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The structure and properties of the environment of impurity atoms Im immersed in liquid helium
are examined. It is demonstrated that there are two qualitatively different types of structure
of the layer of helium atoms nearest to Im: structures characterized by attraction and repulsion. In
the structures with attraction toward the center~for strong Im–He interaction! the Im–He
distance is greater than the equilibrium distance for the Im–He pair potential, and the density and
localization of helium atoms are greater than in the bulk. Here the number of helium atoms
n in the layer is almost independent of the external pressure. In structures with repulsion, which
exist for alkali metal atoms, the Im–He distances are shorter than the equilibrium ones,
while the density is lower than in bulk helium. ForT;1 K several states with differentn are
populated, with energies differing only by;0.1 K, andn decreases substantially as the
pressure is increased. On the basis of this analysis an interpretation is given for the optical and
ESR spectra of atoms implanted in liquid and solid helium. A simple model is proposed
for determining the characteristics of the helium environment from the experimental pressure
dependence of the shifts of the atomic lines in the absorption and emission spectra. It is
predicted that in3He–4He mixtures the structure with attraction should be strongly enriched with
4He atoms, while the structures with repulsion should be enriched with3He. The possible
existence of phase transitions in the helium shells surrounding impurity atoms is discussed.
© 2000 American Institute of Physics.@S1063-777X~00!00101-8#
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The main motivation for embedding atoms, molecul
and clusters in liquid and solid helium has been the effor
set them into the most inert host matrix~the absence o
chemical interactions, the lowest polarizability, the highe
lying electronic energy levels! with a characteristic low-
temperature ‘‘freezing in’’ of the internal degrees of freedo
of the impurities. It has turned out, however, that such h
matrices are not entirely inert—on account of the quant
nature of condensed helium, the interaction of the impu
particles with the surrounding helium and with one anot
has a very specific character and leads to a number of st
effects. This has motivated further research activity in t
area, and some new experimental methods have rece
been developed for introducing and studying various type
impurities in liquid and solid helium.

The first review article on this topic was published
1997,1 and during the preparation of this paper two mo
review articles dealing with research on the properties
atoms and molecules in condensed helium appeared
print.2,3 In the present article our goal is therefore not to g
a detailed discussion of the experimental and theoretica
search in the field, but rather to concentrate on the pecul
11063-777X/2000/26(1)/23/$20.00
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ties of the behavior of microscopic objects in a quantu
medium—liquid and solid helium. We attempt to explain t
basic regularities observed under these conditions and
plore the possibility of observing specific new effects expe
mentally.

The success of the bubble model, which correctly d
scribes the behavior and the energy spectrum of an ex
electron in liquid helium,4,5 has led researchers to attempt
description of the environment of impurity atoms in liqu
and even solid helium in terms of ‘‘bubbles.’’ However, th
behavior of liquid helium around a free electron is fund
mentally different from that around an atom or molecule: t
very existence of an ‘‘electron bubble’’ is due, on the o
hand, to the large ‘‘size’’ (ldB5h/meVe) of a thermalized
electron and, on the other, to the large zero-point kine
energy~the large amplitude of the zero-point vibrations! of
the liquid helium surrounding the electron. At the same tim
electrons in atoms and molecules are spatially localized
account of the strong coupling with the nuclei, and th
makes for a much smaller amplitude of the zero-point rad
modes of the helium atoms surrounding the impurity.6

A logically consistent ‘‘bubble’’ approach requires con
© 2000 American Institute of Physics
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sidering the problem of the perturbation of an electro
helium bubble when a positively charged atomic core is
troduced into it. It is clear, however, that the nearly free st
of the electron is a poor zeroth approximation for describ
a bound state of an optical electron in an atom.1! Therefore,
for a numerical solution of such a complicated problem th
can be nonphysical artifacts, such as, for example, the
mation of ultradense helium droplets in the neighborhood
the atomic core,8 which contains two helium atoms in
spherical volume with a radius of 0.8 atomic units, i.e.
density.40 g/cm3. Furthermore, because of the strong co
pling of the electron with the atomic core, the polarization
asymptotic behavior of the interaction with helium atoms
lost. At the same time, since the effects of the Im–He–
three-body interaction can be neglected,6 the numerical solu-
tion of the electron problem for a fixed distribution functio
of the helium atoms can be obtained directly and more e
nomically by summing the Im–He pair potentials, which im
plicitly contain all the important electronic effects associa
with the relaxation of the wave functions of the outer ele
tron shells. This approach does not, of course, eliminate
need of calculating the effects of the significant zero-po
kinetic energy of the helium atoms, which in all th
‘‘simple’’ approaches is in one way or another parametriz
in accordance with the properties of liquid helium. A ‘‘po
tential’’ approach retaining the continuum description of h
lium is also possible9 through the use the density function
for liquid helium,10,11 but it requires a numerical solution o
the problem.

It should be noted that the continuum approach, which
also referred to as the ‘‘bubble’’ model in the literature, pe
mits a satisfactory interpretation of the experimental resu
most of which pertain to alkali, alkaline-earth, and transitio
metal impurity atoms in helium. The reason for this is n
hard to understand. Indeed, even if one starts from
‘‘bubble’’ concept in an analysis of the helium environme
of an impurity atom in liquid helium, then of the four energ
terms used to estimate it~the potential energy of the impurit
plus the energy of surface tension plus the work of displa
ment of the liquid plus the zero-point kinetic energy of t
structure!, the last term, even for the largest atoms~rubidium
and cesium!, is always small, and the electronic state of t
impurity atom is perturbed weakly by interaction with th
medium.12 Thus the state of the helium environment in t
‘‘bubble’’ model is actually determined by the impurity
helium interaction and the interaction between helium ato
in the surface layer, which in the continuum approximati
is the surface energy. As expected, the results of the ca
lations show that the size of the cavity is close to the van
Waals dimension of an atom, and its compressibility~which
is actually the compressibility of the impurity atom! is ex-
tremely small compared to that of an electron ‘‘bubble.’12

The possibility of obtaining a fair description of the optic
spectra of impurity atoms in liquid12 and solid13 helium
means that in an approach based on the known macrosc
characteristics of condensed helium, viz., the density, c
pressibility, and surface tension, which are determined by
quantum properties, one can subsequently treat the
densed helium as a classical object.
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It is intuitively clear that in the case of weakly interac
ing alkali metal atoms in liquid helium the properties of th
helium layer adjacent to the impurity atom should not diff
strongly from its bulk properties, and therefore the aforem
tioned ‘‘bubble’’ approach can be valid. However, this is b
no means the case for microparticles which interact m
strongly with liquid helium, with an interaction energyU
.10 K.14

On account of the inertness of helium the interaction
any impurities with it will have the character of unsaturat
and short-range (U;R26) van der Waals forces.2! There-
fore, the influence of an impurity center on the secon
nearest layer of helium is small, and the properties of
helium in that layer should not differ appreciably from th
properties of helium in the bulk. This in turn means that t
‘‘bubble’’ approach is in principle applicable for strongl
interacting particles as well, but beginning with the seco
layer ~i.e., for an impurity particle in the form of a single
layer cluster, ImHen). It follows from the results of both
quantum calculations15 and calculations by the density
functional method9 that there always exists a distinguishe
layer of helium localized around an impurity with a stron
Im–He interaction.

Nevertheless, for designing experiments and for und
standing the general relationships it is of interest to anal
the problem as a whole, and not on the basis of spec
examples.

The physical nature of the localization of helium arou
an impurity is demonstrated in Fig. 1, which shows the qu
tative structure of the shell~a!, the equilibrium positions of
the helium atoms making up the shell relative to the mini
of the Im–He and He–He interaction potentials~b!, and also
histograms of the density~number! of helium atoms as a
function of the distance from the impurity center~c!.

If the Im–He interaction is stronger than the He–H
interaction, we have a case in which the attraction of the
atoms toward the center is counterbalanced by the mu

FIG. 1. Two types of structure of the helium environment of an impur
atom. a: Diagram of force equilibrium. b: Positions of the helium atoms
the shell relative to the minima of the impurity–helium and helium–heliu
pair interaction potentials. c: Layer histogram of the helium density in
shell; the region occupied by the impurity atom is shaded.
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repulsion of the He atoms. Naturally, in this case the num
of He atoms in the shell is greater than would follow fro
the equilibrium distance between them. However, for he
alkali metal atoms~it is known that Rb and Cs atoms are n
wet by helium14! a second case is possible, in which t
repulsion of the He atoms from the center is compensate
the attraction arising between helium atoms in the shell
this case the density of helium atoms in the shell should
lowered.

Even this qualitatively treatment shows how apprecia
the structure of the helium shell around an impurity diffe
from the intuitive idea of a ‘‘bubble.’’ For the case of attra
tion toward the center the Im–He distances exceed the e
librium distances for the Im–He interaction, while the d
tances between He atoms in the shell are less than
equilibrium distance, as is characteristic for a ‘‘snowball
as will be clear from what follows, the interhelium distan
in the first layer can even turn out to be smaller than in so
helium. In any case the description of the interaction
tween He atoms in the shell with the aid of surface tensio
a poor approximation here. Indeed, the physical manife
tion of surface tension is an excess energy~or lowered den-
sity! in the surface layer. At the same time, the enhan
density of He atoms in the surface layer means that the ‘
efficient of surface tension’’ is formally negative.

For the case of repulsion from the center the radius
the He surface layer is even smaller than the Im–He
tance, but its structure more closely resembles a bubble
understand the scale of the variations of the dimension
the cavity and the density of the helium shell as functions
the characteristics of the impurity in liquid helium, it is a
visable to first choose a simple model that will admit
analytical solution.

SIMPLE MODEL OF AN IMPURITY–HELIUM CLUSTER
„T50, P50…

An isolated helium cluster may be a fair model for d
scribing the structure of the environment of an impurity
liquid helium. In particular, this is suggested by calculatio
in the density-functional approach, from which it follow
that the shape and amplitude of the first maximum of
radial distribution function of the helium atoms around
impurity remains practically constant asN increases just afte
N.N0, whereN and N0 are the numbers of atoms in th
cluster and in the first layer of the cluster, respectively.9

In the general case the problem of finding the struct
of an ImHen cluster reduces to one of minimizing its tot
energyE as a function of its radiusR, the distanced between
adjacent helium atoms in the shell, and the numbern of
atoms in the shell, which is a parameter of the problem.
a spherical single-layer shell ofn He atoms the total energ
of the system in the pair interaction approximation is

E~R,n!5nEImHe~R!1
nm

2
ẼHe~d~R!!, ~1!

whereEImHe(R) is the corresponding pair potential,ẼHe(d)
is the energy of the helium shell per interacting pair of
atoms, andm is the average number of neighboring He ato
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in the shell. The numberm can take on values from 3 to
~these are the limiting values for small and largen: m53 for
a tetrahedron or a cube,m54 for cubo-octahedron,m55 for
an icosahedron, andm56 for a plane!, andd(R) is the av-
erage distance between neighboring He atoms in a she
radius R. It follows from simple geometric consideration
that

d~R!52R
Asin~v/2m!sin~2p/m2v/2m!

sin~p/m!

'2RS v

m tan~p/m! D
1/2

5
RCm

An
,

wherev54p/n is the solid angle per He atom in the she
Then

d

R
5Cm

1

An
, Cm52S 4p

m tan~p/m! D
1/2

. ~2!

Besides the indeterminacy in the choice of the param
m, which is not very important and, as we shall discover, c
be eliminated, there is a more fundamental difficulty. Wh
the impurity–helium interaction is described reliably by
pair potential, it is quite a complicated matter to describe
collective helium–helium interaction in such a manner, sin
the zero-point kinetic energy is high and on account of
possibility of quantum-mechanical exchange the funct
ẼHe(d) is fundamentally different from the true He–He pa
potential and, generally speaking, depends on whether
cluster is found in a liquid or in vacuum. Qualitatively, how
ever, it is clear that the functionẼHe(d) has a minimum~the
depth of which is equal to«0) at a certaind5r e and that it
goes to zero asd→`. Since we are interested in deviation
of d from r e which are not too large, for the analytical solu
tion of the problem we consider only an effective energy
the form of a Lennard–Jones potential:

ẼHe~d!5«0F S r e

d D 12

22S r e

d D 6G . ~3!

As to the Im–He interaction, there is no question tha
can be validly represented by the potential curves of
Lennard–Jones potential:

EImHe~R!5UF S Re

R D 12

22S Re

R D 6G . ~4!

The solution of the problem of the structure and op
mum composition of an isolated ImHen cluster,

]E

]R
50;

]E

]n
50,

whereE is given by Eq.~1! with allowance for Eqs.~2!–~4!,
gives the following expression for the radiusR* of the shell,
the numbern* of He atoms, and the total energyE* of the
cluster:

R* 5ReFg1 f 2~g!

g1F~g! G
1/6

~5!
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n* 5n0 f 1/3~g!; n0[S CmRe

r e
D 2

, ~6!

E* 552
n* m«He

2

@g1 f ~g!#2

g1 f 2~g!
. ~7!

Here the parameter

g5
2U

m«0
~8!

is the dimensionless depth of the Im–He potential~the values
of g for several atoms are given in Table I!, and the function
f (g) is given implicitly by the equation

g17 f

g1 f
5

6 f 2

g1 f 2 ~9!

and has the approximate espressionf (g)5(0.72
1A0.46110.2g)/(120.288g21). As can be seen from Eq
~2!, n0 is the number of helium atoms in a hypothetical sh
in which the helium–center and helium–helium distanc
have their equilibrium values for the Im–He and He–He p
potentials used, respectively. Of course, the radius of
shell is Re , the distance between helium atoms in it isr e ,
and the total energy is described by the expression

E052n0U2
n0m

2
«052

n0m

2
«0~11g!.

The results of the calculations are presented in Figs
and 3. One notices first of all that for impurity atoms th
interact strongly with helium (g@1) the radius of the shell is
slightly larger than the equilibrium distanceRe for the pair
potential, and for largeU it is practically independent of the
well depth~Fig. 2a!.

For impurity centers that interact weakly with helium~in
particular, alkali metal atoms! the parameterg for 4He be-
comes less than unity~see Table I!. However, in the mode
considered, there is no stable state of an isolated single-l
cluster for g,gcr5343/(71166A11)51.183: the total
energy decreases monotonically withn, and R* →` for

TABLE I. Parameters of the interaction of various atoms with helium
m55.

Characteristics Isotope Isotope
of potential 4He 3He

Atom Re , Å U, K g g

Ne 3.03 21.24 7.13 29.5
Ar 3.48 30.05 10.09 29.0
Kr 3.70 30.98 10.10 29.90
Xe 3.98 29.01 9.74 28.0
N 3.44 33.19 11.14 32.0
Li 6.033 1.64 0.549 1.58
Na 6.408 1.73 0.581 1.67
K 7.181 1.408 0.473 1.36
Rb 7.334 1.415 0.475 1.36
Cs 7.731 1.206 0.405 1.16

Note: For the inert-gas atoms and for Li the data shown are the experime
data of Refs. 16 and 17. The rest of the data are the results of calcula
our estimates for N and the calculation of Ref. 18 for the atoms Na–Cs.
data of Ref. 19 were used for converting to3He.
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d'r e . This is a reflection of the fact that an isolated sphe
cal impurity–helium cluster is physically unrealizable—
the case of unwettability the stable state is a helium ‘‘dro
let’’ with an atom on the surface.

The distanced between He atoms in the shell obeys t
relation

d~R* !5r eF g1 f 2~g!

g f ~g!1 f 2~g!G
1/6

.

The decrease ofd in comparison withr e for g.1 is
sufficient that the force of mutual repulsion of the atom
gives rise to a stable shell of ‘‘compressed’’ He atoms.
can be seen from Fig. 2b, the relative decrease ofd in com-

tal
ns:
e

FIG. 2. Characteristics of an isolated helium cluster ImHen , normalized to
the characteristics of a hypothetical equilibrium cluster~see text!, as func-
tions of the dimensionless interaction energy for Im–He,g[2U/(m«0) for
m55. Analytical model. a: Shell radius. b: Distance between helium ato
in the shell~the horizontal straight line is the He–He distance upon the b
solidification of helium forT50). c: Number of helium atoms in the shel
d: Radial pressure in the cluster.

FIG. 3. Total energy of an isolated cluster per helium atom versus
parameterU. The dashed lines are the data for a hypothetical equilibri
cluster (2E0 /n0). The numbers labeling the curves are the values of
parameterm.
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TABLE II. Parameters of impurity–helium clusters ImHen for m55 ~analytical model!.

Im Isotope4He 3He

R* , Å n* E* , K sK/Å2 R* , Å n* E* , K sK/Å2

Ne 3.16 10.2 2221.9 21.77 3.14 9.3 2182.5 21.47
Ar 3.62 13.8 2407.8 22.48 3.60 12.8 2347.2 22.13
Kr 3.84 15.7 2475. 22.56 3.83 14.5 2405.4 2.20
Xe 4.14 18.1 2515.4 2.40 4.12 16.6 2437.3 22.05
N 3.57 13.6 2439.3 22.74 3.56 12.6 2377.1 22.37

Note: The surface tension was determined from the~negative! pressureP exerted by the helium shell on th
center, according to the relations5R* P/2.
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parison with the equilibrium distancer e is of the same scale
as for the shell radiusR. However, if one assumes for est
mation that the equilibrium distance between helium ato
in the shell and their effective interaction energy are
same as in bulk liquid helium, i.e., if one take
VHe545.476 Å3 and«He57.15 K for the atomic volume and
energy of liquid 4He at T,P50 ~Ref. 20! and
r e5(A2VHe)

1/354.02 Å and«05«He/651.19 K ~on the as-
sumption that the most probable number of nearest neigh
is 12, as for solid helium!,21 then even forg>3 the interhe-
lium distance in the shell becomes smaller than the va
corresponding to the onset of bulk solidification of heliu
As a result, the number of He atoms in the shell is subs
tially larger than that which would follow from the density o
liquid helium ~see Fig. 2c!. Therefore, it can be assumed th
for g.3 the effective pressure in the helium shell is mo
than 25 bar~the pressure of solidification of helium a
T50).3! In order to estimate the variability of the characte
istics of an impurity–helium cluster under an external infl
ence it is sensible to estimate the value of the external p
sure that would correspond to the force of attraction of
helium shell to the central atom: these forces are counter
anced by the negative pressure exerted by the helium s
on the impurity center, which is given by

P5
1

4pR* 2

]n* EImHe~R!

]R U
R5R*

5
mCm

2 «0

4pRer e
2 g f 4/3~g!@ f ~g!21#H @g1F~g!#3

@g1F2~g!#5J 1/2

,

where P056n0m«0 /(4pRe
3). The value P0586 bar for

Re5r e andm55. A plot of P(g) is shown in Fig. 2d. The
effective pressure turns out to be extremely large, amoun
to more than 150 bar for atoms of Xe and N. Figure 3 sho
a plot of the energy per helium atom2E* /n* as a function
of the depth of the Im–He potential in comparison with t
case of the hypothetical equilibrium cluster. We see that
‘‘binding energy’’ of each helium atom to the center
slightly less thanU and is much larger thankT at T51 –2 K;
this makes for stability of the cluster at the typical tempe
tures of most experiments.

The high level of internal stresses in an impurity–heliu
cluster formed around an atom which interacts rat
strongly with helium is the reason why the liquid heliu
surrounding the atom does not have a noticeable effec
the characteristics of the cluster, at least at external press
s
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P0,1 bar. However, alkali metal atoms are a special ca
for them the shell owes its very existence to the surround
liquid.

One can thus consider two different types of enviro
ment of impurity atoms in condensed helium: structures w
attraction ~strong interaction with helium! and structures
with repulsion ~weak interaction!. The characteristics o
stable single-layer impurity–helium clusters are given
Table II. An analytical solution is useful because it permits
systematic analysis. In calculations for specific systems
numerical methods the interaction energy in~1! need not be
given by Lennard–Jones potentials. In particular, the He–
interaction at pressures above 1 bar is not described
well by expression~3!, and it would be logically more cor-
rect to describe them directly by proceeding from the eq
tion of state«(V) of liquid helium, which is valid for any
He–He distances:

ẼHe~d!5
1

6
«S d3

A2
D .

Using this form of the interaction between helium atoms,
can determine for any particular case the accuracy of
analytical description of an isolated ImHen cluster having a
structure with attraction and we can also compare the res
obtained in the approximation we have adopted with the
sults of calculations done by the density-functional metho9

As a convenient object for calculation we choo
xenon–helium clusters XeHen , for which data from density-
functional calculations are available. Following Ref. 11, w
write the equation of state of helium in the form

«~V!5
b

2V
1

c2

2V2 1
c3

3V3 , ~10!

where b52719.99 K•Å3, c2522411.857 K•Å6, and
c351858496 K•Å9. In addition, by virtue of of the linearity
of the energy with respect tom, we have eliminated the
indeterminacy in the choice of the parameterm, having taken
m equal to its maximum possible value at the givenn.
An analysis shows that this gives the relationm56212/n.
This formula describes exactly the cases of regular polyhe
with m53, 4, and 5 forn54, 6, and 12, respectively. Her
we have the following relation connecting the distance
tween He atoms and the radius of the shell:
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dn~R!52RH 12S 2 sin
pn

6~n22! D
22J 1/2

. ~11!

As a result, the energy of an isolated cluster is described
the expression

E~R,n!5nEImHe~R!1~3n26!«S dn
3~R!

A2
D . ~12!

and for the Xe–He pair potential, which is well described
a Lennard–Jones potential, expression~4! is used, as before
We see from Figs. 4 and 5 that the results of the analyt
calculation~the dotted curves! and the calculation with ex
pression~12! are qualitatively close to each other.

The density-functional method enables one to calcu
rather exactly the total energy of a system without separa
it into potential and kinetic parts. In our approach, based
Eq. ~1!, the kinetic energy and especially the zero-po

FIG. 4. RadiusR of an isolated XeHen cluster and the distanced between
helium atoms in the shell versusn. Analytical model with m55 ~•••!;
calculation based on Eq.~12! ~– – –!; calculation based on Eq.~14!, with
the kinetic and potential energies treated separately~– • – •); calculation
with allowance for the delocalization of helium~———!.

FIG. 5. Total energy of a XeHen cluster versusn without ~curves1,2,3! and
with ~4,5,6! allowance for the zero-point radial modes for different mod
~the numbering is the same as in Fig. 4!.
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energy of the radial vibrational modes, as will become cle
below, is described with less than complete rigor. Howev
we proceeded deliberately by taking the interatomic intera
tions explicitly into account, since the goal of our analysis
to describe the optical and ESR spectra of impurity centers
liquid helium, for which it is necessary to know the spectru
of elementary excitations not only in the bulk of the liqui
helium but also those localized in the nearest neighborho
of an impurity center. Therefore we require a separate
scription of the kinetic and potential energies. The densi
functional method does not in itself permit one to do this.

TAKING THE KINETIC ENERGY INTO ACCOUNT

In our model the zero-point modes of the helium she
are effectively taken into account by virtue of the adopt
parametrization in terms of the properties of liquid helium
which depend on its zero-point kinetic energy. This way
taking the zero-point vibrations into account is approxima
on account of the presence of a potential energy relief, wh
distorts the dynamical properties of liquid helium, in th
neighborhood of an impurity. To estimate the accuracy of t
approximation used, let us take into account separately
contributions of the kineticT and potentialU energies to the
energy of liquid helium,«(V)5T(V)1U(V).

According to the analysis of Ref. 22, a good approxim
tion for T is the expression

TS R3

A2
D 5

T0

~R/L21!2 , ~13!

T058.266 K,L52.295 Å. Then the potential energy per va
der Waals bond in liquid helium is given by

UHe~d!5
1

6 F«S d3

A2
D 2

T0

~d/L21!2G .

Assuming that the helium in the shell around an impuri
center is delocalized in the same way as in liquid helium
the corresponding density, we get the following express
for the energy of an ImHen cluster, which already includes
the zero-point lateral modes of He, the total number of whi
is equal to 2n23:

E~R,n!5nEImHe~R!1~3n26!UHe~dn~R!!

1
2n23

3

T0

$2R arcsin@dn~R!/2R#/L21%2 .

~14!

The radial modes of the helium shell are taken into acco
in the harmonic approximation:

E~R,n!'E~R* ,n!1
k~n!

2
~R2R* !2.

Then for an ImHen cluster with the wave function of the
completely symmetric mode, as we have shown previous6

satisfies the harmonic oscillator equation4!

F2
\2

2mHe

d2

dQ2 1
Q2

2n
k~n!GRC5

v0~n!

2
RC, ~15!
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where Q5R2R* , \2/mHe512.119 K•Å2, and v0(n)
5\@k(n)/(nmHe)#1/2. We have neglected the frequency d
persion for the different radial modes~it follows from a nu-
merical calculation that forn512 this is a reasonabl
approximation!.6 The total energy of the system in this a
proximation isE(R* ,n)1nv0(n)/2. The radial distribution
function of the He atoms then takes the form

r~R!5
n

4pR2Apa
expF2S R2R*

a D 2G , ~16!

wherea(n)5@\An/(k(n)mHe)#1/2 are the amplitudes of the
radial modes.

Figures 4 and 5 show the results obtained when
above-described method of explicit inclusion of the rad
modes of the helium shell is applied to isolated XeHen clus-
ters. It follows from these figures that taking the kinetic a
potential energies of the system separately into account
little effect on the structure of the helium shell: while a ca
culation using formula~12! gave the cluster energy, the op
timum number of helium atoms, the radius of the shell, a
the distance between helium atoms in it asE52563 K,
n520, R* 54.12 Å, andd* 53.42 Å, the corresponding
values are nowE52519 K, n519, R* 54.10 Å, and
d* 53.48 Å, respectively. At the same time, the presence
radial modes of the helium shell, calculated using Eq.~15!,
noticeably alters the energy of the system. It increases
2181 K ~while n retains its value of 19!, but the radius of
the shell and the distances between He atoms in it are p
tically unchanged, equalling 4.10 Å and 3.48 Å, respective

One notices that the energies obtained from express
~12! and ~14! are close; this may be due to the closeness
the coefficients (3n26)/6 and (2n23)/3 with which the
kinetic energy of the helium atoms appears in these exp
sions, respectively. Thus one can propose a simpler wa
taking the radial modes of the helium shell into account—
the use of the unmodified expression for the energy~12! in
the solution of the vibrational problem~15!. This approach
gives practically identical results:n520, E52208 K,
R54.12 Å, d53.42 Å, a50.58 Å, andv0535 K.

At first glance these results differ substantially from t
characteristics obtained by Dalfovoa9 for XeHen clusters by
the density-functional method~see Fig. 6!. For example, for
its radial density distribution the maximum density at t
first peak is 3~!! times larger than the density of liquid he
lium ~in our calculation the number of helium atoms in t
first layer is only 30% greater than would be the case
liquid helium!. However, as we shall show below, the diffe
ences are only apparent ones, and the two calculations
basically the same results.
e
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Indeed, integration of the density corresponding to
first peak on curve1 of Fig. 6 gives a value of 21 for the
number of atoms in the first layer.9 If the distribution in the
first peak is represented by a Gaussian curve~16!, then from
the positionRmax of the maximum on the curve one ca
estimate the amplitude of the zero-point radial modes,

a'
n

4p~Rmax!
2Apr~Rmax!

and from it the mode energyv05\2/(mHea
2) and the shell

radiusR* , using the relationRmax.R* 2a2/R* . Analyzing
the data of Dalfovo9 in this way, we obtaina50.85 Å, v0

517 K, andR* 54.37 Å, and then, on geometric argumen
~11! we obtaind53.54 Å for the distance between helium
atoms in the shell.

From the dependence of the binding energy of the
atom with a cluster Hen one can estimate the total energy
a XeHen cluster by using the fact that forn>20 the energy
of Hen is 2n1.6 K.23 This estimate givesE>2230 K for
n521. All of the values found are presented in Table III. W
see from this table that the cluster structure calculated u
formulas ~12! and ~14! is close to that obtained in th
density-functional approach. However the degree of locali
tion of the helium shell~and, accordingly, the characterist
frequencyv0) turned out to be too high in comparison wit
that found in Ref. 9.

The real energy spectrum of the vibrational excitatio
of the helium shell can be calculated by the approach
scribed above, and the reason for the overestimates of
total energy of the radial modes is clear: we have assum
for purposes of estimation that alln radial modes have an
energy equal to the energy of the highest completely sy
metric mode. However the problem of calculating the sp
cific form of the spectrum is a problem of independent int
est. If one is concerned solely~for purposes of comparison
with the density-functional method! with correctly taking

FIG. 6. Radial distribution functions of the helium density around a xen
atom: density-functional method for liquid helium~1!, approximation of the
first peak of curve1 by a Gaussian~2!, and the data obtained with th
energy represented in the form given in Eq.~12! ~3! and Eq.~21! ~4!.
TABLE III. Structure and characteristics of an isolated XeHen cluster in different approximations.

Approach n R* , Å d, Å Rmax, Å E, K a, Å v, cm21

Eq. ~12! 20 4.121 3.419 4.04 2208.4 0.585 35
Eq. ~14! 19 4.099 3.484 4.02 2180.5 0.583 36
Eq. ~21! 19 4.603 3.913 4.41 2239.2 0.778 20

0.786~b!
Density functional9 21 4.37 3.54 4.2 2230 0.85 17



o
g
ll

he
on

is
lo

s
d
it
te

in
ion

l-
-
a
th

e-

ie
th
p

-
m-

g a
ters
ged
sen
e
nd

t-
ry
a

-
%
ved
ed
rgy

e:
.

8 Low Temp. Phys. 26 (1), January 2000 E. B. Gordon and A. E. Shestakov
into account the total energy of the zero-point vibrations
the helium shell, then it can be done in our model throu
the introduction of a radial delocalization of the helium she
which is uniquely related to the kinetic energy.

To take the delocalization of each helium atom in t
shell explicitly into account, we choose a density distributi
of the atom in the form

rA~r !5
1

Ap3~a'!2ai
exp@2~x/a'!22~y/a'!22~z/ai!

2#,

in which the anisotropy of the effect of the impurity center
taken into account by introducing different degrees of de
calization of the helium atoms in the radial (ai) and lateral
(a') directions. Essentially, at the instantaneous position
the helium atoms the potential energy of the system is
scribed to good accuracy by a sum of pair potentials, and
therefore necessary only to correctly average the pair in
action over the delocalization of the interacting centersA and
B as specified by their distribution functions. This averag
must be done with allowance for the pair correlation funct
g(r1 ,r2):

Ū~R!5E rA~r 1!U~R1r 12r 2!rB~r 2!g~r 1 ,r 2!dv1 ,dv2 .

~17!

For a simplified calculation of this integral we use the fo
lowing technique.6 In integrating over the distribution func
tions of the helium atoms we take into account that the m
contribution to the integral comes from the regions near
centers of the distribution (r 1;0 andr 2;0), while the re-
gion of intersection of the distribution functions of the h
lium atoms (ur12r2u;R) actually gives a small contribution
when correlation effects are taken into account. Thus in v
of the smallness of the localization region compared to
internuclear distance, we can approximate the averaged
tential by several leading terms of the expansion

U~R1r12r2!>U~R!1U8~R!

3FR~r12r2!2

R
1

1

2

~r12r2!2

R G
1

1

2
U9~R!FR~r12r2!

R G2

~18!

and simultaneously setg(r1 ,r2)51. In the case of a
Lennard–Jones potential with equilibrium distanceRe and
potential well depthU, the averaged potential~17! can then
be found in analytical form:

UAB~R!5UH S Re

R D 12

3F11
21~^z2&A1~z2&B!23~ â1b̂2!

R2 G2S Re

R
D 6

3F21
24~^z2&A1^z2&B!23~ â21b̂2!

R2 G J ~19!

where
f
h
,

-

of
e-
is
r-

g

in
e

w
e
o-

^z2&A5ai
2 cos2 wa1a'

2 sin2 wa ,

^z2&B5bi
2 cos2 wb1b'

2 sin2 wb ,

â25(ai)
212(a')2, b̂25(bi)

212(b')2, andwa andwb are
the angles made by the radius vectorR, directed fromB to A,
and the localz axis for the centersA andB.

When Eq.~19! is applied to liquid helium, the distribu
tion function is isotropic and is described by a single para
etera. Then the total energy of a helium atom~kinetic plus
potential! in the liquid in the presence ofZ neighbors~we
takeZ512 on considerations of close packing! located at a
distanceR can be written

E~R!5
3\2

4mHea
2 1

Z

2
UHeH Re

1/2~R2166a2!~12x!

~R2266a2x/7!7

22
Re

6~R2115a2!~12y!

~R2215a2x/4!4 J , ~20!

where the parameters of the He–He pair potential~HFD–
B3–FCI1! have the valuesUHe510.956 K,Re52.968 Å.24

The additional parametersx and y in expression~20! have
been introduced according to the principle of constructin
Padéapproximant, and the correct choice of these parame
can improve the accuracy of the description of the avera
potential by the leading terms of the expansion. The cho
values x50.4828 andy50.5072 were obtained from th
condition that the calculated values of the atomic volume a
energies for liquid helium atT50 agree with the known
values in the literature.20 The correct choice of the parame
ric form for ~20! was made so as to obtain a satisfacto
description of the equation of state of liquid helium over
wide range of densities~see Fig. 7!. For example, the com
pressibility of liquid helium was underestimated by 20
from the known value, an accuracy higher than that achie
when the effective He–He potential in the liquid is describ
by a Lennard–Jones potential. The calculated kinetic ene

FIG. 7. Energy of liquid helium per atom versus the atomic volum
1—experimental data of Ref. 16;2—variational calculation based on Eq
~20!; 3—approximation of the function in Eq.~1! by the Lennard–Jones
potential~3!.
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3\2/(4mHea
2) as a function of the atomic volume is also

good agreement with the results of exact variatio
calculations.25 At the equilibrium density the respective ca
culations give 14.20 and 14.77 K, at a density of 90% of
equilibrium density they give 11.97 and 12.26 K, and a
density of 120% of the equilibrium density they give 19.
and 20.34 K. This is because the dependence of the pa
eter a on the distance is practically linear, and the formu
3\2/(4mHea

2) and Eq.~13! for the kinetic energy take on
the same functional form. By changing the mass at fix
values of the parametersx and y one can also calculate th
equation of state of3He. The agreement of the calculate
values of the energy per atom,23.3 K, and the atomic vol-
ume, 58 Å3, with the experimental values22.5 K and 61 Å3

for T50 ~Ref. 22! should be adjudged satisfactory for such
simple model.5! The value found for the delocalization pa
rametera50.8 Å at P50 andz512 implies that the heigh
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of the first maximum in the radial distribution function fo
liquid helium should be 1.48 and 1.99, in units of 1/VHe, for
a finite and an infinite mass of the central atom, respectiv
in fair agreement with the results of quantum calculation26

for these cases: 1.30 and 1.80.
Let us take this approach to the description of the heli

shell around an impurity center—a xenon atom. To a fi
approximation one can take the parametersx and y for the
averaged interatomic potentials Im–He and He–He so a
obtain the best description of the equation of state of liq
helium. The delocalization amplitudes of the He atom
which are in general different in the radial (a) and lateral
(b) directions, are the parameters of the variational functi
In view of the large mass of the Xe atom, it can be regard
as immobile, which simplifies the problem.

For a heavy impurity center the total energy of the ImH
system becomes
E~R,a,b!5n
\2

4mHe
S 1

a2
1

2

b2D 1nUImHe~R!ua'5ai50,bi5a,b'5b,w501~3n26!UHeHe~dn~R!!uai5bi5a,a'5b'5b, sin wa5sin wb5
dn~R!

2R
, ~21!
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where the potential terms are given by expression~19! with
parametersx andy introduced in it as in Eq.~20!. The total
energy of the system and the radius of the helium shell
found as a result of the optimization:

]E

]a
50,

]E

]b
50,

]E

]R
50,

and the additional condition]E/]n50 yields the optimum
value ofn.

The solid curves in Figs. 4 and 5 show the results fo
XeHen cluster in comparison with those obtained previous
It can be seen from Fig. 4 that the XeHen cluster as before
has the structure with attraction (R* .Re , d* ,r e). How-
ever, allowance for delocalization increases both the Im–
and He–He distances, without changing the character of
environmental structure. This is because, in addition to
potential forces shown in Fig. 1, there is a quantum ‘‘kine
pressure’’ present in the system on account of the large z
point kinetic energy '3\2/(4mHea

2), which depends
strongly onR.

The energy calculation is based on a quantu
mechanical description of the system. Therefore the exis
agreement of the calculated energy of XeHen with n;20
~see Table III and Fig. 5! and the density of the radial dis
placement of He~Fig. 6! with the results obtained by th
density-functional method, which is also a quantu
mechanical model, is not surprising. However, we also
that the dependence of the energy onn in the approximate
approaches of Eqs.~12! and~14! is in rather good agreemen
with the results of the quantum-mechanical description. T
justifies the proposed simplification of the method of calc
lating the radial modes of the shell and provides a way
obtaining its vibrational spectrum.
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The radiala and lateralb delocalization parameters o
the He atoms, as can be seen in Fig. 8, have the same be
ior as functions of n as do the Im–He and He–H
distances.6! Here the parameterb is in good agreement with
the delocalization amplitude in liquid helium of the corr
sponding density. This confirms the correctness of using
equation of state of liquid helium for describing the deloc
ization of helium in the shell around an impurity center.

Returning to Fig. 6, where the calculated radial distrib
tion of the density in a XeHe19 cluster is compared with the
distribution around a Xe atom in liquid helium as calculat
by the density-functional method,9 we notice the following.

1. The peak density of the shell is a strong function
the degree of radial localization of the helium shell and at
same time does not reflect the real density of the shell~the
number of helium atoms in a shell of radiusR). Although the
maximum of the distribution function can exceed the bu
density of helium severalfold, this does not mean that ther
such a strong increase in the density, as is stated in Re
for example. In our case the threefold increase in the den
of the distribution is equivalent to an increase of 30% in t
number of atoms found inside the geometric dimensions
the shell.

2. The true form of the peak of the radial distributio
function is asymmetric on account of the fact that the rep
sive branch of the Im–He potential is very steep, and thi
not taken into account in the harmonic approximatio
Therefore the effective value of the radial delocalization
helium, as judged from the half-width of the peak, is inte
mediate between the values calculated in the two mod
This, in turn, affects the distances between helium atom
the shell, which also turn out to be intermediate. Thus
extremely simple potential model~12! has entirely satisfac-
tory accuracy if it is supplemented by the energy contrib
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tion of the zero-point radial modes calculated in the h
monic approximation,12nv0(n), where

v0~n!5\S 1

nmHe

]2E~R,n!

]R2 D 2

.

We note in conclusion that the above analysis sugges
simple way of estimating the characteristics of the heli
environment of impurity atoms in liquid helium. Using th
analytical solution for the energy~7!, which is based on the
approximations~3! and ~4! for the potentials, one can the
add to it the energy of the radial modes calculated in
harmonic approximation:

E5E* 1
1

2
n* v* ,

where v* 5(\/R* )@72uE* u/(n* mHe)#1/2. With this contri-
bution taken into account~see the result in Fig. 9!, one can
predict the cluster energy for any center, which is charac
ized by the parameterg. Here the parameters of the structu
remain practically unchanged and, as before, are determ
by the curves in Figs. 2 and 3. One notices that at sm
values of the parametersg ~from gcr to g'3), taking the
vibrational energy into account alters the sign of the to
energy of a cluster, and the system acquires a metas
character.

IMPURITY CENTER IN LIQUID HELIUM

As we have said, atoms that interact strongly with h
lium acquire shells having the structure with attraction, a
the structure should not change much when the cluste
immersed in liquid helium. Nevertheless, the solution of t
problem is of definite interest in connection with the ex
tence of effects of an external pressure. It also becomes

FIG. 8. Dependence of the radial delocalization parametera ~1! and and the
lateral delocalization parameterb ~2! on n for a XeHen cluster. For compari-
son, the delocalization parameter in liquid helium~3! is shown for the same
value of the interatomic distance as the value ofd for the givenn. Also
shown are the radial delocalization amplitudes~4! and ~5!, found in the
approaches based on Eqs.~12! and~14!, respectively. The horizontal straigh
line corresponds to the delocalization in liquid helium atP50.
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sible to treat another limiting case of shells with repulsio
which, as we have said, can exist only in the presence
surrounding liquid.

The continuum description of liquid helium as a qua
tum liquid, based on its known equation of state, in princip
enables one to formulate and solve the problem of the
havior of an isolated atom in liquid helium. However, th
density distribution thus obtained is more a description
liquid helium perturbed by the presence of an impurity in
rather than the desired description of an impurity ato
whose state is perturbed by a helium environment. From
standpoint the main shortcoming of the continuum appro
and, foremost, of the density-functional method is that, ev
through the kinetic energy is taken into account, it still ca
not give the energy spectrum of the shell in explicit form.
the same time, it is perfectly obvious that, for example,
optical transitions in an impurity center surrounded by
rather stiff helium shell, what will be primarily excited ar
not the states of bulk helium~phonons, rotons, etc.! but
rather various vibrations and rotations of this shell. Attem
to describe these vibrational motions in terms of mechan
vibrations of a ‘‘bubble’’13,27 for shells having the structure
with attraction can scarcely be fruitful, if only because of t
aforementioned negativity of the ‘‘coefficient of surface te
sion.’’ In this case we will therefore use an approach ba
on an explicit analysis of the interatomic interactions. Su
an approach is justified simply by the fact that the numbe
He atoms in the layer nearest to the impurity is not ve
large. It is therefore of interest to analyze whether there
exist effects associated with the discrete nature of the e
ronment, when the average number of helium atoms in
shell jumps rather than changing continuously as the exte
conditions vary.7!

In this regard the continuum approach has, in princip
another important shortcoming, particularly for describi
atoms that interact strongly with helium—both on account
the larger localization of the He atoms surrounding them a

FIG. 9. Analytical model. The dependence of the energy of an impuri
helium cluster on the the parameterg for m55 in the absence~1! and
presence~2,3! of the contribution of the energy of zero-point radial mod
for Re5r e ~2! andRe50.9r e ~3!.
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also on account of their smaller number. In the continu
approach one essentially assumes that the quantum del
ization of helium is so large that a spherically symmet
helium environment is always maintained around an im
rity center. However, the correlations of the relative po
tions of the helium atoms in the shell with a definite and n
very large radius, which do not allow the atoms to approa
to arbitrarily small distances from each other, means t
there are certain geometric limitations. In other words, fo
given number of helium atoms in the shell, it is in gene
impossible to cover the sphere in such a way that every
lium atom would have the optimum number of neighbors
the optimum distances. An exception are the magic numb
corresponding to regular or semiregular polygons. Theref
in the general case a spherically symmetric helium distri
tion arises in the shell around a spherically symmetric ce
only on average, on account of the rotation of the energ
cally preferred spherically asymmetric configuration. In
approach based on analysis of atom–atom interactions,
important circumstance can in principle be taken into
count. Nevertheless, in the present paper we have for
plicity taken into account the He–He interaction in the sh
on average, i.e., we have limited consideration to the sph
cally dominant case. This means that we are neglecting
influence of magic occupation numbers on the stability of
shell and also the geometric factors of the ‘‘instantaneou
deviation of its shape from spherical, the inclusion of whi
can lead to changes in both the effective numbersm of he-
lium atoms in the shell and also degree of radial delocal
tion.

Therefore the results obtained in the continuum
proaches and by the method used in the present paper sh
be regarded as qualitative.

Keeping this in mind, let us consider the interaction e
ergy of an impurity center with liquid helium~including the
presence of an external pressureP) in the following approxi-
mation. We separate out the layer of then nearest helium
atoms and treat them in the same manner as for an iso
cluster of ImHen . The interaction of the ImHen cluster with
the surrounding helium is governed by pair interactions
atoms of the shell with the next-nearest layer, which con
of nv helium atoms, and also by the residual van der Wa
interaction of this second layer with the impurity center.
the same time, because of the small influence of the impu
center on this helium layer and the next, one can neglect
difference of the properties of the helium in this region fro
those of liquid helium. The total energy of a cluster can
written as

EIm~R,n!5E~R,n!2nm~P!1S~R,n!1PV, ~22!

where the first term describes the energy~12! of an isolated
cluster, the second takes into account the change of
chemical potential of the system whenn atoms of the liquid
are incorporated in the first shell of the cluster, the third
the interaction of the cluster with the liquid helium lay
surrounding it~which is analogous to a surface energy!, and
the last term is the work done by the pressure forces.
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quantity m(P)5«(V(P)) is specified by the equation o
state~10! of liquid helium, whereV(P) is implicitly deter-
mined by the equation2P5]«/]V.

The number of atoms in the second layer is determin
by its thickness and the outer radius of the helium shell. T
thickness of the spherical layer, in view of its large radiu
will be taken to be the same as for a plane layer: 2r s(P)
5V(P)/S(P), whereS(P) is the area per helium atom i
the surface layer. For the six neighbors in close-packed st
tures one hasS(P)5(A3/2)@V(P)A2#2/3. In this case for
P50 the value of 2r s , which is equal to 3.2 Å, is close to
the distance between the positions of the first and sec
maxima for the radial distribution function of liquid
helium,26 and also for the radial distribution function of he
lium around an impurity center~see Fig. 6!.

The change in the radius of the inner shell with press
is taken into account implicitly in the process of optimizatio
of the energy of the system, and we therefore ha
R1r s(0) for the outer radius of the shell. Then

nv5
4

3
p

@R1r s~0!1r s~P!#32@R1r s~0!#3

V~P!
,

and the contribution tox corresponding to the interactio
with the impurity center is

nvEImHe~R1r s~0!1r s~P!!. ~23!

The interaction energy between the helium atoms of
first and second layers is determined by the average num
Ms of van der Waals bonds that arise and is equal to«HeMs .
The number of bonds is proportional to the number of ato
in the adjacent layers. The coefficient of proportionality
equal to 3 forR→` on considerations of close packing. F
finite R the condition that the number of bonds be indepe
dent of the method of counting them~whether by proceeding
from the number of atoms in the inner or outer layer! implies

Ms5nS 31
6

R1r s~0! D
or

Ms5nvS 32
6

R1r s~0! D .

The energy expended on the formation of the surfa
of a cavity of radiusR1r s(0) ~accommodating an impurity–
helium cluster ImHen) in liquid helium is equal to
s4p@R1r s(P)#2. Taking this energy into account, we ge

S~R,n,P!5nv~P!EImHe~R5r s~0!1r s~P!!

1nS 31
6

R1r s~0! D ẼHeF r e

2r s~0!

r s~0!1r s~P!G
1s4p@R1r s~P!#2, ~24!

where the coefficient of surface tension was taken as 0.
K/Å2, which is the theoretical value atT50,11 and we have
assumed that the change in distance between interacting
lium atoms of the first and second layers is proportional
the distance between layers,r s(0)1r s(P).

The last term in Eq.~22! can be written as
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4p

3 S R1
r e

A6
D 3

P. ~25!

Thus the problem of finding the energy of an impurity im
mersed in liquid helium and the structure of its helium sh
reduces to one of minimizing the energy described by
~22! together with~12!, ~24!, and~25!:

]EIm

]R
50;

]EIm

]n
50.

Now it is also possible to describe the change in
properties of the helium shell around an impurity center
der the influence of the external pressure. This chang
determined not only by the contribution of the work pe
formed by the pressure forces but also by the pressure
pendence of the properties of liquid helium itself,m(P) and
S(P). Since this problem can be solved only numerically,
us give the results for two typical examples: Cs, which is
atom that interacts most weakly with helium, and N, whi
interacts most strongly with helium~among those listed in
Table I!.

It should be noted, however, that in the simplified a
proach taken here, the kinetic energy of the helium envir
ment is taken into account effectively through a parame
zation of the He–He interaction according to the equation
state of liquid helium. Therefore, for the structures with
pulsion this approximation does not lead to serious error.
the structures with attraction, however, the appreciable ra
localization makes it necessary to introduce a correction
the increase in energy of the zero-point radial modes. H
ever, the formal procedure of adding up the total energy
the zero-point radial modes, which gives a fair result fo
XeHen cluster, has a lower accuracy in the case of an atom
liquid helium on account of the influence of the helium e
vironment on the frequency of the radial modes.8!

Since for structures with attraction the correction for t
vibrational energy does not alter the geometry of the sh
we will omit it entirely for the examples considered below

Nitrogen atom in liquid helium. The calculations whose
results are shown in Figs. 10–14 were done on the bas
expression~22! for the energy for the He–N pair potentia
which is specified in the form of a generalized Morse pot
tial:

UNHe5DNHeM S Q,
R2Re

Re2R0
D ,

M ~Q,x!5QS Q

Q11D ~Q11!x

2~Q11!S Q

Q11D Qx

,

whereD533.2 K, Q50.7453,Re53.441 Å; R053.083 Å,
which was obtained using a specially developed extrap
tion procedure with the use of the known potentials
He–Ne, He–F, and He–0.28–30

It is seen in Fig. 10 that a nitrogen atom in liquid heliu
forms around itself a structure with attraction. As expect
the structure of the cluster does not change greatly when
immersed in liquid helium. For comparison, let us give t
characteristics we calculated for the optimum shell of a
ll
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trogen atom in an isolated cluster:R* 53.54 Å,d* 53.36 Å,
and n* 515. For a nitrogen atom in liquid helium Figs. 1
and 12 yieldR* 53.52 Å, d* 53.35 Å, andn* 515. It is
natural to expect that the differences will also be small
other impurity atoms which interact strongly (g@1) with
helium. In this case the distances between helium atom
the shell are shortened in comparison with the distances
tween He atoms in liquid helium~3.8 Å! at the solidification
pressure. This raises the question of whether an analog
phase transition exists in the shell~corresponding to a
liquid–solid phase transition in the bulk!, where the lateral
delocalization of the helium atoms decreases abruptly,
that an additional number of helium atoms can fit in t
shell. This transition could also occur forPÞ0, and then
instead of the slight shortening ofd with increasingP ~Fig.
10! there would be a downward jump ind. However, this
question requires a special analysis beyond the scope o
present paper.

FIG. 10. RadiusR of the shell and distanced between helium atoms in it
versus the numbern of He atoms in the nearest-neighbor environment o
nitrogen atom immersed in liquid helium (T50). The solid curves are for
P50, and the dashed curves forP525 bar. The horizontal straight line
correspond to equilibrium distancesRe andr e for the N–He and He–He pair
potentials, respectively.

FIG. 11. Energy of a nitrogen atom in liquid helium versus the numbern of
He atoms in the nearest layer.
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It follows from Fig. 12 that for atoms that bond strong
with helium the difference in energies for shells with diffe
ent numbers of helium atoms, as a rule, is substanti
greater than the typical temperatures at which experim
are done. However, for the particular case of the N at
there are two shells, containing 15 and 14 He atoms, wh
are close in energy~3 K!. Since they nevertheless differ i
terms of the N–He distance, this should give rise to a dou
structure in the optical spectra; the relative intensity of
components of this doublet should be a strong function of
temperature and~as can be deduced from Fig. 13! pressure.
Moreover, it is seen from the same figure that for the p
ticular case of N atoms a change in pressure over the ra
0–25 bar does not lead to a change in the number of
atoms in the shell, although from theE(P) curves for differ-
entn one can discern a tendency for the number of atom
the shell to decrease as the external pressure increases

FIG. 12. Nitrogen atom in liquid helium. Effective potentials for shells w
different n at P50.

FIG. 13. Pressure dependence of the relative energy of a nitrogen ato
liquid helium ~as compared to the energy of a system of optimum com
sition n* 515) for different occupation numbersn of the He shell;P is the
external pressure.
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As can be seen in Fig. 14, the contribution of the ene
S to the total energy is extremely small. Furthermore,
only contribution to the energy that actually depends on pr
sure~linearly!! is the work of the change in volume, whic
even at high pressures is small compared to the total ene
From an energy standpoint the structure under discussio
thus a practically incompressible ball. The strong binding
the helium atoms in the shell to the central atom justifies
neglect of the exchange interaction with the environment,
at the same time and for the same reason, one expec
larger manifestation of ‘‘magic number’’ effects in the occ
pation number.

A cesium atom in liquid helium. The calculation was
done using a Cs–He pair interaction potential in the form
a Lennard–Jones potential with the parameters indicate
Table I. Unlike the case of an isolated CsHen cluster, a sta-
tionary spherical helium shell does exist around a Cs atom
liquid helium, since the radiusR of the shell cannot increas
without bound even at zero pressure. However, the total
ergy of the shell in this case is positive~see Fig. 15!, reflect-
ing the fact that cesium is unwettable by helium. As we s
from Fig. 16, the structure of the environment correspond
the case of repulsion, and therefore, counterintuitively,
radius is smaller than the equilibrium radius for the Cs–
pair potential.

The distancesd between helium atoms in the shell a
found to be in the neighborhood ofr e over a wide range of
values of n, including the very gradual minimum on th
curve ofE versusn ~Fig. 15!. To draw more definite quali-
tative conclusions aboutd in the case of atoms lying on
curvilinear surface and in view of the systematic errors of
model, we will compare these distances to the distances
tween helium atoms in the shell for Im–He atP50. For
structures with attraction, for which the distancesd are
strongly shortened in comparison withr e , these refinements
do not alter the qualitative conclusions. The approach u
here gives an optimum value ofn512 for the helium envi-
ronment, in complete agreement with the basic assumpti

in
-

FIG. 14. Pressire dependence of the different contributions to the tota
ergy Etot of a nitrogen atom in liquid helium;P is the external pressure.
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and a valued53.84 Å, which turns out to be smaller tha
d~He–He! for the optimumn551 ~see Fig. 16!. At the same
time, the area per helium atom in the shell~14.0 Å2! is al-
most exactly the same asS(0)513.99 Å2, and the average
volume per He atom in He12, which is equal to 47 Å3, comes
out greater thanV(0).9!

A distinctive feature of the system under study is t
small (;0.1 K! energy difference of shells containing diffe
ent numbers of helium atoms~see Fig. 17!. Here, as can be
seen from Fig. 18, the radius of the shell varies noticeably
n changes: indeed, the data of Ref. 12 suggest that
change in the Cs–He distance from 7.2 to 6.6 Å under
influence of an external pressure leads to a shift of the s
tral absorption band by 400 cm21. This means that for
DR>0.02 Å one can expect an experimentally measured
shift of 10 cm21. The results,R* 57.36 Å and a value of 132

FIG. 15. Energy of a Cs atom in liquid helium versus the number of ato
in the helium shell surrounding it (T50). The solid curve is forP50; the
dashed curve forP525 bar. The arrows indicate the positions of th
minima.

FIG. 16. Cs atom in liquid helium. The radiusR of the shell and the distance
d between helium atoms in it as functions of the number of atoms in
shell. The solid curves are forP50; the dashed curves are forP525 bar.
The horizontal lines are the equilibrium distancesRe for a Cs–He pair
potential and the distancede between He atoms in the shell for He–He.
s
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K for the energy of a Cs atom in liquid helium, are in goo
agreement with the data of a more complicated calculatio
the ‘‘bubble’’ model,12 which gives 7.19 Å and 130 K. How
ever, these binding energies differ from the result of a cal
lation by the density-functional method, which gives 84 K9

It is extremely remarkable that, in spite of the significa
decrease in the radius of the shell with increasing press
the number of helium atoms in it decreases so strongly in
process that the distance between helium atoms even
creases somewhat~see Fig. 19!. Thus the density of helium
in the shell even falls off somewhat with pressure; this is
striking and fundamental difference from the case of ato
that interact strongly with helium~cf. Fig. 10!: for Cs atoms
the shell is ‘‘liquid’’ and it only becomes more ‘‘liquid’’ as
the pressure is increased! This result is a qualitative con
quence of the fact that as the pressure increases, the he
approaches closer and closer to the center of the Cs a
where there is ever-increasing repulsion. Therefore in
region the average potential energy of the helium increa

s

e

FIG. 17. Cs atom in liquid helium. The effective potentials for shells w
different n at P50.

FIG. 18. Cs atom in liquid helium. The radiusR of the shell as a function of
the external pressure. The vertical segments denote the pressures at
the energy of the states of shells with adjacentn become equal (T50).
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with increasing pressure at a rather high rate, higher than
growth rate of the chemical potential of liquid helium.

The pressure dependence of the different contributi
to the binding energy of a Cs atom with the surround
helium ~Fig. 20! has practically the same functional form
for a nitrogen atom in liquid helium~cf. Fig. 14!, but here, in
view of the larger volume of the shell, the term correspon
ing to the work of creating the cavity is predominant. Th
means that even a structure with repulsion is only sligh
compressible~although in this case one can already notic
deviation from linearity on the curve ofPV versusP).10!

This is a fundamental and important difference in t
behavior of the helium environment of impurity atoms
liquid helium as compared to an easily compressible e
tronic ‘‘bubble.’’ In the latter case the volume changes by
factor of seven as the pressure is raised from 0 to 25

FIG. 19. Cs atom in liquid helium. The He–He distance in the shell a
function of the external pressure. The vertical segments denote the pres
at which the energies of states of shells with adjacentn become equal
(T50).

FIG. 20. Pressure dependence of the different contributions to the
energyEtot of a Cs atom in liquid helium;P is the external pressure.
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whereas for Cs the change is only 25%. The low compre
ibility of the ‘‘bubble’’ was noted back in Ref. 12.

Finally, while correctly describing the interaction on th
whole, the chosen model may be inaccurate in the desc
tion of the details. For example, because of exchange w
the environment the occupation numbers of the shell may
be good quantum numbers describing the individual quan
states, as illustrated in Fig. 17, and the true state of low
energy will be a superposition of states with definiten,
coupled with the He volume. However the conclusion tha
temperatures of the order of 1 K there are several energ
cally accessible states characterized by different aver
numbers of helium atoms in the shell, and the conclusion
these numbers decrease with increasing pressure, are
doubtedly valid. The details of the energy spectrum of th
states, in view of the possibility of more significant effects
asphericity of the shell and the existence of ‘‘magic’’ occ
pation numbers, cannot be calculated anyway without c
structing suitable models.

In conclusion it should be noted that the two types
structures of the helium environment of impurity atoms
condensed helium, which can be classified as structures
repulsion ~‘‘bubbles’’! and structures with attraction
~‘‘snowballs’’!, should behave in fundamentally differen
ways when4He is replaced by3He. Indeed, while the struc
ture with attraction should swell substantially when such
substitution is made, and its energy should increase,
structure with repulsion, on the contrary, should decreas
energy. Since there is no doubt that in any case the op
spectra of atoms in condensed helium should be different
4He and3He, this effect can be used for an experimen
determination of which type of structure is formed in heliu
by a given impurity, and what the characteristics of th
structure are. Suppose we do an experiment in liquid3He
with a small~less than 1%! admixture of4He. Then in the
case of a structure with attraction the optical spectrum w
be that which is characteristic for4He ~since those atoms a
sufficiently low temperature displace the3He atoms from a
single-layer shell around an impurity!, while for a structure
with repulsion the admixture will have no effect on the spe
trum. Conversely, the optical spectra of a structure with
pulsion, unlike those for a structure with attraction, will b
sensitive to small admixtures of3He in 4He, since in them
the3He atoms will displace4He atoms from the shell. More
over, by studying how the spectrum is transformed as a fu
tion of the amount of the admixture of whichever isotope
helium at different temperatures, one can determine the e
librium constant of a process of the type

Im4Hen1n3 He�Im3Hen1n4 He

and, hence, the change in enthalpy and entropy of the st
ture in the case of total~or partial! isotopic substitution.

We should point out that such a study has already b
published. For example, in experiments31 with fine droplets
of helium doped with Cs, the identical nature of the optic
spectra in4He and3He drops with 60 atoms of4He added to
a drop containing around 104 atoms of3He was explained by
a 4He ‘‘screening’’ of the impurity molecules from the3He.
On the other hand, theoretical calculations32 show that alkali
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metal atoms have larger binding energies with3He than with
4He. This result is obvious from the standpoint of our mod
since, because of the lower effective energy in3He in com-
parison with4He the parameterg will be noticeably larger
for the light isotope of He at the same value ofU. Thus for
impurity centers that interact weakly with helium, the r
placement of4He by 3He can lead to a transition from th
regiong,gcr to the regiong.gcr .

Experiments with single-layer clusters of a single is
tope of helium immersed in a liquid of the other isotope a
also attractive from the standpoint of simplicity of their th
oretical interpretation: for them one can reliably neglect
effect of exchange of helium atoms between the shell and
bulk of the liquid.

Using the results obtained in this study, let us analy
the published experimental data and try to predict some
fects due to the specific combination of continuous and
crete properties of the helium environment of impurities
liquid and solid helium.

The structure and energy spectrum of the helium en
ronment of impurities in liquid and solid helium determin
such properties as the optical, ESR, and NMR spectra of
impurity, the reaction to changes in the external parame
~which may be of the nature of a phase transition!, the spe-
cific heat and thermal conductivity of the shell, and its ma
netic polarizability~in the case of3He). Finally, they play a
decisive role in the description of an impurity–helium so
phase~IHSP!,6 the very existence of which is due w th
localization of the helium around a heavy impurity intr
duced in it. On the other hand, in the ‘‘dry’’ state practica
all the helium in the IHSP is partially localized, and therefo
the properties listed above, which are characteristic of
ensemble of He atoms adjacent to the impurity, are in
case macroscopic properties of the sample. In particular
an IHSP one expects anomalously large values of the the
conductivity and magnetic polarizability~in the case of
3He).

OPTICAL SPECTRA

The optical spectra of impurity particles in condens
helium have been studied the most. Here we do not inten
present a complete analysis of the results that have b
obtained~for this we recommend the recent reviews!,1–3 but
we will briefly summarize the main conclusions.

As a rule, the observed optical transitions of alkali a
alkaline-earth metals are rather wide~1–10 nm! and practi-
cally structureless bands which are strongly blue-shifted
the absorption spectra relative to the fundamental transit
The emission lines are shifted considerably less~one can
observe a blue rather than red shift!, have a more symmetric
shape, and are substantially narrower. This behavior has
successfully explained by a combination of a vertical ph
totransition and large changes in the size of the cavity s
rounding impurity atom upon its electronic excitation. Aft
the absorption of a photon the radius of the cavity is sma
than the equilibrium radius, i.e., the system of atom p
surrounding helium has more than the equilibrium ener
During emission the system undergoes a vertical transi
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from the equilibrium state for the excited atom to a state w
a cavity radius larger than the equilibrium radius of the u
excited atom, and it is therefore characterized by a sma
perturbation of the electronic state of the central atom1 in
view of the difference in the steepness of the repulsive
attractive branches of the Im–He potential. Broad, structu
less lines in a spectrum are not very informative, and
most noteworthy fact is a strong pressure dependence o
spectral shift of the absorption and emission lines. In b
cases the lines are blue-shifted, the shift being consider
stronger for the absorption band than for the emission ba
The pressure dependence of the bandwidths is small an
approximately the same for the absorption and emiss
bands. The experimental results12 for Cs and Rb are shown
in Fig. 21.

For atomic transitions involving the participation o
electrons from the inner shells, such as in Eu~Ref. 33! and
Tm ~Ref. 34!, which are characterized by small changes
the van der Waals dimensions of the atom, the correspon
shifts and broadening of the spectral lines are substant
smaller, as one would expect. In addition, besides the st
tureless band the spectra have a rather narrow line~on the

FIG. 21. Experimental plots12 of the energy of the resonance transitio
relative to the energy of the transition in vacuum in the emission~a! and
absorption~b! spectra of Cs (j) and Rb (d) atoms in liquid helium versus
the external pressure.
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red side in absorption!, which the authors call the zero
phonon line, by analogy with the spectra of matrix-isolat
particles, in contradistinction with the wide~and sometimes
quite remote! band which is designated as the phonon win

A similar structure is possessed by the individu
electronic–vibrational lines in the optical spectra of m
ecules implanted in liquid helium.35,36 Moreover, the so-
called phonon wings exhibit a certain structure which cor
sponds in energy to the collective excitations in the bulk
liquid helium ~maxons, rotons! and, for the experiments o
small droplets of helium, ripplons.34–38

For an electronic ‘‘bubble,’’ in view of its large radius
the short-range dispersion forces of attraction do not play
important role, and the interaction with the surroundings d
ing an optical transition can be can be reduced to hi
frequency ‘‘breathing’’ oscillations of the bubble.1 To a cer-
tain degree the alkali-metal atoms during an opti
transition can be regarded as coupled with the volume
liquid helium surrounding them. However, as is clear fro
what we have said, atoms that interact more strongly w
helium are surrounded by a stiff elastic shell, the charac
istic frequencies of which are substantially higher than
frequencies of excitations in liquid helium. Therefore, the
atoms are more naturally considered as a comparatively
~in the sense of the intermode vibrational interaction and
anharmonicity of the potential! van der Waals molecule
‘‘dissolved’’ in liquid helium. Consequently, for bound
bound optical transitions the shape of the spectral b
should be determined primarily by the vibrational–rotation
spectrum of the quasimolecule ImHen . Then, of course, the
shape of the individual components will be affected by b
the softness of the core of the molecule and exchange o
atoms in the molecule with the surroundings and by
weaker interaction with the modes of liquid helium.

It should be kept in mind, however, that the characte
tic frequencies of the vibrations of stiff helium shells ha
values of approximately 10–30 cm21, whereas the total bind
ing energy of an impurity center with liquid helium is 100
300 cm21. Since these shells are also very incompressi
only a small change in the equilibrium radius of the sh
upon electronic excitation of the central atom is needed
order for the corresponding electronic transition to beco
bound–free, the final state of which being determined ma
by the bulk properties of liquid helium. Unlike the case
diatomic molecules,39 in polyatomic molecules the boundar
between bound–bound and bound–free transitions
smeared, since the ‘‘dissociation energy’’ is different for d
ferent types of vibrations. Nevertheless, it cannot be m
smaller than the energy of total decomposition of the
cluster into atoms, since vibrations in which less than hal
all the atoms actively participate should have low Franc
Condon factors. Of course, the structure and mechan
properties of the nearest-neighbor environment should h
some influence on the shape of the spectrum of bound–
transitions, but the general features of the spectra of th
transitions should be similar to those for transitions in alka
metal atoms.

For systems with a stiff helium shell the number of H
atoms in the shell is fixed. Since the energies of excitati
d
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of the shell are@kT, we can assume without restricting th
generality that the system is initially found in the vibration
ground stateu i ,0,0, . . . ,0&. Then, neglecting the difference o
the vibrational frequenciesvj of the lower and upper terms
we have the following expression for the transition amp
tudeAi f 5^ f ,k1 ,k2 ,k3 , . . . ,knuDu i ,0,0,0, . . . 0&:

Ai f 5Di f )
j 51

n

^kj u0&,

whereDi f is the electronic matrix element, and the Franc
Condon factors are completely determined by the displa
ments of the minimum of the upper term relative to the mi
mum of the lower term along thej th vibrational coordinates
DRj ~in units of the amplitude of the corresponding zer
point vibrations!:

^kj u0&25e2~DRj !
2 ~DRj !

2kj

kj !
.

In the harmonic model, only the even modes~approximately
one-half of all modes! have nonzero displacements. The
with allowance for the widthsg j of the vibrational states, we
have the following form of the spectrum:

I i f ~v!5Di f
2 expF2(

j
~DRj !

2GFS~v1ve ,g0!

1(
j

S~v1ve6v j ,g j !~DRj !
21•••G , ~26!

whereve is the energy of the electronic 0–0 transition, t
plus and minus signs denote absorption and emission,
spectively, and the function

S~v,g!5
1

gAp
expS 2

v2

g2 D
describes the Gaussian shape of an individual componen
the spectrum. In view of what we have said,g0!g j , and the
0–0 transition is therefore distinguished among the boun
bound transitions by its narrow linewidth, and it can the
fore be detected against the background of the wide spe
line even in cases when it has a small fraction of the inten
of the transition.

For impurity atoms that interact strongly with helium, a
a rule~inert-gas atoms are a special case!, the optical transi-
tions do not change the principal quantum number of
outer electrons. Therefore the possible changes in the ra
of the helium shell upon excitation are small, and in view
the rather appreciable amplitude of the zero-point vibratio
of the He atoms (;0.8 Å!, the parametersDRj turn out to be
small, and the shape of the spectrum can be adequately
scribed by just the leading terms in formula~26!.

In this case the structure of the spectrum qualitativ
comprises the narrow line of the 0–0 transition and an
tended structure in the form a long shoulder on the blue s
for absorption and on the red side for emission. The exten
the shoulder is equal to the maximum vibrational frequen
of the helium shell, which lies in the interval 20–40 K, a
can be estimated from the calculated frequencies of the ra
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zero-point modes. The possible errors due to the influenc
the interaction of the radial modes and anharmonicity effe
have different signs, and this improves the accuracy of
estimate. The lateral vibrations of the helium shell cannot
found in the framework of the models used here. It can
assumed, however, that their average energy is less tha
energy of the radial modes and that their interaction
greater than the interaction of the radial modes. In the lim
ing case this makes the energy of the individual modes c
to zero ~as, e.g., the unhindered pseudorotations of cer
groups of atoms in the helium shell!.6 Thus the lower bound-
ary of the spectral structure can lie quite close to the line
the 0–0 transition, and in the limit it can even coincide w
it. The number of lateral modes is twice the number of rad
modes, and the effect of energy transfer to the medium
them is expected on geometric grounds to be lower. Th
fore, in the general case one expects that the shoulder
deviate appreciably from the main line. We have obser
just such a structure of the line for the2D –4S) transition in
atomic nitrogen.40,41

The spectra obtained for Eu~Ref. 33! and Tm~Ref. 34!
atoms immobilized in liquid helium qualitatively confirm
the arguments presented above. Here the finite~and
temperature-dependent! width of the narrow line interpreted
as the 0–0 transition is explained by the finite time for e
change between a helium atom belonging to the shell and
surrounding helium. The wide component can be interpre
as a pseudomolecular band~with a possible contribution o
bound–free transitions for excitations of optical electro
these can be interpreted provisionally as a phonon wing!.

Unfortunately, there are no published data on the spe
of heavy inert-gas atoms immersed in liquid helium. Mea
while, in view of the fact that the size of such atoms chan
strongly upon transition from the ground state to the fi
excited state, all the vibronic transitions should be boun
free.

As we have said, for alkali-metal atoms, which for
repulsion structures in helium, the observation of quasim
lecular structures in the spectrum is very improbable, a
one expects that the spectrum will reflect only processe
energy dissipation into the medium. Apparently the m
probable process is an optical transition with several He
oms being ejected from the shell into the medium or co
bining with the shell. In this case one expects more or l
symmetric and strongly broadened spectral lines. Anot
probable energy dissipation process is the excitation of
brations of the surface of the helium layer adjacent to
impurity. The energy of such vibrations can be estima
using the following model. We assign to each atom of
surface layer a radial Gaussian smearing function

1

aAp
expF2

~r 2R!2

a2 G
~the delocalization of the helium atoms in the lateral dire
tion varies only slightly with the radiusR, by virtue of of the
large value ofR for centers that interact weakly with helium!
and the corresponding kinetic energy\2/(4mHea

2). Then,
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taking into account the dependence of the average area o
surface layer on the smearing, we find the total energy
atom for the system:

E~a!5
\2

4mHea
2 1

4ps

n S R21
a2

2 D ,

where R is the given radius of the shell,v is its surface
tension, andn is the number of atoms in it. Optimizatio
of the energy gives the optimum valuea
5@\2sn/(8pmHe)#1/4. Assuming that it is related to the vi
brational energy by the same law as for a harmonic osc
tor, we obtain the following characteristic frequency:

v5\S 8ps

mHen
D 1/2

'S 100

n D 1/2

K.

Thus the frequencies of the surface modes are quite l
and if this kind of energy dissipation is predominant, t
absorption spectrum will be an asymmetric broad line wit
more or less noticeable peak of the adiabatic transition on
red wing~especially in the case of large displacements of
maximum relative to the energy of the adiabatic transitio!.
For the emission spectra the peak of the adiabatic trans
will be observed on the blue wing.

In general, the spectra of alkali-metal atoms should
extremely smeared and structureless on account of inho
geneous line broadening, since at room temperature the
occupation of a large number of states having nearly eq
energies but different numbers of He atoms in the near
neighbor environment and, hence, different structures.

Both types of structures behave as relatively incompre
ible objects in a readily compressible liquid~see the energy
diagrams in Figs. 14 and 17!, but for the structure with re-
pulsion the object is the atom itself, while for the structu
with attraction it is a stiff helium shell. Therefore the me
surements of the shifts of the absorption and emission ba
can be given a simple physical interpretation without requ
ing special calculations. For such systems the following
pressions can be written, to the leading quadratic term in
expansion of the energy of the poorly compressible cente
powers of its volume, for the two states participating in t
optical transition:

E15E1
01

k1~P!

2
@V2V1

0~P!#21VP,

~27!

E25E2
01

k2

2
@V2V2

0~P!#21VP,

whereE1
0 and E2

0 are the changes in energy of the atom
states 1 and 2 when it is put into helium. By minimizing th
energy and neglecting the terms quadratic in the pressure
the pressure dependence of all the parameters~since the ex-
perimental curves are, to good accuracy, linear inP), we can
write the energies of the absorbed~transition 1→2) and
emitted~transition 2→1) photons,

hnabs[DE125E2uV5V1~P!2E1~P!,

hnem[DE215E2~P!2E1uV5V2~P!

in the form
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DE125DE12
0 1

k2

2
~V2

02V1
0!21

k2

k1
~V2

02V1
0!P,

DE215DE12
0 2

k1

2
~V2

02V1
0!21

k1

k2
~V2

02V1
0!P,

whereDE12
0 5E2

02E1
0 is the difference of the transition en

ergy for the equilibrium state of the system relative t
vacuum, andVi

0[Vi
0(0), ki[ki(0). Writing the experimen-

tal dependences in the form

DE12
obs5a121b12P, DE21

obs5a211b21P, ~28!

we can use Eqs.~27! to relate the experimentally observab
quantities with the characteristics of the system:

uV2
02V1

0u5Ab12b21,
k2~0!

k1~0!
5Ab12/b21,

k1~0!5
2~a122a21!

~Ab121Ab21!b12Ab21

, ~29!

DE12
0 5

a12Ab211a21Ab12

Ab121Ab21

.

Analysis of expressions~29! shows that the shift of the ab
sorption and emission frequencies with increasing pressu
always toward the blue if the volume of the excited system
greater than that of the unexcited system,V2

0.V1
0, and to-

ward the red in the contrary case. If the system has a gre
stiffness in the excited state than in the ground statek2

.k1), then the pressure dependence of the absorption
quency has a larger slope than does the emission frequ
(b12.b21), and vice versa. Finally, if forP50 the absorp-
tion and emission frequencies are blue-shifted relative to
transition frequency in vacuum, then the energy of the o
cal adiabatic transitionDE12 is greater than in the vacuum
while if both frequencies are red-shifted, thenDE12 is lower
than in the vacuum.

This last statement is extremely important, since up
excitation of an atom both its polarizability and its size us
ally increase simultaneously. Therefore the depth of the
tential well is determined by the competition of these tw
antagonistic factors, and the sign of the change of energ
the adiabatic transition in a medium is not obvious.

Our analysis of the available experimental data did
reveal any inconsistencies with our proposed treatm
Moreover, when for the Cs atom the experimental valu
characterizing the dependence of the transition freque
shifts on the external pressure from Ref. 12 are put into~29!,
the resulting values of the parameters are close to those
culated by those same authors using a complicated quan
mechanical modeling:DE0590 cm21, DV51400 Å3 ~Ref.
12!, andE05110 cm21, DV51000 Å3, respectively. In ad-
dition, the stiffness of Cs in the ground state is close to
value that we calculated here.

For shells surrounding atoms that interact strongly w
helium the simple method of analysis proposed here@rela-
tions ~28! and ~29!# can still be applied, provided that th
observed frequency shifts under external pressure are c
parable to the shift arising when the atoms are immerse
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liquid helium atP50 and that they are linear inP. Here the
noticeable overestimate of the volumes calculated from
frequency shifts as compared to the known van der Wa
volumes of the atoms can serve as proof of the formation
a stiff helium shell around the impurity.

As we have said, the energy difference between heli
clusters containing different numbers of helium atoms a
therefore having different sizes is extremely small for
atoms. This means that at the typical experimental temp
tures, 1.3–1.7 K, there is appreciable inhomogeneous br
ening of the spectral lines. In addition, there is also a la
homogeneous broadening due to the exchange of helium
oms between the shell and the next layer. Each type
broadening should have a specific and strong dependenc
temperature.

The most important conclusion of a general nature is t
when atoms are isolated by condensed~liquid or solid! he-
lium, one would never expect to see very narrow spec
lines, even if the transition involves a change in the state
an inner electron and/or is a forbidden transition. Therein
the main difference of a helium matrix from the formally le
inert matrices of heavy rare gases~Rg!, where there are no
broadening mechanisms due to exchange between the a
of the matrix or to the presence of a rotational structure, a
the Im–Rg vibrations have frequencies which are too high
be manifested in the optical spectra.

For this reason, in our experiments40,41 with an
impurity–helium phase containing nitrogen atoms in the4S
ground and2D metastable states, we did not observe abso
tion at the4S–2D transition nor emission from N(2D) atoms
in the absence of a heavy neighbor in a single helium sh
From this we can estimate the width of the 0–0 transition
Dn.1021 cm21. We are also inclined to regard the speci
two-humped shape of the experimentally observed emis
spectrum of metastable atoms N(2D) ~the 2D –4S transition!
immobilized in an impurity–helium phase40,41 ~see Fig. 22!
to be a manifestation of these features. Indeed, as can be
in Fig. 12, nearn5n* the energy difference between stat
adjacent inn is always less than in the case whenn is far
from n* . This feature, of course, exists not only for th
ground state but also for the excited electronic state. In

FIG. 22. Experimental emission spectrum of the2D –4S transition of nitro-
gen atoms stabilized in solidified helium. The arrow indicates the positio
the line of the transition N(2D –4S) in vacuum.
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general case the optimum values ofn* are different for the
helium shell of an atom in the ground state (ng* ) and excited
state (ne* ). Therefore, when the conservation of the value
n in optical transitions, which is a consequence of t
Franck–Condon principle, is taken into account in the c
of ImHen clusters immersed in liquid helium, one would e
pect that there should be two transitions in the spectr
~from the the lowest-energy statesne* and ne* 11 or ne*
21), the difference in the energies of which is mainly due
the different positions of the levels of the system withng

5ne* , ne* 11, ne* 21. Thus it is only in the case of coinci
dencene* 5ng* that one would expect the presence of a n
row line of the 0–0 transition in the optical spectra; oth
wise, even for atoms that interact strongly with helium,
the spectral transitions acquire significant broadening on
count of the coupling of the excited states of the He sh
with the medium.

A particular case is that of molecules immersed in liqu
helium. Here the good quantum numbers are those wh
describe the molecule itself, while the influence of the m
dium can mainly affect the shape of the individual rotation
components.2 Two types of effects can be observed here. T
first of these is due to rotation of the tightly bound heliu
shell together with the molecule and should be manifeste
a decrease of the corresponding rotational constant. The
ond is due to the direct coupling of the vibrations which al
the geometry of the molecule, with excitations in the bulk
the surrounding liquid helium. These vibrations are so po
erful that they can interact not only with phonons but a
with rotons and maxons. Both of these effects have b
observed experimentally.37,38

MAGNETIC RESONANCE SPECTRA

The most interesting feature of the magnetic resona
spectra of alkali-metal atoms implanted in solid helium a
observed by the optical pumping method,31,42 in our view, is
the long relaxation timesT1 andT2, which attest to a weak
perturbation of the magnetic moments by the matrix. It
particularly noteworthy that the pressure-induced transit
of solid helium from the hcp to the fcc phase causes
abrupt increase inT1 and T2 by more than two orders o
magnitude, while only small changes occur in the hyperfi
splitting andg factor. The authors of Ref. 42 attribute th
surprising effect to the higher isotropicity of the fcc phas

It must be kept in mind, however, that the helium sh
around a Cs atom, for example, has an outer diamete
more than 18 Å and is substantially bigger than the latt
constant of solid helium. Therefore, since the occupation
the first shell is determined by the close-packing condit
on a sphere and there is appreciable exchange betwee
helium atoms belonging to the shell and the atoms of
adjacent layer, it is hard to believe that the order in t
adjacent layer would be the same as in the bulk of so
helium. At the same time, it is these first two layers closes
the impurity atom that determine the values of the relaxat
times. It therefore seems to us that the effect obtained in
42 is more likely described by the following treatment. A
we have said, for the Cs atom the shell is always~and more
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so at high pressures! found in a delocalized liquid state
which lends it a high isotropicity. The layer of helium atom
adjacent to the shell is subject to homogenizing van
Waals and exchange interactions with the shell, and it the
fore ‘‘melts’’ a little earlier than the helium in the bulk. In
other words, we are inclined to view the cause of the eff
in question not as a phase transition of solid helium but
the proximity of the system to the melting curve~in the
experiments described in Ref. 42 the distance along the p
sure axis to the melting point~see Fig. 23! was only about
0.2 bar!. This hypothesis can be checked experimentally;
can be seen from Fig. 23, it is sufficient to move along p
2 or, better,3, skirting the bcc phase.

While quite long, the timesT1 and T2 are nevertheless
bounded from above by processes of transition of the hel
atoms from the shell into the adjacent layer:T2 by the
quantum-mechanical exchange, andT1 by the temperature-
dependent process of changing the number of helium at
in the shell.

PHASE TRANSITIONS IN THE SHELL

The regular distribution of helium atoms in the she
makes it possible to treat it as a unified ensemble. In
ensemble two types of phase transitions can, in princi
occur: a transition from the delocalized to the localized sta
which is analogous to a liquid–solid transition in the thre
dimensional case, and an abrupt change in the number o
atoms in the shell, accompanied by a coherent restructu
of the entire ensemble.

The number of helium atoms in the shell~12–60! is
large enough that the phase transition, if there is one, wil
quite pronounced, while small enough that the discreten
of the number of particle participating in it will be clearl
manifested. It is the smallness of the ensemble and the
that the radius of the shell is comparable to an interato
distance that make the effects in question fundamentally
ferent from the now actively studied43,44 phase transitions in
two-dimensional helium ensembles.

For the case of alkali-metal atoms, when the shell h
the structure with repulsion, only transitions involving
change in the coordination numbern can occur. In view of

FIG. 23. Phase diagram of4He. The point 0 corresponds to the condition
of growth of the solid sample, point1 to the conditions of observation o
magnetic resonance in the bcc phase,42 and Figs.2 and 3 to conditions
proposed in the present paper.
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the small energy difference between states with differenn,
only at temperatures of the order of 10 mK can one expe
predominant occupation of one of the states~see Fig. 24!. In
addition, the intensity of the exchange of atoms between
shell and the surroundings fundamentally ‘‘smears’’ the d
ference between the different states of the shell. Such p
transitions can occur for Im3Hen clusters suspended in liqui
helium 4He. Since alkali-metal atoms should draw3He at-
oms toward them from the bulk of the liquid helium, su
objects can be created experimentally.

For atoms around which a structure with attracti
forms, on the contrary, a transition of the liquid–solid ty
should be more the rule than the exception: as the exte
pressure increases, localization of the helium atoms in
shell should be occur considerably sooner than the soli
cation of helium in the bulk. As regards the transitions
volving a change in the number of atoms in the shell,
atoms studied in this paper are not very good choices:
interaction of N and Xe with helium is too strong, and t
transitionn→n21 occurs at very high pressures~see Fig.
16!. Therefore, a special analysis must be undertaken in
der to choose a suitable system for observing this effect

FIG. 24. Effect of pressure on the mean~a! and variance~b! of the number
of atoms in the helium shell surrounding a Cs atom in liquid helium
different temperaturesT, K: 0.01 ~1!, 0.1 ~2!, and 1~3!.
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It should be stressed that the calculations reported h
cannot in any way serve as a quantitative basis for predic
the characteristics of phase transitions or even to prove t
existence in any particular case. It is sufficient to recall t
we have always proceeded from the assumption that
number of atoms can be uniformly close-packed on a sph
in other words, we have neglected the ‘‘magic number’’ e
fect and the deviation of the shape of the shell from sph
cal. Our goal was only to show that phase transitions can
principle occur and to elucidate which systems are m
promising for carrying out the corresponding experiments
this connection it is of interest to analyze how the coher
changes in the structure of the helium shells surround
impurity centers might be manifested in experiment.

First, such transitions should be visible on the curves
the external pressure dependence of the characteristics o
optical spectra of impurity atoms. As experiments show,
spectra are transformed substantially as the pressur
changed from 0 to 25 bar, and here the shift of the spec
line is sensitive to both the radius of the shell and the num
of helium atoms in it. For the typical example of europiu
atoms33 the maximum ratio of the width of the 0–0 transitio
to its frequency shift is around 2%. This means that a ‘‘ste
of height 0.1 cm21 on the curve of the pressure dependen
of the frequency shift of the line would be fully detectabl
and estimates show that the size of the step would be at
an order of magnitude larger than that. The phase transit
should also affect the line shape of the spectral bands.

The relaxation times in the magnetic resonance of pa
magnetic atoms are sensitive mainly to the homogeneity
the environment, i.e., to the degree of localization of t
atoms in the shell and the deviations of the shape of the la
from spherical; therefore transitions of the liquid–solid typ
at least, should be reflected in the ESR spectra.

IMPURITY–HELIUM PHASE

The strongest effects due to localization of helium ato
around impurities should be expected for an impurit
helium solid phase, which owes its very existence to t
localization6 and which consists entirely of localized heliu
shells. For this case one should be able to reliably obse
not only the effects discussed above, but also such spe
properties of localized shells as the specific heat, ther
conductivity, and magnetic nuclear polarizability of3He at
low temperatures,45,46 which would be manifested as macro
scopic properties of the whole sample. Experimentally
impurity–helium solid phase has been obtained for impu
particles such as nitrogen atoms and molecules and for at
of heavy inert gases—neon, argon, krypton, and xenon.
analysis in the present paper confirms the high stability
the helium shells around these particles and an appreci
increase in the degree of localization of the atoms mak
them up. However, the possibility of stabilizing conglome
ated shells requires a special analysis which we are prepa
to do in the near future. Of particular interest is the quest
of whether an impurity–helium phase can exist in3He. As
the analysis presented in this paper shows, the shells
rounding atoms that interact weakly with helium are ev

t
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more stable in3He than in4He, and metastability with re
spect to the formation of metallic clusters may be provid
by the application of high magnetic fields.

The idea of this paper came up as a result of fruit
discussions of the problem with specialists active in
field—J. P. Toennies and A. F. Vilesov~Göttingen!, S. I.
Kanorsky and A. Weis~Bonn!, M. Takami and Q. Hui~To-
kyo!, T. Yabuzaki~Kyoto!, G. Scoles~Princeton!, and G. zu
Putlitz ~Heidelberg!. This study was supported by the Ru
sian Fund for Fundamental Research, Grants Nos. 98
32283 and 99-03-33261.
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** E-mail: as@icp.ac.ru

1!For example, for an electron in a 1s state the introduction of a positively
charged core of an alkali metal atom causes the pair interaction of
neutral system with the He atom to decrease, while in the case of a 1p state
it increases.7 The situation is different in the case of excited states of
atom near the dissociation limit; these are populated in photoabsorp
processes. For them the ‘‘free’’ state of the electron, i.e., an electron
fined within the volume of a ‘‘bubble,’’ is a reasonable zeroth approxim
tion, and because of the strong perturbation of weakly bound and
delocalized states of an optical electron the solution of the problem of
perturbation of an electron ‘‘bubble’’ by a positively charged atomic co
is quite justified.

2!In this regard neutral atoms are fundamentally different from ions,
which the interaction with helium is of a polarizational character and
cays much more slowly with distance (}R24).

3!A direct estimate of the pressure inside the helium shell on the basis o
forces of repulsion between helium atoms is difficult to make becaus
the indeterminacy of the thickness of the shell.

4!For incompletely symmetric modes of the shell the harmonic approxi
tion holds better, since for them there are antiphase radial motions o
He atoms. Therefore the potential energy increases without bound for
positive and negative displacements of the normal coordinate from
equilibrium position. For completely symmetric modes, taking the anh
monicity into account in the approximation of the potential curve by
Morse potential leads only to a small correction, viz., to the zero-po
energyv0(n)/16uE(R* ,n)u, since their frequencyv0(n) is much less than
the potential well depthuE(R* ,n)u.

5!Strictly speaking, one would not expect exact agreement in view of
different statistics of the two quantum liquids, which is not explicitly i
cluded in the model.

6!Interestingly, for XeHen clusters of optimum composition the delocaliz
tion parameters, while being close to those calculated by the den
functional method~see Table III!, have about the same value (a>b) and
are close to the delocalization parameter of liquid helium.

7!The presence of bends has now been observed on the curve of the
the density of helium near its free surface.11,15 In addition, there are oscil-
latory deviations of the binding energy of the helium atom in large clus
from the energy calculated for the model of a homogeneous droplet.

8!In particular, for the binding energy of a Xe atom with liquid helium
gives a value of 490 K, as compared to the value 313 K obtained by
density-functional method.9

9!Thus a more correct assessment of the properties of He in the shell c
made only from the character of the change of its delocalization, wh
reflects the shape and height of the first peak of the radial distribu
function.

10!A similar conclusion can be reached on the basis of the results
density-functional calculation for Na in liquid helium,9 according to
which the chemical potential of Na in liquid helium increases by 25 K
the pressure is raised from 0 to 5 atm. If this is interpreted as a chan
energy due solely to thePV term, we obtain 700 Å3 for the volume
d
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occupied by the Na atom; this is comparable to the volume, 1100 Å3, of a
sphere having a radius equal to the equilibrium distance for the Na
pair potential.
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Influence of Mn concentration on the physical phenomena in the semimagnetic
semiconductor Hg 12x 2yCrxMnySe

V. D. Prozorovski ,* I. Yu. Reshidova, and A. I. Puzynya
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Results are presented from a study of the magnetic susceptibility and electron spin resonance
~ESR! on Cr31 and Mn21 ions in a series of samples of the semimagnetic semiconductor
Hg12x2yCrxMnySe with x50.02 and 0.01<y<0.08. The experimental results show that the
structure of the ESR spectrum and the character of its shift with respect to magnetic
field as the temperature changes depend on the ratio of the concentrations of chromium and
manganese ions, which form two interacting substructures. The observed transition of
Hg12x2yCrxMnySe to a spin glass phase is not related to the distortion of the symmetry of the
crystal lattice. The shared and distinctive properties of the systems Hg12xCrxSe and
Hg12x2yCrxMnySe are determined. ©2000 American Institute of Physics.
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Among the representatives of the semimagnetic se
conductor ~SMSC! class, the broadest spectrum of ne
physical effects have been observed experimentally in
solid solutions Hg12xCrxSe ~Refs. 1–3!. For example, at
liquid-nitrogen temperatures the the Landau energy level
Hg12xCrxSe can exhibit a rather large spin splitting, induc
by sp–d exchange,2 and at certain values of the compositio
x and temperatureT a phase transition to a spin glass pha
occurs in this system. This makes Hg12xCrxSe a promising
material for the creation of infrared sources and detec
that can be tuned by a magnetic field over a wide spec
range, modulators, magnetometers for measuring magn
fields of the order of megaoerstads, and other devices
pable of operating at liquid-nitrogen temperatures. This
enormous practical significance, since similar devices m
from Hg12xMnxTe, Hg12x2yCdxMnyTe, and Hg12xMnxSe
operate at liquid-helium temperatures. In this respect
Hg12xCrxSe system has some advantages over the kn
narrow-gap SMSCs.

According to Ref. 4, the admixture of Mn atoms
Hg12xCrxSe in concentrations small compared to that of
Cr atoms improves the magnetic and electrophysical cha
teristics substantially and changes the defect structure
Hg12xCrxSe. We have not been able to observe the elec
spin resonance~ESR! spectrum of Mn21 ions in the quater-
nary system Hg12x2yCrxMnySe at manganese concentratio
NMn much smaller than the chromium atom concentrat
NCr , and no studies of this system have been done
NCr<NMn . It is therefore of interest to investigate a series
Hg12x2yCrxMnySe samples with different concentrations
241063-777X/2000/26(1)/4/$20.00
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manganese atoms at a fixed concentration of chrom
atoms.

To establish the influence of the manganese concen
tion on certain physical properties of Hg12x2yCrxMnySe, we
have carried out a comprehensive investigation of ESR
the magnetic susceptibilityx in a series of samples of thi
material.

ELECTRON SPIN RESONANCE

According to Refs. 1, 3, and 5, the ESR spectrum
Cr31 ions in Hg12xCrxSe has been observed and studied
temperatures ranging from liquid-helium to room tempe
ture, and the characteristic shape of the spectrum was fo
to depend onNCr and T. ESR and magnetic susceptibilit
studies have established that when the crystal is cooled
low a certain temperatureTf the cubic symmetry of the lat
tice begins to break down, and at a certain temperatureTg

,Tf a phenomenon occurs which we have interpreted a
transition of Hg12xCrxSe to a spin glass phase. In Ref. 4
was shown experimentally that at equal concentrations
chromium atoms in the systems Hg12x2yCrxMnySe and
Hg12xCrxSe, their physical characteristics are qualitative
similar and differ mainly in a quantitative sense.

The ESR spectrum was studied on a radio spectrom
with a working frequency of 36.04 GHz. During the me
surements the temperature of the samples was stabilized
measured to an accuracy of60.1 K by means of an elec
tronic device.6
© 2000 American Institute of Physics
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25Low Temp. Phys. 26 (1), January 2000 Prozorovski  et al.
Samples of Hg12x2yCrxMnySe with x50.02 and y
50.01, 0.02, 0.04, 0.06, and 0.08 were investigated in
temperature interval 58–300 K. In this entire interval t
character of the temperature dependence of the obse
ESR spectrum was found to depend onx and y. Figure 1
shows the dynamics of the change in the ESR spectrum
temperature for the sample withy50.01. As the sample wa
cooled to 180 K the spectrum consisted of a single isotro
line. At T5180 K the line begins to split into two lines, on
of which is axially anisotropic and the other isotropic. As t
temperature is lowered further, a fine structure appe
against the background of the anisotropic line, the dista
between the lines of the fine structure increases, and
whole anisotropic spectrum is shifted strongly to low
fields, as can be seen in Fig. 2~curve2!. Figure 2 shows the
temperature dependences of the resonant magnetic fielHr

and the linewidthsDH of these absorption lines. Curves2
and3 showHr andDH for the central absorption line of th
anisotropic spectrum, while curves1 and4 are the analogous
curves for the isotropic spectrum. For samples w
y>0.02 a single isotropic line is observed over the en
range of temperatures investigated, and the resonant fiel
this line is independent ofT within the experimental error.

MAGNETIC SUSCEPTIBILITY

In the same samples of Hg12x2yCrxMnySe on which the
ESR spectrum was investigated, we measured the mag

FIG. 1. Change in the structure of the ESR spectrum as the temperatu
lowered in a Hg12x2yCrxMnySe sample withx50.02 andy50.01~in part b
the gain was a factor of 2 lower than in part a!.
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susceptibility and studied its variation with temperature. T
measurements ofx were made by an induction method on a
apparatus consisting of a modified differential magnetome
with modulation by a low-frequency field.7 The apparatus
was calibrated using a superconducting lead replica of
sample to be studied. The amplitude and frequency of
alternating magnetic field inducing the emf in the measur
coils of the apparatus could be varied smoothly over
intervals 0–5 Oe and 60–1100 Hz, respectively.

The results of thex(T) measurements are shown in Fig
3 and 4. Figure 3 shows the temperature dependencex
measured for the sample withy50.01 at frequencies of 63

is

FIG. 2. Temperature dependence of the resonant magnetic fieldHr ~1,2! and
the linewidthDH ~3,4! of the absorption lines observed on Cr31 (d) ~the
transition21/2↔1/2) and Mn21 (s) at T<180 K and the unresolved ab
sorption spectrum (m) for T.180 K in a Hg12x2yCrxMnySe sample with
x50.02 andy50.01.

FIG. 3. Temperature dependence of the magnetic susceptibility
Hg0.97Cr0.02Mn0.01Se, measured at frequencies of 63 Hz (d) and 330 Hz
(s).
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and 330 Hz. It is seen that as the frequency increases
extremum ofx(T) shifts to higher temperatures. Similar b
havior ofx(T) with increasing frequency was also observ
for the samples withy>0.02. Thex(T) curves for these
samples are shown by curves2–4 in Fig. 4. Also shown in
that figure for comparison is thex(T) curve for Hg12xCrxSe
with x50.02 ~curve 1!. A comparison of curves2–4 with
curve1 shows that these materials differ in having subst
tially different absolute values ofx in the temperature region
around and below the maximum of thex(T) curve and also
in the values of the temperatures at which the maximum
the magnetic susceptibility occurs, while the character of
change of thex(T) curve remains the same. These expe
mental observations and the shift of the extremum ofx(T) to
higher temperatures as the measurement frequency incre
attest to the presence of a transition to a spin glass pha
the Hg12x2yCrxMnySe system at the temperatureT5Tg

wherex(T) reaches its maximum value.3–5,8,9

DISCUSSION AND CONCLUSIONS

A comparative analysis of the experimental results
the Hg12x2yCrxMnySe sample withy20.01 and the data o
Ref. 3 suggests that the ESR spectrum of this sampleT
.180 K consists of two unresolved spectra of the ions C31

and Mn21, a situation which arises because theg factors of
Cr31 and Mn21 in this cubic crystal are close in value, an
the linewidths are comparatively large. AtT5180 K these
spectra are resolved. As the temperature is lowered furt

FIG. 4. Temperature dependence of the magnetic susceptibility o
Hg12xCrxSe sample withx50.02 ~1! and of Hg12x2yCrxMnySe samples
with x50.02 for different values ofy: 0.04 ~2!, 0.06 ~3!, 0.08 ~4!.
he

-

f
e
-

ses
in

r

r,

the anisotropic spectrum is shifted to lower magnetic fiel
and at a certain temperature a fine structure of the spec
begins to appear. According to Ref. 3, this spectrum is du
the Cr31 ions. The isotropic spectrum, which has a mon
tonic and less pronounced temperature dependence than
the spectrum of Cr31 ~Fig. 2!, is attributed by the authors to
the Mn21 ion. These results and the data obtained from E
studies for samples withy>0.02, along with the analogou
results of Ref. 4, are evidence that when the concentra
NCr in Hg12x2yCrxMnySe is much larger thanNMn , or when
NCr and NMn are of the same order of magnitude butNMn

>NCr , the spectra of the Cr31 and Mn21 ions are not re-
solved. In this case the structure and temperature depend
of the whole spectrum is determined by those ions having
higher concentration. IfNMn,NCr ~e.g., in the sample with
y50.01), then at a certain temperature the spectrum is
solved into the two spectra of the Cr31 and Mn21 ions, and
these spectra differ in their structure and in the characte
their temperature dependence~Figs. 1 and 2!. This behavior
of the spectra can be explained as follows. According to R
3, in the ternary system Hg12xCrxSe atT<Tf a displacement
of the Cr31 ions along the axial axis of the crystal occurs
the temperature is lowered. This displacement induces a
of the spectra of these ions with respect to the magnetic fi
One expects that analogous displacements of the Cr31 ions
occurs in the system Hg12x2yCrxMnySe as well, and this is
confirmed by the results of Ref. 4 and the present study
follows that under certain conditions, which will be set for
below, an analogous displacement of the Cr31 ions can occur
in the Hg12x2yCrxMnySe system and will induce a shift o
the spectrum. The indicated experimental results show
for Hg12x2yCrxMnySe the character of the shift of the spe
trum with respect to the magnetic field as the temperat
decreases depends on the relative values of the conce
tions of chromium and manganese atoms. For example,
NCr@NMn the spectrum shifts but does not split, while f
NCr.NMn ~the sample withy50.01) the spectrum is re
solved, and as the temperature is lowered there is a shi
the spectrum due to the Cr31 ions to lower magnetic fields
while for the spectrum due to the Mn21 ions there is a slight
nonmonotonic variation ofHr ~Fig. 2!. We attribute the ex-
perimental results obtained for Hg12x2yCrxMnySe to the
Coulomb interaction between the subsystems of Cr and
ions. This interaction causes the system Hg12x2yCrxMnySe
to behave either like a system consisting of one kind of s
center or like a system consisting of two kinds of spin ce
ters, depending on the relative concentrations of chrom
and manganese. This is indicated by the structure of the E
spectra and the character of their shift with respect to m
netic field as a function ofT. For example, forNCr@NMn the
ESR spectrum in Hg12x2yCrxMnySe is determined mainly
by the Cr31 ions, while for NCr<NMn it is determined
mainly by the Mn21 ions. In the first case both the Cr31 and
the Mn21 ions are displaced along the axial axis of the cry
tal as the temperature changes, while in the second case
ions are fixed. The different relationship betweenNCr and
NMn for the first and second cases is attributed by the auth
to the difference in the ionic radii of Cr31 and Mn21. Since
the ionic radius of Mn21 is much greater than that of Cr31,

a
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for displacement of the Mn21 ions under the influence of th
Cr31 ions it is clearly necessary to satisfy the conditi
NCr@NMn , while for fixation of the Cr31 ions the condition
NMn>NCr must be satisfied. It should be noted that the
proximately equal contribution of the Cr and Mn subsyste
to the Coulomb interaction arising between these subsyst
in Hg12x2yCrxMnySe leads to different temperature depe
dences of these spin centers, as is attested to by the
spectrum of the sample withy50.01.

Thus from investigations of the ESR spectrum
Cr31 and Mn21 ions and measurements ofx in
Hg12x2yCrxMnySe it follows that in this system the tem
peratureTf at which the distortion of the symmetry of th
crystal lattice begins~if this occurs!, the temperatureTg of
the phase transition to the spin glass, and the value ofx in
the phase transition region and atT,Tg are larger in mag-
nitude than in Hg12xCrxSe for samples with the same valu
of NCr . In Hg12x2yCrxMnySe the nonmonotonic charact
of the x(T) curve is more pronounced and the exchan
interaction increases, as is indicated by the rise in the ph
transition temperature. These phenomena were explaine
Ref. 4 on the basis of a cluster model of the spin glass.
fact that the distortion of the symmetry of the crystal latti
does not occur for certain values ofx andy ~this is confirmed
by the isotropicity of the spectrum over the entire range
temperatures investigated! indicates that the observed trans
-
s

s
-
SR

e
se
in
e

f

tion of Hg12x2yCrxMnySe to the spin glass phase8 is not
related to the a distortion of the lattice symmetry. The pr
ence of chromium and manganese ions forming two inter
ing subsystems in Hg12x2yCrxMnySe gives rise to various
physical effects in this material.
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Magnetic phase transition and magnetoresistive effect in Nd 0.6Ca0.4„Mn12xMex…O3

„Me5Cr, Al, Ti, Nb …
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The properties of Nd0.6Ca0.4(Mn12xMex)O3 (Me 5 Cr31, Al31, Ti41, Nb51) are investigated. It
is shown that the indicated substitutions destroy the long-range order in the positions of the
Mn31 and Mn41 ions, but the properties depend sharply on the type of substituent ion. The
replacement of a small fraction of the Mn31 ions by Cr31 (0.04<x<0.1) leads to
antiferromagnet–ferromagnet and insulator–metal transitions. At chromium concentrationsx>0.1
the solid solutions again become nonconducting and exhibit the properties of inhomogeneous
ferrimagnets in which the magnetic moments of the chromium and manganese ions are directed
opposite to each other. ForT,30 K there is a phase transition in which the magnetic
moments of the Nd31 ions order antiparallel to the moments of the Mn ions. All of the samples
containing chromium have a large magnetoresistive effect at temperatures below the Curie
point. The replacement of manganese by Al31, Ti41, or Nb51 ions leads to a transition from the
antiferromagnetic state to a spin glass state with no change in conductivity. The data
obtained indicate that the superexchange interactions between the chromium and manganese ions
is of an antiferromagnetic character. ©2000 American Institute of Physics.
@S1063-777X~00!00301-7#
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INTRODUCTION

It is known that the manganites RE12yCayMnO3

(RE 5 Pr, Nd! in the concentration interval 0.3,y,0.7 are
antiferromagnetic insulators on account of the charge or
ing effect.1–3 In Ref. 4 it was found that replacing a sma
fraction of the manganese ions by chromium ions
Pr0.5Ca0.5MnO3 leads to destruction of the antiferromagne
charge-ordered state: Pr0.5Ca0.5(Mn0.95Cr0.05)O3 is a ferro-
magnet which undergoes a metal–insulator transition n
the Curie pointTC5160 K.4 It has been established by ne
tron diffraction studies that upon ferromagnetic ordering
Pr0.5Ca0.5(Mn0.95Cr0.05)O3 the distortions of the crystal struc
ture decrease. It was conjectured that the trivalent chrom
ions, having electronic configurationd3, the same as the tet
ravalent manganese ions, take part in ‘‘double exchange,
a result of which a ferromagnetic ordering occurs
manganites.1 In the double exchange model the electrotra
port between 3d ions with different valences and the ferro
magnetism are intimately related: the higher the electr
conductivity, the more stable the ferromagnetic state. Th
is information in the literature about doping the charg
ordered phases of manganites~mainly Pr0.5Ca0.5MnO3) with
small amounts of chromium, nickel, cobalt, iron, a
281063-777X/2000/26(1)/4/$20.00
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titanium.4–6 To establish the mechanism of the phase tran
tions upon substitution of other ions for manganese,
did a study of the properties of the solid solutio
Nd0.6Ca0.4(Mn12xMex)O3 (Me5Al, Nb, Ti, Cr! over a wide
range of Me concentrations, all the way up tox50.4.

EXPERIMENT

Polycrystalline samples were obtained from simple o
ides and carbonates of especially high purity~grade OSCh!,
mixed in stoichiometric proportions. The final synthesis w
done in air at 1450 °C. The samples were cooled slowly a
rate of 100 °C/h in order to ensure stoichiometry in respec
oxygen. Magnetic measurements were made on a Fone
brating magnetometer, and the electrical conductivity w
measured by the standard four-probe method. Contacts w
formed by the ultrasonic deposition of indium.

RESULTS AND DISCUSSION

For Nd0.6Ca0.4MnO3 samples the curves of the temper
ture dependence of the magnetization have a maximum
260 K and a slight anomaly near 180 K. According to Ref.
the maximum at 260 K is due to charge ordering~long-range
order in the positions of the Mn31 and Mn41 ions!, whereas
© 2000 American Institute of Physics
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the anomalous behavior at 180 K entails the establishmen
long-range antiferromagnetic order. Figure 1a shows
magnetic field dependence of the magnetization
Nd0.6Ca0.4(Mn12xCrx)O3 samples on the magnetic fiel
strength, measured at 6 K in a decreasing field. The magnet
moment increases abruptly to 3.5mB per formula unit
(x50.04) and decreases smoothly to 0.7mB as the chro-
mium content is increased further (x50.4). All of the
samples with chromium concentrations up tox50.3 are
magnetically soft materials. In the sample withx50.4 the
coercive field increases sharply, reaching a value of 600

Figure 1b shows the temperature dependence meas
in a low field ~100 Oe! after cooling in this same field. It is
seen that the temperature of the transition to the param
netic state (T>150 K) for the samples with chromium con
centrations up tox50.2 depends weakly on the chromiu
concentration. The sample withx50.4 undergoes a trans
tion to the paramagnetic state over a wide range of temp
tures, a fact which is indicative of a nonuniform magne
state. At low temperatures the magnetization increa
sharply with increasing temperature; this may be due to
contribution from the neodymium sublattice. This hypothe
is supported by the fact that the anomalous behavior of
magnetization in the low-temperature region becomes
nificantly less pronounced as the magnetic field is increa
Such a situation can arise in the presence of two differ
magnetic sublattices weakly coupled to each other. In

FIG. 1. Magnetic-field dependence of the magnetization
Nd0.6Ca0.4(Mn12xCrx)O3 samples atT56 K in a decreasing field~a! and the
temperature dependence during heating after cooling in a field of 100
~FC! ~b!.
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case of antiferromagnetic ordering in the manganese su
tice the magnetic fields inducing the transition to the fer
magnetic state are quite large, as a rule.7 To elucidate the
causes of the anomalous behavior of the magnetizatio
low temperatures, we investigated the magnetization of
sample withx50.3 as a function of its prehistory and th
magnitude of the field~Fig. 2!. We found that after cooling
in the absence of field~zero-field cooling!, the M (T) curve
has a maximum in the region of the low-temperatu
anomaly of the magnetization. At temperatures above 3
the magnetization is larger during cooling than during he
ing. This indicates that the domain structure changes be
30 K. We observed considerably sharper anomalies of
magnetization in the low-temperature region for t
Nd~Mn0.9Cr0.1)O3 sample. This sample satisfies approx
mately the same magnetic ordering temperature as NdMn3,
in which TN586 K.8 However, the magnetic properties o
these two compounds differ markedly. In NdMnO3 the mag-
netization increases strongly as the temperature is lowe
~from T520 K), whereas in the sample containing chr
mium the magnetization falls off sharply. During heating a
ter zero-field cooling a very pronounced maximum of t
magnetization appears at low temperatures~Fig. 3!. The
large hysteresis in temperature~6 K! corresponds to a first
order phase transition.

The electrical conductivity of the solid solution
Nd0.6Ca0.4(Mn12xCrx)O3 depends strongly on the chromium
concentration. In the sample withx50.04 the conductivity
peak is observed below the Curie temperatureTC ~Fig. 4!.
Samples with a large chromium content remain semicond

f

e

FIG. 2. Temperature dependence of the magnetization
Nd0.6Ca0.4Mn0.7Cr0.3O3 measured in fieldsH55 kOe and 100 Oe in differ-
ent regimes: ZFC — zero-field cooled; FC — field cooled~curves1 and2
were measured on heating; curve3 on cooling!.
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ing over the entire temperature interval investigated, 77–
K.

The magnetoresistive effect is most pronounced in
sample withx50.04 ~Fig. 5!. That sample has a peak of th
magnetoresistive effect nearT5100 K. The magnetoresis
tive effect in the sample withx50.1 increases smoothly a

FIG. 3. Temperature dependence of the magnetization of
NdMn0.9Cr0.1O3 sample~in zero field and atH550 Oe) in different mea-
surement regimes.

FIG. 4. Electrical conductivity versus temperature
Nd0.6Ca0.4(Mn12xCrx)O3 samples.
0

e

the temperature is lowered. Similar behavior is observed
x50.2, where the effect is even somewhat larger than
x50.1.

All of the compounds doped with the nonmagnetic io
Al, Ti, or Nb possess a spontaneous magnetization at
temperatures (T,40 K). However, the magnetization is no
saturated in fields up to 15 kOe~Fig. 6!. The M (H) curves
measured after cooling in a field and in zero field diver
smoothly nearTf540 K, the temperature at which the max
mum of the magnetization is observed during heating a
zero-field cooling. Behavior of this sort is would be expect
for cluster magnetic systems in which the long-range m
netic order is destroyed through a competition of excha
interactions of different sign.

e

FIG. 5. Magnetoresistance MR defined as$@r(H59 kOe)2r(H50)#/
r(H50)%100%, as a function of temperature in Nd0.6Ca0.4(Mn12xCrx)O3

samples.

FIG. 6. Magnetization as a function of field forT57 K in
Nd0.6Ca0.4(Mn12xCrx)O3 samples, where (Me5 Nb, Ti, Al!.
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As in Ref. 4, we assume that the chromium ions en
the manganite mainly in the trivalent state. This is indica
by the extremely small magnetic anisotropy of samples w
chromium concentrations up to 30%. In the case of C41

ions the magnetic anisotropy is ordinarily rather large.
the basis of the existing data, however, it cannot be ruled
that a small number of chromium ions are in the tetraval
state. Ions of aluminum, titanium, and niobium enter t
manganite with valences of three, four, and five, resp
tively, since the synthesis is done under oxidizing conditio
which are incompatible with the stability of Ti31 and Nb41

ions.
The sharp drop in magnetization and the growth of

resistivity as the chromium concentration is increased in
cate that the exchange interactions between chromium
manganese ions are of a different nature than double
change. As we have said, the Cr31 ions, like the Mn41 ions,
have ad3 electronic configuration. Therefore, according
the Goodenough–Kanamora rules, the 180° superexch
interaction Mn31 – O–Cr31 should be positive. The results o
a study of La~Mn12xCrx)O3 are consistent with this
assumption.9 In the Eu~Mn12xCrx)O3 system, however, the
ferromagnetic state was not observed.10 In order to under-
stand the behavior of manganites containing Cr ions, we
studied the system La0.7Sr0.3(Mn12xCrx)O3 . In that system
the compound not containing chromium is a metallic fer
magnet withTC5370 K. It turned out that the substitution o
chromium for magnesium leads to a gradual decrease in
spontaneous magnetization and in the temperature of
transition to the paramagnetic state toMS51.2mB and
TN5180 K atx50.4.

The decrease of the magnetization may be due to
circumstance that the magnetic moments of the chrom
ions are oriented antiparallel to the magnetic moments
the manganese or that fractions of the spin-glass type fo
the percentage of these increasing in proportion to
chromium concentration. However, in the compoun
Nd0.6Ca0.4(Mn12xCrx)O3 with 0.04,x,0.3 there is a well-
defined transition to the paramagnetic state. The magn
anisotropy of these compounds is small, as is indicated
the weak role of frustration of the exchange interactions
comparison with the compound withx50.4. We therefore
assume that in the Cr-containing manganite the magn
moments of the chromium and manganese ions are orie
antiparallel on account of the rather strong negative supe
change interaction Cr31 – O–Mn31(Mn41). All in all, we
conclude that the exchange interaction is very close in m
nitude to the exchange interaction between manganese
The replacement of the manganese ions by the nonmag
ions Al, Ti, and Nb forx>0.1 brings about a spin glass sta
The substitution of Nb51 ions increases the Mn31 fraction,
whereas the substitution of Al31 ions increases the Mn41
r
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fraction. At a concentration of the diamagnetic ionsx50.1
the magnetization is largest for the niobium-containing co
pound and smallest for the aluminum-containing compou
This fact supports the assumption that the Mn31 – O–Mn31

exchange interactions in the syste
Nd0.6Ca0.4(Mn12xCrx)O3 are ferromagnetic.

It follows from the results of the resistivity measur
ments that the chromium ions do not promote electrotra
port processes. The most intimate connection between
magnetic state and the electrical conductivity is observed
the compound withx50.04, in which the chromium conten
is minimal, a circumstance which favors electrotransport
tween manganese ions. In ferrimagnetic states (0.1<x
<0.3) the magnetoresistance is apparently of a different
ture than in the compound withx50.04, since the magne
toresistance peak is absent. It can be assumed that the
netoresistance of these compounds is due to intergra
electrotransport of spin-polarized charge carriers, as is o
observed in ferromagnetic oxides with a semimetallic ch
acter of the conduction.11 It may be that in the ceramic
investigated here there are microregions with rather h
conductivity, owing to which the conductivity is of the pe
colation type.

In our view, the phase transition leading to magne
ordering of the neodymium ions is of significant interest.
the high-temperature phase thef –d exchange interaction is
unimportant, while in the low-temperature phase thef –d
exchange increases sharply. Apparently the ground stat
the Nd31 ions changes at the phase transition.
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Research of the Republic of Belarus~Grant F98-057!.
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Magnetic breakdown and the Fisher–Kao effect in zinc
L. T. Tsymbal* and A. N. Cherkasov

A. A. Galkin Donetsk Physics and Technology Institute, National Academy of Sciences of Ukraine,
72 R. Luxemburg St., 340114 Donetsk, Ukraine
~Submitted January 20, 1999; revised July 12, 1999!
Fiz. Nizk. Temp.26, 45–53~January 2000!

A study is made of the decompensation effect in zinc due to magnetic breakdown between the
electron and hole orbits near theK point of the Brillouin zone. It is shown that, in contrast
to the general case for compensated metals, zinc exhibits the Fisher–Kao effect in a magnetic field
which is tilted with respect to the hexagonal axis. The regularities of the changes in the
shift of the Fisher–Kao peak in a magnetic field upon changes in the frequency and surface quality
are established. It is shown that the field-induced shift is related to the appearance of a
subsurface damaged layer. An explanation is proposed for the effect wherein the square-root
frequency dependence of the position of the maximum with respect to the field is transformed to a
linear function when the state of the surface of the slab is modified. ©2000 American
Institute of Physics.@S1063-777X~00!00401-1#
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INTRODUCTION

The normal metals can be divided into two groups: u
compensated (ne2nhÞ0) and compensated (ne2nh50),
wherene andnh are the total numbers of electron and ho
in the primitive cell. The difference of the electron and ho
concentrations is given by the relation

ne2nh5sz22~F1J!, ~1!

wheres is the number of atoms in the primitive cell,z is the
number of electrons given up by each atom to the conduc
band,F is the number of filled bands, andJ is the number of
bands containing holes.

In high magnetic fields the carrier concentrationN in a
metal requires a more detailed analysis.

The research reported here was done at relatively lowv
frequencies and in high fieldsH, subject to the restriction

v!n!vc , ~2!

where n is the carrier relaxation frequency andvc

5eH/(mc) is the cyclotron frequency.
Under these conditions the concentration differenceNe

2Nh that is manifested in an experiment is equal to (ne

2nh)/V only for closed isoenergetic surfaces, which can
unambiguously classified as electronic or hole. HereV is the
volume of the primitive cell, andNe andNh are the concen-
trations of carriers enclosed in the closed regions formed
the electron and hole orbits in the magnetic field. On mu
ply connected Fermi surfaces~FSs! of the ‘‘monster’’ type in
an external magnetic field both electron and hole orbits
observed. Such surfaces on the whole cannot be classifie
being of the electron or hole type, and for themNe2Nh need
not be equal to (ne2hh)/V, and it may even turn out to b
nonzero forne5nh . Consequently, a metal which is com
pensated according to Eq.~1! may actually behave in an
321063-777X/2000/26(1)/7/$20.00
-

n

e

y
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re
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experiment as an uncompensated metal, and vice vers
this paper we shall use the terms ‘‘compensation’’ and ‘‘de
ompensation’’ as pertaining to the relationship betweenNe

andNh .
The spectra of collective excitations of a magnetiz

electron plasma for compensated and uncompensated m
are fundamentally different. For example, an Alfve´n wave
can exist only in a compensated metal and a helicon onl
an uncompensated metal, while a doppleron can exist in
ther. These spectra are completely determined by the c
ductivity of the metal. However, as we have said, in hi
magnetic fields~2! the contribution to the conductivity~more
precisely, the sign of this contribution! is determined not by
whether the carriers belong to one sheet of the Fermi sur
or another but by the type of orbit~electron or hole! on
which these carriers are found. In a magnetic field an e
tron may be found on a hole orbit~and vice versa!, and
compensation and decompensation effects arise; co
quently, the structure of the spectra of collective excitatio
can change in a fundamental way as the external param
~field, temperature, geometry of the experiment! are varied.

Let us consider the most characteristic features of
spectra of electromagnetic modes in uncompensated
compensated metals.

The spectrum of transverse electromagnetic modes
normal metals with a FS that is axially symmetric about t
ẑ axis in the geometrykiHi ẑ is described by the dispersio
relation

k25
4p iv

c2 s6 ~6 polarization!. ~3!

Herek is the wave vector of the wave, ands65sxx6 isyx

is the conductivity for the circularly polarized components
the field:E65Ex6 iEy . The main details of interest in th
© 2000 American Institute of Physics
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electromagnetic mode spectra of uncompensated and c
pensated metals can be analyzed using a model FS o
‘‘corrugated cylinder’’ type, for which the type of orbi
~electron or hole! always corresponds to the type of carri
~electrons or holes, respectively!, i.e., the relation
(ne2hh)/V5Ne2Nh holds. If the FS consists of two cylin
ders, i.e., an electron cylinder and a hole cylinder, then1,2

s65s6
e 1s6

h 56 i
Neec

H
$@~16 ig!22q2#21/2

2b@~17 ig!22a2q2#21/2%, ~4!

where

q5kve /vc ; g5~n2 iv!/vc . ~5!

In Eqs.~4! and~5! the indiceseandh denote the electron an
hole parameters, respectively;b5Nh /Ne (b51 for a com-
pensated metal andbÞ1 for an uncompensated meta!;
a5vh /ve (v is the maximum velocity of the carriers alon
H). We assume thatvc and n5const for all carriers, with
vc.0 for both electrons and holes. Figure 1 shows the sp
tra of electromagnetic modes in uncompensated~a! and com-
pensated~b! metals in the limitg→0. For specificity we
have setb50 in the uncompensated metal andg51/3 in the
compensated metal. We see that forH.Hm the dispersion
relation in the uncompensated metal has three solutions:

FIG. 1. Electromagnetic mode spectra obtained in the limitg→0: uncom-
pensated metal—solution~2!, ~3! for b50 ~a!; compensated metal—
solution ~2!, ~3! for b51 and a51/3 ~b!. Solutions G and G8 are the
helicon and damped helicon, and D and D8 are doppleron solutions. The
signs of the circular polarization are indicated in circles. The scales a
the coordinate axes can be determined by using the relations forHm ~see
text!, the position of the straight linesq51, and the values of the paramete
of the metal.
m-
he

c-

li-

con ~G!, doppleron~D!, and damped helicon (G8); the value
of the threshold fieldHm is determined by the relationj3

5(27/4)1/2, where j35vc
3c2/(vp

2vve
2), vp

254pNed
2/m

~Refs. 1 and 2!. In fields belowHm all three solutions de-
scribe an anomalous skin effect in an external static magn
field.3 The introduction of a hole group of carriers (Nh

5Ne) in an uncompensated metal in the ‘‘2’’ polarization
causes the helicon branch of the spectrum to vanish
modifies the spectrum of the doppleron D, and forH,Hm

@the value of Hm is determined by the relationj35(1
2a2)/2# the solution of the dispersion relation becom
purely imaginary~branch G9 of the spectrum!. In the ‘‘1’’
polarization the branch G8 vanishes and a solution D8—a
‘‘hole’’ doppleron—appears. In fields below the thresho
field of the doppleron D8 (H,Hm8 ) all the solutions, as in the
uncompensated metal, describe an anomalous skin ef
Actually, the solutions G and G8 do not vanish but degener
ate to zero asg→0 andNh→Ne . For gÞ0 the degeneracy
is lifted, and in the local limit (uq2u!u16 igu2) these solu-
tions can be written in the form

k2>8p iNem
~n2 iv!v

H26Hm
2 ~6 polarization!. ~6!

In the high-frequency region (v@n) in fields H.Hm the
solutions~6! are almost real-valued and describe the we
known propagating mode called the Alfve´n wave.4 In our
case, however, by virtue of inequality~2!, the solutions are
importantly complex~see Fig. 2!. Despite the appreciable

g

FIG. 2. Qualitative character of the electromagnetic mode spectrum
compensated metal, obtained with collisions taken into account,v@v ~the
D8 branch of the spectrum is omitted; cf. Fig. 1b!. For clarity the spectrum
has been divided into two fragments. It is seen that in the ‘‘2 ’’ polarization
the Alfvén branch of the spectrum, which lies at fieldsH,Hm (uRek
u.Im k), is associated with the D branch~fragment a!, while that lying at
fields H.Hm is associated with the G9 branch~fragment b! of the electro-
magnetic mode spectrum. Since in the ‘‘1’’ polarization Rek.Im k @see
Eq. ~5!# for the Alfvén mode throughout the entire field interval, only th
Im k(H) curve is shown for this mode in the two fragments. The signs of
circular polarization are indicated in the circles.
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damping, however, in sufficiently high magnetic fields t
field components corresponding to these solutions bec
dominant in amplitude. Thend51/Imk can exceed the
thickness of a typical sample. The passage of mode~6!
through a metal slab is manifested experimentally a
‘‘strong’’ anomaly of the surface resistance ReZ of the
metal~the Fisher–Kao effect;5 see also Refs. 6 and 7!. As the
field is increased under conditions of almost total transp
ency of the sample, the value of ReZ reaches a maximum a
Im(kd/2)'1 (d is the sample thickness!, and then decrease
on account of the growing compensation of the hig
frequency electrical currents on opposite sides of the slab
typical samples one ordinarily hasHmax

2 .Hm
2 , whereHmax is

the field corresponding to the maximum of ReZ, and, hence,
from Eq. ~6! we have

Hmax}d~vn!1/2. ~7!

It should be emphasized that the Fisher–Kao effect can
exist in an uncompensated metal.

In the present study we investigate the Fisher–Kao ef
in zinc. The choice of metal was mainly based on the f
tures of the electronic structure of Zn. Zinc is a compensa
metal@with s52, z52, F50, andJ52 in Eq.~1!#, the FS of
which has been thoroughly investigated and is well known8,9

Figure 3a shows the region of interest on the FS of zinc:
‘‘hole monster’’ in the second zone and the ‘‘electro
needles’’ at theK points of the third Brillouin zone. Becaus
the ‘‘monster’’ is a multiply connected surface, in the geo
etry Hi@0001# a layer of electron orbitse with a thicknessa
exists on its surface. However, sinceb.a @Ref. 10; see Fig.
3a#, the layer of hole orbitsh has the same thickness, and t
‘‘geometric’’ decompensation of the electron and hole v
umes does not arise. Nevertheless decompensation in

FIG. 3. Fragment of the Fermi surface of zinc. a:1 ~First zone!—hole
‘‘pyramids’’ at theH points;2 ~second zone!—the hole ‘‘monster;’’3 ~third
zone!—electron ‘‘needles’’ at theK points. b:h—Hole orbits lying on the
‘‘monster’’ surface near the basal plane (Hi@0001#). c: fe—Magnetic-
breakdown electron orbits of nearly-free electrons (Hi@0001#).
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can occur by a different mechanism. The reason is that
energy gap between the second and third zones near tK
point is small. As a result, even in fieldsH>1.3 kOe11 the
hole orbits h @Fig. 3b# begin to vanish, and magnetic
breakdown orbitsfe appear@Fig. 3c#, these in fact being or-
bits lying on the nearly-free-electron sphere. A decompen
tion arises which, in the geometryHi@0001#, reaches a value

Ne2Nh>
2

~2p\!3
2S0a>0.8231022cm23. ~8!

In Eq. ~8! S0 is the cross-sectional area of the Brillouin zo
on the@0001# plane. Measurements of the Hall coefficient
fields up to 18 kOe give approximately the same value11

When the magnetic field direction deviates from the@0001#
axis by an angleu>1.5° the orbitsfe vanish, and hence so
does the magnetic-breakdown decompensation.

We have previously9 calculated the spectra of the ele
tromagnetic modes in both ‘‘compensated’’ and ‘‘decompe
sated’’ zinc in the geometrykiHi@0001#. In the details of
interest to us, the spectra obtained are qualitatively simila
those shown in Fig. 1. The doppleron solution D com
about because of the Doppler-shifted cyclotron resonanc
the electrons of the resting point of the ‘‘lens.’’ At a fre
quencyv/2p53.5 MHz a valueHm>22 kOe was obtained
for the threshold field for the helicon@Fig. 1a#, while the
threshold field of the doppleron@Fig. 1b# had the valueHm

>12.5 kOe (um}v
1/3

).

EXPERIMENT

We studied the surface resistance ReZ of a plane-
parallel zinc slab. The samples were prepared by cleavin
99.9999% pure Zn single crystal along the~0001! plane. The
surface quality of the samples was varied by rubbing wit
corundum abrasive and by chemical etching in an aque
solution of CrO3.

An rf spectrometer of the autodyne NMR type was us
in the experiment. The samples were placed in a flat coi
the oscillator. The exciting field was parallel to the plane
the sample. The measurements were made in the frequ
range 4–900 kHz at temperatures of 1.8–4.2 K in fie
reaching as high as 60 kOe. Rotation of the sample in
magnetic field was done with an accuracy of;0.1°. The
angleu between the normal to the sample,ni@0001#, and the
H direction was varied in the range 0–40°.

Comparative measurements were made on sample
tungsten (ni@001#), indium (ni@001#), and cadmium
(ni@0001#). The cadmium and indium samples were grow
from metals of 99.9999% purity in knock-down forms o
polished quartz. The tungsten samples were cut by elec
erosion from massive perfect single crystals with a ratio
room-temperature to liquid-helium-temperature resistiv
r300 K/r4.2 K'105, ground, and then electrically or chem
cally polished. Tungsten and cadmium are compensated
als, while indium is an uncompensated metal.
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EXPERIMENTAL RESULTS AND DISCUSSION

Magnetic-breakdown decompensation in zinc.Figure 4
shows examples of the experimental curves of the sur
resistance of zinc versus the external static magnetic field
various anglesu. It is seen that foru'0 the value of ReZ
increases monotonically with increasing field, all the way
to the maximum fields attainable in the experiment. The
sence of a maximum indicates that the damped Alfv´n
(v!g modes~6! are not excited. Consequently, for sma
u zinc appears more like an uncompensated metal. H
however, the strong and monotonic increase of ReZ is un-
expected. In fact, it has been shown12,13 that in low magnetic
fields (H!Hm) the surface resistance of alkali metals~the
nearly-free-electron model! is relatively small and does no
depend significantly on the magnetic field. AsH increases,
the value of ReZ increases smoothly, and in the particul
case of specular reflection of electrons by the surface of
sample, a peak forms near the helicon threshold.13 This peak
is due to the fact that nearHm the group velocities of the
helicon and doppleron change sharply~they vanish in the
limit n;0). As the field increases further, the value of t
nonoscillatory contribution to ReZ approaches the
asymptotic value in the helicon propagation region. A simi
result has been obtained1 for the ‘‘corrugated cylinder’’
model. To a certain degree the experiment agrees with
theory developed for simple metallic systems. For exam
we see from Fig. 4 that as the field increases, the sur
resistance of indium increases slowly and reaches a ce
limiting value in the helicon propagation region~the ob-
served oscillations are helicons!. However, there is no pea
of ReZ in the neighborhood of the helicon threshold. Th
fact requires explanation. First, this maximum is ‘‘smeare

FIG. 4. Magnetic-field dependence of the surface resistance of zinc (v/2p
5378 kHz, d50.31 mm,u is the angle between the directions ofH and
ni@0001#) and indium (v/2p5860 kHz,d52.55 mm,Hini@100#). Tem-
perature 4.2 K.
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by collisions and cannot exceed the helicon oscillations
amplitude. Second, in the limit of purely diffuse bounda
conditions the maximum of ReZ nearHm does not arise a
all. This was shown in Ref. 13 for free electrons and in R
1 for a ‘‘parabolic lens’’ model of the FS.

In accordance with the calculation for zinc, atu50 the
threshold field for the helicon at a frequency ofv/2p5378
kHz is Hm510 kOe. We see that there are no anomalies
the curve in Fig. 4~for u50) in going from the anomalous
skin effect regime to the propagating mode regime. The s
face resistance increases monotonically, and the value
ReZ is relatively large even in absolute value in comparis
with the value of ReZ in indium, for example. Nevertheless
the fact that a helicon is excited in zinc cannot be doubted
Ref. 14 a helicon resonance was observed in the lo
frequency magnetic susceptibility of zinc, but because of
incorrect interpretation of the experimental results, the va
of Ne5Nh obtained in that experiment is four times larg
than the calculated value~8!. In our experiment the ampli-
tude of the helicon oscillations was too small, and in Fig
they can not be differentiated against the overall trend of
ReZ curve ~the oscillations observed in weak fields have
period equal to the period of quantum oscillations caused
the extremal cross sections of the electron ‘‘needles’’!.

Thus the experiment provides evidence that zinc, a m
decompensated under conditions of magnetic breakdow
fundamentally distinct from the common class of actua
uncompensated metals. What could cause such a st
growth of ReZ with magnetic field? A quite realistic an
justified explanation can be formulated as follows. In re
tively high fields the most probable orbits are the nearly-fr
electron magnetic-breakdown orbits@fe; Fig. 3c#. Neverthe-
less there also exist other magnetic-breakdown orbits
different configurations. Of course, the conductivity tens
will differ fundamentally from that in the regime of ‘‘ideal’’
decompensation,9 when only the orbitsfearise in place of the
orbits h. The magnetic-breakdown orbits, which are rath
extended in the direction perpendicular toH, are to a certain
degree open orbits. The existence of these orbits lead
growth of the surface resistance. By nature this growth
analogous to the growth of the transverse magnetoresist
in metals with open orbits in the plane perpendicular toH.

Compensated zinc.We see from Fig. 4 that when th
magnetic fieldH is tilted from the@0001# axis the ReZ(H)
curve is distorted, and a peak appears on it which is initia
weak but becomes quite pronounced. This peak is undo
edly due to the Fisher–Kao effect. A rough estimate ofn
gives the completely acceptable valuen;109 s21. Conse-
quently, as the angleu increases, the magnetic-breakdow
decompensation vanishes, and zinc appears to be a com
sated metal, in complete agreement with Eq.~1!. The
magnetic-breakdown orbitsfe vanish foru>1.5°. However,
magnetic-breakdown orbits of various configurations will e
ist even for large anglesu. It is because of this that a pro
nounced component that increases monotonically withH ap-
pears on the surface resistance ReZ(H) in a certain interval
of angles. It is only foru>5°, when the transverse dimen
sions of the magnetic-breakdown orbits become relativ
small and the thicknesses of these orbits decrease that a
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nounced Fisher–Kao peak on the ReZ(H) curve.
The Fisher–Kao effect is a dimensional effect. Inde

the dependenceHmax}d in ~7! is confirmed by experimen
both in zinc and in tungsten and cadmium. The freque
dependenceumax}v1/2 is also described quite well by for
mula ~7! for all u<30°, although the validity of this formula
is problematical for the oblique propagation of electroma
netic modes. In particular, this is caused by the fact that
uÞ0 a dissipative term appears in the conductivity as a
sult of the Landau magnetic damping.15 The wave vector of
the damped Alfve´n wave will, of course, no longer be dete
mined by the simple relation~6!. Analysis of the oblique
propagation of electromagnetic waves is, in principle, a cl
problem, but in our case it is extremely difficult to solv
First, because of the complexity of the surface of the ‘‘mo
ster.’’ Second, because of the presence of magne
breakdown orbits whose layer thicknesses are unknown,
ticularly since there exists another system of magne
breakdown orbits that arises as a result of the magn
breakdown between the ‘‘pyramid’’ and ‘‘monster.’’16

Therefore, without analyzing this aspect of the problem,
us just give the experimental results. In tungsten the posi
of the ReZ peak is practically independent of the angleu
@Fig. 5a#, while in cadmium this peak is initially shifted to
higher fields~by about 3% atu58°) and then to lower fields
~by about 6% atu518°). In zinc, on the other hand, th
maximum of ReZ shifts, and quite considerably~Fig. 4!, to
lower fields asu increases. We see that the ReZ(u) curves
obtained do not have even a qualitative generality. This
not surprising, since the collisionless damping is due to n
local effects, which are sensitive to features of the zo
structure of each particular metal. Also understandable is
special role of magnetic breakdown, which fundamenta

FIG. 5. Surface resistance of tungsten as a function of magnetic fi
v/2p5147 kHz,d50.185 mm,T54.2 K, u is the angle between the di
rections ofH and ni@100#. a: Both surfaces of the sample are chemica
polished. b:t518°; curve1—both surface of the sample are chemica
polished;2—one surface was subjected to an abrasive with a grain siz
30 mm; 3—both surface were subjected to the abrasive. The curves ex
oscillations due to the excitation of a holeA doppleron.17
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alters the character of the free-carrier dynamics in zinc.
Influence of the surface quality of the sample.Up until

now we have been analyzing experimental results obtai
on samples with rather high-quality surfaces. For zinc
studied cleaved surfaces, for cadmium and indium we st
ied samples grown in polished quartz forms, and for tungs
the surfaces were electropolished. By changing the stat
the surface, or, more precisely, the state of a subsurface l
of the samples, one can qualitatively alter the characte
Re(H) and Hmax(v). Figure 6 shows the experimenta
curves of ReZ(H) obtained in zinc for different states of th
surface. We see that after the surface is subjected to an a
sive treatment the maximum of ReZ is noticeably shifted to
higher fields. The change inHmax is ;70%. Similar results
for tungsten, whereHmax increased by a factor of approx
mately one and a half, are shown in Fig. 5b.

We recall that in Refs. 6 and 18 the surface impeda
of tungsten was also investigated in the geome
Hini@001#. Here the surface was not subjected to mecha
cal treatment. The state of the surface of the samples
varied by cyclic oxidation followed by annealing in vacuum
The significant~like ours! shift of the ReZ peak was attrib-
uted to a change in the specularity coefficient of the scat
ing. Indeed, for diffuse scattering a surface current ari
near the oxidized surface due to the static skin effect.19,20

The impedance of the slab can be written in the form21

Zs
215Z211S, ~9!

where Zs is the impedance with allowance for the surfa
currents,Z is the impedance in the case of specular reflect
of electrons from the surface of the sample, a
S;s0(r / l )r is the same as the resistance of a thin slab t
direct current in the case of diffuse boundaries.21 Here
s25ne2/nm, r}H21 is the Larmor radius, andl}n21 is

d:

of
it

FIG. 6. Surface resistance of zinc as a function of magnetic field:v/2p
5175 kHz,d50.33 mm,T54.2 K; u515° is the angle between the direc
tions ofH andni@0001#. Curve1—cleaved surface;2—both surface of the
sample were treated with an abrasive having a grain size of 10mm.



u
u
g

ar

-
t-
ld
-

r,
pe
es

d
o
n

bu
, t
r t
e

t t
re

ss
-
ay
ve

g

i-
e

e
e
e
ec
el
e
in

p
on

Kao
of

en-

root
pen-
to
of

to a

fore
ith
t so
the
bu-

nce
p-

ve-
igh-
l’’
ers,
tor

un-

-
nt

n is
-
en-
ift of
e-

e

dif-

37Low Temp. Phys. 26 (1), January 2000 L. T. Tsymbal and A. N. Cherkasov
the effective mean free path. SinceS50 for specular reflec-
tion, the change of the specularity coefficientp leads to a
shift of the ReZ peak. Formula~9! convincingly describes
the experiment on the assumption thatp varies in the range
from zero to 0.5. This assumption is reasonable for vacu
annealing. In our case, however, this explanation is uns
able. After polishing, the samples were held in air. For tun
sten samples of this type, measurements of the specul
coefficient give a value ofp not more than;0.1–0.15~Ref.
22!. This value is clearly insufficient for explaining the ob
served shift of the ReZ peak in tungsten after abrasive trea
ment. The situation is more subtle in a tilted magnetic fie
when the initial coefficient of specularity can vary in a com
plicated way as a result of interzone umklapp processes
the FS. Such a picture has been observed, in particula
zinc23 and should have led to substantial changes in res
to the shift of the Fisher–Kao peak for different angl
(H,@0001#). No such angular effects have been observed
zinc or tungsten.

From what we have said, the following simple an
physically clear explanation for this effect seems a reas
able alternative. The abrasive surface treatment not o
changes the coefficient of specularity of the reflection
also creates a subsurface layer of defects. As a result
electron relaxation frequency increases substantially nea
surface. Actually, a defect concentration gradient arises n
the surface of the sample. However, we shall assume tha
sample consists of three layers: an internal layer with a
laxation frequencyn, and two subsurface layers of thickne
d8 and relaxation frequencyn8. This assumption is sug
gested by the experimental fact that when the damaged l
~;0.02 mm! is chemically removed, the experimental cur
2 in Fig. 6 again practically coincides with curve1 ~a similar
thing happens for tungsten as well!. Now, by analogy with
optics, the shift of the ReZ peak can be described by usin
the resonance condition (Im(kd/2)'1), which we write in
the form

k~Hmax,n!d5k~Hmax
8 ,n!~d22d8!1k~Hmax

8 ,n8!2d8.
~10!

HereHmax andHmax8 are the fields corresponding to the max
mum of ReZ before and after the surface treatment, resp
tively. Assuming thatHmax

2 andH8max
2 @Hm

2 , we obtain from
~6! and ~10! the relation

Hmax
8 /Hmax5112~d8/d!~An8/n21!. ~11!

Relation ~11! satisfactorily describes the shift of the ReZ
peak in zinc~Fig. 6! for d8'10 mm ~the average grain siz
of the abrasive! and n8/n;102. The measured ratio of th
relaxation frequencies is completely real-valued. Howev
this ratio is an averaged quantity. Therefore, if the def
concentration gradient is taken into account, the high-fi
condition (vc@n) may be violated in a narrow subsurfac
layer. As a result, the regime of the ‘‘classical’’ normal sk
effect (k}(v/n)1/2) obtains in this layer, and relation~10!
becomes incorrect there. Nevertheless, the proposed ‘‘o
cal’’ model can be used for a purely qualitative descripti
of the shift of the ReZ peak.
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The frequency dependences obtained for the Fisher–
effect indicative that the state of the sample surface is
fundamental importance. In all our samples of uncomp
sated metals with high-quality surfaces we obtainedHmax

}v1/2, in agreement with Eq.~7!. After the abrasive treat-
ment of the surfaces of zinc and tungsten the square-
frequency dependence was transformed to a linear de
dence:Hmax}v. In Ref. 6 a more subtle method was used
alter the state of the surface. As we have said, oxidation
atomically clean annealed tungsten surfaces also led
strong shift of the peak of ReZ(H). However,Hmax(v) re-
mained a square-root dependence, as before. It is there
obvious that when the results obtained on samples w
abrasive-treated surfaces, one must take into account no
much the change of the state of the surface itself but
presence of a subsurface layer with a nonuniform distri
tion of defects over its thickness. Formula~11! does not de-
scribe the transformation of the frequency depende
Hmax(v), since it was obtained under the high-field assum
tion: n,n8!vc . However, as we have said, near an abrasi
treated surface a damaged layer can arise in which the h
field condition does not hold. We again use the ‘‘optica
model, assuming that the sample consists of three lay
with n8@vc in the subsurface layers. Then the wave vec
in Eq. ~10! obeys the relation

k~n8!>@2ivp
2vn8/c2~n821vc

2!#1/2. ~12!

As a result, on the right-hand side of Eq.~11!, a factor
11n82/vc

2 appears in the denominator of the expression
der the radical, with the result that the functionHmax(v) is
distorted at large values ofn8. Figure 7 shows the frequency
field curves for the Fisher–Kao effect, obtained for differe
values of n8/n (n523109 s21, N50.631022 cm23,
d50.33 mm,d8515 mm!. We see that asn8 increases, the
peak shifts to higher fields, but thatHmax(v) remains a
square-root dependence as long as the high-field conditio
satisfied (vc@n8). As n8 is increased further, this depen
dence is distorted, transforming to a practically linear dep
dence at high enough frequencies. Consequently, the sh
the ReZ peak and the transformation of the frequency d
pendenceumax(v) can be described qualitatively within th

FIG. 7. Frequency–field curves of the Fisher–Kao effect, obtained for
ferent values ofn8/n ~three-layer sample model; see text!.
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proposed simplified model, which assumes the creation
subsurface damaged layers with a nonuniform distribution
defects.

CONCLUSION

We have investigated the consequences of the dec
pensation of the electron and hole volumes in zinc due
interzone magnetic breakdown and have investigated the
fluence of the state of the surface of the samples on
character of the frequency-field curves for the Fisher–K
effect. The results can be stated as follows.

1. In zinc at small angles between the direction ofH and
the axis@0001#in the value of ReZ increases monotonically
with H all the way up to the maximum attainable field
whereas in other compensated metals, e.g., in tungsten
cadmium, the ReZ(H) curve exhibits a maximum due to th
Fisher–Kao effect. This suggests that at smallu zinc does
not behave as a typical compensated metal. The decom
sation of charge carriers arises as a result of the magn
breakdown between the second and third Brillouin zone
the neighborhood of theK points ~Fig. 3!. However, the
monotonically increasing function ReZ(H) obtained distin-
guishes zinc from the common class of uncompensated
als as well. The form of ReZ(H) in zinc is most likely due
to the fact that, along with the magnetic-breakdown orbitsfe
~Fig. 3! there also exist other magnetic-breakdown orbits
different configurations—in particular, open ones.

2. As the angleu is increased, the ReZ(H) curve for Zn
deforms, and foru.5° it exhibits a peak that indicates th
a damped Alfve´n wave, which propagates through th
sample, is excited in zinc. Consequently, when the direc
of H deviates from the@0001# axis, the magnetic-breakdow
decompensation vanishes, and zinc, in accordance with
mula ~1!, behaves as a compensated metal.

3. When the surface of the sample is subjected to
abrasive treatment the peak on the ReZ(H) curve is shifted
substantially to higher fields, and the standard frequency
pendence for the Fisher–Kao effect,Hmax}v1/2 ~7! is trans-
formed to a linear dependence:Hmax}v. This result cannot
be described in a theory which takes into account only
change in the specular reflection coefficient of electrons fr
of
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the surface of the sample. The proposed model gives a
isfactory description of the frequency–field dependence
the Fisher–Kao maximum.
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Field, temperature, and concentration dependences of the magnetic susceptibility
of bismuth–antimony alloys
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In the framework of the McClure model, which describes the electronic energy spectrum of
bismuth and its alloys in the neighborhood of theL point of the Brillouin zone, an expression is
obtained for the electron energy levels in a magnetic field. This expression is used to
calculate the magnetic susceptibility of bismuth alloys at arbitrary magnetic fields. It is shown
that the theoretical results are in good agreement with the entire set of published
experimental data on the field, temperature, and concentration dependences of the magnetic
susceptibility of bismuth–antimony alloys. ©2000 American Institute of Physics.
@S1063-777X~00!00501-6#
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INTRODUCTION

The electronic band structure of bismuth and its allo
with antimony has been the subject of many papers~see, e.g.,
Refs. 1 and 2 and the references cited therein!. It has been
established that the Fermi surface of bismuth and its all
~at low concentrations of antimony! consists of one hole el
lipsoid, located at theT point, and three closed electron su
faces of nearly ellipsoidal shape, centered at theL points of
the Brillouin zone. Another circumstance that is extrem
important for understanding many of the properties of b
muth is that in the neighborhood of theL point the conduc-
tion band is separated by only a small energy gap from
other, filled band. The detailed study of the energy spectr
the charge carriers near theL andT points is done mainly by
methods based on oscillation and resonance effects. By
the values of the main parameters characterizing the b
structure of bismuth and its alloys with antimony have be
determined by these methods.2

The smooth~nonoscillatory with respect to the magnet
field H! part of the magnetic susceptibility of the solid sol
tions Bi12xSbx exhibits noticeable~and often nonmonotonic!
changes upon variations ofH, the temperatureT, the anti-
mony concentrationx, and the admixture of dopants th
shift the level of the chemical potentialz of the alloy.3–7

These changes in the susceptibility are due to electro
states located near theL points and belonging to two band
separated by a small energy gap.8–10 The rest of the elec-
tronic states all give a contribution to the magnetic susce
bility that is practically independent ofT, z, H, andx and
represents a constant background. The study of the ‘‘v
able’’ contribution to the magnetic susceptibility~i.e., its de-
pendences onT, z, H, andx! will make it possible to check
and refine the data on the electronic band structure in
neighborhood of theL point as obtained from investigation
of oscillation and resonance effects.

Calculations of the special~or ‘‘variable’’ ! contribution
to the magnetic susceptibility of bismuth and its alloys in t
391063-777X/2000/26(1)/8/$20.00
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limit H→0 were done in Ref. 8–10. The models of the ele
tronic band structure11,12used in Refs. 8 and 9 would later b
found to give a poor description of the spectrum of bismu
alloys in the neighborhood of theL point. In Ref. 10 the
magnetic susceptibility was calculated using a spectr
which is intermediate in accuracy between those propose
Ref. 13 and in Refs. 14 and 15; both of these last provid
good description of the entire set of experimental data
oscillation and resonance effects in bismuth alloys. Howev
in Ref. 10 the theoretical and experimental results were co
pared only for the dependences of the magnetic susceptib
x on z andx, and the comparison was done using values16 of
the spectrum parameters that were later revi
considerably.2 In Ref. 17 the same model of the spectrum
in Ref. 10 was used to calculate the field dependence of
magnetic susceptibility, but only in low magnetic fields. F
high magnetic fields a calculation ofx was done in Refs. 6
and 9, but with the use of unrealistic, oversimplified mod
of the spectrum.11,12 Thus, at the present time there is n
complete quantitative description of the experimental cur
of the magnetic susceptibility of bismuth alloys as a functi
of H, T, z, andx.

It was shown in Ref. 18 that under conditions of dege
eracy of the electronic energy bands of the crystal in a w
magnetic field (H→0) there can be giant anomalies of th
magnetic susceptibility, and the types of degeneracy of
bands which can lead to such anomalies were listed. In R
19 the problem of the electron energy levels in a magn
field was solved exactly for two of these types~those most
often encountered in crystals!, and the special contribution to
the magnetic susceptibility was calculated for arbitrary v
ues ofH. As expected, this contribution depends strongly
H, z, andT. The spectrum of bismuth–antimony alloys
the neighborhood of theL point of the Brillouin zone is close
to degenerate and is characterized by the circumstance
for a nonzero gap in the spectrum, the type of degenerac
intermediate between those considered in Ref. 18. Thi
what accounts for the strong field, temperature, and conc
© 2000 American Institute of Physics
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tration dependences ofx in these alloys. However, a detaile
comparison of the theoretical and experimental results m
be done with allowance for the aforementioned feature of
spectrum of bismuth alloys. Therefore, generalizing the
sults of Ref. 19, in Sec. 1 of the present paper we giv
solution to the problem of the energy levels of an electron
a magnetic field for the McClure spectrum,13 and in Sec. 2
we obtain the corresponding expressions for the magn
susceptibility, valid for arbitraryH. In Sec. 3 we use thes
expressions to compare the theoretical and published ex
mental results for the field, temperature, and concentra
dependences ofx in Bi12xSbx alloys. We conclude with a
summary of our findings.

1. SPECTRUM

As we said in the Introduction, the dependences of
magnetic susceptibility on the field and on temperature,
purity concentration, and other external parameters are g
erned mainly by the electronic states located in the neigh
hoods of theL points of the Brillouin zone and belonging t
two bands which lie close to each other and to the leve
the chemical potential. These electronic states are descr
using several models of the energy spectrum which h
different degrees of accuracy in terms of the parameter

d5
«0

E0
!1,

where«0 is the characteristic energy scale for the two nea
bands, andE0 is the energy distance from these bands to
nearest of the remaining bands. The most comp
models10,14,15 have an accuracy of orderd. However, at
present the values of the parameters of the spectrum hav
been determined for the simpler McClure model,13 which
describes the spectrum with an accuracy of orderd1/2. We
will use the McClure model here. In it the Hamiltonian of th
electrons in the neighborhood of anL point has the form

H5S D1Kc 0 t u

0 D1Kc 2u* t*

t* 2u 2D2Kv 0

u* t 0 2D2Kv

D . ~1!

Here and below the energy and chemical potentialz are reck-
oned from the center of the energy gap 2D ~here «0

;2D,uzu! which separates the two bands, denotedc andv,
which are nearly twofold degenerate at this point. The qu
tities t, u, Kc , andKv are given by the formulas

t5q1k1 , u5q2k21q3k3 , Kc,v5
a22

c,v

2
k2

2, ~2!

in which q1 , q3 , anda22
c,v are real parameters of the mode

and q2 is a complex number. The origin of coordinates f
the wave vectork is at theL point. The axis 1 is along the
binary axis, and axis 2 is along the length of the Fermi s
face of pure bismuth at theL point, i.e., at an anglew'6° to
the bisector direction. For pure bismuth Re(q2)50. In
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Bi12xSbx alloys the dependences of the parametersqi , a22
c,v ,

andD on the antimony concentrationx are well described by
the linear functions2

q150.45720.188x; a22
c 50.61510.4x;

Im~q2!50.0320.04x; a22
v 51.110.7x; ~3!

q350.344; 2D5~102242x! meV

~qi anda22
c,v are given in atomic units, a.u.!. In addition, asx

increases, the parameterq2(x) generally acquires a rea
part.10 A nonzero Re(q2) causes the long direction of th
electronic isoenergy surfaces to deviate from the axis 2 by
angle dw;(Re(q2)/q3). Such a deviation was actually ob
served in Ref. 16, and it follows from the data of that stu
that

Re~q2!;0.05x.

The band energies«c(k) and«v(k) are found from the equa
tions

F«2
1

4
~a22

c 2a22
v !k2

2G2

5E2, ~4!

where

E25FD1
1

4
~a22

c 1a22
v !k2

2G2

1q1
2k1

21uq2u2k2
2

1q3
2k3

212q3 Re~q2!k2k3 . ~5!

The relative position of these bands as a function of
antimony concentrationx is shown in Fig. 1.

FIG. 1. Diagram of the changes in the electronic energy spectrum
Bi12xSbx alloys at theL and T points of the Brillouin zone. The dashe
lines indicate the path of the band edges«c(0) and«v(0) at theL points and
«T(0) at theT point asx is changed. The lines were constructed usi
formulas ~3! and ~10!. At x'0.04 the gap in the spectrum at theL point
goes to zero, and forx.0.07 the alloy undergoes a transition to a semico
ducting state. The solid curves show a schematic illustration of«c(k),
«v(k), and«T(k) at the respective points.
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The spectrum of electrons in a magnetic fieldH directed
along the k2 axis can be obtained from the gener
expression19

S~«n ,k2!5
2peH

c\
n, ~6!

where e is the absolute value of the electron charg
S(«n ,k2) is the cross-sectional area of the isoenergy surf
on a planek25const, andn is a nonnegative integer. Here
should be kept in mind that the energy levels«n with n.0
are twofold degenerate. In the derivation of~6! we neglected
the direct interaction of the electron spin with the magne
field, since the purely spin contribution to the magnetic s
ceptibility is of order d ~but the spin–orbit interaction is
taken into account in all the formulas given above!. We note
that, although the quantization condition~6! has the quasi-
classical form, in this case it gives the exact eigenvalues
the energy of an electron with the Hamiltonian~1!, ~2!. From
Eqs.~4!–~6! we obtain

«n
c,v~k2 ,H !5S a22

2 2a22
v

4 D k2
26FaHn1S D1

a22
c 1a22

v

4
k2

2D 2

1~ Im~q2!!2k2
2G1/2

, ~7!

wherea52euq1q3u/c\. If the magnetic field is directed a
an angleu to thek2 axis, then, as was shown in Ref. 19, to
accuracy of d tan2 u the eigenvalues«n

c,v(k2,H) are de-
scribed, as before, by formula~7! but with H cosu substi-
tuted forH.

Besides the electronic states in the neighborhoods of
L points of the Brillouin zone, bismuth also has hole state
the neighborhood of theT point. These states have the e
ergy spectrum1

«T~k!5ET2
\2

2m1
h ~k1

21k2
2!2

\2

2m3
h k3

2. ~8!

Here the values of the effective massesm1
h andm3

h are

m1
h50.212 a.u., m3

h50.0639 a.u., ~9!

k is reckoned from theT point, the axes 1 and 2 coincid
with the binary and bisector axes, respectively, andET is the
energy of the band edge, which in Bi12xSbx alloys falls off
linearly with increasingx ~see Fig. 1!:

ET5~46.92601.26x! meV. ~10!

The contribution tox from the hole states at theT point is
small compared to the contribution from the electronic sta
near theL points and is of orderd. This is because of the
relatively large massesm1,3

h and, accordingly, the small dis
tances between energy levels«n

T in a magnetic field:

«n
T~k2!5ET2

\eH

cAm1
hm3

h S n1
1

2D2
\2k2

2

2m1
h . ~11!

However, while neglecting the contribution of these states
the susceptibility, one must take into account their influen
on the position of the chemical potential of the electrons
bismuth–antimony alloys.
l
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2. CALCULATION OF THE MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility of bismuth and its alloys c
be written as the sum of a special contribution due to
electronic states near the threeL points and a background
term due to all the remaining states. The background term
practically independent of the magnetic field and tempera
and even remains constant upon variations of the chem
potentialudzu;uDu. The special contribution to the magnet
susceptibility consists of a sum of three terms due to
states near the respectiveL points. Each of this terms can b
obtained from the following expression for theV potential
~per unit volume!:

V~Hu!52
eHuT

4p2c\ (
c,v

(
n50

8 E
2`

1`

dk2

3 lnH 11expS z2«n
c,v~k2 ,Hu!

T D J , ~12!

where the prime on the summation sign means that in tak
the sum overn the terms withn.0 must be doubled;Hu is
the projection of the magnetic field on thek2 axis at the
given L point. In an experiment one measures the quanti

x5hihjx
i j ,

whereh5H/H is a unit vector in the magnetic field direc
tion, and the differential magnetic susceptibilityx i j is given
by the expression

x i j 52
]2V

]Hi]H j
.

Since theV potential~12! depends onH only throughHu , in
our approximation~to accuracyd1/2! we have

x5(
i 51

3

cos2 u lx
22~H cosu l !,

whereu l are the angles between the magnetic fieldH and the
k2 axis for the threeL points.

In the case of weak magnetic fields, for which the ch
acteristic distance between energy levels in the magn
field obeys d«H!T, we integrate~12! by parts, use the
Euler–Maclaurin summation formula, and differentiate w
respect to the magnetic field to obtain for the susceptibi
an expression of the formx5x01x1H2, where the expres-
sions for theH-independent termsx0 andx1 are the same as
those obtained previously in Refs. 10 and 17.

Let us now analyzex22 in the case of high magneti
fields,d«H@T. The contribution of the electrons in the con
duction band to the magnetic susceptibility can be calcula
directly using formula~12!, since the number of filled levels
«n

c is finite. To calculate the contribution of the filled bandv
to x22, we once again integrate~12! by parts as many times
as necessary, use the Poisson summation formula, an
T50 (d«H@T). The resulting formula includes one summ
tion and integrations overn andk2 . If the quantity (d«n

v/dn)
in this formula@where«n

v is defined in Eq.~7!# is written as
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Ud«n
v

dn
U5 2

Ap
E

0

`

dt expH 2S d«n
v

dn D 22

t2J ,

then the summation and integration overn and k2 can be
done in explicit form. As a result, we obtain foruzu,uDu

x22~H !52
1

4p2 S e

c\ DaS uQu
puD~a22

c 1a22
v !u D

1/2

3E
0

`

dt fS H

HD
t2De~Q222!t2K1/4~Q2t2!, ~13!

whereQ is the following dimensionless combination of p
rameters:

Q5sgn@D~a22
c 1a22

v !#S 11
2~ Im~q2!!2

D~a22
c 1a22

v ! D ; ~14!

HD is the characteristic magnetic field, at whichd«H;uDu,
i.e., HD5D2/a; K1/4(x) is a modified Bessel function, and

f ~x!52S x cothx21

sinh2 x D .

In the derivation of expression~13! we have assumed tha
the parameter

g5Ua22
c 1a22

v

a22
c 2a22

v U>1. ~15!

We note that this condition is satisfied for Bi12xSbx alloys
for any antimony concentrationsx.

If the magnetic fields are such thatH!HD , then the
magnetic susceptibility~13! is independent of the field, and
is described by the same expression as that given in Re
for T→0. On the other hand, ifH@Q2HD ~for bismuth–
antimony alloysQ@1 for x;0.04, while for other antimony
concentrationsQ>1 in the regionx,0.2!, then

x22~H !'2A
e

c\

a3/4

ua22
c 1a22

v u1/2H21/4, ~16!

where

A5
21

32

z~7/4!cos~p/8!G~1/4!

23/4p13/4 '6.2131022; ~17!

z(x) is the Riemann zeta function, andG(x) is the gamma
function. Formulas~16! and ~17! agree with those obtaine
in Ref. 9.

In Ref. 19 the field dependence of the magnetic susc
tibility of electrons was investigated for two of the thre
types of degeneracy of the energy bands of crystals lea
to strong field dependence. According to Eqs.~3!–~5!, in
Bi0.96Sb0.04 alloys there is band degeneracy of the first ty
according to the classification of Ref. 18, i.e., a band splitt
that is linear in the wave vectork in the neighborhood of the
degeneracy pointL. However, bismuth alloys are characte
ized by relatively small values of the matrix elementq2 re-
sponsible for this linear splitting along thek2 axis. That is
why we took terms quadratic ink2 into account in the Hamil-
tonian ~1!–~3!. According to Eqs.~3!–~5!, as the pointk
moves away from theL point along thek2 axis, the splitting
10

p-

ng

g

of the bands rapidly deviates from linearity and approache
quadratic law. This leads to a more complicated depende
of x(H) than in Ref. 19@see Eq.~13!#. The limiting expres-
sion ~16! corresponds to the case when the initial~linear in
k2! part of the band splitting can be neglected, and one
assume thatu«c(k2)2«v(k2)u}k2

2 ~we note that this approxi-
mation is justified even forDÞ0!. Thus formula~16! actu-
ally describes the behavior ofx(H) for the third type of band
degeneracy,18 for which a giant anomaly of the magnet
susceptibility can occur and which was not considered
Ref. 19. Here Eq.~15! corresponds to the condition whe
«c(k2) and«v(k2) have different signs. If«c(k2) and«v(k2)
had the same sign, i.e., ifg,1, then, as one can show, fo
H@HDQ2g2/(12g2) the magnetic susceptibility is de
scribed as before by formula~16! but with a different con-
stantA:

A5
21

16

z~7/4!cos~p/8!

21/4p11/4G~1/4!
g1/2FS 1

4
,2

1

4
,
5

4
,g2D , ~18!

whereF is the hypergeometric function. In the limiting cas
g50 ~and uq2u50! we would arrive at a line of degenerac
of the bands, i.e., at the second case according to the cl
fication of Ref. 18. Then expression~16! with the factorA
from ~18! agrees with the expression obtained in Ref. 1
Finally, we note that in the case of band degeneracy at aL
point or for small D the parameterQ@1, and there is a
region of magnetic fieldsHD!H!Q2HD in which the part
of the band splitting that is linear ink2 plays the governing
role in x(H). Then it follows from Eq.~13! that

x22~H !52
1

6p2

e

c\

a

2uIm~q2!u
lnS HD

H D 1/2

.

With an accuracy up to the background constant, this re
agrees with that obtained in Ref. 19 for the first type of ba
degeneracy. Thus the strong field dependence of the m
netic susceptibility of bismuth alloys is a manifestation of t
fact that the spectrum of these alloys is close to those c
of band degeneracy which lead to a giant anomaly of
magnetic susceptibility.18

The chemical potentialz of the electrons in the crystal
generally speaking, itself depends on the magnetic field. T
dependence is determined from the condition that the t
electron density is constant:

n[2
]V

]z
5const. ~19!

To evaluate the magnetic susceptibility at constantn, it is
necessary to go over from theV potential to the free energy
As a result, forx i j (H,n) we have19

x i j ~H,n!5Fx i j ~H,z!2
]n

]Hi

]n

]H j
S ]n

]z D 21G
z5z~H,n!

.

~20!

When obtaining the functionz(H,n) using formula~19! it is
necessary to take into account the contributions to theV
potential not only from the electronic states near theL points
but also the states near theT point, and also the influence o
donor and acceptor impurities. The states at theT point give
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a term in theV potential which is determined by formul
~12! with the energy levels from~11!. Impurities, first, cause
scattering of the charge carriers and, second, give an a
tional impurity contribution to theV potential in semicon-
ducting alloys. The scattering of charge carriers can be ta
into account in a simple way by the introduction of a Ding
temperatureTD , i.e., by replacingT by T1TD in all the
formulas. In semiconducting alloys of Bi12xSbx (x.0.07)
we consider the impurity contribution to theV potential,
V imp , in the limiting case of lightly and heavily dope
n-type semiconductors. The case of light doping is char
terized by the presence of carrier–impurity bound states,
energies of which form a narrow impurity band lying in th
gap of the spectrum. In bismuth–antimony alloys these
ergies « i practically coincide with the band edge, i.e.,« i

'uDu. We then have

V imp52Tn imp lnS 11expS z2« i

T D D , n5n imp , ~21!

where n imp is the density of doping impurities. As w
know,20 the main condition for the existence of impurity le
els is that the average sized of the carrier–impurity bound
state be small compared to the distance between impuri
i.e., the conditiondn imp

1/3 !1. The dimensiond is of the order
of the ‘‘Bohr’’ radius d;aB* 5k\2/e2m* , where k is the
dielectric constant of the crystal andm* is the effective mass
of a charge carrier. For a heavily doped semiconduc
dn imp

1/3>1, and carrier–impurity bound states do not arise.
this case we have

V imp50, n5n imp , ~22!

i.e., the semiconductor is transformed into a ‘‘poor’’ me
with an intrinsic electron densityn imp . If the semiconductor
is in a magnetic fieldH, then we must take into account th
dependence onH of the average sized of a localized state.
In a weak magnetic field we haved;aB* , as before. How-
ever, when the magnetic lengthl>(\c/eH)1/2 becomes
smaller thanaB* , the size of the localized state in the dire
tions perpendicular toH is determined by the value ofl, and
the average sized;(l2aB* )1/3 falls off with increasingH.
Therefore, in sufficiently high fields H>Hcr

;(\c/e)n impaB* there occurs a magnetic ‘‘freeze-out’’ of th
electrons,21 and the heavily doped semiconductor is tran
formed into a lightly doped one.

3. COMPARISON OF THE RESULTS OF THE CALCULATION
OF x WITH EXPERIMENTAL DATA

In Refs. 3–7 significant changes inx were observed in
bismuth–antimony alloys upon variations in the magne
field, temperature, antimony concentration, or chemical
tential, the level of the last being regulated by the introd
tion of doping impurities in the alloy. Our theoretical anal
sis of the dependence of the susceptibility onH, T, x, andz
will be done on the basis of the formulas obtained in Sec
using the values in~3!, ~9!, and~10! for the parameters of the
spectrum.

Let us first consider the dependence ofx(H→0) on the
antimony concentrationx in Bi12xSbx alloys ~Fig. 2!. Ex-
di-
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pressions for the magnetic susceptibility in low fields we
obtained previously.10 In the present paper, however, the ca
culations using these expressions were done with the
values of the parameters~3!, ~9!, ~10!. In comparing the the-
oretical and experimental results we chose the constant b
ground in the susceptibility so as to obtain coincidence w
the corresponding values for pure bismuth. In the calculat
it is necessary to find the dependence of the chemical po
tial z on x for the semimetallic alloys Bi12xSbx (x,0.07)
from the condition that there be equal numbers of electr
and holes at theL andT points, respectively. In the region o
semiconducting alloys (x.0.07) the chemical potential is
assumed to lie in the gap of the spectrum between the
lence band and conduction band, and the impurity conc
trationn imp is taken equal to zero. From the results presen
in Fig. 2 it follows that the use of the parameter set~3!, ~9!,
~10! provides a better description of the experimental d
for the semiconducting alloys than does the set from Ref.
In addition, we have calculated the dependence ofx in a
weak fieldH on the level of the chemical potentialz for the
alloys Bi0.92Sb0.08 and Bi0.97Sb0.03. The results of the calcu
lation with the new parameter values agreed with the res
of Ref. 10 to within the limits of experimental error.

Figure 3 shows the field dependence of the magnet
tion M of pure bismuth in magnetic fields so high that t
only the lowest Landau level in the conduction band rema
occupied, and there are no de Haas–van Alphen oscillati
In accordance with Eqs.~13! and~16!, this curve is nonlinear
in H. Here for a detailed comparison of the results of t
calculation with the experimental data of Ref. 6, we took in
consideration thatz.D in bismuth, and we added to Eq
~13! the contribution due to the conduction electrons. T
expression for this contribution was obtained directly fro

FIG. 2. Low-field magnetic susceptibilityx as a function of the antimony
concentrationx in Bi12xSbx alloys. The magnetic field is applied in th
basal plane of the crystal.T54.2 K. x is normalized to a unit volume;
s—experimental data of Ref. 7; solid curve—calculation according to
formulas of Ref. 10 with the use of the parameter values given in Eqs.~3!,
~9!, ~10!; dashed curve—calculation done in Ref. 10 using the spect
parameters given in Ref. 16.
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Eq. ~12!. We see that the agreement of the theoretical
experimental results is quite good, and it is achieved with
the use of any adjustable parameters.

The results of the calculations of the field dependence
the magnetic susceptibility of the semiconducting allo
Bi0.92Sb0.08 with a concentration of donor impuritiesn imp

51015cm23 are presented in Fig. 4. The twox(H) curves
shown differ in that they correspond to the dependencez
on H obtained for heavily and lightly doped semiconducto
For the given value ofn imp an estimate of the fieldHcr gives
Hcr;1 kOe. In accordance with the arguments set forth
Sec. 2, at fields much smaller thanHcr the theoretical curve
corresponding to the case of heavy doping gives a good
scription of the experiment. For magnetic fields that are

FIG. 3. MagnetizationM of pure bismuth as a function of the magnetic fie
H, directed along the binary axis, forT520 K and H>20 kOe; n—the
experimental data of Ref. 6; solid curve—the calculation of the pres
paper.

FIG. 4. Magnetic susceptibilityx as a function of the magnetic fieldH for
the semiconducting alloy Bi0.92Sb0.08 with a concentration of donor impuri-
ties n imp51015 cm23. The magnetic field is directed along the binary ax
T54.2 K, TD53.5 K; x is the susceptibility per unit volume. The curves1
and2 correspond to the cases of heavily doped@Eq. ~22!# and lightly doped
@Eq. ~21!# semiconductors, respectively;n—the experimental data7 for an
alloy Bi12xSbx with x50.07660.005.
d
t

f
s

.

n

e-
o

weak (H,50 Oe) that the characteristic distance betwe
electronic energy levels at theL points is much less than th
temperature (T54.2 K), the aforementioned curve is ap
proximated by the expressionx(H)5x01x1H2, and the
values ofx0 and x1 agree with those calculated using th
formulas in Refs. 10 and 17. As the magnetic field is
creased a transition to the case of light doping occurs
account of the magnetic freeze-out of the electrons, and,
cordingly, in the regionH.Hcr the agreement with experi
ment is better for the other curve. As the magnetic field
increased further, the chemical potential of the electro
comes to lie in the gap of the spectrum, and the field dep
dence ofz(H) ceases to influence the magnetic suscepti
ity; then the theoretical curves in Fig. 4 practically coincid
Here one can findx(H) directly using formula~13!. The
results of this calculation are shown in Fig. 5. We see that
complete agreement with experiment, the magnetic susce
bility is practically independent of the direction of the ma
netic fieldH in the basal plane.

Figure 6 shows the results of calculations ofx(H) for
the alloy Bi0.92Sb0.08 with admixtures of the dopant tellurid
at concentrationsn imp'331016 but 431017cm23. For the
first of these concentrationsHcr;30 kOe, and in fields lower
than this, the difference inx for the heavily and lightly
doped semiconductor practically vanishes. For the secon
these concentrationsHcr;400 kOe, and the alloy remain
heavily doped throughout the magnetic field region cons
ered. Thus for an analysis of thex(H) curves it suffices to
use the formulas corresponding to a heavily doped semic
ductor. The introduction of the donor impurity Te raises t
level of z significantly, and the first few de Haas–van Alphe
oscillations appear; these, however, cannot be describe
the quasiclassical formulas. We see that, although the m
netic susceptibility is a nonmonotonic function ofH, the
theoretical curves rather accurately describe both the p
tions of the extrema ofx and the overall trend of the functio
x(H). We note one final circumstance. In constructing t
theoretical curves in Figs. 4–6 the Dingle temperaturesTD

were chosen so as to give the best fit of these curves with
experimental data. In agreement with the existing ideas ab

t

FIG. 5. Magnetic susceptibilityx as a function of magnetic fieldH for fields
greater than 3 kOe, for the same alloy as in Fig. 4. The calculation was d
using formula~13! for two orientations of the magnetic field—along th
binary axis and along the bisector direction. The results of the calcula
for the two cases practically coincide~solid curve!; n,s—the experimental
data of Ref. 7 for the first and second of the indicated directions ofH,
respectively. The values ofx, n imp , T, andTD are the same as in Fig. 4.
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the scattering of charge carriers in heavily dop
semiconductors,20 the values obtained forTD are of the order
of order of the characteristic Bohr energiesEB

5m* e4/2\2k2 and depend approximately logarithmically o
n imp .

The temperature dependence of the magnetic suscep
ity of bismuth–antimony alloys is shown in Fig. 7 and 8. T
nonmonotonic behavior ofx(T) ~Fig. 8b! is easily explained
on the basis of qualitative arguments. For the al

FIG. 7. Magnetic susceptibilityx as a function of temperatureT in a con-
stant magnetic fieldH5500 Oe applied along the bisector direction, for t
same alloy as in Fig. 4. Curve1 is for temperature-independent paramete
of the spectrum; curve2 is for parameters having temperature dependen
described by formulas~23! and~24!; curve3 is obtained for parametersq1 ,
q3 , and D depending onT according to Eq.~23! but for q2(T)5q2(0);
s—experimental data of Ref. 7 for Bi12xSbx with x50.07660.005.

FIG. 6. Magnetic susceptibilityx as a function of magnetic fieldH for a
field directed along the bisector direction, for the alloy Bi0.92Sb0.08 with two
different concentrations of the donor impurity tellurium:n imp53
31016 cm23 ~curve 1! and n imp5431017 cm23 ~curve 2!. The calculation
was done using formula~22!; T54.2 K, TD57 K and 11 K for curves1 and
2, respectively; s,n—the experimental data of Ref. 7 fo
Bi12xSbxTe0.000001 and Bi12xSbxTe0.00001, respectively, wherex50.076
60.005.
il-

y
Bi0.92Sb0.08 at H<500 Oe the characteristic distance betwe
electron energy levels in the magnetic fieldd«H is less than
or of the order of 10 K, and thex(T) curves in Fig. 7 and 8b
actually correspond to the low-field case, whend«H,T.
Here, as follows from the results of Ref. 18,uxu falls off
monotonically with increasing temperature ifz lies in the gap
of the spectrum or ifz2uDu&T. It is just such a situation
that is observed in the case withn imp51015cm23 ~Fig. 7!,
sincez2uDu&20 K in that case. For the alloy withn imp53
31016cm23 ~Fig. 8b! one hasz2uDu'120 K atT50.

As the temperature is raised, the chemical potentia
the degenerate electron gas decreases,z(0)2z(T)
;T2/(z(0)2uDu), approaching the bottom of the condu
tion band. As long asz(T)2uDu.T, the behavior ofx can
be explained by using the results of Ref. 18 for the funct
x(z,T50). According to those results,uxu increases with
decreasingz. Finally, whenT becomes greater thanz(T)
2uDu ~i.e., for T*70 K!, uxu, as we have said, begins to fa
off with increasingT. This explains the appearance of a
extremum ofx(T) in Fig. 8b. As to the data presented in Fi
8a, they correspond tod«H;600 K. As long asT!d«H one
can assumeT50 in all the formulas presented in this pape
andx is practically independent of temperature. It is only f
T*d«H , when a transition to the low-field case occurs, th
one should expect to see an appreciable decrease ofuxu with
increasingT. If it is assumed that the parameters of the sp
trum do not change as the temperature increases, then

s

FIG. 8. Temperature dependence ofx in constant magnetic fields applie
along the bisector direction, with a value of 52 kOe for the alloy Bi0.92Sb0.08

~a! and a value of 300 Oe for the alloy Bi0.92Sb0.08 with a concentration of
the the donor impurity telluriumn imp5331016 cm23 ~b!; curves1 are for
temperature-independent spectrum parameters; curves2 are for spectrum
parameters with temperature dependences described by formulas~23! and
~24!; s—experimental data of Ref. 7 for Bi12xSbx ~a! and
Bi12xSbxTe0.000001~b! with x50.07660.005.
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calculated functionsx(T) give a good quantitative descrip
tion of all the experimental data only forT,50 K. In Ref. 22
the temperature dependences of some of the paramete
the spectrum for pure bismuth were determined from m
netooptical measurements:

q1~T!q3~T!5q1~0!q3~0!21.3531024 T23.8

31027 T2 @a.u.#, ~23!

D~T!5D~0!12.131023 T12.531024 T2 @meV#.

These parameters indeed vary hardly at all forT
<50 K. The results of a calculation of the magnetic susc
tibility with allowance for formulas~23! are presented in Fig
7. It is seen that taking the temperature dependences~23!
into account noticeably improves the agreement with the
perimental data. Moreover, from the functionx(H) one can
determine the temperature dependence of those param
of the spectrum which cannot be found from magnetoopt
measurements. In particular, by fitting the theoretical cu
to the experimental data presented in Fig. 7, we obtain
temperature dependenceq2(T):

q2~T!5q2~0!18.931027 T2 @meV#. ~24!

Interestingly, the use of this temperature dependence
gether with~23! for calculatingx(T) at another value of the
magnetic field~Fig. 8a! or impurity concentration~Fig. 8b!
yields a satisfactory description of the other experimen
results as well.

CONCLUSION

The strong field, temperature, and concentration dep
dences of the magnetic susceptibility of bismuth–antimo
alloys is explained by the fact that the electronic ene
spectrum of these alloys is nearly degenerate. The magn
susceptibilityx calculated in this paper for Bi12xSbx solid
solutions with the use of the McClure model gives a go
quantitative description of all the aforementioned dep
dences, provided that one uses for the parameters of
spectrum the values reported in Ref. 2, which were obtai
from oscillation and resonance effects. Here, in analyzing
field dependence ofx for the semiconducting Bi–Sb alloys
one must take into account that these alloys are hea
doped even at relatively low concentrations of donor or
ceptor impurities. In particular, a comparison of the theor
ical and experimental results for the alloy Bi0.92Sb0.08 shows
that the Dingle temperature is a nonlinear function of
of
-

-

x-

ters
l

e
e

o-

l

n-
y
y
tic

d
-
he
d
e

ly
-

t-

e

dopant concentrationn imp , and forn imp;1015cm23 a mag-
netic freeze-out of the electrons occurs. The temperature
pendence ofx appears to give evidence of an apprecia
influence of the electron–phonon interaction on the magn
susceptibility of semiconducting alloys of bismuth atT
.50 K. The existing experimental data can be described
the framework of an extremely simple approach in whi
this interaction affects only the temperature dependence
the parameters of the spectrum.
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Low-temperature nonlinear lattices in ferroelectrics with protonic conductivity
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An S51 pseudospin formalism is constructed for ferroelectrics with protonic conductivity,
the change carriers in which are protons moving along a network of hydrogen bonds.
The Hamiltonian is written in the pseudospin form and in the second-quantization operator
representation. A system of equations describing the state of the ferroelectric cell is obtained.
A numerical analysis of this system reveals the presence of traveling nonlinear lattices
that can affect the dynamical properties of the ferroelectric. ©2000 American Institute of
Physics.@S1063-777X~00!00601-0#
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Hydrogen-bonded ferroelectrics, which have a ph
transition of the order–disorder type, are of interest in c
nection with the problem of the structural and ferroelect
phase transitions caused by the ordering~disordering! of the
protons on the hydrogen bonds.1 Ordinarily the motion of a
proton is treated as occurring only between two positions
the O..H–O bond, and because of the bounded nature of
motion the response of the proton subsystem to an exte
electric field is purely dielectric. It has been established
perimentally, however, that hydrogen-bonded ferroelect
can exhibit structural phase transitions with a fundament
different type of ordering of the proton subsystem: the tra
of the protons is not confined to the unit cell. They c
undergo translational motion, with a low activation energ
over the whole crystal. The protonic conductivity in differe
crystals varies over a range of 10–13 orders of magnitu2

and it can become comparable to the conductivity of a fu
sample. The construction of a consistent theory of the pr
erties of crystals with protonic conductivity is therefore
topical problem.

We note that the substances having high protonic c
ductivity are compounds in which the number of protons
less than the number of hydrogen bonds. In such substa
the hydrogen bond can be either occupied or unoccupied
a proton. A consistent theory of ferroelectric crystals w
protonic conductivity should take into account th
temperature-induced phase transition, proton~deuteron! tun-
neling in the hydrogen bond, and proton~deuteron! hopping
from an occupied to an unoccupied hydrogen bond. Con
quently, three states of the hydrogen bond must be con
ered: with a proton at one end of it, with a proton at the ot
end, and unoccupied.

If the hydrogen bond has a proton on it, the proton c
be found in one of two equilibrium positions in th
hydrogen-bond potential.3,4 Assuming, as is customary, tha
the potential wells in which the proton moves are rath
steep, neglecting the motion of the proton within each w
and assuming that the quantum-mechanical tunneling of
proton through the potential barrier between these two w
lifts the degeneracy, we treat the proton on the hydro
bond in the framework of a two-level system.1,3,4 To each
471063-777X/2000/26(1)/4/$20.00
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distribution of protons on the hydrogen bond we unique
associate a displacement of the heavy ions responsible
the polarization. Thus thej th hydrogen bond can be found i
three states: ‘‘0’’ — the absence of a proton on the hydrog
bond, ‘‘1’’ — the proton on the hydrogen bond is describe
by a symmetric wave functionC1 ; ‘‘ 2’’ — the proton on
the hydrogen bond is described by an antisymmetric w
functionC2 . It will be convenient to go over from the wav
functionsC1 andC2 to a linear combination of wave func
tions localized in the left (FL) and right (FR) equilibrium
positions:

C15
1

&
~FL1FR!; C25

1

&
~FL2FR!.

Then thej th hydrogen bond can be described with the aid
the wave function

C j5S FL j

Fo j

FR j

D ,

whereF0 j characterizes the probability that a bond will b
unoccupied by a proton.5–7

We introduce the operatorsx j
ab5uFa j&^Fb j u, which are

analogs of the Hubbard operators;8 the expectation value o
the operatorXj

00 will correspond to the number of vacancie
on the hydrogen bonds, the expectation value of the oper
Xj

LL2Xj
RR will correspond to the polarization of thej th

ferroelectric cell, and the operatorXj
LR1Xj

RL will be the tun-
neling operator for the proton in thej th hydrogen bond. We
write the HamiltonianH of our ferroelectric in the form
H5H01H1 , whereH0 describes the effects of the intera
tion of the protons on the occupied hydrogen bonds andH1

describes the effects due to the absence of protons on
unoccupied bonds. Then

H052V(
j

~Xj
LR1Xj

RL!2
1

2 (
j

Ji j ~Xi
LL2Xi

RR!

3~Xj
LL2Xj

RR!22m0(
j

E0 j~Xj
LL2Xj

RR!, ~1!
© 2000 American Institute of Physics
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whereV is the tunneling integral,Ji j is the exchange integra
between thei th and j th cells, andE0 j is the external static
electric field in thej th cell.

We write the HamiltonianH1 in the form

H15Hp1Hv ,

whereHp is responsible for the hops of the protons along
network of hydrogen bonds, andHn describes the change i
energy of the sample on account of the vacancies on
hydrogen bonds,

Hp5(
j

tD$~Xj 1D
0L 1Xj 1D

0R !Xj
L01~Xj 1D

0L 1Xj 1D
0R !Xj

R0%1h.c.,

Hv5m(
j

Xj
001

1

2 (
i j

Ui j Xi
00Xj

001
1

2 (
i j

Ū i j Xi
00~Xj

LL1Xj
RR!, ~2!

tD is the hopping integral from thej th hydrogen bond to the
bond j 1D, m has the meaning of a chemical potential,Ū i j

corresponds to the interaction energy of a cellj containing
a proton with a celli containing a proton vacancy;Ui j

describes the interaction energy of thei th and j th hydrogen
bonds in the absence of protons,D is a vector in the direction
of a possible proton hop.

We now go over from the operatorsXj
ab to the operators

Sj
z , Sj

1 , Sj
2 ~spin S51!, choosing a diagonal representatio

for the operatorSj
x and taking into account that@Si

z ,Sj
6#

56Sj
6d i j , @Si

1 ,Sj
2#52Sj

zd i j .
In this case we have

H052
V

2 (
j

~Sj
121Sj

22!2
1

2 (
j

Ji j Si
zSj

z22m0(
j

E0 jSj
z ,

Hp52(
j

tD

2
$~Sj 1D

1 2Sj 1D
2 !Sj 1D

z Sj
z~Sj

12Sj
2!%1h.c.,

Hv5m̃(
j

Sj
z2

1
1

2 (
i j

ki j Sj
z2

Si
z2

, ~3!

m̃52m1
1

2 (
j

Ū i j 2(
j

Ui j ,

Ki j 5Ui j 2Ū i j .

The Hamiltonian obtained is the pseudospin Hamilton
for a ferroelectric with protonic conductivity.

Using the Holstein–Primakoff transformation9

Sj
15&S 12

1

4
aj

1aj Daj ;

Sj
25&S 12

1

4
aj

1aj Daj
1 ; Sj

z5~12aj
1aj !,

which is done in an approximate way, to an accuracy wh
includes the main low-temperature nonlinear effects,
write our Hamiltonian in terms of creation and annihilatio
operators:
e

e

n

h
e

Ĥ52V(
j

S ajaj2
1

2
aj

1ajajaj1aj
1aj

12
1

2
aj

1aj
1aj

1aj D
22m0(

j
Einj~12aj

1aj !2
1

2 (
i j

Ji j ~12ai
1ai2aj

1aj

1ai
1aiaj

1aj !2(
j D

tDS 5

4
aj 1D

1 aj 1D
1 aj 1Daj

2
5

4
aj 1D

1 aj 1Daj 1Daj2
5

4
aj 1D

1 aj
1aj

1aj

1
5

4
aj 1D

1 aj
1ajaj2aj 1D

1 aj1
5

4
aj

1aj
1ajaj 1D

2
5

4
aj

1ajajaj 1D2
5

4
aj

1aj 1D
1 aj 1D

1 aj 1D

1
5

4
aj

1aj 1D
1 aj 1Daj 1D2aj

1aj 1DD
1m̄(

j
~122aj

1aj1aj
1ajaj

1aj !

1
1

2 (
i j

Ki j ~122aj
1aj22ai

1ai1aj
1ajaj

1aj

1ai
1aiai

1ai14ai
1aiaj

1aj !. ~4!

The equation of motion for the operatorsaj andaj
1 are

(aj
2[aj )

ȧ j
65 i H 7V(

j
S 2

1

2
aj

7aj
7aj

712aj
72

3

2
aj

7aj
1aj

2D
62m0Einaj

67
1

2 (
i

Ji j ~2aj
61ai

1aiaj
6!

1(
D

tDS 7
5

2
aj 1D

1 aj
6aj

26
5

4
aj 1D

1 aj
1aj

6

1
5

2
aj

1aj
2aj 1D2

5

4
aj

6aj
6aj 1D

2 2
5

4
aj 1D

1 aj 1D
1 aj 1D

2

1
5

4
aj 1D

1 aj 1D
2 aj 1D

2 6aj 1D
6 D7m̃~2aj

62aj
6aj

1aj
2

2aj
1aj

2aj
6!7

1

2 (
j

Ki j ~2aj
62aj

6aj
1aj

2

2aj
1aj

2aj
624ai

1ai
1aj

6!J . ~5!

Multiplying the right and left sides of Eq.~5! by the basis
functions of the generalized coherent states for Bose op
tors, uC&5) j ua j& ~Ref. 10!:

ua j&5exp~2ua j u2/2!exp~a ja j
1!u0&,

we perform a decoupling of the equations of motion11
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^CuÂB̂uC&5^CuÂuC&^CuB̂uC&

and the operation of passing to the continuum limit:

^Cua j 11uC&5a j 11'aj6D
]a j

]X
1

D2

2

]2a j

]X2 .

We obtain

H ȧ52 i @Aa~a213a12
!1Ba2a11Ca22Va11D2ta9#,

ȧ152 i @Aa1~a12
13a2!1Ba12

a2Ca12Va2D2t~a1!9#,

~6!

where for the extremely simple case of a square lat
K054 K, J054J, A5 1

2(V15t); B52J210t12m̃18K;
C52m0Ein12J12t22m̃24K; a95]2a/]x2; x is the di-
rection of propagation of the wave.

For the present purposes we concentrate on travel
wave solutions of equation~6!. Traveling nonlinear waves
are analogous to the widely studied soliton lattices, wh
largely determine the dynamical and kinetic properties
ferroelectrics; for this reason an examination of the possi
ity that such structures exist is indeed a topical problem.

We seek a solution of the form

a5beiw; a15be2 iw; ȧ52Va8;

ȧ152V~a1!8, b5b~x2Vt!; w5w~x2Vt!,

and, as a result, we obtain a new system for the amplitudb
and phasew of traveling waves:

H D2tbw912D2tb8w81Vb812b~Ab22V!sin~2w!50,
D2tb92D2t~w8!22Vbw812b~2Ab22V!

3cos~2w!1b~Bb21C!50.

~7!

Besides the solutions with zerob, there exist nonzero sta
tionary solutions of the system of equations~7!:
e

g-

h
f
l-

b05FC12V

4A2B G1/2

; w05
p

2
.

The solution obtained can be interpreted as a state with
ton hops over the network of hydrogen bonds. This st
corresponds to a nonzero expectation value of the opera
S6 and, consequently, describes states with a change in
number of protons in a given ferroelectric cell.

The stability of the stationary solutions obtained is d
termined from an analysis of the localized system of eq
tions ~7!:

H VDb854Dw~Ab0
32Vb0!,

Vb0Dw8522Db~2V1C!
, ~8!

Db;eikx; Dw2eikx.

The roots of the characteristic equation have a nega
imaginary part under the conditions:

H2V12m0Ein12J12t22m̃24K,0,
2V120t1J22m̃25K,0 . ~9!

Since it is not possible to solve the resulting equations
analytical form, for subsequent study we performed a
merical analysis of the above system, the main results
which are presented in Fig. 1. We see that there exist tra
ing nonlinear lattices for a wide range of variation of th
parameters describing ferroelectrics with protonic conduc
ity. The existence of these lattices may be due to the bala
of nonlinear and dispersion processes of theS51 pseu-
dospin system of the ferroelectric. The period and amplitu
of the nonlinear lattices are determined by the proton tunn
ing integral in the hydrogen bond~see Figs. 1a and 1b. Thi
behavior can be linked with the known fact that the nonline
properties of ferroelectrics with protonic conductivity d
pend strongly on the tunneling integral.12 Changes in the
FIG. 1. Dependence of the phasew and amplitudeb of traveling waves on the timet for D51, J51014 s21, m̃51012 s21; a: V51014 s21, t51013 s21,
K51014 s21; b: V51013 s21, t51012 s21, K51014 s21; c: V51013 s21, t51012 s21, K51013 s21.
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chemical potential do not have a substantial effect on
shape of the lattices. At the same time, changes in the
rameters characterizing the interaction of unoccupied hyd
gen bonds give rise to a high-frequency component in
form of a soliton lattice~see Figs. 1b and 1c. This circum
stance can be linked to the fact that the given parame
strongly affect the effective nonlinearity constant of our s
tem and, hence, give rise to a high-frequency componen

In summary, we have proposed a microscopic appro
to the theory of ferroelectrics with protonic conductivity. O
analysis allows one to consider in a unified way the prop
ties of ferroelectrics with protonic conductivity and the pro
erties of other ferroelectrics in the framework of a micr
scopic S51 pseudospin formalism for ferroelectrics wi
protonic conductivity. Because of the strong anharmonic
of the pseudospin Hamiltonian for ferroelectrics with pr
tonic conductivity, these substances can support trave
nonlinear lattices which can have an appreciable influence
the dynamical properties of the ferroelectric. The existe
of such lattices is largely determined by the contribution
the unoccupied hydrogen bonds to the energy of the sam
he
pa-
ro-
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-
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s-
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Low-temperature thermopower in quasiamorphous carbons
L. Yu. Matsu , L. L. Vovchenko, and I. V. Ovsienko

Faculty of Physics, Taras Shevchenko Kiev University, ul. Vladimirskaya 64, 252017 Kiev-17, Ukraine
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Results are presented from a study of the thermopower of quasiamorphous carbons in the
temperature interval from 20 to 200 K. It is shown that the thermopower of quasiamorphous
carbons is described satisfactorily in a model based on the series connection of regions
with metallic conductivity, hopping conductivity with a variable hopping length, and hopping
conductivity with a constant hopping length. It is found that when considering the
thermopower of the regions with the metallic conductivity, it is necessary to take into account
the temperature dependence of the main mechanisms of carrier scattering. The parameters
of the electronic structure of quasiamorphous carbon are calculated using experimental data on
the temperature dependence of the electrical resistivity and thermopower. ©2000
American Institute of Physics.@S1063-777X~00!00701-5#
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Quasiamorphous carbons comprise a wide class
carbon–graphite materials obtained by annealing raw car
at temperatures up to 2000 °C. The structure of the am
phous carbon is a packet of two-dimensional ribbon-sha
crystallites oriented arbitrarily relative to one another
space and deformed by various defects of the layers. H
ever, the graphite layer has two-dimensional symmetry.
dimensionsL of the crystallites in quasiamorphous carb
do not exceed 100 Å, and the distanced002 between layers is
;3.44 Å. This structure of quasiamorphous carbon is s
stantially different from the structure of the highly oriente
pyrolytic graphite, and therefore the electrophysical prop
ties of amorphous carbon are substantially different fr
those of other carbon–graphite materials.

In the study reported here we investigate the mechan
of formation of the thermopower in quasiamorphous carb
in the temperature interval 20–200 K by the method
scribed in Ref. 1.

Figure 1 shows the typical curves of the temperat
dependence of the thermopower of carbonaceous mate
with quasiamorphous structure. The materials were base
polyacrylnitrile, carbon fibers of types VPR-1 and VPR-
with fiber diameters ;10mm and crystallite sizes
L;100 Å, ungraphitized carbon fiber of type VMN, with
fiber diameter of ;7 mm and crystallite dimension
L;50 Å, and quasiamorphous carbons AV1 and AV
annealed at temperatures of 2100 and 2300 °C, respecti
One can see from the figures that all these materials ha
similar temperature dependence of the thermopower: at
temperatures there is a minimum~at a temperatureT;40 K
in the VMN fiber and in the amorphous carbon!, and the
thermopower in the quasiamorphous AV2 carbon is equa
zero, in the VMN fiberS;20.4mV/K, and in the qua-
siamorphous carbon AV1S;20.5mV/K. The lowest tem-
perature at which the minimum of the thermopower occ
511063-777X/2000/26(1)/5/$20.00
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and the lowest value of the thermopower at the minim
were observed in the VPR-2 fiber~T;25 K, S;21 mV/K !.
The highest temperature of the thermopower minimum w
registered for the VPR-1 fiber~T;50 K, S;20.5mV/K !.
As the temperature is raised, the thermopower of all
samples increases, but at different rates. The lowest valu
S at 200 K was observed in the AV1 sample

FIG. 1. S(T) curves for carbon fibers: VPR-2~1!, VPR-1 ~2! ~a!, and for
quasiamorphous carbons and fibers: VMN~1!, AV2 ~2!, AV1 ~3! ~b!.
© 2000 American Institute of Physics



t
be

ua
all
n
r
o

on

s

ri
ac

he

,
-

e

th

he
he

a
tio
le

th

s-

er,
nt of

ere.
sis-

a

hat
p-
ven

ple

llel
ty

of
odel
of

er-
odel

car-
es

ous

52 Low Temp. Phys. 26 (1), January 2000 Matsu  et al.
(S;1.5mV/K), AV2 ( S;2.0mV/K), and in the VMN car-
bon fiber (S;3.5mV/K). High values of the thermopower a
200 K were observed in the VPR-1 and VPR-2 carbon fi
samples, withS;2.7mV/K and ;5 mV/K, respectively.

According to the model proposed in Refs. 2 and 3, q
siamorphous carbon consists of a set of regions with met
conductivity and regions with variable-length hopping co
ductivity. These regions can be connected in series o
parallel.3 We denote the thermopower and conductivity
the regions with metallic and hopping conductivity byS1 ,
s1 andS2 , s2 , respectively. Then the total thermopowerSI

for series-connected regions with the different types of c
ductivity can be written as

S15S12S2 , ~1!

and the total thermopowerSII for parallel-connected island
with different types of conductivity is

SII5
S1

11~s2 /s1!
1

S2

11~s1 /s2!
. ~2!

For the regions with metallic conductivity,S1 depends
linearly on temperature:4

S15
kB

e

p2

3

kBT

D
~11p!, ~3!

where kB is Boltzmann’s constant,e is the charge of an
electron,D is the shift of the Fermi level,p is a parameter
which depends on the predominant mechanism of car
scattering; the electrical conductivity of these regions,
cording to the two-dimensional Wallace model,5 is given by

s15
De2L

p)g0a0d002\
, ~4!

whereg0 is the overlap of the electron wave vectors in t
graphite layer,a0 is the lattice constant of graphite,d002 is
the distance between graphite layers,\ is Planck’s constant
and the mean free pathL is approximately equal to the di
mensions of the crystallites. The thermopowerS1 is positive,
since the regions with metallic conductivity consist of a d
generate hole conductor.

The conductivity of the regions with variable-leng
hopping conductivity is given by the expression6

s25s0 exp@2~T0 /T!1/4#, ~5!

where s0 and T0 are constants. The thermopower of t
regions with variable-length hopping conductivity has t
form6

S25
kB

2

2e
~T0T!1/2

d ln N~EF!

dE U
E5EF

, ~6!

whereN(EF) is the density of states at the Fermi level.
A feature of the two-dimensional Wallace model is

point of tangency of the valence band and the conduc
band and a linear relation between the energy and the e
tronic density of states near the point of tangency of
bands:7

N~E!5BuEu, ~7!
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whereB is a coefficient of proportionality, andE is the en-
ergy reckoned from the point of tangency of the bands. U
ing expression~7!, we write relation~6! in the form

S25
kB

2

2e
~T0T!1/2

1

EF~T!
, ~8!

whereEF is temperature-dependent. It is known, howev
that quasiamorphous carbon has excess holes on accou
the acceptor effect of the structural defects, andEF@kBT in
this material; therefore the temperature dependence ofEF

can be neglected in the temperature region investigated h
Figure 2 shows the temperature dependence of the re

tivity of the AV1 sample in both ar(T) plot and in the
coordinates ln(1/r)5 f (T21/4). We see that the latter is
linear plot of the typey5b2ax, where b5 ln s0 and
a5T0

1/4, over a wide temperature interval, which means t
a hopping mechanism of conductivity with a variable ho
ping length is indeed present in this sample over the gi
temperature range. From the plot of ln(1/r)5 f (T21/4) we
determined the values of the constantss0 andT0 ; the results
are tabulated with the analogous results for the AV2 sam
in Table I.

The thermopower calculated in the model with a para
connection of regions with different types of conductivi
according to expression~2! has a linear trend~Fig. 3!, but it
does not agree with the experimentally measuredS(T) in the
investigated materials. Consequently, the thermopower
quasiamorphous carbon cannot be described in a m
of parallel-connected islands with different types
conductivity.

To elucidate the mechanisms giving rise to the th
mopower in quasiamorphous carbons we considered a m

FIG. 2. Temperature dependence of the resistivity of quasiamorphous
bon AV1 ~curve 1! and the same function plotted in the coordinat
ln(1/r)5 f (T21/4) ~curve2!.

TABLE I. Calculated parameters of the electronic structure of amorph
carbons AV1 and AV2.

Sample s0 , S/m T0 , K EF , eV D, eV «, eV C

AV1 169 1967 0.4 0.45 3.831025 0.001
AV2 436 552 0.22 0.35 4.43102 0.012
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in which regions of metallic conductivity are connected
series with regions of hopping conductivity with a variab
hopping length. Analysis of the experimental data in t
framework of this model with the use of Eq.~1! showed that
in order to describe the temperature dependence of the
mopower it is necessary to include one more term,S3 in Eq.
~1!; this term is responsible for the positive ‘‘tail’’ of the
thermopower in the low-temperature region. An obvious
sumption is thatS3 is due to hopping conductivity with a
constant hopping length. For this mechanism the conduc
ity and thermopower can be described by the expression

s35s0e2~«/kBT!,

S35
kB

2e S «

kBT
1CD , ~9!

«5EC2EF ,

whereEC is the mobility edge,«.0, andC is a constant tha
can be positive or negative.8

From the experimental data on the temperature dep
dence of the thermopower of the AV1 and AV2 samples
low temperatures we calculated the following paramete
the shift D of the Fermi level in the regions with metalli
conductivity, the values of the Fermi energyEF in the re-
gions with variable-length hopping conductivity, and the d
ferences« between the mobility edge and Fermi level, a
the constantsC ~for the regions with constant-length hoppin
conductivity!. The results of the calculations are presented
Table I. We see that the values of the parametersD, EF , «,
and C are completely real-valued: for example, for the r
gions with metallic conductivity the shift of the Fermi lev
into the valence band is in good agreement with the valu
this parameter in disordered isotropic graphite,9 which, as
was shown in Ref. 9, is a single-band hole conductor, w
the parameter«.0, which corresponds to hopping condu
tivity with a constant hopping length. Using the values o
tained for the parametersD, EF , «, andC, we calculated the
temperature dependence of the thermopower in the A
sample at temperatures up to 200 K~Fig. 4a!. An analysis of
this plot implies that the calculated thermopower gives a
description of the temperature dependence at low temp
tures, while at high temperatures there is a significant

FIG. 3. Calculated temperature dependence of the thermopower in a m
with the regions of different conductivity connected in parallel.
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agreement~by about a factor of two!. The reason for this is
that in a rigorous treatment one cannot assume that the
mopower in the regions with metallic conductivity is a line
function of temperature~it is of a diffusional nature!. It was
shown by Sugihara10,11 that for describing the thermopowe
over a wide interval interval, the parameterp in Eq. ~3!
should be determined not by a single predominant mec
nism of carrier scattering in the material but with allowan
for all the main mechanisms of carrier scattering; this lea
to a complicated temperature dependence ofp:

p5
G~DH !1G~ lo !~11p~ lo !!1G~ph!~11p~ph!!G2

~11d/EF!G
, ~10!

del

FIG. 4. S(T) curves for quasiamorphous carbons: experimental~curves1!,
calculation in the model with a series connection of the regions with diff
ent types of conductivity~curves2! in the AV1 samples, in whichS(T) is
linear in the regions with metallic conductivity; in samples of AV1~b! and
AV2 ~c! with allowance for the temperature dependence of the carrier s
tering mechanisms in the regions with metallic conductivity.
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G5(
i

G~ i !, d5
g1

2
,

whereg1 is the overlap of the wave functions of the ele
trons of adjacent atoms in equivalent layers.

The parametersG ( i ) are related to the relaxation time
t ( i ) in the plane of the layer as

G~ i !~E!5
\

2t~ i ! }E2p~ i !
, ~11!

wherep( i ) takes on different values, depending on the sc
tering mechanism:G (DH) for scattering at the boundaries o
the crystallites,p(DH)50; G (Io) for scattering on charged
impurities, p(Io)5112d/EF ; G (ph) for scattering on
phonons in the plane of the graphite layer,p(ph)50 at low
temperatures andp(ph)521 at high temperatures.

The parameterG (ph) is a complicated function of tem
perature:

G~ph!5
\D2

4pvsd002

E1D

p0
2k

3E
0

2k

dq
q

@12~q/2k!2#1/2

1

exp~\vq /kBT!21
,

~12!

p~ph!52FE
~dG~ph!/dE!

G~ph! G
E5EF

, p05
)

2
g0a0 .

whereD is the pairing constant of the charge carriers a
phonons in the plane of the layer;vs is the speed of sound,k
and q are the electron and phonon wave vectors, resp
tively.

The calculated temperature dependence of the t
mopower with the temperature dependence of the ca
scattering mechanisms taken into account is shown in Fig
and 4c. It is seen that the theory gives a good descriptio
the experimental dependence over the entire temperatur
terval.

Figure 5 shows the calculated temperature depende
of the thermopower with allowance for the fractions of t
sample made up of regions with the different types of c
ductivity. Curve1 is for equal parts with each type of con
ductivity, curve2 is for a greater fraction~0.7! with metallic
conductivity, and curve3 is for the greater fraction~0.7! with
hopping conductivity. We see that as the fraction with m
tallic conductivity increases and the fraction with hoppi
conductivity decreases~as occurs with increasing annealin
temperature of the raw carbon!, the value of the ther-
mopower at equal temperatures increases, as does the r
increase of the thermopower, while the location of the mi
mum of the thermopower~curve2! decreases to lower tem
peratures. This tendency is in fact observed experiment
in the samples studied: for example, sample AV2, annea
at 2300 °C, has larger values of the thermopower at the s
temperatures than does sample AV1, annealed at 2100
and the fibers VPR-1 and VPR-2, having a higher he
treatment temperature, have even higher values of the t
mopower at the same temperatures. As the heat-treatm
t-
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temperature is increased further the regions with hopp
conductivity vanish, and the materials consist of a sing
band hole conductor.9 Increasing the fraction consisting o
regions with hopping conductivity, i.e., increasing th
amorphous-phase fraction, results inS becoming negligibly
small ~curve3!.

In summary, these studies have shown that the th
mopower of quasiamorphous carbons can be described u
a model in which regions of metallic conductivity and r
gions of hopping conductivity with variable and consta
hopping lengths are connected in series. As the h
treatment temperature is raised and the crystal structur
the quasiamorphous carbons is perfected, the regions of
ping conductivity vanish, and a transition to metallic condu
tivity throughout the volume of the sample occurs~disor-
dered graphite with crystallite dimensionsL;200 Å!.9

When the heat-treatment temperature is increased furthe
;2600– 3000 °C the dimensions of the crystallites increa
and a three-dimensional crystal structure is formed w
overlapping valence and conduction bands; this leads to t
band conductivity~holes and electrons! and to a complicated
dependence ofS on T, since an additional thermopowe
arises on account of the phonon dragging of electrons.

The results presented here on the thermopower of q
siamorphous materials indicate that the trend of the func
S(T) and the value ofS are very sensitive to the paramete
of the crystal structure of carbon materials, which is det
mined by the methods and conditions of their synthesis.

This study was supported by the UNTC as part
Project 1089.
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Behavior of the layered crystals TlInS 2 and TlGaSe 2 near phase transitions in a static
electric field

K. R. Allakhverdiev
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The effect of an orienting electric field on the anomalies of the temperature dependence of the
dielectric constant« of the crystals TlInS2 and TlGaSe2 and of the pyroelectric currenti
in TlInS2 near phase transitions is investigated. It is found that the«(T) profile of both crystals
undergoes the same transformation at the point of the phase transition to the
incommensurate phase under the influence of a static electric field applied in the plane of the
layer. It is established that the maximum of«(T) in TlGaSe2 and of i (T) in TlInS2 at
the point of the phase transition to the commensurate polar phase is shifted in a certain range of
orienting electric fields and that the sign of the temperature shift depends on the value of
the external electric field. An interpretation is offered for the experimental results. ©2000
American Institute of Physics.@S1063-777X~00!00801-X#
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INTRODUCTION

The ternary thallium compounds thallium–gallium di
elenide (TlGaSe2) and thallium–indium disulfide (TlInS2)
belong to the class of chalcogenide semiconductor c
pounds with a layered structure. The x-ray diffraction d
for these compounds are identical, indicating that their cr
tal structures in the high-temperature paraphase are topo
cally similar and are characterized by symmetry space gr
C2h

6 ~see, e.g., Refs. 1–6 and references cited therein!. On
cooling, both crystals undergo sequences of structural ph
transitions, including transitions to an incommensurate~IC!
phase and a commensurate polar phase. According to
data of structural studies, the phase transition to the IC ph
~at Ti5216 K for TlInS2 andTi5115 K for TlGaSe2) is due
to the condensation of a soft mode at the point of the B
louin zone corresponding to the wave vectork i5d
3(a* 1b* )10.25c* , wherea* , b* , andc* are reciprocal
lattice vectors, andd is the incommensurability paramete
d50.012 for TlInS2 and 0.02 for TlGaSe2 . For TC5201 K
for TlInS2 andTC;110 K for TlGaSe2 the parameterd van-
ishes discontinuously, and both compounds undergo a t
sition to an improper commensurate polar modulated ph
with a spontaneous polarization vector lying in the plane
the layer. The symmetry of the low-temperature polar ph
of the two crystals has not been determined experimenta

The temperature dependence of the dielectric consta«
~Fig. 1! and of the other thermodynamic parameters
TlInS2 ~Refs. 1–4 and 6! are characterized by significan
anomalies at other temperatures as well:;206 K, 204 K,
and in the interval 190–195 K, and these are in no w
distinguished by structural studies. Two equally we
founded approaches to explaining these anomalies have
advanced.6,8,9 One of them is based on the conjecture th
561063-777X/2000/26(1)/6/$20.00
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intracrystalline weak perturbations~structural defects, uncon
trolled impurities! can give rise to a spontaneous splitting
the transition to the the commensurate phase in TlInS2 into
two phase transitions lying close together. In this model
anomaly at 206 K should be regarded as the point in te
perature at which a change of incommensurabilities occ
each of which is related to one of the commensurate pha
realized at 201 K and 204 K, while the temperature reg
190–195 K is interpreted as the coexistence interval of
polar regions of the phases arising at 201 and 204 K
having symmetry space groupsC2

3 andS2
1, respectively, ac-

cording to a group-theoretic analysis.7

The other approach8,9 postulates the existence of a
incommensurate–incommensurate~IC–IC! phase transition
in TlInS2 in the vicinity of 204 K. According to this model
the basic experimentally observed features in the behavio
«(T) and the elastic characteristics2–4,10,11of TlInS2 can be
explained and described quantitatively in the framework
the following nontrivial scheme for the sequences of t
phases and phase transitions in this crystal: atTi5216 K a
transition from the high-temperature paraphase to an
phase which is stable in the interval 204–216 K~we denote
it as IC-1!, at Tii 5204 K there is an IC–IC phase transitio
the newly arising incommensurability~we denote it by IC-2!
exists in the interval 201–204 K, and, finally, atTc5201 K
there is a phase transition to a commensurately modul
ferrophase.

In this paper we present the results of investigations i
the effect of an applied static electric field in the plane of t
layer on the phase-transition-related anomalies of«(T) and
the pyroelectric currenti (T) in the crystals TlInS2 and
TlGaSe2 . Such studies are of interest, in particular, in vie
of the theoretical indications12,13 that applying a static elec
© 2000 American Institute of Physics
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tric field along the polar axis in these crystals is equivalen
applying the corresponding components of a shear stres
respect to their effect on the temperature behavior of
various physical quantities near the IC phase transition. T
is because the invariants of the interaction of the order
rameter components and of the generalized coordinate
the expansion of the free energy density have analog
form. The effect of a uniaxial stress on the transformation
the shape of«(T) near the IC phase transition in TlGaS2
and TlInS2 was investigated in Refs. 5 and 14.

SAMPLES AND TECHNIQUES

The samples were slabs;2 mm thick, with plane-
parallel ends;12 mm2 in area, cut from TlInS2 and TlGaSe2
single crystals perpendicular to the polarization axis, wh
coincides with the crystallographic axisbiC2 , whereC2 is
the twofold symmetry axis. The surfaces perpendicular to
polar axis were carefully ground and mechanically polish
to a mirror finish. Electrical contact was provided by app
ing a silver paste to the working surfaces of the crystals. T
samples were mounted on the copper cold stage of a nitro
cryostat.

Measurements of«(T) in the presence of a biasing ele
tric field applied to the crystal were made by a bridge meth
based on a balancing scheme. The temperature of the sa
was scanned at a rate of 0.1 K/min; the range of work
frequencies was 50–60 kHz; the instrumental threshold s
sitivity was ;0.1 pF, the error tolerance was;2%.

Measurements of the pyroelectric current in TlInS2 were
made by a quasistatic method15,16 with a rate of temperature
scanning;3 K/min.

FIG. 1. Temperature dependence of the dielectric constant of TlInS2 ~fre-
quency 55 kHz! near the phase transition when the crystal is subjecte
static electric fields of various intensities, kV/cm: 0~1!, 4 ~2!, 6 ~3!, 9 ~4!,
and 11~5!.
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To decrease the influence of the poling of these co
pounds by the static electric field, it was applied to t
samples at liquid-nitrogen temperature.

EXPERIMENTAL RESULTS AND DISCUSSION

The effect of electric field on the IC phase transition in
TlInS2 and TlGaSe 2 crystals

Figure 1 shows the temperature dependence of the
electric constant of TlInS2 for various intensities of the stati
electric field. It is seen that the orienting effect of the elect
field leads to a transformation of the profile of the anomal
on the «(T) curve which is qualitatively similar to thos
observed when a mechanical stresss' is applied perpen-
dicular to the layers.5,16 It should be noted that the variatio
of the intensity of the external electric field has a decis
influence on the profile of the dielectric anomaly correspo
ing to the IC phase transition. It is seen in Fig. 1 that
increase in the intensity of the external electric field is a
companied by a decrease in the amplitudes of the dielec
anomalies observed at the phase transition point;204 K and
at the point of the transition to the ferrophaseTC5201 K;
meanwhile, the position of these anomalies on the temp
ture scale is practically independent of the intensity of
external bias field. The structure observed on the curve of
temperature dependence of« at certain values of the electri
field is most likely not of a physical nature but rather t
result of errors in the experimental technique. We note t
for TlInS2 the breakdown electric field is;12 kV/cm.

Everything we have said about the relationships perta
ing to the transformation of the anomalies of«(T) observed
near the phase transition in a static electric field in the l
ered crystal TlInS2 can be repeated almost verbatim f
TlGaSe2 , the corresponding«(T) curves of which for elec-
tric fields of various intensities are shown in Fig. 2a. We n
also that TlGaSe2 has a higher breakdown field,;22 kV/cm,
than its isostructural counterpart TlInS2 .

It was shown in Ref. 7 that the single mixed invarian
which can be composed of components of the order par
eter and polarization vectorPy ~in the axes of the paraphas
x5a, y5b, z5c), has the form;constPyr4sin4w, where
r andw are the amplitude and phase of the two-compon
order parameter in a polar coordinate system. From a ph
cal standpoint the experimentally observed effect of the g
eralized coordinatePy of the external biasing electric field
on the profile of the dielectric constant forT5Ti in TlInS2

and TlGaSe2 can be explained only by the interaction of th
polarization componentPy with the phase of the two-
component parameter of the phase transition~in the constant-
amplitude approximation!,12,13 which can result in a chang
in the spatial distribution law for the phase along the mod
lation axis. Thus the anomalous nature of the behavior of
transformation of the anomalies on the«(T) curve kv at the
point of the IC phase transition when the crystal is acted
by external fields of different natures is explained by t
circumstance that the application of an electric field and
application of a mechanical stress similarly cause a chang
the topology of the incommensurate wave of modulation
do not eliminate it~we recall that in Refs. 5 and 16 th

o
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analogous modification of the profile of the curve at the po
T5Ti when a stresss' was applied to TlInS2 and TlGaSe2
crystals was interpreted on the basis of the invari
;constUyzr

4cos 4w, which is of a similar character to tha
discussed here!.

Influence of external field on the transition to the
commensurate phase in TlInS 2 and TlGaSe 2

Let us consider the results of an investigation of t
effect of a static electric field on the anomalies of«(T) and
i (T) near the transition to the commensurate polar phas

FIG. 2. Temperature dependence of the dielectric constant of TlGaSe2 ~fre-
quency 57 kHz! near the phase transition when the crystal is subjected
static electric fieldE ~a!, and the temperature behavior of the maximum o«
at T5TC for various intensities of the electric field, kV/cm: 2~1!, 4 ~2!, 6
~3!, 8 ~4!, 10 ~5!, and 22~6!.
t

t

in

TlInS2 and TlGaSe2 . The experiments demonstrate that
common feature of the orienting effect of an electric field
the anomaly at the Curie point in TlInS2 and TlGaSe2 is due
the a change in the sign of the temperature shifts of th
anomalies as a function of the intensity of the external fieldE
applied to the sample. This is evidenced most clearly by
data shown in Fig. 2b, which reflect the temperature dyna
ics of the maximum on the«(T) curve of TlGaSe2 at T
5TC as E is varied. It is seen from Fig. 2b that at electr
fields smaller than a certain threshold valueEcr57 kV/cm,
the maximum of the«(T) curve is shifted by 2K to lower
temperatures from the position of this anomaly in zero el
tric field. In the regionE.Ecr the maximum on the«(T)
curve is shifted to higher temperatures; the size of this s
from the position of this maximum in zero electric field
;3 K for fields in the prebreakdown region. We note that t
application of an electric field leads only to a shift of th
maximum of«(T) as a whole, without leading to a Lenin
grad or appreciable broadening of this maximum. We e
phasize that the observed feature cannot be set aside as
instrumental, since the apparatus is capable of a practic
identical rate of temperature scanning over the whole m
cycle, and the values of the temperature shifts are too la
to be the result of methodological errors in the detect
system.

If we take into account the known fact17 that a uniform
electric field shifts the peak in« corresponding to the Curie
point of classical or ‘‘lattice’’ antiferroelectrics to lower tem
peratures from its position in zero field, then, at first glan
the data presented above for TlGaSe2 can be regarded as th
result of the induction of a ferroelectric state from the an
ferroelectric state of that crystal by an external fie
E.Ecr . We note that this is an extremely general indica
which permits us to reliably classify the low-temperature p
lar phase of TlGaSe2 as antiordered. An illustration of the
fact that the low-temperature polar phase of TlGaSe2 is dis-
tinguished by a rather complicated dipole configuration is
nontrivial dielectric hysteresis loop, with four different re
gions of spontaneous polarization, which we observed by
Sawyer–Tower method~see Fig. 3!.

In principle the possibility of antiferroelectric dipolar or
dering of the low-temperature polar phase of TlGaSe2 is ad-

a

FIG. 3. Dielectric hysteresis loop for TlGaSe2 in the temperature region
T,TC .
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mitted by the models proposed previously in t
literature18,19 for the structural phase transition in the com
pounds under study. For example, in Ref. 19 a mode
discussed in which the layered crystal is considered a
system in which the phase transition to the commensu
polar phase occurs at different temperatures in different
ers. The stable state of the crystal may be a structure
commensurate polar layers separated from one anothe
layers found in the incommensurate phase. It can be s
posed that in the layered crystal TlGaSe2 the state of
the system in the neighborhood of the phase transition
T5TC is a system of dipolar ordering in which differen
layers have oppositely directed spontaneous polariza
vectors, the magnitudes and directions of which vary in
random manner from one polar layer to another, and t
average to zero on summation over the whole crystal.
creasing the external electric field above the threshold va
Ecr enhances the influence of one of the directions of sp
taneous polarization of the crystal and thereby leads t
‘‘transition’’ of TlGaSe2 to a uniform ferroelectric state b
virtue of of the fact that the mutual influence of the count
directed dipole moments of the different layers is relativ
small.

It appears that another approach, based on the m
concepts developed in Ref. 6, is also useful. The results
group-theoretic analysis presented in that paper reduce to
following. The phase transition from the high-symmet
paraphase with space groupC2h

6 , corresponding to a wave
vectorkc50.25c* , to the commensurate polar phase can
realized according to two symmetry schemes, depending
the sign of the coefficientg in the anisotropic invarian
;gr8cos 8w: for g.0 the stability condition is satisfied by
ferroelectric phase with space groupC2

3, while for g,0 the
stable phase is one with space groupS2

1, which may be a
centrosymmetric antiferroelectric. If it is assumed that in
absence of an external electric field the symmetry of
commensurate phase of TlGaSe2 corresponds toS2

1 and that
g; f (E), with g,0 for E,Ecr andg.0 for E.Ecr , then
the role of the biasing electric field reduces to one of ind
ing a phase transition between the equitranslational p
phases,S2

1→C2
3.

Meanwhile, the results obtained from studying a lar
number of TlGaSe2 samples picked from different techno
logical batches clearly demonstrate substantially differ
properties of the low-temperature polar phase of TlGaSe2 in
the presence of an external electric field as compared to
analogous properties of ‘‘lattice’’ antiferroelectrics, and t
nature and properties of the antiordered state of TlGaSe2 in
the low-temperature phase is found to be very sensitive
the structure. These results include the following.

1. The application of an electric field to the antipol
phase of TlGaSe2 does not lead to saturation of«, as would
be expected for classical antiferroelectrics;17 « in the low-
temperature phase of TlGaSe2 decreases monotonically wit
increasingE, and the size of the temperature shift of t
maximum of«(T) is not proportional to the square of th
electric field.

2. Certain groups of samples exhibit a strong deviat
of the temperature shifts of the«(T) peak and the values o
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Ecr from those described above~although the picture of the
inversion of the sign of the temperature shift of«(T) with
increasingE is qualitatively the same as described!, and in
other samples the temperature shift of the«(T) peak as a
function of E is only partially present or absent entirely.

3. Chipping off part of a sample reduces both the int
val of the temperature shift of«(T) and the value of the
critical field Ecr ; an analogous situation is observed wh
the polarity of the electric field applied to the sample is
versed.

4. Turning off the external field from values at which th
position of the«(T) peak after the monotonic shifts is re
stored to the temperature position of the anomalies of« in
the absence of electric field leads only to growth of the
solute value of« to its original value~for E50).

While the investigation of«(T) for TlInS2 samples pre-
pared from the same bar did not confirm an anomalous s
of the «(T) peak corresponding to the phase transition
T5TC over the whole range of applied electric fields, me
surements ofi (T) in an external static electric field o
samples of TlInS2 from different technological batches reg
istered an effect analogous to that observed for the«(T)
measurements in TlGaSe2 .

The clearest of the experimental curves of the pyroc
rent of TlInS2 in the absence of field is shown in Fig. 4. W
see that the behavior ofi (T) is characterized by two anoma
lies in the form of sharp-tipped spikes, the temperature p
tions of which correspond to the phase transition points
;204 K andTC5200 K, and the higher of the spikes ini (T)
in all the samples of TlInS2 investigated is characterized by
sharp ‘‘overshoot’’ of the pyrocurrent at temperatures clo
to the point of the phase transition to the polar commensu
phase (;200.4– 200.7 K for samples from different techn
logical batches!, and the direction of this ‘‘overshoot’’ of the
pyrocurrent is always opposite to thei (T) spikes at the other
phase transition points.

Interestingly, the form of thei (T) curves is essentially

FIG. 4. Temperature depend of the pyroelectric current of TlInS2 near the
phase transition. The inset shows the shift of the maximum of thei (T) curve
at T5TC as a function of the applied external electric field.
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reproducible for TlInS2 samples from the same batch. At th
same time, we identified certain samples of TlInS2 for which
the shape of thei (T) curve differed substantially from tha
shown in Fig. 4: by the number of anomalies present~in
some samples thei (T) curve has only one spike, a
T5TC , with a sharp ‘‘overshoot’’ of the pyrocurrent prece
ing this anomaly!, by the ratio of the amplitudes of th
anomalies ofi (T) at the phase transition points~in one group
of samples the higher spike is observed at 204 K!, and by an
unstable character of thei (T) spike at;204 K ~during mea-
surements in a heating–cooling mode, in the course o
thermal hold of the sample at;204 K the amplitude of the
i (T) spike become significantly higher than the initial val
and then relaxes to it over a time of several hours!.

The application of a static electric field along the spo
taneous polarization direction of a TlInS2 sample noticeably
transforms the values and contours of thei (T) anomalies on
account of additional contributions to the pyroresponse fr
other mechanisms occurring in ferroelectric semiconduct
Nevertheless, the position of the spikes on thei (T) curve is
in no way related to these mechanisms but is due solel
the contribution of bound charges induced on the co
sponding faces of the crystal as a result of the phase tra
tion. It is also important that reversing the direction of t
external electric field does not affect the character of thei (T)
curve of TlInS2 — the signs of the spike signals of the p
rocurrent at the phase transition points and the sharp ‘‘o
shoot’’ change to the opposite.

In the diagram shown in the inset of Fig. 4 the series
points shows the temperature positions of thei (T) spike cor-
responding to the phase transition to the commensurate
rophase on increasingE. One observes a complete analo
with the results obtained in a study of«(T) in TlGaSe2 in an
applied fieldE; the value of the critical field for the given
sample isEcr51 kV/cm, and for samples from differen
batches it fluctuates over the interval from 0.6 to 1 kV/cm
also follows from the experimental data that thei (T) spike
corresponding to the point;204 K ~like the «(T) peak at
this temperature; see Fig. 1! does not suffer any temperatu
shift as the external field is increased. Furthermore, it w
found that thei (T) spike atT5TC did not shift with increas-
ing E for the TlInS2 samples, which have only a sing
anomaly ofi (T) at the given point in temperature. Thus
can be stated that the reversible shift of thei (T) spike on
variations ofE occurs only for the case of the phase tran
tion from IC-2 to the polar commensurate phase and is
sent from the neighborhoods of the phase transitions f
the paraphase to IC-1, from IC-1 to IC-2, and from IC-1
the polar commensurate phase, by virtue of of the spe
configurational arrangement of the incommensurate mod
tion wave in the IC-2 phase. Another noteworthy result
that even in the absence of an external electric field, thei (T)
curve for TlInS2 in the existence region of the IC phase
characterized by numerous sharp ‘‘overshoots’’ against
background of the monotonic growth ofi (T) asT→TC , as
is illustrated in Fig. 5. This circumstance provides groun
for considering the IC-1 and IC-2 phases of TlInS2 as ‘‘la-
bile’’ systems which are extremely sensitive to processe
phase restructuring of the incommensurate modulation w
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to a structure consisting of topological phase solitons a
regions of the commensurate polar phase.

The results presented above for synthesized TlInS2 and
TlGaSe2 samples of different quality, having the same latti
resonance and a similar stacking of the layers in the
structures, prompted us to consider the change in sign of
temperature shift of the«(T) andi (T) anomalies of TlGaSe2
and TlInS2 , respectively, at the Curie pointT5TC ~i.e., at
the ‘‘exit’’ from the IC phase! in an increasing electric field
as resulting from the effect of the electric field on structu
features of the IC modulation wave in a crystal containi
defects, as a result of which one observes a broadening~for
E,Ecr) or narrowing~for E.Ecr) of the temperature inter
val in which the IC phase is stable.

As we have said, the possibility of realizing an IC–I
phase transition in the sequence of structural phase tra
tions in TlInS2 was demonstrated in Refs. 8 and 9; this pha
transition gives rise to a new phase, IC-2, which is stable
the interval 200–204 K and is distinguished by the spec
topological arrangement of the IC-2 modulation wave,
complete compensation of the local dipole moments of
regions of the sample occupied by phase solitons, and
gions of the polar commensurate phase. The IC–IC ph
transition is brought about through the introduction of
invariantl/2@d2w/dz2#2 in the thermodynamic potential un
der the condition that the coefficientk(T,P,n) ~whereP is
the external pressure andn is the concentration of intrinsic
structural defects or other distortions of the crystal latt
which are sources of internal static stresses! multiplying the
invariantk/2@dw/dz#2, which is responsible for the stability
of the IC-1 phase in a certain temperature interval, is clos
zero. Then the IC-2 phase can be realized in a crystal c
taining defects, both from the IC-1 phase and from the C2h

6

paraphase, ifk50 throughout the entire temperature range

FIG. 5. Temperature dependence of the pyroelectric current of TlInS2 in the
stability region of the incommensurate phase.
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takes on negative values. Analysis shows8,9 that the external
electric field for«,Ecr can lead to a finer domain structur
i.e., to a substantial increase in the density of solitons in
IC-2 phase, owing to the pinning of the IC-2 modulatio
wave at intrinsic structural defects, microcracks, exten
defects, or other mobile charged formations, which are c
centrators of the intracrystalline electric fields, thereby
larging the temperature interval in which the IC-2 phase
stable. ForE.Ecr the external field apparently destroys t
IC-2 structure on account of the increase of polar comm
surate regions built into the IC modulation wave, there
shrinking the existence interval of the IC-2 phase (Ecr can
probably be regarded as the threshold field for depinning!.

By analogy with the above, we believe that it can
supposed that, depending on the defect density of the
structures of the TlGaSe2 samples, there exist two extreme
different schemes for the sequence of structural phase
sitions in this compound:C2h

6 →IC-1→polar commensurate
phase with modulation wave vectorkc50.25c* , and
C2h

6 →IC-2→polar commensurate phase withkc50.25c* .
Here the reversible shift of the«(T) peak atT5TC with
increasingE occurs only for those TlGaSe2 samples in which
the sequence of structural phase transitions is describe
the second of the proposed schemes.

CONCLUSION

We have shown that an external static electric field
fects the IC phases of TlInS2 and TlGaSe2 differently atTi ,
where an IC superstructure arises in the crystal, and atTC ,
where the structure of the IC phase is close to the p
commensurate phase.

NearTi the phase of the IC wave is ‘‘labile,’’ and chang
ing its spatial distribution law by means of an external el
tric field can lead to noticeable modification of the«(T)
anomalies in the two crystals.

Near TC the structure of the IC phase can be of tw
types: IC-1 or IC-2, depending on the defect density of
TlInS2 and TlGaSe2 crystals.

An external electric field can only shrink the temperatu
interval in which the IC-1 phase exists, since an electric fi
increases the regions of the polar commensurate phase i
IC wave on account of the involvement of regions occup
by phase solitons.

The IC-2 phase, because of the incomplete compensa
of the local dipole moments of the regions occupied by ph
solitons and the regions of the polar commensurate phas
the IC wave, is of an antiordering character. Therefore
e
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external electric field up to a certain valueEcr can serve as a
stabilizing factor for the IC-2 phase and can thereby incre
the temperature interval in which this phase exists. Fie
E.Ecr , on the other hand, destroy the regions occupied
phase solitons and thereby induce a transition to a unifo
polar commensurate phase at higher temperatures.
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Rotational echo in amorphous ferromagnets
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The rotational echo in amorphous ferromagnets is investigated. It is conjectured that amorphous
ferromagnets contain a group of molecules having a dipole moment, and the change in the
orientation of these molecules gives rise to oscillations of the echo signal. The transverse relaxation
time associated with the interaction of two-level systems through spin waves is calculated.
The time dependence of the echo signal is investigated. ©2000 American Institute of Physics.
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There has recently been extensive research on am
phous systems, which are characterized by the presenc
tunneling two-level systems~TLSs! ~Ref. 1!. The TLS model
has been applied to crystalline materials, solid solutions s
as (KBr)12x(KCN)x , where the role of the TLS is played b
the CN molecules, which have an electric dipole mome
and changing the orientation of these molecules leads
change in the macroscopic polarization and to the exp
mental observation of a rotational echo.2–4

In this paper we make the conjecture that amorph
ferromagnets also have atoms that form a TLS. Clearly in
amorphous ferromagnet the tunneling transitions should
caused not only by phonons but also by spin waves.

The goal of this study was to investigate the rotatio
echo in amorphous ferromagnets.

In Ref. 5 the relaxation processes due to the interac
of the TLS with spin waves was investigated, and it w
shown that under certain conditions this mechanism is p
dominant over the phononic relaxation mechanism.

When the expression obtained in Ref. 5 for the longi
dinal relaxation timeT1 is averaged with the distribution
function p(D0E) of the TLS, one obtains

1

T1
5 p̄•

D2

8&a3/2~4pm0M0!1/2

~2kBT!2

\ S Emax

2kBTD 2

, ~1!

whereD̄ is the magnetic anisotropy constant,M0 is the satu-
ration magnetization,Emax is the maximum value of the en
ergy splitting of the TLS,T is the temperature of the sampl
anda is a quantity of the order of 10 K.

To calculate the transverse relaxation timeT2 we use the
expression obtained in Ref. 5 for the interaction Hamilton
of a TLS:

H int52
1

2 (
aÞb

(
mn

Jmn
absm

~a!sn
~b! , ~2!

whereJmn
ab is an interaction constant, the explicit form of th

Hamiltonian for which is given in Ref. 5;sm
(a) is the Pauli

operator.
The transverse relaxation time of a TLS can be cal

lated from Eq.~2! in the same way as in the case of t
interaction of a TLS via phonons:6
621063-777X/2000/26(1)/2/$20.00
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T2
5

p

2
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expS 2

q0r̄

~ p̄kBT!1/3D ~ p̄kBT!1/3,

~3!

where r̄ is the distance between TLSs,a is the interatomic
distance,p̄ is the density of states of the tunneling system
Substituting into ~1! and ~3! the standard values

p̄;1019J21, T;0.1 K, Emax;10 K,

D̄;10225J, m0M0;10224J, r̄;1028 m,

a;10210m, q0;53106 m,

anda;10 K, we finally get

T1;1025s, T2;331026s.

Following the procedure developed in Ref. 4, we obta
with the use of numerical methods the curve plotted in Fig
for the time dependence of the amplitude of the echo
T50.1 K, v52p3109 Hz, x50.5, andt r51026 s.

Because of the lack of published experimental results
the rotational echo in amorphous ferromagnets, for an e

FIG. 1. Time dependence of the amplitudeA of the rotational echo signal
as obtained by a numerical method.
© 2000 American Institute of Physics
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mate of the dipole moment we used its value for solid so
tions containing dipoles of the CN and OH typ
p̄F0;10227J.3 We feel that this assumption is not of a fu
damental nature, since it does not affect the shape of the
signal. The results obtained here agree qualitatively with
data obtained for spin glasses,4 and may stimulate interest i
the experimental investigation of the rotational echo in am
phous ferromagnets.
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Nonlinear interaction of an electromagnetic wave and a dc current in a metallic film
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The nonlinear interaction of a dc current flowing in a thin metal film with an electromagnetic
wave illuminating the sample in a symmetric manner with respect to the magnetic field
is investigated theoretically. The nonlinearity is due to the most typical mechanism for pure metals
at low temperatures — the magnetodynamic mechanism, involving the effect of the
magnetic field of the current and wave field on the electron trajectories. It is shown that this
interaction leads to sharp kinks in the time dependence of the electric field of the wave at the
surface of the sample and to a peculiar electromagnetic signal amplification effect. ©2000
American Institute of Physics.@S1063-777X~00!01001-X#
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INTRODUCTION

It is known that metals have extremely peculiar nonl
ear electrodynamical properties~see, e.g., the reviews!.1,2 In
fact, the nonlinearity in the response of a plasma or semic
ductor to an electromagnetic disturbance ordinarily arise
a result of a significant deviation of the electron system fr
its equilibrium position. In metals, on the other hand, b
cause of the high concentration of charge carriers, the
equilibrium, as a rule, is weak. Nevertheless, it is compa
tively easy to observe the nonlinear regime in metals. Thi
because the sources of disequilibrium and nonlinearity
metals are different. The disequilibrium is caused by a w
electric field, while the nonlinearity is caused by a stro
magnetic field of electromagnetic excitation. The Loren
force due to the magnetic field of the wave or the se
magnetic field of a dc current affects the dynamics of
charge carriers, and the conductivity of the sample there
depends on the distribution of the magnetic field of the el
tromagnetic disturbance. This kind of magnetodynam
mechanism of nonlinearity is typical for pure metals at lo
temperatures, when the conduction electrons have a s
ciently long mean free path.

The magnetodynamic nonlinearity is the cause of a nu
ber of nontrivial electrodynamic effects. An example is t
so-called ‘‘current states’’3,4—an effect wherein a persisten
magnetic moment is excited in the sample, with a hyster
dependence on the external static magnetic field. Under
ditions of ‘‘current states’’ one observes the hysteretic int
action of radio waves5 and the formation of electromagnet
dissipative structures.6 The specific mechanism of nonlinea
ity in metals leads to a decrease in the collisionless damp
of helicons,7 and helical waves of large amplitude can prop
gate under conditions such that there are no linear elec
magnetic excitations.8 Magnetoplasma shock waves9 and ex-
citations of the soliton type10 have been predicted.
641063-777X/2000/26(1)/8/$20.00
-

n-
as

-
s-
-

is
n
k

z
-
e
re
-

c

ffi-

-

ic
n-
-

g
-
o-

In the present paper we investigate a novel manifesta
of magnetodynamic nonlinearity — the interaction of an e
ternal electromagnetic wave and a transport current in a
metal film, an interaction which also comes about in a hig
unusual way. The thicknessd of the sample is assumed to b
much smaller than the electron mean free pathl , d! l , and
the scattering of electrons on the surface of the metal is
sumed to be diffuse. It is known11 that in the static case~in
the absence of an external alternating field! the self-magnetic
field of the current can have a radical effect on the curre
carrying capacity and current–voltage~I–V! characteristics
of thin metallic samples. Here the value of the currentI is
such that the characteristic radius of curvatureR(I ) of the
electron trajectories in the magnetic field of the current
large compared to the thickness of the film:

d!R~ I !, R~ I !5cpF /eH~ I !}G21, ~1!

where2e and pF are the charge and Fermi momentum
the electron. It was shown in Ref. 11 that the features of
nonlinear response of a sample are due to the circumst
that the magnetic field of the current is distributed antisy
metrically over the thickness of the conductor: at the cen
of the film it is zero, and on opposite faces it takes on valu
which are equal in magnitude but opposite in sign:H and
2H, where

H52pI /cD, ~2!

c is the speed of light in vacuum, andD is the width of the
sample. The sign-alternating field of the current traps a p
tion of the electrons in a potential well. The trajectories
such particles are curves wound around the plane at w
the magnetic field changes sign. The relative number
trapped electrons is equal in order of magnitude to the ch
acteristic angle (d/R)1/2!1 at which the carriers approac
this plane. Since the trapped carriers do not suffer collisi
with the boundaries of the film and interact with the elect
© 2000 American Institute of Physics
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field over the entire mean free pathl , we obtain the follow-
ing formula for estimating their conductivitys tr :

s tr;s0~d/R~ l !!1/2}I 1/2

~s0 is the electric conductivity of a massive sample!.
At the same time, the electrons that do not suffer co

sions before colliding with the boundaries of the metal ha
a conductivity of the order ofs0(d/ l ), as is well known.12

We see that at high enough currents, when the follow
inequality holds,

@dR~ I !#1/2! l , ~3!

the conductivity of the film is determined by the group
trapped carriers. As a result, the I–V characteristic devia
from Ohm’s law: the voltageU becomes proportional to th
square root of the current,

U}I 1/2.

For a film of thicknessd51023 cm and with an electron
mean free path l 51021 cm and a Fermi momentum
pF510219g•cm/s the nonlinearity becomes appreciab
@(dR)1/2; l # at values of the magnetic field of the curre
H(I ) of the order of 1 Oe. The theory of Ref. 11 is in goo
qualitative agreement with experiments~see, e.g., Ref. 13!.

In an external magnetic fieldh parallel to the self-field of
the current, the plane at which the magnetic field chan
sign shifts toward one of the faces of the film~Fig. 1!; this
can lead to a significant decrease in the conductivity of
trapped particles. This should occur, in particular, when
film is uniformly illuminated by a large-amplitude electro
magnetic wave at low frequencies, for which the exter
alternating magnetic fieldh(t) inside the conductor is prac
tically uniform. In this situation the conductivity of the met
depends substantially on time and, consequently, strong
linear effects should appear in the response of the samp
an alternating electromagnetic disturbance. This topic, wh
is of interest from both the theoretical and experimen
standpoints, has never been investigated before.

We have studied theoretically the time dependence
the electric field of a wave at the surface of a film alo
which flows a high dc current of a given value satisfying~1!

FIG. 1. Geometry of the problem. A diagram showing schematically
trajectories of the trapped~1!, fly-through~2!, and surface~3! electrons.
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and~3!. We show that as the amplitudehm of the alternating
magnetic field increases, this time dependence ceases
quasiharmonic and is transformed into a series of sh
nonanalytic spikes. Of particular interest is the case of la
amplitudeshm.H, when during one part of the period of th
wave the total magnetic field in the sample is sign-alternat
while in the other it has a constant sign. In this situation
electric field has kinks as a function of time, due to t
appearance and disappearance of groups of trapped car
An effect is predicted wherein an electrical signal is e
hanced at the surface of the film. It turns out that on acco
of the presence of a strong transport current in the sam
the absolute value of the electric field of the wave is a fac
of l /(dR)1/2@1 larger than the value in the absence of c
rent.

FORMULATION AND GEOMETRY OF THE PROBLEM

We consider a metallic film of thicknessd along which a
dc currentI is flowing. The sample is symmetrically illumi
nated from both sides by a monochromatic electromagn
wave whose magnetic vector is collinear with the vector
the self-magnetic field of the current. We introduce a co
dinate system with thex axis directed along the normal to th
faces of the film. The planex50 corresponds to the center o
the sample~see Fig. 1!. The y axis is chosen along the cur
rent, and thez axis is parallel to the vector of the magnet
field H(x,t), which is the sum of the magnetic field of th
currentH(x,t) and the magnetic field of the waveh(x,t):

H~x,t !5$0,0,H~x,t !1h~x,t !%.

The lengthL ~the dimension along they axis! and widthD
~the dimension along thez axis! of the film are much greate
than its thicknessd. It is assumed that the scattering of ele
trons at the boundaries of the sample is diffuse.

In this geometry Maxwell’s equations have the form

2
]H~x,t !

]x
5

4p

c
j ~x,t !,

]E~x,t !

]x
52

1

c

]H~x,t !

]t
, ~4!

wherej (x,t) andE(x,t) are they components of the curren
density and electric field. The boundary conditions on E
~4! are

H~6d/2,t !5hm cosvt7H. ~5!

The symbolH denotes the absolute value of the magne
field of the current at the surface of the metal, andhm is the
amplitude of the wave. The fieldH, according to Eq.~2!, is
determined by the total currentI . The relationship between
H andhm is arbitrary.

We consider the quasistatic situation, when the wa
frequencyv is much lower the the relaxation frequencyn of
the charge carriers. Here we assume that the magnetic
of the wave inside the sample is quasiuniform and practic
the same as its value at the surface:h(x,t).hm cosvt. In
other words, the characteristic scaled(v) for variations of
the alternating magnetic field of the wave in the metal

e
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FIG. 2. Phase space (py ,x). The existence regions of the fly-through~I!, trapped~II !, and surface~III ! particles in alternating-sign~a! and constant-sign~b!
total magnetic fields.
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much larger than the film thicknessd. In addition, we as-
sume that the radius of curvatureR(x,t) of the electron tra-
jectories in the total magnetic fieldH(x,t) is also consider-
ably larger thand:

d!d~v!, d!R~x,t !,

R~x,t !5cpF /euH~x,t !u. ~6!

ELECTRON DYNAMICS, CURRENT DENSITY, AND I–V
CHARACTERISTIC OF THE FILM

Let us consider the dynamics of the electrons in a n
uniform alternating magnetic fieldH(x,t). We choose the
gauge of the vector potential in the form

A~x,t !5$0,A~x,t !,0%, A~x,t !5Ex

dx8H~x8,t !. ~7!

The lower limit of integration in~7! is conveniently chosen
differently depending on whether or not at the given tim
there exists within the sample a planex5x0(t) at which the
magnetic fieldH(x,t) changes sign. Forhmucosvtu,H such
a plane does exist, since the values of the total magnetic
at the boundaries of the film,hm cosvt2H and hm cosvt
1H @see Eq.~5!#, are of opposite sign. In this case we w
take x0(t) for the lower limit of the integral~7!. Then the
vector potentialA(x,t) is negative. At the pointx5x0(t) it
reaches a maximum, equal to zero. When the inequa
hmucosvtu.H holds, the fieldH(x,t) is of a constant sign in
space. In this situation the lower limit of integration is tak
equal to sgn(cosvt)d/2 ~sgn(t) is the sign function!. In this
case the vector potential will also be negative, and it w
vanish at the upper or lower boundary of the film.

The integrals of the motion of an electron in the fie
H(x,t) are the total energy~which we consider to be the
Fermi energy! and the generalized momentapz5mvz and
py5mvy2eA(x,t)/c ~m is the mass of an electron!. The
trajectory of an electron in the plane perpendicular to
-

ld

ty

l

e

magnetic field is determined by the velocitiesvx(x,t) and
vy(x,t). For the Fermi sphere of radiuspF5mv we have

uvx~x,t !u5~v'
2 2vy

2!1/2, v'5~v22vz
2!1/2,

vy~x,t !5@py1eA~x,t !/c#/m. ~8!

The classically accessible regions of electron motion alo
the x axis are found from the inequalities

2py2mv'<eA~x,t !/c<2py1mv' .

These inequalities ensure positivity of the expression in
square root in formula~8! for uvx(x,t)u.

Figure 2 shows a sketch of the regions of motion of
electron in the phase plane (x,py) in two cases: when there i
a plane (x5x0(t)) at which the fieldH(x,t) changes sign
~Fig. 2a!, and when there is no such plane~Fig. 2b!. For
the specificity we have chosen the point in time to be o
for which the magnetic field of the wave is positiv
(cosvt.0). The upper boundary on the phase plane is
scribed by the curvepy5mv'2eA(x,t)/c, and the lower
boundary by the curvepy52mv'2eA(x,t)/c. We see that
according to the nature of their motion it is natural to divi
the electrons up into groups depending on the magnitude
sign of the integral of the motionpy . Let us give the in-
equalities determining their existence regions at arbitr
times.

1. Fly-through electrons

For these electrons

py
2[2mv'2eA@2sgn~cosvt !d/2,t#/c<py<mv' ,

uxu<d/2

These particles collide with both boundaries of the fil
Their trajectories are almost undistorted by the magn
field, sinced!R(x,t). The fly-through electrons exist at a
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times, independently of the presence of a planex5x0(t)
~i.e., independently of the relationship betweenhm cosvt and
H!.

2. Trapped electrons

These electrons are manifested during periods of ti
when hm cosvt,H and the total magnetic fieldH(x,t) in-
side the sample passes through zero. The states of these
trons are bounded by the region~see Fig. 2a!.

2mv'<py<py
1[2mv'2eA@sgn~cosvt !d/2,t#/c,

x* ~ t !sgn~cosvt !,x sgn~cosvt !,d/2. ~9!

Here x* (t) is the farthest stopping point of a trapped ele
tron from the boundary of the film. The coordinatex* (t) is
found from the equation

A~x* ,t !5A@sgn~cosvt !d/2,t#. ~10!

According to Eq.~9!, for cosvt.0 this electron group occu
pies the regionx* (t),x,d/2, and for cosvt,0 it occupies
the spatial interval2d/2,x,x* (t). The trajectories of the
trapped particles are nearly planar oscillating curves on
count of the periodic motion in the direction of thex axis and
the uniform motion along they and z axes. The period of
oscillation about thex5x0(t) plane is 2T, where

T5E
x1~ t !

x2~ t ! dx

uvx~x,t !u
.

The turning pointsx1(t) andx2(t) (x1(t),x0(t),x2(t)) are
the roots of the equation

eA~x1,2,t !/c52mv'2py .

3. Surface electrons

The surface electrons collide only with one of th
boundaries of the film. In the diffuse-reflection case cons
ered here, the influence of the surface particles on the n
linear conductivity of the metal is unimportant.11 Therefore,
we shall henceforth disregard them.

The surface current of fly-through and trapped electr
is determined by the standard method of solving the Bo
mann transport equation. The transport equation is linear
with respect to the electric fieldE(x,t), which is a sum of
the uniform potential fieldE0(t) and the solenoidal wave
field E(x,t):

E~x,t !5E01E~x,t !, E~x,t !52
1

c

]A~x,t !

]t
. ~11!

Here the nonlinearity is due entirely to the total magne
field H(x,t)5H(x,t)1h(x,t) in the Lorentz force. In calcu-
lating the current density we restrict consideration to
leading approximation in the small parameterd/d(v) @see
Eq. ~6!#. In such a case, as we have said, the magnetic fi
of the wave,h(x,t), is spatially uniform and is equal to th
value at the boundaries of the film,h(x,t)5hm cosvt. The
electric fieldE(x,t) in this approximation is also indepen
dent of the coordinates and is equal to the potential fi
E0(t). For uniform electric and external magnetic fields t
e,

lec-
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c
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current density of the particles was obtained in Ref.
When conditions~1! and ~3! are satisfied, the asymptoti
behavior of the current of fly-through and trapped electro
are as follows:

j fl~ t !5sfl~ t !E0~ t !, sfl~ t !5
3

8
s0

d

l
lnS R1~ t !

d D ,

R6~ t !5
cpF

euhmucosvtu6Hu
,

j tr~x,t !5s tr~x,t !E0~ t !,

s tr~x,t !5
36p1/2

5G2~1/4!

3s0H e

cpF
@A~x,t !2A~sgn~cosvt !d/2,t !#J 1/2

,

x* ~ t !sgn~cosvt !,x sgn~cosvt !,d/2. ~12!

In the limit v→0, expression~12! goes over to the formulas
of Ref. 11.

Let us write the asymptotic formula for the current de
sity ~12! in the first of Maxwell’s equations~4! and trans-
form to a dimensionless coordinate and a dimensionless
tor potential:

j52x sgn~cosvt !/d, ~13!

a~j,t !5A~x,t !/A~sgn~cosvt !d/2,t !.

The equation fora(j,t) is

]2a~j,t !

]j2 5uH r @12a~j,t !#1/211, j* ~ t !<j<1,

1, 21<j<j* ~ t !,
~14!

j* ~ t !52x* ~ t !sgn~cosvt !/d. ~15!

This equation must be solved with the boundary conditio

]a~1,t !

]j
5

d

2

hmucosvtu2H

A~sgn~cosvt !d/2,t !
,

]a~21,t !

]j
5

d

2

hm cosvtu1H

A~sgn~cosvt !d/2,t !
, a~1,t !51. ~16!

The first two of these boundary conditions are obtained
writing relations~5! in dimensionless form, and the third is
consequence of the normalization~13! for the vector poten-
tial. According to~10! and ~13!, the dimensionless coordi
nate j* (t) of the boundary of the existence region of th
trapped particles satisfies the equationa(j* ,t)51. The
quantity r is the ratio of the maximum value of the condu
tivity of the trapped electronss tr(j0) to the conductivity of
the fly-through particles:
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r 5
s tr~x0!

sfl
5

96p1/2

5G2~1/4!

3
1

d F e

cpF
UA~sgn~cosvt !d/2,t !UG1/2

ln21~R1 /d!,

~17!

and the dimensionless parameteru is related to the voltage
across the sample,U5E0L:

u5
U

cLuA~sgn~cosvt !d/2,t !u/psfld
2 . ~18!

In the intervalj* (t)<j<1 the solution of equation~14! is
symmetric with respect to the pointx0(t)5 1

2(11j* (t)) at
which the dimensionless vector potentiala(j,t) has its mini-
mum, equal to zero:a(j0 ,t)5]a(j0 ,t)/]j50. It is de-
scribed by the formula

uj2j0~ t !u5~3/4ru !1/2

3E
0

a~j,t !
dz@12~12z!3/213z/2r #21/2.

~19!

The explicit form of the field and current density distrib
tions in the existence region of the trapped particles can
be found. However, Eq.~19! can be used to calculate th
average value of the conductivity of the trapped carriers~12!
over the interval~9!:

s̄ tr

sfl
5r E

0

1

dz~12z!1/2@12~12z!3/213z/2r #21/2

3S E
0

1

dz@12~12z!3/213z/2r #21/2D 21

. ~20!

The bar overs tr denotes the operation of averaging. In t
rest of the sample, where only the fly-through electrons e
(21<j<j* (t)), the solution of equation~14! is given by
the expression

a~j,t !512~2u!1/2~112r /3!1/2~j2j* ~ t !!

1
1

2
u~j2j* ~ t !!2. ~21!

The functions~19! and~21! and their derivatives are matche
at the pointj5j* (t). Our solution~19!, ~21! contains three
parameters,j0 , u, and r , which must be found from the
boundary conditions~16!. It should be kept in mind that the
value A(sgn(cosvt)d/2,t) of the vector potential appearin
in Eq. ~16! is not an independent parameter, since it is rela
to r by formula ~17!.

Adding up the first two boundary conditions~16! term
by term and using Eqs.~18!, ~19!, and~21!, we arrive at the
following expression for the displacement of the zero of
total magnetic field:

j05
2x0 sgn~cosvt !

d
5

cLhmucosvtu
2pUsfld

,

hmucosvtu<H. ~22!
ot

st

d

e

To determine the value ofu ~i.e., of the voltageU! we inte-
grate the left and right sides of Eq.~14! from 21 to 1 with
allowance for the boundary conditions~16! on the derivative
]a(j,t)/]j. The integral of the function@12a(j,t)#1/2 that
arises on the right-hand side can be reduced by using
condition a(1,t)51 to the product 2(12j0)s̄ tr /rsfl . Tak-
ing this and the formulas foru ~18! andj0 ~22! into account
and performing some simple transformations, we obtain

U5
cL

2pdsfl~ t !

H~ I !1~ s̄ tr /sfl!hm cosvtu
11s̄ tr /sfl

,

hmucosvtu<H. ~23!

According to Eq.~20! the conductivity ratios̄ tr /sfl in ~23!
depends on the parameterr . Taking into consideration the
expression foru ~18! and the relation~17! between the quan
tities a(sgn(cosvt)d/2,t) and r , from the first of conditions
~16! with the use of~19! we obtain an algebraic equatio
for r :

r 2S 11
2

3
r D 5S H2hmucosvtu

H̃
D 2

Ũ

U ln3~R1 /d!
,

hmucosvtu<H. ~24!

Here we have introduced the notation

H̃5
25G4~5/4!

9p

cpFd

el2
, Ũ5

4clLH̃

3ps0d2 . ~25!

The parametersH̃ andŨ are the values of the magnetic fie
and voltage at which the characteristic arc of the elect
trajectory (Rd)1/2 is equal in order of magnitude to the mea
free pathl .

Expressions~20!, ~23!, and~24! implicitly determine the
dependence of the voltageU on the current I for
hmucosvtu<H, when there is a plane on which the total ma
netic field changes sign inside the sample. Under the op
site inequality, hmucosvtu>H, trapped electrons are no
present~r 50, j* 51, s tr50!, and the I–V characteristic is
described by the formula

U5
cLH~ I !

2pdsfl~ t !
, hmucosvtu>H.

It follows from formula ~23! that the voltage across th
sample is a nonanalytic function of time:U(t) has kinks at
times where the magnetic fieldhm cosvt of the wave goes to
zero. This is an essentially nonlinear effect that is due to
contribution to the current from the large group of trapp
electrons. Figure 3a shows the time dependence of the v
age ~23! at not-too-large wave amplitudeshm,H, when
trapped particles exist in the sample throughout the en
period 2p/v. Figure 3b showsU(t) in the opposite case
hm.H, when the conductivity during part of the wav
period (hmucosvtu>H) is due solely to the fly-through
particles.
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NONANALYTIC TIME DEPENDENCE OF THE ELECTRIC
FIELD OF THE WAVE AT THE SURFACE OF THE FILM

Knowing the distribution of the vector potentialA(x,t),
one can use formula~11! to calculate the solenoidal electr
field E(x,t) as a correction to the potential componentE0(t).
This field goes to zero at the same point as the vector po
tial and reaches its largest absolute value at one of
boundaries of the film. We will be interested in the diffe
enceDE(t)5E(d/2,t)2E(2d/2,t). This quantity is propor-
tional to the rate of change of the magnetic flux through
cross section of the sample perpendicular to the vector of
total field H(x,t) and can be measured experimentally.

It follows from expressions~19! and~21! that the differ-
ence a(1,t)2a(21,t) of the values of the dimensionles
vector potential is related to the derivatives]a(1,t)/]j and
]a(21,t)/]j by the relations

a~1,t !2a~21,t !52j0~ t !F]a~1,t !

]j
2

]a~21,t !

]j G ,
hmucosvtu<H, ~26!

a~1,t !2a~21,t !5
]a~1,t !

]j
1

]a~21,t !

]j
,

hmucosvtu>H. ~27!

Transforming in~26! and ~27! to dimensionless variables
using the boundary conditions~16! and the relation~17! be-
tween the quantitiesA(sgn(cosvt)d/2,t) andr , we obtain for
the values of the vector potential at the boundaries of the

FIG. 3. Time dependence of the voltageU at relatively small (hm,H) ~a!
and large (hm.H) ~b! wave amplitudes.
n-
e

a
e

A~sgn~cosvt !d/2,t !52H̃d ln2~R1 /d!r 2/4,

A~2sgn~cosvt !d/2,t !52
1

4
H̃d ln2~R1 /d!r 222Hux0~ t !u

~28!

for

hmucosvtu<H

and

A~sgn~cosvt !d/2,t !50, ~29!

A~2sgn~cosvt !d/2,t !52dhmucosvtu

for

hmucosvtu>H.

Formulas~28! and ~29! are matched athmucosvtu5H, when
the parameterr ~17! goes to zero, and the planex5x0(t)
coincides with one of the boundaries of the sample:ux0(t)u
5d/2. Using relations~11! and~28! and the formula~22! for
j0(t), we obtain the following expression for the differenc
DE(t) in the values of the electric field at the boundaries
the film:

DE~ t !52
2H

c

]x0~ t !

]t
52

H~ I !Lhm

2p

]

]t F cosvt

sfl~ t !U~ t !G ,
hmucosvtu<H. ~30!

For hm<H this relation is valid over the entire period of th
wave. If hm.H, on the other hand, there exists a time inte
val during which the sample does not contain a planex
5x0(t) on which the total magnetic field changes sign.
that case formula~29! must be used to obtain the functio
DE(t). The result is

DE~ t !5DEL sinvt, DEL5dhmv/c,

hmucosvtu>H. ~31!

Of course, in the absence of a group of trapped electr
the difference in the values of the wave fieldDE(t) is a
harmonic function of time, i.e., the response of the film to t
external electromagnetic excitation is linear. Clearly formu
~31! also describesDE(t) for small values of the curren
I (H!H̃), when the distribution of the trapped particle
the conductivity is unimportant throughout the entire wa
period. ThenDEL is the amplitude of the linear response.

Figure 4 shows the functionDE(t) over a wide range of
values of the wave amplitudehm at a large value of the
magnetic fieldH of the current, when the conditionH@H̃
@i.e., inequality~3!# holds. We see that the ratio of the osc
lation amplitudeDEm to the linear valueDEL does not de-
pend onhm . From relations~30!, ~23!, and ~24! for cosvt
50 we obtain the following expression forDEm :

DEm

DEL

50.83S H

H̃
D 1/2

1

ln~R/d!
,

S H

H̃
D 1/2

2
l

~Rd!1/2
@1. ~32!
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The ratioDEm /DEL is determined by the value of the ma
netic field H of the current and can be much greater th
unity. In other words, there in an amplification of the ele
trical signal at the surface of the film. At small wave amp
tudes~curve1, hm5H/300! the signal is quasiharmonic. A
hm increases, however, kinks appear on the functionDE(t).
Curve 2 (hm52H/3) has kinks at the extrema, i.e., at th
time when the magnetic fieldhm cosvt of the wave goes to
zero. These features are due to the nonanalyticity of the
characteristic of the film~see Eq.~23! and Fig. 3!. Curve3
corresponds to the casehm55H/3, when there are no
trapped electrons during a part of the wave period. In t
case the functionDE(t) contains additional kinks arising a
the times of the appearance and disappearance of the p
x5x0(t) on which the sign of the total magnetic fie
changes sign. On curve3 these points are arranged sym
metrically relative to the extrema. Using formulas~30!, ~31!,
~23!, and~24!, we find the derivatives of the functionDE(t)
to the left and right of the point of the first kin
t05(1/v)cos21(H/hm):

]

]t

DE~ t !

DEL
U

t5t020

5
vH

hm
, ~33!

]

]t

DE~ t !

DEL
U

t5t010

5
vH

hm
F12

p

2 ln ~R1 /d!S H

H̃
D 1/2S hm

2

H2
21D G .

~34!

according to Eq.~34!, when @(hm /H)221#>1 the deriva-
tive on the right is already negative and large in absol
value.

CONCLUSION

In this paper we have investigated the nonlinear respo
of a thin metallic film carrying a high dc current to an exte
nal electromagnetic excitation that is symmetric with resp
to the magnetic field. We have shown that as a result of
interaction of the wave and current the electric field of t
wave at the surface of the metal is a nonanalytic function

FIG. 4. DifferenceDE in the values of the electric field of the wave at th
boundaries of the film as a function of time at a fixed value of the curr

(H5300H̃) and different amplitudeshm /H̃: 1 ~1!, 200 ~2!, 500 ~3!. The

ratio of the mean free pathl to the film thicknessd is equal to 30.H̄ is the
magnetic field at which the characteristic arc of the electron trajectory i
the order of the mean free path@Eq. ~25!#.
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time, having a number of sharp kinks. Increasing the curr
leads to an increase in the amplitude of the oscillations of
electric field at the surface of the sample.

For observation of the effects predicted in this pape
will be necessary to have a sufficiently large electron me
free path@see inequality~3!#. This condition can be satisfie
only at low temperatures and in rather pure samples. In
dition, it is necessary that the magnetic fieldh(x,t) of the
wave in the film be quasiuniform (h(x,t).hm cosvt), and
the electric fieldE(x,t) of the wave be small compared to th
potential fieldE0(t). Let us state an inequality under whic
this situation will be realized. On the basis of formulas~11!,
~28!, and~29! one can conclude that the maximum~in abso-
lute value! of the fieldE is of the order ofDEm ~32!. Clearly,
DEm should be much less than the minimum value of t
function E0(t), i.e., the values of the potential field~23! at
cosvt50. The corresponding inequality is written in th
form

d2
hml

Hr
!dn

2~v!, dn
2~v!5

c2

4ps0v
, ~35!

where dn(v) is the characteristic penetration depth of t
alternating field into the metal in the normal skin effect.
addition to condition~35!, it is necessary that the nonuniform
component of the magnetic field of the wave inside the fi
be much less thanhm . The maximum value of the nonuni
form correction can be estimated from the first of Maxwel
equations~4! as (4ps trDEmd/c);hm(d/d)2, where the ef-
fective penetration depthd(v) is equal todn(v)(R/ l )1/2. As
a result, we arrive at the requirement~6! of quasiuniformity
of the magnetic field of the wave:

d2
l

R
!dn

2~v!. ~36!

From a comparison of inequalities~35! and~36! we see that
at large wave amplitudeshm.H condition ~35! is the
stricter, while for a small-amplitude signalhm,H it is con-
dition ~36!.

At a fixed temperature~fixed mean free path of the
charge carriers! which ensures that the main condition~3! is
satisfied, inequalities~35! and ~36! are restrictions on the
frequency of the wave. Let us estimate the values of
characteristic frequenciesv for which the kinks should be
clearly observed on the time dependence of the electric fi
at the surface of the film. For a sample thickne
d51023 cm, an electron mean free pathl 51021 cm, elec-
tron density N51023cm23, and Fermi momentum
pF510219g•cm/s in magnetic fieldshm5H5100 Oe, in-
equalities~35! and ~36! give v,105 s21. We note that at
such values of the parameters of the problem the condi
~3! that the mean free path of the particles be large is cle
satisfied.
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Sequence of structural phase transitions induced by an external magnetic field
in the Jahn–Teller elastic KTm „MoO4…2
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Electron paramagnetic resonance and ac magnetic susceptibility studies in the compound
KTm~MoO4!2 have revealed a number of features in the microwave absorption and magnetic
susceptibility. It is conjectured that there is a sequence of magnetic-field-induced
structural phase transitions involving the formation of a superstructure of the crystal lattice in
KTm~MoO4!2. Experimental studies are carried out at a temperature of 1.7 K. ©2000
American Institute of Physics.@S1063-777X~00!01101-4#
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The compound KTm~MoO4!2 belongs to the family of
isostructural binary alkaline–rare-earth molybdates of
type MRE~MoO4!2 ~M5K, Cs, Li; RE5Er, Dy, Ho, Gd...!,
which have a layered crystal structure. A characteristic f
ture of this class of compounds is the presence of a corr
tion of the electronic subsystem of the rare earth with
phonon subsystem of the crystal lattice. Therefore, by ac
on the electron subsystem with an external magnetic fi
one can influence the structure of the crystal lattice of th
compounds. This is manifested in the induction of structu
phase transitions of the cooperative Jahn–Teller type.1,2

Previously it was reported3 that a study of the angula
dependence of the EPR spectrum of the Tm31 ion in
KTm~MoO4!2 revealed the presence of a low-temperat
first-order structural phase transition induced by an exte
magnetic field. The external magnetic field was orien
along the smallg factor,ga,0.4.

Further research on this phenomenon and a model
scription of the phase transition were published in Ref.
This description was based on the results of theoret
papers5,6 which showed that structural phase transitions
duced by external fields or temperature can occur not onl
crystals containing ions with half-integer spin but also
paramagnets with a singlet ground state of the ions, wher
external magnetic field can induce a structural phase tra
tion that does not occur in the absence of field. Such a ph
transition was observed by the authors of Ref. 7.

The present paper describes a study of the features
structural phase transition induced by an external magn
field. The microwave absorption spectra and the field dep
dence of the differential magnetic susceptibility were inv
tigated.

EXPERIMENTAL RESULTS

The compound KTm~MoO4!2 at room temperature
belongs to the orthorhombic system. Its symmetry is
scribed by the space groupD2h

14 with unit cell parameters
a55.05 Å, b518.31 Å, c57.89 Å, andZ54.8 The local
721063-777X/2000/26(1)/3/$20.00
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symmetry of the Tm31 ions isC2 , and therefore the lowes
electronic ground state of the Tm31 ions (3H6) is split into
nondegenerate states.

Experimental studies were carried out on a fou
millimeter EPR spectrometer. The measurement cell wa
high-Q cylindrical resonant cavity of the transmission typ
The polarization of the microwave field at the sample w
mixed relative to the direction of the magnetic fieldH. The
angular dependence of the EPR spectrum was recorded
fixed frequency. Two geometrically inequivalent cente
were observed on the (ac) plane, rotated with respect to th
a axis by 67.6°. The measurements were made at a te
perature of 1.7 K and a frequency of 80 GHz.

Figure 1 shows the form of the EPR absorption spectr
when the external magnetic field is oriented along the lo
magnetic axisa8. This direction corresponds to the min
mum g factor of the Tm31 ions (ga,0.4). It is seen that as
the external magnetic fieldH is increased, at a field
Hc544.5 kOe the absorption line is abruptly broken off
the high-field edge. In a decreasing external magnetic fi
one observes significant hysteresis with respect to the m
netic field,DH53.4 kOe. The strong spin–orbit interactio
the presence of orbital quasidegeneracy in KTm~MoO4!2,

FIG. 1. ESR absorption spectrum of the KTm~MoO4!2 crystal at a frequency
of 80 GHz ~T51.7 K; Hia8!. The narrow absorption line in a field
H528.5 kOe is the signal of DPPH. Inset: Enlargement of the features
the absorption spectrum of the Tm31 ion. The arrows indicate the direction
of change of the external magnetic field.
© 2000 American Institute of Physics
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and, as a consequence, the instability of the lattice sug
that we are observing the same kind of first-order structu
phase transition of the Jahn–Teller type, induced by an
ternal magnetic field, as those observed in TmVo4 ~Ref. 7!
and KEr~MoO4!2 ~Ref. 1!.

This phase transition is accompanied by a feature in
absorption of microwave energy: the appearance of step
magnetic fields lower than the transition fieldHc1 . The ob-
servation of steps and the value of the transition field dep
strongly on the presence of defects in the crystal and
strength and rate of change~sweep rate! of the magnetic
field. A decrease in the sweep rate of the field by a facto
approximately three causes the steplike feature to be ‘‘s
toothed.’’ The stresses due to the mounting of the sam
lead to the vanishing of the steps and to a shift of the ph
transition field to higher values. In the region of the stru
tural phase transitionHc1 the absorption band is split int
several features which are close in magnetic field, an
staircase dependence is preserved even at the line o
phase transition. When the temperature is raised to liq
helium temperature there is an increase in the field of
structural phase transition, and the steps arising before
first-order phase transition are slightly smeared.

Reversing the sweep direction of the external magn
field alters the form of the absorption spectrum~see Fig. 1!:
the steps acquire a different periodicity and height. If t
field sweep is stopped at the steps before the onset of
main phase transition and the sweep direction is rever
one observes hysteresis with respect to the magnetic fi
One notices an additional absorption line at a fie
H523.5 kOe, which vanishes when the direction of the fi
sweep is reversed. We note that these results were obta
on new samples of very high quality, unlike the crystals us
in Ref. 4. This led to some slight differences, both qualitat
and quantitative, in the experimental results.

In addition to the resonance method we used the te
nique of measuring the magnetic susceptibilityx in an ac
field at a frequency of 1 kHz. The experiment was carried
under conditions corresponding to the EPR measureme
Figure 2 shows the field dependence of the magnetic sus
tibility of KTm ~MoO4!2. One observes two jumplike

FIG. 2. Field dependence of the magnetic susceptibilityx of the compound
KTm~MoO4!2 ~T51.7 K, f 51 kHz, Hia!. The arrows indicate the direc
tion of change of the external magnetic field.
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changes in the field dependence ofx ~Hc2513.1 kOe,
Hc1534.9 kOe!, with hysteresis in the position of the jump
with respect to the magnetic field. We attribute this behav
of x to first-order structural phase transitions. The feature
Hc2513.1 kOe is not observed by the resonance techniq
The steplike change inx between the two phase transitions
less pronounced than at resonance. The value ofHc1 is
slightly different from the value determined previously f
the field of the structural phase transition. We attribute all
the aforementioned disagrees of the experimental result
inaccuracy in the adjustment of the sample. It is seen fr
the measurements ofx that phase instability in the compoun
KTm~MoO4!2 begins in low magnetic fieldsHc2 .

DISCUSSION OF THE RESULTS AND CONCLUSIONS

An analysis of the experimental results presented ab
and their features, such as the steps, the regularity in t
onset, and the dependence on the sweep rate of the field
splitting of the maximum of the absorption band into seve
features lying close in magnetic field, and the memory effe
all indicate that in the field intervalHc2–Hc1 we apparently
are observing a modulated superstructure of the lattice.

By now a rather large number of modulated superstr
tures in which the modulation period is not a multiple of t
period of the initial lattice have been observed and inve
gated in detail; e.g., the family of crystals@N~CH3!4#2MeCl4
(Me5Co, Fe, Cu, Zn).

It is ordinarily assumed that the wave vector of the s
perstructure is a continuous function of temperature. Ho
ever, as Dzyaloshinki� has shown,9 commensurability of the
periods of the superstructure and lattice confers a finite
ergy advantage. Therefore, the change in the period of
structure of the incommensurate phase with temperature
curs in jumps, and the incommensurate phase is a temp
ture sequence of long-period commensurate phases. In
case the role of temperature is played by the external m
netic field on account of the strong spin–orbit interactio
when the electron moment is considered as the total mom
without dividing it into spin and orbital parts. Apparently th
parameters of the crystal vary in a definite way, and in
resonance or magnetic experiment at low temperatures i
external magnetic field one observes a superstructure
which regions of commensurability are separated by v
narrow regions of ‘‘incommensurability’’~phase solitons!.10

The spatial symmetry of the crystal lattice of KTm~MoO4!2

admits the existence of a Lifshitz gradient invariant. The
fore, the thermodynamic potential contains a term that
give rise to a modulated spatial structure. The additional
sorption observed in the intermediate phase is of a re
ational character, and its onset is probably due to the for
tion of a superstructure of the lattice.

If our assumptions are correction, the incommensur
structure may appear as a consequence of the dynamic i
action of the electronic branch due to excitation of the Tm31

ions to the first Stark level and the acoustic phonon branc
the crystal. The low-frequency vibrational spectrum of b
nary alkali–rare-earth molybdates is formed on account
vibrations of the layers as a whole.13 Starting from the data
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presented in Ref. 14 and the width of the gap between
ground level and first excited Stark level of the Tm31 ions,
one can estimate the value of the wave vector at which
crossover of the vibrational and electronic modes occurs

K05DE/V,

whereDE is the energy distance to the first Stark level of t
Tm31 ion (2.3 cm21), and V is the speed of sound in th
KTm~MoO4!2 crystal (23103 m/s). Estimates show thatK0

52.23108 m21, which corresponds to 16 unit cell param
eters in the direction perpendicular to the layer packets of
crystal. The interaction of the electronic and phonon mo
results in a softening of the phonon branch in the reg
of K0 .

As indirect evidence supporting the correctness of
ideas about the formation of superstructure in KTm~MoO4!2,
we can point to the observation of a modulated incomm
surate lattice structure in the isostructural compou
KDy~MoO4!2 in the region of a structural phase transition
the cooperative Jahn–Teller type by the authors of Refs
and 12.

It is possible that there is another physical mechanism
which one can base an explanation of the observed exp
mental results, such as the formation of regular domain
the formation of new phase nuclei. However, we prefer
mechanism examined here because of the strict periodicit
the steps and their heights and the appearance of an
tional absorption line, although it is extraordinarily difficu
to assess the relative merits of these mechanisms.

We conclude with the following note. We have report
only preliminary experimental results. Our proposed phys
explanation for the observed features of the resonance
sorption is only of a qualitative nature at this stage. Clea
only direct methods of measurement~x-ray, neutron! can
give an unambiguous answer as to the presence of a m
e

e

e
s
n

r

-
d

1

n
ri-
or
e
of
di-

l
b-
y

u-

lated structure. On the other hand, the experimental res
obtained here, in our opinion, do permit the assumption t
the sequence of structural phase transformations
KTm~MoO4!2 under the influence of an external magne
field are accompanied by the formation of a modulated
perstructure of the lattice.

The author is deeply indebted to B. I. Kut’ko for nume
ous helpful discussions of the results of this study.
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Thermal expansion of single-crystal fullerite C 60 at liquid-helium temperatures
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The thermal expansion of single-crystal fullerite C60 has been studied in the range of liquid-
helium temperatures~2–10 K!. At temperatures below;4.5 K the thermal expansion of fullerite
C60 becomes negative, in agreement with the previous results on polycrystalline materials.
A qualitative explanation of the results is proposed. ©2000 American Institute of Physics.
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1. INTRODUCTION

One of the characteristic features of fullerite C60 is the
essential influence of the orientational states of its molec
on the physical properties of the crystal. A molecule of f
lerite C60 is shaped as a truncated icosahedron, whose
face forms 20 hexagons and 12 pentagons. The nonce
interaction between the globular molecules of C60 is much
weaker than the central interaction and fullerene molecu
show reorientational motion at temperatures at which the
teraction between the globular molecules of C60 is weaker
than the thermal energy. At condensation, fullerite C60 forms
a face-centered-cubic~fcc! lattice with space groupFm3m
through the action of the central van der Waals interacti
As shown by experimental studies~see, for example, Ref. 1!,
the rotation of molecules in this phase is slightly hinder
Upon decreasing the temperature, a structure-orientati
phase transition into a less symmetrical, simple cubic~sc!,
low-temperature phase ofPa3 symmetry takes place atT
'260 K. This transition is accompanied by partial orien
tional ordering of the rotation axes of the C60 molecules.
Calculations of the intermolecular interaction in C60 crystals
with a Lennard–Jones type potential show that this ph
should be orthorhombic.2,3 Lu et al.4 obtained a simple cubic
structure corresponding to the real low-temperature phas
solid C60 by adding a Coulomb term to the Lennard–Jon
potential. This additional Coulomb interaction between
neighboring molecules arises because of the effec
charges at the single and double bonds of molecules in
ordered phase at low temperatures. When passing from
fcc phase to a sc phase, the almost free rotation of molec
changes into rotation around a space diagonal^111&. As the
temperature decreases further in thePa3 phase, the rota
751063-777X/2000/26(1)/6/$20.00
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tional motion of the molecules around the^111& axes slows
down. The lowest interaction energy of two neighbori
molecules of C60 is found for the orientational state whe
double bonds on the molecules are facing the centers of
tagons on a neighboring molecule~the ‘‘pentagon’’ configu-
ration!. A less-deep energy minimum occurs when t
double bonds approach the centers of hexagons on a ne
boring molecule~the ‘‘hexagon’’ configuration!. The differ-
ence in the depths of the potential wells for these configu
tions isD'10 meV per intermolecular bond, and the ener
barrier separating them isU'0.3 eV~Ref. 5!. Changes in the
orientational states in fullerites have a cooperative charac
At the temperatureT'90 K the rotation of molecules aroun
the ^111& axes is hindered almost entirely, and a compl
orientational ordering is never reached. An orientatio
glass is formed in this manner. The glass is characterized
a fixed ratio of pentagon~83.3%! and hexagon~16.7%!
orientations of C60 molecules. This ratio of the number o
molecules in each orientational state is fixed down to liqu
helium temperatures.6 The local energy states of neighborin
molecules are the base of a phenomenological model of t
hole orientational states which are widely used to describ
sc-phase of C60 fullerite.

Models of orientational glasses formed by highly sym
metric molecules with weak noncentral interaction are co
paratively simple. It is easier to consider theoretically su
glasses than other types of glasses and to interpret the
perimental results.7 This circumstance raises the hope that
adequate model for C60 fullerite in the state of orientationa
glass can be constructed. Despite a considerable body of
dence about the physical properties of fullerites, data on t
thermal expansion at low temperatures are scanty. At
© 2000 American Institute of Physics
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same time, it is only at low temperatures the peculiarit
characteristic of orientational glasses can be expected to
pear in the behavior of the thermal expansion of C60 fullerite.

In the present work we continue the low-temperatu
thermal expansion studies of C60, in which we recently
found8 that at temperatures below;3.4 K the thermal expan
sion of a compressed C60 powdered sample becomes neg
tive and unusually large in magnitude. In order to rule ou
possibility that the effects observed by us are due to
polycrystalline structure of the material, such as grain bou
aries or surface impurities brought into the sample by co
pression, we have now repeated the thermal-expansion s
ies in the same temperature range on a very large si
crystal of C60 fullerite of high purity ~see below!. Special
attention was given to the purity of both the polycrystallin8

and single-crystal samples, because low-temperature m
surements~1.4–20 K! of the heat capacity of C60 ~Ref. 9!
showed a contribution linear in temperature that should
characteristic of a glass. It turned out,10 however, that the
magnitude of the linear contribution was connected with
presence of impurities in the test samples since it was m
smaller in pure are samples.

2. EXPERIMENTAL ASPECTS

The low-temperature thermal expansion of C60 fullerite
should be isotropic because it has a cubic lattice. Thus
principle, both single-crystal and polycrystalline C60 can be
used in thermal-expansion studies.

We previously8 studied polycrystalline samples prepar
from sublimated C60 powder with a nominal purity no wors
than 99.98%, which was obtained from Term USA, Berk
ley, CA, USA. X-ray powder diffraction of the material a
room temperature showed sharp peaks of the fcc struc
with a lattice constanta514.13 Å. In an atmosphere of dr
argon the C60 powder was loaded in a small piston-cylind
device used for the sample preparation. After subsequ
compacting of the powder at about 1 GPa, the sample
immediately transferred into a glass tube and dried un
dynamic vacuum 1026 for about 16 h. The glass tube wa
sealed thereafter. The compacting procedure was done i
and did not exceed 15 min. The resulting sample had
shape of a pellet 6 mm in diameter and about 6 mm
height. The sample was then taken out of the mold and
serted into a glass tube, which was evacuated to ab
1026 Torr and sealed off. It was stored in darkness un
these conditions for three months before the beginning of
measurements. However, after this time it was found that
sample had broken down into several pieces. Only one
them, 6 mm in diameter and about 2.4 mm in height, w
suitable for thermal-expansion studies and we made m
surements only on this piece.8

The self-destruction of the sample indicates the prese
of large, inhomogeneous, internal stresses which could a
the results of the dilatometric studies. Another possibility
that the results are affected by air molecules adsorbed
grain surfaces during the compression and locked after
compression into the samples, where they might either
lect at the grain boundaries or diffuse into the crystal latti
s
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To exclude the possibility that the results are influenc
by the factors discussed above we thought it necessar
carry out additional measurements of the thermal expan
on a single crystal which was not subjected to compress
and mechanical treatment. We therefore obtained a v
large C60 single crystal (;6.534.333.1 mm) from Dr. M.
Haluska, Vienna. This crystal was grown by the sublimat
method in a cell under vacuum from Hoechst Super G
Grade C60. The crystal was not exposed to air or oxyg
after growing was completed, but was transferred from
growth tube in argon atmosphere into a glass cell, which w
then evacuated before sealing. Before putting the sin
crystal sample into a measuring cell of the dilatometer,
glass cell with the sample was opened in the argon at
sphere under small extra pressure~about 200 Torr!. The time
required to put the sample into the measuring cell of
dilatometer was no more than 20 min. During this proce
the sample was blown over by a dry argon flow, and the c
was immediately evacuated after the mounting was co
pleted. In the process of measuring thermal expansion
vacuum in the measuring cell with the sample was held a
pressure of 1026 Torr.

The procedure for mounting the sample in the dilato
eter and the measurement procedure were similar to th
described earlier for the polycrystal.8 The linear thermal ex-
pansion was measured using a capacitive dilatometer11 with
a resolution 231029 cm, which was specially modified fo
measuring fullerite samples. The dilatometer was construc
in such a way that all elements capable of affecting the m
sured results for the linear thermal expansion of the sam
because of their own thermal expansion were in a liqu
helium bath at a constant temperature. Thus, they could
affect the measuring results. The sample temperature
measured by a reference germanium resistance thermom
and good thermal insulation was provided by holding t
sample in a vacuum. The measuring cell of the dilatomete
shown schematically in Fig. 1. A thermometric block~not

FIG. 1. Schematic drawing of the measuring cell of the dilatometer.
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shown in Fig. 1!, consisting of a measuring thermometer
thermometer for regulating the temperature, and a sam
heater, was mounted on the object table~1! of the dilatom-
eter and established a reliable heat contact with this ta
The fullerite test sample~2! was placed on the same tabl
The temperature drop along the sample was measured
differential thermocouple~gold with iron-copper alloy!. This
thermocouple measured the temperature difference betw
the object table~1! of the dilatometer and a strip of thi
aluminum foil ~3!, 0.02 mm in thickness and 7 mm wide
placed between the upper part of the sample and the sap
hemisphere~4!. The copper rod~15!, the copper base~12!,
and sapphire support~13! are at the helium bath temperatur
Thermal decoupling of the object table of the dilatome
from the structural elements of the device and from the
~5! of the capacitive displacement gauge@the lower end of
copper rod ~5! ends in a sapphire tip~11!# is made by
sapphire-sapphire point contacts~6!. Because of the hardnes
and thermal conductivity of the single-crystal sapphire, su
contacts showed good performance in dilatometers,12,13 pro-
viding the necessary construction hardness and a large p
thermal resistance. According to the data of Ref. 12,
thermal expansion of single-crystal sapphire along a dir
tion inclined by 60° with respect to its hexagonal axis isa
51.2T2.2310211K21 in the temperature range of intere
here. For the direction along the axis the magnitude is pr
ably still less, since at room temperature the linear ther
expansion of sapphire along the hexagonal axis is an orde
magnitude lower than the linear thermal expansion in
base plane.14 Therefore, to reduce thermal expansion of t
sapphire to a minimum, cuts were made from artific
single-crystal sapphire, so that the direction along which
thermal expansion measurements were made would coin
with the direction of the hexagonal axis of the single crysta
Additional studies were made to determine the true contri
tion of the sapphire elements and of the aluminum foil to o
thermal expansion studies of fullerite C60. From the data
obtained we find that this contribution is less than the re
lution of our setup in the whole temperature range stud
~see below!. Sample temperatures below 4.2 K were reach
by the Wheatley camera,15 which has a thermal contact wit
the sample. The dilatometer element sensitive to small
placements~the capacitive displacement gauge! is a two-
terminal capacitance gauge connected into an oscillator
cuit based on a tunnel diode. The block consisting of
displacement gauge and the oscillator was also placed
liquid-helium bath at a constant temperature.

The single crystal studied by us was probably unique
size and had a complex geometric shape. All the faces of
sample had essentially different areas and axes dr
through the geometric centers of parallel faces and were
perpendicular to these planes. Therefore, none of the pai
plane-parallel faces provided a stable position of the he
sphere~4! on the sample~2!. There was a danger that th
sample~2! and the hemisphere~4! would slip with respect to
one another in the process of measuring the thermal ex
sion. To overcome this difficulty, an adjustable fixtur
which kept the positions of the sample~2! and of the sap-
phire hemisphere~4! fixed with respect to the table~1!, was
le
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designed. The adjustable fixture consists of a stationary
justable ring~7! and a moving ring~8!, onto which the sap-
phire hemisphere~4! supported on the sample~2! was firmly
mounted. The parts~7! and ~8! were made of copper. Goo
adjustment during the measurements and good sliding of
moving ring ~8! with respect to the stationary ring~7! are
reached because a gap of;0.1 mm between adjacent cylin
drical surfaces of the rings is filled by two ring Teflon ga
kets ~9!. One of the gaskets fits on the external cylindric
surface of ring~7!, the other fits on the inner surface of rin
filled by two ring Teflon gaskets~9!. One of the gaskets fits
on the external cylindrical surface of ring~7!, the other fits
on the inner surface of ring~8!. The thickness of each gaske
is 0.05 mm. A gap between these gaskets provides a s
sliding of the Teflon-Teflon surfaces and a good alignm
when ring ~8! moves. The construction which is describe
here excludes seizing at the displacements of ring~8! at
liquid-helium temperatures and provides the needed coax
ity of the object table~1!, the sapphire hemisphere~4!, and
the rod~5! of the capacitive displacement gauge. The sin
crystal studied by us had a complex form. The largest dim
sion was 6.5 mm and the smallest was 3.1 mm. The sam
in the stationary adjusting ring~7! was aligned by a split
Teflon ring~10! also by decreasing the friction of the samp
against the walls of ring~7! upon lowering or raising the
temperature. Since there was a danger of destroying
sample when it was tightened with a rod~5! of the capacitive
displacement gauge, we measured the thermal expan
perpendicular to two parallel sample planes with maxim
areas despite the fact that their geometric centers were
placed with respect to each other. The distance between t
planes was 3.1 mm and this was therefore the initial len
of the sample; the change in the length was determined in
experiment. We note in this connection that after complet
the experiment we did not find signs of destruction of t
sample. The change in the sample length was determ
when the temperature was raised or lowered. Change
temperature and sample length were recorded once a m
and processed by a computer in real time. The sample t
perature was determined to beTs5Tr10.5Tt , whereTs is
the temperature of the sample,Tr is the temperature of the
object table as determined by a germanium resistance t
mometer, andTt is the temperature difference between t
temperature of the object table and that of the upper par
the sample.Tt was determined by a differential thermo
couple, as discussed above. Typical values ofTt were on the
order of 0.1 K. The thermal expansion of C60 fullerite was
measured by a step change technique as follows. First,
sample was held at a constant temperatureT1 , where its
temperature and the output of the capacitive displacem
gauge of the dilatometer were read. The temperature of
object table with the sample was then changed to a temp
ture T2 , which was held constant. When the temperat
drift of the sample did not exceed 0.01 K for 10 min, w
determined the change in its length due to the change
temperature fromT1 to T2 . During the measurements th
steps fromT1 to T2 were 0.1–0.3 K, depending on the tem
perature range.
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3. EXPERIMENTAL RESULTS

The thermal expansion of single-crystal fullerite was d
termined in the temperature range 2–10 K. As repor
elsewhere,8 we previously made eight series of therma
expansion measurements on a polycrystalline sample of60

in the temperature range below 4.2 K, when the tempera
was raised and when it was lowered, plus three similar se
in the temperature range above 4.2 K. We have now ad
nine similar series of measurements on the C60 single crystal,
five of them in the temperature range below 4.2 K. The lin
thermal expansion coefficienta was obtained by differentia
tion with respect toT of the temperature dependence of t
relative elongationDL/L of the samples. Figure 2 shows th
temperature dependencea(T) of single-crystal fullerite
~solid line!. This figure also shows the mean-square error
determininga. The results of our measurements on polycr
talline C60 ~Ref. 8! are given by the dashed line. We compa
the values obtained for the thermal expansion with the d
of Gugenbergeret al.,16 who measured the thermal expa
sion of single-crystal fullerite in the temperature ran
5–300 K~circles!. From this figure it is clear that the resul
of our studies agree satisfactorily with the previous data
single crystals in the temperature range where they over
It is also clear that the polycrystal and the single crystal g
very similar results. The most interesting result of our stu
is the negative thermal expansion obtained for b
polycrystalline8 and single-crystal fullerite C60 at tempera-
tures below 3.4 K for the polycrystal and below 4.5 K for t
single-crystal sample.

Since we consider the results of our studies of therm
expansion of fullerite far from being trivial, we have mad
the following additional experiment to check the results. W
again mounted the measuring cell of the dilatometer in
way shown in Fig. 3. The notation in this figure is the sa
as in Fig. 1. From Fig. 3 it is clear that the sapphire hem
sphere~4!, which has a height of 3 mm, and the aluminu
foil ~3!, upon which a thermocouple is placed, play the r
of the samples. The thermal expansion measured in su
case is the sum of all spurious contributions from the co
ponents of the setup to the thermal expansion of fuller
From this experiment it is clear that any extra contribution

FIG. 2. Linear thermal expansion coefficients of fullerite C60: polycrystal
~•••!: single crystal, this work~ !; single crystal, private communicatio
of the authors of Ref. 16~s!; the results of the check experiment~L!.
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the thermal expansion does not exceed 2.531028 K21 in the
whole temperature range studied by us. The measuring t
nique was the same as in the case of measuring the the
expansion of fullerite. The only difference was a temperat
stepDT, which was 0.1–0.3 K when studying fullerite, an
in the experimental check it was about 1 K. The results
this experimental check are shown in Fig. 2 by the rhom
The figure shows that the magnitude of any spurious con
bution to the measured value is negligible compared to
measured thermal expansion of fullerite. This experimen
check testifies to the reliability of the values of the therm
expansion coefficients of fullerite which we measured.

4. DISCUSSION

A possible mechanism for the negative thermal exp
sion of fullerite C60 might be rotational tunnelling betwee
energy-equivalent orientational states of molecules. Shea17

was first to suggest that rotational tunnelling of molecu
can lead to a negative thermal expansion. This problem
considered in detail by Freiman,18 as applied to the therma
expansion of solid methane. Because of rotational tunnell
the energy level of a rotational ground state~whose degen-
eration is equal to the number of molecular orientations w
identical energies! splits into several sublevels, whose num
ber is determined by the lattice symmetry. At sufficien
low temperatures the contribution from excitations of i
tramolecular vibrations, phonons, and librons to the free
ergy of a crystal can be disregarded. In this case the
energy can be represented as a sum of the potential en
the zero vibration energy, and a contributionFt arising from
the tunnel states. The contributionFt can be written as

Ft5NkT ln (
i

aie
2D i /kT, ~1!

where the summation is made over the tunnel statesi ,ai is
the degeneration of thei th state, andD i is the excess energ
of this state above the energy of the ground state. The qu

FIG. 3. Schematic drawing of the measuring cell of the dilatometer
experiment to check the results.
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tity D i depends exponentially on the height of the barrierU
which separates the energy-equivalent orientations,

D i;e2bU~V!, ~2!

where b is a constant. A decrease in the volumeV of the
crystal leads to an increase inU and a decrease of the value
D i . Based on the dependence ofU on V and on Eqs.~1! and
~2! it can be shown, in general, that the thermal expans
contributed by the tunnel states is negative.18

This is particularly clear in the Gru¨neisen approximation
a;gC, wherea is the thermal expansion coefficient,C is
the heat capacity, andg is the thermal Gru¨neisen coefficient
g i52(d ln Di)/(d ln V), which for tunnel levels are negative
Since the heat capacity is always positive, negative value
g i immediately imply negative values for the thermal expa
sion coefficient. In principle, the negative thermal expans
should be observed for all solids consisting of particles w
rotational degrees of freedom. In most cases, however,
cause high barriers prevent molecular rotation, the tun
splitting D i is very small and the thermal expansion becom
negative at very low temperatures, which are at present h
to reach in dilatometric experiments.

Note one further important peculiarity of tunnel state
The dependence of the splitting of tunnel levelsD i on the
height of the barrier~2! and the strong dependence ofU on
volume testifies that Gru¨neisen coefficients for tunnel leve
should be very large in magnitude. It should be noted h
that Grüneisen coefficients for the phonon and libron spec
of molecular crystals usually are on the order of one. T
Grüneisen parameter for the low-temperature simple cu
phase of C60 was analyzed by Whiteet al.19 in the tempera-
ture range 10–200 K. To calculate the valueg of single-
crystal fullerite C60 at T,10 K we used the thermal expan
sion coefficients obtained in our work, data on the h
capacity from Ref. 10, where a pure polycrystal sample60

was studied in the range 1.5–20 K, and the values of m
volume areV5416.77 cm3

•mole and the bulk modulusB
514 GPa. The present value for the molar volume was
termined by recalculating the valueV5416.93 cm3

•mole
measured directly by the x-ray method on single-crystal60

~Ref. 20! at T530 K to ;4.2 K. The recalculation was mad
using data on thermal expansion from Ref. 16. No compre
ibility measurements of C60 have, to the best of our knowl
edge, been carried out at liquid-helium temperatures.
value of the bulk modulus given above corresponds to
average of values measured at 60 and 70 K~Ref. 21!, and we
assume that the temperature dependence of the compres
ity x5B21 can be ignored in the ‘‘glassy’’~orientationally
frozen! state below about 90 K. Figure 4 shows the tempe
ture dependence ofg obtained here. If we recalculate th
values of the Gru¨neisen coefficient for the case of bu
modulusB510.3 GPa~Ref. 22!, then our values ofg at 10 K
will correspond to the values ofg given in Ref. 19. At tem-
peratures below 4.5 K for single-crystal C60 and below 3.4 K
for polycrystalline C60 the Grüneisen coefficients are nega
tive and reach large values. The unusually large nega
values ofg testify in favor of the assumption that the neg
tive thermal expansion is of a tunneling nature.30
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The negative contribution to the thermal expansion
C60 is very large and dominates at liquid-helium tempe
tures, but we cannot estimate its temperature depend
very accurately. It is impossible to extract a linear term in t
temperature dependence of the thermal expansion co
cient, such as would be characteristic of a glass. Howe
according to Ref. 10, the contribution of the linear term
the heat capacity of sufficiently pure fullerite C60 is compara-
tively small.

The large moment of inertia of the C60 molecule and the
rather large barrier heights preventing the molecule rota
in a lattice5 are strong objections to the assumption of
tunneling nature of the negative thermal expansion coe
cient of C60 fullerite. It should be noted, however, that in th
vicinity of lattice defects the barriers can be reduced subs
tially. Such a lattice deformation of C60 fullerite can be
caused by the frozen-in orientational disorder observed
low 90 K, by impurities, and by the defects caused by co
pression of the powder or by the growth of the single crys
Kveder et al.23 studied photoluminescence and optical a
sorption spectra of rather large~2–3 mm!, pure crystals of
C60 fullerite. It turned out that the concentration of defec
which functioned as deep traps for exitons, was 103– 1024 of
the number of C60 molecules. Since these crystals were p
pared from a very pure material subjected to repeated re
limation in vacuum, the authors concluded that the effe
discussed were natural defects of the crystal and were
connected with impurities. The authors did not rule out th
these defects appeared as a result of plastic deformatio
crystals during growth under the influence of their weig
since at the growth temperature~about 450–470°! the crys-
tals were very plastic. The single crystal studied by us w
some times larger than that in Ref. 23, and probably beca
of plastic deformation, the concentration of defects in o
sample was therefore not smaller. The type of defects
their concentration are undoubtedly different for the sin
crystal and the polycrystalline samples studied by us. T
dependencea(T) of these samples should therefore not
expected to be identical~Fig. 2!.

Another possible explanation can be formulated in ter
of librational motion of the molecules. At low temperature
the majority of molecules are oriented in the pentagon ori

FIG. 4. Grüneisen parameter of fullerite C60.
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tation in which each molecule nominally points a doub
C–C bond toward the center of a carbon atom pentagon
its neighbor. This configuration accounts for a rather la
intermolecular distance, and the alternative hexagon orie
tion has a significantly smaller molecular volume, and he
smaller average intermolecular distance. For geometric
sons, librational motion of a molecule in the pentagon st
might theoretically enable the molecules to come closer
gether. However, a strong argument against such a mod
that librational modes have energies of 2–4 meV~Ref. 24!
and should therefore freeze out at the low temperatures
sidered here.

Based on the present results we suggest that it would
useful to study also the thermal expansion of fullerite wh
different gases are introduced~intercalated! into the lattice,
since the intermolecular interaction and the defect struc
in this case undergo changes.25–28 Note, in this connection
that in Ref. 29 argon which was introduced into the fuller
lattice was found to strongly influence the mechanical pr
erties of fullerite. For example, the microhardness a
Young’s modulus of fullerite stored in argon atmosphere
45 h at room temperature increased almost 100 fold.
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Phase transitions in antiferromagnetic cobalt fluoride
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The phase transitions in cobalt fluoride~at T!TN538 K! in a longitudinal magnetic field are
investigated theoretically, and it is shown that the field-induced transition of the magnetic
subsystem from an antiferromagnetic phase can occur only to a canted phase and that it is a first-
order transition. The character of this transition is due to the ‘‘sign’’ of the Dzyaloshinski�

interaction, and this affords an opportunity to determine experimentally the ‘‘sign’’ of the
Dzyaloshinski� interaction. The field of the transition to the spin-flop phase~when the
total magnetic moment becomes parallel to the easy axis! coincides with the field of the transition
to the spin-flip phase~when the antiferromagnetism vector becomes equal to zero!. © 2000
American Institute of Physics.@S1063-777X~00!01301-3#
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The antiferromagnet~AFM! CoF2 (TN538 K) has been
the subject of many studies for a few decades now~see, e.g.,
Ref. 1–8!. It was noted in these works that one of the thin
that complicates the theoretical investigations of CoF2 and
thus makes it difficult to explain the experimental data is
absence of a small parameter on account of the large m
netic anisotropy of the crystal. The ratio of the anisotro
field Ha to the exchange fieldHe does not satisfy the usua
conditionHa /He!1. In addition, a common problem9,10 for
AFMs with the Dzyaloshinski� interaction~DI! is the experi-
mental determination of the ‘‘sign’’ of the DI, which is o
fundamental importance from the standpoint of the mic
scopic theory of the DI. According to Ref. 9, an answer
this question can be given by determining experimentally
direction of rotation of the antiferromagnetism vectorl
around the magnetic fieldH in the geometryH'EAid,
where EA is the easy axis andd is a constant vector whos
components characterize the value of the DI. However
was pointed out in Ref. 10, a Mo¨ssbauer experiment9 on
easy-axis hematite did not give an unambiguous result~see
also Ref. 11!. It is therefore of interest to look for othe
experimental possibilities for answering this question.

Here it must be taken into consideration that, owing
the DI the rotation of the vectorl around the ferromagneti
vectorm occurs not only forH'EA; it is sufficient that the
componentH'Þ0 ~see the phase diagram in Fig. 5 of Re
10!. The conditionH'Þ0 plays a dual role: it brings abou
the rotation of the antiferromagnetic vectorl and creates an
isotropy in the basal plane, which tends to fix the ferrom
netic vector and, hence, to fix the plane of rotation of
antiferromagnetic vectorl.

However, in tetragonal AFMs, a class which includ
CoF2, the DI itself creates anisotropy in the basal plane.
this reason~as we shall show below! a rotation of the vector
l in a certain plane occurs inCoF2 even in the caseHiEA.

Therefore, the proposed study would undertake to st
phase transitions in the AFM CoF2 in a longitudinal mag-
netic field, in which case the fact that the conditionHa /Ee
811063-777X/2000/26(1)/3/$20.00
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!1 does not hold has no bearing on the correctness of
conclusions; here one would make use of the basal p
anisotropy created by the DI. We use the thermodyna
potentialE and the set of variables determining the config
ration of the magnetic subsystem from Ref. 6. Therefore

E5~2M0!@~1/2!Em21~1/2!G~m•1!22D~mxl y1 l xmy!

1F~m•1!l xl y2m•H1~1/2!A1~ l x
21 l y

2!

2~1/4!A2~ l x
21 l y

2!2#, ~1!

wherel5(M12M2)/2M0 ; m5(M11M2)/2M0 , EAi0Z.
The conditionm• l50 does not hold. We note that i

expression~1! a minus sign as been chosen in front of t
Dzyaloshinski� constantD. A minus sign has also been cho
sen in front of the constantA2 , and in this caseA2.0.

Using the necessary conditions for the existence o
minimum of ~1! as a function of the variablesu, w, andm
~see Fig. 1!, we obtain the system of equations

]E/]u50, ]E/]w50, ]E/]m50. ~2!

Sufficient conditions for the existence of a minimum
~1! reduce to the condition that all the principal minors of t
matrix Â5(aik), where

aik5
]2E

]xi]xk

~x15u, x25w, x35mx , x45my , x55mz!

must be strictly positive. Equations~2!, like Eqs.~8! and~10!
in Ref. 6, admit the solutions

cosu50, sin 2w50. ~3!

However solution~3! does not satisfy the sufficient con
ditions given above. Therefore, we are left with the ca
cos 2w50. This means that under the influence of a fie
HiEA the rotation of the vectorl occurs in a plane passin
through the easy axis and the@110# direction.
© 2000 American Institute of Physics
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Using the sufficient conditions for the existence of
minimum of ~1!, we find that the greatest value of the ma
netic fieldHc at which the state

sinu50, cos 2w50 ~4!

is realized is determined by the condition

Hc5A~E/G!~A1E1A1Gl22D21DFl 21F2El2/4G!

1Dl 1FEl2/2G. ~5!

Using the formula6 for the field H tr of the equilibrium
transition between the phasesu50 anduÞ0 and taking into
account that the angleu!1 in the neighborhood of a tricriti-
cal point, we obtain an expression for the difference

Hc2H tr5
1

4 F AE/G~E1Gl2!l 2~F2/2G1A2!

AA1E1A1Gl22D21DFl 21F2El2/4G

12Dl 21
FEl

G Gu2. ~6!

In writing formulas~5! and ~6! we have used the nota
tion ~8! taken from Ref. 6, i.e.,

d5Dl , f 5Fl 3, a15A1l 2, a25A2l 4.

the first-order phase transition occurs ifHc2H tr.0, and the
second-order transition occurs ifHc2H tr<0. The sign of the
differenceHc2H tr is determined by the sign of the expre
sion in the square brackets in front ofu2. Therefore it should
be kept in mind that the potential~1! is written in such a way
that all the constants in it have positive values. In additi
since the critical fieldHc can only be real, the expression
front of the square root in~5! and, hence, in~6! can only be
positive. It follows thatHc2H tr.0 and, so the transition
between the antiferromagnetic and the canted phases
first-order transition. Here, however, it is necessary to k
the following circumstance in mind. In Fig. 1 the directio
@1̄10# is the axis of rotation of the vectorl, and in deriving
formula~6! we took into account that, if one looks counter
the @1̄10# direction, the vectorl is rotated clockwise from the

FIG. 1. Orientation of the antiferromagnetism vectorl for Hi0ZiEA. u and
w are the polar and azimuthal angles of the vectorl.
,

a
p

Z axis ~anglew5 1
4p). If the vectorl is rotated counterclock-

wise ~anglew51 3
4p!, then a minus sign appears in front o

the term 2Dl 2 in formula ~6! ~and also in front of theDFl 2

term in the expression under the radical!. In that case, for
determining the sign of the differenceHc2H tr it is necessary
to use the numerical values of the constants of the poten
~1! ~we note that since (A2 /A1)2!1 and the productA2E is
substantially smaller thanD2, one expects that the conditio
Hc2H tr,0 will be satisfied!. Even though the sets of nu
merical values of the constants of the thermodynamic pot
tial ~1!, determined from experiment by different authors, a
different ~the reason for this is the lack of a consiste
theory!, these data nevertheless permit one to assume th
this case the differenceHc5H tr,0 and, hence, that the tran
sition between the phasesu50 anduÞ0 will be a second-
order transition. Thus we see that by determining experim
tally the character of the transition between th
antiferromagnetic and canted phases~in spite of the insignifi-
cance of the jump in magnetization at the first-order tran
tion!, one can thereby determine the ‘‘sign’’ of the DI.

To determine the subsequent behavior of the magn
subsystem as the magnetic field increases, we use the e
tion for the angleu at w5p/4:

sinuH cosuF2
H2G

E~E1Gl2!
1

2HGl

E~E1Gl2! S D1
FE

2GD
3cosu2A2l 2 sin2 u1A12

D2

E
1

1

2E

3S G

E1Gl2
~Fl 322Dl !22Fl 2~Fl 224D ! D sin2 uG

2
HGl

E~E1Gl2! S D1
FE

2GD sin2 uJ 50. ~7!

It follows from Eq. ~7! that the stateu5p/2 is realized
for l 50, i.e., the field of the spin-flop and spin-flip trans
tions coincide. This conclusion agrees with the experimen
data of Ref. 6, in which it was shown that the frequen
dependence of the antiferromagnetic resonance is inde
dent of field between the threshold fieldHc and the field of
the spin-flip transition. The strong growth of the magnetiz
tion observed above the threshold fieldHc in Ref. 6 can be
explained by the dependence of the angleu on the field,
which we have previously calculated12 on a computer. Ac-
cording to the calculations, in fieldsH.Hc there occurs a
sharp increase in the angleu with increasing magnetic field,
and atH>(5/4)Hc the angleu already satisfies the condition
p/22u!1. For this reason, as the field is increased furth
one observes a linear dependence of the magnetization o
field.6

The authors thank V. V. Eremenko for his interest in th
study.
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