LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 12 DECEMBER 1999

SUPERCONDUCTIVITY, HIGH-TEMPERATURE SUPERCONDUCTIVITY

Transport critical current in granular high-temperature superconductors
N. A. Bogolyubov

Institute) of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk,
Russid

(Submitted April 9, 1999

Fiz. Nizk. Temp.25, 1243—-1250December 1999

The temperature and size dependences of critical current in three Bi-based ceramic HTSC
samples with a circular cross section and in a sample with a right triangular cross section in zero
magnetic field are studied by a contactless technique. It is shown that the critical current of
ceramic HTSC can be presented as the product of the temperature- and size-dependent factors. The
temperature-dependent factor describes individual properties of the Josephson net of each

sample, while the size-dependent factor is a homogeneous function whose exponent does not
depend on the shape of the sample cross section. An analysis of experimental data is

used to find the radial distribution of critical current density in round samples and to determine

its dependence on the magnetic induction in granular HTSC1989 American Institute

of Physics[S1063-777X9900112-7

INTRODUCTION ant field of the currents flowing through other regions of the
sample. The current in this case is distributed over the

. . ) ) sample cross section as is dictated by the dependence of the
ramic superconductors is determined by the properties of thﬁ‘)cal critical current density,, on the magnitude of the mag-

random thr_ee-d|menS|onaI Josephson ”.et formgd by the Sﬁgtic fieldH. Under these conditions, the shape of the cross
of weak links between superconducting grains of the

X . e section can play a certain role.
material’? Considerable difficulties appear when the mea- play

. The dependence gf, on the fieldH (or the magnetic
surements of transport current are made in the range of magk i ctionB= H, whereu, is the magnetic constant and
netic fields smaller than the lower critical field of grains, o Fo

) th le of the field induced by the t ‘ the permeability of the materiails one of the central ques-
since the role of the held inducea by the transport curren; o, ihe theory of critical state. In his pioneering works,

itself becomes significant. The only way to control such aBear'}&”proposed thaf.= const in weak fields. Many mod-
field under these conditions is to vary the cross-sectional areg. \ e recommendea in order to take into éccount the ef-

of the sample. This leads to the so-called size effect, viz., the, ., ¢ magnetic induction. Some of these models are gener-
dependence of the critical currehtand its average density alized in the Xu—Shi—Fox three-parametric motel:

(j¢) of the size of the sample cross sectfor? It was found '
in our earlier experiments with samples having a rectangular  j.(B)=A/(By+ B)”. 3
cross sectioft'? that the critical current as the function of
temperaturdl and the size of the cross sectiemidth X and
heightY) in zero magnetic field has the form

(XY, T)=G(X,Y)f(T). 1) jo(B)=A/(B§+B2). @

Here the functiorf(T) is determined only by the properties In expressiong3) and(4), A, By, and 3 are the model pa-
of the material of a given sample. It was fodAd® that the  rametergusually, 3=1/2 or ). These and some other rela-
critical current(namely, the functiorG(X,Y)) is a homoge- tions are widely used in an analysis of the properties of
neous function of the size of the cross section, i.e., is a funcHTSC system&37#=24 The number of publications in
tion of the fornt**° which thej(B) dependence was dZ%termined experimentally
_ is small. For example, Johansenal > found on the basis of
(kX KY) =KPIe(X,Y). 2 the magneto-optical method that the current distribution pro-
For samples with a rectangular cross sectigns1.39  file in thin strips and films corresponds to Bean’s model. It
+0.021? It is reasonable to assume that the dependence should be noted that the Josephson net in such systems is
type (1) is preserved for other shapes of cross section, but theather two-dimensional, and the obtained results can hardly
value of the exponent in this case has to be determined in be used for describing the properties @ eramic HTSC.
each case. This is due to the fact that individual intergrairGinzburget al?° proved(by measuring magnetic susceptibil-
links in the Josephson net of the sample are in the field of &y) that model(4) is applicable in the limiting case of a
varying magnetic induction since these fields are the result‘thin sample.”

The magnitude of critical current in high-temperature ce-

For 3=1, we obtain the Kim—Anderson mod€lHowever,
alternative expressions fgr were also proposéd-?¢
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In order to verify the validity of expressiori4) and(2) of a clock-type indicator immediately after sample prepara-
for samples with cross sections other than rectangular and tion as well as after completion df, measurements and
determine the exponenfscorresponding to such cross sec- sample heating. The temperatufg was determined during
tions, we analyze here the critical current as a function okample cooling after each meachanical treatment. The critical
temperature and size of the cross sections of four ceramicurrent was measured at liquid nitrogen temperature for each
HTSC samples in zero magnetic field. Three samples hadalue of the diameter of the cross section immediately after
circular cross section, while the fourth sample had a crossooling, during the measurement of thgT) dependence,
section of the shape of a right triangle. The current densitynd after the completion of measurements before heating.
and magnetic induction for samples with a round cross seccontrol measurements were made for some values of the
tion depend only on the radius, which allows us to derive thediameter: the sample with an invariable size was cooled
relationj.=j.(B) from experimental data. again after heating, and all the measuring procedures de-
scribed above were repeated. The invariability of the ob-
tained parameters was regarded as a proof of the fact that the
superconducting properties of the sample had not changed as

The samples under investigation differed in the prepara@ result of mechanical processing and cooling—heating
tion technology as well as in the ratio of initial components.cycles. The critical current in sample 1 was measured for 10
The methods of sample synthesis and testing are described V@lues of the diameter of the cross section varying from 2.2
Refs. 26 and 27. Sample 1 contained two superconductingp 0.5 mm and for 14 values of temperature varying from
phaseqBi-2212 and Bi-2228and was characterized by the 101 to 62.5 K. Sample 2 was investigated at eleven tempera-
superconducting transition temperatufe=105.75K and ture points from the same interval and for 8 values of the
density 3.79 g/cth Bismuth-based samples 2, 3, and 4 haddiameter from 2.7 to 0.865 mm. In experiments with sample
only one phaséBi-2223 and were characterized by the su- 3, the diameter varied from 1.23 to 0.7 nithvalues, while
perconducting transition temperatures 104.8, 107.8, anthe temperature varied from 90 to 66.25 (6 values.
106.2 K and densities 4.91, 4.92, and 5.18 famspec- Sample 4 whose critical current was studied at 77.33 K had a
tively. cross section in the form of a right triangle. The sizes of the

The critical current in ring-shaped samples with a circu-sides of the triangle were varied in the course of the experi-
lar or right-triangular cross section was measured with thénent in the same proportion from 1.43 to 1.08 mm and from
help of the contactless transformer technigtie!>?® The  0.54 to 0.44 mm, and hence all the nine cross sections under
sample with the primary and measuring windings was placednvestigation were similar.
in a ferrite core of the armor type. If an alternating current
flows in t_he primary, a current of the opposng direction IS 5 |SCUSSION OF RESULTS
induced in the ring-shape sample. Its magnitude must be
such that the magnetic flux accumulated in the central kernel The results of measurements of critical current in
of the core and passing through the gap between the ring arshmples 1 and 2 are shown in Figs. 1la and 1b respectively. It
the winding remained unchanged and equal to zero. As arder to make experimental points distinguishable, tempera-
result, the magnetic induction in the central kernel, laterature dependences are presented for 9 from 10 cross sections
and end faces of the core is equal to zero. In other words, thetudied for sample 1 and for 7 from 8 for sample 2. The
sample was placed in a “jacket” the field in whose walls is | ,(T) curves for sample 1 in the temperature range 70—80 K
equal to zero. At the instant when the amplitude of current irhave a typical bent associated with a superconducting tran-
the ring attained or exceeded the critical current, the signadition of the Bi-2212 phase upon a decrease in temperature
induced in the measuring coil had the shape of a sharp peaknd with the emergence of a new Josephson net now formed
The amplitudd ; of the primary current was recorded at the by two phases Bi-2223 and Bi-2212. The critical current
instant of the emergence of the signal, while the critical curthrough the third sample had higher values thianin
rent was calculated by the formulg=n,l,, wheren; isthe samples 1 and 2, but its temperature dependence was the
number of turns in the primary winding. The electric field same as for sample 2. At 66.25 K, the critical current in this
induced in the sample at the instant of recording did nosample attained values 14.3 and 6.75 A for the maximum
exceed 10 nV/cm. Measurements were made at a frequenand minimum diameters of the sample respectively. How-
of 14.3 Hz. The critical current of the initial sample was ever, the magnetic field created in this case by the transport
measured at a number of fixed temperatures. Then theurrent even at the sample surfa¢é=1./7D) did not ex-
sample was polished, and the critical current for the newceed the values of the first critical current for grains of the
cross sectional area was measured at the same temperatu@s2223 phasé®° Figure 2 shows the dependences of criti-
Such a procedure was repeated many times. As a result, twoal current for samples 1 and 2 as a function of their diam-
dimensional arrays of values bf were obtained for various eters. In spite of the fact that the curves correspond to dif-
values of the cross-section diameter and the temperature. Tiierent samplesFigs. 2a and 2band to different Josephson
values ofl . were measured 10—20 times at each temperaturaets in the case of sample 1, they are of the same type.
The obtained values were averaged. The spread in the values If the expression for critical current in the samples under
obtained in individual measurements was usually of a fewnvestigation has the same form as for samples with a rect-
tenths of percent and exceeded 1% only in rare cases. Tlagular cross sectiofii.e., (1)), the dependence on the
diameterD of the cross section was measured with the helpsample diameter can be eliminated. Dividing the values of

OBJECTS AND METHODS OF INVESTIGATION
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FIG. 1. Temperature dependences of critical current of the f@sand FIG. 2. Critical currents in samples(&) and 2(b) as functions of diameters

secondb) samples. Cross section diameters, mm:(2i2vel), 2.02(curve of cross sections at various temperatures, K{@#ve1), 68.05(curve 2),

2), 1.8 (curve3), 1.44(curved), 1.26(curve5), 1.1 (curve6), 0.85(curve 71.55 (curve 3), 77.33(curve 4), 82.55(curve 5), 87.55 (curve 6), 92.45

7), 0.7 (curve 8), and 0.5(curve9) (a) and 2.7(curve l), 2.32(curve?2), 2 (curve?), 97.11(curve 8), and 101(curve9) (a) and 62.5(curvel), 66.25

(curve3), 1.78(curved), 1.54(curve5), 1.14(curve6), and 0.865curve?) (curve2), 69.85(curve 3), 73.3(curve4), 77.33(curve5), 82.55(curve6),

(b) Dashed curves correspondltp=1,(D,T)/1.(D,77.3X). 87.55 (curve 7), 92.45 (curve 8), and 97.1(curve 9) (b) Dashed curves
correspond tdg=1,(D,T)/1.(D4,T).

critical currentl (D, T) for one of experimental curves in
Fig. 1 byl.(D,T,) for the same curveT, is one of experi- eliminate the dependence on temperature, we introduce the
mentally studied values of), we must obtain the relative relative current ¢ by dividing the critical currents for each
critical currentl; which is a function of temperature only: isotherm by the values of current determined at the same
temperature for an intermediate value of the diamBigiof
(T =F(T)/H(To). (5 P oF

the sample cross section:
All the remaining experimental curves transformed in this
way must be described by the same dependence. Indeed, the 16(D)=1(D,T)/1(Do, ). ©)
values ofl¢ calculated for cross sections with different di- The ratios calculated for different isotherms are quite close.
ameters are close and differ from mean values by not mor&heir deviation from mean values for eaEh are random.
than 1%. For this reason, dashed curves in Fig. 1 for whicfThe scale of the figure does not allow us to demonstrate this,
To=77.33K are the smoothed curves drawn through meaand Fig. 2 presents only the dashed curve drawn through
values. It should be noted that these dashed curves have theean values. Thus, the value i is independent of tem-
same shape as the temperature dependences of critical cperature and the type of the Josephson net and is determined
rents for individual samples, i.e., each curve reflects the inenly by the diametefor radiusR) of the sample cross sec-
dividual behavior ofl(T) of a given sample. In order to tion. The critical current through sample 3 exhibits the same
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FIG. 3. Similitude law for critical current in ceramic samples with different
shapes of cross section. Round samples: @, and O correspond to

samples 1(77.33 K), 2 (62.5 K), and 3(90 K); A correspond to sample 4 ysed for determining confidence intervals. The deviations of
with a triangular cross sectio(r?_7.33 K), OO correspond to sample 1 from the value of exponerg determined for different isotherms of
Ref. 12(rectangular cross section, 77.33.K . .
this sample from the average value are of random nature, i.e.,
the exponent is independent of temperature as well as the
type of random Josephson medium existing in the sample at
dependence oi andD. Since the critical current in round a certain temperature. The latter statement means that it must
samples can be presented(&sor (6), it has the form be independent of the properties of a specific sample also.
Indeed, the Ing vs. Ink dependences plotted for samples
1-3 on the same graph coinci¢eee Fig 3. The exponent

i.e., the expression for critical current, as in the case OP:1'34iO'03 for the second sample apet1.37:0.08 for

samples with a rectangular cross section, is the product giample 3. These values coincide within confidence intervals.

two functions one of which depends only on the size of thel @king into account the facts mentioned above, we find the

cross section, and the other only on temperature and materiﬁ}’era‘pge value 0p=1.36+0.02. Thus, the functio(R)
properties of an individual sample. Moreover, the analogy is:CR for rpund ceramic HTSQ samples is a homogengous
much deeper. Let us consider the dependencelgf function of its argument, which is characterized by a univer-
=1.(kR)/1(R) on the relative siz&k (k=R;/R;, i and] sal exponent. In other words, we observe the same pattern as

being the numbers of sample cross sectioBgatistical pro-  for samples with a rectangular cross section.

(R T)=G(R)/(T), @)

cessing of the results of measurements shows that Experiments with sample 4 with a cross section in the
form of a right triangle proved that its critical current is a
(kR T)=kPI(R,T), homogeneous function of the dimensions of cross section

. ) (cathetsX andY), i.e., is described by expressi¢?). Since
for any sample, any isotherm, and any choic&pf Conse- e conditiork= X; /X;=Y;/Y; cannot be fulfilled rigorously

quently, the critical currentto be more precise, the factor \yhen the dimensions of this sample are varied, the quatity
G(R) depending on the sample radius a homogeneous a5 defined as in Ref. 1&=0.5(X;/X;+Y;/Y;). In the
function of R.™™The dependence of lg=In[I.(kR/(R)] a6 of a triangular sample, the exponertl.34+ 0.04 (tri-

on Ink for_s_arr_\ples 1-3is sh_own by _circles in Fig. 3 In angles in Fig. 3 On the other hand, in Ref. 12 we investi-
order to minimize the overlapping of points corresponding 1oy 40 four samples with rectangular cross sections and ob-

different samples, the normalizing quantities are chosen Sgained the following values for the exponet 1.40+0.04
that they correspond to the largest cross sections for samplell36i0 05 136-007 and 1.420.04 whicﬁ c_oin.cid’e
and to the smallest cross sections for samples 2 and 3. It c@hh the vz,;llues ofp détermined in this,research 0 within

easily be seen that the depgndence under mvest'lgatlor) f%nfidence intervals. Figure 4 shows the exponents and their
each sample can be approximated by a straight line. Since

. oo . . ) confidence intervals determined by us here and in previous
the preceding equality is valid for ark;, we find (putting investigations? Sample numbers are laid along the abscissa
k=1/R) thatG(R) is a power function and g i b 9

axis; samples 1-4 from Ref. 12 are labeled now by 5-8
I(R,T)=CrPf(T). (8) respectively. The diagram displays no dependence of expo-
nent p on the shape of the sample cross section. Conse-
The averaged value of the expongndetermined for sample quently, we can introduce the universal average valup. of
1is 1.36t0.05. Here and below, the fractiles inverted Stu-This has a physical meaning if the law of similitude in the
dent distributiori! with the confidence probability 0.95 is dependence of the critical current of ceramic HTSC samples
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on the relative size of cross sectfdiis observed irrespective is a homogeneous function Bfwith the exponenp—2 and
of the shape of cross section. In other words, the valug,of increases upon a decrease in the sample cross section.
must be a universal function &ffor samples with any shape Samokhvalo¥ who studied the emergence of vortices in a
of the cross sectiofat least, for the shapes studied by.us cylindrical sample came to the same conclusion. When the
Figure 3 shows the dependences ofdon Ink obtained for  decreasing value dR approaches,, the form of the depen-
round sample$l-3), as well as samples with triangulé)  dence(j.) changes for the above reasons. If we wiijg)
and rectangulafsample 1 from Ref. 12cross sections at as a function of the cross-sectional ar& we have
various temperatures. It can easily be seen that all the point§)~ SP? 1~ S 0322001 The authors of Refs. 7, 2, 33, and
can be approximated by a single straight line, i.e., the simili-3 presented the results of their analysig jaf in the form of
tude law is observed indeed. As an additional argument, wa power function ofS and obtained exponents 1, —1/2,
note that the statistical processing confirms the validity ofand —1/3 respectively. It can be seen that our result is in
zero-point hypothesis concerning the equality of generalery god agreement with that obtained by Zakharchenko
mean valuesfor a confidence probability 0.95* Thus, for et al®
the weight-average value of the exponent of the homoge- The magnetic field created in the sample by transport
neous function, we obtaip=1.36+0.01. It was proposed current, and hence the magnetic induction have only azi-
by us earliet*!® that the exponenp might depend on the muthal components depending bnUsing the integral Max-
shape of the sample cross section. However, subsequent exell equation for the circulation of magnetic field, we obtain
periments did not confirm this proposition. It should be noted
that the cross sections of the samples under investigations are c 4
convex simply connected regions. Generalizing the results B(r)=,uo,uH(r)=5,uourp F(T). (12
obtained by us, we can state that if samples cross sections are
such regions, the critical current of ceramic samples in zerqhe values oB andH are equal to zero at the center of the
external field is a homogeneous function of the sample sizeample and increase towards the periphery in proportion to
with a universal exponent irrespective the shape of a crosg’36 Besides, the values & andH as well asj.) depend
section. on f(T), i.e., on individual properties of the sample. At the

Let us return to an analysis of a round sample carryingsample surface, we have
current of the critical value. Obviously, the critical current
density in this case has the critical value everywhere over the H(R)=CRPf(T).
entire cross section. Consequently, we can write
Thus,H(R) is also a homogeneous function of the sample
radius with the exponerg— 1. Eliminatingr from (10) and
(12), we obtain the following equation connecting the critical
current density and magnetic induction:

The integration is carried out here over the entire cross-
sectional area of the sample, andnd ¢ are polar coordi- )
nates. Since the integration concerns only spatial variables, lc(B)=<—

L . . MoM

the factorf(T) appearing in the expression fog(R,T) is (13)
also contained inj;. In the case of a round sample, the
current density does not depend on the azimuthal angle, anthus, j =B~ 17809 The pbehavior of the critical current

|C(R,T)=CRPf(T):f jrdrde. (9)

pcll(p—z) (p—2)/(p—1)
) B(P*2)/(P*l)f(T)1/(p*l).

hence density in the vicinity of the sample center, where the mag-
netic field and induction tend to zero, has been considered
jo(r,T)=cf(T)rP=2, (10 earlier.

Expression(13) obtained for the .(B) dependence dif-
wherec is a constant. Using relatiori8) and(10), we obtain  fers from(3) or (4) primarily in the value of exponent. If we
C=2mc/p. Sincep=1.36, we havejcr %% It follows  assume thaB,=0, we arrive at(3) for 8=(p—2)/(p—1).
from formula(10) that the value of . in the central part of  |f we round off the exponent d8 to — 2, expressior{13) is
the sample increases unlimitedly. It should be noted in thisransformed to formula4) (for B,=0). The presence of
connection that this expression was derived by interpretingerms with B, in (3) and (4) allows us to eliminate diver-
the results of macroscopic measurements in whicldal8-  gence ofj, at the center of the sample. Using the results
sephson net in the sample behaves as a continuous mediugbtained by us as well as quite natural assumptions, we can
If the radius of the region in the central part of the sanipte  derive expressions foy.(r) and j.(B) which give a finite
in any other its pajtbecomes smaller thary which is equal  value ofj at the sample center. In this work, however, we
to tens and even hundreds of diameters of individual superconfine our analysis only to corollaries following directly
conducting granules, we go over to a discrete Josephson mffom experiments. Equatiofl3) connecting the critical cur-
dium, and expressio(iL0) is not applicable any longer. The rent density with the magnetic induction was obtained by us
critical current density itself remains finite everywhere. Thefor a round sample. However, it is a characteristic of a ran-
average critical current density dom Josephson medium realized in granular HTSC materi-

als. Consequently, it is valid for any sample and does not
(jey=Ic/mR?=CI(T)/wR?*"P (1)  depend on whether the magnetic field is applied or is induced
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by transport current, and the properties of a specific material R =R[1—(1,/1,)¥P~1](P~1/p,

medium are taken into account(h3) due to the presence of . . . .

the functionf(T). T.hus, the internal boundary of the region carrying current is
We shall use Eq(13) for analyzing the state emerging in dlspl_aced towards the center with increasing curignac-

the sample having the shape of a tube carrying the criticafording to the power law.

transport current., . The radii of inner and outer surface of

the tube areR; and R respectively. _In this casg, andB  ~oncLUSION

depend only orr. Maxwell's equation for the case under

investigation has the form An analysis of experimental results shows that the ex-
pression for critical current in ceramic HTSC in zero mag-

d(rB) _ netic field can be written as the product of two functions.

dr | Momflc: One of the functions reflects individual properties of the

sample material and is a function of temperature only. The
Taking into account the fact that magnetic induction on thePther is @ homogeneous function of the sigl of sample cross

inner surface of the tube is equal to zero, we obtain section with a universal value of expongnfor all samples
irrespective of the shape of cross sectigr=(1.360.01).
B(r)=(mouc/p)rP~y(r)f(T) (14) Using experimental results, we have established the form

of field dependence of critical current density:
, 2 1 jo~BP~2(=1)
Je(n)=crP=Ly(n)I'](T).

y(r)=[1—(Ry/r)P/(P=D]p~1 (150 *E-mail: mart@casper.che.nsk.su
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A mechanism which relates the upturn of the perpendicular upper critical magnetidﬂﬁg(lﬁi)

in layered superconductors and thin films with the structural inhomogeneity in the bulk of
the sample, provided that the local critical temperaflifeinside the inhomogeneity is higher than
in the rest of the sampleT() is proposed. Within the Ginzburg—Landau approach an
equation which describes two types of experimentally observed nonlineariti¢s, () nearT,
for ISN (insulator-superconductor-normal metahd NSN layer configurations, is found.

In the NSN case a crossover from the linear braHgh(T)«(T.—T), for fieldsH<H,,, to the
nonlinear branch with the upturn, H>H,,, takes place. The crossover fidf, is

inversely proportional to the local enhancement of the critical temperafifre T.) and the
distanceR to the surfacgthe nearest surface, in case of a thin jilim the ISN case the upturn
holds forH<H,,, whereas for higher fieldsl,(T) crosses over to the linear branch. In the
ISI case theHéz(T) is a linear function. ©1999 American Institute of Physics.
[S1063-777X99)00212-1

1. INTRODUCTION field H,(T) in all existing theories is a linear function &f

. . . ' because the lowest Landau level in this geometry equals its
The nonlinear behavior of the upper critical fi¢ldd, has .
bb 2 standard valuen (/2 (A=eH/mc is the cyclotron fre-

been observed first in the layered dichalcogenides of tran- . . .
sient metals in the beginning of the 197Gsd was given guency. Setting this value equal to the coefficiem{T) of

then much attention as a possible signal of non-BCS pairin%1e szlburg—Landau expansion, we obtain the linear depen-
in these materials. In the 1980s, artificially prepared supera€NceHc;~1~(T/Tc). The exceptions are twinned crystals
conducting superlattice(SL) have been an object of inten- of the YBaCuO type anq the art|f|c_:|al superlattlces PbTe/Pb_S
sive studies which revealed a number of nonlinearity types ifRef- 12 where the mismatch dislocations make a quasi-
the temperature behavior of thé.,(T): the positive curva- Sduare tv_vo-dlmensmnal lattice at the bo_u_ndarles between the
ture [an upturn of theH .,(T) near the critical temperature nt—ﬁlghborlng layers. A theor'y for the pgsﬂwg curvature of the
T.], square-root and linear crossovers, the TakahashiHcz in PDT€/PbS supgrlattlces was given in Ref. 10. On the
Tachiki crossovetin S/S' superlattices and the power law Other hand, the positive curvature of thit,(T) has been
H,~[1—(T/Ty)]” with 1/2<y<1 in quasiperiodi¢ and obseryed in a pe_r|0(_1|c st¥*¢fractal SL, superconducting
fractaP superlattices. The control over the width of layers, SL With magnetic interlayers, and intercalated layered
their number and content, as well as the deposition sequen&&ystals;>*? including highT. cuprates® (In the latter a
order made it possible to clear up in detail the relationshigPositive curvature close to zero temperature also has been
between the structure of the artificial superlattices and th@bserved: We do not consider it hereln contrast with the
form of theH.,(T). A review of the temperature behavior of specific case of PbTe/PbS superlattice, in other artificially
the upper critical fieldH,(T) in superlattices is given in fabricated SL this nonlinearity cannot be related to some
Ref. 5. The nonlinearities of the.,(T) have been observed superstructure in the plane perpendicular to the external field,
in different types of highF, layered cuprates and superlat- SO that the above-mentioned mechanisms of the Landau level
tices made from novel materials such as YBaCuO/PrBaCudroadening cannot explain an upturn in thi,(T). The
superlattice$. positive curvature of thél;,(T) is a property inherent to all
Theoretically, the problem of calculation &f,(T) re- types of SL, regardless of the layer stacking sequence order.
duces to the eigenvalue problem for a fictitious particle in arOn the other hand, it seems rather sensitive to the quality of
external magnetic field. In the case of parallel fields thislayers in SL, because an upturn in tHg,(T) was observed
problem has been solved both numericallyand only in a small portion of the samples studied so far. The
analytically*~for different types of periodic SI and SN su- physical reason behind this phenomenon is not understood
perlattices. A theory of the temperature dependence of thget. The relationship between the quality of a layered crystal
HL,(T) for quasi-periodic SL was developed in Refs. 10 andand the positive curvature of the.,(T) has been clearly
11. In contrast with the parallel fieldLLZ(T), where the non- demonstrated in Refs. 18 and 19, where a positive curvature
linearities are due to the lifting of degeneracy of the lowestwas observed after the intercalation of layered single crystals
Landau level on the orbit center position, the perpendiculanf 2H-NbSe by molecules of TCNQ and Sn atoms.

1063-777X/99/25(12)/7/$15.00 936 © 1999 American Institute of Physics
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Very instructive observations were made in some experifabricated so faronly a few**~°have displayed a positive
mental studie&!” An upturn in theH.,(T) of a single Nb  curvature in theHs,(T), while the great majority of them
layer deposited on a dielectric substrate was not found ilyield a linear temperature behavior n&ar. This linearity in
those studie$!’ whereas it has appeared in triple layers andT is in agreement with theory, since the lowest energy level,
SLs Nb/Gd and Nb/Cu fabricated in the same series of exen,, in this case ishQ/2 and, henceHg,~T.—T. Of
periments. These results show that boundary conditions aurse, perfectly uniform SL is no more than a mere theo-
interfaces between superconducting and metainsulatoj  retical model and real SLs are far from being ideal periodic
layers play a crucial role in physics driving the nonlinearitiesstructures because of uncontrollable inhomogeneities intro-
in the He,(T). duced during the process of their fabrication. We will show

In this paper we propose a mechanism of the positiven what follows that a structural inhomogeneity of content,
curvature of theH,(T) nearT, due to the structural inho- which locally enhances the superconductivity of a layer or
mogeneities in the bulk of a layer. This mechanism gives ahin film, gives rise to the positive curvature Hf,(T).
qualitative description of all types of nonlinearities in the Let us assume that an inhomogeneity exists in a thin
H,(T) observed neaf . in artificially fabricated SLs. superconducting film at a distanegfrom its surface, where

Our paper is organized as follows. In Sec. 2 the problemocal conditions for superconductivity are better than those in
of calculations of the perpendicular critical field is reduced,the rest of the sample, so that the local critical temperature
in the adiabatic approximation, to the eigenvalue problem foff; is higher than the temperatufie.. In high-T. cuprates,

a “particle” in a one-dimensional potential well which ex- for example, such an inhomogeneity may be due to the oxy-
periences an additional action from the surface. In Sec. 3 thgen concentration fluctuations since the local oxygen content
equations foH,(T) are derived. They describe nonlineari- is a factor which mainly determines the locgl. Nonuni-

ties in theH{,(T) of a thin film and SLs neall, with a  form distribution of intercalating molecules can also cause a
decrease in temperature. The discussion and comparison loical enhancement of the superconductivity in intercalated
the results with experiments on layered superconductors atayered superconductors. For simplicity we assume a
given in Sec. 4. cylindrical-shape inhomogeneity, so that the Sdimger

equation can be written in the symmetric gauge,

2. FORMULATION OF THE PROBLEM AND THE MODEL A=1/ZHr], in the form

The problem of calculations of the upper critical field ~ HYe(p,2)=E¥e(p,2), (]
HéZ(T), as is well known, reduces to the eigenvalue problemyhere
for the lowest Landau level. In the case of the Ginzburg— A
Landau approach an appropriate Sclinger equation for a H=H/(p)+Hx(z)+U(p,2). (©)]

“particle” is ~ _ - S .
HereH,(2) is a Hamiltonian which is related to the particle

HV = —a(T)V, (1) motion along the fieldp=(p,¢) are the polar coordinates in
the plane perpendicular to the external fielgdz is the coor-

where V¥ is the order parameter, and(T) stands for the dinate along the fieltH, and U(p,z)<0 is a “potential

coefficient in front of the ternt | in the Ginzburg—Landau well” associated with the inhomogeneity. The Hamiltonian,

expansion. The physics of nonlinearities of the function . " Sz
HL (T) in different types of regular and quasi-periodic su- relevant to the motion of a “particle” in an external mag-
c2 netic field in the plane, is

perlattices is based on the fact that in these structures, due to

the lift of the Landau level degeneracy on the orbit center . 210 o9 1 9*° eH.

position, the Iowe;t edge of the energy spectregyp(H) is Hi(p,¢)=— 2ulp %P%Jr 02 (9_902+ %'z

below 2Q/2. Nonlinearity of the functione,;,(H) results -

then in the nonlinearity of the functiod ,(T), which is a n e’H” 4
solution of the equatiorey,(He)=—a(T). This approach sma’ -

proved to be very useful for studies of tht{z(T), as was The eigenfunctions of the Hamiltonigd) can be written in

discussed in the previous section. In the case of a perper{nﬁe form

dicular orientation of the magnetic field, the problem of the

positive curvature of théls,(T) in thin layers and superlat- dme

tices remains unsolved. The explanation of the positive cur-  Yen(p,¢)= 2n Vpf(p), ()

vature of the perpendicular critical fields in superlattices of
the type PbTe/PbS, given in Ref. 10, is essentially based owheref(p) satisfies the equation
the same idea that holds for calculations of tig,(T) in

2_ 2
superlattices, because the upturn in Byg(T) in these ma- vy 2, |20E eHm m -1/4  p7f
oeTie i ) : . '+ —f'+| =5+ v 2| f (6)
terials is attributable to the two-dimensional net of mismatch p h ch p 4L

dislocations.
The situation with theH ,(T) is absolutely different be-
cause artificial SLs are assumed to be uniform along the -p?\[p Im| p?
Jpf(p)=Cex Fl —n,,|m|+1 :

The solution of Eq(6) is given by

layers and, hence, cannot broaden the Landau levels into 4.7 )\L 212

bands. On the other hand, among the numerous superlattices @)
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The energy spectrum is determined by the condition that 2 (=
the hypergeometric functioR(a,b,c) reduces to a polyno- Ugi(2)= WJ U(p,2)p?™* Lexp —5%)dp,  (16)
mial, which yields e

wherep=p/\2L.

En=/Q| n+ E , (8) For small(compared tci()) potentialU(p,z) the one-
2 dimensional potential well, given by E(L6), is shallow and
n=n,+(|m/+m)/2 andm=—...,—1,0,..n. Heren and €o(H) can be evaluated &s
n, are integ$rsQ=eH/Mc is the cyc_lotron frequency, and mU(Z)
L= (#/uQ)Y? stands for the magnetic length. eo(H)= ==, (17)
The normalization constai@ in Eq. (7) is 2k
+ ] 1/2 0
C:[(Iml ny) } (mjrL) -1, 9 uozf U2i(2)dz. (18)
n, -
Since T¥ is only slightly greater thaT., we can assume The presence of a boundary, as is well known, can dra-

that influence of the potentiajl(p,z) is weak Compared to matically Change the situation with the bound state because
the action that the external field exerts on a particle. Thighe value which¥’ takes at the boundaries of a film strongly
means that an adiabatic approximation can be applied to thaffects the possibility of a potential well to create a bound
eigenvalue equatiof®). Since we are interested in the lowest state. Two different types of the boundary conditions take
energy leveln=0, the adiabatic approximation in this case place at the interfacesV =0 for insulator-superconductor
means that the energy and the wave function should be takéhS) boundary andd¥/dx=0 for the NS boundary of the

in the following approximate form? normal metal with the superconductdiThus, we have three
different cases for the superconductor lay®r sandwiched
Veme(N=~¥om(p, @)V m(2), (100 petween the insulating) or the normal metalN), which we
denote as ISI, ISN, and NSN. The analysis given in the next
rhQ ; " 4
E=—+e¢ (11)  section shows that conditions for the creation of a bound
2 state of the particle in the potential well are different for
where these three cases.

Since the depth of a wellJ%(2), grows with the en-
p Iml . p? hancement of an external field, we can expect a crossover
Yom(p, @)= AL exi{ ime— P>/V27T|m! L. from the regime E,(H)=2Q/2 to the regime where
(12) Emin(H)=hQ/2—€3(H), whenH crosses over some value
H*. The crossover fieltH* corresponds to such a depth of
Substituting(10) into Eq.(2) and eliminatingV ,,(p,¢), we  the potential well which permits to create a bound state in the
obtain the Schidinger equation for the wave function well for a given value of distance between the boundary and

Y n(2) the well. In the context of our analysis, this crossover corre-
. o sponds to the transition from the linear brandy,= T,
Ha(2)V cm(2) +[Uen(2) — €]V =0, (13 —T, to the nonlinear branch which goes above the linear

branch as the fieldH increases to a value larger thétt.
The temperature dependence of the upper critical field,
Hep(T), can then be determined from the equation
Emin(He)=—a(T). To simplify further calculations, we will
U[anﬁ(z):f U(p,2)| ¥ om(p)|*d?p. (14 make some additional assumptions which do not change the
physics beyond the above crossover. We first assume that the
Since (13) is a one-dimensional Schiimger equation, radius of the inhomogeneityR, is less than the magnetic
and Ugk(2) is negative, there should be at least one boundength,L = (%c/eH.,)*?, which nearT, is of the order of the
state in the potential well made Bygx(2). In the case of coherence length&(T)=¢,/(1—T/T)Y? because He,
boundless sample the eignevalaen Eq. (13) is negative =®y/27£%(T). Therefore, the conditiolR<L reduces to
and strongly depends on the magnitude of the external fielthe inequalityR< £(T), which is easy to satisfy nedi, even
H, so that the minimal energy in the eigenvalue probl@&n for sufficiently large(in the lattice constant scald®k. The

where H,= — (£2/2u)(d?%/dZ7%), and the effective potential
energy is introduced

in adiabatic approximation is given by quantity @, stands for the flux quantum. Under this condi-
5O tion assumingU(p,z)=—|U(2)| if p<R and U(p,2)=0
EmmZT_ eo(H). (15)  otherwise, we have from Eq16)
U=~ IU@1(H), (19

Thus, E,i,(H) is lower thanA()/2 and, in general, is a
nonlinear function oH, becausey(H) is a nonlinear func- where
tion of H, as one can see from Eg&.2) and (14), which 0 R2
yield the following expression for the potential well in this I(H)~ 7RH
case: @,

(20
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Thus, the effective potential well depth is proportional to

F(Y)=cothY+cothYb/a).
the flux, ®=27R?H,

(27)
The energy of the bound state is then given by

(21 £2y2
2 .

2ma

o P
Uer= _|U(Z)| D
0 €0=— (28)
Since the precise form of the potential well is unknown,
we will simulate it, as is generally accepted, with ikevell: We have assumed here for certainty thatd—a>a. In the

opposite casa should be replaced Ry It is easy to see that

0]
Ud=-V—24(2), (22)  the eigenvalue equatiof26) has a solution only iH>H*,
Po where
where a
® H*ZHm 1+B ’ (29)
V=J dZU(z)| .
andH, is a threshold field given by
In the particular case of a layered superconductor such )
as NbSe or the one from the family of higf-. cuprates, the _ Dofi (30)
approximation given by Eq22) is quite acceptable because ™ rR’maV

the inhomogeneity that belongs to a certain layer has a form _ )
of a “pancake.” Such “pancakes” may be due to the non- A sample which occupies a half-space corresponds to the

uniform distribution of intercalating molecules in dichalco- lIMit b—< in Egs.(27)-(29). We thus obtain the following

genides of transient metals or oxygén the case of cu-

prate$ since local concentration of these elementsUnder study isEmiy

determines the local value of the critical temperatlige

3. ANALYTIC CONSIDERATION OF THE POSITIVE
CURVATURE AND CROSSOVER OF THE UPPER CRITICAL
FIELD H%,(T)

Consider a thin superconducting film of thickneds
which amounts to a few or less and which contains an
inhomogeneity with the effective potentié?2) located at a
distancea from the surface. The problem of calculation of

picture. If H<H,,, the lowest eigenvalue of the problem
=hQ/2. For fieldsH>H_ the minimal
energy iSEqi,=nQ/2—ey(H). Equating thenE,,, to the
Ginzburg—Landau coefficient, we have

T .
1——), if HsH*, (31

Hé2=H<0>( T,

g 2
+Y2H(0)(a) , if H>H*,
(32
whereH(0)=®,/(2ma?), andY(H/H,,) is determined by

Hep=H(0)| 1- x
c2 Tc

the HL,(T) then reduces to finding the lowest eigenvalue ofEd. (26). We see that foH<H, the perpendicular critical

the Schrdinger equatior{13) with

Ugﬁ:—Vaoﬁ(z—a) (23)

field, given by Eq(31), is a linear function of temperatufie
and atH=H,, it crosses over to the nonlinear branch of Eq.
(32), which goes higher thaf31) and has an upturn or a
so-called “positive curvature.” The dependence of the re-

L P e
and appropriate boundary conditions. We first consider th&uced critical field Be,=Hcy/Hpy, on the reduced tempera-

case of NSN sandwich, for which the boundary conditio
areV(0)=¥(d)=0. To satisfy these conditions, we write
the solution in the form

T, (X)=AsinhkX,
T,(x) =B sinhk(x—d), (29

Here x?=2m|e|/A2. The constant?\ and B can be found
from the corresponding boundary conditions at theell

2mVao
hdg,

for 0=x<=a,

for as=x=d.

Py(a)—Vi(a)=— Vi(a),

Vi(a)=",(a). (25

It follows immediately from Eqs(24) and(25) that the en-
ergy of the bound state, is determined by the only root of
the equation

(26)

ng

ure T/T. for different values of the parameters
G=H(0)/H,, andW=(¢/a)? is shown in Fig. 1.

Since Eq.(13) is valid for

| €l < (33

5
the second term on the right-hand side of Bf) should be
small compared to the first term. This condition determines
the formal validity of Eq.(32). It follows then from Eq(32)
that the smallness of the paramet®r<a? is favorable for
the applicability condition(33). On the other handH,,
«a !, so values oW andH,, decrease with increasing of
the separation between the surface and the inhomogeneity.
In the case of a film sandwiched between an insulating
and a normal-metalor ferromagnetlayer, i.e., in the ISN
case, the boundary conditions ai® (0)/dx=0 andW¥(L)
=0. The appropriate functioR(Y) in Eq. (26) is

b
F(Y)=cothY—tan|’(Ya). (39
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4. DISCUSSION AND CONCLUSIONS

Let us summarize the results obtained in the previous
sections from the viewpoint of their relevance to experiments
done so far. We see that at least two major preconditions are
necessary for deviation of theg,(T) from the linear behav-
ior (31): @) structural inhomogeneities with local enhance-
ment of the critical temperature angldn appropriate bound-
ary condition of the NSN or ISN type. Therefore, structurally
perfect films and multilayers should not display nonlineari-
ties of theH¢,(T) nearT.. This assertion is in agreement
) with the fact that an upturn it ,(T) has been observed
0.80 0.85 0.90 0.95 1.00 only in a limited number of experiments on different super-
conducting SLs, whereas the rest of them show linear behav-
ior of the perpendicular critical fieltiBut even the prereg-
uisite g is satisfied in a single film; it does not display a
nonlinearity in HéZ(T) when sandwiched between the insu-
lators, i.e., in the ISI case. This conclusion of our theory is
confirmed by experiments reported elsewHereThose ex-
periments showed that thé.,(T) of a single Nb film depos-
ited on a dielectric substrate in vacuum is a linear function of
T near the phase transition, but it becomes upturned in triple
layers and multilayers Nb/G(Ref. 17 and Nb/Cu(Ref. 4
fabricated from the Nb films. The latter, as was found in
ey Nb/Gd and Nb/Cu superlattices, have a grained structure
oL . . . . LA necessary for our approach. Thus, we can explain the above

05 06 07 08 09 10 1.1 experimental observations as follows. A single layer depos-
T/Tc ited on an insulating sapphire substrate in vacuum belongs to
FIG. 1. The dependence of the reduced perpendicular critical magnetic fieIJ([ihe.I.SI (.:ase mlour CIaSSIfI(.:atlon and’ he.nce’ has no.nonlm-
B¢, on the temperaturé/T, for the NSN(a) and ISN(b) cases calculated earities m_ theH;,(T) behavior. The situation changes in the
from Eq. (26) with: (@ F(Y) given by Eq.(27), W=(¢&/a)?=0.1 and  Case of triple layers Nb/Cu/Nb and Nb/Gd/Nb, because they
G=10;20;30(curves1, 2, 3); (b) F(Y) given by Eq.(34), W=0.1 and  are of the ISN typdsince each of the two Nb layers in the
G=1;2;3 (curves 1, 2, 3). The parameteiG=H(0)/Hy and the ratio  triple layer makes contact with one insulator and one normal
b/a=1.5 for both cases. metal layey and should display a crossover of the kind
shown in Fig. 1b). The multilayers Nb/Cu and Nb/Gd are of
the NSN type in the bulk of the sample and of the ISN type

The solution of Eq.(26), with the F(Y) given by Eq. for the marginal layers at the top and the bottom of a SL
(34), yields a nonzero root only fdi <H,,. This means that (Where the superconductor layer contacts either with the
a crossover itH.,(T) for the ISN case is somewhat different Vacuum or with an insulating substrat&herefore, the non-
from that we have described above for the NSN sandwich: afinearity (see Fig. 1 which displays a specific SL depends on
upward-like branch32) for H<H* crosses over to the lin- Which of its layers(marginal or the one in the bulk of a $L
ear branch31) when the field exceeds the valit, . The  Yields the largesH,(T).

results of a numerical analysis for thé.,(T) in the ISN The intercalation of a layered crystal NhSeas was
case are shown in Fig(H). shown in Refs. 18 and 19, also gives rise to the upturn in the

HéZ(T). Let us consider in more detail the case reported in
Ref. 18, where the temperature behavior of Hig(T) of
layered single crystalst2-NbSe, intercalated by molecules
of TCNQ, has been studied. Before the intercalation, the
H,(T) was found to be a linear function of the temperature.
F(Y):tanhY—tanI‘( YE) (35) After the intercalation, théig,(T) became a nonlinear func-
tion, whose shape nedr. reported in Ref. 18 is as follows:
a linear branch up téd1,,~0.8 T and then a smooth upturn
Substitution of Eq(35) into Eq.(26) gives an equation with further decrease in temperature. The critical temperature
which has no solution for positivet. This means that of intercalated 2i-NbSe, T% =6.5K, is lower than that of a
€0="0 andH,(T) for the ISI sandwich is given by the linear nonintercalated crystal, whef®g.=7.2 K. The physical rea-
function (31) in accordance with the experimefits’ In the  son behind the lowering of . after the intercalation is that
next section we will discuss the physical meaning of themolecules of the TCNQ, when placed between the supercon-
results obtained in the context of a current experimental situducting sheets, diminish the concentration of electrons in
ation in the field. them since the TCNQ is a very active acceptor. On the other

In the ISI case the functioR(Y) is determined by the
Schralinger equation(13) and by the boundary conditions
dW¥(0)/dx=dW¥(L)/dx=0, which yield
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1+2

2
ng(T)~< ) H(0)(1—2e HMMHm) 4+ H(T).

sample. The latter means that after the intercalation somtire:
7
local critical temperatures in them are higher than in the rest Hm Te)
value ofV in Eq. (30) can be taken ag=AT.d, wheredis  implies that{H¢/(Hya)]<1 (the latter is the case, for ex-
a~10—-100A, andH,,~1 T, we can estimat® from Eq.
H(T)¢

tercalated Pi-NbSe. One can check the above theoretical

linear function of the temperature and, hence, g(T)
different stages of the intercalation.

In summary, we conclude that the presence of a particu-

layered high¥, cuprates. In these materials the oxygen is the
ture. Thus, spatial fluctuations of the oxygen in the planeD
in the rest of a sample. According to the previous consider- The discussions with M. A. Obolenskii, H. B. Chashka,
l . -
Heo(T) nearT, in layered highf, cuprates has been re part by International Soros Education Program through Grant
cause of the resistive transition broadening in an external
shape via the elastic moduli; j=c; ;(b), depends on the 514(1975]
line Hgo(T) inevitably should manifest itself in the form of 3y, matijasevic and M. R. Beasley, Phys. Rev:38, 3175(1987.
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Relaxation of the electric resistance of YBaCuO single crystals due to hydrostatic
pressure and jumpwise temperature variation
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The effect of hydrostatic pressure on pressure, temperature, and time dependences of the
conductivity in theab-planeof YBa,Cu,0;_, single crystals with different oxygen concentrations
(0.1<x<0.5) is studied. It is shown that in oxygen-deficient samples wit0.2,

temperature and pressure variations may induce a nonequilibrium state in which effects associated
with the variation of unit cell volume and redistribution of oxygen in Cu—0O planes must be
distinguished. Characteristic conductivity relaxation times under the effect of pressure and during
annealing at room temperature are determined. It is concluded that these processes have the
same origin. ©1999 American Institute of Physid$1063-777X99)00312-9

~High-temperature superconductdidTSC) are charac-  crease irx, and then narrows down @t=60K; (Refs. 6 and
terized by the presence of a labile element, viz., 0Xygeny) () for x>0, the transition is of two-step type with,
Under the effect of external agencies like temperature and. gg K andT,,=60K (Ref. 8 and(3) a transition can occur
pressure, the lattice parameters may change and the labilg, 4y T <90 K, the transition width depending insignifi-
componer}t' may be redistributed. In turn, these changes af:'antly on the value of, (Refs. 9 and 1D The experimental
fect the_ critical parameters of the super_cqnd_uctor. In order tgeg 15 presented in Table | speak rather in favor of the first
determine the origin of superconductivity in HTSC com- versions, which is also confirmed indirectly by the step

pounds_, 'F IS |mpor_tant to separate processes as_somated w #m of the resistive transitions to the superconducting state
the variation of lattice parameters and redistribution of labile

oxygen. However, very few authdé have studied the ef- observed in a majority of the investigated objects. The ab-

. S sence of steps on the resistive transitions of the crystals K4
fect of pressure off; in nonequilibrium state, and only ce-

. . . and K7 does not rule out the possibility of coexistence of two
ramic samples were investigated. In the present work, wé o .

; . 2 or more phases with difference valuesTof since the pres-
consider the results of investigations of pressure, temperature

and time dependences of the resistivity of ¥88,0;_ _T_nce of petrr?otlatlfn pa'\ttlh S (:f ?[Errent flow in da r)thasetV\{[lth T’?hh
single crystals with different levels of oxygen deficiency ¢ means that a transition 1o the superconducting state ot this

(0.1<x<0.5) in a wide range of temperaturé20—350 K very phase will pe. ob_served at th_e resistive transition.
and pressure€—11 kbay. The .con.ductlwty increases Wlt_h pressure, and the pres-
The hydrostatic pressure was created in an independeﬁPre der|vat!ves of samples with different oxygen concentra-
piston—cylinder type chamber by using the technique delions may differ by a factor of several units. By way of an
scribed in Ref. 4. The pressure was determined by a mang&X@mple, Fig. 1 shows thR(T) dependences for different
nine pressure gauge, and the temperature by a coppei@lues off inthe K4 single crystal. The insegsandb show
constantan thermocouple mounted on the outer surface of tHB8€ dependencegyog(P) and[dT./dP](x) for samples K2,
chamber. The resistance in tiad-plane was measured by K4 and K7. It can be seen that an increase in the oxygen
the standard four-probe technigue in a constant current 1—19gficiency leads to an increase @T./dP and dR/dP,
mA. which is in accord with the available dafsee, for example,
Single crystals were grown by the solution—melting Ref. 11. The figure also shows that nonstoichiometric
technique in a gold crucible by the method described in desamples X~0.5) show a considerable increase in the baric
tail in Ref. 5. The single crystals had a characteristic size 3lerivativesdT./dP and dR/dP, the quantitydT./dP at-
X 4% 0.03 mm. Oxygen-deficient samples were obtained byaining valueg0.63—0.85 K -kbar~*, which are much higher
annealing in air at 600—650° for a period ranging from tenthan the values for perfect samples. The nonmonotonic na-
hours to two days. Table | shows the parameters of seveltre of the dependendg,(x) creates additional difficulties in
single crystals with different superconducting transition tem-he interpretation of the obtained results. One possible expla-
peratures. nation for the singularities observed in tAg(P) depen-
According to the data available in the literature, threedence for the system 123 was proposed by Saiko and
types of processeslepending on oxygen concentrationay ~ Gusakov? in their theoretical model which connects the
lead to the superconducting transition in the YBaCuO comyvariation of the superconducting transition temperature with
pounds:(1) a narrow transition occurring &.=90K for x  the peculiarities of the dynamics of apica{4patoms form-
< 0.1 expands in the interval from 90 to 60 K upon an in-ing a bistable sublattice which can be controlled by applying

1063-777X/99/25(12)/5/$15.00 943 © 1999 American Institute of Physics
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TABLE I. Parameters of single crystals with different superconducting tran- t, min
sition temperature. 0 750 1500
T 242
P300r
Single crystal T., K AT., K wnld-cm X
K1 42 14 8200 0.52
K2 45 10 7500 0.50
K3 48 8 5200 0.48
K4 50 2.4 750 0.46 124
K5 68 10 620 0.15 o
K6 82 5 450 0.10 <
K7 ) 0.3 200 <0.1 <,
=3
&)
2.40
an external pressure and by varying the oxygen nonstoichi-
ometry. Indeed, it can be seen from Fig. 2 that an explicit
correlation exists between tig variation and the separation
dcu(2)-o(a) (Ref 13. According to Saiko and Gusakdfthe |
formation of the 90°-phase under the action of a pressure 500 20'00 40'00 60.00 2.39
applied on a 60°-phase sample, or an alternation of these t. min

phases upon a variation of oxygen nonstoichiometry is asso-
ciated with the “switching” of the mode frequendy which FIG. 2. Dependencg&_(t) (of the temperature corresponding to the onset

dominates in BCS pairing due to a transformation of theOf the superconducting transitipfor sample K2(curve 1) at P=6.3 kbar,
bistabl tential of ical t Th | f th for sample K3(curve 2) during annealing at room temperature, and time
IStable potential ot apical oxygen atoms. e value o edependence of the separatidgp,,— o, obtained in Ref. 13curve 3). Solid

pressure required for transforming the system into theyres are calculated by formula).
90°-phase also decreases with Thus, a considerable in-
crease inT; under pressure is interpreted as an extension of

the transition from the 60°-phase to the 90°-phase. Indeed, fljieq along different crystallographic directidfigpparently

can be seen from Fig. 3 showing tig-dInTc/dInV dia- 44 not allow us to explain unambiguously the peculiarities in
gram for K2, K4, and K7 crystals calculated taking into ac-ne pehavior ofT.(P,x) dependences on the basis of the
count bulk moduli(100 GPa forx<0.1 and 115 GPa fox above theoretical model only.

14 i
>0.)™ that [dInTc/dInVI(Ty) curves have a kink that In all probability, peculiariies in the behavior of

might be an indication of a transition from the 60°-phase tOTC(P,x) dependences are due to several mechanisms one of

the 90°-phase which is characterized by a different value ofy hich is associated with a change of the band structure under
dT./dP. However, the anomalous increasedif./d P from

71 bulk compression. The observed linear relation between of
1.5 to 2.5Kkbar " observed by us for low pressures qinT /dinV anddInT, can be obtained using the Labbe—
up to 1.2 kbar for an insignificant difference in oxygen oy theoretical modéf taking into account the contribution
concentration in the samples with,=45 and 50 K as well ot |ggarithmic singularity to the density of states of the half-

as the sign reversal afT./dP under an axial pressure ap- fijied band. In this model], is defined as
= Tc.K
P72 xoar 91.1 915 ° 92
< 7.8kbar ’ ' '
+10.45kbar 40}
b > [
c o < -
- 2
o« o )
. [ ] % 20-_ -
e
02,04 06 B
] ] ] 1 i
0 100 200 300 400
T.K 0 . Y
45 50 55

FIG. 1. Dependenc®(T) for sample K4 under pressures 0, 4.5, 7.8, and
10.45 kbar. The inseta) shows theR3;,T) dependence under different

pressures for samples K2, K4, and Krvesl, 2 and3, respectively. The FIG. 3. DiagramT.—d In T./dIn V for crystals K2, K4, and K7curvesl, 2,

inset (b) shows the dependen¢eT./dP](x); dark circles correspond to and3, respectively calculated taking into account bulk modli00 GPa for
the results obtained in Ref. 11 for ceramic samples. x<0.1 and 115 GPa fax>0.1).2

Tc .K
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T.=D exp(— 1/)\0.5) (1) TABLE Il. Results of measurements @f(P) andAT.(P).
Cc 1
where D is the singularity “width.” In this case, for the Te, K AT, K T, K AT, K
volume dependence df. we have before holding after holding
P, kbar at 300 K at 300 K
dinT, dInD 1 dini
= + 5505 : 0 50.6 2.4 50.6 2.4
dinv dinv - 2x™dInV 1.26 52.4 2.4 52.5 2.7
This gives 2.53 53.0 2.8 53.0 2.9
3.90 54.0 2.9 54.1 3.2
dinT./dInV=a;InT.+ay, 5.00 54.8 3.2 54.8 3.4
(2) 8.00 56.6 3.5 56.7 4.1
1dlinx dinD After pressure removal 50.6 3.5 50.6 2.8
a;=—¢ -PE —a,InD. Three days
2dinVv dinVv after pressure removal 50.6 35 50.5 24

The kinks on thed In T;/dIn V)(T,) curves can be due to the
cluster structure of the sample, which is confirmed by the
presence of steps on resistive transitions to the superconduct-
ing state. It was proved by us earfiéhat the observed step andT.. A similar regularity in the variation o, was ob-
form of resistive transitions indicates the nonstoichiometricserved during an analysis of the effect of axial compression
ratio of oxygen and vacancies concentrations leading to thalong the axes and b on the superconducting transition
formation of a mixture of phases, viz., clusters characterizetemperature of single crystals wiffi,~90 K.*®> The super-
by different concentrations of oxygen and its ordering andconducting transition temperature increased when the pres-
naturally have different critical temperatures and the valuesure was applied along the axésand decreased when the
of dT./dP. It is interesting to note that similar peculiarities load was applied along the axis The application of hydro-
in the behavior of pressure derivative$./dP as functions static pressure affects the rati@{ b)/a insignificantly since
of composition were observed by us for NhSngle crys-  the value of the ratio is determined only by the difference in
tals that also belong to systems of two-dimensional latticegompression moduli along the axasndb. For this reason,
and are characterized by close values of anisotropyhe change in critical temperature under hydrostatic pressure
parameter®!° For example, intercalation with deuterium up is relatively small.
to 2 at.% and the introduction of tin impurities into NBSe For crystals withT.~60K, the Fermi level is shifted
lead to an increase in the valuedf./dP by a factor of 2-3  from the middle of the band and lies at a distance form the
as compared to a pure sample. In this case, the value &fan Hove singularity. Consequently, if the superconducting
dT./dP increases with the tin impurity concentration. It transition temperature is determined primarily by the density
should also be noted that the pressure depend@né¢®3 for  of electron states, the Fermi level must be displaced under a
NbSe and YBaCuO single crystals display a qualitatively hydrostatic pressure towards the peak of the density of states.
similar behavior. The above peculiarities ©f(P) depen- It should be noted in this connection that Fig. 1 shows
dences were interpreted as a consequence of a displacemém dependences associated with the “true” effect of pres-
of the Fermi level relative to the root singularities of the sure caused by a direct compression of the sample. Since it
density of states. was proved in Refs. 2 and 3 that two effects connected with
Taking into account the above analogies as well as tha decrease in the unit cell volume and with a redistribution of
results obtained in Refs. 16 and 20 where the model presunoxygen must be taken into consideration while determining
ing the presence of a singularity in the electron spectrum ofl T./dP, we used an approach permitting the separation of
2D lattices with a strong coupling was considered, we carthese effects. In order to reduce the effect of redistribution of
suggest that a change in the composition of such compoundscygen to the maximum possible extent, we rapi@yring
may lead to a displacement of the Fermi level relative t015—20 mir) cooled the bomb with the sample immediately
singularities of the density of states. Indeed, according to thafter the application of pressure to temperatures at which
results of x-ray diffraction studies,the saturation with oxy- relaxation effects are absent. Then the valueR@F) were
gen changes the crystal lattice parameters fran measured during heating to room temperature. This was fol-
=3.872A, b=3.879A, c=11.809A to a=3.833A, b  lowed by the measurement of time depender@$, which
=3.898A, c=11.700A i.e., increases the orthorhombic are described in detail in Ref. 4.
distortion. This in turn leads to splitting of the Van Hove After this, theR(T) dependence was measured repeat-
critical point. It is well known that the Fermi level for crys- edly during a cooling—heating cycle. The results of measure-
tals with T.~90K lies in the valley between two peaks of ments of T.(P) andAT.(P) are presented in Table Il. The
the density of states, and the density of std¢E;) at the value of T, was determined from the middle of the resistive
Fermi level depends considerably on the ratio-p)/a.?®  transition to the superconducting state at the le®el
An increase in this ratio leads to an increase in the separation Ry/2, whereRy is the residual electrical resistance in the
between the peaks of the density of states and accordingly twormal state. The superconducting transition widlfi, was
a decrease iN(Eg) andT.. On the contrary, a decrease in determined as the difference between the temperaflygs
the ratio @—b)/a reduces the separation between the peakand T (the onset and end of the superconducting transi-
of the density of states, which leads to an increadd (i) tion), corresponding to the resistance (R@5and 0.0Ry .
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The results described above show that the critical tem- 55
perature determined from the middle of the superconducting
transition is practically independent of the time of holding
the sample at room temperature and is determined only by 50
the applied pressure. On the contrary, the superconducting
transition width increases under similar conditions and prac-
tically does not change during measurements made immedi-
ately after the application—removal of pressure, which is ap- 45
parently due to the effect of oxygen redistribution. This
assumption is also confirmed by the results of measurements
(see Fig. 2 of time dependences,(t) (the temperature of 40 , \ . ,
the onset of superconducting transifiofor sample K2 0 1 2 3 4
(curve 1) obtained forP=6.3 kbar as well as the depen- P, kbar
dencesT.,(t) for K3 crystal (curve 2) obtained during an-

nealing at room temperature following rapid cooling from FIG. 4. Evolution of temperatures corres_ponding_te the oribgf ( middle
° (T¢), and end T.s) of the superconducting transitidieurves1, 2, and3,
temperatures-650 °C.

; . respectively for sample K2 during the application—removal of pressure of
Solid curvesl and 2 show the results of calculations 4.2 kpar.

based on the method proposed by Jorgertaai!® We as-
sume that the process of oxygen redistribution can be divided

conditionally into the main rapid process with the time con-tyre of pressure can be disturbed due to possible porosity and
stant 7, which is responsible for oxygen ordering within disorientation of crystallites. On the other hand, the com-
fragments of Cu—O chains, and a slower process with thgounds with admixtures of Sr and Gd used in Ref. 3 have a
characteristic t|me7'2 determining the formation of a2 qua|itative|y differentTc(X) dependence’ a|though they be-
ordered structure. In this case, the dependenge) for P |ong to the 123 system. In contrast to thg(x) dependence
=const can be described by a two-exponential law of theor YBaCuO with two plateaus at 60 and 90 K, partial sub-

T, ,K

form stitution Sr for Ba leads to a nonmonotonic dependence
To(t,a,7y,79) =To(0) —[To() = To(0)] Tc(x)., while the plateau at 90 K dlseppears and a new pla—
teau is formed at 40 K for a system with Sr and Gd. The third

x[aexp —t/7)*+(1—-a) important difference lies in the method of determinifigby

X exp( —t/75)°5] 3) a linear extrapolation of magnetization to its zero value. It
2 & remains unclear whethdr, corresponds to the onset or end
wherea is the weight factor for two relaxation processes andof the transition.
T.(0) andT.(«) are the temperatures of superconducting
transitions before and after relaxation respectively.
The value3r1~50—90 min andT2~(2_4), 1@ min ob- *)E-mail: mikhail.a.obolenskii@univer.kharkov.ua
tained from calculations based on this formula are in satis-
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Upper critical fields in superconductor—normal metal type superlattices in the
Ginzburg—Landau approximation
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The application of the Ginzburg—Landau theory to the superconductor—normal
metal—superconductdiSNS superlattices is considered in the case when normal and
superconducting layers have the same thickness. The temperature dependences of the transverse
and longitudinal upper critical fields are considered. The theoretical curves are compared

with the available experimental results on SNS superlatfi€eoccoreset al, Phys. RevB57,
7922(1998)]. It is shown that the theoretical model can provide a correct interpretation of

the experimental results with the minimum number of fitting parameters. The peculiarities of the
order parameter behavior at the dimensional crossover in a parallel magnetic field as a

function of the sample symmetry axis are discussed, and practical recommendations are given for
an experimental verification of the role of symmetry of SNS-type structures19@9

American Institute of Physic§S1063-777X99)00412-0

INTRODUCTION theory becomes obvious. It can be asked whether the GL
theory can describe such phenomena qualitatively. This
question was answered partially by using the GL theory to

s_upe_rconductor—normal metal—superc_o_ndu(ﬁNS in the determine the temperature dependence of the peak-effect
vicinity of the superconducting transition temperatire field in an SNS, which coincide with the experimental de-
were described in the framework of the microscopic theory '

L . o endence for reasonable values of fittin araméfers.
at _the beginning of the seventieSAn exhaustive |nterprg-_ aence it is expedient to construct a GL modgl v?/hich can be
tation of the temperature dependence of th§1 upper cnucaﬂjsed not only in the vicinity o, . Dediuet al22 proposed a
fle_lds was_also given by Taka_hgshl anq Ta mlng _the version of such amodel restoring the temperature depen-
microscopic theory. Howev.er., Itis technlcal_ly quite difficult dences of the upper critical fields, which were obtained in the
to use this t.h.eory for describing the properﬂes of SNS awa icroscopic theory and are in aécord with the experimental
from the critical temperature region. Hence it seems qwtez*:urveS In the present work, we present another version of
natural to use the Ginzburg—Landé&alL) theory for study- ' ' : .

g h vanspor properies, v atie yraic, pin’e S o0e 1 compate 1 s wit e eerienl
forces, etc.. The conditions of applicability of the GL theor P P PP

y )
(see, for example, Ref)4nake it possible to use it for study- for Nb/Pd superiattices:
ing SNS in which action of normal layer serves as a pertur-
bation of the superconducting state. This requirement was
taken into consideration for studying the properties of super-
conducting superlattices by various researchgt®8ut the
most interesting effectdike the peak effect'% are observed

in SNS in which the effect of normal layers cannot be treated
as a perturbatiorithe normal layer thickness is of the order
of the superconducting layer thickness and is of the order of
the correlation length¢, (0) in a direction normal to the
surface of the layejsin this case, the inadequacy of the GL

The properties of multilayer structures of the type

S

z

FIG. 2. Experimental temperature dependences of the upper critical field in

N X‘/ l N j s
~=C y dg /2 dg/2+d
a multilayer Nb/Pd structuredf,=170 A ,dpy=187 A) for parallel(curve
1) and perpendiculafcurve 2) orientation of the the external magnetic field

FIG. 1. Geometry of an infinite multilayer SNS structure with the center of relative to the surface layetdand the theoretical dependenéts,(T) and
symmetry in theS-layer He,, (T) (solid curves.

1063-777X/99/25(12)/5/$15.00 948 © 1999 American Institute of Physics
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MODEL equations for the wave function in the vicinity of critical

We define the coordinate system as follows: zkexis is fields can be written in the form

directed at right angles to the surface of the layers,xthe 2 2

plane coincides with the middle of the superconducting layer (V—i (}TA(T)) W(r)+n(2)¥(z)=0. (1)
and is one of the symmetry planes of the infinite superlattice 0

(see Fig. L According to Jin and Kettersdnthe GL  Here, the step function has the form

! —d—s+md>z<d—s+md m=0,+x1*+2
am'’ 2 2 tme S
7(z)= @)
ot d—S+md<z<d—s+d +md, m=0,+1,+2
gﬁl(-l—)y 2 = 2 N h 1— Ly— Ly
|
wheredg anddy are the thicknesses of the superconducting 2 9?2 X2
and normal layersj=dg+dy is the superlattice period, 292 §—4+ 7(2) { ¥(x,2)=0, 5
H

—-1/2
T_c) B Whereg(T)=d/27H.

) ) ) Separation of variable¥ (x,z) = ¢(x)#(z) in Eq. (5)
are the correlation lengths in the superconducting and normzaiveS a solution foke(x) corresponding to the minimum ei-

layers, £so is the coherence length in the SUpercon.dUCtinggenvalue(maximum fieldH) in the form of a Gaussian func-
layer at zero temperaturéy, the coherence length in the tion. In this case, we obtain fa#(z) the following equation:

normal layer at the critical temperatufe of the multilayer

T —-1/2
fs(T):fso(l_T_cs) v EN(T)=Ene

structure, T.g the transition temperature for the supercon- 2
ducting material, andb,=2.07x10"**Wh the magnetic {F_ —+ 7](2)] W(2)=0. (6)
flux quantum. The functiom(z) in the normal layergsec- " Ly

ond row in formula(2)) was defined on the basis of the
simple consideration that the normal layer in conventionallhe boundary conditiongl) for the wave functionV (x,z) is
experiments is chosen from metals withy— 0. It should be ~ transformed into the de Gennes boundary conditidos
noted, however, that the GL model used for describing su#(z):
perlattices uses “renormalized” correlation lengtlig(T)
andé&y(T) as well as the parameter functieiz). Hence the 1 aw(z)‘ 1 &zp(z)‘
sign of the functiony(z) in the normal layer is determined W(z) oz | = W(z) oz | ()
from the experiment. For example, the temperature depen- b b
dences of the upper critical fields were calculated by Dedi
et al? using the mode(1)—(2) with the functions(z) that is
positive in theN-layer. Obviously, our choice of the sign of
this function in theN-layer indicates a weak proximity ef-
fect.

The GL equation(l) must be supplemented with the
boundary conditions at the superconductor—normal metal i

Lin the problem under consideration, the fiéld,, (T) is de-
fined as the boundary of the region of values of the external
magnetic fieldH corresponding to steady-state solutions of
an equation with periodic coefficien¢s other wordsH,,

is determined from the condition that the multipliers in Eq.
(6) with the boundary conditioti7) become equal to unijy*
nThe corresponding solution is even anddperiodic. This

terfaces: leads to the following equation defining the transverse upper
10V 27 1/(0¥ 27TA 7 critical field as a function of temperature:
viaz '@, |, vz ey

. L . . dsks dnkn
whereP € (0,1) is a parameter which is defined in the mac-  kgta - =pkytan 5 | (8)
roscopic theory® and is a phenomenological parameter

here.

Here

TRANSVERSE UPPER CRITICAL FIELD Hy,, (T)

1 [HgT)—H\?
Let us consider the behavior of the system in the vicinity ~ Ks=g- (H—) ; 9
of the upper critical fieldH.,, (T) (at right angles to the s ds
layer surfacg Taking into account the expression for the 1 (H+Ho(TH 22
vector potentialA=(0,Hx,0) in this case, we can write EqQ. K= +—N()) (10)
(1) in the form dy Han ’
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PARALLEL UPPER CRITICAL FIELD Hy(T)
140
< 1 We shall use the following standard procedure for deter-

- F mining the parallel upper critical fieltt? Let the external
nd magnetic fieldH be directed along the plane of the layers,

100 i.e., along they-axis. We present the vector potential in the
2 form A=(Hz,0,0) and separate the variables in Eb:

h(r)=exp(ikx) ¥ (z). (12

60 In this case, we obtain instead of Hd)

52
. . . . . o2 T 1)~ Hi(z-20)° | () =0, (13
0 0.2 0.4 p 0.6 0.8 1.0

where zo=k/H,, and the notatiorHy=2#7H/®d is intro-
FIG. 3. Dependence of the coherence lengths in superconductinge 1) duced for the sake of convenience.
and normal(curve 2) layers on the parametér of the wave function dis- Equation(13) is supplemented by the conditioi®) at
continuity at the metal—superconductor boundary. the superconductor/normal metal boundary, as well as by the
conditions at infinity

. . Y(z— £0)—0. (14
and the following notation has been used for the sake of ) o
convenience: The maximum value of the external magnetic field parameter

for which condition(14) is satisfied is the upper critical field.

0 ®, It should be reiterated that the procedure of determining
ds= 52 He(M=s—Fm = (11 the upper critical field is formally the same as the procedure
2mdg 2méL(T) . ) . -
based on the microscopic thedrwith the only exception
@ mentioned in the preceding section.
0 0
=5~z Hn=5—7—
d 2 N 2
" 2mdy 2méEN(T) DISCUSSION OF RESULTS
Note that Egs.(6)—(11) essentially coincide with the Computations of ¢y, (T) andH;(T) were made by us
Takahashi—Tachiki equatiohfor finding the transverse up- for the Nb/Pd superlattices investigated in Ref. 13.
per critical field, with the exception of one important factor: It was found that the experimental dependehicg, (T)

the parametersi5(0) andH(0) in the microscopic theofy ~can be described by formuld8), (8)—(11) using the fitting
are presented in terms of material constants, and the temper@arameterss, and &y for any fixed value of the parameter
ture dependence d.,, is obtained from the secular equa- P (see Fig. 2 Figure 3 shows by way of an example the
tion defining the kernel of the integral equation for the orderdependence of the correlation lengfg and &y on param-
parameter(see formulag20), (30), (35), (38), and (46) in eter P calculated for an Nb/Pd sample withy=187 A and
Ref 3. In the model constructed on the basis of thedy=170A.

Ginzburg—Landau theory, the temperature dependence of The obtained values of the parametégs and &y were
H¢p, is defined by the quantitiels(T) andés(T) (or Hg(T) used to study numerically the solutions of the probléth

and Hy(T)) as the phenomenological parameters-functiong13), (14) for any fixed value of the parametey. (It should
(although their functional forni3) is quite obvious be recalled that solutions of E(L3) are obtained by joining
successively linear combinations of the functions of a para-
bolic cylinder with the help of boundary conditioig).) As
expected, the highest among the maximum values of the ex-
ternal magnetic fieldd(z,) corresponds to the values of the
parameterzo=Id (I=0,£1,+=2,...) aswell as the wave
functions that are symmetric with respect to the middle of
the Ith S-layer. The temperature dependenkg,(T;z,
=Id) is of “2D-type”? (see Fig. 4 and hence does not
match with the experimental curysee Fig. 2 Note that the
values of the parametey, are obtained form the variational
principle for the GL-functional and, as can be seen easily, are
determined from the equation

[zYA(z;20)dz

Z4 R P

J¥(z,29)dz
FIG. 4. The dependendd ,(T) (ds=170 A,dy=187 A) with coherence : :
lengthsée— 135 A andé,,.— 37 A. and the parametes—0 corresponding It follows from this equation that the values of the parameter

to the solution symmetric relative to the middle of the superconductingZo corresponding to the “D-type” temperatgre-dependence
layer. of H,, are solutions of Eq(15) (after substitution of wave

Heoy o T

T,K

(15
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functions symmetric with respect to the middle of tih zo(H)=(Zo/VHo) — Z;, (16)

S-layen only for an infinite superlattice. The ‘R-type” . .
) . o whereZ, and Z, are obtained from the conditiorg(H(T
temperature dependence ldf, is also realized for a finite —0))~0, zo(H(T=T*))=d/2. Such an approximation

superlattice with an even number &flayers and an odd ) : : . .
: makes it possible to avoid complex technical problems in the
number ofN-layers since the presence of a symmetry plane

in the middle of the centrab-layer means that Eq15) has solution of the self-consistent problefh3)—(15). Using Eq.
. . 16) and solving Eqs(13) and (14) numerically, we calcu-
an exact zero as a solution corresponding to an even wa

function y(2) ated the dependenté.,(T) for the superlattice Nb/Pd. The
In the exberimental situation of Nb/RA1 layers of Pd parameteP was chosen from the condition of equality of the

and 10 layers of Npconsidered by Coccoresstal. > the (=% “O! S8 a0 200 8 SO e,
symmetry is exact relative to the middi-layer. In this PP p P '

case, the integrals in EQl5) are taken over nonsymmetric can be seen .from Fig. 2 that the theoretlca! depgndence
limits, and hence substitution of the even wave function intoHCZ”(T) describes the experimental results quite satisfacto-
(15 gives a nonzero value of the parameigrwhich, in )

turn, contradicts the condition of parity af(z). However,

the wave function is localized within a sing@layer for ~ CONCLUSION

large values of the external magnetic fields for T<Tc).  The main results obtained in this work can be formulated
Consequently, the sample is practically equivalent to an inzg follows.

finite superlattice, and a “-type” behavior of the depen- The Ginzburg—Landau theory is used to calculate the

denceH;(T) is observed at low temperatures again. With e mperature dependences of the upper critical magnetic fields
increasing temperature, the “blurring” of the wave function He, and Hey of a multilayered system of the

over layers increases so that the paramegerecomes per- g nerconductor— normal metal—superconductor type. It is
ceptibly nonzero, a_md hence odd modes of the wave f‘j'nCt'Oghown that the theoretical curvek,, (T) andHy(T) can
also start competing. As a result, the cumez(T) will  pe ysed to reconstruct quite satisfactorily the experimental

deviate noticeably downwards from the corresponding Curvgenendences of the upper critical fields for reasonable values
for an infinite superlattice. As the temperature attains a cergs the Ginzburg—Landau model parameters.

tain valueT™”, the parametez, becomes equal td/2, which It was proposed that the transition fronD2to 3D be-
corresponds to a wave function symmetric relative t0 the,ayior in a multilayer superconducting structure with com-
mlddle* of the N-layer. A comparison of the values of haraple thicknesses of the superconducting and normal layers
Hcz)(T*) obtained from(13) and (14) with experimental re-  can pe attributed to a change in the symmetry of the
sults shows that the temperatufé is the point of D-3D  Gjnzhurg—Landau order parameter from the infinite superlat-
transition. At temperatures quite close to the transition teMgce symmetry for large values of the applied parallel mag-
perature(or for small values of the external magnetic field neyic field to the symmetry of a real structure for small val-
the solution of the systerfi3), (14) must be nearly identical o5 of the field.

(for not too largez) with the d-perioqlic _solution of the_ GL Note that the existence of such a “symmetry effect” can
equations for zero external magnetic f|_eld. _Th_e solution coryg easily verified experimentally in samples with an odd
responding to zero applied magnetic field is independent of ,mper of superconductir@lb) and an even number of nor-
the variablex. This imposes certain constraints on the waveyg (Pd) layers. The rigorous mathematical problem on the
numberk, viz., k(H—0)—0. Due to symmetry consider- ¢5m of the wave function corresponding to the parallel up-
ations, we choos& H, or zox1/yHo. (Note that such a per critical field can be solved, for example, with the help of
fgncUonaI form.ofzo(H) also follows |nd|rectly from(15) the mathematical analysis used by Hastings and *Frigy
since the solution of Eq(l3>2depends effectively on the jpyestigating the symmetry properties of the solutions of
dimensionless argument bfyz°.) In this case, asi—~0, we  gne.dimensional Ginzburg—Landau equations for a super-
can present Eq(13) for finite z (i.e., for z<zo) in the fol-  conqucting film. However, the scope and style of the present

lowing approximate form: communication do not allow us a detailed analysis of such a
5 problem. It would be more expedient to study a more general
ﬁ_2+ W(Z)—Hozé ¥(2)=0, form of the function »(z) in the nor_mal layer, viz.,n_(z_)
Iz «(T,n—T). However, the introduction an “extra” fitting

N ) parametefT .\ does not appear to be justified from the me-
where Zy=2,\H,. The condition for the existence of a hodical point of view.

d-periodic solution of this equation together with the bound-
ary condition(7) leads to equations fdi .,,(T—T.) that are
analogous to Eqs(8)—(11) for H.,, (T) and give a linear
dependencél ., (T—T,).

It follows from what has been stated above that in order
to determine the dependenki,(T) for a superlattice with ;P- G. de Gennes, Rev. Mod. Ph{$, 225(1964.
an even number d layers and an odd number bf layers, 32: \T(alf;]:;‘ﬁ ing.l\/lf.e;tséi?l?i: ﬁg;gpgfgés4ge(21§(81%ée,
we can use the following reasonable approximation for thesa A abrikosov, Fundamentals of the Theory of Metdis Russiaf,
parameterzg: Nauka, Moscow(1987).
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Description of critical behavior of Ising ferromagnet in the p® model approximation
taking into account the confluent correction. Il. Region below the phase transition point
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A scheme for calculating the thermodynamic characteristics dD aoBe-component spin system
in the temperature range below the critical temperature is described on the basis of the
sextic measure density§ mode) taking into account the first confluent correction. A microscopic
analog of the Landau free energy is calculated. The coefficients of average spin moment,
leading critical amplitudes, and the amplitudes of the confluent correction to specific heat and
susceptibility of the system are calculated for different values of effective radius of the
exponentially decreasing interaction potential. Plots of temperature dependence of entropy and
other thermodynamic characteristics in the vicinityTefare given for various values of

effective radius. The variation of the free energy of the system at the phase transition point,
average spin moment, and specific heat with increasing ratio of the potential effective

radius to the constant of a simple cubic lattice is traced. The results of calculations and their
comparison with the data obtained by other authors show thaptheodel provides a better
quantitative description of the critical behavior of B 3sing ferromagnet than the*

model. © 1999 American Institute of Physid$§1063-777X99)00512-5

INTRODUCTION count the first and second confluent corrections in Refs.

9-14, and in the® model approximation without confluent
This research is devoted to the theory of phase transieorrections, in Refs. 15 and 16.

tions and critical phenomena which remain the subject of The method of calculation of thermodynamic character-

intense studiegsee, for example, Refs. 1)%4The approach istics of a one-component spin system can be extended to the

to description of second-order phase transitions based on tmecomponent model applied for spin dimensions 2 as a

method of collective variable&CV)® has been developed fur- lattice model of transition of a Bose liquid to the superfluid

ther. The object of investigation is thé3lsing model on a state. The main points of such a generalization to the

simple cubic lattice with an exponentially decreasing inter-n-component case are given in Ref. 5.

action potentialsee, for example, Ref,)6The Ising model,

which is simple and convenient for mathematical analysis, is

widely used in the theory of phase transitions for an analysig- ALGORITHM OF CALCULATION OF FREE ENERGY OF

of properties of various magnetic and nonmagnetic systemEHE SYSTEM AT T<Tc

(ferromagnets, antiferromagnets, ferroelectrics, binary mix-  As in the case off >T.,” we shall calculate the free
tures, lattice model of liquids, ejc. energy of the system by separating the contributions from

The behavior of a B Ising ferromagnet will be studied short- and long-wave modes of spin density oscillations. For
here at temperaturéB<T, (low-temperature regionn the  T<T_ we have

approximation of the non-Gaussian sextic distribution of spin

density oscillation modeghe p® mode).®> A method of tak- F=Fo+FcrtFicr, @

ing into account the first confluent correction is developed inwhere Fo=—kTNIn 2 corresponds to the free energy Nf
the course of calculation of thermodynamic characteristicsnoninteracting spins, anBcg to the contribution of short-
The dependences of these characteristics on temperature amelve modes of spin moment density oscillations to the free
microscopic parameters of the system are plotted. The casmergy of the systerttritical regime(CR) region, andF g

of T>T, was considered in Ref. 7. The present publicationto the contribution of long-wave oscillation modéke re-
supplements the cycle of wofk3®in which the CV method gion of inverse Gaussian reginfkSR)).

is used for calculating the thermodynamic functions ofta 3 While calculating the free energy of the system, we shall
Ising system in the low-temperature region. The calculationsise extensively the solutions of recurrence relatidRR)

on the basis of the* model without taking into account between the coefficients of effective sextic distributi¢sese,
confluent corrections were made in Ref. 8, taking into acfor example, Ref. 1)7 In the CR region, the solutions of RR

1063-777X/99/25(12)/9/$15.00 953 © 1999 American Institute of Physics



954 Low Temp. Phys. 25 (12), December 1999 1. V. Pylyuk

of the renormalization groufRG) type are valid. In contrast where v=IngInE; is the critical exponent of correlation

to the limiting Gaussian regiméLGR) observed forT  length,N’ and y{°®, y;, andy, (which are functions of
>T,., the IGR is described by a non-Gaussian density ofmicroscopic parameters of the sysbeare the same as for
measure. It should be emphasized thaf &tT., the system T>T..”!" We present the coefficientg"?")~ in the form
acquires a nonzero order parameter. It is not introduced as an which the universal factoptc® M~ independent of micro-
independent quantity, but is determined as a result of direccopic parameters of the system is separated. The latter pa-
calculation. This is possible since the set of CV contains theameters in our case include the parameters of exponentially
variable py associated with the order parameter. The distri-decreasing interaction potentighe effective radiue of the
bution acquires a Gaussian form as a result of separation @fotential and its Fourier transford(0) for zero value of

free energy of ordering. wave vectoy as well as the constamt of the simple cubic
Calculating the partition function of the Ising model, we |attice. We have

divide the CV space into layers with the division paramster
and use the average value of the Fourier transform of the YECR)(I)_:CiclAﬁ(scm(l)_, 1=0.1,

interaction potentiafarithmetic mean in the given cgseor-

responding to the given layerShort- and long-wave modes %CR)(O)_Z Y 7(3CR>(1)_= ygl—Cbo( v11+H3vy ).
of spin density oscillations at<T. are separated by the (5)
layer numberw .. The CR takes place for layers of the CV

phase space witmh=gu,, while IGR is observed for Here
n>u,. The condition for determining., is the equalit§*® - O f 8o 208 g L(f6)?
fypa—r© Y T1-s3 T1-E;s 3 1-E?% 3
— o =4 @ 0w
_ f ‘Po f(CI)?(PO 3/2‘c05 f(csé% (f00)?
Here § is a constant quantityd<1), Mp+1 is determined Yo~ 1-E,s~ 3 1-E;E,s 3 1_51525*3 . (8
from the solutions of RR, and® corresponds to a coordi-
nate of the fixed point’ In numerical calculations, we shall  fere YHod 21dkes '(09)°
put §=1, which is in accord with the same condition fér YU E;s 3 1-Eis 3
used by us folf>T,.” In analogy with the cas&>T.,” we _ _
obtain the following expression fqx..: The nonuniversal factors, ,c, , the factord,, the eigen-
0 _ A valuesE, of the matrix of RG transformation, the expres-
po= gy — My, |73, sions for three coordinates of the fixed point and the quanti-
| ties characterizing therfincluding fy and ¢) as well as for
o _ n| T| . (i) . . . .
wd= +umo—1, mo=m,. (3  fer depending on the values of variables at the fixed point
InE, are presented in Ref. 17.
The values ofm, , A;, andm, coincide with the corre- Differentiating expressiori4) for Fcg with respect to

sponding values f0T>T (see Ref. ¥, 7=(T—T,)/T,, and  temperature, we obtain the following expressions for entropy
E, is the largest elgenvalue of the matrix of RG linear trans-Scr. internal energWcg, and specific heacr in the CR

formation. region:
The expression for the layer, determining the point of Ser=kN/[S(CRO) _ ¢ | 7|+ yCRO-| 1-a

exit of the system from the CR region &< T, makes it R 0 3

possible to determin€cr as well asF,gg. We shall con- +ucRD 7 | 1matag),

sider these calculations schematically. It should be noted that

the thermodynamic characteristics are calculated taking into Ucgr=KTN'[y;—uy|7[+uyR @[ 717«
a_\ccount the term prqportional fe]*1 and determining the +ulCR 1)—|T|1—a+A1] R
first confluent correction. '

Cor=KN'[eg—ciCR(O 7|~ iR 710

5 THERMODYNAMIC FUNCTIONS OF THE SYSTEM wherea=2—3v is the critical exponent of specific heat, and
CORRESPONDING TO THE CRITICAL REGIME REGION (CRY()~ _ 3.1 —tCR)(I)~ —n1-
us —c,,cAlu3 , =01

As in the case of >T,, the contributiorF - to the free
energy of the system from the CR region is calculated
through the summation of partial free energies over the lay- _(cg
ers of the CV phase space. Using formu{@sand singling
out temperature explicitly in the calculations, we arrive at the cCR(- C3CI —(CR)( )—
following expression: 3

UfSC - 3—(CR()

(W= =(3p+A,) 7SRO~

, ®

CR)(0)— CR)(0)— .
FCR:_kTN’['yE) _7’1|T|+72|T|2_7’(CR)(0) | |3V Eg RO :37/(37/_1)7(3 ) )

_ 7<3CR)(1)_|T|3V+A1], (4) —('CR)(l) _(31/+A )(3V+ A]_ 1)—(CR)(1)7
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The remaining coefficients are defined by corresponding ex-  F, = —kTN's 34D IN[v2Q(P, )]-kTINZ, 11

pressions obtained from an analysis of temperatures above (9)
T '7,17
¢ to the free energy of the system. The calculations of the first
3. THERMODYNAMIC FUNCTIONS OF THE SYSTEM and second terms if®), associated with the calculations of
CORRESPONDING TO THE REGION OF INVERSE GAUSSIAN A3y g 4k \ 14
By

We shall write the final result for the contribution of the Bel o le

IGR region and
|
3 (p,+1)
1 ay N
Zyo= | e =5 X A a2 ST 2 PPl g [(Ap) Nt (D)
k<B, 1 =2 (2N}, ¥1 kyo kp=B, 41

are described in detail in Ref. 1@ee Ref. 13 for the*  tained other thermodynamic functions corresponding to IGR.
mode). We obtain Expression(12) contains the free energy of ordering deter-
_ e (0) [ 43, (1) | _3u+A mined by integration with respect to Cy,, whose average
Fior=—KTN'[¥icrl 7™+ 7igrl 7 gt value is proportional to the order parameter which is an im-
I o isti ition.
YfIG)R: yg)(ur)+ 7(30( ) 1=0,1. (12) portant characteristic of the phase transition
The termy(')("f) defines free energy after the exit from the
CR, andy4{? defines the free energy of ordering. These4. ORDER PARAMETER OF A 3 D ISING SYSTEM

terms can be calculated by the formulas The role of the order parameter for the system under

yg><ﬂr>:yg')+ 'ygl), YS)ZCEC'A%')a investigation is played by the average spin moment. It is
' associated with the existence of a nonzero valyebelow
vy=cich v, 8 =cleh A (13)  the phase transition temperature, for which the integrand of

the expression
The expressions for the quantitie§’ <, 7$” indepen-

dent of microscopic parameters are given in Ref. 18. ZMT+1:eXp(_'3F;,LT+1)
The entropySgr, internal energyU,gr, and specific G D

heatC,gr corresponding to IGR can be written in the form xf eXF{B\/ﬁpohJ/Bpé— Npg_ ng dpo,
Sicr=S,, TS5y, Uicr=U, tU(s, 16
Cigr=C,_ 1 Cp)- (14 attains its extremum value. Hegg=1/(kT) is the inverse

. - tpermodynamic temperature artd is determined by the

The components of these thermodynamic characteristics sat- ) . .

isfy the following relations: value of the constant external fief introduced in our
' analysis b= ugH,ug being the Bohr magnetonThe ex-

S, = — kN[ 7|1ty ofi-atas) pression for— BF, ., corresponding to the contribution to

the free energy of the system fropy with the values of

=— My 1-—ay (D] |1-at+A;
YUy KTN[ug™ 7=+ ug™ |7 ) wave vectorsk—0 (but not equal to zefjoas well as the

C,,=kN’[cgo)(”)lﬂ‘“+c§1)“’)|T|A1‘“], coefficients
W =cih W, 1=0,1, B=BV|7/"8P(0)(1+B™|7|*),
=GO A7 B 2 (D] A
TN =370 GO =(3y4 A DD G=GP|7"(pD(0))*(1+ G| 7%), (17
=il T, T =3u(3y- 170, D=D?(B®(0))*(1+D™|7]%1)
. L are given in Ref. 18. Carrying out if16) the substitution of

7 =(Bu+A)(Br+ A~ 1) (15  the variable
Trlle exponenty can assume two valueg:, and(o). Here Po= \/ﬁp, (18)
P =3 (1=0,1), andy{(") are universal factors ap-

pearing in'yg)<"> (see(13)). we obtain

Thus, we have calculated free energy in the IGR region. B R B
Proceeding from the expressiéh?) for F,gr, we have ob- Ly w1~ XN 'BF#TH)‘/N exp(—NEqo(p))dp, (19)
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TABLE |. Values of quantities determining the coefficients in expression TABLE II. Coefficients of the average spin momeft) in (25) for some

for a microscopic analog of the Landau free energy. values of the effective radius of potential and RG parametsr
b Bo) B G(0) G(1) D(0) D(1) b ()@ (o)™
$=2.0000 $=2.0000
b, 1.0106 —0.2733  0.0550 —0.8919 0.0009 —0.6952 b, 2.7329 0.2499
by 0.9530 —0.3959 0.0857 —1.2918 0.0023 —0.9377 by 2.0684 0.3619
b, 09305 -—0.4420 0.1010 —1.4423 0.0033 —1.0470 by 1.8700 0.4040
c 0.7258 —0.8188  1.9382 —2.6720 1.5614 —1.9396 c 0.3747 0.7485
2c 07149 -0.8375 15.3880 —2.7330  99.9318 —1.9839 2c 0.1321 0.7656
$=2.7349 $=2.7349
b, 0.9417 —0.4451 0.0690 —1.1718 0.0012 —0.8853 b, 2.3854 0.3034
by, 0.8888 —0.5124 0.1074 —1.3491 0.0031 —1.0193 by 1.8027 0.3493
b, 08683 —05377 0.1267 —1.4157 0.0044 —1.0696 by 1.6288 0.3666
c 0.6865 —0.7445  2.4478 —1.9601 2.0825 —1.4809 c 0.3248 0.5076
2c  0.6768 —0.7550 19.4434 —1.9876 133.281 —1.5017 2c 0.1145 0.5147
s=3000 s=23.0000
b, 0.9115 —0.4755 0.0732 —1.1967 0.0013 —0.9113 b, 2.2861 0.3046
by, 0.8610 —0.5321  0.1141 —1.3392 0.0033 —1.0199 by 1.7269 0.3409
b, 0.8415 —0.5533 0.1346 —1.3926 0.0047 —1.0606 by 1.5600 0.3545
c 0.6697 —0.7261  2.6087 —1.8275 2.2185 —1.3918 c 0.3107 0.4651
2c  0.6605 —0.7348 20.7264 —1.8495 141.986 —1.4085 2c 0.1095 0.4707

been obtained as a result of direct calculations. In contrast to
%he Landau theory, the temperature dependence of these co-
efficients is nonanalyti¢see(17)).
Let us go over to direct calculation of the average spin
Eo(p)=Dp®+Gp*—Bp?— Bhp. (20 moment. The poinp can be determined from the condition
of extremumdEq(p)/dp=0 or

and the evaluation of the order parameter is reduced to d
termining the extremum poini of the expression

The value ofp coincides with the average value pfcorre- _
sponding to the equilibrium value of the order 6Dp°+4Gp°—2Bp—
parameter::>1® The expression foEy(p) defines the frac-
tion of free energy associated with the order parameter. IEor h=0, we obtain the biquadratic equation
corresponds to the microscopic analog of the Landau free — o o
energy. The quantity, ., will be expressed in terms of 6Dp"+4Gp"-2B=0, (22
Eo(p) (coinciding in form with the expansion of free energy in which the substitution of the variable
into a power series in the order paramgtby using the b=y (23)
steepest descent method for evaluating the intgd@l(see
Ref. 18. leads to the equation
Expression(20) was derived by successive elimination 2 B
of “insignificant” variablesp, with k= 0, which allowed us 6Dy"+4Gy-2B=0. 249
to calculate the coefficients &;(p) (see Table)l Solving this equation and separating temperature explicitly,
Numerical values in Table | are given for some values ofwe arrive at the following formula for the average spin mo-
effective radiusb of the potential and the RG parameter ment{a)=p=\y:
As in the case offi>T,, " the parabolic approximation of (0)= (YO A1+ ()] 7/21). (25)
the Fourier transform of the exponentially decreasing poten-
tial of interaction in the region of small values of wave vec- Here 8= v/2 is the critical exponent of the average spin mo-
tors forb=h, =c/(2v3) corresponds to a similar approxima- ment, and the coefficients ¢t-)") are given in Table If°
tion of the Fourier transform for the potential of interaction ~ The curves describing the dependence(®f on 7 for
between nearest neighbors, nearest and next nearest neigfgrious values ob are shown in Fig. 1. Here and below, the
bors forb=b,,=0.337Z, and first, second, and third neigh- curves are plotted for the RG parameser 3.
bors forb=b,;, =0.3584. The value ofs=s* =2.7349 cor-
responds to the average value of the coefficient of the second
power of the variable in the expression for density of mea~: HERMODYNAMIC CHARACTERISTICS OF ISING MODEL
sure of thenth layer, which is equal to zero at a fixed point AS FUNCTIONS OF TEMPERATURE AND MICROSCOPIC
i 4 i PARAMETERS OF THE SYSTEM
(in the p* model, this corresponds te* =3.5863. Thus,
there is no need to postulate a temperature dependence of the Let us now find complete expressions for thermody-
coefficients in formula(20) (as in the case of the Landau namic functions of an Ising system &K T, in the approxi-
expansioh since the analytic form of their dependence onmation of thep® model taking into account the first confluent
temperature and microscopic parameters of the system hasrrection(the caseH=0).
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05
0,06 -
c
0,04 - FIG. 1. Temperature dependence of average
A A spin moment of the system in th€ model
3 3 approximation for various values of the ef-
fective radius b of the potential: b,
=c/(2v3); b, =0,337%; b,,=0,358%;
and Z.
0,02f= %
0 0 1 1 1 1
-0.005 0 -0.005 0
T T

The contributions from the CR and IGR regions to free ~ Proceeding from the expressié®6) for free energyF,
energy of a ® Ising model neafl; obtained above allow us we can find other thermodynamic functions fox<T,. For
to write its total free energyl) in the form example, the following expressions are valid for entr&py

internal energyd, and specific heat:
F=—KTN'[ 70— yal7l+ yal 7>+ 87| 7>

S:kN/[S(O)_CO|T|_u§30)—|T|1—a_uél)—|7_|l—a+Al],

+ys) T A, (26)
- . . ) ) _ " (O l=—a_ (D)~ | |1—a+A
All the coefficients in expressiof26) are functions of mi- U=KTN'[y;—uyf7|—uz’"|7] uz” |7l 1,
croscopic parameters of the system, i.e., the effective radius (28)
b of the potential, the Fourier transford(0) of the poten- C=kN’ [c0+c |T|—a+c(1) | 7|21,

tial, and the lattice constaist The coefficientsy,, v;, and
v, can be determined from expressions for correspondingvhere s(®, c,, and u; coincide with the corresponding
quantities in the high-temperature regi¢see Refs. 7 and quantities forT>T,,”*” while the structure of the remaining
17). In contrast tOy(')’ (1=0,1), their values are indepen- coefficients in terms of universality is determined by the re-
dent of whether calculations are made for a temperaturtations
above or below the phase transition point. The coefficients

¥~ have the form of the product of the quantipy’ ™
wh|ch is universal relative to microscopic parameters, andrABLE V. Numerical values of amplitudea~

the nonuniversal factorSc)y , which is a function of these I anday
parameters: b A- ac r- a,
- = 3, - _ $=2.0000
73 Cyvs o+ =01, by 1.9734 7.2567 0.2133 0.1872
ORI ) =) ) —t1) 2 1) by 1.8071 105104 0.2262 0.2711
Y3 =94 +VRYIdR= 74+ 51 bu 1.7436 11.7347 0.2317 0.3027
7 ¢ 1.2012 21.7395 0.2970 0.5608
2¢ 1.1741 22.2353 0.3015 0.5736
Numerical values of the coefficienid) ~ are given in Table $=2.7349
1. by 1.2026 8.1288 0.2341 0.3536
by 1.1027 9.3588 0.2480 0.4071
by 1.0648 9.8206 0.2539 0.4272
c 0.7486 13.5975 0.3211 0.5915
TABLE Ill. Values of %4V~ for some values o$. 2c 0.7328 13.7882 0.3257 0.5998
$=3.0000
S 0~ - by 1.0331 7.9599 0.2437 0.3884
by 0.9484 8.9081 0.2580 0.4346
2.0000 1.7599 ~6.7968 by 0.9164 9.2633 0.2640 0.4519
2.7349 2.7650 ~3.6743 c 0.6506 12.1558 0.3318 0.5931

3.0000 3.1073 —3.0714 2c 0.6373 12.3022 0.3364 0.6002
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(29

Presenting the specific heat frd28) by the dependence

0.005

Aol -caaao

similar to the cas@d>T., we obtain the following expres-
sions for ratios of the leading critical amplitudes and the
amplitudes of corrections to scaling at temperatures above
and below the phase transition temperature:

i _E(-SO)+ £ _Egl)+ o~ a
AT A e

c A o B
——=—|7|" %1+ aa, |7|*1)+B", .
kN a It should be noted thaB~ is equal toB* calculated forT
Ca, V- >Te. The_ amplitudesA™ _and ac’_ are given in Table IV.
A =c3ac ", agzil_w)f , B =cy, (30) N .Equat|on(21) makes it po_ssml_e to calculate the suscep-
a C3 tibility of the system per particle, i.ex= ug(d{ o)/ IH):
0.16 -
E
0.12—
[+
g 0.08} FIG. 3. Specific heat of the spin system
%) for various values of b. Notation is the
: same as in Fig. 1.
i
]
]
)
0.04 - , c
) !
]
1
h 2c
! 2c
l 0 i ] 1 1 J i 1 1 i
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102} E 201 |- I c
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| i
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! i
by !
L ! = 121 ' FIG. 4. Temperature dependence of the
%% 624 i ! susceptibility of the system for various
- ' ! values of b. Notation is the same as in
' 1 Fig. 1.
- | 1
42 ! 81 E
! 1
h )
! )
22 ! ar- ' 2c
i 2c/ |
1
i
0.2 I 4 4 1 ) [ R
20.005 0 0.005 -0.005 0 0.005
T T
2 average spin momeno) for r=—10 3 and the specific
x=T"|7""(1+a,|7]*) ~7B. (32)  heatC/kN of the system folr|=102 is presented in Figs.
®(0) 5,6, and 7.

Here y=2v is the critical exponent of susceptibility. The Thu_s, the c_rltlcal behawor_of the o_ne-com_ponent spin
values of amplitude§~ anda_ are given in Table I3 system is described on the basis of sextic density of measure
(p® mode). As compared with the quartic approximatitf

Using the results of calculations far>T.’ as well as de), the p® model ensur mor rect ntitati
the results obtained here, we can plot the graphs of tempeer0 €), he p= Model ensures a more correct quantitative

ture dependences of entrofykN, specific heaC/kN, and pattern of this description. This follows from the results of
the susceptibility y (in the’ units  of ,u%/A, A our previous calculationsee, for example, Refs. 5 angds

~ . i ) i well as from the temperature dependences of the average
=d(0)/[87(b/c)”] being the interaction potential constant spin moment o) (Fig. 8 and specific heaB/kN of the 3D
nearT, for various values of the effective radilsof the Ising model (Fig. 9. The calculations were made for a
potential(see Figs. 2, 3, and)4The method ,Of calculation simple cubic lattice in zero external field with the interaction
developed here allows us to trace the evolution of thermodybetween nearest neighbors. In our calculations, we kput
namic characteristics with increasing ratio of the effective_ b,=c/(2v3). The p® modél approximation incll'Jdes the
radiusb of the potential to the lattice constaot Such an gt confluent correction, while the approximation on the ba-
evolution of the free energly/N of the systentin the units s ¢ the 14 model takes into account the first and second
of A) at the phase transition point€0) as well as of the . a,ent correctiongsee Refs. 11—14 The straight linel

b/c 05
o 02 04 06 08 10 1.2 ce—10-0
041
~.4'_
20.3—
_8.—
z Voo
L
_12_
0.1F
-16}
1 4 ]
-20 0 1 2 3 4

b/c

FIG. 5. Dependence of the free energy of the system at the phase transition

point (7=0) on the ratio of the effective radius b of exponentially decreas-FIG. 6. Behavior of the average spin momentfer — 10~ 2 with increasing
ing interaction potential to the simple cubic lattice constant c. ratio b/c.
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FIG. 7. Evolution of the specific heat of the system fof=10"2 with T Y

increasing ratio b/c.

107 1075 10“‘t 1073 1072 107!

in Fig. 8 for the average spin moment corresponds tq)fhe FIG. 9. Dependence of the specific heat of the systemr=ofl —T|/T,.

. 6 . . Curvesl, 2 and3 correspond td>T,, curvesl’, 2’ and3’ correspond to
model, line2 to thep model, and line3 to the results obtain T<T,., curvesl and1’ correspond to th@* model, curveg and?2' cor-

by Liu and Fishel® for 7= |T=T|/Tc. The high- respond to thep® model, and curve§ and 3' correspond to the results
temperature region in Fig. 9 is presented by the cufiyes  obtained in Ref. 19.

and3, while the low-temperature region by the cunigs 2’

and3'. The curvesl and1’ were obtained on the basis of .

the p* model, curve2 and2’ in the p® model approxima- moment,8=0.319, the suscgptlbll|tyy=l._275, and the e6x-
tion, and curves and3' correspond to the results obtained Ponent of jhe first correction to scaling,=0.525 (p°
by Liu and Fishef It should be noted that the latter carried M0del,s=s"), as We”f‘S universal ratios of_c_r|_t|ca+| ampli-
out a new numerical analysis of leading critical amplitudestUdes Of specific heat"/A~=0.435, susceptibilit™"/I

of susceptibility, correlation length, specific heat, and spon-" 6.967 and their combination
taneous magnetization of é3lsing system, as well as uni- P=[1-A"/A"]/a=3,054,

versal relations between these amplitudes. e 3 (On2 . .

The CV method makes it possible to carry out the ap- Re =A T /[s5((e)"™)“]=0,098 model p®,s=s*),
proximate calculation of the partition function of the systemyheres,= mvab/c,(o)(@ is the critical amplitude of the av-
and to obtain universdtritical exponentsand nonuniversal  erage spin momer(see(25)), are in accord with the values
quantities(expressions for leading critical amplitudes and the;,— 0,630, «=0.110, 8=0.325, y=1.241, A,=0.498,
amplitudes of confluent corrections to thermodynamic chara+/A-=0.465, I'*/T " =5.12, P=3.90, RS =0.052, ob-
acteristics by using a unified approach. The results of calcu-tained by using the field-theory approdtit2as well as with
lations for a D Ising system on the basis of thé andp®  the valuesy=0.638, a=0.125, B=0.312, y=1.250, A,
models are in accord with the results obtained by other au= 50 A*/A~=0.51,I"*/I'~ =5.07,R: =0.059, calculated
thors. For exampl& the critical exponents of the correlation ith the help of high-temperaturec expansiéh®’ The
length »=0.637, specific heat=0.088, the average spin methods existing at present make it possible to calculate uni-
versal quantities to a quite high degree of accuracy. The
advantage of the method under investigation lies in the pos-
sibility to obtain and analyze expressions for thermodynamic
y characteristics as functions of microscopic parameters of the
system.

This research was carried out under partial financial sup-
port of the State Foundation of Fundamental Studies at the
Ukrainian Ministry of SciencéProject No. 2.4/178

1.0

<o>

*)E-mail: piv@icmp.lviv.ua

0.1

1G. A. Baker, Jr.Quantitative Theory of Critical Phenomenacademic
faasenl o a gt oaaaad s Press, Inc., San Diegd990.

10°° 10”4 1073 10~2 107! 23. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newmahe

T Theory of Critical Phenomena. An Introduction to the Renormalization
Group, Clarendon Press, Oxford992.

FIG. 8. Temperature dependence of the order parameter of BhésiBg 3D. P. Landau, Physica R05, 41 (1994.
model for a simple cubic lattice. Straight lidecorresponds to tha* model, 4C. Domb, The Critical Point. A Historical Introduction to the Modern
line 2 to the p® model, and line3 to the results obtained in Ref. 19. Theory of Critical Phenomendaylor and Francis. Ltd., Londo{1996.




Low Temp. Phys. 25 (12), December 1999

51. R. Yukhnovskii, Phase Transitions of the Second Order. Collective
Variables MethodWorld Scientific, Singaporél987).

V. V. Dukhovii, M. P. Kozlovskii, and I. V. Pylyuk, Teor. Mat. FiZA07,
288(1996.

1. V. Pylyuk, Fiz. Nizk. Temp25, 1170(1999 [Low Temp. Phys25, 877
(1999].

8M. P. Kozlovskii, Ya. N. linytskii, and I. V. Pylyuk, Preprint Inst. Theor.
Phys., Acad. Sci. Ukr. SSR, ITP-85-107R, Kig\985.

9M. P. Kozlovskii and I. V. Pylyuk, Preprint Inst. Theor. Phys., Acad. Sci.
Ukr. SSR, ITP-89-42R, Kiey1989.

101, R. Yukhnovskii, M. P. Kozlovskii, and I. V. Pylyuk, Z. Naturforsch., A:
Phys. Sci46a 1 (1997).

11, V. Pylyuk, Preprint Inst. Theor. Phys., Acad. Sci. Ukr. SSR, ITP-90-
12R, Kiev(1990.

2], v. Pylyuk and M. P. Kozlovskii, Izv. Akad. Nauk SSSR, Ser. Fi5,
597 (199).

13M. P. Kozlovskii, I. V. Pylyuk, and I. R. Yukhnovskii, Teor. Mat. Fig7,
434 (199)).

14M. P. Kozlovskii and I. V. Pylyuk, Phys. Status SolidiB83 243(1994.

15M. P. Kozlovskii and 1. V. Pylyuk, Preprint Inst. Theor. Phys., Acad. Sci.
Ukr. SSR, ITP-90-81R, Kiey1990.

I. V. Pylyuk 961

1M, P. Kozlovskii, I. V. Pylyuk, and V. V. Dukhovii, Cond. Matt. Phys.
(Lviv) 11, 17 (1997.

171, V. Pylyuk and M. P. Kozlovskii, Preprint Inst. Cond. Matt. Phys., Na-
tional Academy of Sciences of the Ukraine, ICMP-97-06U, L{1997.

18], V. Pylyuk and M. P. Kozlovskii, Preprint Inst. Cond. Matt. Phys., Na-
tional Academy of Sciences of the Ukraine, ICMP-97-07U, L{1997).

A, J. Liu and M. E. Fisher, Physica A56, 35 (1989.

203, C. Le Guillou and J. Zinn-Justin, Phys. Rev2B 3976(1980.

21C. Bagnuls, C. Bervillier, and E. Boccara, Phys. Lett1®3 411(1984.

22M. Barmatz, P. C. Hohenberg, and A. Kornblit, Phys. ReviB 1947
(1975.

2D, S. Gaunt and M. F. Sykes, J. Phys6A1517(1973.

24D, M. Saul, M. Wortis, and D. Jasnov, Phys. RevlR 2571(1975.

W, J. Camp and J. P. Van Dyke, Phys. RevlB 2579(1975.

%A, Aharony and P. C. Hohenberg, Phys. Revi® 3081(1976.

21w, J. Camp, D. M. Saul, J. P. Van Dyke, and M. Wortis, Phys. Re¥4B
3990(1976.

Translated by R. S. Wadhwa



LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 12 DECEMBER 1999

Double-peaked character of the temperature dependence of resistance of perovskite
manganites for a broadened ferromagnetic transition
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The behavior of a system consisting of a mixture of paramagnetic semiconducting and
ferromagnetic metallic phases is examined in the framework of the percolation model. As the
temperature decreases below the Curie point, the paramagnetic phase fraction is assumed

to decreases according to an exponential law. The evolution of the temperature variation of the
resulting resistance is considered as a function of the magnetic transition broadening. An
explanation is offered for the low-temperature resistance anomaly observed experimentally in a
number of perovskite manganites. ®99 American Institute of Physics.
[S1063-777X%99)00612-X]

The interest towards the substituted manganites of theng due to different values of the Curie temperature at the
system R_,A,MnO; (where R is a rare-earth element and granule surface and inside the granules. Steenlp¢ek!®
A=Ba, Sr, Ca, et¢.is aroused by the prospects of their studied films with one grain boundaipn a bicrystalline
practical application as magnetoresistive materials, as well asubstratg and associated the two-ped&(T) dependence
by their unique electrical and magnetic propertié€Com-  with a reducedl ¢ value in the boundary region. However,
pounds withx=0 and 1 are antiferromagnetic insulators, butsuch mechanisms cannot explain the behavior of epitaxial
compounds with intermediate composition are ferromagnetgims investigated, among others, by Izuetial}® However,
with a metallic behavior at temperatures below the Curieany explanation was not offered in Ref. 19 for the emergence
point Tc.>* The common features of such materials are theyf the second peak upon a decrease in the film thickness. It

existence of a resistivity peak ne@g and a colossal mag- should be emphasized in particular that in all the cases de-
netoresistanc€CMR) associated with the suppression of this scriped in Refs. 14-19, no magnetic or structural peculiari-

peak by a magnetic field. Zerteexplained the ferromag- ties which could lead to anomalies in electrical properties

netism of substituted manganites by introducing the conceRfere observed below the Curie point. We have used a simple
. . v

of double exchange interaction between 3N7Iran_d Mrf phenomenological model to show that the emergence of a

|0ns._Later, this cpncept was generalized and given a mat%w-temperature anomaly on tiR(T) dependence in perov-

ematical formulation by Anderson and Hasegawad de  skite manganites may be due to a strong temperature broad-

Genned. However, attempts to use this model for explammgening of the ferromagnetic transition

a numbergof effects !ncludlng CM.R were th quite Recent investigations have shown that paramagnetic and
successfuf:® The properties of perovskite manganites were

. ) ) ferromagnetic phases can coexist over a wide temperature
explained in Refs. 8, 10, and 11 on the basis of stron g P P

electron—phonon and ferromagnetic interactions leadin toange below the Curie point in substituted manga-
P g 9 Wit 11.14,20.21 Checherskyet al? and Simopouloset al??

?—{,r::?el; E?if:ctsrgﬁzirii:,):ﬂg thz ;(;rr;egggsgszt& ?;)Lagsgjii%ave described the temperature dependence of the fraction of

impurity scattering of charge carriers in degenerate ferro:[ € paramagnepc phasé|.'$TC) obtained  for some Ca-

magnetic semiconductors was used in Refs. 9, 12, and 13 Based mangr.amltes expenmgntally as a result o‘ssbba.uer

explain CMR, but a complete understanding of the propertieSPectral studies. An analysis of the data presented in these

of substituted manganites has not been attained so far. works shows that the magnetic transition may be stretched
Recently, an extra low-temperature peak was observedown to the lowest temperaturéis the samples studied by

(in addition to the peak near the Curie poiah the tempera- Checherskyet al,?! the fraction of the nonmagnetic phase is

ture dependence @& of the electrical resistance in a number about 20% even folf/T¢=0.4), and a part of the sample

of samples belonging to the systenfisa, COMnO; and  May remain paramagnetic even at absolute Z&f9.A dis-

(La, S)MNnO;_ 5.1416 Even before that, Tangt all” had  tinguishing feature of CMR manganites is a strong depen-

observed similaR(T) curves in polycrystalline samples of dence of their electric properties on the magnetic state: the

(La, A)(Mn, Cu)O5_ s (A=Sr, Ba). Zhancet al*® attributed ~ ferromagnetic phase has the metallic-type conductivity

the lowtemperature resistivity peak formed as a resul{dR/dT>0), while the paramagnetic phase displays the

of a decrease in the granule size in the perovskitssemiconductor-type conductivity:'?1?3 Considering that

Lag gsSIh.1gMNnO; to the tunneling between granules occur-the dependencd’(T) are of opposite sign in the two phases,

1063-777X/99/25(12)/4/$15.00 962 © 1999 American Institute of Physics
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the resulting resistance may be quite complex in the regiméhe investigated samples can be used to estimate the ratio of
of coexistence of the two phases, as is indeed observed ip, and ¢; in the polycrystalline film. A similar procedure
some experiment$1° can be adopted for samples studied by Izwhall® An

Let us consider the behavior of a two-phase system coranalysis carried out by us fer,(T) curves obtained in Refs.
sisting of a mixture of paramagnetic and ferromagneticl7-19, 21, 22, and 27 shows that a single formula cannot be
phases which have different types of conductivity. We defound for describing the temperature dependence of ratio of
note the resistivity of the material in the two phasesRyy = paramagnetic and ferromagnetic phase concentrations. How-
and R; respectively. We assume that the concentration oéver, we found that the probability of the emergence of low-
each phaseg, and¢y) is a function of temperature, and that temperature peak on tHT) curve increases with an exten-
both phases coexist in a certain temperature interval belowion of the temperature interval of coexistence of the two
Te(epter=1). Having defined the specific form of the phases. The simplest function enabling a variation of the
curvesR,(T) and R¢(T), we analyze the evolution of the width of such a temperature interval with the help of a single
temperature dependence of the resulting resistance of thariable is an exponential function. For computations of the
system upon a variation of the parameg(T) or ¢¢(T). fraction ¢, of the paramagnetic phase, we shall assume that

An analysis of extensive experimental matérfai**2°
shows that the temperature variation of the resistance of the epp=1, (t=1),
ferromagnetic phase in each specific case can be described
by different functiongfrom a power function to an exponen-
tial function), and it would seem that a universal form of the

function Ry(T) does not exist. However, investigations car- g, 14 pe remarked that the valuesgf obtained in Refs.
ried out by Snyderet al™ in samples of bulk poly- and 1718 51 and 27 do not vanish even at the lowest tempera-

single crystals, as well as in well-annealed polycrystalling,, o5 Hence the theoretical analysis must cover the dase
thin films of substituted manganites, show that in all the<1 as well agd=1

cases, the resistané® of the ferromagnetic phase can be
presented with a fairly high degree of accuracy in the form

pp=exf(t—1)/d], (t=1), 3)

where the parametat characterizes the transition width. It

The total resistancR of the system was calculated from
the formula which was derived by McLachf&rfor a two-
R;=B+Ct?, (1) phase system and which can be transformed as follows:

which apparently reflects a strong electron correlation in (pp(Rl/g—Ré/g) (1—¢p)(R1’9—Rf1’9)

these materialst(is the temperature normalized @, while (R¥+ KRE) + (RT9+ KR1G) =0, (4)
B and C are constanjs A similar expression was obtained P

by Urushibaraet al® for single crystals of the system \where

La; _,SrL,MNnO;.

A thorough experimental investigation of the electric gog
properties of films and bulk samples of d@Ay3dVINO; K= (1— %)
(A=Ca, Sr) was carried out by Snydet al***® above the _ P _ N o
Curie point over a wide temperature ran@g to 1200 K.  In this case, the following condition must be satisfied:

The authors examined the range of applicability of various
models, viz., variable range hopping conductivity, semi-
conductor-type conductivity, and small polaron hopping congy ‘p; we mean the critical volume fraction of the high-
ductivity, in adiabatic and nonadiabatic approximations forresistivity (paramagnetic in the present cagehase. The

describing the resistance of the paramagnetic phase of thegg|ye ofg is determined by the morphology of the system
materials. It was shown that the temperature dependence gf,q is a function ofw‘;, and the effective demagnetization

Ri<R,. )

R, can be best described by the formula coefficientL : 28
R,=AtexpE/t), (2 c
%p

corresponding to the small polaron hopping conductivity in 9= (1_—|_)

the adiabatic approximatiorE(is the activation energy of a

polaron andA is a constant We carried out all the computations by considering the
Checherskyet al?* and Simopouloset al??> used the spherically symmetric case and puttihg=1/3. The critical

Mossbauer spectroscopy technique for measuring the tenvolume fractionef of the metallic phase at which percola-

perature dependence of the volume fraction of the paramagion takes place was assumed to be 0.16, which is in accord

netic phasep,, for samples of La ,CaMnO; (x=0.2,0.3).  with the experimental results and the theoretical analysis of

Some indirect data, e.g., for samples investigated by Chethe behavior of CMR manganité3The corresponding criti-

and de Lozann&’ can be obtained by comparing the tem- cal value for the paramagnetibigh-resistivity phase in this

perature dependence of the magnetization of epitaxial andase is equal t«pgzl— ©§=0.84. Such a choice af{ and

polycrystalline films having the same composition and predl givesg=1.26 andK=5.25 in Eq.(4).

pared under identical conditions but on different substrates. Figure 1 shows the temperature dependence of the

Assuming that the fraction of the ferromagnetic phase belovamount of the paramagnetic phagg and the resulting re-

T is 100% in an epitaxial film, the ratio of magnetization of sistanceRr of a two-phase system calculated by using formu-
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served experimentally by different methddg#17?130Re-
garding the topic of our investigations, the most illustrative
results were obtained in Refs. 17, 19, and 27 where a corre-
lation between the magnetic transition broadening and the
emergence of the low-temperature resistive anomaly can be
traced clearly.

Thus, we have analyzed the electrical properties of a
system consisting of paramagnetic and ferromagnetic phases
which have different types of conductivity and coexist over a
wide temperature interval. It is shown that in spite of the
monotonic variation of the magnetic and electric properties
of each phase, the resulting resistance may exhibit a number
of anomalies in the region of coexistence of phases. The
presented data point towards the possibility of realizing such
- a situation in substituted manganites.
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FIG. 1. Temperature dependence of the amount of paramagnetic ppase *'E-mail: atov@imag.kiev.ua

(a) and electric resistivitR (b) in a two-phase system for different values of

the parameted: 0.5(<), 2.0(V), 3.0(4), 3.2(0), 3.45(*), and 4.2(W).
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An exact instanton solution describing macroscopic quantum tunneling for a small
antiferromagnetic particle with uncompensated spin and biaxial quadratic anisotropy is constructed.
The solution is valid for any relation between anisotropy parameters and relative value of
uncompensated spin. The obtained solution is used for calculating the tunneling amplitude taking
into account the pre-exponential factor. The amplitude is characterized by a nonanalytic
dependence on the ratio of small parameters of the problem, viz., anisotropy in the basal plane
and the value of uncompensated spin. 1899 American Institute of Physics.
[S1063-777X99)00712-4

INTRODUCTION transition form the antiferromagnetic behavior to ferromag-
netic one occurs for a small decompensatfite ratio of the
During the last decade, the macroscopic quantum tunnedifference in the spins of the sublattices to their $wwhich
ing in magnetic systems has been studied intensely both exs manifested in the dynamics of nonlinear waes well as
perimentally and theoreticalfy Special attention is paid to for CMQT.X® However, Chiolero and Lo$%$analyzed only
coherent macroscopic quantum tunneli@MVQT) between one limiting case of a strong easy-plane anisotropy. In this
states in systems with a discrete degeneracy of the grourchse, the equations for FM as well as AFM can be reduced to
state, which are equivalent from the energy point of view,Lorentz-invariant models for a scalar variable. However, the
but different physically. This effect can be observed experitelation between the anisotropy parameters for high-spin
mentally from the resonant absorption of electromagneticomplexes MpAC!® or Fgl’ is different, namely, easy-axis
waves at energy levels split due to tunneling. The interest tanisotropy takes place, and such a simplification is incorrect.
this phenomenon is due to the following two factors. First, In the present communication, we construct an exact in-
fine and elegant effects of interference of instanton trajectostanton solution for a small antiferromagnetic particle with
ries emerging in such problems lead to suppression of tunan uncompensated spin and biaxial quadratic anisotropy. The
neling for a half-integral spin of the systérhand to oscilla- ~ solution is valid for any relation between anisotropy param-
tory dependences of tunnel splitting of energy levels oreters and the relative value of uncompensated spin. The ob-
extrinsic parameters® Second, the manifestation of CMQT tained solution is used for calculating the WKB exponent
effects is not masked by thermal fluctuations in contrast t@nd the pre-exponential fact@which is determined by the
the effects of quantum “escape” from a metastable to afluctuation determinaitfor the tunneling amplitude. It was
stable state. found that in contrast to Ref. 13, the CMQT amplitude is
First investigation¥’ were carried out for small ferro- characterized by a nonanalytic dependence on the parameters
magnetic particles under the assumption that all spins in af the problem, namely, the relation between anisotropy in
particle are parallelthe large spin modgllt was found later the basal plane and the magnitude of the uncompensated
that antiferromagnet@FM) are more convenient objects for spin.
CMQT studies. According to calculatiofi€ the energy level
splitting in AFM is stronger than in FM, and the effects can
be observed at a higher temperature. It is not surprising that mopeL

CMQT effects were first observed for ferritin particles pos-
sessing the antiferromagnetic structtfte. Let us consider a system of spins in which nearest neigh-

It was noted'~*3that pure AFM, i.e., antiferromagnets bors are coupled through antiferromagnetic interaction and
with complete compensation of spin, do not exist on thebelong to two magnetic sublattices. In the ground state, the
mesoscopic level. At present, “high-spin” complexes char-total spinsS; andS, of the sublattices are antiparallel. The
acterized by the antiferromagnetic interaction in the presenc®tal spinS=S, +S, differs from zero due to decompensa-
of an uncompensated spin are being considered by mari{on of the sublattices$; #S,. Since we are interested in the
authors. Chiolero and LoSsstudied tunneling in an uncom- Case{S;— S[<S, ,, the dynamics of the system is described
pensated AFM on the basis of themodel (which is nor-  in terms of the antiferromagnetism unit vectiorwhere |
mally used for pure AFNgeneralized to the case of incom- =(S1—$,)/|S1—S,|, and the total spin is a subordinate vari-
plete compensation. These equations are a combination able and is determined Hyand|.14%°
the Lorentz-invariantc model and the Landau-Lifshitz In order to describe the dynamics of the vectpowe
equations>~1° A peculiar feature of their solutions is that a shall proceed from the effective Lagrangian obtained in Refs.
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13 and 15. The Euclidean version of the Lagrangian can be An instanton solution is a separatrix trajectory of the

presented in the form dynamic system, connecting a pair of equivalent miniffa
of the potentialw,, i.e., the boundary conditions have the
S|l -, ., . o 0 ' ‘
L= Stot Z(82+ p2Sir 0) —i wnp(1—cosb) | +wa( 6, ). forml—I1%" for 7— = oo, |t fpllows that-|—>0 for T—)im..“"l
YHe (2 order to construct an arbitrary solution of the equations of

1) motion for a system with two degrees of freedom, we must

Here the dot denotes the derivative with respect to the imagilSnOW two independent integrals of motion for this system.

nary time r, # and ¢ are the polar coordinates of the unit One of them is an Euclidean analog of the total energy:
vectorl, S;=5+S; is the maximum value of the spin of the

systemH, the exchange fieldy=2ug /% the gyromagnetic .

ratio, w,= yHSex/ Siot the parameter having the dimensions 1St 0%+ p?sir? 0

of frequency and describing decompensatid®y,=|S; " YH, 2 wa( 0, ). @
—S,|, and wy(6,¢) is the magnetic anisotropy energy

whose form is not specified so far.

) L_agranglan(l) c_on&stg of three .terms. They include the However, the second integral of motion cannot be indicated
kinetic term proportional td?, which is typical of pure AFM  gagily |t can be constructed in a trivial manner only in the

with $=%;, the gyroscopic term prop_ortional to the first 556 when anisotropy is purely uniaxial, awg depends
derivative of thel vector components with respect taand  ony of the projection of on a certain crystallographic axis
typical of ferromagnets, and anisotropy playing the role ofy, Wa=w,(n-1). In particular, forl'®|n, a purely easy-axis
potential energy. o _ case takes place. .

Let us consider possible limiting cases.3f=5,, i.e., Unfortunately, none of the Noether integrals of motion
w,=0, we naturally obtain the Lagrangian of tbemodel (ihe integral of motion associated with the symmetryngf
for a pure AFM. A transition to the Lagrangian for a ferro- j, oy casg can be used for constructing instanton solutions
magnet is not a trivial operation. The dynamics of the Vectolyf the complete system of equations describing the dynamics
| approximately corresponds to the dynamics of ferromagnetss the vectorl. The situation in our case is actually the same
with increasingwy, to values of the order of(He/Ha) ', _as in an analysis of domain walls in ferromagnets. They are
whereH, is the anisotropy field. Formally, we can obtain 5155 described by separatrix solutions of the fdemi(¢),
from (1) the Lagrangian of a ferromagnet by eliminating thewhere§=x—vt, x being the coordinate of the wall andits
term quadra}tic.in the derivatives, for example, with the helpvelocity (see Ref. 18 The only integral of motion connected
of the substitutior: Sgr/ YHe—ChSo/YHe, wn—wnC ™t and  yith the symmetry of anisotropy energy is the projectior of

the limiting transitionC—0. To maich the constants, we o the easy axis, but the motion of the wall is impossible
must putw,= yH.. However, such a procedure is not quite \ynenn.| is conserved.

correct since it should be borne in mind that the omission of  5p, analysis of dynamic systems with more than one de-

the term proportional t¢* changes the structure of the sys- gree of freedom, in particular, the construction of integrable
tem Hamiltonian, namely, the dimensionality of the phasesystems, is a classical problem in analytic dynamics. This
space diminishes by a factor of two. In the case of AFM, weproblem is being studied intensely even now, and a number
can treat the angleg and ¢ parmetrizingl as canonic vari-  of important results were obtained in recent yedramong
ables, and the corresponding momenta contaiand ¢, integrable systems, the models of unit vector dynamics are
while the Hamiltonian variables for a ferromagnet can bealso encountered. By way of an example, we can consider
expressed only in terms of For example, we can chooge the Neumann classical probléhon the motion of a material
and cod as a canonic pair. In other words, an uncompen-{oint over a sphere in the field of a potential which is a
sated AFM(as well as pure AFMis equivalent to a system quadratic function of Cartesian coordinates. A number of
with two degrees of freedom, while an FM corresponds to ayeneralizations of this problem have been obtained recently,
system with one degree of freedom. e.g., a more general form of integrable potentials was
In a popular model of strong easy-plane anisotropyconstructed? and the effect of gyrotropic terms was also
equations of motion give the approximate relatigh discussed’
=conste. In this case, the Lagrangian acquires the standard In our case, it is important that the system with,
form in mechanics, i.eM ¢(0) %2+ W(¢), whereM gx(¢) = Bilil and a gyrotropic term of the type of the field of a
andW(¢) are the effective mass and potential determined bynonopole(1) is integrable. Integrable systems of such type
the parameters of the system. This approximation was essewith another form of the potential and other gyrotropic terms
tially used by Chiolero and Lo$for an analysis of instan- do not exist to our knowledge. Various forms of the second
tons in a ferromagnet. In other words, the problem was reintegral of motion are given in Refs. 21 and 22. The integra-
duced to a mechanical system with one degree of freedom. kility of model (1) also follows from the exact integrability
will be proved later that the inclusion of the actual Hamil- of the Landau—Lifshitz equations for the magnetization of a
tonian structure of the equations of motion equivalent to aone-dimensional ferromagnet, which was established by
mechanical system with two degrees of freedom leads t&klyanin? Indeed, the Lagrangian for a ferromagnet can be
considerable singularities of instanton solutions and imporfeduced to(1) by the wave ansatZ=x—vt after a certain
tant physical effects in CMQT. change in notation.
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2. STRUCTURE OF INSTANTON SOLUTION boundary conditions, and obtain the following redefined sys-

) ) tem of two equations in the dynamic variakje
We shall consider the case of second-order rhombic an-

isotropy, which is integrablésee above We choosew, in fwn@=—(w;— w))sina cosa sing,
the form . .
p=(w2sin a+ ] cod a)sine cose. (6)
h . .
wW,= Sto (w§ cog 9+ w§ sir? @'sir? ¢) (3) It can easily be seen that these equations can be made com-
27He patible by an appropriate choice of the parameter
and assume thatOw,< w,. The frequencies, andw, are Let us first consider a degenerate case, For a pure AFM

proportional to the roots of widely used anisotropy figttls, ~ With w,=0 and w,# w, the first equation is transformed
andH,y, i.e., w,,= Y(HeHax,y)l/z- With such a choice of into an identity if o= wk/2, wherek is an integer. The sec-
the form ofw, and the relation between the constadk is  ond equation gives an instanton solution of the standard form
an easy axisQy an intermediate axis, an®z a difficult ~ Sing==* cosh * w(7— 1) with w=w, or », depending on
axis. The potentiaw, has two symmetric minima fop ~ Whether the value ok is even or odd respectively. The
=x/2 (¢=0 ande=7) between which tunneling can take former case corresponds to instantons Witbtated through
place. the intermediate axis, and the latter to rotation through the
Since the system of equations is integrable, we can andlifficult axis. It can easily be verified that a pair of instantons
lyze any of its solutions, for example, by separating variablegvith 7 multiple to « has a smaller value of the real compo-
in the corresponding Hamilton—Jacobi equation. In particunent Redg,=2wy% Si,i/yHe, oOf the Euclidean action than a
lar, we can construct in this way the instantons periodie, in pair of instantons of the second type.
which are required for describing tunneling at a finite  In the case under investigation with,# 0, solutions
temperaturé®?>Moreover, the possibility of separating vari- exist only forw,# wy, i.e., in the presence of anisotropy in
ables in the Hamilton—Jacobi equation indicates that varithe basal plane. We obtain the compatibility equation for the
ables can also be separated in the Sdimger equation ob- redefined systent6) in the form
tained by canonic quantization of the variabteand ¢. This
approach was used for system with one degree of free-
dom?26:27 which shows thatr is a complex number, i.e.,
' H.ov.vever,.lr.l order to construct a simple instanton sqlu- ok i [(02+ 02+ 02)2— 402w?] Y2 o2
tion, it is sufficient to use a property of the corresponding 4= — + ~arccosh—————5——~>—= n
solution of the problem in real time. It is known that in this 2 2 Wz~ Wy
solution the motion takes place in a planar cross section of ®)
the unit sphere. It was found that the generalization of thisand transformationi4) is a composition of ordinary and hy-
property can be carried out for imaginary time also. perbolic rotations. As in the casg,+ 0, four instantons exist
For this purpose, we rotate about the easy axi®x in this case. Everk correspond to a pair of instantons for
through an angle: which the plane of rotation of contains the intermediate
axis, while oddk correspond to rotations through the difficult
axis. Instanton solutions have the form

i(w?—wg)sina COSa=(w§ sirf a+ w)zl cof )2, (7)

cosf—cosh cosa+sindsing sina,
sinf cosp— — cosf sina+ sin # sine cosa (4) o=+2 arctan &), ©)
and transform the Lagrangian. Rotati@h leaves the kinetic . .

. : , : . where 7, is an arbitrary constant and
term invariant, while the gyroscopic term acquires a correc-
tion in the form of the total derivative with respect t0
which is insignificant for equations of motion, but is impor-
tant for calculating action from the obtained trajectories. Af-
ter the transformatiori4), the equations of motion acquire

Q:%[\/wﬁ+(wz+wz)2t\/wﬁ+(w2_ wy)z]' (10

The minus sign corresponds to an instanton with the rotation

the form of | through the intermediate axis and the plus sign, through
) the difficult axis. Direct calculations show that instantons
— 0+ ?sin# cosh—i w, e Sin 0+sin0cos€[(w§ sirf a passing through the intermediate axis have a smaller real

component of action than the instantons passing through the
difficult axis for any relation betweea,, »,, andw,. The
latter instantons do not give even a local minimum of
ReAg,. It will be proved below in Sec. 4 that the operator of
second variation of action for instantons with the rotation of

I through he difficult axis has a negative eigenvalue. Thus,
+(w§ sin? 01+w32, cos a)sir? 6 sing cose we must consider only two instantons with rotation in the
plane passing through the intermediate axis. Hence we shall
assume that formulél0) has the minus sign on the right-
We choose the boundary conditions in the fdrm=e, and  hand side.

l,=—¢e, ie., 0(xo)=7/2; ¢(—»)=0, ¢(+x)=m. We The real component of Euclidean action for these instan-
put #=/2 in this system, which does not contradict thetons has the form of the sum of two terms

+w) cog a)sing—(w? cos a+ w} sir a)]
+(cog f—sir? 0)(w?— w))cosa sina sing=0,

. L S )
—psir? 6—20¢ sinf cosf+iw,0sind

+ (w2~ w))sina cosa sin @ cosf cose=0.
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% \/ 22024+ \/ 2-0)2 section that even more significant peculiarities appear in an

Stot Wz wy . . . .

ReAEu=2TQ+ﬁSeXIn — analysis of the pre-exponential factor in the amplitude of
Ve Vol - o) tunneling.

(11

Th_e f_wst te_rm is proport|0nal_ to the number of spins and; Al CULATION OF TUNNELING PROBABILITY
coincides with the corresponding expression for a pure AFM.

The second term emerges from the gyroscopic term in the It was proved in the previous section that there exist two
Lagrangian. It is proportional to the excess spin and can bgairs of solutions of the equations of moti¢s), but only

associated with ferromagnetic properties of the system. Thene of them corresponds to the minimum of the real compo-
logarithm appearing in this term is just the imaginary com-nent of Euclidean action. Following the method of steepest
ponent of the angle of rotatioa from (8). descent, we must use only this pair for calculating the am-

Naturally, the familiar results can be obtained from theplitude of the tunneling transition. In the approximation of

general formula11) as limiting cases. For example, f&  low instanton density and in the main approximation in the
—0, Sex=S, w,=7YHe, Q<wy,w, we obtain the well- parameter exptReAg /%), we can write the following ex-

known expression for ferromagnéts: pression for the physically observable quantity, viz., the

splitting of the ground staté®

w;t wy
ReAg,=ASIn——=, (12) Ap=2|cosmS,| D exp( — Ag,/%). (16)
z— Wy
or The factor|coswS,| emerges due to interference of a pair of
instantons for which the values of action are complex
W+ wy s conjugaté®® It describes the suppression of tunneling for a

exp(—ReAg/h) :‘ ' half-integral spin and does not affett for an integralS,;.

The quantity expt ReAg, /%) is the transparency of a bar-

for @y = w,, tunneling is naturally impossible. The limiting rier in the semiclassical approximation. The facris a
case of a strong easy-plane anisotropy considered by Chj-

" pre-exponential factor associated with small fluctuations
olero and_ Los® for_ uncompensated AFM can be obtained about the instanton solution:
from (11) in the limit o, ,wy<w,. In this case, we have

w;~ Wy

PSo, [y, Lo Tt p( - 52AE“) a7
% n = plexpg -5 :
= — 2 4
ReAg,=2 A, wy< 1+ ;5) (13

o i i where
which is a typical result for a system with one degree of . s
freedom, in which the effective mass contains a contnbutpn P~ StotQJ dx(ﬁ‘,,u,)A(Z)(—) (19)
from the terms of ferromagnetic and antiferromagnetic yHe
origin.*® and

Peculiarities of an uncompensated AFM as a system
with two degrees of freedom is manifested most clearly for 5 —¢9§+ 1+e—2cosh?x —iv(dy+tanhx)
magnets W|th_nearly easy-axis or rhombic anlsotro_py_, wherf® i (9, tanhx) _(9§+ 1—2 cosh2x /"
oy~ w,. We introduceA w=w,— w, as a characteristic of (19)

anisotropy in the basal plane. It will be shown that in this ) ] ) )
case the tunneling characteristics are determined by relatiorl@ formula(18), we have introduced the dimensionless vari-

between the parametess, , Aw, andw=(w,+ w,)/2. In the ablex=€7. Hered=6— 6, and u=(¢— ¢o)sinf, are the
general case, formuld 1) is quite cumbersome, and we shall transverse and longitudinal deviations from the instanton tra-

consider it for the most typical cagew<Aw,w,,, when jectory 6q(7),¢0(7). It is more convenient to introduce the
variable u than to usep — ¢ since it allows us to write the
h St —— measure for functional integration in the form which does
ReAg,= YH, V4™ + wp— oy not contain sird(D[¥]D[ «]) and to obtain the Schdinger

operators inA®); §2 A, is the second variation of action
calculated for the instanton solution. The action can be cal-
culated in the easiest form by linearizing the equations of
motion (5). The nondiagonal structure 8¢%) corresponds to
two interacting field degrees of freedom, which complicates
the calculation ofD considerably as compared to the stan-
dard case.

The operatorA® contains two dimensionless param-

w40+ 0-— 0l

+w,In —
n wAw

(14

It can easily be seen that the ferromagnetic behaidver-
gence of Redg, for wy—w,) can be manifested for quite
small values ofw,, also if only w,>Aw. Forw,<w, expres-
sion (14) is simplified and assumes the form

hSet| wp, etersv=w,/Q ande =[ (v’ + w})/Q?]—2. Fore, we obtain
ReAEu:,y_He 20+ wpIn==). (19 the following expression:
. . . .. 2 2 2 2 271/ 2
This expression is nonanalytic in the parameigy/Aw, o (07t 0yt op)?—dw0] - oy
which can be significant for an analysis of high-spin mol- W+ o, i F[(0+ o) —0)?—dojo; ]V

ecules of the MpAc type. It will be proved in the next (20
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The plus and minus signs correspond to instantons with rofound in the review by Vainshteiet al?® We shall give only
tation ofl through the intermediate and difficult axes respec-the final form of the dispersion relation of tyi22):

tively. In the former caseg=0, while in the latter case 1 e ds(k

<0; the equalitye=0 is possible only forw,=0 anéj w¥ D eon= €X _f dk ( )In[)\(k))\*(k)] . (23
=w,. It should be noted that for a pure AFM=w)/w} A ) o dk

—1, i.e., is determined only by anisotropy in the basal plane . ) ) )
ande— 0 for o, — w, (easy-axis limit. The presence of dec- Here 6(k)(2|)s the. phase shift of e|.genfunct|on;;Kn of the .
ompensation transforms the limiting value ofor w,— , operatorA'<’, which can be determined from the asymptotic

into expressionsy, cexpikxxidk)/2) for x— *=oo. Its derivative
dé(k)/dk gives the change in the density of states of the
wﬁ wy — continuous spectrum as compared to the homogeneous den-
0= 2+ = Va+ opl oy, (21)  sity of states. We shall use the valuedfk) obtained in the
y y main approximation in?, namely, (k) =2 arctark, which
i.e., this parameter remains finite faf,—w,. In the easy- 9'V€S
axis (or rhombig case under investigations(~ w,) _V\_/lth a Deon=4(1+ m)z_ (24)
weak decompensation o(<wy,w,), the quantities v
=w,/wy ande are small parameters. For the easy-axis case under investigatioss- v

In order to calculateD, we must carry out functional ~w,/w,, and we can negleat’ as compared te in the
integration with respect toD[9] and D[u]. This can pre-exponential factor. However, we must retain in.Rkg
be done by transformingA® to the diagonal form the term containingw,/w, due to the large value of the
A2=2n)\n7yﬁ through a unitary transformation, i.e., finding logarithm in it. Finally, the splitting of the energy level in the
in fact the eigenvaluek, of the operato19). Further, we ground state can be presented in the form
can writeD[ 9]D[ u]=11,d 7, and carry out Gaussian inte-

gration with respect tor,. This gives D=(II/\,) 2, A —8u (1+V1+e&)*ReAg, 1/2|0057TS[ e Redey, (25
wherell’ indicates that the product is formed over all eigen-—"° y Je 27h of '

values except zero values. It is well known that the zero

mode \=0 leads to the emergence of the factor Thus, the above-mentioned peculiarity of the problem,
Q(ReAg/27#%)Y2in D. It should be noted that it is propor- namely, the fact that we are dealing with a mechanical sys-
tional to the square root of the number of spins, whilg ~ tem with two degrees of freedom, is manifested noticeably in
does not contain such an extensive quantity. The spectrum @€ pre-exponential factor also and leads to the emergence of
A® can contain discrete modes with eigenvaligs These  the factors =2 in the tunneling probability.

modes are responsible for the factars"?in D.

Let us now determine the eigenvalues. It can easily be
verified that(19) has a zero eigenvalue corresponding to the-qoncLusion
eigenvectoru=cosh *x, 9=0. It can easily be seen that
another zero mode does not exist except the nonphysical case The above analysis has proved that peculiar properties of
v=0, e=0 (pure AFM with an isotropic easy plahéHow-  model (1) as an analog of a mechanical system with two
ever, for w,=0, there exists another discrete energy leveldegrees of freedom are important for uniaxial or rhombic
with \;=¢, i.e., the problem has one more small eigenvalueanisotropy with a weak anisotropy in the basal plane. As the
For w,#0 andv<1, an exact solution does not exist, and anisotropy parameterdecreases, the exponential factor sup-
hence we shall find ; with the help of the theory of pertur- presses tunneling, but the emergence of faetot”? in the
bation in the small parameter. Choosing the zeroth ap- tunneling probability increases anisotropy as compared to the
proximation in the formu(®=0, 9@ =cosh*x, A\{”=¢,  standard case. Obviously, tunnel splitting for-0 tends to
we can easily writé\ ;=& + v? in the main approximation in  zero, but these factors must be taken into account for small
\ andv. but finite values ok and v.

The continuous spectrum has two branches each of In first publications on macroscopic tunneling, the limit
which is degenerate in the sign bfwith the dispersion re- of strong easy-plane anisotropy for aniferromagnets with
lation weak decompensation was considered as a typical example
of systems in which tunneling effects are observed for par-
ticles containing as many as possible spins. This condition
corresponds, for example, to ferritin which is a classical ob-
ject in the physics of macroscopic tunneling. However, the
For k?>(e/2v)?— 1, these branches are complex conjugatemain attention in recent years is paid to new objects, viz.,
to A. The complex nature ok does not give an imaginary high-spin complexes containing te@d not thousands as in
contribution toD since complex conjugate tocan be com- the case of ferritin of spins and characterized by a wide
bined into real-valued pairsH{([)\(k))\*(k)]’l’2 while  spectrum of the values of parametdms fact, any preset
evaluatingD. spectrun. In such objects, tunneling can be realized under

Details of calculations of the contribution from the con- nonoptimal conditions also, e.g., in the presence of uniaxial
tinuous spectrum to the pre-exponential facidrcan be anisotropy. In this case the conventional approach reducing

)\(k)=1+k2+%i V27— A1+ KD). 22)
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INTRODUCTION problem as well as the transformation of collinear phases of
DW and localized spin configurations into canted phases
Theoretical investigations of nonlinear excitations inwere discussed by us earlier in detail from the position of
magnets are confined, as a rule, to the simplest case of magsoliton science.” 1 Theoretical analysis of the DW and
nets with an isotropic exchange interaction exceeding consoliton dynamics in compounds with a weak exchange
siderably the single-ion magnetic anisotrdgyln the 1D interactiod° was carried out for magnets with easy-axis
case, this sometimes leads to completely integrable modefsngle-ion anisotropy. The obtained results can be applied to
for which all soliton and many-soliton solutions are well easy-axis layers antiferromagnéts.
known. However, the exchange interaction in the direction  On the other hand, copper-based layered compounds
perpendicular to the layers in layered compounds synthestudied experimentalf? possess one-ion anisotropy of the
sized recentf§® can be anomalously weakf the order of  easy-plane type with a weak additional anisotropy in the easy
or even much smaller than the magnetic anisotropy energyplane, and the theoretical resdftd* cannot be applied to
in view of a large separation between magnetic layers interthese compounds directly. In contrast to easy-plane one-ion
calated by organic layers. Moreover, this exchange interacanisotropy for which ferro- and antiferromagnets are de-
tion in compounds like (CH,),(NH3),MnCl,, scribed by essentially different dynamic equations, ferro- and
(CHay- 1NH3) ,MnCI,>* and (NH5),(CH,),,CuCl,>® can be antiferromagnets in the easy-plane case are described in the
varied purposefully by changing the numberof organic  main approximation by identical second-order equations in
groups in intercalants. The remaining characteristics of comtime with a single angular variabfé.
pounds(strong interaction within a layer and one-ion anisot- Stepanowet al>® studied resonance properties of metal-
ropy) remain unchanged. This makes it possible to study th@rganic compounds(NH3),(CH,),CuCl, with the index
changes in the structure and dynamics of magnets as a funn=2,3,4, which are easy-plane antiferromagnets with an
tion of the parameters of the substance and not of parameteessy-plane one-ion anisotrof~ 2 kOe and a weak anisot-
of excitations. Even the first experimental results of investi-ropy 8*~0.14 kOe in the easy plane. These parameters are
gations of quasi-two-dimensional magnets proved that théndependent of the number. However, the energy of ex-
resonance properties of such compounds change significantthange interaction between planes depends on this parameter
in the range of anomalously weak exchange interaction, fostrongly: J~500, 40, and 4 kOe fon=2,3, and 4 respec-
example, additional absorption peaks appear in the gap of thevely. (The energy of exchange interaction in magnetic
spectrum of linear wavel’ To explain this phenomenon, planes has the value 1000 kOe and is independent of their
Goncharuk et al® investigated theoretically the internal separation, viz., the numbe. As the numben increases
modes in collinear domain wall®W) and specific localized by unity, the exchange interaction between the layers de-
collinear spin configurations. The collinear structure of DWcreases by an order of magnitude, and the system becomes
in a ferromagnet with a strong single-ion anisotropy wasmore and more discrete in the direction perpendicular to the
considered for the first time by Van den Broek and Zijl$tra layers. It is convenient to characterize this discreteness by
in the classical approximation and by Ostrovskii andthe parametei,=J/B*~250,20, and 2 fon=2,3, and 4
Loktev!®!! in the quantum approximation. Ostrovskii and respectively. We shall use below the simplified Takeno—
Loktevi® were the first to pay attention to the importance Homma model valid fod< g% This model becomes essen-
of inclusion of single-ion anisotropy in the dynamics of lo- tially discrete only forJ~ g*. For this reason, another dis-
calized excitations in magnetsee also Ref. )2 Later, this  cretness parametar=J/8* associated with weak anisotropy

1063-777X/99/25(12)/7/$15.00 972 © 1999 American Institute of Physics
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in the easy plane is more important. For experimentally stud- The dynamics of a magnet has a more visual form in
ied compounds, this parameter is equal to 3600, 280, and 3@rms of the angular variables, , ¢, in a polar system of
for n=2,3, and 4 respectively. In order to satisfy the inequal-coordinates associated with the prefered axis which

ity A=<1, experiments with compounds characterized by the d
indexn=5(\=3) andn=6(\=0.3) are required. Thus, the S=S,(sinf, cose,,sind, sineg,, ,cosb,):i — 6,

results obtained below are of predictive nature. We shall dt
studoy inter_nal modes of E_)W and soliton-like _configurati@_ns =—SJ[SiNO 41 SIN(@pr1— @n)+SING,_1SIN(@n_1
360° DW) in a magnet with an easy-plane single-ion anisot-

ropy and a weak exchange interaction in the Takeno— — @) ]+ B*Sysinb, sing, cose,, 4
Homma model.

_d :
fi sin ana ®n= SpJ COSO[SIN O+ 1 COL i1~ @)

MODEL +sind,—1 cod@n—1—¢n)]
We proceed from the one-dimensional Heisenberg —SpJ*sin6,(c0SHy, 11+ COSO, 1)
Hamﬂtoman Wlt.h an |so.trop|c(|r.1 ma_gnetlc_ respegtex- +Sp82c0s6, sin b,
change interaction and biaxial single-ion anisotrgpglow,
n labels magnetic layers, and all static and dynamic states are + Sy 8% cosb,, sin b, cos 6, . 5)

regarded as homogeneous in the planes of these Jayers For magnets with an anomalously weak exchange inter-

1 action J<B% and a strong one-ion easy-plane anisotropy
H=—2 JS,Sy1+ EE [B(SpP=BX(S)?]. (1) (%), almost all spins lie in the easy plang;= /2
" " — 0,<1, and it follows from(5) that y~#(S,89) de,/dt. In
where S, is the spin at a lattice site, angf, 3*>0, which  this case, Eq(4) can be reduced to a scalar equation describ-
corresponds to the easy-plane anisotropy alongztagis  ing the Takeno—Homma mod&t™®
and additional easy-axis anisotropy along #axis in the [HM]? d2
xy plane. In a magnet with an “easy plane” in the ground =
state, spins are oriented in the plane (although such a ST
relation between the sign ¢ and the type of the ground
state can change when anisotropy of the exchange interaction
is taken into consideration In the case of antiferromagnets, the equation for the
In order to describe magnetization dynamics in the clasgquantitiesy, will obviously coincide with Eq.(6) upon the
sical model for a biaxial magnet with a strong easy-planesimultaneous substitutionJ——J and ¢,=(7/2)(1—
anisotropy and a weak anisotropy in the easy plane, we shal-1)") +#,, and all the results of the Takeno—Homma
use the Landau-Lifshitz equations for a nondissipativenodel for ferromagnets can be extended without any change
medium?? which have the following form for Hamiltonian to antiferromagnets.
(1): In the long-wave limit, when the inequalitief*<J
< % (and naturallyg*< %< J) are satisfied simultaneously,
the Takeno—Homma model is reduced to the well-known
sine-Gordon equatiofSGB:*’

entI[SiN(@n—@n_1)+SiN(¢,— @ni1)]

+ B*sing, cose,=0. (6)

d n
f g SH=lSX (St Si-)]- BIS X el(Se)

X 2 2

| rPIsXedSe) 2 %%_ﬁ%mn@cm:o, -
whereJ is the diagonal matrix of the forni=diag{,J,J), 0
ande, ande, are unit vectors along the corresponding axeswhere the homogeneous resonance frequency wis
This equation must be supplemented by the condition of con=S,\8%/ 8*/#, and the so-called magnetic length is
servation of the classical spin magnitudength of magne- = J/8*. Henceforth, time will be measured in the units of
tization vectoy. Consequently, the vector equati¢h can be  1/w,, and we shall use the discreteness parametel” in-
reduced to two scalar first-order equations or a single equastead of magnetic length The solutionsp, and ¢4 of the
tion in the case of a complex field. Introducing the complexSGE for domain walls and solitons respectively are well
variableW ,=S‘+iSY (¥, and ¥} are classical analogs of known?’

the creation and annihilation operators for magnowe can

write the Landau—Lifshitz equation(®) in the form ¢o=2 arctattexp(x/1)), ®)
d JV1—w?sinwt
it Wa=dWn(S) 1+ 80 ) — IS (Wnia+ Wooa) Ps=2 afcta{wcosh N ©)
B In this approximation, the DW8) does not possess intrinsic
- B Si— 7551(‘1’#‘1’:), (3 dynamics(internal modes are absgnSoliton (9) is a dy-

namic object, and its localization is accompanied by internal
where the third spin component &= \/SOZ— |2 oscillations with frequencyy which can vary in the interval
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Q frequency of DW internal mode decreases significantly even

for A =4 and attains the valu@ =0.8(see curve8 in Fig. 1).

1 < === Unfortunately, Fei Zhan§ did not continue numerical cal-
% culations to the critical value.,=0.75 at which the DW

1 goes over to a collinear form.

We take into account the fact that the Heisenberg ex-

0 0.75 I8 change interaction in the discrete case which is essentially

FIG. 1. Schematic dependence of internal mode frequency on discreteneEEo_nllnear and pe”Od'C in the angle between the nearest
parameteh for a collinear domain wallkink) in an easy-plane ferromagnet SPINS.

in the Takeno-Homma modekurve 1). Curve 3 was obtained by Fei For small values of exchange interaction<(0.75), the

Zhand?® in the Takeno—Homma model for a noncollinear kink with large domain wall is in the collinear state, and the ground state of

values of\. Curve 2 was obtained by Brauet al!® for the discrete SG . i . . T

model. the spin configuration with the domain wall 11.7]]1...
corresponds to the following values of angles:

0<w<1 for a fixed value of the discreteness parameter ¢n=0, n<0,
(magnetic lengthl). Different values of frequency corre- en=m, n>0, (11)
spond to different values of soliton energg=4 . . . . _—
Xp\/rﬂx\/mz and  different number g§=422 We linearize the system of equatiofi®) in the vicinity
« \/T,Bzarcco&) of elementary excitations coupled in(tee of the ground stat€l1) by introducing the small corrections
Ref. 13. Yn<l:

en=tn, n<O,
COLLINEAR STRUCTURE OF DOMAIN WALL AND ITS
INTERNAL MODE en=m+ ¢y, n>0, (12)

Returning to the discrete description of an easy-plane-zrhe system of linear equations for the quantiigsassumes

ferromagnet with a weak intraplanar anisotropy in thethe form
Takeno—Homma model, we write Ed$) in the dimension- d?y,
less form, measuring time in the units ofu}/and using the a2 TM2én= o1 dn-al+ ¥0=0, n<-1,

parametei = J/ 8% to characterize the extent of discreteness

of the system: d?
y g T ol + =0, (13
¢ . .
dtzn+)\[S|n(‘Pn_(Pn+1)+5|n((Pn_‘Pnfl)] d2¢l
e + N ¢o— ]+ 1=0,
+sing, cosg,=0. (10

This equation was studied in detail both analytically and % _ _ _
numerically*®>1¢*® However, the authors of these publica- a2 TM2Un = Ynerm Ynalt n=0, n=2,
tions chose larger _values of the paramet_elior numerlcgl We seek the solution for small corrections in the fou
calculations and faﬂgd o obser_ve quallt_atlve Cha_nggs in the. v, exp(Qt) and obtain the following system of algebraic
strupture and dynamics of Iocallz_e.d nonhnear exmtatpn; Océquations for the amplitudas, :
curring forh=1 and upon a transition of localized excitation
to a collinear structure. (2N +1=02) V= N(Vpy1+Vn_1)=0, n=—1,

First of all, we consider a stationary domain wall and the 2 _
possibility of the existence of internal mode for such a wall. (1=0%vo+Avi=v-1)=0, (14
It was pointed out by us earli€rthat this mode is absent in (1-Q%)v;—\(vo—V,) =0,
an easy-axis ferromagnet in the long-wave limit, but it ap- )
pears when the discreteness of exchange interaction is taken (A +1-Q%)vp=N(Vpe1tVp-1)=0, n=2.
into account. The solutions of this system, which decrease at infinity and

In the framework of long-wave SGE, an internal modedescribe possible internal modes, can be sought in the form
of the DW type(8) is not observed either, but it is present
when the discreteness of interactions between particles is
taken into account in the linear approximatidh,e., when v,=Bexpkn), n<0. (15
exchange terms in Eq10) are linearized. In this case, the
detachment of the internal mode from the frequenc
O=w/wyg=1 of homogeneous ferromagnetic resonance i
quite small and attains its maximum value of orh0.05 for [1- Q2]+ \[2—2 coslik)]=0. (16)
A~1, then decree_lsmg t_o ZEro again "”’?0 (curve2in Flg' Equations(14) for n=0,1 lead to an additional relation
1). However, the inclusion of nonlinearity of exchange inter- )

S . . betweenk,(), and\:
action in the discrete case leads to a considerable change in
the results. It was shown numerically by Fei Zh4htat the 1- 02— \[exp—k)+1]=0 a7

va=Aexp —«n),n>0,

yFrom Equations(15) for n<—1 andn=2, we can find the
gelation between the parameterg), and\:
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as well as the relation between the amplitudeand B: Q
A=B[1—(1—Q?)(1\)exp x)]. (18

The minus sign in expressidh7) corresponds to a sym-
metric solution withQ=1,x=0, andA=B, i.e., a homoge-
neous noncollinear oscillation with the frequency corre-
sponding to the edge of the spectrum of linear spin waves in
a spin chain without a DW. Thus, a homogeneous oscillation 4
of the spin system in the Takeno-Homma model does not
“feel” the presence of a DW in it. A symmetric solution
usually corresponds to the oscillation of the center of the
DW in the Peierls relief, but no such excitations are observed
in a collinear DW.

The plus sign in expressiail7) corresponds to an anti-
symmetric solution for the internal mode of the DW with the
following dependence of the frequency of this mode on the
discreteness parameter and the following form of a decreasge. 2. Eigenfrequency spectrum for a finite-length chain in the Takeno—

A

of the internal mode field: Homma model4 sping: a andc are symmetric anth andd are antisym-
9 metric modes of the collinear structui; andc’ are symmetric and’ and
O°=1-4\/3, «k=In3. (19 d’ are antisymmetric modes of a canted phase of the domain wall.

The distribution of amplitudes of spin oscillations near the
center of the DW in the internal mode has the form
Vo Vo Vo Vo Vo Vo that for an infinite spin chainNy=0.75). The eigenfre-
057193 Vo V0 T T g T g (200  quency spectrum for a finite-length chain contains four
modes. In the collinear phase, the system of dynamic equa-
Thus, the domain wall has an antisymmetric internaltions linearized iny, has solutions of the forng,~sinQt
mode corresponding to a periodic variation of the DW widthwith the following dependences of frequencies on the dis-
with time. The dependenc@(\) is shown in Fig. 1(curve  creteness parameter for the above-mentioned four modes
1). The internal mode emerges as a result of bifurcation fo(a,b,c,d):
the critical valuexn = 0.75 of exchange interaction and exists _ B _ B .
for A<\q. This critical value of the discreteness parameter (@)1= —dh=—Y1=p, Q°=1+2),
coincides with tghe value of cr|t|(_:al parameter obtained by (0): = (V2= 1)¢p_1=tho= — 1= (VZ—1) b,
Goncharuket al® for an easy-axis ferromagnet. However,
the internal mode for an easy-plane ferromagnet is spatially Q02=1+V2\, (22)
antisymmetric, while in the easy-axis case such a symmetry ) 5
was absent in view of different time dependences of the cor- (©)h-1=tho= 1=y, Q°=1,

responding dynamic equations. (d):(V2+1) 1= ho= — h1= — (V2+1)4f>,
For\>X\g, the domain wall goes over from the collinear
to a canted structure witlp+# 0,77 and with its own depen- Q2=1-v2\.

dence of internal mode on the exchange interaction constant
(discreteness parameiewhich is transformed in the long- ab
wave limit into the dependence obtained Fei ZHarigurve o
3in Fig. 1). This question requires an additional analysis. It
was proved by us earlitt'* that the dynamics of localized

ex0||t_?t|t9nsi |r: efﬁetnu;ally dlscreted.non]l!niards,ystems ISI ((:jlosgntisymmetriml-mode is an analog of the internal mode of a
qualitatively 1o that of corresponaing finfte-dimensional ay= ., inear kink considered above: the spins adjoining the “do-

namic models despnbmg spin chains of finite length in themain wall” oscillate in it with a considerably larger ampli-
DW or soliton configuration.

Let us consider a chain of four spins in the DW configu-tUde than for spins at the periphety, /¢;~0.4, while in an

ration 11|/, for which ¢, = ¢»= yy=_,=0 in the collin- infinite chain we havey,/y,~0.33.

. . . : . It is interesting to compare the spectrum of internal
ear phase in the static configuration, and boundary spins a?ﬁodes(ZZ) of a spin complex with a DW with the spectrum
free, i.e., equation for a boundary spin has the form

of internal modes of such a complex in the ground state with

The obtained dependenc@¢\) are presented as curves
¢ andd in Fig. 2. The symmetric mode and the anti-
symmetric model are most interesting. As in the case of an
infinite chain, thec-mode has a homogeneous resonance fre-
uency in a system without a domain walll €1). The

d?y ) ) parallel spins[717. It can easily be proved that the symmet-
ra + N\ sin(¢p— 1) + siny, cosy,=0. (21 ric modesa andc have identical forms and can be described

by formulas(22) for cases(a) and (c). The antisymmetric

~ The collinear structure of the spin complex under invesnodesh andd change significantly in the ground state of the
tigation exists only for the values<\y,=1~2 of discrete- four-spin complex:

ness parameter. It should be noted that the critical value of
the parametei in the four-spin complex is quite close to (b):=(V2+ L)y 1=thg=— p1=(V2+ 1) iy,
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0%=1+N(2+V2), pears in the canted phase of the DW. In the vicinity of the
5 critical point A=\, its frequency decreases linearly from
(d):(V2-D)p_1=ho=—ty=—(V2—1) )5, the valueQQ=1: O~1-(4—3v2)(A—\g). In an infinite

9 chain, the frequency of this mode describing the oscillations
Q7=1+\(2-V2). (23 of the center of the DW in the limit >\, tends to zero, and
Thus, the first antisymmetric mode of the spectrum ofthe dependenc€(\) for this oscillatory mode must coin-

the spin complex in the ground state is transformed into theide with that obtained by Bogdaet al?°

antisymmetric internal mode of the DW.

The advantage of the analysis of a finite-dimensionalSOLITON-LIKE COLLINEAR SPIN STRUCTURE

spin chain is that the problem for four spins can be solved Let us consider a more complicated spin configuration of

alnalytllcamy ”1 ?.Xp“C't form for a ca1.|r1tef.cj dD:/kY V¥It|?>.)‘° d the type ..7T71777... with one inverted spin. In the long-
asod n the ?_atlc caise,twet can iasw '? d DeWO OWtIrTg d.eWave description, such a state could exist only in the dy-
pendence ot internal Structure ot a cante on e IS, amic case and corresponded to a magnetic soliton. When
creteness parameter from E@$3) and (21):

discrete exchange interaction is taken into account, the static

— 1= state of this type corresponding to a 360° collinear domain
) 2 11/2 wall (referred to as “soliton” for brevity can also exist.
=£arcsir{2)\{(l_2)\ J(1—4N+2h )} ] For small values of exchange interaction, the ground
2 (1-2)\)(1-2\—4)\) ' state of the system corresponds to the following distribution
(24) of spin orientation angles in the easy plane:
1 ¢,=0, n=-1,
— o= = o+ arcsw( 2y Sin 21//2> . (25 o=, 28)

Expression24) shows that the solution for the canted phase  ¢,=27, n=1.

Xi nly in the rang® <\ <\,=1+v2 of the order pa- . .
exists only in the rang&o <\ <y ° t €o _de pa We introduce small correctiong,<1 to the ground state
rameter. However, the model system under investigation cor-

rectly describes the initial infinite spin chain only for small and obtain from10) the following system of linear algebraic

deviations of discreteness parameter from its critical Valueequatlons for solutions of the form, = v, expy):

No. (2)\+1_92)Vn_)\(vn+l+vn—1):0, |n|>2,
Linearizing the dynamic equatiori$0) and(21) in small 2 _

spin deviations from the static configuratio®4) and (25), (1=09vi+X(vo—V) =0, (29

we can easily find the transformation of frequency depen-  (—2\+1-Q2)vy+\(v;+v_;)=0,

dences of all modes of a finite-dimensional system in the

region of a canted DW: (1-Q%v_;+\(vg—V_,)=0.
1 As in the previous case, it is natural to seek localized solu-
Qi,c:§[27\ cog o — 1) + COS 21 + COS 2ifr5 tions for internal modes of the spin configuration under in-
vestigation in the form
*+ \AN? COS (4~ 1) +(COS 21— COS 24)°], v,=Aexg — xn),n=1,
20 y=c, (30)
1
Q§'d=§[2)\ cos ¢, — 1) +COS 2, — (2N — 1)COS 2y v,=Bexpkn), ns—1.
7 o2 5 From equation$29) for n< —2 andn=2, we obtain relation
*JANZ CoS'(1h— 1) +(COS 2+ (21— 1)C0S 201)°], (16) between the parametersQ,\, while the equations for

(27 V_1,Vg, andv, leads to the relation betweel B, andC

and the additional relation betweei(),\:
where ¢, (\) and ¢»(\) are defined by24) and (25). The

plots of the corresponding dependences are shown in Fig. 2 ~ _ E_ -~ N 1_92}_
(curvesa’,b’,c’ andd’) for values of\ in the vicinity of A~ B~ O K) e N (31)
Mo : : : 1-0?

It can be seen from Fig. 2 that the antisymmetric mode | exp — x)—
d’ exists in the canted phase also, where its frequency in- A
creases according to the root l&f<2v2(\ —\,) as for an 1— 02 1-02
easy-axis ferromagnét.We can propose that a similar mode Xl exp(—k)— X (2— X ) —2] =0. (32

also exists in an infinite spin chain. Its frequency dependence
must begin at the poinfl=0,A=\, (0.79 in Fig. 1 and In expression(32), one solution for which + Q%=X exp
attains dependenc® obtained by Fei Zharl§ in the long-  (—«) splits immediately. This solution corresponds to an an-
wave limit for large values ok. Besides, it can be seen from tisymmetric mode withA=B, C=0, whose amplitude at-
Fig. 2 that the nontrivial localized symmetric modé ap- tenuates with increasing distance from the center of a “soli-
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Q for a collinear 180° domain wall in Fig. 1. For a fixed value
of exchange interaction in the range of small paramexers
the frequency of the symmetric internal mode lies below the
frequency of the antisymmetric mode. Since the solution for
a 360° domain wall can be interpreted as the state of two
adjacent 180° domain walls, symmetric and antisymmetric
internal modes having a configuration with an inverted spin
, emerge as a result of detachment of the internal mode fre-
0 0.13 0.75 2 A quency of a 180° domain wall in the system of two such

FIG. 3. Frequency dependence of internal modes of a localized coIIineaWa”S- ] ) ) ] )
structure with an inverted spin in a layer of an easy-plane ferromagnet:  The interpretation of nonlinear dynamic states in the

curvelis the antisymmetric mode and cur@és the symmetric mode. The ~gs5e of an easy-plane ferromagnet is more complicated than

dependence)()\) for the internal mode of a collinear DWturve 3) is in th f is f t id d el

shown for comparison. in the case of an easy-axis ferromagnet considered edrlier,
and it remains unclear how the dependence for a soliton so-
lution in the case of a strong exchange interaction

tion” with the spatial damping decrement=In2. The “matches” to the frequency dependence for internal modes

dependence of the frequency of this mode on the magnituo%f soliton-like states for small values af in the region of

of exchange interactiofdiscreteness parametey has the ~ransient values of exchange integral.
form Nevertheless, we can give a number of arguments show-

ing that the internal modes emerging for small values of
02=1-112, (33 exchange interaction in this case differ qualitatively in origin
and the mode emerges as a result of bifurcation and exists féfom soliton solutions for large values of exchange. It is
A=<2 (curvelin Fig. 3. The distribution of spin oscillation known from the theory of dynamic solitoHsthat soliton
amplitudes in this mode has the form1.0J ..., where dots  solutions for finite-dimensional systems ‘“split” from spa-
denote spins oscillating with small amplitudes, and the symtially homogeneous excitations of the system and have the
bol O corresponds to a stationary central inverted spin.  same symmetry, i.e., the phases of oscillations of particles
Using relation(16), eliminating the parametex from  (or spins as in our casén a soliton are the same along the
(32), and introducing the quantitg=1—Q?, we can easily entire chain.
write the expression in the braces(2) in the form Let us consider the phases of spin oscillations in the
Z(2Z2—7\Z+4)\?)=0. (34)  internal modes studied above. We shall comment the situa-

. . ._tion with a 360° domain wall for a simple finite-dimensional
Thus, three additional solutions of the system under in-

L ) : . system consisting of three spins with numbers—1,0,1 for
vestigation also exist. The first solutiah=0 corresponds to which deviations from the around state are permitted. The
the edge of the spectrum of spin waves with=1, k=0, 9 P '

A—B=C. As in the case of a 180° domain wall. a soliton spectrum of intrinsic linear excitatio.ns of the formn
(360° domain wall in this model does not interact with ho- =Vn exp() for the ground state of this system with paral-

mogeneous oscillations of the edge of the continuous speég"I spins_consists of three modes witf"=1(vo=1,

al 2_ 0y — 2_
trum. The second solution with the depender@@=1 — ¥-1), 2°=1+A(ro=0,1==v_y) and Q7=1+3x (v
—\(7— J17)/4 does not satisfy our assumption on the local-— ~2¥1= ~2V-1). _ _ _

ization of the oscillation. In this solution,x=In[(5 On the other hand, in a configuration of the type of the

—/17)/2]<0, and its amplitude increases with the distance360° domain wall considered above, i.e., for th_e g_round state
from the soliton center. Finally, a solution for localized sym- $o= 7, ¢1=¢-1=0, the spectrum of small oscillations rela-
metric oscillations with the following dependence of the fre-tive to this state is formed by the following internal modes:
quency of this internal mode on the discreteness parametef2’=1(vo=v1=v_;), Q*=1-\(»o=0,v;=—v_;) and
02=1-3\(vo=—2v,=—2v_,). The last two modes are

0?=1-\(7+17)/4, (39 equivalent to the antisymmetric and symmetric modes of the
and the following relation between the amplitudes of spininfinite spin chain with an inverted spin considered above.
oscillations in the localized state These two “internal” modes coincide in symmetry with
17-3 the modes from the spectrum of linear excitations of the
A=B,C=—A ) (36)  ground state. In the case of an inhomogeneous ground state,
2 these modes are transformed from two lower-lying modes
also exists. following the homogeneous mode and having different sym-

The amplitudes of oscillations in this solution exhibit metries. Since the soliton mode must split from the homoge-
rapid spatial attenuation with increasing distance from theieous mode and possess a different symmetry, this is a new
soliton center £=In[(5—/17)/2]), and three central spins type of localized excitations emerging for small values of
oscillate in actual practice. The dependeri8d) shown in  exchange interaction. It should be noted that in the case of an
Fig. 3 by curve2 terminates for the valua=(7—/17)/8  easy-plane ferromagnet, a soliton excitation in the long-wave
~0.13. Curve3 in this figure shows the dependenQg\) limit corresponds to the oscillation of the central spin about
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the positiongy=0, while oscillations of the central spin in
the obtained internal modes occur about the valuepgf

=1r.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Phenomenological model for Casimir attraction of a metal film
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The force of surface interactioiCasimir effect between a bulk conductor and a metal film
deposited on a dielectric substrate is studied by the method of quantum field theory. The film
thickness is assumed to be much smaller than the skin depth at characteristic frequencies

of fluctuation fields. The equations for one-particle Green’s function of the electromagnetic field
in the metal film are solved on the basis of a simple phenomenological model. Namely,
complex macroscopic electrodynamic properties of the film are described by introducing the
surface permittivity determined by the conductivity) averaged over sample thickness. The
dependence of the Casimir attractive force on the specularity paramekaracterizing the
interaction of conduction electrons with the film surface is predicted. The results of investigations
demonstrate that the electronic and surface properties of metal films can in principle be

studied experimentally by measuring the force of their Casimir attraction19@9 American

Institute of Physicq.S1063-777X99)00912-3

1. INTRODUCTION io(w)
e=1+ , 3)
According to the definition given by its authbthe Ca- w
simir effect is an “observable nonclassical force of electro-yhere (w) is the conductivity. Simple analysis shows that
magnetic attraction between two parallel perfectly conductsq,
ing plates.” This force per unit area is defined as

W<wy (4)
€ w? fhc ) ) .
Fo=— A 240t (1) (wp is the plasma frequengythe frequency dispersion in
conductivity is manifested only in corrections to ford@ in
view of the large electrical conductivity of metals. The rela-

Heref is the energy of interactior, Planck’s constant; the tive value of these corrections has the skale

velocity of light, anda the separation between the plates.
Casimir interpreted the emergence of the fofeg as the AF/Fo~Z<1, (5)
result of a peculiar liberation of enerdy of electromagnetic . _
vacuum during its partial filling with a material medium. ~ WhereZ=1/Je(iw) is the surface impedance of the metal at
The Casimir force also emerges in a more general caséie characteristic frequency.~c/a<w,." It should be
of interaction between plane-parallel dielectric m@ciad ~ Noted that under the conditio) and(4), the Casimir force
can be interpreted in the sense of the Van der Wéals- IS described by formuldl) in the main approximation irre-
leculay attraction. This specific type of the Van der Waals SPective of the type of the conductor. For example, it is in-
interaction is of fluctuational electromagnetic origin and isSensitive to the electron spectrum anisotropy. The decisive
associated with spontaneous polarization of dielectrics. Decircumstance in this case is that expresgibnis the conse-
pending on temperature, either quantum-mechanical or thefuence of vanishing of the electric component of the fluctua-
mal mechanisms of polarization dominate in the mediumtional field at the boundaries of conductors.

The criterion is the ratio of the characteristic frequengyof _ It we consider the interaction between thin films of
“radiation” to the parametekT/%. For thicknessd much smaller than the characteristic skin depth
8, inequality (5) is violated even for a large electrical con-

kT<ho, 2) ductivity o. In this case, we go over from the asymptotic

form (1) obtained in the limitd> § to a new expression for
the interaction between two media occurs through thehe Casimir force whichis a function of not only the size of
vacuum electromagnetic field. The Casimir res)tcan be the film, but also its electronic characteristics, viz., plasma
obtained under the low-temperature conditi@if the per-  frequencyw, and electron relaxation frequeney
mittivity e of bodies tends to infinity. It should be emphasized that the sensitivity of the
For real conductors, we have Casimir force to collective peculiarities of the metal is natu-

1063-777X/99/25(12)/7/$15.00 979 © 1999 American Institute of Physics
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rally not exhausted by the above-mentioned functional deHere D(w,) is Green’s operator with the matrix elements
pendence on plasma frequency and electron relaxation freD, (r,r'|w,); e(w,) is the diagonal operator of permittivity,
guency, which should be referred to as bulk characteristics adind the operation Tr is interpreted in the functional sense,
the electron subsystem. Another important peculiarity of any.e.,

conducting medium is the type of electron—surface scattering

playing a fundamental role in the electrodynamics of con- Tr(r)'::f drtr[F(r,r)] (8)
ductors ford<l (I=vg/(v—iw) is the effective electron
mean free path and: the Fermi velocity. (tr[...] is the ordinary trace

This research is mainly devoted to an analysis of the role  The explicit form of the Greeniaf® in the “radiation”

of surface properties of a metal film in the formation of the gauge is determined by the solution of the linear equation
Casimir force. The results of this analysis demonstrate that it - 1 ©

is possible in principle to study experimentally the “rough-
ness” parameter of the metal film boundary through preciin which the differential operatdk has the kernel
sion measurements of the force of its Casimir attraction. ) _ 5 ,

In Sec. 2, the technique for calculating the Casimir force  Kit (1.1 |@q) =[€(r|i wp) @8 + 10t oty 1 8(r—r").
proposed by Lifshitz and Pitaevskis developed and a sim- Using (9), we can easily see that the total change in the free

plified expression for the_ free energy of t_wo inte_ractin_genergy}- upon a change in permittivity is
plane-parallel macroscopic bodies with arbitrary dielectric

permittivities is derived. S

In the next sections, the attractive force exerted by a 7 — anZO wpTrp[logK (wn)]. (10)
bulk conductor on a thin metal film deposited on a dielectric
substrate with a low optical density is investigated. In Sec. 3fFor two independené- and m-polarizations of the electro-
the problem is formulated and basic inequalities under whictinagnetic field’, we have
the effect of temperature in the Casimir force can be ne-
glected and individual peculiarities of conducting media
should be taken into account. Section 4 is devoted to the 5 1
solution of electrodynamic equations for Green’s function of ~ Km= oy~ ( v, ;V>- (11
the electromagnetic field. The response of vacuum to a thin
metal film is described by introducing into the field equations ~ Disregarding the infinitely large additive constant, we
of the surface permittivity associated with the conductivitycan write
of the metal film averaged over the sample thickness. In Sec. - 1
5, several asymptotics are obtained for the energy of interac- ogK = — f dmf———,
tion of a bulk conductor with a thin metal film for specular 0 me+K
and diffuse boundaries under the frequency conditions of th§nere the auxiliary variablen has the meaning of effective
normal and “infrared” skin effects. Besides, we analyze themass, Thus, according ta0), we have
role of dielectric properties of the substrate which also par-
ticipate in the Casimir interaction and find the conditions 5w,
under which the resultant Casimir force in the main approxi- F=—kT nZO nZO dmeTri Gwn). (12

mation is determined by the electron parameters of the metal. . _ _ .
HereG=(m?+K) ! is Green’s function with the matrix el-

ementsg(r,r'|w,) satisfying the equation

_ 2 2.
Ke=wne—V*;

2. FREE ENERGY IN THE CASIMIR EFFECT (M*+K)G(r,r'|wp)=8(r—r"). (13

The Van der Waals contribution to the free energy of an N order to simplify the general formulél2), we use
inhomogeneous condensed medium with a local Comp|e§ymmetry considerations. For this purpose, we choose the
permittivity e(r|w) is given by the formufa system of coordinates so that tReaxis is perpendicular to

the plane of interacting plates. Then it follows from isotropy
and translation invariance of the system in yhe plane that

_ ro2 3 H
SF= anZO wnf drD; (r,r|wy) Se(r|iwy), (6) G=G(lp—p']),

where p=(y,z) is the two-dimensional radius vector. Ex-

where Dy(r,r'|wp) is the temperature Green’s function of pandingg into a two-dimensional Fourier integral, we obtain
electromagnetic fieldw,=27nkT, and the prime on the on the basis of formulés)

sum symbol indicates that the term with=0 is taken with
half the weight; here and below,=c=1.

Tr g:Trfm (x,x'|9?, wp)
Formula(6) can be presented in compact form: () X (277)2g X% @n)-

w Ultimately, expressiori12) for the Van der Waals contribu-
SF= KT 2 'wﬁTr(,)D(wn) Se(wy). @ tion _to the free energy of the system of two plane-parallel
n=0 media can be written in the form
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FIG. 1. Geometry of the problem: bulk metail, metal film (f ), and
dielectric substrates).

o0

s> wdmsz dq(Tr,g),
n=0 JO —

whereS is the area of the plates.

Under the low-temperature conditiori2), the sum in
Eq. (14) can be replaced by the integral. The obtained ex
pression defines the enerfyof the vacuum electromagnetic
field in the presence of a stationary system of bodies, i.e.

kT

P

(14

E(e,m) _

1 ® ®
S _Wfodmquzdéfﬁ dXge,m(X,X), (15)

where Green’s functionge, m)(x,x") for two independene-
and m-polarizations of electromagnetic field, which are
known in electrodynamics d&- andH-waves, can be deter-
mined as solutions of the differential equations

2

Jd

2. 2 42
M2+ Q2+ 26(X) — —
q°+{%€e(x) pN:

)ge(X,X')=5(X—X’),

1%

IX €(X) dx

1%

2
q__|_§2

2
m +€(X)

Im(X,X")=8(x=x"),
(16)

wheree(X) is the permittivity of the system of bodies under
investigation as a function of the coordinate

3. GEOMETRY OF THE PROBLEM AND BASIC
INEQUALITIES

Let us consider a static system comprising a bulk con
ductorM and a thin metal filmf (region IIl) of thicknessd
on a dielectric substrate (region 1) having the permittivity
€,,=const. The size of the gdpegion ) between the filnf
and the bulk meta\Ml is denoted by (see Fig. 1L Under the
condition of optical transparency of the film—substrate sys

V. N. Dubrava and V. A. Yampol'ski 981

This actually means that the presence of the metal film does
not affect the Casimir interaction between the conductor and
the dielectric substrate in the main order, and the introduc-
tion of the dielectric in turn does not affect the interaction
between the conductor and the metal film. Thus, while deter-
mining &y _¢, we can neglect the effect of the substrate, i.e.,
assume that,,=1, and while calculating), 5, we can dis-
regard the effect of the film, i.e., put=0. The differences
that can emerge in this case as compared to the exact solu-
tion of the problem have a higher order of smallness than the
terms in(17).

Apart from optical transparency, we shall also assume
that the conditions of the low—temperature approximat®n
are satisfied, which means that we can neglect thermal fluc-
tuations of electromagnetic field, as well as inequaldy
equivalent to the condition of vanishing of displacement cur-
rent in Maxwell's equations.

4. DETERMINATION OF GREEN’S FUNCTION OF
ELECTROMAGNETIC FIELD

While analyzing the contribution to the Casimir energy
from the e- and m-polarized fluctuational electromagnetic
field, we must solve Eqg.16) together with the boundary
conditions of continuity forg and its normal derivativéfor
E-waves and the quantityy’/e (for H-waves at the points
of discontinuity ofe(x). It is well known that Green'’s func-
tion g in each of the regions I-IIl can be expressed in terms
of two linearly independent fundamental solutioms and
u, satisfying a homogeneous equations and defined on the

left and right boundaries of the region under investigation:

1 [u_(uy(x"), x<x',

9XD =W u_(x )y, (0,

whereW=u_(x)u’.(x) —u’”(x)u,(x) is the Wronskian.

An analysis shows that in the case of optical transpar-
ency of the metal film, a decisive contribution to the Casimir
energy comes from fluctuations of tme-polarized electro-
magnetic field. For this reason, we write only the fundamen-
tal solutions of the second equation from sysid), i.e. we
are interested in:

u_=coshk(x—d)— ekdsinhkacoshk(x—a—d),
u, =coshk(x—D).

X' <X,

(18

Here D is an infinitely large distance at which a perfectly
reflecting mirror is arrangedts introduction is necessary if
we assume that the system is closdtle surface dielectric
permittivity e is defined as

(a(id)
'

(o) is the conductivity of the metal film averaged over its
thickness, antt= (£?+ q?+ m?)Y2. Besides, we assume that

e=1+

tem, we can separate in the asymptotics for the Casimir erthe inequalityde? ¢<1 is satisfied.

ergy & two additive contributiorfy, _; and&y, _ attributed to
the interaction of the bulk conductor with the metal film and
with the dielectric substrate:

5:5Mff+ngS' (17)

The system of fundamental solutions in region | can be
obtained from Eq(18) by replacing “right” by “left” rela-
tive to the filmf, i.e.,

Uu_<—u,, D—x—x, a—D—a—d.
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We do not write fundamental solutions in region Il
since the value of the integral over the intenakx<a
+d in Eq. (15 is much smaller than the value of integrals
over the vacuum regions | and IlI.

We can now easily find, on the basis of E48), an
expression for Green’s function of thme-component of the

V. N. Dubrava and V. A. Yampol'ski

ekd

1= 5 eka

1 o0
5M,f=ﬁfo dqu dZln exp(—2ka) |.
(23

While evaluating the double integral in EqR3), we
must specify the dependence (@f) on the surface and vol-

fluctuational electromagnetic field. The result of its integra-Ume (w,, ) characteristics of the electron subsystem. In the

tion for coinciding arguments can be written in the form

D J
fo dxgm(x,x)=WInWm, (19
where
W,,=K[sinhk(D —d) + ekd sinhka sinhk(D—-d—a)]
(20)

framework of the classical approach, electron scattering by
the metal surface is described by the boundary condition for
the electron distribution function. In the simplest motigie
surface properties are characterized by the specular param-
eter p which is equal to the relative number of electrons
reflected specularly at the sample boundary. In the isotropic
case, the electrical conductivity) of a thin metal film with

a specularly reflectingo(=1) and diffuse p=0) boundary

is the Wronskian having the meaning of the dispersion equds defined by the following asymptotic expressidns:

tion for eigenmodes of the system under investigation at an

imaginary frequency.

5. CALCULATION OF CASIMIR ENERGY

Substitutingb Eq(19) into (15) and carrying out elemen-
tary integration with respect to the variabi&, we obtain
E 1

= ” 2 . _
S~ 872 fo dg-d{ Ink[sinhk(D—d)

+ ekd sinh(ka)sinhk(D—-d—a)]. (21)

Direct evaluation of integra{21) leads to an infinitely
large value ofE. The divergence of the enerdyof vacuum
in Eq. (21) is primarily due to the high intensity of vacuum

oL, p=1

{o)= or=(3do/4)In(1/d), p=0, 249

in which o = w}/(v—iw) is the conductivity of the bulk
sample andrg the Fuchs conductivity.

Formula (24) is valid in the so-called Knudsen limit
d<l. In this case, the conductivity of a film with diffuse
boundaries is due to a small group of transient electrons
moving almost parallel to the plate surface and experiencing
no collisions with the boundaries during the mean free time.
The relative number of transient electrons is equadfioin
the order of magnitude.

For d>1, when the effects connected with surface scat-
tering of electrons are masked by bulk collisions, the con-

fluctuations for small wavelengths. But since the observabl@uctivity in the main approximation is insensitive to the type

value in the Casimir effect is the attractive forEeand not

the energyE, the energy of interactioéi is defined to within

an arbitrary ternkg independent o&, which vanishes after
differentiation:

E(a)=&a)+Ey.

It was found that the divergence in E@J1) is just due to
the nonobservable energy componEgt An analysis of for-
mula (21) shows that its origin is associated with the infi-
nitely large energy of zero-point oscillations, which is pro-
portional to the volumé® S occupied by the electromagnetic
system as well as to the “surface” ener@yroportional taS)

emerging due to transparency of the film boundaries. The

subtraction of infinitely large contributions tB(a) corre-
sponding to them is equivalent to the choice Bf=E(a
—). Consequently, the finite componefifa) in the en-

ergy of electromagnetic vacuum we are interested in is de-

fined as
&(a)=E(a)—-E(a—x), (22

where the quantitfg(a— ) denotes the asymptotic form of
E for a—<. On the basis of E¢22), we can conclude that

of the electron—surface interaction, i.e.,

(oy=0.

Using Eq.(24), we obtain analytic expressions for the
Casimir energy(23).

1. Specular boundarf{p=1). In this simple case, we
reproduce the results obtained earlier in Ref. 7:

ad
0Tt

p=1)
E(M—f 77(43)3’

v<wpVd/a<w,, c/a,

fLO’O d
T 242 (2a)3"

(25

z ya/d

gp=1_ _
M —f wp

wpVd/la<v<w,, cla. (26)

Pay attention to the fact that for samples with specular
boundaries, the conditions corresponding to the normg! (
<v) and infrared ¢<w,) skin effects can be realized in the
Casimir effect depending on the relation between the relax-
ation frequencyr and wy= w,\d/a. For v<wy, the quan-

the quantum-electrodynamic meaning of the Casimir energyity &, _; has the same functional dependence on the param-
lies in partial liberation of the energy of vacuum as a resulteters of the problem as for the Casimir energy in a system of

of introduction of material bodies into it.
Using Egs.(21) and (22), we obtain the final result for

two thin metal films of the same thicknet%his is due to the
fact that the main contribution to the Casimir interaction in

the energy of Casimir interaction between a bulk conductoboth cases comes from the frequensy~ wq. In the fre-

and a thin metal film:

quency range corresponding to the normal skin effect, the
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decisive contribution comes from the frequency intervaland the expansion of the logarithm into a power series.
(wg,v). Consequently, the value &, _; turns out to be Under the conditions of the infrared skin effect, when
larger than the corresponding asymptotic forms from Ref. 4
by a factor equal to the logarithm of the parameter
(vl wp) Jald>1. we assume that/l = Axp/2, whereA=d/vga is an arbitrary
2. Diffuse boundary(p=0). In the case of diffuse re- parameter. Substituting Eq&8) into (29) and integrating
flection of electrons at the metal film boundary, the Casimirwith respect to the variable, we obtain the following sim-
energy cannot be calculated with an asymptotic accuracylified expression for the Casimir energy:
This is mainly due to the emergence of the Fuchs logarithm

va<<pg,

2 1
In(l/d) in Eq. (24) for the average conductivit{o). It should Ep=9=— %f dp dn(l n?) TT5 7AD"
be noted, however, that the Knudsen lirtitd is violated 8m°(22)" Jp, p” Jo 1+2n/Ap
for relatively large characteristic frequencies. This restricts (30

considerably the range of applicability of formula3) for  whereA?=daw?.

the Casimir energy as a function of the Fuchs conductivity  For comparatively small distancésr large characteris-

og (24). We can avoid artificial restriction imposed on char- tic frequenciey whenA>1, the “infrared” Casimir effect
acteristic frequencies by dividing the integral with respect toacquires two characteristic frequency regions depending on

{in Eq. (23) into two parts: the value of the dimensionless paramegigh. For p,A>1,
- ok - we havep,~A<1, and the leading term in the asymptotic
J d§=j dg(cr=ch)+j di(o=0,), (279  form of the Casimir energy assumes, in accordance with Eq.
0 0 oK (30), the form
wherewy is the characteristic frequency for which the Knud- Jad

sen approximation is formally violated. Such a mathematical ,\;’ f =

approach is valid rigorously only if the integration domain in

the neighborhood of the poiat, makes a small contribution lo

to the values of both integrals. This condition can be violated v § <wpyd/a<c/a, wp, (32)

in the frequency range corresponding to the normal skin ef-

fect since the characteristic frequencies in the low-frequencwhere lo=v/v is the electron mean free path. FpgA

limit assume values from a finite interval. Consequently, the<1, we havep.~A%A<1, and

application of formula(27) in the general case requires ad-

T . - —0 3fhwy d? wp
ditional mathematic substantiation. 5(,\;’:](): —
In order to avoid difficulties associated with the applica-

tion of the Fuchs conductivityr, we use the general ex- | c
. .. . 0

pression for the average conductivity of a metal film of ar-  vylp/d<w,yd/a< VE< 3 @ (32

bitrary thickness with a diffuse boundary,

oo

and the approximate formula for the energy of Casimir inter-

= ey ay

J/d
w” " Jdra

(87a)? avg

Finally, under the conditions of normal skin effect, when

3 1
<a>=§aofodn(1—n2) (28

lg ¢C
wpVdla<vylg <VE 3 @

action: the asymptotics of the Casimir energy can be estimated on
the basis of formulg26) if we substitute the static Fuchs
glo=0_ _ 1 conductivity o= (3doy/4ly)In(ly/d) for the Lorentz con-
M-t 8m?(2a) ductivity oq:
% 1 dp p=0) _ ﬁO'F d dO'F
Xfo dxxzexp(—x)pr?(cr(p,x)>d+..., gh=P~ 52 (2a)3| (33
(29) An analysis shows that for a film with a diffuse bound-

ary and thickness
which is valid (to within an insignificant numerical factor of y

the order of unity for p.<1. In this formula, the lower in- VE

tegration limitp, can be determined from the condition do~g <d<do\VE/C (34
p~(a(p))d. (8y=Cclw, is the field penetration depth in the infrared skin

Formula(29) is fundamental for taking into account collec- effecy for

tive properties of the electron subsystem in the Casimir force c

and can be obtained from ER3) after the substitution of d<a<dq-, (35

. F
variables

Egs. (31)—(33) realize sequentially the functional depen-
vy X dence of the Casimir interaction energy on the distance be-
= 2— = —
q=oVlp 4 tween the bulk metal and the film. Under the conditi¢®4)
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and (35), the film thicknessd can be varied from 1% to isfied, the influence of the size effect in the conductivity of
10 %cm. In this case, the admissible values of distaace the metal film on the magnitude of the Casimir force is sig-
belong to the interval 10°—10 ®cm. nificant only in the range of intermediatEqs.(32) and(33))

If d<dpvie/c, the asymptotic formul&31) becomes in-  distances, namely, in the frequency range corresponding to
valid since the inequalityn.<w, is violated. In this case, the normal skin effect. For smaller distances higher char-
while determining electromagnetic Green’s functions, weacteristic frequencigssurface effects in the electron conduc-
must assume tivity are suppressed by bulk effects connected directly with
the high frequency of the fluctuational electromagnetic field.
Under these conditions, the asymptotic fo(&1) of the Ca-
simir energy coincides with expressi@@5) obtained for a
and the contribution from the permittivity, of the ion core  film with a specularly reflecting boundary.
“suppresses” possible electron effects in the Casimir force, ~Under the conditions of normal skin effect, the approxi-
i.e., the situation is similar to the interaction between twomate formula for the Casimir energy can be written in the
bulk conductors. The same applies to the asymptotic formuform
las (32) and (33) for d> 5,y ve/c.

Concluding the section, we note that radical transition

from one asymptotic form to another is observed in the range d
of distances g“ﬁf?)ocﬁUF; :
a~ay=d*wj/VE, (36)
for which the type of the functional dependence of the Ca-
simir energy&(a) changes. In this situation, it is possible to neglect frequency dispersion

In view of the absence of frequency dependence.in  in conductivity, and hence the functional dependence of
the energy€y s of the Casimir interaction of the conductor ££=9) on distancea remains the same as for a system of
with the dielectric substrate must have the same functionahteracting perfect conductors.
dependence on the distance as for the energy of interaction Thus, the surface effects in the electrical conductivity of
between bulk metal§see expressioil) for force). In the  a metal film in the model of specular parameter affect only
case of a low optical transparency of the dielectric, i.e., forthe magnitude of the Casimir interactidf). Besides, the

_ bulk properties of the electron subsystem also affect the
€.—1<1 (37 ) e .
. functional dependence of the force of Casimir attraction on
we obtain distance(Eq. (31)). In this case, the poin& of transition
e.—1 #e from one region of the asymptotic form to another is closely
EM—s=— W@g (38 related to the nature of electron—surface scattering. In the

model of specular parameteg~a, (36) if p=0 and
According to Eq.(17), the contribution of theM —s in- a~(ly/d)?a, for p=1. This means that for films with the
teraction to the total energy is smaller than the energy of known electron parameters,, v, andvg, we can judge
the M —f interaction if the optical density parameter of the about the roughness of a metal surface from the experimen-
dielectric substrate satisfies the inequality tally observed value o4.
cle.—1)/a<w,. (39) All'th.e result's are optained hgre for i;otropic conduptors.
Casimir interaction for films of anisotropic metals requires a
In this case, dispersion properties of the filplay a leading  special analysis and discussion. First of all, in real experi-

role in the Casimir force. ments we must take into account the fact that apart from the
Casimir attraction in the anisotropic case, a torque rotating
6. CONCLUSION the film emerges in the system. The direction of this torque

) ) depends on mutual orientation of the normal to the surface
We have obtained the most general asymptotic expresyng crystallographic axes. Besides, all asymptotic formulas

sions for the Casimir energy in the case of interaction of &g\ the Casimir force change. It can be stated, however, that
bulk conductors with a thin film of isotropic metal, in which o\ anin the anisotropic situation the Casimir fotas well as

collective properties of the electron subsystem are taken intg,, conductivity of filmgis sensitive to the type of electron—

account in the main approximation. The role of the effects Ofsurface scattering.

surface electron relaxation in the formation of the Casimir | caveral recent publicatior(see, for example, Refs. 8
force is demonstrated in the model of specularity parameter, 4 9, the Casimir attraction is studied experimentally. In

It is found that the Casimir force becomes sensitive to thespite of incredible complexity of such experiments, we still

electron characteristics of the metal film with a diffuse e that the results of our research will find their place
boundary for a film thickness< do\ve/c. Forfims witha  5m4ng studies of this interesting macroscopic phenomenon
specular boundary, the critical valuestbére much smallet: in near future.

d< 50V/wp .
The calculation of the Casimir energy for a film with a The authors express their gratitude to Prof. V. D. Natsik
diffuse boundary proved that when the inequalBy) is sat-  for fruitful discussions.
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The electron energy loss function is calculated in the random phase approximation for a two-
dimensional electron gas in a quantizing magnetic field. Local states of electrons at

impurity atoms are taken into consideration. The energy losses due to one-particle and collective
excitations of two-dimensional electrons are determined. The activation of electrons

localized at impurities leads to the emergence of steps on the dependence of loss function on the
energy of an incident electron. Cerenkov losses associated with emission of
magnetoplasmons appear starting from a threshold velocity of the electron. When the velocity
exceeds the threshold value significantly, the losses are due only to spontaneous emission

of magnetoplasmons. The corresponding loss function decreases in inverse proportion to the
electron velocity. ©1999 American Institute of Physids$$1063-777X9901012-9

INTRODUCTION of electron energy losses in @2electron gas in a magnetic
field. In zero magnetic field and in the absence of electron
It was proved by us earlitrthat electron trapping at trapping, this problem was solved by Bret and DeutSch,
isolated impurity atoms affects significantly the properties ofwhile local states in zero magnetic field were taken into ac-
magnetoplasma waves in a two-dimensional electron gasount by us earliet
Local energy levels of R electron$™° alternating with Lan-

dau levels are manifested in two ways. On the one hand, new
resonances of electromagnetic radiation absorption in a tw - ELECTRON ENERGY LOSS FUNCTION IN A 2 D
% ECTRON GAS IN A QUANTIZING MAGNETIC FIELD

dimensional conductor, which are associated with electron
transitions between Landau levels and local levels, are gen- Let us suppose that an electron gas is in the plané
erated. They are accompanied by the emergence of neat the boundary between two half-spaces with permittivities
branches in the magnetoplasma wave spectrum. On the othey and ¢,. The magnetic fieldH is perpendicular to this
hand, the interaction of cyclotron motion with the motion of plane. We denote bl) the stationary state of thelX2elec-
electrons localized at impurities leads to the cross bifurcatiotron gas and byyxo) the state of an incident electron in a
of the dispersion curve of magnetoplasmons, which is similamagnetic field. Herge= (n,py) are orbital quantum numbers
to that observed in the spectrum of a crystal lattice withof the electron andr is the spin quantum number. The ma-
quasilocal vibrations of impurity atonfsSuch a bifurcation  trix elements of the Hamiltoniak' of the Coulomb interac-
was observed experimentdilgluring measurements of the tion of a test electron moving in the plaze=0 with the 2D
magnetic field dependence of absorption of radiation transelectron gas are given W4
mitted through the inversion layer at the interface between d%q
silicon and silicon dioxide. Andbexplained the bifurcation (a’X’a’|V|aXo->=§250,Uf 5=l (a(a’|n(a)]a),
by the inclusion of a nonlocal correction to the conductivity 2mq 1
of 2D electrons, which has a resonance at the double cyclo- &
tron frequency. However, more detailed analysis of this phewhere e=e[2/(,+,)]"% e is the electron charge and
nomenon by using other methods of probing magnetoplasmbg (@) =(x'|€%[x) are the matrix elements of a plane
waves in a D electron gas is required to explain the bifur- wave in the Landau basis, an€q) is the Fourier component
cation comprehensively. of the 2D electron density operator. The probability of the
The bifurcation of the dispersion curve for magnetoplas-{ransition|ayo)——|a’x'a") per unit time, averaged over
mons can be observed during measurements of characteristicPy , ando and summed oves', p;, ando’ is given by

electron energy losses in &2electron gas in a magnetic q212

field. This method is being used successfully for studying Wn,n=27r€4nef dzqq‘ZCn,n<—) S(q,w), 2
elementary excitations in plasma¥ solids, and quantum 2

liquids 1112 where n, is the electron number density, the magnetic

We shall prove here that local states affect the spectrurtength,

1063-777X/99/25(12)/6/$15.00 986 © 1999 American Institute of Physics
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n,!
Corn(X)= X" e L 0, ) Qo=mme'wc, w(n,+1) X [F(en)~F(en,)]
; n’ 1n2
n;=min(n,n’); n,=maxn,n’); L M ) are generalized Laguerre % 5(w+8n1_8n2)f Q(Cn 2(X)Cpn (X). 7
polynomials,
Herew=w(n—n’'); F(e,)=2,f(e,,). If we disregard the
, 2 effect of “twisting,” ®'%i.e., the influence of the magnetic

S(q,0) = neg Wol(a’[n(—g)]a)[*d(w+E,~E.r) field on the incident electron, formuldS)—(7) give
is the dynamic structural factor of al2electron gas in a Qo=m%&*w. >, (e +w)w(n_,+1)[F(en)—F(ey)]
magnetic fieldw=¢e,—&,, the energy loss during the scat- nn’
tering of an incident electrork, the energy of an electron 212
gas in thel ) state, andv,, the Gibbs distribution function. X . d<Pq *Cr n( 5 ) (8)

Here and below, the quantum-mechanical constant and the
area occupied by the electron gas are assumed to be equaMberee is the energy of the incident electron,
unity. The difference between the cyclotron frequency and

the frequency corresponding to spin splitting of electron en-  g?=4m
ergy levels is disregarded.

The transition probability(2) is connected with the ¢ is the scattering angle in the plarme 0, andé the Heavi-
imaginary component of the polarization operdibof a 2D side function. For small electron momentum losseg (
electron gas. We shall use the expression for this operateg1), we can use the representation of the funct®nn the
obtained in the random phase approximatidt.It contains  form of a series. In this case, the main contribution to the
the polarization operatd? of a 2D electron gas in the field loss function(8) is
of impurity atoms in the presence of a magnetic field. In the

Qo= {

e+ %—[e(s%—w)]l/ZCOS(p};

24
linear approximation in the number density of impurity 2meiNe, &> we

atoms, it is defined aB=Py+ 6P, whereP, is the polar-
ization operator of P electrons in a magnetic field and

(€)

27%e*nen, , e<o..

Whene> w,, the electron energy loss€®) are due to tran-
sitionsn—n+1 of 2D electrons between adjacent Landau

_ 212
PG )= MaN; D nn(ﬂ)% levels. If, howeverg <w., the energy of an incident particle
2T ke (en—&y) increases due to transitioms—n—1. Such transitions are

absent in a degenerate electron gas.

Electron energy losses are associated with one-particle
+ (SL—gn— w—i0)"Y] (4) as well as collective excitations of &2electron gas. Let us
consider them separately.

X[f(ek,)—f(ene) [(ek—&n+ @+i0) "1

is the contribution of local levels. Hemn is the electron
effective massw, the cyclotron frequencys anda{«r are
the positions of thath Landau level and thkth local level, 2. ONE-PARTICLE EXCITATIONS
I 1S the residue of the amplitude of electron scattering by
an impurity atom at the poltﬁz'kg,1 andf the Fermi function.

If the velocity of an incident electron exceeds
(w./m)¥2 we can neglect the influence of the magnetic field
on its motion. In this case, the transition probabili#y and
the energy lost by an electron per unit time are defined as

Analyzing the contribution of one-particle excitations to
the loss function, we shall disregard the Coulomb excitation
in a 2D electron gas. In this casél =P, and the loss func-
tion contains the contributio@Q due to activation of elec-
trons trapped at impurities. This contribution is given by

2|2
5Q= m_e4wn2w(n +1)f zcnn(q )

W,y p=87%"q %(n,+1)| —Im[] (q,e)], (5)

(il_{[f(ska)

9*?

d2 ! nlnzka
Q J'( 2(8p sp/)Wp p (6)
—f(slkg-}—w)]é‘(sk—snl-i-w)-l-[f(skg—w)

whereg=p—p’ and w=gp—¢ep are the r_nomentum_ and _f(SL(r)W( g, —w)} (10)

energy losses for the incident electron during scattering, and !

n, is Planck’s function. Magnetic field appears in the expres-  The first term in this formula is connected with transi-

sions(5) and (6) for scattering probability and loss function tions of trapped electrons to Landau levels, while the second

only in the polarization operator. is associated with transitions from Landau levels to local
In the absence of impurity atoms, the energy loss funclevels. In the approximation under investigation, the transi-

tion for a test particle in a2 electron gas is given by tion probability (2) has &-shaped peaks at frequencies,
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e of new roots. They correspond to new branches in the spec-
trum of magnetoplasma waves attenuating weakly in trans-
mission bands close to the resonant frequeneigand w, A

Let us consider a neighborhood of the frequengy
=w.+ g Of transitions of trapped electrons to a Landau
level. Retaining in(4) only the resonant term in the vicinity
of this frequency, we obtain

n;a 1
oP=

mlow, o—w,+ivy’

(12

wherea is the oscillator force of the resonant transition and
vy the width of the local level. Ifjl<1, we have

m
€ D.—€n W .+E € _ |
0 %o ©eTB@ctFo 8= 5 2 Mol F(ek) = fleqcno) (13)
FIG. 1. Schematic dependence of the loss funcégh (11) due to one- . . .
particle excitations of localized electrons on the electron energy If the chemical potential of electrons lies between the levels
EN- ands'(NH), (the subscripts +” and “ —" indicate the

electron spin orientationthe sum(13) is left with only one
—sL|. The inclusion of a finite width of the levels participat- term with k=N, whereN is the number of the local level

ing in transitions leads to blurring of these peaks. participating in transitions. Taking into account contribution
If we disregard the effect of “twisting,” the energy loss (12) in the dispersion equation, we obtain the following cu-
(10) becomes bic equation for the magnetoplasmon spectrum:

2 S -2 wg\?  [o4\?  [wc)?
5Q=me""2rn; >, f(s—ws)wg 2(n, +1) X3—(1+b)x2—| 2| x+|—2| +b|—] =0, (14
s=0 S Wy Wy Wy

| s where
X 2 [Heke) = F(2ro) 1+ 7€ 21N, )
ko X:ﬂ b:aﬁ wqo :( 2+ P )1/2
oo w,’ Nl qlo, ) ' ¥4~ 1@ @a0)
-2
ngl (e — wp)wp (”wp+1) andwg is the frequency of a2 plasmon in the absence of

localization in zero magnetic field. Positive roots of Eq.
(14) are given by

X 2 [f(2py) = ek, (11)

o 1

wherews=sw.+ g are frequencies of transitions of trapped Xx =Y §(1+ b), (15

electrons to Landau levels,= pw.— g, the frequencies of here

electron transitions from Landau levels to local levels, and”

gg the separation between a Landau level an a local level @ T+

split from it. In this expression, we disregard the dependence ¥+~ ~2Rcosz, y_=—2Rcos——,

of ¢; and the residue on the number of a Landau level. If

go<w, the residue fsr=2m(lgy)?. The symbol3, in 1 b)?2 q\ 2] 9
formula (11) indicates summation over the numbers of local R=-3 (1+b)°+3 o, » COSe=5Re:
levels participating in transitions at a given frequency. The ) ) )
difference between Fermi functions takes into account the g=— £(1+b)3+b &) _1fog " E(ﬁ)
Pauli exclusion principle. At low temperatures, the energy 27 on 3\ o 3l

loss(11) as a function of energy of an incident electron is a
step curve shown schematically in Fig. 1. The step bound
aries are resonant frequencies and w, . The height of the
first step betweer, andw;= w.—¢&q at zero temperature is
me %rn;/(leg)?. The ratio of this quantity t@9) is n;/n,. qo:zw?ne

The dispersion curve, of a magnetoplasmon is intersected
by the straight linew= w, at the point

2 2
(0 — wg).

Electron trapping leads to cross bifurcation of the dispersion

curve into two branches. = w,X. . The branchw, lies
Characteristic electron energy losses in & Blectron abovew,, while w_ is below w,. As a—0, the rootw ,

gas are due to the excitation of magnetoplasma waves. lapproaches, andw_ tends tow,. The damping decrement

Ref. 1, the dispersion equation for magnetoplasmons wator these branches is

solved numerically. The inclusion of contributidd) to the

polarization operator associated with electron trapping com-

plicates the dispersion equation and leads to the emergence

3. COLLECTIVE EXCITATIONS

<W>Hw%—w92 volv

Wqo W+ (wi—w,)zyé ,
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wherevw is the frequency of electron collisions due to poten- w§

tial scattering by impurity atoms only. The decrement has a V>Vo=ﬁ—
. X . Te N,

Lorentzian peak at the resonant frequency. The width of this

peak coincides with the width of the local level. the inequality() , <qv is satisfied in the intervald_ ,w ),

For numerical estimates, we shall use the values of pavherew.. are the largest roots of the fourth-degree algebraic
rameters typical of a weakly doped inversion layer atequation{),=qv. The cyclotron frequency should not ex-
the interface between silicon and silicon dioxide: ceedw. . In this case, formul&20) leads to
m=10 %2g, n,=102cm? &;+e,=15, n;/n,=10 3, Y
golw.=0,1. Then in a magnetic field of inductiol T we Qe:gﬂyneg(v_vo)f +dww(w2—w§)(nw+ 1)
obtainw,=1.8-10*?s™, q,=2.8x10°cm™ %, and the separa- om
tion between the branches. at the pointgg is w, —w_
=8.8108%s L «

The energy lost by an electron per unit time due to Cher-
enkov radiation of magnetoplasmons is given by

— (m€?nem Y241, (22

Wc

~12
: (23)

8
—1II (0—wy
k=1

wherew, are the roots of the equatiotis, = +qv, andw,,

1 q212 is the larger of the frequencies, andw_ .
Qezz_z w(nw+1)f dqun’n(T) In the limiting casev>v,, formula (23) assumes the
T form
J - 1 ontl
X a—ReP(q,w) 5(w—wq), (17) Q,3=4'JTE4I’]e dXﬁ-, (24)
o w=ug o (1-x9
where

where o, is the magnetoplasma wave spectrum ande,

—¢gp . If we neglect the “twisting” effect, formula17) as- ny={exf Bo(1+ (w3 v?)x)¥? -1} 1

sumes the form . _ .
wo=(4me?nv)Y?andpB s the inverse temperature. The first

5, term in (24) is associated with induced emission and the
Qe:ﬂ d°p’w(n,+1) second with spontaneous emission & agnetoplasmons
by fast electrons. IH—0 andB— o, formula(24) leads to

J - the expressionQ.=2me"n, derived earliet? It follows
_ _ e e :
x dw ReP(q,w) o S(w=wg), (18) hence that the electron energy loss per unit path length is
a proportional to the electron velocity.
whereq=p—p’ andw=¢&,— &, . Confining our analysis to In zeri)zmagnet;% field, the threshold veloci@2) is v,
the leading contributiorP, in the denominator of formula = (3/2)(7€’ng)*m?2. In this case, one of the roots of the
(18), we obtain equation{) ., ==*qv is equal to zero. The remaining roots
satisfy a cubic equation and are given by
Q=g Fd“’w(n +1)F o (i~ wd)? 2 2 2
= » —_— — w w m
° 4mne Jo 0qug 1 F wlz——ocosﬂ, wy=— —CO fc e,
, V3 3 V3 3 3
X 6(w—wg) Jo ded(Q), —qv cose). (19 2wq o 4Am 2wy @y
3=———C08 o +—5 |, ws=———sinh—,
: , V3 3 3 V3 3
Here Q. =w*ey; sq=q2/2m; v is the velocity of an (25)
incident electron. In the absence of impurity atoms, this for-
mula leads to ®
w5=—0<sinhﬁ+i\/§ coshg) ,
26 (= Q[ (0,2 3
Qe:—f dow(n,+1)60 1——) 1-|— ,
Vi Joe av v wo| . P2 . ©2
(20 wg=— sinh———iv3 cosh=-|,
V3 3
whereq= m (0°— w?) where
The increment of the electron energy due to absorption e _ 3%%(mn,)"?
of magnetoplasmons is cosg; =sinhgy=—7 3.
2e2 (= _ Q_\2]-12 In the limit v>v,, the values ofp; and ¢, are small, and
Qa=—, | dwon,f|1- Y 1- v the roots(25) are approximately equal to 0wy, and
@c

*iwg. Substituting these values of the roots in&8), we
(21 { - ) .
obtain the familiar expression for the loss functidn.
This contribution is absent at zero temperature. For any velocityv of an incident electron, the inequality
If |Q_|<qv is satisfied in the intervalg_ ,w.), wherew-
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are positive roots of the equatiof _|=qv. The increment As the temperature increases, expressi@i) increases
of the electron energ§21) due to absorption of magnetoplas- monotonically.
mons is given by

1 CONCLUSIONS

, The problem on energy losses for charged particles in
(26) plasmas in a magnetic field was solved by AkhieZeBert
and Deutsch applied the method developed in Ref. 10 for
where x=ow/w., X+=w+lo,, Xpn=0n/w:, o, is the calculating the energy loss function for particles in B 2
larger frequency fronm_ andw, , andx, are the roots of the electron gas. In our previous publicatihwe considered the

8
- H (X—=X)
k=1

X+
Q.= 87764nef dxx(x?2—1)n,
Xm

equations effect of electron trapping in the field of impurity atoms on
v the loss function in two-dimensional conductors in zero mag-
(xz—l)zi&(xz—l)— ﬂxzo netic field. The calculation of the loss function taking into
Qo Qo 7 account electron trapping and a quantizing magnetic field is a
Mo o natural continuation of these publications.
__M% __10 _ -1 Local energy levels of electrons in &2electron gas in
o= 2meng’ QO_Zm' M=lexpBocx) 1] a magnetic fieI?jyaffect the spectrum and attenuatio?l of mag-

netoplasma waves considerably. They are responsible for the
. istence of two branches in the wave spectrum and lead to

lto+1, = (14 qov/Qo) Y2 =1, xi(qov/Qe—1)¥2 In  &XS . \ e w
equal to=1, = (1+qov/fo) "%, *1, £i(qov/Qo—1) the cross bifurcation of the dispersion curve of magnetoplas-

this limit, expression(26) coincides with the first term in . o
(24). This means that energy losses for fast electrons are dJnons into two branches. These peculiarities of the spectrum

Y o% magnetoplasma waves in @&2electron gas can be ob-
only to spontaneous emission of magnetoplasmons. : . .
In zero magnetic field, formulé26) gives served in experiments on the measurement of characteristic

losses of electron energy.

For a high velocity of the incident electron, the rosjsare

v, 6 -2 The electron energy losses are mainly due to two factors,

Qa:87€4nej dyy(y*— 1)ny{ -11 (y—yk)} , viz., the one-particle excitations of electrons and the Cheren-

y- k=1 kov radiation of magnetoplasmons. We have proved that the

were loss function contains the terms associated with activation of

electrons trapped at impurities by the field of an incident

electron. This leads to the emergence of steps on the curve
describing the dependence of loss function on the energy of
the incident electron. The boundaries of steps are frequencies

y=§o, n,=[exp Bwoy) —11°L,

icoshﬂ vy of electron transitions between Landau levels and local lev-

2 V3 3’ 0 els. The height of the steps depends on temperature, concen-

y_=-—sinheg, Yy,= , tration of impurity atoms, and magnetic field strength.

& icosﬁ V>V Energy losses for Cherenkov radiation of magnetoplas-
V3 3’ 0 mons appear starting from a certain threshold velocity of

o eIe_ctrqns depending on the den;ity of electron gas and mag-

sinhg= coshp, = cose :3 o netic field strength. The absorptlon of magnetoplasmons has
! 27 amv?’ no threshold. When the velocity of an incident electron ex-

ceeds the threshold velocity, the losses for induced emission

and absorption of magnetoplasmons are compensated, and

only the contribution from spontaneous emission is left. The

=0. energy loss per unit electron path length decreases in inverse
proportion to the electron velocity. The observation of the

If v>v,, the last term in these equations can be omittedpeculiarities of loss functions makes it possible to obtain

andy, are the roots of the cubic equations

3 _
y iy 2mv2

This gives information on the spectrum of electron impurity states in a
—a 412 2D electron gas in a magnetic field as well as the spectrum
Qa:m; ﬁwodxi 1_(L) (27)  and attenuation of magnetoplasma waves.
(Bwo)® Jo g—-1 Bwg
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Peculiarities of low-frequency excitation spectrum of CsDy 1-xBi,(M00,)»
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Low-frequency IR transmission spectra for a series of isostructural single crystals of

CsDy, _,Bi,(M00O,), (x=0,0.05,0.1,0.2,0.3,0.5, and D.&e measured at low temperaturds (
=6 K). It is found experimentally that absorption band broadening takes place in the Bi
concentration range 02x<0.6. The mechanism which may result in absorption spectrum
blurring are considered. €999 American Institute of Physid$§1063-777X9901112-3

Double alkali-earth molybdates are compounds with adiffer insignificantly, we assume that isotopic substitution of
layered structure displaying structural phase transitions oBi®" ions for Dy*" ions takes place in the mixture. The ratio
the type of cooperative Jahn—Teller effd@JTE at low  of the components was determined from their concentration
temperature$? in the initial charge.

Weak interaction between the layers in these compounds Figure 1 shows the transmission spectra in the range
in the presence of Davydov splitting at acoustic vibrationall5—40cm?® at a temperature-6 K for various concentra-
branches leads to the formation of low-frequency opticaltion of the mixture components. It can be seen that the ab-
phonon mode3. Several electron—phonon modes in thesesorption bandy=27 cm* (for x=0) is smoothly displaced
compounds are active in structural phase transitions of thalong the frequency scale without a noticeable change in the
CJTE type. For this reason, an analysis of the low-frequenchalf-width when Dy* ions are replaced by the diamagnetic
spectrum is a complicated experimental problem. It is interimpurity Bi®* for low concentrationsx<0.1. For the Bt*
esting to measure low-frequency spectra in systems of solidoncentratiorkx=0.05, the spectrum acquires the absorption
mixtures in which Jahn—Teller ions are replaced by theibandvr=22cm !, whose intensity is slightly higher than the
diamagnetic analog. According to modern theoretical conintensity of the band'=27 cmi L. As the BF" concentration
cepts, a structural disorder of the type of Jahn—Teller glassicreases, the bang=22 cnmi ! remains practically unshifted
can emerge in such systeflsBesides, both components of on the frequency scale.
the CsDy_,Bi,(M0Q,), mixture undergo structural phase For higher concentrations of 8i (x=0.15), the absorp-
transformations of various origin, which may also lead to thetion bands merge into one, and the resultant absorption band
formation of a structural disorder of the glass type in theis broadened anomalously for a®Biconcentratiorx=0.2.
intermediate concentration regién. For x=0.7, the transmission spectrum also acquires an ab-

This research aims at an analysis of the behaviosorption bandy=33cm 2.
of the low-frequency spectrum of the compound We processed spectra and determined half-widths of ab-
CsDy; _Bi,(M00,), in which Jahn—Teller DY ions are sorption bands for various concentrations of the components.
replaced by their diamagnetic analog*Bi Figure 2 shows the values of absorption band half-widths for

the system of solid mixtures CsBy,Bi,(MoQO,), for vari-
ous values of concentrations of the components. It can be
EXPERIMENTAL seen that the half-widths of the bands-27 and 22 cm*

Measurements were made by using a vacuum diffractiof'créase abnormally in the concentration range<(x2
spectrometer with a cooled InSb photodetector in the spectra§0-6-
range of measurements extends from 15 to 40cmat a
sample temperature 6 K. Single crystals of the system of
solid mixtures CsDy_,Bi,(MoOQO,), were grown by sponta-
neous crystallization from solution in melt. The sample size  Earlier investigations of the low-frequency vibrational
was 10< 10X (0.2—1) mm. Single crystals of CsBi(Ma@l}  spectrum of CsDy(Mog), have proved that the
and CsDy(MoQ), belong to the rhombic systefthe space main mechanism of its formation is associated with vibra-
groungh with two structural units in a unit cellThe crys-  tions of [Dy(MoO,);]... and Cs, layers as well as
tal lattice parameters ara=9.45p=8.21¢=5.14 anda [Dy(Mo0Q,);]... and[Dy(MoO,),]....+2Cs.., layers rela-
=9.51p=7.97c=5.05 respectivel§.Since the crystal lat- tive to each other along the relevant directions in the crystal.
tice parameters for both components of the solid mixtureThis vibrational spectrum is successfully described by the

DISCUSSION OF EXPERIMENTAL RESULTS

1063-777X/99/25(12)/4/$15.00 992 © 1999 American Institute of Physics
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Transmission, rel. units

\l/’/\ 3
4
B \f 5 FIG. 3. Transmission spectrum of KRy, Y,(MoQO,), single crystals at low
temperature T=6 K). Curvesl-6 correspond tx=0, 0.05, 0.1, 0.3, 0.4,

6

7

and 0.6, respectively. The inset shows the concentration dependence of half-

width of the vibrational absorption band.
B +2Cs!,. The BFf" and Dy** ions have a uniform statistical
distribution within a layer, and hence the reduced mass of the
_ two layers is

Transmission, rel. units
T

L 8 ~(mpxXmy)
15 20 25 30 35 40 K= iy +(my)

v, em™!

were(m;) and{m,) are the masses of the layers statistically
FIG. 1. Transmission spectrum of CsDyBi,(MoO,), single crystals at  gveraged over impurities. In view of the uniform distribution
low temperature T=6 K). Curvesl-8 correspond tx=0, 0.05, 0.1, 0.15, f the imouri ver vari | r k he r m
0.2, 0.3, 10.5, and 0.7, respectively. The arrow indicates the absorption bangi the puh ty over various ay?. pa(f: etS’lt e edl'llced ;lSS
due to electron excitation of By ions. oes not change upon a transition form ayer to layer. For

this reason, a CsQy,Bi,(MoQ,), crystal is a packet of

layers of the same mass with the corresponding weight com-
one-dimensional mod&IThe model used earlier for the vi- Ponents of Dy” and BF* ions, which are proportional to the
brational spectrum of the CsDy(Mq crystal makes it concentrations of the relevant ions. The masses of layer
possible to explain the behavior of the low-frequency vibra-Packets, and accordingly the reduced mass, vary smoothly
tional spectrum of the compound CsPyBi,(MoO,), for ~ With the concentrations of the mixture components.

various concentrations of its components. The vibrational ~According to our estimates, the change in the reduced
spectrum of the mixture is formed by vibrations of Mass upon a transition from CsDy(Mg)Q to CsBi(MoQ,),

[Dy;_,Bi,(M0O,),]... and[Dy;_,Bi (M0O,),]...+2Cs"  amounts tadu/u=0.07. Provided that the force constant of

layers relative to each other. The corresponding frequencidgtéraction betweer Dy, ,Bi,(M0O,).].... layer packets,
vary with the reduced mass of the two Iayers:Wh'Ch is associated with the interaction between” @sd

[Dy;_Bi (M0O,)5]..co and [Dy;_Bi (M0O,)5]...o O? ions, does not change significantly, the isotopic shift of
low-frequency optical modes must lev/v=0.03. For the
vibrational moder=27 cm ! measured by us, this shift is
Av=1cm L. The isotopic shift is smaller than the disper-
T sion of a branch in the Brillouin zonel'&=5cm 1), and
xe--|- hence the »=27cm! band in the solid mixture

T T CsDy, _,Bi,(MoO,), must display a one-mode behavior ac-
cording to general considerations. Such a one-mode behavior
was also observed by us for a system of solid mixtures
KDy,Y ;1 «(MoO,), and KEy _,Y,(MoO,), with a similar

X crystalline structuré®!! Figure 3 shows absorption
’ spectrum for various values of concentration in a

% KDy;_,Y«(MoQ,), crystal in the region of low-frequency

- vibrational mode ¢=28cm ). It can be seen from the fig-

20 - ure that the absorption band is shifted smoothly along the

- frequency scale upon a change in the reduced mass of two

P, S U SR N WS S layers from one extreme position to the other without a no-

0 0.5 1.0 ticeable change in the half-width. Such a behavior of vibra-

X tional modes was also observed in the spectrum of

FIG. 2. Dependence of absorption band half-widths on the concentration JKET1—xY x(M0Oy), and can be eXplain?d on the basis Of.
components of the CsRy,Bi,(MoO,), mixture. general concepts concerning the formation of the spectrum in
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these compounds. In the case under investigation, the loweertain wave vectors, i.e., a spectrum rearrangement takes
frequency vibrational mode obviously also displays one-place. The rearrangement can be normal or abnormal by na-
mode behavior, but in the intermediate concentration rangare. Normal rearrangement leads to the splitting of the con-
we cannot unambiguously state this in view of superpositiortinuous spectrum into two branches by the electron mode and
of spectra. to the formation of a gap between them. However, the spec-

The absorption spectra of mixed CspyBi,(MoO,),  trum rearrangement can be abnormal when the impurity
crystals withx~0 display an absorption bane=22cm* mode gets into the region of quasi-one-dimensional
(see Fig. 1 According to experimental data obtained oscillations!®!’
earlier!? this band is associated with an electron transition to  In the case under investigation, the first electron excita-
the first Stark energy level of the fundamental multiplettion of Dy*" ions (v=22 cm ') gets into the region of con-
H,¢, of the Dy’" ion, split by the crystal field. Since this tinuous spectrum of acoustic vibrational mode with the lim-
band must be observed in the spectrum of the highiting frequency at the boundary of the Brillouin zone
temperature phase of CsDy(M@Q (T>T.),*? while the =27cm % For a low concentration of B ions, the elec-
vibrational moder=27 cmi ! must be manifested below the tron mode intersects the acoustic mode within the Brillouin
phase transition poinfl(<T.),° we assume that phase sepa-zone in which the density of states of the vibrational spec-
ration takes place in mixed CsBRy,Bi,(MoQ,), crystals at trum is relatively low. Consequently, we observe in the spec-
low temperatures =6 K). This is also confirmed by ex- trum a narrow electron absorption band. As th&'Bioncen-
perimental observations of phase separation in a pur&ration increases, the acoustic branch is shifted to the low-
CsDy(MoQy), crystal below the phase transition poinf ( frequency region. The spectral position of the electron
<T.) as a result of application of an external pressure alongnergy level in this case is displaced towards the Brillouin
the normal to the layerS. According to the prevailing theo- zone boundary. Since the specrta of layered crystals have a
retical concepts, such a separation is possible in tricriticatharp peak in the low-frequency range due to a weak inter-
systems*1° The intrusion of Bf" ions into CsDy(MoQ),  action between the layers, the maximum density of vibra-
is similar to the creation of a normal pressure since the crystional states corresponding to the zone boundétiiis may
tal lattice parameter corresponding to the separation betwedead to an anomalous rearrangement of the crystal spectrum
layers in CsBi(MoQ), is smaller than in CsDy(Mog),. due to the interaction of the electron mode with the acoustic
Thus, in the range of intermediate concentration, we observeibrational mode, leading to delocalization of the electron
an overlapped spectrum from two phases of the crystal: thexcitation, i.e., the broadening of the electron absorption
absorption band corresponding to the vibrational mode of théand.
low-temperature phase and the electron absorption band Second, the compound CsDy(Mg)X9 displays a first-
=22 cm ! of the high-temperature phase. order structural phase transition of the CJTE typE. (

We observe the threshold blurring of the spectrum upon=40K), while CsBi(MoQ), displays a first-order structural
a change in concentration upon a change in the concentratigghase transition associated with anharmonism at interlayer
range 0.Zx=<0.6 (see Fig. 2 Such a behavior does not fit vibrations (T,=135K). Apparently, a competition of distor-
to the generally accepted mode of variation of the electrorions emerging below phase transition points may take place
band half-width in the case of replacement of paramagnetin a solid mixture of these compounds. Since the phase tran-
ions by diamagnetic impurities. In the systems of solid mix-sition in CsDy(MoQ), is accompanied by multiplication of
tures KDy _,Y,(M0O,), and KEf_,Y,(M0Q,), investi- the unit cell, while no multiplication takes place in
gated earlier and having a similar structure, the replacemer@sBi(MoGQ,),, such a competition observed at low tempera-
of the paramagnetic By and EF" ions by the diamagnetic tures in a strongly nonequilibrium state normally leads to a
impurity Y3* caused a smooth decrease in half-widths aglisordered crystal lattice of the spin glass type. In
well as intensities of electron absorption bands correspondzsDy; _,Bi,(Mo0O,),, the interlayer vibrational mode is ac-
ing to transitions to the lowermost electron state of paramagtive during the phase transition, and hence we can assume
netic ions upon an increase in the concentration of the diathat disorder appears at interlayer links. In this case, the fluc-
magnetic impurity>!! Hence we assume that interactions tuation of the distancda between layer packets is smaller
appearing in the strongly nonequilibrium high-temperaturethan the distance in the initial phasatay,+Aa and Aa
phase of the CsDy ,Bi,(M00O,), system in the intermedi- <a,, wherea, is the separation between layer packets in the
ate concentration range (6sX=<0.6) lead to absorption initial structurg. Hence the structural disorder in our system
spectrum blurring. We propose several mechanism that cain this model resembles one-dimensional glass or one-
lead to spectrum blurring. dimensional liquid rather than one-dimensional alloy.

First, an electron excitation can be regarded as an In our analysis of the dynamics of crystal lattice of
impurity-induced excitation in view of its insignificant delo- CsDy;_,Bi,(M0oQO,), in the intermediate concentration
calization in the crystal. Two cases can be realized here. Irange, we assume that elastic constants of interlayer interac-
the first case, the impurity excitation interacts weakly withtion vary with the distance between layer packets. The vibra-
the crystal lattice and is of a quasi-local nature. In the secontdonal mode corresponding to these elastic constants must
case, the excitation interacts with the vibrational spectrunthange frequency also, which must lead to blurring of the
and is responsible for its resonant excitation. This is manivibrational mode in the region of intermediate concentra-
fested in a change in the density of states in the spectrum dfons. The electron mode must display a similar behavior in
a perfect crystal, viz., a change in its width and frequency fowiew of its strong coupling with these phonon mode.
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The mechanism of formation of an inhomogeneous ground state of weakly doped systems,
consisting of the domains of metallic and insulating phases, is proposed. According to this
mechanism, the formation of the charge-neutral metallic regions with the highest possible
concentration of free charge carridend hence of the dopants generating th&yshown to be
thermodynamically advantageous. %99 American Institute of Physics.
[S1063-777X99)01212-9

1. The ground state of the cuprate planes of weaklydomains, albeit of much smaller size, and the doping leading
doped high-temperature superconducttdSC) has been to such a state is called topological dopiigdmong other
the subject of lively discussion during recent yeg@se, for  things, the weakly doped La,Sr,CuQ, system displays a
example, Ref. L As a matter of fact, the host oxides are striped structure of CuOplanes, consisting of extended me-
knowr?~* to be AFM insulators whose conductivity results tallic and insulating domains whose cross-sectional size does
from heterovalent doping or is due to a change in their oxynot exceed a few lattice constants. The description of the
gen content. In either case, metallization is caused by a Moteasons and mechanisms of emergence of such self-
transition which leads to the emergence of free carriers in therganizing structures is one of the most important problems
system and to the formation of a Fermi levél. in the HTSC theory at present.

Nevertheless, the origin of dopant/ioiiet alone the 2. Several models have been proposed for explaining the
way in which they are introduceaffects their distribution in  emergence of such domains in cuprates. One such nieeke|
the obtained samples. For example, whil@'Sions remain  Ref. 12, which owes its origin to Nagaoka(see Ref. 14
practically immobile in La_,Sr,CuQ, even at rather high also, attributes the origin of conducting domains to a con-
temperaturesT<1400K, the subsystem of 20 ions in  siderable decrease in the kinetic energy of a caftiete in
La,CuQy, s or (YBa,CuOg, 5) may diffuse quite easily HTSC) moving in a paramagneti@s well as ferromagnetic
over the lattice at temperatures right upTte:200K.” Con-  (FM)) medium as compared to an AFM medium in which
sequently, the doped system tends towards equilibrium in theach jump of the carrier from one ion to another is inevitably
second version and becomes inhomogeneous and twaccompanied by a violation of the initial spin ordering. How-
phased, the metallic phase consisting of oxygen-enriched rever, a free oxygen hole in an HTS is frustrated and is lo-
gions(domain$ and the insulating region deplete in oxygen. cated in the zero exchange field of localized spin of ions
There is no long-range magnetic ordering in domains of theCl/?*, thus being free from the above-mentioned con-
first type?® while all characteristic features of an AFM in- straints>°
sulator are preserved in domains of the second type. Another version of stratification, or the Emery—

For example, neutron diffraction studies of the HTSCKivelson'*® charge fluctuation modelsee also Ref. 17
La,CuQ,, 5 show that samples with excess oxygen in the associates the formation of metallic strips with competition
range 0.0 §<0.055 are separated into metallflwith §  between long- and short-range interaction of dopants. The
~0.055, the superconducting transition temperatldie analysis is based on the model of effective spins close to the
~32K, and hence the Neel temperatiiig=0 K) and insu- Ising model in which the role of the former is played by the
lating domaingwith §<0.01 andT=250K). The domains AFM exchange between distant neighbors and of the latter
in both the phases, separated by domain walls, are quite lardy the FM exchange between long-range spins in a square
in size (~10 2A) in all directions. lattice. Assuming that one component of the effective spin

Measurements in La,SrCuQ,° and manganité8 corresponds to the presence and the other to the absence of
show that in the case of a weak diffusion of dopants, thehe dopant, we can choose the suitable parameters for defin-
compounds also display a tendency towards the formation ahg a structure in which FM strips of width 3-5 lattice con-

1063-777X/99/25(12)/3/$15.00 996 © 1999 American Institute of Physics



Low Temp. Phys. 25 (12), December 1999 M. A. Ivanov and V. M. Loktev 997

stants alternate with similar strips with opposite spins, th‘ﬁz(lG/Qw)agzwlolﬁcm‘z(aB is the Bohr radius which

structure being identical to the sequence of metallic and inyg' uch Iarge’? than real densities of free holes in CuO

sulating domains in HTSC, although the correctness of th?ayers €10%cm2).

model in the I_atter case is not_ obvious.llf, however, the dop- Thus, for a given concentration of dopants in the sample,
ants do not d,'ff_use and constitute a.umform baclfgro(m.d their redistribution leading to the emergence of regions with
the aver'ag)a it is assumed that, being compargtwely light, maximum possible carrier concentratiGhough not exceed-
the carriers are expelled from the AFM domains and forming Ti,) and regions with zergor few) carriers is more ad-

striped AFM disordered metallic domains which are found to ; ; ; :
be charged. It was proved convincingly by Phillisee Ref, vantageous from the energy point of view. Each region hav

. ing an area~ mrri, must remain electrically neutral since the
11) that such an ordering must be unfavorable from the en- 9 G . : y
energy gain is not realized otherwise.

ergy point of view because of a large Coulomb interaction Apparently, the entropy of mixing is a factor obstructing

that is not compensated within domains. The neutralization

of this interaction is not discussed under the Emery_such a redistribution. However, it can be seen easily that

) 6 even for large values df, the contribution to the free energy
Kivelson approach®

3. However, we believe that splitting into domains is an per dopant is of the order df, which is considerably smaller

. han (2).
inevitable property of doped metals. Indeed, the energy o? 4. Under real conditions, doping is carried out at high

the initial insulator assumed as the starting point changes h | bstituti der hiah
upon the introduction of dopants following the creation Oftemperature$ eterovalent substitutigror under high pres-

free carriers as well as slow-moving ions in the system. Lefures(addition of oxygen In any case, the system must
us calculate the binding energyper carrier. It is determined disintegrate due to energy considerations into two types of
(see, for example, Ref. 1®y two main contributions com- electrically neutral regions, viz., metallic regions with a high
ing from the Hartree-Fock energy,.. of the free Fermi gas concentration of dopantgand carriers and insulating re-
and the Coulomb interactiosie,, Which in turn consists of 9ions. Although such a tendency does exist, it is realized
two parts, viz., the energy?;gu, of repulsion between uni- under condltl_ons of a finitéand generally yvea)ldﬁfusmn of
formly distributed carriers, and the energ, , of attraction ~ dopants which thus controls the disintegration process.
between the carriers and the negatively charged doparlﬁence the nature of the prevailing structural state in the in-
ions? vestigated HTSC systems depends significantly on thermo-
The first contribution is positive and is determined bydynamlcs_as well as _klnethS of thel_r preparation.

the average kinetic energy of carriers. Taking into consider- ~ The highest possible concentration of fermions in metal-
ation the two-dimensional nature of motion of holes inlic domains is defined as the limiting solubility of dopants in

HTSC, we can present this contribution in the form a given material. For example, the surplus oxygen in
, La,CuQy, 5 is confined t08,,,~0.1."
1 _ _ﬁzkp 1 The established instability of the homogeneous state of a
ehree=5(EF)]  €F= 2m, (1) doped metal still does not reveal the form of the structure of

i its inhomogeneous state. It was mentioned above that this
whereer andke are the Fermi energy and wave vector re-jnsiapility is the result of the kinetics of the heavy sub-

spectively, andn, is the effective hole mass. Assuming that ystem, and the domain size is determined by the rate of
the number density of zho!es na Iay_elr ng and that each g5 mple preparation: the higher the rate, the smaller the size
hole occupies an areary , 1.€., mfp="ny =, We arfve atthe  f the structure formed. Such regularities are observed for
relationke =v2ry, -, i.e., (eg)=(h"m/2my)ny,. HTSC' in which small as well as coarse domains can be

Let us g loW estimate coy - For this purpose, we break ¢5:meq depending on the conditions of growth and the type
the crystat® into Wigner—Seitz cells and obtain in the first of dopant. As regards their shape, it is well known that de-

approximation the Coulomb energy of th®Bystem within 1, oition processes occurring in alldgse Ref. 19often

one such cell. As a result of simple computations, wé'get lead to stripe- or lamellar-type structures formed by alternat-
_ 4 ing domains of different phases. The advantage of such
sCOU|=s'(}2u|+s?;'ou|=—§\/Fe2nﬁ’2, (2 structures can be ensured, for example, by the minimum
value of ther total surface energy of domain walls. On the
wheree =2e?/3r;,, andel = —2e%r,. It can be seen other hand, the type of domains can be “dictated” by order-
from Eqg. (2) that this energy is negative. In other words, ing dopants also. For example, it is advantageous from the
there exists a metallic bond in the system when the forces agfymmetry and energy points of view that their structure in
Coulomb attraction dominate over repulsive forces. It carcuprate layers of HTSC be of a transverse-homogeneous
also be verified that if the cells are neutral as a whole, thehain type?® In our opinion, it cannot be ruled out that the
interaction between them is much weaker than that definetitter circumstance is an additional factor in the formation of
by Eq. (2). the stripe(i.e., transverse-inhomogenegusdering of dop-
It was mentioned above that other contributions also exants interacting with free charge carriers.
ist for real systems, but they do not affect the estimates and 5. Thus, we propose that the domdincluding stripe
qualitative conclusions. It follows from Eqgl) and(2) that  structure of samples in the metal state observed for HTSC is
the Coulomb term dominates for quite small,. The due (to a considerable extento decomposition processes
total energy minimum corresponds to the concentratioroccurring during sample preparation, in which each domain
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The superconducting energy gap and the paramgtigtermining the intensity of electron

scattering at two-level systems in amorphous ZrTiCuNiBe are determined from the results of
measurements of sound attenuation. The mechanism of adiabatic renormalization of the
amplitude of coherent tunneling is used for a quantitative description of the peculiarities of sound
absorption in the vicinity off.. © 1999 American Institute of Physics.

[S1063-777X9901312-3

Preliminary measurements of the velocity and parameter of TLS interaction with an elastic wavklow-
absorption I' of sound in the amorphous alloy ever, possible mechanisms of such a renormalization were
Zr; 5Ti13.6Cl» NijgBey, s have revealetlan interesting pe- not discussed and quantitative estimates of its magnitude
culiarity in its behavior in the vicinity of the superconducting were not obtained in Ref. 3. We shall use the mechanism of
transition temperaturd .. It was found that the value of adiabatic renormalization of the amplitude of coherent
Tem~0.9K determined from magnetic measurements extunneling to explain the peculiarities of sound absorption in
ceeds the transition temperatufg~0.83 K at which a non- the vicinity of T.. This approach gives an acceptable quan-
zero difference is observed in the velocities of sound in sutitative description of the dependenEg(T).
perconducting §) and normal ) phases. It was proposed The basic postulate of TM, which was confirmed irrefut-
that such a behavior may be due to magnetic depairing leadily in experiments(see the review by Hunklinger and
ing to the gaplesss-phase in the temperature interval Raychaudhufi, is the assumption that glasses have double-
Tem—Te. Since our earlier measurementsere made in a  well potentials with a tunneling link between the wells
temperature interval limited from belowT&0.4K), it ~ whose density of statep is constant in the space of the
should be interesting to study the behaviorIbfat lower — parametersg and InA, (¢ is the asymmetry of a double-well
temperatures. In view of a close analogy in the behavior opotential andA, the amplitude of coherent tunnelingrhe
electron acoustic absorption coefficient in superconductorgesponse of the TLS system to an external perturbation is
and the relaxation absorption of sound in two-level systemgletermined by the average over the TLS ensemble. For the
(TLS) in the s-phase, one could expect a nonexponentiasake of convenience, averaging is usually carried out by us-
drop inT'(T) in the low-temperature “tail,” or an exponen- ing new variablesE = \/¢*+ AZ andu=A,/E in which the
tial decrease but with a much smaller gap if the magnetiglensity of states of TLS is independenttf
depairing effects are significant. It is shown in the present _
work that thel'(T) dependence at low temperatures can be g(E,U)= ng(u).

. . 2 . ! 2
described quite correctly by the tunnel mod&M)“ in the uyl—-u
framework of the standard BCS approximation, which rules Under the conditions of the experimens €T, o being

out the gapless phase hypothesis. The refined value of tgﬁe frequency of acoustic vibrationsthe attenuation of

transition temperature for the bulk of the sample was foun Lound associated with the TLS is determined by the relax-

to be close taol;, while the value ofT,, determined from . . . ; .
. . . . ation mechanism and is described by the following standard
magnetic measurements is apparently associated with the

(€Y

surface phase. However, the behaviod'ah the vicinity of Sxpressiort

T. does not conform to the standard TM: the drod y{T) T'v Eg/T de 1 . @V

below T, begins much later than what is predicted by TM. (—) = fo cosR(e/2) J Co()(1-u%) ——>du.
Besides, in a certain temperature interval belbw the ab- rel @)

sorption is slightly higher thad™(T). Such effects were
observed earlier in the amorphous alloy;fl;, and were  Heree=E/T, Eg>T is the limiting energy, and the relax-
explained qualitatively by the electron renormalization of theation frequency. In Eq(2) and below, we have used the

1063-777X/99/25(12)/4/$15.00 999 © 1999 American Institute of Physics
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system of energy unitsh(=k=1). The order of magnitude
of the TLS contribution to the velocity and attenuation of
sound is determined by the parameter In the standard
TM,? this quantity is a constantC=Cy=py?/(pv?)(y
=1/2(9¢l 9e) is the deformation potentiak the deforma-
tion, andp the density, although a number of experimental
facts can be explained only by assuming tGatlepends on
E,uorT.

The TLS relaxation is due to their interaction with elec-

trons as well as phonons, although the contribution of the

latter can be disregarded fors1 K. The intensity of inter-

action of TLS with electrons is determined by the dimension-

less parameter;=2n,(V?,,)*? wheren, is the density of

electron states at the Fermi level eMﬁ(, is the square of the
matrix element of electron scattering at TLS from the skate
to the state&k’, averaged over the Fermi surface.

In the standard TM, the interaction of TLS with elec-

trons is considered in the framework of the perturbation

theory in parameter?, which does not change the system of
energy levelS. The entire distinction between a metallic

glass and an amorphous insulator is reflected just in the
emergence of a new relaxation channel with a characteristic

rate
7T7]2
VZTTUZJ(E). (3)
In the n-phase, J(&)=J,(g)=(e/2)cothE/2) and

v~75°Tu?. As long asw<T, there always exist TLS with
vopr~ @, and the absorptiof®) is practically independent of
temperaturd“plateau” region).
In the s-state, we must use instead hf(¢) the function
Ji(e,A)(A=A,/T,A,) is the superconducting energy dgap:
, f(=¢")

1 o0
JS(S,A)=EJA de \/8'2—A2{

fle'—
X%@[(s’—s)z—AZ]Sgr(s’—s)

e'(e'—€e)—A?
\/(87_8)2_A2

+(8—>—8)}, (4

where f(x) is the Fermi function and®(x) is the step
®-function. The functionJ¢(e,A) is frequently encountered

in the theory of kinetic properties of superconductors. It has

a discontinuity ate =2A, while aJy(e,A)—2f(A) for
e<2A. As a result of a rapid drop in the value &f below
T., the maximum relaxation ratai& 1) becomes less than
o starting from a certain temperature whil&¢(T)
“freezes.”

A nonperturbative analysig revealed a more compli-
cated pattern. Even &=0, the initial coherent tunneling

Bezugly et al.

wherewy is the energy of the order of Debye energy.

For T#0, the TLS ensemble can be divided arbitrarily
into three intervals according their position on tescale in
the n-state.

(1) The coherent tunneling regide* /£2+ A%2>T

(2) The regionE* <T<4E/(wm7? of coherent tunneling
with an amplitudeA = Ao X (27 T/wg) " and the en-
ergy splittingE = v &2+ A2. Going over to renormalized
variablesE* andE as well as tou* andTi during aver-

aging in each of the regions 1 and 2, relati¢®sand(3)
remain valid.

The low-energy TLST>4E/(w7%). In this region also,
the tunneling is incoherent and has an amplitukle
However, the vanishing of the factor €Ii?) from Eq.

(2) is a reflection of the fact that the incoherent transi-
tions between broadened levels occur with a variation of
energy even in the symmetric case. The relaxation fre-

()

quency
2 1
~ o TT2m2_
V3 7_‘_772 u-e J(E) (6)

also changes in region 3.

It would appear that as a result of a decrease4rior
smallz [Eqg. (6)], the contribution td" from the part of TLS
with E< o T must decrease. However, this decrease is com-
pensated by an increase in the contribution from symmetric
TLS, and the partial contribution from region 3koremains
practically the same as that calculated in the standard TM.
The contribution from region 2 also remains unchanged.
Only the contribution from coherently tunneling TI&gion
1) undergoes significant variation. Upon a transition to the
variablesE* andu*, the density of stateg(u*) (1) is renor-
malized as a result of a nonlinear relati® betweenAj
and Ay, and acquires an additional factor {y%/4). The
parametelC is also renormalized accordingly. If the bound-
ary between regions 1 and 2 is locatededt~T, the result-
ing value ofI" in the n-phase decreases in spite of the fact
that the denominator if2) decreases the contribution from
the high-energy TLS. Below, the nonlinear relatiolb) is
rapidly transformed into a linear relatidn: A}
~Ao(Ag/wg) ’72’4, renormalization ofC vanishes, and'¢(T)
below T, may increase before “freezing out.”

Let us now discuss the experimental results. Figure 1
shows the dependende(T)/T",(T.) for transverse sound.
The normalization factof ,(T.) ! used for presenting the
results can be easily determined from the variation of the
amplitude of the acoustic signal betwe&p and the deep
superconducting state.

In the region of the low-temperature “tail,” the renor-
malizationg(u) can be disregarded. The following estimate

amplitudeA, in the n-phase is renormalized as the adiabatic's obtained from(1), (2) and (4):

part of the interaction of TLS with electrons is taken into
consideration:

Ao

wo

: ©)

772/47 7]2
SE

I'y(T) B 27 n?

3w

Te_AS/T,
I'n(Te)

(TIT.<0.3. )

According to this equation, the low-temperature region
I'(T) must become linear in coordinatesIig(NT 1), T~
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FIG. 1. Temperature dependence of attenuation (@) ands (O) states. FIG. 2. Behavior of attenuation in the vicinity @, in n (®) ands (O)

The solid curves correspond to calculations fer 0.65 andT .= 0.83 K and states. The experimental recordings are averaged, and the noise level is
the dotted ones t@,=0.9 K. The inset illustrates the evaluation 5§(0) indicated by the bold vertical line. Curvé&sand?2 are obtained without and

and #. The solid line corresponds to the linear approximation. with renormalization respectively;=0.65,d=1.2.

as can be seen from the inset to Fig. 1. The slope of the

approximating straight line is determined by the supercondard TM (curve 1 in Fig. 2). According to calculations, a

ducting energy gap which is in good accord with the BCSdecrease in absorption begins Bt and continues as the

value: A 0)/T.=1.7£0.1(T,=0.9K) or A,(0)T.=1.8 steepness increases upon a decrease in temperature. The ex-

+0.1(T,=0.83K). Intersection of the approximating perimental dependence clearly displays a different behavior:

straight line with the ordinate axis leads to the estimate 1'¢(T) does not display any variation &t within the limits

=0.65*+0.05. These data can also be used to refine the valugf resolution, and a tendency towards an increasE(T)

of T, for the bulk of the sample. The slope of the approxi-overI'(T) is observed at lower temperatures. In any case,

mating straight line and its interaction with the ordinate axisI's(T) remains practically unchanged over a wide tempera-

(see inset to Fig. )lare by no means connected with the ture rangeT<T.. More clearly manifested effects of this

choice of T.. For a complete evaluation @f(T), we must  kind were detected earlier in the alloy g@ro.° It was also

use the specific value af.. It can be seen from Fig. 1 that suggested in Ref. 3 that these anomalies can be associated

the theoretical curve fof ;= 0.83 K is in much better accord with the electron renormalization of the parame@er

with the experimental data. The renormalization o€ indeed takes place in the alloy
The closeness ol ((0)/T, to the BCS value indicates investigated by us. An irrefutable proof of this is the inter-

that peculiarities in the behavior & T) in the vicinity of T, section the dependences(T) and v, (T) at a quite low

are not connected with the magnetic depairing effects. Let ueemperaturd , (its value for 62 MHz isT,=0.055 K). The

now discuss the applicability of the hypothesis of the elecscale of renormalization is quite significand@/C,~ 0.25)

tron renormalization of to the description of the behavior and is about double the quantity?/4~0.09—0.12, which

of I'y(T). allows us to assume the existence of several mechanisms of
Figure 2 shows the data on variationlaf(T) andl',(T) renormalizatiorf) Moreover, incompatibility of the scale of

in the vicinity of T, measured with a higher resolution than §C/C, with the anomalies inl'¢(T) indicates that these

in Fig. 1. The results are normalized to the valbg=2.85 mechanisms affect only insignificantly the TLS forming the

.10 % obtained from the slope of,(In T) in the deep super- relaxation attenuation fof ~T,. It should be recalled that

conducting state T=0.3K).Y The normalized value of the main contribution td’(T) comes from asymmetric TLS

I'(T;) in the standard TM must be close to 0.5 OKT. with Ugp Jol/T<1. One possible mechanism of renormal-

Renormalizationdecreaseof C naturally shiftsI” towards ization, which takes into account the fluctuational rearrange-

lower values. However, it has not been possible to measunment of the barrier in a double-well potential, is associated

the value of attenuation with an accuracy better than 1%gnly with the symmetric TL$and apparently makes no con-

which would allow an analysis of the shift of the experimen-tribution toT'(T).

tal dependence relative to the theoretical one. Hence we con- The adiabatic renormalization does not impose any con-

sider only relative position of the linds,(T) andI',(T) (the  straints on the possible valueswf In spite of the fact that

latter value is obtained in a magnetic fidlt=2T) which  the conditione>1 moves the coherently tunneling TLS to

could be measured with a much higher degree of accuracthe region of action of the truncating factor (), their par-

(Fig. 2. tial contribution toI'(T) may be quite significant on the
The meaning of the “anomaly” inl" discussed above scale of Fig. 2.

can be seen clearly from a comparison of the experimental For the purpose of numerical computations, we used the

dependences with the theoretical ones obtained in the stamodel energy dependence of the renormalization parameter
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7? In conclusion, let us formulate the main results. The ex-
C—O=1—®(8—d)[1+(2f(A)—l)@(ZA—S)]Z, (8  perimental dependence of the absorption of sound in the
amorphous superconducting alloy,Z§Tiq3 Cuyo NijgBers 5
whered is a free flttlng parameter. The first cofactor in the was used to determine the Superconducting energy gap
term describing renormalization in E@) defines the bound-  (which is found to be practically identical to the gap obtained
ary between the regions 1 and 2. Since the coherent amplin the BCS theory and the parameter characterizing the
tudeAy decreases exponentially for<1,* such an approxi-  intensity of interaction of TLS with electrons. The departures
mation seems to be quite reasonable. The second cofactor ffbm the predictions of the standard tunneling model ob-
(8) takes into account the fact that Only normal EXCitationSServed in the V|C|n|ty oﬂ'c can be exp|ained qua|itative|y

can contribute to renormalization fer<2A. and quantitatively by the adiabatic renormalization of the

The results of calculations are also presented in Fig. Zoherent tunneling amplitude.
(curves2). The interval of approximate “independence” of
I'y(T) can be matched with that observed for a given value  The authors are obliged to Prof. G. Weiss for drawing
7=0.65 for a quite reasonable value ¥ 1.2+0.1. It can  their attention to the publications by Kagan and Prokdfev
be seen that the calculated dependeingd) varies initially ~ and Stockburgeet al.’
below T, in the same manner as in the standard TM. Subse-  This research was partially supported by the State Foun-
quently,I"'y(T) displays a kink with a reversal of the sign of dation on Fundamental Research in Ukraigeant No. 2.4/
dI'/dT at T=2A/d. The emergence of the kink is a conse- 153 and by Deutsche Forschungsgemeinschaft via SFB 252.
quence of the use of a step approximatiorigh As long as One of the authoréW. L. J.) wishes to thank the US Energy
2A does not exceed the value Bf=Td, superconductivity ~Department for grantNo. DE-FG03-86ER45242while S.
does not have any effect on renormalization. Apparently, th&/- Zh. is grateful to the von Humboldt Foundation for finan-
restriction on the renormalization & imposed from below cial support.
by a smooth function of energy decreases the variation of
I's(T) in the vicinity of T, and eliminates the kink. The same
result is also arrived at by the broadening of the supercon‘e-mail: fil@ilt.kharkov.ua
ducting transition which is quite natural for an amorphousl)This value ofC, is double the analogous value presented in Ref. 1. The
sample. Hence it can be really expected tg(T) will not departure is due to the fact that the valueCgfwas estimated in Ref. 1 by
change aﬂ—c, as is indeed observed in the experiments. using the Iingar glependenug(ln'l’) whose slope depgnds sign.ifican.tly qn

Thus, the evolution of (T) nearT, is determined by the renormalization oC. The Iat_ter was Qot taken into consideration in

. . . Ref. 1. The value ofy presented in Ref. 1 is also found to be exaggerated

two factors, viz., a drop il’g(T) due to a decrease in the o the same reason.
relaxation ratev, and an increase iil'g(T) as a result of ?The effect of renormalization o€ on the velocity of sound will be con-
“freezing out” of the renormalization ofC. In contrast to  sidered in a separate publication.
the latter factor, the former is frequency-dependent, and
hence the resulting variation &f; will also depend on fre-
guency. Upon a decrease in the temperature interval in
which I'y(T)>T",(T) must expand, and vice versa. In par- 'A. L. Gaiduk, E. V. Bezuglyi, V. D. Fil, and W. L. Johnson, Fiz. Nizk.
ticular, calculations show that an increase in frequency by anzgemﬁhiﬁ,n léfigldgiﬂ%gvg -{:Eg]t?dhzrr]iyi:r?g 8i5n7 I(j)?/\??']e.m Physed
order of magnltude(measuregnents were made just at these by D. F. B?ewe)r, Vol. o, Noﬁth_HO”and" Amgsterdamlgse.p Y
frequencies by Esquinaet al”) completely masks the effect sp_ gsquinazi, H.-M. Ritter, H. Necket al, Z. Phys. B: Condens. Matter
of the second factor for the same valuespfl,, andd. 64, 81(1986. ]
However, Esquinaziet al® carried out measurements on ‘Yu.Kagan and N. V. Prokofev, Zh. ksp. Teor. Fiz.97, 1698 (1990
glass withT,=2.5K. In this region, is determined mainly 55§°LY'BT:é'Ii'é?lggygffzyfl::(?%l.me’ Philos. Mag. B0, 331(1979,
by phonons and depends weakly on the state of the electrory | pjack and P. Fulde, Phys. Rev. Let8, 453(1979.
subsystem. Under these conditions, the “freezing out” of J. Stockburger, U. Weiss, and R ®ch, Z. Phys. B: Condens. Matté#,
renormalization must give an even more pronounced effect 457 (1999 _
than in our experiments, as was apparently observed by ES—K' Vladar and A. Zawadowski, Phys. Rev.2B, 1564, 1582, 16961983.
quinaziet al® Translated by R. S. Wadhwa
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