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The problem of evolution of strong heat pulses in He Il interacting with quantum vortices

induced by these pulses is investigated numerically on the basis of equations of hydrodynamics

of superfluid turbulence. In order to study nonlinear effects, the initial equations are

expanded to the second order in the amplitudes of pulses. The one-dimensional case in the
absence of mass transp@second soundis considered. The initiation of vortices was simulated

by the generation term in the Vinen equation. The results on the dynamics of pulses in

various temperature ranges are presented. It is shown that the Feynman-Vinen theory is applicable
in the phase-transition region. @999 American Institute of Physid§1063-777X99)00107-3

INTRODUCTION Puttermaf). This temperature perturbation is insufficient for
f_attaining the “liquid—vapor” phase equilibrium curve. Boil-
ing of He Il was studied, for example, by Van-SciveFsoi

and Lutset® Miklaev et al,'!* Sidyganovet al,*? Ruppert

et al,'® and Danil’chenkoet al}* These experiments also
confirmed indirectly the formation of a vortex structure that
changes radically the hydrodynamic properties of superfluid

Quantum turbulence is a manifestation of quantum e
fects in superfluid helium. This concept is used for an aggre
gate of chaotic quantized filamen¢gortex tangle formed
when the superfluid helium flugor counterflow exceeds a
certain critical value. Ever since the evolution of the vortex
filament density was described by Feynniahe interest of _
physicists in this object remains undiminished. Most of ex_hehum. . . .
perimental methods of investigation of superfluid turbulence, In order to descr_|be the above experiments quantita-
(ST), such as probing by first and second sounds, measuré'yely' we must take mto_accoynt the effegt of .ST on the
ment of hydrodynamic parameters as well as heat and ma namics c.)f. hydrpdy_namm variables. The mplusmn of this
fluxes, are of hydrodynamic type. On the other hand, aIFf?Ct mod|f|es significantly the hydrodynam|c parameters,
known methods of creating ST generation by a flow or whu:h in turn affects the. dynamics of a vortex tangle. A
counterflow, acoustic waves, etare also hydrodynamic consistent approach to this problem follows from the hydro-

methods. This means that we are dealing with mutual inﬂu_dynamics_ of superfluid FurbulencéHST) _combining the_
‘conventional” two-velocity hydrodynamics of superfluid

ence of hydrodynamic quantities and parameters of a vortex . .
tangle 4 y d P ﬁehum (see, for example, Ref.) &And the macroscopic phe-
' nomenological theory of a vortex tangle. The phenomeno-

At the beginning of the eighties, a series of publicationsI ical th ¢ th tex tanale d ics d ibed i
concerning the study of interaction of high-intensity secong-°d!cal theory of the vortextangleé dynamics described in

sound waves with a vortex tangle induced by this sound®™s of the vor_tex filament Qensity(t.) was developed by-

appeared. Commingt al.? Lutsetet al.® and Turnet were Feynman and V|_nen. Accqrdlng to this theory, t_he dynamics

the first to discover a disagreement in the dynamics of high9]c t.he_ quantlty]_ IS determlned by the value af itself and

intensity second-sound waves with the theory of nonlineaP""t'S]cles the Vinen equatih

waves. The results of these publications indicated indirectly gL

the formation of a vortex structure. Nemirovskii and Psoi a=av|W|L3/2— BuL?,

verified these assumptions directly. They proved that a vor-

tex tangle(VC) evolves in the bulk of a liquidrather than at where W=V,—V,, and W, V,, andV are the relative,

the shock front as was assumed eaylauring the propaga- normal, and superfluid velocities respectively, andand g,

tion of the pulse. A similar experiment was carried out byare the phenomenological coefficients. The increase in the

Torczynskif who demonstrated convincingly the generationvalue ofL can be associated with the action of the Magnus

of a VC in the bulk of a liquid. force, while its decrease is due to the reconnection of vortex
Another series of experiments on the study of intensdilaments, leading to a cascade fragmentation of loops and

short heat pulses revealed boiling of helium. According totheir subsequent conversion into thermal excitations. In the

the Landau two-fluid hydrodynamic model, temperature perVinen theory, a problem associated with the timeof for-

turbation does not exceedT~0.05-0.1K even for very mation of a vortex tangle is considered. If, following Vinen,

strong heat pulses of 100 W/én(see Khalatniko/ and we definer, as the time required for the evolution of the
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density of vortex filaments to its half valud../2 Nemirovskii et al. (Novosibirsk, USSR and Murakami and
=a5W2/(2/35) corresponding to the stationary case, thelwashita(Tsukuba, JapanThe research made by the Gottin-

Vinen equation gives gen group, in which calculations were supplemented by ex-
perimental measurements, deserve special attention.
_ [t dL Fiszdon et al?>?° analyzed in detail the influence of
v fo a,|W|L3?— B, L% various factors for which the HST theory developed earlier
failed to give an unambiguous answer, e.g., the effect of drift
This integral diverges at the lower limit, i.er,—. velocity of VC and the generating term in the Vinen equa-

This divergence is due to the fact that the Vinen equation ation. Since the mechanism of the initiation of a vortex tangle
the equation of the balance between the growth and deconiemains unclear, two approaches are used for an analysis of
position of the existing tangle gives no information concern-dynamics of heat pulse) it is assumes that a certain back-
ing the initiation of vortices. Experiments made in Ref. 16ground density of VC already exists in the bulk of helium,
prove thatr, (which is naturally finit¢ is a function of the and in this case the balance equation fois used for de-
applied counterflow. The empirical dependence has the forracribing the experimental data, afig it is assumed that VC
r,=a(T)W %2 In order to correct the emerging discrep- evolves in the bulk of He Il according to a certdiyet un-
ancy, Vinen proposed that a generating teyfw/|>?, where ~ known) mechanism, and this evolution is described by the
v is a certain quantity depending strongly on temperaturegenerating term introduced by Vinen in the equation Lfor
should be introduced to account for the mechanism of thé\mong other things, Fiszdoet al?>?° found out that the
initiation of a vortex tangle. The inclusion of this generating expression proposed by Vinen for the generating term is in-
term in the equation has made it possible to describe satisignificant and does not lead to any significant change in the
factorily the experimental results for low-intensity heat pulse dynamics. For this reason, they chose a different ap-
fluxes. proach, assuming that an initial vortex tangle deneityD)

The next step in the construction of the macroscopiclready exists in the bulk of helium. It should be noted that
theory was made in the eighties, when the Feynman-Vinefiszdonet al?®>%°used in their calculations the fitting param-
phenomenological theory was included in the two-velocityeters for an adequate description of experimental data, such
hydrodynamics of superfluid helium. Three different meth-as the preset initial VTD level, an appropriate choice of
ods, viz.,, phenomenological(Nemirovskii—Lebedet/),  boundary conditions, and the variation of parameters in the
variational (Guerst®), and stochastic methodJamada Vinen equation.
et al1%), were used to obtain a complete system of equations The HST equations were also analyzed numerically by
describing the hydrodynamics of superfluid turbulent heliumMurakami and Iwashit® In contrast to the above-
This system essentially combines the classical equations ohentioned publications by the @imgen group, they did not
two-velocity hydrodynamics and the Vinen equation and isexpand the system of HST equations into a power series in
quite cumbersome. The problem was mainly solved numerideviations from equilibrium. Such an approach, however, re-
cally even in the simplified case when only the second sounduires the knowledge of the dependence of thermodynamic
is investigated. An attempt at an analytic description wasjuantities onwW?, which are known only in the first order
made by one of the authofsee Nemirovski’), who ex-  (this was used by the authors in complete equajiofbe
plained(qualitatively and even semi-quantitativelpany re-  results of these publications are close quantitatively.
sults and also described the mechanisms leading to certain In spite of the fact that the interaction of second sound
effects. Numerical solutions of these equations are given ipulses and VC were analyzed quite intensely, both numeri-
some publications devoted to boiling of He Il and to the dy-cally and analytically some problems remain unsolved. In
namics of thermal pulses. For example, linearized HST equgparticular, the temperature region in which the second sound
tions were solved in Refs. 21-23 for describing the propanonlinearity coefficient is negative or assumes zero value
gation of small-amplitude thermal pulses, for which thewas not considered at all, although corresponding experi-
vortex tangle density has time to tune itself to the change imental results are availabié?® For example, Goldner
hydrodynamic parameters. For example, the dependence ef al?® observed the behavior of nonlinear second sound
the time of He Il boiling on the heat flux, which successfully pulses near th&-point, which differs significantly from the
describes experiments made in Ref. 9 was obtained in Reflynamics of heat pulses in the low-temperature region. It is
21. However, in the above publications, an approximation isinclear whether this is due to superfluid turbulence or the
used which presumes that the initial evolution of a vortexcloseness td@, , and hence peculiarities typical of the given
tangle does not affect the processes occurring in this casesgion. However, this is important from the point of view of
For this reason, the Vinen equation is not used in the abovapplicability of the Feynman—Vinen theory in the vicinity of
calculations to the fullest extent. the phase-transition region. In addition, the mechanism of

A more interesting case is the propagation of a largeinitiation of the vortex structure in the bulk of He Il remains
amplitude heat pulsésee experimental wotk 29, which  unclear.
can be described only by taking into account the entire dy-  In connection with what has been said above, we made
namics of a vortex tangle. Besides, nonlinear distortions alsan attempt to clarify some aspects in the description of the
become significant, and hence we must take into accourdccumulated experimental results. We derived HST equa-
second-order terms in HST equations. The correspondingons in the second approximation in the deviatiorMéf L,
calculations were made by Fiszdenal. (Gottingen, FRG andT from their equilibrium values. It was found, however,
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that these equations differ slightly from the equations pre

sented in Refs. 25 and 29. Namely, it will be proved below

that several significant expansion terms are omitted in th

hydrodynamic equations used in Ref. 25. In this connection,
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r=Ppspofla® B=Kxl2m 5= por’;

= x3mB3p2me/6x5p°h is the Gorter—Mellinck constant,
V/, the velocity of a vortex tangley; and y, are the param-

we solved the problem on propagation of low-intensity heaFterS in the Vinen equatiol is the Hall-Vinen coefficient,

discontinuities in the absence of a vortex tangle. We derived
a formula for the velocity of propagation of these heat dis-

continuities coincides with the familiar Khalatnikov

expressior, confirming the correctness of our equations. On f
P J . anddu=—odT+dp/p— (p,/p))WdW, we obtain the sys-

dem of equations in the absence of a mass fluxp,V,

the other hand, the equations proposed in Ref. 25 cannot
used for obtaining such a solution. This circumstance nece

sitated repeated numerical calculations for interpreting the

experimental data obtained in Ref. 25.

In Sec. 1 of this paper, we derive the HST equations in

the second order for a planar geometry in the absence of
mass transfer and solve the problem on propagation of a
finite-amplitude temperature perturbation in vortex-free he-
lium. In Sec. 2, the results of numerical solutions of the
obtained system of equations by the “discontinuity decay”
method(Godunov methot) are considered. This system of
equations describes the propagation of high-intensity heat
pulses in various temperature regions of unperturbed helium.
The effect of the generating term in the Vinen equation on
the dynamics of a heat pulse is analyzed simultaneously.

1. HYDRODYNAMIC EQUATIONS OF SUPERFLUID
TURBULENCE

nd k= 2mh/mye the circulation quantum.

Putting furthere=oy+ o', T=Ty+T' (T’ ando’ are
the deviations from equilibrium valugsnd using the well-
known relationso(p, T,W)=o(p,T)+ (1/2W?3(p,/p)! IT

+psVs=0 is the condition satisfied in our experiments
the second order of deviations in the planar geometry:

The HTS equations derived by different authors are

slightly different. However, these differences are insignifi-

cant when we describe the evolution of high-intensity heat

pulses. We write the system of equations derived when th
phenomenological method of constructing HST was tfsed
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In these relations, the following notation has been used:

S=po (o is the entropy per unit massp=ps+pn (o) ps,
and p, are the density of liquid and the superfluid and nor-
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Fn these equations, we consider that=V, according to the
available data of measurements.

It can be seen that these equations do not coincide with
those given in Refs. 25 and 29. Namely, the equation for the
velocity W' does not contain the terms

_oops dpn IW'?
207ppn T gx'2"

por dT'?
Pn ox'?

while the expression for the temperatdredoes not contain
the terms

0 %n, %0 )y, T
orpn T o7p IT ax’
and
oo0 oW’
(1_ 0 2TTPs).I_, _
oTp ax’

In order to verify the validity of the derived equations,
we consider the propagation of the finite-amplitude perturba-
tion in vortex-free helium. We shall find the velocity of a
point corresponding to the deviation ®f from the equilib-
rium temperature. In the one-dimensional case, all param-
eters of motion with a constant amplitude obey the relation
dl 9t=—c,(d/ 9xX). Substituting this relation into the system
of equationg6) and(7), from the compatibility condition we
obtain
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where C%OZ pSO'g/pn(TT, and a,=3ps/p—30(dp,!dT)/ s
2p,01— O'OO'TTpS/ZO'-er is the second sound nonlinearity co-
efficient. The convolution of this expression gives the well-
known Khalatnikov formuld:® At temperatures above 1.884 25
K and in the temperature range 0.4-0.9 K, the coefficient 100
a»<<0, while in the remaining region,>0. In temperature b
regions wherew,>0, the discontinuity surfaces are formed 80 - d=1mm
at the leading front of the wave, in the temperature region 60|
where a,<0, they are formed at the trailing edge of the E a0 - 2mm
wave, while the shape of the pulse does not change at tem- ;__' 54
perature for whichw, assumes zero value. It can be verified 20 o — AL
easily by analyzing the system of equations used in Refs. 25 0
and 29 that this expression for the velocity of second sound ~920 ) , N .
cannot be derived. 0 05 10 15 20 25
Thus, the propagation of heat pulses of various ampli- t, ms
tudes and duration can be analyzed numerically on the basis 100
of the set of equation$6)—(8) by the discontinuity decay 80 |- ¢
method® at the unperturbed helium temperatures 1.4, 1.7, d=1mm
and 1.884 K fort= (T, —T)/T,=10"°, i.e., in the regions in E 60 I 2mm
which the second sound nonlinearity coefficient is positive, - 40 =
negative, or equal to zero, respectively. The influence of the + 5 5,4mm
generating term in the Vinen equation on the dynamics of
temperature pulse is also studied. 0
-20 1 I 1 I
0 0.5 1.0 15 20 25
2. NUMERICAL ANALYSIS OF DYNAMICS OF HIGH- t, ms
INTENSITY HEAT PULSES IN VARIOUS TEMPERATURE
REGIONS FIG. 1. Temperature evolution at points located at distances 1, 2, and 5.4
mm from the heater. The temperature of unperturbed heliuiyisl.4 K,
2.1. Propagation of strong heat pulses in the temperature heat fluxQ=5 W/cn?, and pulse duratioty=1 ms. TheT(t) dependences
range where a,>0 obtained by uga) and in Ref. 25: experimentgb) and theoreticalc).

It should be recalled that discontinuities are formed at
the leading front of the wave in the temperature range inve assumed that a certain initial distribution of the vortex
which the second sound nonlinearity coefficient assumegangle density(x’,t’=0)=L, already exists in the bulk of
positive values. Fiszdoet al?® found that the temperature the liquid at the initial stage, and in this case the Vinen
evolution at points separated by different distances from théalance equation was used for describing the dynamits of
heater proceeds in different waysee Fig. 1& Such a be- and(b) we assumed thdt,=0 in unperturbed helium, and
havior of pulses is due to the mutual influence of VC andthe initial evolution of the VC is described completely by the
hydrodynamic quantities. In the description of the obtainedgenerating term, i.e., the Vinen equation with this extra term
experimental results presented in Ref. 25, we solved th& used in the solution.
problem under the following initial and boundary conditions Case(a). In order to find the distributions of temperature
corresponding to the experimental conditions:a rectangular’, velocity W', and the vortex tangle density as func-
heat pulse is supplied at one end of a long channel filled withions of time and coordinate, we uséds in Ref. 25, a

unperturbed helium: certain preset valud, as a fitting parameter. Figure la
T'(x')=0, W'(x')=0 fort'=0, shows the results of numenca! calculations of time depen-
dence of temperature at the points separated by 1, 2, and 5.4
W'(t")=Q/pST for x'=0, 0<t'<t,, mm from the heater fok ,=3x 10° cm 2 (solid curve$ and

L , ) Lo=3x10"cm 2 (dashed curves for T=14K, Q
Wi(t)=0 for x’=0, t'>ty, =5 Wi/cn? andt,=1 ms. Figures 1b and 1c show experi-
whereQ is the heat flux andy the pulse duration. In our mental data and the results of numerical calculaffisr
analysis of the influence of the initial level of the VTD as the same parameters. It can be seen that the theoretical
well as the generating term in the Vinen equation on thecurves obtained by ugor Lo=3x10° cm ?) and in Ref. 25
dynamics of heat pulse during the solution of the problemare close: the dependences have the same typical form, the
formulated above, we used the following two approack@s: peaks on the curves are observed at the same instant of time,
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100 a Q=6W/om? 80 ;
= cm . -2
t,=2,0ms, d=54mm Lo=3-10" cm
X
E _ 60
.- 50 «
£
= 6 - < =
Ly=3-10" cm=2 . 40
| | |
0 2 4 6 8
t, ms 20 |-
100
80 0 2 4 6 8
t,ms
« 60
E_ 40 FIG. 3. Comparison of theoretical curves obtained using different ap-
- proaches to the description of the initial evolution of vortex filament density.
20 The temperature of unperturbed helium §,=1.4K, heat flux
0 Q=5 Wi/cn?, pulse durationty=1ms, and the distance to the heater
d=5.4mm.
-20
0
t.ms to physical reality, i.e., neither of these approaches to the

FIG. 2. Time dependence of temperature for different times of heating at £0lution of the problem of initiation of vortex filaments in
point located at a distance of 5.4 mm from the heater. The theoretical curvéhe bulk of the liquid lead to reasonable physical results. In
obtained by uga) and experimental results obtained in Ref.(Bh our Opinion, the presence of such a Strong background tur-
bulence in the bulk of the liquid is due to the fact that heat
pulses in the experiments described above were initiated un-
and the curves attain the same asymptote. At the same timder periodic conditions. For this reason, the dynamics of
a certain difference is observed: the peaks on the reducezhch pulse is determined by the conditions of generation of
curves differ numerically. Both these theoretical curves dethe entire series of pulses, in particular, the “duty factor” of
scribe experimental results qualitatively. However, the posithe sequence of pulses. It should be noted that the attempts
tions and heights of the peaks on the curves do not coincidef numerical calculations on the basis of periodic
Figure 2 shows the experimental cufveand numerical conditiong>2?°did not lead to reasonable results. This is ap-
curve obtained by us, which describe thet’) dependence parently due to the fact that the Vinen equation fails to de-
at a point located at a distance of 5.4 mm from the heater foscribe free decay of a vortex tangfe.
a heat pulse of the amplitud®=6 W/cn? and duration Generation of pulses under periodic conditions is com-
ty=2ms for L,=3x10°cm 2 A comparison of these plicated by experimental difficulties in the observation of
curves demonstrates a discrepancy similar to that in the presolitary pulses. This difficult problem was solved by Shi-
vious case, i.e., the positions and heights of the peaks on thmazakiet al3* who observed the evolution of virtually soli-
curves do not coincide. Having analyzed the effect of alltary heat pulses. The time of expectation between two con-
dissipative terms in the equations, we conclude that since thgecutive pulses was 120 s. This time is quite sufficient for the
dissipation of the temperature pul¢see the experimental decay of a vortex tangle. Unfortunately, the results of experi-
curve is observed at a later instant of time, and the values ofmnents made in Refs. 25 and 33 cannot be compared since the
the amplitude are quite close, the discrepancy is rather due ®xperiments were made at different temperatures of unper-
inaccuracy in determining the Gorter—Mellinck constant.  turbed helium. Shimazaldt al >3 found that the time of evo-
Case(b). Varying the coefficienty of W'>?in the Vinen  lution of a vortex tangle for strong second sound pulses is
equation, namely, increasing its value by a factor of 48  approximately one third the time period proposed by Vinen.
compared to the coefficient proposed by Vingince the We used this fact to describe the experimental data, correct-
characteristic time-, of evolution of a vortex tangle behaves ing appropriately the generating term. Figure 4 shows the
approximately as a reciprocal cubic root of heat flux, thisnumerical results and experimental datan the time depen-
increase approximately corresponds to a decreasg ap-  dence of temperature for a point located at 30 mm from the
proximately by a factor of 30 we obtained good agreement heater at bath temperatufe=1.7 K for various densities of
between the theoretical curves with the calculated curves dehe heat fluxQ for the heat pulse duratidp,=500us. It can
scribed abovéFig. 3). be seen that the numerical and experimental values of the
Thus, numerical and experimental curves are in accorgulse amplitude are approximately the same.
with one another if we use in calculations the background We also made calculations using the background value
VTD valueL,=3x%10° cm 2 or a coefficient in the generat- L, of the VTD as well as the combinations of the back-
ing term exceeds the value proposed by Vinen by four orderground value and the initial term. Figure 5 shows the numeri-
of magnitude. Naturally, these situations do not correspondal results obtained for different combinations of the back-
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FIG. 4. Comparison of experimental data obtained in Ref(133and the
time dependence of temperat obtained numericallyQ =40 W/cn? (a)
and Q=20 W/cn? (b).

ground value ofL, and y. It can be seen that these curves
differ significantly from the curve described above.
Thus, the obtained results can be regarded as a proof

the fact that the additional generating term increased in ac-

30
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!
£
- L
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0 i i A
0.8 1.6 24
t, ms

FIG. 5. Calculated time dependences of temperature. The temperature
unperturbed helium i§,=1.7 K, heat fluxQ=20 W/cn?, pulse duration
ty=0.5ms, and the distance to the healer30 mm; y=1v,, Lo=0 (1);
y=1v,, Lo=100cm 2 (2); y=1v,%X25,L,=0 (3).

Kondaurova et al.

20

4,5 6,7

1.6 20
t, ms
20 5
16 |- 4
5 [ k-.;nvmsudb*"-\l
[}
v | ]
e 2 / s i
< ' {
- o8r A! i ]
i 1 2 :3 |4
at- : .
'
- . \J
of 0 o RS
| N i L
2 3 4
t, ms

FIG. 6. Calculated(a) and experiment&f (b) results: T, /T,=2%x10"°
(curve 1). The shape of the pulse generated at the heater is half sinusoidal
with frequencyr=1387 Hz. The peaks of heat flux€s mW/cn?: 0.81
(curve 1), 4.01 (curve 2), 8.12(curve 3), 15.6 (curve 4), 20 (curve5), 25
(curve6), and 30(curve7).

cordance with the experimental d3tdescribes the initiation

of a vortex tangle. The shape of pulses matches with the
remaining coefficients in the Vinen equations, which can be
different for powerful heat pulses.

2.2. Propagation of powerful heat pulses in the region of
negative nonlinearity, a»<0

It was noted above that the temperature region in which
the second sound nonlinearity coefficient is negative was not
considered in the above-mentioned publications where the
numerical method was used. As regards experimental works,
fhe only publicatiof® known to us covers the temperature
range nearT,, t=1—T/T,=10°, where a, assumes a
negative value. Shock front had time to be formed at the
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FIG. 7. Oscillograms of second sound wakfespulse durationty In
=100us, distance from the heater is 2.7 nfax-¢ and 15.1 mni{f-g); Q, i
Wicn?: 21.7(a), 24.6(b), 30.3(c), 37.1(d), 51.2(e), 21.7(f), 24.9(g), 30.2 i
(h), 37.1(i), and 52(j); 20 and 50us/div. ,\k
- rJ
trailing edge of high-intensity second sound pulses generated ; n . -1,
in these experiments when the detector arranged on the op- - 0 1 2
posite side of the channel was reached. It can be d&gn t,s

6b) that experimental dependences of temperature on timgI b nofan e along the ch o
differ significantly from those obtained earlier in the region an?j'fd 4?(‘;?9&"0" of a heat pulse along the char@elv/enr: 30, 35(a)
of positive nonlinearity. The region ne@y is known to have
typical singularities, and it is hence unclear whether such a
behavior of pulses is due to proximity g, or due to super-
fluid turbulence. However, this is important to determine theQg= 25 mW/cn?. It can be seen from the figure that discon-
applicability of the Feynman—Vinen theory in the vicinity of tinuity of pulses corresponding to different values@foc-
the phase-transition region. curs for close values of time. This can be explained as fol-
In order to find answers to these questions, we solved thlwws. In the temperature range under investigation, the
problem under the following initial and boundary conditions leading fronts of pulses with different amplitudes are almost
corresponding to the experimental conditihs heat pulse identical, and hence the evolution of a vortex tangle occurs
of frequencyrv=2387 Hz having a shape of half-sinusoid is virtually under the same conditions. According to the Vinen
supplied at one end of a long channel filled with unperturbedcequation, the density of the vortex tangle at first increases
helium. Numerical count was made on the basis of the Vinerslowly, and then its increase becomes very rapid. Conse-
equation with an additional generating term. The coefficientgjuently, the tangles generated by pulses of different ampli-
used in the first two terms on the right-hand side of thistudes grow to size virtually terminating the temperature in-
equation were obtained by direct extrapolation of the tem<rease during the same time. Goldm¢ral?® also observed
perature dependences Bf and thermodynamic parameters the termination of temperature increase for pulses of differ-
to the region ofT, according to Refs. 34 and 35 The coef- ent amplitudes approximately during the same time periods
ficient of W52 was chosen so that the heights of the peaks ofsee Fig. 6 However, the subsequent time dependence of
the theoretical and experimental dependenced‘obn t’ temperature differs from the theoretical dependence. It was
coincided forQ=15.6 mW/cm. Figure 6a shows the theo- mentioned above that the shape of pulses is determined by
retical curves of the time dependence of temperature at thine coefficients in the Vinen equation, which were not de-
point of location of the detector for the following values of fined exactly for high-intensity heat fluxes. The obtained the-
heat flux: Q;=0.81mwW/cni, Q,=4.01mW/cm, Qg oretical curves describe experimental data only qualitatively.
=8.12mW/cm, Q,=15.6 mW/cni, Qs=20mW/cnt, and  However, we can conclude that such a peculiar behavior of
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CONCLUSION

The numerical analysis based on the equations of hydr
dynamics of superfluid turbulence proved that
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Expressions for the velocities of acoustic excitations in relativistic two-condensate superfluid
systems are derived taking into account the reciprocal drag of superfluid m@diagseffect. The
influence of drag effect on acoustic modes in this system is considered. It is shown that the
inclusion of drag effect does not change the nature of acoustic excitation vibrations, but changes
the velocities of second, third and fourth sounds. 1@99 American Institute of Physics.
[S1063-777%9900207-9

Although the nonrelativistic theory of superfluidity has waves in such a system were derived and solved By us
been developed for over fifty years since its creation, theising the approach developed in our earlier wodnd not
question of its relativistic generalization has recently becoméaking into account the drag effect. In a separate
significant!~® Characteristic velocities in superfluid helium, publication?® the author has derived phenomenologically the
including critical velocity, are much smaller than the velocity equations of relativistic theory of superfluidity with two
of light. Consequently, “relativization” of the theory of su- types of condensates in the nondissipative approximation
perfluidity remained a trivial problem until the time when it taking into account the reciprocal drag of superfluid motions.
was established reliably that the core of a neutron star corn the present work, these equations are used, together with
tains a superfluid phase associated with the Cooper pairing &€ approach and notation of Ref. 21, to determine and ana-
nucleons® The parameters of neutron staradius of the lyze the expressions for the velocities of acoustic excitations
order of 10 km, density of the inner liquid core in such a system. The results are compared with those ob-
~10M-10"%g/en?) are such that the ratio of gravitational fained in Ref. 21.
radius to the radius of the star is of the order of unity. In
other words, neutron stars have a strong gravitational field,
and relativistic effects must be taken into consideration in th&sasiC EQUATIONS
investigation of such stars. Owing to the high density of the
neutron star core, the Fermi velocity of the nucleons as well ~ Let us write down the equations describing a relativistic
as the velocity of sound become of the order of the velocityduantum system in the state of local equilibrium below the
of light c. These circumstances necessitate an analysis @itical point containing two superfluid componentisvo
relativistic equations of the theory of superfluidity with one cOndensatgs each with its own gas of “excitations.” The
condensate. As a result of accretion, the evolution of a binar§@S Of “excitations™ has densities,; and pn,, and herlce _
star may lead to the coexistence and interaction of two rela™"'° fI0\,/,vs are conserved. The velocities of the gas of "exci-
tivistic superfluid phases with different order parameters irFat'on_S are equallzed by viscosity. We use the following
the case when the binary star is formed by neutron stars ar{ﬁ)tat'on: P(x) is Fhe pressureT(x) the temperaturgvn(x)
the equations of two-condensate relativistic superfluidit € _normal ve_IoutyMl(x) e '“2().() are the chemical po-
theory are used for describing this process. Nonrelativistiéem'als' E(x) is the energy densityg(x) the momentum

superfluid systems in which two or more types of conden—denS'ty' andp,, p, are the mass densities of the compo-

sates can coexist were considered in Refs. 7, and 11_1§ents of the system. The condensates are described by com-

. - : L lex scalar order parameters, viz., by the effective wave
Equations for describing a multicondensate relativistic superp P y

fluid system were derived in Refs. 7, 19, and 20. HistoricalIy,funcnonS

the main attention in two-condensate theories of superfluidity — ¢1(x*)= ny(x*)exdia(x#)],
was paid to fundamental problems while the applied prob- .

lems remained practically untouched. The aim of the present  #2(X")= 72(X)exiaz(x")].
research is to study the reciprocal drag of superfluid motion¥he two superfluid velocities,; andv,, are connected with
(drag effect, which was first predicted by Andreev and the phases of the corresponding wave functions in such a
Bashkirt® and analyzed for nonrelativistic and relativistic su- way that the following relations are observed in the absence
perfluid system$;*31*and its effect on the nature and veloc- of vortices:

ity of acoustic excitations in a relativistic quantum system in
which normal and two superfluid componei¢®ndensates
coexist. Equations describing the propagation of acoustitiere, we putt=1, =1 and choose the Lorentz metric

@

Va=Vai(X), Vo=Vay(x). (2

1063-777X/99/25(7)/5/$15.00 483 © 1999 American Institute of Physics
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(1 0 ) The equation of entropy conservation has the form
Vo~ V,.(81=0, @)
Let us write the equations that we shall be requiring 14ter. whereS*=(s,sv,) is the 4-flux density of entropy, which is
The two continuity equations have the form defined as
u_ . A4 A Y v
V#J]' 0, V’MJZ 0. © St= T V}1L+ WV'(ZL‘F W)W'u
Here we have introduced the four-dimensional notafién 4 5 6
=(p,j): The energy—momentum conservation law is defined by
o P , P ) P ) the equation
11=1nt)2= EN Vit s vt arg)" v, Th=0, ®
[y Ty J Iz i M v M where
12=1121 1227 WZVZ‘F mvﬁ' WSW, v a L aw o
T =&Tv§‘v1+ aTv§v2+ 5T(V’1LV2+V1V5)
where the four-dimensional vectors are defined as follows: 1 2 3
V1, = (p1+ Vs Vi, = Vs1), + qu,(vaV+ viwH) + qu,(VAZLWv+ VWA
4 5
Vo, =2+ Vs Vi, = Vgp), (4)
v , ,
W, = (T+V,- W, —w). + mWMW —g"'P. ©)
;n view of invariance, the pressufecan be presented in the |14 equations
orm
V.Vvi,-Vwv1,=0, V,v5,—V,v,,=0 (10
P=W(l1.l5.05.00l5.16), (5) P o |
for velocities of the superfluid components together with the
where equation
Ilzllzg'uvvl,u.vlvv |2:1/2gﬂVV2,LLV2V’ SM(VMWV_VVW,U,):O (11)
l3=09""V1,Va,, l4=g"*"vy,W,, contain the conditions cuvk; =0 and curlg,=0. The fol-
lowing thermodynamic equations hold:
|5=ngV2,uWV1 |6=1/29“”a)'uw,,.
) dP=j%dv,,+jbdv,, +s*dw,, 12
In this case, J10V1, 71202, m (12
gV gV dE=v,,djf+v,,dj5+w,ds". (13
o " P11, T P22
s 2 SOUNDS
and ) )
We shall seek the solution of the system of equations
. _ﬂ (1)—(13) for acoustic processes in the linear approximation.
ST The superscript “0” will indicate the equilibrium values of

the quantities, while the superscript “1” reflects small de-
?)'artures from the equilibrium values. The equilibrium values
are assumed to be independent of coordinates and time. In
addition, we shall assume that

(i) the superfluid and normal components have the same
velocity in the equilibrium state:

are three independent quantities appearing in the thre
velocity relativistic hydrodynamics instead of the densities o
superfluid parts. The quantitigs, ,= p,, describe the drag
effect. The density of the “gas of excitations” in the com-
ponents of the system can be presented in the form

v

WOvzvgvzvtz)v;
al,

= P17 P117 P21 Pn1s
(i) in the linear approximationw!”, vi*, andvi’ are
pp 1 2
oV orthogonal tow®”:
m:PZ_Pzz_ P12= Pn2-

wowr=wly 9 =wlv 3" =0.

The quantity After linearization of equations and elimination of de-
oV rivatives of w'”, vi’, andvi’, we arrive at a system of
(9T6:S three equations describing the propagation of acoustic exci-

tations in this system:

describes the entropy density. The veators introduced in 2 1 1
doe+OP=0;

accordance with the expression

21 1 9.1 1_Q.
9=p11Vs1t P2Vs2t SW+ P21Vt P1Vsz - (6) 9SS+ BOP+ a0 u1+ a;0u;=0;
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0 0 0, 0, 0 0,0, 0, 0, 0
P1 P2 s (p21t p22) Ha(p11tpiat P2t p2o)
2, 1, 1 2 1 1 _
de(p1+p3) +vagst+ —5Oui+ —50Ou;=0. (14 =" "0 0,0 + T99 1 950+ 11950
M1 M2 H2(p1tp2) S+ pm1pn1it mopn2

Here, ¢ is the invariant energy density defined by the equal-
ity sEvgviT””“, and

2__.,0.p — 0,,0\ qv qu- . . .
A=v,d", O=(g,,—V,v,)d"d", We shall consider the solution of the systéid) in the

0 0 0 0 form of plane wavesgall thermodynamic quantities vary ac-
sPo1 (P31t i) +5°0a( P2t p3y) ) P $ y q y

B=——0 0 =00 00 RO cording to the law expK"x,), wherek” is a four-dimensional
+ pa) (TP + + .
(P17t p2)( F1Pn1t 2Pn2) wave vectoy. We chooseP, u,, and u, as independent
. P2 pmten variables. The compatibility condition for the systeiv)
o =1- ;2" op=1- ;g’ v=rmTmgo leads to a dispersion equation in the wave ve&tawhich
o 0. o 6 0 o 0. o defines the square of the velocity of sound and can be re-
S (P11t p12) pi(p1at p1at P21t p2d) | duced to the following form after cumbersome transforma-
1=~ 70,0, .0 00, 00 | .
mi(pitpa) TO%+ wpns+ Hapno tions:
T 2 (9#1 (?,LLZ
75 S (P11t 2p12t p2) (TS+ p1pr+ pops) JP (p11P22~ P12P21) M1p1 =t MoPo
kG_k4 (_) P2 P1
M1p1T 2P de dpy  Ipa
Ui(Pl_Pnl)_i_05(92_pn2)+p192(_+_
dp1  Ipy
aT dpq Ao
JP\ 78 3 (p117+2p12t p2) (TS+ p1p1+ pops) JP (p11P22~ P12P21) M1p1 g =t MaPo -
K2 (_) I P2 P1
de M1p1T pH2p2 de dpy I
o3(p1=pn1) + 05(p2— pn2) + p1p2 _"‘a_
dp1  Ipy
[oT r I Ao
== S(p1at2p12t p2) (TS pap1+ pops) (p11P22— P12P20) | H1P1 = — + Hop2——
n Js L?pz (9p1 n P
L m1p1t pop2 J g dup de
U%(Pl_Pnl)+U§(P2_Pnz)+P1P2<_+_
L dpy  dpy) J
at 11 dpy duz| ]
753 (P11 2p121 p22) (TS+ pap1+ pop2) (p11P22— P12P21) Mlple+M2p2§_m
X =0. (15
L m1p1t pop2 1l 2 Iy Ipa
1(p1=pn1) T 05(p2—pn2) T p1P2| 7+ - —
L dp1  dp2)
|
if we assume, as in Ref. 21, that JT )
75 S (P11t 2Pzt p2o) (TSH paps+ p2p)
1 ap; T P Js K3= (18)
— =<1, —<l, -— <1, M1p1F M2p2
pi dT Mi de i .
(16) the square of the second sound velocity, and
opP oP dpty Ipo
T 9e oT ) , (p11P22~ P12P21) 'U“lplm—i_’uzpz&_pl
< . K =
m1p1t pap2 ( Ts ) 3 Iy s
1+ a2(pi— +03(p,— + —t —
P 1(p1—pn1) 2(p2— pn2) t p1p2 apy . Ip,

(19
This equation has the following roots:

) (aP

K= de

the square of the third sound velocity.
In order to determine the nature of vibrations in the
(17) acoustic modes obtained above, we consider the dependence
between the thermodynamic variables in an acoustic wave.
For this purpose, we substitute the expressions for variables
viz., the square of the first sound velocity, in the form of plane waves into the linearized equati(3)s
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(7)—(13). After elimination ofp}, p3, u1 andu3, we arrive

at the following relations betwee!, T, vi’k,, v3'k, and
1v

w'k, .

k,Pr=— k2(Wowik,+ w2 vi’k, + wvi‘k,),

Wl 1 ak’+1
'k, = b2 (le "k, +whv3'k,),
0 0 0.1
1 2(pnl+pn2) Wevi'k,
KT =— (p%+ 0 0 0
p1tp2) P11T P12
sszvk Wgwlvkv 20
0 0 |
Pzﬁ‘Pzz Pn1t Pn2
where
— O _ }
Ky=wW.K", @0 =Ts+ pmipn1+ mopnz;

ws1=p1(p117 P12,  ©s=p2(p211 P22,
0
Pn1

5%+ 8055
Psl sz al =] aP T
1/0e de
P=sla), lm
T
Substituting formuld17) for the first sound velocity into

(20) and disregarding small terms in accordance witB),
we obtain

1

0, 0v,0
pl:_(ﬁ) %leky, Ti=0,
de T Ku(pn1t Pn2)
21)
0 0 0 (
w w w
o, oV = 1K+ = v3'k,~ ——1 i - whk,
P11+ P P+ P32 Pn1t Pn2

S. I. Vil'chinski

g (9#2 (9/.L1 Ip2
11 00 0.0
+
plPZ( dps | Ipy My, THbzG, Ip2
O 0
1,, 1V
X "2 k +-—73 \P) k
psl p52
0
J a0
(pg Ml) 1 n Wle,,)
) - ap (a1+a2),3
us1—
duy  dpg
2 0 0 2 0
o1(p1—pn1) Ho2(p2— pn2)+p1p2< ap1 " apz
. @3
( 0‘9,“2) a1®w, )
P2 Wk,
k 1 &pz (a1+a2)ﬁ
uM2=
Jd
o o 5 M1 M2
a(p—pa1) + o5(p3— pn2)+p1p2< apq * 3P2>

whence it can be concluded that the third sound consists of
density and chemical potential oscillations.

Let us now consider the propagation of the fourth sound
waves emerging in the system when the normal component
is retarded. While linearizing the syste(ti)—(13) in this
case, we must take into account the fact thd&0 due to
the retardation of the normal component, and only two ther-
modynamic variables are independent. Omitting cumber-
some calculations, we can directly write the expressions for
the squares of fourth sound velocities:

> pulltpioiéy) 2p12p21(1+ p20265)

Ky = ,
41 0"101_§ dp1 dpr . 9p2
M1P1 9P SYaT M2P2 9P 2T

2 p2A 1+ pr03€5) 2p12p21(1+ p101§1)

It follows from here that the first sound waves are smallwhere

oscillations of density and pressure and are analogous to or-
dinary sound waves in which temperature oscillations do not
occur. The last equation indicates that the superfluid “lig-
uid” oscillates in the first sound wave as a single entity, the
normal and superfluid components moving together. Substi-
tuting formula(18) into (20) for the second sound velocity

and disregarding small terms, we obtain

0 0
les_z I8)[ @1s Lo 4 =251
ky\dT Pgl e gz 2
Ts 1
X ——|, P-=0, (22
M1p1t Hop2
0 P 0
Ws1 ) 1 @y
0,0 vi'k,+ PR Vzvku:_—+ WK, .
P117 P12 P21 P22 Pn1T Pn2

K = )
K (@_ R oz_, 9P
Mob2| o5~ S| mpt| Gp T éigT
(24)
dp1 doy dp2 dop
01(_ +pla_P) B (aP N aP)
gl_ (9P1 . &0’1 ’ 52_ C7P2 . (?0_2 ’
U GT ) TP T ot ) P
(25
and the expression
J’_
K Tl &1(puat prd g V%V »
1+aioi(p1atp12)
+
E2(part p2d 2 V%Vk”, (26)
1+ az05(p21t p22)

according to which the fourth-sound waves are oscillations
of temperature, entropy and density for the case when the
normal component is retarded.

Consequently, temperature and entropy oscillate in second
sound waves, there are no pressure oscillations, and the NQLe - USSION OF RESULTS
mal and superfluid components in second sound waves move

towards each other. Similarly, substitution of formyleD)

The following conclusions can be drawn from the results

for the third sound velocity int¢20), we arrive at the expres- obtained in this work. The drag effect does not influence the

sion

nature or the magnitude of the first sound velocity. Nor does
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the drag effect change the nature of oscillations of second, In the absence of a drag effegi;=p,,=0), the above
third and fourth sound waves, but the velocities of propagaeorrections vanish and the expressions for velocities coincide
tion of these sounds may change. A comparison of the obwith the results obtained in Ref. 21.

tained expressions for the velocities with the analogous re-  Thus, reciprocal drag by superfluid components in the
sults obtained in Ref. 2(where the drag effect was not taken system does not change the number or nature of oscillations

into consideratiopallows us to conclude that as a result of 4 5coustic excitations of the system, but leads to a variation
the drag effect, the square of the second sound velocitys iha second, third and fourth sound velocities.

changes by an amount
The author is indebted to P. I. Fomin for fruitful discus-

aT )
gs (Ts+ pipr+ popo) sions.

2
K2,=2p
2d 1 M1p1t popo

while the square of the third sound velocity decreases:

2 _
K3g=(P12p2) *)E-mail: sivil@ap3.bitp.kiev.ua

) 5#1+ ) 3#2)
MiP1 o T M2P2
J d
% P2 P - -
M1 M2
U%(Pl_Pnl)+0’§(P2_Pn2)+P1P2(_é,pl + _ﬁpz)
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An expression for the characteristic rate of three-phonon processes in sup#téyidhich is

valid in the entire range of phonon energies where three-phonon processes are allowed is
derived proceeding from the hydrodynamic Landau Hamiltonian. Possible limiting cases are
analyzed and compared with the results of previous investigations. It is found that three-
phonon processes completely govern the initial relaxation of a phonon pulse injected into He I
by a heated solid. As a result, the equilibrium form of phonon distribution is established

in the anomalous region of phonon dispersion over a time interval of the order ¢f40

© 1999 American Institute of PhysidsS1063-777X99)00307-2

1. INTRODUCTION establish the conditions of applicability of the results. For
. . . example, the dependence of three-particle relaxation time on
It is well known that the phonon spectrum in He Il is Of o characteristic temperature of the thermal phonon field

th_e' decay type in the rellr;ge of low energies right to a certaiRyisripytion remains unclear. Further progress in the study of
critical energye =10 K, three-phonon process¢3pp) be- 3PP was associated with attempts to explain experimental

. . _ 3 : _ : S .
ing allowed for energies @e<eo=8.5K.” In the region of 4415 conceming various dissipative processes im.Hg'®

intermediate energies<e<sc, higher-order processes \;aslo1loptained the characteristic relaxation frequency as-

with noncons_er_ved number of phonons are allowed. sociated with 3PP in the form
The prediction of the decay type of the phonon spectrum

made by Maris and Masségnd the experimental confirma- 73 (u+1)2

. . . . []]’5 . . . _ (M) e 4 2

tion of this prediction™ necessitated a revision of the exist vy (€) 1505 €, 2

ing concepts concerning collective processes inlHa par- Po

ticular, all dissipative processes in superfiuitie were

investigated previously on the basis of the concepts of a d

cisive role of the four-phonon relaxation tifhsince decay

processegincluding 3PP are forbidden by the momentum

whereT is the characteristic temperature of background ther-
nal phonons. As regards the region of applicability of for-
mula (2), the method of calculations used by Mafis! indi-
cates that it describes the absorption of an ultrasonic phonon
f the gas of equilibrium thermal phonons. It is clear from

trum. It should be noted that even before the result of Mari§hese considerations that the region of applicability of the

and Massey were publishédhe phonon lifetime determined result(2) is limited to energies<T
b]Y tﬁe decgylpr?cessesk\llvas ob_(tjam:etljgby Beﬂaeythe E.ai'sh Processes occurring in phonon beams injected by a solid
oft € mo Ie ot a weax yknonl ca bosi %asd'n which t Cheater to He were analyzed systematically in Refs. 14-16
quasiparticle spectrum Is known to be of the decay type "]Among other things, the effect of generation of high-energy
the low-frequency range. The characteristic frequency 3PFI3

: : i : honons £¢=10K) by a cold phonon beam with the charac-
obtained by Beliaeiturned out to be proportional to the fifth teristic temperaturd =1 K during its propagation through a

Eower of :]he phobr:on energy. For atlreal [Iaho(;wcén skf)eclf[rum ur:?en bath having a temperature of the order of & was
€ll, such a problem was apparently Solved by Haviin anCyiseoyered in Ref. 14. In order to explain this astonishing

8 i i i - - . .
Luban,”who obtained an expression for the 3PP CharaCte”Seffect, we must analyze in detail all the stages of evolution of

tic rate in the form such a beam. For example, the description of initial relax-
(HL) (u+1)2 5 ation of the phonon being injected requires the knowledge of
vy (e)= 2405p, ° (1) the expression for the 3PP characteristic rate, which is valid
0 in the entire range of admissible energfes., in the anoma-
where the Groeisen constant iss=(pg/c)(dc/dpg)~2.84  lous spectral region It is this necessity that stimulated the
under the saturated vapor pressUge, the equilibrium den-  present research. In Sec. 3, we derive the most general rela-
sity of Hell, andc the velocity of first sound. It is natural tion for the 3PP rate on the basis of the kinetic equation
that formula(1) has the same energy dependence as the ratsing the Landau Hamiltonian of the quantized phonon field
sult obtained by Beliae{,but the computational technique in Hell. Section 4 is devoted to an analysis of various limit-
used by Havlin and Lub&nunfortunately did not allow to ing cases and to a comparison with the results of previous

1063-777X/99/25(7)/5/$15.00 488 © 1999 American Institute of Physics
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non beam in superfluitHe is considered in Sec. 5. v(r) —Ep

investigations.®1%!!Finally, the initial relaxation of a pho- w2
<2P0V> n(a,e’ +aye Pry, 9

where g,~cp is the phonon energy and=p/p the unit
vector in the direction of the phonon momentum. After the
substitution of Egs(8) and (9) into (4)—(7), we obtain the

In order to study various processes occurring in the phoHamiltonian of the phonon subsystem of #Hén the repre-
non subsystem of superfluftie, the Landau Hamiltonidh ~ sentation of secondary quantization. The Hamiltonian com-

1 ponentV; (6) describes the three-phonon interaction we are
H,_=f (Ep(r)vz(r)Jr E(p)d3r, (3)  interested in, whileV, (7) corresponds to four-phonon
v processe&®

suitable for describing He dynamics in the hydrodynamic
limit as traditionally used, where(r) andp(r) are the veloc-
ity and local density of helium anB(p) is the internal en- 3. THREE-PHONON PROCESS RATE
ergy per unit volume in He, which is a function of local
density. An explicit expression fd(p) can be derived from
simple thermodynamic considerations. Indeed, the wor
done during isothermal compression of helium must be equ
to the change in its internal energy. In the differential form,

2. QUANTIZATION OF PHONON FIELD IN He u

In order to obtain the characteristic time of 3PP, we use
the kinetic equation method. The equation describing the
volution of the phonon distribution function(p) in the
resence of 3PP can be written in the 6

this can be written asl(VE)=—PdV, which leads after dn_ E 2 o 24
elementary transformation to the following relation: dt Ep, ‘, 7[(p’ - p"|Valp)“S(ep + 5 —ep)
E(p):pfﬁzdp‘ X[n'n"(1+n)—n(1+n’)(1+n")]
p
In order to describe the dynamics of long-wave excita- + > 27T|<p’|\73|p-p”)|26(sp+ Epr—Ep)
tions, we can use the smallness of deviations from equilib- p’.p"
rium and expand Hamiltoniaf8) into a power series in fluc- X[Nn’(1+n")(1+n)—nn"(1+n")], (10)

tuations of density and velocny field. In this case, we use the

well-known relationdP/dP=c?. After the formal quantiza- erleren =n(p’) andr”—Fr’llgp”) It should behnotecri] tf;}at V(\jle ”
tion procedure, the Hamiltonian correct to the fourth- ordert@ke into account only 3PP processes on the right-hand side
term in the expansion has the form of Eq. (10), i.e., we disregard higher-order interactions, as-

suming that the rate of 3PP is the highest in the system.
ﬂph= Ho+ Hint,  Hing=V3+Vy. (4)  Three-phonon processes are allowed only at angles that are
small in view of the smallness of deviation of the phonon
spectrum from linearity. In this case, superdiffusion in the
.1 SO space of anglé&?°takes place, which is not considered here.
HO_EJV poV +%(5p(r)) d°r ) Using Egs.(6), (8), and (9), we obtain the following
expression for the matrix element:

Here

is the Hamiltonian describing a gas of noninteracting

/ /
phonons confined in volumé and 8p=p(r) — po is the op- (p'p"Vslpy = 1 )12 (Spsp”)lzp,n_nu
erator of local deviation of density from its equilibrium value 3 8poV gp
po. In the componenty;,, describing the interaction in the eog,\ 12 ee )\ 12
phonon system, we retained the terms containing the third +(%) p'n-n’ +(%) pn’.n”
v 1f[A< P+ = | CZ)[&A( )]3]d3 ) o |
== | y¥r NI+ —— r r
379 v p 3\ dpo po p " +c2(2u—1)( pp::,,) 2} Sp.p’ +p -
and fourth (11
1/ 2 o2 In order to determine the 3PP characteristic rate, we put
V 493 in Eq. (10
Vy= 24(@ © | [ponioe (M  inEq.(10
n=ng+dn, n’=nj, n"=ng, (12

powers of the small quantitiegr) and sp(r).

The quantization of the phonon field described bywhere the subscript “0” indicates the equilibrium distribu-
Hamiltonian (4) was carried out in the conventional way tion and én the deviation of distribution function from lin-
using a transition to the phonon creatiéf and annihilation ~ €arity. In particular, the latter can be due to phonons injected
a, operators in the state with momentypn by a heater to the bulk of He Substituting relationg12)

72 into the kinetic equatiori10) and going over from summa-
A Po A AlpT A+ aip tion to integratiorf e ,=¢(p) is now a function of continuous
Sp(r)= a.ePr+ate P, 8 9 p=£(p
pr) % (28 \% P(y P ) ® argument, we obtain the following relation:
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d In(én)= ! J'W ".p”) o
— g ”)—2—no (plp’-p") 8(ep— &y
gp)Nonedl’ + fW(p’|p-p”)
><5(8p1_8p_8pn){n6_n6}dr,, (13)
where
W(p|p’-p")=2mV[(p'-p"|V3[p)|? (14)

is the transition probability density in the phase space and
dI'=d3p/(27)2 is an element of the phase volume of the

system.

It was mentioned above that 3PP processes are allow
only in a small angular range close to zero. This allows us

assume that all scalar products of unit vectors in &d) are

equal to unity. As a result, we obtain the following simple
expression for the transition probability density appearing in

(13

CT
W(p|p’-p")= 5o (ut 1)%pp’'p"A(p,p'+p"), (15

whereA(p,p’ +p”) is the Kronecker symbol of a continuous

argument.

Tucker et al.

sionless variables, we obtain the following expression for
v3(p) from (16):

(1) (T\%(1
v3(X)= Apg E) [gé(XHB(X)], (20
wherex=¢(p)/T, and
_ X 2/0 zno(y) . .
é“(X)—foy (x=y) no(X) No(x—y)dy; (21)
B(x)= ijz(y—X)z{no(y—X)—no(y)}dy- (22)

Expression(20) taking into account21) and(22) com-

iaetely determines the characteristic rate of three-phonon re-

axation. It should be noted that the final req@®) does not
contain parameters of nonlinearity of the phonon spectrum in
Hel in spite of the fact that 3PP processes are due to the
deviation of the spectrum from linearity. This fact can be
expressed analytically as the existence of a nonzero volume
of possible states in the space of anglé$see Eqs(18) and
(19)], which resulted in the appearance of a zero in the
s-functions. In the next section, we shall analyze some lim-
iting cases following from formul&20).

Further, the 3PP characteristic rate can be naturally des. THREE-PHONON PROCESSES FOR HIGH AND LOW

termined by the relation

d
v3(p)=— g;In(én).

(16)
Equations(13)—(16) lead to
(u+1)2(1
v3(p)= 4mp §Jl(p)+~]2(p)]y 17
where
WP)=50) no(P) f Jcosa (cosé")
Xp"3lp=p'[no(p’)No(p—p’)
X 8(e(p)—e(p’)—e(lp—p'|); (18)

P 1
z(p)=cpf 0d|0’f d(cos6’)p"3|p’ —pl{ne(p’ —p)
p cosf,
—no(p")}8(e(p)—e(p’)—e(|p—p'])). (19

Here ¢’ is the angle between the vectgrsandp’, 6. is the
maximum angle for which 3PP are still allowed, apd

ENERGIES

According to our method of calculating the 3PP charac-
teristic time, resul{20) can be interpreted as the reciprocal
lifetime of a phonon with momentump<p, (energye(p)
<egq), which is determined for 3PP in the equilibrium field
of thermal phonons with temperatufe Let us consider the
limiting cases following from the general formu(20). First
of all, we consider the hyperacoustic limit. For this purpose,
we must putx>1 (¢(p)>T) in formula (20). This gives

B(x)=0 (23
and

X 5
(0= | 'yrx-yray=1g. (24

Substituting relation$23) and (24) into (20), we obtain
57 (p)=14"(p), (25)

which coincides with the resuffl) obtained for the first time
by Havlin and Lubarf. This explains why formuldl) does
not contain the temperature of background. A hyperacoustic
phonon just “does not feel” the difference between a decay
to zero and to a finite temperature. This fact was also pre-

~gy/c is the momentum above which 3PP are forbidden, ltsumed by BeliaeV,and naturally led to the same momentum
should be noted that, in view of the asymptotic smallness oflependence. Relatiori23) and(24) show that such a limit-
the Bose—Einstein distribution function in the momentuming case corresponds to purely decay processes of the type

rangep>pg, the integration with respect tp’ in relation

p—p’,p”. It should be noted that formul25) actually has a

(19 can be extended to infinity to an exponential accuracy.limited applicability region. This is due to the fact that two

Eliminating &-functions in Eqgs.(18) and (19) by inte-
grating with respect to the ang¥ and introducing dimen-

conditions must be satisfied simultaneoustyp)>T, but
e(p)<eq. For this reason, formulé5) can be actually used
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08 showed a discrepancy by a factor greater than two, In our
opinion, this is due to the fact that the measurements in Ref.
22 were made at a temperature of the order of 0.9 K, at
which all relaxation processes in helium are virtually deter-
mined by interactions in the roton gas. The phonon lifetime
in this case can depend considerably on the interaction be-
tween the phonon and roton subsystems and on the relax-
ation in the roton gas. Resu20) can be directly verified in
experiments on sound absorption for various ratios between
its frequency and helium temperature. For example, the ab-
sorption of sound of frequency 16iz at a helium tempera-
ture below 10 mK is determined by formuld), while at
temperatures above 100 mK it is determined by forni@)a

For intermediate temperatures, relati@®) should be used.

3pprate 100 ¢!
o o
H »

o
N

p,108cm™

FIG. 1. Dependence of the rate of three-phonon processes on the phonon
momentum(solid curve calculated by formula20) for T=0.8 K. The 5. INITIAL EVOLUTION OF A PHONON BEAM INJECTED

dashed curve and dotted line correspond to the limiting céleand (2) BY A SOLID INTO He 1
respectively. ] )
A number of extremely interesting effects were observed

in experiment¥~*%on propagation of phonon pulses injected
by a solid heater into superfluitHe at a temperature for
for obtaining numerical estimates only at ultralow tempera-yhich the interaction of the phonons in the pulse with ther-
tures. mal phonons can be neglected. In order to describe the ob-
Another limiting casex<1 (g(p)<T) corresponds t0  seryed phenomena theoretically, we must study consistently
absorption of an acoustic wave by an equilibrium phonong|| the interactions determining the dynamics of the system.
field with temperaturd. In this case, we have The results described in the previous sections give the idea
of processes occurring in the phonon pulse at the initial stage

{x=0 (26) of its propagation in He.
and Phonons injected by the heater into superfitkt® can
. . be divided into two groups depending on the emission chan-
,B(X)ZXJOC y*eY dv— 41)( 27 nel. First, these are phonons emitted along the elastic channel
0 (e¥—1)? y 15 and propagating in a narrow cone of ang{és, whose axis

. o _ is perpendicular to the heater surface. These phonons just

~ While deriving relation(27), we have used the expan- form the main pulse propagating to the detector. Phonons of
sion the second group are emitted almost isotropically in the en-
o tire half-space and are known as background phonons. The

No(y =X)~No(y) +XNo(Y)L 1+ No(y) ], (28) existence of the first group of phonons was predicted

which is valid for smallx. The substitution 0f26) and(27)  theoretically by Khalatnikof and soon confirmed experi-

into (20) gives mentally?* Thg posgibility of the gxisterjce of an inelastic
channel was investigated theoretically in Refs. 25 and 26.
v2(p)=v"(p), (29 This channel was discovered independently by Sherlock

et al?*?" in experiments on phonon emission by cleaved

e, we arrive at the resulf2) obtained by Maris™* In _crystals. Experiments made in Ref. 28 proved that the total
contrast to the absorption of a high-energy phonon Cons'dénergy carried out by background phonons is an order of

ered_ above, the limiting resul29) corresponds, according to magnitude higher than the energy in the pulse, but the energy
rela/t/|0ns(26) and (27), only to the capture processes,p  density in the pulse is much higher than in the gas of back-
—p". Formula(29) was used many times for describing 4r6und phonons in view of the smallness of the solid angle
various relaxatpn processes both in purei#nd in super- ) | The energy of emitted phonons is equal to or smaller
fluid "He—"He mixtures(see the review in Ref. 21 than the temperature of the heater depending on the emission
Figure 1 shows the dependence of the_SPP rate on tht?hannel (elastic or inelastic® It was found in the
phonon momentum at 0.8 K. The same figure shows fogyneriment® in which a gold film was used as a heater that

comparison the curves corresponding to limiting cad8s  he phonons emitted through the elastic channel propagate
and(2). It can be seen clearly from Fig. 1 that the range ofyithin the cone angld),=0.115srad. In order to estimate

applicability of formula(1) is limited at relatively high tem- 0 final temperature of such a pulse in helidadter the

perafures. _ _ establishment of the Bose energy distributione must use
Concluding the section, we must mention that the neusne formula

tron scattering technique was used quite recently for measur-
ing the phonon lifetime in He determined by the 3PP
processe® A comparison with the theoretical result)

Qp'n'T4

OW= 007

(30
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The effect of transfer of motion between superfluid Bose gases separated by a thin layer is
predicted on the basis of microscopic calculations. It is shown that the effect exists at
nonzero temperatures as well asTat0 only for a closed secondary circuits. The dependence of
the drag current on temperature and thickness of the layer is determined for charged Bose
gases. An experiment is proposed for measuring the predicted effect99® American Institute

of Physics[S1063-777X99)00407-1

Electron or electron—hole systems in which two two-and the driven film. The other mechanism is realized in the
dimensional conducting layers are separated by a thin inswabsence of vortices, when the motion is induced by direct
lating layer have aroused considerable interest during the lag€oulomb or indirect (through exchange phononimterac-
decade. Several interesting effects caused by the interactidion between electrons from different films. The first mecha-
of carriers separated in space were predicted for such sysism has been studied for a long time, starting from the
tems. For example, the possibility of pairing of spatially pioneering work of Giaeve® In the present work, we shall
separated electrons and holes, and a transition of the systetonsider only the second mechanism of transfer of motion.
to a peculiar superconducting state in which the supercurrent To our knowledge, this mechanism was studied theoreti-
in the electron region is accompanied by an equal and oppasally only in Refs. 27 and 28. Kamenev and Credevel-
site supercurrent in the hole region, were predicted way backped the diagrammatic technique for evaluating the current
in 1976 for the case when electrons are the carriers in onmduced in film 2 by an external field applied to film 1. The
layer, and holes in the other laykf. Swierkowski and authors detected a significant increase in the friction coeffi-
Nelsort observed mutual polarization of spatially separatedcient upon a transition of both films to the superconducting
carriers and proposed that correlations between layers catate. They studied only the case when the film temperature
facilitate Wigner crystallization in adjacent layers. is close to the superconducting transition temperature. How-
Shimshofi discussed the peculiarities of the mechanism ofever, the authors failed to observe an important circumstance
coupling between plane vortices in parallel superconductinghat the supercurrent flowing in the driving film 1 will induce
films. A large number of publications were devoted to thea supercurrent in the driven film 2 only if the electric circuit
effects of mutual friction or transfer of motion between ad-in film 2 is closed. This important circumstance was first
jacent conducting layers. Friction between two electromoted by Duan and Yip® Besides, Kamener and Oreg did
gases was studied experimentally in Refs. 5—-8, between amot take into account the collective modes associated with
electron gas and a hole gas in Ref. 9, and between electroe$ectron density oscillations. These oscillations, which do not
in normal and superconducting films in Refs. 10 and 11. exist in bulk superconductors due to the presence of a plasma

Theoretically, the problem of drag between two electrongap in the spectrum, become possible in thin films since the
gases separated in space was first considered Islectric fields accompanying density oscillations in films are
Pogrebinski*? and later by Pricé® They studied the case mainly concentrated not in the superconductor but in the
when drag is caused by direct Coulomb interaction betweespace surrounding it. The contribution of collective vibra-
electrons from different films. Gurzhi and Kopelioviépre-  tions to the transfer of motion between superconducting
dicted the possibility of transfer of motion between spatiallyfilms was determined by Duan and YipHowever, they did
separated carriers due to phonon exchange. Drag induced bpt carry out a consistent microscopic computation, and
Coulomb interaction was later studied in Refs. 15—23, whilehence a number of important problems like the dependence
the drag induced by exchange of phonons, both real andf the force of friction between superconducting films on the
virtual, was studied in Refs. 24 and 25. pairing potential of superconducting electrons remained un-

While studying the transfer of motion from one super- solved.
conducting film to another, it must be borne in mind that ~ We shall consider the problem of transfer of motion be-
such a transfer may occur owing to two quite differenttween two identical superconducting films at temperatures
mechanisms. One mechanism is effective in the case whethat are low in comparison with the superconducting transi-
the films are placed in a magnetic field exceeding the fieldion temperature. At low temperatures, the number of one-
H¢1. In this case, the transfer of motion is associated mainlyparticle excitations is exponentially small and such excita-
with the entanglement of vortex lattices in the driving film tions can be neglected altogether in the first approximation.

1063-777X/99/25(7)/10/$15.00 493 © 1999 American Institute of Physics
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In this case, qualitatively correct results can be obtained if |

the problem on the friction force between superconducting H=2> ; e(k)a, (k)a, (k)
electron gases caused by collective excitation, is replaced by 7
the problem on the friction force between superfluid charged

Bose gases. Such a replacement allows us not only to obtain +
the exact solution of the problem in the limit of weak cur-
rents, but also to determine the variation of results obtained
by Duan and Yip® upon an increase in the pairing potential.

A brief summary of the results obtained here was pub- . .
lished earlier in Ref. 29. Heren is the number density of bosons, am@k)= y,.(k)

= vy,-(K). Diagonalization in(3) is carried out with the help
of Bogoliubov’s standardiv transformations:

8,(K)=U,(k)b,(k)+V, (k)b (—k), (4)

go [¥(K) + oy1dk)1[28, (k) &, (k)

N| S

+al(kal(—k) +a,ka(—k)1;. (3)

1. DRAG CURRENT AT T=0

Let us consider the problem of transfer of momentum/ . R ) o
motion between two two-dimensional superfluid Bose gase¥hereb, (k), b,(k) are the creation and annihilation opera-
separated by a thin partition at zero temperature. Althougﬁors _of Bose quasiparticles. As a result of diagonalization, we
we shall be interested in charged Bose gases, we shall ngPtain
specify initially the form of the interaction potential between .

bosons and derive a number of expressions that are valid for H= E0+U%O Eq (k)b (K)b,(k), 5
the general case. We shall assume that Bose gases are iden- '
tical, and proceed from the Hamiltonian where
2
1
Q= _212; e(K)ar (k)a, (k) Eo:2—3[7(0)+ 71A0)]+ 5
1 x 2 [Ef(k)—s()—ny(k)] ®)
R Atim_KkVAT o )
W I R UL MURLY ofto

03 . L is the ground state energy, and
X(q+k)as(g)a .
N (fhzk)zl,jﬂq)_ “;p) S (k) E, (k)= J&?(K) + 2ns (K[ 7(K) + 7K. @
ere, &( .)_ IS the energy ot a free OSO%'B.( ). is the energy of elementary excitations. The coefficients
the Fourier component of boson interaction potential in a : .
_ N u,(k) andv,(k) are presented in terms of the energi¢k)
layer (for = B) and between layerdor a# 8), anda_ (k), . : )
A : N a andE (k) in the conventional manner:
a,(k) are the creation and annihilation operators of a boson
with momentunik in the layera. 2 o Lfek)+n[y(k)+oy(k)]
We shall determine the energy spectrum of a two-layer Ui (k)= 5[ E (k) +1}’
Bose-system described by Hamiltonidh). Since Bose-
Einstein condensation takes place in a two-dimensional Bose ,2(k) = E(‘S(kH nLy() + o y12k)] — 1]_ (8)
gas afT =0, the energy spectrum can be determined by using 7 2 Eo(k)
the well-known Bogoliubov procedure of separating the con- It follows from formulas(2), (4) and(5) that an elemen-
densate operato&, (0) anda,(0) of creation and annihi- tary excitation belongs to the entire system, and cannot be
lation of bosons in the state with momentys-0 and re-  attributed to an individual layer. As a result of interaction
placing them byy/N,, whereN, is the number of bosons in between layers, the system acquires a single coherent ground
the condensate. The obtained expression should be formalitate in which the phases of superfluid Bose gases are corre-
expanded in powers of small quantitiés, (k), a,(k) (k lated.
#0) and only the quadratic terms should be retained in the Let us consider in detail the case when both Bose gases
expansion. Such an expansion implicitly assumes the smalkre charged. In this case, the interaction potentials have the
ness of the number of bosons over the condensate, and vierm
shall formulate below the conditions under which such an

o . Q? Q?
expansion is valid. B . — 9
It is convenient to go over to new creation and annihila- €of eo\r’+d?
tion operators whereQ is the boson charge, the permittivity of the me-
1 dium, andd the separation between two-dimensional layers
a.(k)=—[ay(k)=ay(k)]. (20 in which Bose gases are localized. The corresponding Fou-
V2 rier components are defined as
Like operatorsa, fk), the operatorsa. (k) satisfy Bose 2mQ?
commutation relations. After transition to new operators, the ~ ¥(K)=——~—,  ¥(0)=0,
Hamiltonian can be regarded as the sum of two components, 0
each containing only one kind of operatdig(k), where 27Q? ud

o= = [the numerical factor is omitted if8)]: 712k) = €0k e 70=0. (10



Low Temp. Phys. 25 (7), July 1999 S. V. Terentjev and S. |. Shevchenko 495

The equalitiesy(0)=y15,(0)=0 reflect the existence of a he, ag

" ; 3_ _
positively charged substrate compensating the average boson dp= 87MnQ?  8mn’ (15
charge in a layer in such a way that the system on the whole
is electrically neutral. Substituting expressi0) into (7),  wherea, is the effective Bohr radius. Using the expressions
we obtain the dispersion relation for elementary excitation§13) and(14), we obtain the following relation fod>d,:
of “ +” and “ =" modes. In the longwave limifto be more

precise, forkd<1), it follows from (7) and(10) that ON _ ON_ =(na2)~13 (16)
N N %)
27Tﬁ2nQ2d 1/2 . 47771an2 1/2
E-= Me, ' += M ey Wk The difference in the energy spectra for-" and “ —"

(1) modes is not manifested in this case since the part of the
modeE _(k) linear ink does not make a significant contri-

It can be seen from the definitid@) of modes *-” and "+ bution to the integral in14) for d>d,. Ford<d,, we ob-

that the mode “+” corresponds to vibrations of the Bose

gas in two films as a single entity, while the mode “-” is tain
associated Wit.h density oscillations in one film relative to 5N+/N=(na§)*l’3, (17)
another for a fixed value of the total density.

It is interesting to note that formuld41) are identical to SN_/N=d/a,. (18
those obtained by Flensberg and*for the spectrum of _
collective excitations in a two-layer normal Fermi systém The theory constructed here is based on the fact that the

which the fermion charge and massn are replaced by the numbgr of particles over the cc_)nden_sate is small in compari-
boson charg®=2e and mas$ = 2m). The authors of Ref. SON with the nur_nber qf particles in the condensate, and
30 took into account the renormalization of initial fermion Nence the theory is applicable f6N,,/N<1. It follows from
interaction associated with screening effects. For the systefd6—(18) that this inequality is satisfied for
pnder consideration, ther_e is no need fqr additionally taking na§>1 and d/ag<1. (19)
into account the screening effects owing to the fact that
Hamiltonian(1) is exactly diagonalized. The constraintd/a,<1 appears only fod<d,. It can be
It should be also observed that the spectrum of a chargegerified easily that forna§>1 and d<dy, the condition
two-dimensionalone-layey Bose gas was studied by Apaja d/a,<1 is automatically satisfied. Thus, for the two-layer
et al®! using the variation technique. They obtained an ex-system of charged Bose gases, the condition of applicability
pression for plasma oscillations in the longwave limit coin-of the theory constructed here is a high density of the Bose
ciding with (11) after replacement of the two-dimensional gas:na§> 1.
density of bosons by double the boson density in a two-layer et us now consider the transfer of motion from the
system considered in the present work. superfluid Bose gas in one layer to the Bose gas in the other
Knowing the energy spectrum, we can easily determin@ayer. If a superfluid flux emerges in layer 1, the field opera-
the momentum distribution function for real bosons in thetor
layer a:

~ 1 .
1 =__ k-ra
NO=(aE A= S (s (0a,k0).  @a DT g R eal 20

Here the angle brackets indicate averaging over the grouni this layer acquires an additional factor edq(-r), where
state. Replacing the operatogs, by their expressions in the wave vectokg, is cpnnected with the sgperflwd velocity
terms ofb,, and 6; from (4) and considering that there are V1 through the relat'_qmﬂ:hkSl/M' Th|s leads t.o the )
no elementary excitationé.e., (b*D,)=0) in the case of emergence of an additional term proportional to this flux in

y exclrations. 2 (D,b,)=0) i ) the Hamiltonian(1). Introducing the particle flux density
zero temperature considered here, we obtain

vector in the layerx
[E,(K)—&(k)]?
> :

1q , 1 .
Na(k)=§§g: Vg(k)zg 2 o (OELK) (13 ih

Ja(N)= S r LV I (1) o1 = P (N)(Tiho(r)], - (20)
The total number of bosons over the condensate in the layer R

a is given by we can present the correctidty to the Hamiltonian(1) in
the form

5Na:Na_Na0: Na(k)E
k#0

N| -

> 6N, . (14) ) A
7 lef d?rjy(r)-ve. (22
Let us find out the number of particles over the conden-

sate for Coulomb-type Bose gases. In this case, the expres- Owing to the interaction between Bose gases in adjacent
sion for the number of bosons over the condensate depentlsyers, the flow of current in layer 1 leads to the flow of
on the relation between the thicknebsf the insulator sepa- current in layer 2. The drag current in layer 2 can be deter-
rating the Bose gases and the lendthdefined by the ex- mined easily by calculating the linear response of the system
pression to the perturbatiori22). As a result, we arrive at the relation
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. (0[F,|n){(nlj,|0) Duan and Yip® for the drag current between two supercon-
jo=(0[j,|0) — Z ductors from qualitative considerations. According to Duan
n#0 S and Yip?® the ratio of the drag currerjt, to the currentj,
(0[j,InY(n|A,|0) flowing into layer 1 must be equal #2#/(487nmved®) at
-> ) (23)  zero temperature, whera is the fermion mass andg the
n#0 S velocity at the Fermi surface. In view of the fact that the

Going over from the operato! and 4, of creation and MOdeE_ is the acoustic mode for smalland the velocity of

annihilation of bosons in the layerto the operator§_. and fg:lﬂfsfof:;hi;renoriﬁaj: /ijwgﬁ dk/)g/l f/?/rgftzﬁ Elg(irlle] ?(;Jrrm
0 ; G - : 2/]1
b, of creation and annihilation of elementary excitations mh/(ZOOvrnMc_d3). In this connection, the result obtained in

the expression for the current density oper@ior) and con-  Ref. 28 seems to be valid only in the weak bond approxima-

sidering that the ground state of operatogsis vacuum(i.e.,  tion. Upon an increase in the electron—electron attraction, the

b,|0Y=0), we can easily show that the density of drag cur-expression derived in Ref. 28 must be modified and the

rent is defined as Fermi velocity of pairing electrons in the limit of two Bose

gases should be replaced by the velocity of the m&de

[v. (u_(k) —u. (kv (K)J? (24  Note that the results obtained by us and by Duan and®Yip

E+(K)+E_(k) differ not only numerically, but also in their functional de-

e pendence. In particular, since the veloaity depends on the
separatiord between Bose gasef,/j;~d~ " in our case,
while the authors of Ref. 28 found thit/j,~d 3.

. Va1
=— k
JZ ZS < 8( )
Substituting  the  explicit  expressions  for
uv-transformation coefficients frort8), we obtain

JVas e(KI[EZ (K —E2(k)]? 5
12_88 K E+(k)E,(k)[E+(k)+E,(k)]3' 2. COLLECTIVE VARIABLES

Subsequent calculations will be carried out for two The Bogonubov technique becomes inapp”cab'e at non-
charged Bose gases. We shall confine the analysis to the caggro temperature since there is no Bose condensate in a two-
when the thicknessl of the insulating layer separating the gimensional system f6F + 0. The absence of such a conden-
Bose gases and the lengthintroduced abovésee Eq(15)]  sate is guaranteed by Bogoliubov’s theorem on singularities
satisfy the inequality of the type 1¢2. The applicability of Bogoliubov’s technique

d>d (26) is also limited by another circumstance. The terms not con-

0- . . . .
taining condensate operators and disregarded in the Hamil-
Numerical estimates show that this inequality will be satis-tonian(1) may make a significant contribution to the energy
fied for those values ofl for which tunneling of carriers even atT=0, i.e., in the presence of a macroscopic number
from one layer to the other can be disregar(®ee Sec. 3 for of particles in the condensate. This circumstance was first
a detailed discussion of the constraints imposediamreal  noted by Nepomnyashcffiwho showed that the corrections
experiments to the eigenenergy parts associated with terms containing

If the inequality (26) is satisfied, the first term in the triples and quadruples of operators over the condensate di-
radicand in the expressiaiT) for energyE,(k) can be dis-  verge for small momenta. Thus, the behavior of the system
regarded. It can be shown easily that the density of the drafbr k— 0 remains unclear.

current is defined as The method of describing a Bose gas in terms of density
52 112 and phase operatofsand ¢ does not suffer from the above-

j,=C ) E_ 27) mentioned drawbacks. In the coordinate representation, the

2mMQ?%nd?) 8d? relation between the new variables and field operators of

- N . . Boson annihilation in the layex has the form
The coefficientC appearing in this expression can be deter- y

mined by numerical integration: P (1) =expli oo (1) IVpa(r). (29
o x5/2a—2x The most convincing arguments in favor of the description of
CEJ dx ~0.0406. i b ¢
0 o6 H(yite "+ 1-e %) the system in terms of operatgbsand @ can be formulated

29) as follows. In the same way as the consideration of Pauli’'s
exclusion principle is very important for degenerate Fermi
Thus, we have shown that even at zero temperature, orgystems, the symmetry requirements for the wave function or
superfluid liquid must entrain during its movement anotherthe density matrix upon a transposition of pairs of identical
superfluid liquid from which it is separated by a partition bosons are vital for degenerate Bose systems. This symmetry
through which tunneling does not take place, but interactiortan be taken into account automatically by writing the den-
of particles belonging to different liquids is possible. It sity matrix in terms of the operatof Indeed, the Fourier
should be emphasized that, like form(i#b), this conclusion component of the density operator can be represented in the

is valid for all types of interaction between bosons. form
It should be expedient to replace the expressiif for N
drag current obtained from microscopic calculations for the B(k) = } 2 expl—ik-r;} (30)
] il

case of Coulomb interaction by the expression derived by Si=1
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wherer; is the coordinate of thgth particle. This expression n2>([5;3(r)]2>. (36)
clearly indicates the symmetry of the operapgk) relative ) ) ) ) )

to transposition of a boson pair. However, the Hamiltonian! the system contains vortices, inequali§6) is obviously
cannot be written in terms of the density operators, only, andiclated near the vortex core, whergr)—0. Hence the
phase operatorg conjugate to the operatofsmust also be ~density-phase representation is not valid if the system con-
taken into account. In a two-layer system, these operatorféins vortices. However, if the conditidB3) is satisfied, the

satisfy the following commutation relations: probability of emergence of vortices is exponentially low
and we shall assume that there are no vortices in the system.

Po(DPs(P)—Pa(P)Pu(A)=2(AD)Ps(P)— P5(P)P.(A)=0,  Inequality (36) will also be violated if we take into account
(3D density oscillations with howsoever large vectors on the
right-hand side of(36). Within the framework of the ap-

i D . .
P @p(—P) = p(=P)PulA) = g Papdap (32)  proach used here, this is due to the divergence of zero-point
vibration in the system at small wavelengths. In a more con-

wherea is the layer number. sistent description, the contribution of zero-point vibration

A transition to collective variablep and & actually in-  Will be finite and condition36) will be satisfied.
dicates a decomposition of excitations emerging in the sys- Inequality (36) allows us to expand the kinetic terms in
tem into density waves with wave vecter Collective vari-  the Hamiltonian(34) into powers ofsp/n. Retaining terms
ables correctly reflect the structure of excitations in theupto and including second-order terms, considering that
longwave region and are therefore quite effective for describtdp(r)) =0, and going over to the Fourier components of the
ing the properties associated with the inclusion of the longopPeratorsp and &, we obtain

range part of the interaction. In particular, this is valid for N2

systems with Coulomb interaction. A= —=[9(0)+y140)]— > [e(k)+ny(Kk)]
Decomposition into density waves becomes inapplicable 25 K

for describing one-particle excitations with wavelengths of

the order of, or smaller than, the mean separation between +SE { 2 ns(k)g‘o;(k)g‘oa(k)

particles. The most consistent solution of the problem in- k {a=12

volves the decomposition of the field operaip(r) into (k) ., .

two components corresponding to small and large boson mo- + Hpa(k)pa(k):|

menta (see Refs. 32 and 33 for detailHowever, in the

range of temperatures considered by us which are small com- 1 .t N

pared to the critical temperatures, i.e., *3 a,ﬁz:l,z p“(k)yaﬁ(k)p'g(k)}' 37
T<Te, (33)  As in the preceding section, we first go over to the sum and

the contribution of one-particle excitation®.g., due to difference of the initial operators

breaking of Cooper paiysis small, and it is sufficient to 1
consider excitations of collective type only for a correct de-  p. (k)= —[p1(K)*po(K)],
scription of the system. V2
The Hamiltonian of the system can be presented in terms .
of the density and phase operat@®$) in the following form b (k)= 72[¢1(k) + 3,(K)]. (39)

V'\ 2
VTR 4;“)

ﬁZ
H= oM a=212 d?r In this case, the Hamiltonian is decomposed into a sum of
' two terms, each of which depends only on variables with the

same value ot

a

Voao . — o~ VPa
N A

VPa Vpe

1 ~ e ’
+§a’;l‘2ffdzrdzr’pa(r)vaﬁ(r—r )pa(r')

i
+ —
2 N2

. 1
Hy=5g[7(0)+ 712001 5 2 [e(k)+ny(K)]

. . e(k) 1
+8> [na(km;(k)%(m 2 3L7K)
1 k n
-5 2 f 0r P a1Vl 0). (34)
a=1,2 ~ -~
+am(k)]}pi(k)pg(k)]- (39
The density operator can be presented in the form of the sum
Pa(r)=n=+6p,(r), (35) Going over from operatorp (k) and ¢,(k) to the op-

A _ _ eratorsb’ andb,, of creation and annihilation of elementary
where theC-numbern=(p,(r)) describes the mean density excitations with the help of the relations

of bosons in the layer. Representati®9) turns out to be o
useful if the fluctuations density in the system are small or, . ()= e(k)n (B (K) 4D (k)]
to be more precise, if Pe E.(k)S 7 v '
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X 1 [ Ex(k) |\ - AU i (PP—9®)ap
bo(k)= E(S(k)ns) [b, (k)b (= k)], (40) AP =PG5~ 2z— #(ATP), (49
we can easily diagonalize the Hamiltonigin=3 ,H, of the i
system to the forni5). The ground state enerdy, and the p(@&(p)—e(p)p(a)=—p(A+P). (47)
energy of elementary excitatiolis, (k) are described in this
case by the same expressidb$ and (7), respectively. We shall show that in the thermodynamic limit, i.e., for
Unlike the Bogoliubov technique, the applicability of N— andS—, n=N/Sis a finite quantity and commuta-
this method is based on the smallness of the ratio tion relations(46) and (47) are transformed int¢31) and
1 ) (32). For g# —p, the right-hand sides of formuld46) and
(|op] >: E 2 f dk E e(k) [2<B+(k)6 (K))+1] (47) contains a quantity of the same order as the quantity on
n? 24 ) (272 nE,(K) 7 7 ' the left-hand sides divided by the total number of particles.

(41 Hence in this case, the right-hand side of the equalities can

In contrast to the preceding section, the angle brackets in thﬁle treatgd as equal to zero fNr_’oo'. For the case=—p,
p 9 9 we obtain formula(32) from (47) since po=n=N/S. As

equation indicate thermodynamic averaging. Neglecting den- . .
sity fluctuations caused by zero-point vibratiofwehich do g——p in (46) it must be noted that for low values of mo-

not emerge in a more consistent approattis expression is [nenia, the i)hhasg k:)tpﬁrazj@t(g3~1/qé This divergerlcz gf
found to be small at temperatures that are low in compariso (a-+p) on the right-hand side of46) is compensated by

2_ 2 . . .
with the characteristic boson interaction energy. the factorp—qg“. Hence, ifN—o, formula (46) is again

We shall now consider the method of determining thetransformed i_ntd31) asg——p. .
The obtained expressions for the operatp(s]) and

density of particles in the condensateTat 0 by using the
'y ot parf ! y using g) can be simplified foiT=0. Since the system a&=0

formalism described above. For this purpose, we shall derivﬁ’( B q : dth ber of particl h
the relation between the operatgiég) and ¢(q) and the as a bose condensate, and ne number ot particies over the
condensate is small in comparison with the total number of

operatorsa, and &, of creation and annihilation of real el tain in th in (42) and (45
bosons. The expression for the opergt@pparently follows particles, we can retain in the sums oyem (42) and (45)
only terms for which the argument of one of the operators

. ~ _ ~ + ~ . .
from the equalityp(r) =i~ (r)#(r). Going over to Fourier vanishes. In this case, the opera#gy(0) or 4,(0) can be

components, we obtain replaced by the&c-numberNgo~/N. hence it can easily be

. 1 . . seen that

Pa()=5 2 &.(P=a2au(P+012). (42) N
. po(K)=—[a;(—k) +a,(k)], (48)

The expression for the phase operator can be found as S

follows. The current density operator in tpe¢ representa- )

i [

tion has the form Bo(k)= == (85 (~K)~8,(K)]. (49)

.k 2N

Ja(N) = 17 YN+ 8p4(N)(V (1)) NN+ 8p4(T). (43 Using these relations, we arrive at the expression

If the assumption concerning the small value of density fluc-
tuations (36) is valid, the current density operator can be
expressed in the first approximation through the phase opera-
tor gradient and the average densjty=(#n/M)V¢, of =ndl (K)o, (k)+ ii);(k)ﬁg(k)- (50)
bosons in a layer. On the other hand, the relation between the 4n

current density operator and the operators of creation angyeraging both sides of50) over the ground statét should
annihilation of particles is defined by the familiar expressionpe recalled that we are considering the c@ise0) and con-
sidering that

Ny (k)=(a, (k)a,(k))=(a; (—k)a,(—k)), (51)

1 At A A+ A
sslas(Kay(k)+a,(—kja,(—k)+1]

- h L R
Ja(@) = 175 2 08, (P~ 0/2)8,(P+a/2). (44)
p

Equating both expressions for the current density operatorye obtain the following expression for the distribution func-
we can define the phase operagoas a function o} and  tion of real bosons:

S e 1 1
i q Na(k)= 5 2 [ 1(&, (K)y(K))+ 7-(Dy (K)Py(K))— og].
- At _ A o
eald)=" g2 & PR (P=0/23u(p+a/2). (49 (52)
Since this is an approximate expression, the phase operatBfesentings and ¢ in terms of the operatorAB and b* of
defined by it satisfies commutation relations differing fromelementary excitations and considering tiat b)=0, we
(31) and(32). Considering that the operatcﬁt§ anda, sat- arrive at an expression for the distribution function of real
isfy Bose commutation relations, we can easily find with thebosons, which is identical to the distribution functi¢hd)
help of Egs.(42) and (45) that obtained by using the Bogoliubov technique.
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Thus, we have shown that a transition to fhe repre- A 12K (kg — Key)
sentation makes it possible to solve the problem about the H’=2 —_—
energy spectrum of al2 Bose gas for the case when the k. 4AMVE.E_
system does not contain a Bose condensateTAD, the ~ £ IR
results coincide with the results obtained by using the famil- b4 (k)b (=) ]+ (B, +E)[b. (k)b (k)

iar Bogoliubov method. +b* (k)b (k)]}. (56)

{(Ex—E_)[bl k)b’ (—k)

Let us first consider the case when the terminals in layer
3. DRAG CURRENT FOR T+0 2 are closed. Assuming thiit,=0, we shall determine the
Before deriving an expression for the drag current agcurrent emerging in this layer as a response to the perturba-
nonzero temperatures, we must note an important circunfion of the system induced by current in layer 1. At nonzero
stance which distinguishes the drag in superfluid and supefémperatures, the expression for the linear response to the
conducting systems from the drag in normal systems. It igerturbation(Kubo formulg has the form

well known that phase coherence in superfluid and supercon- R ro

ducting systems allows us to introduce tBenumber com- (j2>=(j2(t)>o+f W((jz(t)H’(t’)

plex order parameter. The phase of the order parantteter o

be more precise, its gradigntletermines the value of the —ﬂ’(t')fz(t)»o, (57)

supercurrent flowing in the system. Earlier, we took into ac-

count the emergence of tH@-number phase in layer 1 by Where the angle brackets..)o now stand for thermody-
introducing the factor'é:"" in the field operatof; actingin  namic averaging with the HamiltoniaH,. The operators
layer 1. In the general case, a similar factdrd must also j(t) andA’(t) can be written in terms of the interaction
be introduced for the field operatér, acting in the second

layer. The vectok, must be determined from the condition ~ A(t)=€"oiAg™Hot/%, (58)
of minimum energy(to be more precise, free enejgyf the  \ye introduce the following notation for the quasiparticle dis-
system. tribution functions:

The case of open circuit terminals in layer 2 must be R
distinguished from the case of closed circuit terminals, wher{b_ (k)b,(k))o=n,(k)

layer 2 becomes a multiply connected system. It will be ;{E,,(k)+ﬁ2k-ksll2M) . 1

shown below that for the case of open circuit terminals, the =|ex

value ofkg, following from the condition of minimum en- T
ergy leads to zero drag current, i.f;=0. In view of the  Expanding the distribution function in powers kf; up to
circulation  quantization $Ve-dl=2mn, (where n  jinear terms

=0,1,2,..) for closed circuit terminals, the vectdr; can

(59

assume only a discrete series of values. Consequently, the n.(K)~no(k) + %K ksy (7“97 (60)
currentjs, will be nonzero in the general case. In the follow- 7 v 2M  9E,’
ing, we shall assume everywhere that the quarkity is . . .
dg‘ined by external conditioyr:,; while,, is defi?wed b%/the we arrive at the following expression for the drag current
system depending on whether the terminals are closed, and(?nsny'
also on remaining parameters affecting the drag current. o1 hkgy on%  on®
The correction to the Hamiltoniafb), which is con- Jz:g; am ¢ FI= + JE_
nected with the superconducting currents and is linedx4jn
andkg, has the form (E,—E_)? 0 0
2 +2E+E,(E++E,)[n+(k)+n‘(k)+1]
M [ @rivaia(r) + vl 1= 5 [ ke Batr) )
M (E++E—) 0 0
“E E (. —g LN+ (K]} (61)
X[V &1 Wpa(N) +kea\pa(DLV &(1) 1Wpa(N)]. +E-(E,—E-)

(53) At T=0, there are no quasiparticles in the systéiB.,
nﬂ(k)zO), and formula(61) is transformed into the expres-

After transition to creation and annihilation operators Ofsion (25) obtained by the Bogoliubov method.

excitationsb, andb,,, we can write the following expres- In order to compute the drag current for closed as well as
sion for the Hamiltonian of the system, taking the currentgpen circuit terminals in the second layer, let us determine
componentg53) into consideration: the free energy of the system. Nondiagonal components of
|:|:|:|O+|:|/’ (54) H' are taken into account according to the perturbation
theory
where

A’[nY(n|A’'|m)  Fo—E2
2K (kgtko)| . . e m] m
0=Eot 2, £, 10+ U TD b g0k), F=Fo- 2 —po_go——exp——,

(55) where

(62

I
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— terms exactly compensate each other. However, if the termi-
T . .
nals of the structure are closed, the first term assumes a dis-
E,(K)+72k- (kg +Kgp)/2M crete series of values and the second term is continuous. In
l-exp — T ) this case, their sum may not be equal to zero.
Let us determine the drag current dengityfor the case
(63 of Coulomb Bose gases. For this purpose, we shall assume
that the following inequalities are satisfied:

2mnQ%h2
 Med

o it follows from the free energy minimum that these two
Fo=—TIn| Trexp — =Eo+T

xz In
k,o

ﬁzk' (ksl+ ksz)

E,(K)+ ——7

1/2

En=Eo+ 2 )n(,(k), (64

(68)

H . d>d0, T<TOE(
n.(k) being the occupancy of state with momentum#k.

After simple calculations, we arrive at the following expres-

. The first of these inequalities allows us to neglect the term
sion for free energy:

£?(k) under the radicand in the expressions for the energy
1 ex;{ B 72k (kg +Kep)/2M ” spectrum(7). When the second inequality is satisfied, we can

T disregard the excitations of+"” modes at honzero tempera-
tures. The latter statement follows from the fact that modes

F=E0+Tk2 In

- h2k- (ke —kg) |2 1 with E(K)<T are excited at a given temperatufe The

" 4M 2E.E_ limiting wave number satisfying this condition is defined as
2 1/2

(E,—E_)? _ MegT

x[—E;LE [n.(k)+n_(k)+1] ke~| 5 ro?nizd) (69)
(E,+E_)2 while the ratioE%/E2 >Ty/2T>1 for k<k,.

- ?[m(k)— n_(k)+1];. (65) Estimates show that the conditi¢88) can be easily sat-

L—E_

N ) ] . isfied in experiments. Thus, for characteristic values
The average flux density, of particles in the layeris = 105¢m™2 M=2m,, wherem, is the mass of a free
expressed in terms of the free energy with the help of thejectron, Q=2e, €,=10, d=10"%cm we have dy=6

familiar thermodynamic relation X107 9cm, Ty~4- 103K.
_ 1 oF Taking (68) into account, we obtain the following ex-
la=%g kg, (66) pression from(61) for the drag current density of charged
) o ) ) ) Bose gases:
Differentiating(65) with respect tk,,, puttingks,= 0 in the 2 g 113
obtained expressiofwhich corresponds to the regime with . 1 .
closed circuit termina)s and retaining only terms propor- JZZRWT_O(O'()‘lOG_zg(g)(T_o) ]Jl' (70

tional to the first power ok, we arrive exactly at formula
(61) for current in the layer 2. : .
In the case of open terminals, we proceed from the fredure introduced ir(68). _ _
energy minimum and consider the fac#fs2" as a response Before discussing th_e expe_rlments on the detection of
of the system to the current in layer 1. we must calculate thdrag between electrons in spatially separated superconduct-

derivativedF/ k., and equate it to zero. The resulting equa-I"9 Systems, let us note the fundamental features of this ef-
tion will define the value of the wave vecthg, . In view of fect. For normal systems, current is passed through one con-

the relation(66), however, the conditionF/dke,=0 means ducting layer, and the potential difference is measured in the
that the current in layer 2 will be equal to zero. other layer whose ends are open. This method is not appli-
Let us dwell on this problem in greater detail. We shall €able for superconducting layers since electric current cannot

describe the emerging situation in terms of two currents. |€Xist in superconductors. The closure of the secondary circuit
is a necessary condition for thexistenceof the effect. Un-

the field operator acting in the layer has the form\ifa . S

] N ’ like normal systems, the effect of transfer of motion is asso-
=expiksa '}, We can go over in formula2l) for the  (jated not with the transfer of momentum from one layer to
particle flux density operatqrfrom operatorsV , and¥, to  the other(the Hamiltonian does not contain dissipative com-

Here{(y) is Riemann’s zeta-function, afg, is the tempera-

¥, and ;. This gives ponents in the approximation under consideratidmut with
Ak the redistribution of supercurrent between the layers. This
F [V()]= =20 () (1) +] L ()] 6 statement follows from the fact that the correction to the
Tl V(N ]= == b (N (1) +]al (1] (67)

current in layer 1 calculated in analogy wil) is equal and
The first term on the right-hand side @7) depends on the opposite to the current in the lay&2).
guantitykg, and defines the superfluid current component in ~ The peculiarities of the drag effect in two-layer super-
the layera, which is connected directly with the difference conducting systems necessitate the experimental measure-
in the phases of the order parameter at the ends of the layanent of, say, the magnetic flux produced in the secondary
The second term on the right-hand side (6%) does not circuit by the circular supercurrent. We shall determine the
depend on the quantity,, and is determined by the interac- value of the flux for the case shown in Fig. 1. The complete
tion between the layers. In the case of open circuit terminalsexpression for the electric current densityin layer 2 (we
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- transfer of motion between two-dimensional Bose gases
L L - separated by a thin interlayer. The results are obtained for an
L J J D arbitrary type of interaction between layers, and the case of
— charged Bose gases is considered in detail. We assume that
the situation with charged Bose gases provides a qualita-
'//II II I ‘,I II II /Illl‘l d tively correct description of the drag between two-
J1 ) dimensional films from “Cooper” superconductors. The de-
- pendence of the drag current on temperature and thickness of
FIG. 1. Schematic diagram of the experiment for detecting the drag betwee];'rIe partition is determmed for the case of charged Bose
superconducting layers. The lower superconducting layer is bent to preveigases. The effect exists for zero and nonzero temperature for
current excitation in the upper layer due to the magnetic field of the lowerany type of interaction potential, the value of the drag current
layer. decreasing with increasing temperature in the case of Bose
gases. Unlike normal systems, the transfer of motion be-
tween superfluid layers takes place only when the terminals
of the secondary circuit are closed. It is associated not with
the transfer of momentum from one layer to the other, but
only with the establishment of a single coherent state as a
Qfikg, . Q%ng result of interaction between layers, the phases of the order
== Nst Q2= oA (7)) parameter being correlated in both layers in this coherent
state. An experimental setup is proposed for detecting the
whereA is the vector potential of this field. Estimat€&)  predicted effect. Calculations show that the value of the
show that the quantitj, is quite small, and the energy mini- magnetic flux emerging in the secondary circuit as a result of

mum corresponds tks;=0. . drag lies within the range that is accessible to measurements
The total current in the lower and upper films must beyith the help of modern techniques.

equal to —(Q?ns/Mc)A_ +Qj, and —(Q?ng/Mc)Ay

where A, and A, denote the vector potential in the lower This research was partially supported by an INTAS
and upper films. Solving the Maxwell equation ddirl Grant No. 97-0972.

=4q7J/c, we can easily find that

_Qi2 . _4TnQ%D
T2ty YT T

N

shall denote it by a capital letter to distinguish it from the
particle flux densityj,) contains an additional term associ-
ated with the magnetic field produced by this current:

Js (72

*)E-mail: shevchenko@ilt.kharkov.ua
HereD is the separation between the upper and lower films

in the secondary circuitsee Fig. 1L The magnetic flux be-

tween the films, which is related to the currdgt is defined
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It is shown that low temperature asymptotics of various thermodynamic and transport properties
of sswave superconductors can become power-law ones if wide distributions of gap values

exist, originating from structure domains, charge stripes, charge-density waves or other mesoscopic
nonhomogeneities. The relevant experimental data for figbxides are analyzed on the

basis of the developed theory. €999 American Institute of Physids§1063-777X99)00507-]

1. INTRODUCTION surements of the superconducting gap belbw?>14~®For
example, the predicted current-voltage characteristics
The controversy over the order parameter symmetry ifCVC’s) asymmetricity for junctions involving CDW super-
cuprates constitutes a great challenge to investigators and é®nductors withs-type pairing® resemble those of thab-
far from being resolved;* contrary to what is sometimes plane tunnel CVC's for BiS,CaCyOg,,.!” The same can
claimed*® Really, the relevant experimental data may bebe said about the persistence of the smeared pseudogap fea-
divided into three main groups. The first group includestures in this experiment, so that the CDW’s rather than the
phase-sensitive methods, e.g., the phase-sensitive obsendawave scenario withV-shaped conductance show them-
tions of the half-flux quantum spontaneous magnetization ofelves. The investigatiotfsof inelastic Cooper pair tunnel-
the three-grain boundari&$and of the anomalous-phase ing for various phases of the Bi—Sr—Ca—Cu—O system
shift across thec-axis junction straddling a single twin. clearly demonstrated the existence of the Riedel-like singu-
These experimental results are often considered as an ularity and the subsequent steep reduction of the Josephson
equivocal evidence of the-wave order parameter character. current inherent to Bardeen—Cooper—Schriefl@€S) iso-
Nevertheless, as discussed in Ref. 2, the ordirswave  tropic superconductors, whereas thel-wave picture lacks
order parameter suppression at twin boundaries, the flusuch a threshold behaviét.The indications of thel-wave
trapping there or in the corners, and meanderings of the graimconsistency with measured photoexcited relaxation dynam-
boundaries on the scale of 100—100®¢&n reproduce such ics in YBaCuO,_, were also found* The direct evidence
a behavior as well. Moreover, the most recent measurements the s-wave pairing in YBaCuO,_, and YbBgaCu;O;_
(see discussion in Ref) ®f the c-axis (perpendicular to the using tunnel and point-contact measurements was also ob-
layergJosephson critical curremt between twisted bicrys- tained in Ref. 22, where clear classical gap features were
tals of BLSr,CaCyOg, ruled out the purported “naive” seen.
identification of the order parameter symmetry there with It is also claimed that the type of pairing can be, in
dy2_y2 wave form. Namely, there was no dependencéof principle, deduced as well from the phase-insensitive experi-
on the twist anglep,, whereas in tha-wave case it would ments by analyzing the properties of higjh-oxides in the
have beeni .= cos 2p,. At the same timec-axis tunneling low-temperature limit. Indeed, the BCS theory leads to the
between BjSr,CaCyOg, and Pb shows a distinct Fraun- following asymptotics for various thermodynamic and trans-
hofer pattern appropriate ts-wave order parameter, al- port propertiesP of superconductors at temperatuiesar

though the magnitude of the is very smallt® below T, : %
Two other groups are phase-insensitive. One of them A
probes the gap features, if any, at the Fermi surf&S. It PEYMPEA L, T)=AAJT! ex;{ - ?0) (1)

includes, in particular, the angle-resolvEdtunnel!? and
point-contact® spectroscopies. The results obtained, makingHerekg=7%=1, A, is the value of the superconducting gap
use of these methods for a humber of specific hole-dopedt T=0 and the quantitiesrandl are specific to the property
oxides, are also usually interpreted as manifestations of theoncerned. Instead, a lot of investigations reveal power-law
d-wave pairing. However, this interpretation may be mis-T-dependences?* Such a behavior was explained on the
leading. Namely, the emergence of the dielectric gap on thbasis of the assumetdiwave symmetry of the order param-
nesting FS sections due to the charge-density Wa\W)  eter with gap point or line nodes of the E$Our article is
formation may mimic the superconducting pseudogap abovdevoted just to this kind of experiment. However, in contrast
the critical temperaturé, and severely hamper various mea- to the traditional viewpoint, it is shown below that, if one

1063-777X/99/25(7)/6/$15.00 503 © 1999 American Institute of Physics
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takes into account the wide distribution of the superconductthe problem. Our approach starts from the assumption of a
ing order parameter magnitudes always existing in complexvide distribution of order parametér values in the bulk of
nonhomogeneous structures of highexides?*~?°the same the samples at each<T,.

results can be explained by the conventiosalave pairing.

2. EXPERIMENTAL LOW-TEMPERATURE ASYMPTOTICS
FOR CUPRATES 3. THEORY

To be more specific, let us.consider some experimental  Tphe key idea of the theory is that not only a polycrystal-
low-T data for cuprates. In particular, for YB2s0;_ the  jine but even a single crystal superconducting oxide sample
specific heaC,2T,? although the recent experiméhshows  can be considered asesoscopically nonhomogenepise.,
additional contributior=T? and Schottky anomalies T2, ¢onsisting of domains. This domain structure is supposed to
making the whole picture uncertain. At the same time, thg,g T-independent, with each domain having the following
results for thed-wave gap function would have been propor- hroperties:
tional to T for hexagonal off® for cubic lattices:"** (A) at T=0 it is described by a certain superconducting

For S\ (T)=[A(T)—\L(0)IN_*(0), where A (T) is  order parameted
the constant magnetic field penetration depth, the experimen- (B) up to the relevant critical temperaturB.q(Ao)
tal data are quite ambiguous. For nominally pure— A 7 where y=1.7810... is the Euler constant, it be-
YBa,CuO;_ samples linear dependences Oh areé  paves as a true BCS superconductor, i.e., the temperature
observed? whereas for Zn- and Ni-doped as well as nonho-gependence (T) of the superconducting order parameter is
mogeneous crystal$\ «T?*7*in a formal accordance the Mihischegel function (T)= dscsAo,T): any property
with the theory ofd-wave superconductors, either dirty ohes p ynder investigation is characterized in this interval by the
or those with surface-induced Andreev bound st&t@here  nction PJ(A,T);
are also data showing two-gap Iowasymptotics oon (T) (C) at T>T,, it changes into the normal state, and the
in YBa,Cu;0; > The authors of Ref. 34 claim that this relevant property i$,(T).
dependence is intrinsic, whereas the results of Ref. 29 are At the same time, the values df, scatter for various

due to a non-uniform sample oxygenation. For electronyomains. The current carriers move freely across domains
doped oxide NegCe& {CuQ,_; which always reveals anq inside each domain acquire the respective properties.
s-wave featuresox (T) follows the exponential lawAtthe  Thys, possible proximity effects resulting in the correlation
same time, the initiab-wave picture withoh (T—0)=T  of the properties of adjacent domains are neglected. The cur-
was shown to be inconsistent with the third law of rent carrier density is assumed constant all over the sample,
thermodynamics® Further modification’®*” (see reply in o transient processes are excluded from consideration.
Ref. 38 changed the electromagnetic response ofitheve The averaging procedure considered below requines
superconductor in such a way that the calculated in-plang,e effective sample size to be much larger than the mean
dependencé) ,,(T—0)=T? holds, not violating thermody-  sjze of the domaing,e.,andii) the size of each domait
namics but destroying the apparent agreement with the ey pe larger than the relevant coherence lengthThe first
periment. condition is needed to regard the superconductor macro-

Unfortunately, it is hard to extract the electronic thermalscopically homogeneous. The second one stems from the
conductivity componenk, from the experiment due to the property(B) indicated above. In the opposite case, widen
complex action of electrons, phonons, and impuriti. <&, we are led to the lattice model of superconductor with
Nevertheless, the experiments indicate thatT in Zn- 3 |gcal atomic disordef?*” Such a model was applied to the
doped YBaCu;0; ,* and below T;=200mK in  description of YBaCwO, , in Ref. 48. In essence, the do-
BiSr,CaCu, - ,Ni,)205.** The ultrasonic attenuation coeffi- main size there is comparable to that of the elementary cell.
cient as also exhibits a power-laW" decrease foT<T.  However, in this limiting case we go beyond the scope of the
both for YBaCu0,_,**** and La St ,Cu0s_«** with @ Bcsswave picture based on the long-range character of the
large scatter of the exponemfor each substance. As for the phonon-induced interaction between electfdiisee discus-
nuclear relaxation rat&, *, it demonstrates power-law de- sion in Sec. 4 In contrast, the actually adopted condition
pendences with £n<3* d;> & is fully in line with the basic concept.

This experimental material shows that the universal de-  ynder these conditions, we consider the current carrier
pendence for any phenomenon discussed does not exi%uid to involve normal, p,(T), and superconducting,
Moreover, the agreement with the theories based on the 9ap(T), fractions with p,(T) + ps(T)=1, and the supercon-
function with point or line nodes is superficial. Even with ducting fraction to be multicomponent. Each superconduct-
additional assumptions being made, the equality between exhg component corresponds to domains with a certsjn
perimental and theoretical power-law exponents still canno1i-hey possess the properties), (B), (C) mentioned above.

be ensured. It is usually considered as a basis for the adofrhe superconducting fraction &t=0 can be described by a
tion of the d-wave concept:* At the same time, while ana- gjstribution functionf(Ao) in the interval GsAg<AT.

lyzing local structures observed in the nonstoichiometric su-

. . o _ 6,45 Amax
perconducting a_nd nonsuperc_onduct.lng _oxﬁfe%, we ps(o):f O fo(Ag)dAg=1—p,(0). )
drew the conclusion that there is a quite different solution to
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The distribution is assumed wide, i.é(A) is non-zero at  cejve that within such a context the calculation\gf(T) as
every point of the interval. In principle,o(Ao) can be ran- 3 weighted quantity is at least qualitatively reasonable.
dom or not, but the former case seems more frequently oc- The first term in Eq.(7) describes the contribution
curring. (P(T)), of the normal fraction. It is well-known and will not

At T#0 the superconducting components Withhy<T,  pe considered below. The last term corresponds to the con-
e, with Ag<A*(T)==T/y, lose their superconducting tribution (P(T))s of the superconducting electroftisoles.
properties. The normal fraction of the current carriers in thesincef(A=0,T)=f,[A,=A*(T)]#0, for eachT there is a

sample is nonvanishing portion of superconducting components with
A*(T) A—0. It is their contribution that leads to the deviation of
pn(T):pn(O)-f—f fo(Ag)dAg, (3)  the temperature behavigP(T)), from the classical one. To
0 make our statement even more sound, we suggest that the
whereas the remaining superconducting part is low-T asymptotics(1) holds true for each superconducting
component up to the relevant critical temperattgg, i.e.,
Amax
ps(T)= f arg, 0(B0) 0. (4) Py(A,T)=PEYMP{A L T). )

Due to the condition(B), the components, possessing atThe allowance for the exact dependences may only
T=0 order parameters within the interfaly,A,+dAg], at  strengthen our standpoint.

T#0 acquire order parameters within the interyal,A Note thatP2Y™(A,,T) in the framework of the BCS
+dA], where A=AgcqAy,T). This conversion is ex- scheme depends of and onAg rather than onA value.
pressed by an equation Accordingly, due to Eq(5) the contributior{ P(T))s can be
itt follows:
F(AT)YdA = fo(Ag)dA,. ©) rewritten as follows

Here f(A,T) is a function characterizing a new distribution (P(T))s= ngm PgsympEAo,T)fo(Ao)dAo_ 9)
L)

of components in the interval OA<A™*T) where A% (
AT(T)=Agcg(A5™,T). This equation is a consequence of The distribution functionfy(A,) can be expanded into the
(i) the supposed domain structure permaneficethe con-  gseries

stant current carrier density, artiii ) the independence be-

tween superconducting components. Then, the function B - Ag \¥
ps(T) takes the form fo(Ao)= Waxkzzko Bi AT (10
Ama T . . . .
pS(T)=f i )f(A,T)dA. (6) wh_ereko is the order 01_‘ the leading expansion term. Substi-
0 tuting Egs.(1) and(10) into Eqg.(9) we obtain
As for any investigated properfy, each component, be- [+m+1 @ T \K (4o
ing superconducting or not, makes its contribution to the (P(T))gW > Bk(W) fT XM ke Xdx.
measuredaveragefivalue (P): 0 Kk=ko 0 w

11

AMT)
(P(T))=Pn(T)pn(T) + fo P(A,D(A,T)dA. Within an accuracy of the made approximations and for tem-

(7)  peraturesT<Ag®we may extend the upper limit of integra-

This formula is valid(with restriction given abovefor tion to infinity, so

additive quantities, such as, e.g., the specific heat. But what

about, for example, the penetration depit? Really, in the (P(T))s~ATI*M
situation when the superconducting gap chariges in fact

goes to zerpon a very short length scale, even the notion of

the penetration depth becomes questionable. Moreover, since XTI
each of our elementary volumes includes an ensemble of

domains with different parameters_;’s, the matter be- whereI'(a,x) is the incomplete gamma functidh.Since
comes much more entangled. Nevertheless, even in this sit&e* (T)/T=#/7y, the apparently dominant exponential de-
ation one may introduce an effective penetration deyth  pendence of P(T))s on (—1/T) resulting from the second
and measure it$-dependence. Really, the measured electroargument ofl"(a,x) disappears altogether, whatever the par-
magnetic response of the nonhomogeneous superconductigular value ofkg.

is the sum of individual domain responses from the sample  One more important result of this formula is that in the
surface layer. The quantit)(‘ﬁff is a parameter that is ex- framework of the proposed model the measured properties of
tracted from the essentially averaged experimental datthe superconducting componer®(T))s at low tempera-
treated as obtained for a homogeneous BCS superconductbures are insensible to the particular profile of the distribution
In the specific case of cuprates the domain stkeare sub-  functionfy(A,) at largeA,. Hence, forT<A§® a few first
stantially smaller than the intrinsic penetration depihs terms of the serieg12) constitute a good approximation.
for each domain and, therefore, the effectV®. We con-  Restricting ourselves to the leadikg-term we obtain

T\ < T \K
nEPEIRS

A*(T)}

m+k+1, (12

T




506 Low Temp. Phys. 25 (7), July 1999 A. M. Gabovich and A. I. Voitenko

> maxy T T \M where N(0) is the electron density of states at the Fermi
(P(T))s=ABy (A F( m+Kko+ 1;) Ara| level; for the penetration depth
(13 37\ T
<5)\L(T)>%BO\/7/2F(E,—>W; (16)
with M=ky+1+m+1. The corrections to this expression Y/ 2o

are of the next order ifi/ Ag™®. This justifies the validity of  for the thermal conductivity

substituting the upper limit of the integral in E¢L1) by oy ST 2

infinity. At the same time, this makes eligible the evaluating (Ke(T))%BO—e”Ag‘aXF( 3,_) (Tax) ' (17)

of the (P(T)) contribution in Eq.(7) using the lowT as- Me v/\Ag
ymptoticsPE¥™(A,T) in the integrand instead of the exact wheren, is the normal state electron density, is the trans-
value Ps(A,T). Indeed, theT-dependences of various pa- port collision time, andn, is the electron mass; for the ratio
rameters in the BCS theory are induced by THeehavior of  54= o /a, of the ultrasonic attenuation coefficients in su-
the gapA,* e.g., the exponential multiplier in EqL) origi-  perconductinges, and normala,,, states

nates from that in the low- asymptotics ofA(T). Since
A(T—=T)=(T.—T)¥2in the BCS theory, the considered pa-
rameters have ai— T, the power-like asymptotics as well.
Thus, the use of exact functional dependeng®\,T) re-
sults not in exponential but power-law dependence
(P(T))s.

One should note that in each specific experiment only
certain lowest temperatui, is accessible, so that, accord-
ing to the Eq.(9), only gap values down ta{"= 7T/ ¥
are relevant. Hence, the restriction imposed above on th
distribution functionfy(Ay) to extend down taA;=0 may
be weakened. Namelyf,(Ay) should be nonzero fod,
>Ag"™. In the case when the domain ensemble possesses theyi
minimal value A" and the lowest accessiblely,
<yAg"/m, the valueAg™ will manifest itself as the expo-
nential factor expt Ag"/T) in (P(T))s (cf. Ref. 23.

Returning to Eq(13), we see that the actual distribution
function reveals itself in the final result only through the
expansion paramete andky. The most popular distri-

(8a(T))~2B,I (18)

a
1,;)@
These results correlate well with experimental daee Sec.

%4). For other possible distribution functions wiky>0 the
receding results will remain power-law, although with
argerM. In 2D-superconductors, such as cuprates, the value
ko=0 corresponds to linear objects, i.e., lines or edges of
normal regions, consisting of “nodes”A(;=0) in the real
Space. Point-like zeros would lead kg=1, so that the rel-
evant power-law exponents would increase by one.
From the methodological point of view it is of interest to
cate an analogy between our approach dealing with the
A-distribution in the real space and the Abrikosov's
introductior?® of the distribution function for the order pa-
rameterA anisotropic in the momentum space, with the an-
isotropy being quite general and including batwave and
extendeds-wave symmetries.

bution functions® namely, normal Gaussian 4. DISCUSSION
2 |12 1 -1 The inhomogeneities leading to the spreaddafmagni-
fe(Ag)= A 20| —|+1 tudes over the sample may be of different nature. As the
o \7o 7 possible driven forces of these structural and/or electronic

domains in highF. oxides one should mentia) composi-
, (14)  tion irregularities, especially the inherent disorder in oxygen
vacancy positions, observed, e.g., for BaRlBi,O;,°1>*
Lay_,[ Si(Ba)],CuO,_,*** and YBaCu0,_,**>**® and
(i) the phase separation of the electronic origin with impu-
rity atoms frozen because of the kinetic barrigrin oxides

1 Ag— AT\ ?

Xexh = 3| Toage

exponential fg(Ag) = (a/AJ®)exp(—ady/AF™), and uni-
form f;(Ay) ones, wherer and o are dimensionless param-
eters andP(x) is the error functiorf® have finite values at

both mechanisms apparently act togetief:>8
Ay=0, so the leading tern(il3) in the series has thie,=0 PP Y g

q ¢ f h : giff distributi Vacancy disorder comprise point-like defects. As was
order ol smaliness. Al the same time, different distrioution; jicated in Sec. 3, an attempt to allow for such irregularities
functions have different values of coefficieB. Now it is

: bl K hoice in f ¢ £ th h was made in Ref. 48 where it was shown that only for an
|mpos§|b e to make a ¢ oice In favor of one o them. T eanomalously great dispersioil of the site order parameters
analysis of the heat capacity measurements for variou

idesL52 ) _ R, it is possible to obtain the gapless-like behavior of the
°X"?'e makes us suggest th_at the funCtEDG(AO)_'S quasiparticle density of states. Considering the condition
malnly c_o_ncentrated in a narrow interval nesy= 0, which W5 A™ for the maximal quantityA™ very improbable,
is beneficial for our hypothesis.

; ) the cited authors, in order to explain the experimental data,
Applying the general approach to the properties con

‘argued that YB O,_, is ad-wave object.
cerned taking their actual loW-expression$® and compar- g FU07—« ]

ina th ith he following d q The inhomogeneities attributed above to the second
ing them with Eq(1) we come to the ollowing dependences group are of typical sizes exceeding the coherence length, the
for the chosen cade,=0: for the specific heat

latter being extremely small in cuprates. The experimental
evidence exists of the minority phase domains in

2
(C4(T))=By /sz(o)AgwaxF(z, I) (%() , (15 L& _«SKCuO, being as large as several hundred Angsso
2" v\ Ag in size® For YBa,Cu;0,_, the x-ray and neutron diffraction
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measurements supplemented by the lattice gas Monte Carts and d-order parameter symmetry, which is based on the
simulations revealed not only tetragonal and ortho-l phaseproximity effect in theS—N layer structures of cuprates and
with the long range order but also a rich variety of structuralfits the experimental data ok (T). A possibility of the
phases with anisotropic correlation lengths of mesoscopitransformation of the dependenc® into the power-law one
size>® The domain finiteness preserved even after annealingyith M<1 due to the proximity effect was demonstrated in
and kinetic barriers turned out to be large enough to securBef. 66 for Nb/Al bilayer films.

the logarithmic time ordering. The crystal field neutron spec-  Of course, the theory outlined above can be applied not
tra of ErBgCw0,_,>° and the Raman spectra of only to cuprate oxides but to other materials as well. But the
YBa,Cus0;_,*° which reflect the local region properties also main requirement for them to exhibit power-law asymptotics
revealed oxygen structure domains, indicating the phaseemains the same, namely, the mesoscopic nonhomogeneity
separation and the percolation character of conductivity angharacteristic size ought to exceed the coherence length. Oth-
superconductivity. It was pointed out in Ref. 61 as well thaterwise, the exponential behavior far<T; would survive

the percolative network of intermediate size hole-inducedand the critical temperatures would be slightly renormalized
polarons(clusters may lead to the difference between local in full accordance with the Anderson theoréfn.

and global(crysta) symmetry. )
g (crysta) sy y We are grateful to all colleagues who sent us the reprints
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We have observed an extraordinary behavior of the HGB&L 0,5, s layered HTS(phase

1245 in the overdoped state. Earlier we have synthesized the phase Hg-1245 with different oxygen
content and consequently different values of the lattice pararaei&te have observed a

coincidence ofa values when thd ;(a) cupolas reach their maxima for phases Hg-1223, 1234,

and 1245, and a merging of their overdoped parts together with abrupt falling off of the

T. values. The Hg-1245 phase has shown the most unusual behavior. Contrary to other phases,
this one contains three types of Cufayers in a unit cell. We supposed that, in the case

of the Hg-1245 phase, the holes coming from the reservoir, which is the Hg—O plane, cannot reach
the “far” CuO, layer which is notable for this phase. We have calculated the hole

concentration for each layer for 1223, 1234, and 1245 phases. The results obtained confirm our
assumption. The hole concentration appears negligibly small for the overdoped 1245

phase. We can consider the “fifth” CyQayer as not taking part in superconductivity. The

analysis of the behavior of thE.(a) cupolas for the phases with different number of Gu&yers

and of hole density distribution between the layers has been carried out99® American

Institute of Physicg.S1063-777X99)00607-4

INTRODUCTION was varied by changing the BaO/Ba€atio, which allowed

The first goal in the study of the HTSC layered cuprateg!S t0 obtain the overdoped Hg-1223, 1234, and 1245 phases
is to find out the optimum structure and content to reach thd" as-preparated states. The technology of synthesis was de-
maximum possible critical temperatufie. Up to now the  scribed in detail in Refs. 1 and 2. Special attention was paid
maximum value of th& ;=135 K was reached for Hg-based to getting single phase ceramic specimens. When the phases
cuprates in their Hg-1223 phase. Numerous attempts at syivith n=3 are synthesized, the kinetics of the process is im-
thesis of layered cuprates with different elements added inportant. First the previous phases are formed where then the
stead of mercury in recent years have failed to enlarge thésagments of CaCu®take root. The phase composition was
o, checked by the x-ray study.

We have synthesized the Hg-based cuprates witl3B, The temperature dependence when an abrupt change of
4, and 32 and measured th&1® and thedTI"™/dp for  ac and dc susceptibility takes place was measured by the
phases witn=1-52 The largestT{"® remained to be the induction method. The temperature was measured by the
value atn=3. (Cu+0.15%Fe)/Cu thermocouple. Measurements were car-

To understand the nature of the HTSC the study ofried out in the Institute for High Pressure Physiit$PP) and
samples whose parameters lay far away from the optimadt the Chemical Faculty of the Moscow University by differ-
ones is necessary. Here we present and discuss the data @it people and on different installations. The results obtained
T for phases Hg-1223, Hg-1234 and Hg-1245 with differentare qualitatively the same, having sometimes some unimpor-
oxygen content. tant quantitative difference. As was mentioned above, in all

When studying the overdoped and underdoped cuprategases the maximum values of tfie were achieved for the
the agreement was attained that different approaches shoulhase Hg-1223.
be used to describe their properties. The first—the overdoped Here we lay stress on the behavior of different phases in
state—may be considered as a Fermi liquid which is not trugne overdoped states. The measufedralues as a function
for the underdoped state. The problem of q\{erdoped and Unst Jattice parameter (the spacing Cu—O in the layeare
derdoped states was considered by Laudhlina most im- shown in Fig. 1.
pressive way. He proposed the existence of a quantum criti-  the ynderdoped states correspond to greater values of
cal point on the way from an antiferromagnetic insulatory,e harametes. These states appear under heat processing of
(underdopelto a normal metaloverdoped the as-preparated sampfe3he change ofa is caused by
oxidation of copper because of nonstoichiometric oxygen in
the Hg—O layerthe reservoiy, that is, because of the hole

The phases Hg-1223, 1234, and 1245 were synthesizedensity 6 in the sample. Th&’s for phases Hg-1234 and
under high pressure at different pressures, temperatures ahtg-1245 have a tendency in the overdoped state to merge
time intervals. The oxygen content in the starting mixtureswith the overdoped phase Hg-1223 and to fall off abruptly.

EXPERIMENT

1063-777X/99/25(7)/4/$15.00 509 © 1999 American Institute of Physics
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FIG. 1. The dependence df vs. parametea for Hg-based superconduct-
ors: Hg-1201(0J), Hg-1212(A), Hg-1223(#), Hg-1223(<),! Hg-1234
(O), Hg-1245(A).

DISCUSSION

Earlier we have compared results f6f'™ for phases
with n=1—-6 and ford T0®dp (n=1-5)* with data ob-
tained from the model proposed by Andergtime so-called
RWB mode?), see Figs. 2 and 3. In the RWB model fAg™
is determined mainly by the coupling between Gu&yers
and it is assumed that the holes, which are responsible f

high T, values, are homogeneously distributed between al

CuG, layers.
DiStasio, Muler, and Pietroneru in Ref. 6 have consid-

ered the charge distribution of holes among the various CuO

layers up ton=4 and found that this distribution is highly
nonhomogenous fon=3. “A natural consequence of this

distribution is that the density of states available for super

conductivity can have a maximum as a function mfas

160
p
L D
140 |-
x
> 120
W2
100 |-
80 1 ] ! ] 1 | ]
0 2 4 . 6 8

FIG. 2. Experimental and calculated valuesTgi™ as a function of Cu®
sublayers numben. Full circles and full rhombs—experiment at ambient
pressurg M) and under pressure 1 GP# ), open circles and rhombs—the
calculated data for ambief®) and 1 GP& ¢ ) pressure, respectivefy.
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FIG. 3. Experimental+) and calculated ¢ ) data for pressure derivative
dTI®/dp as function of sublayers numbar®

observed experimentally fF. . ® Beginning withn=23 the
nonequivalent Cu@layers exist—the outer @ and inner
“i” (see Fig. 4. The hole distribution inside the sheet is
proposed to be homogeneous. In Ref. 6 the qarhrabolic
band was assumgdnd electrostatic energies were calcu-
lated. The total energy is minimized with respectde-the
fraction of charge in thélayer (1-x in the o-layen. If §is

c;pe total density of holes coming from the reservoir then the

?oncentration of charge carrieng in thei-layer is equal to
x6/(n—2) and (1-x) 6/2 in theo-layer. In the simplest em-
pirical case

Te(np) =T{*T1- B(np—ng™)],

whereT{'® and g do not depend om,, but on the structure

parameters only.This expression leads to the well known
cupola-like dependencg,(n;,) that was observed in the ex-
periment up ton=52 The electrostatic interaction with the

Hg-1223  Hg-1234 . Hg-1245
Hoo . > ZyTHION o0
BaO O ¢ |Ba0
° : czoz—‘g—"-o cio,_. 7
a Ca ofjCa "
i FICU0, ¥ iy CuQ, 5
o] |Ca f ol|ca’?
iy CuG, i CuG, %o
o] |ca ?_x oflca ®
0 Cu0, 5% i, FICu0, 3
a 820 oli{ca 3—
° Cu ?
—#HgO, ol %7
b ¢ {Ba0
T HGO,
c

FIG. 4. Idealized structures of HgB2aCuOg., (Hg-1223 (a),

HgB&CaCu,010,y (Hg-1239 (b), HgBaCACWO;,. , (Hg-1245 (o) with,

respectively, threen=3), four (h=4) and five (=5) CuG, layers per
unit cell. The structure witm=5 has inequivalent inneri{ andi,) and

outer (0) CuG, layers. The copper atoms of the inner Gu@yers have a
fourfold oxygen coordination, the copper atoms of the outer Cla@ers
have a fivefold oxygen coordinatio®(1)—in the layeri, O(2)—in the

layero. O(3)—in thelayer BaO;(4)—in the layer HgQ.
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layer—reservoir of holes is considered in Ref. 6 for the Ug=1/2A8*(3x*>—2x+1)S (1)
structure where all layers are equally spaced. Jetel.
have considered the Hg-bearing cuprates up=c} on the
basis of the mod@I(see Figs. 4a and 4b Ug=A8*(x>—x+1/2)S, 2
Let us consider the results shown in Fig. 1. The cupola- T P S
shaped dependence of tiig(a) for phases witm=1-5 is whereA=wh"/2m*a”; Sis '_[he layer area. ]
clearly seen. It can be assumed that these five first Hg-based The Madelung energy is the same for3 and 4:
cuprates have the same cupola-like shape ofTif{@) de- Uy=Bd&*(x>+1/d)S. ©)
pendence due to the nonstoichiometric oxygen, like there is a

reason for their structure identity. The implanting of an ad- .
ditional (CaCu@)-layer in the unit cell leads to contraction ers;l—the dlstanc.e betwgen thg layer Hok Qjapq th.e. near-
est CuQ plane;e is the dielectric constant. Minimizing the

of layer parameters and to a stronger interaction in thezcuototal eneray with respect towe et

plane. For phases with low number of layers in the unit cell for n:g:)g/ P 9

the change ofT; takes place in a rather extended range of

a-values converging at larger. x=A/(3A+2B) (4)
The last three phases show nearly the samvalues in : .

their overdoped states in contrast with the two first of them gn?hthle concentration of the charge carridfe holes

(Fig. 1). The value ofT,, for phases Hg-1223, Hg-1234, and Nn) in the layer

Hg-1245 appears to be very different at the samnerhe ni=46x andnd=48(1—x)/2.

T.(a) cupolas go down when changes from 3 to 5. More-

over, the left part of thes@ (a) curves corresponding to Forn=4

overdoped states merge to a common curve wherd e x=A/2(A+B) (5)

go down from a maximum value 135 K for=3 to almost

90 K. The cupolas narrow down with increasing mostly _ .

because of their right sides. In case oh=5 one more inner layer exists—thglayer

Accumulating the experimental results we note the fol-and _two -var|at|onal parameters ShOU|d. be put into
lowing peculiarities: consideration—x, and x; representing two kinds of inner

1) Critical temperature goes down both in underdopeolay
and overdoped states showing a cupola-shdpéd) depen-

and forn=4

Here B=mre?/ed; d is the distance between Cyay-

andnj,= 8x/2 (see Fig. 4

ers.
That is: nj,(5)= 8xo—(layer i,) and ni(3,4)= 6x,/2
(two identical layers ).

dence;

2) The overdoped parts of tHE,(a) curves merge to a In the outer layers
common curve ah=3, 4, and 5; Np=68/2(1—Xq— X1) = 6X,/2,

3) The values of 7™ most likely continue to fall off at _
n>5: wherex,=(1—Xo—X;) (see Fig. 4¢

4) The pressure derivativedT'*/dp)(n) shows a non- Then for the band and Madelung energy we get
mogofonic behavior that can be described inside the RWB = As2(1/2— xy— X, + 3/ + X2+ XoX1) S, (6)
model.

All these peculiarities should be connected with some Uy =B&%(2x3+ 2xox, + x5+1/d)S. (7)

features of the crystal structure of the layered cuprates under

consideration. The principal one of these is the fact that the

holes cannot reach the sole inner Gu@yer in case of the x,=A?/(5A%+ 10AB+4B?), (8

5th phase 1t=5) and hence in case of phases with 5. B ) ) ) )
We have carried out a calculation of the hole density inX1= (2A"+6AB+4B)A/(A+2B)(5A%+ 10AB+4B")

different layers similar to that of Ref. 6, generalizing the 2Xo(A+ 3B+ 2B%/A)

latter to the existence of third kind of Cyayer in the unit = >2Xg. 9)

Minimization of total energy gives

cell of the system HgB£a,Cus0,, and taking into account (A+28B)
hole reservoir distance. The main goal of the calculation waghus
to find out the hole densities for the 5th phase. This phase %ol 25 X112 %o

should have two kinds of inner layefsee Fig. 4t and the
modef should be appropriate. We think as well that the ion ~ Our assumption that holes do not reach the inner layer
modef describes correctly the phase Hg-1223 having agets a quantitative confirmation.

maximum T, within the entire Hg-cuprates seriésBoth Considering the experimental and calculated results we
models Ref. 6 and Ref. 8 give the same expressions for theonclude that the phase Hg-1223 is optimal for the High
band energy as a function a&ffor the phases Hg-1223 and For this phase only the hole distribution between the CuO
Hg-1234 and different ones for the Madelung energy. Thdayers is nearly uniforri.

latter is of no importance for our problem. Apparently this uniformity leads to the highedt,
Our calculation is based on the moeFor the band =135K within all layered HTSC. The inner layers of phases
energy we get with n=4 and 5 contain much less carriers than the outer

forn=3 ones. For the phase with=5 we find out that the inneir,
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layer contains a few of the carriers and all of them are congetting the results presented in Fig. 1, to E. V. Antipov for
centrated in the outer layers. The distance between the out&uitful discussion, and to E. L. Nagaev for his help in cal-
layers increases with and that decreases the interaction be-culation of hole densities for the phases Hg-1223, Hg-1234,
tween layers. Thus, thé&.'s fall off due to both the hole and Hg-1245.
density decrease and the interaction weakening. There are This research was supported by the State HTSC Program
experimental data on tHE"™ measured up ta=8° In spite and by RFBR, Grant 96045 and Grant 96-02-16305.
of a rather large spread the decreasd jrwith n is evident.

The real absence of holes in the inner layer of the phase
Hg-1245 causes the disagreement between experimental va[E-mail: itskev@ns.hppi.troitsk.ru
ues of T7'®™ got for largen and calculated ones in the frames
of RWB model(see Fig. 2 The latter proposes a uniform
carrier distribution on the CuQayers. . ) ) )
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LOW-TEMPERATURE MAGNETISM

Spectra of coupled magnetoelastic waves of a biaxial strongly anisotropic ferromagnet
with biquadratic interaction
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(Submitted October 13, 1998; revised February 23, 1999
Fiz. Nizk. Temp.25, 690-698(July 1999

The spectra of coupled magnetoelastic waves in a biaxial ferromagnet with biquadratic

interaction are investigated. The phase diagrams of the system under investigation are constructed
as functions of biquadratic exchange. It is shown that for a strong Heisenberg exchange
(exceeding the biquadratic interactjpphase transitions in the system occur only through a
decrease in the magnitude of the magnetization vector. For a strong biquadratic exchange
(exceeding the Heisenberg interacjioarientational phase transitions are possible, which

are reduced to a reorientation of the principal axis of the tensor of quadrupole magnetic moments.
© 1999 American Institute of Physid$1063-777X99)00707-(

1. Spectral and thermodynamic properties of magnetsnaterial constant§OA constants as well as the constants of
with a more complex interaction between magnetic ions thameisenberg and biquadratic exchangee possible in such
the Heisenberg exchange have recently become an object systems. Although the OA and ME interaction have the same
intense investigatioh:® This interest is dictated primarily by ~origin, the influence of ME interaction of the spectral prop-
the synthesis and experimental investigations of magnets ierties of non-Heisenberg magnets is studied insufficiently.
which the magnetic ordering temperatures are quite low. The In this communication, we consider the realization of
Heisenberg interaction in such systems with the §#il of  coupled ME waves in a biaxial ferromagnet with biquadratic
a magnetic ion can be comparable with or even weaker thagxchange. The spectra of the system are studied in zero mag-
the interaction described by higher-order invariants. Magnetsetic field, i.e., the spectral properties of the magnet are ana-
possessing such properties include, for example, rare-eartyized in the vicinity of phase transitiondT) in material
intermetallides TmGd? Tmzn? and some other com- constants.
pounds. 2. The system under investigation has the form of a fer-

The role of carriers of magnetism in non-Heisenbergromagnetic crystal with biaxial OA and biquadratic ex-
magnets is often played by rare-earth iofBm®" and change. The Hamiltonian of such a crystal can be written in
Ge*™).! The existence of a nonfrozen orbital angular momenthe form
tum and spin-orbit coupling in such systems leads to large 1
values of the one-ion amsot.rop(gDA). constant, whlch can H=— —E [1(N=n")S,Sy +K(N—n")($,Sy) %
compete with the exchange interaction constant. This special 2.7
role of OA leads to the emergence of peculiguurely
guantum-mechanicglproperties of magnets, such as the —BOE {3(S1)2—S(S+ 1)}_322 E{(S;)z

. . 2 n 2

emergence of phases with a tensor order parameter, n n 2
quadrupolgQ) phases. These effects are studied in detail for

. . - . o A+
Heisenberg magnets with OA possessing different symme- +(S;)2}+v2 5:15{1Uij(n)+J' dr[
tries (see, for example, the review by Loktev and n 2
Ostrovskif). In such systems, phase transitions occur with a
simultaneous change in the modulus of magnetization vector
and its rotation. The inclusion of the magnetoelashtE)
interaction is known to result in a radical change in the spec- X (Uyxlxy+ UyyUzz+ uxxuzzﬁ ; @
tral properties in the vicinity of orientational phase transi-
tions. To be more precise, the phonon excitation branch bexhereS; are spin operators at the sitde=+,—,2), I(n
comes a soft mode, and the magnon spectrum acquires a MEn’)>0 is the Heisenberg exchange constat(n—n’)
gap™® >0 the biquadratic exchange constéB#,andB3 are the OA

A similar situation also takes place for more complexconstants,v is the ME coupling constanty;(n) are the
moduli, e.g., biaxial ferromagnets with biquadratic exchangestrain tensor components, akdand » elastic moduli.
interaction'* However, Q phases can be realized in such It is proved in Refs. 12 and 13 that in the general case,
models in zero magnetic field alSa.e., phase transitions in Hamiltonian (1) must be written in the rotational-invariant

n
(U3

2 2 2 2 2
Uy Uz + (Ul U, Uy, A

1063-777X/99/25(7)/7/$15.00 513 © 1999 American Institute of Physics
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form. Among other things, the inclusion of rotational invari- ywhere X;’;"'MEWIn(M W (M)| is  the Hubbard
ance leads to a new mechanism of ME coupling, which issperatoff®* HM=xMM is the diagonal Hubbard operator,
directly associated with OA. For bulk samples, this is manithe indexM assumes the values, 0, and+, « is the root

fested only in the renormalization of coefficients in the fre-yector, andy, (M) are the eigenfunctions of the operatar
quency spectrum of ME waves and some material

constantg? E\éen the presence of a strong OA leads to the ~ ¥n(+)=cos8|+)+sin6|0);
same eff_ect_%_. The inclusion of rotatpnal invariance be- Yn(0)=—sing|+)+cosh|0);  wn(—)=|-). (4)
comes significant, for example, for thin magnetic films or
wires, or when we take into account mechanical boundaryiere,[=)=(1~/2)(|1)£|-1)), |0), [1), |- 1) are the eigen-
conditionst®*’ For this reason, bulk samples are investigatedfunctions of the operato#’, and
here without taking into account rotational invariance. 3B0_ B2\ 12

In order to simplify calculations, we shall consider a  gjnpg= M) ;
system with spinS=1. However, the computational algo- 2X0
rithm proposed by us is also valid f&> 1.

Without any loss of generality, we can assume that qqp= 2Hy .
B§>0 since forB§< 0, after a rotation of the reference frame [2x0(x0— 3Eg—§§>]1’2’
about thez-axis through an angler/2 we would obtain
H?miltoznian(l) in which the following substitution is made: x5=H2+(3BJ+B3)2. (5
BZ—>|BZ|.

The OA and ME interactions can be taken into accouné For a magnet witrS=1, the general form of the wave

exactly by using the Hubbard operators technique. These o L-mCt'.OnSM) was es_tabhshed in Refs. 18 and 19.

erators are constructed on the basis of one-ion states defined S|r_1ce thePy q) in (3.) have a cumbersome form, we do
by the one-ion Hamiltonian including the self-consistent fieIant wnte_ these EXpressions hdsee .REf‘ 11. .

effects. In the general case, apart from the molecular field Solvmg the one-ion problem with I_-|a_m|Iton|§(|3),_we
associated the magnetic moment ordering, additional mo(-)btaln the energy levels for a magnetic ion taking into ac-

lecular fields determined by quadrupole magnetic momentgount the ME interactiortin the first nonvanishing approxi-

are induced in the magnet under investigafioh. mation in ).

Separating in the exchange component(in the self- NB%—E% u(0)+u(zg) Y
consistent field S*) associated with magnetic moment order- E,.= > +v|u@+ WT — 5
ing and the additional fieldgb (p=0,2) determined by the
qguadrupole magnetic moments, we obtain the following ex- gg_gg u(0)+u(zg> Y
pression for the one-site Hamiltonidt,(n): Ep=—F—+7 ul®)+ WT +5i

_ B0A0 _HB2A2 i Qi
Ho(n)= _HxS;_Bzozn_BZOZn"'VSIw%Uij(n), i) E,=E%—§g+ V(uﬁ)_l_u(zg));

where
) X*={xo— v(uy —ui)cos 26}°+ v*(ufy)
HX:% l(n—n")=5K(n=n") |(S); +u§2>)2sin220+4y2u<x‘;>2. (6)
1 Spontaneous deformatiouﬁo) are determined from the
B0=B%+ =S K(n—n")gS: condition of the minimum density of free enerdy=F,
272 6%‘ ( )Gzn —TInZ, where
- 1 Aty 2 5
B§:B§+§Z K(n—n")g5,; Fo= 2 > Uij“‘ﬂgzj uij(n)+)\; UijUim
n' I#m
Uon=(O0%n);  G3,=(03%,); is the density of the elastic energy of the system and
E

1 — Z= exp( -

05,=3(5)?-2; 03,=5{(S7)%+(S))?}. s T

It was proved by Val'kovet al® and confirmed by the Is the partition function.

. In the limit of low temperature§T<T, T, is the Curie
subsequent analysis that nonzero values of average values of (0) : :
P . temperaturg u;;’ have the simplest form and are defined by
other operator®,, (t=xy,Xzyz) are not observed. J

Hamiltonian (2) expressed in terms of Hubbard opera- the formulas

tors constrgcted on eigenfunctions of the operator Lo _ v(N+7) _ o_ v(p—N\) sir? 6
L=—H,S'—B30J,—B303, assumes the form X p(gt3N)T Y p(p+3N) ’
(7—N\)
Ho(n)= PyHY+ S P Xat, 3 O DY 026 uP=0, i#j.
o(Nn) ; % mHn ; 3 uss 7](7]+3)\)c0§0, up’=0, i#] (6a)
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. It can pe easily ;een that.HamiItoniéﬁj is nondiagonal Tpn(+)=cos§¢n(+)+sin5¢n(0);
in the basis of the eigenfunctions of the operdtoin order _ .
to diagonalize this Hamiltonian, we introduce new Hubbard ~ #na(0)= —Sindy(+)+c0S,(0);

operators YM M=|7.(M"))(¥#,(M)| constructed on the To(=)=un(—), @

eigenfunctionsj,(M) of Hamiltonian(3): where

v(uyy —uy))sin 26

{[x—xo— v(u) —ulY)cos 2012+ v?(ull) —ul))? sir? 26} 12

C0So=

The relation between the spin operators and “new” Hubbard 2w, (K)
operators has the form D\ (k,wp)= D=k
n A

+ _ v+t 00\ cin 97 +0 0+ Y
Sy =(Yq "= YR)sin 26+ (Yy O+ YT )cos B is the Green'’s function of a free-polarized phonon with the

F (Y- =Y )sinG+ (Y- °— Y% )cos:; dispersion relationw, (k)=c,k (c, is the velocity of the
: " " " \-polarized sound The eight-dimensional vectar(«) has
S =(ShH*; SE=(YI T +Y: T)cosh— (YO~ the following components:
n ! n n n n
Y, )sinG; =0+, ®) c(a)={yh(@),yi(@)y1 (— @) va(@),ys(),
We write the components of the strain tensor in the form Xﬁ*(—a),ﬁ(a),ﬁ*(—a)}

uj=uP+ul?, whereu are spontaneous deformations

defined by formulag6a), a”d“i(il_) the dynamic componentof 5 the 8<8 matrix A, splits into the direct sum of two
the strain tensor, which describes vibrations of crystal latticgy,atrices:

sites. Having quantized the dynamic componeﬁﬁ in the
standard mannéf,we obtain from Hamiltoniar{3) the fol-
lowing Hamiltonian describing the transformation of mag-
nons into phonons and the inverse transformation:

A —AB) L AG) .
Ay =A% oA

nn’ *

1 1 0 0
~ = va A® =!1(n—n")— ZK(n—n’ } 0 0 12|;
Htr=§n) %} PMYQM; Pyl 9) = 1 )= 5K ) 0o 12 0
Here 1.0 0 0 O
~ 1 Kin-nn| 0@ © L2 0 0
Py =1 2 (BratbE) Tk N); Ap=——F—|0 12 0 0 O (12)
’ 0O 0 0 o0 12
bfk,x(bm) are the creation(annihilation operators for 0O 0 0 12 O

phonons with polarizatiom,Tr':”(“)(k,A) transformation am-
plitudes, andN is the number of sites in the crystal lattice. The functionsy!™")(«) are determined from the relation
3. Defining Green’s function in the standard manner, i.e. between the spin operators and Hubbard operators.
The inclusion of the biquadratic interaction is formally
G*'(n,7n’,7')= —('T'?ﬁ(ﬂ?ﬁ,’(f))_ (100  manifested in the increase in the dimensions of the vectors
c(e) and the matrixA,,,, as compared to the Heisenberg
exchange. The eight-dimensionality of the vectofa) is
due to the fact that the number of linearly independent op-
1 erators for the biquadratic exchange is five, while in the pres-
G (K, wp) =3 (K, wp) — > 2 (k,wp) ence of biquadratic and Heisenberg interacfidve structure

we obtain the following equation of the Larkin type for this
functiont™:

of the latter is determined by three independent spin opera-

~ ’ i . A . .
x{c(—ap),Ak)c(ay)}G*2* (k,w,) tors Sn), we ml_Jst use the eight-dimensional b_aS|s.
This equation can be solved from the split dependence
+ 291K, wn) T~ *2(k,N) Dy (K, 0p) on . Considering that the component irreducible in the Lar-
, kin sense in the mean-field approximation has the form
XT(—K,w,) G2 (k,w,),

where 39 =5, b(@)GE(wy);  b(a)=(aY),



516 Low Temp. Phys. 25 (7), July 1999 Mitsa et al.

whereG3(w,) =[iw,+ (a-E)] ! is the zero-order Green's
function, we obtain the dispersion equation for coupled ME
waves:

deﬂé”"’X”H:O, |,J=1,2,3,,8, (12)
where

Xij=Ggb(a)cjj(a)

+ B2k, AT~ 4K, GE(wn)b(a)

XTA(—k,\)GE(wn)b(B)cij(a,B);

0 , Di(k,wp) . FIG. 1. Phase diagram of a biaxial FM fo§>K,. Dashed lines are PT
B (kA A7) = 1—Q, /D, (k,w,) ’ lines without ME interaction, solid lines are PT lines taking into account ME
MIEAL En interaction. At pointC, the PT lines @-FM,-phase and Q-FM,-phase
Q=T — k,)\)Gg(wn)b(a)Tfa(k,)\'); average. The PT line L FM,-phase passes through poft The dot-and-
dash line passing through the Edhase and poinD; the average value of
Cij(avﬂ) — aik(a:ﬁ)Akj : aik(avﬁ) — Ci(a)Ck( _:8) magnetic moment is equal to unity.

It should be noted that Eq12) is valid for arbitrary
temperaturesgup to the Curie temperaturearbitrary values

2 _ 2
of OA constants, and arbitrary relations betwégrandK. w3(K) = w7 (k)
\(/_\Fe:_ltw;\ll confine our analysis to the case of low temperatures WX (K)[Es_+21(k)—K(K)]
<le¢). —ao > :
4. Let us analyze Eq.12) for the case when the Heisen- @7 (K = [Es - +KIOJE - +21(KK(K)]
berg exchange constant exceeds the biquadratic exchange (15b)

constant [(>K,), and the wave vectdklly. In such a ge-

. It should be noted that only the amplitudes of transfor-
ometry, nonzero components of the unit vector of phonon__.. o . .
R TR mations T*4(k,7)= —T*3(k,7) have nonzero values in the
polarization areg/ ,e’ e/ .

. case under investigation, i.e., oniypolarized phonons inter-
It was proved by Val'kowt al® that in the system under 9 P P

investigation (in the absence of the ME interactjofiour act mtg tgilrggggﬁgﬁlz%;) Sv>\//set?1r2\./e introduced the follow-
types of magnetic phases can exist, two of which are chari-ng nota(tqio.n'E _E —E, — _2B2-Ky—ay: ap= 17,
acterized by the vector order parameteM, for (S)liz and (0 —c.k i t+h_e S gctrur_n of o nzonin?eragt,i Oolarize’d
FM, for (S)IIx), and the other two by the tensor order pa- wﬁ 7 qc2= /p2 i th f hmjp locity of
rameter(Q, and Q). p ongn, andcZ=»/(2m) is the square of the velocity o

In the case of low temperatureB,, is the lowermost SOUT,[ é:an easily be seen frori5a that the quasimagnon
energy level, and hence we can confine ourselves only to thgpectrum hasSItr):e for?n quasimag
inclusion of this level in subsequent calculations. It should
be noted that in contrast to the situation analyzed eéflier  w,(k)=\(2B2+ag+ yk?)(B2—lo+Ko+ay), (163
ngto?ar:?tiﬁczfg Ol;y ;c selr:grls)r/ floer\r/rélgf i;heokgsAersggr?X ?ﬁ ewhiIe the spectrum of-polarized quasiphonons is defined by

" formula (15b) and has the form
present case upon a transition to Q phases.

Let us analyze Eq(12) for the @Q phase(near the 5 5
Q,—FM, and Q—FM, phase transition lingsand for the Q w5(K) = w7
phase(near the @Q—FM, line). ) ] ] . o

In the Q phase, the dispersion equatiti®) splits into ¥yherey= RoKo, Rg being the radius of biquadratic interac-

a
R ) (16b)
lo—Kp

two equations on. . i .
Expression(16a defines the PT line Q-FM,-phase
{(1+ %10 (14 2Xs55) — 2X15Xs1} (Fig. 1)
X{(1+ 2X22)(l+2X77)_4X27X72}=0 (13) Bgzlo— KO_aOI (17)
We consider the first equation which is displaced by, as compared to the case when the
ME interaction is abseritThe magnon branch in this case
1+X19)(1+ 2Xg5) — 2X =0. 14
{4 ) ~ 2X1Xs1) a4 plays the role of a soft mode, and the PT occurs along this
whose solution has the form excitation branch. It follows fronG16b) that the quasiphonon
2010\ — n n _ branch weakly interacts with the magnon subsystem, which
01K =[Es -+ KIOIE, - +21 (k) =K(K)] is manifested only in a slight renormalization of the velocity
02 (K)[E4_+21(k)—K(k)] of sound:
+a ;
%w2(k)—[E, _+K(K)[E,_+21(k)—K(k)] “62—02(1— ag
(159 T lo—Ko
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Besides, the second equation
{(l+ 2X22)(1+ 2X77) - 4X27X72} = 0 (18)
in the vicinity of the PT line @—FM,-phase describes the

high-frequency magnon branch which does not interact with
the elastic subsystem. However, this equation becomes deci- ,2(k)= w?(k)
sive in the behavior of the system in the vicinity of the PT

line Q;—FM,-phase.
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and for B3<yk?<2B3+a, we obtain (k)
= w?(k) yk?/ (2B5+ ay).
On the lineB5=—3B%+2(l,—K,), the quasiphonon

spectrum can be presented in the form
yk?+3BJ+ B3
yk?+3B5+B5+a,’

while for 3B+ B3< yk?<3BJ+B3+a, we have w?(k)

In this case, only the amplitudes of transformations:wtz(k)ykzl(3Bg+ B2+ay).

T2(k,t)=—T*(k,7) have nonzero values.
The solutions of Eq(18) have the form

©2(K)=[E 4o+ K(K)I[E o+ 21 (k) —K(K)]

.\ Wl (K)[E ot 21 (k) ~K(K)] _
H0Z(K) ~[Eot KN TE=o+ 21 (K)—K(K)]’

(193

w5(K)= wf(K)
- wf(K)[E+o+21(k)—K(K)]
Y0Z(K)—[E ot K(KT[E+ ot 21 (K)—K(K)]"
(19b)

whereE , ,=E, —Eq=—3BY—B5—Ko—ay; w(k)=ck is
the spectrum of a-polarized phonon.
Expression193 defines the magnon spectrum

wl(k)
=/(3BY+B3+ag+ yk?)[3BS+B5—2(1,—K,) +ag],

and(19b) defines the spectrum ofpolarized phonons

Qo
lo—Ko

w%(k)=wt2( 1-

In the quasimagnon spectrum, the above-mentioned PT
lines acquire gaps defined as

o(0)=vag(lg—Ko+ay);

w(0)=ao[2(1o—Ko) +ao].

A similar analysis of the dispersion equati@i®) in the
Q,-phase leads to the following result.

The nonzero transformation amplitudes aréz(k,t)
=—T%(k,t), i.e., onlyt-polarized phonons interact with the
magnetic subsystem.

The spectrum of coupled ME waves in thg-ghase has
the form

@3(K)=[E1o+K(K)I[E4o+21 (k) —K(K)]

Wl (K)[E o +21(k)—K(K)] _
(K) = [E o+ K(K)I[E4ot21 (k) —K(K)]’

(203

+ag—
Wy

w3(k)=w?(k)

s 0 (K[E+o+21 (k) —K(K)]
Y0 ()~ [Esot K(K[E o+ 21 (k) —K(K)]’
(20b)

These expressions show that the elastic and magnetithereE , o=E., —Eq=3B3+B3—K,—ay.

subsystems interact weakly. This interaction leads to a slight

decrease in the velocity dfpolarized sound and to a dis-
placement of the @-FM,-phase PT line by, (relative to
the case when ME coupling is absyntB3=—3B3+2(l,
—Kg)—ag.

In the vicinity of the Q—FM,-phase PT line, Eq(14)

describes the high-frequency branch that does not interact

with the elastic subsystem.

It can easily be seen that 90 and cog)=1 for the PT
Q:—FM,-phase and the {@-FM,-phase, and hence the
ground state realized on these PT lines is the sidt¢)
=(1M2)(|1)+|—1)) in accordance witlil). The realization
of such a ground state indicates that thepQase is formed
as a result of a purely quantum effect of “spin
contraction.”®?2In this case{S) decreases in magnitude at
each site.

In addition, an analysis of formulad5a and (15b) on
the lineB3=1,—K,, i.e., the line of the PT under investiga-
tion without the ME interaction,shows that the quasiphonon
spectrum assumes the form

yk2+ZB§
2 = ———
@ (k)= w3(k) yk?+2B5+a,’

An analysis of these expressions similar to that carried
out above shows that the magnetic and elastic subsystems
interact weakly. This interaction leads to a small renormal-
ization of the velocity of the-polarized sound

w%( k)= wtz

0
1‘2<IO—K0>)

and to a displacement of the PT ling-€FM,-phase bya,:
B3=—3BJ—2(l,—Ky)+a, as compared to the case when
the ME coupling is abserit.

In this phase, si#=1 and co®)=0, and hence the
ground state of the systemyg +)=|0). Thus, in contrast to
the Q-phase, the @ phase is realized in the standard
manne®'® Moreover, no peculiarities in the quasiphonon
spectrum, which take place in thg-Qhase, are observed in
the Q-phase on the lin@3=—3B5—2(1,—K) line.

Consequently, the PT FM Q,-phase cannot occur as a
reorientational PT, but is realized though a decrease in the
modulus of (S¥) as the PT lineB3=—3B3—2(lq—Ko)
+ag is approached.

The above analysis of the dispersion equatid® (for
Io>K;) makes it possible to construct the phase diagram of
a biaxial ferromagnet with biquadratic exchan@gg. 1).
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Solid lines on the diagram correspond to the inclusion of the It follows from (25) that the quasiphonon spectrum in
ME coupling, while the dashed lines correspond to the abthe vicinity of the line B%/(KO—IO)Z —SBgl(KO—IO) is
sence of ME coupling. The dot-and-dashline in the “softened” in the long-wave limit f/k’?<a,) and acquires
FM,-phase, we havéS‘)=1. As we move from this line to the form
the PT lines FM—Q, and FM,— Q,-phase{S*)—0, while
(S)=0 on these lines. However, it was proved above that
the mechanisms according to whi¢B*) tends to zero as
well as the ground states of the system for the PT under
investigation are different for transitions to thei-Qand  while the guasimagnon spectrum acquires the ME gap:
Q,-phases.

5. Let us now analyze the spectra of coupled ME waves ;. (0)= \aj[2(Ky— 1)+ ao].
in the case when the biquadratic interaction is stronger than
the Heisenberg exchangkyKo). As before, we shall con-  Thus, as we “move” in the @phase to the lineB2/(K,
sider the case of low temperatures and assume that the wavey )y = —3B%/(K,—1,), the role of the ME coupling in the
vectorklly. system becomes more significant, and the quasiphonon

According to (8), (S)=0 for Ko>1o, and hence only pranch is “softened” on this lindin the long-wave limit,
phases with tensor order parameté@sphasescan be real-  while the quasimagnon spectrum acquires an ME gap. Such
ized in the system. It was proved in Ref(iB the absence of 3 hehavior of the spectra indicates that an orientational PT in
the ME interactionthat in the Q and Q-phases that can be the material parameters occurs in the system.
realized in this case, the order parameters and the ways of A similar analysis of Eq(12) in the Q-phase makes it

realization are the same as in the case considered dbpve possible to determine the spectra of ME waves in this state:
>Kg, see Sec. 4 Let us analyze the spectra of coupled ME

2yk?

2 2
02K =ik g 2 (Ko—To) +agl’

waves in Fhese phases. o . 02(K)=[E o+ K(K)[Eo+21(k)—K(K)]
Equation(12) for the Q phase splits into two equations )

one of which describes the spectrum of high-frequency mag- agwi (K)[Eo+21(K)=K(k)]

'T'(r)]n brancr:jthat d:_)es not interact with the elastic subsystem. + wtz(k)—[E+0+ K(K)[E o+ 21(k)—K(k)]"

e second equation
(26)
(1+ 2X22)(1+2X77)_4X27X72:0 (21)
. w3(K) = w?(k)

gives the spectra of coupled ME waves. 2 t
Using the notation introduced above, we can write the agw?(K)[E 4o+ 21(k)—K(Kk)]

solutions of Eq(21) in the form 02K~ [E4 o+ K(K)[Eo+21(K)—K(K)]’
0I=[E.o+ K(I[Exo+ 21 (K)=K(K)] (27)

Z(K)[Eo+21(k)—K(k
+— 300 (K[E+o+ 21 (k) —K(K)] , whereE_ ,=E, — Eo=3BJ+B2—a,—K,.
0{(K) = [E4o+t K(K)(Esot21(K)—K(K)] Expression(27) for the quasiphonon spectrum shows
(22)  that for B5/(Ko—1o)=—3BY(Ko—1lo), the phonon branch
) ) in the Q-phase in the long-wave limityk?<a,) is “soft-
w5(K)=wi (k) ened,” i.e.,

- a00f(K)[E ; ot 21 (k) —K(K)]

WP (K) = [E o+ K(K)(E ot 21 (k) —K(K)]’ w5(K) = wf(k)

(23

2vk?
o[ 2(Ko—1lp) +ap]’

whereE , o=E. —Eo= _382_85_ Ko ao. while the quasimagnon spectrum acquires an ME gap:

Formula(22) determines the quasimagnon spectrum

w1(0)=ag[2(Ko— o) +a].

w1(K)
5 — — The obtained results indicate that the system experiences
= \(yk?+3B3+B5+ag)[3B5+ B +ag+2(Ko—1o)], an orientational PT Q-Q,-phase along the lind2/(K,
(24 —1g)=—3BY(Ko—1lo). In contrast to the case considered
and expressiof23) defines the spectrum d¢fpolarized qua- in Ref. 5(without ME interaction, the role of the soft mode
siphonons: is played by the quasiphonon branch and not by the magnon

branch. The phase diagram corresponding to this case in
shown in Fig. 2.
(yk2+3B9+B2)[3BI+B2+2(Ko—1o)] 6. Thus, in the case of a strong Heisenberg exchange
X(yk2+3Bg+B§+ao)[3Bg+B§+2(K0—|0)+ao]' interaction (o>Kg), the system can exist in the magnetic
phasegFM, and FM,) as well as in phases with tensor order
(25  parameters. Phase transitions in this case occur only through

w3(k) = w?(k)
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Macroscopic magnetoelastic domain structure of the defectless layered antiferromagnet of
CoCl-type with the “easy-plane” magnetic anisotropy is studied theoretically in the framework
of phenomenological approach. In assumption of mobile domain walls, the finite-size

effects are shown to result in the formation of a stable domain structure that changes reversibly
under the action of the external magnetic field and can be treated as equilibrium. It is

found that in antiferromagnets, whefia contrast to ferromagnetfong-range forces of magnetic
origin are absent, the domain structure and its collective behavior are governed by elasticity.
Field dependence of a domain structure, magnetostriction and low-frequency AFMR of poly- and
monodomain samples are calculated, the external magnetic field being directed perpendicular

to the main symmetry axis of the crystal. The results obtained are in qualitative agreement with the
available experimental data. ®999 American Institute of Physid$1063-777X99)00807-5

INTRODUCTION sufficient and there is an additional requirement necessary
for DS formation, namely, the account of the sample surface.
The origin of equilibrium domain structu®$) in anti-  The finite size effects bring about the appearance of the DS
ferromagnetid AFM) insulators is studied for a long timM€,  during ferromagnetic and ferroelastic phase transitions as
but the question is still obscure, despite a well developedvell as the magneto-elastic interactions.
theory for the close vicinity of the magnetic 1-st order phase  These effects should play an important role in the AFM,
transitiong[in particular, for the field-induced spin-flop tran- and particularly, in dihaloids of transition metals, where the
sitions in the easy-axis antiferromagnétse the reviewand antiferromagnetic domains bear a magnetostrictive character
recent papérwhere this theory has been generalized for theand are of rather small size. In fact, the width of the antifer-
case of the hexagonal AFM with the easy-plane magneticomagnetic domain wall can be evaluated a%
anisotropy. The DS of the pure antiferromagnets is usually ~a(2Hg/H)Y?>~a(2Hg /Hgf) ~ 15—2@, wherea is inter-
treated as the result of structural imperfectigsisch as dis- atomic distanceliz, H, andHg; are the exchange field, the
locations, twins, impurities, efcthat cause the so-called interplane anisotropy field and the spin-flop field, corre-
sprout AFM domaingincluding 180° domains Sometimes,  spondingly(for CoCl, Hg=2 kO€ and spin-flip field M
the origin of the DS is attributed to the entropy factor, which =32 k0Oe@.” Small thickness and low energy of the domain
decreases the free energy of the sample in the vicinity of thevalls (2.10 *mJ/nf, compared with the typical value 4
critical temperature in the case of spatially inhomogeneousnJ/n? for a ferromagnetgive grounds for expecting the
ordering. small size of AFM domains and assume that the surface
Both mentioned and some other possibilities were anaproperties of the sample do strongly depend upon the aver-
lyzed in a recent papewhere numerous experimental evi- age strain.
dences of the equilibriurfalmost insensitive to growth con- It should be mentioned that an equilibrium DS is ob-
ditions) domain structure in dihaloids of transition metals served in the martensites in the course of a thermoelastic
MX, (M=Mn, Co, Ni:X=ClI, Br) were given. According to phase transition. It arises from the condition of strain com-
observations, the domain structure changes almost reversibpatibility of martensitic and austenitic phases. The peculiar
under the action of the external magnetic field; it graduallyfeature of this structure is that the domdiwin) size is very
disappears when the field is switched on and recovers after mall (—1000 A see Ref. Band compatibility conditions
is switched off. Such a behavior evidently points to the equitelate only with the average-strain.
librium nature of the DS observed in these compoutds. The present paper is aimed at the theoretical investiga-
The authordalso suggested that magnetoelastic interaction of the macroscopic magnetoelastic domain structure of
tions play a dominant role in formation of the equilibrium the defectless easy-plane layered AFM of Ce@pe with
DS in the layered easy-plane antiferromagnets othe account of finite-sizésurface effects. In the framework
CoCl,-type. However, the only condition pointed out is not of the phenomenological model, we calculate the domain

1063-777X/99/25(7)/7/$15.00 520 © 1999 American Institute of Physics
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y qualitatively insignificant for the present problem. The effec-
ﬁ tive magnetostrictive constanis)), and\{" originate from
the relativistic(dipole-dipole or spin-orbjtinteractions and,
as was shown in Ref. 10, can essentially depend upon the
concrete electronic and crystal structure of a compound.
Herein we consider the model in which the surface ef-
fects are accounted through the surface tension. The shape-
dependent part of the surface energy for the simplest case of
disk with radiusR and thicknes# is given by the expression

7Rh 5 )
Fsuf= o Usuri[<uxx_ uyy> + 4<ny> 1, (2)

where o4, is the surface tension coefficient for tli200)
and (010 faces, notior{...) means the averaging over the

FIG. 1. Orientation ofl vectors inside the domainsi, is the external ~Sample volume:
magnetic field.

1
(Uij>:mf uj;dv )
structure, sample magnetostriction and AFMR frequency in o o
the presence of an external magnetic field directed perper@d we have neglected the contribution from the disc sides

dicular to the main symmetry axis of the crystal. (00D (which is appropriate ih<R). In the expressioifl),
(2) we have neglected the magnetostatic energy which con-
1. Model tribution, as will be shown below, is much smaller than that

from the surface energy.

We consider a thin plate of a layered easy-plane rhom-  For small external fieldsH,<JM, the ferromagnetic
bohedral antiferromagnet of Colype. The crystal symme- momentm<1 can easily be excluded frofi). So, neglect-
try group ingd. The plate is oriented perpendicular to the ing B®<J,
3-rd order crystal axis, labeled asx-axis is chosen along L2
the 2nd order in-plane symmetry axis. Below theeNem- 2 0.
perature, the magnetic structure of the crystal can be de- FV°|:J dV[ _§/3(LG)M§COS &P—ESInz(cp—‘I’)
scribed with two orthogonal dimensionless vectors: ferro-

2y (I .
magnetic,m, and antiferromagneticl, m?+12=1. In the + AMEN (U= Uy, ) COS 20+ U, Sin 2¢]
absence of externalm=0 and | has 3 equivalent 1
orientationd in the basis planddirected along three 2nd +§Cee[(uxx— uyy)2+ 4U§y] ) (4

order symmetry axgs In the in-plane external magnetic

field, the magnetic structure is described by two parametersipe |ocal orientation of the vectdrcan then be found by
the modulusm of the ferromagnetic vector, and the angle  ninimization of the functional

between thé andx-axes, neglecting small deflections of the

magnetic vectors from the basis plafsee Fig. 1 The bulk F=Fyot+ Fsur )

free energy of the crystal in this case can be written in the . . N
simplest form(see, e.g., Ref.)9 with respect top(r), u(r) functions. The corresponding in

tegral equations have the form:

2
FVOFJ dv(ZJM§m2+2,8(2)M§mf——,B(f)MS aMa). AMANY) oot
3 Uyy— Uyy=—————C€0S2p+ ———————(C0S 2p)
] Cos Ce6( CosR+ T'surd)
X (1—m?)3 cos 6p+4MI (1 —m?)+ A "Wm?] 2y () 2y (1) ,
U= 4MO)\mesin2 n AMOA 110 surt (sin 2¢)
X Co6 ¢ Cee(CosR+ Tsurt) ¢ (6)

] 1
X[ (Uyx—Uyy)COS 2p+ 2Uyy SiN 2¢ ] + 5066

. ' %Hﬁfsin 6¢=sin 2p[ H3 cos 2F + 2HZ ,(cos 2p)]
X [(Uxx— uyy) +4uxy]_2MOH0m sin(eg—V), (1)
2 i 2 B
where the constanf describes the interplanar AFM ex- cos 2p[Hosin 2V + 2Hip(sin 2¢) 1. (7)
change; 8®, B are the effective anisotropy constants; Here we have introduced the characteristic fields convenient
2M, is the saturation magnetization;,, are the magneto- for further calculationsHg¢=2M+/6 (%) J—spin-flop field,
strictive constantst;, (i,k=x,y) are the strain tensor com- and HMD=4Mg)\§Tl])J(ZJ0'5urf)/CGG(C66R+ oar) 1¥2— the
ponents;cgg is the elastic modulus, principal for the case field of monodomenization.
under consideration, and the external magnetic field is de- Equation(7) evidently shows that the surface produces
fined asHo=|Hy|, tanW=Ho, /Hoy. In the expressiolil) we  the same effect as an external magnetic field, the effective
have omitted the isotropic part of strain tensog,+uy,, internal field being defined as
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HZi= VHE+4H% 5((cos 20)2+ (sin 2¢)?) + 2H2HZ 5(cos A o — W¥))2 (8)
H3 sin 2W + 2H2, 5(sin 2¢)

tan 2V o= — > .
Hg cos 2V + 2H4, p(cos 2p)

Thus, it can be stressed that in the case of AFM it is theHy>H . can be found out from the equatioi®, (10) and
elastic strain that plays the role similar to the magneto-dipolé11) with j =2,3. In this case the internal effective field is no
interaction in ferromagnets. longer zero, but it is directed alongaxis (¥;=0)," so,

Note, that for infinite sampleR—)H,p—0 and ef- ¢,=—¢3=¢, and
fective field identically coincides with the external fiett));
for such a situation? s—W. 3Hup 1

Equation (7) has different solutions depending on the N
physical situation considered below.

1.1. Mobile domain wallsn this case the average strain H3—H2, 2
can follow the changes caused by an external magnetic field. +3———cos2¥| , (13
Up to a certain field valuetH,=H,., specified below, the sf
effect of the magnetic field is compensated by the average 1 H2 sin 2w
strains, so that the effective field inside the saniplg=0.° Erg== 1;L ) (14)
Equation (7) has three non-trivial solutiong;=0, ¢, 3 © 2 H2 5 sin 2¢

=+27/3, corresponding to 3 equivalent equilibrium orien- _ .
tations of thel vector, i.e., to three magnetoelastic domains!n pther words, n the two-domain structl_Jre thevectors
(as was already pointed out beforEvidently, each of them |nS|d_e the domams start to ro_tate and simultaneously the
is distorted orthorhombicalljin correspondence with Refs. fractions of Fhe_dlff(_arent domains change. T,h,e Process of
11 and 12, see formuld§)]. Such a distortion for easy-plane monodomenlzatlon is completed at.some C”tlcal. fieig
AFM was observed in Ref. 13. Moreover, magnetoelasticity HC_V,Vh'Ch can be, found from equatidd3) along with the
proves to be a crucial factor for the existence of an equilib-Condltlon ¢2=0 or in other words,
rium DS. _ _ _ H2 sin 20 =H2, ; sin 2¢. (15)

In neglecting the domain wall energy, one can find the
relative volume¢;(j=1,2,3) of each domain from the fol- For the caséV'=0 both domains 2 and 3 disappear simulta-

lowing equations, obtained frot®): neously at
2 2 —

H§cos 20 + 2H7y p(cos 2p) =0 C) Ho=Hac=HZ+2HZ, (16)

HE sin 20 + 2H7) 5 (sin 2¢) =0, (100 when all thel vectors achieve the direction perpendicular to
we take it into account that: f[he e>.(ternal field. Effective fie!ﬁlG) .of monodomenization

is defined both by the magnetic anisotrojolpe toHg;) and
h f ff Hup). For th i
(cos 2‘p>=§j: £ OS2, , EJ: £=1. (11) by the surface effedtdue toH,,p). For the symmetric case

V¥ = 7/6 monodomenization is completed ldy=H 1. when
The ultimat ion faf: | domains 1 and 2 disappear dnekctor in the third domain is
e ultimate expression faf; is aligned perpendicular to the external field. For the general

H2 case, 6XW< /6, critical field H.<H.<H,.; after the

§j=§ 1- Tocos A9 —W)|, j=1,23. (12)  process of monodomenization is finished, further change of
Hio ¢ angle can be calculated from the equation
Note, that in this cas€; are the thermodynamic variables as
well as strain components agl the equality of the chemical 3 Hgfsin 6= H% sin2(o—V). (17)

potentials(free energy densitigof different “phases”(do-

maing is satisfied automatically. _ _ The considered model gives rise to thermodynamically
According to(12), the volume fraction of the domains gqyilibrium domain structure at any magnetic field value.
depends upon the value of the external magnetic BRJdAt  Reqjly. the difference in free energy of the polydomain and

zero field,Hy=0, all three types are equally distributed, SO ,on0domain state calculated frofh) and (2) at the same
that the symmetry of the sample does not change after thg,iarnal field value

transition into the polydomain antiferromagnetic state. In
nonzero field the fraction of the most energetically “unfa-

vorable” domain(l vector lies closely to the direction of the Fpoly = Fmono= —~ 2]
magnetic field, say, domain 1 for<0¥ <=/6, see Fig. 1
diminishes. AtHo=H,.=H\p/cos 2¥)*? the domains of
the 1st type disappear. Further behavior of the system at

H: +£H2c032( V)
MD ™ 5 o ¢

<0 (18

1 2
+ EHSf(l—cos 6p)
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is nonpositive, which makes the polydomain state thermody-
namically preferable. So, in the model proposed the behavior
of the DS in the external magnetic field is absolutely revers-
ible.

1.2. Immobile domain wallsThe domain walls cannot
move freely, so, the ratio of the domains is fixed and only the
rotational processes take place inside the domains. Orienta-
tion of | vectors can be calculated from equatidi@s and
(11) with the given¢; values which are defined by techno-
logical factors. For small external field the equat{@hhas 3
solutions corresponding to different domains. Monodomeni-
zation of the sample is completed when all theectors are
aligned perpendicular to the external field direction.

For illustration let us consider the symmetrical case
¥ =0. If initially the domains have been produced by stray
field at random, the;=&,=£;=1/3 and
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FIG. 2. Field dependence of magnetostriction of polydomain crystal: solid

©1=0, ¢2=— 3= 0,

domain walls; points—experimental.

HZ o 1 H2 \?  H2|Y?
CoS 2p= ME—E 1+ MZD +3—§ (19
2Hsf Hsf Hsf

The field of monodomenizatioh ™™= (H2+ 2/3H2 ;)

we have taken

in this case is smaller than the corresponding value for the=Ho/2Hg, which is significant aH,<2Hg.
Field dependence of elongatioal(l), calculated from
formula (16)]. For arbitrary¥ the value of monodomeniza- (21) for CoChL with ¥'=0, Hq =2 kOe; H),p=3.3kOe,

case of mobile domain wallgH™™*<H, ., compare with

tion field can be much greater.

2Hg=32kOe,

MmN = —am2\ (W =36 MPa,

line—theoretical, mobile domain walls; dash line—theoretical, immobile

whereHg=JM,, is the exchange field. In the formu(al)
into account the dependentéH,)

Ces

After the magnetic field is removed, such a domain=34.7 GP4& is shown in Fig. 2. We have considered two
structure will not restore, at least, in principal, becalise cases: mobilgsolid curvg and immobile(dash curvg do-
vectors will tend to lie along the nearest easy axis, which fomain walls. Figure 3 shows the same dependences vs
general field orientation is the only one. So, once cycled irsquared magnetic field§3; the points correspond to experi-
the magnetic field, the sample becomes monodomain and theental datd. The difference between two theoretical curves

behavior of the DS in this case is absolutely irreversible.

is significant at low field value. In the case of mobile domain

In the real experiments, the behavior of the DS in anti-walls the theoretical dependencsolid curve is in good
ferromagnets of CoGltype are partly irreversible, so, we agreement with the experimental data. Thgp value was
can assume some intermediate case when most of the domdaken to fit the experimental slope(/[), vs H3 at H,
walls are mobile but some of them are pinned by the defects:3 kOe.
The behavior of magnetostriction as seen from formula

or different imperfections of a crystal and contribute to the
certain irreversibility mentioned and observed.

(21) and Fig. 2 is governed by two processes. At small field,

Ho<H <Hg, magnetostriction of the sample is changed
due to the process of monodomenization that influences the

2. Magnetostriction

In the experiments’ the magnetic field was arbitrarily
oriented in the easy plane of the crystal, and magnetostric-
tion was measured along and perpendicular to the field di-
rection. Corresponding macroscopic elongatioasd/l), and
(Al/l), can be calculated according to the general formula

(A/1)p= 20 ni{Udny,

wheren is a unit vector in the direction of measurement,
(uj) is the averaged strain tensor. Substitutiiginto (20)
and peglecting of isomorphous straim,{+u,,) one readily
obtains:

Ho |2
(A|) B (A|> - 4MSR[7\%)8+()\|('€2_7\§1)6)(2HE) }
I 1

| | C66R + Ogurf

(20

Magnetostriction, 10 3
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T
0.3F I A
! R
!
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I
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FIG. 3. Magnetostriction vs squared magnetic field in polydomain crystal:

solid line—theoretical, mobile domain walls: dash line—theoretical, immo-

X (cos A o—WV)), (21

bile domain walls; points—experimental.
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average cos 2{—¥) value (increasing section of the curve The low-frequency branch of AFMR fdf,<H,. can
in Fig. 2. After this process is finished, variation of be then calculated from the following equation
monodomain magnetostriction is defined only by an increase

2 2 2
of magnetization in the external magnetic fiéitecreasing w?=g? H2f+H2 1_J’ k?(|ay|“+ by )dk
section of the curve in Fig.)2It is seen from(21) that in the st ME k2— (0?/s?) '
monodomain state the slopal(l), vs HS depends upon the (24

differencex (™) — (). only, that must be considered as a phe-

_ whereH ye=8M2\") \JJ/cq. is a magnetostriction fields, ,
nomenological parameter. ME 0 "met™ 06 g B

b, are the Fourrier components of the functions sir2

and cos 2(r), correspondinglyf (|ay|2+|by|?)dk=1.

3. AFMR spectra The relation(24) shows that resonance frequency de-
Experimentally measured field dependence of the lowPends upon the average domain sizé-or macroscopic do-

frequency AFMR shows that below 5 kOe the resonancemains withd>\=s/(gHsy) characteristic value ok~1/d

frequency is approximately two times lower than the value<s/w and the last term i24) can be neglected. In this case

extrapolated from measurements at higher frequency. In thée domain can be treated as infinite, corresponding AFMR

interval Hy~5—7 kOe field dependence of AFMR is practi- frequency is

cally vertical and starting from 7 kOe it turns out to be in (=) _ o[22
agreement with high-frequency measurements. The charac- Qarvr=9VHS+ Hive (25

teristic field value coincides with the value of monodomeni-agnd we arrive to a standard situation with the “frozen’ lat-

zation fieldH. observed in magnetostriction experiments. tice, AFMR gap is defined by anisotropy and magnetoelas-

The observed peculiarity in the AFM spectra can be in-icity as well. In the opposite case with<\, the Fourrier
terpreted in the framework of the equilibrium magnetoelasticspectrum of functions singr) and cos 2(r) has two sig-
domain model developed above. Indeed, for the infinitenificant contributions withk=0 and k= /d. The corre-
samples the low AFMR frequency is contributed by the magsponding expression for AFMR frequency is
netic anisotropy field and magnetoelastic field as well, due to N
the fact, that the crystal lattice is “frozen.” On the other g?H2 cd?
hand, it was shown by Gann and Zhukbvhat for small Qarur=9 * T om2sZ
samples the lattice relaxes together with the antiferromag-
netic vectors, and then, the resonance frequency is defined
mainly by the local anisotropy field. X (|amal®+ (bl ?)

The similar effect of “unfreezing” of crystal lattice can

4,2

HoHme
4
MD

H2+

<QlEuR (26)

be achieved in the AFM with the magnetoelastic DS, if thewhere we have taken into account that
domain size is quite small. To catch the effect, let us con- 4

sider the in-plane oscillations of the magnetic moments to-  |a,|2+|by|2=(cos 2p)2+ (sin 2¢)2=

Ho

. . . ) ) 7
gether with acoustic waves in the polydomain sample with 4Hyp

mobile domain walls. Low-frequency AFMR can be found
on the basis of Lagrangian formalism with a Lagrangian
taken in a standard fordT:

So, in the magnetically inhomogeneous sample the crystal
lattice does follow the oscillations of the magnetic moments
and thus diminishes the magnetoelastic contribution to the
2 1 resonance frequendygee formula(26)]. This effect should
L:j dv( 5+ Epl'.lz) —Fyols (22 be more pronounced in Coglwhere magnetoelastic contri-
2Jg bution into AFMR spectrum is of the same order as an an-

whereg is gyromagnetic ratiop is a crystal densityy is a  isotropy one.

displacement vectoF,,, is given by formula(4). Corre- The field dependence of AFMR spectrum in Cp€an
sponding Euler—Lagrange equations have the form: be thus explained as follows. Suppose, at zero field the
, o o sample has a well developed DS with the average size
- . . . —7 .
o EHgsln Ap—W)+ gHgfsm 6p— 1692\ () d=<N\ (for CoChL A~10""m). The lattice then proves to be

\

wheres=(cgg/p

U, —s?

o2
Uy—s

partially “unfrozen” and frequency is defined mainly by an-
X IME[(Uyy— Uyy)Sin 2¢ —2U,, €0S 2] =0 isotropy field[see expressioli26)]. The external magnetic

) ) (1) xp2 field affects the AFMR frequency in two ways: through the
LA Uo— M meMa variation of average cosine and sine values and through the
X2 ay?| p increase of the average domain $ize(H,) [last term in
PNOIVE (26)]. As a result, the frequency grows smoothly with the
me'Y' 0
P

d cos 2p N dsin2¢p
ox ay

PG

dsin2¢p Jcos2p
+ R -
ax?  ay?

ax ay

_ field Hy. After the domain size achieves macroscopic value
" d~R>\, the lattice becomes frozen, and resonance fre-
(23) quency steeply jumps to the value corresponding to infinite

is the in-plane sound velocity and equi- homogeneous samp|éormula (25)]. Tentative behavior of

Uy

)1/2

librium ¢ value depends upon theandy coordinates. Equa- AFMR vs magnetic field calculated fro25) and(26) with
tions (23) describe the perturbations over inhomogeneoug =6, Hy;=2 kOe, Hyg=1.5kOe,Hyp=3.3kOe is shown
(polydomain state of the sample. in Fig. 4.
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120 field value, the effective internal magnetic field is compen-
sated due to the reassembling of the domains. The value of
e e e e e e e e — o critical field is defined by the geometry and size of the
sample. It is interesting and important that in AFM model
considered the long range interactions include no magnetic
component and are completely provided by elasticity.

The size of the domains can be calculated with the ac-
count of short-wavelength contribution to the surface energy
which compensates the increase of volume energy resulting
from the domain walls.

In our calculations we have not considered the magneto-
static effects and domain walls themselves. Demagnetization
factor influences the DS in the region of 1st or¢&pin-flop
90 L 1 ! phase transition which takes place in narrow interval of angle

0 1 2 3 4 5 V~0 (see Ref. 4 For arbitrary orientation of the external
Field  kOe magr_letic_ fie!d in the easy plane of _AFM the magnetostatic
' contribution is {Hy,p/2Hg) ~0.06<1 times smaller than the
FIG. 4. Theoretical field dependence of resonance AFMR frequencysurface energy and thus can be neglected.
(schemg solid line—polydomain sample; dash line—infinite homogeneous The account of domain walls is necessary for evaluation
sample. of the domain size that is out of scope of the present paper.
The structure of domain walls can be calculated in an anal-
ogy with general approachésee Ref. B by taking into ac-

Additional decrease of AFMR frequency in the polydo- count magnetic and elastic subsystems. It should be noted
main sample can also result from the damping of the domaiithat in the defect-free sample the interdomain boundary are
wall motion, stimulated by reassembling of the DS in theideally conjugated and no stresses appear because of com-
external magnetic fielé The ultimate value of AFMR fre- patibility conditions.

quency,f)A,:MR= \/QiFMR— 52, whereé is the damping co-
efficient, can be significantly lower thai{? .
It can be shown that the model of immobile domain
walls gives another form of spectrum which does not corre-<CONCLUSIONS
late with the experimental data.

-

—

(=}
i

Frequency, GHz
=

o

I

1. The domain structure of easy-plane AFM with degen-
erated orientation of antiferromagnetic vector can be treated
as equilibrium in the finite-size sample with the mobile do-
main walls. The effect originates from the magnetoelastic

Above we propose the model which naturally interpretsnature of the domains with the account of surface tension.
the antiferromagnetic domains in the easy-plane antiferro- 2. At zero magnetic field all types of the domains are
magnets as equilibrium. The model is based on the magnequally represented. The external magnetic field effects the
toelastic origin of the domains, supposition of mobile do-magnetic and elastic properties of the sample in two ways.
main walls and additional condition imposed on the averagét small field value variation of the domain structure gives
strain of the sample. For illustration we have considered theise to additional average strain field which compensates the
simplest example when the condition in question was relatedxternal magnetic field, the orientation of the magnetic mo-
with the surface tension of the sample which was the case ifnents inside domains being fixed. At some critical value,
the surface energy made a significant contribution into fredHy=H., the sample becomes monodomain and magnetic
energy of the sample. As a consequence of the model, thigeld results in reorientation of the magnetic moments.
value of monodomenization field depends upon the charac- 3. Experimentally observed magnetostriction vs mag-
teristic sizeR of the sample and thus vanishes whetends netic field dependence for CoCtrystal is adequately de-

4, Discussion

to infinity. scribed in terms of the model under consideration with mo-
The results obtained could be generalizeRifmplies  bile domain walls.
the characteristic size of substructure unit of the sarfipe 4. AFMR frequency of polydomain crystal can be sig-

dislocation-free region or crystallitedefined by the techno- nificantly lowered due to “unfreezing” of the crystal lattice

logical factors. In the case of fixddlued sample expression if the size of domain is quite small.

(2) should be substituted with corresponding boundary con- 5. The above mentioned calculations can be considered

ditions for the sample faces. Anyway, finite-size effects caras a basis for the following important and quite general sup-

play a crucial role in the behavior of antiferromagnets withposition: variation of the surface ener@at is of Coulomb

significant magnetostriction and should be taken into accoumature and so is not smaltan result in the formation of

in interpretation of experimental results. equilibrium inhomogeneous stat@r in other words, the
The predicted behavior of the DS of AFM is analogousequilibrium domain structure of magnetoelastic or elastic na-

to that of ferromagnetic. Namely, up to some critical externatlture).
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domains of certain type at the expense of others. edited by R. T. Beyer.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Orientational effect in ultrasonic attenuation in metals under the conditions of
magnetoacoustic resonance

A. V. Yeremenko, O. V. Kirichenko, and V. G. Peschanski *)

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine
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Fiz. Nizk. Temp.25, 708—711(July 1999

Ultrasonic absorption in metalslegenerate conductdrs a strong magnetic field is investigated
theoretically. Peculiarities in the orientational magnetoacoustic resonance are discovered
and compared with the known Reneker tilt effect. Special role of open Fermi surfaces is
emphasized. ©1999 American Institute of PhysidS1063-777X99)00907-X]

Absorption of ultrasonic waves in conducting media in a o T
strong magnetic fieltH is of the resonance type if the radius ~ K-VT/k= fo dtk-v(t)/k=cPosino/eH 3)
of curvaturer of the trajectory of charge carriers is much
smaller than their mean free pdthbut exceeds significantly is multiple to the acoustic wavelengtk: vT/k=2mn. Here
the acoustic wavelength KL/ Magnetoacoustic resonance in P, is the period of the Fermi surface along the directign
metals is connected with a drift of charge carriers along thef its “openness,” i.e., the direction of drift of charge carri-

acoustic wave vectdk for ers along the trajectory in the momentum sppge= const,
K> krs1 ) \a}ggtzrls the angle between theaxis and the acoustic wave

Charge carriers that move for a long time in phase with ~ For kr>1, attenuation of acoustic waves in metals is
the acoustic wave interact effectively with its field. The re-mainly associated with electron viscosity and is determined
gion of effective interaction in the magnetic field is concen-by the deformation mechanism of dissipatfoiDamping
trated near the turning point on the electron orbit, wheredecrement for acoustic waves, i.e.,
k-v=0. The number of wavelengths over which the electron _ 5
drifted along the wave vector to meet the wave at the same I'=Q/pu’s )

phase at the turning point is immaterial. Consequently, thean pe easily found from the dissipative functi@ndeter-

condition of resonant interaction or charge carriers with thgyined by the nonequilibrium distribution function for charge

wave has the form carriers in a reference frame moving with the deformed crys-
(k-V=—w)T=2mn, n=0,1,2,3, ) tal Iat_tice with velocityu. Here_p is the crystal .densitys the

velocity of sound, andi the displacement of ions under the

whereT=2#/Q=2mm*c/eH is the period of motion of a action of deformation.

charge in the magnetic field, v, andm* are the charge, The solution of the kinetic equation for the charge car-

velocity, and cyclotron effective mass of electron in vacuumsrier distribution function f=fg[e(p)+iwp-u]— ydfy/de

the bar over the letter indicates averaging over the fime  Jinearized in a weak perturbation of conduction electrons,
As a rule, the frequency of the acoustic wave is much je.,

smaller than the collision frequency71bf charge carriers

and naturally much smaller than the frequelStyf electron Va_lﬂ + 3_‘#

rotation in a strong magnetic field>1) so that the quan- ar ot

tity oT for a nonzeron can be disregarded in the resonant I ite the dissipative f ion in the

condition (2). In this case, the resonance is manifested mosg//OWs Us to write the dissipative function in the form

1
+ ——nw)w=g ®)

T

strongly when conduction electrons drift alofgin open 2d3p

trajectories forH.L k,* and charge carriers belonging to the Q= f W&[S(p)_gp]l//w*/72<df€//*/7>. (6)
entire layer of open cross sections of the Fermi surface (27h)

&(p) = & by the planepy = p-H/H = const participate in the The collision operator in E(5) is taken in the approxi-

formation of resonant peaks in the dependence of the dampnation of the relaxation time of charge carriersfy, is the
ing decrement of acoustic waves on the magnitude of thequilibrium Fermi function of the conduction electron distri-

magnetic field. bution, and
Resonance is observed for values of magnetic field, for 5
which the drift alongk over the timeT, i.e., g=—iwA;j(p)ujeE-v. !
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The timet determines the position of a charge on its trajec-acoustic damping decrement is negligibly small. If the layer
tory in a magnetic field in accordance with the equation ofof open cross sections of the Fermi surface is narrow, i.e., the

motion separation between self-intersecting orbits is rather small, the
o e conditionwT<1 cannot be satisfied even for quite large val-
— =—[VXH]. (8)  ues of magnetic field. In this case, the contribution of acous-
Jt ¢ tic waves to damping comes mainly from charge carriers
The renormalization of the energy spectrum of charge carriith close orbits.
ers under the action of crystal deformation, i.e., For certain orientations of the wave vector, for which
sing is of the same order of magnitude as the ratio of the
Se=N\ij(P)ujj (9 velocity of sounds= w/k to the Fermi velocity of conduction
is contained in the kinetic equation in the form taking into €/€Ctrons, an absorption peak is observedife0. This peak
account the conservation of charge carriers, namely, is of thg same origin as the abrupt increase in the damping of.
sound in the absence of open cross sections of the Fermi
Aik(P) = Nik(P) = (Nik(p) )/ (1). (100 surface in a strong magnetic fieldr< 1), which takes place

rwhen the vectorsH and k deviate from orthogonality
through a small angl® of the order of the ratio of the ve-
locity of sounds to the extremal value of the drift velocity
vy of charge carriers along the magnetic fie{tlting
effec.’~1°
In contrast to resonant absorption of acoustic energy for
f differing from zero, the zero line of absorptidgpeak at
n=0) is possible when the drift velocity of charge carriers
coincides with the velocity of sound. Its position does not
depend on the magnetic field and is determined only by the
r dpy /pe orientation of the acoustic wave vector relative to the mag-
F(H)_FOTJ coshT/7—cosk VT—wT) " (12 netic field and the direction of charge carrier drift in open
trajectories. In this case, the distance at which the amplitude
Here pg is the characteristic Fermi momentum akig  of acoustic vibrations decreases by a factoe ¢ind equal to
= wlv is the absorption coefficient of sound in zero magnetici/T') is the same as fad =H,.
field. In formula(12), we have omitted insignificant numeri- When the orthogonality of the vectok$ andk is vio-
cal factors of the order of unity as well as small correctionslated, the condition of resonant interaction of conduction
oscillating with 1H and proportional toKr) ~*2.3-° electrons with the acoustic wave assumes the form
It follows from formula(3) that the drift of charge car-
riers alongk over a period of mo_tion in an open orbit in a ° kP, sincp+k(9—ssin 6—2mm*w | =2mn, (14)
plane orthogonal to the magnetic field is the same for all €H IPH

conduction electrons in the entire layer of open Cross seGyneres is the area of the cross section of the Fermi surface
tions of the Fermi surface by the plapg=p-H/H. Accord- by the planepy = const.

ing to formula(12), gll charge carrier_s belonging to the layer Forkr sinf<1 andwT<1, the last two terms in formula

of open cross sections of the Fermi surface ddf<1 par-  (14) are small, and their inclusion does not affect signifi-

ticipate in the formation of a resonant peak of absorption of.4nly the shape of resonant curves in the energy absorption

acoustic energy of heiglitol/r for of acoustic waves witim differing from zero. However, the

kcPysineg height of absorption peaks decreases sharply kfosin 6 _

=D (13  =1. In the case wheaS/dp, has an extremum at the Fermi
surface, the peak height has the form

It should be borne in mind that this result is valid for a

Here \j;(p) are the tensor components of the deformatio
potential, and the electric field

- i Mmuw?
E=E—F[UXH]+ . (11

accompanying the acoustic wave is taken into account in
reference frame moving with the vibrating crystal lattice.

Using relationg4)—(9), we can easily find the damping
decrement of acoustic waves:

" 2mne

sufficiently wide layer of open electron trajectories, for rres:%_ (15)
which the contribution of charge carriers with open cross (kl'sing)

sections of the Fermi surface close to a self-intersecting orbi,

to acoustic energy absorption is negligibly small. The period

of motion of charge carriers in a magnetic field increases H — ke P sin +a—ssin9 (16)
unlimitedly as we approach the boundary self-intersecting " 2mel 0>® &pﬂ '

cross sections of the Fermi surface, which separate the layer This absorption peak is formed by a small fraction of
Or: open cross se?:tions from hclosed elctiactr(r)]n olrbits, attainin%lectrons from the neighborhood pﬁ.=pﬂ where the dis-
the minimum value somewhere inside this layer. Conse- ; ' -
quently, the functionT(py) always has at least one extre- Ef;j:eer;grﬁbenﬁt?gs over a period along the magnetic field
mum (minimum T ,;,). The divergence of (py) near a self- T

intersecting orbit is logarithmic, and hence the number of  4?S

charge carriers for whichwT=1 is proportional to exp m 0=0. 17)
(—lwTyy for oT,p<1, and their contribution to the PH= Py
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If 028/ap§| does not vanish anywhere and is boundedcarriers corresponding to the extremal values of the quantity
everywhere on the Fermi surface, the absorption coefficientds/dpy)sin 8—2mm*s, i.e., satisfying the condition

for acoustic energy has the same form korsin 6=1 7S 2S
msm 0—sl9pH&8 =0. (20
Ty Thus, the height and position of resonant peaks of acous-

(18 tic energy absorption by charge carriers in metals and degen-
erate conductors are very sensitive to the orientation of mag-
netic field and acoustic wave vector.

Magnetoacoustic effects sensitive to the shape of the
in the absence of open cross sections of the Fermi surface &ermi surfact®*’were successfully used as a reliable spec-
well as in the presence of such cross sections for any oriertroscopic method for studying the electron energy spectrum
tation of charge carrier drift in a plane orthogonal to theof metals. The aim of this communication is to emphasize
magnetic field. A considerable decrease in the height of thence again the potentialities of this method, which makes it
resonant peak is due to the fact that the variationgof Ppossible to obtain additional information on the spectrum of

“shifts,” the role of effective charge carriers from one type charge carriers in metals and conductors with metal-type
to another. conductivity (in particular, to analyze in detail the effective

For wr=1, the last term in formul&14) cannot be dis- Masses of electrons with open trajectories in the momentum
regarded any longer. If the charge carrier drift along theSPace.
wave vectprk IS fa shsoclzzlateq °”']}’ W't? the presence of OPEN "~ This research was partly supported by the NATO scien-
cross sgct{ons 0 the Fermi surface or a given pneptaﬂon fific program (Grant CRG.CRGP 972846
magnetic field, i.e., fop=0, the absorption peak is displaced
and is observed for

“krsing

*)E-mail: vpeschansky@ilt.kharkov.ua

Hn:2 ne(PoSinQD_Z’ﬂmOs), (19)
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Bifurcations and a chaos strip in states of long Josephson junctions
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Stationary and nonstationary, in particular, chaotic states in long Josephson junctions are
investigated. Bifurcation lines on the parametric bias current-external magnetic field plane are
calculated. The chaos strip along the bifurcation line is observed. It is shown that

transitions between stationary states are the transitions from metastable to stable states and that
the thermodynamical Gibbs potential of these stable states may be larger than for some
metastable states. The definition of a dynamical critical magnetic field characterizing the stability
of the stationary states is given. €999 American Institute of Physics.

[S1063-777X99)01007-5

INTRODUCTION of the parametersH,,3), another question arises: what is
the form of bifurcation lines in the plang—H, that separate
Dynamical chaos in long Josephson junctions is of greathe parametric plane on the regions with a different number
interest because it can be a source of a dynamical noise if stationary solutions of the Ferrell-Prange equation?
devices based on them, in particular, in SQUIDSs, limiting the  The existence of several stable solutions of the Ferrell—
sensitivity of these devices. Furthermore, dynamical chaos iPrange equation is equivalent to the fact that thermodynami-
long Josephson junctioritJJ) is a very interesting physical cal Gibbs potentialc associated with the distribution of the
phenomenon taking place in nonlinear systems in the abmagnetic field along the junction has minima, and each mini-
sence of an external stochastic fofc@ Dynamical chaos in  mum corresponds to a certain solution of the Ferrell-Prange
a LJJ is easily excited and therefore it may also be investiequation. Does a global minimum & correspond to the
gated experimentally rather eastfy'! most stable statee.g., in the Lyapunov sengeln the case of
In our previous work¥¥we have shown that among a the junction of the finite length both Meissner and one-fluxon
set of solutions of the Ferrell-Prange equation describingtates are thermodynamically advantageous simultaneously,
stationary states of the LJJ in an external magnetic'flelce  so it is interesting to investigate dynamical properties of
both stable and unstable ones. At the same time, these stitese states. Answering this question, we introduce a dy-
tionary states are asymptotic solutions of the nonstationarpamical critical field that describes the stability characteristic
sine-Gordon equation and we have also shown that a seleof the junctions.
tion of the stable solutions can be governed by a rapid damp- In Sec. 1 bifurcation lines on the parametiiz—H,
ing in time of the initial perturbation entering into the non- plane are calculated. In Sec. 2 the definition of the dynamical
stationary sine-Gordon equation through the boundargritical magnetic field is given and the dependence of this
conditions. Changing the intensity of this perturbation atfield on 8 and the length of the junctioh is calculated. In
fixed shape, we can obtain various stationary states for th§ec. 3 transitions between states are described. It is shown in
LJJ without a bias current or three clusters of staséstion-  Sec. 4 that a chaos strip arises along the bifurcation line on
ary, and time dependent regular and chadtiche presence the parametricB—H, plane. The last Sec. 5 contains the
of a bias current. It turned out that asymptotic states are vergliscussion of our calculation and brief conclusions.
s_ensitive to an ex'FernaI perturbation, its vglue angl shape d‘i? Bifurcation lines
fine the state(stationary, regular or chaojido which the
system will tend at—o (we have called this influence on Stationary states of a LJJ are investigated using the nu-
the selection of asymptotic states of the small rapidly dampmerical integration of the Ferrell-Prange equation:
ing initial perturbation in time an effect of memoryrhe fact .
of coexistence of all these three characteristic asymptotic ~ #x<(X)=Sine(x) =4, @

states selected only by the fqrm of the initial perturbationyhere (x) is the stationary Josephson phase variaBles
seems fo be astonishing. It is evidently enough that thene dc bias current density normalized to the critical current
Ferrell-Prange equation will not have solutions at a largg | x js the distance along the junction normalized to the
bias curreniB. Therefore the question arises: at which ValueSJosephson penetration length= C®,/872j d, P, is the

of B do stationary states of a LJJ disappear or what will be g, quantum,d=2\_+b, A_ is the London penetration

boundary in the parametrig-H, plane Hy is an external  |ength b is the thickness of the dielectric barrier. The bound-
magnetic field that separates this plane on the regions wher%ry conditions for Eq(1) have the form

stationary states do and do not exist? Since the number of
solutions of the Ferrell-Prange equation changes at variation  ¢,(X)|x=0= @x(X)|x=L =Ho, 2
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B the function H(¢y) at Hy=0.5, L=5, B=0.25 and 8
1.0 =0.45.

Boundaries between the regions—bifurcation lines—
define an essential modification of the system. The bifurca-
0 tion lines in Fig. 1 are obtained far=5; here a step by is

TT

0.8

0.6 chaos strip equal to 510 2 and a step b\H, is equal to 2.510° 3. In
this figure the numbers of solutions of E¢l)—(2) are
0.4- pointed out, the numbers of stable solutions are given in the
4(1):M 4(1): 1f brackets, whilevl and 1f denote a stable Meissner and one-
0oL 4 (211,26 fluxon states, respectively. It is seen that a Meissner state is

stable at small values &1, and at large values dfl, a one

. fluxon state is stable. It should be noted that the region where
0 05 10 15 20 25 there are no stanongry solut|o(lseg|c_)n 0 bounds. with thg
region having a minimum of stationary solutions, being
equal to 2(region 2. In approaching the boundary of region
FIG. 1. Bifurcation lines. The number of solutions of the Ferrell—PrangeO and 2 the number of stationary solutions decreases4 6
equation(1)—(2) are pointed out. The number of stable states is indicated in—2—0, on the other hand, a number of nonstationary states
brackets.M denotes a stable Meissner state arfddenotes a stable one- \yhich are the asymptotic solutions of the sine-Gordon equa-
fluxon statel. =5. tion, increases. Our calculations have shown that one of two
stationary solutions in region 2 is stable, and another is un-
stable(metastable We noted earliéf that the stable states

whereL is the total length of the junction normalizedxg ~ are symmetrical. The presence of bias curigrieads to a
and H, is the external magnetic field perpendicular to thesymmetry violation that results, evidently, in the instability
junction and normalized tél = ® /27 5. of the states.

Numerical integration of Eqg1)—(2) allows us to find The problem of the stability of stationary state¢x)

the regions with a certain number of solutions on the paralVas solved in the following way’ the sine-Gordon equation

metric 8— H, plane(Fig. 1). It is easy to show that the set of was linearized in the vicinity _of stat_iongry ;olutiom(x,t)
points corresponding to the even number of solutions formsg- #(X) +0(x,t), whered(x,t) is the infinitesimal perturba-
two-dimensional domains on this plane, whereas the set coln- The equation ford(x,t)—the linearized sine-Gordon
responding to the odd ones may form just one-dimensiongfduation—we can solve by means of the expansion of this
curves. Mostly, the lines corresponding to the odd number ofunction in terms of a complete system of eigenfunctions of
the solutions of the Ferrell—Prange boundary problem cointh® Schrdinger operator with potential cas(X)]:

cide with the bifurcation lines. Using the shooting method

for solving of the boundary problem one can prove that the 0(x,t)=2 ehntu,(x), 3)
2m-periodicity of the functionrH(¢y) expressing the depen- "

dence of the magnetic field at the right side of the junctionyhereu,(x) are eigenfunctions of the Scltinger operator
(x=L) on the phase taken at the left side<(0) results in o the problem:

the appearing of the odd number of solutions only when the

H(¢g) touches the lineH=H, in an extreme point, i.e., — Uyy(X) +u(x)cose(x)=Eu(x), (4)
dH(pg)/ dpe=0. As an illustration, we have plotted in Fig. 2

6(2): M, 1f Ho

ux(x)|x:0:ux(x)|x:L:O;

and

Ap=—7yx \/')’2_Env 5

where vy is the dissipative coefficient in the sine-Gordon

equation. We note that valuesfcoincide with correspond-

ing values of Lyapunov exponents in the case when pertur-

bations are considered with respect to the stationary solu-

tions. In the general case, Lyapunov exponents are calculated

in the same way as in Ref. 13. Thus, in the presence of a bias

current we have the different picture of a LJJ states than at

B=0 (this case has been examined in Ref).. Ebr example,

at Hy=1.9 the increasing of8 from 0 to 0.22 leads to the

changing of the stationary states numbes 6—2—0, i.e.,

-4 i L L ; L . ® to a consecutive losing of the stationary solutions. Simulta-
0 1 2 3 4 5 6 0 neously, an increasing of the number of nonstationary states

FIG. 2. Dependence of the magnetic fieldkatL on the phase taken at the OCCUI'S that we fou.nd by directly solving the nonstationary
left side of junctionx=0 atH,=0.5,L=5, 3=0.25 andB3=0.45. sine-Gordon equation.
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2. Dynamic critical field H

N
S
T

In the literature the critical magnetic field;; in a LJJ is
defined as a field value, at which an existence of a Josephson 29
vortex (fluxon, solitonn becomes advantageous thermody-
namically for the first time(see, for example, Refs. 10 and 2.0
11). In the case of an infinitely long junction the critical field 1.8
is Heq(°)=4/m=1.274. Essentially, this field corresponds
to the global minimum of the thermodynamic Gibbs poten-
tial for the one-fluxon state. However, in a junction of finite 1.4
length there are some local minima that coexist with the 2
global one and every minimum corresponds to the solution ’
of Egs.(1)—(2). Some of these solutions are stable, another 1.0
unstable in the sense discussed in Sec. 1. L

1 {

0.8 L -
We write down the thermodynamic Gibbs potential in 0 0510 1520 25 30 35 4.0 45 x
the form

FIG. 3. One-fluxon states &t,=1.4 andL=5 for =0 and3=0.1.
L 1 5
G= fo dX 5 ¢x(X)+1=c0se(X) ~ Be(X) = Hopx(X) |-
(6) 3. Transitions between states

. L . . As it has been shown in the previous section, every sta-
HereG is the thermodynamu_: G'Pbs potential per _un|t IEngthtionary state of LJJ, i.e., the solution of Eq%)—(2), corre-
along an_external magnetic field and normalized G0 ¢50s 19 & minimum of the thermodynamic Gibbs potential

_ 3 . -
=®o/16m°\;d. The Ferrell-Prange equation is an extremaly, g these minima are not equivalent with respect to the prob-
of the functional6). An investigation of the second variation lem of instability. For example, in Fig. 4 stationary states of

of G shows that all extrema of this functional satisfy to the ;4 atH,=2.035,8=0.001 and_=5 are shown. The values

necessary and sufficient conditions of a strong mininteim. of the Gibbs potential calculated using &6 are as follows:
Thus, all solutions of Eq41)—(2) (both stable and unstable G,=—5.03, Gy=—4.52, Gy=—4.61, Gy=—4.64, Gg

oneg correspond to minima of the thermodynamic Gibbs_"_ , ¢q Ge=—6.7. States 4Meissney and 6(one-fluxon

poltenltla_l; onef Or]: thﬁm IS dglobal,_ the_b(E)thers are :o%al. OUlzre stable, the other ones are metastable. It should be noted
calculations of the thermodynamic Gibbs potent®@Ishow o+ nstable state 1 corresponds to deeper minimum than the

that, fcr)]r exam;l)k;, ?’820 L=5 arldH0=0.67bthe rl:/leissr;)clar stable state 4. This property contradicts the naive idea that
stateﬂ as a gio r? m|rl1|mu|| Gly - 0.44), hUt the f‘T’ta € more stable states occur at deeper minima. Now we shall
one-fluxon state has a local on® {;=4.03). The one-fluxon consider this question in detail.

state has a global minimum @ starting atH,=1.57 Gy The sine-Gordon equation with dissipation and bias cur-

=—2.582) and at the same value@indL. Atthis value of o+ joscrining an evolution of the initial state has the form:
Ho a Meissner state has a local minimugy, = —2.58. At

Ho=2.09 the Meissner state disappears. Thus, at a field less  @u(X,1) +2y@(X,t) = ou(X,t) = =sine(x,t) + B, (7)

than the critical oné,, the stable one-fluxon state exists. \yheret is a time normalized to the inverse of the Josephson

We shall further call the minimum value of a magnetic field plasma frequency = \27¢j./C®,, C is the junction ca-
at givenL andg, at which the stable one-fluxon state appeargyacitance per unit area;= ®yw,/4mCRj. is the dissipative
for the first time and which corresponds to the local mini-

mum of the thermodynamic Gibbs potential as the dynamical
critical field Hy.. It is interesting that the dynamical critical
field Hy4. makes up on the parametric plane a line that coin-
cides with the bifurcation linC (see Fig. 1L Our calcula- 6 1
tions show that the bias current increases the dynamical criti- 5
cal field Hy.. Evidently, it is connected with a symmetry

N

violation of a state by the bias currefitIn Fig. 3 two stable 2.0

one-fluxon states g8=0 and8=0.1 (L=5,Hy,=1.4) are

shown. It is seen that the state wijth=0.1 is asymmetric. 1.5 2
The dynamical critical field at =5 areH4.=0.67 at3=0

andHy.=1.4 atB=0.1. Upon increasing the value ofH 4. 1.0+ 3 5

is changed B=0): Hy.(L=5)=0.66, Hy(L=6)=0.4,

Hao(L=7)=0.26, Hy(L=8)=0.15 Hy(L=10)=0.06, 0.5} 7]

i.e. theH . decreases. In this case the critical fiéld; has
the values: H (L=5)=1.57, H.(L=6)=1.45, H(L AR S OSSR S E S S S—
=7)=1.38,H(L=8)=1.34,H.(L=10)=1.28, i.e., the 0 0510 1520 25 3.0 35 4.0 45 x

H¢i decreases also approaching to the valutipf(L=>)  Fg. 4. stationary states of L1Jidy=2.035,8=0.001 and_=5. Stated,
=1.274. 2, 3, 5 are unstable, statesand6 are stable.
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TABLE I. Transitions between states. 5

Number Transitions Sort of 4 6

of State Stability G m—n Stable States

1 unstable 2.34 210 7

2 unstable 2.78 28 2

3 unstable 0.64 38 1 11 T
4 unstable 14.69 410

5 unstable 14.98 510 __?_2___

6 unstable 14.69 610

7 unstable 13.53 210 3 9
8 stable —1.42 8-8 Meissner

9 unstable 0.64 958 10

10 stable —0.44 16-10 1 fluxon i/
11 unstable 2.34 110 8
12 stable 2.29 1212 2 fluxon

FIG. 5. The scheme of transitions between statesn. States8, 10and12
are stable(8—Meissner,10—one fluxon.12—two fluxon), others are un-
stable.H,=1.174,L=8, 8=0.

coefficient per unit areaR is the resistance of junction per
unit area. We write down the boundary conditions for &.

. transitions(we note thatG; andGgq for the metastable states
in the form

3 and9 are less thai(,; the statel? is stabl@. The stable
Ox(X,1)—o=H(0}1) = @, (X, )|, . =H(L,1) states—Meissner, one-fluxon, and two-fluxon—are shown in
B Fig. 6 at the same parameters as in Fig. 5.
=Hoy(1—ae "o cos0,5). (8)

The integration of Egs.(7)—(8) for Hy=2.035, B 4 chaos strip
=0.001,L=5 (the same as in Fig.)&and y=0.26 gives: the

metastable state 1 passes to the stable state 6 at any values of AS We noted above, the number of stationary states de-
perturbation parametea, 2—4 at a=0, 2—6 at a=1 creases with approach to the bifurcation line 0-2, but the

3,4 ata=0.05. 36 ata=0.07. 46 ata=0.5 and so Number of nonstationary asymptotic states is increased si-
on. Every transition from the metastable state to the stablg'ultaneously. Changing the perturbation parametge can
one, m—n, is a transition from the state with the certain ©Ptain }Qree sorts of typical states: stationary, regular and
value of local minimumG,, to another state with smaller chaotic.” These states are distinguished not only by a form
value of minimumG, . These transitionsn—n with G, of the field distribution in the junction and a variation in

>G, are realized by certain values of the parameter of thdime, but also by values of the Lyapunov exponenfor the
initial perturbationa in expressior(8). One can say that the Stationary states <0, for the regular states<0 and for the

local minima ofG, are connected with each other by a cer-Cn2os states>0. The Lyapunov exponents were calculated
tain disintegration channel along the coordinat&rom this N the same way as in Ref. 13. However, as the calculations
point of view one can say also that stationary states contain B2Ve shown, chaotic states may be excited not in the whole
specific “latent” parameter, by which a connection with dif- "€gion 2(see Fig. 1, but only in the bounded region in close
ferent local minimaG, may be realized. In particular, the 0 the bifurcation line 0-2. This region is extended in the
perturbation parameter appears here as a “latent” param- form_ of a narrow strip alor_19 the b_|furcat|0n line 0-2 ap-
eter. It is possible, there are several “latent” parameters conProximately from 0.7 to 1.6 i, and in the range of 0.002—
necting the stationary states. One of the most important char-
acteristics of “latent” parameters is that the stationary state

does not depend on them directly; however, the form of the H

asymptotic state and the rate of disintegration depend essen- 10 {11)

tially on them. The presence of a “latent” parameter appar- 2.0 } 12 (2f)
ently explains, a nonequivalence of the different local

minima with respect to the stability, especially in the case 151

when a stable local minimum is above a nonstable local one. )

In Table | results of the integration of Egdl), (2) and the -

calculation of G for every one of these solutions &t 1.0

=1.174, =0, L=8 are represented. The transitions be-

tween statesn—n are defined as follows: theith solution

of the stationary Ferrell-Prange equatidn—(2) was taken 057

as an initial condition of the sine-Gordon E#) and(8). If 8 (M)

this mth state was unstable then it fell into timh stable ' 4 ! L L L
state. 0 1 2 3 4 5 6 7 «x

The SChe_me Pf the tr?-nSitionS between statesn is  Fig, 6. The stable states:M—Meissner, I—one-fluxon, and
represented in Fig. 5. It is seen th@t,>G, for all the 2 f—two-fluxon at the same parameters at those in Fig. 5.



534 Low Temp. Phys. 25 (7), July 1999 Yugay et al.

0.015 inB. We note that the chaos strip is arranged mostlywhich, for example, two local minima may be connected and
under the bifurcation line in the region 2, but not in the a channel of the disintegration of the upper state may arise.
region 0, as it may be expected because of all states in tha our case the perturbation parameter plays a role of a “la-
region 0 are nonstationary. The chaos strip is outlined on théent” parameter, however, the number of these parameters
parametricB—H, plane in Fig. 1. may be much greater. We note the analogy between the
This chaos strip along the bifurcation line 0—2 calls toquantum transitions and the transitions mentioned above, al-
mind (to a certain extentthe separatrix of a nonlinear oscil- though the system is described by the classical Ferrell—

lator, where a chaos motion is observed. Prange and sine-Gordon equations.
We are aware that we could not touch upon all questions
5. Discussion and conclusions concerning the properties of a LJJ. We hope to return to the

In the present work we have shown that the parametri([:’mblems of & LJJ in our next work.

B—Hg plane of a LJJ is separated on series of regions wit ;’heje mvcisltlgRatlons aﬁre _supt)p:\cl)rtegfsbgzthleg?f{lisaan Fund
the different number of solutions of the stationary Ferrell— or Fundamental Resear¢Rroject No. 96-02-1933
Prange equation. The boundaries between these regions—
bifurcation lines—characterize an essential modification of
the system. A chaos strip arises along the bifurcation IineiW-CJ;- Yebh' Cr:' G. Symko, gnd D-&"-flhe”gv Phys-geﬁﬁl“%o(lﬁ%-
0-2. We have found that the chaos strip is arranged in the?é 1207”9(‘9135]‘36”59”’ P.S. Lomdahl, and M. R. Samuelsen, Phys. Rev. B
main below the bifurcation line 0—2, where stationary statessyn_ Gronbech- Jensen, Phys. Rev4B 7315(1992.
take place. 4G. F. Eriksen and J. B. Hansen, Phys. ReviB4189(1990.
We have introduced the definition of a dynamical critical ;X ;ag J. Z. Wu, ;r’:;j % tS T'“%hph}’s-lgg’fgézl“l“e(é?a%é 0
. . . . E. Guerrero an . Ostavio, ysica .
field as the lowest flelq at yvhlch the one-fluxon state be-7 ", Dalsgaard, A. Larsen, and M. Mygind, PhysicalB5-166, 1661
comes stable for the first time in the Lyapunov sense. In (1999.
addition, the Meissner state may also be stable at some paf;-S. Rajasekar and M. Lakshmannn, Physica@, 793 (1990.
rameters. Because both the Meissner and the one-fluxqp>- Rajasekar and M. Lakshmanan, Phys. Letl4, 264 (1990.
states mav b . . A. Barone and G. Patern®hysics and Applications of the Josephson
y be thermodynamically advantageous S|multa-Eﬁect Wiley-Interscience, New-York1982.
neously, our definition based on the stability in the Lyapunovt’k. K. Likharev, Introduction tdDynamics of Josephson Junctiohauka,
sense characterizes an important feature of the stationaryMoscow (1985 (in Russian. .
states of the LJJ. (Kl.gg.@Yugay, N. V. Blinov, and I. V. Shirokov, Phys. Rev. 49, 12036
We have show_n. that disintegration of the metastablesy Yugay, N. V. Blinov, and I. V. Shirokov, Phys. Rev. BL, 12737
states and the transition to some stable statesn occur for (1995.
Gn>G,. A metastable state corresponds to the local mini-C. S. Owen and D. J. Scalapino, Phys. RE§4, 538(1967.
mum of the Gibbs potential, and also this minimum may be 'CO'\V’\'/ (f:éfgrﬁn?js;é;' FominCalculus of Variations, FizmatgiMos-
lower than this one of a stable state. A nonequivalence of '
these local minima we explal_n bY means _Of existing of arnis article was published in English in the original Russian journal. It was
“latent” parameter not detecting in a stationary state, byedited by R. T. Beyer.
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It is shown that local electron states, caused by impurities in a layered conductor placed in an
external magnetic field, give rise to resonant correctidimg;(w) to the high-frequency

conductivity tensova,z(w) of the layers. These corrections appear due to the resonant transitions
of electrons between the Landau levels and the local states and change dramatically the
spectrum of collective electromagnetic oscillations in the system because of the “branch crossing”
nearby the frequency, (% wq is the local state energyAs a result, a new magnetoimpurity

wave, w_(k), appears in the spectrum in addition to the helicon madglk), which

is known to exist in a pure layered conductor in a perpendicular magneticfieddthe wave

vector along the magnetic figldin the long wavelength limitka<1, the helicon-like

modew, (k) has a gap of the order @§,, whereas the magnetoimpurity mode in this limit goes

to zerow_ (k) ~(ka)? (ais the distance between adjacent layef$e small damping of

these modes due to the broadening of the Landau levels and the magnetoimpurity levels are also
calculated. ©1999 American Institute of Physids§1063-777X99)01107-X]

1. INTRODUCTION The high-frequency conductivity tensor of a 2D electron
gas with magnetoimpurity states in quantizing perpendicular

Impurities in metals play a twofold role. First, they de- magnetic field was calculated in Ref. 5 and we are going to
crease the free path of electrons and thereby damp electrapply in what follows the results of these calculations to
magnetic waves? On the other hand, impurities may create studies of magnetoimpurity electromagnetic waves in lay-
bound states which result in a dramatic change in the ele@red conductors.
tron energy spectrum and create new electromagnetic modes Electromagnetic waves in layered conductors and super-
in conventional metals. lattices in a quantizing external magnetic field have been

The effect of impurities on the electronic energy spec-studied in a number of works3 It was found that a quasi-
trum becomes much more pronounced in an external magwo-dimensional nature of layered conductors brings some
netic field which effectively decreases the dimensionality ofspecific features compared to the results obtained for conven-
the system and assists the localization of electrons by attrational 3D metals. In particular, a new type of spiral waves in
tive impurities. Local and quasi-local magnetoimpurity statedayered conductors under the conditions of the quantum Hall
(i.e., the ones localized nearby the impurity in an externakffect have been predicted theoreticalfy23In these works
magnetic fieldd were studied long ago in conventional a model for layered electron gas was employed which ig-
metals** and recently in two-dimension#2D) conductors.  nores electron hopping across the layers because the quan-

Impurities break down the spatial homogeneity of a systum Hall effect takes place in purely 2D systems. Thus, the
tem, they lift up the degeneracy of the electronic energymost interesting case of quasi-two-dimensional behavior of
spectrum on the Landau orbit center position and split offelectrons in superlattices corresponds to the model without
one local state from each Landau level. The magnitude oélectron dispersion across the layers. In this model electro-
splitting, A, is equal to the energy of a bound state. Thus, anagnetic waves can propagate only owing to the interlayer
new resonant frequenays=A+s (Q=eH/mcis the cy- electromagnetic correlations described by the Maxwell's
clotron frequency and the intege=0,1,... numerates the equations. The relationship between the electromagnetic field
resonancesrelated to electron transitions between the Lan-and the current within the layer is determined by the conduc-
dau levels and the magnetoimpurity ones appears in the cotivity tensor which depends on the layer structure and deter-
ductivity tensoro,s(w) and gives rise to the resonant at- mines the shape of the electromagnetic wave dispersion in
tenuation of the electromagnetic waves in metals. layered conductors.

The conductivity tensor, as is well known, is the key The purpose of the present paper is to calculate the dis-
quantity in the theory of electromagnetic waves in metals; itpersion relation for a new weakly damped electromagnetic
determines the dispersion of the electromagnetic waves iwave caused by the resonant transitions between magnetoim-
conventional? and layered metdis® and supercon- purity levels and the Landau levels in layered conductors in
ductors'* perpendicular to layers quantizing magnetic field.

1063-777X/99/25(7)/6/$15.00 535 © 1999 American Institute of Physics
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In Sec. 2 we discuss the physics of the high-frequencyecessary to take into account exact values of the scattering
conductivity in a 2D conductor with magnetoimpurity states.amplitudeW(e) for calculations of the conductivity tensor of
Section 3 is devoted to calculations of the dispersion relaa 2D conductor in the quantizing magnetic field.
tions for helicons and magnetoimpurity electromagnetic  Near the pole it becomes equal to
waves in layered conductors. Summary of the results ob-

tained and the discussion are given in Sec. 4. Ry
g P(e)~ - (6)
E— Sk

2. THE CONDUCTIVITY TENSOR IN A 2D CONDUCTOR Ry in Eq. (6) is the residue of the scattering amplitudfés)
WITH MAGNETOIMPURITY STATES at the energy =\ . If A<#Q, then

The helicons in layered conductors at low temperatures Re=2m(1A)2 @)
have a dispersion along the magnetic field that is described
by the functiofl This quantity determines corrections to the conductivity ten-

sor o,4(w,H) of a 2D electron gas in quantizing perpen-
o(k)=QW(ka). @) dicular magnetic field due to the localization of electrons
It turned out that their dampidgdepends on the wave vector nearby the impurity atoms. Such corrections in linear ap-
k by dint of the same functioW(ka) (see Sec. 3 for detajls  proximation on the impurities concentration have been
calculated in the papérThe corresponding results for the

v(k)=vW(ka), @) diagonaldo,, and the Halléa,, components of the conduc-
where tivity tensor are
W(ka)= sigz(kt_a/Z) . 3 s i <s>— + i (Y
(w,12) +sm2(ka/2) Txx= =0 Mo—wstiv p=1 'Bxxw—wp-i-iv ’
Herev is the electronic collision frequency due to impurities (8)

©

2 (p)

wa ws+|v p=1 wa w+|v

and lattice defectsp, = wpal/c, a stands for the interlayer o
spacing;c is the velocity of light andw,, is the plasma fre- E
guency. We have assumed above thag a smooth function s=0
of the energy near the Fermi level. This holds true, in par- ©

ticular, for potential scattering of electrons by impurities.  Here wg and w, are the frequencies of electron transitions
Generally, the role of impurities is more complicated, petween the Landau and the local levdls: #v stands for
because of the possibility of creating bound states. This posheir broadening and determines thereby the quantity
sibility is enhanced in an external magnetic field and in low- SymboISa(s) and ﬁ(p) denote the oscillator strength for the
dimensional systems. In the 2D system, an isotropiGesonant transitions. These quantities depend on the wave
potential-well of arbitrary small intensity produces a boundvectorq by dint of terms of the orden.(ql)2 which may be

en

state with the enerd§ discarded in the limit;(ql)?<1 (q is the absolute value of
72 72 the in-plane wave-vectpr
&=~ 57 €Xp — m) (4) Under above conditions, we have
Hereb is the radius andl, is the depth of the potential well; ald= aoz Rl f(el)— f(ekss) 1P, (10)

m stands for the electron mass.

The external magnetic field applied perpendicular to a
2D conductor with impurities produces a host of local states. (S>_ aoz R f(ek)—f(errs) IPres (11)
Impurities lift up the degeneracy on the Landau orbit center

position and split off one level from each of the Landau Kts Ktbst1

levels. Depending on the sign of the potential the local im- Pi= 5+ 5|, (12)
purity level may appear either above or below Landau level (05— Q)" (ws+ 1)

(correspondingly, for repulsive and attractive potentials n

Therefore, the energy spectrum of considered systems con- ' (13

aQo=5 4 -
sists of a series of two sets of levels: the impurity levels and 2mhmwgne

the Landau ones. The separation between the impurity levelere s, =40 (n+ 1/2) andf(e) is the Fermi function.
and the nearest Landau level in case of a weak attractive We do not use any specific form of the impurity poten-

potentialU,<#A() is equal to tial in Eqgs. (10)—(13) so that the quantities}, I', and R,
2 may be considered as fitting parameters of the theory or may
A= 2U0(|—) , (5) be calculated for some particular scattering potential.
In all above equations, frequencieg= wq+s() corre-
herel denotes the magnetic length: (7c/eH). spond to transitions from the local levels to Landau levels,

The local energy levels| correspond to poles of the whereas frequencies,= p{) — w, correspond to transitions
scattering amplitude of electrons on the complex energyn the opposite directiondg=A/#%). The summation in Egs.
plane and cannot be treated perturbatively. Therefore, it i§10) and(11) is only taken over those local levels which are
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involved into transitions at given frequency. Near the reso-

nant frequencyw = wqy only resonant terms witls=0 are
left, so that

2
€ °Ng wq
00 ~I % — . 14
T me P wo—wgtiv (14)
2
€ °Ng wq
00\~ al% —. 1
Yome Y w—wgtiv (19

The number of the terms in the sum owein Egs.(10) and
(11) depends on the chemical potential value For ex-
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2.2
cq,
Vii=Vip=1, Vp=Vy=-— m: (24)

g is the in-plane wave vectok is the wave vector compo-
nent perpendicular to the layefise., parallel to the field);

g9 is the dielectric constant of a substance between the lay-
ers.

The dispersion equatiof?1) is rather general since it
determines the frequency=w(q,k,H) of a wave which
can propagate in the volume of a layered conductor as a
function of the wave vectay, k and the fieldH provided that

under the conditione\<u<ey only one term withk=N
contributes to the sum&.0) and (11). Thus, taking into ac-
count Eq.(7) and the inequalitywy<() we have, from Egs.
(10) and (11),

Ny w
a’g(?():—alsﬁo(ZN'f—l), (16)
N wo
SR a7

N is the number of filled Landau leveldl=[ u/AQ]. The
symbol[ X] here denotes the integer partXf

3. HELICONS AND MAGNETOIMPURITY WAVES

Having at hand the conductivity tensor of a 2D electron

gas in quantizing magnetic figitd

Tux=0o(1+ 7)Y 0= — 00t YOou, (18)
Oxx=0yy, Oxy= " 0Oyy, (19
where
Nee’ .
aoH)=— o y=(v-iw)/Q, (20)

and corrections tar,;z due to the magnetoimpurity bound

states(14)—(17); we now turn to the problem of the electro-
magnetic wave propagation in layered conductors in an ex-

Substituting Egs(18)—(20), (14), and(15) in Eq. (22),
we have

1+ y?*+iySoo(B— a)+ aB(Sog)?=V(a,,a,), (25
yy—ia,  1+9?
V(ay,a, )=—aB(Scy)? 2
(ay,a)) B(Say) TV R
Pay(1+ %)
X az—az _SO' — ).
(af=ad) | =Soo(f=a) — 7=
(26)
We have introduced here the following notations:
27w 2mq, i wg
a= qw021 - we 1 70—?1 (27)
n;
a =" a=a (2N+1). (28
e

The left-hand side in Eq25) is nothing but the dispersion
equation for electromagnetic waves in layered conductors
without the corrections due to the magnetoimpurity bound
states. The quantity¥/(«,,«,) depends on the impurities
concentratiom; /n, and vanishes when,=0.

Consider first the case of waves propagating along the
magnetic field. These waves have zero component along the
planes, =0 and, therefore, the structure form-factor
S(q,k,w) (22) becomes

i () Z)no

S(q,k,w)%m,

(29

ternal magnetic field. The dispersion equation for electrowhereg,:w/wp, w,=4mn.e*/mais the plasma frequency;
magnetic waves in a uniform layered conductor in ap — ./ is the refraction index of the matter between the

perpendicular to conducting layers external magnetic field
was obtained in a number of work$%! According to Ref.
15, it says

2miw

layers.

The form-factor (29) is small elsewhere except for
ka<1 because of the smallness of the parameigivng
<1. Puttingn;=0 and substituting Eq(29) into (25) we
found

: - 1+(g—iX)?—i(g—iX)2AX—A?X?=0, 30
Hereo 4 is the 2D conductivity tensor of a layéhe model (9=1X)"~i(g=iX) (30
employed neglects electron hopping between the layers, so Y 1) w,\? s
that they are correlated only via the electromagnetic fields 9= @ X= g A=|5 | sin “(ka2). (31)

S(q,k,w) stands for the structural factor:

S(aK o)= sinhg,a 27

(a, ’w)_coshqwa—coska’ (22
(1)28

6=, (23

The dispersion equatiof80) has exact solutiongl) and
(2), that is typical for helicons. The resonancescat wq
brought into the system, owing to the magnetoimpurity
bound states, should modify the helicons dispersion near the
intersection of the dispersion curvegk) (1) and o= wg.
Qualitatively, the impact of this “crossing event” on the
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1.0F
a
~ 0.5}
3

o_ (k) (1)
1 ] 1 ]
0 0.0025 0.005
ka

FIG. 1. The high-frequency helicon-like mode, (k) and the low-
frequency magnetoimpurity mode_(k) calculated numerically from the
dispersion equatiofi32) for w, =0.01, Xq=0.1, &, =0.1, o, =10, g=go
=0.

wave spectrum is well knowtf a twofold degeneracy is

lifted up, causing the appearance of two new branches in the

dispersion law of helicons, one above and another belgw
To consider this phenomenon in more detail, we should in
clude theV-term (26) in the right-hand side of dispersion
equation(30).

Taking into account the smallness of the impurity con-
centration and the conditiong/Q)<1, we have

1+(g—iX)?—i(g—iX)2AX—A2X?

a)

= mAX(AX— B). (32
Here
wo Vo
B=2N+1, onﬁ, 90:5,

andvy is the broadening of the bound staig.

We see that the right-hand side of E§2) (which is due
to the magnetoimpurity bound stateshances the degree of
algebraic Eq(32) compared with Eq(30) and bring forth an
additional rootX=X(k,A,q,d0), i.e., @ hew branch in the
wave dispersion equation.

The results of numerical calculations for the dispersion

curves given by Eq(32) are shown in Fig. 1.

The most dramatic changes are seen to take place near
the crossing point of two branches: the helicon dispersion

branch w(k), given by Eg.(1), and the magnetoimpurity
(bound state energybranch w=wq. They are shown in
more detail in Fig. 2. We see that two new modes appear i

consequence of this crossing: the low-frequency mode

w_(k) and the high-frequency mode (k). The low-
frequency mode dispersion fla<1, g=0, go=0 is given

"oz o

w, Wo

2a
w_(k)=Q%(ka)"— Oa,B

Forka=1,g=0, go=0 it behaves as
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S e ®g

\8{ 01 b ceocsasescnnavonsanosnsssssssanasann ;;..f ......................... 0 1
@ e

& - o (K

t
0.0025
ka

FIG. 2. Thew, (k) andw _(k) modes(as in Figs. 1 shown in more detail
near the crossing point of helicofdashed lingwith the magnetoimpurity
frequencyw, (dots. In difference to Fig. 1 parametess ande«, are taken

to be a;, =0.01 ande; =100 for more descriptiveness of the picture. The
absence of the gap between modes(k) and w_(k) is seen in Fig. 2a
(whereg=0) sincew ,(0)<w,. For slightly damped Landau leveis# 0
the above gap may appear, as is the case in Fig. 2b, where ®E>w, and
g=0.01.

QwiaLB

sinka/2) (34

w_(K)~wy—
In the same fashion one can easily obtain explicit relations
for the high-frequency mode . (k). In the case of zero
broadening §=g,=0), we have

Q
2 (ka)?

Wow

wi(K~wy—2a, Q|1 for ka<1

(35

and

alei

4 sirf(ka/2)

n

1+ for ka=1.

w . (k)= (36)
From the numerical calculations shown in Fig. 2, it follows
that there is no gap between the branchegk) andw _ (k)

for v=0, sincew, (0)<wy. This gap appears for nonzero
Landau levels broadening as one can see from Fig), 2
where calculations are made feor=0.01 and it is found that
1 (0)>wg, which is the upper limit of the low-frequency
modew _ (k).
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0.006 trons and hole& The quasi-two-dimensional character of
the problem considered in this paper makes the whole phe-
@+(K) nomenon more pronounced, because of more strong van
a Hove singularities in the density of electronic stagé®) in
3 2D systems compared to 3D ones. The latter facilitates the
= creation of a bound state, (i.e., the eigenvalue of the Lif-
£ 0.003 shitz equation, which we took for granted abpwand, in
particular, enhances the singularity in the frequency depen-
dences of théo,,(w) in Egs.(14)—(15) compared to the 3D
case. Recall, that quantitiefo,,(w) and o, (w) have
square-root singularities in the 3D case that arise due to the
1 1 L 1 appropriate singularities of thg(w) at the Landau levels
0 0.025 0.5 and do not depend on the details of the attractive potential of
ka the impurities.
FIG. 3. The damping of they., (k) and w_(k) modes shown in Fig. 1 The spiral magnetoimpurity waves, to the best of our
calculated forg=0.01 andg,=0.01. knowledge, have not yet been observed, although the exis-
tence of the magnetoimpurity bound states was surely estab-
lished in some doped Bi compourds®™ and semicon-
In case of nonzerg and g, both modes,w, (k) and ductors?*
w_(k), are damped. In fact, only weakly damped modes can In layered conductors, the conditions for bonding of
propagate in a layered conductor, which implies parameter@ectrons by the attractive impurities in an external magnetic
g and g, should be much less than unity. Writing the wave field are more favorable than in 3D metals, which enhances
frequency in the complex fornrs=Rew—ilm o (i.e., taking  the chance of finding magnetoimpurity waves in such sys-
into account its dampingwe found from Eq.(30) in the tems. Currently, a good deal of layered conductorstural
linear ong andg, approximation, and artificially fabricatedare under study and attraction of
researchers to the problem of magnetoimpurity waves in
Moo= 2 [au(k) [b g w (k) +go] them is one of the purposes of this paper. Unfortunately, the
Q Q most popular new layered systems, namely Bi- and Tl-based

a_(K)

-1 high-T. cuprates, should be, to all appearances, excluded
(k) - (K) . . ! :
a+2 ‘Q -3 ‘Q } , (37  from the list of candidates for observation of the magnetoim-
purity modes in them because of the large dampirgw
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We present a detailed theory of induced persistent cutf@t produced by hyperfine interaction

in mesoscopic rings based on a 2D-electfbole) gas in the absence of external magnetic

field. PC emerges due to combined action of the hyperfine interaction of charge carriers with
polarized nuclei, spin-orbit interaction and Berry phase. 1899 American Institute of
Physics[S1063-777X99)01207-4

INTRODUCTION | pc=—C(JIF D), ()

The current situation in solid state physics is characte'rWhereF is the free energy of the loop.

ized in particular by a hectic search of various macroscopic |, a recent publicatioiwe have proposed a new mecha-
topologu_:al quantum effects. The most pop_ula_r of these arfism for the observation of adiabatically slow oscillations of
the perS|st_ent curreiPC pheno_men&the oscillations of the_ PC with time specific for 2D quantum Hall systems. This
diamagnetic momehin a non-simply connected MeSOSCOPIC e chanism does not apply to an external magnetic field, i.e.,
conductor. PC is produced by a sensibility of a single particlg,o oscillatory currentpc [Eq. (3)] exists even ab=0 The

wave function to a force-free field which is taken into ac-pqomiine physics behind these spontaneous PC can be un-
count via the twisted boundary conditions: derstood along the following lines.
V,0=€2W| _y., (1) _The time reversql symmetry breaking is in gene_ral
_ . _ ) achieved as the combined action of the ABF and topological
where ¢ is an angular variable, anfle is the topological  gpin_orhit interactions. It was shown in Ref. 5 that the topo-
phase shit. logical phase shifA¢ in Eq. (1) is the sum of the ABE,

In multiparticle systems, onl).results ?n tr_le oscillatory _Aharonov—Cashérand Berry phases providing the topo-
dependence of the thermodynamic and kinetic characteristiqggica|ly nontrivial spatial charge carriers spins distribution:
on Ae. If Ap is governed by any varying external parameter

v, e.g. the magnetic field, the response of a system is the Ap=Appg+AgactAes, (4
oscillatory function ofy.

Normally, the actual experiments are performed on thinyhere
guasi-one-dimensional submicron metallic or semiconductor

based loops pierced by a magnetic fluk, and A reveals e
the Aharonov—Bohm effediABE)*> Apac=7¢ fﬁ dl-(EXo), 5
q D
Aeas=7; § A‘d|=277¢#0, 2 Apg=sm(1—cosy), (6)

where®,=hc/q, g is the charge of a conduction partidle. hereug is the Bohr magnetork is the electric fieldg is the

The ABE-oscillations of the diamagnetic momethie  charge carrier spin vectoy is the tilt angle of a magnetic
PC39 reflect the broken clockwise-anticlockwise symmetrytexture,s=*1 is the spin projection on a magnetic field.
of charge carriers momenta caused by the external vector As (d/d®)(A¢)=2n/®,, the PC can be a nonzero
potential. The PC is defined as function of Apact+ Ay even atA g g=0.

1063-777X/99/25(7)/5/$15.00 541 © 1999 American Institute of Physics
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It was proposed in Ref. 4 to create a spatial distributionwhereT is the temperature, indg>numerates the roots of the
of the charge carriers spins through the hyperfine interactioequation:

with polarized nuclei. The contact hyperfine interactich is

8

th:?gﬂvsﬂnzi li-od(r—Ry), (7)

where u,, is the nuclear magneto, is the g-factor, |;, o,

R;, r are the nuclear and the charge carrier spins and the F()—
position vectors, respectively. Once the nuclear spins are po-
larized, i.e., if{Z;1;) # 0, the charge carriers feel the effective

e(n)=p. (12
Here ¢ is the eigenvalue of the Schiinger equationu is
the chemical potential and

1

272

de

an ’ (13

n*ns:j)

field By¢(t) which lifts the spin degeneracy even in the ab-is the crossover temperature.

sence of an external magnetic field. At low temperatures, the

nuclear relaxation rates are inconveniently smil particu-

In what follows we solve the Schdinger equation for
the charge carriers confined to a 1D-ring with the ragiys

lar in GaAs/AlGaAs the nuclear spin relaxation times are ofobtainn{? andT(), and analyzé ¢ in various geometries.

the order of 18sec!® The Zeeman splitting reaches one

i). The in-plane polarized nucleiA ¢g=0. The charge

tenth of the Fermi energ¥:*2 The Aharonov—Casher phase carriers Hamiltonian takes the form

(5) arises from the spin-orbit interactibhwhich in GaAs/
AlGaAs 2D-gas has the forth
o
Hso:g(O'Xp)'Vy (8
wherep is the charge carrier momentumjs the normal to

the surface, «=0.2510%eV-cm for holes* and «
=0.6-10"%eV-cm for electrong?® and

*

m

A‘PAC:F é a(VX O')d| (9)
The combinationA g,c+ A gg itself does not depend

on By explicitly, the oscillatory dependence oBy¢(t)

emerges in the PC through

cos(2m/s(Bn)/A)° where ug(By) is the Zeeman shifted

chemical potential of the charge carriers with the spin pro-
jections, andA is the spacing between the quantized electron

the mesoscopic factor

~n2
~ p A
H= om* + %{aﬂ- n!p}Jr_gMBBhfo'xv

(14
hereBy,; is oriented along the-axis in thexy-plane,m* is
the effective massg is the g-factor, {...} . stands for the
anticommutator,
o-N=0,CoSp+aySing,
p=—(itlp)(dlde—i(P/Dy)), Dy=hcle.

Consider weak spin-orbit coupling<<Ap, where A
=h22m* p2.
The spectrum linear im is

levels in a 1D-ring. The effect of Berry phase in 2DEG basedynere

AISb/InAs/AISb heterostructure was observed in Ref. 16.
In this paper we consider PC in two caseswhen nu-

clei are polarized along a certain direction in the plane and i

.y ®\?2 B oA @\ (@ cose)
&y = n—go +Qubnt= n—go “24p
(15
1 27
(acosp)= -— dea()cose. (16)
2 0

when nuclear spins form an out-of-plane crown texture. We

show that:
i). In this caseA ¢g=0, andA@,c#0 only if the spin-
orbit coupling is inhomogeneolsr= a(¢)] such that

J‘Zﬂdqoa((p)ei"’#o. (10)
0

The inhomogeneity of the spin-orbit coupling plays the

same role as the topologically nontrivial spin texttiré.
ii). In this case the PC exists at=const and even at
a=0 the PC is nonzero due thog .

CALCULATION OF PERSISTENT CURRENTS

The induced PC is given by the E() at ®=0. The
standard algebrdsee the Appendix gives the following
equation for thd p¢:
sin(27ind))

> T < , (17)
I sinh(IT/TW) o0

The PC takes the form

4reT

sin( 2l u/ A)sin( b/ VA w)
lpc= W<a COS(P>|21 I

sinn( 721 T/\A )

(17)

whereb=gugBns(t).
At low temperatures <A u/7? the r.h.s. of Eq(17)
takes the form of the series rectangles:

4e cos ~ b
loc= o \/,L/Ag( p 277\/#/A( 1- ﬂ”

— (18)

|

whered(x) is the rectangle with the heightA u/#T and the
width 72T/ \JAu<1 centered at the poinis= 27k, wherek
is an integer. The magnitude bf: (17) is of the order of

o
|PCNE|0, (19
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wherel g=eVg/27p is the magnitude of a normal ABE per-
sistent current. At high temperaturegs> A u/m2=T, the

PC decreases with temperature in a standard exponential

way:

8mweT
IPCE ﬁAp

X sin(2m\JulA)sin(mb/ VA ).

(a cosg)e” mTIER

(20

In submicron rings, the opposite limit=Ap is more
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4eT
o=
COS
; sin( e . ‘D>) sin(2l il A)sin( rlb/ A )
p
X
Z‘l Sinh( 72T/ A p2)
(24)

In mesoscopic devicels decreases with time exponen-

favorable. In this case we can perform the perturbatiorfidly b~boexp(=t/ty). The time scale, is macroscopically

scheme over the “parity” of the spin-orbit coupling. One
can achieve slowly varying on the scale Iq'f1 coordinate
dependent(¢) by means of a controlled distribution of im-
purities. If the “even” component« cose) is made much
larger than the “odd” ong « sin¢) the unperturbed Hamil-
tonian takes the form

a2

p 1 )
o+ g{aax cose,p}+ —gueBnoy,

H= (22)

and the Schidinger equation can be solved exactly. The

spectrum is
. (acose)|?
Sn:A<niW +gugBns- (22)
The perturbation potential is
.1 L
V= ﬁ{aay sing,p}, . (23

One can easily see that the first correction ovep the

spectrum is zero, and the second correction is negligible at

b>(alp)JulA.
The PC is

| | I
400 b 600 800

I
v 200 1000
FIG. 1. Dependence dfc uponb when nuclei are polarized along a certain
direction in the plane fop~10*, a/p~2. (u, alp, b and T are expressed

here in units of A; | in units of |y; for real submicron ringsA
=103%-102K.)

long at low temperature®. The dependence of tHec onb
(i.e., ont) for Eq. (24) is shown at Fig. 1.

Equation(24) differs from Eq.(17) provided{a cose)
~Ap. If the fluctuating componer(x cose)<Ap, the result
(24) is reduced tq17).

ii). The polarized nuclear spins form a crowkgg# 0.
Consider By; directed along the cylindrically symmetric
crown (Fig. 2) tilted to thez-axis by the angle. The elec-
tron spectrum can be obtained exactly following the paper.
We represent the Hamiltonian in the form

. ( 9 ®\?2 1[0 e'¢

H=A 15018, T21lee o )
il B CD) bsi b 2
; I£ ao Siny . COSxo,. (5)

The solution to the spectral equation is

(26)

W, dm=12¢
(Wzé(mﬂ/m),

wherem=n+1/2,nis an integer.

X

FIG. 2. By directed along the cylindrically symmetric crown tilted to the
z-axis by the angley.
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The spectrum is where\ ,=m+ (®/dDy), k=cosy—(a/Ap)siny. The depen-
dence of the PCEq. (36)] on b calculated numerically with
o2 12 the spectrum27) is plotted at Fig. 3.
en=A N2+ i[ A%+ 7 N2 +2A kb 02| After some straightforward but cumbersome calculations

(27)  We get atk<<1 the asymptotic expression fogc

|
| :@i 1  sin(ml w1+ (ua? Ap?b?))sin( 2l \ul sm(wlb/\/_
P |=1( sinh( 721 T/\Ap)

(28)

Consider the case of a *“strong” Zeeman splitting The remarkable feature of the E®8) is that|pc#0

b>(alp)Jul/A. In this limit one can easily see that even ata=0 whenA pg#0,*= 7, i.e. aty#0, 7w/2, (modr).
(= 1) sin(7l k) =sin(ApactApg), (29)
where APPENDIX

*

Aopem27 ahz o siny. (30) In this chapter, following the lines of Ref. 19 we perform

the derivation of the PC for the arbitrary dispersion law of
Equation (30) is evidently obtained from the general charge carriers.

definition (5) by the substitutions At a fixed chemical potential, the PC is

(VX o)—a,—siny, (3D - [

. X L . lbe= 2 ey (A1)
which means that in a “strong” hyperfine field all the spins n=-e
are aligned to the crown direction. wherei,, is the partial current of thath orbital:

In a “weak” hyperfine fieldb<<(a/p)\u/A, the topo-
logical phases are expressed in terms of averaged spin com- ; _¢ ‘9_8_ (A2)
ponents: " hon

am* Making use of the Poisson summation formula were
Apac=27—5 p(0,), (32 present the r.h.s. ifA1) in the form
A
where(o,)=bAlu(p/a)siny<1, and oot f '98’ f/”T
h It 4

Agg=m(1—cosy){c,), (33

where(a,)=b\A/u(p/a)<1. L8 2 f (ﬂs/&n)cos(anl)
hi<h )=y q
eT

| =—Flog(e (eM=wiTy 1)|*

200 A
+4nT - E > Imemin (A3)
hi=1 Im(ny)>0
100 . .
wheree(n,) =+ 2i7T(2k—1), which gives aff < u:
0 ot imT(2k—1) Ad
M=Nr delon|n_n, (A4)
-100 . .
U Eventually, we arrive to Eqg11)—(13):
-200 V] eT Sin(277|n(,:j))
lpe=—2, 2 ————| (A5)
l 1 | 1 hOT=1T SinnIT/TW)
i ; . 1 |oe .
FIG. 3. Dependence dfc uponb in the case when nuclear spins form an () — ge ()Y _
out-of-plane crown textucre.;<(~0.5, u~10% alp~2, quantitiesb, T, u, L " 22 on oe(NE)=p. (AB)

alp are expressed here in units &f | in units ofl).
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SinceTW for variousj vary insignificantly? we safely
replaceT) by some averagedi=T(0) and get

'; > sin(2aind)). (A7)

eT <
lpe=— > sinh?
hi=1 T/ |
*)Deceased
**)E-mail: vagner@labs.polycnrs-gre.fr
YThe external flux is swept adiabatically slowly with time, and, in fact, one
observes oscillations with a certain temporal period connecteddnjth
2E.g. for in-planeBy,-configurationT * = = b, so the difference between
different T is of the order 0By, /u.
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(Submitted November 30, 1998; revised March 9, 1999
Fiz. Nizk. Temp.25, 731-736(July 1999

Temperature dependences of acoustic emission and relative intensity of some structural x-ray
peaks for proustite (A#\SS;) samples are investigated in the temperature range 100—300

K. Anomalous behavior of the obtained dependences is observed 850 K. The experimental
results have been analyzed by using different models of positional disorder of the silver
sublattice. The entire body of the obtained data can be explained assuming that an increase in
temperature starting fromi~ 150 K leads to predominant disordering of the part of the

cationic sublattice of proustite, that is formed by right spirals (AgS)© 1999 American

Institute of Physicg.S1063-777X99)01307-9

Unique physical properties of proustite (#$S;) crys-  surements were made on polycrystalline samples obtained by
tals at low temperatures are mainly due to it labile cationicgrinding proustite single crystals. A&sS; powders were
sublattice. For example, the instability of the silver ionic sieved through a screen with 400 mesh/inch. The samples
subsystem is responsible for the well-known phase transiyere prepared by using nitrocellulose varnish in the form of
tions (PT), namely, PT-1 T;~60K) leading to the forma- gisks of 1 mm thickness and 15 mm diameter. X-ray diffrac-
tion of the incommensurate phase, PTi2{ 50K) accom- {jon patterns were obtained on monochromatizedkGara-

panied by a change in the magnitude and direction of thejation (operating conditions for the x-ray tube BSV-29 Co

structure modulation vector, and PT-35(28K), viz., a are as follows:U=35KV and|=30mA) in the scanning

ferroelectric transition resulting in a field-reoriented sponta- : _ o G N
neous polarization. In addition, Smolenskiial,! who dis- mode with a steph(26) =0.027, build-up time 10-30 s, and

o . sample rotation in the plane of the reflecting surface at a

covered the splitting oE-mode in the Raman spectra &t 1 . .
~150K, concluded that proustite crystals also display pr-4requency of 2 (oq a dlffr.actomet.er DR,ON'A"O? with
accompanied by a lowering of symmetry to the monoclinicBragg-Bretano focqssn)gThe integral intensity of structural .
symmetry(hypothetically,C4,— Cg). The PT-4 temperature peaks was determined as the area under the corresponding
(T~200K) was determined by extrapolation of the obtainedcurve on diffraction patterns. The error in determining the
experimental dependences to higher temperaftfres. the peak intensity did not exceed 5%. In the temperature range
same time, independent analysis based on the same Ram&#0—-293 K, diffraction patterns were obtained on the low-
scattering method did not confirm the existence of this PT irfemperature attachment URNT-180 in the standard form.
AgsAsS; crystals®® Thus, not only the origin, but also the The error in maintaining the temperature did not exceed
existence of PT-4 remain unclear. In this connection, we de==0.5K. The x-ray measuring techniqgue was on the whole
cided to carry out a complex investigation of proustite in thesimilar to that used earlier in Ref. 8.
temperature range 100-300 K. The temperature dependerg€T) of the acoustic emis-

Since the PT-4 is determined by external effects such asjon intensity of a proustite crystal obtained for a relatively
the electromagnetic f!elﬁ,we chose the acoustlc_ emiSSION sjow variation of temperature~(1 K/min) is shown in Fig.
method f_or our experiments. It was proved ea_rller that this; |t can be seen that the(T) dependence has a clearly
method is not only extremely sensitive to various PT, b”tmanifested peak &~ 150 K (which is reproduced success-

also makes it possible to make measurements W|thc_)ut @MWilly in repeated measuremepténdicating structural varia-
external effect on the sampi€.Moreover, x-ray diffraction . N : .
tions occurring in proustite at this temperature.

atterns of proustitéin particular, temperature dependences i . .
P P @n p P P In order to determine the possible variation of the prous-

of the relative intensity of a number of structural peaksre . . . .
tite structure, we analyzed its x-ray diffraction patterns at

investigated in the temperature range indicated above. ) _
Synthetic single crystals of ABsS; were grown in four different temperatures: 100, 130, 170, and 293 K. The

Uzhgorod (Ukraine by the Bridgman—Stockburger tech- analysis of the diffraction pattern geometry carried out by us
hique. The samples intended for acoustic measurements wdfgds to the conclusion that the spatial gro@fy, of the

in the form of plane-parallel plates of a Y- or Z-cut of thick- crystals AgAsS; does not change in the temperature range
ness 0.8—1.7 mm and the surface area 30—5&6mFhe 100-293 K, which is in accord with the results obtained
method of measurements of temperature dependences edrlier? At the same time, along with the conventional de-
acoustic emission is described in detail in Ref. 6. X-ray meacrease in the intensity of diffraction peaks upon heating
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1,0 core of a cell is determined by anionic pyramidal groups
AsS; whose vertices are oriented in the direction of the polar
axis C. Octahedral voids located between As®mplexes
form helical channels parallel to th€-axis. A hexagonal
unit cell contains 36 voids of this type, only 18 of them being
occupied by Ag ions. A completely ordered silver sublat-

1 tice corresponds to the equilibrium position of At the
center of every second void. As a result, Aigns form right
and left helical chains (AgS)with a stepc/3, which are

p parallel to the third-order axis. The nearest ions in two neigh-
boring chains are not coupled with one another and are dis-
placed byc/2 in the direction of theC-axis. Thus, two mu-
tually penetrating sublattices are formed in the structure of
proustite, one of whicHdenoted byA) contains only left
spirals (AgS)., and the otherB) contains only right spirals.

1 1 Vacant crystallographic positions and those occupied by
150 180 Ag* ions alternate in the case of complete ordering. We
T,K denote byV A andVB the combinations of vacant positions
in the sublatticeg\ andB, respectively. Consequently, in the
8rystal structure of proustite we can single out four groups of
positions for silver ions, two of whiclfA and B) are com-
pletely occupied by Ag ions in a perfect crystal, while the
(which is typical of most of reflexes for proustiteve ob-  Other two(VA andVB) are vacantsee the figures in Refs. 2
served an anomalous temperature dependence of the relati®gd 4.
intensity of four structural peaks with indicé2.2), (23.2), However, some of vacant positions in a real crystal are
(31.2, and(20.2. For each of these reflexes, we obtained thedccupied by Ad ions? For this reason, the ionic occupancy
temperature dependences of relative intensity with a temf €ach sublattice will be specified by the average occupancy
perature step 6—8 KFig. 2). It can be seen that there are two Of the positionsP;=n; /N;, wheren,; is the average number
temperature regions with basically different types of this de0f Ag™ ions in theith sublattice and\; the number of avail-
pendence:the relative intensity decreases as the temperat@@e crystallographic positions in the given sublattice. For a
increases from 100 to 140-160 (Kormal region, and in-  hexagonal unit cell of proustite, we can obviously write
creases at higher temperatur@momalous region This is  N(A)=N(B)=N(VA)=N(VB)=9. Then the structural am-
manifested especially clearly for the diffraction pe@8.2  Plitude Syy(q) of the silver sublattice we can present in the
Whose intensity Changes by more than 25%. form Of four terms reﬂecting the f|”|ng Of the indicated

Let us analyze the obtained experimental data. Hexagdd"oups of positions. Consequently, the structural amplitude
nal unit cell of AgAsS; contains six structural units. The S(q) of proustite has the form

S(q) = Sag(q) + Sas(d) + Sg(q) = f ag(A) Bag(a)
9
- A X PA_Zl ex —2miq-R(A){]
=

Intensity
(=]
w
T

1
0 120

FIG. 1. Temperature dependence of the acoustic emission intensity of
proustite crystal withiZ-cut. The heating rate is'1 K/min.

iy Yo 9

100 am u g & &A& +PBJZl exf —2miq-R(B);]
Q

-~ A(C%A NG 0
= (@)
2 400 4 +Pya>, exd—2mig-R(VA);]
2 L A =1
c
- A A 9
A . +PygY, exg—2miq-R(VB)]
=1
0.80} A
A A 6
AA +fAs<q>BAs<q>j§1 exp(—27iq- R(As)))
700 150 200 350 -
T, K H(@BY(@ 2, exp~27ig-R(S)y, (D

FIG. 2. Temperature dependences of relative integral intensity of diffraction . .
peaks for proustite with differenthkl) indices: (23.2 (dark triangley Wh_ereq is the scattering VeCtOBAg(Q):eXp_(_MAg)' M ag
(20.2 (A), (31.2 (O), and(12.2 (M). being the Debye—Waller factor for Ag ions, R(A);,
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TABLE |. Possible limiting types of disorder of cationic sublattice for 1.6

proustite crystals. i, Xi

Type Transition Population of positions L

[ A+B—VA+VB P=P,=Pg, Pya=Pyg=1-P,

[ A+B—VA P=Pa=Pg, Pyg=0, Pya=2(1—P,) X

1] A+B—VB P=Pp=Pg, Pya=0, Pyg=2(1-P,) 1.2

\Y A+B—surface P=P,=Pg, Pya=Pyz=0 o

v A—VA+VB  P=P,, Pg=1, Pys=Pyg=0,5(1-P,) CA L VIL X

Vi A—VA P=Pa, Pg=1, Pyg=0, Pya=1—P, [7 2

Vil A—VB P=P,, Pg=1, Pys=0, Pyg=1—P,

Vil A—surface P=P,, Pg=1, Pya=Pyp=0

IX B—VA+VB P=Pg, Pa=1, Pya=Pyg=0,5(1- Pg) 0.8+ v

X B—VA P=Pg, Pa=1, Pyg=0, Pys=1—Pg

X A—VB P=Pg, Pa=1, Pysa=0, Pyg=1—Pg

XIl Bosurface  P=Pg, Pa=1, Pys=Pys=0 - w,w“

Remark A and B are sublattices with left and right spiral¥A and VB v
- .

vacant positions in sublatticés andB, P;=n;/9 is the average population L L L :
of positions in thdth sublatticen; the average number of silver ions in the 04 0.6 0.8 1.0
ith sublattice(the number of positions for each sublattice )s 9 P, rel. units

FIG. 3. Dependences of the structural factor on the population of positions
) by Ag™ ions for the diffraction peak23.2. The figures on the curves indi-
R(B);, R(VA);, R(VB); are the radius-vectors of crystal- cate the number of the corresponding type of disotdee Table).

lographic positions of the corresponding sublattices, and
fag(0) is the atomic scattering function for the Agon. The
corresponding quantities for S and Ag are denoted in théhe populationP of the main positions in the range &
same way. The values of the Debye—Waller factor and the=0.5—1.0 for each type of disordering for the same Debye—
coordinates of all atoms of each species required for calcu#/aller factor. Figure 3 shows the calculated dependences of
lating |S(q)|? are determined in Refs. 10 and 11. The coor-|S(q)|? on P for the reflex(23.2. It can be seen that an
dinates of vacancies for Agions were calculated on the increase in the intensity of this reflex with temperature is
basis of the results reported in these publications. possible only in three caséwe assume that the heating of
The effect of the temperature dependence of the Debyethe crystal is accompanied by a decreas®jnSubsequent
Waller factor(in the Debye approximationon the relative calculations proved that an increase in the intensity of dif-
intensity of each of the four peaks indicated above for invarifraction peak$23.2), (12.2), and(31.2 with temperature and
able occupancies of atomic positions in the proustite struca simultaneous decrease in relative intensity of the remaining
ture was analyzed at the first stage. Calculations based awbserved reflexes can be explained only for one of the three
formula (1) proved that, from the four diffraction peaks, an types of disordering, namely, Ill, IX, or XI.
anomalous behavior of relative intensity can be due to in-  Moreover, for each of the types indicated above, we cal-
verse temperature dependence only for the g@ak2) (the  culated the dependences|&{q)|? on the population of po-
same dependence was observed earlier for some othsitions for all other structural peaks observed on x-ray dif-
compounds!? As regards the reflexe€l2.2, (23.2, and fraction patterns. It was found that for the case Ill, an
(31.2, an increase in their relative intensity with temperatureincrease in the relative intensity of the refl€x1.1) with
can be explained only by a change in population of crystaltemperature must be almost an order of magnitude higher
lographic positions by individual atoms. Arsenic and sulfurthan the increase in the relative intensity of the ref2.2,
atoms in AgAsS; crystals are coupled through a quite strongwhich contradicts the experimental data. Thus, the anoma-
covalent bond, while silver atoms are coupled by a relativelyjous behavior of the intensity of diffraction peaks can be
weak ionic bond, which is manifested, for example, in a highexplained for the 1X or XI type of disordering. It is interest-
ionic conductivity of proustite, attaining values ing to note that both these models are connected with disor-
~10 3Sm/m at room temperatutd.For this reason, we dering of Ag" ions with right spirals. In the former case,
considered the influence of possible migration of silver ionsgdisordering occurs equiprobably over all vacant positions,
on the structural amplitude of proustite. An analysis of vari-while in the latter case it takes place only over free positions
ous possible types of disordering in the cationic sublattice ofn right spirals. A numerical comparison of experimental re-
proustite made it possible to single out twelve limiting ver- sults(see Fig. 2 with calculated values of the change in the
sions of disordering presented in Table I. Unfortunately, wentensity of peak23.2 (see Fig. 3 speaks in favor of the XI
cannot analyze directly the temperature dependence ohodel of disordering. Thermal disorder occurs in all prob-
|S(qg)|? for each type of disordering since the temperatureability over all possible positions, but the probabilities of
dependenceP(T) of population of the main positions by populating vacant positions in different spirals are obviously
Ag” ions for Ag;AsS; crystals differs from the exponential different.
dependence and has not been determined in the general form Since the motion of ensembles of point defects is a pow-
to our knowledge. For this reason, we calculated the depererful source of acoustic emissidrihe onset of thermal dis-
dences ofS(q)|? of the reflexe$23.2, (12.2, and(31.2 on  order for right spirals must be accompanied by the emer-



Low Temp. Phys. 25 (7), July 1999 Borovo et al. 549
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In the analysis of dynamics of an ideal system as well as a system with point defects, the role of
interaction is considered not only for the nearest neighbors. The Green’s function is

constructed for steady-state vibrations of a chain at all possible frequencies. It is shown that, if
the interaction with the next-to-nearest neighbors is taken into account, the Green’s

function inevitably becomes double partial, the nature of its two components depending
significantly on its eigenfrequency. It is found that the Green’s function for frequencies of the
continuous spectrum of small vibrations has one component of the plane wave type,

while the other component is localized near the source of perturbations. Such a Green'’s function
describes the so-called quasilocal vibrations. At certain discrete frequencies falling in the
continuous spectrum, the quasilocal vibration is transformed into local vibrétiah does not
propagate to infinity The conditions of applicability of differential equations with fourth

spatial derivative are analyzed for describing the longwave vibrations of the atomic chain.
Relations between parameters of atomic interactions permitting the use of such equations

are formulated. Asymptotic forms of soliton fields in a nonlinear medium with spatial dispersion
are discussed. It is shown that most of the soliton parameters are determined by the

dispersion relation for the linearized equation. 1©®99 American Institute of Physics.
[S1063-777X99)01407-3

INTRODUCTION wave numbersk in the expansion of the frequenay (or
energy in powers ofak, wherea is the period of the dis-
An important question in the recent investigations of thecrete structurdlattice constant In the coordinate represen-
nonlinear mechanic_s of Qiscrete on_e-dimensional syst«_em@tion, higher dispersion is taken into account by supple-
goncemns the manifestations of discreteness in SOIItorflnenting the ordinary differential equations of mathematical

dynamics: Nonlinear dynamics of an isolated soliton in a : : . -
. - . ; hysics with spatial derivatives of, say, the fourth order.
discrete chain is determined to a considerable extent by th . . .
It is well known that the limiting longwave description

spatial structure, and hence a moving soliton experiences the

influence of a certain effective potential. This potential gen-Of the mechanics of a discrete system, which is based on the

erates a Peierls force for a soliton in classical dynamics, andse of differential equations with second-order spatial de-
a free quasiparticle motion band in quantum dynanigee  fivatives, remains the same for any number of interacting
Ref. 2. As regards soliton interaction, the possibility of for- neighbors. Hence such an approximation can be developed
mation of nonradiative soliton complexes, nature of regresquite effectively by using the model involving the interaction
sion of the corresponding fields, as well as admissible valuesf only the nearest neighbors and containing one parameter
of soliton parameters, they are mainly determined by thef interaction between particles. If, however, the aim of in-
dispersion relation for linearized equations. Consequentlyyestigations is to study the supplementary higher dispersion,
the first stage of investigation of this problem requires anne |atter must be characterized by an independent parameter.
analysis based on linear dynamic equations whose dispersia),c, 4 parameter can be “earned” only if we take into ac-

relations can be derived quite easily in discrete as well aRount the interaction of not just the nearest neighbors. This

continual models. This requires the discussion of certain re-.

. . . circumstance prompted the authors to undertake the present
lations between the discreteness of mechanical systems agﬂal sis of the role of interaction of second neighbors in the
the specific features of the functional dynamic equations de- y 9

scribing these systems. crystal lattice. . ) i i
On account of the discreteness of the system, the disper- Ve shall confine the discussion to the dynamics of one-

sion relation for small vibrations differs from that for the dimensional systems described by equations obtained mainly
continual description of a distributed one-dimensional sysas a result of linearization of the following two finite- differ-
tem. In the longwave approximation, this difference is takenence equations:

into account by higher dispersion, i.e., higher powers of the (1) generalization of the well-known equation of the dy-

1063-777X/99/25(7)/8/$15.00 550 © 1999 American Institute of Physics
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namics of a discrete atomic chain, which leads to the sine (43— w?)u,+ a(2uy—Un;1— Uy 1)
Gordon equation

72 —B(2Uy—Up4 2~ Uy—) =0. ()]

u

"+ wlsinu +a(2up—Upy1—Uy_1q) The dispersion relation for these vibrations, correspond-
W 0 n n n+1 n-1

ing to the solutioru,=ug exp(kn) is defined as
—B(2Uy—Upyp—Uy_2)=0, (1)

wherea and B are the constants of interaction with the next-
to-nearest neighbor;
(2) a discrete analog of the nonlinear Safirmer equa-

w?(K)= w3+ 4a sir ;—45 sirt k, (4)

where it is assumed that the atomic spacagl. The con-
tinuous vibrational spectrum is the frequency baogk w

tion (NSH) <y, Wherew?=wi+4a.
Iy ) , In the n-representation, the Green’s function for the
I~ Eothnt |l “hn—a’ 20— 1= ¥n-1) equation of steady-state vibrations of an infinite atomic chain
can be presented as follows:
+B' (2= Yni2— n—2) =0, 2 1 - dkekn
where the parameters’ andB' apparently have dimension- Gn(w)= o2 Jfﬂ 02— w?(K) " Q)

alities differing from those of the corresponding constants in
Eq. (1). The peculiarities of the Green’s function are defined by
In Sec. 1, we shall study the dynamics of the systenthe poles of the integrand on the compleglane, i.e., by the
defined by the linearized equati¢h). Note that the Green’s roots of the characteristic equation
fgnction for §uch a system is always double-patrtial, i.e.i CON- 16874+ 48222+ w(z)_ w?=0, (6)
sists of two independent components. In Green’s function of
steady-state vibrations with frequencies lying in the continuWherez=sin(/2) ands*= a—4p. Equation(6) has the fol-
ous spectrum, one of the component belongs to the localize@wing roots:
states. This means that quasilocal vibration is the typical 1
state of the system under consideration. The double-partial 25’2:8_[_5% Vs*t—4B(w5— w?)], (7)
Green’s function causes an interesting peculiarity of the B
forced vibrations in the system. The forced harmonic vibrawhere the subscript 1 corresponds to the plus sign and 2 to
tion with a frequency lying in the continuous spectrum maythe minus sign. We shall assume tlsét o —48>0.
have distributions which result in the generation of localized  The roots of the characteristic equation determine the
vibrations. This is due to the fact that the interference oftype of the Green'’s functio(b). Depending on the frequency
diverging waves away from the region of application of therange of vibrations, the root§) may be real, complex, or
distributed force leads to a complete mutual suppression gfurely imaginary.
these waves. Let us first consider the peculiarities of the dynamics of
Section 2 is devoted to the derivation of continual dy-a chain in the frequency range outside the continuous spec-
namic equations in the longwave approximation. It is showrtrum band. We begin with the frequencies< w,. Such fre-
that while differential equations with second-order spatialquencies are important in the description of the dynamics of
derivatives always have a region of applicability as the long-an atomic chain in the presence of a defect or asymptotic
wave approximation for discrete equations, the applicabilityforms of bion-type soliton fields. Localized vibrations may
of equations with fourth-order spatial derivatives is confinedemerge in this case.
by rigid constraints imposed on the parameters of the initial  In the frequency intervaly,<w<wo, Where w?= w3
equation. In particular, a consistent derivation of the func-—s%4p, the roots(7) will be purely imaginary:
tional equations with fourth-order spatial derivatives can be
carried out in the description of steady-state vibrations by zj=i¢;=i sinhﬁ (j=1,2),
taking into account the interaction with nearest as well as 2
next-to-nearest neighbors in the atomic chain. 1
It is shown by considering a simple example that the 4“%’2:@[5% \/SA—4B(w(2)—w2)]. 8
main parameters of the soliton solution of the N&Esuch
an equation exisisare determined by the linearized equation, The Green'’s functiorf5) for frequencies below the continu-
irrespective of the structure of the nonlinear term in the equaseus spectral band in the interval.<w<w, can be calcu-
tion. lated easily:

1 e kalnl e xaln|
168(2-3) | L1+ O L1+ O (,9)

Gn(w)=
1. LINEAR DYNAMICS OF A DISCRETE ATOMIC CHAIN
Green’s function of a discrete systeRor the harmonic ~ wherex;=2 sinh ! ¢j (J=1,2) are the parameters character-

steady-state atomic vibrationg,(t) =u, exp(—iwt), the lin- izing the spatial regression of the amplitudes of local vibra-
earized equatiofil) can be written in the form tions with increasing distance from the defect. Note that if



552 Low Temp. Phys. 25 (7), July 1999 A. M. Kosevich and S. E. Savotchenko

next- to-nearest neighbors are considered in the atomimesponding to the upper edge of the continuous spectrum

chain, the Green’s function becomes double-partial, i.e., itw’= w2 =w3+4a, it describes nonuniform vibrations in

consists of two partial components that decrease exponemvhich adjacent atoms vibrate in phase.

tially in different ways. Problem of natural local vibrations of a chain with a
Note that in addition to the uniform vibration witkh;  point defectLet us consider harmonic vibrations of a chain

=0, which is the only one existing for a purely quadraticin the presence of a point defect which is an isotopic impu-

dispersion law, a nonuniform state witty#0 (sint(«,/2) rity at the siten=0. In other words, we shall assume that this

=s?/453) supported by certain boundary conditions may ex-site contains an atom of malé which differs from the mass

ist at the limiting frequencyw= w, corresponding to the m of the remaining atoms in the chain. In this case, we must

lower edge of the continuous spectrum. In particular, thisconsider instead of3) the equation

means that there exists a basic possibility of the existence of

dynamic solitons for nonlinear equations of the ty{e or

(2) even with an eigenfrequeney= w,. — B(2Up—Upsp—Upy_5) = fU,Sn0, (15)
For w<w., the roots(8) become complex, i.e.k;,

=k=*iq, wherex andq are defined by the relations

2 2
(05— 0 )Up+ a(2Un—Ups1—Up—1)

wheref=(M—m)w?/m is the parameter characterizing the
defect, andd,; is Kronecker’s delta. The formal solution of

@ . _ wi—w?| 2 Eq. (15) can be written in the following form with the help of
coshk cosq= 4B’ sinhx sinq= 48 Green’s function(5):
up=—fugGu(w). (16

Beginning from the frequencies lower thar, a transi-
tion takes place from ordinary to generalized local vibra-  The dispersion relation defining the frequencies of local
tions. By generalized local vibrations we mean vibrationsvibrations can be obtained frofi6) by puttingn=02%
whose amplitude decreases in an oscillating manner with in-

creasing distance from the defect. In this case, the Green’s 1+1Go(0)=0. 17
function can be presented in the form In this case, we can use Green’s functi® to obtain the
, dispersion relation for local frequencies falling in the interval
exp( — «[n[)sin(q|n|+ ¢) O D<A’
Gh(w)=— (02— ) (2= ?) (k= )T (10) ¢ 0
Cc m > [ &5
here the phase is defined by the relati f=168({5-5) Gl 1 GV (18)
where the phase is define the relation = 1762 :
prase Y N1+ 8-+ 8
tan 2p= sinh 2« sin 29 (11  Where the parametets (j=1.2) are defined by relatiof8).

2(sinlt k cos’ q—costf « sirF q) ° In the frequency rangew<w., we can use Green’s
, . function (10) and write the dispersion relation for the fre-
. L?t us now analyze_z Grgens function for s_;teady Statequencies of generalized local vibrations in the form
vibrations with frequencies higher than the continuous spec-
tral bandw> w,,. In this frequency range, one of the wave  fsing=—(w2— 0?3 wi— 0?) ¥ (02— wd)¥. (19
numbers is complexki = 7 +i«k,), while the other is purely

imaginary k,=ix.). In this case, the Green’s function is Naturally, local vibrations with frequencies lower than

the continuous spectrum can emerge only for0, i.e., in

defined as . ;
the presence of a heavy impurity.
(—1)"e xlnl g K2lnl Similarly, substitution of Green’s functiofl12) into EQ.
Gp(w)= 1687+ 3 | L1+ )2 + =17 (17) leads to the dispersion relation for high-frequency local
1 2 1 2

12 vibrations:

{10oV1+ {1V 51
LVI+HO+OVG-1

, 1 > > where the parameter§ (j=1,2) are defined by relations
G=ggN(atap)’+ap(o’~op)—a—4pl (139 (13 and(14).
Local vibrations with frequencies higher than the con-
, 1 5 S tinuous spectral band emerge in the presence of a light im-
52:@{\/@”43) ta4p(o°—wp) +at+4pl. (14 purity (for f<0).
Forced local vibrationsLet us now assume that the at-
For B=0, the second term if12) vanishes, and the oms in a chain are subjected to certain distributed forces
Green’s function naturally coincides with the expression forF,, exp(—iwt) localized in the vicinity ofn=0. In this case,
the Green’s function of a discrete chain in which only thethe steady state solution of the dynamics of a chain can be

where {;=sinh(x;/2) and {,=cosh,/2), and the param- f
eters{; (j=1,2) are defined by the relations

=—16B8(L3+(3) : (20)

nearest neighbors interact. written with the help of Green'’s function in the form
Note that the second term {12) is not typical for the

vibrations of a chain with interaction between nearest neigh- = _E Gn_n(@)Fpr . (22)

bors only(when 8=0). Even at the limiting frequency cor- n’
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Let us assume that the distribution of forces has the fornthe continuous spectral baneh<w<w.,. In this case, vi-

Fn=(8on+ 01n)F, (22

i.e., two adjacent sites of the chagay,n=0 andn=1) are
subjected to identicdin magnitude and sigrexternal forces
oscillating with frequencyw=w,,. If the frequencyw is

equal to the limiting frequencw,,, the chain may undergo

local vibrations with all the atoms in the same phase:
F(1+e?)

— KoN

U,=— e "l 23
" 168G (G- 1) 3
whose parametet, is defined by the relation
. Ko «a
sint? 2" (24)

Obviously, one of the terms ifil2) may not “operate”

brations emerge with one mode localized in the vicinity of
the defect, the other being a standing wave. Such vibrations
are called quasilocal vibrations. In the frequency range under
consideration, the characteristic equati@ has two real
roots

1
Zi=g5l s+ 4P 0f) <], (31
and two imaginary roots
1
gl S B 0D+ 7). @2

Hence one of the wave numbeks=2 sin 1z will be real
and the othek,=ik, (k,=2 sinh 1 ,) will be imaginary.
Using formulas(31) and(32), we can calculate Green’s

for some types of coercive external force. For example, let ugunction (5) in the frequency range of quasilocal steady state
consider the action of oscillating forces applied to the sitewibrations:

n=0 (force Fy) andn= =1 (forceF,), i.e.,
Fn=FodontF1(81nt -1n). (25)

In this case, we obtain frorf21) the following solution by
taking into account the distribution of force®@5) and
Green’s function(12):

1 (—1)"(Fo— 2F, coshky)e*aln
C168(5+ 53 { LA+
(Fo+ 2F, coshk,)e xaIn

L(GG-1DY? ]

If forces Foy and F, have opposite signs ané | >2|F,|,
there exists a frequenay for which

Fo
2F;

In this case, Eq(26) is simplified and assumes the form

u,=

(26)

. (27)

coshk,= ‘

(—1)""12F y(coshk, + coshk,)e <

Gh(0)=iB(w)ek N+ M(w)e 2" (33)

where
B(w)=[168z,(Z3+ (3)1-Z] 2,
M(w)=[168L(Zi+ (5)N1+ 5]

Taking Green'’s functiori33) into consideration, we can use
the familiar relation

1
9(0?)=—Im Go(w)

to calculate the density of vibratiordistribution of states in
squares of frequencigsf a defect-free chain:

1
16mB(Z3+ ¢5)z1(1—z) Y%

g(w?)= (34)

For a certain distribution of forceg,,, the solution in
the region of the continuous spectrum can be obtained from

U= TN EY: ) (28)  (21) with the help of the Green’s functiof83):
o1tz ! —iB(w)F*(ky)e ki"—M(w)Q(— k,)€2", n<0;
Such a solution can describe the asymptotic forms of atin= —iB(w)F(ky)€*1"— M (w)Q(ky)e 2", n>0,
enveloping soliton for high-frequency localized vibrations. It (35)

can be seen that such a soliton can emerge at quite specifi

eigenfrequencies.

If the forcesFy and F; have the same sign, localized

vibrations

2F ,(coshk, + coshk,)e™ <2
16BLo(L5+ 51

: (29

Un

WhereF (k) =3 F.e " andQ(x) =3 F &2,
Let us assume thd,=F_,,. There may exist a sym-
metric distributionF,, for which the condition
F(k)=>, F,coskn=0, (36)
n

is satisfied for a certain value &f i.e., the Fourier compo-

corresponding to the motion of atoms in the same phas@ent of spatial distribution of forces vanishes. In this case,

emerge at a certain frequeneydefined by the equation

coshk;= (30)

_0
2F "

the solution is localized for an appropriate frequercyle-
fined by the conditior(36):

Up=—M()Q(rz)e *2", (37)

Peculiarities of vibrations with frequencies lying in the where the parametet, corresponds to such a frequency.

continuous spectrum bandhe inclusion of interaction with

Thus, interference of waves excited by the chosen distri-

next-to-nearest neighbors leads to the emergence of addbutionF, of force leads to mutual suppression of vibrations
tional peculiarities of vibrations with frequencies lying inside away from the region of application of such forces. In other
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words, a localized state appears in the continuous frequendy satisfied, the incident wave is reflected completely at the
spectrum, which cannot be expected in a distributed dynamidefect and an asymmetric state corresponding to a standing
system with interaction of nearest neighbors only. wave which exists only along one of the semi-axes, and to

Let us suppose thaE, has the form of a two-hump modes localized on both sides of the defect is realized:
distribution:

. M(o) _
Fn=¢(n—ng)+¢(n+nyg), (39 Uo| 2i sm(kln)—fme"zn , h<0;
where ¢(n) =¢(—n) is an even function. In this case, Eq. Un= M(w) (43
(36) holds for all values ofk satisfying the condition — Uof D(w)e 2 n>0.
coskny=0, i.e., for k=(2p+1)w/2ny, where p=0,%1, ]
+2 .+ (np—1). It follows from Eg. (42) that asymmetric stateg3) can be
Even if we do not require that the functiop(n) be realized at frequencies defined by the relation
even, it can easily be shown that there exists at least one f=—16,8§2\/1+—§§(z§+§§). (44)

value ofk for which condition(36) is satisfied.

It is obvious that there exists a discrete set of frequencies The emergence of such an asymmetric sta4® with
falling in the continuous spectrum, for which the force thatfrequencies in the continuous spectrum was detected in Ref.
depends harmonically on time and has a spatial distributio® Where the scattering of an elastic wave at a plane defect
(38) does not excite any radiation at infinity. Distribution of Was considered in an isotropic medium. Similar peculiarities
the type(38) simulates the behavior of the nonlinear term in Were observed for the discrete model of an fcc crystal in Ref.
(1) or in (2) for the case when such an equation has a twob, where the results of numerical calculations were analyzed.
soliton solution. If such a solution does exist, it corresponddt should be remembered, however, that an elastic wave con-
at certain frequencies to the steady state of a pair of solitongists of two independent componefitngitudinal and trans-
Such a situation was discussed in Ref. 4. It should be em\erse, while the field considered by us has only one compo-
phasized that the possibility of existence of such a solution ifent. Consequently, the role of two components in the
the continuous frequency spectrum is determined entirely bpresent case is played by two types of eigenvibrations corre-
the form of the dispersion relation for small vibrations. ~ sponding to different roots of the characteristic equation.

It should be remembered that the localized states de- As far as the weight of the statd3) is concerned, the
scribed above belong to the quasicontinuous spectrum of th@atement made about the soluti@®Y) can be repeated.
atomic chain, and hence the weight of each of them is quite
small and proportional to ¥N, whereN is the number of

atoms in the chain. However, the weight of such states may | oNGWAVE VIBRATIONS OF A SYSTEM WITH SPATIAL

be finite in nonlinear dynamics. DISPERSION
Scattering of a wave by a point defetet us return to
the case of an isotopic point defect f&r,=f5,quy. The Linear equations of motion and Green’s functions in the

possibility of obtaining the explicit form of Green’s function functional approximationlf interaction with next-to-nearest
for the investigated system makes it possible to study easilpeighbors in a discrete chain is taken into consideration, a
the problem of scattering of the vibration of an ideal chain bysignificant change is observed in the longwave vibrations for
a point defect. It is well known that the solution of the scat-k<1 (it should be recalled tha=1). In this limit, the dis-

tering problem can be written in the form crete equatiorf3) leads to the differential equation
— yngkin d%u d%u d*u
U= X, _ (39 7+ ofu-SPog + AP =0, (45)
while the field y,, can be the presented in terms of the
Green'’s functiof whose parameters are connected with the interaction con-
G.(o) stants of nearest and next-to-nearest neightssrs.a— 4,
Yn=—Uof ——, (40) A?=(168—a)/12. We shall assume that the condition
D(w) al16< B< al4 is satisfied.
whereD(w) =1+ fGgy(w). In this solution, we must choose The dispersion relation for steady-state vibrations of a

the Green’s function corresponding to waves in the f¢88)  system without defects can be obtained easily fi@% or
diverging at infinity. In this case, the solutid89) can be from an expansion of the dispersion relati@h in the dis-

written in the form crete model up to fourth-order terms kn
. uof . w?(K)= w3+ s?k?+ A%k*, (46)
Uge 1" — 0 [iB(w)e 1"+ M(w)e2"], n<O, 0 _ _
_ D(w) The wave numberg& corresponding to a fixed frequenay
Un= . uof . can be determined fror#6):
ugekin— [iB(w)e1"+M(w)e *2"], n>0.
D(w) 2 1 2 4 2 2 2
(41 ki =5 a2 —S7 Vs'—4A% (05— 0?)], (47)

Itis interesting to note that if the condition where the subscripts 1 and 2 correspond to plus and minus

iB(w)f=D(w) (42 sign, respectively.
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Since the requirememiﬁl must be satisfied for all being localized in space and the other being a standing wave
roots of (47) in the longwave approximation, the approxima- in the entire space. Functigh?2) reflects an interesting pe-
tion based or446) can be used for describing the steady-stateculiarity of the physical properties of the system with the
vibrations of a discrete chain only at frequencjeg,— w| above-mentioned dispersion, viz., the presence of an addi-
<A if the parameters of the chain satisfy the conditgn tional spatially localized field componefgortion of Green’s
<AZ?. However, in this cas@&’?= 8—s?/12~ 8 and it can be  function), which may appear in a linear chain with defects, as
seen that Eq(45) can be used only if the next-to-nearest well as in soliton problems of a nonlinear chain. This pecu-
neighbors are taken into consideration. liarity admits the existence of localized vibrations with fre-

Let us consider the peculiarities of localized vibrationsquencies belonging to the continuous spectrum of the chain
with frequencies below the continuous spectrsr® wq. In under consideration. The conditions of realization of such
the frequency range.<w<wg, where w§= wS—s4/4A2, states in a distributed system are analogous to those obtained
the wave numberg447) are purely imaginaryk;=ix; (j in Sec. 1 for a discrete chain.
=1,2), and Green'’s function for E¢45) in the frequency Problem of high-frequency vibrationsThe standard
range under consideration is defined as technique of continual description of high-frequendyo (

1 o il g aln] — wn|<w,) eigenvibrations of a discrete chain boils down
— ( ) (48)  to the introduction of envelopes of atomic displacements for
2A"(Kk1—K3) which adjacent atoms vibrate in antiphase. Presenting the

Green’s function(48) is the longwave limit of functiorfg) ~ Solution of Eq.(3) in the form
under the assumptiaf) = x;/2<1 andA*= g. It can be veri- _ n
fied once again that if additional dispersion is taken into Up=(=1)"Pn, (53
account in Eq(45), the results match foA?= g>s?.

In the frequency range<w., Green'’s function in the
continual approximation follows naturally from the discrete
Green’s function(10):

G(x)=

K1 K2

we find that the functionb, depends weakly om in the
indicated frequency range, and obtain the following equation
in the continual approximation:

Gix) = — sin(qx|— ¢)exp(— x|x]) (w2_w2)q3+526_2(£+52(94_q):0 (54)
(x)= 2A1/2(w§— wz)l/z(wg_ W) 7% (49) m 1 ox ax* '
where Wheres'f: a+4B andB?=(a+ 16B)/12. Obviously,®(x)
1 has the meaning of the envelope of high-frequency vibra-
K2=W(2A\/wg—w2+ s?) tions. . . .
The dispersion relation corresponding to Esy) can be
and obtained easily froni4) by puttingk=7+q and expanding

(4) up to fourth powers in smali:

1
QZZW(ZA\/wo—wZ—SZ),

and the phasep of vibrations is defined by the relation

tane=«/g, the substitution® (x) =®, ex
o . = p(gx). It can be seen that for
Generalization of formuld49) to the spherically sym- large values ofg, the digpersion relation of the typ&5)

metric case 7Of a three-dlmgnsmnal system was carried out l:’é(orresponds to nonphysical behavior of vibrational frequen-
Buzdinet al.” (see Appendix

) . L cies of an atomic chain in the vicinity of the upper edge of
At frequencies w>wq, quasilocal vibrations may

. . . the continuous spectral band. The last term, which is propor-
emerge in the continuous spectrum since one of the roote nal to the fourth power ofy, “distorts” the dispersion

0*(q) = wp—siq’+Bq". (55)

Obviously, Eq.(55) follows directly from(54) as a result of

(47) will be real: relation. Hence we must confine ourselves to just the qua-
1 dratic approximation irg.
2
k2= g [~ '+ s*+4A% (0 wp)], (50 Since we assumed that>48>0, it means that the in-
) _ ) clusion of the fourth derivative in Eq54) is incorrect for
and the other will be imaginary: this model, and the longwave description of steady-state vi-
1 brations with frequencyw~ w,, must be restricted to the sec-
K2=W[Sz+ Vst HAAY(w? - wf)]. (51  ond spatial derivative in E¢54). Small values ofy corre-
_ o _ spond to the conditiohw?— w?|<a, which determines the
In this case, Green’s function is defined as range of applicability of the second-order differential equa-
G(X):iB(w)eik\x\+ M(w)e wlx| tion for the er_lvelope_ of high-fr_equency vibratio_ns.
Role of higher dispersion in soliton dynamide fact
B(w)=[2A%k(K*+ )], that the asymptotic form of Green’s functi¢48) consists of
M (@) =[ 2A2k(K2+ x2)] L. (52 two exponents allows us to make certain remarks about the

soliton solutions of the corresponding nonlinear equation,
Green’s function(52) demonstrates the properties of e.g., Eq.(2). We can write this equation for the steady-state
guasilocal vibrations: it is double-partial, one of its portionssolution¥ = z(x)exp(—iEt) in the dimensionless form
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d*z d’z 5
—_— —Xz+QZ:Z ,

dX4 d (56)

containing only one parameté? which is proportional to
E—E,.

Suppose thai56) has an even soliton solutior(x)
= ps(X) = ps(—x). An analysis of all the terms in E¢56)
gives

M
(,DS(X): m, M = const. (57)

A. M. Kosevich and S. E. Savotchenko

1
ki,zzgz (Y= \y*+ 4Bzw3).

(63

It can be seen that the longwave conditior 1 is satisfied if
y?*<B? and w3<B2.

Equation (61) has a double-partial solution as before:
one portion is in the form of a plane wave with the squares of
wave numbers defined as

1
ki:ﬁ(\/?"‘TBZG%JF %),

(64)

The expansion of this equation at infinity can obviously be

presented in the form
@s(X)=4M (e 26X — g 4xlxly (58)

Comparing the exponents i%8) and (48) where we have
made the substitutiona?=s?=1 andQ = w3— w?, we ob-
tain

1
4= =5 (1-V1-40),

1
16K2=K§=§(1+\/1—4Q). (59)
This gives
k?’=0.5 andQ=0.16. (60)

while the other is localized, and the coefficient of attenuation
of its amplitude with distance is defined by the expression

1

ngﬁ( Y*+4B2wi—y?). (65)

Obviously, the secontlocalized portion has a physical
meaning either for an external force applied to the chain
moving with a velocity V, or in the analysis of the
asymptotic forms of the field of a soliton moving with the
given velocity. It is interesting to note that relatiof@s} and
(65 have a meaning fo¥<s as well as forvV>s, but in-
evitably under the conditiofy?| <B?. As regards the neces-
sary conditions, they can be satisfied evenger0. In other
words, Eq.(61) has a physical meaning under these condi-

Thus, if a soliton solution exists for the nonlinear equa-tions even for a chain in which only the nearest neighbors

tion, its basic parameters are defined by the linearized equépteract. This justifies the longwave description of the non-
tion. Naturally, the solution itself follows from the nonlinear radiative motion of a soliton in the generalized Frenkel-

equation(56). Solution (57) with parameterg60) was ob-
tained first by Hook and Karlssdh.

Kontora modef1°
The situation in which the higher spatial dispersion is

Analysis of eigenfrequencies of a medium with highet@ken into account in the continual approximation for de-
dispersion of opposite signghe situation involving the use Scribing vibrations with frequencies close to the upper edge

of Eq. (45) changes if3<0. In this cases®=a+4|8|, A®
= —(|B]+s%12)<0, and the conditiofA2|>s? formulated
above cannot be satisfied. Hence the linear equddbhis

of the continuous spectral band also variesger0. Putting
k=m+q in (4) and expanding it in smaljj, we obtain the
dispersion relation

inapplicable for describing longwave steady-state vibrations ) 2 oo o
of a discrete chain. One of the reasons behind this is that the @“(0)= oy —s°0"—C*q", (66)

dispersion relatior(46) with A><0 displays a nonphysical

behavior for largek. In this case, the continual description Where s°=a—4|B|>0 and C?=(16/8| - «)/12>0. This

with the help of an equation of the tydd5) is admissible

gives the wave numbers in which we are interested:

only when a differential equation with second-order spatial

derivative is used.
However, a situation exists in which E() has a con-

tinual equivalent for3<<0. his concerns the description of
dynamic excitation of a chain moving steadily with a veloc-

ity V, for which the solutioru(x,t) =u(x—Vt). In this case,
we obtain instead of45) the equation

) ) J%u 5 *u
wol—y Eva -B Evd =0, (61

where y?*=s2—V?, s?=a+4|p| and B?>=(a+ 16/8])/12.
The wave numberk corresponding to the given velocity

are obtained from the dispersion relation
w3+ y’k*—B%k*=0 (62)

and are defined by the expressions

1
0F ;=5 p2[ ~ P2 V' = 4C% (07— wp) ], (67)

Since the requiremertd; ;<1 must be met for all the
roots defined by67), the continual approximation based on
the use of higher dispersion {66) is applicable for describ-
ing the vibrations of a discrete linear chain of atoms at fre-
quencied w2 — w?|<C? under the conditios?<C?. Hence
it would be expedient to take into consideration the fourth
spatial derivative in the differential equation for the envelope
of high-frequency vibrations in this case.

The authors are obliged to M. M. Bogdan for fruitful
discussions of the results. This research was supported by the
project 2.4/163 of the Ukrainian Ministry of Science and
Technology.
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APPENDIX: GENERALIZATION OF GREEN'S FUNCTION For the continuous spectral frequencies w,, we ob-
TO THE THREE-DIMENSIONAL SPHERICALLY SYMMETRIC tain one real wave numbér (50) and one purely imaginary
CASE wave numbelik (51). In this case, Green’s spherical sym-
Generalization of Eq(45) for the model of a three- di- Metric function has the form
mensional medium in the continual approximation can be 1 dkr—g«r
represented in the form G(r)= I7AZ m (A5)
2
[7—lzj+w(2)u—szAu+A2AAu=O, (A1)  Using this equation, we can easily calculate the density of
ot vibrations:
where the Laplace operatdr=(1/r?)a(r2a/ar)/dr in the 1 ST 4A(02— 0l) - <2
spherically symmetric case. Obviously, the harmonic solu-  g(w?)= > T - (AB)
tions of Eq.(A1) have a dispersion relation for steady-state (2m) [ 2ATs™+4A(0° ~ wp)]
vibrations in the form(46), wherek stands for the modulus The Green’s functions obtained in this way can be used
of the wave vector. for studying the vibrations of a crystal with a point defect.
Green'’s function for a three-dimensional crystal is de-
fined as
. A .
. 1 j ak T3k " E-mail: kosevich@ilt.kharkov.ua
(r)_(zﬂ_)3 w2_w2(k)' ( )
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Effect of plastic deformation on the shape and parameters of the low-temperature peak
of internal friction in niobium
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Temperature dependences of the decrement of longitudinal vibrations are studied at moderately
low temperatures in polycrystalline niobium with the residual resistivity rRtRR=60 at

frequencies 78 and 363 kHz. A peak of internal friction is detected in the vicinity of 200 K. The
height, width, and temperature of the peak change significantly upon a variation of

vibrational frequency and as a result of changes in the defect structure of the sample under
thermocycling, plastic deformation, or prolonged low-temperature recovery. It is shown that the
absorption peak is due to the interaction of elastic vibrations of the sample with a system

of identical thermally activated relaxators with an activation energy of 0.15 eV and an attack
frequency of X 10'°s 1 in a nearly perfect crystal. A theory is proposed for describing

the variation of the shape and parameters of the internal friction peak due to statistical dispersion
of the values of activation energy of the relaxators. 1@99 American Institute of Physics.
[S1063-777X99)01507-9

1. INTRODUCTION determining the empirical values of the parameters of relax-

) ) ation process and complicates its microscopic interpretation.
Peaks of mec_hamcal relaxation were detected by, many e can state that the nature of the given relaxation pro-
authors who studied the temperature dependence of internalcg remains unclear. Moreover, we cannot be sure that all
fr|ct|onl|n niobium samples of various purity and structural the data presented in Fig. 1 correspond to the same relaxation
perfection at moderately low temperatures. The temperaturlgrOCeSS and are not the result of superposition of several
Tp of pegk Iocali;atio_n increased from_ 90 to _200 K upon aprocesses with different activation parametérsA thor-
change in Fhe V|br§1t|0nal frequency in a wide frequencyoughly developed theory that would describe the effect of
range fr(_)m mfrason!c frequencies of thesordelr_?zieiz 0 structural inhomogeneities, e.g., statistical ensemble of dis-
uItrasor_uc frequen0|e§ Of. the order of HZ I Was  |ocations and random fields of internal stresses introduced in
noted in some pubhcgtlons that plastic deformauon Ofcr stalline samples during plastic deformation on the shape
samples prior to acoustic measurements led to an Increase Ahg parameters of internal friction relaxation peak has not

the height and width of the peaks as well as 1o a shilt pf been developed. The available theoretical publications con-

towards higher temperatures. The results obtame_d on the d‘(?érning this problem are mainly devoted to an analysis of the
pendenceT ,(w) of the temperature of peak localization on

th lic fr n ; tematized in Fia. 1. It can b joint effect of random spread in the activation enetgjyand
€ cyclic Trequencyw are systematize 9. % Tt can be yhe preexponential factor, or the relaxation timer on the

seen that the |r_1tern_al friction peaks under co_n5|derat|on '.rf)eak width(see, for example, Refs. 14 and)15he shift in
the first approximation correspond to a certain thermoactiz . .
) . . : - the peak temperaturg, as well as the change in the height
vated relaxation process with a relaxation time dependln% . . .
. f the peak and its asymmetry, which are clearly manifested
exponentially on temperaturg . ; . :
in experiments, have not been investigated.
U In the present work, we obtain additional experimental
T(T)=10 eXF<k—T : (1) data on internal friction of polycrystalline niobium in the
range of moderately low temperatures. We observed in our
whereU is the activation energys, the period of attacks, experiments an internal friction peak in the temperature
andk the Boltzmann constant. The complete set of experitange near 200 K by using longitudinal ultrasonic vibrations
mental data presented in Fig. 1 corresponds to the relaxatioat frequencies/27=78 and 363 kHz. The effect of prelimi-
resonancev7(T,) =1 for typical values of activation energy nary plastic deformation and sample recovery on the location
U~0.27 eV and the attack periag=10"13s(straight linel ~ temperature, height, and shape of the peak is analyzed. We
in Fig. 1). However, a wide spread of experimental pointsalso propose a theoretical interpretation of the observed regu-
which is apparently associated partially with differences inlarities, which is based on assumptions on the statistical na-
the structure of samples leads to considerable uncertainty iture of the parameters of elementary relaxators responsible

1063-777X/99/25(7)/8/$15.00 558 © 1999 American Institute of Physics
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FIG. 2. Internal friction peak in polycrystalline undeformed niobium and its

FIG. 1. Activation curve for the system of internal friction peak in niobium " ) ) .
yyariation upon an increase in the amplitudg and frequencyw/27 of

observed experimentally by different authors in the range of moderately lo S e
temperatures: the results of previous experiménts and the results ob- acou§5t|c vibrationsw/2m=78 kHz, T,=190K, so=7?;>< 107* (O) and 3
tained in this researctD,®), U and 7, are the parameters of straight lines ¥ 107" (@); w/2m=363kHz, T,=225K, £0=3X10"" (A).

drawn through the corresponding set of points with minimum standard de-

viations.

dependences of logarithmic decremeénof vibrations were

for the given peak and on the effect of dislocations on themeasureq in the temperature range 90_3_10 K during cooling
and heating of the sample at a ratel K/min.

activation energy dispersion and volume density of relax- .
ators. Figure 2 shows the temperature dependend€s)
of decrement at vibrational frequency 78 kHz for two
limiting deformation amplitudeseo=¢q m;=3x10 8 and
€0=80max=3X10"°. A clearly manifested broad internal
friction peak is observed afl~190K. An increase in the
The sample was spark cut from polycrystalline niobium,ultrasound amplitude by three orders of magnitude leads to
lapped with abrasive powders to attain the required shapan insignificant increase i@(T) in the entire temperature
and geometrical dimensions size, and then subjected t@mnge under investigation, as a result of which the peak
chemical polishing to remove surface layers damaged duringeight increases slightly. The shape of the peak and its posi-
mechanical treatment. The final size of the sample was 3ion on the temperature axis remain almost unchanged. These
X3X21 mm. The grain size of the sample did not exceedchanges suggest that the peak is associated with the linear
0.1 mm, which was much smaller than the sample sectiorresonant interaction of elastic vibrations with the system of
The initial density of dislocations was 10° cm™ 2. identical elementary relaxators. An increase in the ultrasonic
The integral measure of sample purity was the residualrequency leads to a shift of the peak temperafiyyéowards
resistivity ratioRRR=R3y0/Ry=60, which was determined higher temperatures.
by measuring the temperature dependence of the sample re- The dislocation structure of the sample under investiga-
sistance in the temperature range 2—-300 K. The obtainetion can be changed noticeably in several ways. The most
experimental data were extrapolated)tK and to zero value effective method is a considerable preliminary plastic defor-
of the external magnetic field used for the conversion of thenation leading to an increase in the dislocation density. An-
samples to the normal state at temperatures below the supether method is prolonged recovery of preliminary deformed
conducting transition temperatufge=9.3 K. samples, which leads as a rule to a decrease in dislocation
In order to find the relation between acoustic propertiegdensity. The density of defects can also be increased by mul-
of niobium and the dislocation structure of the samples, freshiple thermocycling of the sample in a wide range of low
dislocations were introduced in the sample by preliminarytemperatures at a high rate of temperature variation. The role
torsion at room temperature around the longitudinal axis to @f external deforming stress is played by thermoelastic
residual plastic strair~5%. After the deformation, the stresses emerging in the sample. The influence of the above
sample was lapped again to restore the shape of parallelefihree factors on the internal friction peak under investigation
ped and subjected to chemical polishing. Measurements weis illustrated in Fig. 3. The figure shows the temperature
made immediately after the deformation and after a time pedependence$(T) of the decrement of vibrations at a fre-
riod about one year, which allowed us to detect changes iquencyw/27=78kHz in four cases: during first thermocy-
the acoustic properties of the sample as a result of prolongecling of an undeformed sample in the temperature interval
holding at room temperature. 300 K—6-300 K at aate of 1 K/min; during repeated ther-
Acoustic measurements were made by the two-mocycling atthe same rate; immediately after deformation at
composite vibrator techniqué’’ Longitudinal standing room temperature to the residual straig=5%, and after
waves were excited in the sample at frequenaédr=78  the 1-year holding of the deformed sample at room tempera-
and 363 kHz. The amplitude of ultrasonic deformatign  ture.
varied in the interval ¥ 10 8<g,<3Xx 10 5. Temperature The structural changes caused by thermoelastic stresses

2. EXPERIMENTAL PROCEDURE AND RESULTS OF
MEASUREMENTS
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6 3. THEORETICAL ANALYSIS OF THE EFFECT OF STATIC
A SPREAD IN ACTIVATION ENERGY OF ELEMENTARY

- o *0 RELAXATORS ON THE CONDITIONS OF RELAXATION
RESONANCE

o 2 4.3 In this publication, we shall not consider specific micro-
S+ o e scopic models of an elementary relaxator whose interaction
i I =° with elastic vibrations generates the internal friction peak
2 v %ot tege? * % under investigation. We shall only make a few remarks in
g XL this connection.
o L Toee, . . “fg According to the aggregate of the main properties of the
oo . 1 1 0230'10. peak, it can be attributed to Bordoni peaks observed in the

100 200 300 range of low temperatures for a number of fcc and bcc met-

T K als(in the case of bcc metals, such peaks are referredde as
' andy-peak§1>18-29 The typical values of the parametéts

FIG. 3. Effect of variation of the defect structure of the sample on thegnd 7, as well as the strong dependence of the peak height

internal friction peak in niobium detected in our experiments: undeformed - : : ; :
sample subjected to single thermocyclifg), undeformed sample subjected dp on the denSIty of dlslocatlonegrovvth dislocations or

to repeated thermocycling®), immediately after plastic deformaticfl), those intrOdU(?ed_ as a result of preliminary plastic deforma-
plastically deformed sample after 1-year holding at room tempergliye  tions and vanishing in the course of recoveajlows us to

consider as most probable microscopic models of a relaxator
the following two elementary dislocation processes: thermo-
activated generation of dislocation kinks pairs on rectilinear
dislocation segments located in the valleys of the first-order
Peierls relief, and thermoactivated diffusion of solitary kinks
along dislocation lines through second-order Peierls barriers.

as well as external stresses lead to the following qualitativ
changes in the shape and parameters of the peak:

—the peak height,=max4T) increases; It is important that an elementary relaxator of this type is

—the positionT, of the peak on the temperature axis is strongly localized in the bulk of the crystah a region of the
displaced towards high temperatures; order of 10—16 atomic spacings In perfect crystals, it can

—the peak width increases; be characterized by three parameters whose values in the first

—the asymmetry of the peak increases due to its elevaapproximation are determined by energy and geometric pa-
tion above the background or an increase in the length of itsameters of a defect—free crystal: the activation enéfgy
high-temperature tail; the period of attacks, and the characteristic elementary

—the absorption background in the peak localization recontributionA, j[o the decrement of vil_arations. If we denote
gion increases weakly, but noticeably. by C, the relative volume concentration of such relaxators

interacting with the vibrational mode of the sample under

Prolonged low-temperature recovery of a deformed s ) . . v
9 P y investigation, the expression defining their contribution to

sample leads to opposite manifestations of the effects IIStegecrement of vibrations in the linear response approximation

above. o o has the form of the Debye peak:
The values off, on the activation curve obtained in our

experimentssee Fig. 1 coincide (to withing the spread in _ w7(Uo)

experimental valugswith the array of points obtained by 1+ w*7°(Ug)

other authors. However, independent application of thesgere
values for determining the parameters of a relaxation process

- ~ ~ - 10 i U
g|ves _the_ valuedJ ~Q.17 e_V g_ndro~2>< 10 s (stralght_ 8,=CAq, T(Ug)=To ex;{ k_?) '
line 2 in Fig. 1) that differ significantly from the values typi-
cal of the entire array of data on tfig(w) dependence. This The coordinatel (") of the peak on the temperature axis

circumstance emphasizes once again the difficulties emergs determined by the relations

ing when the activation curve is used for microscopic inter-

pretation of the relaxation resonance under investigation. wt(Ug)=1, TE)O):
It is natural to assume that a possible reason behind the

spread in points in Fig. 1 and the observed ambiguity in the  The peak heigh®, is naturally proportional to the con-

empirical values of the parametddsand 7 is the influence tribution Ay from an individual relaxator as well as to the

of random inhomogeneities of the structdpeimarily, dislo- ~ concentratiorC, of relaxators.

cations on the local values of these parameters in the bulk of  If @ crystal contains a complex system of local structural

the sample. Consequently, the first step in overcoming thedBhomogeneities and long-range fields of internal stresses as-

difficulties must be the analysis of peculiarities of relax- sociated with a random distribution of various defects, the

ational resonance, which are due to statistical nature of thglementary relaxator parametéfs, 7o, anda, acquire ran-
. om corrections in various regions of the crystal, and we
parameters of elementary relaxators in real crystals.

must consider instead of these parameters random quantities

Uo
 kIn(wr)

()
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and distribution functions corresponding to them. The decre- %

ment of vibrations of a macroscopic sample is transformed in fo P(U)dU=1. 4
this case into a certain complex functié(iT,w) obtained by

statistical averaging of formul@). The structure of formula In the case of statistical distribution of activation energy,

(2) shows that averaging over the distribution of activationthe Debye peak?) is transformed into a more complex func-
energy and attack period must produce the strongest effetibn §(T,w) defined as

on the temperature and frequency dependdiidew). Since
the relaxation timer also becomes a random quantity, we 5 = foc 7o EXAU/KT)
. e ¢ (T,w)=2A,C, | dUp(U) > .
can introduce the distribution function far (the so-called 0 1+ 0 5 exp(2U/KT)
relaxation spectruinand average the Debye peak over this (5)
distribution.® , , , By way of a concrete simple example of the distribution
The phenomenological theory of mechanical relaxatlonp(u) we consider a function of the form
in materials with random structural parametesnsiders a '
set of distribution functions for these parameters as the basic U (U—U,)?
problem. The application of these functions makes it possible P(U)= —= ( U_> exr{ - T} D<U,. (6)
to describe regularities of relaxation detected in experiments 27D\ o
to the desired degree of accuracy. From the point of view of |t can be easily proved that a distribution of the quasi-
physics of thermoactivated processes, it is expedient to consayssian typéé) satisfies the normalization conditi¢#) to
sider the activation energy and attack period as initial ranyithin a term of the order of exp(U%2D?), and the average

dom parameters while using relatidf) for describing an  vajue and dispersion corresponding to it to the first approxi-
elementary relaxation act, and seek the distribution functiofnation inD? are given by

for these quantities. Obviously, such a distribution function
will be determined only by the structure of the material and

must be independent of temperature, af({d@,w) will be
calculated using the explicit form of the temperature depen-
dence of the function being averaged. On the contrary, while
choosing the distribution function for relaxation timgthe
temperature and structural characteristics are regarded as for- (7
mally equivalent parameters that must determine this func- . ) )
tion, which obviously masks the physical role of tempera- For Df’o’ distribution (6) is transformed to the Dlrag
ture. deIta—funcuonP(U)_: 6(U—-Uy), which ensures the transi-
We shall not carry out a microscopic analysis of relax-tion of the functions(T,w) (5) to the Debye peak?) for low
ation spectra here. Using the phenomenological approach d¥alues of dispersion. At the same time, an increase in the
veloped in Ref. 15, we shall seek the distribution functionP@rameterD, which broadens the distributiof6) and dis-
which would make it possible to describe correctly the mainPlaces its peak to high energies, leads to a broadening of the
peculiarities in the relaxation properties of the material undefMaximum of the temperature dependence of averaged decre-
investigation (niobium), detected in experiments and de- ments(T,w) and to its displacement to high temperatures. It
scribed in the previous section. A specific feature of ourshould also be noted that the asymmetry in distributién
analysis is that we essentially use the following three astelative to the valudJ, due to the factotJ in the preexpo-
sumptions. First, we shall consider only a thermoactivatediential factor leads to additional asymmetry of the tempera-
relaxation process and assume that only the structural pararture dependencé(T, ) relative to its peak. Consequently,
eters appearing in relatiori$) and(2) are random quantities. the application of the distribution functid®) for calculating
Second, we shall confine our analysis to the region of lowthe averaged decrement of vibratiofET,») (5) creates all
temperaturekT<U,. Finally, we shall assume that the en- the premises required for the interpretation of the peculiari-
ergy activation dispersio®? is quite small D<Uo), i.e., ties of the mechanical relaxation peak in polycrystalline nio-
consider relatively weak effects on the crystal structure leadbium samples described in the previous section. In the long
ing to random variations of the initial value of activation run, the explanation of the properties of the peak boils down
energy. These assumptions allow us to take into account ito the natural assumption that the relaxator concentraijon
the first approximation only the statistical nature of activa-and the activation energy dispersiBrf of an individual re-
tion energy and disregard the dispersion of the parametefaxator increase with the density of structural defeets).,
Ay and 7y to an exponential accuracy. dislocation$ as a result of thermocycling or plastic deforma-
Thus, taking into account the remarks made above, wéion, while sample recovery decreases the values of these
shall assume that the only random parameter of the problemarameters.
is the activation energl) of an elementary relaxator. As a Since the substitution gb) into (5) leads to an integral
statistical characteristic of this quantity, we introduce thethat cannot be evaluated by using analytical methods, it is
function P(U), viz., the probability density for values &f, expedient to illustrate the validity of the above statements by
which is defined on the intervéd,~) and satisfying the nor- using numerical integration. In order to transform the inte-
malization condition gral to a form convenient for numerical integration, we go

_ o0 D2
UZJ UPU)dU=Uy+ —,
0 Uo

(U—U)%=(U—-Ug)?= J:(U—UO)ZP(U)dUEDZ.
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FIG. 4. Transformation of a Debye peak upon an increase in the dispersioRIG. 5. Dependences of dimensionless localization temperajute) and
of the activation energy of a relaxator: the result of numerical integration inwidth h (b) of the relaxation peak on the dispersion paramétesbtained as
formula (9) for essentially different values of the frequency paraméler a result of numerical integration in formu(8).

(10* (a) and 16 (b)) and different values of the dispersion parameter

=0 (curvel), 1 (curve2), 2.5 (curve 3), and 5(curve4).

two values of the parametér=10* and 16 typical of ul-
trasonic experiments and consider the temperature depen-
dence of the functior-(8) for several essentially different
values of the parametet. Numerical integration gives for

over to a new integration variabbe and a new set of the
parameters of the problem, defining them by the relations

U T 1 the functionF(6,Q,d) the family of the curves shown in
Inx= KT’ 0= —0 0= o U0=kTg In €2, Fig. 4. For low values ofl, the temperature dependence of
Tp 0 the functionF(6,Q),d) has a peak at the poild~1 and
VD V3D virtually coincides with the Debye pedkurvel in Fig. 4),
d= PrU U—In Q. (8)  while an increase in the parametkteads to a displacement
P 0 of the peak towards high temperatures, its broadening, and

Here we have introduced the dimensionless temperatur@n increase in asymmetry. For a quantitative characteristic of
6, the reciprocal dimensionless frequereyand the dimen- peak broadening, we can use the parameters
sionless characteristic dispersion As a result of such a
substitution, the averaged decrement of vibratio($, w 3 3
assumes the form ’ o) Th:T(F’+)_T(F’ ' h= TO oo (0

p
6=C,AgF(6,Q,:d),
where6{") and 6{ ") are the values of temperature for which
206% (= In x fInx—InQ)2 F(6"))=F(6")=0.5F(6,) and 6, is the peak of the func-
F= JmdIinQ L dxx2+92ex _(T) } tion F(6). The variation of the parameteg andh of the
(9) peak upon an increase this illustrated in Fig. 5.

The curves in Fig. 5 describing the functiofs(d,()

We are mainly interested in the variatjon of the tempera- g ho(d,Q) permit simple analytic approximations whose
ture dependence of the decremérdlaxation peak on the accuracy is of the order of a few percent:

temperature axjsupon an increase in the dispersion of acti-
vation energy of relaxators: the absence of dispersion corre-

2

sponds to the limitl— 0, while a relatively high dispersion is 0p=1+2 nal (11
defined by the inequalitg=1. It should be noted that n

=—In(w7p)=10 in actual practice, and hence our initial as-

sumption concerning the fulfillment of the inequali he 2(1+d) 12

<U, permits an analysis of the inequality>1. We choose InQ
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Using relationg8) and(10)—(12), we can easily obtain a accompanied by a displacement of the peak towards high
system of two equations connecting the parametkys r, temperatures in the cases when the increasg,ifls more
andD of the theory with the experimentally measured quan-significant than the decrease in nfax
tities T, and T, :

U(2)+ 4D%+ kToUo(In 75+ 1IN w)=0; 4. THEORY AND EXPERIMENT

Taking into account the phenomenological nature of the
proposed theory, we must compare its results with experi-
mental data using a correctly selected distribution function
It is convenient to write the first of these equations in thep(u) and chosing the values of the parameteysU,, D,
form of the relation corresponding to the activational curveandC, A, which makes it possible to put in correspondence

1
Uo—v2D(In 75+ Inw) — EkTh(In To+Inw)?2=0. (13

Inw vs.Tglr the temperature dependences shown in Figs. 2 and 3 to the
U2+4D2 1 dependences defined by formui@s.
_ 0 . . . . .
Inw=Inr, i - — - (14) Expression(9) describes the contribution of attenuation
kUp T, of the statistical ensemble of identical thermoactivated relax-

Recording the dependendg(w) in a wide frequency ators with a qgasi-Gaussian distribution _funct(@) for_val-.
range and plotting the activation curve, we can obtain emtes of activation energy to the absorption of elastic vibra-
pirical estimates for the parametey and effective activation tions. This expression can be used to describe all the main
energyU. whose role is played by the factor in front of Peculiarities in the behavior of the acoustic relaxation peak
T,*. The values of these parameters can also be estimated iy Niobium studied by us and described in Sec. 2 if we make

the conventional way by measuring the valued pffor two
close values of frequencies, and w,:

aT, \ 71
- p
To 1- o exp{Tp(—& n a))

Tp(wy)In(w,/wy)

= ex ) 15
C1OPT (0y)~To(wy) (19
- 4D?2 o2 e -t
Uer=Uo 1+U_§ =K Zine
_ kTp(w1) Tp(wa)IN(wy/ 1) (16)

Tp(wZ) - Tp(wl)

the natural assumption that thermocycling and plastic defor-
mation of the sample increases the density of structural de-
fects as well as the activation energy disperdidnand con-
centrationC, of relaxators, while prolonged recovery must
reduce these parameters.

A separate problem emerging when we compare the re-
sults of proposed theory with experimental data is the correct
subtraction of the absorption background for all peaks in Fig.
3. Taking into account the small value and weak temperature
dependence of the background at the foot of the peaks on the
side of low temperatures, we can replace the background in
the region of peaks in Fig. 3 by constants whose values are
determined only by the structural state of the samples. For
such constants, we can use the experimental values of the

It should be noted that, in order to ensure the correctnesdecrement at T=100K. Thus, we shall speak on the veri-
of the procedure of determining, andU ¢, we must use the fication of the applicability of the relation

empirical dependencE,(w) obtained for a constant value of

D, i.e., for a invariable structure of the crystal.

o— 5100 K=C,A0F(0,d,ﬂ) (19)

Equations(lg) also make it possib|e to determine em- to the description of eXperimental data presentEd in FIgS 2

pirical values of the initial activation enerdy, and disper-
sionD? using the measurements of the temperalyyef the

peak and its widthr,, for any fixed value of frequencw.

The solution of the system of equatiofis) for U, andD to

within the terms of the order 2 (lnw) ?<1 has the form

K(T2—T2)In(rw)
Ug=—— 2 O FokT,,
p

7

D=— i[Th In(7ow) +2T,]. (18)

2v2

and 3.

Going over to an analysis of experimental data, we must
primarily consider the displacement of the absorption peak
on the temperature axis upon a change in the vibrational
frequency(see Fig. 2 Using the data presented in this figure
and formula(15), we obtain an empirical estimate for one of
the principal microscopic parameters of the relaxation pro-
cess, viz. the attack frequeney * whose value is given in
the last row of Table I.

In order to obtain empirical estimates of the “initial”
activation energyJ, and the parametdd characterizing the
statistical spread in the activation energy in a certain struc-

Concluding this section, we note that while using formu-tural state of the sample, we must use the data presented in
las (9) and (14)—(18) for interpreting experimental data, it Fig. 3. For each peak presented in this figure, we can esti-
should be borne in mind that various effects exerted on thenate the temperatufg, of the peak and its widtT,, and to
crystal and changing the statistical parameters of relaxatorsybstitute these values into formulds) and(18). However,
can also lead in some cases to a change in the concentratigie accuracy of these estimates is not very high in view of
C, of relaxators. This can result in the emergence of addiconsiderable uncertainty in the values Bf. In order to
tional peculiarities in the behavior of the relaxation peakimprove the accuracy of estimates of the paramdikysind
height that are absent in Fig. 4, e.g., an increase in #énaxD and to verify the quantitative agreement between the ex-
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TABLE |. Dependences of the parameters of absorption peak at vibrationshnd the dispersion of their activation energy increase as a
frequencyw/27r=78 kHz on the structural state of the sample and empirical result of thermocycling and plastic deformation of the
values of the parameters of the theory parameters. . . . .
samples, while sample recovery is accompanied by a slight
Structural state of samples increase in the relaxator density and a quite strong decrease
in the activation energy dispersion.

Parameters of peak ! 2 3 4 It should be noted that the refined values of activation
Tp, K 190 191 202 198 parameters of the peak under investigation contained in
Th. K 66 66 7 65 Table | differ slightly from the preliminary rougher estimates
Egg%fféloo K110 ;g 4 2237 57"%2 tgz _obta_tined on the_ basis of the activation cufseaight line2

d 0.69 0.70 0.87 0.58 in Fig. 1). The difference between these values and the mean
D, 10 %eV 7.79 7.91 9.83 6.55 values typical of the entire system of peaks observed earlier
Uerr, €V 0.152 0.152 0.153 0.151 in experiments on internal friction in niobium in the range of
Uo, eV 015 moderately low temperaturestraight linel in Fig. 1) is

o, S 1x 10

much stronger. This circumstance indicates that sevetal
Remark Numeration of structural states of the samples is the same as iteast two thermoactivated relaxation processes can occur in
Fig. 3. niobium in this temperature range.

. 5. CONCLUSIONS
perimental values and formuld9), we can use the potenti-

aliies of computer numerical analysis. Proceeding from the ~ 1N€ results of our experiments and their theoretical
rough estimates of , and Ty, obtained from Fig. 3 and the analysis lead to several important conclusions.
values ofU, andD calculated on their basis, we can select, —1he internal friction peak detected and studied by us
the refined values of the parametddsg, D, and C,Ag, for polycrystalline n|ob|gm in the temperature'rangQOOK .
which make it possible to match experimental points on th?0SSesses the properties of a thermally activated relaxation
8(T) dependences with the curves describing the functiofpeak and emerges due to the interaction of elastic vibrations
(19) to a high degree of accuracy. The possibility of such of the sample ywth a system_of _|dent|cal elementary relax-
matching is illustrated in Fig. 6, and the corresponding fitting2!0rs characterized by the activation enetgy-0.15 ev and
values of the parameters of the theory are given in the bot€ attack frequency, “~1x 10%s™ for structurally erfect
tom rows of the table. In Fig. 6, the experimental pointsS@mpIes. o _ o
presented in Fig. 3 are normalized to the scale of dimension- —1he activation parameters of the peak differ signifi-
less temperatur@=kTIn Q/U,, and the values obl,, D, cantly from the paramet_ers_ of other peaks observed e_arller
and C,A, are chosen so that the theoretical curves in theifo" Single crystals of niobium as well as polycrystalline
central parts match the experimental points to the maximurg@mples in the range of moderately low temperatdses
possible extent. It should be noted that deviations of experi'-:'g- D. " ) )
mental points from the curves on the tails of the peaks are in —the position of the peak on the temperature axis and its
all probability due to errors made as a result of application ofhape are noticeably sensitive to the structural state of nio-
extremely simplified procedure for substracing the backPium samples. The parameters of the peak vary as a result of
ground absorption. thermocycling, pIastp ple;forma‘uon, and recovery. '
The values of the paramete€sA, andD given in Table —Structural sensitivity of the parameters of the peak is

| indicate that the volume density of elementary relaxator$lu€ t0 @ change in the volume density of relaxators and sta-
tistical distribution of activation energy upon a change in the

defect structure of the samples.

—In all the cases analyzed in our experiments, the sta-
tistical spread of activation energy values for relaxators is
78 kHz quite small and is successfully described by a function of the
quasi-Gaussian typ@®) with a low dispersion determined by
Up=0.15¢eV the structural state of the sample.

15=1107"s
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An expression for the frequency dependence of the anomalous component of optical conductivity
omir(w) of cuprate superconductors is derived for the entire range of non-Drude intraband
excitations G<hw<fiwy~1.5-2eV. The derivation is based on the assumption on finite
probability of penetration of an electrghole) from the hole band to the upper conduction

band through the optical gapwg, ensuring the correlated coupling between intraband and
interband excitations. It is shown that the available experimental data are in good agreement

with the two-component model, taking into account the total contribution of the anomalous
componentoy, g and the conventional Drude componery to the conductivity of the

metal phase. ©1999 American Institute of Physids$1063-777X99)01607-2

In contrast to traditional BCS superconductors, the optibe equally applicable for all cuprate HTSC upon variation of
cal conductivity of HTSC materials contains a considerabléemperature and doping level. It should be noted in this con-
contribution of the non-Drude conductivity component nection that the available models are not based on the experi-
ouir(w), which does not obey the Drude classical lawmental result common for all cuprates, i.e., the existence of a
op(w)*w 2! The anomalous component,r(w) is ob-  correlated coupling between intraband and interband transi-
served in the spectral region from zero frequency to thaions. However, the crucial point for HTSC is the existence
boundary energyi wg=1.5—2 eV, which is equal to the op- of interrelation between oscillator forces of MIR- and CT-
tical gap between the Fermi level located deep in the valencgansitions rather than the emergence of the anomalous com-
band and the uppeivacan} conduction band. The depen- ponentoyr(w).
denceoyr(w) in the metal phase with a small number of ~ The gap width for cuprate HTSC formed by states with
charge carriers displays a clearly manifested peak in theharge transfer remain virtually unchanged upon an increase
middle IR frequency range-0.3—0.5eV, which allows us to in the doping level to the optimal value, but the integral
call it the MIR component of the spectrum. As a result, theyajye of interband conductivity decreases, while the integral
conductivity of the active CuPplane in the energy range yalue of intraband conductivity increasés.g., for Y- and
<hwgy can be presented b.y the two-component model | 3-pased sampled® Such an evolution of conductivity
1 spectrum reflects in the purest form the interrelation of os-

o(0)=op(w)+oyr(w)= — —F—5 +oyr(®), cillator forces of transitions.(The optical gap for

4m 0+ Ba, ,K,BiO3 and similar compounds, which emerges due to

@) excitation of charge density waves, decreases upon doping,

wherews; is the plasma frequency ait, the absorption for and the interband component is shifted to the IR region, pre-
Drude charge carriers. The total conductivitiw) gives the — Serving its spectral arda
spectrum of intraband hole excitations. An interband conduc- ~ The correlation coupling of MIR and CT excitations was
tivity component ocr(w) associated with photo-induced observed for Bi-, Y-, and La-based compounds not only
transfer of an electron from oxygen to copperupon a change in the chemical doping level, but also upon
(CUP"0*> —Cu'O") emerges at frequency exceeding thecooling (photo-induced doping and structural ordering of
optical gap width: @=7%w,. This component of the excita- YBCO).'*** For example, optical absorption during CT-
tion spectrum associated with charge transf6€T-  transitions is suppressed upon cooling of YBCO, BSCCO,
componentdetermines the emergence of additional holes inrand LaCO samples in the entire spectral range, while the
the valence band. integral intensity increases during MIR-transitidits:* A re-

Several explanations of the origin of the MIR- sponse of absorption to the superconducting transition is ob-
component of conductivity offered at present include theserved in the frequency range of MIR- and
model of a marginal Fermi liquidl,Luttinger liquid® and  CT-excitations}>'%*which was initially detected in absorp-
polarorf and bipolaron modeBA comparative analysis with tion of YBCO films in the visible frequency rangé.The
experimental data does not allow us to give preference to angesponse at MIR- and CT-frequencies has opposite
of the above model&see, for example, Ref)pwhich would  polaritied'*! in analogy with opposite signs of variations of

1063-777X/99/25(7)/4/$15.00 566 © 1999 American Institute of Physics
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MIR and CT-spectra upon a change in temperature or doping 2Ay
level. o(w)=
The interrelation between excitations observed upon a

change in the doping levEl can be traced quantitatively ) . . .
most exactly from the results of optical experiments withWwhereA is a constant that will be determined later. First, we

La, ,Sr,CuQ, single crystals containing only one CuQ shall definey. on the basis of the fpllowing considerations.
plane in a unit cell: The hgrmonlc type of3) can be disturbed due t.o random
transitions of an electrorthole) through the optical gap,
A (f oyr(®)do f oer(w)do|. %) which lead to recombination of charge carriers. As a result,
X MIR cr attenuation of intraband current must be proportional to the

This equation indicates that as a result of dopingrease in proba@lﬂ of a transition between two stateg:=yo[1

the number of holesex), the CT conductivity is completely —€XP "], where the parameter= p(const-e) charac-
converted into the MIR conductivity. This interrelation is t€rizes the energy level blurring and hence is a function of
preserved from the beginning of metallizatior={0.05) up  the hole gap widtke, Wh'cihl is proportional to the number
to the optimal valuex=0.15, above which the relative con- N Of charge carriersg=10""eV). We must substitute into
tribution of the Drude spectral component increases stronglyi>) the value ofy for the time interval equal to the period of
and the samples start losing their superconducting propertied1€ a@pplied field. In this case, we can put the attenuation at
Ultimately, a change in the conductivity indicates the pump-2€T0 frequency equal tgo=2wg\(n) proceeding from the
ing of excitation energy since, according to the rigorous suntncértainty relation, where the dimensionless parameter
rule! f o(w)dw=(T), where(T) is the kinetic energy of the N(n)~1 also depends on the number of charge carriers. This

®)

2(w+ wg)2+ 204(w+ wg)+wg+272’

:—AX

system. gives
The above arguments allow us to analyze the intraband
MIR-conductivity by using the model of two coupled oscil- y=2wgh(N)[1—exp—e(n)/fiw)].

lators with oscillatory modes at frequenciaes and w,.
From the quantum-mechanical point of view, the coupling of | order to determine the constaAt we can use the
oscillators is due to finite probabilities for an electiéwle)  standard approach, assuming that it is equal to the square of

to be in two states at instafit a certain effective plasma frequen€ye«(m*), which is a
, 1 function of effective massn*. However, we shall use a
|‘1’|1,2=§[11005(w1—w2)t]- (3)  different approach that does not require the introduction of

the additional parametem* for describing the frequency
The difference in the oscillatory frequencies for HTSC candependence of conductivity in the case of correlated cou-
be naturally assumed to be equal to the optical gap widtlpling of intraband and interband excitations in HTSC. Let us
fiwg=h(w1—wy), Which suggests that an electron can ex-suppose that a mobile hole is formed only in the lower band
perience interband “tunneling” through the optical gap of the system. We assume that in this case the conductivity
along the oxygen—copper bond with the formation of a holes(0) in the lowermost energy state fbw=0 is equal to the
in the valence band. Consequently, in order to find the freminimum conductivity realized due to the charge transfer
quency dependence of conductivity, we can proceed from thglong the oxygen—copper bond of lengilh: o(0)=0min

following equation: =¢e’lhay,, where h/e? is the resistance quantunio i,
d(|w|2v) e =2100Q '.cm™?! for La,_,Sr,CuQ,). In this case, A
T+(|‘lf|2v)y=—HE(w)|‘lf|2, 4  =0(0)wy(5+8\?)/4N. If the system containsi mobile

0

holes in the lower band and accordinglyelectrons in the
wherev, e, andm, are the electron velocity, charge, and upper bandA must be multiplied by 8 (we can assume that
mass,E(w) is the field of a light wave, and the quantity the effective number of charge carriers participating in this
characterizes attenuation which is determined by the energyase in the creation of intraband currentNgz=2n). For
blurring of energy levels. Generally speaking, the blurring ofprimitive cells of Y- and La-based compounass x, where
energy levels can be included in the expresg®rfor prob-  x is the level of doping of the sample by oxygen or stron-
ability density** but we shall take it into account subse- tium. Thus, the final expression for intraband conductivity
guently in attenuation. On the basis of Ed), we obtain the emerging as a result of interband “tunneling” of charge car-
following expression for the real conductivity component: riers has the form

2x0(0)wi(5+8\?)[1—exp —e/fiw)]
2(w+ wg)*+ 2040+ wg) + 0 1+8\A(1—exp —e/fhw))?]’

omr(w)=



568

800

= 600
G
o 400

o
200

0

Low Temp. Phys. 25 (7), July 1999

1
1
i
\

\

]
\
\

\

Op *+ Oy (theory)

experiment

|

O (theory)

1 i

1

1

La, '94Sr0'06Cu04

2000

4000

1
6000

8000

V. N. Samovarov

whereV=95.10%*cm 2 is the volume per structural unit,
corresponds to the quantities=x and m* =2m,. Dashed
curves show the overall spectrum of intraband conductivity
in this two-component model. The values)ofnde change

in this case insignificantly. The agreement with experimental
results is observed up to the energy of 8000 ¢rf=1 eV)
with an error smaller than 2%for this reason, the experi-
mental and theoretical curves virtually coincide fbko
>1500cmY). It can be seen that the expressiéhfor con-
ductivity component simulates not only the emergence of an
asymmetric MIR peak, but also its displacement to the low-
frequency region upon an increase in the doping level

(=2500cm? for x=0.06 and~1500cm?! for x=0.1),
which is observed in experiments with HTSTA compari-
son with experimental results for YBG@hows that the val-
ues of parameters lie near=1 ande=0.3 eV for various
levels of doping.

It is interesting to compare the results with the experi-
mental data for the standard choice of the constann
formula(5): 2A=Q2,=e?2x/Vni, which can be presented in
the forme?(2x)s/m*d for the two-dimensional case, where
(2X)s=(1-2)-10%cm 2 is the “surface” charge carrier
density in the conducting CuyQayer forx<0.1, andd is a
certain effective thickness of the conducting layer. Ror
L =my, the agreement with experimental results is attained for
8000 values ofd of the atomic scale=1 A, which is comparable
with or even smaller than the length,=1.9A of the
oxygen—copper bond. Such a qualitative analysis shows that
the proposed mechanism of formation of the intraband con-
ductivity component is realized in a system with clearly pro-
nounced two-dimensional nature. In the doping range above
the optimal, the three-dimensionality is enhan¢td con-
ductivity across Cu@layers acquires features of metal-type
conductivity® and the contribution to conductivity of isotro-
pic Drude carriers whose plasma frequency corresponds to
the conditiond>a, increases significantly. As a result, the
operation of the “tunnel” mechanism is weakened consider-
the high-frequency branch ¢). It was proved earlier on the ably (e—0) for strong doping, as superconductivity is sup-
basis of analysis of integral conductivity of HT§Ghat the  pressed. Apparently, a narrowD2hole band is involved in
intraband conductivity of Y- and La-based samples containshis mechanismnarrow peak of the density of stajesn
a noticeable contributionM,Roc(w+wg)‘z, but the reasons which heavy charge carriers are subjected to strong
for the emergence of such a peculiar frequency dependen&?"O?> —Cu"O™ fluctuations. Light carriers mainly deter-
were not indicated. mine the Drude conductivity. As the doping level increases,

A comparison of the results obtained by using E). the peak of the density of states becomes blurred, fluctua-
with experimental data was carried out for a series of availtions are suppressed, and as a result, the probability of inter-
able results on the optical conductivity of Y- and La-basedband transfer of charge carriers through the optical gap de-
compounds in a wide range of doping. By way of an ex-creases sharply.

ample, Figs. la and 1b show the results of comparison for . ) ,
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FIG. 1. Optical conductivity spectrum for the CupOplane of a
La,_,Sr,CuG, single crystalx=0.06(a) andx=0.1 (b). Experimental data
were obtained at 300 K(bold curve, the behavior of MIR conduction
band calculated by formul@) (solid curve$, and joint contributions of the
Drude and MIR conductivity components according to our reqaéshed
curves.

Pay attention to the fact that E() acquires non-Lorentzian
terms (w+ wg)2 and (w+ wg) determining the behavior of
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