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The available experimental data on the effect of the superconducting transition on the low-
temperature jumplike deformation of metals and alloys are examined. Different hypotheses as to
the mechanism for this effect are stated and compared with experiment. The experimental
and theoretical papers on the low-temperature jumplike deformation are discussed, and conjectures
as to the mechanism for the effect are set forth. ©2000 American Institute of Physics.
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INTRODUCTION

As the temperature is lowered, the plastic deformation
the majority of metals, alloys, and ionic crystals becom
macroscopically unstable, and jumps in the flow stre
amounting to 10–15% of the stress level, appear on
work-hardening curve.1,2 The experimental data accumulate
over more than forty years reveal some characteristic re
larities in the low-temperature jumplike deformation~LJD!
on such a scale. This type of jumplike~also called steplike,
but perhaps more aptly called jumpy! deformation is not a
consequence of processes of deformation twinning, defor
tion polymorphism, or crack formation, which are also a
companied by jumps in the stress; the LJD arises at a defi
low temperature~below 20–30 K! for each material, and a
the temperature is lowered further the amplitude and
quency of the jumps increase, and the onset of the LJD
shifted toward the yield point~Fig. 1!. In very pure metals
the LJD is not observed even at the lowest measurem
temperatures~0.5 K!, and in impure crystals and alloys th
jumplike deformation is enhanced as the concentrations
the impurities and dopants are increased. Often the jump
deformation on the work-hardening curve begins with is
lated jumps separated by segments of stable deformatio

Because its nature is unclear, the LJD has been the
ject of many experimental and theoretical studies~the major-
ity of which are mentioned in the reviews1,2!. Over the
course of these studies, several hypotheses have bee
vanced as to the nature of the LJD. There are two m
hypotheses: one of them, which we call the thermal hypo
esis, assumes that the cause of the low-temperature jum
a thermomechanical instability, i.e., the onset of brief lo
overheatings, which lead to a sharp drop in the flow stre
Such overheatings can arise at low temperatures on acc
of the localization of the deformation, an increase in the fl
stress, and a lowering of the thermophysical characteris
~specific heat, thermal conductivity!. The main argument in
favor of this interpretation is apparently the detection o
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temperature spike at the jump. This hypothesis, which
comparatively easy to formalize, has been used as the b
for a large number of detailed theoretical studies, in wh
the investigators have determined the criteria of instabil
the existence region, and the dependence of the stressscr and
strain«cr at the onset of the LJD on the temperature and s
of the sample. Let us cite the first papers published by
various authors.3–9 It should be emphasized that the hypot
esis of a thermomechanical instability can be realized only

FIG. 1. Tension curves of 99.5% pure polycrystalline aluminum in the n
mal state. For clarity the curves have been shifted by 100 MPa. The s
rate was 131024 s21.
© 2000 American Institute of Physics
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the case when the plastic deformation is a thermally a
vated process.

The second hypothesis, which was proposed in Ref.
might be called the dislocation hypothesis. It assumes tha
the deformation process the cross slip, which is hindere
low temperatures, is accompanied by the formation of dis
cation pileups, the breakaway of which at high local stres
is synchronized in time and, integrated together, leads
macroscopic jump in the stress. The hypothesis of Ref. 1
supported by considerable indirect experimental evide
~the sensitivity of the LJD to the structure, impurities, a
orientation and the presence of LJD in the case of a pos
temperature sensitivity of the stress!. The existence of dislo-
cation pileups has been confirmed by direct electr
microscope observations. Unfortunately, this hypothesis
not been the subject of theoretical investigations.

To facilitate progress in elucidating the nature and s
cific mechanisms of the LJD it would be desirable to
some new experiments which would permit making co
trolled changes in a single sample subjected to deformat
From this standpoint superconductors are attractive in
they undergo fundamental changes at the transi
temperature—one can strain the same sample in diffe
electronic states. The superconducting transition can
made to occur during straining, including during jumplik
deformation. In this case the flow stress changes by a f
tion of one percent on account of the decrease in the elec
drag on the dislocations, but the thermal conductivity of
sample decreases~or sometimes increases! very substan-
tially. Finding out how the superconducting transition infl
ences the LJD, if at all, will lend preference to one of t
hypotheses. For some time this transparent idea could no
implemented because of technical difficulties: in superc
ductors with relatively highTc ~e.g., in lead and its alloys!
the jumplike deformation arises, as a rule, near;1 K. In
materials in which the jumplike deformation is well deve
oped at 4.2 K~e.g., in aluminum and its alloys! Tc is ex-
tremely low (;1 K). The creation of a new strainin
technique11 has made it possible to broaden the interval
measurements to 0.4 K.

By now there is a sufficient amount of experimental m
terial that one can systematize the data and understand
general regularities in the influence of the superconduc
transition on the LJD. We shall see that the result is alw
qualitatively the same: in the superconducting state the m
roscopic jumplike deformation is either absent or subst
tially less developed than in the normal state. An analysis
the observed regularities and a comparison with the exis
hypotheses is the subject of this review article.

1. FIRST EXPERIMENTS

The question of the influence of the superconduct
transition on the jumplike deformation was first raised,
believe, in Ref. 4, for single crystals of niobium. The expe
ment consisted in the straining of several samples of
same purity and close to the same orientations of the axe
tension, at temperatures belowTc . Some of the sample
were strained entirely in the normal state~the samples were
immersed in a magnetic field above the critical fieldHc of
the superconducting transition!, and others in the supercon
i-
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ducting state. At 2.17 K the shape of the tension curves
fered noticeably~see Fig. 2!, and the curves with a jumplike
deformation had different values of the shear stresstc at the
start of the jumplike deformation. In theN state the stress
jumps started earlier (tcN5165 MPa) than in theS state
(tcS5208 MPa). When the same samples were found in
S state the jumplike deformation was not observed at all. T
result obtained at 4.2 K turned out to be less definite, si
the difference was not large. The authors stated~no graphs or
numbers were given! that at 4.2 K the value oftcS was
slightly lower thantcN , i.e., the effect was the opposite. Th
reliability of the conclusions was lowered by the fact that t
experiments were done on different samples, which diffe
in the orientations of the axes of tension. In measurement
the same samples but with a change of state in the cours
the straining, more definite results were obtained in Ref.
for lead and its alloys. In the normal state at tensions near
failure the strain occurred in jumps~Fig. 3!. The supercon-
ducting transition leads either to vanishing of the jumps or
a substantial decrease in their amplitudes@Fig. 3b#. However,
in the investigated temperature interval~down to 1.65 K! the
jumplike deformation was not always observed, and it of
took place beyond the boundary of uniform elongation.

Another of the first papers was Ref. 13, in which a m
croscopic jumplike deformation was observed, with an a
plitude of the jumps that was;0.01% of the flow stresst.
The effect of the superconducting transition turned out to
opposite to that which arose under conditions of macrosco
jumplike deformation. This result is analyzed in Sec. 4, a
it is shown that the observed regularities are evidence
these are a different kind of jump. Thus for elucidating t
effect of the superconducting transition on the jumplike d
formation, one generally needs systematic detailed stu
for T,1 K.

2. EXPERIMENTAL TECHNIQUE

The objects of study were superconductors in which
well-developed jumplike deformation was observed at
lium temperatures. The investigated materials included p

FIG. 2. Tension curves of niobium single crystals with nearly the sa
orientations of the axes of tension in different states;T52.17 K,
«̇,1024 s21 ~Ref. 4!.
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metals~Al, Pb, In!, alloys ~In–Pb, Pb–In, Al–Mg, Al–Mn,
Al–Li, and Sn–Cd!, and a composite superconductor Nb
Cu. Both single-crystal and polycrystalline samples w
studied under conditions of tension and compression wi
constant strain rate«̇51024– 1025 s21. The majority of the
experiments were done in the interval 4.2–0.5 K on a s
cially built apparatus11 with a three-step system of coolin
with the use of liquid nitrogen,4He, and3He. A detailed
description of the apparatus and the experimental proce
can be found in Ref. 14. The normal state of the sam
below Tc was brought about by applying a magnetic fie
above the critical value, and the transition of the sample fr
theS to theN state and back during the course of the stra
ing was brought about by switching the magnetic field
and off.

3. EXPERIMENTAL RESULTS

3.1. Pure metals

One of the most convenient metals for investigating
LJD is aluminum, which was the first object of detailed stu
of the effect of the superconducting transition on the LJ
Figure 4 shows a portion of the work-hardening curve
99.5% pure polycrystalline aluminum in a medium of liqu
He-3 atT50.5 K and an enlargement of an element of th
curve. The notationsN and↑ correspond to the times whe
the magnetic fieldH>Hc is switched on, andS and ↓ to
when it was switched off. It is seen that initially a jumplik
deformation arises only in the normal state, and the jum
vanish completely upon the transition to the superconduc
state; the increase in the flow stress due to the transitio

FIG. 3. Portions of the tension curves for high-purity lead~99.9995% Pb!
and the alloys Pb–13 at.% In~a! and Pb–0.85 at.% In~b! with multiple SN
andNS transitions;«̇5731024 s21, T51.6– 4.2 K~Ref. 12!.
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the sample to the normal state,DsNS, is much smaller than
the drop in the load at the jump, and a repeated breakdow
the load can occur at a lower stress than in the supercond
ing state prior to the onset of the jumplike deformation. T
jumps in the superconducting state appeared at stresses
the ultimate strength of the sample, the breakdown of
load occurred at stresses larger than at the onset of the ju
in the normal state. This sensitivity of the character of t
plastic flow to the electronic state was also observed
single-crystal aluminum~Fig. 5!. The dependence of th
character of the plastic flow on the electronic state of
sample shows up very clearly in experiments on the de
mation of the same samples at the same temperature b
different states. Fig. 6 also shows data of this kind for 99.
pure polycrystalline aluminum, at 0.8 K in the normal~3!
and superconducting~s! states. One notices two features:!
the number of jumps in theN state is much greater than th
number in theS state; b! the work-hardening curve in theN
state lies somewhat lower than the curve in theS state. The
latter feature is apparently not due to the presence of abs
of jumplike deformation but is due~as special studies
showed! to a large coefficient of work hardening in the s
perconducting states. From the curves obtained at diffe
temperatures, the temperature dependence of the numb
jumps n in the N and S states was determined~Fig. 7!. As

FIG. 4. Curve of tension of 99.5% pure polycrystalline aluminum w
multiple changes of state~↑ indicates the times at which a magnetic fie
H.Hc was switched on, and↓ the times at which it was switched off!, «̇
51.131024 s21, T50.5 K ~Ref. 15!.

FIG. 5. Portions of the tension curve of 99.5% pure aluminum single c
tals with multipleSN andNS transitions~↑ indicates the times of transition
to the N state, and↓ the transitions to theS states!; «̇51.131024 s21, T
50.5 K.
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the temperature is lowered, the number of jumps in theN
state increases sharply, while the number of jumps in thS
state is almost an order of magnitude smaller and depe
very weakly on temperature. We note in passing that cha
ing the cooling medium~replacing the He-4 by He-3, which
differs strongly in its thermal properties! had practically no
effect on the number of jumps.

Studies done on lead12,13,17down to 0.5 K revealed the
presence of jumplike deformation on two scales. The mac
scopic jumplike deformation, which increases monotonica
as the temperature is lowered, turned out to be extrem
sensitive to the electronic state of the sample~Fig. 8!. In
highly pure~99.997%! polycrystalline lead the appearance
macroscopic jumps was observed below 1 K. As in alum
num, the LJD arises only in theN state. As the strain in-
creases, the amplitude of the jumps increases and rea
DsNS in order of magnitude, whereas the jumps in Al a
always considerably larger thanDsNS ~see Fig. 4!. The am-
plitude of the load jumps in lead is an order of magnitu
smaller~in absolute value! than in aluminum. Special exper
ments showed that the sensitivity of the LJD of lead to
electronic state does not depend on the type of stress~tension
or compression! and is independent of the strain rate in t
investigated interval 131025– 131024 s21. The micro-

FIG. 6. Tension curves of 99.5% pure polycrystalline aluminum, obtai
for straining entirely in theN ~3! or S ~s! state;T50.8 K ~Ref. 15!.

FIG. 7. Temperature dependence of the number of jumps in theN ~3,�!
and S ~s! states;3,s—experiments in liquid He-3;�—in liquid He-4
~Ref. 15!.
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scopic jumplike deformation, its regularities, and a disc
sion of the possible mechanisms are the subject of Sec.

Indium single crystals have also been investigated
detail.18 The axis of compression was chosen midway b
tween the@100# and @110# directions to eliminate deforma
tion twinning. At T,1.7 K and«.30% the deformation is
jumplike. The character of the LJD depends on the degre
strain and the electronic state of the sample. The first jum
appear in theN state~Fig. 9!. Their frequency increases a
the strain increases. At a certain degree of strain, individ
jumps begin to appear in theS state as well. These are dis
tinguished by large segments of monotonic deformation~not
shown in the figure!. At a certain stage the deformation
jumplike in both theN andS states, but the amplitude of th

d

FIG. 8. Portions of the tension curves forT50.5 K ~a! and compression
curves~Ref. 17! at T50.48 K ~b! for 99.9997% pure polycrystalline lead in
the region of the onset of the jumplike deformation, with multipleNS and
SN transitions,«̇51024 s21.

FIG. 9. Portions of the compression curve for 99.999% pure indium sin
crystals in the region of the start of the jumplike deformation~a! and in the
region of intense jumplike deformation~b!; ↑ indicates the times at which
the magnetic field was switched on~N state!, and↓ the times at which it was
switched off~S state!; «̇5231025 s21, T50.48 K ~Ref. 18!.
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jumps in theN state is approximately 2.5 times larger. T
lower level of the load jump does not depend on the state
the sample.

3.2. Alloys

The first measurements were made on alloys of alu
num with magnesium~Al–1.4 at.% Mg; Al–1.85 at.% Mg!
and manganese~Al–1.23 at.% Mn!.19 At low temperatures
these alloys exhibit a well-developed jumplike deformatio
which for T,1 K is occurs togetherr with superconductivit
Figure 10 shows parts of the tension curve of polycrystall
samples of the alloy Al–1.85 at.% Mg, corresponding to d
ferent degrees of strain, with the state of the sample chan
repeatedly in the process. It is clearly seen that at the sta
the straining the jumps arises only in theN state, and the
jumps vanish completely when the sample is put into thS
state. As the strain increases, the jumps begin to appe
the S state as well. Their amplitude and frequency incre
with increasing strain, after a certain stage reaching the v
and frequency observed in theN state. Typically the ampli-
tude of the first jumps in theS state is considerably greate
~8.9 MPa, Al–1.4 at.% Mg! than the amplitude of the firs
jumps in theN states. The results of a study of these alloys
relatively small strains turn out to be qualitatively similar
those for experiments with pure metals, and at large str
the sensitivity to theNS transition vanishes; this is differen
from the typical behavior for pure metals. This difference
apparently due to heating of the sample toTc in the case of
alloys, in which the flow stresses are substantially larger,
at the comparatively low cooling power of the apparat
;3 mW,14 can lead to overheating. If it is assumed that up
90% of the energy expended on plastic deformation is
leased in the form of heat, then in an Al sample with dime
sions of 153331 mm at a strain rate of 1024 s21 near the
yield stress, 16 MPa, the rate of heat release is 0.2 mW,
at the ultimate strength, equal to 290 MPa, it is almost

FIG. 10. Portions of the tension curve for polycrystalline Al–1.85 at.% M
when the electronic state of the sample was changed in the course o
straining;«̇51.131024 s21, T50.48 K ~Ref. 19!.
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mW. In polycrystalline samples of the alloy Al–1.8 at.% M
the rate of heat release increases to 1.1 and 5.1 mW, res
tively, starting to exceed the cooling capacity of the appa
tus. Because of this growth of the heat release and the t
mal spikes, at the time of the jumps there can be a very sl
heating~0.5–0.6 K! which is nevertheless capable of causi
a transition of the sample to the normal state. The dep
dence of the character of the plastic flow on the electro
state is clearly seen in experiments on the same sample a
same temperature but in different states~see Table I!. At 0.5
K in the alloy Al–1.4 at.% Mg one observes 430 jumps
theN state and 333 jumps in theS state; in Al–1.8 at.% Mg
there are 453 jumps in theN state and 322 in theS state, and
in Al–1.23 at.% Mn there are 303 and 245 jumps, resp
tively. The stresses and strains at the first jump show sim
differences. At the same time, the maximum homogene
strain remains practically the same.

A detailed investigation of the LJD was done
quenched polycrystalline samples of the binary alloys Al–
at 3.8, 7.0, and 10.4 at.% Li. The dimensions of the pa
subjected to tensile straining were 1533.030.8 mm, and the
average grain size was 0.6 mm. The low-temperature ju
like deformation arises in the interval 10–4.2 K. Its ma
regularities are as follows. With increasing Li concentrati
it begins at lower strains, and the frequency and amplitud
the jumps increase. For example, at 4.2 K the jumps in
alloy Al–3.8 at.% Li begin after a 35% strain, in Al–7.0 at.%
Li they begin after 25% strain, and in Al–10.4 at.% Li the
begin after a 21% strain. Lowering the temperature has
analogous effect: in the alloy Al–3.8 at.% Li at a tempe
ture of 4.2 K the jumps begin after a 35% strain, at 2.2
they begin after a 16% strain, and at 0.5 K they begin afte
10% strain. At a fixed temperature and impurity concent
tion the amplitude and frequency of the jumps increa
gradually with increasing strain, and the intervals betwe
jumps become shorter. Figure 11 shows the dependenc
the amplitudeds of the jump on the degree of strain« in the
alloy Al–3.8 at.% Li at several temperatures. As the te

the

TABLE I. Parameters of the jumplike deformation of polycrystalline alum
num alloys in the normal and superconducting states.

Alloy T, K
sc ,
MPa «c , % n

4.2 366 37.8 9
2.5 256 17.0 118

Al-1.4 at. % Mg
0.5 ~N-state! 185 9.2 430
4.2 ~S-state! 252 10.4 333

4.2 366 26.6 19
2.5 261 12.8 192

Al-1.85 at. % Mg
0.5 ~N-state! 164 4.0 456
4.2 ~S-state! 200 8.1 322

4.2 – – –
2.5 290 9.7 25

Al-1.23 at. % Mg
0.5 ~N-state! 172 2.8 303
4.2 ~S-state! 200 4.0 245

Note: sC is the stress at which the jumplike deformation begins~the first
jump!; «c is the strain at the start of the jumplike deformation~first jump!;
n is the total number of jumps.
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perature decreases there is a characteristic decrease i
rate of growth of the amplitude of the jumps with increasi
strain, and therefore the maximum amplitudes~at equal
strains! are observed at 4.2 K. The data in Fig. 11 we
obtained for a sample strained in theN state. Figures 12 and
13 show the influence of the electronic state of the sample
the jumplike deformation. Upon the transition of the sam
to the S state the LJD are absent or markedly diminish
especially at low strains. In theN state the jumps begin a
lower degrees of strain« than in theS state. Starting from a
certain strain, theNS transition is not reflected in the cha
acter of the plastic flow, as is seen in Fig. 13, which sho
the curves of the amplitudesds(«) of the jumps for samples
in theS state. This is probably due to macroscopic heating
the sample, bringing its temperature aboveTc , i.e., a sample
strained at 0.5 and 0.9 K is heated toTc'1.2 K, i.e., by only
a fraction of a degree. It is possible that this heating is du
the brief temperature spikes~accompanying the breakdow
of the load!, which in Al–Li at 7 K is 5–8 K ~Ref. 21!. The

FIG. 11. Dependence of the amplitudeds of the jumps on the degree o
strain« at various temperatures in samples of the alloy Al–3.8 at.% Li in
normal state~Ref. 20!.
the
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results mentioned above pertain to pure metals and al
with the fcc structure. In those materials the plastic deform
tion is controlled by the interaction of dislocations with loc
obstacles.

In bcc and hcp metals and alloys the low-temperat
jumplike deformation has been much less studied, since
those materials deformation twinning often develops as
temperature is lowered, and this is reflected in specific jum
on the work-hardening curve. For studying the LJD in cry
tals in which the plastic deformation is governed by the m
tion of dislocations through Peierls barriers, specially o
ented single crystals of tin and Sn–Cd alloys turn out to
extremely convenient objects, and they were investigate
detail in Ref. 22. Single crystals of Sn–Cd alloys with 0.0
0.04, 0.21, and 0.53 at.% Cd were studied. These conce
tions lie in the region of the solid solution. The dimensio
of the strained part of the sample were 1.534.5325 mm.
The orientation of the axis of tension corresponded to
^110& direction, which was favorable for slip in the syste
~100!^010&. It is important that for this orientation the plas
ticity is preserved as the temperature is lowered, and in
way the bcc-crystal analog, chosen from the standpoin
the deformation mechanism, differs from bcc metals and
loys, which, as a rule, become brittle at low temperatur
Highly pure samples ofb-tin ~99.9995% Sn! maintain a
smooth plastic flow all the way down to 0.5 K~Fig. 14!.
Doping of the tin with cadmium increases the flow stress a
the yield stress markedly, and, in addition, below 4.2 K
gives rise to jumplike deformation. The influence of the co
centration on the LJD is manifested most clearly at the lo
est temperature of the experiment, 0.5 K~Fig. 14!. The lower
the temperature and the higher the impurity concentration
the alloy, the lower the degree of strain at which the fi
jumps appear. The frequency of the jumps in the alloy S
0.01 at.% Cd increases with the strain, so that the segm
of smooth flow become progressively shorter, especially
low 1 K. For alloys with a large concentration of Cd~0.04
and 0.21 at.%!, in the N state below 1 K the LJD begins
directly at the yield stress and immediately takes on a s
tooth character. As the temperature is lowered, the LJD
the alloys develops to a higher degree.

e

at
FIG. 12. Portions of the tension curvess(«) illustrating the effect of theNS transition on the jumplike deformation of polycrystalline Al–3.8 at.% Li
different degrees of strain;«̇51.131024 s21, T50.5 K ~Ref. 20!.
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In the alloy Sn–0.01 at.% Cd the individual jumps in t
stress appear already atT53 K, but only at a strain rate o
«̇56.631025 s21. At lower temperatures the value of th
strain corresponding to the first jump decreases from 6–
to 3–4%. The number of jumps on the work-hardening cu
increases from 2–3 atT53 K to 10–15 at 0.5 K. For the
alloy Sn–0.04 at.% Cd isolated jumps are observed alre
at
4.2 K after a plastic deformation of 1–2%. As the tempe
ture is lowered the number of these jumps increases, and
T,0.8 K they start from the yield point. The alloy Sn–0.2
at.% Cd behaves in a similar way, but the LJD in it aris
near the yield point already at 1.4 K. The influence of te
perature on the character of the LJD for this alloy is shown
Fig. 15. In the alloy Sn–0.21 at.% Cd, besides the regul
ties of the LJD common to all the alloys studied, there
two features not shared by the other alloys. First, at 0.5 K
frequency of the jumps decreases with increasing st
rather than increasing, as is usually the case, and segmen
smooth flow appear. Second, besides the stress jumps
an amplitude of the order of 1–2 MPa, which are identifi
as macroscopic, there are jumps with an amplitude an o

FIG. 13. Dependence of the amplitudeds of the jumps on the strain« in the
N ~filled symbols! andS ~unfilled symbols! states in polycrystalline Al–Li
alloys ~Ref. 20!.

FIG. 14. Tension curves for single crystals of pure tin and alloys of tin w
cadmium. During the straining the electronic state of the samples
changed many times;«̇56.631024 s21, T50.5 K ~Ref. 22!.
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of magnitude smaller~0.1 MPa! at 2.9 and 0.5 K. This mi-
croscopic jumplike deformation will be discussed separat
in Sec. 4. The transition of the samples of the Sn–Cd all
from the normal to the superconducting state under con
tions of the LJD leads to substantial changes in the chara
of the deformation~Fig. 14 and 15!. This influence is sub-
stantially correlated with the effect of such factors as
degree of strain, the impurity concentration, and the temp
ture. For the developed LJD, starting from the yield po
~0.5 K!, e.g., in the alloy Sn–0.53 at.% Cd the saw-too
character of the deformation is preserved at theNS transi-
tion, but the amplitude of the jumps decreases considera
~see Fig. 14!.

The most complex and multifaceted influence of theNS
transition on the character of the LJD is realized in allo
with an intermediate cadmium concentration. From t
curves for the alloy Sn–0.21 at.% Cd in Figs. 14 and 15,
can discern the following experimental regularities:

a! Near the yield point the LJD of the sample in th
normal state goes over to a smooth flow upon transition
the superconducting state.

b! As the strain is increased, jumps appear in theS state
also, but with a lower amplitude.

c! For the alloys with 0.04 and 0.21 at.% Cd the fr
quency of the jumps decreases with increasing strain in thN
state, and extended segments of smooth flow appear; a
superconducting transition the character of the jumplike
formation changes substantially.

In the alloy with 0.04 at.% Cd the jumps practical
vanish in theS state, and in the alloy with 0.21 at.% Cd the
amplitude decreases substantially. Since these regular
were observed under conditions of multiple changes of
state of the sample, one wonders to what extent the LJD
influenced by the conditions of such an experiment. W
therefore did experiments in which each of two samples w
strained at 0.5 K in one of the states~Fig. 16!. It is seen that
all of the regularities listed above are preserved.
s

FIG. 15. Tension curves for single crystals of the alloy Sn–0.21 at.% C
various temperatures in the normal state. The experiments at 4.2
2.9 K were done in gaseous He-3, and those at 1.4 and 0.5 K in liquid H
Individual parts of the curves are shown in enlarged scale~Ref. 22!.
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3.3. Composite superconductor

The effect of the superconducting transition on the ju
plike deformation has also been noted in the tensile strain
of multifiber copper–niobium composites obtain
in situ.23 The objects of study were Cu–40 wt.% Nb com
posites with a macrostructure in the form of a copper s
armored by strips of niobium several millimeters long a
with transverse dimensions of 3033 mm. The second criti-
cal field of this composite was;9 kOe~0.9 T!. Accordingly,
in the process of straining at a rate of 1.331025 s21 the
superconductivity was destroyed at a field of 1.2 T. At 4.2
the work-hardening curve exhibits jumplike deformation
the stage where the deformation of the niobium begins. T
deformation in annealed samples turned out to be sensitiv
the electronic state of the sample~Fig. 17!. Whereas in theS
state the individual jumps alternate with extended segm
of stable deformation, in theN state they follow continu-
ously one after the other. Evidently this result can be att
uted to the influence of theNS transition on the LJD of
niobium.

FIG. 16. Tension curves for samples of the alloy Sn–0.21 at.% Cd
0.5 K in theN andS states~Ref. 22!.

FIG. 17. Tension curve of a multifiber superconducting composite Cu
wt.% Nb obtainedin situ. The electronic state of the sample was changed
the course of the straining;«̇51.331025 s21, T54.2 K ~Ref. 23!.
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4. MICROSCOPIC JUMPLIKE DEFORMATION

Before generalizing the results presented, we must c
sider one more phenomenon occurring at low temperatu
Besides the low-temperature jumplike deformation on
macroscopic scale~the amplitude of which can reach tens
percent of the level of the flow stress!, which has been the
subject of numerous studies and the foregoing analysis, s
experiments have detected a jumplike deformation of s
stantially smaller scale~of the order of 0.01% of the level o
the flow stress!. The first mention of microscopic jumps i
found in Ref. 13. A microscopic jumplike deformation wa
observed in the compression of single-crystal and polycr
talline samples of Pb and Pb–In alloys at a temperature
low 3–3.5 K. The detected jumps in the load appeared a
a preliminary loading by several percent, their depth incre
ing with the strain. Upon the destruction of superconduct
ity the jumps vanished, and the strain curve became smo
The microscopic-scale jumplike deformation was observ
most clearly in the straining of pure lead~Fig. 18!. The rela-
tive jump ds/s was several hundredths of a percent. O

at

0

FIG. 18. Appearance of microscopic jumplike deformationt in single-
crystal lead in the superconducting state atT54.2 K, t512.7 MPa ~a!;
T52.6 K, t514.3 MPa ~b!; T51.9 K, t515.2 MPa ~c!. The indicated
stresses refer to theN state immediately prior to the superconducting tra
sition ~Ref. 24!.
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doping of the lead with indium,ds decreased, and at an I
concentration above 5 at.% the jumplike deformation w
practically absent. The depth of the jumps and their f
quency depend on temperature in a complicated way, ha
a maximum atT'2.5 K.

The regularities mentioned above differ substantia
from those which obtain on the macroscopic scale. We re
that the macroscopic jumps become stronger as the temp
ture is lowered, at least to 0.5 K, while the microscop
jumps have a nonmonotonic temperature dependence, w
in lead starts at;3 K and goes to zero at;1 K. The mac-
roscopic jumplike deformation is enhanced as the concen
tion of the dopant increases, while the microscopic vers
becomes weaker, and in Pb–In it vanishes at 5 at.% In. T
result was confirmed in Refs. 17 and 24 for single-crys
and polycrystalline lead. In Ref. 17, thanks to the possibi
of expanding the temperature interval to 0.4 K, the jumps
both the macro- and microscopic scales were able to be
served. In a finding of fundamental importance, the influe
of the superconducting transition on the jumplike deform
tions on the two scales was different: the superconduc
transition led to weakening~or vanishing! of the macro-
scopic jumplike deformation, while the microscopic jum
like deformation appeared only in theS state.

All of these properties of the microscopic LJD sugge
that this is a different type of jump which is governed by
different mechanism. Theoretical estimates and the ana
presented in Ref. 24 as to whether the criteria are met for
or another mechanism permit the conclusion that the mic
scopic jumps are a manifestation of inertial effects. Thus
microscopic jumplike deformation must be treated as a s
cial phenomenon that does not have relevance to the r
larities described in the previous Section. In a study of
jumplike deformation in the alloys Sn–Cd, in addition to t
macroscopic jumps described above, some microsc
breakdown of the load were also detected. They we obse
only in the alloy 0.21 at.% Cd at temperatures of 0.5 a
2.9 K; the amplitude of the microjumps is practically ind
pendent of the strain and temperature. Studies of the mi
scopic LJD in the alloy Sn–0.21 at.% Cd showed that
2.9 K it is practically insensitive to theNS transition. At 0.5
K such measurements in pure form are difficult to make
account of the developed macroscopic LJD. The only th
that has been established is that microjumps are prese
low strains in theS state and are absent in theN state at large
strains~see Fig. 15!.

5. HYPOTHESES AS TO THE EFFECT OF THE
SUPERCONDUCTING TRANSITION ON THE JUMPLIKE
DEFORMATION

In the first experimental study,4 in which the LJD was
investigated in niobium single crystals in the normal a
superconducting states, the differences were linked with
value of the overheating of the sample during the straini
Taking into account the changes in the thermophysical c
acteristics at theNS transition, the authors observed that
2.17 K the overheating in theN state,DT0

N , is higher than
the overheating in theS state,DT0

N , whereas at 4.2 K it was
the other way around,DT0

N<DT0
S , which agreed qualita-

tively with the experimental findings. It followed, howeve
s
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that the character of the influence of the superconduc
transition on the jumplike deformation is specific to ea
particular case~material, temperature, thermophysical cha
acteristics! and there cannot be any general regularities.

In a theoretical paper25 a criterion of instability of the
thermally activated plastic deformation and thermal cond
tivity was obtained with allowance for the geometry of th
sample and the heat exchange with the coolant. Anal
showed that steady-state uniform straining can occur onl
stresses below a certain critical stresstc , which has the form

tc5
lkT0

2

«̇wl2
h, ~1!

wherel is the thermal conductivity of the sample,k is Boltz-
mann’s constant,T0 is the temperature of the coolant,«̇ is
the rate of plastic deformation,w(t) is the activation energy
of the process,l is the dimension of the sample~the radius in
the case of a cylinder, or the thickness in the case of a sl!,
and h is a parameter governing the heat exchange with
surrounding medium.

The expression fortc given above corresponds to th
start of the jumplike deformation~the first jump!. The
mechanism responsible for the reproducibility of the jum
along the strain curve must include the dependence ofW on
the degree of strain~stress!. Therefore, the development o
avalanches and the calculation of the size of the stress j
are more complicated problems which were not conside
in Ref. 25, where the possible changes in the instability at
superconducting transition were indicated on the basis o
analysis of Eq.~1!. At the NS transition the thermal conduc
tivity l and the factor«̇0 change sharply on account of th
change in the electron drag coefficient for dislocations,Be ,
since «̇0;1/Be , and Be

N.Be
S always. In most caseslS

,lN ~although there are a few alloys in whichlS.lN ; see
Ref. 26!. If these relationships are used in expression~1!, it
turns out that, as a rule,tc

S,tc
N , i.e., upon the transition to

the superconducting state the jumplike deformation of
sample should start at lower stresses than in the normal s
However, later experiments~see Sec. 3! showed that this is
not what happens. The macroscopic jumplike deformation
the superconducting state becomes weaker or vanishes
tirely. At large strains in high-strength materials the LJD
insensitive to the superconducting transition; this is app
ently because of the small heating and not a consequenc
the physics of the phenomenon.

The disagreement between the theory based on l
temperature instability of the deformation and the expe
mental data stimulated the practically simultaneous publ
tion in 1986 of several theoretical papers23,27,28 devoted to
investigation of the influence of the superconducting tran
tion on the jumplike deformation. Essentially those pap
advanced the same hypothesis: along with the the ther
physical characteristics, the characteristics of the plastic
in particular, the temperature dependences of the y
strength and flow stress, can change at the supercondu
transition. Qualitative arguments are presented in Ref. 23
the thermally activated plastic deformation is described
the Arrhenius law,
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«̇5 «̇0 expF2
DH~s* !

kT G , ~2!

where «̇ is the rate of plastic deformation,«̇0 is the pre-
exponential factor,s* is the effective stress, andT is the
temperature, at a constant effective voltage the tempera
sensitivity of the rate of plastic deformation can be written
general as

] ln «̇

]T
5

] ln «̇

]T
1

DH

kT2 . ~3!

In the normal state«̇0 is practically independent of tempera
ture and, consequently,] ln «̇/]T'DH/(kT2). Regardless of
what process is limiting the rate of heat removal and
whether or not the localization of the slip is taken into a
count, the criterion for the onset of jumplike deformation d
to thermomechanical instability will have the form

A~DH/kT2!.1. ~4!

The positive factorA contains the flow stress, strain rate, a
the geometric and thermophysical parameters of the sam
which control the rate of heat removal. The presence of
factor DH/kT2 in criterion ~4! is due to the influence o
temperature on the rate of plastic deformation. In the sup
conducting state the temperature dependence of«̇ cannot be
neglected, since«̇0;1/B ~Ref. 29; B is the dynamic drag
constant for dislocations, including the electronic comp
nent!, i.e., the first term in expression~3! can be greater in
absolute value than the second term. In that case the crite
of instability in the superconducting state must be written
the more general form

A
] ln «̇

]T
5AS ] ln «̇0

]T
1

DH

kT2D.1. ~5!

In the superconducting state the large negative te
] ln «̇0 /]T cannot be neglected, and therefore the quantity
brackets in ~5! decreases considerably or even becom
negative, and then the criterion of thermomechanical in
bility is not fulfilled. Thus in the superconducting state it
in principle possible to have a situation in which the LJ
will vanish. Since specific estimates for the particular expe
mental conditions and materials were not made in Ref.
the situation under real conditions remained unclear.

A detailed investigation with an attempt at a quantitat
analysis was given in Ref. 27. The initial formulation of th
problem was the same as in Ref. 23, but it included a ca
lation of the stress for the onset of instability,tc . The tem-
perature dependences oftc

N and tc
S were constructed for

crystals that are fairly pure~Fig. 19!. The relations between
the physical parameterslS andlN and the parameters cha
acterizing the interaction of dislocations with barriers,E0

andE0* '5(b3GTc)
1/2<1 eV ~b is the Burgers vector,G is

the shear modulus, andTc is the superconducting transitio
temperature!, determine whether there are two, one, or
crossing points of the curvestc

N andtc
S for T,Tc . For ex-

ample, for lead and aluminum the characteristic interact
energy of dislocations with barriers has valuesE0!1 eV,
andlS,lN . Therefore, the situation shown fortc

S by curve
4 in Fig. 19 should be realized. This means that there e
temperatures~nearTc andTb , (Tc2Tb)Tc

21,0.4) at which
re

f
-

le,
e

r-

-

on

m
n
s

a-

i-
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tc
S.tc

N , and an intermediate temperature interval in whi
tc

S,tc
N . Thus, as the temperature is lowered, one sho

observe different influences of theNS transition on the jum-
plike deformation. In the case of less pure crystals, iflS

.lN , which apparently does not correspond to situation
countered in reality, one hastc

S.tc
N always. Still less pure

crystals~dilute alloys! and alloys were not considered.
A theoretical study of the influence of the supercondu

ing transition on the LJD from a quantitative standpoint c
be found in Refs. 28 and 29. In Ref. 28 the influence of
superconducting transition on the stability of plastic def
mation at low temperatures was analyzed in a model ba
on thermal instability. There it was conjectured for the fi
time that the temperature dependence of the flow stress
change in theS state, in addition to the changes in the the
mophysical characteristics of the material. A previously o
tained criterion for the onset of thermal instability of th
plastic deformation was used to derive general relations
ing the temperature–rate region in which such instability
realized in theN and S states. The relations obtained we
used to construct the existence regions in various state
some particular metals—aluminum, niobium, and lead. T
region of instability of the deformation of Al is shown in Fig
20. It follows from this figure that in theS state at a given
temperature the LJD is is manifested over a narrower
interval, and for rates in the interval 531024– 1026 s21 the
jumplike deformation should not depend on the electro
state of the sample. In niobium the existence region of
LJD in the N state lies inside its existence region in theS
state. This means that in terms of the temperature and s
rate the LJD is more developed in theS state. There exists a
range of temperatures (,0.9 K) and strain rates (5
31024– 1025 s21) in which the LJD does not depend on th
state.

Thus, if it is assumed that all the important changes
the superconducting transition are due to the specific hea
the strained sample, the influence of theNS transition can

FIG. 19. Critical stresstc for the onset of unstable plastic flow for crysta
in the normaltc

N ~1! and superconductingtc
S ~2–5! states as a function of the

temperatureT0 of the medium:lS,lN , «0.«0* ~2!; lS.lN , «0.«0* ~3!;
lS,lN , «<«0* ~4!; lS<lN , «0,«0* or lS<lN , «0.«0* ~5! ~Ref. 27!.
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vary greatly, and there might be no sensitivity to theNS
transition. Later, in Ref. 30, quantitative calculations we
done in which the possible change in the sign of]t/]T near
the temperature of the superconducting transition was ta
into account. The initial assumptions were as follows:
both the normal and superconducting states throughout
entire temperature interval the plastic deformation is o
thermally activated character, with]t/]T,0; starting atTc ,
the sign of]t/]T changes because of the decrease in
flow stress at the superconducting transition due to the
crease of the electron drag on the dislocations.1,2 Quantita-
tive estimates of the value ofDtNS have been made on th
basis of the fluctuational29 and inertial31 theories. These were
used in Ref. 30 in a determination of the temperature dep
dence of the flow stress in theS state~see Fig. 21!. It is seen
that in the case of the fluctuational mechanism the value
]t* /]T decreases belowTc , but the sign does not change.
the framework of the inertial mechanism there is a segm
near Tc with ]t* /]T.0. The functionst(T) obtained in
Ref. 30 can then be used to obtain the temperature bo
aries of the region of thermal instability of the deformatio
In the framework of the fluctuation mechanism it is fou
that theSN transition has practically no effect on the therm
instability, whereas in the inertial model there is a tempe
ture interval (0.54Tc,T,Tc) in which the deformation in
theS state, unlike the case of the normal state, is stable. T
is a consequence of the existence of a positive value
]t/]T at T,Tc . From the behavior of the boundary tem
peraturesTN andTS as functions of the coolant temperatu
for this case one can determine the interval of strain rates«̇N

and «̇S in which the deformation will be unstable in theN
and S states, i.e., one can construct the existence reg
illustrated in Fig. 22, which pertain to the situation wh
Tc50.5Tk is lower than the maximum temperatureT0k

FIG. 20. Calculated temperature–rate existence regions of the jumplike
formation of Al in the N and S states;28 m,n,s—experimental points;
«̇b50.1 s21, Tk56.6 K ~Ref. 28!.
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50.64Tk above which the deformation in the normal sta
remains stable for any strain rates and temperatu
~Tk5cK /ge , where ge is the electronic heat capacity an
ck;tST /Kx!, whereK is the stiffness of the machine,x is
the coefficient of work hardening, andST52(]t* /]T) «̇ .
Such a situation is characteristic for superconductors w
low Tc and also for high-strength materials with highTc

~e.g., Nb!. For metals with highTc but low strength~e.g., Pb!
it can turn out thatTk,Tc . In that case a calculation show
that, regardless of the theoretical mechanism of the ef
(DtNS), the region of thermomechanical instability in theN
state lies inside the corresponding region for theS state, i.e.,
the NS transition will give rise to the appearance of jump
Thus the existing theoretical calculations in the model
thermomechanical instability admit both situations in whi

e-

FIG. 21. Temperature dependence of the flow stress for a thermally
vated character of the plastic deformation in the normal~1! and supercon-
ducting ~2,3! states of a sample. Curve2 was constructed on the basis of
calculation ofDSN according to the fluctuational theory; curve3 was calcu-
lated according to the inertial theory~Ref. 30!.

FIG. 22. Calculated temperature–rate regions for the onset of thermal in
bility of the deformation in theN ~1! and S ~2,3! states of a crystal. The
dashed curve denotes the boundary of the existence region of theS state
~Ref. 30!.
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theNS transition leads to an enhanced jumplike deformat
and situations where the effect vanishes. Under certain c
ditions the LJD should be insensitive to the superconduc
transition.

The dislocation hypothesis exists in the form of gene
plausibility arguments stated in a discussion of the fi
studies.33 This hypothesis is based on an analysis of a sit
tion that can lead to avalanche multiplication or to the m
tion of dislocations at low temperatures. The hypothesis w
put forth in Ref. 10 and was investigated in detail in t
framework of a theory of stage III of the work-hardenin
curve. The analysis treats the case of a crystal containin
appreciable number of dislocations which is plastically d
formed through cross slip, which is most effective in fcc a
hcp crystals. The process of cross slip of an isolated dislo
tion is preceded by the drawing of a split dislocation into
line. However, the experimentally measured values of
flow stresst are insufficient for the drawing of a split dislo
cation unless it is assumed that the given dislocation is fo
in a planar pileup ofn dislocations. Then the stress acting
the head dislocation is equal tont. On the other hand, the
force per unit length of dislocation needed for drawing
dislocation into a line is equal to (bG&/8p)2g
~b is the Burgers vector,G is the shear modulus, andg is the
energy of a stacking fault!. The cross slip begins whennt
reaches values (&G/4p)2(g/b). Using published data on
g, G, b, andt III ~ast!, we obtain a valuen;25 for copper,
lead, and aluminum. This means that a stress of the orde
G/10–G/20 will arise at the head of the pileup, values clo
to the yield strength under shear. Thus at low temperatu
an additional mechanism of plastic deformation arises, wh
consists in the breaking away of dislocation pileups fro
barriers, whereupon avalanchelike motion and multiplicat
of dislocations occur, which are reflected in the form o
jump in stress on the work-hardening curve.

6. DISCUSSION

The experimental study of the low-temperature mac
scopic jumplike deformation in the normal and superco
ducting states and atNS andSN transitions has shown tha
as a rule, the macroscopic LJD is less developed or ab
altogether in the superconducting state. This sort of effec
the transition to the superconducting state can be regarde
typical. From this standpoint there is a discrepancy betw
the experimental data and the conclusions of the theor
thermomechanical instability in its present form, since t
theory implies that the influence of the superconducting tr
sition can vary, depending on the experimental conditio
~the substance, temperature, strain rate!.

Let us try to understand the reason for the disagreem
between the experimental and theoretical results. Let us
gin by noting that all of the theories of thermomechani
instability rest on the underlying assumption that the th
mally activated character of the plastic deformation is p
served at low temperatures. However, special investigat
done on a series of metals and alloys, including some
exhibit the macroscopic LJD, have shown that the proces
thermally activated plasticity ceases to be effective. Let
illustrate this assertion with the results of a study of Al–
alloys with concentrations of 1, 2, and 3 wt.% Li~3.8, 7.0,
n
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and 10.4 at.% Li, respectively!. The yield stresss0 of these
alloys as a function ofT is presented in Fig. 23. It is impor
tant that in the temperature interval 170–40 K one obser
a strong dependences0(T), characteristic for thermally ac
tivated plasticity, while in the interval 4.2–40 K the value
s0 varies weakly with temperature. Analysis20,32 has shown
that this behavior ofs0 and the temperature dependence
the rate sensitivityDs differ substantially from those for the
case of thermally activated processes. It has been shown34–36

that this is due to the influence of thermoinertial effects
the motion of dislocations at low temperatures. This findi
has been confirmed by detailed studies done on alloys of
with the tin, antimony,37 and bismuth41 without reference to
the jumplike deformation. Moreover, in the region of anom
lous temperature dependence~Fig. 24! the yield stress de-
creases as the temperature is lowered. Special experim
done at 0.5 K and their analysis from the standpoint of
existing theories have shown35–37 that a quantum–inertia
mechanism of dislocation motion is realized below 15 K, t
basic elementary plasticity event of which is the quant
surmounting of an individual impurity atom by a dislocatio

FIG. 23. Temperature dependence of the yield stress for polycrysta
samples of Al–Li alloys with 3.8~d! and 7 ~s! at.% Li; «̇50.1
31024 s21 ~Ref. 32!.

FIG. 24. Temperature dependence of the critical shear stresst0 for Pb–Bi
single crystals of different Bi content in the temperature interval 295–0.5
The axis of tension is close to@110#; «̇51.131024 s21 ~Ref. 41!.
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with a subsequent multiple depinning~unzipping! of the dis-
location owing to the inertial effect.

Thus the underlying assumption of all the theories
thermomechanical instability, viz., that the plastic deform
tion is a thermally activated process all the way down
0.5 K, is doubtful. There are also insufficient grounds
assume that the processes governing the macroscopic
acteristics of the plastic deformation and the macrosco
jumplike deformation are identical. To convince ourselv
that this is the case, let us compare the temperatures at w
the anomalies ofs0(T) or t0(T) are observed with the tem
perature of the onset of the jumplike deformation. These
values are determined very roughly. The data are prese
in Table II. In some cases~aluminum alloys! the tempera-
turesTi at which the anomaly of the yield stress begins
substantially higher than the temperaturesTc at which the
jumplike deformation begins, while in other cases~alloys of
tin with cadmium! the opposite is true: the jumplike defo
mation begins at higher temperatures than the anomaly o
yield stress. In other words, the appearance of a jump
deformation cannot be correlated in temperature with
low-temperature anomaly of the plasticity. In the theories
thermomechanical instability which have been modified
respect to the influence of the superconducting transition
the jumplike deformation it is also assumed that the temp
ture dependence of the yield stress~flow stress! changes sign

TABLE II. Characteristic temperatures of the anomaly of the yield str
and for the start of the jumplike deformation of some materials.

Material Tc , K
Ti , K
@Ref.#

Tcr , K
@Ref.#

Al–3.8 at. % Li
polycrystal

;1.2 34@38# 10–4.2@20#

Al–3.7 at. % Li
polycrystal

-‘‘- 39 @38# 10–4.2@20#

Al–10.4 at. % Li
polycrystal

-‘‘- 50 @20# 10–4.2@20#

Al–0.62 at. % Mg
single crystal

-‘‘- 21 @38# 6–8 @40#

Al–1.5 at. % Mg
single crystal

-‘‘- 27 @38# 6–8 @40#

Al–1.85 at. % Mg
single crystal

-‘‘- 28 @38# 6–8 @40#

Al–3.8 at. % Mg
single crystal

-‘‘- 31 @38# 6–8 @40#

Sn–0.01 at. % Cd
single crystal

;3.72 1.5@22# 3 @22#

Sn–0.04 at. % Cd
single crystal

-‘‘- 1.5 @22# 4.2 @22#

Sn–0.21 at. % Cd
single crystal

-‘‘- 1.0 @22# 4.2 @22#

Pb–99.9995 %
single crystal

;7.2 no anomaly
present

@51#

2.4 polycrystal
99.9995 %@39#

Pb–1 at. % In
single crystal

-‘‘- 12 @51# 1.6 ~0.85 at. % In!
polycrystal@39#

Pb–10 at. % In
single crystal

-‘‘- 4.0 @51# 2.1 ~13 at. % In!
polycrystal@39#

Notes: Ti is the temperature of the start of the anomaly.
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at the superconducting transition, and that this is respons
for the vanishing or weakening of the macroscopic LJD. N
merous and varied experiments have been done to study
influence of the superconducting transition on the yield str
and the flow stress, including experiments to assess the
perature dependences in the normal and supercondu
states. Analysis of the available data shows that the chara
of the temperature dependence of the yield stresst0 in the
superconducting state is related to that observed in the
mal state, and ift0(T) in the N state has an anomalou
character, then it is determined by the position ofTc relative
to the anomaly. If the temperature dependence oft0 down to
the lowest temperatures of measurement corresponds to
mally activated processes and is characterized by a mo
tonic increase oft0 with decreasing temperature, then in th
S state the derivativedt/dT will decrease slightly nearTc ,
and as the temperature is decreased further it becomes
to the value ofdt/dT in the N state. This case has bee
observed in experiments with tantalum42 ~Fig. 25! and with
the alloys Al–1.85 at.% Mg43 and Sn–Cd.44 In the presence
of an anomalous temperature dependence of the yield s
~the critical shear stress for single crystals! the character of
the change int0(T) with temperature at the superconductin
transition can vary. If the anomaly oft0(T) consists in a
weakening of the temperature dependence oft0 in compari-
son with the thermally activated curve or in athermicity
t0 , then in the superconducting state the sign ofdt0 /dT can
change. This case is shown in Fig. 26 for single crystals
Al–0.3 at.% Mg.25 If the anomaly oft0(T) consists in the
fact that the sign ofdt/dT changes in theN state, i.e., the
yield stress decreases with decreasing temperature, the
sign of dt0 /dT does not change upon transition to the s
perconducting state, except in the region aroundTc . A typi-
cal example is shown in Fig. 27 for single crystals of le
alloys.37 Thus it seems unlikely that the vanishing of th
macroscopic LJD is caused by a change in the characte
t0(T).

Summing up the available data, one can conclude
the presence of anomalous temperature dependence int0(T)

s

FIG. 25. Temperature dependence of the critical shear stresst0 for tantalum
single crystals in the normal~solid curves! and superconducting~dashed
curves! states;«̇5231023 s21 ~curve1!, «̇51.131024 s21 ~curve2! ~Ref.
42!.
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is in no way related to the superconducting transition,
though the transition can affect it somewhat. The superc
ducting transition can affectt0(T) in a variety of ways, and
in individual cases can lead to a change in the sign
dt0 /dT. In the framework of the thermomechanical instab
ity theories this means that only in the case of a chang
sign of t0(T) will the superconducting transition affect th
LJD, and this has not been established experimentally. H
ever, the observed regularities in the influence of the su
conducting transition on the macroscopic LJD and also
temperature dependences of the yield stress and its chan
the superconducting transition do not confirm the hypothe
of thermomechanical instability.

The alternative hypothesis for the jumplike deformatio
which attributes the appearance of jumps to the breakawa
dislocation pileups, unfortunately still remains hypothetic
without any theoretical calculations to back it up. Therefo
the comparison of the experimental results with the dyna
dislocation hypothesis can only be done on a qualita
level. Using the current ideas about the motion of dislo
tions in the normal and superconducting states,1,2 one can
explain the influence of the superconducting transition on
LJD as follows. In the superconducting state, as compare
the normal state, because of the undamped nature of
motion the dislocations will overcome a number of obstac

FIG. 26. Yield stressest0N andt0S for single crystals of the alloy Al–0.3
at.% Mg strained by tension at a rate of«̇56.931025 s21, as functions of
temperature. The arrows indicate the critical temperatureTc determined
from measurement of the specific heat and extrapolation ofDtSN to zero
~Ref. 45!.
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on account of inertial effects. Therefore, in theS state the
jumps will begin later and their amplitude will be lower a
the same strain. This process can occur for any characte
t0(T), both in the form of individual jumps and in the form
of a saw-tooth curve. For the process of jumplike deform
tion in the framework of this hypothesis it is not necessa
that t decrease as the temperature is lowered. There is
vincing experimental evidence in favor of the dynamic h
pothesis. The best evidence comes from experiments on
observation of electrical effects in the low-temperature
formation. These electrical effects are a consequence of
interaction of dislocations and conduction electrons and a
on account of the carrying of electrons by rapidly movi
dislocations. This effect was predicted theoretically in R
46 and observed experimentally in Ref. 47. Then, by a te
nique developed in Ref. 47, a study of the low-temperat
jumplike deformation of 99.999% pure Al single crysta
was carried out under conditions of compression.48 At the
time of the jumps in the load, pulsed electrical signals
various amplitudes, shapes, and durations appeared on
faces of the strained samples. Depending on their durat
the pulses can be divided into two groups:t51 – 10 ms~mil-
lisecond pulses!, and t52 – 5ms ~microsecond pulses!; see
Fig. 28.

To establish the nature of the observed electrical effe
some tests were done and some estimates made.
showed that the main role in the formation of the milliseco
pulses is played by the thermopower arising at the contac
the wire leads with the sample owing to thermal processe

FIG. 27. Temperature dependence of the critical shear stresst0 for single
crystals of the alloys Pb–Sn~a! and Pb–Sb~b! in the normal (N) and
superconducting (S) states. The dashed curves show the dependence
would obtain for a thermally activated character of the processes~Ref. 37!.
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the deformation. The microsecond pulses, unlike the m
second, did not depend on the material of the wire lead
their geometric arrangement. When the temperature of
surface of the sample changed at the time of the jumps in
load, no sign of any brief temperature increases in the
crosecond range were observed in any of the tests. F
these observations it was concluded that the microsec
pulses may be due to the carrying of electrons along with
motion of dislocation pileups, and the duration of the
pulses indicates that their motion is of a dynamic natu
(;105 cm/s). As to the millisecond pulses, an important ro
in their formation is played by deformation processes giv
rise to a temperature field, i.e., apparently, by processe
thermomechanical instability. This interpretation of the m
lisecond pulses is supported by high-precision measurem
made on niobium single crystals.50 A very important clue for
understanding the mechanisms of the LJD is the experim
tal fact that the jump begins with the microsecond puls
i.e., usually the microsecond pulses are observed before
millisecond pulses; this suggests that rapidly moving pile
initiate the thermally stimulated formation of dislocatio
avalanches as the jump develops further. This temporal
quence of pulses is direct experimental evidence that the
namic dislocation pileups are the initiator~in the terminology
used in Ref. 48, the ‘‘trigger’’! of a situation that create
conditions for the onset of thermally stimulated dislocati
avalanches. Using the results on the detection of electr
pulses, the authors of Ref. 48 estimated the contribution
the dynamic dislocation pileups to the total increment of
formation at the jumps in the load. Comparing these d
with the total amplitude of the series of pulses correspond
to a single jump, we find for the large load jumps that th
comprise 1–20 % ofD«. Since the sensitivity of the detecto
did not permit the observation of small pileups, this estim
is a lower bound. Thus the studies of the kinetics of
jumps have made it possible to determine the sequenc
events. A jump in the load begins with the fast motion
dislocation pileups, which lead to heating of slip bands a
give rise to an ensuing thermomechanical instability. The
fore, the theory of jumplike deformation must include bo
purely dynamic effects and the effects of thermomechan
instability, the combination of which can apparently accou
for the regularities observed in the influence of the superc

FIG. 28. Brief ~microsecond! electrical pulses recorded against the bac
ground of the millisecond pulses at the times of deep jumps in the load~a,b!,
and individual microsecond pulses observed at small load jumpsd«
;1025– 1024 ~c,d! ~Ref. 48!.
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ducting transition on the jumplike deformation.
In a recent paper52 a highly sensitive quartz transduce

placed near the sample was used to record the kinetics
single load jump in nickel, copper, and construction mate
als. It was shown that the load jump is a two-stage proce
the first stage (Ds I) lasts for microseconds and is followe
by a slower, millisecond fall in the load (Ds II ). In the first
stage the load varies linearly with time, indicating a quasiv
cous, dynamic character of the deformation. In the sec
stage,s has a nonlinear time dependence, which is char
teristic for a thermally activated process. This finding agre
with the results of the other papers mentioned above.

7. CONCLUSIONS

1. The transition to the superconducting state leads
substantial weakening of the macroscopic jumplike deform
tion or to its complete vanishing.

2. The vanishing of the influence of theNS transition on
the macroscopic LJD at large strains in high-strength alu
num alloys is most likely due to a small~from 0.5 to 1.2 K!
heating of the sample and a transition to the normal stat

3. The observed regularities in the influence of theNS
transition on the macroscopic LJD are in disagreement w
the hypothesis of thermomechanical instability.

4. The available high-precision measurements of the
netics of the jumps confirm that the initial breakdown of t
load at a jump first arises as a consequence of purely
namic motion of dislocations, and only after that do the co
plex thermomechanical processes occur. This picture of
kinetics of development of a jump is also supported by
influence of the superconducting transition on the lo
temperature jumplike deformation.

In closing, the author thanks V. S. Fomenko, T.
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Saturation effect in the problem of microwave energy absorption by two-dimensional
electrons on a helium film

V. B. Shikin*
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Russia
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The details of the absorption of an rf electromagnetic field by two-dimensional~2D! electrons on
a thin film of helium in relation to the confining electric field are discussed. The connection
between this problem and the problem of saturation in a 2D electron system is noted. A special
study is made for the case of cylindrical geometry, which corresponds qualitatively to the
conditions of the experiment of B. Lehndorff and K. Dransfeld, J. Phys.~Paris! 50, 2579~1989!.
It is shown that the data obtained on the field dependence of the absorption of rf field
energy by 2D electrons contains information about the supersaturated electronic states in the cell.
© 2000 American Institute of Physics.@S1063-777X~00!00206-1#
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In Ref. 1 the absorption of rf energy by two-dimension
~2D! electrons was investigated by placing a charged
system in the central part of a cylindrically symmetric res
nant cavity~where there is an antinode of the fundamen
mode of the electric field of the cavity!. It was noted by the
authors of that interesting paper1 that the introduction of 2D
electrons sharply alters the characteristics of the cavity
particular, its fundamental frequency decreases from 12
GHz, and the level of absorptionP increases~in comparison
with the value in the empty cell!. In addition, a special study
was made of the dependence of the absorptionP on the
potential differenceV between the walls of the cavity and th
central electrode~this potential difference is what confine
the electrons to the surface of the helium!. That study was
motivated by the desire to fix the location of the free 2
electrons in one-electron ‘‘sockets.’’ The presence of a p
nounced spike on theP(V) curve~Fig. 2 of Ref. 1! confirms
that this is a reasonable interpretation of the data of Re
Nevertheless, some accompanying details not mentione
Ref. 1 indicate the possibility of an alternative scenario le
ing to the observed behavior ofP(V). The most significant
of these is the finite~different from the vacuum! absorption
in the activity forV→0. The existing ideas about the beha
ior of 2D electrons over helium would require that in such
situation the electron density in the active zone of the ca
go to zero, and that would mean small~comparable to the
vacuum! absorption. In actuality the absorptionP in a poten-
tial difference approaching zero is only a few percent l
than the maximum value. This paradox deserves at lea
qualitative explanation.

In this paper we discuss the popular procedure~which
was used in Ref. 1! in which the free surface of helium i
charged to saturation by electrons~the concept of saturation
will be defined below!. It is important to take the details o
this procedure into account in order to understand the be
3911063-777X/2000/26(6)/4/$20.00
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ior of P(V). In particular, it becomes possible to resolve t
aforementioned paradox.

1. Let us turn to the seemingly technical problem
introducing electrons into a resonant cavity and determin
the density of the 2D electron system in the active zone ly
closely along the axis of a cylindrical cavity. This procedu
was carried out in Ref. 1 from an external source, by
standard procedure in which a helium film covering a co
ducting substrate~doped silicon! lying along the axis of the
cavity is charged to saturation with electrons in the prese
of a fixed potential difference between the substrate
walls of the cavity. Under such conditions one can obtai
simple estimate of the densityns of 2D electrons in the cell,
and for this reason it is extremely popular to study the pr
erties of 2D electron systems above helium specifically i
state of saturation. Nevertheless, important details of
saturated state are in need of refinements that have no
been explicitly elaborated. The essential features of th
refinements will first be set forth for the particular case o
planar 2D electron system, and then we will address the s
cifics of the case of cylindrical geometry, which is qualit
tively closer to the experiments of Ref. 1.

The conventional way of preparing a 2D electron syst
on a liquid helium surface presupposes the use of a flat
pacitor, with a charged liquid interface between the pla
~see, e.g., Ref. 2!. The potential differenceV on the capacitor
plates produces electric fieldsE1 andE2 above and below
this interface!:

E152
4pensd1V

d1h
, E25

4pensh2V

d1h
, ~1!

which confine the 2D electron system with a finite densityns

near the vapor–liquid interface. Hered is the thickness of
the helium film,h is the vacuum gap between the helium a
the upper electrode, and 2W is the dimension of the capac
tor in the horizontal directions.
© 2000 American Institute of Physics
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FIG. 1. Diagram of the arrangement of 2D electron layers above planar helium films in the two-component approximation~a! and for a cylindrical version
of the cell ~b!.
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Under the conditionsE150, or

Vs524pens* d, ~2!

the excess electrons withns.n2* will no longer be confined
by the external field on the liquid substrate and will ‘‘e
cape’’ into the volume of the gaseous phase of heliu
Therefore, under condition~2! one speaks of a state of sat
ration in the 2D electron system, and the densityns* is as-
sumed to be the maximum for the givenV.

The ease with which can determine the densityns* using
formula ~2! is a great practical convenience in studies w
2D electrons. However, for formulas~1! and ~2! to hold re-
quires that the electrons have free access to the upper pla
the capacitor. In reality, however, in working with superflu
helium all the interior parts of the cell, including the upp
capacitor plate, are covered by a thin film of helium~with a
thickness of the order of the natural valued;1026 cm!. Un-
der these conditions the overall picture of the filling of t
vacuum gap above the helium with electrons changes,
during the charging process electrons settle not only on
lower film d to a densitynd but also on the upper filmd to a
densitynd ,

nd1nd5ns . ~3!

The state with two 2D electron layers is called supersatura
below. The state of supersaturation is illustrated schem
cally in Fig. 1a. For its description in the electrostatic a
proximation it is necessary@long with the set of conditions
leading to formulas~1!# that the electric field between th
two 2D electron layers vanish. Then

4pend5
4pensd2V

d1d
, nd5ns2nd . ~4!

It is easy to see that in the two-layer model a fin
electron density above the helium is possible in the abse
of a nonzero potential difference, for even atV50 one has
.

of

or
e

d
ti-
-

ce

4pend
05

4pensd

d1d
, 4pend

05
4pensd

d1d
. ~5!

Here the electrons are confined in local states on the up
and lower helium films by the internal Coulomb fields. Th
total number of electronsN0 is limited only by the stability
of the charged helium surface.

Of course, having specified a certain numberN0 one can
choose the corresponding critical valueVs ~2! for which, in
the electrostatic approximation, all of the electrons will
found on the filmd, i.e., nd5ns5N0 /pR2. However, the
converse assertion, that for a fixedV the maximum value of
ns* corresponds to the value~2! is incorrect. An example of
their disagreement is contained in formulas~5!; having V
50, we nevertheless find thatnd

0Þ0.
Thus the existence region of 2D equilibrium electr

states over helium is wider in the problem with filmsd and
d. Their existence becomes possible also under condition
supersaturation,

0<V<Vs , ~6!

and the state of saturation~2! can be interpreted as being on
of the supersaturated states.

2. Now let the system of control electrodes be cylind
cally symmetric~Fig. 1b!. This type of cell is closer to the
experimental situation of Ref. 1, although it is not 100
similar ~the central electrode in Ref. 1 has the form of
plane of dimensionsw!R, where R is the radius of the
cavity!. The corresponding densities,nd in the central part of
the system~Fig. 1b! and nd at the walls of the cavity, are
determined from the expressions

2p@~r 01d* !nd1~R2d!nd#5N, ~7!

4pend5
2eN2~R2d!V/d

r 01d* 1~R2d!d/d
. ~7a!

Here N is the total electron density per unit length of th
cylinder, andd* is the effective distance between the heliu
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and the conducting silicon, consisting of the thicknessd of
the helium film and the thicknessdt of the dielectric inter-
layer ~Khostopan or Teflon of the order of 10mm thick!.

The minimum electron densitynd
0 in the supersaturation

regime atV50 can be written

2pnd
05

N

r 01d* 1~R2d!d/d
. ~8!

The maximum density in the saturation regime is, of cour

2pnd
max5

N

r 01d*
. ~8a!

Finally, in the cylindrical version of the problem ther
also exists a regime in which the self-field of the electrons
the axis of the cylinder is less than the confining potent
But this limiting case does not have direct relevance to
data of Ref. 1, which are directly adjacent to the zero-V limit
in the electron distribution inside the cavity.

It is also pertinent to note that in the case of differe
metals on the walls of the cavity~normal metal! and along its
axis~doped silicon! it is quite likely that the contact potentia
differencec will play a role in the formation of the super
saturated states. In the absence ofc, supersaturation can oc
cur for arbitraryN in the region of smallV. If cÞ0, how-
ever, then for saturation to occur~only in that regime does
the absorption grow with increasingV! it is necessary to
have a finiteN:

N>
~r 01d* !c

2ed*
. ~9!

3. Returning to Ref. 1 and taking into account what w
have said above, we can conjecture that the measurem
there were done under conditions of supersaturation of
cavity with electrons, when not only were thend states on
the axis of the cavity filled but also thend states on its walls,
which were coated with a thin film of helium. Then, und
the conditionV50 an appreciable fraction of the total ele
tron charge introduced into the cell is retained at the silic
substrate@as follows, in particular, from formula~8!#. Then,
asV increases, the charges begin to be redistributed betw
the fractionsnd and nd in favor of the first of these. This
process is in general nonlinear inV due to the influence o
the electron pressure on the helium film thicknessd in the
active zone.

Thus the discussion of the problem of the filling of fra
tions nd and nd by the electrons provides the prerequisit
for a correct understanding of the functionP(V). The fact
that this absorption is finite forV→0 is a consequence of th
fact thatnd(V→0) is finite. As to the details of the absorp
tion in the regionVÞ0, this problem must be solved usin
additional information about the structure ofP(V), e.g., in
the Drude approximation.

By definition, the absorptionP(E') in the Drude ap-
proximation is

P5Re~ jE i!5nde2m21Ei
2 t

11v2t2
. ~10!

Here nd is taken from Eq.~7a!, t is the characteristic mo
mentum relaxation time, andv is the frequency of the rf
excitation.
,

t
l.
e

t

nts
e

n

en

For t we use the well-known expression2

t58a\/F2,

F5Fe1Fd5eE'1e2/~4d2!, E'54pend . ~11!

A helium film is typically of the order of 331026 cm thick.
Adopting this thickness and supposing that the Teflon s
strate has a high dielectric constant, we find that the elec
cal partFe of the forceF is comparable to the dielectric pa
Fd at nd;1010cm22. Another geometric estimate concern
the thickness of the Teflon interlayer,dt.6 mm @this thick-
ness appears in the definition of the quantityd* appearing in
~7! and ~8!#.

The typical value oft in ~10! for d;331026 cm does
not exceed 10211s, i.e., forv;109 s21 we havevt!1. One
can determineR without difficulty (R51 cm). As to r 0 ,
here the estimates are extremely sketchy: 0.1 cm,r 0

,0.5 cm, since the axial electrode~conducting silicon! is
actually in the form of a plate of width 1 cm and thickne
0.1 cm.

As we are interested mainly in the behavior of the a
sorption in the neighborhood of smallV, we write expres-
sions~10! and ~11! with allowance for the conditionvt!1
in dimensionless form:

P~V!

P~0!
5

nd~V!t~V!

nd~0!t~0!
[~11vN!F n* 11

n* ~11vN!11G2

,

vN5V/VN . ~12!

VN
215R/~2dueuN!, n* 516pd2nd~0!.

The relative absorption~12! has a maximum as a func
tion of vN at the pointvN

max:

vN
max5

1

n*
21. ~13!

It is clear that such a maximum exists ifn* ,1. In the op-
posite limiting case,n* .1, the absorptionP(V)/P(0) from
~12! decreases monotonically, since the field dependenc
the relaxation time is dominant.

Thus the finite value of the absorption of an rf elect
field by a 2D electron system in a cavity at zero confini
field and its growth with increasingV, which follow from
the data of Ref. 1, provide a stimulus for introducing a
discussing the properties of the supersaturated state o
electrons in closed cells~i.e., cells containing a closed sys
tem of electrodes for confining electrons on the surface
superfluid helium!.

The case in Ref. 1 is not the only example. Supersa
rated states should be invoked to explain the nonmonoto
field dependence of the capacitance of a capacitor contai
2D electrons~see, e.g., Ref. 3!. Their presence influences th
structure of the relaxation time in experiments such as th
in Refs. 4–7, etc. Generally speaking, when the image for
~which we have neglected! are taken into account, a two
layer electron structure is the rule rather than the excep
for electrons above superfluid helium in closed cells. In vi
of this circumstance one can consider the results set f
above as quite general, having a significance extending
yond the interpretation of the data of Ref. 1.
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Nuclear spin–spin relaxation in 3He–4He two-phase solid solutions at ultralow
temperatures

N. P. Mikhin,a) A. V. Polev, E. Ya. Rudavskii, Ye. V. Syrnikov, and V. A. Shvarts

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
pr. Lenina 47, 61164 Kharkov, Ukraine
~Submitted January 14, 2000!
Fiz. Nizk. Temp.26, 541–549~June 2000!

The spin–spin relaxation time in a3He–4He solid solution is measured before and after phase
separation in the temperature range 1–250 mK. The spin echo technique is used, which
permits separating the contributions of the two separated phases to the magnetic relaxation. It is
found that in the concentrated phase the spin–spin relaxation time is practically independent
of temperature above 50 mK and is described by the same exchange mechanisms as in pure3He.
In the dilute phase the relaxation time is inversely proportional to the concentration and
agrees with the corresponding values for homogeneous solutions. The dominant contribution to
the spin–spin relaxation process is from3He–4He tunneling exchange. At the lowest
temperatures the spin echo exhibits anomalous behavior, which may be a manifestation of quasi-
one-dimensional diffusion. ©2000 American Institute of Physics.@S1063-777X~00!00306-6#
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1. INTRODUCTION

The quantum nature of helium crystals is clearly ma
fested in the magnetic properties of solid3He and of
3He–4He solutions. The large zero-point vibrations of t
3He atoms lead to a strong exchange interaction and m
for an appreciable tunneling probability for the atoms. The
processes play the dominant role in the nuclear magn
relaxation in quantum crystals. Detailed studies1–5 of this
topic in 3He have shown that the spin–lattice relaxation tim
T1 and the spin–spin relaxation timeT2 at low temperatures
have a broad exchange plateau region whereT1 and T2 do
not depend on temperature.

The exchange mechanism of nuclear magnetic relaxa
has also been observed in experiments on3He–4He solid
solutions6–11 in the single-phase region at different conce
trations and molar volumes in both the bcc and hcp pha
Here, as was shown in Ref. 8 on the basis of the Tor
theory,12 in addition to the tunneling exchange of neighbo
ing 3He–3He atoms in the solutions there is also apprecia
mutual exchange3He–4He. The effect depends on the co
centration and molar volume of the solution.

At ultralow temperatures3He–4He solid solutions can be
used to realize another interesting quantum system—a
phase crystal, which is formed as a result of phase separa
and consists of a concentrated and a dilute phase. In par
lar, in weak solutions of3He in 4He at high pressures, sma
inclusions of the concentrated bcc phase form, distribute
the crystalline matrix of the dilute hcp phase. As the te
perature is lowered, the concentration of3He in the inclu-
sions approaches unity, and the matrix becomes practic
pure4He.

Research on the magnetic relaxation processes in
phase systems of this kind was begun only recently13–16and
has been devoted mainly to the spin–lattice relaxati
Experiments13 have shown that in the concentrated phase
the separated solution the region of the exchange platea
3951063-777X/2000/26(6)/6/$20.00
-

ke
e
tic

n

-
s.
y

e

o-
ion
u-

in
-

lly

o-

.
f

for

the relaxation timeT1 , unlike the case in bulk3He, is ob-
served throughout the entire existence region of this ph
and extends all the way to millikelvin temperatures. In t
dilute phase the timeT1 increases as the temperature is lo
ered, reflecting its concentration dependence, and the v
of T1 is practically equal to the corresponding values
single-phase~unseparated! solutions of the same concentra
tion in the region of the exchange plateau.

In the present study we investigate the spin–spin rel
ation in 3He–4He solid solutions over a wide range of tem
peratures both in the single-phase region~before separation!
and in the coexistence region of the concentrated and d
phases. The main focus of our attention is to compare
data obtained with the theoretical and experimental res
for pure 3He and for single-phase solutions of the corr
sponding concentrations.

2. EXPERIMENTAL PROCEDURE

In the experiment we used the cell describ
previously,17 which was cooled by a nuclear demagnetizati
refrigerator. Cylindrical samples of3He–4He solid solutions
4 mm in diameter and 20 mm long were grown from
initial gaseous mixture containing 3.18%3He by the method
of capillary blocking. After annealing for a few days near t
melting temperature, the molar volume of the samples w
20.360.05 cm3/mole. Cooling of the samples was done
steps of 10 mK with a subsequent temperature stabilizat
Measurements were made in the temperature interval 1–
mK. The temperature of the sample was determined by a3He
crystallization thermometer placed on the same massive
ver cold stage as the sample cell.

For the NMR measurements we used a pulsed spectr
eter working at a frequency of 250 kHz. The relative no
uniformity of the magnetic field in the volume of the samp
was'1024. The measurements of the spin–spin relaxat
time T2 were made mainly by the spin echo method with
© 2000 American Institute of Physics
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396 Low Temp. Phys. 26 (6), June 2000 Mikhin et al.
90° –t – 180° pulse sequence. The amplitudeh of the echo
for each value of the time intervalt was determined as th
average of ten measurements with a time intervalDt be-
tween measurements. The damping ofh in the general case
is described by the expression

h~2t!5h0 expS 2
2t

T2
2

2

3
g2G2t3D D , ~1!

where the first term in the exponent describes the spin–
relaxation, and the second term the diffusion damping;h0 is
the maximum value of the echo amplitude,G is the magnetic
field gradient, andg is the gyromagnetic ratio. An estimat
shows that forD;1026 cm2/s andG;1022 G/cm the influ-
ence of the second term in~1! becomes noticeable only fo
t.10 s. Therefore, in the experiment we usually used val
of t no greater than 0.5 s. The echo signal was recorded
Tektronix digital storage oscilloscope. The error in the v
ues ofT2 obtained by a computer processing of the prima
experimental datah(2t) by the least-squares method usi
formula ~1!, was 10% or better and was mainly due to rad
noise.

At high temperatures~usually above the phase separ
tion temperatureTps! the spin–spin relaxation times in th
homogeneous~unseparated! initial solution T2

0 were deter-
mined from the free induction decay~FID! after the applica-
tion of a 90° pulse. The FID was also recorded by the T
tronix digital oscilloscope and was subjected to a compu
processing based on the assumption that the instantan
value of the FID amplitudeU(t) is described by an exponen
tial function:

U~ t !5U0 expS 2
t

T2*
D , ~2!

whereU0 is the maximum value of the FID amplitude an
T2* is the observed damping time of the FID. The timeT2* is
related to the true spin–spin relaxation timeT2

0 by the rela-
tion

~T2* !215~T2
0!211gGd, ~3!

whered is the characteristic dimension of the sample in
direction of the magnetic field gradientG. Estimates show
that under the given experimental conditions the broaden
of the resonance line due to the magnetic field gradient
negligibly small,gGd'60 Hz!1/T2

0, and within the accu-
racy of the measurements the observed damping timeT2* of
the FID can be assumed close to the true spin–spin re
ation timeT2

0.
It is for precisely this reason that it has turned out to

different to measureT2
0 by the spin echo method at hig

temperatures. If the second term in the exponent in~1! is
negligible, then, sinceU0>h0 ~Ref. 18!, the functions~1!
and~2! are nearly the same, and the echo signal therefor
nearly impossible to distinguish against the background
the FID.

We note that the FID method is inapplicable for meas
ing T2 in the the melted solid solution in cases where
concentrated bcc phase is characterized by large values oT2

~120–200 ms!, since in that case the damping time of t
in
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FID observed in this phase@T2* '16 ms;1/(60 Hz)# is de-
termined mainly by the magnetic field gradient in in acco
dance with formula~3!.

3. TEMPERATURE DEPENDENCE OF THE SPIN–SPIN
RELAXATION TIME

In the two-phase structure of3He–4He solid solutions
each of the phases—the concentrated and the dilute—
characterized by their own values of the spin–spin and sp
lattice relaxation times and have their own contributions
the amplitude of the echo signal:

h'h0H AF12expS 2
Dt

T1
c D GexpS 2

2t

T2
c D 1~12A!

3F12expS 2
Dt

T1
dD GexpS 2

2t

T2
dD J . ~4!

Here the first term describes the contribution of the conc
trated phase, with spin–latticeT1

c and spin–spinT2
c relax-

ation times; the second term is the contribution of the dil
phase, with timesT1

d andT2
d , respectively;A,1 is the rela-

tive fraction of the3He contained in the concentrated phas
andDt is the waiting time between pulse trains.

It follows from formula ~4! that the large difference in
the spin–lattice relaxation times for the two daughter pha
of the separated sample13 enables one to separate the cont
bution of the concentrated phase to the amplitude of the e
signal. At short waiting times for the recovery of the ma
netization,Dt;T1

c!T1
d , the contribution of the dilute phas

is negligible, proportional to the unrecovered magnetizat
and the small3He content in this phase, i.e., the second te
in ~4! can be neglected in this case. IfDt is chosen much
larger thanT1

d , then in the two daughter phases the compl
recovery of the equilibrium magnetization will occur, and t
dependence of the amplitude of the echo ont can be used to
separate the contributions of the two phases, which are c
acterized by different spin–spin relaxation times.

Figure 1 shows typical results of measurements ofT2 in
a two-phase sample for short~curve 1! and long~curve 2!
waiting timesDt. The solid curves in Fig. 1 are the result
a processing of the experimental data according to form

FIG. 1. Damping of the echo signal in a two-phase crystal at a tempera
of 192 mK for different waiting timesDt, s: 0.3~1! and 100~2!. The solid
curves are the results of data processing according to formula~4! with the
parametersA50.25, T2

c5205 ms, andT2
d56.5 ms~see text!.
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~4! by the least-squares method with the adjustable par
etersA, T2

c , andT2
d . Here the cofactors containing the spin

lattice relaxation timesT1
c andT1

d are constants. For shortDt
one observes a single exponent, corresponding to the co
bution of the concentrated phase, and at longDt there are
two exponents, reflecting the contributions of the two phas

It should be noted that as the temperature is lowered,
3He content in the dilute phase falls off, in accordance w
the phase diagram, and therefore the relative contributio
the NMR signal from this phase decreases, and be
;180 mK it becomes comparable to the noise level of
amplifier circuit of the spectrometer. For this reason the ti
T2

d was measured only in the temperature interval 180–
mK.

In the high-temperature region, as we have said,
spin–spin relaxation time was determined from the damp
of the FIS. Figure 2 shows the form of the FID obtained af
the application of a 90° pulse in a homogeneous ini
sample atT5220 mK. We can see that the damping of t
amplitude of the FID is well described by an exponent
function all the way down to the noise level. The straight li
in Fig. 2—which is the result of a processing of the FID
the least-squares method according to formula~2!—
corresponds to a valueT2

052.1 ms.
Figure 3 shows the values ofT2 thus obtained over the

FIG. 2. The damping of the free induction signal~FID! after the application
of a 90° pulse in the initial homogeneous sample at 220 mK. The stra
line is the result of data processing by the least-squares method accord
formula ~2!.

FIG. 3. Temperature dependence of the spin–spin relaxation time in
solution before and after phase separation. The arrow indicates the p
transition temperature.
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whole range of temperatures investigated. In the initial h
solution the spin–spin relaxation timeT2

0 is independent of
temperature and agrees well with the results obtai
previously6–9,11for homogeneous3He–4He solid solutions in
the region of the exchange plateau with allowance for
concentration and molar volume of the solution.

Below the separation temperature, after the formation
a two-phase crystal, two spin–spin relaxation times w
observed–one short and one long. Using the technique
scribed above to separate the contributions of the two ph
to the amplitude of the echo signal, it was found that the lo
relaxation timesT2

c correspond to the concentrated phase a
the short timesT2

d to the dilute phase.

3.1. Concentrated phase

Since according to the phase diagram, the concentr
phase of the separated3He–4He solution at ultralow tempera
tures corresponds in concentration to practically pure3He, it
is natural to compare the data obtained onT2

c with the cor-
responding results for bulk solid3He. As we see in Fig. 3,
the value ofT2

c is practically independent of temperature
the range 50–200 mK and equals 0.2160.02 s. The tempera
ture independence ofT2

c suggests that the mechanism of t
spin–spin relaxation is governed, as in pure3He, by ex-
change processes involving the tunneling motion of atom

For the region of the exchange plateau the timeT2 in
solid 3He is expressed as follows:1

~T2
c!215

2

3 S p

2 D 1/2M2

vE
S 3

2
1

3

2
e2v0

2/2vE
2
1e22v0

2/vE
2 D , ~5!

wherev0 is the Larmor frequency,vE is the frequency of
the tunneling exchange of neighboring atoms,M2 is the Van
Vleck second magnetic moment, which can be calculated
a bcc crystal with molar volumeV from the relation1

M2522.8•1010/V2. ~6!

The analysis in Ref. 1 showed that the best agreem
with experiment for bcc3He is observed if the correlation
function describing the pair interaction between nucle
spins is approximated by a Lorenzian. In that case the t
neling exchange frequencyvE for neighboring atoms is re
lated to the exchange integralJ33 as

vE53.36J33. ~7!

Previously this was used to obtain a good description
the experimental data for homogeneous solid3He ~see, e.g.,
Ref. 1!.

Under the given experimental conditions, when the L
mor frequency is much less than the tunneling exchange
quency (v0 /vE!1), formula ~5! simplifies substantially,
and with allowance for~6! and ~7! it becomes

~T2
c!215

10

3 S p

2 D 1/2M2

vE
. ~8!

If the value ofJ33 typical for bulk solid3He and the corre-
sponding molar volume are used in calculatingvE , Eqs.
~6!–~8! yield a valueT2

c50.2060.05 s, which is in good
agreement with experiment. We note that the use of
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Gaussian approximation, in which casevE54.76J33 ~Ref.
1!, givesT2

c50.2860.05 s. This does not agree as well wi
the measured values ofT2

c .
The good agreement of the experimental data onT2

c for
the concentrated phase with the calculation according to E
~6!–~8! means that the spin–spin relaxation in this phase
governed mainly by the3He–3He tunneling exchange, whic
is described by the exchange integralJ33. However, the con-
centrated phase contains an appreciable4He impurity ~up to
;3% near the separation temperature!, and therefore the
data permit one to estimate the contribution of the4He–3He
exchange to the spin–spin relaxation and the correspon
value of the exchange integralJ43. If one considers a super
position of the exchange processes3He–3He and4He–3He
with appropriate weight factors proportional to the conce
tration, then according to estimates the value ofJ43 cannot
differ from J33 by more than a factor of 2–3. This means th
the estimate ofJ43 in Ref. 1 is apparently somewhat too hig

It is seen from Fig. 3 that below;50 mK the timeT2
c

decreases smoothly to values of 0.12 s at the lowest temp
tures. This behavior is more clearly seen from the tempe
ture dependence of the ratioT1

c/T2
c , which is given in Fig. 4.

Here the measurements of the two relaxation times w
made in the same experiment. Analysis of expression~5! for
T2

c and the corresponding formula forT1
c obtained by the

same approach in Ref. 13 shows that at the resonance
quency used in the experiment the ratioT1

c/T2
c is close to

unity. The experimental results in Fig. 4 agree with the p
diction of the theory only in the region 50–200 mK, while
lower temperatures the ratioT1

c/T2
c increases monotonically

on account of a decrease inT2
c .

The decrease of the spin–spin relaxation time in a s
tem is usually attributed to a weakening of the intensity
the motion of the nuclear spins,18 i.e., of the value of the spin
diffusion. The main mechanism for spin–spin relaxation
due to the interaction between nuclear spins, which is
scribed in terms of local magnetic fields produced by
neighboring nuclear spins at lattice sites. Rapid relative m
tion of the spins leads to strong fluctuations of the lo
magnetic fields, and then only the averaged value of the lo
field, which is much less than the instantaneous value
important. Thus an increase~decrease! of the diffusion coef-
ficient usually leads to an increase~decrease! of the timeT2 .

FIG. 4. Temperature dependence of the ratio of the spin–lattice and s
spin relaxation times in the concentrated phase of the separated soluti
s.
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In the present study, along with measurements of
magnetic relaxation time we made some crude measurem
of the spin diffusion coefficientDs in the concentrated phase
The experiments showed that in the existence region of
phase, all the way down to 1.5 mK, the value ofDs is prac-
tically constant and equal to (762)31028 cm2/s, which is
close to the value of the spin diffusion coefficient for bu
3He of the same density. Therefore the low-temperature
crease ofT2

c can scarcely be attributed to diffusion process
Thus, taken together, our experimental data on the tim

T1
c and T2

c and the diffusion coefficientDs in the concen-
trated phase of a separated solution of3He in 4He indicate
that above;50 mK the properties of the disperse conce
trated phase are close to those of bulk3He. The reason for
the elongation of the exchange plateau ofT1

c into the region
of ultralow temperatures and the decrease ofT2

c for
T,50 mK remain unclear.

3.2. Dilute phase

The increase in the spin–spin relaxation time in the
lute phase,T2

d , with decreasing temperature~see Fig. 3! is a
reflection of the fact that the concentration of the dilu
phase decreases as the temperature is lowered in accord
with the separation phase diagram. Therefore, a clearer
more physical view can be obtained from the concentrat
dependence ofT2

d , which is shown in Fig. 5, which summa
rizes the experimental data of different authors for weak
lutions of3He in 4He. Shown are the results of measureme
of T2 both in the homogeneous hcp solution in the region
the tunneling plateau and in the dilute hcp phase of the se
rated ~two-phase! solution. Since in the present study me
surements were made along the line of phase separation
concentration of the dilute phase was determined from
phase diagram of Ref. 19. Out of all the available experim
tal data on the timeT2 in the hcp phase of the solutio
3He–4He, Fig. 5 shows the results which pertain to a mo
volume close to that used in the present study, and also
Larmor frequenciesv0 much less than the energy frequen
vE;108 rad/s. As we see in Fig. 5, the experimental data
the present study are in good agreement with the result

–
.

FIG. 5. Concentration dependence of the spin–spin relaxation time in
dilute hcp phase. The experimental data for the homogeneous crysta
denoted byh ~Ref. 8! ands ~Ref. 11!; for the dilute phase of the separate
solution byn ~Ref. 16! andj ~present study!; line 1 is an approximation of
the experimental data by formula~9!; line 2 is the result of a calculation in
the Torrey theory according to formula~11!; line 3 is the result of a calcu-
lation according to formulas~12!–~16!.
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Ref. 16 for the dilute phase in the two-phase crystal and w
Refs. 6 and 8 for single-phase solutions of the correspond
concentrations. This shows that the spin–spin relaxation
cesses in separated and homogeneous solutions of the
concentration have the same character. A similar conclu
was reached previously in an analysis of the spin–lat
relaxation in separated phases of3He–4He solid solutions.13

We note that the experimental data presented in Fig. 5 ca
approximated by the relation

T2
d5a/x, ~9!

where x is the concentration of the solution, anda57.5
31025 s. The results of such an approximation are shown
the line1 in Fig. 5.

The results on the concentration dependence of the
T2 can be compared to different model descriptions of
spin–spin relaxation in3He–4He solid solutions. In a calcu
lation of the magnetic relaxation in Ref. 6 only the tunneli
exchange3He–3He was taken into account, i.e., it was a
sumed that formula~5!, which was obtained for3He, is valid
for the solutions, and the specifics of the solutions w
taken into account under the assumption thatM2(x)
5xM2(1) andvE(x)5x1/2vE(1). In this approach the con
centration dependence ofT2 was predicted to have the form
T2

21;x1/2, which does not agree with the experimental da
The numerical values ofT2 calculated in such a model ar
almost two orders of magnitude higher than the measu
values.

The calculations of Greenberget al.,11 based on the Tor-
rey model,12 have proven more adequate. In those calcu
tions it was assumed that a substantial role in the solut
should be played by the tunneling exchange3He–4He, with
the characteristic time

t345~zJ34!
21, ~10!

whereJ34 is the corresponding exchange frequency, andz is
the number of nearest neighbors. In this approach the sp
spin relaxation time, according to Ref. 11, is written in t
form

T2
2150.92xM2t34. ~11!

The value oft34 was determined in Ref. 11 as a mola
volume-dependent adjustable parameter of the theory of
12. If the values of this parameter for the conditions of t
present experiment are used, a calculation ofT2

d according to
formula ~11! gives the values shown by line2 in Fig. 5,
which are quite close to the experimental data.

Another approach to the calculation ofT2 in 3He–4He
solutions was developed in Ref. 8, where both types of t
neling exchange,3He–3He and 3He–4He, were taken into
account. In that case

T2
215

3

2
J~0!1

5

2
J~v!1J~2v!, ~12!

where the spectral density functionJ(v) is expressed in
terms of the corresponding functions for the two types
exchange,

J~v!5cJ~v!u3241~12c!J~v!u323 , ~13!

and the weight factorc depends strongly on the concentr
tion of the solution,
h
g

o-
me
n
e

be

y

e
e

e

.

d

-
s

–

ef.
e

-

f

c5~12x!12. ~14!

According to Ref. 8, the functionsJ(v)u323 and J(v)u324

have the form

J~v!u32350.96
x1/2M2~1!

vE~1!

3expH 2
1.6v2@x1/2vE~1!#22

v@x1/2vE~1!#2111.0
J , ~15!

J~v!u3245xM2~1!t34GS vt34

2 D . ~16!

Here the correlation time describing the tunneling excha
3He–4He depends on the concentration ast34;x21/3, and
the functionG(v0t34/2) was calculated in Ref. 12.

The results of a calculation ofT2
d with both types of

tunneling exchange taken into account, according to form
las ~12!–~16!, are shown in by line3 in Fig. 5. We note that
for weak solutions the approaches to the calculation ofT2 in
Refs. 11, 12, and 8 are practically the same. This means
at low 3He concentrations~less than 1%! in the solid solution
the main tunneling process is the3He–4He exchange, and the
3He–3He exchange can be neglected. The latter begins
play an appreciable role only at higher concentrations.

4. ANOMALOUS DAMPING OF THE SPIN ECHO AT
ULTRALOW TEMPERATURES

The primary experimental data obtained at the low
temperatures require a separate analysis. Here the beh
of the amplitudeh as a function of twice the intervalt be-
tween 90° and 180° rf probe pulses differs substantially fr
the typical dependence shown in Fig. 1. It was found t
below ;10 mK the h(2t) plot, after a rapid exponentia
damping of the echo with a characteristic timeT2

c , one ob-
serves a much slower damping of the signal amplitude
2t.0.3 s~curve1 in Fig. 6!. For comparison, curve2 in Fig.
6 shows the corresponding plot of lnh(2t) at T520 mK,
where this anomaly is not observed.

The cause of the anomaly cannot be attributed to non
earity of the amplifier circuit of the NMR spectrometer
low signal levels, since, as can be seen from Fig. 6, the d

FIG. 6. Damping of the echo signal at ultralow temperaturesT, mK: 5 ~1!,
20 ~2!. The waiting time was several minutes. The dot-and-dash line is
boundary of linearity of the amplifier circuit of the NMR spectrometer; t
dotted line is an approximation according to formula~4!; the solid line is a
calculation according to formula~17!.
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at 20 mK contain echo signals of smaller amplitude than a
mK, but no appreciable deviations from a single exponen
can be observed. A special check showed that the dyna
characteristics of the amplifier circuit of the spectrome
remained linear at signal levels above the dot-and-dash
in Fig. 6.

Analysis of curve1 in Fig. 6 shows that it can be ap
proximated by two different dependences: either a supe
sition of two exponential functions or the sum of one exp
nential function and a nonexponential function.

In the first case the presence of two exponentials wo
mean that at very low temperatures there are contribution
the damping of the echo signal from two phases: the conc
trated phase with spin–spin relaxation timeT2

c , and some
new phase with a very large characteristic relaxation ti
T2

x . The result of such an approximation, obtained with
use of formula~4! with two adjustable parametersA andT2

x ,
is shown by the dotted curve in Fig. 6. Here the value of
relaxation timeT2

x turns out to be so large (;20 s) that it can
be characteristic of only an extremely weak solutionx
!1025). The sensitivity of the NMR spectrometer used do
not permit the observation of a signal from such a sm
number of3He nuclei, and this hypothesis seems unrealis

A more plausible approach is to assume the presenc
exponential damping with a time constantT2

c at shortt and a
nonexponential damping of the spin echo at longt, which
corresponds to a diffusion process with a large diffusion
efficient Dx . An analogous situation was observed pre
ously in an NMR study of3He in solid hydrogen,20 and the
diffusion process was linked to the quasi-one-dimensio
diffusion of 3He along dislocations of the matrix.

In this case, with allowance for the results of Ref. 21 a
by analogy with Eq.~4!, we can write the dependence of th
echo signal amplitude on the timet in the form

h

h0
5A expS 2

2t

T2
c D 1~12A!

Ap

2

3S 2

3
g2G2t3DxD 21/2

w~t!, ~17!

where

w~t!5erfS 2

3
g2G2t3DxD 21/2

,

and

erf~y!5
2

Ap
E

0

y

e2t2dt

is the error function.
Formula~17! can satisfactorily describe the experimen

data in Fig. 6 for the following values of the adjustable p
rameters:Dx5531025 cm2/s, A50.97 ~solid curve!. We
note that in Ref. 20 a value of the same order of magnit
was obtained for the quasi-one-dimensional diffusion coe
cient. The small relative contribution of the ‘‘X’’ phase,
12A50.03, to the amplitude of the echo according to~17!
precludes its observation at higher temperatures, where
amplitude of the NMR signal falls off in accordance with th
Curie law.
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CONCLUSION

A study of the spin–spin relaxation processes in pha
separated3He–4He solid solutions has shown that in the co
centrated phase the relaxation time is possibly indepen
of temperature down to 50 mK and can be described
exchange processes involving the tunneling motion of
3He atoms. Here the numerical values of the timeT2 are in
good agreement with the corresponding values for pure b
3He.

In the dilute phase of the separated solution the sp
spin relaxation time can be described in the Torrey mo
with allowance for the3He–4He tunneling exchange. Her
the concentration dependence ofT2 has the form 1/x, and the
values obtained forT2 agree with the data on the spin–sp
relaxation times for homogeneous3He–4He solutions of the
corresponding concentration.

The reason for the smooth decrease in the timeT2 in the
concentrated phase below;50 mK remains unclear. As to
the anomalous behavior of the damping of the spin echo
temperatures below;10 mK, it may be a manifestation of
quasi-one-dimensional diffusion process.

The authors thank V. N. Grigor’ev for a helpful discu
sion of the results.
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Growth and dissolution of 3He liquid drops in a 4He crystalline matrix

A. N. Gan’shin, V. N. Grigor’ev, V. A. Ma danov, A. A. Penzev, É. Ya. Rudavski ,*
and A. S. Rybalko
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of Ukraine, pr. Lenina 47, 61164 Kharkov, Ukraine
~Submitted January 17, 2000!
Fiz. Nizk. Temp.26, 550–556~June 2000!

Pressure measurements are used to study the kinetics of phase separation of3He–4He solid
solutions under conditions such that after the transition a two-phase system is formed, consisting
of liquid drops of the concentrated phase~nearly pure3He! in a crystalline matrix of the
dilute phase~nearly pure4He!. It is shown that under stepped cooling of the two-phase sample
the growth of the liquid drops can be described by a superposition of two exponential
functions representing processes with long and short time constants. This is due to the strong
influence of the stresses arising in the crystal at the phase transition owing to the large
difference in the molar volumes of the two phases and which probably cause plastic deformation
of the matrix and the giving rise to nonequilibrium concentrations of3He in it. The
transport of3He atoms occurs only in connection with stress relaxation. It is established that
cyclic processes of growth and dissolution of the liquid drops strongly degrade the quality of the
crystal and lead to an increase of the pressure. The possibility that a mixture of the liquid
and crystal exists in the drops is also analyzed. ©2000 American Institute of Physics.
@S1063-777X~00!00406-0#
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1. INTRODUCTION

The phase diagram of the system3He–4He is in general
extremely complex and admits various combinations of c
densed phases found in equilibrium with one another.
important circumstance here is that phase diagram cha
with pressure. Since the melting pressures of the pure
topes3He and4He are very different, as can be seen fro
Fig. 1, one can use pressure as a parameter controlling
phase composition of the crystal in studies of3He–4He so-
lutions.

In this paper we continue the research begun earlie1–4

on the kinetics of the processes occurring in a solid solu
containing 2.05%3He. The melting line of this solution prac
tically coincides with the melting line of pure4He on the
scale in Fig. 1, and the line of phase separation is shown
the dot-and-dash line. Our previous experiments1–4 on the
kinetics were done at a pressure exceeding the melting p
sure of pure3He atT50 ~line 1! and at a pressure exceedin
the minimum on the melting curve of3He, but below the
melting pressure of3He atT50 ~line 2!. In the second case
the solid inclusions of3He formed as a result of the phas
separation are transformed into3He liquid drops upon further
cooling ~after crossing the3He melting curve!. This system
has also been studied in experiments at the University
Florida,5–7 where incomplete melting of the3He inclusions
was detected.

In the present study we investigate the region of int
mediate pressures—above the4He melting line and below
the minimum on the3He melting curve~line 3 in Fig. 1!. In
this case, as a result of the phase separation a two-p
system arises which consists of liquid drops of the conc
trated phase~close in concentration to pure3He! in a crys-
talline matrix of the dilute phase~nearly pure4He!. Previous
4011063-777X/2000/26(6)/6/$20.00
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studies have investigated the specific heat8,9 and magnetic
relaxation processes10,11 in such a system. However, there
practically no information about the kinetics of the grow
and dissolution of liquid drops arising in the crystal. This
the subject of the present study.

2. EXPERIMENTAL PROCEDURE

The kinetic processes in3He–4He two-phase solid solu
tions containing liquid drops were studied by means of p
cision measurements of the pressure of the crystal at con
volume. The measuring cell and procedures were descr
previously.4 A solution with an initial concentration o
2.05% 3He was crystallized by the method of capilla
blocking and then annealed for several days near the me
temperature. Then the homogeneous annealed crystal
cooled below the phase separation temperature, and a
perature cycling of the two-phase sample was carried out~as
in Ref. 4!. As was shown in Ref. 4, such a treatment usua
improves the quality of the crystal and makes for better
producibility of the results.

In the experiment we investigated the following kinet
processes:

— growth of liquid drops upon cooling of the two-phas
system in small steps ('10 mK);

— dissolution of the drops during a stepped heating;
— growth and dissolution of the drops upon abrupt co

ing and heating~large steps!.

3. EFFECT OF TEMPERATURE CYCLING ON THE TWO-
PHASE SAMPLES

Figure 2 shows the change in pressure in a two-ph
crystal containing liquid drops during four cooling–heatin
© 2000 American Institute of Physics
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402 Low Temp. Phys. 26 (6), June 2000 Gan’shin et al.
cycles and the corresponding thermogramT(t). First of all it
should be noted that the result of the temperature cyclin
this case is markedly different from that of an analogo
treatment at high pressure ('36 bar), where the3He inclu-
sions are solid.4

In the case of solid inclusions, after each cycle the pr
sure in the crystal became less than the initial pressure,
parently because of the elimination of defects and impro
ment of the quality of the crystal. The greatest decreas
the pressure was observed after the first cycle, and then
pressure rapidly went to saturation. In the case when liq
drops are formed, as we see in Fig. 2, the pressure after
cycle increases instead, and the rapid saturation does
occur. A clearer comparison of the behavior of these tw
phase systems is presented in Fig. 3. Besides the differ
in the dependence on the number of the cycle, one notic
difference in scales: whereas for the solid inclusions on
talking about values of the order of several millibars, in t
case of the liquid drops the effect is an order of magnitu
larger.

We note that an even more significant increase in p
sure was observed during the melting and crystallization
originally solid inclusions~see Refs. 4 and 5!. This circum-
stance is clearly correlated with the value of the stres
expected in these cases, which are primarily determined
the difference of the molar volumes of the initial and incip
ent phases. In the formation of liquid inclusions this diffe
ence is approximately 4 times as large as for solid inclusi
~see below!, and in the course of melting and crystallizatio
of the inclusions the additional increase in stress may be
to the fact that the large change in the density is locali
mainly just in the region of the inclusion. It can be stat
unambiguously that the cyclic processes of growth and
solution of the liquid drops as a result of the phase separa
degrades the quality of the crystal appreciably.

One more difference in the behavior of the two-pha

FIG. 1. Lines of melting of pure4He and3He and the lines of phase sepa
ration of a solid solution containing 2%3He (-•-). The dashed lines1 and
2 correspond to the pressures at which the measurements were made in
1–4, and line3 corresponds to the present measurements.
in
s

s-
p-
-

in
he
id
ch
ot
-
ce
a

is

e

s-
f

s
by

s

ue
d

s-
n

e

crystal containing liquid drops of the concentrated phase
comparison with the two-phase crystal containing solid
clusions is the disagreement between the calculated valu
the total pressure changeDP at the phase transition. In th
case of solid inclusions the value ofDP observed in experi-
ment was in satisfactory agreement with the calculated va
of the pressure jump due to the phase separation at con
volume:

DP5VE/Vb, ~1!

efs.

FIG. 2. Kinetics of the temperature cycling of the sample: the change in
temperature of the crystal in the course of four cooling–heating cycles~a!
and the corresponding pressure change~b!. Insets A and B show the irregu
larities in the last stage of the phase separation and the pressure ano
before the start of the cycle, respectively.
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whereV andb are the molar volume and compressibility
the crystal, and the excess molar volume, according to R
12, is related to the concentrationx of the solution as

VE@cm3/mole#50.4x~12x!. ~2!

In the case of liquid drops the numerator of formula~1!
should be replaced by the sum

VE1xDV, ~3!

where DV is the difference of the molar volumes of th
liquid and solid inclusions of the concentrated phase. T
an estimate of the size of the pressure jump due to the
mation of the liquid drops, according to Eqs.~1!–~3!, gives
DP'0.4 bar, which is almost 3 times as large as that
served in experiment. We note the following circumstan
that might lead to this disagreement.

1. The large change in volume upon the formation of
liquid phase can cause local stresses exceeding the
stress and lead to plastic deformation of the layer surrou
ing a drop. This, on the one hand, can promote the forma
of a quasi-equilibrium state, when the excess free energ
the matrix is counterbalanced by the increased pressur
the drop. Under such conditions the transport of3He into the
drop can occur only in connection with stress relaxation.
the other hand, the presence of stresses leads to a slowi
the diffusion owing to the disruption of the energy levels
the 3He impurities in the neighboring sites of the lattice a
the direct influence of the elastic potential gradient on
diffusion flux, as was noted in Ref. 3. Confirmation of th
reality of the influence of stress relaxation is provided by
presence of pronounced irregularities in the later stage
the phase separation~see inset A in Fig. 2!. We note that the
possibility of slowing of the phase transition under the infl

FIG. 3. Pressure after a cooling–heating cycle versus the number o
cycle for two samples: solid inclusions~a! and liquid inclusions~b!.
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ence of the stresses that arise was pointed out in Ref.
Unusual behavior of the pressure at the start of the sec
and subsequent cycles~inset B in Fig. 2! may also be inter-
preted as being a consequence of the partial stress relax
on account of the increased mobility of the3He atoms upon
the onset of large¹x.

2. It could be that the crystals and liquid coexist in som
inclusions. This would require that the pressure inside th
inclusions be equal to the melting pressurePm , which is
around 29 bar, i.e., it would have to differ from the bu
value by approximately 3 bar. Such a pressure differe
cannot arise in the later states of the phase separation
cess, since at such aDP it would not be possible to have
equality of the chemical potentials. However, it could ar
as a consequence of the specifics of nucleation in the g
case. Because of the severalfold difference of the surf
tension at the boundary of the solid separated phases1! and
the liquid and crystal, the critical radius of nucleation f
liquid inclusions is larger than that for the solid inclusions
the same factor. Consequently, the formation of solid nu
is more probable, and they will melt in the later stages. Ho
ever, the melting involves a large increase in volume, wh
can lead to plastic deformation and hardening of a laye
the boundary of the nucleus. This, on the one hand, can
to preserve the excess pressure, and, on the other, can h
the influx of the3He atoms toward the nucleus. It is ver
difficult to estimate this effect; we note only that the pos
bility of coexistence of the liquid and crystal under noneq
librium conditions was mentioned in Refs. 4 and 5.

4. GROWTH KINETICS OF THE LIQUID DROPS

The growth kinetics of liquid inclusions in a crystallin
matrix was studied under stepped cooling of a two-ph
crystal below the phase separation temperature. A ther
gram of this cooling and the corresponding pressure cha
are shown in Fig. 4. As in the experiments with so
inclusions,1,4 the temperature was changed in each cool
step by 10–15 mK, after which the a temperature stabili
tion was carried out. The state of the two-phase crystal w
monitored from the change in pressure, and the estab
ment of equilibrium between the coexisting phases at e
step corresponded to the condition that the pressure
longer changed with time~i.e., it reached a plateau!.

Figure 5a shows in enlarged scale the typical press
change over the course of a step, which reflects the gro
kinetics of the liquid drops as the temperature is lower
Previously4 in the case of solid inclusions the analogous d
pendence was well described by an exponential law,

P5Pf2~Pf2Pi !exp~2t/t!, ~4!

wherePi andPf are the pressure in the crystal at the beg
ning and end of the step, respectively, andt is a character-
istic time that determines the rate of the process. The t
dependence ofP(t) found in the present experiments cann
be satisfactorily described by relation~4!. This is particularly
evident in Fig. 5b, where the results are plotted on a lo
rithmic scale—one can see a clear deviation from linear
An analytical description of the data obtained within t
scatter of the experimental points turned out to be poss
only by using a sum of two exponentials:

he
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P5Pf1A exp~2t/t1!1B exp~2t/t2!, ~5!

which is natural to regard as evidence of a superposition
two processes. Figure 6a shows the temperature depend
of the time t1 characterizing the faster process, andt(T)
obtained in Ref. 1 for a sample with nearly the same mo
volume,V520.57 cm3/mole. The good agreement of the r
sults allows us to conclude that the faster process in our
is evidence of a diffusion mechanism of decay. The displa
ment of the minimum of thet(T) curve to higher tempera
tures can be regarded as confirmation of the explanatio
this minimum proposed in Ref. 3, where it was interpreted
being due to the fact that the diffusion processes are affe
by the stresses arising in the decay. In our case these str
are clearly greater and are therefore manifested at hig
temperatures~concentrations!. The shift of the minimum can
turn out to be larger if the aforementioned departure fr
equilibrium of the concentrations is appreciable.

Figure 6b shows the temperature dependence of
longer timet2 , which can be associated with the aforeme
tioned relaxation of the local stress. If in accordance with
data of Ref. 4 we assume that the diffusion of atoms in
sample is promoted by stress relief, then the observed
crease int2 as the temperature is lowered~to the temperature
of the minimum on thet(T) curve in Fig. 6a! can be ex-
plained by an increase in the mobility of the3He atoms.

FIG. 4. Thermogram~a! and the kinetics of the pressure change~b! during
the stepped cooling of a two-phase crystal containing liquid drops.
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In the last stage of the decay processes, as in inset
Fig. 2, a nonmonotonic dependence ofP(t) was observed,
which is manifested especially clearly in the low-temperat
region, when the concentration gradients are small from
very beginning. Figure 7 shows the data for the phase se
ration process atTf591 mK, and we see the instability o
the pressure in the two-phase crystal.

5. KINETICS OF DISSOLUTION OF THE LIQUID DROPS

According to the state diagram, as the temperature of
two-phase crystal is increased the amount of the liquid
solid phase which is precipitated in the form of inclusions
the crystalline matrix should decrease. This corresponds
process of ‘‘dissolution’’ of the drops, which leads to a d
crease in the pressure of the system~see Fig. 8!. Here analy-
sis of theP(t) curves obtained under the conditions of t
present experiment showed that, as during the growth of
drops, these curves can be described by a superpositio
two exponential functions@formula ~5!# with time constants
t1* andt2* , but in this case their values are poorly reprodu

FIG. 5. a—Typical variation of the pressure in a two-phase crystal withi
single temperature step~Ti5184 mK; Tf5173 mK!; b—the same data plot-
ted in the coordinates ln(Pf2P)/(Pf2Pi)(t). The curve corresponds to a
approximation according to formula~5!.
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ible and a large scatter of the data is observed. Neverthe
it can be noted thatt1* and t2* depend weakly on the tem
perature~concentration!.

FIG. 6. Temperature dependence of the characteristic timet1 ~s—V
520.92 cm3/mole!; plotted for comparison are the values oft(T) for solid
inclusions~j—V520.57 cm3/mole; Ref. 1! ~a! andt2 ~b!.

FIG. 7. Kinetics of the change in temperature~a! and pressure~b! during
phase separation of a two-phase crystal containing liquid drops at low
peratures~Ti5101 mK, Tf591 mK!.
ss,

Furthermore, whereas in the case of solid inclusions
time constants of the growth~t! were always larger than th
corresponding time constants for the dissolution (t* ),4 for
inclusions in the form of liquid drops,t1 andt2 are approxi-
mately equal tot1* andt2* , respectively.

6. CONCLUSION

The present experiments have established that the k
ics of the liquid drops of the concentrated phase formed i
crystalline matrix of the dilute phase is substantially infl
enced by the large local stresses arising on account of
difference in the molar volumes of the phases. This lead
the situation that the diffusional transport of3He is greatly
suppressed and occurs only in connection with the stress
laxation. For this reason the growth kinetics of the liqu
drops can be described by a superposition of two expone
functions, corresponding to the presence of two processe
diffusional decay with a short time constant, and stress
laxation with a long time constant.

We have shown that repeated cycles of growth and
solution of the liquid drops lead to an increase in the press
of the crystal ~plastic deformation of the crystal occurs!.
Here the experimental value of the total pressure change
to the phase transition turns out to be almost a factor of th
smaller than the calculated value of the pressure jump du
the phase separation at a constant volume.

These effects can be explained on the basis that the
centrated phase is a mixture of liquid and crystal, since in
initial stage of the transition the formation of solid nuclei
more probable. The subsequent melting of the new-ph
inclusions enhances the stress in the crystal and can lea
-

FIG. 8. Thermogram~a! and the kinetics of the pressure variation~b! during
heating of a two-phase crystal~Ti5125.6 mK,Tf5132.7 mK!.
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plastic deformation and the suppression of mass transp
This gives rise to a nonequilibrium concentration of3He in
the matrix of solid4He. We have established that the diss
lution of the liquid drops can also be described by a sup
position of two processes, although, in view of the poor
producibility of the results, it is difficult to analyze them a
yet.

*E-mail: rudavskii@ilt.kharkov.ua
1!The surface tension at the phase boundary of the separated solid sol

was not measured, but one can assume that it is smaller than at the b
ary of liquid solutions, where it has a value'231025 J/m2 ~see, e.g., Ref.
14! and becomes smaller as the pressure increases. The surface ten
the boundary of liquid and solid3He was measured in Ref. 15.
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SUPERCONDUCTIVITY, INCLUDING HIGH-TEMPERATURE SUPERCONDUCTIVITY

Superconducting transition temperature and isotope exponent in superconductors with
low Fermi energies

M. E. Palistrant*

Institute of Applied Physics, ul. Akademicheskaya 5, 2028 Kishinev, Moldova
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A study is made of superconductivity in systems with a variable density of charge carriers,
strong electronic correlations~which influence the electron–phonon interaction!, and low Fermi
energies. This last circumstance leads to violation of the Migdal theorem and makes it
necessary to take into account the vertex and crossed diagrams for the electron–phonon interaction
(Pv ,Pc). Two- and three-dimensional systems are considered. The values ofPv andPc are
found, and the equation for the momentum cutoffQc of the electron–phonon interaction is derived.
The dependence of this quantity on the concentration of charge carriers is demonstrated.
Expressions are obtained for the superconducting transition temperatureTc and the isotope
exponenta, and their behavior as functions of the carrier concentration is analyzed.
The values of the carrier densities for which superconductivity can occur in two- and three-
dimensional systems are determined. ©2000 American Institute of Physics.
@S1063-777X~00!00506-5#
a
d

th
re
re

ob
on
,
n
y
d

on
u
.
th
le
t
n

g-
co
iffi
lt
er
sy
de
n
o

st
on

of
e of
n-

ha-

ia-
ture
nic

dal
is
ver-
the
cle
er-
-

of
ap-
e of
on

uch
xed

nce

t in
1. INTRODUCTION

A rich body of experimental and theoretical research m
terial on oxide ceramics has been accumulated since the
covery of high-temperature superconductivity. However,
description of the physical properties of these materials
mains one of the most difficult problems in low-temperatu
physics today. This is because of the complexity of the
jects of study: they have a complex crystal structure, str
anisotropy, anomalies in the electronic energy spectrum
variable concentration of charge carriers, strong electro
correlations, and so on. Models for the analysis of such s
tems apparently should be based on the Hubbard mo
which takes into account the strong electronic correlati
due to the Coulomb interaction of the electrons, and sho
take into account the strong electron–phonon interaction
review of the different approaches to this problem and
approximations used in them is given in Ref. 1, for examp

A special diagrammatic technique that permits one
take into account the strong electronic correlations a
strong electron–phonon interaction has been developed
such systems.1–4 This theory contains dielectric and ma
netic phase transitions and the possible onset of super
ductivity. However, because of the great mathematical d
culties it is hard to obtain any meaningful physical resu
without making some substantial simplifications. Moreov
at a certain carrier density a metallic states arises in the
tem, in which the electronic states are modified but not
stroyed by correlations. Consequently, there can be a tra
tion to the superconducting state, with the formation
Cooper pairs~the BCS scenario! or local pairs~the Shafroth
scenario!. In this connection it is unquestionably of intere
to apply Fermi-liquid concepts to the study of the superc
ducting properties of high-Tc superconductors~HTSCs! with
4071063-777X/2000/26(6)/7/$20.00
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allowance for their peculiar features, such as overlapping
the energy bands at the Fermi surface and the presenc
various kinds of van Hove–Lifshitz singularities, strong a
isotropy, variable carrier density~including small values!
etc., when treating both phononic and nonphononic mec
nisms of superconductivity.5–15

Another interesting question is the influence of nonad
baticity effects on the superconducting transition tempera
Tc , since in HTSC materials, as in fullerenes and orga
superconductors, the Fermi energyEF and Debye energyv0

are quantities of the same order. As a result, the Mig
theorem,16 which is used in the BCS–Bogolyubov theory,
violated, and it becomes necessary to take into account
tex and ‘‘crossed’’ diagrams in the mass operators for
Green functions corresponding to additional many-parti
effects. The matter of estimating the contribution of the v
tex functions and their influence onTc and the isotope expo
nenta has been the subject of a number of papers.17–21 Be-
sides the Migdal parameterm5v0 /EF , one introduces a
momentum cutoff of the electron–phonon interaction,Qc ,
the smallness of which is determined by the presence
strong electronic correlations in the system. Such an
proach is based on the results of studies of the influenc
strong electronic correlations on the electron–phon
interaction.22,23

A three-dimensional~3D! system with symmetric filling
of the energy bands was considered in Refs. 18 and 19. S
a model can describe various nonadiabatic systems at fi
values of the parametersm andQc . The imaginary parts of
the vertex functions were neglected as being small, si
they are proportional to the parameterQc , which is assumed
small. No attempt was made to obtain an equation forQc .
Consequently, taking nonadiabaticity effects into accoun
© 2000 American Institute of Physics
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such systems in the region of smallQc can lead to an appre
ciable increase in the superconducting transition tempera
and one can easily obtain values ofTc corresponding to
HTSC materials even at intermediate values of the coup
parameterl;0.5– 1.

In the case of adiabatic systems of E´ liashberg equations
it follows that such values ofTc can be attained at very larg
coupling constantsl'3.24

It has been shown25 that at very low carrier concentra
tions (v0@EF) the Migdal theorem is valid, and, hence, th
effects of nonadiabaticity are unimportant in that case.

In HTSCs the density of charge carriers is a varia
quantity because of the introduction of oxygen or impuriti
It therefore becomes necessary to construct a theory of
perconductivity for nonadiabatic systems with an asymm
ric ~arbitrary! filling of the energy bands. Furthermore, th
strong anisotropy of the system should be taken into acco

In this paper we investigate the dependence of the su
conducting transition temperatureTc and the isotope expo
nent a on the density n of charge carriers for two-
dimensional~quasi-two-dimensional! and three-dimensiona
systems. We do not neglect the imaginary parts of the ve
functionsPv andPc ~unlike Refs. 17–21!, and we show that
taking them into account will lead to a restriction on t
values of the carrier density for which superconductivity c
occur in the system. HereQc , the momentum cutoff of the
electron–phonon interaction, is not a parameter of the the
but satisfies a certain equation and depends onn. The char-
acter of the dependence is dictated by the dimensionalit
the system. In the case of symmetric filling of the ener
band in the 3D case,18,19 superconductivity can occur in th
system only forQc50. Consequently, treating the value
Qc as a parameter of the theory free to take on differ
values is unjustified in a system with symmetric filling of th
energy band.

This paper is arranged as follows. In Sec. 2 we pres
expressions for the mass operatorsM (p,V) andS(p,V) and
the vertex functionsPv(pp1 ,VV1), Pc(pp1,VV1). In Sec.
3 we calculate the vertex functions for a two-dimensio
~2D! system. Section 4 is devoted to a determination of
superconducting transition temperature, an equation forQc ,
and the isotope exponenta in a 2D system. In Sec. 5 w
consider the vertex functions and the equations forQc in a
3D system. In Sec. 6 we analyze the results and draw c
clusions.

2. THE GREEN FUNCTIONS AND MASS OPERATORS

As in Refs. 18 and 19, we start with a Hamiltonian of t
Frölich type, including an electron–phonon interaction w
an interaction constant specified by the relation

gpp8
2

5g2gu~qc2up2p8u!. ~1!

The value ofg is found from the condition

^^gpp8
2 &&FS5g2, ~2!

where^^...&&FS denotes averaging over the Fermi surface.
the 2D caseg5p/Qc , and in the 3D caseg51/Qc

2 , Qc

5qc/2pF .
This model set of interaction constants is based on

results of Refs. 22 and 23, according to which the prese
re,
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of strong electronic correlations in the system introduce
structure to the electron–phonon interaction constantg(q),
with a momentum cutoffqc!2pF .

On the basis of perturbation theory26 for the mass opera
tors, near the superconducting transition temperature~for T
;Tc! we have

M ~p!5
1

bV (
p1V1

VN~pp1!G~p1V1!, ~3!

S~p!52
1

bV (
p1V1

VS~pp1!G~p1V1!G~2p12V1!, ~4!

where

VN~pp1!52D~p2p1 ,V2V1!

3F12
1

bV (
p2Q2

D~p2p2 ,V2V2!G~p11p2

2p ,V11V22V!G~p2 ,V2!G , ~5!

VS~pp1!52D~p2p1 ,V2V1!

3H 12
1

bV (
p2V2

@D~p2p2 ,V2V2!G

3~p11p22p,V11V22V!G~p2 ,V2!

1D~p2p2 ,V2V2!G~p2p12p2 ,V2V1

2V2!G~2p2 ,2V2!#J 1
1

bV (
p2V2

D

3~p22p1 ,V22V1!D~p2p2 ,V2V2!G

3~p22p2p1 ,V22V2V!G~p2 ,V2!. ~6!

The first term of the effective interactions~5! and ~6! corre-
sponds to the adiabatic contributions, while the remain
terms come from taking into account the diagrams w
crossing lines of the electron–phonon interaction.

The expression for the Matsubara electron Green fu
tion has the form

G~p,V!5
1

iV2M ~p,V!2«p
. ~7!

For the phonon Green function we choose an Einstein sp
trum with frequencyv0 :

D~p2p1 ,V2V1!52gpp1

2
v0

2

~V2V1!21v0
2 . ~8!

We introduce the notation

Pv~pp1 ,VV1!5
1

bV

g

N0
(

p2V2

u~qc2up2p2u!
v0

2

~V2V2!2

1v0
2G~p2 ,V2!G~p11p22p,

V11V22V!, ~9!
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Pc~pp1 ,VV1!5
1

bV

g

N0
(

p2V2

u~qc2up2p2u!

3
v0

2

~V2V2!2 1v0
2G~p22p2p1 ,

V22V2V1!G~p2 ,V2!.

In this notation expressions~5! and ~6! can be rewritten as

VN~pp1!52D~p2p1 ,V2V1!@11lPv~pp1 ,VV1!#,
~10!

VS~pp1!52D~p2p1 ,V2V1!@11lPv~pp1 ,VV1!

1lPv~pp1 ,2V2V1!1lPc~pp1 ,VV1!#.

~11!

Let us consider a 2D system and introduce a quadratic
persion relation for the electron:

«p5
px

21py
2

2m
2m. ~12!

3. VERTEX FUNCTIONS

We substitute the zeroth approximation for the Gre
function ~7! into expression~9! and change from summatio
over p2 ,V2 to integration. In the case of a 2D system th
change is made according to the formula

1

bV (
p2V2

F~p2 ,V2!5N0E
0

2p dw

2p E
2m

W2m

d«p2

1

2p

3E
2`

`

dV2F~p2 ,V2!, ~13!

whereN05m/2p is the electronic density of states,W is the
width of the energy band, andm is the chemical potential
We assume thatTc!v0 , so that we can consider the lim
Tc→0 and do the integration over the frequencyV2 in the
usual way.

Now assuming that the momentum transfer is smallq
5up2p1u!2pF , we do the integration over the energy«p2

and over the angular variable, using the computatio
method of Ref. 19 as applied to the 2D case. The express
thus obtained for the functionsPv,c(pp1 ,VV1) are then sub-
stituted into ~5! and ~6! and the resulting expressions a
averaged over the Fermi surface:

^VN~pp1!&FS5
v0

2

~V2V1!21v0
2 g2@11lPv~Qc ,VV1!#,

~14!

^VS~pp1&&FS5
v0

2

~V2V1!21v0
2 g2@11lPv~Qc ,VV1!#

1lPc~Qc ,2V2V1!

1@lPc~Qc ,VV1!#. ~15!

Here

Pv,c~Qc ,VV1!5
p

Qc
^^u~qc2up2p1u!

3Pv,c~pp1 ,VV1!&&FS . ~16!
s-

n
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For V50, V15v0 and 2EQc
2,m,W/2 the expressions fo

the functionsPv,c(Qc ,VV1) can be brought to the form

Pv~Qc,0,v0!5v0B~0,v0!1FA~0,v0!

v0
2v0B~0,v0!G

3F12
E2

v0
2

4

9
Qc

4G1
E

v0
C~0,v0!

Qc
2

2

1 i H v0B1~0,v0!1FA1~0,v0!

v0
2v0B1~0,v0!G

3F12
E2

v0
2

4

9
Qc

4G1
E

v0
C1~0,Q1!

Qc
2

2 J , ~17!

Pc~Qc,0,v0!5v0B~0,2v0!1FA~0,2v0!

v0

2v0B~0,2v0!GF12
E2

v0
2

11

45
Qc

4G
1

E

v0
C~0,2v0!

Qc
2

6
1 i H v0B1~0,2v0!

1FA1~0,2v0!

v0
2v0B1~0,2v0!G

3F12
E2

v0
2

11

45
Qc

4G1
E

v0
C1~0,2V1!

Qc
2

6 J ,

~18!

where

E54EF , EF5
pF

2

2m
,
A~0,v0!

v0

5
p

4
2

1

2
arctan

1

11m

2
1

2
arctan

1

W̄2m̄11
,

v0B~0,v0!52
1

2 H ~11m̄ !@~11m̄ !212#

@~11m̄ !211#2

1
~W̄2m̄11!@~W̄2m̄11!212#

@~W̄2m̄11!211#2 J , ~19!

E

v0

C~0,v0!5
1

m H ln
W̄2m̄11

11m̄
2

1

2
ln

~W̄2m̄11!211

~m̄11!211

2
1

~11m̄ !211
1

1

~W̄2m̄11!211
J ,

A1~0,v0!

v0
52

1

4 H ln
~W̄2m̄11!211

~m̄11!211
22 ln

W̄2m̄11

11m̄ J .
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v0B1~0,v0!5
1

2 F 1

~11m̄ !211
2

1

~W̄2m̄11!211
G

2
1

4
F ~11m̄ !221

@~11m̄ !211#2

2
~W̄2m̄11!221

@~W̄2m̄11!211#2G , ~20!

E

v0

C1~0,v0!5
2

m H arctan
1

11m̄
2

p

2
1arctan

1

W̄2m̄11

2
11m̄

~11m̄ !211
2

W̄2m̄11

~W̄1m̄11!211
J .

Here

m̄5
m

v0
; W̄5

W

v0
; m5

2v0

E
.

4. CRITICAL TEMPERATURE AND EQUATION FOR Qc

Substituting~14! and ~15! for V50 and V15v0 into
Eqs.~3! and ~4! averaged over the Fermi surface, we obta

M ~V!5
g2

bV (
p1V1

v0
2

~V2V1!21v0
2

3@11lPv~Qc,0,v0!#G~p1V1! ,

S~V!5
g2

bV (
p1V1

v0
2

~V2V1!21v0
2 ~21!

@112lPv~Qc,0,v0!lPc~Qc,0,v0!#

3G~p1V1!S~V1!G~2p12V1!. ~22!

Substituting expression~7! into ~21! and doing the integra
tion over energy with allowance for the electron–hole asy
metry ~13!, we obtain

Im M ~V!52lz

1

b
(
V1

v0
2

~V2V1!21v0
2

Ṽ1

uṼ1u

3Farctan
W2m

uṼ1u
1arctan

m

uṼ1u
G

2l2 Pv~Qc,0,v0!
1

b
(
V1

v0
2

~V2V1!21v0
2

3
1

2
ln

~W2m!21Ṽ1
2

m21Ṽ1
2

, ~23!

where

lz5l@11l RePv~Qc,0,v0!#. ~24!

The expression forṼ reduces to the form

Ṽ5V2Im M ~V!5VZ1Z1 , ~25!
-

where

Z5Z~0!511lz

1

2
F W̄2m̄

W̄2m̄11
1

m̄

m̄11
G ,

Z15l2 Im Pv~Qc,0,v0!
v0

4
ln

~W̄2m̄ !211

m̄211
. ~26!

As a result,

G~pV!5
1

i @VZ1Z1#2«p
. ~27!

Substituting~27! into ~22! and doing the integration ove
energy, we obtain

S~V!5
1

b (
V1

~lD1 il2d!S~V1!
1

V1Z

3@F1~V1!1 iF2~V1!#
v0

2

~V2V1!21v0
2 , ~28!

where

F1~V1!5
ZV11Z1

uZV11Z1u
1

2 Farctan
W2m

uZV11Z1u

1arctan
m

uZV11Z1uG1
ZQ12Z1

uZV12Z1u

3
1

2 Farctan
W2m

uZV12Z1u
1arctan

m

uZV12Z1uG ,
~29!

F2~V1!5
1

2
ln

~W2m!21~ZV12Z1!2

m21~ZQ12Z1!2

2
1

2
ln

~W2m!21~ZV11Z1!2

m21~ZV11Z1!2 , ~30!

lD5l~112l RePv~Qc,0,v0!1l RePc~Qc,0,v0!!,

d5Im@2Pv~Qc,0,v0!1Pc~Qc,0,v0!#. ~31!

It follows from Eq. ~28! that S(V) is a complex quantity.
We make the substitutionS5S11 iS2 in Eq. ~28! and write
a system of equations for the real and imaginary parts:

S1~V!5
v0

2

V21v2 V1A1
02

v0
2

V21v0
2 V2A2

0;

S2~V!5
v0

2

V21v0
2 V2A1

01
v0

2

V21v0
2 V1A2

0. ~32!

Here

A1
05

1

b (
V1

v0
2

V1
21v0

2

F1~V1!

V1Z
S1~V1!;

A2
05

1

b (
V1

v0
2

V1
21v0

2

F1~V1!

V1Z
S2~V1!. ~33!

Substituting~32! into ~33!, we obtain

A1
05A1

0V1jc2A2
0V2jc ; A2

05A1
0V2jc1A2

0V1jc , ~34!
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where

jc5
1

b (
V1

v0
4

~V1
21v0

2!2

F1~V1!

V1Z
. ~35!

The superconducting transition temperatureTc is determined
from the condition that the system of equations~34! be solv-
able, which gives

~V1
21V2

2!jc
222V1jc1150, ~36!

and, hence,

jc5
V16A2V2

2

V1
21V2

2 . ~37!

The solution forjc is real if V250. This condition leads to
the expression

jc.1/V'1/lD ~38!

and to the additional equation

V25lD

F2~v0!

F1~v0!
1l2d50. ~39!

Keeping only terms of orderl2, we reduce this last equatio
to the form

Im@2Pc~Qc ,v0!1Pc~Qc ,v0!#50. ~40!

This equation determines the cutoff parameterQc for the
electron–phonon interaction for a givenm or n. On the basis
of Eqs.~40!, ~17!, and~18! we get

aQc
42bQc

22d50, ~41!

where

a5
29

45S 2

mD 2FA1~0,v0!

v0
2v0B1~0,v0!G ;

b'
5

3m
C1~0,v0 ,m!;d5

A1~0,v0!

v0
. ~42!

From the definitions of the coefficients~42! it follows that
a!b, and, since we are seeking a solutionQc

2!1, this solu-
tion can be written in the form

Qc
252d/b. ~43!

Sinceb,0, Qc is real-valued ford.0, which is equivalent
to the conditionm,W/2. Consequently, superconductivi
can arise in the 2D system. Taking this lower limit onm into
account, we find that this theory can be used in the inte
2EQc

2,m,W/2. In this interval of carrier densities, supe
conductivity can exist in a quasi-2D system on the basis
the electron–phonon interaction in the presence of str
electronic correlations. Form5W/2 we haved50 and b
Þ0. Consequently, it follows from~43! thatQc50. It can be
shown that forQcÞ0 and symmetric filling of the energ
band, superconductivity is absent in the system, since co
tion ~40! is not satisfied.

After doing the integration overV1 in ~35!, we obtain an
expression for the superconducting transition tempera
Tc :
al

f
g

i-

re

Tc5
1,13v0@~W̄2m̄ !m̄#1/2

Ae@W̄2m̄11!~m̄11!] 1/2

3expH 2
Z

lD

1
1

4 F 1

W̄2m̄11
1

1

m̄11G J . ~44!

We supplement this expression with the equation for
chemical potential

n5
2

bV (
kV

G~kV!eiV01
, ~45!

wheren is the density of charge carriers.
After substituting expression~27! into ~45! and doing the

integration overV in the limit Tc /v0!1 and the integration
over energy in the usual way, we obtain

m̄5Zn̄, ~46!

wherem̄5m/v0 , n̄5n/(2N0v0), andZ is determined from
formula ~26!.

A joint analysis of~44! and ~46! yields the dependenc
of Tc on the carrier concentrationn̄. As n̄ increases, the
value ofTc increases to a maximum value near the symm
ric filling of the energy band,m5W/2. Form.W/2 one has
Tc50, since the system of equations~34!, which determines
the value ofTc , is incompatible. It follows that supercon
ductivity is possible in the interval 0,m̄,W̄/2 in 2D sys-
tems. Thanks to the inclusion of nonadiabaticity effects, h
Tc’s, corresponding to HTSCs, are attained at intermed
values of the coupling parameterl;0.5– 1. In contrast, the
values of the temperatureTc obtained on the basis of Eqs
~44! and~46! for adiabatic systems (Pv5Pc50) correspond
to the case of ordinary superconductors and cannot re
high values at intermediate values of the coupling constanl.
In that case, high values ofTc are reached forl'3.

For the isotope exponent we obtain, on the basis of~44!,

a52
d ln Tc

d ln M
5

1

2 F11
d ln~Tc /v0!

d ln v0
G , ~47!

where

d ln~Tc /v0!

d ln v0

52
1

4
F W̄2m̄12

~W̄2m̄11!2
1

m̄12

~m̄11!2G
2

1

lD

dZ

d ln v0

1
Z

lD
2

dlD

d ln v0

, ~48!

dZ

d ln v0

52
1

2 H l2

2
F m̄

~m̄11!211
1

W̄2m̄

~W̄2m̄11!211
G

3F W̄2m̄

W̄2m̄11
1

m̄

m̄11
G

1lzF W̄2m̄

~W̄2m̄11!2
1

m̄

~m̄11!2G J ,
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dlD

d ln v0

52
3l2

2
F m̄

~m̄11!211
1

W̄2m̄

~W̄2m̄11!211
G .

~49!

In obtaining these formulas we dropped terms containin
dependence onQc , since their contribution is negligible fo
Qc!1. Analysis of these formulas suggests that the value
the isotope exponenta depends substantially on the param
eters l and W. At small n the isotope exponenta
;0.2– 0.3 and increases with increasingn. For example, for
l50.5 andW̄56, one obtainsa'0.4 for values nearm
5W/2.

5. THE CASE OF A THREE-DIMENSIONAL SYSTEM

We now do the same calculation as in Ref. 19 but fo
variable carrier density~electron–hole asymmetry! and with-
out neglecting the imaginary part of the functionsPv and
Pc . In this case we make the change from summation
integration in the vertex functions~9! according to the for-
mula

1

bV (
p2V2

F~p2 ,V2!5N0E
0

2p dw

2p E
0

p sina

2
da

3E
2m

W2m

d«p2

1

2p E
2`

`

dV2F~p2 ,V2!,

~50!

whereN05mpF/2p2.
Doing the calculation in a manner analogous to the

case with the use of~50!, we obtain for the quantities aver
aged over the Fermi surface

Pv,c~Qc ,VV1!5
1

Qc
2 ^^u~qc2up

2p1u!Pv,c~pp1 ,VV1!&&FS , ~51!

Pv~Qc,0,v0!5v0B~0,v0!1FA~0,v0!

v0
2v0B~0,v0!G

3F12
E2

v0
2

1

2
Qc

4G1 i Fv0B1~0,v0!

1FA1~0,v0!

v0
2v0B1~0,v0!G

3F12
E2

v0
2

1

2
Qc

4G J , ~52!

Pc~Qc,0,v0!5v0B~0,2v0!

1FA~0,2v0!

v0
2v0B~0,2v0!G

3F12
E2

v0
2

11

6
Qc

4G1
E

v0
C~0,2vc!Qc

2

1 i H v0B1~0,2v0!1FA1~0,2v0!

v0

2v0B1~0,2v0!GF12
E2

v0
2

11

6
Qc

4G
a

of

a

o

1
E

v0
C1~0,2vc!Qc

2J . ~53!

Expressions~52! and ~53! differ from the corresponding ex
pressions for the 2D case,~17! and~18!, by the values of the
numerical coefficients in the terms containingQc

2 andQc
4 .

In a 3D system the quantitieslD ~31!, lz ~24!, andZ are
determined by the vertex functions~52! and ~53!.

On the basis of Eq.~40! and relations~52! and~53!, we
obtain an equation for determining the momentum cutoffQc

of the electron–phonon interaction in a 3D system:

a1Qc
42b1Qc

21d150, ~54!

where

a15
5

6 S 2

mD 2FA1~0,v0!

v0
2v0B1~0,v0!G ;

b15
2

m
C1~0,v0!; d5

A1~0,v0!

v0
5d, ~55!

or

Qc
25d1 /b1 . ~56!

Sinceb1,0, the values ofQc are real ifd1,0. This condi-
tion corresponds tom.W/2. Consequently, at high carrie
densities superconductivity can exist in a 3D nonadiab
system with strong electronic correlations (Qc!1) on the
basis of the electron–phonon interaction mechanism.
value of Tc is maximum form'W/2 and falls off with in-
creasingn(m), and form5W we haveTc50 ~Eq. ~44!!.

Let us now turn to the limit of symmetric filling of the
energy band in a 3D system, in order to compare our res
with Ref. 19. Making the substitutionW2m→E/2 and m
→E/2, we find that a number of the coefficients vanis
C(0,v0)50, A1(0,v)/v050, v0B1(0,v0)50. The coeffi-
cientsA(0,v0)/v0)/v0 and v0B(0,v0) go over to the cor-
responding expressions of Ref. 19 forQc!1, but the quan-
tity b152C1(0,v0)/mÞ0 is absent in Ref. 19. In our cas
Eq. ~54! becomes

b1Qc
250. ~57!

Sinceb1Þ0, we must haveQc50. On the other hand, if we
setb150, as was done in Ref. 19 as a result of neglecting
imaginary part of the vertex functionPc , then Eq.~57! is
satisfied for anyQc , and, consequently, in that case it can
treated as a parameter of the theory. Apparently, in the mo
considered in Ref. 19, after the calculations are done
Qc!1 one should letQc→0. For QcÞ0 superconductivity is
absent in such a system, since the quantityjc ~37!, which
determines the superconducting transition temperature,
complex quantity.

6. CONCLUSION

We have proceeded from the assumption that the o
of superconductivity in the system is due to the electro
phonon interaction. The presence of strong electronic co
lations, however, promotes the realization of small values
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the momentum transfer~small values of the momentum cu
off of the electron–photon interaction!.22,23 This theory is
also applicable in the case of an arbitrary electron–bo
interaction leading to superconductivity, provided the ch
acteristic boson frequencyv0;EF andqc!2pF .

We have studied the influence of nonadiabaticity effe
~the contribution of the vertex and crossed diagrams for
electron–phonon interaction in the mass operators! on the
superconducting transition temperatureTc and the isotope
exponenta in systems with a variable carrier density. W
have considered quasi-2D and 3D systems without includ
fluctuations, which we have assumed to be small.

Main conclusions

1. A decisive role in determining whether or not supe
conductivity is possible at a given carrier density in HTS
is played by the dimensionality of the system.

2. In a quasi-2D system superconductivity arises at l
carrier concentrations, the value ofTc increases with increas
ing carrier concentration up to valuesm<W/2, after which
further increase inm leads to vanishing of the supercondu
tivity.

3. In a 3D system superconductivity can arise form
.W/2, i.e., at high carrier concentrations; the value ofTc is
maximum atm5W/2 and goes to zero atm5W.

4. It can be assumed that at low carrier concentrati
the electronic system in the HTSC is quasi-2D~highly aniso-
tropic!, and with increasing carrier concentration due to
introduction of oxygen or an impurity, the distribution o
electrons in space becomes more isotropic, and a trans
from two-dimensionality to three-dimensionality occur
Then superconductivity exists in the entire range of val
0,m,W, and the superconducting transition temperat
will be given by formula~44! with all of the quantities ap-
pearing in it determined on the basis of a 2D system fom
,W/2 and on the basis of a 3D system form.W/2. Here the
dependence ofTc on the carrier concentration will have
bell-shaped form. Owing to the nonadiabaticity effect, t
maximum value ofTc will reach values typical of HTSCs a
an intermediate value of the parameterl.

5. The cutoff parameter of the electron–phonon inter
tion, Qc , in the case of 2D and 3D systems obeys Eqs.~41!
and ~54!, respectively, which derive from the condition~39!
that jc , which determines the superconducting transit
temperatureTc , be real. At the pointm5W/2 one hasQc

50. Accordingly, Qc falls off with increasingm for a 2D
system and increases withm for a 3D system, and thus it is
function of the carrier concentration.

6. The isotope exponent increases with increasing ca
n
-

s
e

g

-
s

s

e

on
.
s
e

-

n

er

concentration for a 2D system and decreases for a 3D
tem.

7. In the case of symmetric filling of the energy band
W2m→E/2 andm→E/2 ~Ref. 19!, superconductivity does
not arise in the system for QcÞ0. It follows that the theory of
Ref. 19 is applicable only in the limitQc→0, and in our
opinion to treatQc as a parameter of the theory, free to ta
on different values, is unjustified.
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Phase fluctuations and pseudogap properties: influence of nonmagnetic impurities
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The presence of nonmagnetic impurities in a 2D ‘‘bad’’ metal depresses the superconducting
Berezinskii–Kosterlitz–Thouless transition temperature while leaving the pairing energy
scale unchanged. Thus the region of the pseudogap nonsuperconducting phase, in which the
modulus of the order parameter is nonzero but its phase is random and which arises at
the pairing temperature, is substantially bigger than for the clean system. This supports the premise
that fluctuations in the phase of the order parameter can in principle describe the pseudogap
phenomena in high-Tc materials over a rather wide range of temperatures and carrier densities. The
temperature dependence of the bare superfluid density is also discussed. ©2000 American
Institute of Physics.@S1063-777X~00!00606-X#
o

or
in
g

m
flu

th
th

C
r
n

fre
a-
c
tiv
th

r
va
ac
o-
ne
ul
de
S

tua-
ter
ore
-
n,
of
n-
y–
rac-
tc.
to

ts

ies
In-
ted
der
mb

to
of

t
rion

rite-
le

vity
1. INTRODUCTION

The differences between the BCS scenario of superc
ductivity and superconductivity in high-Tc materials are well
accepted as experimental facts, although there is no the
ical consensus about their origin. One of the most convinc
manifestations is the pseudogap, or a depletion of the sin
particle spectral weight around the Fermi level~see, for ex-
ample, Ref. 1!. Another transparent manifestation is the te
perature and carrier-density dependences of the super
density in high-Tc superconductors~HTSC!,2–4 which do not
fit the canonical BCS behavior. In particular, the value of
zero-temperature superfluid density is substantially less
the total density of doped carriers.5 Currently there are many
possible explanations for the unusual properties of HTS
One of these is based on the nearly antiferromagnetic Fe
liquid model.6 Another explanation, proposed by Anderso
relies on the separation of spin and charge degrees of
dom. One more approach, which we will follow in this p
per, relates the observed anomalies to precursor super
ducting fluctuations. Some authors argue that alterna
types of superconducting fluctuations are responsible for
pseudogap~e.g. Ref. 7!, while Emergy and Kivelson8 sug-
gest a scenario based on fluctuations of the phase of the o
parameter. The latter scenario we believe to be more rele
due to the low superfluid density and practically 2D char
ter of the conductivity in HTSC mentioned above. A micr
scopic 2D model which elaborates the above-mentio
scenario8 has been studied in Refs. 9 and 10. The res
obtained show that the condensate phase fluctuations in
lead to features which are experimentally observed in HT
both in the normal and superconducting states.1! It is obvi-
4141063-777X/2000/26(6)/5/$20.00
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ous, however, that the present treatment of the phase fluc
tions is incomplete due to both the oversimplified charac
of the model and the absence of an explanation for the m
recent advanced experiments2–4 on the temperature and dop
ing dependences of the superfluid density. It is well know
however, that the theoretical study of HTSC faces a lot
computational difficulties due to, for example, an unconve
tional order parameter symmetry, complex frequenc
momentum dependence of the effective quasiparticle att
tion general form of the quasiparticle dispersion relation, e
Therefore, in order to obtain analytical results, we have
date only considered nonretardeds-wave pairing in the ab-
sence of impurities.~Attempts to consider retardation effec
were made in Ref. 11!.

Nevertheless, a discussion of the effect of impurit
seems to be crucial for a realistic model of the HTSC.
deed, it is known that the itinerant holes in HTSC are crea
by doping, which in turn introduces a considerable disor
into the system, for instance, from the random Coulo
fields of chaotically distributed charged impurities~doped
ions!.12 Thus one of the purposes of the present paper is
study the model of Refs. 9 and 10 but in the presence
nonmagnetic impurities.

In the theory of ‘‘common’’ metals the Fermi energyeF

and the mean transport quasiparticle timet tr are independen
quantities which are always assumed to satisfy the crite
eFt tr@1. In HTSC, which are ‘‘bad’’ metals,8 botheF andt tr

are dependent on the doping and the above-mentioned c
rion may fail.12 As an illustration, we refer to the remarkab
linear dependence of the normal-state resistivity,1 which im-
plies thateFt tr may indeed be;1. It has been shown12 for
strongly disordered metallic systems that superconducti
© 2000 American Institute of Physics
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is absent if the scattering-to-pairing ratio exceeds a crit
value and that superconductivity exists in a finite range
doping if this ratio is not exceeded. We shall not study t
case but rather consider here the more usual~and in some
sense simpler! situation originally studied in the papers o
Anderson13 and Abrikosov–Gor’kov~AG!14 ~see also Ref.
15!, when the superconducting order is preexisting and
criterion eFt tr@1 is satisfied.

The Anderson theorem13 states that in 3D the BCS criti
cal temperature is unchanged in the presence of nonmag
impurities. However, as discussed in,9 the BCS critical tem-
perature in 2D is the temperatureT* at which the pseudoga
opens, while the superconducting transition temperature t
sition is the temperatureTBKT of the Berezinskii–Kosterlitz–
Thouless~BKT! transition. In contrast to the former, the la
ter is defined by a bare superfluid density~given by the
delocalized carriers! which is dependent on~see below! the
concentration of impurities. Thus in the 2D case the sup
conducting transition temperatureTBKT decreases with in-
creasing impurity concentration.

Thus in the model under consideration, the relative s
of the pseudogap phase, (T* 2TBKT)/T* , is larger in the
presence of impurities than in the clean limit.9 Therefore it
can be observed over a wider range of densities. The se
result obtained is that the value of the zero-temperature
perfluid density is less than the total density of carriers~dop-
ants!, so that the presence of impurities may contribute
this diminishing and, in turn, explain the experimen
results.5 Finally, we attempt to interpret qualitatively the re
cent experiments on the temperature dependence of the
perfluid density2,3 within our scenario.

A brief overview of the paper follows: In Sec. 2 w
present the model and derive the main equations. In Se
we compare the results obtained for the clean and dirty l
its. In particular, we compare the values ofTBKT , the relative
sizes of the pseudogap region, and the values of the
superfluid density atT50 and forT close toTr . In Sec. 4 an
attempt is made to give an explanation for the experime
results.2,3

2. MODEL AND MAIN EQUATIONS

Our starting point is a continuum version of the tw
dimensional attractive Hubbard model defined by
Hamiltonian:9,10

H5E d2r Fcs
1~x!S 2

¹2

2m
2m Dcs~x!

2Vc↑
1~x!c↓

1~x!c↓~x!c↑~x!

1U imp~r !cs
1~x!cs~x!G , ~1!

where x5r ; t denotes the space and imaginary time va
ables;cs(x) is a fermion field with spins5↑,↓; m is the
effective fermion mass;m is the chemical potential;V is an
effective local attraction constant, andU imp(r ) is the static
potential of randomly distributed impurities; we take\5kB

51. The model with the Hamiltonian~1! is equivalent to a
model with an auxiliary BCS-like pairing field which i
given in terms of the Nambu variables as
l
f

s
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H5E d2tH C1~x!Ft3S 2
¹2

2m
2m D2t1F~x!

2t2F* ~x!1t3U imp~r !GC~x!1
uF~x!u2

V J , ~2!

where t65(t16 i t2)/2 and t3 are the Pauli matrices, an
F(x)5VC1(x)t2C(x)5Vc↓(x)c↑(x) is the complex or-
dering field. Then the partition function can be presented a
functional integral over Fermi fields~Nambu spinors! and
the auxiliary fieldsF, F* .

However, in contrast to the usual method, the modulu
phase parametrizationF(x)5r(x)exp@iu(x)# is necessary for
the 2D model at finite temperatures~see Refs. 9, 10, 16 an
references therein!. To be consistent with this replaceme
one should also introduce the spin–charge variables for
Nambu spinors

C~x!5exp@ i t3u~x!/2#Y~x!, ~3!

whereY(x) is the field operator for neutral fermions.
From the Hamiltonian~1!, following Ref. 9, one can

derive an effective Hamiltonian which is the Hamiltonian
the classical XY model:

HXY5
1

2
J~m,T,r!E d2r @¹u~x!#2, ~4!

where

J~m,T,r!5
T

16mp2 (
n52`

` E d2k tr@t3^G~ ivn ,k!&#

1
T

32m2p2 (
n52`

` E d2kk2 tr@^G~ ivn ,k!&

3^G~ ivn ,k!&# ~5!

is the bare~i.e., unrenormalized by the phase fluctuation
but including pair-breaking thermal fluctuations! superfluid
stiffness. Here

^G~ ivn ,k!&52
~ ivnÎ 2t1r!hn1t3j~k!

~vn
21r2!hn

21j2~k!
~6!

with

hn511
1

2t tr~vn
21r2!1/2

,

j~k!5
k2

2m
2m, vn5p~2n11!T ~7!

is the AG15 Green’s function of neutral fermions average
over a random distribution of impurities and written in th
Nambu representation.17,18 In writing ~5! we assumed tha
^G( ivn ,k)G( ivn ,k)&.^G( ivn ,k)&^G( ivn ,k)&. This ap-
proximation, as was shown by AG,15 does not change the
final result forJ. Note also that the Green’s function~6! is
valid only wheneFt tr@1, which demands the presence of
well-developed Fermi surface, which in turn implies th
m.eF . Thus one cannot use expression~6! in the so called
Bose limit with m,0.9 On the other hand, a Fermi surfac
can be formed even in bad metals when the Ioffe–Reg
Mott criterion proves to be fulfilled.12
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Substituting ~6! into ~5!, and using the inequalitie
m@T,r to extend the limits of integration to infinity, on
arrives at

J5
m

4p
1

Tm

4p (
n52`

` E
2`

`

dxS 1

x21~vn
21r2!hn

2

2
2vn

2hn
2

@x21~vn
21r2!hn

2#2D . ~8!

Equation~8! is formally divergent and demands special ca
due to the fact that one has to perform the integration ovx
before the summation.15 Finally, one can formally cancel th
divergence15 to obtain

J5
mr2T

4 (
n52`

`
1

~vn
21r2!~Avn

21r211.2t tr!
. ~9!

The temperature of the BKT transition for the XY-mod
Hamiltonian~4! is determined by the equation

TBKT5
p

2
J~m,TBKT ,r~m,TBKT!!. ~10!

The self-consistent calculation ofTBKT as a function of the
carrier densitynf5meF /p requires additional equations fo
r andm, which together with~10! form a complete set.9

When the modulus of the order parameterr(x) is treated
in the mean field approximation, the equation forr takes the
form9

2r

V
5 (

n52`

` E d2k

~2p!2 tr@t1^G~ ivn ,k!&#, ~11!

which formally coincides with the gap equation of the BC
theory. This coincidence allows one to use the Ander
theorem,13 which states that the dependence ofr(T) is the
same as that for the clean superconductor and is not affe
by the presence of nonmagnetic impurities. It is importan
recall that this theorem is, of course, valid only fors-wave
pairing and low disorder.

There are, however, both physical and mathemat
differences9,10 between the gap in the BCS theory andr. In
particular, the temperatureTr which is estimated from the
conditionr50 is not related to the temperature of the sup
conducting transition, but is interpreted as the pseudo
opening temperatureT* ~see details in Ref. 9!. The main
point, which we would like only to stress here, is that
virtue of the Anderson theorem13 the value ofTr does not
depend on the presence of impurities, while the tempera
TBKT , as we will show, is lowered.

The chemical potentialm is defined by the number equa
tion

(
n52`

` E d2k

~2p!2 tr@t3^G~ ivn ,k!&#5nf . ~12!

Since we are interested in the high carrier density region,
solution of ~12! is m.eF , so that in Eqs.~9!–~11! one can
replacem by eF .

Having the temperaturesTr andTBKT as functions of the
carrier density, one can build the phase diagram of
model,9 which consists of three regions. The first one is t
n

ed
o

al

-
p

re

e

e
e

superconducting~here BKT! phase withrÞ0 at T,TBKT .
In this region there is algebraic order, or a power-law dec
of the ^F*F& correlations. The second region corresponds
the pseudogap phase (TBKT,T,Tr). In this phaser is still
nonzero but the correlations mentioned above decay ex
nentially. The third is the normal~Fermi-liquid! phase atT
.Tr wherer50. Note that̂ F(x)&50 everywhere. While
the given phase diagram was derived for the idealized
model, there are indications19,20 that even for such compli-
cated layered systems as HTSC the value of the critical t
perature for them may be well estimated usingTBKT , even
though the transition undoubtedly belongs to the 3D X
class. It was also pointed out in Ref. 19 that a nonzero ga
the one-particle excitation spectrum can persist even with
long-range order.

3. COMPARISON OF THE CLEAN AND DIRTY LIMITS

3.1. Clean limit

The transport timet tr is infinite in the clean limit, so that

J~eF ,T,r~eF ,T!!5
eFr2T

4 (
n52`

`
1

~vn
21r2!3/2. ~13!

NearTr one can obtain from~13!

J~eF ,T→Tr
2 ,r→0!5

7z~3!

16p3

r2

Tr
2 eF , ~14!

wherez(x) is the zeta function. This expression must co
cide with the result from Ref. 9, which was derived using t
opposite order for the summation and integration. Insert
the well-known dependence ofr(T) ~see, for example, Ref
21!

r2~T→Tr
2!5

8p2

7z~3!
Tr

2S 12
T

Tr
D ~15!

and then substituting~14! into ~10!, one obtains the follow-
ing asymptotic expression for the BKT temperature in t
clean limit for high carrier densities:9,22,23

TBKT5TrS 12
4Tr

eF
D , TBKT&Tr . ~16!

In the high-density limit one can also use the equation

Tr5
g

p
A2u«bueF, ~17!

where g51.781 and«b is the energy of the two-particle
bound state in vacuum, which is a more convenient para
eter than the four-fermion constantV.9,24

It is obvious from~16! and ~17! that the pseudogap re
gion shrinks rapidly for high carrier densities,2! and one may
ask ~see, for example, Ref. 25! whether this scenario ca
explain the pseudogap anomalies which are observed ov
wide range of temperatures and carrier densities, since in
clean limit the relative size of the pseudogap region (Tr

2TBKT)/Tr is, for instance, less than 1/2 when the dime
sionless ratioeF /u«bu&128g2/p2.41. A crude estimate26

for the dimensionless ratio for optimally doped cupra
giveseF /u«bu;3.1022103, which indicates that in the clea
superconductor the pseudogap region produced by the p
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fluctuations is too small. Of course, all these estimates
qualitative due to the simplicity of the model.

The value of the bare superfluid densityns(T) is
straightforwardly expressed in terms of the bare phase s
ness,ns(T)54mJ(T). In particular, it follows from~13! that
ns(T50)5nf . This is not surprising, sincens(T50) must
be equal to the total densitynf for any superfluid ground
state in a translationally invariant system,27 and the clean
system is translationally invariant. We note, however,
stated above, thatns(T50)!nf in HTSC.5 Substituting~15!
into ~13!, one obtains, forT close toTr , the bare superfluid
density asns(T̃→Tr

2)52nf(12T/Tr). This behavior of the
bare superfluid density is formally the same as the beha
of the total superfluid density in the BCS theory. Neverth
less it is important to remember that the total superfluid d
sity in the present model undergoes the Nelson–Koste
jump atTBKT and is zero forT.TBKT . We note that one can
probe experimentally both the bare superfluid density
high-frequency measurements2 and the total superfluid den
sity in low-frequency measurements.3

3.2. Dirty limit

In the dirty limit the quasiparticle transport timet tr is
small (t tr!r21(T50)), sothat one can neglect the radic
inside the brackets in Eq.~9!.15 The remaining series is easil
summed, and one obtains for the bare superfluid stiffnes

J~eF ,T,r~eF ,T!,t tr!5
eFt trr

4
tanh

r

2T
. ~18!

As explained above, by virtue of the Anderson theore
the expressions~15! for r and~17! for Tr remain unchanged
in the presence of impurities. Again substituting~15! into
~18!, one obtains

TBKT5TrS 12
14z~3!

p3

1

eFt tr
D , TBKT&Tr . ~19!

One can see that the size of the pseudogap region is
controlled by the new phenomenological parametert tr ,
which is an unknown function ofeF for HTSC. The experi-
mental data1 suggest thatt tr is almost independent of th
doping level in the under-doped region.

It is difficult to obtain more than a qualitative estima
using Eq.~19!, since in its derivation we have assumed th
eFt tr@1. In HTSC however, as discussed above~see also
Ref. 12!, this assumption is not always justified. Bearing
mind that the dirty limit implies that the conditiont tr

21

@r(T50);Tr is satisfied, one can easily see that the va
of TBKT for this case is less than that given by~16! for the
clean superconductor. Since impurities are inevitably pres
in HTSC, phase fluctuations can in fact give rise to
pseudogap region that is of comparable size to that obse
experimentally. We note that our arguments are in fact q
similar to that given in Ref. 22 as to the best conditions
observing BKT physics in superconducting films. Howev
in contrast to this paper, the gap opening belowTr is par-
ticularly emphasized here.

While Eq. ~19! was derived under the assumptionTBKT

&Tr , in the general case whenTBKT can be substantially
less thanTr one must solve the self-consistent Equation~10!
re
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with J(eF ,TBKT ,r(eF ,TBKT)) given by ~18!. Recall, how-
ever, that to make any quantitative estimates, the more r
istic d-wave model has to be considered, and the inequa
eFt tr@1 should not be assumed.12

The value of the zero-temperature superfluid density
now given byns(T50)5pnft trr!nf , sincet trr!1. This
does not contradict the results of Ref. 27 because the sys
is not translationally invariant in the presence of impurities28

Furthermore, as one can see, the low value of the super
density in HTSC5 may be related to the impurities which a
inevitably present in HTSC. Another factor that leads to lo
ering of the superfluid density is the presence of the latt
which also destroys a continuous translational invarian
We note that, as was pointed out in Ref. 29, quantum fl
tuations also lead to a decrease in the superfluid density

4. THE TEMPERATURE DEPENDENCE OF THE BARE
SUPERFLUID DENSITY

In this Section we try to correlate the temperature dep
dence of the observed in-plane resistivityrab(T) with the
recently measured temperature dependence of the bare s
fluid density.2

For T.TBKT the expression for the bare superfluid de
sity in the dirty limit ~18! can be rewritten in terms of the
in-plane conductivity,s5e2nft tr /m, wheree is the charge
of an electron:

J~s~eF ,T!,r~eF ,T!!5
p

4

sr

e2 tanh
r

2T
. ~20!

The in-plane resistivityrab;s21 in cuprates has bee
extensively studied,1 and its temperature and concentrati
dependences must reflect the pseudogap properties obs
in other experiments. One can say thatrab(T) is linear above
T* .Tr and roughly linear betweenTBKT andTr , but with a
lower slope. Thus in the intervalTBKT,T,Tr the resistivity
can be approximately written asrab(T)5aT1b, wherea
andb are functions ofeF but not of temperature.

Now, substitutings;rab
21(T) into Eq. ~20!, one obtains

ns~T!;
r

aT1b
tanh

r

2T
. ~21!

Our estimates based on Eq.~21! are shown in Fig. 1. One ca

FIG. 1. The behavior ofns(T) in the clean~upper curve! and dirty ~lower
curve! limits. The value ofns(T) is normalized tons(T50) for the clean
system;T is given in units ofTr .
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see that, in contrast to the almost linear BCS dependenc
ns(T), we have convex behavior, and the superfluid den
becomes zero atTr . We stress that the curvature ofns(T) is
the result of the temperature dependence of bothr(T) and
s(T) for TBKT,T,Tr . More importantly, the slope of the
curvens(T) at Tr for the dirty metal is substantially less tha
for the clean one. The experiment2 shows the same curva
ture for ns(T) but indicates that the bare superfluid dens
disappears at a lower temperature,Ts,T* . Since the slope
dns(T)/dT at Tr is very small, as is predicted by Eq.~21!
and observed experimentally, the nonzero value ofns(T)
betweenTs andTr may, however, simply be too small to b
experimentally observed. A definitive answer to this quest
demands further experiments and theoretical studies. In
ticular, fluctuations ofr should be taken into account.9,10

One can also comment on the experimentally obser
change in the curvature of the total superfluid dens
Ns(T), with changing carrier density,3 even thoughNs(T)
cannot be directly related to the bare superfluid den
ns(T) discussed here. Although the total superfluid dens
disappears aboveTBKT , the curvature present in the ba
superfluid densityns(T) seems to be retained as a curvatu
in the total superfluid density,Ns(T), below TBKT ~Refs. 2
and 3!. For low carrier densities~the underdoped region! the
pseudogap region,TBKT,T,Tr , is larger, and therefore th
curvature inns(T) is more pronounced. This behavior seem
to be reflected in the total superfluid densityNs(T) below
TBKT ~Ref. 3!. It is important, however, to study experime
tally and theoretically the concentration dependence of
bare superfluid densityns(T) in order to make a full com-
parison with the results of Ref. 3 forNs(T).

The experimental data of Ref. 3 also show thatNs(T)
does not display the Nelson–Kosterlitz jump. This is pro
ably related to the influence of the interlayer coupling~see
the references cited in Ref. 10!.

5. CONCLUSION

Since in HTSC the pairing scaleT* is different from the
superconducting transition temperature, the role of nonm
netic impurities is not traditional, and they in fact govern t
superconducting properties of a ‘‘bad’’ metal. In particula
the presence of nonmagnetic impurities strongly increa
the size of the pseudogap phase originating from the fluc
tions of the phase of the order parameter. In addition,
behavior of the superfluid density in the presence of imp
ties is closer to that experimentally observed.

Our results are only qualitative, since we have cons
ered a model with nonretardeds-wave attraction and an iso
tropic fermion spectrum. However, it is likely that the pro
erties obtained will persist ford-wave pairing. There is, o
course, the problem of why strong disorder does not des
the d-wave superconductivity, when nonmagnetic impurit
are pair-breaking. As was suggested by Sadovskii,30 even the
d-wave pairing may persist if the coupling is strong enou
Further studies are necessary; for example, it is importan
explain the concentration dependence of the superfluid sl
dns(T)/dT at T50.3,4 Our results also indicate that it woul
be interesting to study the BCS–Bose crossover problem
the presence of impurities, especially in thed-wave case.30
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1!Of course, the contribution from the phase fluctuations need not be

only or even the major contribution.
2!In 2D for s-wave pairing the high-density limit is in fact equivalent to th
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On the magnetoelectric effect in LiNiPO 4
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It is shown that the ‘‘butterfly’’ magnetoelectric hysteresis loop usually associated with the
presence of a spontaneous magnetic moment in a crystal can also be observed in the case of an
‘‘angled cross’’ type of antiferromagnetic ordering of the spins. The magnetoelectric
hysteresis observed in LiNiPO4 is explained by the cross-shaped antiferromagnetic ordering of
the spins in this compound. It is assumed that the jump in the electric polarization near
the Néel temperature in a high magnetic field is the result of a first-order phase transition from
the antiferromagnetic cross-shaped to a weak ferromagnetic state. ©2000 American
Institute of Physics.@S1063-777X~00!00706-4#
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The compound LiNiPO4 belongs to a family of antifer-
romagnetic olivines with the general formula LiMPO4

(M5Fe21, Mn21, Co21, Ni21) which are magnetoelectrics1

i.e., they exhibit the linear magnetoelectric effect. Rec
measurements of the magnetoelectric~ME! effect in
LiCoPO4 and LiNiPO4 have revealed the presence of hyst
esis of the induced electric polarization in a magnetic fie2

The existence of ME hysteresis, which is typical of we
ferromagnets, was unexpected for the olivines, whose n
tron diffraction patterns attest, with a high probability,
their antiferromagnetic structure.3 It is known, however, that
the linear ME effect, which depends substantially on
equilibrium spin configurations, can yield more accurate
formation about this matter.

To explain the magnetic hysteresis of the electric po
ization in LiCoPO4 and LiNiPO4, it was hypothesized in Ref
4 that there is a spin structure modulated along theZ axis,
with small nonzero values of the spontaneous magnetiza
~mz for LiNiPO4 andmy for LiCoPO4! and polarizationpx .

In this paper we offer an explanation for the ME hyste

FIG. 1. Equilibrium antiferromagnetic configuration of spins of the ‘‘angl
cross’’ ~C! type, with the arrangement of spins in theXZ plane in a field
Hx<Hn .
4191063-777X/2000/26(6)/3/$20.00
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esis loop in LiNiPO4 in the framework of homogeneou
magnetic configurations, without the hypothesis of spa
modulation of the spin structure or the presence of sponta
ous magnetization. It is shown that in LiNiPO4 there is an
allowed antiferromagnetic configuration of the ‘‘angle
cross’’ type~Fig. 1!. This is consistent with the neutron dif
fraction data,3 which do not confirm the presence of colline
antiferromagnetism in LiNiPO4 but only indicate that the
magnetic moments are possibly collinear with thec(Z) axis
in LiNiPO4, where the magnetic intensities are very wea
When a magnetic field of the order of one tesla is appl
along theX axis, the cross-shaped antiferromagnetic str
ture becomes unstable, and a ME hysteresis loop appears
explanation is also proposed for the jump observed in
electric polarization near the Ne´el temperature in sufficiently
high magnetic fields.2 It is conjectured that this jump is th
result of a first-order magnetic phase transition from
cross-shaped~Fig. 1! to a weak ferromagnetic state~Fig. 2!.

LiNiPO4 has the orthorhombic symmetryD2h and a
Néel temperatureTN'20.5 K. Four crystallographically
equivalent magnetic ions are located at the positio
1(0.28,0.25,0.98), 2(0.22,0.75,0.48), 3(0.72,0.75,0.0
and 4(0.78,0.25,0.52). The ion pairs~1,2! and ~3,4! lie in
neighboring planes perpendicular to thea(X) axis. The ex-
change interaction of the ions between planes is indirect
substantially weaker than the antiferromagnetic interact
of the ions within the planes.

The free energy density of the crystal is written in t
form

W5(
j 51

3 S 1

2
aj l j

22
1

2
ajxl jx

2 1
1

2
ajzl jz

2 1
1

4
Bj l j

41
1

2
D jm

2l j
2D

1
b

2
m22mH1d1mxl 1z1d2mzl 1x

1j1l 2xl 3z1j2l 3xl 2z1
1

2xe Pz
21WME ,
© 2000 American Institute of Physics
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WME5Pzmx~g1l 2z1g2l 3x!1Pzl 1z~G1l 2z1G2l 3x!1...
~1!

Here we have introduced the antiferromagnetism vectorsl j ,
which are related to the spinsSi of the ions as follows:

l15S12S21S32S4 , l25S12S22S31S4 ,

l35S11S22S32S4 , m5S11S21S31S4 , ~2!

wherem is the magnetization,P is the electric polarization
andxe is the static dielectric susceptibility. In the ME part
the free energy,WME , with constantsg1 , g2 , G1 , andG2 ,
we have written out only those terms which are necessary
analysis of the results of Ref. 2. In that paper the elec
polarization induced along theZ axis by a magnetic fieldHx

of up to 20 T was measured over the temperature inte
4.2–25 K. BelowTN in a field of the order of 1 T the func-
tion Pz(H) exhibited a hysteresis loop which vanished bel
a temperature of 8 K. A detailed study of the ME effect ne
TN showed that at a considerably higher magnetic field,
the order of 10 T, the electric polarization undergoes a ju
essentially to zero.

To explain the aforementioned effects requires analy
of the equilibrium spin configurations in LiNiPO4. Here it is
sufficient to proceed from a free energy of the form~1!,
assuming a uniform distribution of spins and~unlike Ref. 4!
not including invariants containing spatial derivatives.

Another difference is that expression~1! contains terms
with the coefficientsd1 and d2 , which were not taken into
account in Ref. 4. It should be noted that, despite a differ
system of numbering for the magnetic ions in the pres
paper and in Ref. 4, the notation for the antiferromagnet
vectors~2! are the same in both papers. Expression~1! for
the free energy is general for the whole family of olivines

The equilibrium spin configurations are found by min
mizing the free energy~1!. It is easy to see that collinea
antiferromagnetism is possible only along theY axis ~the
case of LiCoPO4!. Collinear antiferromagnetism along theZ
axis ~the state whenS152S25S452S3 , i.e., l15 l350, l2
Þ0) cannot exist because of the presence in~1! of the an-
isotropy energy with the coefficientj2 . We shall henceforth
assume that the anisotropy energy with coefficientsdi , j i is
much larger than the exchange.

The minimum of the energy~1! for a predominant direc-
tion of the antiferromagnetism vector along theZ axis for
H50 corresponds to two states:

1. Antiferromagnetic states of the ‘‘angled cross’’(C)
type~Fig. 1, magnetic symmetrymm8m!. The spins lie in the
XZ plane near theZ axis, S352S1 , S452S2 , l15m50.
The order parameter isl 2z52(S1z2S2z),

l 2z
2 '2

ã2

B2
, l 3x5

j2

a31a3x
l 2z , B2>0,

u45u15u0'
j2

ã22a3
, ã25a21a2z<0. ~3!

2. Weak ferromagnetic state (WF)~Fig. 2, symmetry
mm8m8!. The spins lie in theXZ plane,

S35S1 , S45S2 , l25 l350, mxÞ0.

The order parameter isl 1z ,
or
c

al

r
f
p

is

nt
t

l 1z
2 '2

ã1

B1
, mx52

d1

b1D1l 1z
2 l 1z , ã15a11a1z<0.

~4!

If the interplane and intrasublattice exchange inter
tions are neglected, the constants obeya25a152b52a3

528J<0, whereJ is the exchange integral in the intera
tion energyJ(S1•S21S3•S4).

It follows from Eq. ~1! that the equilibrium electric po-
larizationPz is given by

Pz52xe@mx~g1l 2z1g2l 3x!1 l 1z~G1l 2z1G2l 3x!#. ~5!

We see from~5! that spontaneous polarization is absent
the C and WF states.

The linear ME effect, with a ME component of the su
ceptibility azx5]Pz /]Hx , which was observed in Ref. 2 fo
T<TN , can exist only in the C state. Consequently, bel
the Néel temperature in weak magnetic fields an antifer
magnetic cross-shaped spin configuration C is realized
LiNiPO4.

The behavior of this antiferromagnetic structure in
magnetic field directed along theX axis is similar to the
behavior of a weak ferromagnet containing domains w
opposite directions of the weak ferromagnetic moment.

For analysis of the behavior of the spin configuration
in a magnetic field, we setSi

25S0
2 and we treat the pola

anglesu i and azimuthal anglew i of the spins as the variable
in the energy~1!. In the absence of magnetic field one h
u45u15u0 , u25u35p2u0 . In the presence of a magnet
field Hx>0 the anglesu1 andu2 increase, whileu4 andu3

decrease. In weak magnetic fields we obtain from Eq.~1! the
following equilibrium values of the angles:

u15u02
Hx

4S0~b2ã2!
, u45u02

H

4S0~b2ã2!
,

u25p2u1 , u5p2u4 . ~6!

We shall assume thatu0>0, i.e.,j2<0, although the sign of
j2 is not of fundamental importance. For the magnetizat
and the ME susceptibility of the linear ME effect we obta
from ~5! and ~6! the expressions

FIG. 2. Weak ferromagnetic state WF.
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mx5x'
mHx , x'

m5
1

b2ã2
,

azx52xex'
ml z0Fg11

g2j2

a31a3x
G , l z05 l 2x~H50!. ~7!

We see from formulas~6! that the anglesu4 andu3 decrease
with increasing field strength, and atHx5H054S0(b
2ã2)u054S0uj2u they are equal to zero. In a fieldHn<H0

the azimuthal angle of the spinsS3 andS4 change abruptly
from p to 0, the spins turn over into the half plane wi
w50 ~Fig. 3!. The situation is analogous to that observ
during the magnetization reversal of a weak ferromagn
except in the cross-shaped antiferromagnetic configura
the instability arises in planes in which the direction of t
magnetic moment antiparallel to the field direction cor
sponds to a canting of the spins. In the case we are con
ering here, this is the plane in which the spinsS3 andS4 are
located. In a fieldHn the spins are reoriented, and a firs
order phase transition occurs in the system, as a resu
which the system passes into the stable state illustrate
Fig. 3, where

u35u01
Hx

4S0~b2ã2!
, u25

Hx

4S0~b2ã2!
2u0 ,

Hx>Hn . ~8!

In a fieldHx5Hn the energies of states~6! and~8! are equal.
States~6! and ~8! differ in the signs ofl 2z and l 3x , and
thereforeazx ~i.e., Pz! changes sign~segment2 in Fig. 4!. If
now the field is decreased and reversed in sign, the instab
will arise for spinsS1 and S2 , located in the other atomic

FIG. 4. Magnetoelectric hysteresis loop of the ‘‘butterfly’’ type.

FIG. 3. Spin configuration C in a fieldHx>Hn .
t,
n

-
id-

of
in

ity

plane. The electric polarization in Fig. 4 jumps from segm
2 to segment1, and the sign of the ME effect again chang
to the opposite. Thus a ME hysteresis loop of the ‘‘butterfl
type, which is observed in weak ferromagnets, also exist
an antiferromagnet with a cross-shaped spin configurat
The value of the reorientation fieldHn'4S0uj2u is of the
order of the anisotropy field, a finding is consistent with t
experimentally measured2 values of the order of 1 T. The
vanishing of the hysteresis loop below 8 K may be a conse-
quence of a decrease inj2 with decreasing temperature and
transition of the spins to a collinear antiferromagnetic orie
tation.

Besides the ME loop considered here, at temperatu
close to the Ne´el temperature and in considerably high
fields, of the order of 10 T, LiNiPO4 also exhibits a jump in
the polarizationPz to a value close to zero; this jump i
accompanied by ME hysteresis, i.e., there is a second-o
phase transition to a state in which the linear ME effect
absent. This state is the weak ferromagnetic state WF
fact, it is easy to obtain an expression for the free energie
the the C and WF states nearTN for the case of weak mag
netic fields:

WC52
ã2

2

4B2
2

H2

2~b1D2l 2z
2 !

,

WWF52
ã1

2

4B1
2

H2

2~b1D1l 1z
2 !

1
d1

~b1D1l 1z
2 !

3S 2
ã1

B1
D 1/2

H2
d1

2

4~b1D1l 1z
2 !2uã1u

H2. ~9!

The presence in the energyWWF of a term linear inH and a
term quadratic inH with a coefficient inversely proportiona
to uã1u, i.e., to the square of the order parameterl 1z

2 , is
characteristic of a weak ferromagnet.

In weak magnetic fields theC state, i.e.,uã1u<uã2u, is
realized in LiNiPO4. We note that sincea25a1 , nearTN , at
small values ofuã2u, the value ofuã1u is also small. With
increasing magnetic field at temperatures nearTN , the last
term in WWF , which lowers the energy, becomes larger,
that the WF state can become more favorable. In ot
words, a weak ferromagnetic state WF can be realized n
TN in sufficiently high magnetic fields; this is apparent
what is observed in the experiments.
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Backward electromagnetic waves in a magnetically disordered dielectric
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A nonlinear-evolution set of equations of the hydrodynamic type describing a magnet with a
noncollinear arrangement of spins is investigated. An explicit expression invariant to right and left
spin rotations is used for the energy density. The model under consideration can be
interpreted as a continuum limit of a system of distributed symmetric tops. In the three-
dimensional case exact solutions for the spin density are obtained in the form of helical waves
for the quadratic–biquadratic energy density~in terms of Cartan’s invariant functions!.
Solutions are also obtained for the magnon fields inducing these waves. The existence of backward
helical waves is predicted. Energy transport may occur at an angle greater thanp/2 relative
to the direction of the helical waves. The analytical dependences of the wave vector and of the
frequency on the helical wave amplitude, magnetic susceptibility, rigidity, and other
constants of the model are found. The predicted property would allow for the construction of
backward wave generators based on the use of disordered magnetic materials. The
backward electromagnetic waves in a layered disordered magnetodielectric are considered. The
relationship between the parameters of electromagnetic waves of the~e! layer and of the
~i! layer is obtained. ©2000 American Institute of Physics.@S1063-777X~00!00806-9#
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INTRODUCTION

The spin excitations in magnetic media with a nonc
linear arrangement of spins are investigated using the
pothesis of spontaneous symmetry breaking of the statis
equilibrium state.1,2 Using this hypothesis, Halperin an
Hohenberg3 proposed a hydrodynamic approach which w
used to derive dynamic equations for magnetic media wit
spontaneously broken symmetry with respect to spin ro
tions. Linear dynamical equations were obtained by Halpe
and Saslov,4,5 while nonlinear dynamics was considered
the Lagrangian approach by Volkov and Zheltukhin6 and by
Andreev and Marchenko.7 Dzyaloshinskii and Volovik used
the Hamiltonian formalism for this purpose.8 Peletminskii
and co-workers developed this formalism for different ma
netic structures.9,10

The dynamical variables describing the nonequilibriu
state of magnetic media with a spontaneously broken s
metry include the spin densitysa(x,t) (a5x,y,z) and the
order parameter, i.e., the orthogonal rotation ma
aab(x,t). In the long-wavelength limit, where spatial no
uniformities of the dynamical variables are small, we inve
tigate the dynamics and take into consideration the poss
nonlinear interactions of spin waves, using the concep
spontaneous breaking of theSO(3) symmetry of spin rota-
tions that leave the exchange interactions invariant. We s
assume that the energy density is a function ofs, a, and¹a
or, what is the same, of the variablessIa[aabsb and vI ak

[1/2eabgabg¹kagl , which is Cartan’s right form. The evo
lution equations in terms ofsIa andvI ak assume the form o
equations with constraints:10,11
4221063-777X/2000/26(6)/3/$20.00
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] tsIa52¹k]vI ak
«1eabg~sIb]sIg

«1vI bk]vI gk
«!,

] tvI ak52¹k]sIa
«1eabgvI bk]sIg

«,

¹kvI a i2¹ ivI ak5eabgvI bkvI g i , ~1!

sa5abasIb .

In these equations]sIa
«52vI a , where vI a51/2eabg

3(] taaT)gb is the right form associated with the time d
rivative. The set~1! determines the dynamical properties
the system without taking dissipation into account and
scribes the low frequency dynamics with an exchange in
action, when, for long enough times, rigid spin complex
are formed because of the strong exchange. These comp
remain practically undeformed, and their orientation is det
mined by the orthogonal rotation matrixaab(x,t). It follows
from the set of Equations~1! that the energy density« and
the momentum componentsp i5sIavI a i are conserved lo-
cally:

] t«52¹k]sIa
«]vI ak

«, ] tpa52¹kt ik ,

t ik52d ik~«2sIa]sIa
«!1vI a i]vI ak

«, ~2!

where t ik is the momentum flux density tensor. In practi
we used the following expression for the energy density:

«5« i1«a ,

where

« i5
1

2x
sI a

21
r

2
vI ak

2 1
1

4x1
sI a

41
r1

4
vI ak

4 1
q

2
p i

2 ~3!

is the isotropic component and
© 2000 American Institute of Physics
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«a5
r2

4
~vI ax

2 vI ay
2 1vI ax

2 vI az
2 1vI ay

2 vI az
2 ! ~4!

is the ‘‘anisotropic’’ component~without taking into account
the differential equations of coupling betweenvI ax , vI ay ,
vI az! of the energy;x is the magnetic susceptibility;r is the
‘‘stiffness’’ constant, andx1 , r1 , r2 , andq are phenomeno
logical coupling constants. This energy density is invarian
left and right spin rotations. The general set of Equations~1!
has been studied by us previously~see Ref. 11!. Ivanov12

used the Lagrangian approach for a quadratic dependen
the energy density~amorphous magnet! to obtain topological
solitons in spin glasses.

BACKWARD SPIN DENSITY WAVES

Let us determine the exact nonlinear solutions of stati
ary profile of the system~1!. These solutions are helica
waves with helical vectork and frequencyv ~Ref. 13!:

sx5c3 sinw0 sinu1c1 cosw0 ,

sy52c3 cosw0 sinu1c1 sinw0 , ~5!

sz5c3 cosu

where

k5
c1

r F uC3u
2c3

6S C3
2

4c3
2 1

q2r

x D 1/2Gq,

v5
c1

x
, u~x,t !5vt2kx1u0 , ~6!

s25c1
21c3

2,

andc1 , c3 , C3 , u0 , q are constants.
We have used the parametrization of the orthogonal

tation matrixaab(x,t) with Eulerian anglesw, u, c.13,14 For
the sake of simplicity we have not written out the contrib
tion of the biquadratic terms~see Ref. 13!. The self-
consistent magnetic fieldh forming a helical spin density
waves(x,t) is given by the relationha[]sa

« and is defined
as

h5
1

x
s. ~7!

It follows from formulas ~5! and ~7! that the self-
consistent static magnetic field has the formh0

5(c1 /x cosw0,c1 /x sinw0,0) and determines the eigenfre
quency of the magnetic moments. Obviously, the magnit
of this frequency equalsuc1u/x, x.0.

According to Eqs.~2!, the energy flux density is define
as

j k5]sIa
«]vI ak

«. ~8!

Let us now determine the cosine of the anglew between the
direction of wave propagationk and the direction of the
energy flux densityj :

cosw5
k• j

ukuu j u
. ~9!

Formula~9! assumes a simple form for all positive pheno
enological coupling constants:
o

of

-

-

-

e

-

cosw5
uqxu

~qx
21qy

21qz
2!1/2sgnc1 . ~10!

Since the constantc1 can be positive or negative in th
model under consideration, we arrive at the conclusion t
helical waves in a disordered magnet can propagate in
direction opposite~at an angle greater thanp/2! to the en-
ergy transport direction.

ELECTROMAGNETIC WAVES IN A LAYERED
MAGNETICALLY DISORDERED DIELECTRIC

In a dielectric medium without free charges and curren
the electromagnetic vectorse, h obey the Maxwell equations

curle52
1

c
] tb, div b50,

~11!

curlh5
1

c
] td, div d50,

wherec is the speed of light;b5mh is the magnetic induc-
tion, m is the magnetic permeability;d5«e is the electric
displacement, and« is the dielectric permittivity.

Sincev25(c2/«m)k2, as follows from Eqs.~11!, taking
into account formula~6!, we find

uC3u
c3

56S 12
«mr

c2x D S «mr

c2x D 21/2

. ~12!

It is evident that this ratio tends to zero if«→1, m→1,
and r/x→c2. From the equation divb50, we obtain two
conditions:

kx sinw05ky cosw0 , kz50, uku5Akx
21ky

2. ~13!

The fact that the solution is independent of the spa
variablez in the three-dimensional space indicates that
waves are ‘‘cylindrical.’’ According to Eqs.~5!, ~7!, and
~11!, the self-consistent electric field in the magnetodielec
has the form

ex52
cc3ky

vx«
cosu1e0x ,

ey5
cc3kx

vx«
cosu1e0y , ~14!

ez5
cc3uku
vx«

sinu1e0z ,

where e05(e0x ,e0y ,e0z) is a self-consistent static electri
field in the dielectric.

In this phenomenological approach, we cannot de
mine the parametersc1 , q, e0 , but the boundary conditions

n3~he2hi !50, n~«eee2« iei !50,
~15!n3~ee2ei !50, n~mehe2m ihi !50

define the relationship between the parameters of the die
tric medium~i! and the medium~e!. Heren is the unit vector
normal to the boundary surface of the medium~i! and me-
dium ~e!.

From relations~15! for the boundary surfacez50, n
5(0,0,1) we obtain, after eliminating the coordinates of t
boundary surface, the following:
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cukeuS v i

ve2cos~w0
i 2w0

e! D1cuk i uS ve

v i 2cos~w0
i 2w0

e! D
1~« ie0z

i 2«ee0z
e !sin~w0

i 2w0
e!50,

sin~w0
i 2w0

e!Þ0. ~16!
s

c

e

d

S 1

m i« i

k i

v i2
1

me«e

ke

veD ~e0
i 2e0

e!50, kx
eky

i 2ky
ekx

i Þ0. ~17!

Now we consider the case when the static electric fi
in the dielectric medium ise05(0,0,e0z). Since the energy
flux density in the dielectric isj5(c/4p)e3h, as follows
from Eqs.~11!, we find
coswi5
k i
• j i

uk i uu j i u
5

Am i /« i~c3
i 2/x i 2!sgnv i1e0z

i ~c3
i /x i !sinu i

F S m i

« i

c3
i 2

x i 2
12e0z

i Am i /« i
c3

i

x i sgnv i sinu i D ~c1
i 21c3

i 2!

x i 2
1e0z

i 2
c1

i 2

x i 2
1e0z

i 2
c3

i 2

x i 2
sin2 u iG 1/2, ~18!
n

-
ua-

n
-

the

r

da-

.

t-

.

ro-
whereu i[v i t2k ix1u0
i , andx belongs to the medium~i!.

Equation~16!, when Eq.~13! is taken into account, ha
the real solution

v i

ve 5
2b6Ab224uk i uukeu

2ukeu
,

b[~« ie0z
i 2«ee0z

e !
ky

i kx
e2kx

i ky
e

uk i uukeu

2~ uku i1ukeu!
kx

i kx
e1ky

i ky
e

uk i uukeu
:62Auk i uukeu. ~19!

Solution ~19! points to the existence of the backward ele
tromagnetic waves according to~18!, provided that, for ex-
ample,

Am i /« ic3
i sgnv i1e0z

i sinu i,0, c3
i .0.

If we choose the boundary surfacey50, n5(0,1,0),
then we obtain the following conditions of coupling betwe
the parameters in the model under consideration:

c

«e ukeuS m i
v i

ve2m i cosw0
i cosw0

e2me sinw0
i sinw0

eD
1

c

« i uk i uS me
ve

v i 2me cosw0
i cosw0

e

2m i sinw0
i sinw0

eD1~e0z
i 2e0z

e !

3~me sinw0
i cosw0

e2m i cosw0
i sinw0

e!50. ~20!

me sinw0
i cosw0

e2m i cosw0
i sinw0

eÞ0.

S kx
i

v i2
kx

e

veD ~e0x
i 2e0x

e !1S ky
i

v i2
« i

«e

ky
e

veDe0y
i

2S «e

« i

ky
i

v i2
ky

e

veDe0y
e 50, «ekx

eky
i 2« ikx

i ky
eÞ0. ~21!

Formulas~7!, ~14!, ~16!, and~17! can be applied to a layere
magnetically disordered dielectric medium.
-

CONCLUSION

According to Eq.~5!, the exact nonlinear solutions pre
sented here are helical waves. The contribution of biq
dratic terms to the energy density~3!, ~4! increases with the
spin density in the system.13 Energy transport can occur at a
angle greater thanp/2 with respect to the direction of propa
gation of the helical spin wave. Formulas~7! and ~14!, to-
gether with the boundary conditions~15!, can be verified in
an experiment. The relation between the parameters of
electromagnetic waves and the properties of the layer~e! and
the layer~i! for a flat boundary~formulas~16!, ~17!! is es-
tablished.
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Compensation effects in the interaction of the electron and ion subsystems of a metal
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A detailed theoretical analysis is made of the interaction of the electron and ion subsystems in
normal metals. Simple, but realistic models of the Fermi surface and deformation-
potential tensor are used which permit numerical solution of the dispersion relation. To elucidate
the consequences of the partial or total mutual compensation of the electron and hole
concentrations, both the external parameters~sound frequency, magnetic field! and the model
parameters for the metal~the constant of the deformation-potential tensor, the ratio of
electron and hole concentrations, the free carrier relaxation rate! are varied. It is shown that in
compensated metals the compensation effects lead to strong suppression of the interaction
of the lattice with one of the groups of free carriers. The theoretical results are in qualitative
agreement with the experimental data obtained in cadmium and tungsten. A quantitative
comparison of the theory with experiment is carried out which, in particular, yields an estimate
for the values of the constants of the deformation potential in cadmium. ©2000 American
Institute of Physics.@S1063-777X~00!00906-3#
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INTRODUCTION

The interaction of the different subsystems in conden
matter~metals, in particular! and of the collective excitation
of these subsystems is one of the fundamental problem
solid state physics. We have previously1 done a detailed
analysis of the coupling of helicons and dopplerons – wea
damped electromagnetic modes that are excitations of
same subsystem of a metal. In a subsequently paper2 we
investigated in detail the interaction of electrons with t
lattice and of ultrasonic waves with weakly damped elect
magnetic modes, and we analyzed a simple but real
model of an uncompensated metal having one group of
riers. It was found that, independently of the type of coup
mode, there exist some general regularities that characte
the problem of coupling on the whole. The present pap
which concludes this cycle of studies, is a logical continu
tion of Ref. 2 and is devoted to a detailed examination of
interaction of electrons with the lattice in compensated m
als, i.e., in metals having at least two groups of carrier
electrons and holes. We believe this to be a topical prob
in view of some seemingly illogical and contradictory e
perimental results that have been obtained. It turns out
the presence of another group of carriers in a metal can~and
does! lead to dramatic consequences which are manifeste
a fundamental change in the character of the interaction
the lattice with one of the groups of carriers~it turns out to
be of fundamental importance that the metal is compensa
i.e., having equal electron and hole concentrations!. This
group, which we shall call the majority carriers, is the gro
having the maximum pitchumax of the helical trajectory in a
magnetic fieldH: u5u2pvH /vcu ~vH is the average drift
velocity of the carriers alongH, andvc5eH/mc is the cy-
4251063-777X/2000/26(6)/8/$20.00
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clotron frequency; here and below we assume that the or
of all the carriers are closed!. Accordingly, the dopplerons
due to the Doppler-shifted cyclotron resonance~DSCR! of
the carriers of this group will be called long-waveleng
dopplerons3 ~with increasing field the doppleron waveleng
lD→umax!.

The most unexpected experimental results have been
tained in cadmium. It was in this compensated metal that
doppleron–phonon resonance~DPR! was first observed.4

Cadmium has two groups of carriers with practically equ
concentrations—majority carriers of the electron type~the
‘‘lens’’ !, and minority carriers of the hole type~the
‘‘monster’’!.5 Accordingly, in radio spectroscopic studie
one observes oscillations of the surface resistance, which
the result of the excitation of the long-wavelength electron6,7

and short-wavelength hole7 dopplerons. The hole dopplero
is manifested much more weakly, primarily because of c
lisionless resonance absorption of the doppleron wave
electrons of the ‘‘lens.’’ At first glance the data from ma
netoacoustic studies appear to be in complete contradic
with these results. Figure 1 shows examples of the exp
mental dependence of the damping coefficient of transve
ultrasoundG[Im k in cadmium ~see also Refs. 8 and 9!.
Herek is the wave vector of the linearly polarized transver
sound wave. The fieldHL corresponds to the edge of th
single-particle collisionless absorption of sound by electro
of the ‘‘lens’’ as a consequence of the DSCR~magnetoa-
coustic resonance!, andHM is the edge of the absorption o
sound by holes of the ‘‘monster.’’ We see that at low fr
quencies in fieldsHM,H,HL the magnetoacoustic reso
nance hardly shows up at all. The anomalyDL , which is
observed in fieldsH.HL and is a result of the interaction o
© 2000 American Institute of Physics
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sound with an electron doppleron,4 has a very small ampli-
tude. It should also be noted that this anomaly does not h
the shape of an absorption peak but more closely resem
the anomalies of the dispersion of the sound velocity, wh
would be expected to appear in the vicinity of the DPR2

These anomalies have been observed experimentally in
10, for example. A much stronger role in the absorption
sound in cadmium is played by the holes, which are
minority carriers. It is seen from curve1 in Fig. 1 that asH
decreases, in fieldsH,HM , the damping of sound increase
sharply as a result of the ‘‘turning on’’ of the collisionles
absorption of sound by holes of the ‘‘monster.’’ With in
creasing frequency this feature in the absorption, which
the form of a ‘‘Kjeldaas edge,’’11 is transformed into an
asymmetric peak in fields less thanHM . In fieldsH.HM a
strong absorption peakDM appears, which has the ‘‘class
cal’’ shape of an absorption curve and is due to the inter
tion of sound with the hole doppleron.8

An attempted theoretical analysis of the DPR in ca
mium was reported in Ref. 12. However, the authors use
very simplified model of the metal and restricted the analy
of the interaction to the limit of strong coupling of th
dopplerons with the sound. As a result, the calculated m
netic field dependence of the damping coefficient of sou
did not agree even qualitatively with the experimental dep
dence.

The immediate goal of the present study is to carry ou
theoretical analysis of the damping of transverse sound
compensated metals due to the interaction of the elect
with the lattice in the presence of an external magnetic fie
A reasonable realistic model of the metal is used. The
persion relation was solved numerically by Muller’s meth
~generalized method of secants! with deflation.13 For speci-
ficity some of the nonvariable parameters of the model~the

FIG. 1. Damping of linearly polarized transverse sound (G[Im k) in cad-
mium as a function of the magnetic field for different frequenciesv/2p,
MHz: 60 ~1,18!, 300 ~2!; kiHi@0001#, T54.2 K. The fieldsHL and HM

correspond to the edge of the collisionless absorption of sound by elec
of the ‘‘lens’’ and holes of the ‘‘monster,’’ respectively. The featuresDL

andDM are due to the doppleron–phonon resonance~DPR!.
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density of the metal, the sound velocity, etc.! were taken
equal to the corresponding parameters in cadmium. T
does not limit the generality of the analysis, however. On
contrary, the dispersion obtained in this study makes it p
sible to extend the scope of the analysis substantially
particular, we have examined the consequences of a gra
decompensation of the concentrations of electrons and ho

DISPERSION RELATION AND THE MODEL OF THE METAL

1. The elastic and electromagnetic oscillation in met
are described by the equations of the theory of elasticity
Maxwell’s equations, supplemented by the constitutive re
tions ~see, e.g., the papers14,15 and the reviews16,17!. We re-
strict the discussion to an analysis of the interaction
monochromatic plane waves (u,E}exp(ik•r2 ivt), whereu
is the lattice displacement vector andE is the electric field!
in the geometrykiHi ẑ in a metal for which all parts of the
Fermi surface are symmetric with respect to theẑ axis. Then
for the circularly polarized transverse components of the
cillations, c65cx6 icy ~6 indicates the polarization, an
c5u,E! the dispersion relation of coupled electromagne
and acoustical modes can be written in the form2,18

~k2c224p ivs6~k2vs
22v22L6 /r!

5~4p iv/r!g6G6 , ~1!

wherev andk are the frequency and wave vector,r is the
density of the metal,vs5(lxzzx/r)1/2 is the velocity of a
transverse sound wave, which is determined by the elas
constant tensorl̂, andĜ, L̂, ŝ, andĝ are the material ten-
sors ~w65wxx6 iwyx for w5s,L,g,G!. It should be noted
that Eq.~1! takes into account not only the coupling of th
acoustical modes with the collective electromagnetic mo
but also the single-particle interaction of electrons with t
lattice ~magnetoacoustic resonance!.

The material tensorsĝ, Ĝ, and L̂ are linear combina-
tions of electroacoutic coefficients for which exact expre
sions have been obtained by Kontorovich.17 If we neglect the
Stewart–Tolman effect, as we may do in sufficiently stro
magnetic fields, we have

s65e2^v6 v6* &, ~2!

g657
ve2H

c K v6* S v66
ck

eH
L6D L , ~3!

G657 i
e2H

c K S v66
ck

eH
L6D *

v6L , ~4!

L65 ivFeH

c G2K Uv66
ck

eH
L6U2L . ~5!

Here v is the electron velocity (v65vx6 ivy), L̂ is the
deformation-potential tensor (L65Lxz6 iLyz), the asterisk
* denotes the complex conjugate, and the angle brackets
note integration over the Fermi surface~FS! in momentum
~p! space:

^w6&5 i
2p

~2p\!3 E
FS

w6umudpz

v1 in6vc2kvz
. ~6!

ns
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Heren is the electron relaxation rate. Since we are interes
in the region of relatively low frequencies and high field
restricted by the inequalityv,n!uvcu, we shall henceforth
setv50 in Eq. ~6!.

2. For metals with anisotropic Fermi surfaces the form
the tensorL̂ is unknown. However, for a qualitative analys
one can assume that it corresponds to the deformat
potential tensor in the case of an isotropic electron disper
relation:

Lab5l0mS 1

3
v2dab2vavbD , ~7!

wherel0 is a constant which is equal to unity for free ele
trons.

We consider a model metal having two groups of ca
ers: electrons and holes, with concentrationsNe andNh ~here
and below the indicese andh are used to indicate the elec
tron and hole parameters!. In spite of the two-band nature o
the spectrum and, hence, the corresponding symmetry
siderations and the requirement of electrical neutra
(^Lab&50), to avoid complicating the analysis we shall a
sume that the tensorLab is given by expression~7! for both
holes and electrons, but with different constantsl0 . We
shall assume that the cyclotron massesme and mh and the
quantitiesl0e andl0h are constants for each group of car
ers, and thatn5const for all of the carriers. Then, afte
evaluating the coefficients~3!–~5! and transforming Eq.~1!,
we rewrite the dispersion relation in the form

q22qs
25

a1~q!

V2q2/qs
26F6~q!

2a2~q!, ~8!

where

a1~q!5a0qs$~12le!V
2q2/qs

37leF6~0!

7Dl~Nh /Ne!@F6
h ~q!2F6

h ~0!#%2, ~9!

a2~q!5a0qs$~12le!
2V2q2/qs

36le
2F6~0!

6~Dl!2~Nh /Ne!@F6
h ~q!2F6

h ~0!#%. ~10!

Here for convenience of analysis we have introduced
dimensionless parameters

q5kve /vce ; qs5quk5ks
;V5v/v0 . ~11!

In Eqs. ~8!–~11! the functionF6(q) is a nonlocal factor in
the conductivity (s656 i (Neec/H)F6 ; F65F6

e

1(Nh /Ne)F6
h !; a05(Neme /r)(ve /vs); Dl5le2lh ;

le,h5l0e,h(16 ige,h); ge,h5n/vce,h ; ve is a characteristic
electron velocity, which in this paper is taken equal to t
velocity of the electrons for whichu is maximum; ks

5v/vs ; v05(vpe
2 vs

3/c2ve)
1/2; vpe

2 54pNee
2/me . It should

be noted that Eq.~8! with coefficients~9! and~10! is invari-
ant with respect to interchange of the indicese andh.

3. The electron and hole Fermi surfaces are appro
mated by axially symmetric~with respect to theẑ axis! sur-
faces of the ‘‘corrugated cylinder’’ type:2,19

S~pz!5S01S1 cos~ppz /P0!,upzu<p0 , ~12!

where S(pz) is the area of the cross section of the Fer
surface on a planepz5const; S0 , S1<S0 , and p0.0 are
d
,

f

n-
n

-

n-
y
-

e

e

i-

i

parameters of the model. Taking into account thatv6v6*
5S(pz)/pm2 andvz52(]S/]pz)/2pm, we obtain from~6!

F6~q!5F'
e ~q!1~Nh /Ne!F6

h ~q!5@~16 ige!
22q2#21/2

2~Nh /Ne!@~16 igh!22b2q2#21/2. ~13!

Here b5u]Sh /]pzum /u]Se /]pzum , where u]Se,h /]pzum are
the maximum values of the derivatives]Se,h /]pz . For the
model of the Fermi surface that we have adopted,ve is given
by the relationve5u]Se /]pzum/2pme .

The scope of our analysis is not limited to the expe
mental results of magnetoacoustic studies of the absorp
of sound in cadmium. Nevertheless, as we have said,
specificity we have taken some of the parameters of
model metal equal to those for cadmium. The relative po
tion of the singularities in the conductivity~13! ~F0→` for
q2→1 andq2→b22; F05F6uge,h50! is determined by the
differential characteristics of the Fermi surface, mo
precisely, by the values ofRm5u]S/]pzum/2p\. For cad-
mium Rm

e 51.43 Å21 ~‘‘lens’’ ! and Rm
h 50.342 Å21

~‘‘monster’’!.20 In accordance with these and the oth
known data, we shall assume the following values in~8! and
~13!:

r58.65 g/cm3, vs51.57•105 cm/s,

me53umhu50.9•10227g,

Ne5Nh50.5•1022cm23, b50.24. ~14!

Of course, in approximating the cadmium hole ‘‘monster
which has a 3-fold axis of rotational symmetry@0001#, by an
axially symmetric surface, we are excluding from consid
ation the multiple resonances observed in the experimen
Ref. 8. The singularity in the conductivity due to the DSC
of the electrons of the ‘‘lens’’ is apparently also weak
@logarithmic21 rather than square-root, as in Eq.~13!#. How-
ever, this simplification of the model Fermi surface in o
treatment is not of a fundamental nature, particularly sin
we have already made some serious assumptions in
choice of the model deformation potential. The functi
F0(q) in ~13! for a metal with the parameters~14! is shown
in Fig. 2.

DAMPING OF SOUND

A numerical solution of the dispersion relation~8! will
be used to determine how the damping coefficientsk69 ~k6

5k68 1 ik69 ! for the acoustical modes depend on the exter
parameters and the parameters of the model for the m
The external parameters are the frequency, i.e., the valu
V ~for the parameters given in~14! one has v0/2p
>102 MHz! and the dimensionless magnetic fieldh[qs

21 .
We see in Fig. 2 that forq2.1 the functionF0 is complex.
This is indicative of collisionless damping of the electroma
netic and sound waves due to the DSCR. In the intervab
<h<1 the condition of DSCR (kvz /vc51) is satisfied for
the electrons, and forh<b it is satisfied for both the elec
trons and holes. Collisions lead to a smearing of the abs
tion edge, as a result of which the collective modes will
damped forh.1 as well. For our model of the Fermi surfac
the valuesh51 andh5b correspond to the fieldsHL and
HM in Fig. 1.
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The zeros of the denominator in the first term on t
right-hand side of~8! are the roots of the dispersion relatio
for electromagnetic modes in the absence of their interac
with sound. Settingq5qs andF65F0 in this denominator,
we obtain the equation

7V2/qs5F0~qs!, ~15!

which enables us to find the fields near which the acoust
modes are resonantly coupled with the weakly damped e
tromagnetic modes. In compensated metals these are do
rons. In Fig. 2 we show as an example the graphical solu
of Eq. ~15! for two values ofV. We see that at the pointDe

the sound component in the ‘‘2’’ polarization is coupled
with the electron doppleron, while at the pointDh the com-
ponent in the ‘‘1’’ polarization is coupled with the hole
doppleron. Consequently, the corresponding resonance
tures in the absorption of sound should be observed in fi
h.1 andh.b. It is important to note that ReF0@Im F0 at
the pointDh . At lower velocities this condition no longe
holds, the electromagnetic mode is not weakly damped,
Eq. ~15! can no longer be used.

Qualitative analysis

The interaction of electrons with the lattice is describ
by the dispersion relation~8!. The character of this interac
tion and the sound absorption due to it are completely de
mined by the form of the coefficientsa1 anda2 . Let us start
with a comparative analysis of the absorption of sound
uncompensated (Nh50) and compensated (Ne5Nh) metals.
We make the simplification of settingq5qs (V2q2/qs

3

→V2h) and ge,h50 in Eqs. ~9! and ~10!. We shall also
assume that in the general casel0eÞ1 andDlÞ0.

Uncompensated metal. In the curly brackets on the right
hand sides of Eqs.~9! and~10! there are three terms in eac
of these equations that can be paired with a similar coun
part in the other. In the case of an uncompensated m

FIG. 2. The functionF0 of Eq. ~13! (F05F6uge,h50) and a graphical solu-
tion of Eq. ~15!. Curve1 is the left-hand side of~15! in the ‘‘2’’ polariza-
tion at a frequencyV50.59~for the parameters given in~14! this frequency
corresponds to a valuev/2p560 MHz! ~a!; curve2 is the left-hand side of
~15! in the ‘‘1’’ polarization at a frequencyV52.95 (v/2p5300 MHz!
~b!. At the pointsDe andDh the acoustical modes interact resonantly w
the electron and hole dopplerons, respectively.
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(Nh→0) the third terms vanish, and in the second ter
leF6(0)→l0e . It is these terms that govern the character
the interaction of electrons with the lattice at low freque
cies, when the first terms are relatively small. This is parti
larly true for the free-electron model (l0e51).11 It was
shown previously that at low frequencies a substantial role
the interaction is played by eddy currents.22,23 As a result, in
fields h,1 the absorption of sound will exhibit a featur
having the form of a ‘‘Kjeldaas edge.’’11,16As the frequency
increases, the first terms grow in size. A purely deform
tional absorption of sound begins to play a role,22,23 and the
feature of the ‘‘Kjeldaas edge’’ type is transformed into
asymmetric peak in fields less than the resonance fielh
51.23 Of course, the indicated features of the coefficientsa1

anda2 in the uncompensated metal also determine the c
acter of the coupling of the acoustical modes with helico
and dopplerons. This question is discussed in detail in
previous paper.2

Compensated metal. In going to the case of a compen
sated metal (Nh→Ne) the form of the coefficientsa1 anda2

changes substantially. As a result of compensation effect
the conductivity the second terms in the curly brackets on
right-hand sides of Eqs.~9! and~10! go to zero~see Eq.~13!
and Fig. 2!. However, now the third terms are nonzero; th
value is determined by the differenceDl and the purely non-
local contribution from the holes to the conductivity of th
metal:DF0

h5F0
h(qs)2F0

h(0). Let usfirst consider the inter-
action of free carriers with the lattice in the field regionh
;1 (qs;1). Since b2!1, in this field region DF0

h

'b2qs
2/2!1 ~see Fig. 2!, and for reasonable values ofDl

the third terms will also be relatively small. At low frequen
cies the first terms are also small. As a result, unlike the c
for an uncompensated metal, the magnetoacoustic
doppleron–phonon resonances due to the interaction of
lattice with electrons~in this case majority carriers! will be
weakly manifested in experiment. Forl0e;1 this interaction
will be weak even at rather high frequencies.

The smallness of the third terms in~9! and ~10! in the
field region under discussion is to a certain degree due to
relatively weak deformational interaction of the lattice wi
holes. This is easily shown by considering, e.g., the struc
of the expressions for the coefficientsg6 and G6 . For the
deformation potential~7!

g6
e,h ,G6

e,h}$F6
e,h~q!2le,h@F6

e,h~q!2F6
e,h~0!#%. ~16!

The first terms on the right-hand side of Eq.~16! arise as a
result of the induction interaction of free carriers with th
lattice and are determined by the induction currents a
forces acting on the lattice. The second terms are the resu
the deformation interaction. For a compensated metal
haveg65g6

e 1g6
h , G65G6

e 1G6
h in ~1!. We see from~9!

that the third term in the curly brackets consists of two term
one of which,lhDF0

h , is directly related to the deformatio
terms ing6

h andG6
h . The second term,leDF0

h , arises in the
summation of the total contribution of the electrons and
induction contribution of the holes. Consequently, we c
conclude that the weakness of the interaction of the elec
and ion subsystems of a compensated metal at low freq
cies in fields with values in the vicinity ofh;1 is due, first,
to compensation of the ‘‘electron’’ contribution to the inte
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action of the subsystems of the metal by the induction c
tribution of the holes, and, second, to the weakness of
deformation interaction of the lattice with minority carrier
in this case holes.

Let us now consider the field regionh;b and below. As
we see from Eq.~13! and Fig. 2, as the field is decreased t
purely nonlocal contribution of the holes to the conductiv
increases (DF0

h→2`). Accordingly,a1 anda2 increase in
modulus. However, the competition of the terms singula
h;b in the expressions fora1 anda2 and in the denomina
tor of the first term on the right-hand side of Eq.~8! compli-
cates the qualitative analysis. To clarify this, let us elimin
this competition by interchanging the indicese andh in Eqs.
~8!–~10!. As a result, the coefficientsa1 and a2 will no
longer be singular, since after interchanging the indice
factor DF0

e5F0
e(q)2F0

e(0)'217 ih appears in the third
terms in the curly brackets on the right-hand sides of~9! and
~10!. Now at smallb one hasuDF0

eu;1 in fieldsh<b, and,
depending on the value ofDl these terms can turn out to b
relatively large. As a result, a situation arises which is ana
gous to that considered above in the uncompensated m
At low frequencies the magnetoacoustic resonance due to
holes will be manifested in the absorption of sound in
form of a feature of the ‘‘Kjeldaas edge’’ type. Now, how
ever, the character of the interaction of the free carriers w
the lattice is determined mainly by the third terms rather th
the second terms in~9! and ~10!. With increasing frequency
this feature will be transformed into an asymmetric peak
fields below the resonance fieldh5b.

Illustrative quantitative analysis

Let us turn to an examination of the numerical results
equation~8! with the conductivity~13!. The solutions will be
obtained for a model metal with the parameters in~14!, only
now we can no longer neglect collisions. We shall sh
below that collisions can have a substantial influence on
shape of the manifestation of the DPR in fieldsh.1. For the
values of the ratesn we take the corresponding typical valu
for the mean free path of resonant electrons alongH, l e

5ve /n, equal to 0.2, 0.5 and 1.0 mm. There remain t
unknown parameters—the constants of the deformation
tential. We base our choice of values ofl0e andl0h on the
following considerations. In Eq.~7! m is the cyclotron mass
For a spherical Fermi surface of free electrons it is equa
the free electron massm0 , and l051. It is known24 that
cadmium is among the metals for which the free-elect
model gives a very realistic first approximation for the act
band structure and Fermi surface. In this approximation
Fermi surface is made up of portions of the free-elect
spheres. We assume that on each of the portions, as in
case of a spherical Fermi surface, the relationl0umu;m0

holds. The electron ‘‘lens’’ in cadmium consists of tw
spherical segments. In the geometry of interest to us h
kiHi@0001# the electron orbits are the circular orbits of fre
electrons. Therefore, there are grounds for assuming tha
the electron Fermi surfaceme;m0 andl0e;1. The value of
l0e will be varied in a certain interval including the ‘‘spe
cial’’ point l0e51. A qualitative analysis of the shape of th
hole ‘‘monster’’ in cadmium and also the known data ind
cate that the averaged cyclotron mass of the holes is app
-
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mately one-third the value ofm0 in modulus. Consequently
l0h;3 in the framework of our assumptions, and we ha
setl0h53 in the calculations.

The solutions of the dispersion relation are presented
the form of plots ofG* 5(k19 1k29 )/2 as a function of two
variables: the dimensionless magnetic fieldh and a different
one of the other variables each time. If the inequalityk69 d
!1 and uDk68 du!1, then the coefficientG* is practically
equal to the damping coefficientG of linearly polarized
transverse sound. Hered is the thickness of the sample, an
Dk68 5k68 2ks .

Figure 3 shows the dependence ofG* on h andl0e . The
most characteristic feature of this plot is the weak express
of the interaction of the lattice with the electrons. In partic
lar, this is true for the interaction of electrons with sound d
to the magnetoacoustic resonance in fieldsh,1 @see also
Fig. 6~a!, in which the field valueHe corresponds toh51!.
Also of small amplitude is the anomaly observed in fiel
h;1.35, which is due to the interaction of sound with t
long-wavelength electron doppleron. It position correspon
to the position of the pointDe in Fig. 2 (h5qs

21). Whenl0e

deviates from the critical valuel0e51 the anomaly takes the
form of an absorption peak, with an amplitude that increa
as the deviation increases. This is due to the growth in mo
lus of the first term in the curly brackets on the right-ha
side of ~9!. The second characteristic feature of the plot
Fig. 3 is the pronounced anomaly in the sound damping
served in fieldsh<b. This anomaly, which has the form o
a ‘‘Kjeldaas edge,’’11 is obviously due to the ‘‘turning on’’
of the collisionless resonance absorption of sound by ho

Figure 4 shows the dependence ofG* on h andV ~the
range of variable ofV corresponds to a frequency interv
v/2p>50– 200 MHz!. As in Fig. 3, in fieldsh.1 one ob-
serves a feature due to the interaction of the sound with
electron doppleron. As the frequency increases, in agreem
with the graphical solution of Eq.~15!, the feature shifts in
field toward the asymptotic valueh51. Indeed, it is seen in
Fig. 2 that asV increases, the pointDe shifts upward along
theF0 curve, approaching the asymptoteqs

251. At high fre-
quencies the feature takes on the form of an absorption p

FIG. 3. G* 5(k19 1k29 )/2 as a function of the dimensionless magnetic fie
h and the constantl0e ~numerical solutions of~8! and~13!, obtained for the
parameters in~14! and l0h53, V50.59 (v/2p560 MHz!, and n51.66
3109 s21 ( l e50.2 mm)!.
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which is due to the growth of the first term in curly bracke
on the right-hand side of~9!. The anomaly observed in Fig.
at fieldsh<b, as in Fig. 3, is due to collisionless resonan
absorption of sound by holes. As the frequency increa
this anomaly, which has the form of a ‘‘Kjeldaas edge,’’11 is
transformed into an asymmetric peak in the field region
low the resonance fieldh5b. In fields h.b a strong ab-
sorption peak appears, which is the result of the interac
of sound with the short-wavelength hole doppleron. At
frequencyV52.95 its position corresponds to the position
the pointDh in Fig. 2 (h5qs

21).
We see that the given quantitative results are in go

agreement in their most important details with the results
our qualitative analysis of the interaction of free carriers w
the lattice. We should, however, make special mention
one of the most important results of this analysis, which
can confirm by a numerical calculation. As we have show
the main reason for the weakness of the interaction of e
trons~majority carriers! with the lattice at low frequencies i
due to compensation effects, which are most clearly ma
fested in the smallness of the modulus of the second term
curly brackets on the right-hand sides of~9! and ~10!. This
compensation is maximum precisely in compensated me
in which Nh5Ne . Figure 5 shows the numerical solutions

FIG. 4. G* 5(k19 1k29 )/2 as a function of the dimensionless magnetic fie
h and the frequencyV ~numerical solutions of~8! and ~13!, obtained for
the parameters in~14! and l0e51.1, l0h53, and n51.663109 s21

( l e50.2 mm)!.

FIG. 5. G* 5(k19 1k29 )/2 as a function of the dimensionless magnetic fie
h and the ratioNh /Ne ~numerical solutions of~8! and ~13!, obtained for
the parameters in~14! and l0e51.1, l0h53, and n51.663109 s21

( l e50.2 mm)!.
s,
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equation~8! for different values ofNh /Ne . It is clearly seen
that a quite small deviation ofNh /Ne from unity is sufficient
to transform the anomalyDe observed in fieldsh.1 from a
weak minimum~antiresonance! of the sound absorption to
pronounced absorption peak. This is clearly due to
growth in modulus of the second term in curly brackets
the right-hand side of~9! ~in strong fieldsF6'12Nh /Ne!,
while the modulus of the third term, on the contrary, d
creases.

Cadmium

Let us now turn to a quantitative analysis of the expe
mental results obtained in cadmium~Fig. 1!. For this we
choose values ofl0e such that the experimental and calc
lated functionsG* (h) are similar, particularly at 60 MHz~at
300 MHz we are interested in the field regionh<b, since
fieldsh;1 were inaccessible in the experiment!. A variation
of l0e in a certain interval around the valuel0e51 has a
weak effect on the shape ofG* (h) curve in this field region
at high frequencies. This is clearly seen from~9! and~10! if
in those expressions the indicese andh are interchanged.

Figure 6 shows the calculated dependence ofG* on the
external magnetic fieldH, obtained at frequencies of 60 an
300 MHz for l0e51.1 and three values ofl e . The corre-
sponding experimental curves are presented in Fig. 1.
field He ~the ‘‘Kjeldaas edge’’ for electrons! corresponds to
the fieldHL in Fig. 1 and toh51 in Figs. 3 and 4, and the
field Hh ~the ‘‘Kjeldaas edge’’ for holes! corresponds to the
field HM in Fig. 1 and toh5b in Figs. 3 and 4. The feature
De andDh ~DL andDM in Fig. 1! are due to the interaction
of sound with the electron and hole dopplerons, respectiv
We see that the curvesG* (H) obtained forl e50.5 mm are
qualitatively similar to the experimental curves~quantitative
measurements were not made in the experiment!. However,

FIG. 6. G* 5(k19 1k29 )/2 as a function of the magnetic fieldH ~numerical
solutions of ~8! and ~13!, obtained for the parameters in~14! and l0e

51.1, l0h53; a—V50.59 (v/2p560 MHz); b—V52.95 (v/2p
5300 MHz) and various values of the mean free pathl e .
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if an assessment can be based simply on a comparison o
ratios of the amplitudes of the features due to the magne
coustic resonance and the DPR at each of the frequen
then the quantitative agreement of the calculation with
periment can be judged quite good as well. Of course,
choice ofl0e is rather arbitrary. For example, we see that
the curve obtained forl e50.5 mm the distance between th
maximum and minimum ofG* in the neighborhood of the
resonanceDe is approximately half that on the experiment
curve. Better agreement is achieved forl e50.2 mm and
l0e51.14. For us, however, this is not of fundamental i
portance. Here we wanted to show, besides the overall q
tative agreement of the experimental result with the calcu
tion, that there is one more interesting feature on theG* (H)
curves that can appear in experiment.

Let us examine this feature. We see in Fig. 6~a! that
collisions lead, first, to a ‘‘smearing’’ of the ‘‘Kjeldaa
edge’’ for electrons. In Fig. 6~a! this is manifested as ver
weak kinks on theG* (H) curves atH5He . Second, they
lead to a background damping of sound which at high fie
H.He is constant and proportional to the value of the rela
ation raten. Against the background of this damping th
shape of the resonance feature can be transformed asn is
increased. In Fig. 6~a! we see that forl e51 mm this feature
has the form of a peak or maximum, whereas forl e

50.2 mm it has taken on the form of a peak with a negat
amplitude relative to the background, i.e., a minimum
antiresonance. The collective interaction of the free carr
with the lattice and, hence, the DPR are described by the
term on the right-hand side of~8!. Restricting discussion to
the relevant regime of weak coupling of the dopplerons w
sound, we setq5qs on the right-hand side of~8!. Then the
denominator in this term can be rewritten in the form@V2h
2F28 (h)#2 iF 29 (h), whereF29 (h).0 (F28 1 iF 29 5F2). In
fields h.1 the functionF29 is proportional ton. The ques-
tion of the form of the functionsF68 and F69 and of the
correctness of the use of the weak coupling approxima
have been discussed in detail in our previous paper.25 As-
suming that the inequalityq9!q8 holds (q5q81 iq9), the
left-hand side of~8! can be written in the form (q822qs

2)
12iq8q9. The condition of DPR is that the differenceV2h
2F28 go to zero. When collisions are taken into account,
expression in curly brackets on the right-hand side of~9! is
complex-valued. We write it in the forma1 ib. Then a1

}(a22b2)12iab. In typical casesa2@b2, and the DPR
will be manifested as a maximum of the sound absorpti
However, as was shown above, in compensated metals
value of ua1u can be very small. Then a situation arises
which, despite the smallness of the parametersge and ughu,
the values ofa2 andb2 are of the same order. Sinceb}n in
fields h.1, at large values ofn the quantitya22b2 will
change sign if the inequalitya2@b2 holds; then a minimum
or antiresonance will be observed in the sound damping.
intermediate case arises fora2'b2. It is this case that is
realized in cadmium. In conclusion we note that the sa
situation can also arise in an uncompensated metalNh

50) as the result of a competition between the first a
second terms in curly brackets on the right-hand side of~9!
~see Fig. 8 of Ref. 2!.
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CONCLUSION

In this paper we have analyzed the damping of tra
verse ultrasonic waves in normal and compensated me
due to both single-particle~magnetoacoustic resonance! and
collective~doppleron–phonon resonance! interactions of free
carriers with the lattice. The dispersion relation describ
the interaction of the ion and electron subsystems of
metal has been obtained in a form~8! which is compact,
transparent, and convenient for analysis. Equation~8! was
obtained for a specific model of the deformation poten
~7!, but the shape of the Fermi surface was not specified.
a result, this equation can be used for any metal model w
two groups of free carriers, holes are electrons, in any co
bination ~ee, eh, he, hh!. Here the ratioN1 /N2 ~where 1
and 2 stand fore or h! can be arbitrary. The main results o
this study can be summarized as follows.

1. We have shown that in compensated metals a cer
‘‘discrimination’’ arises in respect to the majority carrier
particularly at low sound frequencies. Here it is not at
important whether those majority carriers are electrons
holes. This ‘‘discrimination’’ is manifested in a relativel
weak interaction of the carriers of this group with the latti
at low frequencies as compared with the interaction of
lattice with the carriers of the other, minority group. This
due primarily to compensation effects, which are reflected
the smallness of the second and third terms in the cu
brackets on the right-hand sides of~9! and ~10!. The com-
pensation effects are most clearly manifested specifically
compensated metals. This is clearly seen in Fig. 5, wh
shows the results of a numerical solution of Eq.~8! for dif-
ferent values ofNh /Ne .

In strong fields the second terms in the curly brackets
the right-hand sides of~9! and~10! are always small in com-
pensated metals on account of compensation effects.
smallness of the third terms in fieldsh;1, as, for example,
in the case of cadmium considered here, is due to the sm
ness of the purely nonlocal contribution to the conductiv
from holes and, hence, to the smallness of the deformatio
interaction of the lattice with holes. It is clear that the qua
tity uF6

h (q)2F6
h (0)u in fields h;1 is determined by the

value ofb, which is small in cadmium~in cadmiumuDF6
h u

'b2/2). In other compensated metals, however, it may
be so small. For example, in tungsten and molybdenum
which one can also distinguish two groups of carriers3,25–27

~the electrons of the ‘‘jack,’’ which comprise the majorit
group, and the holes of the ‘‘octahedron’’!, the value ofb is
approximately twice as large as in cadmium (b;1/2). As a
result, the DPR, due to the interaction of sound with t
electron doppleron, is manifested in experiment~unlike the
case of cadmium! as a pronounced peak of the sound abso
tion, although the magnetoacoustic resonance, as
‘‘weaker’’ resonance in this case, is, as before, har
visible.

It should be noted that the relative weakness of the
teraction of the majority carriers with the lattice is an inhe
ent property of compensated metals regardless of the num
of resonant groups of carriers. This is easily shown. Supp
a metal contains several groups of carriers. We number th
groups and the corresponding parameters by the indei ,
settingi 51 for the majority group. Transforming Eq.~1!, we



ow

y
r
s
ro
c
o
th
e

ta

s
P
ity
e
fo
er
th
ith

ro
um

ts
s.
f

fe
s-
he
e
te
ov
tio
-

in
m

ap-

for

p.

p.

.

M.

k.

h.

tt.

432 Low Temp. Phys. 26 (6), June 2000 Tsymbal et al.
obtain a version of Eq.~8! in which the first two terms in
curly brackets on the right-hand sides of~9! and~10! remain
as before~with the indexe replaced by 1!, while the third
terms of the respective equations are replaced by the foll
ing sums:

7(
i .1

~Ni /N1!~l i2l1!@F6
~ i !~q!2F6

~ i !~0!# ~17!

and

6(
i .1

~Ni /N1!~l i2l1!2@F6
~ i !~q!2F6

~ i !~0!#. ~18!

In ~17! and ~18! the summation is over all the minorit
groups of carriers. We see that increasing the numbe
groups leads only to an increase in the number of term
~17! and ~18!, these terms being of the same type and p
portional to the purely nonlocal contributions to the condu
tivity from the carriers of these groups. Consequently, all
the conclusions reached in our qualitative analysis of
interaction of the electron and ion subsystems in a comp
sated metal with two groups of carriers will remain valid.

2. Under conditions that can arise in compensated me
in a particular experiment, the value ofua1u in ~9! may turn
out to be very small. In that case, depending on the value
n and the other parameters, the shape with which the D
which is due to the interaction of sound with the major
carriers, is manifested in the absorption can be extrem
unusual. This is clearly seen in the case of cadmium,
example. Interestingly, from the standpoint of the und
standing we have gained, it is surprising that this was
metal in which the DPR due to the interaction of sound w
the long-wavelength doppleron was first detected.4 The com-
pensation effects in the interaction of the ion and elect
subsystems of a metal are very pronounced in cadmi
since the constant of the deformation potentiall0e;1 and
the parameterb is relatively small. However, these effec
are also manifested clearly in other compensated metal
particular, we have previously28 investigated the damping o
sound in tungsten as a function of the magnetic fieldH and
the angleu between the direction ofH and the@001# axis.
This experiment revealed a large number of resonance
tures. As the angleu was varied, some of them were tran
formed from a feature having the form of a maximum of t
sound damping into a step and then into an antiresonanc
is perfectly clear that this transformation can be interpre
as being a result of the compensation effects indicated ab
Like the transformation of the shape of the sound absorp
curves observed in Fig. 6~a!, this transformation can be ex
plained by a change in the sign of the differencea22b2.
Now, however, this sign change is due not to a changen
but to a change in the Landau magnetic damping. This da
-
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ing is manifested in the appearance of dissipative terms,
proximately proportional to sin2 u, in the conductivity.29
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Magnetomechanics of mesoscopic wires
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We have studied the force in mesoscopic wires in the presence of an external magnetic field
along the wire, using a free electron model. We show that the applied magnetic field can be used
to affect the force in the wire. The magnetic field breaks the degeneracy of the eigenenergies
of the conduction modes, resulting in more structure in the force as a function of wire length. The
use of an external magnetic field is an equilibrium method of controlling the number of
transporting channels. Under the least favorable circumstances~on the middle of a low conduction
step! one needs about 1.3 T to see an abrupt change in the force at fixed wire length for a
mesoscopic bismuth wire. ©2000 American Institute of Physics.@S1063-777X~00!01006-9#
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1. INTRODUCTION

The electrical conductance in a ballistic wire with d
mensions comparable to the Fermi wave-length increase
steps ofG052e2/h as the cross section increases. This c
ductance quantization is observable at room temperatur
metallic nanowires formed by pressing two pieces of me
together into a metallic contact. When the two pieces
separated, the contact is stretched into a nanowire, a wir
nanometer dimensions. Several experiments varying
principle have been performed, e.g., using scanning tun
ing microscopy,1 mechanically controlled break junctions2

or just plain macroscopic wires.3 Although most nanowire
experiments have been performed on metals, conduct
quantization has been seen in bismuth at 4 K.4 Since bismuth
has a Fermi wavelengthlF526 nm,4 these semimeta
‘‘nanowires’’ are larger than the metallic nanowires.

The stepwise variation of the conductance in such a
soscopic wire is accompanied by an abrupt change of
force in the wire.5 Using a free-electron model, neglecting a
atomic structure of the wire, it has been shown6–9 that the
size of the electronic contribution to the force fluctuations
comparable to the values found experimentally and that
qualitative behavior, i.e., the abrupt change that accompa
the conductance steps, is the same.

In the wire the transverse motion of the electrons giv
rise to quantized modesa of energyEa . In the simplest
version of the Landauer formalism, a mode is conside
fully transmitting ~open! if EF.Ea and closed otherwise.10

Each open mode contributes an amounte2/h to the conduc-
tance, if modes with different spin are considered separa
As the wire is elongated and the cross section decrea
more and more modes are pushed above the Fermi leve
closed, thus decreasing the conductance stepwise. This
been shown in two dimensions11 and in three dimensions.12

It has been suggested13 that the conductance and the m
chanical force in a nanowire can be controlled by an app
driving voltage. This effect originates from the injection
4331063-777X/2000/26(6)/4/$20.00
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additional electrons with voltage-dependent energy, beca
of the different chemical potentials of the two reservoi
Since a relatively large applied voltage is needed, one
have to worry about heating in this case.

The eigenenergies of the transverse motion can be
fected by an external magnetic fieldB perpendicular to the
cross section of the wire. This will show up in the condu
tance and in the force as a function ofB. The effect of mag-
netic field on the conductance was considered in Ref. 14
use an external magnetic field is an equilibrium method
controlling the number of transporting channels, without s
nificant risk of relaxation.

Because of band bending, due to the small size of
wire, the eigenenergies will have to be corrected. This c
however, be taken care of by introducing an effective Fe
energyẼF in the wire. Assuming that the number of ele
trons ~per unit volume! is constant,ẼF can be determined
self-consistently and will vary with wire length and magne
field.

In this paper we present force calculations for differe
applied magnetic fields and wire lengths, using a fre
electron model. We take into account the effect of ba
bending, adjusting the Fermi energy in the wire. In order
resolve any effect for moderate magnetic fields, a low cyc
tron effective mass~which enters in the cyclotron frequency!
is needed, which can be found in semimetals. Metals are
favorable since, because of a larger cyclotron effective m
~larger Fermi energy!, we would need a larger magnetic fie
in order to resolve any effect. For numerical estimates
have used values for bismuth, a typical semimetal. For
muth the spin splitting is also important, since bismuth ha
large spectroscopic spin splitting factorg.

2. MODEL

We consider a cylindrical ballistic wire of lengthL with
circular cross section and a parabolic confining potential
© 2000 American Institute of Physics
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v~r !5
v0

2m* r 2

2
[EF

r 2

R2 , ~1!

using cylindrical coordinates (r ,w,z); herem* is the effec-
tive electron mass. The wire is along thez direction. The last
equality in Eq.~1! definesv0 . In this equationEF is the
zero-B-field bulk value, yielding a magnetic-field
independent confining potential. We assume that the volu
V5pR2L of the wire is kept constant during elongatio
which makesR andL mutually dependent.

With the above confining potential and an applied ma
netic field along the wire, the Schro¨dinger equation was
solved in Ref. 15. If also spin is included, the eigenenerg
are

Ea5\S vc
2

4
1v0

2D 1/2

n1
1

2
l\vc1sgmBB, ~2!

n52m1u l u11, m50,1,2,...,

l 50,61,62,..., s561/2, a5$m,l ,s%,

where vc5eB/m* is the cyclotron frequency;mB is the
Bohr magneton:sgmB is the magnetic moment associat
with the electron spin.

Since our system is open, the electronic contribution
the force in the wire is given by the derivative of the gra
potentialV5E2mN with respect to elongation. HereE is
the total energy of the electrons in the wire,m is the chemical
potential, andN is the number of electrons in the wire. If th
Fermi energyEF is much higher than the thermal energy~as
in metals or at low temperature!, we havem'EF . The grand
potential is then9

V~EF!52(
a

4

3
LS 2m*

p2\2D 1/2

~EF2Ea!3/2, ~3!

where the sum is over all open modes. The force in the w
is given by

F52
dV

dL
, ~4!

which in general has to be calculated numerically.
The magnetic field affects the system primarily by sp

ting the otherwise degenerate eigenenergies of the con
tion modes@Eq. ~2!#. Since then the conduction modes w
open one-by-one, this will cause more structure in the fo
and conductance when displayed as functions of wire len
Subsequently, when applying an external magnetic field
will see the~clearest! effect when the highest open level o
the lowest closed level goes through the Fermi level~which-
ever happens first!. If one does not adjust the Fermi energ
for band bending but uses the bulk Fermi energy for z
magnetic field, one can analytically calculate theB field
needed when the wire is kept at a specified length. The l
favorable situation would be on the middle of a conduct
step.

3. RESULTS AND DISCUSSION

We have used numerical values for bismuth, a typi
semimetal withEF525 meV.4 Bismuth has an anisotropi
Fermi surface resulting in different effective masses in d
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ferent directions, between 0.009me21.8me ~Ref. 16!. The
cyclotron effective mass is in the range 0.009me20.13me

~Ref. 16!. For an isotropic Fermi surface and a quadra
dispersion relation, both effective masses are the same:m*
50.07me for EF525 meV. The spectroscopic splitting fac
tor g can be as high as 260 or an order of magnitude sma
depending on the direction of the magnetic field.17 For g
520 the spin splitting is roughly of the same order as
Landau level distance, and becomes dominant forg as large
as 200. We have usedg520. The wire volume was kep
constant at 30 000 nm3 ~Ref. 3!.

To find the effective Fermi energy of the wire we ha
adjusted the value in order to keep the number of electr
constant, with a tolerance of 1024%.

Figure 1 shows the force in the wire as a function of w
length for different magnetic fields. For nonzero fields t
force curves show more structure, since now the eigene
gies of the conduction channels are nondegenerate and
one-by-one, each time resulting in a sharp change of
force.

The force and conductance for two particular magne
fields,B50 and 2.5 T, are shown in Fig. 2. Each step in t
conductance is accompanied by an abrupt change in
force. We also show the corresponding picture for the s
plest possible case9 when we use the bulk value of the Ferm
energy,EF , in Fig. 3. In this case the force is one order
magnitude smaller than in the more realistic case withẼF .
This is because the effective Fermi energy has to be la
then the bulk value in order to keep the number of electr
per unit volume in the wire constant in spite of the quan
zation of levels. Also, the conduction modes close much la
in the ẼF case than in the simpler case when the wire
elongated. The reason for this is that the effective Fe
energy, as a function of wire length, follows each eigen
ergy before intercepting it and closing the channel.

On the middle of the second conduction step~G

FIG. 1. The force in a mesoscopic wire as a function of wire length
different magnetic fields. The lowest, heavy, curve is forB50. The next
curves, each displaced by 0.5 pN, are forB50.5; 1T etc., the uppermos
curve being forB54.5 T. The splitting of the eigenenergies of the condu
tion modes is clearly visible: for largerB fields the curves have more struc
ture, since now each mode closes one-by-one as the wire is elongated
have used a spectroscopic splitting factorg520 and an effective Fermi

energyẼF .



th
-

th
u
fe

s

m
e

d
th
a
e

s
v

ver,
ude

r
or

re
e

at-
s in

he
the

ire

e
.

for
t

s

nd
sec-

upt

N,
e

ture

435Low Temp. Phys. 26 (6), June 2000 S. Blom
53G0, n52! the circumstances are least favorable to see
effect of the magnetic field. For the case with the zeroB-
field bulk value of the Fermi energy (L519.8 nm), we have
analytically calculated that one needsB52.4 T in order to
see the highest open level go through the Fermi energy,
giving a sharp change in the force as well as in the cond
tance. For higher conduction modes one will see the ef
for smaller fields, since the splitting is proportional tol,
whose absolute maximum is equal ton.

In Fig. 4 we see the force and the conductance a
function of magnetic field for a fixed wire length,L
554.6 nm. This is for the case with an effective wire Fer
energy and a length corresponding to the middle of the s
ond conduction step~G53G0 , n52!. We see that we nee
about 1.3 T before the highest open level goes through
Fermi surface, showing us the pronounced effect of the m
netic field. In the lower part of the same figure we also s
the effective Fermi energy~thick line! and the eigenenergie
of the second conduction steps. Notice how the Fermi le

FIG. 2. The force~heavy curve! and the conductance in a mesoscopic w
for two different magnetic fields: in the upper figureB50, and in the lower
figureB52.5 T. We clearly see that the abrupt change in the force happ
when a channel closes, i.e., when there is a step in the conductance

have used an effective Fermi energyẼF .

FIG. 3. The force~thick line! and the conductance in a mesoscopic wire
the less realistic case of a constant Fermi energy in the wire equal to
zero-B-field bulk value~25 meV!. Results for two different magnetic field
are shown; in the upper figureB50, and in the lower figureB52.5 T.
e

us
c-
ct

a

i
c-

e
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e

el

increases with the eigenenergy before it intercepts. Howe
these variations are small compared to the overall magnit
of the Fermi energy.

So far we have used a spectroscopic splitting factog
520. In Fig. 5 we show the force as a function of length f
B51 T for different g factors:g50, 2, 20, and 200. Forg
50 there is no spin splitting, but we still see more structu
than forB50 ~cf. Fig. 1!. This is due to the breaking of th
degeneracy into the Landau levels. With increasingg factor
the spin splitting becomes larger and larger; however, wh
ever the size of the spin splitting, more structure appear
the force with an applied magnetic field.

The Fermi energy of the bulk will also be affected by t
magnetic field, due to the de Haas–van Alphen effect. In

ns
We

he

FIG. 4. In the upper figure we show the force~heavy curve! and conduc-
tance forL554.6 nm. This length corresponds to the middle of the seco
conduction step. In the lower figure we show the eigenenergies of the
ond conduction step and the effective Fermi energy of the wire~heavy
curve!. We see that when the highest level goes through the Fermi level~for
approximatelyB51.3 T! there is a step in the conductance and an abr
change in the force.

FIG. 5. Force as a function of length forB51 T for differentg factors. The
lowest curve is forg50, and the following curves, each displaced by 1 p
are for g52, 20, and 200, respectively. We see that no matter what thg
factor is, an external magnetic field will give the force curves more struc
than forB50 ~cf. Fig. 1!.
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case when an effective Fermi energyẼF is used, this does
not affect the results, since the bulk Fermi energy does
enter into the calculations. When the bulk Fermi energy
adjusted for de Haas–van Alphen effect, in the simpler c
shown in Fig. 3 there is no significant change of the for
We have also studied the influence of a moderate app
voltage~in the mV range! but have seen no significant effec

For metals the Fermi energy is in the eV range, dema
ing much higher magnetic fields to resolve results similar
those for bismuth above. Since the size of the splitting
proportional to the number of open channels, having m
channels will decrease the magnetic field needed. There
if we design the circumstances to be more favorable,
having more open channels and being close to a conduc
step, a moderate magnetic field will be enough to make
eigenenergy go through the Fermi level, thus giving an eff
in the force and in the conductance.

4. CONCLUSION

Using a free-electron model, we have shown that
force in a mesoscopic wire can be affected by an exte
magnetic field parallel to the wire. With a magnetic fie
present the degenerate eigenenergies of the condu
modes split and become conducting~open! at different elon-
gations, resulting in more force fluctuations with increas
wire length. At fixed wire length we propose that applying
external magnetic field is an equilibrium method that can
used to affect the force as well as the conductance in m
scopic wires. Since no atomic rearrangement is requ
~contrary to elongation experiments! in an experiment along
these lines, it may give new insight into the nature of t
intrinsic mechanical properties of these wires.
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Hot electrons in nanocontacts
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A theoretical study is made of the temperature of the electron subsystem in a microcontact as a
function of the applied voltage. It is shown that in microcontacts whose characteristic
linear dimension is of the order of several lattice constants~nanocontacts! a breakdown of
thermodynamic equilibrium between the electrons and phonons occurs at high applied voltages.
Then the temperature of the electron subsystem is a linear function of the applied voltage,
and its absolute magnitude can reach values of the order of the Fermi energy. These results agree
with recent experimental data. ©2000 American Institute of Physics.@S1063-777X~00!01106-3#
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INTRODUCTION

In normal metals the electric current is transported
electrons whose energy relaxes mainly through electro
phonon collisions. This means that the electron and pho
subsystems in metals are found in conditions of thermo
namic equilibrium, and therefore, the electron temperatu
even at high applied voltages, cannot appreciably~by an or-
der of magnitude! exceed the Debye temperature witho
causing substantial structural changes.

In experiments1,2 investigating the glow of metallic
nanocontacts an unusual effect was observed: an ano
lously strong overheating of the electron subsystem at h
voltages~1.5–2 V! applied to a nanocontact. By analysis
the emission spectrum it was established that the elec
temperature in the nanocontact had reached the Fermi e
gies ~0.7–1 eV! and increased linearly with increasing vo
age. In spite of the fact that the measured electron temp
ture significantly exceeded the melting temperature of
lattice, no significant structural changes in the sample w
observed.

These experiments raise an important question: un
what conditions will the phonons not affect the charge a
heat transport in metallic microcontacts, and what para
eters will control the electron temperature in that case?

The problem of creating a highly nonequilibrium sta
with respect to temperature between the electron and pho
subsystems in metals has been studied for quite some tim3,4

Although a situation in which each of the subsystems is
scribed by its own temperature can arise even in macrosc
samples, under ordinary conditions a strong departure f
equilibrium cannot be achieved. The possibility of a stro
heating of the electrons in thin metallic films and granu
was discussed in Refs. 5 and 6, and the general conclu
was that the quantization of the electron energy levels ef
tively suppresses the electron–phonon interaction and
thus make it possible to destroy the thermodynamic equ
rium between the electrons and phonons.
4371063-777X/2000/26(6)/4/$20.00
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Micro- and nanocontacts are considerably more attr
tive objects for implementing this possibility. As we know7

the mean free path of an electron in the case when the e
tron and phonon subsystems are in thermodynamic equ
rium is a sharp function of the the temperature,l ep(T)
;T23, at low temperaturesT!TD5\vD ~vD5sp/a is the
Debye frequency,s is the speed of sound, anda is the lattice
period!, and for T>TD it goes over to a smoother depe
dencel ep(T);\vF /T. For microcontacts the condition o
thermodynamic equilibrium between the electrons a
phonons is violated, and for estimating the minimu
electron–phonon relaxation lengthl i

(ph) the lattice can be
considered cold. Simple estimates analogous to those m
in Ref. 7 show that if the energy of the electrons in t
contact exceeds the Debye energy~as in the experiments
discussed here! and all of the phonon modes are involved
the energy relaxation of the electron, then the ‘‘phononi
mean free path of the electrons ceases to depend on en
and becomes equal tol i

(ph);a(vF /s)@a ~for an electron–
phonon interaction constantgep;1!. Thus for microcontacts
with a lengthd, l i

(ph) the electron–phonon interaction occu
far from the region of the microconstriction, in the periphe
region of the contact, where heating of the lattice occu
Since the fraction of ‘‘hot’’ electrons in this region is rela
tively small, the establishment of thermodynamic equil
rium between the electrons and phonons in the periph
regions does not lead to melting of the lattice.

Thus for metallic contacts of small dimensions~nano-
contacts! the electron–phonon interaction cannot bring ab
relaxation of the electron energy within the contact regio
and if it were not for electron–electron collisions, the char
transport in such a system would be phase-coherent. As
know, for T!«F the probability of electron–electron colli
sions is strongly suppressed by the Pauli principle, and th
fore for ‘‘cold’’ electrons ~i.e., electrons with a temperatur
T!TDA«F /TD! and at low voltageseU!T the ‘‘elec-
tronic’’ relaxation lengthl ee(T);«F\vF /T2 turns out to be
© 2000 American Institute of Physics
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438 Low Temp. Phys. 26 (6), June 2000 Kulinich et al.
larger than the analogous phononic length. In this case
transport of change and heat through the contact are
scribed by the Landauer–Buttiker theory~see, e.g., Ref. 8!,
and the electron temperature is determined by the ave
temperature of the peripheral regions of the contact.

To explain the results of the experiments1,2 we shall as-
sume that both the momentum and energy relaxation of
electrons occurs within the microconstriction~thermal trans-
port regime!. This case is always realized at high tempe
tures T;«F ~plasma limit!, when the electronic relaxatio
lengths become of the same order as the interatomic
tance. For degenerate electron statistics,T!«F ~metallic
limit ! the electron collisions can also form a thermal tra
port regime if the voltage applied to the contact is su
ciently high,eU>A\vF«F /d @TDA«F /TD ~we note that in
the experiments of Refs. 1 and 2 anomalous heating of
electrons was observed only at high applied voltages!.

The thermal transport regime in microcontacts was fi
studied in Refs. 9 and 10, in which only the case of ‘‘low
temperatures,T!«F , was considered. Since the tempe
tures recorded in the experiments1,2 were of the order of«F ,
it seems advisable to do additional studies of the plas
limit T@«F . That is our goal in the present paper.~The
plasma limit for an electron–phonon mechanism of elect
heating in a microcontact between semiconductors was
investigated in Ref. 11!. We have shown that forT@«F the
problem also admits an analytical solution and we ha
found an explicit expression for the maximum temperat
Tm of the contact as a function of the applied voltage.
comparison of the formulas obtained in the metallic a
plasma limits, after extrapolation to the regionT;«F , with
the experimental data suggests that the anomalously st
overheating of the electron subsystem observed in Ref
and 2 can be well explained by the existing theory of cha
and heat transport through microcontacts.

THERMAL TRANSPORT REGIME FOR ELECTRONS IN
MICROCONTACTS

In the thermal regime of charge transport through
microcontact9,10 both the momentum and energy of the ele
trons relax within the region of the microconstriction. In th
case the equations governing the thermal and electrical c
acteristics of the contact are the continuity equations expr
ing the conservation laws for the energy and number of p
ticles:

div j50; divq50, ~1!

where the electrical current densityj and total energy flux
densityq have the form12,13

j5s~T!F2¹w2
T

e
¹

m

T
1l~T!¹TG ,

q52k~T!¹T2@w2l~T!T# j . ~2!

Herew is the electrostatic potential,e is the electron charge
andm is the chemical potential. The temperature depende
of the coefficientss, k, andl is found from the solution of
the kinetic equation and can be written as
he
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ge
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s~T!52eI1~T!; l~T!52
1

eT

I 2~T!

I 1~T!
,

k~T!52
1

eTF I 3~T!2
I 2

2~T!

I 1~T!
G , ~3!

where

I n~T!5
2e

3m E d3p

~2p\!3 «nt i~«!
] f 0

]«
. ~4!

Here f 0(«) is the equilibrium~Fermi! distribution function,
and t i(«) is the relaxation time. For contacts with length
shorter than the electron–phonon mean free path, andt i(«)
is determined by electron–electron collision processes. In
voltage region of interest to us here,eU@TDA«F /TD it is
just these processes that promote the rapid relaxation o
electron energy and lead to anomalously strong heating
the electron subsystem.

The temperature dependence of the chemical poten
m(T) is determined from the condition of conservation of t
total number of particles. For metals the condition of elec
cal neutrality guarantees that this relation will be satisfied
both the cases of weak (T!«F) and strong (T@«F) heating.

The system of equations~1!–~3! must be supplemente
by boundary conditions. For a microcontact the natu
boundary conditions are the absence of heat and ch
transport through the boundary of the contact:

j n~rPS!5qn~rPS!50, ~5!

wheren is the normal to the boundaryS of the microcontact.
Furthermore, for a symmetric contact we have

w~z→6`!5
U

2
sgn~z!; T~z→6`!5T0 . ~6!

HereU is the potential difference applied to the contact, a
T0 is the temperature of the peripheral regions of the con
~the z axis is directed along the axis of the contact!.

The system of equations~1!–~3! together with the
boundary conditions~5! and~6! represent a closed system
equations for determining the coordinate dependence of
electrical potentialw(r ) and the temperature distributio
T(r ) for any relationship between the Fermi energym(T
50) and the maximum temperatureTm in the microcontact.
However, the problem has analytical solutions only in t
limiting cases of weak heatingTm!«F ~the ‘‘metallic’’
limit ! and strong heatingTm@«F ~the ‘‘plasma’’ limit!. To
explain the strong (Tm;«F) heating of the electrons that i
observed in experiment we must solve the problem in
plasma limit. The case of weak heating (Tm!«F) was stud-
ied theoretically in Refs. 9 and 10, where a conveni
method was proposed for solving Eqs.~1!–~3!.

It is physically obvious that in the thermal transport r
gime the maximum temperatureTm of the electrons in a
microcontact must be controlled by the voltage applied to
contact and should depend weakly on the geometry of
contact. In view of the azimuthal symmetry of a 3D metal
contact it is convenient mathematically to solve the sta
problem in the geometry of an oblate ellipsoid
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revolution:9,10 0<u<u; 2`<v<`; 0,f,2p. The coor-
dinate system$u,v,f% is related to the Cartesian coordina
system$x,y,z% by the expressions

x5d0 sinu coshv cosf; y5d0 sinu coshv sinf;

z5d0 cosu sinhv,

whered05d/2 sinu is the effective length of the microcon
tact ~u5u5const at the boundaryS of the microcontact!.

It follows from the symmetry of the problem that th
temperatureT and electrical potentialw can only be func-
tions zof the coordinatev and, hence, the system of equ
tions ~1!–~3! reduces to

]

]v H s~T!coshvF]w

]v
1

T

e

]

]v
m

T
2l~T!

]T

]v G J 50,

]

]v H k~T!coshv
]T

]v
1s~T!coshv

3F]w

]c
1

T

e

]

]v
m

T
2l~T!

]T

]v G ]

]v
@w2l~T!T#50.

~7!

Let us first briefly consider the low-temperature ca
following Refs. 9 and 10. In the metallic limit the temper
ture dependence of the chemical potential can be neglec
m(T!«F).«F . To determine the maximum electron hea
ing temperatureTm in the microcontact we do not need
specify the temperature dependence of the kinetic co
cients appearing in Eq.~7!. Actually, in this limit the ther-
mopower a(T)[l(T)1m/eT is small by a factorT/«F ,
and in the leading approximation it can be set equal to z
Then the system~7! takes the form

]

]v S s~T!coshv
]w

]v D50,

]

]v S k~T!coshv
]T

]v D1s~T!coshvS g!w

]v D 2

50. ~8!

In these equations it is convenient to make the change
variablej5j(v), j1,j,j2 , where

j~v !5E
0

v dv
s~T!coshv

; j1,25j~7`!.

In terms of the variablej the system of equations~8! simpli-
fies considerably:

]

]j S L~T!T
]T

]j D1S ]w

]j D 2

50,
]2w

]j2 50, ~9!

where

L~T!5
k~T!

Ts~T!
.

Thus for integrating equations~9! we need to know only
the ratio of the thermal and electrical conductivities. F
elastic collisions the Wiedemann–Franz law holds~see, e.g.,
Ref. 12!, andL(T)5L0 ~L05p2/3e2 is the Lorentz number
here and below we set Boltzmann’s constantkB51!. Al-
though in the thermal transport regime considered here
relaxation of the electron energy occurs inside the microc
,

d:

fi-

o.

of

r

e
-

tact on account of inelastic electron–electron collisions,
dirty samples the main contribution to the thermal and el
tric resistance comes from elastic scattering on impurit
and in that case one can setL(T)5L0 in Eqs.~9!.

An elementary integration of Eq.~9! with the boundary
conditions~5! and ~6! ~for simplicity we have set the tem
perature at the periphery of the contactT050! leads to the
following expression for the maximum temperature of t
microcontact:9,10

TM5
U

2AL0

.

Using the theoretical value of the Lorentz number, w
obtain fromTm the estimateTm.0.27 eV, which agrees in
order of magnitude with the temperature dependence m
sured in Refs. 1 and 2. Nevertheless, it is clear that at s
high temperatures the ‘‘low-temperature’’ (T!«F) approxi-
mation we have used is incorrect. Therefore, to explain
results of the experiments1,2 we must also study the
‘‘plasma’’ limit ( T>«F).

ELECTRON PLASMA IN METALLIC MICROCONTACTS

In the limiting case considered below, unlike the ca
treated above, while replacing the Fermi distribution by
Maxwellian distribution~‘‘plasma’’! we nevertheless assum
that the condition of electronic neutrality~‘‘metal’’ ! holds.
As a consequence,

¹S m

T D52
3

2

¹T

T

and Eq.~7! becomes

]

]v Fs~T!coshv
]

]v
~w2l̃T!G50,

]

]v H s~T!coshvFk~T!

s~T!

]T

]v
1~w2lT!

]

]v
~w2l̃T!G J 50,

~10!

wherel̃5l13/2e.
At high temperaturesT>«F the electronic relaxation

length becomes of the same order as the interatomic
tances and, consequently, inelastic electron–electron c
sions can contribute to the thermal and electrical resista
an amount comparable to the contribution from scattering
impurities. Then, strictly speaking, the Wiedemann–Fra
law ceases to be valid. However, since each electro
electron collision changes both the energy and momentum
the electron substantially, the relaxation timet(«) appearing
in various kinetic coefficients turns out to be the same
order of magnitude. In other words, in the plasma limit, to
the ratioL(T)5k(T)/Ts(T) can be regarded as temperatu
independent,L(T>«F)5Lp . The numerical value of the
constantLp can be found from a comparison of the formul
with the experimental results.

Thus in terms of the variablej the equation for the tem
perature distributionT(j) in the microcontact in the plasm
limit as the form

LpT
]T

]j
1C1

2~j2j0!1
3C1

2e
T50, ~11!
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and the distribution of the electric potentialw(j) is given by
the expression

w~j!2l̃T~j!5C1j1C2 ,

whereCi andj0 are constants of integration determined
the boundary conditions~5! and~6! ~here the temperatureT0

at the periphery of the microcontact is assumed to be q
high—‘‘plasma’’!.

After the substitutionT(j)5(j2j0)t(j) equation~11!
becomes

~j2j0!t
]T

]j
1P~ t !50,

where

P~ t !5Lpt21
3C1

2e
t1C1

2[Lp~ t2t1!~ t2t2!,

which admits a solution in quadratures. Here the characte
the solution depends on the ratioLc /Lp , where Lc

59/16e2. For the most plausible inequalityLc /Lp,1 the
zerost i of the polynomialP(t) are complex conjugate pairs
and the solutionT(j) describing the temperature distributio
in the microcontact can be written in the form

UFT~j!1
C1

ALp

eip~j2j0!GbU2

5C3 , ~12!

where

b52
1

2
1

i

2
cotr, r5arccosALc /Lp,

and C3 is a constant of integration. For uniqueness
choose the branch of the argument in expression~12! as

2p,argFT~j!1
C1

ALp

eir~j2j0!G<p.

We investigate the extremum of expression~12! in the
usual way. According to~11! and ~12! we have

Tm5
1

C3
exp@~p22r!cotr#,

and, consequently, the problem of determiningTm reduces to
one of finding the integration constantC3 . In the general
case the equations for determining the integration const
Ci , j0 are transcendental, but their evaluation is simplifi
considerably in the limiting caseT0ALp/U!1, a restriction
that we shall adopt, whereupon we obtain the following e
pression forTm :

Tm5
U

2ALp

expF S p

2
2r D cotrGcosh21Fp2 cotrG . ~13!

Thus in the plasma limit, too, the maximum temperatu
is a linear function of the applied voltage. To estimate
absolute value ofTm we use the value ofLp for a hydrogen
plasma,12 whereLp.3/2e2. Then, as follows from~13!, we
obtain the relationTm;0.37eU, which gives a better ex
trapolation of the experimental data obtained in Refs. 1 an
than does the ‘‘low-temperature’’ approximation.
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CONCLUSION

The results of the experimental papers1,2 show that nano-
contact afford a unique possibility of ‘‘separating’’ the ele
tron and phonon subsystems and, in principle, make it p
sible to study the electronic characteristics of a metal ‘
pure form,’’ i.e., without the influence of the electron
phonon interaction. Theoretical estimates permitting de
mination of the maximum temperature of a microcontact a
function of the applied voltage show that in both the meta
and plasma limitsTm is a linear function ofU, but with a
different slope in the two limiting cases. As a consequence
can be stated that in the intermediate regionT;«F the func-
tion Tm5Tm(U) has a more complicated analytical chara
ter, and this problem requires further analysis. The relativ
small difference of the slopes indicates that both the meta
and plasma limits will admit satisfactory extrapolation to t
transition regionT;«F .
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PHYSICAL PROPERTIES OF CRYOCRYSTALS

Single-phonon damping of polaritons in cryocrystals of inert elements
N. A. Goncharuk and E. I. Tarasova*
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The single-phonon damping of polaritons governs the most important characteristics of the
relaxation processes of excitations in the region of the resonance energyET . Here the single-
phonon damping of polaritons by acoustical phonons is calculated in the deformation-
potential approximation for the lowest excitonsG(3/2) in Ar, Kr, and Xe cryocrystals. The
results of a numerical calculation of the curves of the energy dependence of the dampingG(E,T
5const) at several temperatures spanning the free exciton existence region for each crystal
are presented. Analytical expressions are obtained forG(E,T) at T50 andT.2\ks.
A comparison with the data from the numerical calculation indicates that a linear temperature
dependenceG(E5const,T) holds over a wide temperature range, except at very low
temperatures. It is shown that at temperatures above the critical point there exists a region of
energies in the neighborhood ofET in which processes involving the absorption of
phonons are dominant and prevent the relaxation of the polaritons down the dispersion curve.
The width of this region is comparable to the maximum phonon energy and increases
with increasing temperature. ©2000 American Institute of Physics.@S1063-777X~00!01206-8#
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INTRODUCTION

Cryocrystals of inert elements, owing to the high qua
tum yield, are attractive objects for converting the energy
high-frequency electronic excitations into VUV and visib
radiation. The lowest excitonic states in cryocrystals of in
elements, being the last stage of relaxation of the intrin
electronic excitations of the crystal, possess a combinatio
unique properties. The distribution of the emission intensi
depends on the features of the exciton–phonon and exci
photon interactions. The existence of wide bands~with a
width 2B<1 eV! of collective states of excitons with wea
single-phonon damping ensures a high mobility of the f
excitons.1–5 In crystals there occurs an efficient transfer
excitation to the surface and also to impurity centers, eve
low impurity concentrations.5–8 At the same time, the stron
coupling of excitons with local deformations of the lattic
leads to intense processes of self-trapping of excitation
cryocrystals of all inert elements.1–3 In pure Ne, Ar, and Kr
crystals the main part of the emission is the VUV emiss
of self-trapped excitons,1–3 and it is only in Xe, according to
the recent results for especially perfect crystals,9 that the
emission from free and self-trapped excitons is compara
in intensity. In the process of relaxation of the excitatio
within the limits of a wide band their distribution over the
competing channels changes; it depends on the kinetic
ergy of the exciton~i.e., the positions of the quasiparticles o
the dispersion curve!. Relaxation of free excitons within a
band is governed by the competition of three proces
single-phonon scattering~its probability is predominant and
provides relaxation along the band!, transitions to a self-
trapped state, and transfer to impurities~defects!. In the
4411063-777X/2000/26(6)/8/$20.00
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neighborhood of the band bottom the processes of sin
phonon relaxation slow down on account of the influence
energy and momentum conservation,4 and the last two relax-
ation channels acquire more significance. Furthermore, in
immediate proximity of the resonance energyET of the ex-
citons with transverse polarization the probability of rad
tive decay of the exciton increases sharply.

In cryocrystals of the inert elements Ar, Kr, and Xe th
radiative decay of the excitonsG(3/2) is characterized by a
comparatively large oscillator strength (F;0.1), which
makes for a rather strong exciton–phonon coupling. T
leads to efficient exciton–photon mixing in the crossing
gion of the dispersion curves for light and excitons and to
formation of a polariton dispersion relation.10,11 Polariton
features are manifested in the energy regionuE2ETu<DLT

(DLT;0.1 eV is the transverse–longitudinal splitting, whic
is proportional toF!10,11 and has a substantial effect on pr
cesses of relaxation and transfer of excitation energy in
crystal.

The first studies of polariton effects~with allowance for
spatial dispersion! in cryocrystals of inert elements were un
dertaken primarily in order to explain the anomalous wid
and shape of the reflection spectra in Ar and Kr crystal12

Then a systematic analysis of the influence of polariton
fects on the transmission and reflection spectra in Xe w
performed.13,14 This analysis confirmed the importance
taking the light–exciton mixing into account in studying th
optical characteristics. In those calculations a constant va
of the exciton dampingGex was used, which had the meanin
of an average over a rather wide energy interval fromET to
E;ET1DLT . This choice ofGex was based on the results o
© 2000 American Institute of Physics
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TABLE I. Polariton parameters forG(3/2) experimental values ofF, ET , C, andDLT were taken from Refs. 3
and 6.

f ET C A,1023 DLT 2hkress, Q,1035

Crystal m

m0

F
eV

l K ev22
•cm22

•s21

Xe 2.0 0.166 2.0 8.36 1.97 5.62 0.11 0.021 7.4 5.55
Kr 2.7 0.158 2.2 10.17 2.11 5.38 0.13 0.056 9 8.07
Ar 3.6 0.065 1.54 12.06 2.02 4.0 0.06 0.18 10.2 7.6
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a calculation of the single-phonon damping of ‘‘pure’’ exc
tons~without taking into account the mixing with photons!,4

since the dependence ofG(E,T) for the polaritons and thei
energy distribution function~PEDF! were not known.

In this paper we do a consistent calculation of the sing
phonon damping of polaritons as a function of energy a
temperature and show that the energy dependence ofG in the
neighborhood ofET and below is shaped by the strong infl
ence of polariton effects. The single-phonon damping g
erns the most important characteristics of the relaxation p
cesses, both those occurring within a band~see above! and
those involving radiative decay.

The characteristics of the luminescence band in the
gion of the exciton resonance of a crystal are directly rela
to the change in the exciton dispersion relations upon mix
with photons, and, in particular, to the possibility of pola
iton relaxation in the region of energies belowET . This
process is intimately intertwined~depending on the energy!
with the aforementioned relaxation processes and reflects
behavior of the PEDF, which is determined by solving t
kinetic equation with allowance for the phonon scatteringG
and the polariton lifetime, including all the decay channels
itinerant quasiparticles.15 Knowledge of the PEDF is also
necessary for finding the kinetic parameters of the ene
transport processes as average values over the distributi
the velocity, various components of the lifetime, the me
free path of the polaritons, and their diffusion coefficient.

The most direct method of determining the lifetime
polaritons is to measure the damping time of the emiss
intensity following a pulsed excitation of excitons. In Ref. 1
an attempt was made to describe the ‘‘decay curves’’ in
with the aid of a computer simulation of the propagation
excitations in the lattice. An estimate was thus obtained
the contribution of the self-trapping process to the format
of the polariton lifetime. However the calculation contain
the following inaccuracies. It ignored the spatial diffusion
the high-energy excitons during the time of relaxation o
the entire exciton band. The group velocity of the polarito
was taken as the average thermal velocity of ‘‘pure’’ ex
tons~as we shall show, at a temperature of 4 K this is com-
pletely unjustified!. Also, for the polariton dampingG a
value typical of thermalized excitons was used.

Knowledge of the energy and temperature dependen
of the scattering probability of polaritons on phonons and
use of these energy and temperature dependences for c
lating the PEDF and the correct averaging of the kinetic
rameters will make it possible to analyze the aforementio
experimental data in an adequate way.

The first calculation of the single-phonon damping
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polaritons, including preliminary estimates for cryocrysta
of inert elements, was done in Ref. 17 on the basis of
same expression of the dampingG that is used in the presen
study~see Eq.~2! below!. The authors of Ref. 17 performe
an analysis in terms of the dependence ofG on the polariton
wave vectork and did not obtain data forG(E), which
makes it hard to compare with experiment and to find
PEDF.15 The analytical dependence ofG as a function of the
quasimomentum and temperature for arbitrary temperat
was given in Ref. 15 in implicit form without any accompa
nying numerical calculations, and the explicit analytical d
pendence ofG(k,T) is given only forT→0, but the given
expression does not have a limiting transition toGex as a
function of energy forE.ET and can be used only in
narrow vicinity of the resonance energy and at very low te
peratures.

In the present paper we calculate the single-phon
damping as a function of the energy of the quasiparticles
the temperature of the crystal for the lowest polariton sta
in Ar, Kr, and Xe cryocrystals. We use the known polarito
dispersion relation obtained in the dipole approximation
the interaction of excitons with an electromagnetic field~lin-
ear in the exciton and photon operators!. The interaction of
polaritons with acoustical phonons is taken into accoun
an approximation linear in the phonon operators and in
model of an isotropic deformation potential. We present
results of a numerical calculation of the energy dependen
of the damping for a wide set of values of the temperatur
and also analytical relations describing the polariton dam
ing in the pertinent energy and temperature regions.

GENERAL CONSIDERATIONS

The width of the energy region in which the polarito
effects are experimentally manifested is of the order ofDLT

~see Table I!. As we shall show below, for the excitoni
states under consideration the inequalityDLT@\G(ET)
holds, whereG(ET) is the damping of polaritons on phonon
in the resonance region. This fact lets one clearly single
the states of the lower branch of transverse polaritons as
final stage of the relaxation of the excitonic band sta
G(3/2). It is these states that we shall consider below. T
solution of the dispersion relation«(v,k)@v2«(v,k)
2k2c2#250 for the lower branch of transverse polarito
has the well-known form1,2
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v'
2~k!5H 1

2 S vk
21

k2c21 f 2

«`
2 ivkgkD

2F1

4 S vk
21

k2c21 f 2

«`
2 ivkgkD 2

2
k2c2

«`
~vk

22 ivkgk!G1/2J 1/2

. ~1!

Here f 54pe2F/(m0V0) is the frequency, which characte
izes the oscillator strengthF, m0 is the mass of the free
electron,V05a3/4 is the volume of the unit cell for an fc
crystal,a is the lattice constant,«` is the dielectric constan
at high frequencies (v@vT); and vk5vT1\k2/2m is the
dispersion relation for excitons,m is the exciton mass, an
\vT5ET . The imaginary termigkvk is introduced to take
the damping into account:gk[2G(E(k)). As our results
have shown, one can neglect the quantitygk in a calculation
of the dispersion relation; this is later used in the derivat
of analytical expressions forG(E,T). The transverse–
longitudinal splitting is expressed in terms of the parame
of the dispersion relation in the formDLT5 f 2\2/2«`ET .
The dispersion curve~1! for polaritons in Xe is shown in Fig
1a. Forv.vT1DLT /\ the polaritons of the lower branc
v'(k) are no different from the excitons that do not intera
with the electromagnetic field. At frequenciesv,vT

2DLT /\ the dispersion relation~1! goes over to the linea
dependence of low-frequency photons.

The interaction of polaritons with phonons is of the n
ture of multiple, successive inelastic scattering events,
this process causes the quasiparticles to move in en
along the dispersion curve. This scattering is determined
the probability of a transition from a statev(k) to a state
v(k8). In Xe, Kr, and Ar the case of weak exciton–phon
interaction is realized,3,4 and therefore the main role i
played by single-phonon processes, which are the subje
this study. To a first approximation in perturbation theory
the exciton–phonon interaction the damping of a polari
with energy \v(k) at temperatureT is written in the
form10,11

FIG. 1. Dispersion curveE(k) for Xe ~a!; energy dependence of the pola
iton density of~energy! statesg(E) ~b!.
n

rs

t

-
d

gy
y

of

n

G~v,T!5
2p

\ (
k8

uGuk2k8uu2P~v!P~v8!

3$~nk2k811!d@v~k8!2suk2k8u#

1nuk2k8ud@v~k!2v~k8!1suk2k8u#%, ~2!

wherek2k85q, q is the phonon wave vector, thed function
expresses energy conservation during scattering, the 1 in
rentheses in front of the firstd function in formula~2! takes
into account the contribution of spontaneous phonon em
sion processes to the scattering,nq5@exp(\vq /T)21#21 is
the occupation number of phonons with wave vectorq
~which completely determines the temperature depende
of G!, \vq5suk2k8u is the phonon energy in the Deby
model, s is the speed of sound,P(E) and P(E8) are the
strength functions of the polaritons, which describe the c
tribution of the exciton component to the polariton state~see
p. 385 of Ref. 11!:

P~E!5
f 2E2

«`~ET
22E2!1 f 2ET

2 .

In a calculation of the probability of single-phonon scatteri
of polaritons in cryocrystals of inert elements, in view of th
high symmetry of these crystals, we adopt a model of
deformation potential for the exciton–phonon interaction
the formH int52C div u, whereC is the deformation poten
tial of the exciton andu is the relative deformation. Sinc
this interaction contains a contribution only from longitud
nal acoustical phonons, in this paper we use fors the values
of the longitudinal sound velocitysl . In this modelGq is
expressed in the formuGqu5C(\vq/2Ms2)1/2, whereM is
the mass of an atom. The criterion of a low strength of
exciton–phonon scattering is that the nonadiabaticity par
eter be small:1–5

l5
4m2C2

3prs\3 ;
\vD

B
!1. ~3!

Herer5M /V0 is the density of the crystal,vD is the Debye
frequency of the phonons, andB is the half width of the
exciton band. Values ofl are given in Table I.

Since we are interested in the energy relaxation proc
we change in~2! from a sum over wave vectors to integr
tion over energy, and we represent the damping in the fo

G~E,T!5E
0

`

dEW~E→E8,T!g~E8!, ~4!

whereg(E) is the polariton density of~energy! states, and
we have introduced the probability of transition of a pola
iton with energyE to a state with energyE8:

W~E→E8,T!

5
pC2

2\3Ms4

~E2E8!2P~E!P~E8!

k~E!k~E8!uexp@~E82E!/T#21u

3u~ uE2E8u2\suk2k8u!u@\s~k1k8!

2uE2E8u#. ~5!

The functionu(x)51 if x>0 andu(x)50 if x,0; the
u function reflects the conservation of energy in the scat
ing. The last cofactor in~5! means that the energy imparte
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to the phonon cannot exceed the value\s(k1k8), wherek
[k(E) andk8[k(E8) are the moduli of the polariton wav
vectors before and after scattering. The divergenceW(ET

→E8,T520 K) for Xe is shown in Fig. 2. The higher win
of the function on the left as compared to the right is due
the contribution from spontaneous phonon emission, wh
governs the polariton damping atT50.

Taking into account theu function in ~5!, we can write a
general expression for the damping~4! in the form

G~E,T!5
Q

k~E!
E

E22\sk~E!

E12\sk~E! ~E2E8!2g~E8!dE8

k~E8!uexp@~E82E!/T#21u
,

~6!

where we have introduced the notationQ
5pC2/(2\3Ms4). A calculation shows that the functio
P(E) in the pertinent interval of energies belowET de-
creases by only 2%, and we have therefore putP(E)51.

RESULTS OF A NUMERICAL CALCULATION OF THE
FUNCTION G„E,TÄconst …

The polariton kinetic parameters and the shape of
luminescence line are determined by the energy distribu
function of the particles,F(E). In turn,F(E) is the result of
a competition between polariton energy relaxation proces
with the probabilityW(E→E8,T) and polariton decay pro
cesses. The polariton lifetimet ~the radiative lifetime or the
lifetime with respect to trapping by defects or impurities
to self-trapping! can vary in a crystal by orders of magnitud
e.g., due to changes in the thickness, defect density, or
purity concentration. It is therefore important to know t
exact behavior ofG(E,T) in the low-energy part, on scale
of the possible variation of the polariton loss probabil
t21. Since integral~6! is nontrivial ~the limits of integration
contain the inverse dispersion curvek(E)), we shall give a
complete set of results of a numerical calculation of
damping~6!, where the functionsg(E) andk(E) are found
by numerical methods directly from Eq.~1!. Figure 3 shows
the set of functionsG(E,T5const) in logarithmic scale fo
the entire temperature region in which free excitons exis
Xe, Kr, and Ar crystals. The exciton–phonon interaction
creases in the sequence from heavy to light inert gases,
responding to the growth of the nonadiabaticity parametel

FIG. 2. Probability of single-phonon scatteringW(ET→E,T) for polaritons
in Xe for ET58.36 eV andT520 K.
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~see Table I!. Accordingly, an increase inG(E,T) is ob-
served on going from Xe to Ar~at equal temperatures!. This
effect is analogous to that found earlier for the damping
excitons4 and is explained by the weak variation of the ex
ton component of the polariton (P(E);1) in the energy
region under study for the given cryocrystals.

ANALYTICAL DEPENDENCE OF G„E,T…

Here we investigate the functionG(E,T) analytically.
First, to evaluate the integral~6! we must find analytical
expressions fork(E) andg(E). As we see from Eq.~1!, the
function v'(k) has a complicated form, and therefore

FIG. 3. Numerical calculation of the polariton dampingG(E,T5const) ac-
cording to formula~6! for G(3/2) excitons in Xe~a!, Kr ~b!, Ar ~c! at
various temperatures.
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obtain an exact inverse dispersion relation would be an a
ward procedure. To simplify the calculations we use the f
lowing inequalities, which ordinarily hold for optically ob
servable excitonic transitions:

ET«`

mc2 !
f 2

«`ET
2 !1. ~7!

Making the corresponding approximations, we can red
the dispersion relation to the form

k~E!5S m

\2D 1/2

$@~E2ET!21A2#1/21~E2ET!%1/2, ~8!

whereA25ETf 2/(mc2) determines the energy interval ne
ET in which the dispersion relation exhibits the characteris
polariton variation. At energiesE2ET@A and in the limit
f→0 (A→0), expression~8! goes over to the usual squar
root dependence typical of ‘‘mechanical’’ excitons~having a
quadratic dispersion relation!. Figure 4 shows a compariso
of the k(E) curves for Xe, one of which was obtained fro
formula ~8! and the other by a numerical calculation usi
the exact formula~1!. We see that the curves differ in th
low-frequency region by;2 – 5%. This is explained by the
absence of the dielectric constant in expression~8! after con-
dition ~7! was used. Nevertheless, in the region where po
iton effects are actually manifested, nearET , the agreemen
is good.

Let us now calculate the polariton density of states, t
ing into account the twofold degeneracy of the transve
states with respect to polarization and the spherical sym
try of the dispersion relation:

g~E!5
V0

p2 k~E!2Udk

dEU. ~9!

Using ~8!, we obtain the following expression:

g~E!5
V0

2p2 S m

\2D 3/2
$@~E2ET!21A2#1/21~E2ET!%3/2

@~E2ET!21A2#1/2
.

~10!

Relation~10! is plotted~with a 90 ° rotation! in Fig. 1~b! for
polaritons in Xe. In the limitf→0 we again have the square
root dependence for excitons.

Let us now turn directly to an analysis ofG(E,T) in the
form ~6!.

FIG. 4. Comparison of thek(E) curves for Xe obtained from the exac
formula ~1! of the theory~solid curve! and from formula~8! ~dashed curve!.
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We first consider the case whenT50 and the absolute
value term containing the exponential function in the d
nominator of Eq.~6! is equal to unity. Furthermore, onl
processes involving the emission of phonons are realiz
i.e., in the integral~6! only the half with the lower limit of
integration remains. Introducing some notation, we
2\sk(E)5d ~keeping in mind that d[d(E)! and
g(E)/k(E)5 f (E). Changing to the new variable of integra
tion x5E2E8, we get

G~E,0!5
Q

k~E!
E

0

d
x2f ~E2x!dx. ~11!

The interval of the characteristic variation of the fun
tionsg(E) andk(E) is the quantityA;531023 eV, and the
range of integration isd<10 K;531024 eV ~see Table I!.
Sinced!A, we can consider the functionf (E) in ~11! to be
slowly varying and expand it in a power series in the neig
borhood of the pointE:

f ~E2x!5 f ~E!2
d f

dE
x1

d2f

dE2 x21... ~12!

Keeping the first two terms, we obtain

G~E,0!5
Q

k~E!

d3~E!

3 F f ~E!2
3

4
d~E!

d f~E!

dE G . ~13!

Taking into account the form of the functionsk(E) andg(E)
in Eqs.~8! and ~10!, we arrive at the final expression

G~E,0!56
Q~2\s!3

3
g~E!k~E!

3H 12
3

2

ms

\

A2

k~E!@~E2ET!21A2#
J . ~14!

The function~14! in the limit f→0 goes over to the well-
known linear energy dependence for excitons.4,5 The numeri-
cally calculated damping curves atT50 K ~Fig. 4! for the
crystals investigated here can be approximated by expres
~14! to one-percent accuracy. The second term is an ap
ciable correction (,10%) in a narrow energy region nea
the resonance.

Let us now consider the temperature dependence of
damping. Transforming Eq.~8! in analogy with the previous
case, we obtain

G~E,T!5
Q

k~E!
E

0

d x2ex/Tdx

ex/T21
@ f ~E2x!1 f ~E1x!e2x/T#.

~15!

We expand the functionsf (E2x) and F(E1x) as in
~12!. The first term of this expansion gives

G0~E,T!5
Q f~E!

k~E!
E

0

d cosh~x/2T!

sinh~x/2T!
x2dx. ~16!

The integral in Eq.~16! can be done exactly and is express
in the form of a series:

I 5E y2 cothy dy5 (
n50

`
22nB2ny2~n11!

2~n11!~2n!!
, uyu,p.

~17!
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where theB2n are the Bernoulli numbers:B051, B251/6,
B4521/30,... . The first terms in~17! can be written as

I 5
y2

2
1

y4

12
2

y6

270
1... .

It is clear that because of the rapid decrease in the co
cients the series converges very well under the simple c
dition y,1/2. In our casey5d/2T. We consider the situa
tion T.d, where we need to keep only the first two terms
~17! to achieve an accuracy of 4% or better. As a result,
get

G0~E,T!5Q~2\s!2Tg~E!F12
@\sk~E!#2

6T2 G . ~18!

Next, the linear term in the expansion off (E) in the
form ~12! gives a temperature-independent contribution:

G1~E,T!52
Q

k~E!

d f

dE E
0

d
x3dx

52
B

k~E!

d f

dE

@2\sk~E!#4

4
. ~19!

Evaluating the derivative off (E) and taking into account the
relations for the functionsk(E) andg(E) from ~8! and~10!,
we bring Eq.~19! to the form

G1~E,T!52Q
~2\s!4p2

2V0
g~E!

A2

~E2ET!21A2
. ~20!

We have done these calculations with allowance for
quadratic terms in the expansion of the functionf (E) in the
form ~12!. Since the corrections for the cryocrystals und
discussion were less than one percent, we will not write
the rather awkward expressions for them.

Summing the contributions~18! and ~20! for the case
T.2\sk, we obtain the final expression for the temperatu
dependence of the damping:

G~E,T!5Q~2\s!2Tg~E!

3H 12
~2\s!2p2

2V0T

A2

~E2ET!21A2

1
@\sk~E!#2

6T2 J . ~21!

Figure 5 shows the temperature dependence of the
lariton dampingG(E,T) in Xe, Kr, and Ar for fixed values of
the energy (E5ET). We see that the functionG(T,E
5const) obtained numerically from the original formula~6!
is linear over a wide temperature interval. This correspo
to the first two terms in expression~21!. The deviation from
the linear trend in the low-temperature region reflects a tr
sition to the corresponding value of the constant contribut
G(E,0).

DISCUSSION OF THE RESULTS

The regularities found for the polariton damping have
certain analogy with previous calculations for the damp
of ‘‘pure’’ excitons with a quadratic dispersion relation.4 In
both cases the damping depends on temperature throug
occupation numbersnq(T) of phonon states. The minimum
fi-
n-

e

e

r
t

e
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n

g

the

values of the polariton group velocityvg in cryocrystals of
inert elements are rather large (vmin;106 cm/s) and satisfy
the criterionvg@s;105 cm/s. We therefore have a linea
temperature dependence for polaritons, just as for excit
with high velocities~meeting the above criterion!. The posi-
tion of the minimum ofvg nearly coincides withET , and
therefore, as we have said more than once, as the en
increases in the region above the resonance there is a sm
transition of all the polariton properties, includingG(E,T),
to the exciton ones.

Substantial differences arise directly in the resonance
gion and below. Figure 6 shows a comparison of the ene
dependence of the damping for excitons and polaritons in
at T50 ~with a logarithmic scale along the ordinate!. Then
for excitons atT50 the dependence has the simple form
a linear functionGex(E,T50)5l(E2ET) ~Refs. 4 and 18!
and practically vanishes atE5ET . In perfect crystals of
large size,Gpol decreases by an order of magnitude in
energy interval with a width equal to the luminescence ba
width DE.9

The observed position of the maximum of the lumine
cence band at low temperatures is related to the total de
probability of the polaritons. At sufficiently low tempera
tures only processes involving the emission of phonons
occur. Thus the functionGpol shown in Fig. 6 describes th
probability of transition of polaritons down the dispersio
curve. The energy relaxation process can be stopped onl

FIG. 5. Temperature dependence of the polariton dampingG(ET ,T) in Xe
~a! and Ar ~b!.
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the loss of the polariton: either it reaches the surface of
crystal and is converted to radiation or it is trapped by
impurity ~or defect center! or is self-trapped. The maximum
of the polariton energy distribution function~near the maxi-
mum of the luminescence band! for low temperatures is ap
proximately the same as the energy at which the inve
lifetime of the polariton~its total decay probability! is equal
to the value of the single-phonon damping. The stand
concept of ‘‘thermal equilibrium with the lattice’’ adopte
for ordinary excitons is completely inapplicable for dete
mining the kinetic parameters of polaritons at low tempe
tures. One must first solve the problem of the formation
the polariton energy distribution function with allowance f
the energy and temperature dependence of the polariton
time, and then find the average velocity of the polarito
their mean free path, diffusion coefficient, etc.

For comparison, Fig. 6 shows the damping curve co
sponding to the dependence obtained in Ref. 17:G(E,T
50)}k4(E) ~the dot-and-dash curve!. These results are in
fair agreement in a certain energy regionE,ET .

Let us now discuss the influence of temperature on
polariton energy relaxation process. The expression for
total damping~6! can be written in the form of a sum of tw
integrals~for E8,E and forE8.E!, i.e.,

G~E,T!5G1~E,T!1G2~E,T!, ~22!

whereG1(E,T) corresponds to the contribution of phono
emission processes, andG2(E,T) corresponds to absorptio
processes. The lower the temperature, the greater the rel
contribution to the dampingG1(E,T) from spontaneous
~temperature-independent! phonon emission processe
which are described byG(E,0). Here the probabilityW(E
→E8,T) has a clearly dominant left wing~see Fig. 3!. A
feature of the polariton dispersion relation—the sharp cha
in the derivative~i.e., the quasiparticle group velocity! in the
vicinity of ET —leads to nontrivial temperature dependen
of the ratio ofG1 and G2 in this energy region. Figure 7
shows the integral probabilitiesG7(E) corresponding to the

FIG. 6. Single-phonon damping of polaritonsGpol(E) ~solid curve! and
excitonsGex(E) ~dashed curve! for Xe at T50. The dot-and-dash curve
corresponds to the dependenceG}k4 from Ref. 17.
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scattering of polaritons in Xe atT510 and 60 K. The sharp
increase in the density of statesg(E) in the resonance region
compensates the asymmetry of the right and left wings of
function W(E→E8,T) in the integral~6!, which at tempera-
tures above a certain critical temperature~Tc'35 K in the
case of Xe! leads to a dominance of phonon absorption p
cesses. This is responsible for the so-called thermal-ba
effect for the relaxation of quasiparticles down the dispers
curve.17,19 At high temperatures the region in whichG2

.G1 has a width;2\vD@d. To overcome such a wide
region in single-phonon scattering events with an inelastic
d is improbable, and so the relaxation process slows do
and an excitonlike distribution function with a maximu
aboveET is formed.

This study of single-phonon damping of polaritons h
laid the groundwork for a detailed study of the polarito
energy distribution function and the shape of the lumin
cence band and for determination of the kinetic parame
of polaritons in Xe, Kr, and Ar.
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Waveguiding properties of two parallel defects under conditions of two-channel
scattering

A. M. Kosevich*

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, pr. Lenina 47, 61164 Kharkov, Ukraine

D. V. Matsokin

V. N. Karazin Kharkov National University, pl. Svobody 4, 61077 Kharkov, Ukraine
~Submitted November 29, 1999; resubmitted December 22, 1999!
Fiz. Nizk. Temp.26, 615–619~June 2000!

It is shown that a pair of parallel planar defects in a crystal can act as a waveguide for a
quantum particle or wave having two branches of the dispersion relation. The energies~or
frequencies! for which the excitations are localized between the defects and propagate
freely along them are determined. In a two-dimensional system there exists a discrete set of
energies at which two-dimensional excitations can be ‘‘held in’’ between two parallel linear
defects. ©2000 American Institute of Physics.@S1063-777X~00!01306-2#
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There has been increasing interest of late in effects
to the the interaction of freely propagating states of a part
or wave and states of the same particle or wave localize
defects. The nature of these effects is intimately connec
with the properties of quasilocal states of the continuu1

The simplest of the effects of interest arises in the study
the motion of a particle along a channel, which leads to s
quantization of its transverse energy. The presence of a p
defect in such a system will lead to an interaction of t
states of the discrete and continuous spectra, and this g
rise to a number of resonance phenomena. The autho
Refs. 2 and 3 called attention to the resonance feature
transmission factor for electrons through a two-dimensio
~2D! channel containing an attractive impurity. Conductan
resonances due to the interaction of particles correspon
to different branches of the spectrum at impurities were
served experimentally in Refs. 4 and 5. A detailed analy
of the interaction with local defects for waves having seve
branches of the dispersion relation was carried out in Ref
and 7, and it was shown that for certain relations between
parameters of the system, both total reflection and total tra
mission of the wave through the defect are possible. In R
7 it was pointed out that a wave in a 2D quantum chan
can be blocked in by the two point defects at ‘‘critica
values of the energy of the wave and the distance betw
these impurities.

In this paper we discuss the waveguiding properties
two parallel planar defects in a crystal in respect to a w
having a dispersion relation with two branches.

We consider a system in which a quantum particle ha
dispersion relation with two branches:

«5
1

2m1
~kx

21ky
21kz

2!, ~1!
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1

2m2
~ky

21kz
2!1

1

2m3
~kx2k0!2. ~2!

In the case of an electron,« and m are its energy and
effective mass, while for a phonon« is the square of the
frequency and 1/m is the square of the phase velocity~we
have\51!. Figure 1 shows a sketch, in arbitrary scale,
the dispersion relation forky5const andkz5const.

In an ideal system the wave functionsc1 andc2 corre-
sponding to these branches of the dispersion relation are
dependent states. In the presence of defects in the system
equation for the wave functions can be written in the form

1

2m1
Dc11«c12U1$c1 ,c2%50, ~3!

1

2m2
S ]2c2

]y2
1

]2c2

]z2 D 1
1

2m3
S ]

]x
2 ik0D 2

c2

1~«2«0!c22U2$c1 ,c2%50, ~4!

whereU1 and U2 are terms describing the ‘‘two-channel
interaction of the waves with the defect, and the notationD is
used for the Laplacian operator.

Suppose that a particle is propagating along two ide
cal parallel planar defects lying parallel to the symme
plane of the two dispersion relations~1!, ~2! and a distanceh
apart. Then, if we assume that the defects are of a lo
character, the interaction of two waves in the simplest c
will be described as follows:6

U15~a1c11bc2!FdS z2
h

2D1dS z1
h

2D G ,
U25~a2c21bc1!FdS z2

h

2D1dS z1
h

2D G , ~5!
© 2000 American Institute of Physics
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wherea1 , a2 , andb are parameters that determine the ch
acter of the interaction of the given waves with an individu
defect. Since the interaction Hamiltonian for this is usua

FIG. 1. Two branches of the dispersion relation for a particle with fixedky ,
kz . E15(ky

21kz
2)/2m1 , E25«01(ky

21kz
2)/2m2 .
in
le
,

de
ct
-
l

~in the linear approximation! quadratic inc1 andc2 , it fol-
lows from the Hermitianity of such a Hamiltonian that th
number of independent factors in the the aforementio
quadratic form is three. Naturally, the values and signs of
parametersa1 , a2 , and b depend on the type of plana
defect. In the case of electrons these defects could be in
calated planes of foreign atoms, and in the case of phon
they could be intercalated planes, thin twin interlayers, or
faces of a thick twin~in that case the difference between t
elastic properties of the parent and twinned crystals is
glected!.

All the lengths in the formulas will be measured in un
of the thicknessa0 of the planar defect~which is of the order
of an interatomic distance!.

Equations~3! and~4! are solved jointly with the bound
ary conditions on the planesz56h/2:
5
csS x,y,6

h

2
10D5csS x,y,6

h

2
20D , s51,2;

1

2m1
S ]c1~x,y,6h/210!

]z
2

]c1~x,y,6h/220!

]z D5a1c1~x,y,6h/2!1bc2~x,y,6h/2!;

1

2m2
S ]c2~x,y,6h/210!

]z
2

]c2~x,y,6h/220!

]z D5a2c2~x,y,6h/2!1bc1~x,y,6h/2!.

~6!
s
ion

s. It

ll

a

r
cts.
We will be interested in the energy region correspond
to the freely propagating waves of the first kind of partic
and to localized states of the second kind of particle, i.e.

«1[
kx

21ky
2

2m1
,«,«2[«01

~kx2k0!2

2m3
1

ky
2

2m2
. ~7!

1. We seek a wave propagating along thexy plane and
having wave vectork5(kx ,ky) ~kx5k cosw, ky5k sinw!
and localized near a pair of defects. We take the solution
the form of a symmetric function ofz:

c15H A cos~kzz!ei ~kxx1kyy! uzu,h/2,

0 uzu.h/2;

c25H D coshkz ei ~kxx1kyy! uzu,h/2,

Be2k~ uzu2h/2!ei ~kxx1kyy! uzu.h/2,
~8!

where

kz
252m1«2k2,

k252m2~«02«!1k2 sin2 w1
m2

m3
~k cosw2k0!2. ~9!

Solution~8! describes a wave propagating along parallel
fects and ‘‘held in’’ between them, i.e., a pair of such defe
acts like a planar waveguide.

Substituting~8! into the boundary conditions~6!, we find
the possible discrete values ofkz :
g

in

-
s

kz5q~n![
p

h
~112n!, n50,1,2,... ~10!

and we obtain the equations

A
~21!np

2m1h
~112n!5Db coshS k

h

2D , n50,1,2,...

~11!

11tanhS k
h

2D52
2m2a2

k
. ~12!

Equation~11! determines the coupling of the amplitude
A and D, and the solutions of the transcendental equat
~12! can be used to find that value of the parameterk for
which the system under study has waveguiding propertie
is easily seen that a real solution of equation~12! is possible
only for a2,0, in which case this solution exists for a
values of positivem2 and negativea2 . Forkh!1 we obtain
k'2ua2um2 , which is possible ifua2um2h!1. If kh@1
thenk'ua2um2 , which is possible ifua2um2h@1. Thus we
always havek;ua2um2 .

The values found fork and kz determine, according to
Eqs. ~9!, a discrete set (n50,1,2,...) of possible values of
the energy« at a fixed direction of the wave vector, i.e., at
fixed anglew. Otherwise, if the energy« is specified and the
numbern fixed, we will find the direction of the wave vecto
of those waves that can be confined between the two defe



be
f
-

ly

s o
ea
e

e
s
tro

s

a
n

di

e
-

-

uid-

-

451Low Temp. Phys. 26 (6), June 2000 A. M. Kosevich and D. V. Matsokin
It is more convenient, however, to use the relation
tween the wave vectork and the anglew. The dependence o
k on w is given implicitly by the following algebraic equa
tion:

k2F12
m2

m1
1cos2 wS m2

m3
21D G22

m2

m3
kk0 cosw

12m2«02
m2p2

m1h2
~112n!21

m2

m3
k0

22k250. ~13!

We recall thatkz5q(n) is given by formula~10!, while
k(h) is found as a solution of equation~12!. The resulting
dependence is characterized by four parameters:k0 , m2«0 ,
m2 /m1 , and m2 /m3 , the values of which are essential
determined by the form of the functionk5k(w).

In discussing the above relations let us refine the unit
measurement of the dimensional physical quantities app
ing in the formulas. As we have said, the lengths are m
sured in interatomic distancesa0 . Consequently, the wav
vectors are measured in units of 1/a0 . The effective masse
of the electron are naturally measured in units of the elec
massm0 . Then the energy« and the parametersa andb are
measured in units of 1/(m0a0

2), i.e., in atomic energy units
~recall that \51!. When one is talking about phonon
~acoustical waves!, then 1/m is measured in units of the
squared phase velocities of sound,s2, and the square of the
frequency« is in units of (s/a0)2, i.e., in units of the square
of the Debye frequency.

Let us analyze relation~13! in some limiting cases:
1. Let k050, m2Þm3 . Then

k25
k21~m2 /m1!q2~n!22m2«0

12m2 /m12~12m2 /m3!cos2 w
. ~14!

Here the following variables are possible:
a! For arbitrary w the system will play the role of a

planar waveguide for waves with wave vectors lying in
certain interval~Fig. 2!. This can occur if the numerator i
~14! is positive and eitherm3,m2,m1 or m2,m3,m1 . If
the numerator in~14! is negative, then the necessary con
tion is satisfied form1,m2,m3 or m1,m3,m2 .

b! For waves with arbitrary energies greater than a c
tain «* , there exists an anglew such that waveguiding prop
erties will arise~Fig. 3!. This will be for m2,m1,m3 and
m3,m1,m2 . The function«(w) can be ascending or de
scending, depending on the sign of the numerator in~14!.

FIG. 2. Modulus of the wave vectork versus the anglew for h520, a2

521, «050.5, m251, n50: m152, m351.5 ~1!; m151.5, m350.5 ~2!.
-

f
r-

a-

n

-

r-

For other relationships among the parameters, waveg
ing properties will not arise in the system.

2. The other limiting case ism25m3 , k0Þ0. Then

k~w!5
m1

m12m2
H k0 cosw6Fk0

2 cos2 w2S 12
m2

m1
D

3~2m2«02~m2 /m1!q2~n!1k0
22k2!G1/2J . ~15!

a! Let m15m2 . Under this condition it follows directly
from Eq. ~13! that

k~w!5
2m2«02q2~n!1k0

22k2

2k0 cosw
. ~16!

Depending on the value ofw, formula ~16! has meaning for
cosw.0 if q2(n)1k2,2m2«01k0

2, and for cosw,0 if
q2(n)1k2.2m2«01k0

2.
b! For m1.m2 it is necessary to satisfy the condition

q2~n!.
m1

m2
S 2m2«01k0

22k22
m1k0

2

m12m2
D ,

and then there are two possible cases:
1! If q2(n),(m1 /m2)(2m2«01k0

22k2), then for any
cosw.0 there exist two solutionsk(w), while for cosw,0
there are no solutions.

2! If q2(n).(m1 /m2)(2m2«01k0
22k2), then for anyw

there is one solutionk(w).
c! For m1,m2 the conditionq2(n),(m1 /m2)@2m2«0

1k0
22k22m1k0

2/(m12m2)#, and again there are two pos
sible cases:

1! If q2(n),(m1 /m2)(2m2«01k0
22k2), then for anyw

there is one solutionk(w).

FIG. 3. Modulus of the wave vectork versus the anglew for h520, a2

521, «050.5, m251, n50: m151.5, m352 ~a!, m150.75, m350.5 ~b!.
w* 5arccos@m3(m12m2)/m1(m32m2)#

1/2.
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2! If q2(n).(m1 /m2)(2m2«01k0
22k2), then for any

cosw,0 there exist two solutionsk(w), while for cosw.0
there are no solutions.

Analysis of the casew50 is of special interest, since
corresponds to treating the effect in a 2D system.

We rewrite~13! in the more convenient form

k2
m12m3

m1
22kk012«0m32

m3

m1
q2~n!

2
m3

m2
k21k0

250. ~17!

a! If m15m3 , then there always exists ak such that Eq.
~17! will hold ~from here on we are doing the analysis f
fixed n!.

b! For m1,m3 and

h2.h1
25

p2

m1
~112n!2

m32m1

k0
21~m32m1!~2«02k2/m1!

there are two solutions. Ifh2,h1
2, then there are no solu

tions.
c! The casem1.m3 andm12m3.k0

2/2«0 . If

h2<h2
25

p2

m1
~112n!2

m12m3

2~m12m3!«02k0
2

,

then there are two values ofk that satisfy Eq.~17!.
If h2.h2

2, then for smallua2u there are no solutions.
d! For m1.m3 and m12m3,k0

2/2«0 there are always
two solutions.

2. Let us now consider the solution that is antisymmet
in z:

c15H A sin~kzz!ei ~kxx1kyy! uzu,h/2,

0 uzu.h/2;

c25H B e2k~z2h/2!ei ~kxx1kyy! z.h/2,

D sinhkz ei ~kxx1kyy! uzu,h/2,

2B ek~z1h/2!ei ~kxx1kyy! z,2h/2.

~18!

Substituting~18! into the boundary conditions~6!, we obtain

kz5q̃~n![
2pn

h
, n50,1,2,... ~19!

A
~21!n11pn

2m1h
5Db sinhS k

h

2D , ~20!
c

11cothS k
h

2D52
2m2a2

k
. ~21!

Relations~19!–~21! are analogous in meaning to rela
tions ~10!–~12!. Equation~21! has solutions fora2,0 and
for ua2um2h.1. The rest of the analysis of the antisymme
ric case is similar to that for the symmetric case.

If «2,«1 it is straightforward to consider the energ
region «2,«,«1 , in which the waves of the first type ar
localized and the waves of the second type are freely pro
gating ~«1 can be greater than«2 , e.g., form1!m2 ,m3!. In
this energy interval two planar defects will also ha
waveguiding properties.

Thus we have shown that two parallel planar defects
have waveguiding properties in respect to a wave havin
dispersion relation with two branches, if its energy cor
sponds to freely propagating states of one branch and lo
ized states of the other branch. Depending on the orienta
of the wave vector of this wave with respect to the prefer
directions of the isoenergy surface, waves with energies
ing in a wide interval will be confined between the defec
In the two-dimensional case, waves with a discrete se
energies, depending on the relationships among the pa
eters of the dispersion relation, will be localized between
defects.
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Some properties of dynamic solitons of nonlinear systems that are determined by the
linearized equation
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The features of dynamic solitons in nonlinear systems described by differential equations with
fourth-order spatial derivatives are discussed for systems of different dimensionalities.
The existence conditions for a nonradiative soliton are formulated for the case when the internal
frequency of the soliton lies in the continuous spectrum of harmonic oscillations of the
system under study. These conditions are determined by the form of the dispersion relation of
the linear oscillations. The use of the stated conditions for determining the parameters of
two-dimensional solitons is demonstrated. ©2000 American Institute of Physics.
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INTRODUCTION

We shall discuss the properties of dynamic solitons
certain nonlinear systems from the standpoint of the lin
dynamics of these systems. By dynamic soliton we mea
nonlinear spatially localized disturbance whose stability
ensured by the presence of simple additive integrals of
motion. Examples of such solitons are the nonlinear Sch¨-
dinger equation~NSE! soliton and the magnetic soliton.1

A dynamic soliton is ordinarily characterized by an i
ternal frequency, the value of which is one of the main p
rameters of the soliton. Traditionally dynamic solitons
condensed-matter physics have been studied on the bas
nonlinear differential equations with spatial derivatives
the second order. In the case of a scalar field the dynam
operator has local-state frequencies that must necessari
outside the continuous spectrum. Therefore the eigen
quency of a dynamic soliton of such a physical field, like t
frequency of any localized excitation, must lie outside t
spectrum~in the case of an NSE or magnetic soliton, they
below the continuum!.

The situation is different if one is studying the dynami
of a discrete system or the dynamics of a continuous sys
described by differential equations of higher~then second!
order in the spatial derivatives.2 In that case it can happe
that the soliton frequency lie in the continuous spectrum
harmonic oscillations, and there arises the problem of
existence of a soliton in the presence of radiation of lin
waves and the problem of the radiational interaction of s
tons ~see, e.g., Refs. 3 and 4!. In Ref. 5 such solitons were
constructed in model 1D systems and their properties w
discussed. We wish to show that the majority of the effe
that arise here are connected with the properties of the
earized equations describing the harmonic oscillations of
system under study—in particular, the dispersion relation
small oscillations. These equations determine the asymp
behavior of the field at large distances from the soliton a
contain rich information about the possible soliton solutio
of nonlinear equations.
4531063-777X/2000/26(6)/5/$20.00
n
r
a

s
e

o

-

of
f
al
lie
e-

e

m

f
e
r

i-

re
s
n-
e
r
tic
d
s

1. ONE-DIMENSIONAL NONLINEAR SYSTEMS

Let us restrict discussion to a simple nonlinear mo
which takes the higher dispersion into account and is cap
of describing the diverse situations that arise in soliton
namics:

i
]c

]t
1

]2c

]x2 1
]4c

]x4 1F~c!50,

F~c!5ucu2c1g1U]c

]xU
2

c1g2ucu2
]2c

]x2 2g3ucu4c. ~1!

We will be interested only in the stationary stat
c(x,t)w(x)eivt, i.e., the properties of the nonlinear equati

vw5wxx1wxxxx1F~w!. ~2!

The linearized equation obtained by dropping the termF(w)
in ~2! has the dispersion relation~see Fig. 1!

v52k21k4. ~3!

At the point wherek25km
2 51/2, the frequencyv reaches its

lowest valuevm521/4. Consequently, we have a contin
ous spectrum of eigenfrequencies of harmonic oscillati
vm,v,`.

For the linearized equation it is easy to calculate
Green function corresponding to stationary oscillations a
definite frequencyv and describing a wave that is outgoin
at infinity. In the frequency interval 0,v,` it has the form

Gv~x!5
1

4Av2vm
S i

k
e2 ikuxu1

1

k
e2kuxu D , ~4!

where

k25
1

2
~A114v11!, k25

1

2
~A114v21!. ~5!

In the frequency interval of the continuous spectru
vm,v,0, the Green function does not have exponentia
decaying terms:
© 2000 American Institute of Physics
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Gv~x!5
1

4Av2vm
S e2 ik1uxu

k1
1

e2 ik2uxu

k2
D , ~6!

where

k1
25

1

2
~11A114v!, k25

1

2
~12A114v!. ~7!

Finally, if the frequency lies below the continuum (v
,21/4), then the Green function takes a different form:

Gv~x!5
1

4kk
e2kx sin~kx1w!, ~8!

where

k22k251, 2kk5Avm1v. ~9!

Analysis of the form of the Green functions~4!, ~6!, and~8!,
independently of the structure of the nonlinear term in E
~1!, allows one to draw the following obvious conclusio
about the possible soliton solutions of this equation and o
ers like it.

1. Dynamic solitons with frequenciesv,vm have expo-
nentially decaying oscillatory ‘‘tails,’’ and if they are exac
solutions of equation~1!, then they can radiate linear wave
The presence of nonmonotonically decaying ‘‘tails’’ has im
portant significance for the study of the interaction of so
tons and was apparently first discussed in Refs. 6 and 7

2. Frequenciesvm,v,0 cannot in principle corre-
spond to soliton solutions, since there are no decay
asymptotic solutions for the corresponding stationary sta

3. A typical linear stationary state in the frequency inte
val v.0 is a quasilocalized oscillation, with one of its com
ponents localized in space and the other being a stan
wave of constant amplitude. The features of the scatte
processes in the presence of such states are discussed i
8.

The presence of the asymptotic behavior indica
means that the possible soliton solutions of equation~1! with
frequenciesv.0, as a rule, are accompanied by the rad
tion of harmonic waves. There have been various expla
tions as to the physical reasons and necessary condition
the existence of nonradiative solitons in this frequency in
val.

To elucidate the necessary conditions under which ra
tion will be absent, let us consider the forced solution of

FIG. 1. A sketch of the dispersion relation of the linearized equation~fre-
quencyv versus wave numberk!.
.
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linearized equation excited by a distributed forcef (x) con-
centrated in a small interval ofx aroundx50. Suppose that
f (x) falls off with distance faster than exp(2kuxu). Then the
solution outside the region of the applied force is

w~x!5E G~x2x8! f ~x8!dx8

5
1

2A114v
~ iQ~k!e2 ikuxu1P~k!e2kuxu!, ~10!

where

kQ~k!5E f ~x!eikxdx, kP~k!5E f ~x!ekxdx. ~11!

If the Fourier component of the distributed force vanishes
some valuek5k0 (Q(k0)50), then the forced oscillations
with frequencyv5v(k0) will not excite radiation at infinity.
There is completely quenching of the linear oscillations
from the source on account of wave interference. In the c
of a symmetric force distribution (f (x)2 f (2x)) the indi-
cated solution has the form

E f ~x!coskx dx50, ~12!

and for an antisymmetric distribution (f (2x)52 f (x))

E f ~x!sinkx dx50. ~13!

It should be noted, however, that since the frequencie
such an oscillation lie in the quasicontinuous spectrum,
weight in the linear dynamics is very small, of the order
1/AN, whereN is the number of atoms in the 1D chain und
study. It is known, however, that in nonlinear dynamics t
weight of such preferred stationary states can turn out to
altogether different.

The obvious mathematical condition~12! or ~13! for
solvability of the inhomogeneous differential equation le
one obtain the parameters of the stationary dynamic solit
which are unaccompanied by radiation.

Analyzing the structure of Eq.~2!, one expects that it ha
a soliton solution of the form

ws~x!5
A

coshkx
, v5const, ~14!

wherek is related to the frequencyv by expression~5!.
Substituting solution~14! into the nonlinear term of Eq

~1!, we can treat it as an external forcef (x)5 f (2x). Ac-
cording to ~12!, the soliton~14! will be unaccompanied by
radiation under the condition

E F~ws~x!!coskx dx50. ~15!

To eliminate awkward manipulations, let us do the calcu
tion separately for several cases:~1! g1Þ0, g25g350, ~2!
g2Þ0, g15g350, and~3! g3Þ0, g15g250.

In the first case it follows from~5! and ~15! that

k25
3g1212

2g1
, k25

g1242

2g1
; v5S g126

g1
D 2

2
1

4
.

~16!
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We see that forg1.12 there always exists a single soliton
type ~14! which does not radiate linear waves. All the am
plitude parameters of this soliton except the amplitudeA can
be obtained from an analysis of the linearized equation.
easy to see that the exact solution of equation~2! corre-
sponds to

A25
24

g1
k25

12~g1212!

g1
2 .

In the second case (g15g350) we have

k253
g224

2g2
, x25

g2212

2g2
,

v5
3

4

~g224!~g2212!

g2
2 . ~17!

It follows from Eq. ~2! that the amplitude obeys

A25
24k2

g2
5

2

g2
2 ~g2212!.

Thus soliton~14! exists in a system withg2.12.
Finally, in the caseg3Þ0, g15g250 it follows from

~5! and ~15! that

k25
g3

2~625g3!
, k25

3~423g3!

2~625g3!
,

v5
3g3~423g3!

4~625g3!2 . ~18!

The soliton amplitude is obtained from~2!:

A25
24k2

g3
5

12

625g3
.

Interestingly, the soliton can exist only for 0,g3,6/5
51.2.

Let us apply these findings to the analysis of the m
complicated soliton solution of a simplified equation~2! for
g15g25g350. In this case one should expect a soliton
the type

w~x!5A
sinhkx

cosh2 kx
. ~19!

Sincew(2x)52w(x) in this case, one should use conditio
~13!:

E S sinhkx dx

cosh2 kx D 3

sinkx dx50. ~20!

The requirement~20! yields the relationk25k0
2[11k2. Us-

ing Eq.~5!, we find thatk250.1 andv50.11. These param
eters correspond to the only solution of the type~19! that
does not give radiation. In the exact solution, which is p
sented in Ref. 9, one hasA5A6/5.

It is clear that the stated conditions for the existence o
nonradiative dynamic soliton and their demonstration in s
cific cases do not constitute constructive recommendat
for seeking an analytical soliton solution. However, they
show that the structure of the dynamic soliton is determin
is

e

f

-

a
-

ns

d

as much by the properties of the dispersion relation of
linearized equation as by the form of the nonlinear terms
the dynamical equations.

2. TWO-DIMENSIONAL NONLINEAR EQUATIONS

Turning now to an analysis of the 2D situation, let
alter the relationship between the signs in front of the sec
and fourth spatial derivatives to point up how the gene
conclusions are independent of this relationship. Work
from the nonlinear Schro¨dinger equation, we denote the e
ergy eigenvalue by the letterE:

EC5
1

2
DC2

1

2
bD DC5F~C!, ~21!

whereD is the 2D Laplacian operator,

D5
]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]2u
.

andF$C% is a regular function ofC and the spatial deriva
tives DC, of the form

F~C!5auCu2C1gu¹Cu2C1... . ~22!

The linearized equation describes the elementary exc
tions of the system,C5exp(ikx2iEt), with the dispersion
relation (E.0)

E5
1

2
k21

1

2
bk4, ~23!

a graph of which is sketched in Fig. 2~a!. The linearized
equation for positive values ofE also has another type o
solutions: C(x)5exp(6kx), which correspond to purely
imaginaryk5 ik. The ‘‘dispersion relation’’ of these local
ized solutions has the form

E5
1

2
bk42

1

2
k2, ~24!

and a graph is sketched in Fig. 2~b!.
Solutions of the linearized equation that depend ex

nentially ~and monotonically! on the distance also exist i
the intervalEm,E,0, where there are two values of th
parameterk:

k1,2
2 5

1

2b
~16A128uEu!. ~25!

FIG. 2. Dispersion of the energyE of elementary excitations for a real wav
vector (k) ~a! and for a purely imaginary wave vector (k5 ik) ~b!.
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Following the scheme proposed in Sec. 1, we construct
Green functions of the linearized equation forE.0:

G~r !5 ipH0
~1!~kr !22K0~kr !, ~26!

whereH0
(1)(kr), K0(kr ) are the standard Hankel function

of real and imaginary argument, and the parametersk andk
are determined by relations analogous to~5!:

k25
1

2b
~A118E21!,

k25
1

2b
~A118E11!. ~27!

The asymptotic form of the Green function at large distan
describes an outgoing cylindrical wave and an exponenti
damped amplitude of the localized component. This sor
asymptotic behavior of the Green function means that
soliton of the nonlinear equation withE.0, as a rule, is
accompanied by radiation. It is only forE,0 that the soliton
solutions, if they exist, do not generate radiation. For
ample, in the intervalEm,E,0 the Green function has th
form

G~r !5K0~k1r !2K0~k2r !, ~28!

where the definition of the parametersk1 andk2 is obvious
~see Fig. 2!. Consequently, a soliton with such values ofE is
stable against its radiative process.

However, forE.0 there can also exist stable solitons
discrete values ofE determined by special equations of th
type discussed in Sec. 1 in connection with the 1D case

It is helpful to follow the derivation of these speci
conditions in the 2D case. Let us consider the forced solu
of the linearized equation under the influence of a cylind
cally symmetric external oscillatory forcef (r)e2 iEt concen-
trated near the origin of coordinates in a small region
radiusr;r0&1/k(E), under the condition thatE lies in the
continuous spectrum (E.0):

EC1
1

2
DC2

1

3
bDDC5 f ~r!. ~29!

Having the Green function~26!, we can immediately write
the oscillatory part of the forced solution:

Cosc2E H0
~1!@k~r 2r cosu!# f ~r!rdrdu. ~30!

The asymptotic form of~30! at large distances (rk(E)@1)
has the form

Cosc;
eikr

2tAr
E f ~r!exp~2 ikr cosu!rdrdu

5
eikr

r E
0

`

f ~r!J0~r!rdr, ~31!

whereJ0(kr) is the zero-order Bessel function.
It is obvious that the oscillations vanish under the co

dition

E
0

`

f ~r!J0~kr!rdr50. ~32!
e

s
ly
f
e

-

t

n
-

f

-

Clearly condition~32! can be satisfied only for a certain dis
crete set ofk ~or E!.

Let us now assume that the initial nonlinear equat
~21! admits a soliton solution

Cs5Fs~r!e2 iEt, ~33!

for which E lies in the continuum but which does not radia
linear outgoing waves.

We substitute~33! into the right-hand side of Eq.~21!.
Then at large distances (kr @1) we can write the following
representation with the aid of the Green function:

Fs~r !5E G~r 2r cosu!F$Fs~r!%rdrdu. ~34!

It is now obvious that the radiation field far from the solito
vanishes if

E
0

`

F$Fs~r!%J0~kr!rdr50. ~35!

Relation~35!, as in the 1D case, can be satisfied only fo
discrete set of possiblek or E.

Unfortunately, we know of no exact analytical solutio
for a soliton in any 2D model described by an equation of
type ~21!, and we therefore cannot illustrate the use of re
tion ~35! as we did for the 1D case in Sec. 1.

3. THREE-DIMENSIONAL NONLINEAR EQUATIONS

After the discussion of the 2D situation the analysis
the 3D case is obvious. Let us therefore draw some con
sions as to the possible existence of a nonradiative dyna
soliton of an equation of the type~21!, whereD is the 3D
Laplacian.

The dispersion relation for linear oscillations is given
before by formula~23!, and the Green function correspon
ing to positive energies (E.0) is obvious~it is given in the
Appendix of Ref. 2!:

G~r !5
1

4pb

eikr2e2kr

~k21k2!r
, ~36!

where the parametersk and k are specified by expression
~27!.

We assume that Eq.~21! has a soliton solution of the
form (E.0)

Cs5Fs~r !e2 iEt, ~37!

which is localized in a volume with a radius of the order
1/k(E). Then at large distances (kr @1) we have a repre-
sentation analogous to~34!, viz.,

Fs~r !5E G~r 2r cosu!F$Fs~r!%sinu dudwr2dr.

~38!

Keeping only the oscillatory part of the Green function, w
obtain the conditions for the absence of a radiation field
from the soliton:

E
0

`

F$Fs~r!%
sin~kr!

kr
r2dr50. ~39!

Relation~39! can hold only for a select discrete set of valu
of the modulus of the wave vector~or values ofE!.
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In closing let us emphasize once again that the dyna
solitons with frequencies~or energiesE! lying in the con-
tinuous spectrum of elementary excitations of a system
exist only as solutions of dynamical equations that eff
tively include higher dispersion in the linearized part of t
equations. The term ‘‘effectively’’ means that formally th
individual branches of the dispersion relation forE can be
quadratic, but the field in question is multicomponent~simi-
lar to how the elastic field has independent longitudinal a
transverse components!. In this case the system effective
behaves, from the standpoint of the problem under disc
sion, as a one-component field but with additional allowan
for the higher dispersion.

The author thanks M. M. Bogdan and A. S. Kovalev f
helpful discussions.
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