22v2!1/2~v0

22v2!1/4~vm
2 2v2!1/4, ~10!

where the phasew is defined by the relation

tan 2w5
sinh 2k sin 2q

2~sinh2 k cos2 q2cosh2 k sin2 q!
. ~11!

Let us now analyze Green’s function for steady st
vibrations with frequencies higher than the continuous sp
tral bandv.vm . In this frequency range, one of the wav
numbers is complex (k15p1 ik1), while the other is purely
imaginary (k25 ik2). In this case, the Green’s function
defined as

Gn~v!5
1

16b~z1
21z2

2! H ~21!ne2k1unu

z1~11z1
2!1/2 1

e2k2unu

z2~z2
221!1/2J ,

~12!

where z15sinh(k1/2) and z25cosh(k2/2), and the param-
etersz j ( j 51,2) are defined by the relations

z1
25

1

8b
$A~a14b!214b~v22vm

2 !2a24b%, ~13!

z2
25

1

8b
$A~a14b!214b~v22vm

2 !1a14b%. ~14!

For b50, the second term in~12! vanishes, and the
Green’s function naturally coincides with the expression
the Green’s function of a discrete chain in which only t
nearest neighbors interact.

Note that the second term in~12! is not typical for the
vibrations of a chain with interaction between nearest nei
bors only~whenb50!. Even at the limiting frequency cor
ic
it
n-
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responding to the upper edge of the continuous spect
v25vm

2 5v0
214a, it describes nonuniform vibrations in

which adjacent atoms vibrate in phase.
Problem of natural local vibrations of a chain with

point defect.Let us consider harmonic vibrations of a cha
in the presence of a point defect which is an isotopic imp
rity at the siten50. In other words, we shall assume that th
site contains an atom of massM which differs from the mass
m of the remaining atoms in the chain. In this case, we m
consider instead of~3! the equation

~v0
22v2!un1a~2un2un112un21!

2b~2un2un122un22!5 f undn0 , ~15!

where f 5(M2m)v2/m is the parameter characterizing th
defect, anddn0 is Kronecker’s delta. The formal solution o
Eq. ~15! can be written in the following form with the help o
Green’s function~5!:

un52 f u0Gn~v!. ~16!

The dispersion relation defining the frequencies of lo
vibrations can be obtained from~16! by puttingn503:

11 f G0~v!50. ~17!

In this case, we can use Green’s function~9! to obtain the
dispersion relation for local frequencies falling in the interv
vc,v,v0 :

f 516b~z1
22z2

2!H z1z2A11z1
2A11z2

2

z1A11z1
22z2A11z2

2J , ~18!

where the parametersz j ( j 51,2) are defined by relation~8!.
In the frequency rangev,vc , we can use Green’s

function ~10! and write the dispersion relation for the fre
quencies of generalized local vibrations in the form

f sinw52~vc
22v2!1/2~v0

22v2!1/4~vm
2 2v2!1/4. ~19!

Naturally, local vibrations with frequencies lower tha
the continuous spectrum can emerge only forf .0, i.e., in
the presence of a heavy impurity.

Similarly, substitution of Green’s function~12! into Eq.
~17! leads to the dispersion relation for high-frequency lo
vibrations:

f 5216b~z1
21z2

2!H z1z2A11z1
2Az2

221

z1A11z1
21z2Az2

221
J , ~20!

where the parametersz j ( j 51,2) are defined by relation
~13! and ~14!.

Local vibrations with frequencies higher than the co
tinuous spectral band emerge in the presence of a light
purity ~for f ,0!.

Forced local vibrations.Let us now assume that the a
oms in a chain are subjected to certain distributed for
Fn exp(2ivt) localized in the vicinity ofn50. In this case,
the steady state solution of the dynamics of a chain can
written with the help of Green’s function in the form

un52(
n8

Gn2n8~v!Fn8 . ~21!
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Let us assume that the distribution of forces has the fo

Fn5~d0n1d1n!F, ~22!

i.e., two adjacent sites of the chain~say,n50 andn51! are
subjected to identical~in magnitude and sign! external forces
oscillating with frequencyv>vm . If the frequencyv is
equal to the limiting frequencyvm , the chain may undergo
local vibrations with all the atoms in the same phase:

un52
F~11ek2!

16bz2~z1
21z2

2!~z2
221!1/2e2k2n, ~23!

whose parameterk2 is defined by the relation

sinh2
k2

2
5

a

4b
. ~24!

Obviously, one of the terms in~12! may not ‘‘operate’’
for some types of coercive external force. For example, le
consider the action of oscillating forces applied to the s
n50 ~force F0! andn561 ~force F1!, i.e.,

Fn5F0d0n1F1~d1n1d21n!. ~25!

In this case, we obtain from~21! the following solution by
taking into account the distribution of forces~25! and
Green’s function~12!:

un52
1

16b~z1
21z2

2! H ~21!n~F022F1 coshk1!e2k1unu

z1~11z1
2!1/2

1
~F012F1 coshk2!e2k2unu

z2~z2
221!1/2 J . ~26!

If forces F0 and F1 have opposite signs anduF0u.2uF1u,
there exists a frequencyv for which

coshk25U F0

2F1
U. ~27!

In this case, Eq.~26! is simplified and assumes the form

un5
~21!n112F1~coshk11coshk2!e2k1unu

16bz1~z1
21z2

2!A11z1
2

. ~28!

Such a solution can describe the asymptotic forms of
enveloping soliton for high-frequency localized vibrations.
can be seen that such a soliton can emerge at quite spe
eigenfrequencies.

If the forcesF0 and F1 have the same sign, localize
vibrations

un52
2F1~coshk11coshk2!e2k2unu

16bz2~z1
21z2

2!Az2
221

, ~29!

corresponding to the motion of atoms in the same ph
emerge at a certain frequencyv defined by the equation

coshk15
F0

2F1
. ~30!

Peculiarities of vibrations with frequencies lying in th
continuous spectrum band.The inclusion of interaction with
next-to-nearest neighbors leads to the emergence of a
tional peculiarities of vibrations with frequencies lying insid
s
s

n
t
ific

e

di-

the continuous spectral bandv0,v,vm . In this case, vi-
brations emerge with one mode localized in the vicinity
the defect, the other being a standing wave. Such vibrat
are called quasilocal vibrations. In the frequency range un
consideration, the characteristic equation~6! has two real
roots

z1
25

1

8b
@As414b~v22v0

2!2s2#, ~31!

and two imaginary roots

z2
25

1

8b
@As414b~v22v0

2!1s2#. ~32!

Hence one of the wave numbersk152 sin21 z1 will be real
and the otherk25 ik2 (k252 sinh21 z2) will be imaginary.

Using formulas~31! and ~32!, we can calculate Green’
function ~5! in the frequency range of quasilocal steady st
vibrations:

Gn~v!5 iB~v!eik1unu1M ~v!e2k2unu, ~33!

where

B~v!5@16bz1~z1
21z2

2!A12z1
2#21,

M ~v!5@16bz2~z1
21z2

2!A11z2
2#21.

Taking Green’s function~33! into consideration, we can us
the familiar relation

g~v2!5
1

p
Im G0~v!

to calculate the density of vibrations~distribution of states in
squares of frequencies! of a defect-free chain:

g~v2!5
1

16pb~z1
21z2

2!z1~12z1
2!1/2. ~34!

For a certain distribution of forcesFn , the solution in
the region of the continuous spectrum can be obtained f
~21! with the help of the Green’s function~33!:

un5 H 2 iB~v!F* ~k1!e2 ik1n2M ~v!Q~2k2!ek2n,
2 iB~v!F~k1!eik1n2M ~v!Q~k2!e2k2n,

n,0;
n.0,

~35!

whereF(k)5SnFne2 ikn andQ(k)5SnFnek2n.
Let us assume thatFn5F2n . There may exist a sym

metric distributionFn for which the condition

F~k!5(
n

Fn coskn50, ~36!

is satisfied for a certain value ofk, i.e., the Fourier compo-
nent of spatial distribution of forces vanishes. In this ca
the solution is localized for an appropriate frequencyv de-
fined by the condition~36!:

un52M ~v!Q~k2!e2k2unu, ~37!

where the parameterk2 corresponds to such a frequency.
Thus, interference of waves excited by the chosen dis

bution Fn of force leads to mutual suppression of vibratio
away from the region of application of such forces. In oth
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words, a localized state appears in the continuous freque
spectrum, which cannot be expected in a distributed dyna
system with interaction of nearest neighbors only.

Let us suppose thatFn has the form of a two-hump
distribution:

Fn5w~n2n0!1w~n1n0!, ~38!

wherew(n)5w(2n) is an even function. In this case, E
~36! holds for all values ofk satisfying the condition
coskn050, i.e., for k5(2p11)p/2n0 , where p50,61,
62,...,6(n021).

Even if we do not require that the functionw(n) be
even, it can easily be shown that there exists at least
value ofk for which condition~36! is satisfied.

It is obvious that there exists a discrete set of frequen
falling in the continuous spectrum, for which the force th
depends harmonically on time and has a spatial distribu
~38! does not excite any radiation at infinity. Distribution
the type~38! simulates the behavior of the nonlinear term
~1! or in ~2! for the case when such an equation has a tw
soliton solution. If such a solution does exist, it correspon
at certain frequencies to the steady state of a pair of solit
Such a situation was discussed in Ref. 4. It should be
phasized that the possibility of existence of such a solutio
the continuous frequency spectrum is determined entirely
the form of the dispersion relation for small vibrations.

It should be remembered that the localized states
scribed above belong to the quasicontinuous spectrum o
atomic chain, and hence the weight of each of them is q
small and proportional to 1/AN, whereN is the number of
atoms in the chain. However, the weight of such states m
be finite in nonlinear dynamics.

Scattering of a wave by a point defect.Let us return to
the case of an isotopic point defect forFn5 f dn0u0 . The
possibility of obtaining the explicit form of Green’s functio
for the investigated system makes it possible to study ea
the problem of scattering of the vibration of an ideal chain
a point defect. It is well known that the solution of the sc
tering problem can be written in the form

un5u0eik1n1xn , ~39!

while the field xn can be the presented in terms of t
Green’s function2

xn52u0f
Gn~v!

D~v!
, ~40!

whereD(v)511 f G0(v). In this solution, we must choos
the Green’s function corresponding to waves in the form~33!
diverging at infinity. In this case, the solution~39! can be
written in the form

un5H u0eik1n2
u0f

D~v!
@ iB~v!e2 ik1n1M ~v!ek2n#, n,0,

u0eik1n2
u0f

D~v!
@ iB~v!eik1n1M ~v!e2k2n#, n.0.

~41!

It is interesting to note that if the condition

iB~v! f 5D~v! ~42!
cy
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is satisfied, the incident wave is reflected completely at
defect and an asymmetric state corresponding to a stan
wave which exists only along one of the semi-axes, and
modes localized on both sides of the defect is realized:

un5H u0S 2i sin~k1n!2 f
M ~v!

D~v!
ek2nD , n,0;

2u0f
M ~v!

D~v!
e2k2n, n.0.

~43!

It follows from Eq. ~42! that asymmetric states~43! can be
realized at frequencies defined by the relation

f 5216bz2A11z2
2~z1

21z2
2!. ~44!

The emergence of such an asymmetric state~43! with
frequencies in the continuous spectrum was detected in
5, where the scattering of an elastic wave at a plane de
was considered in an isotropic medium. Similar peculiarit
were observed for the discrete model of an fcc crystal in R
6, where the results of numerical calculations were analyz
It should be remembered, however, that an elastic wave c
sists of two independent components~longitudinal and trans-
verse!, while the field considered by us has only one comp
nent. Consequently, the role of two components in
present case is played by two types of eigenvibrations co
sponding to different roots of the characteristic equation.

As far as the weight of the state~43! is concerned, the
statement made about the solution~37! can be repeated.

2. LONGWAVE VIBRATIONS OF A SYSTEM WITH SPATIAL
DISPERSION

Linear equations of motion and Green’s functions in t
functional approximation.If interaction with next-to-neares
neighbors in a discrete chain is taken into consideration
significant change is observed in the longwave vibrations
k!1 ~it should be recalled thata51!. In this limit, the dis-
crete equation~3! leads to the differential equation

]2u

]t2 1v0
2u2s2

]2u

]x2 1A2
]4u

]x4 50, ~45!

whose parameters are connected with the interaction c
stants of nearest and next-to-nearest neighbors:s25a24b,
A25(16b2a)/12. We shall assume that the conditio
a/16,b,a/4 is satisfied.

The dispersion relation for steady-state vibrations o
system without defects can be obtained easily from~45! or
from an expansion of the dispersion relation~4! in the dis-
crete model up to fourth-order terms ink:

v2~k!5v0
21s2k21A2k4. ~46!

The wave numbersk corresponding to a fixed frequencyv
can be determined from~46!:

k1,2
2 5

1

2A2 @2s26As424A2~v0
22v2!#, ~47!

where the subscripts 1 and 2 correspond to plus and m
sign, respectively.
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Since the requirementk1,2
2 !1 must be satisfied for al

roots of~47! in the longwave approximation, the approxim
tion based on~46! can be used for describing the steady-st
vibrations of a discrete chain only at frequenciesuv02vu
!A if the parameters of the chain satisfy the conditions2

!A2. However, in this caseA2[b2s2/12'b and it can be
seen that Eq.~45! can be used only if the next-to-neare
neighbors are taken into consideration.

Let us consider the peculiarities of localized vibratio
with frequencies below the continuous spectrumv,v0 . In
the frequency rangevc,v,v0 , wherevc

25v0
22s4/4A2,

the wave numbers~47! are purely imaginarykj5 ik j ( j
51,2), and Green’s function for Eq.~45! in the frequency
range under consideration is defined as

G~x!5
1

2A2~k1
22k2

2!
S e2k1uxu

k1
2

e2k2unu

k2
D . ~48!

Green’s function~48! is the longwave limit of function~9!
under the assumptionz j5k j /2!1 andA25b. It can be veri-
fied once again that if additional dispersion is taken in
account in Eq.~45!, the results match forA25b@s2.

In the frequency rangev,vc , Green’s function in the
continual approximation follows naturally from the discre
Green’s function~10!:

G~x!52
sin~quxu2w!exp~2kuxu!

2A1/2~vc
22v2!1/2~v0

22v2!1/4, ~49!

where

k25
1

4A2 ~2AAv0
22v21s2!

and

q25
1

4A2 ~2AAv0
22v22s2!,

and the phasew of vibrations is defined by the relatio
tanw5k/q.

Generalization of formula~49! to the spherically sym-
metric case of a three-dimensional system was carried ou
Buzdin et al.7 ~see Appendix!.

At frequencies v.v0 , quasilocal vibrations may
emerge in the continuous spectrum since one of the r
~47! will be real:

k25
1

2A2 @2s21As414A2~v22v0
2!#, ~50!

and the other will be imaginary:

k25
1

2A2 @s21As414A2~v22v0
2!#. ~51!

In this case, Green’s function is defined as

G~x!5 iB~v!eikuxu1M ~v!e2kuxu,

B~v!5@2A2k~k21k2!#21,

M ~v!5@2A2k~k21k2!#21. ~52!

Green’s function~52! demonstrates the properties
quasilocal vibrations: it is double-partial, one of its portio
e

by

ts

being localized in space and the other being a standing w
in the entire space. Function~52! reflects an interesting pe
culiarity of the physical properties of the system with t
above-mentioned dispersion, viz., the presence of an a
tional spatially localized field component~portion of Green’s
function!, which may appear in a linear chain with defects,
well as in soliton problems of a nonlinear chain. This pec
liarity admits the existence of localized vibrations with fr
quencies belonging to the continuous spectrum of the ch
under consideration. The conditions of realization of su
states in a distributed system are analogous to those obta
in Sec. 1 for a discrete chain.

Problem of high-frequency vibrations.The standard
technique of continual description of high-frequency (uv
2vmu!vm) eigenvibrations of a discrete chain boils dow
to the introduction of envelopes of atomic displacements
which adjacent atoms vibrate in antiphase. Presenting
solution of Eq.~3! in the form

un5~21!nFn , ~53!

we find that the functionFn depends weakly onn in the
indicated frequency range, and obtain the following equat
in the continual approximation:

~vm
2 2v2!F1s1

2 ]2F

]x2 1B2
]4F

]x4 50, ~54!

wheres1
25a14b andB25(a116b)/12. Obviously,F(x)

has the meaning of the envelope of high-frequency vib
tions.

The dispersion relation corresponding to Eq.~54! can be
obtained easily from~4! by puttingk5p1q and expanding
~4! up to fourth powers in smallq:

v2~q!5vm
2 2s1

2q21B2q4. ~55!

Obviously, Eq.~55! follows directly from~54! as a result of
the substitutionF(x)5F0 exp(iqx). It can be seen that fo
large values ofq, the dispersion relation of the type~55!
corresponds to nonphysical behavior of vibrational frequ
cies of an atomic chain in the vicinity of the upper edge
the continuous spectral band. The last term, which is prop
tional to the fourth power ofq, ‘‘distorts’’ the dispersion
relation. Hence we must confine ourselves to just the q
dratic approximation inq.

Since we assumed thata.4b.0, it means that the in-
clusion of the fourth derivative in Eq.~54! is incorrect for
this model, and the longwave description of steady-state
brations with frequencyv'vm must be restricted to the sec
ond spatial derivative in Eq.~54!. Small values ofq corre-
spond to the conditionuvm

2 2v2u!a, which determines the
range of applicability of the second-order differential equ
tion for the envelope of high-frequency vibrations.

Role of higher dispersion in soliton dynamics.The fact
that the asymptotic form of Green’s function~48! consists of
two exponents allows us to make certain remarks about
soliton solutions of the corresponding nonlinear equati
e.g., Eq.~2!. We can write this equation for the steady-sta
solutionC5z(x)exp(2iEt) in the dimensionless form
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d4z

dx42
d2z

dx2 1Vz5z3, ~56!

containing only one parameterV which is proportional to
E2E0 .

Suppose that~56! has an even soliton solutionz(x)
5ws(x)5ws(2x). An analysis of all the terms in Eq.~56!
gives

ws~x!5
M

cosh2 kx
, M5const. ~57!

The expansion of this equation at infinity can obviously
presented in the form

ws~x!54M ~e22kuxu22e24kuxu!. ~58!

Comparing the exponents in~58! and ~48! where we have
made the substitutionsA25s251 andV5v0

22v2, we ob-
tain

4k25k1
25

1

2
~12A124V!,

16k25k2
25

1

2
~11A124V!. ~59!

This gives

k250.5 andV50.16. ~60!

Thus, if a soliton solution exists for the nonlinear equ
tion, its basic parameters are defined by the linearized e
tion. Naturally, the solution itself follows from the nonlinea
equation~56!. Solution ~57! with parameters~60! was ob-
tained first by Hook and Karlsson.8

Analysis of eigenfrequencies of a medium with hig
dispersion of opposite signs.The situation involving the use
of Eq. ~45! changes ifb,0. In this case,s25a14ubu, A2

52(ubu1s2/12),0, and the conditionuA2u@s2 formulated
above cannot be satisfied. Hence the linear equation~45! is
inapplicable for describing longwave steady-state vibrati
of a discrete chain. One of the reasons behind this is tha
dispersion relation~46! with A2,0 displays a nonphysica
behavior for largek. In this case, the continual descriptio
with the help of an equation of the type~45! is admissible
only when a differential equation with second-order spa
derivative is used.

However, a situation exists in which Eq.~3! has a con-
tinual equivalent forb,0. his concerns the description o
dynamic excitation of a chain moving steadily with a velo
ity V, for which the solutionu(x,t)5u(x2Vt). In this case,
we obtain instead of~45! the equation

v0
2u2g2

]2u

]x2 2B2
]4u

]x4 50, ~61!

where g25s22V2, s25a14ubu and B25(a116ubu)/12.
The wave numbersk corresponding to the given velocityV
are obtained from the dispersion relation

v0
21g2k22B2k450 ~62!

and are defined by the expressions
-
a-

r

s
he

l

k1,2
2 5

1

2B2 ~g26Ag414B2v0
2!. ~63!

It can be seen that the longwave conditionk!1 is satisfied if
g2!B2 andv0

2!B2.
Equation ~61! has a double-partial solution as befor

one portion is in the form of a plane wave with the squares
wave numbers defined as

k1
25

1

2B2 ~Ag414B2v0
21g2!, ~64!

while the other is localized, and the coefficient of attenuat
of its amplitude with distance is defined by the expressio

k2
25

1

2B2 ~Ag414B2v0
22g2!. ~65!

Obviously, the second~localized! portion has a physica
meaning either for an external force applied to the ch
moving with a velocity V, or in the analysis of the
asymptotic forms of the field of a soliton moving with th
given velocity. It is interesting to note that relations~64! and
~65! have a meaning forV,s as well as forV.s, but in-
evitably under the conditionug2u!B2. As regards the neces
sary conditions, they can be satisfied even forb50. In other
words, Eq.~61! has a physical meaning under these con
tions even for a chain in which only the nearest neighb
interact. This justifies the longwave description of the no
radiative motion of a soliton in the generalized Frenk
Kontora model.9,10

The situation in which the higher spatial dispersion
taken into account in the continual approximation for d
scribing vibrations with frequencies close to the upper ed
of the continuous spectral band also varies forb,0. Putting
k5p1q in ~4! and expanding it in smallq, we obtain the
dispersion relation

v2~q!5vm
2 2s2q22C2q4, ~66!

where s25a24ubu.0 and C25(16ubu2a)/12.0. This
gives the wave numbers in which we are interested:

q1,2
2 5

1

2A2 @2s26As424C2~v22vm
2 !#. ~67!

Since the requirementq1,2!1 must be met for all the
roots defined by~67!, the continual approximation based o
the use of higher dispersion in~66! is applicable for describ-
ing the vibrations of a discrete linear chain of atoms at f
quenciesuvm

2 2v2u!C2 under the conditions2!C2. Hence
it would be expedient to take into consideration the fou
spatial derivative in the differential equation for the envelo
of high-frequency vibrations in this case.

The authors are obliged to M. M. Bogdan for fruitfu
discussions of the results. This research was supported b
project 2.4/163 of the Ukrainian Ministry of Science an
Technology.
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APPENDIX: GENERALIZATION OF GREEN’S FUNCTION
TO THE THREE-DIMENSIONAL SPHERICALLY SYMMETRIC
CASE

Generalization of Eq.~45! for the model of a three- di-
mensional medium in the continual approximation can
represented in the form7

]2u

]t2 1v0
2u2s2Du1A2DDu50, ~A1!

where the Laplace operatorD5(1/r 2)](r 2]/]r )/]r in the
spherically symmetric case. Obviously, the harmonic so
tions of Eq.~A1! have a dispersion relation for steady-sta
vibrations in the form~46!, wherek stands for the modulus
of the wave vector.

Green’s function for a three-dimensional crystal is d
fined as

G~r !5
1

~2p!3 E eik•rd3k

v22v2~k!
. ~A2!

For steady-state vibrations with dispersion relation~46!, we
can easily calculate Green’s function for various frequen
intervals.

At frequencies below the continuous spectrumvc,v
,v0 , wherevc

25v0
22s4/4A2, the wave numbers~47! are

purely imaginary,kj5 ik j ( j 51,2), and the Green’s func
tion is defined as

G~r !52
1

4pA2

e2k1r2e2k2r

~k1
22k2

2!r
. ~A3!

For v,vc , wave numbers~47! become complex (k1,25k
6 iq), and

G~r !5
1

8pA2

sin~qr !

qk

e2kr

r
. ~A4!
e

-

-

y

For the continuous spectral frequenciesv.v0 , we ob-
tain one real wave numberk ~50! and one purely imaginary
wave numberik ~51!. In this case, Green’s spherical sym
metric function has the form

G~r !5
1

4pA2

eikr2e2kr

~k21k2!r
. ~A5!

Using this equation, we can easily calculate the density
vibrations:

g~v2!5
1

~2p!2 HAs414A~v22v0
2!2s2

2A2@s414A~v22v0
2!#

J . ~A6!

The Green’s functions obtained in this way can be us
for studying the vibrations of a crystal with a point defect
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LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

Effect of plastic deformation on the shape and parameters of the low-temperature peak
of internal friction in niobium

V. D. Natsik, P. P. Pal-Val, L. N. Pal-Val,* ) and Yu. A. Semerenko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine
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Temperature dependences of the decrement of longitudinal vibrations are studied at moderately
low temperatures in polycrystalline niobium with the residual resistivity ratioRRR560 at
frequencies 78 and 363 kHz. A peak of internal friction is detected in the vicinity of 200 K. The
height, width, and temperature of the peak change significantly upon a variation of
vibrational frequency and as a result of changes in the defect structure of the sample under
thermocycling, plastic deformation, or prolonged low-temperature recovery. It is shown that the
absorption peak is due to the interaction of elastic vibrations of the sample with a system
of identical thermally activated relaxators with an activation energy of 0.15 eV and an attack
frequency of 131010s21 in a nearly perfect crystal. A theory is proposed for describing
the variation of the shape and parameters of the internal friction peak due to statistical dispersion
of the values of activation energy of the relaxators. ©1999 American Institute of Physics.
@S1063-777X~99!01507-8#
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1. INTRODUCTION

Peaks of mechanical relaxation were detected by m
authors who studied the temperature dependence of inte
friction in niobium samples of various purity and structur
perfection at moderately low temperatures. The tempera
Tp of peak localization increased from 90 to 200 K upon
change in the vibrational frequency in a wide frequen
range from infrasonic frequencies of the order of 1023 Hz to
ultrasonic frequencies of the order of 105 Hz.1–12 It was
noted in some publications that plastic deformation
samples prior to acoustic measurements led to an increa
the height and width of the peaks as well as to a shift ofTp

towards higher temperatures. The results obtained on the
pendenceTp(v) of the temperature of peak localization o
the cyclic frequencyv are systematized in Fig. 1. It can b
seen that the internal friction peaks under consideration
the first approximation correspond to a certain thermoa
vated relaxation process with a relaxation time depend
exponentially on temperatureT:

t~T!5t0 expS U

kTD , ~1!

whereU is the activation energy,t0 the period of attacks
and k the Boltzmann constant. The complete set of exp
mental data presented in Fig. 1 corresponds to the relaxa
resonancevt(Tp)51 for typical values of activation energ
U'0.27 eV and the attack periodt0.10213s ~straight line1
in Fig. 1!. However, a wide spread of experimental poin
which is apparently associated partially with differences
the structure of samples leads to considerable uncertain
5581063-777X/99/25(7)/8/$15.00
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determining the empirical values of the parameters of rel
ation process and complicates its microscopic interpretat

We can state that the nature of the given relaxation p
cess remains unclear. Moreover, we cannot be sure tha
the data presented in Fig. 1 correspond to the same relaxa
process and are not the result of superposition of sev
processes with different activation parameters.13 A thor-
oughly developed theory that would describe the effect
structural inhomogeneities, e.g., statistical ensemble of
locations and random fields of internal stresses introduce
crystalline samples during plastic deformation on the sh
and parameters of internal friction relaxation peak has
been developed. The available theoretical publications c
cerning this problem are mainly devoted to an analysis of
joint effect of random spread in the activation energyU and
the preexponential factort0 or the relaxation timet on the
peak width~see, for example, Refs. 14 and 15!. The shift in
the peak temperatureTp as well as the change in the heig
of the peak and its asymmetry, which are clearly manifes
in experiments, have not been investigated.

In the present work, we obtain additional experimen
data on internal friction of polycrystalline niobium in th
range of moderately low temperatures. We observed in
experiments an internal friction peak in the temperat
range near 200 K by using longitudinal ultrasonic vibratio
at frequenciesv/2p578 and 363 kHz. The effect of prelimi
nary plastic deformation and sample recovery on the loca
temperature, height, and shape of the peak is analyzed.
also propose a theoretical interpretation of the observed re
larities, which is based on assumptions on the statistical
ture of the parameters of elementary relaxators respons
© 1999 American Institute of Physics
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for the given peak and on the effect of dislocations on
activation energy dispersion and volume density of rel
ators.

2. EXPERIMENTAL PROCEDURE AND RESULTS OF
MEASUREMENTS

The sample was spark cut from polycrystalline niobiu
lapped with abrasive powders to attain the required sh
and geometrical dimensions size, and then subjected
chemical polishing to remove surface layers damaged du
mechanical treatment. The final size of the sample wa
33321 mm. The grain size of the sample did not exce
0.1 mm, which was much smaller than the sample sect
The initial density of dislocations was;106 cm22.

The integral measure of sample purity was the resid
resistivity ratioRRR5R300/R0.60, which was determined
by measuring the temperature dependence of the sampl
sistance in the temperature range 2–300 K. The obta
experimental data were extrapolated to 0 K and to zero value
of the external magnetic field used for the conversion of
samples to the normal state at temperatures below the su
conducting transition temperatureTc.9.3 K.

In order to find the relation between acoustic propert
of niobium and the dislocation structure of the samples, fr
dislocations were introduced in the sample by prelimin
torsion at room temperature around the longitudinal axis
residual plastic strain;5%. After the deformation, the
sample was lapped again to restore the shape of paralle
ped and subjected to chemical polishing. Measurements w
made immediately after the deformation and after a time
riod about one year, which allowed us to detect change
the acoustic properties of the sample as a result of prolon
holding at room temperature.

Acoustic measurements were made by the tw
composite vibrator technique.16,17 Longitudinal standing
waves were excited in the sample at frequenciesv/2p578
and 363 kHz. The amplitude of ultrasonic deformation«0

varied in the interval 331028,«0,331025. Temperature

FIG. 1. Activation curve for the system of internal friction peak in niobiu
observed experimentally by different authors in the range of moderately
temperatures: the results of previous experiments~1! and the results ob-
tained in this research~s,d!, U andt0 are the parameters of straight line
drawn through the corresponding set of points with minimum standard
viations.
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dependences of logarithmic decrementd of vibrations were
measured in the temperature range 90–310 K during coo
and heating of the sample at a rate;1 K/min.

Figure 2 shows the temperature dependencesd(T)
of decrement at vibrational frequency 78 kHz for tw
limiting deformation amplitudes:«05«0 min5331028 and
«05«0 max5331025. A clearly manifested broad interna
friction peak is observed atT'190 K. An increase in the
ultrasound amplitude by three orders of magnitude lead
an insignificant increase ind(T) in the entire temperature
range under investigation, as a result of which the pe
height increases slightly. The shape of the peak and its p
tion on the temperature axis remain almost unchanged. Th
changes suggest that the peak is associated with the li
resonant interaction of elastic vibrations with the system
identical elementary relaxators. An increase in the ultraso
frequency leads to a shift of the peak temperatureTp towards
higher temperatures.

The dislocation structure of the sample under investi
tion can be changed noticeably in several ways. The m
effective method is a considerable preliminary plastic def
mation leading to an increase in the dislocation density. A
other method is prolonged recovery of preliminary deform
samples, which leads as a rule to a decrease in disloca
density. The density of defects can also be increased by m
tiple thermocycling of the sample in a wide range of lo
temperatures at a high rate of temperature variation. The
of external deforming stress is played by thermoelas
stresses emerging in the sample. The influence of the ab
three factors on the internal friction peak under investigat
is illustrated in Fig. 3. The figure shows the temperatu
dependencesd(T) of the decrement of vibrations at a fre
quencyv/2p578 kHz in four cases: during first thermocy
cling of an undeformed sample in the temperature inter
300 K–6–300 K at arate of 1 K/min; during repeated ther
mocycling at the same rate; immediately after deformation
room temperature to the residual strain«pl55%, and after
the 1-year holding of the deformed sample at room tempe
ture.

The structural changes caused by thermoelastic stre

w

e-

FIG. 2. Internal friction peak in polycrystalline undeformed niobium and
variation upon an increase in the amplitude«0 and frequencyv/2p of
acoustic vibrations:v/2p578 kHz, Tp5190 K, «05331028 ~s! and 3
31025 ~d!; v/2p5363 kHz, Tp5225 K, «05331028 ~n!.
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as well as external stresses lead to the following qualita
changes in the shape and parameters of the peak:

—the peak heightdp5maxd(T) increases;
—the positionTp of the peak on the temperature axis

displaced towards high temperatures;
—the peak width increases;
—the asymmetry of the peak increases due to its ele

tion above the background or an increase in the length o
high-temperature tail;

—the absorption background in the peak localization
gion increases weakly, but noticeably.

Prolonged low-temperature recovery of a deform
sample leads to opposite manifestations of the effects li
above.

The values ofTp on the activation curve obtained in ou
experiments~see Fig. 1! coincide ~to withing the spread in
experimental values! with the array of points obtained b
other authors. However, independent application of th
values for determining the parameters of a relaxation proc
gives the valuesU'0.17 eV andt0'2310210s ~straight
line 2 in Fig. 1! that differ significantly from the values typi
cal of the entire array of data on theTp(v) dependence. This
circumstance emphasizes once again the difficulties em
ing when the activation curve is used for microscopic int
pretation of the relaxation resonance under investigation

It is natural to assume that a possible reason behind
spread in points in Fig. 1 and the observed ambiguity in
empirical values of the parametersU andt0 is the influence
of random inhomogeneities of the structure~primarily, dislo-
cations! on the local values of these parameters in the bulk
the sample. Consequently, the first step in overcoming th
difficulties must be the analysis of peculiarities of rela
ational resonance, which are due to statistical nature of
parameters of elementary relaxators in real crystals.

FIG. 3. Effect of variation of the defect structure of the sample on
internal friction peak in niobium detected in our experiments: undeform
sample subjected to single thermocycling~s!, undeformed sample subjecte
to repeated thermocycling~d!, immediately after plastic deformation~h!,
plastically deformed sample after 1-year holding at room temperature~j!.
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3. THEORETICAL ANALYSIS OF THE EFFECT OF STATIC
SPREAD IN ACTIVATION ENERGY OF ELEMENTARY
RELAXATORS ON THE CONDITIONS OF RELAXATION
RESONANCE

In this publication, we shall not consider specific micr
scopic models of an elementary relaxator whose interac
with elastic vibrations generates the internal friction pe
under investigation. We shall only make a few remarks
this connection.

According to the aggregate of the main properties of
peak, it can be attributed to Bordoni peaks observed in
range of low temperatures for a number of fcc and bcc m
als~in the case of bcc metals, such peaks are referred to aa-
andg-peaks8,15,18–20!. The typical values of the parametersU
and t0 as well as the strong dependence of the peak he
dp on the density of dislocations~growth dislocations or
those introduced as a result of preliminary plastic deform
tions and vanishing in the course of recovery! allows us to
consider as most probable microscopic models of a relax
the following two elementary dislocation processes: therm
activated generation of dislocation kinks pairs on rectiline
dislocation segments located in the valleys of the first-or
Peierls relief, and thermoactivated diffusion of solitary kin
along dislocation lines through second-order Peierls barri
It is important that an elementary relaxator of this type
strongly localized in the bulk of the crystal~in a region of the
order of 10– 102 atomic spacings!. In perfect crystals, it can
be characterized by three parameters whose values in the
approximation are determined by energy and geometric
rameters of a defect–free crystal: the activation energyU0 ,
the period of attackst0 , and the characteristic elementa
contributionD0 to the decrement of vibrations. If we deno
by Cr the relative volume concentration of such relaxato
interacting with the vibrational mode of the sample und
investigation, the expression defining their contribution
decrement of vibrations in the linear response approxima
has the form of the Debye peak:

d~T,v!52dp

vt~u0!

11v2t2~u0!
, ~2!

where

dp5CrD0 , t~u0!5t0 expS U0

kTD .

The coordinateTp
(0) of the peak on the temperature ax

is determined by the relations

vt~u0!51, Tp
~0!52

U0

k ln~vt0!
. ~3!

The peak heightdp is naturally proportional to the con
tribution D0 from an individual relaxator as well as to th
concentrationCr of relaxators.

If a crystal contains a complex system of local structu
inhomogeneities and long-range fields of internal stresses
sociated with a random distribution of various defects,
elementary relaxator parametersU0 , t0 , andD0 acquire ran-
dom corrections in various regions of the crystal, and
must consider instead of these parameters random quan
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and distribution functions corresponding to them. The dec
ment of vibrations of a macroscopic sample is transforme

this case into a certain complex functiond̄(T,v) obtained by
statistical averaging of formula~2!. The structure of formula
~2! shows that averaging over the distribution of activati
energy and attack period must produce the strongest e

on the temperature and frequency dependenced̄(T,v). Since
the relaxation timet also becomes a random quantity, w
can introduce the distribution function fort ~the so-called
relaxation spectrum! and average the Debye peak over th
distribution.15

The phenomenological theory of mechanical relaxat
in materials with random structural parameters15 considers a
set of distribution functions for these parameters as the b
problem. The application of these functions makes it poss
to describe regularities of relaxation detected in experime
to the desired degree of accuracy. From the point of view
physics of thermoactivated processes, it is expedient to c
sider the activation energy and attack period as initial r
dom parameters while using relation~1! for describing an
elementary relaxation act, and seek the distribution func
for these quantities. Obviously, such a distribution funct
will be determined only by the structure of the material a

must be independent of temperature, andd̄(T,v) will be
calculated using the explicit form of the temperature dep
dence of the function being averaged. On the contrary, w
choosing the distribution function for relaxation timet, the
temperature and structural characteristics are regarded a
mally equivalent parameters that must determine this fu
tion, which obviously masks the physical role of tempe
ture.

We shall not carry out a microscopic analysis of rela
ation spectra here. Using the phenomenological approach
veloped in Ref. 15, we shall seek the distribution functi
which would make it possible to describe correctly the m
peculiarities in the relaxation properties of the material un
investigation ~niobium!, detected in experiments and d
scribed in the previous section. A specific feature of o
analysis is that we essentially use the following three
sumptions. First, we shall consider only a thermoactiva
relaxation process and assume that only the structural pa
eters appearing in relations~1! and~2! are random quantities
Second, we shall confine our analysis to the region of l
temperatureskT!U0 . Finally, we shall assume that the e
ergy activation dispersionD2 is quite small (D!U0), i.e.,
consider relatively weak effects on the crystal structure le
ing to random variations of the initial value of activatio
energy. These assumptions allow us to take into accoun
the first approximation only the statistical nature of activ
tion energy and disregard the dispersion of the parame
D0 andt0 to an exponential accuracy.

Thus, taking into account the remarks made above,
shall assume that the only random parameter of the prob
is the activation energyU of an elementary relaxator. As
statistical characteristic of this quantity, we introduce t
function P(U), viz., the probability density for values ofU,
which is defined on the interval~0,̀ ! and satisfying the nor-
malization condition
-
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`

P~U !dU51. ~4!

In the case of statistical distribution of activation energ
the Debye peak~2! is transformed into a more complex func
tion d̄(T,v) defined as

d̄~T,v!52D0CrE
0

`

dUp~U !
vt0 exp~U/kT!

11v2t0
2 exp~2U/kT!

.

~5!

By way of a concrete simple example of the distributi
P(U), we consider a function of the form

P~U !5
1

A2pD
S U

U0
DexpF2

~U2U0!2

2D2 G , D!U0 . ~6!

It can be easily proved that a distribution of the qua
Gaussian type~6! satisfies the normalization condition~4! to
within a term of the order of exp(2U0

2/2D2), and the average
value and dispersion corresponding to it to the first appro
mation inD2 are given by

Ū5E
0

`

UP~U !dU>U01
D2

U0
,

~U2Ū !2>~U2U0!25E
0

`

~U2U0!2P~U !dU>D2.

~7!

For D˜0, distribution ~6! is transformed to the Dirac
delta-functionP(U)5d(U2U0), which ensures the transi
tion of the functiond̄(T,v) ~5! to the Debye peak~2! for low
values of dispersion. At the same time, an increase in
parameterD, which broadens the distribution~6! and dis-
places its peak to high energies, leads to a broadening o
maximum of the temperature dependence of averaged de
mentd̄(T,v) and to its displacement to high temperatures
should also be noted that the asymmetry in distribution~6!
relative to the valueU0 due to the factorU in the preexpo-
nential factor leads to additional asymmetry of the tempe
ture dependenced̄(T,v) relative to its peak.1! Consequently,
the application of the distribution function~6! for calculating
the averaged decrement of vibrationsd̄(T,v) ~5! creates all
the premises required for the interpretation of the peculi
ties of the mechanical relaxation peak in polycrystalline n
bium samples described in the previous section. In the l
run, the explanation of the properties of the peak boils do
to the natural assumption that the relaxator concentrationCr

and the activation energy dispersionD2 of an individual re-
laxator increase with the density of structural defects~e.g.,
dislocations! as a result of thermocycling or plastic deform
tion, while sample recovery decreases the values of th
parameters.

Since the substitution of~6! into ~5! leads to an integra
that cannot be evaluated by using analytical methods,
expedient to illustrate the validity of the above statements
using numerical integration. In order to transform the in
gral to a form convenient for numerical integration, we
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over to a new integration variablex and a new set of the
parameters of the problem, defining them by the relation

ln x5
U

kT
, u5

T

Tp
~0!

, V5
1

vt0
, U05kTp

0 ln V,

d5
&D

kTp
~0! 5

&D

U0
ln V. ~8!

Here we have introduced the dimensionless tempera
u, the reciprocal dimensionless frequencyV, and the dimen-
sionless characteristic dispersiond. As a result of such a
substitution, the averaged decrement of vibrationsd̄(T,v)
assumes the form

d̄5CrD0F~u,V,:d!,

F5
2Vu2

Apd ln V
E

1

`

dx
ln x

x21V2
expF2S u ln x2 ln V

d D 2G .
~9!

We are mainly interested in the variation of the tempe
ture dependence of the decrement~relaxation peak on the
temperature axis! upon an increase in the dispersion of ac
vation energy of relaxators: the absence of dispersion co
sponds to the limitd˜0, while a relatively high dispersion i
defined by the inequalityd>1. It should be noted that lnV
52ln(vt0)>10 in actual practice, and hence our initial a
sumption concerning the fulfillment of the inequalityD
!U0 permits an analysis of the inequalityd.1. We choose

FIG. 4. Transformation of a Debye peak upon an increase in the dispe
of the activation energy of a relaxator: the result of numerical integratio
formula ~9! for essentially different values of the frequency parameterV
(104 ~a! and 108 ~b!! and different values of the dispersion parameterd
50 ~curve1!, 1 ~curve2!, 2.5 ~curve3!, and 5~curve4!.
re

-

e-

-

two values of the parameterV5104 and 108 typical of ul-
trasonic experiments and consider the temperature de
dence of the functionF(u) for several essentially differen
values of the parameterd. Numerical integration gives for
the functionF(u,V,d) the family of the curves shown in
Fig. 4. For low values ofd, the temperature dependence
the functionF(u,V,d) has a peak at the pointu'1 and
virtually coincides with the Debye peak~curve1 in Fig. 4!,
while an increase in the parameterd leads to a displacemen
of the peak towards high temperatures, its broadening,
an increase in asymmetry. For a quantitative characteristi
peak broadening, we can use the parameters

Th5Tp
~1 !2Tp

~2 ! , h5
Th

Tp
~0!

5uh
~1 !2uh

~2 ! , ~10!

whereuh
(1) anduh

(2) are the values of temperature for whic
F(u (1))5F(u (2)50.5F(up) andup is the peak of the func-
tion F(u). The variation of the parametersup andh of the
peak upon an increase ind is illustrated in Fig. 5.

The curves in Fig. 5 describing the functionsup(d,V)
and hp(d,V) permit simple analytic approximations whos
accuracy is of the order of a few percent:

up5112S d

ln V D 2

, ~11!

h5
2~11d!

ln V
. ~12!

on
n
FIG. 5. Dependences of dimensionless localization temperatureup ~a! and
width h ~b! of the relaxation peak on the dispersion parameterd, obtained as
a result of numerical integration in formula~9!.
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Using relations~8! and~10!–~12!, we can easily obtain a
system of two equations connecting the parametersU0 , t0 ,
andD of the theory with the experimentally measured qua
tities Tp andTh :

U0
214D21kTpU0~ ln t01 ln v!50;

U02&D~ ln t01 ln v!2
1

2
kTh~ ln t01 ln v!250. ~13!

It is convenient to write the first of these equations in t
form of the relation corresponding to the activational cur
ln v vs. Tp

21 :

ln v5 ln t0
212

U0
214D2

kU0

1

Tp
. ~14!

Recording the dependenceTp(v) in a wide frequency
range and plotting the activation curve, we can obtain e
pirical estimates for the parametert0 and effective activation
energyUeff whose role is played by the factor in front o
Tp

21 . The values of these parameters can also be estimat
the conventional way by measuring the values ofTp for two
close values of frequenciesv1 andv2 :

t0
215v0 expFTpS ]Tp

] ln v D 21G
>v1 exp

Tp~v2!ln~v2 /v1!

Tp~v2!2Tp~v1!
, ~15!

Ueff5U0S 11
4D2

U0
2 D 5kTp

2S ]Tp

] ln v D 21

>
kTp~v1!Tp~v2!ln~v2 /v1!

Tp~v2!2Tp~v1!
. ~16!

It should be noted that, in order to ensure the correctn
of the procedure of determiningt0 andUeff , we must use the
empirical dependenceTp(v) obtained for a constant value o
D, i.e., for a invariable structure of the crystal.

Equations~13! also make it possible to determine em
pirical values of the initial activation energyU0 and disper-
sionD2 using the measurements of the temperatureTp of the
peak and its widthTh for any fixed value of frequencyv.
The solution of the system of equations~13! for U0 andD to
within the terms of the order 2(lnt0v)22!1 has the form

U05
k~Th

22Tp
2!ln~t0v!

Tp
12kTh , ~17!

D52
1

2&
@Th ln~t0v!12Tp#. ~18!

Concluding this section, we note that while using form
las ~9! and ~14!–~18! for interpreting experimental data,
should be borne in mind that various effects exerted on
crystal and changing the statistical parameters of relaxa
can also lead in some cases to a change in the concentr
Cr of relaxators. This can result in the emergence of ad
tional peculiarities in the behavior of the relaxation pe
height that are absent in Fig. 4, e.g., an increase in md̄
-
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ss
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accompanied by a displacement of the peak towards h
temperatures in the cases when the increase inCr is more
significant than the decrease in maxF.

4. THEORY AND EXPERIMENT

Taking into account the phenomenological nature of
proposed theory, we must compare its results with exp
mental data using a correctly selected distribution funct
P(U) and chosing the values of the parameterst0 , U0 , D,
andCrD0 which makes it possible to put in corresponden
the temperature dependences shown in Figs. 2 and 3 to
dependences defined by formulas~9!.

Expression~9! describes the contribution of attenuatio
of the statistical ensemble of identical thermoactivated rel
ators with a quasi-Gaussian distribution function~6! for val-
ues of activation energy to the absorption of elastic vib
tions. This expression can be used to describe all the m
peculiarities in the behavior of the acoustic relaxation pe
in niobium studied by us and described in Sec. 2 if we ma
the natural assumption that thermocycling and plastic de
mation of the sample increases the density of structural
fects as well as the activation energy dispersionD2 and con-
centrationCr of relaxators, while prolonged recovery mu
reduce these parameters.

A separate problem emerging when we compare the
sults of proposed theory with experimental data is the cor
subtraction of the absorption background for all peaks in F
3. Taking into account the small value and weak tempera
dependence of the background at the foot of the peaks on
side of low temperatures, we can replace the backgroun
the region of peaks in Fig. 3 by constants whose values
determined only by the structural state of the samples.
such constants, we can use the experimental values o
decrementd at T5100 K. Thus, we shall speak on the ver
fication of the applicability of the relation

d2d100 K5CrD0F~u,d,V! ~19!

to the description of experimental data presented in Fig
and 3.

Going over to an analysis of experimental data, we m
primarily consider the displacement of the absorption pe
on the temperature axis upon a change in the vibratio
frequency~see Fig. 2!. Using the data presented in this figu
and formula~15!, we obtain an empirical estimate for one
the principal microscopic parameters of the relaxation p
cess, viz. the attack frequencyt0

21 whose value is given in
the last row of Table I.

In order to obtain empirical estimates of the ‘‘initial’
activation energyU0 and the parameterD characterizing the
statistical spread in the activation energy in a certain str
tural state of the sample, we must use the data presente
Fig. 3. For each peak presented in this figure, we can e
mate the temperatureTp of the peak and its widthTh and to
substitute these values into formulas~17! and~18!. However,
the accuracy of these estimates is not very high in view
considerable uncertainty in the values ofTh . In order to
improve the accuracy of estimates of the parametersU0 and
D and to verify the quantitative agreement between the
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perimental values and formula~19!, we can use the potenti
alities of computer numerical analysis. Proceeding from
rough estimates ofTp and Th obtained from Fig. 3 and the
values ofU0 andD calculated on their basis, we can sele
the refined values of the parametersU0 , D, and CrD0 ,
which make it possible to match experimental points on
d(T) dependences with the curves describing the func
~19! to a high degree of accuracy. The possibility of such
matching is illustrated in Fig. 6, and the corresponding fitt
values of the parameters of the theory are given in the
tom rows of the table. In Fig. 6, the experimental poin
presented in Fig. 3 are normalized to the scale of dimens
less temperatureu5kT ln V/U0, and the values ofU0 , D,
and CrD0 are chosen so that the theoretical curves in th
central parts match the experimental points to the maxim
possible extent. It should be noted that deviations of exp
mental points from the curves on the tails of the peaks ar
all probability due to errors made as a result of application
extremely simplified procedure for substracing the ba
ground absorption.

The values of the parametersCrD0 andD given in Table
I indicate that the volume density of elementary relaxat

TABLE I. Dependences of the parameters of absorption peak at vibrati
frequencyv/2p578 kHz on the structural state of the sample and empir
values of the parameters of the theory parameters.

Structural state of samples

Parameters of peak 1 2 3 4

Tp , K 190 191 202 198
Th , K 66 66 75 65
@d(Tp)2d(100 K)#•103 2.0 2.3 5.2 4.8
(CrD0)•103 2.54 2.97 7.02 5.92
d 0.69 0.70 0.87 0.58
D, 1023 eV 7.79 7.91 9.83 6.55
Ueff , eV 0.152 0.152 0.153 0.151
U0 , eV 0.15
t0 , s 1310210

Remark. Numeration of structural states of the samples is the same a
Fig. 3.

FIG. 6. Comparison of experimental data on temperature dependenc
the decrement of vibrations for various structural states of the sample~see
Fig. 3! with the theoretical dependence~19! constructed for a set of speciall
selected values of the parametersU0 , t0 , D, andCrD0 given in Table I.
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and the dispersion of their activation energy increase a
result of thermocycling and plastic deformation of th
samples, while sample recovery is accompanied by a sl
increase in the relaxator density and a quite strong decr
in the activation energy dispersion.

It should be noted that the refined values of activat
parameters of the peak under investigation contained
Table I differ slightly from the preliminary rougher estimate
obtained on the basis of the activation curve~straight line2
in Fig. 1!. The difference between these values and the m
values typical of the entire system of peaks observed ea
in experiments on internal friction in niobium in the range
moderately low temperatures~straight line1 in Fig. 1! is
much stronger. This circumstance indicates that severa~at
least two! thermoactivated relaxation processes can occu
niobium in this temperature range.

5. CONCLUSIONS

The results of our experiments and their theoreti
analysis lead to several important conclusions.

—The internal friction peak detected and studied by
for polycrystalline niobium in the temperature range;200 K
possesses the properties of a thermally activated relaxa
peak and emerges due to the interaction of elastic vibrat
of the sample with a system of identical elementary rel
ators characterized by the activation energyU0'0.15 eV and
the attack frequencyt0

21'131010s21 for structurally erfect
samples.

—The activation parameters of the peak differ sign
cantly from the parameters of other peaks observed ea
for single crystals of niobium as well as polycrystallin
samples in the range of moderately low temperatures~see
Fig. 1!.

—the position of the peak on the temperature axis and
shape are noticeably sensitive to the structural state of
bium samples. The parameters of the peak vary as a resu
thermocycling, plastic deformation, and recovery.

—Structural sensitivity of the parameters of the peak
due to a change in the volume density of relaxators and
tistical distribution of activation energy upon a change in t
defect structure of the samples.

—In all the cases analyzed in our experiments, the s
tistical spread of activation energy values for relaxators
quite small and is successfully described by a function of
quasi-Gaussian type~6! with a low dispersion determined b
the structural state of the sample.

The authors are grateful to S. N. Smirnov for fruitf
discussions and advice concerning the problem touched u
in this publication.

* !E-mail: palval@ilt.kharkov.ua
1!The asymmetry of the distributionP(U) and of the functiond̄(T,v) can

be varied by choosing other powers of the variableU in the pre-
exponential factor in formula~6!.
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On the origin of optical conductivity of HTSC in infrared spectral region
V. N. Samovarov* )

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine
~Submitted January 29, 1999; revised March 15, 1999!
Fiz. Nizk. Temp.25, 758–762~July 1999!

An expression for the frequency dependence of the anomalous component of optical conductivity
sMIR(v) of cuprate superconductors is derived for the entire range of non-Drude intraband
excitations 0,\v,\vg'1.5– 2 eV. The derivation is based on the assumption on finite
probability of penetration of an electron~hole! from the hole band to the upper conduction
band through the optical gap\vg , ensuring the correlated coupling between intraband and
interband excitations. It is shown that the available experimental data are in good agreement
with the two-component model, taking into account the total contribution of the anomalous
componentsMIR and the conventional Drude componentsD to the conductivity of the
metal phase. ©1999 American Institute of Physics.@S1063-777X~99!01607-2#
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In contrast to traditional BCS superconductors, the o
cal conductivity of HTSC materials contains a considera
contribution of the non-Drude conductivity compone
sMIR(v), which does not obey the Drude classical la
sD(v)}v22.1 The anomalous componentsMIR(v) is ob-
served in the spectral region from zero frequency to
boundary energy\vg51.5– 2 eV, which is equal to the op
tical gap between the Fermi level located deep in the vale
band and the upper~vacant! conduction band. The depen
dencesMIR(v) in the metal phase with a small number
charge carriers displays a clearly manifested peak in
middle IR frequency range;0.3– 0.5 eV, which allows us to
call it the MIR component of the spectrum. As a result, t
conductivity of the active CuO2 plane in the energy rang
,\vg can be presented b.y the two-component model

s~v!5sD~v!1sMIR~v!5
1

4p

vP
2GD

v21GD
2 1sMIR~v!,

~1!

wherevP is the plasma frequency andGD the absorption for
Drude charge carriers. The total conductivitys~v! gives the
spectrum of intraband hole excitations. An interband cond
tivity component sCT(v) associated with photo-induce
transfer of an electron from oxygen to copp
(Cu21O22

˜Cu1O2) emerges at frequency exceeding t
optical gap width\v>\vg . This component of the excita
tion spectrum associated with charge transfer~CT-
component! determines the emergence of additional holes
the valence band.

Several explanations of the origin of the MIR
component of conductivity offered at present include
model of a marginal Fermi liquid,2 Luttinger liquid,3 and
polaron4 and bipolaron models.5 A comparative analysis with
experimental data does not allow us to give preference to
of the above models~see, for example, Ref. 6!, which would
5661063-777X/99/25(7)/4/$15.00
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be equally applicable for all cuprate HTSC upon variation
temperature and doping level. It should be noted in this c
nection that the available models are not based on the ex
mental result common for all cuprates, i.e., the existence
correlated coupling between intraband and interband tra
tions. However, the crucial point for HTSC is the existen
of interrelation between oscillator forces of MIR- and C
transitions rather than the emergence of the anomalous c
ponentsMIR(v).

The gap width for cuprate HTSC formed by states w
charge transfer remain virtually unchanged upon an incre
in the doping level to the optimal value, but the integr
value of interband conductivity decreases, while the integ
value of intraband conductivity increases~e.g., for Y- and
La-based samples!.7,8 Such an evolution of conductivity
spectrum reflects in the purest form the interrelation of
cillator forces of transitions. ~The optical gap for
Ba12xKxBiO3 and similar compounds, which emerges due
excitation of charge density waves, decreases upon dop
and the interband component is shifted to the IR region, p
serving its spectral area9!.

The correlation coupling of MIR and CT excitations wa
observed for Bi-, Y-, and La-based compounds not o
upon a change in the chemical doping level, but also up
cooling ~photo-induced doping and structural ordering
YBCO!.10,11 For example, optical absorption during CT
transitions is suppressed upon cooling of YBCO, BSCC
and LaCO samples in the entire spectral range, while
integral intensity increases during MIR-transitions.4,5,11A re-
sponse of absorption to the superconducting transition is
served in the frequency range of MIR- an
CT-excitations,4,5,10,11which was initially detected in absorp
tion of YBCO films in the visible frequency range.12 The
response at MIR- and CT-frequencies has oppo
polarities4,11 in analogy with opposite signs of variations o
© 1999 American Institute of Physics
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MIR and CT-spectra upon a change in temperature or dop
level.

The interrelation between excitations observed upo
change in the doping level13 can be traced quantitativel
most exactly from the results of optical experiments w
La22xSrxCuO4 single crystals7 containing only one CuO2
plane in a unit cell:

DxS E sMIR~v!dv D52DxS E sCT~v!dv D . ~2!

This equation indicates that as a result of doping~increase in
the number of holesn}x!, the CT conductivity is completely
converted into the MIR conductivity. This interrelation
preserved from the beginning of metallization (x.0.05) up
to the optimal valuex.0.15, above which the relative con
tribution of the Drude spectral component increases stron
and the samples start losing their superconducting proper
Ultimately, a change in the conductivity indicates the pum
ing of excitation energy since, according to the rigorous s
rule,1 *s(v)dv}^T&, where^T& is the kinetic energy of the
system.

The above arguments allow us to analyze the intrab
MIR-conductivity by using the model of two coupled osc
lators with oscillatory modes at frequenciesv1 and v2 .
From the quantum-mechanical point of view, the coupling
oscillators is due to finite probabilities for an electron~hole!
to be in two states at instantt:

uCu1,2
2 5

1

2
@16cos~v12v2!t#. ~3!

The difference in the oscillatory frequencies for HTSC c
be naturally assumed to be equal to the optical gap w
\vg5\(v12v2), which suggests that an electron can e
perience interband ‘‘tunneling’’ through the optical ga
along the oxygen–copper bond with the formation of a h
in the valence band. Consequently, in order to find the
quency dependence of conductivity, we can proceed from
following equation:

d~ uCu2v !

dt
1~ uCu2v !g52

e

m0
E~v!uCu2, ~4!

where v, e, and m0 are the electron velocity, charge, an
mass,E(v) is the field of a light wave, and the quantityg
characterizes attenuation which is determined by the en
blurring of energy levels. Generally speaking, the blurring
energy levels can be included in the expression~3! for prob-
ability density,14 but we shall take it into account subs
quently in attenuation. On the basis of Eq.~4!, we obtain the
following expression for the real conductivity component
g

a

y,
s.

-

d

f

th
-

e
-
e

gy
f

s~v!5
2Ag

2~v1vg!212vg~v1vg!1vg
212g2 , ~5!

whereA is a constant that will be determined later. First, w
shall defineg on the basis of the following consideration
The harmonic type of~3! can be disturbed due to rando
transitions of an electron~hole! through the optical gap
which lead to recombination of charge carriers. As a res
attenuation of intraband current must be proportional to
probability of a transition between two states:g5g0@1
2exp2(«/h)t#, where the parameter«5w(const2«F) charac-
terizes the energy level blurring and hence is a function
the hole gap width«F , which is proportional to the numbe
n of charge carriers («F51021 eV). We must substitute into
~5! the value ofg for the time interval equal to the period o
the applied field. In this case, we can put the attenuation
zero frequency equal tog052vgl(n) proceeding from the
uncertainty relation, where the dimensionless param
l(n);1 also depends on the number of charge carriers. T
gives

g52vgl~n!@12exp~2«~n!/\v!#.

In order to determine the constantA, we can use the
standard approach, assuming that it is equal to the squa
a certain effective plasma frequencyVeff(m* ), which is a
function of effective massm* . However, we shall use a
different approach13 that does not require the introduction o
the additional parameterm* for describing the frequency
dependence of conductivity in the case of correlated c
pling of intraband and interband excitations in HTSC. Let
suppose that a mobile hole is formed only in the lower ba
of the system. We assume that in this case the conduct
s~0! in the lowermost energy state for\v50 is equal to the
minimum conductivity realized due to the charge trans
along the oxygen–copper bond of lengtha0 : s(0)[smin

5e2/ha0, where h/e2 is the resistance quantum~smin

52100V21
•cm21 for La22xSrxCuO4!. In this case, A

5s(0)vg(518l2)/4l. If the system containsn mobile
holes in the lower band and accordinglyn electrons in the
upper band,A must be multiplied by 2n ~we can assume tha
the effective number of charge carriers participating in t
case in the creation of intraband current isNeff52n!. For
primitive cells of Y- and La-based compounds,n5x, where
x is the level of doping of the sample by oxygen or stro
tium. Thus, the final expression for intraband conductiv
emerging as a result of interband ‘‘tunneling’’ of charge ca
riers has the form
sMIR~v!5
2xs~0!vg

2~518l2!@12exp~2«/\v!#

2~v1vg!212vg~v1vg!1vg
2@118l2~12exp~2«/\v!!2#

. ~6!
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Pay attention to the fact that Eq.~6! acquires non-Lorentzian
terms (v1vg)2 and (v1vg) determining the behavior o
the high-frequency branch of~6!. It was proved earlier on the
basis of analysis of integral conductivity of HTSC13 that the
intraband conductivity of Y- and La-based samples conta
a noticeable contributionsMIR}(v1vg)22, but the reasons
for the emergence of such a peculiar frequency depend
were not indicated.

A comparison of the results obtained by using Eq.~6!
with experimental data was carried out for a series of av
able results on the optical conductivity of Y- and La-bas
compounds in a wide range of doping. By way of an e
ample, Figs. 1a and 1b show the results of comparison
La22xSrxCuO4 (\vg51.7 eV) forx50.06 and 0.1, when the
contribution of the Drude component weakly masks the f
quency dependence of the MIR component of the spectr
A good agreement with experiment is observed, the value
l52.2 and «50.18 eV for x50.06, and l52 and «
50.13 eV for x50.1. Slight discrepancy in the low
frequency spectral region for\v,0.2 eV can be eliminated
easily by adding the Drude term with the following typic
parameters: vP55300 cm21 and GD5100 cm21 for x
50.06, vP56800 cm21, GD5200 cm21 for x50.1. It
should be noted that the given values ofvP

2 54pne2/Vm* ,

FIG. 1. Optical conductivity spectrum for the CuO2 plane of a
La22xSrxCuO4 single crystal:x50.06~a! andx50.1 ~b!. Experimental data
were obtained at 300 K7 ~bold curves!, the behavior of MIR conduction
band calculated by formula~6! ~solid curves!, and joint contributions of the
Drude and MIR conductivity components according to our results~dashed
curves!.
s

ce

l-
d
-
or

-
.

of

whereV595•10224cm23 is the volume per structural unit
corresponds to the quantitiesn5x and m* 52m0 . Dashed
curves show the overall spectrum of intraband conductiv
in this two-component model. The values ofl and« change
in this case insignificantly. The agreement with experimen
results is observed up to the energy of 8000 cm21 ('1 eV)
with an error smaller than 2%~for this reason, the experi
mental and theoretical curves virtually coincide for\v
.1500 cm21!. It can be seen that the expression~6! for con-
ductivity component simulates not only the emergence of
asymmetric MIR peak, but also its displacement to the lo
frequency region upon an increase in the doping lev
('2500 cm21 for x50.06 and ;1500 cm21 for x50.1!,
which is observed in experiments with HTSC.15 A compari-
son with experimental results for YBCO8 shows that the val-
ues of parameters lie nearl51 and«50.3 eV for various
levels of doping.

It is interesting to compare the results with the expe
mental data for the standard choice of the constantA in
formula~5!: 2A5Veff

2 5e22x/Vm* , which can be presented i
the forme2(2x)S /m* d for the two-dimensional case, wher
(2x)S.(1 – 2)•1014cm22 is the ‘‘surface’’ charge carrier
density in the conducting CuO2 layer for x<0.1, andd is a
certain effective thickness of the conducting layer. Form*
5m0 , the agreement with experimental results is attained
values ofd of the atomic scale'1 Å, which is comparable
with or even smaller than the lengtha051.9 Å of the
oxygen–copper bond. Such a qualitative analysis shows
the proposed mechanism of formation of the intraband c
ductivity component is realized in a system with clearly pr
nounced two-dimensional nature. In the doping range ab
the optimal, the three-dimensionality is enhanced~the con-
ductivity across CuO2 layers acquires features of metal-typ
conductivity!16 and the contribution to conductivity of isotro
pic Drude carriers whose plasma frequency correspond
the conditiond@a0 increases significantly. As a result, th
operation of the ‘‘tunnel’’ mechanism is weakened consid
ably («˜0) for strong doping, as superconductivity is su
pressed. Apparently, a narrow 2D-hole band is involved in
this mechanism~narrow peak of the density of states!, in
which heavy charge carriers are subjected to stro
Cu21O22–Cu1O2 fluctuations. Light carriers mainly deter
mine the Drude conductivity. As the doping level increas
the peak of the density of states becomes blurred, fluc
tions are suppressed, and as a result, the probability of in
band transfer of charge carriers through the optical gap
creases sharply.

The author is grateful to I. Ya. Fugol for fruitful discus
sions and to V. L. Vakul for his assistance in carrying ou
comparative analysis of experimental and theoretical resu
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