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The available experimental data on the effect of the superconducting transition on the low-
temperature jumplike deformation of metals and alloys are examined. Different hypotheses as to
the mechanism for this effect are stated and compared with experiment. The experimental

and theoretical papers on the low-temperature jumplike deformation are discussed, and conjectures
as to the mechanism for the effect are set forth. 2@0 American Institute of Physics.
[S1063-777X00/00106-7

INTRODUCTION temperature spike at the jump. This hypothesis, which is
comparatively easy to formalize, has been used as the basis
As the temperature is lowered, the plastic deformation ofor a large number of detailed theoretical studies, in which
the majority of metals, alloys, and ionic crystals becomeghe investigators have determined the criteria of instability,
macroscopically unstable, and jumps in the flow stressthe existence region, and the dependence of the stieasd
amounting to 10-15% of the stress level, appear on thetraine, at the onset of the LID on the temperature and size
work-hardening curvé? The experimental data accumulated of the sample. Let us cite the first papers published by the
over more than forty years reveal some characteristic regusarious author$=° It should be emphasized that the hypoth-
larities in the low-temperature jumplike deformatiniD)  esis of a thermomechanical instability can be realized only in
on such a scale. This type of jumplikalso called steplike,
but perhaps more aptly called jumpgteformation is not a
consequence of processes of deformation twinning, deforma-
tion polymorphism, or crack formation, which are also ac- ~
companied by jumps in the stress; the LID arises at a definite
low temperaturgbelow 20—30 K for each material, and as
the temperature is lowered further the amplitude and fre-
guency of the jumps increase, and the onset of the LJD is
shifted toward the yield pointFig. 1). In very pure metals
the LJID is not observed even at the lowest measurement
temperature$0.5 K), and in impure crystals and alloys the
jumplike deformation is enhanced as the concentrations of
the impurities and dopants are increased. Often the jumplike
deformation on the work-hardening curve begins with iso-
lated jumps separated by segments of stable deformation.
Because its nature is unclear, the LID has been the sub-
ject of many experimental and theoretical studibe major-
ity of which are mentioned in the reviewd. Over the
course of these studies, several hypotheses have been ad-
vanced as to the nature of the LID. There are two main
hypotheses: one of them, which we call the thermal hypoth-
esis, assumes that the cause of the low-temperature jumps is
a thermomechanical instability, i.e., the onset of brief local
overheatings, which lead to a sharp drop in the flow stress. :
Such overheatings can arise at low temperatures on account
of the localization of the deformation, an increase in the flow 5,%
stress, and a lowering of the thermophysical CharaCte”S“CI§IG. 1. Tension curves of 99.5% pure polycrystalline aluminum in the nor-

(specific hgat., thermal ?On‘.jUCtiV)tyThe main argum?nt iN" mal state. For clarity the curves have been shifted by 100 MPa. The strain
favor of this interpretation is apparently the detection of arate was 107 *s™%.
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the case when the plastic deformation is a thermally acti- 100
vated process. T=217,K
The second hypothesis, which was proposed in Ref. 10,
might be called the dislocation hypothesis. It assumes that in
the deformation process the cross slip, which is hindered at
low temperatures, is accompanied by the formation of dislo-
cation pileups, the breakaway of which at high local stresses
is synchronized in time and, integrated together, leads to a
macroscopic jump in the stress. The hypothesis of Ref. 10 is
supported by considerable indirect experimental evidence
(the sensitivity of the LJID to the structure, impurities, and
orientation and the presence of LJD in the case of a positive 9 11
temperature sensitivity of the stres¥he existence of dislo-

(3]
E
E
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o

cation pileups has been confirmed by direct electron- S-state - state S - state
microscope observations. Unfortunately, this hypothesis has 0 4 8 12
not been the subject of theoretical investigations. ALJL, %

To facilitate progress in elucidating the nature and spe-
cific mechanisms of the LJD it would be desirable to doF!G- 2. Tension curves of niobium single crystals with nearly the same
some new experiments which would permit making con-zielné"i‘ﬂ'?f (’g;f tge axes of tension in different statés:2.17 K,
trolled changes in a single sample subjected to deformation. T

From this standpoint superconductors are attractive in that

they undergo fundamental changes at the transitiogjucting state. At 2.17 K the shape of the tension curves dif-
temperature—one can strain the same sample in differeiéred noticeablysee Fig. 2, and the curves with a jumplike
electronic states. The superconducting transition can bgeformation had different values of the shear stresat the
made to occur during straining, including during jumplike start of the jumplike deformation. In thd state the stress
deformation. In this case the flow stress changes by a fragumps started earlier i{,y=165MPa) than in theS state
tion of one percent on account of the decrease in the electroy. =208 MPa). When the same samples were found in the
drag on the dislocations, but the thermal conductivity of thes state the jumplike deformation was not observed at all. The
sample decrease®r sometimes increasesery substan- result obtained at 4.2 K turned out to be less definite, since
tially. Finding out how the superconducting transition influ- the difference was not large. The authors statexgraphs or
ences the LJD, if at all, will lend preference to one of thenumbers were giventhat at 4.2 K the value ofr,5 was
hypotheses. For some time this transparent idea could not Bgightly lower thanr.y, i.e., the effect was the opposite. The
implemented because of technical difficulties: in superconreliability of the conclusions was lowered by the fact that the
ductors with relatively hight (e.g., in lead and its alloys experiments were done on different samples, which differed
the jumplike deformation arises, as a rule, neat K. In in the orientations of the axes of tension. In measurements on
materials in which the jumplike deformation is well devel- the same samples but with a change of state in the course of
oped at 4.2 K(e.g., in aluminum and its alloysT. is ex-  the straining, more definite results were obtained in Ref. 12,
tremely low (~1K). The creation of a new straining for lead and its alloys. In the normal state at tensions near the
techniqué® has made it possible to broaden the interval offajlure the strain occurred in jumg&ig. 3. The supercon-
measurements to 0.4 K. ducting transition leads either to vanishing of the jumps or to
By now there is a sufficient amount of experimental ma-a substantial decrease in their amplituffeig. 3b]. However,
terial that one can systematize the data and understand th¢the investigated temperature intergdbwn to 1.65 K the
general regularities in the influence of the superconductingumplike deformation was not always observed, and it often
transition on the LIJD. We shall see that the result is alwaysook place beyond the boundary of uniform elongation.
qualitatively the same: in the superconducting state the mac- Another of the first papers was Ref. 13, in which a mi-
roscopic jumplike deformation is either absent or substancroscopic jumplike deformation was observed, with an am-
tially less developed than in the normal state. An analysis oflitude of the jumps that was 0.01% of the flow stress.
the observed regularities and a comparison with the existinghe effect of the superconducting transition turned out to be

hypotheses is the subject of this review article. opposite to that which arose under conditions of macroscopic
jumplike deformation. This result is analyzed in Sec. 4, and
1. FIRST EXPERIMENTS it is shown that the observed regularities are evidence that

. . . these are a different kind of jump. Thus for elucidating the
The question of the influence of the superconductingygrecy of the superconducting transition on the jumplike de-

”af,‘s'“o".‘ on the jump!lke deformation was first raised, Weormation, one generally needs systematic detailed studies
believe, in Ref. 4, for single crystals of niobium. The experi-¢ T 1 Kk

ment consisted in the straining of several samples of the
same purity and close to the same orientations of the axes %f
tension, at temperatures beloW,. Some of the samples ™
were strained entirely in the normal stdthe samples were The objects of study were superconductors in which a
immersed in a magnetic field above the critical field of  well-developed jumplike deformation was observed at he-
the superconducting transitiprand others in the supercon- lium temperatures. The investigated materials included pure

EXPERIMENTAL TECHNIQUE
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FIG. 4. Curve of tension of 99.5% pure polycrystalline aluminum with
multiple changes of stat€l indicates the times at which a magnetic field
H>H_ was switched on, and the times at which it was switched ffe
=1.1x10*s ™}, T=0.5K (Ref. 15.
o]

the sample to the normal stategys, is much smaller than
the drop in the load at the jump, and a repeated breakdown of
the load can occur at a lower stress than in the superconduct-
ing state prior to the onset of the jumplike deformation. The
8 jumps in the superconducting state appeared at stresses near
FIG. 3. Portions of the tension curves for high-purity 1688.9995% Pp  the ultimate strength of the sample, the breakdown of the
and the alloys Pb—13 at.% [a) and Pb—0.85 at.% Ith) with multiple SN load occurred at stresses larger than at the onset of the jumps
andNS transitions;e =7x 10 *s*, T=1.6-4.2K(Ref. 12. in the normal state. This sensitivity of the character of the
plastic flow to the electronic state was also observed in
single-crystal aluminum(Fig. 5. The dependence of the
metals(Al, Pb, In), alloys (In—Pb, Pb—In, Al-Mg, AI-Mn,  character of the plastic flow on the electronic state of the
Al-Li, and Sn—Cd, and a composite superconductor Nb—gampje shows up very clearly in experiments on the defor-
Cu. Both single-crystal and polycrystalline samples wereyation of the same samples at the same temperature but in
studied under conditions of tension and compression with @itterent states. Fig. 6 also shows data of this kind for 99.5%
constant strain rate=10*_4— 10_5571' The majority of the  ,,re polycrystalline aluminum, at 0.8 K in the normad)
experiments were done in the interval 4.2-0.5 K on a spezng syperconductingD) states. One notices two features: a
cially built apparatus' with a three-step system of cooling e number of jumps in thBl state is much greater than the
with the use of liquid nitrogenfHe, and®He. A detailed .\ ,mper in thes state: b the work-hardening curve in tHé
description of the apparatus and the experimental procedugaye |ies somewhat lower than the curve in Shstate. The
can be found in Ref. 14. The normal state of the samplg,ier feature is apparently not due to the presence of absence
below T was brought about by applying a magnetic field 5t jymplike deformation but is dudas special studies
above the critical value, and the transition of the sample fron%howed to a large coefficient of work hardening in the su-
the Sto theN state and back during the course of the strainerconducting states. From the curves obtained at different
ing was brought about by switching the magnetic field onemperatures, the temperature dependence of the number of
and off. jumpsn in the N and S states was determingig. 7). As

3. EXPERIMENTAL RESULTS
3.1. Pure metals 99.5 % Al

One of the most convenient metals for investigating the
LJID is aluminum, which was the first object of detailed study
of the effect of the superconducting transition on the LJD. N
Figure 4 shows a portion of the work-hardening curve of st
99.5% pure polycrystalline aluminum in a medium of liquid
He-3 atT=0.5K and an enlargement of an element of this
curve. The notationdl and ] correspond to the times when
the magnetic fieldH=H, is switched on, and and | to
when it was switched off. It is seen that initially a jumplike , _ _ _
deformation arises only in the normal state, and the jump§FIG. 5 Portl(_)ns of the tension curve of 99.5% pure aIl_Jmlnum smglg crys-
. o Mals with multipleSN andN S transitions(7 indicates the times of transition
vanish completely upon the transition to the superconducting, theN state, and| the transitions to thé stateg; ¢=1.1x10 4s %, T
state; the increase in the flow stress due to the transition cfo.5K.
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FIG. 6. Tension curves of 99.5% pure polycrystalline aluminum, obtained g’
for straining entirely in theN (X) or S (O) state;T=0.8 K (Ref. 15. e
I
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the temperature is lowered, the number of jumps in Khe 1 min

ES . N
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state increases sharply, while the number of jumps inShe
state is almost an order of magnitude smaller and depends
very weakly on temperature. We note in passing that changriG. 8. Portions of the tension curves f&=0.5K (a) and compression
ing the cooling mediuntreplacing the He-4 by He-3, which curves(Ref. 17 at T=0.48 K (b) for 99.9997% pure polycrystalline lead in
differs strongly in its thermal propertiehad practically no the regio_n_ of the Onfft ?I the jumplike deformation, with multipl8 and
. SNtransitions,e=10""s™~.
effect on the number of jumps.
Studies done on ledti***"down to 0.5 K revealed the

presence of jumplike deformation on two scales. The macro-

scopic jumplike deformation, which increases monotonicallys_COpIC jumplike deformation, its regularities, and a discus-

as the temperature is lowered, turned out to be extremel?'onI o(;.the pgss||ble metclhar;:sms alre tf;)e SUb.JeCt Cif S(;:cc.j 4
sensitive to the electronic state of the sam(fg. 8). In naium single crystals have also been nvestigated in

- ; detail’® The axis of compression was chosen midway be-
highly pure(99.997% polycrystalline lead the appearance of N L
macroscopic jumps was observed below 1 K. As in alumi_tween the[100] and[110] directions to eliminate deforma-

) S 0 .
num, the LJD arises only in thi state. As the strain in- tion twinning. At T<1.7K ande>30% the deformation is

creases, the amplitude of the jumps increases and reachk pl|ke. The characte_r of the LJD depends on the _deg_ree of
Aoy in order of magnitude, whereas the jumps in Al areStrain and the electronic state of the sample. The first jumps

always considerably larger thatrys (see Fig. 4 The am- appear in theN state(Fig. 9). Their frequency increases as
plitude of the load jumps in IeadNis an order of magnitudethe strain increases. At a certain degree of strain, individual

smaller(in absolute valugthan in aluminum. Special experi- Jumps begin to appear in tré state as weI_I. These are dis-
ments showed that the sensitivity of the LJD of lead to thet”‘]gu'Sh.ed by "’?"ge segments qf monotonic deforma(r@’t .
electronic state does not depend on the type of sfteasion §howp n the figurk At a certain stage the defprmatlon 'S
or compressionand is independent of the strain rate in thejumpl'ke in both theN andsS states, but the amplitude of the

investigated interval ¥10 °-1x10 *s™ 1 The micro-
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T, K ¢ FIG. 9. Portions of the compression curve for 99.999% pure indium single

crystals in the region of the start of the jumplike deformatianand in the
region of intense jumplike deformatiaib); 7 indicates the times at which
the magnetic field was switched ¢N statg, and| the times at which it was
switched off(S statd; é=2x10"°s"1, T=0.48 K (Ref. 18.

FIG. 7. Temperature dependence of the number of jumps ilNtli,X)
and S (O) states;X,0O—experiments in liquid He-3X—in liquid He-4
(Ref. 15.
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N TABLE |. Parameters of the jumplike deformation of polycrystalline alumi-
num alloys in the normal and superconducting states.

Al-1.85at. % Mg

¢,
Alloy T, K MPa e, % n
4.2 366 37.8 9
25 256 17.0 118
Al-1.4 at. % Mg
0.5 (N-statg 185 9.2 430
4.2 (S-statg 252 10.4 333
4.2 366 26.6 19
25 261 12.8 192
Al-1.85 at. % Mg
0.5 (N-statg 164 4.0 456
4.2 (S-statg 200 8.1 322
4.2 - - -
25 290 9.7 25
Al-1.23 at. % Mg
0.5 (N-statg 172 2.8 303
4.2 (S-statg 200 4.0 245
—— = Note: o is the stress at which the jumplike deformation bedithe first

-

jump); e, is the strain at the start of the jumplike deformatidinst jump);

FIG. 10. Portions of the tension curve for polycrystalline Al-1.85 at.% Mg n is the total number of jumps.
when the electronic state of the sample was changed in the course of the
straining;e=1.1x10"*s™!, T=0.48 K (Ref. 19.

mW. In polycrystalline samples of the alloy Al-1.8 at.% Mg

jumps in theN state is approximately 2.5 times larger. The the rate of heat release increases to 1.1 and 5.1 mW, respec-
lower level of the load jump does not depend on the state ofively, starting to exceed the cooling capacity of the appara-
the sample. tus. Because of this growth of the heat release and the ther-
mal spikes, at the time of the jumps there can be a very slight
heating(0.5—0.6 K which is nevertheless capable of causing
a transition of the sample to the normal state. The depen-

The first measurements were made on alloys of alumidence of the character of the plastic flow on the electronic
num with magnesiunfAl-1.4 at.% Mg; Al-1.85 at.% Mp  state is clearly seen in experiments on the same sample at the
and manganesgAl-1.23 at.% Mn.’® At low temperatures same temperature but in different statese Table)l At 0.5
these alloys exhibit a well-developed jumplike deformation,K in the alloy Al-1.4 at.% Mg one observes 430 jumps in
which for T<1 K is occurs togetherr with superconductivity. the N state and 333 jumps in tHestate; in Al-1.8 at.% Mg
Figure 10 shows parts of the tension curve of polycrystallinghere are 453 jumps in thé state and 322 in th8 state, and
samples of the alloy Al-1.85 at.% Mg, corresponding to dif-in Al-1.23 at.% Mn there are 303 and 245 jumps, respec-
ferent degrees of strain, with the state of the sample changetvely. The stresses and strains at the first jump show similar
repeatedly in the process. It is clearly seen that at the start afifferences. At the same time, the maximum homogeneous
the straining the jumps arises only in the state, and the strain remains practically the same.
jumps vanish completely when the sample is put into $he A detailed investigation of the LJD was done in
state. As the strain increases, the jumps begin to appear guenched polycrystalline samples of the binary alloys Al—Li
the S state as well. Their amplitude and frequency increasat 3.8, 7.0, and 10.4 at.% Li. The dimensions of the parts
with increasing strain, after a certain stage reaching the valugsubjected to tensile straining wereX8.0x 0.8 mm, and the
and frequency observed in tine state. Typically the ampli- average grain size was 0.6 mm. The low-temperature jump-
tude of the first jumps in th& state is considerably greater like deformation arises in the interval 10-4.2 K. Its main
(8.9 MPa, Al-1.4 at.% Mygthan the amplitude of the first regularities are as follows. With increasing Li concentration
jumps in theN states. The results of a study of these alloys ait begins at lower strains, and the frequency and amplitude of
relatively small strains turn out to be qualitatively similar to the jumps increase. For example, at 4.2 K the jumps in the
those for experiments with pure metals, and at large strainalloy Al-3.8 at.% Li begin after a 35% strain, in Al-7.0 at.%
the sensitivity to theN S transition vanishes; this is different Li they begin after 25% strain, and in Al-10.4 at.% Li they
from the typical behavior for pure metals. This difference isbegin after a 21% strain. Lowering the temperature has an
apparently due to heating of the sampleTioin the case of analogous effect: in the alloy Al-3.8 at.% Li at a tempera-
alloys, in which the flow stresses are substantially larger, anture of 4.2 K the jumps begin after a 35% strain, at 2.2 K
at the comparatively low cooling power of the apparatusthey begin after a 16% strain, and at 0.5 K they begin after a
~3 mW,*can lead to overheating. If it is assumed that up to10% strain. At a fixed temperature and impurity concentra-
90% of the energy expended on plastic deformation is retion the amplitude and frequency of the jumps increase
leased in the form of heat, then in an Al sample with dimen-gradually with increasing strain, and the intervals between
sions of 15<3X 1 mm at a strain rate of I1¢ s ! near the jumps become shorter. Figure 11 shows the dependence of
yield stress, 16 MPa, the rate of heat release is 0.2 mW, anthe amplitudedo of the jump on the degree of strainin the
at the ultimate strength, equal to 290 MPa, it is almost 4.5lloy Al-3.8 at.% Li at several temperatures. As the tem-

3.2. Alloys
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results mentioned above pertain to pure metals and alloys
with the fcc structure. In those materials the plastic deforma-
tion is controlled by the interaction of dislocations with local
obstacles.
22K In bcc and hcp metals and alloys the low-temperature
jumplike deformation has been much less studied, since in
those materials deformation twinning often develops as the
temperature is lowered, and this is reflected in specific jumps
on the work-hardening curve. For studying the LJD in crys-
tals in which the plastic deformation is governed by the mo-
tion of dislocations through Peierls barriers, specially ori-
ented single crystals of tin and Sn—Cd alloys turn out to be
extremely convenient objects, and they were investigated in
detail in Ref. 22. Single crystals of Sn—Cd alloys with 0.01,
. ' 0.04, 0.21, and 0.53 at.% Cd were studied. These concentra-
0 10 20 30 40 50 60 tions lie in the region of the solid solution. The dimensions
e, % of the strained part of the sample were X4&5x25mm.
FIG. 11. Dependence of the amplitude of the jumps on the degree of The or!entgtlon of_the axis of tension Cor_res_ponded o the
straine at various temperatures in samples of the alloy Al-3.8 at.% Li in the<110> dlrectlor_1, WhICh was favorablg f0r.S|Ip m the system
normal stategRef. 20. (100(010. It is important that for this orientation the plas-
ticity is preserved as the temperature is lowered, and in this
way the bcc-crystal analog, chosen from the standpoint of
perature decreases there is a characteristic decrease in the deformation mechanism, differs from bcc metals and al-
rate of growth of the amplitude of the jumps with increasingloys, which, as a rule, become brittle at low temperatures.
strain, and therefore the maximum amplitudeg equal Highly pure samples of3-tin (99.9995% Sh maintain a
straing are observed at 4.2 K. The data in Fig. 11 weresmooth plastic flow all the way down to 0.5 &ig. 14.
obtained for a sample strained in tNestate. Figures 12 and Doping of the tin with cadmium increases the flow stress and
13 show the influence of the electronic state of the sample othe yield stress markedly, and, in addition, below 4.2 K it
the jumplike deformation. Upon the transition of the samplegives rise to jumplike deformation. The influence of the con-
to the S state the LID are absent or markedly diminishedcentration on the LJD is manifested most clearly at the low-
especially at low strains. In thH state the jumps begin at est temperature of the experiment, 0.%5/g. 14). The lower
lower degrees of straia than in theS state. Starting from a the temperature and the higher the impurity concentration in
certain strain, theN S transition is not reflected in the char- the alloy, the lower the degree of strain at which the first
acter of the plastic flow, as is seen in Fig. 13, which showgumps appear. The frequency of the jumps in the alloy Sn—
the curves of the amplitude®r(e) of the jumps for samples 0.01 at.% Cd increases with the strain, so that the segments
in the S state. This is probably due to macroscopic heating obf smooth flow become progressively shorter, especially be-
the sample, bringing its temperature abdye i.e., a sample low 1 K. For alloys with a large concentration of @@.04
strained at 0.5 and 0.9 K is heatedTip~1.2K, i.e.,, by only and 0.21 at.% in the N state belav 1 K the LID begins
a fraction of a degree. It is possible that this heating is due tdlirectly at the yield stress and immediately takes on a saw-
the brief temperature spikdaccompanying the breakdown tooth character. As the temperature is lowered, the LJD in
of the load, which in Al-Li at 7 K is 5—8 K(Ref. 21). The the alloys develops to a higher degree.

1oL 42K

0.5K

AlL-3.8% Li
€=3.4% €=6.8% e=21% €=29% S
N S
N
S
K ﬂ
S N S
S S
SNS
g & g ©
= = s o
f‘!I 0.1% <‘!I 0.1% N.I 0.1% EI 1%
R e | C S e | —_

FIG. 12. Portions of the tension curvege) illustrating the effect of theN'S transition on the jumplike deformation of polycrystalline Al-3.8 at.% Li at
different degrees of strai;=1.1x10"*s™!, T=0.5K (Ref. 20.
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FIG. 15. Tension curves for single crystals of the alloy Sn—0.21 at.% Cd at
various temperatures in the normal state. The experiments at 4.2 and
2.9 K were done in gaseous He-3, and those at 1.4 and 0.5 K in liquid He-3.
Individual parts of the curves are shown in enlarged stR&f. 22.

FIG. 13. Dependence of the amplituée of the jumps on the straiain the
N (filled symbolg andS (unfilled symbol$ states in polycrystalline Al—Li
alloys (Ref. 20.

In the alloy Sn—0.01 at.% Cd the individual jumps in the
stress appear already Bt 3 K, but only at a strain rate of
£=6.6x10"°s'. At lower temperatures the value of the of magnitude smallef0.1 MPa at 2.9 and 0.5 K. This mi-
strain corresponding to the first jump decreases from 6—7%oscopic jumplike deformation will be discussed separately
to 3—4%. The number of jumps on the work-hardening curvgy sec. 4. The transition of the samples of the Sn—Cd alloys
increases from 2—3 al=3 K to 10-15 at 0.5 K. For the  from the normal to the superconducting state under condi-

alloy Sn—0.04 at.% Cd isolated jumps are observed alreadyq,ng of the LJID leads to substantial changes in the character

at of the deformationFig. 14 and 1h This influence is sub-

4.2 K after a plastic deformation of 1-2%. _AS the temloera'stantially correlated with the effect of such factors as the

. . Qfegree of strain, the impurity concentration, and the tempera-
T<0.8K they start from the yield point. The alloy Sn-0.21 ture. For the developed LJD, starting from the yield point

at.% Cd behaves in a similar way, but the LJID in it arises . 0
near the yield point already at 1.4 K. The influence of tem-((:?]':rgt’ef'g];’ t;lne tgsfoarlrlr?;/tiir:] is(,).sr?:asa;r\j(:adcgttlt:% tsrz\:]vsti(_)oth
perature on the character of the LJID for this alloy is shown in P

Fig. 15. In the alloy Sn—0.21 at.% Cd, besides the regulari'-['on’ but the amplitude of the jumps decreases considerably

ties of the LID common to all the alloys studied, there are(See Fig. 1%
y The most complex and multifaceted influence of kh&

two features not shared by the other alloys. First, at 0.5 K the - ] ] )
frequency of the jumps decreases with increasing straiH‘?‘”S't'O” on the gharacter of the LJID is reqllzed in alloys
rather than increasing, as is usually the case, and segments$fh an intermediate cadmium concentration. From the
smooth flow appear. Second, besides the stress jumps wififirves for the alloy Sn—0.21 at.% Cd in Figs. 14 and 15, we
an amplitude of the order of 1-2 MPa, which are identifiedc@n discern the following experimental regularities:

as macroscopic, there are jumps with an amplitude an order & Near the yield point the LID of the sample in the
normal state goes over to a smooth flow upon transition to

the superconducting state.
30 b) As the strain is increased, jumps appear in $hsate
0.53%Cd also, but with a lower amplitude.

I S %0.21%Cd ¢) For the alloys with 0.04 and 0.21 at.% Cd the fre-
B 0.04%Cd guency of the jumps decreases with increasing strain ilNthe
20 N
s N0 01%Cd state, and extended segments of smooth flow appear; at the
= t - uR superconducting transition the character of the jumplike de-
o Sn99.999 % formation changes substantially.

10

T

In the alloy with 0.04 at.% Cd the jumps practically
vanish in theS state, and in the alloy with 0.21 at.% Cd their
amplitude decreases substantially. Since these regularities
were observed under conditions of multiple changes of the
state of the sample, one wonders to what extent the LJD is
influenced by the conditions of such an experiment. We
FIG. 14. Tension curves for single crystals of pure tin and alloys of tin with therefore did experiments in which each of two samples was

cadmium. During the straining the electronic state of the samples wa§trained at0.5 K_i_n On_e of the Stat@g- 16)- Itis seen that
changed many timeg;=6.6x10 *s %, T=0.5 K (Ref. 22. all of the regularities listed above are preserved.

| T=05K £=6.610"%""

£,%
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1, MPa
T

11 MPa

—
Sn+0.21%Cd T=0.5K 1%

£, %

T, MPa

FIG. 16. Tension curves for samples of the alloy Sn-0.21 at.% Cd at
0.5 K in theN and S states(Ref. 22.

3.3. Composite superconductor

N
/N‘
&
=

The effect of the superconducting transition on the jum-
plike deformation has also been noted in the tensile straining
of multifiber copper—niobium composites obtained N
in situ?® The objects of study were Cu—40 wt.% Nb com-
posites with a macrostructure in the form of a copper slab
armored by strips of niobium several millimeters long and S
with transverse dimensions of 3@ um. The second criti- 20's
cal field of this composite was 9 kOe(0.9 T). Accordingly,
in the process of straining at a rate of X.80 °s ™! the
superconductivity was destroyed at a field of 1.2 T. At 4.2 K
the work-hardening curve exhibits jumplike deformation at
the stage where the deformation of the niobium begins. This
deformation in annealed samples turned out to be sensitive {9G. 18. Appearance of microscopic jumplike deformatierin single-
the electronic state of the samglgig. 17). Whereas in th&  crystal lead in the superconducting stateTat4.2 K, r=12.7 MPa(a);
state the individual jumps alternate with extended segment§=26K, 7=14.3MPa(b); T=1.9K, r=15.2MPa(c). The indicated
of stable deformation, in th&_l state they follow continu-_ Zit{iiis(e;e?.af;g.to thie state immediately prior to the superconducting tran-
ously one after the other. Evidently this result can be attrib-
uted to the influence of th&lS transition on the LJD of
niobium. 4. MICROSCOPIC JUMPLIKE DEFORMATION

t, s

Before generalizing the results presented, we must con-
sider one more phenomenon occurring at low temperatures.
Besides the low-temperature jumplike deformation on the

“"“' macroscopic scaléhe amplitude of which can reach tens of
0.6 ;,(‘ﬂﬂl 4 ||\‘F '| \ | percent of the level of the flow stréssvhich has been the
| |

| subject of numerous studies and the foregoing analysis, some

| | [ N experiments have detected a jumplike deformation of sub-
0.4+ N 1 S N ‘ S : stantially smaller scaléof the order of 0.01% of the level of
the flow stress The first mention of microscopic jumps is
found in Ref. 13. A microscopic jumplike deformation was
observed in the compression of single-crystal and polycrys-
talline samples of Pb and Pb—In alloys at a temperature be-
low 3—-3.5 K. The detected jumps in the load appeared after
| ! ! 1 a preliminary loading by several percent, their depth increas-
0 2 4 6 8 10 ing with the strain. Upon the destruction of superconductiv-
g, % ity the jumps vanished, and the strain curve became smooth.

FIG. 17. Tension curve of a multifiber superconducting composite Cu—4OThe mlcroscoplc-scale Jumpllke deformation was observed

wt.% Nb obtainedn situ. The electronic state of the sample was changed in mOSt_ clearly in the straining of pure le@fig. 18. The rela-
the course of the straining;=1.3x10 °s™%, T=4.2 K (Ref. 23. tive jump do/o was several hundredths of a percent. On

c, GPa

0.2
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doping of the lead with indiumdo decreased, and at an In that the character of the influence of the superconducting

concentration above 5 at.% the jumplike deformation wadransition on the jumplike deformation is specific to each

practically absent. The depth of the jumps and their fre{articular casématerial, temperature, thermophysical char-

guency depend on temperature in a complicated way, havingcteristics and there cannot be any general regularities.

a maximum aff~2.5K. In a theoretical papét a criterion of instability of the
The regularities mentioned above differ substantiallythermally activated plastic deformation and thermal conduc-

from those which obtain on the macroscopic scale. We recalivity was obtained with allowance for the geometry of the

that the macroscopic jumps become stronger as the tempersample and the heat exchange with the coolant. Analysis

ture is lowered, at least to 0.5 K, while the microscopicshowed that steady-state uniform straining can occur only at

jumps have a nonmonotonic temperature dependence, whidtresses below a certain critical stress which has the form

in lead starts at-3 K and goes to zero at1 K. The mac-

roscopic jumplike deformation is enhanced as the concentra- )

tion of the dopant increases, while the microscopic version _7\kToh 1

becomes weaker, and in Pb—In it vanishes at 5 at.% In. This "¢ zwl2 @

result was confirmed in Refs. 17 and 24 for single-crystal

and polycrystalline lead. In Ref. 17, thanks to the possibility ) o .

of expanding the temperature interval to 0.4 K, the jumps orfvhereA is the thermal conductivity of the sampleis Boltz-

both the macro- and microscopic scales were able to be offfann’s constant], is the temperature of the coolart,is

served. In a finding of fundamental importance, the influencdn€ rate of plastic deformatiom(7) is the activation energy

of the superconducting transition on the jumplike deforma-°f the process, is the dimension of the samplehe radius in

tions on the two scales was different: the superconductind?€ case of a cylinder, or the thickness in the case of 3,slab

transition led to weakeningor vanishing of the macro- andh is a parameter governing the heat exchange with the

scopic jumplike deformation, while the microscopic jump- Surrounding medium. _
like deformation appeared only in ti®state. The expression for, given above corresponds to the

All of these properties of the microscopic LID suggestStart of the jumplike deformatiorithe first jump. The
that this is a different type of jump which is governed by amechanism re_sponS|bIe for _the reproducibility of the jumps
different mechanism. Theoretical estimates and the analysRlong the strain curve must include the dependend&/ oh
presented in Ref. 24 as to whether the criteria are met for on® degree of straifstress. Therefore, the development of
or another mechanism permit the conclusion that the micro2valanches and the calculation of the size of the stress jump
scopic jumps are a manifestation of inertial effects. Thus théré more complicated problems which were not considered
microscopic jumplike deformation must be treated as a spel! Ref. 25, where the possible changes in the instability at the
cial phenomenon that does not have relevance to the reg§!Perconducting transition were indicated on the basis of an
larities described in the previous Section. In a study of the2nalysis of Eq(1). At the NStransition the thermal conduc-
jumplike deformation in the alloys Sn—Cd, in addition to the iVity X and the factog, change sharply on account of the
macroscopic jumps described above, some microscopignange in the electron drag coefficient for dislocatidss,
breakdown of the load were also detected. They we observetinCe 8o~ 1/Be, and Be>B; always. In most caseds
only in the alloy 0.21 at.% Cd at temperatures of 0.5 and=Mn (although there are a few alloys in whial>\y; see
2.9 K; the amplitude of the microjumps is practically inde- Ref. 20. If these relatlon§h|p§ are used in expressibn it
pendent of the strain and temperature. Studies of the micrdus out that, as a ruley’<7¢, i.e., upon the transition to
scopic LJD in the alloy Sn—0.21 at.% Cd showed that athe superconducting state the jumplike deformation of the
2.9 K it is practically insensitive to thN S transition. At 0.5 sample should start at lower stresses than in the normal state.
K such measurements in pure form are difficult to make orffowever, later experimen{see Sec. Bshowed that this is
account of the developed macroscopic LID. The only thing’0t What happens. The macroscopic jumplike deformation in
that has been established is that microjumps are present #¢ superconducting state becomes weaker or vanishes en-

strains(see Fig. 15 insensitive to the superconducting transition; this is appar-

ently because of the small heating and not a consequence of
the physics of the phenomenon.

The disagreement between the theory based on low-
temperature instability of the deformation and the experi-
mental data stimulated the practically simultaneous publica-

In the first experimental studyjn which the LID was tion in 1986 of several theoretical pap&r&’-?®devoted to
investigated in niobium single crystals in the normal andinvestigation of the influence of the superconducting transi-
superconducting states, the differences were linked with théon on the jumplike deformation. Essentially those papers
value of the overheating of the sample during the strainingadvanced the same hypothesis: along with the the thermo-
Taking into account the changes in the thermophysical chaphysical characteristics, the characteristics of the plasticity,
acteristics at thé\'S transition, the authors observed that atin particular, the temperature dependences of the yield
2.17 K the overheating in thd state, AT}, is higher than strength and flow stress, can change at the superconducting
the overheating in th8 state, ATy , whereas at 4.2 K it was transition. Qualitative arguments are presented in Ref. 23. If
the other way aroundAT'gsATg, which agreed qualita- the thermally activated plastic deformation is described by
tively with the experimental findings. It followed, however, the Arrhenius law,

5. HYPOTHESES AS TO THE EFFECT OF THE
SUPERCONDUCTING TRANSITION ON THE JUMPLIKE
DEFORMATION
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. AH(a*)
e=gpeX _T

: 2

where ¢ is the rate of plastic deformatior, is the pre-
exponential factorg* is the effective stress, anf is the
temperature, at a constant effective voltage the temperature
sensitivity of the rate of plastic deformation can be written in
general as 0o

dine dlne AH

T o kT ®)

In the normal state is practically independent of tempera-
ture and, consequenthgln e/dT~AH/(kT?). Regardless of
what process is limiting the rate of heat removal and of
whether or not the localization of the slip is taken into ac-

count, the criterion for the onset of jumplike deformation due 0
to thermomechanical instability will have the form
A(AH/KT?)>1. (4)

FIG. 19. Critical stress, for the onset of unstable plastic flow for crystals
The positive factoA contains the flow stress, strain rate, andin the normalrcN (1) and superconductini (2—5) states as afunctio*n of the
the geometric and thermophysical parameters of the samplmPeraturdlo of the mediumas<hy, eo=e5 (2): hs> A, e0=5 (3):
which control the rate of heat removal. The presence of thds~ ' 880 (Wi AsShn. so=e5 Orhs=Ay, eo>e5 (5) (Ref. 27.
factor AH/KT? in criterion (4) is due to the influence of
temperature on the rate of plastic deformation. In the super-s

X s o> 72‘, and an intermediate temperature interval in which
conducting state the temperature dependence aEnnot be 75<7N. Thus, as the temperature is lowered, one should

neglected, sincé,~1/B (Ref. 29;B is the dynamic drag ,pcerve different influences of tieS transition on the jum-
constant for dislocations, including the electronic compo-plike deformation. In the case of less pure crystalshdf
nent, i.e., the first term in expressioi3) can be greater in .\ \ynich apparently does not correspond to situation en-

absolute value than the second term. In that case the Criteri%untered in reality, one ha§> N always. Still less pure
of instability in the superconducting state must be written incrystals(dilute aIoné and alloys V\C/ere not considered.

the more general form A theoretical study of the influence of the superconduct-
dlne dlngy AH ing transition on the LJID from a quantitative standpoint can
AT = ( T tig/” L (5  be found in Refs. 28 and 29. In Ref. 28 the influence of the
superconducting transition on the stability of plastic defor-
In the superconducting state the large negative ternmation at low temperatures was analyzed in a model based
dln gy /dT cannot be neglected, and therefore the quantity iron thermal instability. There it was conjectured for the first
brackets in(5) decreases considerably or even becomesime that the temperature dependence of the flow stress can
negative, and then the criterion of thermomechanical instachange in theS state, in addition to the changes in the ther-
bility is not fulfilled. Thus in the superconducting state it is mophysical characteristics of the material. A previously ob-
in principle possible to have a situation in which the LJDtained criterion for the onset of thermal instability of the
will vanish. Since specific estimates for the particular experiplastic deformation was used to derive general relations giv-
mental conditions and materials were not made in Ref. 23ing the temperature—rate region in which such instability is
the situation under real conditions remained unclear. realized in theN and S states. The relations obtained were
A detailed investigation with an attempt at a quantitativeused to construct the existence regions in various states of
analysis was given in Ref. 27. The initial formulation of the some particular metals—aluminum, niobium, and lead. The
problem was the same as in Ref. 23, but it included a calcuregion of instability of the deformation of Al is shown in Fig.
lation of the stress for the onset of instability,. The tem-  20. It follows from this figure that in th& state at a given
perature dependences e} and 7o were constructed for temperature the LJD is is manifested over a narrower rate
crystals that are fairly puréFig. 19. The relations between interval, and for rates in the intervab&10 *4—10 ¢s™! the
the physical parameteiss and\y and the parameters char- jumplike deformation should not depend on the electronic
acterizing the interaction of dislocations with barriekg,  state of the sample. In niobium the existence region of the
and E’5~5(b3GTC)l’2sl eV (b is the Burgers vectoiG is  LJD in the N state lies inside its existence region in tBe
the shear modulus, arif, is the superconducting transition state. This means that in terms of the temperature and strain
temperaturg determine whether there are two, one, or norate the LJID is more developed in tBestate. There exists a
crossing points of the curves' and 75 for T<T.. For ex- range of temperatures <(0.9K) and strain rates (5
ample, for lead and aluminum the characteristic interaction< 10"4—10°s™%) in which the LID does not depend on the
energy of dislocations with barriers has valugeg<1l eV, state.
and\g<\y. Therefore, the situation shown fef by curve Thus, if it is assumed that all the important changes at
4 in Fig. 19 should be realized. This means that there existhe superconducting transition are due to the specific heat of
temperaturegnearT, andT,, (T.—T,)T. '<0.4) at which  the strained sample, the influence of tN& transition can
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! FIG. 21. Temperature dependence of the flow stress for a thermally acti-
5 I 6 vated character of the plastic deformation in the norfdaland supercon-
1077 I <10 ducting (2,3 states of a sample. Cun&was constructed on the basis of a
T | calculation ofAgy according to the fluctuational theory; cur8evas calcu-
] Cl ] ] 11 lated according to the inertial theofRef. 30.
0.05 0.1 0.2 04 06 1.0
TO/Tk

=0.64T,, above which the deformation in the normal state
FIG. 20. Calculated temperature—rate existence regions of the jumplike dd€mains stable for any strain rates and temperatures
formation of Al in the N and S states’® A,A,O—experimental points; (T, =cCx/7y., Where y, is the electronic heat capacity and
2p=0.15" T, =6.6 K (Ref. 28. ck~7Sr/Ky), whereK is the stiffness of the maching, is

the coefficient of work hardening, an®=—(d7*/JT),.

Such a situation is characteristic for superconductors with
vary greatly, and there might be no sensitivity to tN&  |ow T, and also for high-strength materials with high
transition. Later, in Ref. 30, quantitative calculations Were(e.g., Nb. For metals with higiT . but low strengtie.g., Pb
done in which the possible change in the sigefdT near  jt can turn out thaff,<T.. In that case a calculation shows
the temperature of the superconducting transition was takejfhat, regardless of the theoretical mechanism of the effect
into account. The initial assumptions were as follows: i”(ATNS), the region of thermomechanical instability in tNe
both the normal and superconducting states throughout thgate Jies inside the corresponding region for $h&tate, i.e.,
entire temperature interval the plastic deformation is of gnhe NS transition will give rise to the appearance of jumps.
thermally activated character, with/dT<0; starting aff;,  Thus the existing theoretical calculations in the model of

the sign of97/dT changes because of the decrease in thenermomechanical instability admit both situations in which
flow stress at the superconducting transition due to the de-

crease of the electron drag on the dislocatibhQuantita-

tive estimates of the value df ryg have been made on the 1
basis of the fluctuation& and inertiaf* theories. These were

used in Ref. 30 in a determination of the temperature depen-

dence of the flow stress in ti&state(see Fig. 21 It is seen

that in the case of the fluctuational mechanism the value of

a7 19T decreases beloW,, but the sign does not change. In 4
the framework of the inertial mechanism there is a segment 10
near T, with 97*/9T>0. The functions7(T) obtained in

Ref. 30 can then be used to obtain the temperature bound—_w(<
aries of the region of thermal instability of the deformation. >

In the framework of the fluctuation mechanism it is found

that theS N transition has practically no effect on the thermal
instability, whereas in the inertial model there is a tempera- 1072
ture interval (0.5, <T<T,) in which the deformation in

the S state, unlike the case of the normal state, is stable. This

is a consequence of the existence of a positive value of

dtldT at T<T.. From the behavior of the boundary tem- ! ! I Te [Tck
peraturesT and Tg as functions of the coolant temperature 0.1 0.2 04 06
for this case one can determine the interval of strain rates To /Tk

and eg in which the deformation will be unstable in ti FIG. 22, Caleulated t . . ons for th Cof th linst
: . . . 22. Calculated temperature—rate regions for the onset of thermal insta-
f’ind S statgs, I_'e" one CE_in ConStr_UCt the eX!Sten_ce reglc'nnéllity of the deformation in theN (1) and S (2,3) states of a crystal. The
illustrated In Fig. 22, which pertan_"n to the situation When gashed curve denotes the boundary of the existence region & sete
T.=0.5T, is lower than the maximum temperatuie,, (Ref. 30.
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the NS transition leads to an enhanced jumplike deformation 50

and situations where the effect vanishes. Under certain con-

ditions the LJD should be insensitive to the superconducting &%
transition. 40}

©
The dislocation hypothesis exists in the form of general %
plausibility arguments stated in a discussion of the first &
studies®® This hypothesis is based on an analysis of a situa- ©
tion that can lead to avalanche multiplication or to the mo-

30

tion of dislocations at low temperatures. The hypothesis was 20} oy . e__a_o_
put forth in Ref. 10 and was investigated in detail in the .0&. o
framework of a theory of stage Il of the work-hardening 0-—?—‘—*
curve. The analysis treats the case of a crystal containing an 100 5'0 1(')0 1;0 200 : 30'0
appreciable number of dislocations which is plastically de- T K

formed through cross slip, which is most effective in fcc and

hcp crystals. The process of cross slip of an isolated disloce=G. 23. Tempergture depepdence of the yield stress for .po.lycrystalline
tion is preceded by the drawing of a split dislocation into aiag'f'f:,lo(fR:f"; alloys with 3.8(®) and 7 (O) at% Li; =0.1
line. However, the experimentally measured values of the T
flow stressr are insufficient for the drawing of a split dislo-
cation unless it is assumed that the given dislocation is found

in a planar pileup oh dislocations. Then the stress acting onand 10.4 at.% Li, respectivelyThe yield stressry of these

the head dislocation is equal tor. On the other hand, the alloys as a function of is presented in Fig. 23. It is impor-
force per unit length of dislocation needed for drawing atant that in the temperature interval 170—40 K one observes
dislocation into a line is equal to bGv2/8w)—y  a strong dependenaey(T), characteristic for thermally ac-

(b is the Burgers vectolG is the shear modulus, andis the tivated plasticity, while in the interval 4.2—40 K the value of
energy of a stacking faylt The cross slip begins whemr o, varies weakly with temperature. Analyd1$? has shown
reaches valuesvRG/4w)— (y/b). Using published data on that this behavior ofr, and the temperature dependence of
v, G, b, andr;, (as7), we obtain a value~ 25 for copper, the rate sensitivitAo differ substantially from those for the
lead, and aluminum. This means that a stress of the order @fse of thermally activated processes. It has been stotfin
G/10-G/20 will arise at the head of the pileup, values closethat this is due to the influence of thermoinertial effects on
to the yield strength under shear. Thus at low temperaturethe motion of dislocations at low temperatures. This finding
an additional mechanism of plastic deformation arises, whiclinas been confirmed by detailed studies done on alloys of lead
consists in the breaking away of dislocation pileups fromwith the tin, antimony’’ and bismutfA! without reference to
barriers, whereupon avalanchelike motion and multiplicatiorthe jumplike deformation. Moreover, in the region of anoma-
of dislocations occur, which are reflected in the form of alous temperature dependeng&g. 24 the yield stress de-

jump in stress on the work-hardening curve. creases as the temperature is lowered. Special experiments
done at 0.5 K and their analysis from the standpoint of the
6. DISCUSSION existing theories have showh®’ that a quantum—inertial

) mechanism of dislocation motion is realized below 15 K, the
The experimental study of the low-temperature macroyasic elementary plasticity event of which is the quantum

scopic jumplike deformation in the normal and supercon-syrmounting of an individual impurity atom by a dislocation
ducting states and &S and SN transitions has shown that,

as a rule, the macroscopic LJD is less developed or absent
altogether in the superconducting state. This sort of effect of

the transition to the superconducting state can be regarded as ® 0.1at.%Bi
typical. From this standpoint there is a discrepancy between 3 f“ mO5
the experimental data and the conclusions of the theory of A10
thermomechanical instability in its present form, since that - AL ® 3.0
theory implies that the influence of the superconducting tran- L A 60
sition can vary, depending on the experimental conditions 2 As a
(the substance, temperature, strain)rate % A A,

Let us try to understand the reason for the disagreements o T (' A 4
between the experimental and theoretical results. Let us be- # ®
gin by noting that all of the theories of thermomechanical 1r % o
instability rest on the underlying assumption that the ther- oo ¢ ¢
mally activated character of the plastic deformation is pre- I ‘0‘0‘ L I
served at low temperatures. However, special investigations ol . L ) | . )
done on a series of metals and alloys, including some that 0 100 200 300
exhibit the macroscopic LJID, have shown that the process of T,

Fherma"y a.Ctlvated _plaStI_CIty ceases to be effective. Let l'_l%IG. 24. Temperature dependence of the critical shear styeks Pb—Bi
illustrate this assertion with the results of a study of Al—Li single crystals of different Bi content in the temperature interval 295-0.5 K.

alloys with concentrations of 1, 2, and 3 wt.% (3.8, 7.0,  The axis of tension is close {410]; 6=1.1X10"*s* (Ref. 4.
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TABLE II. Characteristic temperatures of the anomaly of the yield stress
and for the start of the jumplike deformation of some materials.
Ti ’ K Tcr, K Q(‘_S
Material T., K [Ref] [Ref] s
Al-3.8 at. % Li ~1.2 34[38] 10-4.2[20] —
polycrystal ﬁ
Al-3.7 at. % Li 39 [38] 10-4.2[20] <
polycrystal Zo
P
Al-10.4 at. % Li 50 [20] 10-4.2[20] |
polycrystal -
Al-0.62 at. % Mg 21 [38] 6—8[40] &
single crystal
Al-1.5 at. % Mg 27 [38] 6-8[40] L | I | L 1 ]
single crystal 0 2 4 6 8 10 12 14 16
Al-185at.% Mg - 28 [38] 6-8[40] T.K
single crystal FIG. 25. Temperature dependence of the critical shear stgefss tantalum
Al-3.8 at. % Mg 31 [38] 6-8[40] single crystals in the normdkolid curveg and superconductingdashed
single crystal curves statesg=2x10"3s7? (curvel), e=1.1x10"*s ! (curve2) (Ref.
Sn-00lat.%Cd ~3.72 1.5[22] 3[22] 42).
single crystal
Sn-0.04 at. % Cd 1.5 [22] 4.2[22]
single crystal at the superconducting transition, and that this is responsible
Sn-0.21 at. % Cd 1.0 [22] 4.2[22] for the vanishing or weakening of the macroscopic LJD. Nu-
single crystal merous and varied experiments have been done to study the
Pb—99.9995 % ~72  noanomaly 24 PO'YiWSta' influence of the superconducting transition on the yield stress
single crystal pE‘;iTm 99.9995 A{39] and the flow stress, including experiments to assess the tem-
. ) . perature dependences in the normal and superconducting
Zﬁ;@ ?:trygielln - 12 5 1&?&?;?;[?9]'“ states. Analysis of the available data shows that the character
of the temperature dependence of the yield strgsm the
Pb—10 at. % In 4.0 [51] 21(13at.% In : : -
: ) ' ' ' superconducting state is related to that observed in the nor-
single crystal polycrystal[39]

mal state, and ifro(T) in the N state has an anomalous
Notes: T is the temperature of the start of the anomaly. character, then it is determined by the positiorTgfrelative

to the anomaly. If the temperature dependence,afown to

the lowest temperatures of measurement corresponds to ther-
with a subsequent multiple depinniignzipping of the dis- mally activated processes and is characterized by a mono-
location owing to the inertial effect. tonic increase ofy with decreasing temperature, then in the

Thus the underlying assumption of all the theories ofS state the derivativel7/d T will decrease slightly neaf,

thermomechanical instability, viz., that the plastic deforma-and as the temperature is decreased further it becomes close
tion is a thermally activated process all the way down toto the value ofd7/dT in the N state. This case has been
0.5 K, is doubtful. There are also insufficient grounds toobserved in experiments with tantalffiiFig. 25 and with
assume that the processes governing the macroscopic chéne alloys Al—1.85 at.% Mt and Sn—Cd?* In the presence
acteristics of the plastic deformation and the macroscopiof an anomalous temperature dependence of the yield stress
jumplike deformation are identical. To convince ourselves(the critical shear stress for single crysidlse character of
that this is the case, let us compare the temperatures at whithe change iny(T) with temperature at the superconducting
the anomalies oéo(T) or 7o(T) are observed with the tem- transition can vary. If the anomaly afy(T) consists in a
perature of the onset of the jumplike deformation. These lastveakening of the temperature dependenceq,ah compari-
values are determined very roughly. The data are presentesbn with the thermally activated curve or in athermicity of
in Table Il. In some case&@luminum alloy$ the tempera- 74, then in the superconducting state the sigalgf/dT can
turesT; at which the anomaly of the yield stress begins ischange. This case is shown in Fig. 26 for single crystals of
substantially higher than the temperatufesat which the  Al-0.3 at.% Mg® If the anomaly ofr(T) consists in the
jumplike deformation begins, while in other cagae#ioys of  fact that the sign ofl7/dT changes in théN state, i.e., the
tin with cadmium) the opposite is true: the jumplike defor- yield stress decreases with decreasing temperature, then the
mation begins at higher temperatures than the anomaly of theign of d=,/dT does not change upon transition to the su-
yield stress. In other words, the appearance of a jumplik@erconducting state, except in the region arotipd A typi-
deformation cannot be correlated in temperature with theal example is shown in Fig. 27 for single crystals of lead
low-temperature anomaly of the plasticity. In the theories ofalloys3” Thus it seems unlikely that the vanishing of the
thermomechanical instability which have been modified inmacroscopic LJD is caused by a change in the character of
respect to the influence of the superconducting transition omy(T).
the jumplike deformation it is also assumed that the tempera- Summing up the available data, one can conclude that
ture dependence of the yield stréBsw stres$ changes sign the presence of anomalous temperature dependengg€Tii
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would obtain for a thermally activated character of the procedRet 37.
FIG. 26. Yield stressesyy and 7yg for single crystals of the alloy Al-0.3

at.% Mg strained by tension at a rate®f 6.9xX 107%™, as functions of
temperature. The arrows indicate the critical temperallyedetermined on account of inertial effects. Therefore, in tBestate the
Ig)grf] Tseasurement of the specific heat and extrapolatioA &y to zero jumps will begin later and their amplitude will be lower at
T the same strain. This process can occur for any character of
7o(T), both in the form of individual jumps and in the form
is in no way related to the superconducting transition, al-of a saw-tooth curve. For the process of jumplike deforma-
though the transition can affect it somewhat. The supercortion in the framework of this hypothesis it is not necessary
ducting transition can affecty(T) in a variety of ways, and that r decrease as the temperature is lowered. There is con-
in individual cases can lead to a change in the sign oWincing experimental evidence in favor of the dynamic hy-
d7o/dT. In the framework of the thermomechanical instabil- pothesis. The best evidence comes from experiments on the
ity theories this means that only in the case of a change imbservation of electrical effects in the low-temperature de-
sign of 7o(T) will the superconducting transition affect the formation. These electrical effects are a consequence of the
LJID, and this has not been established experimentally. Howinteraction of dislocations and conduction electrons and arise
ever, the observed regularities in the influence of the supemn account of the carrying of electrons by rapidly moving
conducting transition on the macroscopic LJD and also thelislocations. This effect was predicted theoretically in Ref.
temperature dependences of the yield stress and its changeddt and observed experimentally in Ref. 47. Then, by a tech-
the superconducting transition do not confirm the hypothesisique developed in Ref. 47, a study of the low-temperature
of thermomechanical instability. jumplike deformation of 99.999% pure Al single crystals
The alternative hypothesis for the jumplike deformation,was carried out under conditions of compresgfort the
which attributes the appearance of jumps to the breakaway dfme of the jumps in the load, pulsed electrical signals of
dislocation pileups, unfortunately still remains hypothetical,various amplitudes, shapes, and durations appeared on the
without any theoretical calculations to back it up. Therefore faces of the strained samples. Depending on their duration,
the comparison of the experimental results with the dynami¢he pulses can be divided into two groups:1—10 ms(mil-
dislocation hypothesis can only be done on a qualitativdisecond pulses andt=2-5us (microsecond pulsg¢ssee
level. Using the current ideas about the motion of disloca+ig. 28.
tions in the normal and superconducting statesne can To establish the nature of the observed electrical effects
explain the influence of the superconducting transition on thesome tests were done and some estimates made. They
LJD as follows. In the superconducting state, as compared tshowed that the main role in the formation of the millisecond
the normal state, because of the undamped nature of thgaulses is played by the thermopower arising at the contact of
motion the dislocations will overcome a number of obstacleghe wire leads with the sample owing to thermal processes in
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ducting transition on the jumplike deformation.

In a recent papéf a highly sensitive quartz transducer
placed near the sample was used to record the kinetics of a
single load jump in nickel, copper, and construction materi-
als. It was shown that the load jump is a two-stage process:
the first stage 4 o) lasts for microseconds and is followed
d by a slower, millisecond fall in the load\(@ ;). In the first

stage the load varies linearly with time, indicating a quasivis-

_A[&._______.._ cous, dynamic character of the deformation. In the second

5 us stage,o has a nonlinear time dependence, which is charac-

teristic for a thermally activated process. This finding agrees
with the results of the other papers mentioned above.

IO.S uv

U, pv
U, uv

FIG. 28. Brief (microsecony electrical pulses recorded against the back-

ground of the millisecond pulses at the times of deep jumps in the(knbd 7. CONCLUSIONS

and individual microsecond pulses observed at small load jups

~1075-10"* (c,d (Ref. 48. 1. The transition to the superconducting state leads to a

substantial weakening of the macroscopic jumplike deforma-
tion or to its complete vanishing.

the deformation. The microsecond pulses, unlike the milli-  2- The vanishing of the influence of theStransition on
second, did not depend on the material of the wire leads o€ macroscopic LJD at large strains in high-strength alumi-
their geometric arrangement. When the temperature of thBUM alloys is most likely due to a smaffom 0.5t0 1.2 K
surface of the sample changed at the time of the jumps in thB€ating of the sample and a transition to the normal state.
load, no sign of any brief temperature increases in the mi- 3- The observed regularities in the influence of M8
crosecond range were observed in any of the tests. Froff@nsition on the macroscopic LJD are in disagreement with
these observations it was concluded that the microsecori@® hypothesis of thermomechanical instability. .
pulses may be due to the carrying of electrons along with the 4 The available high-precision measurements of the ki-
motion of dislocation pileups, and the duration of thesenetics of the jumps con_flrm that the initial breakdown of the
pulses indicates that their motion is of a dynamic nature l0ad at a jump first arises as a consequence of purely dy-
(~10° cm/s). As to the millisecond pulses, an important roleN@mic motion of dlslgcatlons, and only after that dp the com-
in their formation is played by deformation processes givingP!ex thermomechanical processes occur. This picture of the
rise to a temperature field, i.e., apparently, by processes d¢fnetics of development of a jump is also supported by the
thermomechanical instability. This interpretation of the mil- influence of the superconducting transition on the low-
lisecond pulses is supported by high-precision measurementgmperature jumplike deformation.

made on niobium single crystal$A very important clue for In closing, the author thanks V. S. Fomenko, T. A.
understanding the mechanisms of the LJD is the experimerf2arkhomenko, 1. N. Kuz'menko, S.. Shumilin, and N. V.

tal fact that the jump begins with the microsecond pulses!saev for coll_aboratlons, V. D. Nat5|k for crltl_cal comments,
i.e., usually the microsecond pulses are observed before ti#d |- N. Glinko and A. I. Glin'ko for assistance in the
millisecond pulses; this suggests that rapidly moving pileup®reparing the manuscript. Special thanks go to V. S. Fo-
initiate the thermally stimulated formation of dislocation Menko for enormous help. _
avalanches as the jump develops further. This temporal se- This study was done with the support of the Foundation
quence of pulses is direct experimental evidence that the d);?,r Basic Research of the Ukrair@roject 2.4/156 “Bion-
namic dislocation pileups are the initiatan the terminology

used in Ref. 48, the “trigger)' of a situation that creates

conditions for the onset of thermally stimulated dislocation E-mail: pustovalov@ilt kharkov.ua

avalanches. Using the results on the detection of electrical—

pulses, the authors of Ref. 48 estimated the contribution of

the dynamic dislocation pileups to the total increment of de_l\slir;,h St:]agm’ét;/l-s Zﬁ-d I,Xilfc?esv,atali]ngfe\rg Z:‘;t‘[’ﬂ‘ggupg;z%dze?ar}d
formation at the jumps in the load. Comparing these data Iurgizgat, Moseow(1975. 4 P ’

with the total amplitude of the series of pulses correspondingy. |. startsev, irDislocation in SolidsVol. 6, edited by F. R. N. Nabarro,

to a single jump, we find for the large load jumps that they North Holland, Amsterdant1983, p. 145.

comprise 1-20 % oAe. Since the sensitivity of the detector 4t- g ﬁﬁz'i'r‘]sg'ﬁdpéocjoi-ﬁrseoc-F';r?”’:)ds"”,\'/l fgeffgifg%%n-

_d|d not permit the observation of s_mall plleups,_ thl_s estimatesg . ramoto, s. T.akeuchi),/‘ and T. Suzuki, J. Phys. Soc. 3gn1217

is a lower bound. Thus the studies of the kinetics of the (1973.

jumps have made it possible to determine the sequence dfG. A. Malygin, Phys. Status Solidi B1, K45 (1974,
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e, th heny o mplke ceomton must e b 1.2 S g o weans e
purely dynamic effects and the effects of thermomechanical | - ,
instability, the combination of which can apparently account E}éd,\%rr '(ig‘i-,r?)",vzf,ni‘;?[‘ sﬁﬁ?',ﬁ;;g&”};%gfnd T Vrechivtey.
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The details of the absorption of an rf electromagnetic field by two-dimensi@malelectrons on

a thin film of helium in relation to the confining electric field are discussed. The connection
between this problem and the problem of saturation in a 2D electron system is noted. A special
study is made for the case of cylindrical geometry, which corresponds qualitatively to the
conditions of the experiment of B. Lehndorff and K. Dransfeld, J. Pfyarig 50, 2579(1989.

It is shown that the data obtained on the field dependence of the absorption of rf field

energy by 2D electrons contains information about the supersaturated electronic states in the cell.
© 2000 American Institute of Physids$S1063-777X00)00206-1]

In Ref. 1 the absorption of rf energy by two-dimensionalior of P(V). In particular, it becomes possible to resolve the
(2D) electrons was investigated by placing a charged 2Daforementioned paradox.
system in the central part of a cylindrically symmetric reso- 1. Let us turn to the seemingly technical problem of
nant cavity(where there is an antinode of the fundamentalintroducing electrons into a resonant cavity and determining
mode of the electric field of the cavitylt was noted by the the density of the 2D electron system in the active zone lying
authors of that interesting papehat the introduction of 2D  closely along the axis of a cylindrical cavity. This procedure
electrons sharply alters the characteristics of the cavity. |fvas carried out in Ref. 1 from an external source, by the

particular, its fundamental frequency decreases from 12 to §t@ndard procedure in which a helium film covering a con-
GHz, and the level of absorptidd increasegin comparison ducting substratédoped silicon lying along the axis of the

with the value in the empty cellln addition, a special study cavity is charged to saturation with electrons in the presence
of a fixed potential difference between the substrate and
was made of the dependence of the absorpfowon the

L . walls of the cavity. Under such conditions one can obtain a
potential differenc&/ between the walls of the cavity and the Y

tral electrodthi tential diff s what f_ simple estimate of the density, of 2D electrons in the cell,
central electrodethis potential difference is what confines and for this reason it is extremely popular to study the prop-

the _electrons to the s_urface _Of the heIDu.ﬁh'hat study was erties of 2D electron systems above helium specifically in a
motivated by the desire to fix the location of the free 2Dgiate of saturation. Nevertheless, important details of the
electrons in one-electron “sockets.” The presence of a pProsatyrated state are in need of refinements that have not yet
nounced spike on the(V) curve(Fig. 2 of Ref. 3 confirms  peen explicitly elaborated. The essential features of these
that this is a reasonable interpretation of the data of Ref. lrefinements will first be set forth for the particular case of a
Nevertheless, some accompanying details not mentioned islanar 2D electron system, and then we will address the spe-
Ref. 1 indicate the possibility of an alternative scenario leadcifics of the case of cylindrical geometry, which is qualita-
ing to the observed behavior &(V). The most significant tively closer to the experiments of Ref. 1.

of these is the finitédifferent from the vacuumabsorption The conventional way of preparing a 2D electron system
in the activity forV—0. The existing ideas about the behav-on a liquid helium surface presupposes the use of a flat ca-
ior of 2D electrons over helium would require that in such apacitor, with a charged liquid interface between the plates
situation the electron density in the active zone of the cavityS€€, e.9., Ref.)2The potential differenc¥ on the capacitor

go to zero, and that would mean smébmparable to the plgtgs produces electric fields; andE_ above and below
vacuum absorption. In actuality the absorpti®nin a poten-  this interface:

tial difference_ approaching zero is only a few percent less 4mend+V 4menh—V
than the maximum value. This paradox deserves at leasta E,=— ——F, =

- . d+h d+h
qualitative explanation.

In this paper we discuss the popular procediweich  which confine the 2D electron system with a finite denaity
was used in Ref.)lin which the free surface of helium is near the vapor—liquid interface. Heteis the thickness of
charged to saturation by electrofibe concept of saturation the helium film,h is the vacuum gap between the helium and
will be defined below. It is important to take the details of the upper electrode, andA2is the dimension of the capaci-
this procedure into account in order to understand the behaver in the horizontal directions.

@
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FIG. 1. Diagram of the arrangement of 2D electron layers above planar helium films in the two-component approxanatidrfor a cylindrical version
of the cell(b).

Under the condition&, =0, or 4mrend , Amend

, dmeng=——-. (5)
Vo=—4mertd, ) d+o d+o

] . ) Here the electrons are confined in local states on the upper
the excess electrons witi>n; will no longer be confined 54 |ower helium films by the internal Coulomb fields. The

by the external field on the liquid substrate and will “es- 45| humber of electronBl, is limited only by the stability
cape” into the volume of the gaseous phase of heliumys ihe charged helium surface.

Therefore, under conditiof2) one speaks of a state of satu- Of course, having specified a certain numigrone can

ration in the 2D electron system, and the densifyis as-  choose the corresponding critical vale (2) for which, in

sumed to be the maximum for the giveh _ the electrostatic approximation, all of the electrons will be
The ease with which can determine the densityusing found on the filmd, i.e., ng=n= NO/7TR2. However. the

formula (2) is a great practical convenience in studies Withconverse assertion, that for a fix¥dthe maximum value of
2D electrons. However, for formuldq) and(2) to hold re- corresponds to the valu@) is incorrect. An example of

quires that the electrons have free access to the upper platetcpffeir disagreement is contained in formulé®: having V
the capacitor. In reality, however, in working with superfluid _ 5 \\e nevertheless find thagqﬁo_

helium all the interior parts of the cell, including the upper

k =t R Thus the existence region of 2D equilibrium electron
capacitor plate, are covered by a thin film of heligwith a

states over helium is wider in the problem with filMisand

: 6
thickness of the order of the natural valde- 107" cm). Un-  § Their existence becomes possible also under conditions of
der these conditions the overall picture of the filling of thesupersaturation

vacuum gap above the helium with electrons changes, for

during the charging process electrons settle not only on the 0<V=Vj, (6)
lower film d to a densityng but also on the upper filMto a  and the state of saturatid@) can be interpreted as being one
densityn;, of the supersaturated states.
_ 2. Now let the system of control electrodes be cylindri-
Ng+Ns=nq. (€©))

cally symmetric(Fig. 1b. This type of cell is closer to the
The state with two 2D electron layers is called supersaturategxperimental situation of Ref. 1, although it is not 100%
below. The state of supersaturation is illustrated schematisimilar (the central electrode in Ref. 1 has the form of a
cally in Fig. 1a. For its description in the electrostatic ap-plane of dimensionsv<R, whereR is the radius of the
proximation it is necessarjong with the set of conditions cavity). The corresponding densitias, in the central part of
leading to formulag(1)] that the electric field between the the system(Fig. 1b andn; at the walls of the cavity, are

two 2D electron layers vanish. Then determined from the expressions
4mrend—V 2a[(ro+d,)ng+(R=48)ns]=N, 7
AT s o MmN @ 2eN-(R—-8)V/ 6
AT T (R-0)dI5 (79

It is easy to see that in the two-layer model a finite
electron density above the helium is possible in the absenddere N is the total electron density per unit length of the
of a nonzero potential difference, for even\&t 0 one has  cylinder, andd, is the effective distance between the helium
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and the conducting silicon, consisting of the thickndssf For 7 we use the well-known expressfon
the helium film and the thicknes} of the dielectric inter- 5
layer (Khostopan or Teflon of the order of 1@m thick). 7=8ah/F*,
.The minimum electrop densiuﬁ in the supersaturation F=F.+Fy=cE, +e%/(4d?), E,=4meny. (11)
regime atvV=0 can be written
N A helium film is typically of the order of %X 10 ® cm thick.
27-rn3= (8) Adopting this thickness and supposing that the Teflon sub-

fot+d, +(R-09)d/s strate has a high dielectric constant, we find that the electri-
The maximum density in the saturation regime is, of coursegal partF, of the forceF is comparable to the dielectric part
F4 at ng~10"°cm™2. Another geometric estimate concerns
(89  the thickness of the Teflon interlayet,~6 wm [this thick-
ness appears in the definition of the quandityappearing in
Finally, in the cylindrical version of the problem there (7) and(8)].
also exists a regime in which the self-field of the electrons at ~ The typical value ofr in (10) for d~3x10"°cm does
the axis of the cylinder is less than the confining potentialnot exceed 10''s, i.e., foro~10°s™* we havewr<1. One
But this limiting case does not have direct relevance to th&€an determineR without difficulty (R=1cm). As torg,
data of Ref. 1, which are directly adjacent to the zérbmit ~ here the estimates are extremely sketchy: 0.&Xcp
in the electron distribution inside the cavity. <0.5cm, since the axial electrodeonducting silicoi is
It is also pertinent to note that in the case of differentactually in the form of a plate of width 1 cm and thickness
metals on the walls of the cavitpormal metaland alongits 0.1 cm.
axis (doped siliconit is quite likely that the contact potential As we are interested mainly in the behavior of the ab-
differencey will play a role in the formation of the super- sorption in the neighborhood of small, we write expres-
saturated states. In the absencep$upersaturation can oc- Sions(10) and(11) with allowance for the conditiom7<1
cur for arbitraryN in the region of smalV. If 0, how- in dimensionless form:
ever, then for saturation to occlonly in that regime does

2

ro+d,’

* 2
the absorption grow with increasing) it is necessary to PLV) = Na(V)7(V) =(1+vy)| = "+l ,
have a finiteN: P(0)  ng(0)7(0) n*(1+ovy)+1
B(ro+d*)t/f_ © vn=VIVy. (12)
2ed,

_ o Vy'=R/(26|€|N), n*=167d?ny(0).

3. Returning to Ref. 1 and taking into account what we
have said above, we can conjecture that the measurements The relative absorptiolil2) has a maximum as a func-
there were done under conditions of supersaturation of thtion of vy at the pointy **:
cavity with electrons, when not only were ting states on
the axis of the cavity filled but also the; states on its walls, Umax:i_ 1. (13)
which were coated with a thin film of helium. Then, under N,
the conditionV=0 an appreciable fraction of the total elec-
tron charge introduced into the cell is retained at the silico
substratd as follows, in particular, from formul&)]. Then,
asV increases, the charges begin to be redistributed betwe
the fractionsny and ns in favor of the first of these. This
process is in general nonlinear Yhdue to the influence of
the electron pressure on the helium film thicknedsm the
active zone.

Thus the discussion of the problem of the filling of frac-
tions ny and ns by the electrons provides the prerequisites
for a correct understanding of the functi&(V). The fact
that this absorption is finite fov — 0 is a consequence of the
fact thatny(V—0) is finite. As to the details of the absorp-
tion in the regionV+0, this problem must be solved using
additional information about the structure BfV), e.g., in
the Drude approximation.

By definition, the absorptiolP?(E,) in the Drude ap-
proximation is

It is clear that such a maximum existsrif <1. In the op-
rl:)osite limiting casen, >1, the absorptioP(V)/P(0) from

(12) decreases monotonically, since the field dependence of
%Ae relaxation time is dominant.

Thus the finite value of the absorption of an rf electric
field by a 2D electron system in a cavity at zero confining
field and its growth with increasiny, which follow from
the data of Ref. 1, provide a stimulus for introducing and
discussing the properties of the supersaturated state of 2D
electrons in closed cell§.e., cells containing a closed sys-
tem of electrodes for confining electrons on the surface of
superfluid helium

The case in Ref. 1 is not the only example. Supersatu-
rated states should be invoked to explain the nonmonotonic
field dependence of the capacitance of a capacitor containing
2D electrongsee, e.g., Ref.)3Their presence influences the
structure of the relaxation time in experiments such as those
in Refs. 4—7, etc. Generally speaking, when the image forces
r (which we have neglectedare taken into account, a two-
(100 layer electron structure is the rule rather than the exception

for electrons above superfluid helium in closed cells. In view
Hereng is taken from Eq(7a), 7 is the characteristic mo- of this circumstance one can consider the results set forth
mentum relaxation time, ana is the frequency of the rf above as quite general, having a significance extending be-
excitation. yond the interpretation of the data of Ref. 1.

P=RejE,)=nge’m E>——.
B =" "1+ w22
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The spin—spin relaxation time in3e—*He solid solution is measured before and after phase
separation in the temperature range 1-250 mK. The spin echo technique is used, which

permits separating the contributions of the two separated phases to the magnetic relaxation. It is
found that in the concentrated phase the spin—spin relaxation time is practically independent

of temperature above 50 mK and is described by the same exchange mechanisms asHie pure

In the dilute phase the relaxation time is inversely proportional to the concentration and

agrees with the corresponding values for homogeneous solutions. The dominant contribution to
the spin—spin relaxation process is fréfe—*He tunneling exchange. At the lowest

temperatures the spin echo exhibits anomalous behavior, which may be a manifestation of quasi-
one-dimensional diffusion. €000 American Institute of Physid§1063-777X00)00306-9

1. INTRODUCTION the relaxation timeT,, unlike the case in bulRHe, is ob-
) i _served throughout the entire existence region of this phase

The quantum nature of helium crystals is clearly mani-ynq extends all the way to millikelvin temperatures. In the
fested in the magnetic properties of solitle and of gjyte phase the tima, increases as the temperature is low-
3He— He solutions. The large zero-point vibrations of the greq, reflecting its concentration dependence, and the value
He atoms lead to a strong exchange interaction and makgr 7. s practically equal to the corresponding values for
for an appreciable tunneling probability for the atoms. Thes%ingIe-phase(unseparate)dsolutions of the same concentra-
processes play the dominant role in the nuclear magnetiggn in the region of the exchange plateau.

relaxation in quantum CryStals. Detailed StuaTéS)f thIS In the present Study we investigate the Spin_spin re'ax_
tOpiC in 3He have shown that the Spin—lattice relaxation timeation in 3He_‘lHe solid solutions over a wide range of tem-
T, and the spin—spin relaxation tinTe, at low temperatures peratures both in the single-phase regibafore separation
have a broad exchange plateau region whigr@ndT, do  and in the coexistence region of the concentrated and dilute
not depend on temperature. phases. The main focus of our attention is to compare the

The exchange mechanism of nuclear magnetic relaxatiofata obtained with the theoretical and experimental results
has also been observed in experiments®die—*He solid  for pure *He and for single-phase solutions of the corre-
solution§™* in the single-phase region at different concen-sponding concentrations.
trations and molar volumes in both the bcc and hcp phases.

Here, as was shown in Ref. 8 on the basis of the Torrey
theory!? in addition to the tunneling exchange of neighbor—2
ing *He—"He atoms in the solutions there is also appreciable |n the experiment we used the cell described
mutual exchangéHe—"He. The effect depends on the con- previously!” which was cooled by a nuclear demagnetization
centration and molar volume of the solution. refrigerator. Cylindrical samples dHe—*He solid solutions

At ultralow temperaturedHe—*He solid solutions can be 4 mm in diameter and 20 mm long were grown from an
used to realize another interesting quantum system—a twanitial gaseous mixture containing 3.18%e by the method
phase crystal, which is formed as a result of phase separati@f capillary blocking. After annealing for a few days near the
and consists of a concentrated and a dilute phase. In particielting temperature, the molar volume of the samples was
lar, in weak solutions ofHe in *He at high pressures, small 20.3+0.05 cni/mole. Cooling of the samples was done in
inclusions of the concentrated bcc phase form, distributed igteps of 10 mK with a subsequent temperature stabilization.
the crystalline matrix of the dilute hcp phase. As the tem-Measurements were made in the temperature interval 1-250
perature is lowered, the concentrationfe in the inclu- mK. The temperature of the sample was determined Hyea
sions approaches unity, and the matrix becomes practicallgrystallization thermometer placed on the same massive sil-
pure‘He. ver cold stage as the sample cell.

Research on the magnetic relaxation processes in two- For the NMR measurements we used a pulsed spectrom-
phase systems of this kind was begun only recéfitljand  eter working at a frequency of 250 kHz. The relative non-
has been devoted mainly to the spin—lattice relaxationuniformity of the magnetic field in the volume of the sample
Experiment$® have shown that in the concentrated phase ofvas~10~“. The measurements of the spin—spin relaxation
the separated solution the region of the exchange plateau féime T, were made mainly by the spin echo method with a

. EXPERIMENTAL PROCEDURE

1063-777X/2000/26(6)/6/$20.00 395 © 2000 American Institute of Physics
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90°—-7—180° pulse sequence. The amplitud®f the echo
for each value of the time interval was determined as the
average of ten measurements with a time intetvalbe-
tween measurements. The dampinchoh the general case
is described by the expression

Inh

27 2
h(27)=hgexp — =—— = ¥?G?7°D |, (1)
T, 3

where the first term in the exponent describes the spin—spin
relaxation, and the second term the diffusion dampimgis L L
the maximum value of the echo amplitud®js the magnetic 0 005 0.10 0.15 0.20
field gradient, andy is the gyromagnetic ratio. An estimate 2t ,s
shows that foD~10"° en/s andG~ 10" % G/cm the influ- FIG. 1. Damping of the echo signal in a two-phase crystal at a temperature
ence of the second term () becomes noticeable only for of 192 mK for different waiting timegt, s: 0.3(1) and 100(2). The solid
7>10s. Therefore, in the experiment we usually used valuegurves are the results of data processing according to for(dukaith the
of 7no greater than 0.5 s. The echo signal was recorded by Rgrameter#i=0.25, T;=205 ms, andry=6.5 ms(see text
Tektronix digital storage oscilloscope. The error in the val-
ues ofT, obtained by a computer processing of the primary
experimental dat&(27) by the least-squares method using FID observed in this phasers ~ 16 ms-1/(60 Hz)] is de-
formula (1), was 10% or better and was mainly due to radiotermined mainly by the magnetic field gradient in in accor-
noise. dance with formula3).

At high temperaturegusually above the phase separa-
tion tempera’[ureTpS) the Spin—spin relaxation times in the 3. TEMPERATURE DEPENDENCE OF THE SPIN=SPIN
homogeneougunseparatedinitial solution Tg were deter- RELAXATION TIME
mined from the free induction decdkID) after the applica- 4 ) )
tion of a 90° pulse. The FID was also recorded by the Tek- N the two-phase structure dHe~"He solid solutions
tronix digital oscilloscope and was subjected to a computefach of the phases—the concentrated and the dilute—are
processing based on the assumption that the instantanecgfRaracterized by their own values of the spin—spin and spin—

value of the FID amplitud& (t) is described by an exponen- lattice relaxation times and have their own contributions to
tial function; the amplitude of the echo signal:

1 exp( At) exr( 2T
T T3
At 27
whereU, is the maximum value of the FID amplitude and X 1—exp( - ?J) ex;{ - F) ] 4)
% is the observed damping time of the FID. The tiffigis ' 2
related to the true spin—spin relaxation tim% by the rela- Here the first term describes the contribution of the concen-
tion trated phase, with spin—latticg] and spin—spinT§ relax-
ation times; the second term is the contribution of the dilute
(T3) " 1=(T9) 1+ 4Gd, (3)  phase, with imed$ and T3, respectivelyA<1 is the rela-
tive fraction of the®He contained in the concentrated phase,
whered is the characteristic dimension of the sample in theand At is the waiting time between pulse trains.
direction of the magnetic field gradie@. Estimates show It follows from formula (4) that the large difference in
that under the given experimental conditions the broadeninthe spin—lattice relaxation times for the two daughter phases
of the resonance line due to the magnetic field gradient wasf the separated sampfeenables one to separate the contri-
negligibly small, yGd~60 Hz<1/T9, and within the accu- bution of the concentrated phase to the amplitude of the echo
racy of the measurements the observed damping Tinef  signal. At short waiting times for the recovery of the mag-
the FID can be assumed close to the true spin—spin relametization,At~T‘i<Td, the contribution of the dilute phase
ation timeTg. is negligible, proportional to the unrecovered magnetization
It is for precisely this reason that it has turned out to beand the smalfHe content in this phase, i.e., the second term
different to measureTg by the spin echo method at high in (4) can be neglected in this case.At is chosen much
temperatures. If the second term in the exponentljnis  larger thanT‘lj, then in the two daughter phases the complete
negligible, then, sincé&Jy=h, (Ref. 18, the functions(1) recovery of the equilibrium magnetization will occur, and the
and(2) are nearly the same, and the echo signal therefore idependence of the amplitude of the echoraran be used to
nearly impossible to distinguish against the background ofeparate the contributions of the two phases, which are char-
the FID. acterized by different spin—spin relaxation times.
We note that the FID method is inapplicable for measur-  Figure 1 shows typical results of measurements.pin
ing T, in the the melted solid solution in cases where thea two-phase sample for shdidurve 1) and long(curve 2)
concentrated bcc phase is characterized by large valubs of waiting timesAt. The solid curves in Fig. 1 are the result of
(120—200 mj since in that case the damping time of thea processing of the experimental data according to formula

h%horA

t
U(t):erxp(—ﬁ), 2
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-1 whole range of temperatures investigated. In the initial hcp
"M‘»ﬂ‘w. solution the spin—spin relaxation tirﬂ@ is independent of

"h‘i*,'?lm. temperature and agrees well with the results obtained
» previously~%!!for homogeneougHe—He solid solutions in

the region of the exchange plateau with allowance for the

InU

concentration and molar volume of the solution.
A Below the separation temperature, after the formation of
' a two-phase crystal, two spin—spin relaxation times were
[ observed—one short and one long. Using the technique de-
ml scribed above to separate the contributions of the two phases
4L 1 L L 1 to the amplitude of the echo signal, it was found that the long
0 1 2 3 4 5 relaxation timesng correspond to the concentrated phase and
t, ms the short timesT5 to the dilute phase.

FIG. 2. The damping of the free induction sigiglD) after the application
of a 90° pulse in the initial homogeneous sample at 220 mK. The straight
line is the result of data processing by the least-squares method according

0
formula (2). &.1. Concentrated phase

Since according to the phase diagram, the concentrated

_4 i -
9 by he lastsusres metho wih te scustale paran 25 0SSP e Souton 1 i s
etersA, TS, andT3. Here the cofactors containing the spin— . P P y '

lattice relaxation time3$ andT¢ are constants. For shatt 's natural to compare the data obtained Bnwith the cor-

. . responding results for bulk solitHe. As we see in Fig. 3,
one observes a single exponent, corresponding to the contr,

- c . . . .
bution of the concentrated phase, and at larigthere are fhe value ofT5 is practically independent of temperature in

two exponents, reflecting the contributions of the two phase the range 50-200 mK and equals 02s. The tempera-

L c )
It should be noted that as the temperature is lowered, tf?teure independence dff, suggests that the mechanism of the

He content in the dilute phase falls off, in accordance with>P'n—skin relaxathn IS governed, as in p&@, by ex-

. . .. change processes involving the tunneling motion of atoms.
the phase diagram, and therefore the relative contribution to For the region of the exchange plateau the tilein
the NMR signal from this phase decreases, and below g gep

~180mK it becomes comparable to the noise level of thesoIId He is expressed as follovis:

amplifier circuit of the spectrometer. For this reason the time oq 2[m 2m, (3 3 2o 202l

Tg was measured only in the temperature interval 180—200 (T2) 312 or §+ 56 0E+e w0 e|, (5)
K E

mK.

In the high-temperature region, as we have said, th&herew, is the Larmor frequencywe is the frequency of
spin—spin relaxation time was determined from the dampinghe tunneling exchange of neighboring atoids, is the Van
of the FIS. Figure 2 shows the form of the FID obtained aftervleck second magnetic moment, which can be calculated for
the application of a 90° pulse in a homogeneous initial@ bcc crystal with molar volumy from the relation
sample aflf =220 mK. We can see 'Fhat the damping of the M,=22.8 1019V2. (6)
amplitude of the FID is well described by an exponential
function all the way down to the noise level. The straight line ~ The analysis in Ref. 1 showed that the best agreement
in Fig. 2—which is the result of a processing of the FID by with experiment for bccHe is observed if the correlation
the least-squares method according to formu®— function describing the pair interaction between nuclear
corresponds to a valu'égzz.l ms. spins is approximated by a Lorenzian. In that case the tun-
Figure 3 shows the values a% thus obtained over the neling exchange frequenaye for neighboring atoms is re-
lated to the exchange integrdd; as

U)E:3.36J33. (7)
A Apnitg . . . -
200 A‘ a4 Previously this was used to obtain a good description of
i the experimental data for homogeneous sdhié (see, e.g.,
? Tps Ref. 1)
» 100% . Under the given experimental conditions, when the Lar-
- 10} A T, mor frequency is much less than the tunneling exchange fre-
= v -|-2° quency wo/weg<<l), formula (5) simplifies substantially,
. T and with allowance fof6) and(7) it becomes
2
10( =\ ¥*M
2 1 1 1 1 1 (Tg)_lzg E) _2 (8)
0 50 100 150 200 250 Wg

T, mK If the value ofJs; typical for bulk solid®He and the corre-

FIG. 3. Temperature dependence of the spin—spin relaxation time in thSpondIng molar volume are used in CalCUIatlmg’ Egs.

i c_ e
solution before and after phase separation. The arrow indicates the phaz@_(S) yield a vaIueT_z—O.ZOi0.0Ss, which is in good
transition temperature. agreement with experiment. We note that the use of the
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T, mK FIG. 5. Concentration dependence of the spin—spin relaxation time in the
) . . _ dilute hcp phase. The experimental data for the homogeneous crystal are
FIG. 4. Temperature dependence of the ratio of the spin-lattice and spingenoted byl (Ref. 8 andO (Ref. 13); for the dilute phase of the separated
spin relaxation times in the concentrated phase of the separated solution. g tion byA (Ref. 16 andM (present study line 1 is an approximation of
the experimental data by formu(8); line 2 is the result of a calculation in
the Torrey theory according to formu(al); line 3 is the result of a calcu-

. N . . lati di formula&l2)—(16).
Gaussian approximation, in which casg=4.76J3; (Ref. ation according to formuladl2)—-(16

1), givesT5=0.28+0.05s. This does not agree as well with

the measured values 3% . In the present study, along with measurements of the
The good agreement of the experimental datalprior  magnetic relaxation time we made some crude measurements
the concentrated phase with the calculation according to Edgf the spin diffusion coefficierD in the concentrated phase.
(6)—(8) means that the spin—spin relaxation in this phase ishe experiments showed that in the existence region of this
governed mainly by théHe—"He tunneling exchange, which phase, all the way down to 1.5 mK, the valuelf is prac-
is described by the exchange integigd. However, the con-  tically constant and equal to ¢72)x 108 cn#/s, which is
centrated phase contains an apprecidblle impurity (Up to ¢lose to the value of the spin diffusion coefficient for bulk
~3% near the separation temperajurand therefore the 3ye of the same density. Therefore the low-temperature de-
data permit one to estimate the contribution of the—He  ¢rease offS can scarcely be attributed to diffusion processes.
exchange to the spin—spin relaxation and the corresponding  Thys, taken together, our experimental data on the times
value of the exchange integrals. If one considers a super- 7¢ and TS and the diffusion coefficienb, in the concen-
position of the exchange processtte—"He and’He—"He  trated phase of a separated solutionide in *He indicate
with appropriate weight factors proportional to the concenhat above~50 mK the properties of the disperse concen-
tration, then according to estimates the valuelgfcannot  {rated phase are close to those of bitle. The reason for
differ from J33 by more than a factor of 2—3. This means that,e elongation of the exchange plateauTéfinto the region

the estimate od,3in Ref. 1 is apparently somewhat too high. of yitralow temperatures and the decrease T for
It is seen from Fig. 3 that below-50 MK the timeTS  T—50mK remain unclear.

decreases smoothly to values of 0.12 s at the lowest tempera-
tures. This behavior is more clearly seen from the tempera- _
ture dependence of the rafl§/TS, which is given in Fig. 4. 2 Dilute phase
Here the measurements of the two relaxation times were The increase in the spin—spin relaxation time in the di-
made in the same experiment. Analysis of expresé&ior lute phase]'d, with decreasing temperatu(see Fig. 3is a
TS and the corresponding formula fdr] obtained by the reflection of the fact that the concentration of the dilute
same approach in Ref. 13 shows that at the resonance frphase decreases as the temperature is lowered in accordance
quency used in the experiment the rali/ TS is close to  with the separation phase diagram. Therefore, a clearer and
unity. The experimental results in Fig. 4 agree with the pre-more physical view can be obtained from the concentration
diction of the theory only in the region 50—200 mK, while at dependence of%, which is shown in Fig. 5, which summa-
lower temperatures the ratib;/T5 increases monotonically rizes the experimental data of different authors for weak so-
on account of a decrease T . lutions of*He in“He. Shown are the results of measurements
The decrease of the spin—spin relaxation time in a sysef T, both in the homogeneous hcp solution in the region of
tem is usually attributed to a weakening of the intensity ofthe tunneling plateau and in the dilute hcp phase of the sepa-
the motion of the nuclear spiftéj.e., of the value of the spin rated (two-phasg solution. Since in the present study mea-
diffusion. The main mechanism for spin—spin relaxation issurements were made along the line of phase separation, the
due to the interaction between nuclear spins, which is deeoncentration of the dilute phase was determined from the
scribed in terms of local magnetic fields produced by thephase diagram of Ref. 19. Out of all the available experimen-
neighboring nuclear spins at lattice sites. Rapid relative motal data on the timeT, in the hcp phase of the solution
tion of the spins leads to strong fluctuations of the loca®He—*He, Fig. 5 shows the results which pertain to a molar
magnetic fields, and then only the averaged value of the localolume close to that used in the present study, and also for
field, which is much less than the instantaneous value, ikarmor frequenciesy much less than the energy frequency
important. Thus an increagdecreaseof the diffusion coef- wg~1Crad/s. As we see in Fig. 5, the experimental data of
ficient usually leads to an increa&tecreasgof the timeT,. the present study are in good agreement with the results of



Low Temp. Phys. 26 (6), June 2000 Mikhin et al. 399

Ref. 16 for the dilute phase in the two-phase crystal and with

Refs. 6 and 8 for single-phase solutions of the corresponding
concentrations. This shows that the spin—spin relaxation pro-
cesses in separated and homogeneous solutions of the same
concentration have the same character. A similar conclusion

was reached previously in an analysis of the spin—lattice ﬁ
relaxation in separated phases®pe—*He solid solutions? -
We note that the experimental data presented in Fig. 5 can be
approximated by the relation

T9=alX, 9) : A :
00 02 04 06 08 10
2T, s

where x is the concentration of the solution, and=7.5
X 10 °s. The results of such an approximation are shown by
the linel in Fig. 5. FIG. 6. Damping of the echo signal at ultralow temperatiresK: 5 (1),
The results on the concentration dependence of the tim@0 (2). The waiting time was several minutes. The dot-and-dash line is the
T, can be compared to different model descriptions of the?oundary of linearity of the amplifier circuit of the NMR spectrometer; the
. . . . 4 . . dotted line is an approximation according to formg; the solid line is a
spin—spin relaxation ifHe—*He solid solutions. In a calcu- . iculation according to formuléd7).
lation of the magnetic relaxation in Ref. 6 only the tunneling
exchange®He—He was taken into account, i.e., it was as-
sumed that formul&5), which was obtained foiHe, is valid c=(1-x)*2 (14)
for the solutions, and the specifics of the solutions WereAccording to Ref. 8, the functiond(w)|s_5 and J()|s_4
taken into account under the assumption thHd(x) have the form
=xM,(1) andwg(x)=x"2wg(1). Inthis approach the con-
centration dependence @ was predicted to have the form _ x2M (1)
T, *~x*2, which does not agree with the experimental data. J(w)l3-3=0.96 wg(1)
The numerical values of, calculated in such a model are

almost two orders of magnitude higher than the measured < expl — 1607 x"wg(1)] 2 15
values. o[ xYwg(1)]71+1.0/
The calculations of Greenbesy al.* based on the Tor-
rey model? have proven more adequate. In those calcula- _ W T34
tions it was assumed that a substantial role in the solutions J(@)[5-4=xM2(1) 73,6 2 (16

should be played by the tunneling excharigee—*He, with

2o Here the correlation time describing the tunneling exchange
the characteristic time g g g

*He—“He depends on the concentration ag~x" 3, and
T34=(2J30) L, (10)  the functionG(wo734/2) was calculated in Ref. 12.

The results of a calculation ng with both types of
tunneling exchange taken into account, according to formu-
las (12)—(16), are shown in by ling in Fig. 5. We note that
for weak solutions the approaches to the calculatiom.oih
Refs. 11, 12, and 8 are practically the same. This means that
T; ' =0.9%M,7a,. (11)  atlow®He concentrationfess than 1%in the solid solution
the main tunneling process is thide—*He exchange, and the

The value ofr3, was determined in Ref. 11 as a molar- , '~ ;
volume-dependent adjustable parameter of the theory of Refl 1€~ He exchange can be neglected. The latter begins to

12. If the values of this parameter for the conditions of thePl2y an appreciable role only at higher concentrations.
present experiment are used, a calculatioﬁl'g)according to
formula (11) gives the values shown by lin2 in Fig. 5,
which are quite close to the experimental data.

Another approach to the calculation o in *He—*He The primary experimental data obtained at the lowest
solutions was developed in Ref. 8, where both types of tuntemperatures require a separate analysis. Here the behavior
neling exchange®He—He and®He—"He, were taken into of the amplitudeh as a function of twice the interval be-

whereJ,, is the corresponding exchange frequency, aisl
the number of nearest neighbors. In this approach the spin
spin relaxation time, according to Ref. 11, is written in the
form

4. ANOMALOUS DAMPING OF THE SPIN ECHO AT
ULTRALOW TEMPERATURES

account. In that case tween 90° and 180° rf probe pulses differs substantially from
3 5 the typical dependence shown in Fig. 1. It was found that
T2_1:§J(O)+EJ(w)+J(2w), (120  below ~10mK the h(27) plot, after a rapid exponential

damping of the echo with a characteristic tifig, one ob-

where the spectral density functiai{w) is expressed in serves a much slower damping of the signal amplitude at
terms of the corresponding functions for the two types of27>0.3 s(curvelin Fig. 6). For comparison, curvgin Fig.
exchange, 6 shows the corresponding plot of H{27) at T=20mK,
where this anomaly is not observed.
J(w)=cI(o)[z-4+(1-c)I(w)|5-3, (13 The cause of the anomaly cannot be attributed to nonlin-
and the weight factoc depends strongly on the concentra- earity of the amplifier circuit of the NMR spectrometer at
tion of the solution, low signal levels, since, as can be seen from Fig. 6, the data
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at 20 mK contain echo signals of smaller amplitude than at ONCLUSION
mK, lb)ut nbo apprgzc::lble dgv;at;]onskfr(;]m a Z”:Elet ?ﬁp%nentla_l A study of the spin—spin relaxation processes in phase-
can be observed. AA special check snowed thal the dynamig, ) .ae dHe4He solid solutions has shown that in the con-
characteristics of the amplifier circuit of the spectrometer

centrated phase the relaxation time is possibly independent

remained linear at signal levels above the dot-and-dash Iin8f temperature down to 50 mK and can be described by
in Fig. 6.

Analvsis of 1in Fia. 6 sh that it b exchange processes involving the tunneling motion of the

.natysdlsbo tcur\(/jgﬁ n tl% S dOWS f"‘ llthcan € AP 36 atoms. Here the numerical values of the timeare in

proximated by two dirierent dependences. either a Superpogjood agreement with the corresponding values for pure bulk

sition of two exponential functions or the sum of one expo-3a

nen?alt:]unf(_:tu?{n andtz;\] nonexponentfletl function. tial | In the dilute phase of the separated solution the spin—
n the Tirst case the presence of wo exponentials wou %pin relaxation time can be described in the Torrey model

mean that at very low temperatures there are contributions Qith allowance for the?He—*He tunneling exchange. Here

the damping of the echo signal iram two phases: the CONCeNLe concentration dependencelgfhas the form M, and the
trated phase with spin—spin relaxation timig, and some '

. -~ >~~~ values obtained foll, agree with the data on the spin—spin
new phase with a very large characteristic relaxation tim

X S . X Gelaxation times for homogeneodide—*He solutions of the
T5. The result of such an approximation, obtained with the

: ) X corresponding concentration.
use of formula(4) with two adjgstable parametefsandTs, The reason for the smooth decrease in the fijman the

| ion timeT b | 20 that i €oncentrated phase below50 mK remains unclear. As to
relaxation timeT turns out to be so large<(20s) thatitcan o anomalous behavior of the damping of the spin echo at

be characteristic of only an extremely weak solution ( emneratures below 10 mK, it may be a manifestation of a
<10 %). The sensitivity of the NMR spectrometer used does

. : ) guasi-one-dimensional diffusion process.
not permit the observation of a signal from such a small
number of®He nuclei, and this hypothesis seems unrealistic. ~ The authors thank V. N. Grigor'ev for a helpful discus-
A more plausible approach is to assume the presence aion of the results.
exponential damping with a time constarit at shortr and a
nonexponential damping of the spin echo at longvhich
corresponds to a diffusion process with a large diffusion co
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Pressure measurements are used to study the kinetics of phase separities’d solid

solutions under conditions such that after the transition a two-phase system is formed, consisting
of liquid drops of the concentrated phasearly pure®He) in a crystalline matrix of the

dilute phasgnearly pure*He). It is shown that under stepped cooling of the two-phase sample

the growth of the liquid drops can be described by a superposition of two exponential

functions representing processes with long and short time constants. This is due to the strong
influence of the stresses arising in the crystal at the phase transition owing to the large
difference in the molar volumes of the two phases and which probably cause plastic deformation
of the matrix and the giving rise to nonequilibrium concentrationdH# in it. The

transport of’He atoms occurs only in connection with stress relaxation. It is established that
cyclic processes of growth and dissolution of the liquid drops strongly degrade the quality of the
crystal and lead to an increase of the pressure. The possibility that a mixture of the liquid

and crystal exists in the drops is also analyzed. 2@0 American Institute of Physics.
[S1063-777X00)00406-0

1. INTRODUCTION studies have investigated the specific f@atnd magnetic

_ s relaxation processt'tin such a system. However, there is
The phase diagram of the syst'éh‘he— He is in general o ctically no information about the kinetics of the growth

extremely complex and admits various combinations of congny gissolution of liquid drops arising in the crystal. This is

densed phases found in equilibrium with one another. An,, subject of the present study.

important circumstance here is that phase diagram changes

with pressure. Since the melting pressures of the pure iso-

topes3He and“He are very different, as can be seen from?2- EXPERIMENTAL PROCEDURE

Fig. 1, one can use pressure as a parameter controlling the The kinetic processes fiHe—*He two-phase solid solu-
phase composition of the crystal in studies®sfe~"He so-  tions containing liquid drops were studied by means of pre-
lutions. cision measurements of the pressure of the crystal at constant
In this paper we continue the research begun earfier yolume. The measuring cell and procedures were described
on the kinetics of the processes occurring in a solid solutioyreviously* A solution with an initial concentration of
containing 2.05%He. The melting line of this solution prac- 2.05% °He was crystallized by the method of capillary
tically coincides with the melting line of puréHe on the  piocking and then annealed for several days near the melting
scale in Fig. 1, and the line of phase separation is shown bysmperature. Then the homogeneous annealed crystal was
the dot-and-dash line. Our previous experiméHton the  cooled below the phase separation temperature, and a tem-
kinetics were done at a pressure exceeding the melting preperature cycling of the two-phase sample was carriedasit
sure of pureHe atT=0 (line 1) and at a pressure exceeding in Ref. 4. As was shown in Ref. 4, such a treatment usually

the minimum on the melting curve oHe, but below the improves the quality of the crystal and makes for better re-
melting pressure ofHe atT=0 (line 2). In the second case producibility of the results.

the solid inclusions ofHe formed as a result of the phase  |n the experiment we investigated the following kinetic
separation are transformed irftde liquid drops upon further processes:

cooling (after crossing théHe melting curvg This system — growth of liquid drops upon cooling of the two-phase
has also_been studied in experiments at the University oystem in small steps~10 mK);

Florida®~" where incomplete melting of th#He inclusions —_ dissolution of the drops during a stepped heating:
was detected. — growth and dissolution of the drops upon abrupt cool-

In the present study we investigate the region of intering and heatinglarge steps
mediate pressures—above tfide melting line and below
the minimum on théHe melting curve(line 3 in Fig. 1). In
this case, as a result of the phase separation a two-pha%
system arises which consists of liquid drops of the concen-
trated phaséclose in concentration to purée) in a crys- Figure 2 shows the change in pressure in a two-phase
talline matrix of the dilute phas@early pure’He). Previous  crystal containing liquid drops during four cooling—heating

_EFFECT OF TEMPERATURE CYCLING ON THE TWO-
E|ASE SAMPLES

1063-777X/2000/26(6)/6/$20.00 401 © 2000 American Institute of Physics
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FIG. 1. Lines of melting of puréHe and®He and the lines of phase sepa- 26.7106
ration of a solid solution containing 29%ie (---). The dashed linesand | e
2 correspond to the pressures at which the measurements were made in Refs. L A A
1-4, and line3 corresponds to the present measurements. P o
© o
< 26.7102
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cycles and the corresponding thermograh). First of all it o
should be noted that the result of the temperature cycling in el
this case is markedly different from that of an analogous 1 |

treatment at high pressure=@6 bar), where théHe inclu- 26.7098—5 53
sions are solid.

In the case of solid inclusions, after each cycle the pres-
sure in the crystal became less than the initial pressure, ap-
parently because of the elimination of defects and improve-
ment of the quality of the crystal. The greatest decrease in
the pressure was observed after the first cycle, and then the
pressure rapidly went to saturation. In the case when liquid
drops are formed, as we see in Fig. 2, the pressure after each
cycle increases instead, and the rapid saturation does not
occur. A clearer comparison of the behavior of these two-
phase systems is presented in Fig. 3. Besides the difference
in the dependence on the number of the cycle, one notices a
difference in scales: whereas for the solid inclusions one is
talking about values of the order of several millibars, in the
case of the liquid drops the effect is an order of magnitude
larger.

We note that an ev_en more Slgmflcam mcreasg m_ Pr€SeG. 2. Kinetics of the temperature cycling of the sample: the change in the
sure was observed during the melting and crystallization ofemperature of the crystal in the course of four cooling—heating cyeles
originally solid inclusiongsee Refs. 4 and)5This circum-  and the corresponding pressure chatipelnsets A and B show the irregu-
stance is clearly correlated with the value of the stressel@rities in the last stage of the phasg separation and the pressure anomaly

. . . . . before the start of the cycle, respectively.
expected in these cases, which are primarily determined by
the difference of the molar volumes of the initial and incipi-
ent phases. In the formation of liquid inclusions this differ- S .
: . . L —__crystal containing liquid drops of the concentrated phase in
ence is approximately 4 times as large as for solid inclusions

(see belowy;, and in the course of melting and crystallization comparison W'th. the two-phase crystal containing solid in-
clusions is the disagreement between the calculated value of

of the inclusions the additional increase in stress may be du%e total pressure changeP at the phase transition. In the

to t.he ff”‘Ct that the 'afge changg N th'e density is Iocallze%ase of solid inclusions the value &P observed in experi-
mainly just in the region of the inclusion. It can be stated

unambiguously that the cyclic processes of growth and diS[nent was in sati.sfactory agreement with the ca!culated value
solution of the liquid drops as a result of the phase separatioﬁgrgriepressure jump due to the phase separation at constant
degrades the quality of the crystal appreciably. '

One more difference in the behavior of the two-phase  AP=VE/Vp, (&N

00000600 op
0%%%0

3.5 mbar
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ence of the stresses that arise was pointed out in Ref. 13.
Unusual behavior of the pressure at the start of the second
N and subsequent cyclémset B in Fig. 2 may also be inter-
preted as being a consequence of the partial stress relaxation
on account of the increased mobility of tAide atoms upon

the onset of larg&/x.

2. It could be that the crystals and liquid coexist in some
inclusions. This would require that the pressure inside these
35987 - . . . . inclusions be equal Fo the melting pres;tﬂg, which is

around 29 bar, i.e., it would have to differ from the bulk
! ! ! ! [ ! value by approximately 3 bar. Such a pressure difference
cannot arise in the later states of the phase separation pro-
b cess, since at such &P it would not be possible to have
equality of the chemical potentials. However, it could arise
as a consequence of the specifics of nucleation in the given
case. Because of the severalfold difference of the surface
. tension at the boundary of the solid separated ptases
the liquid and crystal, the critical radius of nucleation for
liquid inclusions is larger than that for the solid inclusions by
- the same factor. Consequently, the formation of solid nuclei
26551 | | | | A is more probable,_and they will me!t in the Ia_ter stages. qu-
0 1 2 3 4 5 ever, the melting involves a large increase in volume, which
Cycle number can lead to plastic deformation and hardening of a layer at
the boundary of the nucleus. This, on the one hand, can tend
FIG. 3. Pressure after a ‘co‘oling—.heating cycle_ v.ersus.the number of thfb preserve the excess pressure, and, on the other, can hinder
cycle for two samples: solid inclusiorta) and liquid inclusiongb). the influx of the3He atoms toward the nucleus. It is very
difficult to estimate this effect; we note only that the possi-
bility of coexistence of the liquid and crystal under nonequi-
whereV and B are the molar volume and compressibility of [ibrium conditions was mentioned in Refs. 4 and 5.
the crystal, and the excess molar volume, according to Ref.
12, is related to the concentraticnof the solution as

VE[enr/mole] =0.4x(1-x). 2 The growth kinetics of liquid inclusions in a crystalline

In the case of liquid drops the numerator of form(la  matrix was studied under stepped cooling of a two-phase
should be replaced by the sum crystal below the phase separation temperature. A thermo-

VE £ xAV 3) gram of this .cool?ng and thg corresponding pressure chapge

' are shown in Fig. 4. As in the experiments with solid

where AV is the difference of the molar volumes of the inclusions* the temperature was changed in each cooling
liquid and solid inclusions of the concentrated phase. Thestep by 10-15 mK, after which the a temperature stabiliza-
an estimate of the size of the pressure jump due to the fottion was carried out. The state of the two-phase crystal was
mation of the liquid drops, according to Eq4)—(3), gives  monitored from the change in pressure, and the establish-
AP~0.4bar, which is almost 3 times as large as that obment of equilibrium between the coexisting phases at each
served in experiment. We note the following circumstancesstep corresponded to the condition that the pressure no
that might lead to this disagreement. longer changed with timé.e., it reached a plateau

1. The large change in volume upon the formation of the ~ Figure 5a shows in enlarged scale the typical pressure
liguid phase can cause local stresses exceeding the yietthange over the course of a step, which reflects the growth
stress and lead to plastic deformation of the layer surroundkinetics of the liquid drops as the temperature is lowered.
ing a drop. This, on the one hand, can promote the formatiofreviously in the case of solid inclusions the analogous de-
of a quasi-equilibrium state, when the excess free energy ipendence was well described by an exponential law,
the matrix is counterbalanced by the increased pressure in
the drop. Under such conditions the transporttéé into the P=Pi=(Pi=Piexp(—t/7), )
drop can occur only in connection with stress relaxation. OrwhereP; and P; are the pressure in the crystal at the begin-
the other hand, the presence of stresses leads to a slowingmifig and end of the step, respectively, ani a character-
the diffusion owing to the disruption of the energy levels ofistic time that determines the rate of the process. The time
the ®He impurities in the neighboring sites of the lattice anddependence dP(t) found in the present experiments cannot
the direct influence of the elastic potential gradient on thebe satisfactorily described by relati¢f). This is particularly
diffusion flux, as was noted in Ref. 3. Confirmation of the evident in Fig. 5b, where the results are plotted on a loga-
reality of the influence of stress relaxation is provided by therithmic scale—one can see a clear deviation from linearity.
presence of pronounced irregularities in the later stages dkn analytical description of the data obtained within the
the phase separatideee inset A in Fig. 2 We note that the scatter of the experimental points turned out to be possible
possibility of slowing of the phase transition under the influ-only by using a sum of two exponentials:
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4. GROWTH KINETICS OF THE LIQUID DROPS
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FIG. 4. Thermogranga) and the kinetics of the pressure charigeduring IR R 1 1 !
the stepped cooling of a two-phase crystal containing liquid drops. 9 11 13 15

FIG. 5. a—Typical variation of the pressure in a two-phase crystal within a
P=Pi+Aexp —t/r)+Bexp—t/r), ©) ts(-lz-r(]jg:i ttethcec:stg:’r?astiﬁ;ﬁ(EBP‘;/r(nP}?—TPfi)(t:;.??rrT;}Qc’ubrvethc?)rsrir:;oiztsa t‘z)IO;n
which is natural to regard as evidence of a superposition giPProximation according to formuld).
two processes. Figure 6a shows the temperature dependence
of the time 7, characterizing the faster process, ar(d) o
obtained in Ref. 1 for a sample with nearly the same molar_ !N the last stage of the decay processes, as in inset A of
volume,V=20.57 crii/mole. The good agreement of the re- Fig- 2, @ nonmonotonic dependencefft) was observed,
sults allows us to conclude that the faster process in our cadénich is manifested especially clearly in the low-temperature
is evidence of a diffusion mechanism of decay. The displacet©9ion, when the concentration gradients are small from the
ment of the minimum of the(T) curve to higher tempera- V€'Y beginning. Figure 7 shows the data for the phase sepa-
tures can be regarded as confirmation of the explanation dftion process al;=91mK, and we see the instability of
this minimum proposed in Ref. 3, where it was interpreted adhe pressure in the two-phase crystal.
being due to the fact that the diffusion processes are affected
by the stresses arising in the decay. In our case these st.res%'e%NETlcs OF DISSOLUTION OF THE LIQUID DROPS
are clearly greater and are therefore manifested at higher
temperaturegconcentrations The shift of the minimum can According to the state diagram, as the temperature of the
turn out to be larger if the aforementioned departure fromwo-phase crystal is increased the amount of the liquid or
equilibrium of the concentrations is appreciable. solid phase which is precipitated in the form of inclusions in
Figure 6b shows the temperature dependence of ththe crystalline matrix should decrease. This corresponds to a
longer timer,, which can be associated with the aforemen-process of “dissolution” of the drops, which leads to a de-
tioned relaxation of the local stress. If in accordance with thecrease in the pressure of the syst@me Fig. 8 Here analy-
data of Ref. 4 we assume that the diffusion of atoms in thesis of theP(t) curves obtained under the conditions of the
sample is promoted by stress relief, then the observed deresent experiment showed that, as during the growth of the
crease inr, as the temperature is loweréd the temperature drops, these curves can be described by a superposition of
of the minimum on ther(T) curve in Fig. 6a can be ex- two exponential functionfformula (5)] with time constants
plained by an increase in the mobility of tiide atoms. 71 and73 , but in this case their values are poorly reproduc-
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heating of a two-phase cryst@l;=125.6 mK, T;=132.7 mK).

FIG. 6. Temperature dependence of the characteristic tinéO—V
=20.92 cni/mole); plotted for comparison are the values«fT) for solid

inclusions(M—V=20.57 cri/mole; Ref. 1 (a) and, (b). Furthermore, whereas in the case of solid inclusions the
time constants of the growtfr) were always larger than the

ible and a large scatter of the data is observed. NeverthelescsOrresloonOIIngl time constants for the dissolutiofi)(" for

it can be noted that? and 75 depend weakly on the tem- Inclusions in the*form Of*|IC1UId dropg,1 and, are approxi-
mately equal tor] and7; , respectively.

perature(concentration
6. CONCLUSION
102 a The present experiments have established that the kinet-
- ics of the liquid drops of the concentrated phase formed in a
crystalline matrix of the dilute phase is substantially influ-
v 98 I- enced by the large local stresses arising on account of the
g - difference in the molar volumes of the phases. This leads to
— 94 the situation that the diffusional transport e is greatly
suppressed and occurs only in connection with the stress re-
L laxation. For this reason the growth kinetics of the liquid
: 1 | ) | drops can be described by a superposition of two exponential
90 . functions, corresponding to the presence of two processes—a
26.7705- P e PP diffusional decay with a short time constant, and stress re-
= g ° b laxation with a long time constant.
3 f&? We have shown that repeated cycles of growth and dis-
a & solution of the liquid drops lead to an increase in the pressure
26.77001 f’ of the crystal(plastic deformation of the crystal occurs
S Here the experimental value of the total pressure change due
® to the phase transition turns out to be almost a factor of three
Q%: smaller than the calculated value of the pressure jump due to
26.7695 ! I | I ! the phase separation at a constant volume.
180 184 188 192 196 20.0 These effects can be explained on the basis that the con-
t,h centrated phase is a mixture of liquid and crystal, since in the

FIG. 7. Kinetics of the change in temperatu@ and pressuréb) during initial stage of the transition the formation of solid nuclei is

phase separation of a two-phase crystal containing liquid drops at low tem10r€ _probable. The SUbsequent melting of the new-phase
peraturegT;=101 mK, T;=91 mK). inclusions enhances the stress in the crystal and can lead to
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SUPERCONDUCTIVITY, INCLUDING HIGH-TEMPERATURE SUPERCONDUCTIVITY

Superconducting transition temperature and isotope exponent in superconductors with
low Fermi energies
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A study is made of superconductivity in systems with a variable density of charge carriers,
strong electronic correlationsvhich influence the electron—phonon interacjjcaind low Fermi
energies. This last circumstance leads to violation of the Migdal theorem and makes it
necessary to take into account the vertex and crossed diagrams for the electron—phonon interaction
(P, ,P.). Two- and three-dimensional systems are considered. The vallgsarid P, are

found, and the equation for the momentum cuf@ffof the electron—phonon interaction is derived.
The dependence of this quantity on the concentration of charge carriers is demonstrated.
Expressions are obtained for the superconducting transition tempefatued the isotope
exponenta, and their behavior as functions of the carrier concentration is analyzed.

The values of the carrier densities for which superconductivity can occur in two- and three-
dimensional systems are determined. 2000 American Institute of Physics.
[S1063-777X%00/00506-5

1. INTRODUCTION allowance for their peculiar features, such as overlapping of
A rich body of experimental and theoretical research ma_the_energy bands at the Ferm ! ;urfa_lce anc_i_the presence of
. : : : .various kinds of van Hove—Lifshitz singularities, strong an-
terial on oxide ceramics has been accumulated since the d'|S§otro variable carrier densitgincluding small values
covery of high-temperature superconductivity. However, the i p?]/, treating both oh ; d 9 h . h
description of the physical properties of these materials reSC W fen rea mgd Ot. .%_?5”0”'° and honphononic mecha-
mains one of the most difficult problems in Iow-temperaturenlsms Ol SUperconauctivity.

physics today. This is because of the complexity of the ob- Another interesting question is the influence of nonadia-
aticity effects on the superconducting transition temperature

jects of study: they have a complex crystal structure, stron X - i ) ,
¢, Since in HTSC materials, as in fullerenes and organic

anisotropy, anomalies in the electronic energy spectrum, i
variable concentration of charge carriers, strong electronictPerconductors, the Fermi eneifgy and Debye energy,
re quantities of the same order. As a result, the Migdal

correlations, and so on. Models for the analysis of such sys2 6o ) .
tems apparently should be based on the Hubbard modetﬂ?eoreml, which is used in the BCS—Bogolyubov theory, is

which takes into account the strong electronic correlationd'0lated, and it becomes necessary to take into account ver-
due to the Coulomb interaction of the electrons, and should and “crossed” diagrams in the mass operators for the

take into account the strong electron—phonon interaction. A3réen functions corresponding to additional many-particle

review of the different approaches to this problem and the&ffects. The matter of estimating the contribution of the ver-

approximations used in them is given in Ref. 1, for exampletex functions and their influence dn, and the isotope expo-

A special diagrammatic technique that permits one tg€nta has been the subject of a number of papér$: Be-
take into account the strong electronic correlations andides the Migdal parameten=wy/Eg, one introduces a
strong electron—phonon interaction has been developed féRomentum cutoff of the electron—phonon interacti@h,,
such system&:* This theory contains dielectric and mag- the smallness of which is determined by the presence of
netic phase transitions and the possible onset of supercofitrong electronic correlations in the system. Such an ap-
ductivity. However, because of the great mathematical diffiproach is based on the results of studies of the influence of
culties it is hard to obtain any meaningful physical resultsstrong electronic correlations on the electron—phonon
without making some substantial simplifications. Moreover,interc’:lCtionz-2’23
at a certain carrier density a metallic states arises in the sys- A three-dimensional3D) system with symmetric filling
tem, in which the electronic states are modified but not deof the energy bands was considered in Refs. 18 and 19. Such
stroyed by correlations. Consequently, there can be a transk model can describe various nonadiabatic systems at fixed
tion to the superconducting state, with the formation ofvalues of the parameters andQ.. The imaginary parts of
Cooper pairgthe BCS scenarjoor local pairs(the Shafroth  the vertex functions were neglected as being small, since
scenarig. In this connection it is unquestionably of interest they are proportional to the parame@yg, which is assumed
to apply Fermi-liquid concepts to the study of the superconsmall. No attempt was made to obtain an equationQgr
ducting properties of higi~ superconductordHTSC9 with Consequently, taking nonadiabaticity effects into account in

1063-777X/2000/26(6)/7/$20.00 407 © 2000 American Institute of Physics
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such systems in the region of sm@lL can lead to an appre- of strong electronic correlations in the system introduces a
ciable increase in the superconducting transition temperatursfructure to the electron—phonon interaction constgiy,
and one can easily obtain values ©f corresponding to with a momentum cutoffj,<2pg.
HTSC materials even at intermediate values of the coupling  On the basis of perturbation thed?yor the mass opera-
parametein ~0.5—1. tors, near the superconducting transition temperatioreT
In the case of adiabatic systems df%hberg equations ~T;) we have
it follows that such vaIu2e4$ of . can be attained at very large
coupling constanta ~ 3.
It has been shovfd that at very low carrier concentra- MP) =2y BV & 2 V(PP G(Pfdy), ®
tions (wo>Ef) the Migdal theorem is valid, and, hence, the
effects of nonadiabaticity are unimportant in that case.
In HTSCs the density of charge carriers is a variable 2(p)=— 2 Vs(pp)G(p121)G(—p1—Q1), (4)
guantity because of the introduction of oxygen or impurities. P12
It therefore becomes necessary to construct a theory of SWihere
perconductivity for nonadiabatic systems with an asymmet-
ric (arbitrary filling of the energy bands. Furthermore, the v/ (pp,)=-D(p—p;,.Q—-Q,)
strong anisotropy of the system should be taken into account.

In this paper we investigate the dependence of the super-
pap g P P 1——2 D(p—p2, 2~ Q,)G(py+ Py

conducting transition temperatufie, and the isotope expo- BV 550,
nent « on the densityn of charge carriers for two-
dimensional(quasi-two-dimensionaland three-dimensional PO 0 0)G(py. Q) )

systems. We do not neglect the imaginary parts of the vertex
functionsP, and P (unlike Refs. 17-2J, and we show that
taking them into account will lead to a restriction on the  Vg(pp;)=—D(p—p;,.Q—Q,)

values of the carrier density for which superconductivity can

occur in the system. Her®., the momentum cutoff of the [1_ - 2 [D(p—p,,Q—Q,)G
electron—phonon interaction, is not a parameter of the theory BV p0,

but satisfies a certain equation and depends.oihe char-

acter of the dependence is dictated by the dimensionality of X(PrtP2= Pl + Q= 0)G(p2.427)

the system. In the case of symmetric filling of the energy +D(p—p,,Q—Q,)G(p—p1—p,,Q— Q4

band in the 3D cas¥:'° superconductivity can occur in the

system only forQ.=0. Consequently, treating the value of . o

Q. as a parameter of the theory free to take on different 22)G(=p2, 2)]} pzzz b

values is unjustified in a system with symmetric filling of the

energy band. X(P2=P1,Q22=Q1)D(p—p2,2—-Q,)G
This paper is arranged as follows. In Sec. 2 we present X(p2—=p—Pp1, 22— Q—Q)G(p2,Qz).  (6)

expressions for the mass operatbtép,()) and (p,{2) and

the vertex function®,(pp;,Q2Q,), P(pp1,Q2€,). In Sec.  The first term of the effective interactiortS) and (6) corre-

3 we calculate the vertex functions for a two-dimensionalsponds to the adiabatic contributions, while the remaining
(2D) system. Section 4 is devoted to a determination of theerms come from taking into account the diagrams with
superconducting transition temperature, an equatio®far  crossing lines of the electron—phonon interaction.

and the isotope exponent in a 2D system. In Sec. 5 we The expression for the Matsubara electron Green func-
consider the vertex functions and the equations@grin a  tion has the form

3D system. In Sec. 6 we analyze the results and draw con-

clusions. 1

= Mpa) e, @

2. THE GREEN FUNCTIONS AND MASS OPERATORS
For the phonon Green function we choose an Einstein spec-

As in Refs. 18 and 19, we start with a Hamiltonian of the }
trum with frequencywg:

Fralich type, including an electron—phonon interaction with

an interaction constant specified by the relation 2
0
9o =920(qc—|p—p']). (1) D(p=p1, =)= gppl(g Q)%+ w2 ®
The value ofy is found from the condition

, We introduce the notation
<<gpp'>>FS: g2’ (2) )

where((...))rs denotes averaging over the Fermi surface. In P (pp,,QQ;)= 2 6(qe—|p— PzDLz
the 2D casey=w/Q,, and in the 3D case/=1/Q?, Q. 5\/ NO P2L22 Q)

=0c/2pk - + 02G(p,,0,)G(pi+p,—
This model set of interaction constants is based on the 05G(P2,{22)G(pL P2 P,

results of Refs. 22 and 23, according to which the presence Q1+0,—Q), 9



Low Temp. Phys. 26 (6), June 2000

Y
,BV No pzzz

2
(O]

0
(Q_Qz)i+w(2)G(p2_p_p11

Pe(pp1,Q0,)= 6(ac—|p—p2l)

X

Q-0 —-Q4)G(p2,Q5).
In this notation expression®) and (6) can be rewritten as

Vn(PP1)=—D(p—p1,Q—Q)[1+AP,(pp;,02Q4)],
(10

Vs(pp1)=—D(p—p1,Q—Q)[1+AP,(pp;,02Q,)
+AP, (PP, —Q—Qy) +NP(pp,,0204)].
(11

Let us consider a 2D system and introduce a quadratic dis-
persion relation for the electron:

pitpy

2m (12

€p=
3. VERTEX FUNCTIONS

We substitute the zeroth approximation for the Green
function (7) into expressiont9) and change from summation

Pl)
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ForQ)=0, Q,=wy and EQ§< u<WI/2 the expressions for
the functionsP, .(Q.,Q();) can be brought to the form

A(O,wo)

(Qc.0,00) = woB(0,w) + — woB(0,00)

Q¢

L E
x|1— C(O wo)

E*4 ,
— 350
w(2)9 ¢

A1(0,0¢)
——— woB1(0,0q)
wo

+ | [ woBl(O,wo) +

E*4 Q2
X 1_w_S§Q° + Cl(O,Ql)7 . (17
A(O,_(I)o)
P(Qc:0,wg) = woB(0,— wg) + w—o
E2 11
—woB(0,— wg) 2 45Qc}

QZ
+ _C(O wo) +|[(DoBl(0 0)0)

over p,,{), to integration. In the case of a 2D system this +[A1(0'_ @o) — woB1(0,— wp)
change is made according to the formula (o om0
2rde (W-p 1 E2 11 Q2
p222 F(p2,Q Nofo EJ_M dep,5>— X|1-— 45Qc C1(0,~ Q) &1,
% (19
xf_ dQ,F(p,,Q5), (13
h
whereNy=m/27 is the electronic density of staté4/ is the where
width of the energy band, and is the chemical potential.
We assume thal . <wq, So that we can consider the limit pz A(0w, m 1 1
T.—0 and do the integration over the frequeri@y in the E=4E, EF=2—, = Earctal '_1+
usual way. m @ K
Now assuming that the momentum transfer is snwll, 1 1
=|p—p1|<2pg, we do the integration over the energy, - Earctan—_ —,
and over the angular variable, using the computational W—p+1
method of Ref. 19 as applied to the 2D case. The expressions
thus obtained for the functiori®, .(pp;,€);) are then sub- 2
stituted into(5) and (6) and the resulting expressions are woB(O,w0)=—1 A+ w1+ p)"+2]
averaged over the Fermi surface: 2 [(1+m)?+1]?
2
- ¥o 2 W—+ D[(W—z+1)2+2
(VN(PP1))ES —(Q_Ql)z+w709 [1+AP,(Q:,Q04)], +( ,U«_ )[_( :‘ )2 ] . (19
(14) [(W=pu+1)°+1]
2
(Vs(PP)rs= s 01+ NP, (Qc, 0 0)] - —
stPPIFS= 070 )7 29 v{enti2 E 1| W-m+1 1 (W-m+1)2+1
v —C(0,w0)=—1 In ~In
Wwo) — — -
+)\PC(QCY_Q_Q].) wq m 1+u 2 (,LL+1)2+1
TIAP(Qc,02Q)]. (15 1 1
— + — ,
Here (1+m)P+1  (W—pm+1)%+1
a
Py.o(Qc,Q04)= Q—<<0(qc—|p—pll) o o
c Ai(0wo) 1 | (W—p+1)%+1 " W—u+1
X P, o(pP1,201)))es. (16) wo 4 (w01 S Lvg
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1 1 where
woBl(Owo)— _
2| (1+m2+1 (W—z+1)2+1 1| W—u =
Z=Z(0)=1+A— +

1] a+m2-1 2| W-pr1 wri]

4 [(1+wm)?+1]? w +1
[+ +1] Z,=\?ImP,(Q.,0,w0) — |n(—_2_+)1— (26)
W-+1)%-

- (_ ) (20 As a result,

[(W—p+1)%+1]?

(27

P =iraz+z,0-5,"

E 2 1 T 1
g C1(0.w0) m[arcta +T 2 arcta W- T+ 1 Substituting(27) into (22) and doing the integration over
energy, we obtain
1+u V_V—/T-i-l 1 , 1
- [ : 2(Q)=— AN TiNOZ(Q) ==
(I+@*+ 1 (W+r+1)%+1 (D=5 CutNoX g7
Here 2 .
X[D(Qp)+iD,(Q —, 28
B M W W 2w0 [ l( 1) 2( l)] (Q Q )2
K wq (O} E Where
ZQl+Zl 1 W_M
4. CRITICAL TEMPERATURE AND EQUATION FOR Q. - — - == =
(=170 5712|2705 7]
Substituting(14) and (15) for Q=0 andQ;=wq into
Egs.(3) and(4) averaged over the Fermi surface, we obtain +arctan Lt ZQ:—
1ZQl+Zl| |ZQl_Zl
9’ s w
M(Q)= -+ O—0 2422 1 W—pu M
BV 5id, (2—Qy)°+wy X = arctaqi+arctaqi,
2 ZQl_Zl| ZQl_Zl|
X[1+1P,(Qe.0w0)]G(P1y). 29
2 2
3=y T o @) )= bW pt 2012y
BV i, (0= 07)7+ o} Pelh) =5 2 70,- 2,2
[1+2>\Pv(QCvova))\PC(QCvoawO)] | (W—,u)z-‘r(ZQl-‘er)z
2N TRz, 27 (30

XG(p121)Z(Q1)G(—p1— Q). (22

Substituting expressiof¥7) into (21) and doing the integra-
tion over energy with allowance for the electron—hole asym-
o2 _ It follows from Eq. (28) that 2 () is a complex quantity.
ImM(Q)= — z 0 We make the substitutio =32, +i2, in Eq. (28) and write
B /3 o (Q-0,)2 +wo |Q | a system of equations for the real and imaginary parts:
2 2

_ %o 0 “o 0.
21 = gz 2 Vil g 2 VoRa

Na=A(1+2\ ReP,(Q.,0.w0) + A ReP(Q.,0,00)),
(31

M M
X| arctan——+arctan——

LY LY , ,
(1)% 22(0): WV2A1+ mlez. (32)
N PU(Qu0wo) 2 — ° °
(Q=09)%+ g Here
1 (W—p)?+0? 2
— In#, (23 A(1)=£E %le(ﬂl);
2 w?+03 Bh Qf+w; Q7
where ooty _ob e o -
(24) 2B 0%+t O Z v

A=N[1+XReP,(Qc,0,m0)].
The expression fof) reduces to the form

Q=0-ImMM(Q)=0Z+7,,

Substituting(32) into (33), we obtain

(25) Ad=AN &~ ANLE  AJ=ANLE+AN &, (39)
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where

4
1 wq

:EE

Qy
The superconducting transition temperattligds determined
from the condition that the system of equati@B4) be solv-
able, which gives

D4(Q4)
(Qi+w)? 04Z

& (35

(Vi+V3) -2V é+1=0, (36)
and, hence,
Vit V3
= (37

&= VZ+ve oo

The solution foré, is real if V,=0. This condition leads to
the expression

Ec=1IN~1I\, (39
and to the additional equation
Dy(wo)
Vo=\ +\25=0. 39
MG (0g) 49

Keeping only terms of ordex?, we reduce this last equation
to the form

IM[2P(Q¢,wq) + P(Q¢,wq)]=0.

This equation determines the cutoff parameggr for the
electron—phonon interaction for a givenor n. On the basis
of Egs.(40), (17), and(18) we get

(40
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1,1300[ (W— ) "2
C: — —_— —_—
Ve[ W— g+ 1) (+ 1)] 2
zZ 1 1 1
Xexp ——+ —| — + — . (44)
ANy 4wW—u+1 wtl

We supplement this expression with the equation for the
chemical potential

_i iQo™
n= BV% G(kQ)g?0" (45)

wheren is the density of charge carriers.

After substituting expressiof27) into (45) and doing the
integration oveK) in the limit T./wy<<1 and the integration
over energy in the usual way, we obtain

H=Zn, (46)
whereu= ul/wg, N=n/(2Ngywy), andZ is determined from
formula (26).

A joint analysis of(44) and (46) yields the dependence
of T, on the carrier concentration. As n increases, the
value of T increases to a maximum value near the symmet-
ric filling of the energy bandu=W/2. For u>W/2 one has
T.=0, since the system of equatio(®4), which determines
the value ofT., is incompatible. It follows that supercon-
ductivity is possible in the interval Qu<W/2 in 2D sys-
tems. Thanks to the inclusion of nonadiabaticity effects, high
T.'s, corresponding to HTSCs, are attained at intermediate

4 ~2 values of the coupling parameter-0.5—1. In contrast, the
aQ:~bQc—d=0, “1 values of the temperaturg, obtained on the basis of Egs.
where (44) and(46) for adiabatic systemsR,=P.=0) correspond
5 to the case of ordinary superconductors and cannot reach
a= %’(E) A1(0, ) — woB1(0wp) | high values at intermediate values of the coupling constant
45\ m g oEI =T In that case, high values @f. are reached foxk~3.
For the isotope exponent we obtain, on the basigdy,
5 A1(0,00)
b= 3m C1(Owo, p)id= —2"— (42) dinT, 1] dIn(Te/wo) -
From the definitions of the coefficientd?2) it follows that dinM 2 din wo
a<b, and, since we are seeking a soluti@p<1, this solu- where
tion can be written in the form
Q2= —dib. 43 dIn(Te/wo) 1[ W-mt2  mt2
Sinceb<0, Q. is real-valued ford>0, which is equivalent din wo A w-p+1? (pF1)
to the conditionu<W/2. Consequently, superconductivity
g i . T 1 dz Z dhy
can arise in the 2D system. Taking this lower limit @rinto E— = ) (48)
account, we find that this theory can be used in the interval Aadlinwy N dinwg
2EQ§<M<W/2. In this interval of carrier densities, super-
conductivity can exist in a quasi-2D system on the basis of dz 1 { A2 m W—7
the electron—phonon interaction in the presence of strong =T\ Sl = T = —
electronic correlations. Fop=W/2 we haved=0 andb dInwo 2 2 (D1 (W-p+1)2+1
#0. Consequently, it follows fron¥3) thatQ.=0. It can be - .
shown that forQ.#0 and symmetric filling of the energy W—pu n 1z
band, superconductivity is absent in the system, since condi- W— w1 n+1

tion (40) is not satisfied.

After doing the integration ovef2; in (35), we obtain an
expression for the superconducting transition temperature
Te:

W—u R
(W—m+1)2  (m+1)?

+X,

!
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2 YW E
dhy _ 37 Z W=n +w—0cl<o,—wc)Q§ : (53)

— +— .
dinwy 2 [(E+1)%+1  (W-gm+1)%+1
(49 Expressiong52) and (53) differ from the corresponding ex-
In obtaining these formulas we dropped terms containing £r€Ssions for the 2D casgl7) and(18), by the values 04f the
dependence of)., since their contribution is negligible for nNumerical coefficients in the terms containi@f and Qg .
Q.<1. Analysis of these formulas suggests that the value of N @ 3D system the quantities, (31), \, (24), andZ are

the isotope exponent depends substantially on the param- détermined by the vertex functioris2) and (53).
eters A and W. At small n the isotope exponentr On the basis of Eq40) and relationg52) and (53), we

~0.2-0.3 and increases with increasimgFor example, for ~0Ptain an equation for determining the momentum cugff
A=0.5 andW=6, one obtainsa~0.4 for values nea of the electron—phonon interaction in a 3D system:

=Wi2. 2;Q¢~byQZ+d1=0, (54)
5. THE CASE OF A THREE-DIMENSIONAL SYSTEM where
We now do the same calculation as in Ref. 19 but for a 5/(2\?A;(0,w0) _
variable carrier densit{electron—hole asymmetrand with- =5 m w0 ~ woB1(0.wo) |;
out neglecting the imaginary part of the functioRg and
P.. In this case we make the change from summation to 2 _ A1(0,w¢)
integration in the vertex function®) according to the for- bl:ﬁcl(o""o)’ d= P =d, (59)
mula
LS E(py =N F”d@fwsmad >
BV i, PN 5n | T2 9 Q2=d, /b;. (56)
W— 1 (= Sinceb, <0, the values of). are real ifd;<0. This condi-
x _M dspz o _wdQZF(pz,Qz), tion corresponds tu>W/2. Consequently, at high carrier

densities superconductivity can exist in a 3D nonadiabatic
(50) system with strong electronic correlationQ{<1) on the
whereNy=mpg/272. basis of the electron—phonon interaction mechanism. The
Doing the calculation in a manner analogous to the 2Dvalue of T; is maximum foru~W/2 and falls off with in-
case with the use a50), we obtain for the quantities aver- creasingn(u), and foru=W we haveT =0 (Eq. (44)).

aged over the Fermi surface Let us now turn to the limit of symmetric filling of the
1 energy band in a 3D system, in order to compare our results
P,.o(Qc, Q1) = —{(6(q.—|p with Ref. 19. Making the substitutiodV—u—E/2 and u
c —E/2, we find that a number of the coefficients vanish:
_pl|)Pv,C(ppl!QQI)>>FSI (51) C(O,w0)=0, Al(O,w)/w():O, wOBl(O,w0)=O. The coeffi-

cientsA(0,wq)/ wg)/ wg and woB(0,0y) go over to the cor-

P,(Q¢,0,00) = woB(0,w0) + A0wo) — woB(0,0p) responding expressions of Ref. 19 Qg<1, but the quan-
tity b;=2C4(0,0g)/m#0 is absent in Ref. 19. In our case
E2 1 Eq. (54) becomes
X[ 1— —5 = Q2| +i| woB1(0,00)
Y b,QZ=0. (57)
N [A1(0,wg) B.(0 Sinceb; #0, we must hav&.=0. On the other hand, if we
| o woB1(0.wo) setb,;=0, as was done in Ref. 19 as a result of neglecting the
£2 1 imaginary part of the vertex functioR., then Eq.(57) is

] ’ (52) satisfied for anyQ., and, consequently, in that case it can be
treated as a parameter of the theory. Apparently, in the model
considered in Ref. 19, after the calculations are done for

Q<1 one should leQ.— 0. For Q# 0 superconductivity is

X|1-—=0Q%
PR

PC( QCivaO) = wOB(Ov_ (1)0)

[A(0,— wp) absent in such a system, since the quangity(37), which
+ w—o— woB(0,~ wo) determines the superconducting transition temperature, is a
) complex quantity.
E*11 ,] E 5
><_1 226 Q: |t wOC(O, we) Q2
[ A;(0,— wg) 6. CONCLUSION
+1 woBl(O,— (,()0)+ .
wo We have proceeded from the assumption that the onset
£2 11 of super_conduc_tivity in the system is due to the elt_actron—
— woB1(0,~ wp) || 1— — _Qg} phonon interaction. The presence of strong electronic corre-
wy 6 lations, however, promotes the realization of small values of
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the momentum transfésmall values of the momentum cut- concentration for a 2D system and decreases for a 3D sys-
off of the electron—photon interactipf*?® This theory is  tem.
also applicable in the case of an arbitrary electron—boson 7. In the case of symmetric filling of the energy bands,
interaction leading to superconductivity, provided the charW—u—E/2 andu—E/2 (Ref. 19, superconductivity does
acteristic boson frequenay,~Er andq.<2pg . not arise in the system for& 0. It follows that the theory of
We have studied the influence of nonadiabaticity effectRef. 19 is applicable only in the limiQ.—0, and in our
(the contribution of the vertex and crossed diagrams for th@pinion to trealQ. as a parameter of the theory, free to take
electron—phonon interaction in the mass operators the  on different values, is unjustified.
superconducting transition temperatufg and the isotope
exponenta in systems with a variable carrier density. We «
have considered quasi-2D and 3D systems without including
fluctuations, which we have assumed to be small.
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The presence of nonmagnetic impurities in a 2D “bad” metal depresses the superconducting
Berezinskii—Kosterlitz—Thouless transition temperature while leaving the pairing energy

scale unchanged. Thus the region of the pseudogap nonsuperconducting phase, in which the
modulus of the order parameter is nonzero but its phase is random and which arises at

the pairing temperature, is substantially bigger than for the clean system. This supports the premise
that fluctuations in the phase of the order parameter can in principle describe the pseudogap
phenomena in high-, materials over a rather wide range of temperatures and carrier densities. The
temperature dependence of the bare superfluid density is also discuss@@00GAmerican

Institute of Physicg.S1063-777X00)00606-X]

1. INTRODUCTION ous, however, that the present treatment of the phase fluctua-
tions is incomplete due to both the oversimplified character
The differences between the BCS scenario of supercoref the model and the absence of an explanation for the more
ductivity and superconductivity in highz materials are well  recent advanced experimefitson the temperature and dop-
accepted as experimental facts, although there is no theordhg dependences of the superfluid density. It is well known,
ical consensus about their origin. One of the most convincingnowever, that the theoretical study of HTSC faces a lot of
manifestations is the pseudogap, or a depletion of the singleeomputational difficulties due to, for example, an unconven-
particle spectral weight around the Fermi leyste, for ex- tional order parameter symmetry, complex frequency—
ample, Ref. L Another transparent manifestation is the tem-momentum dependence of the effective quasiparticle attrac-
perature and carrier-density dependences of the superflutibn general form of the quasiparticle dispersion relation, etc.
density in highT, superconductorHTSC),>~*which do not  Therefore, in order to obtain analytical results, we have to
fit the canonical BCS behavior. In particular, the value of thedate only considered nonretardedvave pairing in the ab-
zero-temperature superfluid density is substantially less thasence of impurities(Attempts to consider retardation effects
the total density of doped carriet<Currently there are many were made in Ref. 11
possible explanations for the unusual properties of HTSC. Nevertheless, a discussion of the effect of impurities
One of these is based on the nearly antiferromagnetic Fernsieems to be crucial for a realistic model of the HTSC. In-
liquid model® Another explanation, proposed by Anderson,deed, it is known that the itinerant holes in HTSC are created
relies on the separation of spin and charge degrees of fre®y doping, which in turn introduces a considerable disorder
dom. One more approach, which we will follow in this pa- into the system, for instance, from the random Coulomb
per, relates the observed anomalies to precursor supercofields of chaotically distributed charged impuritiédoped
ducting fluctuations. Some authors argue that alternativéons).*?> Thus one of the purposes of the present paper is to
types of superconducting fluctuations are responsible for thetudy the model of Refs. 9 and 10 but in the presence of
pseudogape.g. Ref. 7, while Emergy and Kivelsdhsug-  nonmagnetic impurities.
gest a scenario based on fluctuations of the phase of the order In the theory of “common” metals the Fermi energy
parameter. The latter scenario we believe to be more relevaand the mean transport quasiparticle timeare independent
due to the low superfluid density and practically 2D charac-quantities which are always assumed to satisfy the criterion
ter of the conductivity in HTSC mentioned above. A micro- e 7,> 1. In HTSC, which are “bad” metal& poth e and
scopic 2D model which elaborates the above-mentionedre dependent on the doping and the above-mentioned crite-
scenari6 has been studied in Refs. 9 and 10. The resultsion may fail}? As an illustration, we refer to the remarkable
obtained show that the condensate phase fluctuations indeédear dependence of the normal-state resistivithich im-
lead to features which are experimentally observed in HTS@lies thater 7, may indeed be~1. It has been showf for
both in the normal and superconducting statds.is obvi-  strongly disordered metallic systems that superconductivity

1063-777X/2000/26(6)/5/$20.00 414 © 2000 American Institute of Physics
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is absent if the scattering-to-pairing ratio exceeds a critical
value and that superconductivity exists in a finite range of H= dzT{‘Iﬁ(X)
doping if this ratio is not exceeded. We shall not study this
case but rather consider here the more usaatl in some
sense simplgrsituation originally studied in the papers of
Andersort® and Abrikosov—Gor'kov(AG)* (see also Ref. _ . .
15), when the superconducting order is preexisting and th&/Nere 7= :lei'Tz)/z and s are the Pauli matrices, and
criterion ep7,>1 is satisfied. () =V¥T(x)7_W(x) =V (X)¢(X) is the complex or-
The Anderson theorethstates that in 3D the BCS criti- dering field. Then the partition function can be presented as a

cal temperature is unchanged in the presence of nonma ne{ nction.a.ll intggral over Fermi fieldeNambu spinors and
b 9 b g tﬁe auxiliary fieldsd, ®*.

impurities. However, as discussed®ithe BCS critical tem- )
However, in contrast to the usual method, the modulus—

perature in 2D is the temperatufé at which the pseudogap h i atich(x) — ; . ‘
opens, while the superconducting transition temperature trap1ase parametrlzgtl_ () =p(x)exié(x)] is necessary for
the 2D model at finite temperaturésee Refs. 9, 10, 16 and

sition is the temperatur€gkr of the Berezinskii—Kosterlitz— . . . .
Thouless(BKT) transition. In contrast to the former, the lat- references thereinTo be consistent with this replacement
one should also introduce the spin—charge variables for the

ter is defined by a bare superfluid densigiven by the Namb .

delocalized carriepswhich is dependent ofsee below the ambu spinors

concentration of impurities. Thus in the 2D case the super- W (x)=exgir30(X)/2]Y(x), 3
condgctm_g transition tempe_ratufBBKT decreases with in- whereY(x) is the field operator for neutral fermions.
creasing impurity concentration.

Thus in the model under consideration, the relative sizederi\'jéoar::1 ;%icﬂszﬁgmﬁgi?égoxﬁxw?s E?H%moilr':gn; inof
of the pseudogap phaseTX(— Tgkr)/T*, is larger in the . }
presence of impurities than in the clean lithitherefore it the classical XY model:
can be observed over a wider range of densities. The second 1 ) 5
result obtained is that the value of the zero-temperature su- HXY:EJ(M'T'P)f dr[Vox) %, 4
perfluid density is less than the total density of carrieliep-
ant9, so that the presence of impurities may contribute t
this diminishing and, in turn, explain the experimental
results® Finally, we attempt to interpret qualitatively the re- J(u,T,p)=
cent experiments on the temperature dependence of the su-
perfluid densit§® within our scenario.

VZ
7'3( - ﬁ‘#) —7.D(x)

=7 D% (X)+ 73Ujmp(r) |V (X) +

)

[P (x)|?
v [’

0Where

16m772n:2,x fdzk tr[ 73(G(i wy k)]

A brief overview of the paper follows: In Sec. 2 we + T2 E d2kk? tr[(G(i wp, ,K))
present the model and derive the main equations. In Sec. 3 32mrn=—=
we compare the results obtained for the clean and dirty lim- X(G(iwp k)] ®)
n:

its. In particular, we compare the valuesigr, the relative
sizes of the pseudogap region, and the values of the baie the bare(i.e., unrenormalized by the phase fluctuations,
superfluid density af =0 and forT close toT,. In Sec. 4 an but including pair-breaking thermal fluctuationsuperfluid
attempt is made to give an explanation for the experimentastifiness. Here

results®3 -
. (iwpl = 71p) 70+ 736(K)
(G(i g, k))=— (T 2 ®)
w
2. MODEL AND MAIN EQUATIONS n P
with
Our starting point is a continuum version of the two-
dimensional attractive Hubbard model defined by the 14 1
R ian9,10 M= 5 o a4
Hamiltonian: n Zrtr(wﬁ+p2)1’2
H= [ | vi o0 R P <
- Vo om # Yo EK)= 5= p, wp=m(2n+1)T %
—def(x)wf(x) P (X) (%) is the AG™ Green’s function of neutral fermions averaged

over a random distribution of impurities and written in the
, (1)  Nambu representatiorf:*® In writing (5) we assumed that

(Iiwn . K)G(iwn,k))=(G(iwn,k))(G(iw, k). This ap-
wherex=r; 7 denotes the space and imaginary time vari-proximation, as was shown by A8, does not change the
ables; ¥ ,(x) is a fermion field with spinoc=71,|; mis the final result forJ. Note also that the Green’s functidf) is
effective fermion massy is the chemical potentiaV is an  valid only wheneg7,>1, which demands the presence of a
effective local attraction constant, atdf,,(r) is the static ~well-developed Fermi surface, which in turn implies that
potential of randomly distributed impurities; we talke=kg =~ u=e€r. Thus one cannot use expressiéhin the so called
=1. The model with the Hamiltoniafll) is equivalent to a Bose limit with x<0.2 On the other hand, a Fermi surface
model with an auxiliary BCS-like pairing field which is can be formed even in bad metals when the loffe—Regel—
given in terms of the Nambu variables as Mott criterion proves to be fulfilled?

+ Uimp(1) ¥ (X) (%)
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Substituting (6) into (5), and using the inequalities superconductinghere BKT) phase withp#0 at T<Tgxr.
w>T,p to extend the limits of integration to infinity, one |y this region there is algebraic order, or a power-law decay
arrives at of the (®* ®) correlations. The second region corresponds to

Tu > . 1 the pseudogap phas&gyr<T<T,). In this phase is still
=t s f dx(— nonzero but the correlations mentioned above decay expo-
4m ATnIe )\ X (0h+ p?) 7 nentially. The third is the normaFermi-liquid phase aff
5 >T, wherep=0. Note that{®(x))=0 everywhere. While
2wn7,
X+ (wp+p?) mil?)

®) the given phase diagram was derived for the idealized 2D
model, there are indicatiohs?° that even for such compli-
cated layered systems as HTSC the value of the critical tem-
perature for them may be well estimated usifgk, even
though the transition undoubtedly belongs to the 3D XY
class. It was also pointed out in Ref. 19 that a nonzero gap in
the one-particle excitation spectrum can persist even without
wp’T & 1 . long-range order.

Equation(8) is formally divergent and demands special care
due to the fact that one has to perform the integration @ver
before the summatiol?. Finally, one can formally cancel the
divergencé® to obtain

J

4 n5=e (optpH)(Noptp®+1.27)
» 3. COMPARISON OF THE CLEAN AND DIRTY LIMITS
The temperature of the BKT transition for the XY-model

Hamiltonian(4) is determined by the equation 3.1. Clean limit
- The transport time; is infinite in the clean limit, so that
T :_\] 1T ’ !T . 10 “
BKT™ 5 (p: Tkt p(1, Tekr)) (10 e Tl ) erZT 2 1 13
er, ,pleg, = .
The self-consistent calculation 0%kt as a function of the FolPier 4 e (wﬁ+92)3/2
carrier dengitwf:meplw requires additional equations for NearT, one can obtain fronf13)
p and x, which together with(10) form a complete set. )
When the modulus of the order paramgi€x) is treated _ _ 743 p°
in the mean field approximation, the equation faakes the Jer, T=T, .p=0)= 753 T ik (14
form® _ . . . .
where{(x) is the zeta function. This expression must coin-
2p cide with the result from Ref. 9, which was derived using the

d2k _
v —n;_m fwtr[mg(lwmkm, (1) opposite order for the summation and integration. Inserting
the well-known dependence p{T) (see, for example, Ref.
which formally coincides with the gap equation of the BCS 21)

theory. This coincidence allows one to use the Anderson 82 T
theorem.” which states that the dependencep¢T) is the PAT—T,)= 7 Ti( 1— _) (15)
same as that for the clean superconductor and is not affected 74(3) T

by the presence of nonmagnetic impurities. It is important toand then substitutingl4) into (10), one obtains the follow-
recall that this theorem is, of course, valid only ewave  jhg asymptotic expression for the BKT temperature in the

pairing and low disorder. clean limit for high carrier densitie%?%?®

There are, however, both physical and mathematical
difference$'? between the gap in the BCS theory andn
particular, the temperaturg, which is estimated from the
conditionp=0 is not related to the temperature of the super,, e high-density limit one can also use the equation
conducting transition, but is interpreted as the pseudogap
opening temperatur@* (see details in Ref.)9 The main Y
point, which we would like only to stress here, is that by TP:; 2|epler,
virtue of the Anderson theorérhthe value ofT, does not
depend on the presence of impurities, while the temperatu
Tekr, as we will show, is lowered.

The chemical potentigk is defined by the number equa-
tion

14T

Texr=T, v TekrsT,. (16)

17

rwhere vy=1.781 andg, is the energy of the two-particle
bound state in vacuum, which is a more convenient param-
eter than the four-fermion constavit®?*

It is obvious from(16) and (17) that the pseudogap re-
gion shrinks rapidly for high carrier densiti®sand one may

d%k ask (see, for example, Ref. 25vhether this scenario can

Z f (ZT)ztr[ 73(G(i 0y, K))]=ns. (12 explain the pseudogap anomalies which are observed over a

e wide range of temperatures and carrier densities, since in the
Since we are interested in the high carrier density region, thelean limit the relative size of the pseudogap regidn, (
solution of (12) is u=eg, so that in Eqs(9)—(11) one can  —Tgk7)/T, is, for instance, less than 1/2 when the dimen-
replaceu by er. sionless ratioer /|e,| <128y?/ w?=41. A crude estimaté

Having the temperaturél, and Tgyr as functions of the for the dimensionless ratio for optimally doped cuprates
carrier density, one can build the phase diagram of theiveser/|ep|~3.1F— 10, which indicates that in the clean
model? which consists of three regions. The first one is thesuperconductor the pseudogap region produced by the phase
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fluctuations is too small. Of course, all these estimates ar@ith J(er,Tgr.p(er,Takr)) given by (18). Recall, how-

qualitative due to the simplicity of the model. ever, that to make any quantitative estimates, the more real-

The value of the bare superfluid density(T) is  istic d-wave model has to be considered, and the inequality
straightforwardly expressed in terms of the bare phase stiffe.7,>1 should not be assumétl.
nessng(T) =4mJ(T). In particular, it follows from(13) that The value of the zero-temperature superfluid density is
ng(T=0)=n¢. This is not surprising, sincey(T=0) must  now given byny(T=0)=mn;r,p<n;, sinceryp<<1. This
be equal to the total density; for any superfluid ground does not contradict the results of Ref. 27 because the system
state in a translationally invariant systéMmand the clean s not translationally invariant in the presence of impuritiés.
system is translationally invariant. We note, however, asurthermore, as one can see, the low value of the superfluid
stated above, thaty(T=0)<n; in HTSC? Substituting(15)  density in HTSE may be related to the impurities which are
into (13), one obtains, foll close toT,, the bare superfluid inevitably present in HTSC. Another factor that leads to low-
density asns(rl'—>T;)=2nf(1—T/Tp). This behavior of the ering of the superfluid density is the presence of the lattice,
bare superfluid density is formally the same as the behaviowhich also destroys a continuous translational invariance.
of the total superfluid density in the BCS theory. Neverthe-We note that, as was pointed out in Ref. 29, quantum fluc-
less it is important to remember that the total superfluid dentuations also lead to a decrease in the superfluid density.
sity in the present model undergoes the Nelson—Kosterlitz
jump atTgkr and is zero foif > Tgkt . We note that one can 4. THE TEMPERATURE DEPENDENCE OF THE BARE
probe experimentally both the bare superfluid density ing,perELUID DENSITY
high-frequency measuremehtnd the total superfluid den-
sity in low-frequency measuremerits. In this Section we try to correlate the temperature depen-

dence of the observed in-plane resistiviy,(T) with the
recently measured temperature dependence of the bare super-
3.2. Dirty limit fluid density?

For T>Tgkt the expression for the bare superfluid den-
sity in the dirty limit (18) can be rewritten in terms of the
in-plane conductivity o= e?n;,/m, wheree is the charge
of an electron:

In the dirty limit the quasiparticle transport timg, is
small (r,<p~1(T=0)), sothat one can neglect the radical
inside the brackets in E¢9).!® The remaining series is easily
summed, and one obtains for the bare superfluid stiffness

T op p
EET; = —
J(GF ,T,p(ep ,T),’Ttr): F4trp tanhzi_l_. (18) J(O’(GF ,T),p(é,: ,T)) 4 eTtanhﬁ. (20)

. _ . .. — 71 .
As explained above, by virtue of the Anderson theorem, The in-plane resistivitpap— o~ in cuprates has been

e expressons for p and(17) for T, remai urchanged ooy SUAEand e lemperatye and corcentalon
in the presence of impurities. Again substitutifith) into . P . P gap prop
(18), one obtains in other experiments. One can say thai(T) is linear above

T*=T, and roughly linear betweehgyr andT,, but with a
14£(3) 1 _ lower slope. Thus in the intervdlgr<T<T, the resistivity
T €Ty’ Tekr=T,. 19 can pe approximately written gs,,(T)=aT+b, wherea

o that the si f th q L andb are functions ofeg but not of temperature.
ne can see that the size of the pseudogap region 1S NOW substitutings~ p,}(T) into Eq. (20), one obtains
controlled by the new phenomenological parametgr,

which is an unknown function of for HTSC. The experi-
mental dath suggest thatr, is almost independent of the
doping level in the under-doped region.

It is difficult to obtain more than a qualitative estimate
using Eq.(19), since in its derivation we have assumed that
ermy>1. In HTSC however, as discussed abdgee also
Ref. 12, this assumption is not always justified. Bearing in Ng
mind that the dirty limit implies that the conditiom, *
>p(T=0)~T, is satisfied, one can easily see that the value
of Tgkt for this case is less than that given t6) for the
clean superconductor. Since impurities are inevitably present 0.6
in HTSC, phase fluctuations can in fact give rise to a
pseudogap region that is of comparable size to that observed 0.4
experimentally. We note that our arguments are in fact quite

TBKT: Tp 1

p p
nS(T)~mtanhﬁ. (21)

Our estimates based on E&1) are shown in Fig. 1. One can

1.0

0.8

similar to that given in Ref. 22 as to the best conditions for 0.2

observing BKT physics in superconducting films. However,

in contrast to this paper, the gap opening belbyis par- 0 :

' ’ 0.2 0.5 1.0
ticularly emphasized here. T

While Eq. (19) was derived under the assumptiﬂSgKT FIG. 1. The behavior ohy(T) in the clean(upper curve and dirty (lower

=<T,, in the general case whefgr can be substantially curve limits. The value ofn(T) is normalized ton(T=0) for the clean
less tharl, one must solve the self-consistent Equatib@) system;T is given in units ofT, .
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It is shown that the “butterfly” magnetoelectric hysteresis loop usually associated with the
presence of a spontaneous magnetic moment in a crystal can also be observed in the case of an
“angled cross” type of antiferromagnetic ordering of the spins. The magnetoelectric

hysteresis observed in LiNiRGs explained by the cross-shaped antiferromagnetic ordering of

the spins in this compound. It is assumed that the jump in the electric polarization near

the Neel temperature in a high magnetic field is the result of a first-order phase transition from

the antiferromagnetic cross-shaped to a weak ferromagnetic stat200@ American

Institute of Physicg.S1063-777X00)00706-4

The compound LiNiP@belongs to a family of antifer- esis loop in LiNiPQ in the framework of homogeneous
romagnetic olivines with the general formula LIMRPO magnetic configurations, without the hypothesis of spatial
(M=F&*, Mn?*, Cc**, Ni?*) which are magnetoelectri¢s, modulation of the spin structure or the presence of spontane-
i.e., they exhibit the linear magnetoelectric effect. Recenbus magnetization. It is shown that in LiNiR@here is an
measurements of the magnetoelectiME) effect in  allowed antiferromagnetic configuration of the “angled
LiCoPQ, and LiNiPQ, have revealed the presence of hyster-cross” type(Fig. 1). This is consistent with the neutron dif-
esis of the induced electric polarization in a magnetic ffeld. fraction data® which do not confirm the presence of collinear
The existence of ME hysteresis, which is typical of weakantiferromagnetism in LiNiP@but only indicate that the
ferromagnets, was unexpected for the olivines, whose netmagnetic moments are possibly collinear with 8{&) axis
tron diffraction patterns attest, with a high probability, to in LiNiPO,, where the magnetic intensities are very weak.
their antiferromagnetic structufdt is known, however, that When a magnetic field of the order of one tesla is applied
the linear ME effect, which depends substantially on thealong theX axis, the cross-shaped antiferromagnetic struc-
equilibrium spin configurations, can yield more accurate inture becomes unstable, and a ME hysteresis loop appears. An
formation about this matter. explanation is also proposed for the jump observed in the

To explain the magnetic hysteresis of the electric polarelectric polarization near the Wetemperature in sufficiently
ization in LiCoPQ and LiNiPQ,, it was hypothesized in Ref. high magnetic field$.1t is conjectured that this jump is the
4 that there is a spin structure modulated alongZhaxis,  result of a first-order magnetic phase transition from the
with small nonzero values of the spontaneous magnetizatiogross-shape(Fig. 1) to a weak ferromagnetic statEig. 2).

(m; for LiNiIPO4 andm, for LiCoPQ,) and polarizatiorpy . LiNiPO, has the orthorhombic symmetp,, and a
In this paper we offer an explanation for the ME hyster-Neel temperature Ty~20.5K. Four crystallographically
equivalent magnetic ions are located at the positions
1(0.28,0.25,0.98), 2(0.22,0.75,0.48), 3(0.72,0.75,0.02),
Z and 4(0.78,0.25,0.52). The ion pai(%,2 and (3,4) lie in
neighboring planes perpendicular to thgX) axis. The ex-
change interaction of the ions between planes is indirect and
substantially weaker than the antiferromagnetic interaction
of the ions within the planes.
The free energy density of the crystal is written in the

X form
1 1 1 1 1
= ZalP—Za.ld’l+Za 2+ B I*+ZD:mi?
W—le 53li— S apl i+ Saplf+ 7Bjli+ 5 D;m?;
S, S, )
+5 m?—mH-+d;m,l ,+dom,l 1,
FIG. 1. Equilibrium antiferromagnetic configuration of spins of the “angled 1
cHroisH (C) type, with the arrangement of spins in tA& plane in a field + §l| 2X| 3+ §2|3X|22+ 2)(6 PZ+WME1
x—="In-
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Wie= P2my(y1lozt+ val3x) + Pl 12(T1l o2+ Talay) + ... 12 N_E _ d; | A —a +a.,.<0
(1) =~ g, my= b1D,l2, a=a;t+ag,=<0.

Here we have introduced the antiferromagnetism vediors 4
which are related to the spirf; of the ions as follows: If the interplane and intrasublattice exchange interac-
L=S-S+$-S;, ,=5,-S,—S$+5,, tions are neglected, the constants olagy-a,=—b=—as

=—8J=<0, wherelJ is the exchange integral in the interac-
13=51+$,=$-8, M=5+5+$+5,, (2)  tion energyJ(S;-S;+S3-Sy).

It follows from Eq. (1) that the equilibrium electric po-

wherem is the magnetizatior® is the electric polarization, |5rizationP. is given by
z

and x® is the static dielectric susceptibility. In the ME part of

the free energyWy g, with constantsy,, y,, I'1, andI’,, P,= — xS Tmy(yal 2, ¥al30) 11T 11,4 T5l5) 1. (5)

we have written out only those terms which are necessary for

analysis of the results of Ref. 2. In that paper the electridVe see from(5) that spontaneous polarization is absent in

polarization induced along th# axis by a magnetic fielti,  the C and WF states.

of up to 20 T was measured over the temperature interval The linear ME effect, with a ME component of the sus-

4.2-25 K. BelowTy in a field of the order b1 T the func-  ceptibility a,,= dP,/dH,, which was observed in Ref. 2 for

tion P,(H) exhibited a hysteresis loop which vanished belowT<Ty, can exist only in the C state. Consequently, below

a temperature of 8 K. A detailed study of the ME effect nearthe Neel temperature in weak magnetic fields an antiferro-

Ty showed that at a considerably higher magnetic field, ofmagnetic cross-shaped spin configuration C is realized in

the order of 10 T, the electric polarization undergoes a jump-iNiPOy.

essentially to zero. The behavior of this antiferromagnetic structure in a
To explain the aforementioned effects requires analysignagnetic field directed along thé axis is similar to the

of the equilibrium spin configurations in LiNiPOHere itis ~ behavior of a weak ferromagnet containing domains with

sufficient to proceed from a free energy of the fotf), opposite directions of the weak ferromagnetic moment.

assuming a uniform distribution of spins afuhlike Ref. 4 For analysis of the behavior of the spin configuration C

not including invariants containing spatial derivatives. in a magnetic field, we se’=S{ and we treat the polar
Another difference is that expressiét) contains terms anglesd; and azimuthal angle; of the spins as the variables

with the coefficientsd; andd,, which were not taken into in the energy(1). In the absence of magnetic field one has

account in Ref. 4. It should be noted that, despite a differenfa= 01= 6y, 6,=603=m— 6. In the presence of a magnetic

system of numbering for the magnetic ions in the presenfield H,=0 the angles; and 6, increase, whiled, and 65

paper and in Ref. 4, the notation for the antiferromagnetisnfiecrease. In weak magnetic fields we obtain from(Egthe

vectors(2) are the same in both papers. Expresdibnfor ~ following equilibrium values of the angles:

the free energy is general for the whole family of olivines.

The equilibrium spin configurations are found by mini- 01= Op— ——————, O4=0p— L’“
mizing the free energyl). It is easy to see that collinear 4Sy(b—3y)’ 4Sy(b—3y)’
antiferromagnetism is possible only along tkeaxis (the
case of LiCoPQ). Collinear antiferromagnetism along tie Oy=m=01, O=m=0,. ©)

axis (the state wherg;=—-S,=5,=-S;, i.e,,I;=13=0, 1,
#0) cannot exist because of the presencélinof the an-
isotropy energy with the coefficiedt,. We shall henceforth
assume that the anisotropy energy with coefficiehtsé; is
much larger than the exchange.

The minimum of the energ§l) for a predominant direc-
tion of the antiferromagnetism vector along tAeaxis for
H=0 corresponds to two states: S,=S, 7

1. Antiferromagnetic states of the “angled croséC)
type(Fig. 1, magnetic symmetmnm’'m). The spins lie in the
XZ plane near th& axis, S3=—S;, $4=—S, I1=m=0.
The order parameter i$,=2(S;,—S,,),

12 ~ — % | :i

22 By ¥ agtag
PPN S <0 3 "
0,= 91—490”52_—613: ay=aptay=<0. €

We shall assume th#,=0, i.e.,£,<0, although the sign of
&, is not of fundamental importance. For the magnetization
and the ME susceptibility of the linear ME effect we obtain
from (5) and(6) the expressions

l,,, Bo=0,

2. Weak ferromagnetic state (WHFig. 2, symmetry
mm'm’). The spins lie in theXZ plane,

$=S1, $4=S,, I,=13=0, m#0. s,=8,

The order parameter s, FIG. 2. Weak ferromagnetic state WF.
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s. Z plane. The electric polarization in Fig. 4 jumps from segment
2 to segment, and the sign of the ME effect again changes
3 to the opposite. Thus a ME hysteresis loop of the “butterfly”
type, which is observed in weak ferromagnets, also exists in
an antiferromagnet with a cross-shaped spin configuration.
The value of the reorientation field ,~4Sy|&,| is of the
order of the anisotropy field, a finding is consistent with the
experimentally measur@dzalues of the order of 1 T. The
X vanishing of the hysteresis loop bel& K may be a conse-
guence of a decrease §a with decreasing temperature and a
transition of the spins to a collinear antiferromagnetic orien-
tation.

Besides the ME loop considered here, at temperatures

S, close to the Nel temperature and in considerably higher
S, fields, of the order of 10 T, LiNiP®also exhibits a jump in
FIG. 3. Spin configuration C in a field,=H,,. the polarizationP, to a value close to zero; this jump is

accompanied by ME hysteresis, i.e., there is a second-order

phase transition to a state in which the linear ME effect is

absent. This state is the weak ferromagnetic state WF. In
b—a,’ fact, it is easy to obtain an expression for the free energies of
the the C and WF states neBy for the case of weak mag-

mx:XTHxv XT:

= XXM vt 22| 1e=1n(H=0). (1) nefic fields:
az+asy 32 H?2

We see from formulag6) that the angle®, and #; decrease We=— =2 _
with increasing field strength, and a#,=Hy=4S,(b 4Bz 2(b+D,l3)
—A,) 0,=45,|&,| they are equal to zero. In a field,<H, a2 H?2 d,
the azimuthal angle of the spil& and S, change abruptly Wwr=— 75— +
from 7 to O, the spins turn over into the half plane with 4Bi 2(b+Dyl,)  (b+DylT)
¢=0 (Fig. 3. The situation is analogous to that observed =\ 12 o2
during the magnetization reversal of a weak ferromagnet, x| — =% - ! H2. 9)
except in the cross-shaped antiferromagnetic configuration By 4(b+D4l5,)%a,|

the instability arises in planes in which the direction of thetpqo presence in the eneryyr of a term linear inH and a

magnetic moment antiparallel to the field direction corre-oqm quadratic irH with a coefficient inversely proportional
sponds to a canting of the spins. In the case we are consigl @,|, i.e., to the square of the order paramelté; is
ering here, this is the plane in which the splisandS, are . aracteristic of a weak ferromagnet. ’
located. In a fieldH, the spins are reoriented, and a first- In weak magnetic fields the state, i.e.|3,|<[a,|, is

order phase transition occurs in the system, as a result Qf jized in LiNiPQ_We note that since,=a, , nearTy, at
which the system passes into the stable state illustrated ifyal values offa,|, the value of(3,| is also small. With

Fig. 3, where increasing magnetic field at temperatures riggr the last
f5= 0o+ L 0,= Hx 6, term in Wy, which lowers the energy, becomes larger, so
4Sy(b—a,) 4Sy(b—3a,) that the WF state can become more favorable. In other
H,=H,. (8 words, a weak ferromagnetic state WF can be realized near

Ty in sufficiently high magnetic fields; this is apparently

In a fieldH,=H, the energies of staté6) and(8) are equal.
X g ) ® ; what is observed in the experiments.

States(6) and (8) differ in the signs ofl,, and l;,, and
thereforea,, (i.e., P,) changes sigisegment in Fig. 4). If The author thanks V. I. Fomin and V. S. Kurnosov for
now the field is decreased and reversed in sign, the instability,iarest in this study and for helpful discussions.

will arise for spinsS; and S,, located in the other atomic

*chupis@ilt.kharkov.ua
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A nonlinear-evolution set of equations of the hydrodynamic type describing a magnet with a
noncollinear arrangement of spins is investigated. An explicit expression invariant to right and left
spin rotations is used for the energy density. The model under consideration can be

interpreted as a continuum limit of a system of distributed symmetric tops. In the three-
dimensional case exact solutions for the spin density are obtained in the form of helical waves
for the quadratic—biquadratic energy dengity terms of Cartan’s invariant functions

Solutions are also obtained for the magnon fields inducing these waves. The existence of backward
helical waves is predicted. Energy transport may occur at an angle greatet/thaglative

to the direction of the helical waves. The analytical dependences of the wave vector and of the
frequency on the helical wave amplitude, magnetic susceptibility, rigidity, and other

constants of the model are found. The predicted property would allow for the construction of
backward wave generators based on the use of disordered magnetic materials. The

backward electromagnetic waves in a layered disordered magnetodielectric are considered. The
relationship between the parameters of electromagnetic waves ¢f)tlayer and of the

(i) layer is obtained. ©2000 American Institute of Physids$$1063-777X00)00806-9

INTRODUCTION Sy=— Vka%ks + eaﬁy(glg(?%s + ‘—"Bk%yke)'
The spin excitations in magnetic media with a noncol- 9,0 = —V,ds & +e,5,0 05 €,
linear arrangement of spins are investigated using the hy- i 7
pothesis of spontaneous symmetry breaking of the statistical V@i = Vi® k= €ap,® k@i » (1)

equilibrium staté:? Using this hypothesis, Halperin and
Hohenberg proposed a hydrodynamic approach which was
used to derive dynamic equations for magnetic media with &n  these equationsds e=~w,, Where o,=1/2e,p,
spontaneously broken symmetry with respect to spin rotax (g,aa’) 45 is the righi form associated with the time de-
tions. Linear dynamical equations were obtained by Halperimivative. The sef1) determines the dynamical properties of
and Saslov:® while nonlinear dynamics was considered in the system without taking dissipation into account and de-
the Lagrangian approach by Volkov and Zheltulframd by  scribes the low frequency dynamics with an exchange inter-

Andreev and MarchenkbDzyaloshinskii and Volovik used action, when, for long enough times, rigid spin complexes
the Hamiltonian formalism for this purpo&ePeletminskii are formed because of the strong exchange. These complexes

and co-workers developed this formalism for different mag-"c o practically undeformec_i, and thglr orientation is deter-
netic structure&10 mined by the orthogonal rotation matr,z(x,t). It follows

; . i .._from the set of Equationél) that the energy density and
The dynam@al var{able's describing the nonequmbrlumthe momentum components; =s,w,; are conserved lo-
state of magnetic media with a spontaneously broken SYMally:

metry include the spin density,(x,t) (¢=X,y,z) and the
order parameter, i.e., the orthogonal rotation matrix &=—Vids €d, &, d1Te=—Vilik,
a,5(%1). In the long-wavelength limit, where spatial non-
uniformities of the dynamical variables are small, we inves-

tigate the dynamics and take into consideration the pOSSibl\‘R/heretik is the momentum flux density tensor. In practice

nonlinear interactions of spin waves, using the concept ofye used the following expression for the energy density:
spontaneous breaking of ttf&0O(3) symmetry of spin rota-

tions that leave the exchange interactions invariant. We shall

assume that the energy density is a functios,of, andVa  \where

or, what is the same, of the variableg=a,zS; and w

=1/2e,5,85,V\a,, , Which is Cartan’s right form. The evo- -—i_sf;l— gg’iﬁ 4i_52+ %@iﬁ gwlz &)
X1

S,= a3a§ﬁ .

tik=—0ik(e = 8405 &)t W4idy £, 2

e=¢gjte,,

lution equations in terms &, and w,, assume the form of b2y

. . - 10,11 . . .
equations with constraint$: is the isotropic component and

1063-777X/2000/26(6)/3/$20.00 422 © 2000 American Institute of Physics
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_P2 5 2 2 2 2 _ ||
8a_Z((£)aX('_Uay+ (_’)axli)az+ @ay‘i’az) (4) cosw= (q)2(+ q§+ qg) l/ZSgnCl . (10)
is the “anisotropic” componenfwithout taking into account Since the constart; can be positive or negative in the
the differential equations of coupling between,, @y, model under consideration, we arrive at the conclusion that

w,,) of the energy;y is the magnetic susceptibilityi is the  helical waves in a disordered magnet can propagate in the
“stiffness” constant, andyy, p1, p2, andg are phenomeno- direction oppositgat an angle greater tham'2) to the en-
logical coupling constants. This energy density is invariant taergy transport direction.

left and right spin rotations. The general set of Equatidns

has been studied by us previouslee Ref. 1L IvanoV*  ELECTROMAGNETIC WAVES IN A LAYERED

used the Lagrangian approach for a quadratic dependence MAGNETICALLY DISORDERED DIELECTRIC

the energy densitfamorphous magngeto obtain topological

. ; . In a dielectric medium without free charges and currents,
solitons in spin glasses.

the electromagnetic vectoesh obey the Maxwell equations
BACKWARD SPIN DENSITY WAVES 1 .
curle=——¢;b, divb=0,
Let us determine the exact nonlinear solutions of station- ¢
ary profile of the systerl). These solutions are helical 1 (13)
waves with helical vectok and frequencyw (Ref. 13: curlh= Eatd, divd=0,

$x=C3 SN o SN+ ¢, COSeo, wherec is the speed of lightb= xh is the magnetic induc-

Sy= —C3C0S@y Sin 6+ ¢y singy, (5) tion, u is the magnetic permeabilityd=ce is the electric
displacement, and is the dielectric permittivity.
S,=C3 COS0 Sincew?=(c?/e u)k?, as follows from Eqs(11), taking
where into account formuld6), we find
-1/2
c.[|C c2 g2\ 12 [ epp|[epmp|
:_1_| 3|i _32 q_P q’ C_:i 1—?— Ez— (12)
pP 203 4C3 X 3 X X
c It is evident that this ratio tends to zerodf-1, u—1,
w=—, 6(x,t)=wt—kx+ (6)  and p/x—c?. From the equation dib=0, we obtain two
X conditions:
_ A2 2
g=ci+cs, ky Sin@o=k, coseg, k=0, |k|=kZ+KZ. (13)
andcy, cs, Cs, 6, q are constants. The fact that the solution is independent of the space

~We have used the parametrization of the or}f;??onal "Ovariablez in the three-dimensional space indicates that the
tation matrixa,z(x,t) with Eulerian anglesp, 6, ¢.">""For  \yayes are “cylindrical.” According to Egs(5), (7), and

the sake of simplicity we have not written out the contribu-(19) the self-consistent electric field in the magnetodielectric
tion of the biquadratic termgsee Ref. 1B The self- pasthe form

consistent magnetic fieltd forming a helical spin density

L . _ . . ccak
waves(x,t) is given by the relatiom, ds & and is defined e = — 3 ycosa+eOX,
as wxe
1 _ CCgky o 14
h—;s. (7) ey= wxe cosf+egy, (14)
It follows from formulas (5) and (7) that the self- ccglk|
consistent static magnetic field has the forrm, €= Sin 6+ e, ,

. . . wxe
=(cq/x cOSeq,ci/xSingy,0) and determines the eigenfre- ) ) ) )
quency of the magnetic moments. Obviously, the magnitud&/here &= (€ox.€oy ,€0,) IS & self-consistent static electric

of this frequency equale,|/x, x>0. field in the dielectric. _
According to Eqs(2), the energy flux density is defined I this phenomenological approach, we cannot deter-
as mine the parameters,;, q, e,, but the boundary conditions
i =0s 89, & ®) nx(h®—h')=0, n(e%*—¢&'e)=0,
Sa Dok "

Let us now determine the cosine of the angiéetween the nX(e~€)=0, n(u*h®~p'h")=0

direction of wave propagatiok and the direction of the define the relationship between the parameters of the dielec-

energy flux density: tric medium(i) and the mediunte). Heren is the unit vector
K-j normal to the boundary surface of the medigimmand me-
cosw= W 9 dium (e). '
From relations(15) for the boundary surface=0, n

Formula(9) assumes a simple form for all positive phenom-=(0,0,1) we obtain, after eliminating the coordinates of the
enological coupling constants: boundary surface, the following:
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1 ki 1 ke e i e i
i We @ utet o 5| (€,—€§)=0, kik,—kSk,#0. (17)

w .
clk¥| ——cod¢p—¢f)

. a)e .
+C|k||(5|'_005(€0|0_¢8))
Now we consider the case when the static electric field

+(8iegz—seegz)sir(¢g— ®5) =0, in the diellect.ric medi_um iQIO:.(-O!O'eOZ)' Since the energy
o . flux density in the dielectric i§=(c/4m)exh, as follows
sin(@o— ¢@g) # 0. (16)  from Egs.(11), we find
|
oKL V i/gi(cie,z/)(iz)sgnw‘Jre‘(,z(cial)(i)sin Gi
SO TIIT [T o oD ok L T® o
'ul S+ 26, ulle —sgnw siné' l—|3+e 2—1+ €0z > Sir? 6
&' x'* X X X
|
where'=w't—k'x+ 6, andx belongs to the mediurti). CONCLUSION
Equation(16), when Eq.(13) is taken into account, has
the real solution According to Eq.(5), the exact nonlinear solutions pre-
sented here are helical waves. The contribution of biqua-
o —b=x\bZ—4[K [k dratic terms to the energy density), (4) increases with the

spin density in the systefi.Energy transport can occur at an
angle greater than/2 with respect to the direction of propa-
gation of the helical spin wave. Formul&®) and (14), to-

PE 2|k ’

b=(s'e) —s%L) klyki_klxk(ye gether Wi_th the boundary_conditiom;S), can be verified in
0z 027 1K'[ K| an experiment. The relation between the parameters of the
K K+ Ki K electroma.gnetic waves and the properties of the I&;_)emnd
—(|k|1+ ke Xlkx|| é’ Y=+ ZW (19 th(;l_laﬁ/e(;(l) for a flat boundary(formulas(16), (17)) is es-
tablished.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Compensation effects in the interaction of the electron and ion subsystems of a metal
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A detailed theoretical analysis is made of the interaction of the electron and ion subsystems in
normal metals. Simple, but realistic models of the Fermi surface and deformation-

potential tensor are used which permit numerical solution of the dispersion relation. To elucidate
the consequences of the partial or total mutual compensation of the electron and hole
concentrations, both the external parameteasind frequency, magnetic figlednd the model
parameters for the metéhe constant of the deformation-potential tensor, the ratio of

electron and hole concentrations, the free carrier relaxation asgevaried. It is shown that in
compensated metals the compensation effects lead to strong suppression of the interaction

of the lattice with one of the groups of free carriers. The theoretical results are in qualitative
agreement with the experimental data obtained in cadmium and tungsten. A quantitative
comparison of the theory with experiment is carried out which, in particular, yields an estimate
for the values of the constants of the deformation potential in cadmium20@ American

Institute of Physicg.S1063-777X00)00906-3

INTRODUCTION clotron frequency; here and below we assume that the orbits
_ _ _ . of all the carriers are clos@dAccordingly, the dopplerons
The interaction Of the d|fferent SubsyStemS n Condense@ue to the Dopp|er-shifted Cyc'otron resonar{%CQ of
matter(metals, in particulgrand of the collective excitations he carriers of this group will be called long-wavelength

of these subsystems is one of the fundamental problems ¢fysjerond (with increasing field the doppleron wavelength
solid state physics. We have previodsigone a detailed WRENTINGY

analysis of the coupling of helicons and dopplerons — weakly The most unexpected experimental results have been ob-

damped slecttromag]lnetlc r?old?s that gre excnt?noﬁns of th@ined in cadmium. It was in this compensated metal that the
same subsystem of a metal. in a subsequently paper doppleron—phonon resonand®PR) was first observed.

mvgstlgated in detall'the mteragtlon of electrons with theCadmlum has two groups of carriers with practically equal
lattice and of ultrasonic waves with weakly damped electro- . . .

. d . _.concentrations—majority carriers of the electron tylee
magnetic modes, and we analyzed a simple but realisti

G ” H H H
model of an uncompensated metal having one group of cac,—Iens ), and minority carriers of the hole typéthe

1\ 5 . . . . .
riers. It was found that, independently of the type of coupled monster”).” Accordingly, in radio spectroscopic studies

. - . rv illations of th rf resistance, which ar
mode, there exist some general regularities that characterlé)é1e observes oscillations of the surface resistance, ch are

the problem of coupling on the whole. The present paper'f e result of the excitation of the long-wavelength electfon

which concludes this cycle of studies, is a logical c:ontinua-f'ind short-wavelength hdlelopplerons. The hole doppleron

tion of Ref. 2 and is devoted to a detailed examination of thdS Manifested much more weakly, primarily because of col-
interaction of electrons with the lattice in compensated metliSionless resonance absorption of the doppleron wave by

als, i.e., in metals having at least two groups of carriers—lectrons of the “lens.” At first glance the data from mag-

electrons and holes. We believe this to be a topical problerfiétoacoustic studies appear to be in complete contradiction
in view of some seemingly illogical and contradictory ex- With these results. Figure 1 shows examples of the experi-
perimental results that have been obtained. It turns out thdtental dependence of the damping coefficient of transverse
the presence of another group of carriers in a metal(aad ~ ultrasoundI’'=Imk in cadmium(see also Refs. 8 and).9
does lead to dramatic consequences which are manifested ifferek is the wave vector of the linearly polarized transverse
a fundamental change in the character of the interaction ofound wave. The fieldd, corresponds to the edge of the
the lattice with one of the groups of carrigisturns out to  Single-particle collisionless absorption of sound by electrons
be of fundamental importance that the metal is compensate@f the “lens” as a consequence of the DSGRagnetoa-
i.e., having equal electron and hole concentratiofi$is  coustic resonangeandHy, is the edge of the absorption of
group, which we shall call the majority carriers, is the groupsound by holes of the “monster.” We see that at low fre-
having the maximum pitchi,,,., of the helical trajectory in a quencies in fieldHy<H<H, the magnetoacoustic reso-
magnetic fieldH: u=|27vy/w.| (vy is the average drift nance hardly shows up at all. The anom&ly, which is
velocity of the carriers alongl, andw.=eH/mc is the cy- observed in fieldH>H, and is a result of the interaction of

1063-777X/2000/26(6)/8/$20.00 425 © 2000 American Institute of Physics
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density of the metal, the sound velocity, ¢tevere taken
equal to the corresponding parameters in cadmium. This
does not limit the generality of the analysis, however. On the
contrary, the dispersion obtained in this study makes it pos-
sible to extend the scope of the analysis substantially. In
particular, we have examined the consequences of a gradual
decompensation of the concentrations of electrons and holes.

Cd

I', arb. units

DISPERSION RELATION AND THE MODEL OF THE METAL

1. The elastic and electromagnetic oscillation in metals
are described by the equations of the theory of elasticity and
Maxwell’s equations, supplemented by the constitutive rela-
tions (see, e.g., the papéfs®and the review€!). We re-
strict the discussion to an analysis of the interaction of
' monochromatic plane waves,Exexp(k-r—iwt), whereu
0 10 20 30 40 is the lattice displacement vector akdis the electric field

H, KOe in the geometnyk||H||z in a metal for which all parts of the
) ) ) ) Fermi surface are symmetric with respect to trexis. Then
FIG. 1. Damping of linearly polarized transverse soufii(m k) in cad- ¢ the circularly polarized transverse components of the os-
mium as a function of the magnetic field for different frequenciggm, [ . . ..
MHz: 60 (1,1'), 300 (2); k|H|[000T, T=4.2K. The fieldsH, andH,  cillations, .. =y, *idy (+ indicates the polarization, and
correspond to the edge of the collisionless absorption of sound by electrongy= U,E) the dispersion relation of coupled electromagnetic

of the “lens” and holes of the “monster,” respectively. The featul2s  and acoustical modes can be written in the fotfn
andD,, are due to the doppleron—phonon resona(iieR).
(k’c?—4miwo. (KPv2—w?—L. Ip)

sound with an electron doppler8ras a very small ampli- =(4miwlp)g.G., @)
tude. It should also be noted that this anomaly does not havghere w andk are the frequency and wave vectpris the

the shape of an absorption peak but more closely resemblefensity of the metalp = (\,,,,/p)*? is the velocity of a
the anomalies of the dispersion of the sound velocity, whichransverse sound wave, which is determined by the elastic-
would be expected to appear in the vicinity of the DPR. ¢onstant tensokx, andG, L, &, and§ are the material ten-
These anomalies have been observed experimentally in R&jOI’S(QDiZ(pXXii(pyX for ¢=0,L,9,G). It should be noted
10, for example. A much stronger role in the absorption ofihat Eq.(1) takes into account not only the coupling of the
sound in cadmium is played by the holes, which are theycoustical modes with the collective electromagnetic modes
minority carriers. It is seen from curvein Fig. 1 thatasH  pyt also the single-particle interaction of electrons with the
decreases, in fieldd<H,, , the damping of sound increases |attice (magnetoacoustic resonance

sharply as a result of the “turning on” of the collisionless The material tensor§, &, and L are linear combina-

absor_ption of sound l_)y holes O.f the “monstgr.” Wit_h - tions of electroacoutic coefficients for which exact expres-
creasing frequency this feature in the absorption, which ha§ions have been obtained by Kontorovih we neglect the

4 hl H
the form 9f a Kj_eld_aas edge,™ is trans_formed N0 an  gewart—Tolman effect, as we may do in sufficiently strong
asymmetric peak in fields less théh, . In fieldsH>H,, a magnetic fields, we have

strong absorption pealR,, appears, which has the “classi-

cal” shape of an absorption curve and is due to the interac- cri=e2<vi vh)y, (2)
tion of sound with the hole dopplerdn. 5

An attempted theoretical analysis of the DPR in cad- L= ;‘“e H <Ui(v+ic—k/\+) > 3)
mium was reported in Ref. 12. However, the authors used a C Vo oen o
very simplified model of the metal and restricted the analysis e2H ck *
of the interaction to the limit of strong coupling of the G.=7i —<(v+i—A+) v+>, (4)
dopplerons with the sound. As a result, the calculated mag- ¢ e
netic field dependence of the damping coefficient of sound eH|2 ck
did not agree even qualitatively with the experimental depen- L.=iw e < U ie—./\i 2> . 5)

dence.
The immediate goal of the present study is to carry out aere v is the electron velocity s =vy*ivy), A is the

theoretical analysis of the damping of transverse sound igeformation-potential tensot\(. = A,,*iA,,), the asterisk

compensated metals due to the interaction of the electrons denotes the complex conjugate, and the angle brackets de-

with the lattice in the presence of an external magnetic fieldnote integration over the Fermi surfadeS) in momentum
A reasonable realistic model of the metal is used. The dis¢p) space:

persion relation was solved numerically by Muller's method
(generalized method of secantsith deflation!® For speci- (¢.)=i 2m j G_Dt|m|dpz _ ©)
ficity some of the nonvariable parameters of the mdtied - (27h)° Jrs o+ivE w.—ku,
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Herev is the electron relaxation rate. Since we are interestegarameters of the model. Taking into account that*
in the region of relatively low frequencies and high fields, = S(p,)/ 7=m? andv,= — (dS/dp,)/2arm, we obtain from(6)
restricted by the inequality < v<|w.|, we shall henceforth e hooo S )
setw=0 in Eq. (6). Fo(@)=F(q)+(Np/Ne)Fi(a)=[(1xiye) —q7]

2. For metals with anisotropic Fermi surfaces the form of —(Np/Ng)[(1*i yh)2_,32q2]—1/2_ (13

the tensorA is unknown. However, for a qualitative analysis Here B=dS/P,lm/|0Se/ 3Dy, Where |dS, n/dp,|m are

one can assume that it corresponds to the deformatioqhe maximum values of the derivatives, ,/dp,. For the

potential tensor in the case of an isotropic electron diSperSiOH’10d6| of the Fermi surface that we have adopteds given

relation: by the relationv ¢=|3S./dp,| n/2TM,.

1 The scope of our analysis is not limited to the experi-
Aaﬁ:)\om(gvzéaﬁ_vavﬁ>l (1) mental results of magnetoacoustic studies of the absorption
of sound in cadmium. Nevertheless, as we have said, for
wherel is a constant which is equal to unity for free elec- specificity we have taken some of the parameters of our
trons. model metal equal to those for cadmium. The relative posi-
We consider a model metal having two groups of carri-tion of the singularities in the conductivifl3) (F,— o for
ers: electrons and holes, with concentratibsandNy, (here  ¢2—1 andg?— 82 Fo=F-|,,,-o) is determined by the
and below the indices andh are used to indicate the elec- gjfferential characteristics of the Fermi surface, more
tron and hole parametgrdn spite of the two-band nature of precisely, by the values oRy,=|JS/ap,|/2mh. For cad-
the spectrum and, hence, the corresponding symmetry consi e _ -1 ” h_ -1
siderations and the requirement of electrical neutralityrzlnx(r)nnstlzp-)_éLo'Af;1 aAccord(a:?cneS v)\,ithar;gesim ar?asﬁﬁf other

((Aap)=0), to avoid complicating the analysis we shall as-gnown data, we shall assume the following value¢gnand
sume that the tensa .z is given by expressiofi7) for both (13):

holes and electrons, but with different constants We

shall assume that the cyclotron massgsand m;, and the p=8.65g/cm, v =1.5710°cmis,
guantitiesk g, and\ g, are constants for ea_ch group of carri- me=3|m,|=0.9-10"%g,
ers, and thatv=const for all of the carriers. Then, after
evaluating the coefficient8)—(5) and transforming Eq(1), Ne=N;=0.5-10%?cm 3, B=0.24. (14)
we rewrite the dispersion relation in the form Of course, in approximating the cadmium hole “monster,”
s 2 @1(q) which has a 3-fold axis of rotational symmefi§001], by an
q —Clszﬂzqz/qzi F.(Q) —ay(q), (8) axially symmetric surface, we are excluding from consider-
ST - ation the multiple resonances observed in the experiment of
where Ref. 8. The singularity in the conductivity due to the DSCR
9 2y 3— of the electrons of the “lens” is apparently also weaker
a1(d) = aols{ (1~ Ae) 2797/ a5+ AeF . (0) [logarithmi* rather than square-root, as in E@3)]. How-
IA)\(Nh/Ne)[F*l(q)—F*l(O)]}z, (9) ever, this simplification of the model Fermi surface in our
- - treatment is not of a fundamental nature, particularly since
2(0) = agfs{(1-Ne)2Q%q%/q3+ \ZF . (0) we have already made some serious assumptions in the
5 N N choice of the model deformation potential. The function
= (AN)(Np/N[FL(q)—FL(0)]}. (10 Fy(q) in (13) for a metal with the parametef&4) is shown

Here for convenience of analysis we have introduced thd! F19- 2.
dimensionless parameters
DAMPING OF SOUND
q=kvelwce; 9s=0lk-k 2=/ wo. (11)
A numerical solution of the dispersion relatig8) will
In Egs. (8)—(11) the functionF..(q) is a nonlocal factor in  be used to determine how the damping coefficiddts(k .
the  conductivity @.==*i(NeedH)F.; F.=F% =k +ik") for the acoustical modes depend on the external
+(Np/Ne)FL);  ap=(Neme/p)(velv); AN=Ne—Nn;  parameters and the parameters of the model for the metal.
Nen=Noen(1Xiven): Yen=v/ween; ve IS @ characteristic  The external parameters are the frequency, i.e., the value of
electron velocity, which in this paper is taken equal to the() (for the parameters given ir(14) one has wy/27
velocity of the electrons for whictu is maximum; ks =102 MH2 and the dimensionless magnetic fidieeq_ *.
= wlvg; wo=(wiw3c? )% wi.=4mNe?/m,. Itshould  We see in Fig. 2 that fog?>1 the functionF, is complex.
be noted that Eq8) with coefficients(9) and(10) is invari-  This is indicative of collisionless damping of the electromag-
ant with respect to interchange of the indieeandh. netic and sound waves due to the DSCR. In the integval
3. The electron and hole Fermi surfaces are approxi<hs<1 the condition of DSCRKv,/w.=1) is satisfied for
mated by axially symmetri¢with respect to th& axis) sur-  the electrons, and fan<g it is satisfied for both the elec-
faces of the “corrugated cylinder” type'® trons and holes. Collisions lead to a smearing of the absorp-
_ tion edge, as a result of which the collective modes will be
S(Pz) =S Sy cod mp./Po). [Pzl <Po, (12 damped foh>1 as well. For our model of the Fermi surface
where S(p,) is the area of the cross section of the Fermithe valuesh=1 andh= g correspond to the fieldsl, and
surface on a plan@,=const; Sy, S;<S;, andpy,>0 are H,, in Fig. 1.
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FIG. 2. The functiorF of Eq. (13 (F0=Fr|veh:0) and a graphical solu-
tion of Eq. (15). Curvel is the left-hand side of15) in the “—" polariza-
tion at a frequency) =0.59(for the parameters given ii4) this frequency
corresponds to a value/27=60 MH2) (a); curve? is the left-hand side of
(15) in the “+" polarization at a frequency)=2.95 (w/27=300 MH2)
(b). At the pointsD, and Dy, the acoustical modes interact resonantly with
the electron and hole dopplerons, respectively.

Tsymbal et al.

(Np—0) the third terms vanish, and in the second terms
NeF+(0)—Nge. Itis these terms that govern the character of
the interaction of electrons with the lattice at low frequen-
cies, when the first terms are relatively small. This is particu-
larly true for the free-electron model\g.=1).'! It was
shown previously that at low frequencies a substantial role in
the interaction is played by eddy curreft$3As a result, in
fields h<1 the absorption of sound will exhibit a feature
having the form of a “Kjeldaas edge 6 As the frequency
increases, the first terms grow in size. A purely deforma-
tional absorption of sound begins to play a rAé2 and the
feature of the “Kjeldaas edge” type is transformed into an
asymmetric peak in fields less than the resonance field
=122 0f course, the indicated features of the coefficients
and a, in the uncompensated metal also determine the char-
acter of the coupling of the acoustical modes with helicons
and dopplerons. This question is discussed in detail in our
previous papef.

Compensated metaln going to the case of a compen-
sated metal,— N,) the form of the coefficients; anda,
changes substantially. As a result of compensation effects in
the conductivity the second terms in the curly brackets on the
right-hand sides of Eq$9) and(10) go to zero(see Eq(13)
and Fig. 2. However, now the third terms are nonzero; their
value is determined by the differenda. and the purely non-

The zeros of the denominator in the first term on thelocal contribution from the holes to the conductivity of the
right-hand side of8) are the roots of the dispersion relation metal: AF{)=F{(qs) — F5(0). Let usfirst consider the inter-
for electromagnetic modes in the absence of their interactioaction of free carriers with the lattice in the field regibn

with sound. Settingj=qs andF. =F, in this denominator,
we obtain the equation

F0%/gs=Fo(qs), (15

~1 (gs~1). Since B?<1, in this field region AF)
~B2q§/2<1 (see Fig. 2, and for reasonable values Ai

the third terms will also be relatively small. At low frequen-
cies the first terms are also small. As a result, unlike the case

which enables us to find the fields near which the aCOUStiC%r an uncompensated metaL the magnetoacoustic and
modes are resonantly coupled with the weakly damped elegioppleron—phonon resonances due to the interaction of the
tromagnetic modes. In compensated metals these are dopplgttice with electrongin this case majority carrierswill be

rons. In Fig. 2 we show as an example the graphical solutiofyeakly manifested in experiment. Pog,~ 1 this interaction

of Eq. (15) for two values of(). We see that at the poiili,
the sound component in the—" polarization is coupled
with the electron doppleron, while at the poldt, the com-
ponent in the “+” polarization is coupled with the hole

will be weak even at rather high frequencies.

The smallness of the third terms {8) and (10) in the
field region under discussion is to a certain degree due to the
relatively weak deformational interaction of the lattice with

doppleron. Consequently, the corresponding resonance fefples. This is easily shown by considering, e.g., the structure
tures in the absorption of sound should be observed in fieldsf the expressions for the coefficierds andG.. . For the

h>1 andh>g. It is important to note that Re;>Im Fj at
the pointD,,. At lower velocities this condition no longer

holds, the electromagnetic mode is not weakly damped, and gih ,Gihoc{F‘ih(q)—)\eyh[Fih(q)—Fi’h(O)]}.

Eq. (15) can no longer be used.

Qualitative analysis

deformation potentia7)
(16)

The first terms on the right-hand side of E6) arise as a
result of the induction interaction of free carriers with the

The interaction of electrons with the lattice is describedlattice and are determined by the induction currents and

by the dispersion relatiofB). The character of this interac- forces acting on the lattice. The second terms are the result of
tion and the sound absorption due to it are completely detetthe deformation interaction. For a compensated metal we
mined by the form of the coefficients, anda,. Let us start haveg.=g% +g" , G.=G®%+G" in (1). We see from9)
with a comparative analysis of the absorption of sound irthat the third term in the curly brackets consists of two terms,
uncompensated\,=0) and compensated¢=N;) metals. = one of which,)\hAFB, is directly related to the deformation
We make the simplification of setting=qs (Q%g%q3  termsing" andG" . The second termy,AF}, arises in the
—Q2?h) and y,,=0 in Egs.(9) and (10). We shall also summation of the total contribution of the electrons and the
assume that in the general casg+1 andA\ #0. induction contribution of the holes. Consequently, we can
Uncompensated metdh the curly brackets on the right- conclude that the weakness of the interaction of the electron
hand sides of Eqg9) and(10) there are three terms in each and ion subsystems of a compensated metal at low frequen-
of these equations that can be paired with a similar counteries in fields with values in the vicinity di~1 is due, first,
part in the other. In the case of an uncompensated metab compensation of the “electron” contribution to the inter-
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action of the subsystems of the metal by the induction con-

tribution of the holes, and, second, to the weakness of the

deformation interaction of the lattice with minority carriers,

in this case holes. 0.6
Let us now consider the field regidn- 8 and below. As '

we see from Eq(13) and Fig. 2, as the field is decreased the ‘TE

purely nonlocal contribution of the holes to the conductivity © 0.4F

increasesAFgﬂ—oo). Accordingly, @; and «, increase in *

modulus. However, the competition of the terms singular at 0.2

h~ B in the expressions fa#; anda, and in the denomina-

tor of the first term on the right-hand side of E§) compli- 0

cates the qualitative analysis. To clarify this, let us eliminate

this competition by interchanging the indicesindh in Egs.

(8)—(10). As a result, the coefficients; and a, will no h

longer be singular, since after interchanging the indices a

factor AFg=Fg(q) —F5(0)~—1ih appears in the third Fig. 3.1+ = (K. +Kk")/2 as a function of the dimensionless magnetic field

terms in the curly brackets on the right-hand sidefpfand  h and the constant, (numerical solutions of8) and(13), obtained for the

(10). Now at smaII,B one hanFa ~1in fieldshsﬁ, and, parame_tlers i(14) and \¢,=3, 2=0.59 (w/27=60 MHz), and v=1.66

depending on the value df\ these terms can turn out to be X105 (Ie=0.2 mm).

relatively large. As a result, a situation arises which is analo-

gous to that considered above in the uncompensated metal. . )

At low frequencies the magnetoacoustic resonance due to t{gately one-third the value afi, in modulus. Consequently,

holes will be manifested in the absorption of sound in theton™3 in the framework of our assumptions, and we have

form of a feature of the “Kjeldaas edge” type. Now, how- S€thon=3 in the calculations. _ ,

ever, the character of the interaction of the free carriers with 1€ solutions of the dlﬁpersnlon relation are presented in

the lattice is determined mainly by the third terms rather tharin® form of plots of"™* = (k' +k”)/2 as a function of two

the second terms i) and (10). With increasing frequency variables: the dimensionless magnetic fieldnd a different
this feature will be transformed into an asymmetric peak in®"€ Of the other variables each time. If the inequakifyd
fields below the resonance fietd= 3. <1 and|Ak’.d|<1, then the coefficienf* is practically

equal to the damping coefficiedt of linearly polarized

_ o _ transverse sound. Hetkis the thickness of the sample, and
lllustrative quantitative analysis AK. =K' —k
+7 Rt S

208

Let us turn to an examination of the numerical results of  Figure 3 shows the dependencddf onh and\ .. The
equation(8) with the conductivity(13). The solutions will be  most characteristic feature of this plot is the weak expression
obtained for a model metal with the parameter¢lid), only  of the interaction of the lattice with the electrons. In particu-
now we can no longer neglect collisions. We shall showlar, this is true for the interaction of electrons with sound due
below that collisions can have a substantial influence on théo the magnetoacoustic resonance in fidids1 [see also
shape of the manifestation of the DPR in fields 1. For the  Fig. 6(a), in which the field valueH, corresponds tti=1).
values of the rates we take the corresponding typical values Also of small amplitude is the anomaly observed in fields
for the mean free path of resonant electrons aléhgl,  h~1.35, which is due to the interaction of sound with the
=v./v, equal to 0.2, 0.5 and 1.0 mm. There remain twolong-wavelength electron doppleron. It position corresponds
unknown parameters—the constants of the deformation pde the position of the poinD, in Fig. 2 (hzqgl). When\ ge
tential. We base our choice of values)qaf. and\g, on the  deviates from the critical valugye=1 the anomaly takes the
following considerations. In Eq7) mis the cyclotron mass. form of an absorption peak, with an amplitude that increases
For a spherical Fermi surface of free electrons it is equal t@s the deviation increases. This is due to the growth in modu-
the free electron massyy, and\o=1. It is knowrf* that  lus of the first term in the curly brackets on the right-hand
cadmium is among the metals for which the free-electrorside of (9). The second characteristic feature of the plot in
model gives a very realistic first approximation for the actualFig. 3 is the pronounced anomaly in the sound damping ob-
band structure and Fermi surface. In this approximation theerved in fieldh=<g. This anomaly, which has the form of
Fermi surface is made up of portions of the free-electrora “Kjeldaas edge,™ is obviously due to the “turning on”
spheres. We assume that on each of the portions, as in tlod the collisionless resonance absorption of sound by holes.
case of a spherical Fermi surface, the relatigjim|~mg Figure 4 shows the dependenceltf on h and Q) (the
holds. The electron “lens” in cadmium consists of two range of variable of) corresponds to a frequency interval
spherical segments. In the geometry of interest to us herey/27=50—-200 MHz. As in Fig. 3, in fieldsh>1 one ob-
k||H|[0001] the electron orbits are the circular orbits of free serves a feature due to the interaction of the sound with the
electrons. Therefore, there are grounds for assuming that falectron doppleron. As the frequency increases, in agreement
the electron Fermi surfage,~mg and\ .~ 1. The value of  with the graphical solution of Eq15), the feature shifts in
N oe WIll be varied in a certain interval including the “spe- field toward the asymptotic value=1. Indeed, it is seen in
cial” point A\ o= 1. A qualitative analysis of the shape of the Fig. 2 that ad) increases, the poirfd, shifts upward along
hole “monster” in cadmium and also the known data indi- the F, curve, approaching the asymptaqé= 1. At high fre-
cate that the averaged cyclotron mass of the holes is approxiuencies the feature takes on the form of an absorption peak,
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FIG. 4. T* = (k. +k”)/2 as a function of the dimensionless magnetic field
h and the frequency) (numerical solutions of8) and (13), obtained for
the parameters in(14) and Age=1.1, \gy=3, and v=1.66x10°s*
(Ie=0.2 mm)).

which is due to the growth of the first term in curly brackets 0 10 H20KOe 30 40

on the right-hand side @B). The anomaly observed in Fig. 4
at fieldsh= g, as in Fig. 3, is due to collisionless resonanceriG. 6. I'* = (k’. + k" )/2 as a function of the magnetic fietd (numerical
absorption of sound by holes. As the frequency increasesolutions of (8) and (13), obtained for the parameters i14) and Ao

this anomaly, which has the form of a “Kjeldaas edg&iis =11 Aon=3; a—=059 (w/2r=60MHz); b—=295 (w/2m
=300 MHz) and various values of the mean free gdath

transformed into an asymmetric peak in the field region be-

low the resonance fielti=g. In fieldsh> g a strong ab-

sorption pegk appears, which is the result of the i”teraCtio%quation(s) for different values ofN,, /N, . It is clearly seen

of sound with the short-wavelength hole doppleron. At &yt 5 quite small deviation a4, /N, from unity is sufficient

frequency{) =2.95 its position corresponds to the position of y, yansform the anomalp,, observed in fields>1 from a

the pointDy, in Fig. 2 (h=qs7). , weak minimum(antiresonandeof the sound absorption to a
We see that the given quantitative results are in goody.onounced absorption peak. This is clearly due to the

agreement in their most important details with the results of, .o \th in modulus of the second term in curly brackets on

our qualitative analysis of the interaction of free carriers withy,, o right-hand side of9) (in strong fieldsF . ~1—Nj,/N,)

the lattice. We should, however, make special mention O(Nh”e the modulus of the third term, on the contrary, de-
one of the most important results of this analysis, which we,a5¢es.

can confirm by a numerical calculation. As we have shown,

the main reason for the weakness of the interaction of elec-

trons(majority carrier$ with the lattice at low frequencies is Cadmium

due to compensation effects, which are most clearly mani- et us now turn to a guantitative analysis of the experi-

fested in the smallness of the modulus of the second terms igental results obtained in cadmiutfig. 1). For this we

curly brackets on the right-hand sides @f and (10). This  choose values ok, such that the experimental and calcu-

compensation is maximum precisely in compensated metalated functiond™* (h) are similar, particularly at 60 MHat

in which N,=N,. Figure 5 shows the numerical solutions of 300 MHz we are interested in the field regibie 8, since

fieldsh~1 were inaccessible in the experimer# variation

of Nge In @ certain interval around the valug,=1 has a

weak effect on the shape 6f (h) curve in this field region

at high frequencies. This is clearly seen fr¢@ and(10) if

in those expressions the indicesandh are interchanged.
Figure 6 shows the calculated dependencéfon the

external magnetic fieltH, obtained at frequencies of 60 and

300 MHz for Age=1.1 and three values df,. The corre-

sponding experimental curves are presented in Fig. 1. The

field H, (the “Kjeldaas edge” for electronscorresponds to

the fieldH, in Fig. 1 and toh=1 in Figs. 3 and 4, and the

field H,, (the “Kjeldaas edge” for holescorresponds to the

field Hy, in Fig. 1 and tch= 3 in Figs. 3 and 4. The features

D, andDy, (D, andDy, in Fig. 1) are due to the interaction

Yy ) ) ) ~of sound with the electron and hole dopplerons, respectively.

FIG. 5. F*=(I_<++k,)/2 as a f_unctlon qf the dimensionless magnetlc field We see that the curves* (H) obtained forl ,=0.5 mm are

h and the ratioN;,/N. (numerical solutions of8) and (13), obtained for o L ; € R

the parameters in(14) and Aoe=1.1, \gy=3, and v=1.66x10°s !  qualitatively similar to the experimental curvesuantitative

(Ie=0.2 mm). measurements were not made in the experimétdwever,
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if an assessment can be based simply on a comparison of tl®NCLUSION
ratios of the amplitudes of the features due to the magnetoa- ] )
coustic resonance and the DPR at each of the frequencies, " this paper we have analyzed the damping of trans-

then the quantitative agreement of the calculation with exYerse ultrasonic waves in normal and compensated metals

periment can be judged quite good as well. Of course, théIue o both single-particl(magnetoacogstic re_sonam&md
choice of\ is rather arbitrary. For example, we see that Oncollectlve(doppleron—phonon resonancateractions of free

the curve obtained for,= 0.5 mm the distance between the carriers W|tr_1 the Iattlce_. The dispersion relation describing
. L . . the interaction of the ion and electron subsystems of the
maximum and minimum of™* in the neighborhood of the

resonanc®, is approximately half that on the experimental metal has been obtained in a forfd) which is compact,
€ pp =1y hatt P transparent, and convenient for analysis. Equat®nwas
curve. Better agreement is achieved fer=0.2mm and

B h his i f fund ¥ obtained for a specific model of the deformation potential
Noe=1.14. For us, however, this is not of fundamenta 'M"(7), but the shape of the Fermi surface was not specified. As
portance. Here we wanted to show, besides the overall qualy result, this equation can be used for any metal model with

tative agreement of the experimental result with the calculag,,q groups of free carriers, holes are electrons, in any com-
tion, that there is one more interesting feature onltti¢H) bination (e, eh, he, hh). Here the ratioN; /N, (where 1

curves that can appear in experiment. and 2 stand foe or h) can be arbitrary. The main results of
Let us examine this feature. We see in Figa)6that  thjs study can be summarized as follows.
collisions lead, first, to a “smearing” of the “Kjeldaas 1. We have shown that in compensated metals a certain

edge” for electrons. In Fig. @ this is manifested as very “discrimination” arises in respect to the majority carriers,
weak kinks on thd™ (H) curves atH=H,. Second, they particularly at low sound frequencies. Here it is not at all
lead to a background damping of sound which at high fieldsmportant whether those majority carriers are electrons or
H>H, is constant and proportional to the value of the relax-holes. This “discrimination” is manifested in a relatively
ation ratev. Against the background of this damping the weak interaction of the carriers of this group with the lattice
shape of the resonance feature can be transformediss at low frequencies as compared with the interaction of the
increased. In Fig. @ we see that fol,=1 mm this feature lattice with the carriers of the other, minority group. This is
has the form of a peak or maximum, whereas fgr due primarily to compensation effects, which are reflected in
=0.2mm it has taken on the form of a peak with a negativéhe smallness of the second and third terms in the curly
amplitude relative to the background, i.e., a minimum orbrackets on the right-hand sides @ and (10). The com-
antiresonance. The collective interaction of the free carrierfensation effects are most clearly manifested specifically in
with the lattice and, hence, the DPR are described by the firfiompensated metals. This is clearly seen in Fig. 5, which
term on the right-hand side ¢8). Restricting discussion to Shows the results of a numerical solution of E8). for dif-
the relevant regime of weak coupling of the dopplerons withférent values oNp,/Ne. _
sound, we setj=qs on the right-hand side o). Then the Ip strong fle!ds the second terms in the curly b_rackets on
denominator in this term can be rewritten in the fgifazh  the right-hand sides dB) and(10) are always small in com-
—F' (h)]=iF"(h), whereF" (h)>0 (F’+iF" =F_). In pensated metals on accoun.t of compensation effects. The
smallness of the third terms in fieldis~ 1, as, for example,
tion of the form of the functiong=’. and F”. and of the in the case of cadmium considergd hgre, Is due to the S.”?a"‘
correctness of the use of the weak couplir_lg approximatior?ess of the purely nonlocal contribution to the conductlylty
have been discussed in detail in our previous pApés- from hqles and, hen(_:e, to_the smallne_ss of the deformational
. . N T, interaction of the lattice with holes. It is clear that the quan-
suming that the inequalitg”<q’ holds @=q'+iq”), the

left-hand side of(8) can be written in the formd’?—q2) tity |F2(q)—F=(0)] in fields h~1 is determined by the

o o i : value of 8, which is small in cadmiungin cadmium|AF" |
+2iq’q”. The condition of DPR is that the differen€¥h ~ B2/2). In other compensated metals, however, it may not

—F. gqto ZEr0. When collisions are -taken into "’.‘CCOUF“’ thebe so small. For example, in tungsten and molybdenum, in
expression in curly brackets on the right-hand sidé®fis \nich one can also distinguish two groups of carriérs?’
comzplexgvaluc_ad. We write it in thezform21+|b. Thena, (e electrons of the “jack,” which comprise the majority
«(a®~b%)+2iab. In typical casesa®>b®, and the DPR o5, and the holes of the “octahedronthe value ofg is

will be manifested as a maximum of the sound absorpt'onapproximately twice as large as in cadmiup(1/2). As a
However, as was shown above, in compensated metals thgs i, the DPR, due to the interaction of sound with the

value of |a;| can be very small. Then a situation arises ingjectron doppleron, is manifested in experiméntlike the

fieldsh>1 the functionF” is proportional tov. The ques-

which, despitez the srznallness of the parametersind |y,  case of cadmiuinas a pronounced peak of the sound absorp-
the values o&” andb® are of the same order. ?‘nb‘;?”’ N tion, although the magnetoacoustic resonance, as the
fields h>1, at large values ob the quantitya®—b= will  «yeaker” resonance in this case, is, as before, hardly

change sign if the inequalitg?>b? holds; then a minimum  yisiple.

or antiresonance will be observed in the sound damping. An |t should be noted that the relative weakness of the in-
intermediate case arises faf~b?. It is this case that is teraction of the majority carriers with the lattice is an inher-
realized in cadmium. In conclusion we note that the sament property of compensated metals regardless of the number
situation can also arise in an uncompensated metil ( of resonant groups of carriers. This is easily shown. Suppose
=0) as the result of a competition between the first anda metal contains several groups of carriers. We number these
second terms in curly brackets on the right-hand sidé9pf groups and the corresponding parameters by the ingdex
(see Fig. 8 of Ref. R settingi = 1 for the majority group. Transforming E(), we
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obtain a version of Eq(8) in which the first two terms in ing is manifested in the appearance of dissipative terms, ap-
curly brackets on the right-hand sides(6f and(10) remain  proximately proportional to sfr¥, in the conductivity?®
as before(with the indexe replaced by 1 while the third

terms of the respective equations are replaced by the follow- 1S study was supported by the Government Fund for
ing sums: Basic Research of Ukraine, Project No. 2.4/211.
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We have studied the force in mesoscopic wires in the presence of an external magnetic field
along the wire, using a free electron model. We show that the applied magnetic field can be used
to affect the force in the wire. The magnetic field breaks the degeneracy of the eigenenergies

of the conduction modes, resulting in more structure in the force as a function of wire length. The
use of an external magnetic field is an equilibrium method of controlling the number of
transporting channels. Under the least favorable circumstdnoethe middle of a low conduction

step one needs about 1.3 T to see an abrupt change in the force at fixed wire length for a
mesoscopic bismuth wire. @000 American Institute of Physid§1063-777X00)01006-9

1. INTRODUCTION additional electrons with voltage-dependent energy, because
of the different chemical potentials of the two reservoirs.
The electrical conductance in a ballistic wire with di- Since a relatively large applied voltage is needed, one will
mensions comparable to the Fermi wave-length increases iave to worry about heating in this case.
steps 0fG,=2¢e?/h as the cross section increases. This con-  The eigenenergies of the transverse motion can be af-
ductance quantization is observable at room temperature ifgcted by an external magnetic fieRiperpendicular to the
metallic nanowires formed by pressing two pieces of metatross section of the wire. This will show up in the conduc-
together into a metallic contact. When the two pieces argance and in the force as a function®fThe effect of mag-
separated, the contact is stretched into a nanowire, a wire @fetic field on the conductance was considered in Ref. 14. To
nanometer dimensions. Several experiments varying thigse an external magnetic field is an equilibrium method of
principle have been performed, e.g., using scanning tunnetontrolling the number of transporting channels, without sig-
ing microscopy, mechanically controlled break junctiofs, nificant risk of relaxation.
or just plain macroscopic wir€sAlthough most nanowire Because of band bending, due to the small size of the
experiments have been performed on metals, conductanggre, the eigenenergies will have to be corrected. This can,
quantization has been seen in bismuth at 4%nce bismuth  however, be taken care of by introducing an effective Fermi

. _ 4 . —~
has a Fermi wavelengthhg=26nm," these semimetal gnergyE, in the wire. Assuming that the number of elec-

“nanowires” are larger than the metallic nanowires. . . = .
. . . trons (per unit volume is constantEg can be determined
The stepwise variation of the conductance in such a me- . . . . .
N : self-consistently and will vary with wire length and magnetic
soscopic wire is accompanied by an abrupt change of thﬁeld
force in the wire> Using a free-electron model, neglecting all

atomic structure of the wire, it has been sh8withat the In this paper we present force calculations for different

size of the electronic contribution to the force fluctuations isapphed magnetic fields apd wire lengths, using a free-
electron model. We take into account the effect of band

comparable to the values found experimentally and that th ending, adjusting the Fermi energy in the wire. In order to

qualitative behavior, i.e., the abrupt change that accompanies I
the conductance steps, is the same resolve any effect for moderate magnetic fields, a low cyclo-

: . . _tron effective mas$which enters in the cyclotron frequency
In the wire the transverse motion of the electrons gives . . .
. . . Is needed, which can be found in semimetals. Metals are less
rise to quantized modea of energyE,. In the simplest . .
favorable since, because of a larger cyclotron effective mass

;/L(JallrSI?rganmtirt]t?n L?gd:rgj?fr ;OTEI'SQ:]’ daclrc]:sogf O'f’hgsl\r;izgere?larger Fermi energy we would need a larger magnetic field
y glop Fm=a " in order to resolve any effect. For numerical estimates we

Each open mode contributes an amoetih to the conduc- have used values for bismuth, a typical semimetal. For bis-

tance, if modes with different spin are considered separately, . o . . .
L . uth the spin splitting is also important, since bismuth has a
As the wire is elongated and the cross section decreases, . . -~
ge spectroscopic spin splitting factgr

more and more modes are pushed above the Fermi level anac{
closed, thus decreasing the conductance stepwise. This has
been shown in two dimensioftsand in three dimensior$. o
It has been suggestEdhat the conductance and the me- "~
chanical force in a nanowire can be controlled by an applied We consider a cylindrical ballistic wire of lengthwith
driving voltage. This effect originates from the injection of circular cross section and a parabolic confining potential
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wgm*r? r?
o(r)=———=Eg=5,
( ) 2 FRZ

1)

using cylindrical coordinatesr (¢,z); herem* is the effec-
tive electron mass. The wire is along thdirection. The last
equality in Eq.(1) defineswg. In this equationEf is the

zeroB-field bulk value,

independent confining potential. We assume that the volume

(
V=mR?L of the wire is kept constant during elongation, - ,

yielding a magnetic-field-

which makesR andL mutually dependent.

With the above confining potential and an applied mag-

netic field along the wire, the Schiimger equation was

solved in Ref. 15. If also spin is included, the eigenenergies

are
w2 21/2 1
E,=h T+w0 n+ Elﬁchrsg,uBB, 2
n=2m+|l|+1, m=0,1,2,..,
I=0,£1,+2,., s=x1/2, a={m,|l,s},

where w.=eB/m* is the cyclotron frequencyug is the
Bohr magnetonsgug is the magnetic moment associate

with the electron spin.

S. Blom
5V ‘
| ’
s
3 ”
=z
1M
oL
-1 1 ! 1 1 ! !
30 40 50 60 70 80 90
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FIG. 1. The force in a mesoscopic wire as a function of wire length for

different magnetic fields. The lowest, heavy, curve is Bot 0. The next

curves, each displaced by 0.5 pN, are Bx0.5; 1T etc., the uppermost

curve being foB=4.5T. The splitting of the eigenenergies of the conduc-

tion modes is clearly visible: for largd fields the curves have more struc-

ture, since now each mode closes one-by-one as the wire is elongated. We
d have used a spectroscopic splitting factpr 20 and an effective Fermi

energyEr .

Since our system is open, the electronic contribution to
the force in the wire is given by the derivative of the grandferent directions, between 0.009—1.8m, (Ref. 16. The
potential Q =E— N with respect to elongation. Hete is
the total energy of the electrons in the wigeis the chemical

potential, andN is the number of electrons in the wire. If the

Fermi energyEg is much higher than the thermal ener@g
in metals or at low temperatureve haveu=~Eg . The grand

potential is thef

2m*

4
Q(Ep)=-2 §L(??'

1/2
) (Er—En)*,

)

cyclotron effective mass is in the range 0.6€9-0.13n,
(Ref. 16. For an isotropic Fermi surface and a quadratic
dispersion relation, both effective masses are the santie:
=0.07m, for Er=25meV. The spectroscopic splitting fac-
tor g can be as high as 260 or an order of magnitude smaller,
depending on the direction of the magnetic fitldzor g
=20 the spin splitting is roughly of the same order as the
Landau level distance, and becomes dominangfas large

as 200. We have usegl=20. The wire volume was kept

where the sum is over all open modes. The force in the wirg€onstant at 30 000 nt(Ref. 3.

is given by
Fo 6Q)
T

(4)

which in general has to be calculated numerically.
The magnetic field affects the system primarily by split- force curves show more structure, since now the eigenener-

ting the otherwise degenerate eigenenergies of the condugies of the conduction channels are nondegenerate and close

tion modes[Eq. (2)]. Since then the conduction modes will One-by-one, each time resulting in a sharp change of the

open one-by-one, this will cause more structure in the forcdorce.

and conductance when displayed as functions of wire length.

To find the effective Fermi energy of the wire we have
adjusted the value in order to keep the number of electrons
constant, with a tolerance of 16%.

Figure 1 shows the force in the wire as a function of wire
length for different magnetic fields. For nonzero fields the

The force and conductance for two particular magnetic

Subsequently, when applying an external magnetic field wél€lds,B=0 and 2.5 T, are shown in Fig. 2. Each step in the

will see the(clearest effect when the highest open level or conductance is accompanied by an abrupt change in the
the lowest closed level goes through the Fermi léwdlich-
ever happens firstlf one does not adjust the Fermi energy Plest possible cadevhen we use the bulk value of the Fermi
for band bending but uses the bulk Fermi energy for zergnergy,Eg, in Fig. 3. In this case the force is one order of
magnetic field, one can analytically calculate tBefield
needed when the wire is kept at a specified length. The leadthis is because the effective Fermi energy has to be larger
favorable situation would be on the middle of a conductionthen the bulk value in order to keep the number of electrons

step.

3. RESULTS AND DISCUSSION

force. We also show the corresponding picture for the sim-

maghnitude smaller than in the more realistic case \Eith

per unit volume in the wire constant in spite of the quanti-
zation of levels. Also, the conduction modes close much later
in the Er case than in the simpler case when the wire is
elongated. The reason for this is that the effective Fermi

We have used numerical values for bismuth, a typicaknergy, as a function of wire length, follows each eigenen-
semimetal withEr=25meV?* Bismuth has an anisotropic ergy before intercepting it and closing the channel.

Fermi surface resulting in different effective masses in dif-

On the middle of the second conduction stéB
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FIG. 2. The forcetheavy curvg and the conductance in a mesoscopic wire '

for two different magnetic fields: in the upper figuBe=0, and in the lower  F|G. 4. In the upper figure we show the for@ieeavy curve and conduc-

figureB=2.5T. We clearly see that the abrupt change in the force happengance forL =54.6 nm. This length corresponds to the middle of the second

when a channel closes, i.e., when there is a step in the conductance. W@nduction step. In the lower figure we show the eigenenergies of the sec-

have used an effective Fermi enery . ond conduction step and the effective Fermi energy of the \heavy
curve. We see that when the highest level goes through the Fermi(evel
approximatelyB=1.3 T) there is a step in the conductance and an abrupt
change in the force.

=3Gy,, n=2) the circumstances are least favorable to see the

effect of the magnetic field. For the case with the zBro-
field bulk value of the Fermi energy & 19.8 nm), we have
analytically calculated that one neeBs=2.4T in order to increases with the eigenenergy before it intercepts. However,
see the highest open level go through the Fermi energy, thu§ese variations are small compared to the overall magnitude
giving a sharp change in the force as well as in the conducof the Fermi energy.
tance. For higher conduction modes one will see the effect S0 far we have used a spectroscopic splitting fagtor
for smaller fields, since the splitting is proportional to = 20. In Fig. 5 we show the force as a function of length for
whose absolute maximum is equah{o B=1T for differentg factors:g:O, 2, 20, and 200. Fog

In Fig. 4 we see the force and the conductance as & O there is no spin splitting, but we still see more structure
function of magnetic field for a fixed wire length,  thanforB=0 (cf. Fig. 1). This is due to the breaking of the
=54.6 nm. This is for the case with an effective wire Fermidegeneracy into the Landau levels. With increasjrfactor
energy and a length corresponding to the middle of the sedhe spin splitting becomes larger and larger; however, what-
ond conduction stefG=3G,, n=2). We see that we need €ver the size of the spin splitting, more structure appears in
about 1.3 T before the highest open level goes through théhe force with an applied magnetic field.
Fermi surface, showing us the pronounced effect of the mag-  The Fermi energy of the bulk will also be affected by the
netic field. In the lower part of the same figure we also seénagnetic field, due to the de Haas—van Alphen effect. In the
the effective Fermi energfthick line) and the eigenenergies
of the second conduction steps. Notice how the Fermi level

F,pN

_1 1 1 1 1 L 1 1
~0.1 ! . . .o 30 40 50 60 70 80 90

[
5 10 15 20 25 30 35 L,nm
L,nm

FIG. 5. Force as a function of length fBr=1 T for differentg factors. The
FIG. 3. The forcethick line) and the conductance in a mesoscopic wire for lowest curve is fog=0, and the following curves, each displaced by 1 pN,
the less realistic case of a constant Fermi energy in the wire equal to thare forg=2, 20, and 200, respectively. We see that no matter whag the
zeroB-field bulk value(25 me\). Results for two different magnetic fields factor is, an external magnetic field will give the force curves more structure
are shown; in the upper figu®=0, and in the lower figur&=2.5T. than forB=0 (cf. Fig. 1).
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A theoretical study is made of the temperature of the electron subsystem in a microcontact as a
function of the applied voltage. It is shown that in microcontacts whose characteristic

linear dimension is of the order of several lattice constamémocontactsa breakdown of
thermodynamic equilibrium between the electrons and phonons occurs at high applied voltages.
Then the temperature of the electron subsystem is a linear function of the applied voltage,

and its absolute magnitude can reach values of the order of the Fermi energy. These results agree
with recent experimental data. @000 American Institute of Physid§1063-777X00)01106-3

INTRODUCTION Micro- and nanocontacts are considerably more attrac-
tive objects for implementing this possibility. As we kndw,

In normal metals the electric current is transported bythe mean free path of an electron in the case when the elec-

electrons whose energy relaxes mainly through electronton and phonon subsystems are in thermodynamic equilib-

phonon collisions. This means that the electron and phonofym is a sharp function of the the temperatutg,(T)
subsystems in metals are found in conditions of thermody-_1-3 4t |ow temperature§<Tp =4 wp (wp=S7/a iSp the

namic eq.uilibrium', and therefore, the electro'n temperatureDebye frequencys is the speed of sound, amds the lattice
even at high applied voltages, cannot apprecidbyan or-  nering and for T=T, it goes over to a smoother depen-
der of magnitude exceed the Debye temperature W'thOUtdenceIep(T)fvﬁuF/T. For microcontacts the condition of
causing substantial structural changes. thermodynamic equilibrium between the electrons and

In_experiments® investigating the glow of metallic honons is violated, and for estimating the minimum

nanocontacts an unusual effect was observed: an anom ectron—phonon relaxation lengtff” the lattice can be
lously strong overheating of the electron subsystem at high . . .
. . considered cold. Simple estimates analogous to those made

voltages(1.5-2 \) applied to a nanocontact. By analysis of . . .
o . : in Ref. 7 show that if the energy of the electrons in the

the emission spectrum it was established that the electron

temperature in the nanocontact had reached the Fermi ene&%rgagée%xﬁiggi;hjl Efet?])ée ﬁgﬁol(?sm'g dtehsea(ragpr?rgindtsn
gies(0.7-1 eV} and increased linearly with increasing volt- Iscu P involved |

age. In spite of the fact that the measured electron temperéhe enfergy relﬁxaftlohn Ofl the electron, then (;[he pdhononlc
ture significantly exceeded the melting temperature of thdnean free path of the electrons ceases to depend on energy

) LD . ph)__ _
lattice, no significant structural changes in the sample wer&nd becomes equal 1P ~a(ve/s)>a (for an electron
observed. phonon interaction constant,~1). Thus for microcontacts

These experiments raise an important question: undef¥ith a lengthd<I{*") the electron—phonon interaction occurs
what conditions will the phonons not affect the charge and@r from the region of the microconstriction, in the_penpheral
heat transport in metallic microcontacts, and what paramt€gion of the contact, where heating of the lattice occurs.
eters will control the electron temperature in that case? ~ Since the fraction of “hot” electrons in this region is rela-

The problem of creating a highly nonequilibrium state tively small, the establishment of thermodynamic equilib-
with respect to temperature between the electron and phondiim between the electrons and phonons in the peripheral
subsystems in metals has been studied for quite some*fime.regions does not lead to melting of the lattice.

Although a situation in which each of the subsystems is de-  Thus for metallic contacts of small dimensiofrgano-
scribed by its own temperature can arise even in macroscopkontacts the electron—phonon interaction cannot bring about
samples, under ordinary conditions a strong departure frorfglaxation of the electron energy within the contact region,
equilibrium cannot be achieved. The possibility of a strongand if it were not for electron—electron collisions, the charge
heating of the electrons in thin metallic films and granulestransport in such a system would be phase-coherent. As we
was discussed in Refs. 5 and 6, and the general conclusidéow, for T<eg the probability of electron—electron colli-
was that the quantization of the electron energy levels effecsions is strongly suppressed by the Pauli principle, and there-
tively suppresses the electron—phonon interaction and cdiere for “cold” electrons(i.e., electrons with a temperature
thus make it possible to destroy the thermodynamic equilibT<Tp+eg/Tp) and at low voltageseU<T the “elec-
rium between the electrons and phonons. tronic” relaxation lengthl .o( T) ~erfiv e /T2 turns out to be
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larger than the analogous phononic length. In this case the 1 1,(T)
transport of change and heat through the contact are de- o(T)=—el(T); NT)=— =3 ™
scribed by the Landauer—Buttiker thedisee, e.g., Ref.)8 !
and the electron temperature is determined by the average 1
temperature of the peripheral regions of the contact. k(T)y=——=
To explain the results of the experimersve shall as- eT
sume that both the momentum and energy relaxation of th
electrons occurs within the microconstrictiGhermal trans-
port regime. This case is always realized at high tempera- 2e d3p
turesT~eg (plasma limi}, when the electronic relaxation (T)= ﬁf (277—ﬁ)38
lengths become of the same order as the interatomic dis-
tance. For degenerate electron statisti€sser (metallic  Heref(z) is the equilibrium(Ferm distribution function,
limit) the electron collisions can also form a thermal trans-gnq (&) is the relaxation time. For contacts with lengths
port regime if the voltage applied to the contact is suffi-shorter than the electron—phonon mean free path, (g
ciently high,eU=\hvger/d >Tp\er/Tp (we note thatin s determined by electron—electron collision processes. In the
the experiments of Refs. 1 and 2 anomalous heating of thgojtage region of interest to us hereUs Tp\er /Tp it is
electrons was observed only at high applied voltages ~  jyst these processes that promote the rapid relaxation of the
The thermal transport regime in microcontacts was firsk|ectron energy and lead to anomalously strong heating of
studied in Refs. 9 and 10, in which only the case of “low” the electron subsystem.
temperaturesT<sg, was considered. Since the tempera-  The temperature dependence of the chemical potential
tures recorded in the experimehtsvere of the order okr,  ,(T) is determined from the condition of conservation of the
it seems advisable to do additional studies of the plasmestal number of particles. For metals the condition of electri-
limit T>e¢. That is our goal in the present papéfhe  caj neutrality guarantees that this relation will be satisfied in

plasma limit for an electron—phonon mechanism of electromgih the cases of weaR & e¢) and strong T> &) heating.
heating in a microcontact between semiconductors was also  The system of equatiord)—(3) must be supplemented
investigated in Ref. 11 We have shown that fof>e¢ the by poundary conditions. For a microcontact the natural
problem also admits an analytical solution and we havgoundary conditions are the absence of heat and charge
found an explicit expression for the maximum temperatureransport through the boundary of the contact:

T, of the contact as a function of the applied voltage. A

comparison of the formulas obtained in the metallic and j (reX)=q,(re3)=0, 6)
plasma limits, after extrapolation to the regi®n- e, with

the experimental data suggests that the anomalously strongheren is the normal to the boundaiy of the microcontact.
overheating of the electron subsystem observed in Refs. Eurthermore, for a symmetric contact we have

and 2 can be well explained by the existing theory of charge
and heat transport through microcontacts.

15(T)
15(T)— ﬁ} 3

Where

Lty
i(e) 5 @

U
¢(z—x=)=55gM2); T(z—*2)=T,. (6)

HereU is the potential difference applied to the contact, and
THERMAL TRANSPORT REGIME FOR ELECTRONS IN T, is the temperature of the peripheral regions of the contact
MICROCONTACTS (the z axis is directed along the axis of the conjact

In the thermal regime of charge transport through a  1he System of equation¢l)~(3) together with the
microcontact® both the momentum and energy of the e|ec_boundary condition$5) and(6) represent a closed system of

trons relax within the region of the microconstriction. In this €duations for determining the coordinate dependence of the

case the equations governing the thermal and electrical chaflectrical potentiale(r) and the temperature distribution

acteristics of the contact are the continuity equations expresd(f) for any relationship between the Fermi energyT

ing the conservation laws for the energy and number of par= 0) @nd the maximum temperatufg, in the microcontact.
ticles: However, the problem has analytical solutions only in the

limiting cases of weak heating ,,<eg (the “metallic”
divj=0; divg=0, (1) limit) and strong heating@ ;> e (the “plasma” limit). To
explain the strongT,,~¢g) heating of the electrons that is
observed in experiment we must solve the problem in the
plasma limit. The case of weak heating,{<eg) was stud-
ied theoretically in Refs. 9 and 10, where a convenient

where the electrical current densityand total energy flux
densityq have the forn?13

T
j=a(T)| =Ve— —V%H\(T)VT , method was proposed for solving E¢%)—(3).

€ It is physically obvious that in the thermal transport re-
q=— k(T)VT=[o—N(T)T]j. ) gime the maximum temperaturg,, of the electrons in a

microcontact must be controlled by the voltage applied to the
Here ¢ is the electrostatic potentiad, is the electron charge, contact and should depend weakly on the geometry of the
and u is the chemical potential. The temperature dependenceontact. In view of the azimuthal symmetry of a 3D metallic
of the coefficientsr, k, and\ is found from the solution of contact it is convenient mathematically to solve the stated
the kinetic equation and can be written as problem in the geometry of an oblate ellipsoid of



Low Temp. Phys. 26 (6), June 2000 Kulinich et al. 439

revolution®?0<u=<#; —o<p=<wx; 0<¢$<2w. The coor- tact on account of inelastic electron—electron collisions, in
dinate systemrju,v, ¢} is related to the Cartesian coordinate dirty samples the main contribution to the thermal and elec-
system{x,y,z} by the expressions tric resistance comes from elastic scattering on impurities,
and in that case one can 4g(T) =L, in Egs.(9).
An elementary integration of Eq9) with the boundary
z=d, cosu sinhv, conditions(5) and (6) (for simplicity we have set the tem-
perature at the periphery of the contdgt=0) leads to the

whered,=d/2sing is the effective length of the microcon-  ¢45,ing expression for the maximum temperature of the
tact (u= #=const at the boundary of the microcontagt microcontacf 10

It follows from the symmetry of the problem that the
temperaturel and electrical potentiap can only be func- U
tions zof the coordinate and, hence, the system of equa- TMZZ\/L—-
tions (1)—(3) reduces to 0

x=dg sinu coshv cos¢; y=dgsinu coshv sin ¢;

Using the theoretical value of the Lorentz number, we

’9_‘P+ I i ﬁ—)\(T) ﬂ“ -0 obtain fromT,, the estimateT,,=0.27 eV, which agrees in

v edv T d ’ order of magnitude with the temperature dependence mea-
3 JT sured in Refs. 1 and 2. Nevertheless, it is clear that at such
_[ k(T)coshv — + o(T)coshv high temperatures the “low-temperatureTeg) approxi-

dv dv mation we have used is incorrect. Therefore, to explain the
F T JgT1 o T reTuIts Ofl' tr_\e Texperimer‘l’t% we must also study the
—_— _ — = e " = .
o T ( )av O.)v[<p (T)T]=0. plasma” limit (T=¢g)

J
™ [ o(T)coshv

X

dp T
Jc e

(7 ELECTRON PLASMA IN METALLIC MICROCONTACTS

Let us first briefly consider the low-temperature case, |n the limiting case considered below, unlike the case
following Refs. 9 and 10. In the metallic limit the tempera- treated above, while replacing the Fermi distribution by a
ture dependence of the chemical potential can be neglecteflaxwellian distribution(“plasma”) we nevertheless assume

#(T<eg)=ep. To determine the maximum electron heat- that the condition of electronic neutralitymetal” ) holds.
ing temperaturel,, in the microcontact we do not need to As a consequence,

specify the temperature dependence of the kinetic coeffi-

cients appearing in Eq7). Actually, in this limit the ther- V(ﬁ) __ § V_T
mopower a(T)=\(T)+ u/eT is small by a factorT/eg, T 2T
and in the leading approximation it can be set equal to zero, g Eq.(7) becomes
Then the systeni7) takes the form

17 ~
i(a(T)COShv (9_(‘0):0, 7 o(T)coshv (?U(go )\T)} 0,
Jv dv
P JT gle\2 i[a(T)coshv ﬂﬂﬂgo—n)i(go—ﬁ)“:o
—(x(T)coshv— +0'(T)COShU<.—€D) =0. (8 v o(T) dv dv '
dv v v (10
In these equations it is convenient to make the change afhereX =\ + 3/2e.
variable§=§(v), £1<£<&,, where At high temperaturesT=¢¢ the electronic relaxation
o do length becomes of the same order as the interatomic dis-
g(v):f —————— 1,7 E(F ). tances and, consequently, inelastic electron—electron colli-
o o(T)coshw ' sions can contribute to the thermal and electrical resistance
In terms of the variablé the system of equatior(§) simpli- ~ &n amount comparable to the contribution from scattering on
fies considerably: impurities. Then, strictly speaking, the Wiedemann—Franz
5 ) law ceases to be valid. However, since each electron—
i( L(T)Tﬂ) N (‘9_90) _o ¢, (9  ©lectron collision changes both the energy and momentum of
113 13 1z ' F ' the electron substantially, the relaxation tir(e) appearing
in various kinetic coefficients turns out to be the same in
where . . S
order of magnitude. In other words, in the plasma limit, too,
k(T) the ratioL(T) = «(T)/Ta(T) can be regarded as temperature
L(T)= To(T)’ independentL(T=geg)=L,. The numerical value of the

constantL, can be found from a comparison of the formulas

Thus for integrating equatior(8) we need to know only | it the experimental results.

the ratio of the thermal and electrical conductivities. For  Thus in terms of the variablg the equation for the tem-
elastic collisions the Wledemazlnn;Franz law halsise, e.g., perature distributior (£) in the microcontact in the plasma
Ref. 12, andL(T) =L, (Lo= /3¢ is the Lorentz number; |imit as the form

here and below we set Boltzmann’s constagt=1). Al-
though in the thermal transport regime considered here the

aT 3C
relaxation of the electron energy occurs inside the microcon- Lol Jg tCile— &)+ 2e T=0, (12)

9
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and the distribution of the electric potentia{£) is given by =~ CONCLUSION
the expression
- The results of the experimental papershow that nano-
(&) —AT(§)=C1E+Cy, contact afford a unique possibility of “separating” the elec-

whereC; and &, are constants of integration determined by {ron and phonon subsystems and, in principle, make it pos-

the boundary conditioné) and(6) (here the temperatufl,  Sible to study the electronic characteristics of a metal “in
at the periphery of the microcontact is assumed to be quiteure form,” i.e., without the influence of the electron—

high—*“plasma”). phonon interaction. Theoretical estimates permitting deter-
After the substitutionT (&)= (&— &o)t(£) equation(11) mination of the maximum temperature of a microcontact as a
becomes function of the applied voltage show that in both the metallic
and plasma limitsT,, is a linear function ofU, but with a
(£— &)t ﬂ +P(1)=0, different slope in the two limiting cases. As a consequence, it
23 can be stated that in the intermediate regione ¢ the func-
where tion T,,=T,(U) has a more complicated analytical charac-

ter, and this problem requires further analysis. The relatively
small difference of the slopes indicates that both the metallic
and plasma limits will admit satisfactory extrapolation to the

. . . transition regionT ~ &g .
which admits a solution in quadratures. Here the character o{ g °F

the 50|2Uti0n depends on the ratibc/L,, where L The authors thank L. Gorelik and M. Jonson for many
=9/16e°. For the most plausible inequality./L,<1 the  helpful discussions. S. I. K. and I. V. K. Thank the Depart-

zerost; of the polynomialP(t) are complex conjugate pairs, ment of Applied Physics of Chalmers University of Technol-
and the solutioT(£) describing the temperature distribution ogy for hospitality.

, 3Cy 5
P(t)=Lpt*+ S t+Ci=Lp(t—ty)(t—ty),

in the microcontact can be written in the form This study was done with the financial support of the
C B|2 Swedish Royal Academy of SciencdéVA) and the Swed-
T+ _1€ip(§_§0) =C,, (12)  ish Committee for the Natural Scienc@$FR).
VL
where
1 i
B=—5+5cotp, p=arccosyL./Ly, *E-mail: krive@ilt kharkov.ua

and C3 is a constant of integration. For uniqueness we
choose the branch of the argument in expresgidh as

— 7T<arg{ T(&)+ %eiﬂ(g— &) | =

p 1A. Downes and M. Welland, “Measurement of high electron temperatures
. . . . in atomic size metal contacts by photon emission,” preprint, Cambridge
We investigate the extremum of expressidr) in the (1998.
usual way. According t¢11) and(12) we have 2A. Gil, M. Sharonov, N. Garcia, J. M. Calleja, and J. K. Sas®iiaceed-

ings of the NATO Advanced Research Workshop on Nanqwidésd by

1 P. A. Serena and N. Garcia27, Miraflores de la Sierra, Madri¢l.996.
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The single-phonon damping of polaritons governs the most important characteristics of the
relaxation processes of excitations in the region of the resonance eBerghlere the single-
phonon damping of polaritons by acoustical phonons is calculated in the deformation-
potential approximation for the lowest excitohi§3/2) in Ar, Kr, and Xe cryocrystals. The

results of a numerical calculation of the curves of the energy dependence of the ddrigiig
=const) at several temperatures spanning the free exciton existence region for each crystal
are presented. Analytical expressions are obtained (&, T) at T=0 andT>2#%ks.

A comparison with the data from the numerical calculation indicates that a linear temperature
dependencé’(E=constT) holds over a wide temperature range, except at very low
temperatures. It is shown that at temperatures above the critical point there exists a region of
energies in the neighborhood Bf; in which processes involving the absorption of

phonons are dominant and prevent the relaxation of the polaritons down the dispersion curve.
The width of this region is comparable to the maximum phonon energy and increases

with increasing temperature. @000 American Institute of Physid$51063-777X00)01206-§

INTRODUCTION neighborhood of the band bottom the processes of single-
phonon relaxation slow down on account of the influence of
Cryocrystals of inert elements, owing to the high quan-energy and momentum conservatfoand the last two relax-
tum yield, are attractive objects for converting the energy ofytion channels acquire more significance. Furthermore, in the
high-frequency electronic excitations into VUV and visible jjymediate proximity of the resonance eneiy of the ex-

radiation. The lowest excitonic states in cryocrystals of inert.iions with transverse polarization the probability of radia-
elements, being the last stage of relaxation of the intrinsit,EiVe decay of the exciton increases sharply

elgctronlc excitations of the crystal, possess a combination of In cryocrystals of the inert elements Ar, Kr, and Xe the

depends on the features of the exciton—phonon and excitonﬁdiaﬁve decay of the excitorl(3/2) is characterized by a
photon interactions. The existence of wide bardsth a comparatively large oscillator strength{-0.1), which

width 2B<1 eV) of collective states of excitons with weak makes for a rather strong exciton—phonon coupling. This

single-phonon damping ensures a high mobility of the freeIeads to efficient exciton—photon mixing in the crossing re-

excitons'~® In crystals there occurs an efficient transfer of 910N of the dispersion curves for light and excitons and to the

excitation to the surface and also to impurity centers, even E{P rmation of a pg}larlto dn . d'srf) ersion relatlé-Jg ) EPoLagton
low impurity concentrations:® At the same time, the strong eAatures are r_nar;]l ested in the ?nergydr_erll N I'T'|\ LTh_ h
coupling of excitons with local deformations of the Iattice_( L1~0.1eVis the transverse—longitudinal splitting, whic

: 10,11 i -
leads to intense processes of self-trapping of excitations ify Proportional toF)™*“and has a substantial effect on pro
cryocrystals of all inert elements®in pure Ne, Ar, and Kr cesses of relaxation and transfer of excitation energy in the

crystals the main part of the emission is the VUV emissioncTystal- . . _

of self-trapped exciton’; and it is only in Xe, according to The f|rst st_udl.es of polariton effec(wnh allowance for

the recent results for especially perfect crystatbat the spatial dispersionin cryocrystals of inert elements were un-
emission from free and self-trapped excitons is comparabléertaken primarily in order to explain the anomalous width
in intensity. In the process of relaxation of the excitations@nd shape of the reflection spectra in Ar and Kr crystals.
within the limits of a wide band their distribution over these Then a systematic analysis of the influence of polariton ef-
competing channels changes; it depends on the kinetic efécts on the transmission and reflection spectra in Xe was
ergy of the excitorii.e., the positions of the quasiparticles on performed'*>** This analysis confirmed the importance of
the dispersion curje Relaxation of free excitons within a taking the light—exciton mixing into account in studying the
band is governed by the competition of three processegptical characteristics. In those calculations a constant value
single-phonon scatterin@ts probability is predominant and of the exciton dampind'e, was used, which had the meaning
provides relaxation along the bandransitions to a self- of an average over a rather wide energy interval fipto
trapped state, and transfer to impuritiedefects. In the E~E;+A_ 1. This choice ofl' ., was based on the results of

1063-777X/2000/26(6)/8/$20.00 441 © 2000 American Institute of Physics
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TABLE |. Polariton parameters fdr(3/2) experimental values &, E;, C, andA 1 were taken from Refs. 3

and 6.
f E C Al103% A
T LT 2hK,es, Q,10%®
v
Crystal ™M F ¢ A K ev2.cm?s?t
my
Xe 20 0166 2.0 836 1.97 562 011 0021 7.4 5.55
Kr 27 0158 22 1017 211 538 0.13 0.056 9 8.07
Ar 36 0065 154 1206 202 4.0 0.06 0.18 10.2 7.6

a calculation of the single-phonon damping of “pure” exci- polaritons, including preliminary estimates for cryocrystals
tons (without taking into account the mixing with photorfs  of inert elements, was done in Ref. 17 on the basis of the
since the dependence B{E, T) for the polaritons and their same expression of the dampifighat is used in the present
energy distribution functiotPEDF were not known. study (see Eq(2) below). The authors of Ref. 17 performed
In this paper we do a consistent calculation of the singlean analysis in terms of the dependencd ain the polariton
phonon damping of polaritons as a function of energy andvave vectork and did not obtain data fof (E), which
temperature and show that the energy dependenterofhe  makes it hard to compare with experiment and to find the
neighborhood ofr and below is shaped by the strong influ- pEpF1® The analytical dependence Bfas a function of the
ence of polariton effects. The single-phonon damping govyyasimomentum and temperature for arbitrary temperatures
erns the most important charact_eri_stics of the relaxation prog,, given in Ref. 15 in implicit form without any accompa-
cesses, both those occurring within a bdsele aboveand  ying numerical calculations, and the explicit analytical de-

those involving radiative decay. pendence of '(k,T) is given only forT—0, but the given

The characteristics of the luminescence band in the reéxpression does not have a limiting transitionTtg, as a

gion of the exciton resonance of a crystal are directly relateqlunction of energy forE>E; and can be used only in a

to. the change in the' excﬂqn dispersion relatlo_n.s' upon MixXiNg, 3 rrow vicinity of the resonance energy and at very low tem-
with photons, and, in particular, to the possibility of polar- peratures

iton relaxation in the region of energies beld®. This In the present paper we calculate the single-phonon

process is intimately intertwinegtiepending on the energy damping as a function of the energy of the quasiparticles and

with the aforementioned relaxation processes and reflects t .
behavior of the PEDF, which is determined by solving the&ﬁe temperature of the crystal for the lowest polariton states

in Ar, Kr, and Xe cryocrystals. We use the known polariton
fdispersion relation obtained in the dipole approximation for
the interaction of excitons with an electromagnetic figiiak

kinetic equation with allowance for the phonon scatterihg
and the polariton lifetime, including all the decay channels o
itinerant quasiparticle¥. Knowledge of the PEDF is also ) . . .
necessary for finding the kinetic parameters of the energ arin the e>.<C|ton and. photon operg\)or‘ﬁhe m_teractlon of )
transport processes as average values over the distribution olaritons _W'th, aco_usUca_I phonons is taken into accom_mt in
the velocity, various components of the lifetime, the mearf @PProximation linear in the phonon operators and in the
free path of the polaritons, and their diffusion coefficient. Model of an isotropic deformation potential. We present the
The most direct method of determining the lifetime of results of a r_1umer|cal c_alculatlon of the energy dependences
polaritons is to measure the damping time of the emissiof the damping for a wide set of values of the temperatures,
intensity following a pulsed excitation of excitons. In Ref. 16 @hd also analytical relations describing the polariton damp-
an attempt was made to describe the “decay curves” in Xdnd in the pertinent energy and temperature regions.
with the aid of a computer simulation of the propagation of
excitations in the lattice. An estimate was thus obtained for
the contribution of the self-trapping process to the formation
of the polariton lifetime. However the calculation contained
the following inaccuracies. It ignored the spatial diffusion of GENERAL CONSIDERATIONS
the high-energy excitons during the time of relaxation over . o ] .
the entire exciton band. The group velocity of the polaritons  The width of the energy region in which the polariton
was taken as the average thermal velocity of “pure” exci- effects are experimentally manifested is of the ordedApf
tons(as we shall ShOW, at a temperatuﬁeﬁ]_d( this is com- (See Table )I. As we shall show belOW, for the excitonic
pletely unjustifiedl Also, for the polariton damping” a  States under consideration the inequality r>#AI'(Er)
value typical of thermalized excitons was used. holds, wherd’(Er) is the damping of polaritons on phonons
Knowledge of the energy and temperature dependencd8 the resonance region. This fact lets one clearly single out
of the scattering probability of polaritons on phonons and théhe states of the lower branch of transverse polaritons as the
use of these energy and temperature dependences for caldinal stage of the relaxation of the excitonic band states
lating the PEDF and the correct averaging of the kinetic pal'(3/2). It is these states that we shall consider below. The
rameters will make it possible to analyze the aforementionedolution of the dispersion relatiore(w,k)[ w?e(w,k)
experimental data in an adequate way. —k2c?]?=0 for the lower branch of transverse polaritons
The first calculation of the single-phonon damping of has the well-known for?
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2m
b Xe  a I(,T)= 22 [Gk-[|*P(w)P(e)
k!

X{(Ng— + 1)l o(k") —slk—k'[]
0 dlok) — ok ) +slk=k'[1},  (2)

wherek—k’=q, g is the phonon wave vector, tl&unction
expresses energy conservation during scattering, the 1 in pa-
rentheses in front of the first function in formula(2) takes
4 832 into account the contribution of spontaneous phonon emis-
0‘2 0'1 0 0' e é L '1'0 sion processes to the scatterim[;l,:[exp@iwq/T)—1]*l is

: L 6 p the occupation number of phonons with wave vectpr

g,eVv k, 10° cm (which completely determines the temperature dependence

of I'), zwq=s|k—k’| is the phonon energy in the Debye
model, s is the speed of sound®®(E) and P(E") are the
strength functions of the polaritons, which describe the con-
tribution of the exciton component to the polariton staee
p. 385 of Ref. 11

f2E2

8.36

FIG. 1. Dispersion curv&(k) for Xe (a); energy dependence of the polar-
iton density of(energy statesg(E) (b).

1 k?c2+ f? =
wi(k)z[z( wi+ S——iwk7k> P(E) e..(E2—E?)+f2EZ"
2 0 2 2 In a calculation of the probability of single-phonon scattering
1/, koco+fe ; . . L
— 2| Wi+ ———— i of polaritons in cryocrystals of inert elements, in view of the
4 €o high symmetry of these crystals, we adopt a model of the

(1)  the formH,;,,= —Cdivu, whereC is the deformation poten-
tial of the exciton andu is the relative deformation. Since
this interaction contains a contribution only from longitudi-
nal acoustical phonons, in this paper we usesftine values

Here f =4me?F/(myV,) is the frequency, which character- of the longitudinal sound velocitg, . In this modelG, is

izes the oscillator strengtR, my is the mass of the free expressed in the forfGy| = C(fiwy/2Ms?) 2, whereM is

electron,Vy=a%/4 is the volume of the unit cell for an fcc the mass of an atom. The criterion of a low strength of the
crystal,a is the lattice constant., is the dielectric constant exciton—phonon scattering is that the nonadiabaticity param-
at high frequenciesd> w+); and wy,=w7+%:k%2m is the  eter be smalt>

dispersion relation for excitonsn is the exciton mass, and 4m2C?  hap

fhwr=Et. The imaginary term y,w is introduced to take A= ~—x<1. (3

the damping into accounty,=2I"(E(k)). As our results 3mpsh B

have shown, one can neglect the quanifyin a calculation Herep=M/V, is the density of the crystalyy is the Debye

of the dispersion relation; this is later used in the derivationfrequency of the phonons, aril is the half width of the

of analytical expressions fol (E,T). The transverse— exciton band. Values of are given in Table I.

longitudinal splitting is expressed in terms of the parameters  Since we are interested in the energy relaxation process,

of the dispersion relation in the form ;=f?%%/2¢.E;.  we change in2) from a sum over wave vectors to integra-

The dispersion curvél) for polaritons in Xe is shown in Fig. tion over energy, and we represent the damping in the form

la. Foro> w1+ A 1/h the polaritons of the lower branch w

w, (k) are no different from the excitons that do not interact F(E,T):f dEWME—E'",T)g(E’), (4)

with the electromagnetic field. At frequencies<w-y 0

—A_r/f the dispersion relatiofil) goes over to the linear whereg(E) is the polariton density ofenergy states, and

dependence of low-frequency photons. we have introduced the probability of transition of a polar-

The interaction of polaritons with phonons is of the na-ijton with energyE to a state with energi’:
ture of multiple, successive inelastic scattering events, and

K2c2 1/2) 172 deformation potential for the exciton—phonon interaction in
(wi_ikak)} ]

oo

this process causes the quasiparticles to move in energy W(E—E"T)

along the dispersion curve. This scattering is determined by 7C2 (E—E’')2P(E)P(E")

the probability of a transition from a state(k) to a state = 223Ms? KEYK(ENlexd (E —EV/T1-1
w(k"). In Xe, Kr, and Ar the case of weak exciton—phonon (BIK(E)exel( =1
interaction is realized and therefore the main role is X O(|E—E'|—#is|lk—K'|) o[ is(k+K)

played by single-phonon processes, which are the subject of _E-E'[] ©)

this study. To a first approximation in perturbation theory in
the exciton—phonon interaction the damping of a polariton  The functiond(x)=1 if x=0 and#(x)=0 if x<0; the
with energy iw(k) at temperatureT is written in the 6 function reflects the conservation of energy in the scatter-
form%1! ing. The last cofactor iff5) means that the energy imparted
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of the function on the left as compared to the right is due to
the contribution from spontaneous phonon emission, which
governs the polariton damping at= 0. 1010'
Taking into account thé function in(5), we can write a 3
general expression for the dampi¥) in the form
Q [(E+2iskE)  (E—E')’g(E')dE’ E,eV

I'(E,T)= K(E) Je—2nske) K(E")|exd (E'—E)/T]—-1] © 10'

where we have introduced the notationQ

=7wC?/(2h°Ms%). A calculation shows that the function 10
P(E) in the pertinent interval of energies belo&; de- - b
creases by only 2%, and we have therefore P{E) = 1. ® 3

FIG. 2. Probability of single-phonon scatteriig(E-—E, T) for polaritons L 40K
in Xe for E;=8.36 eV andT =20 K. r 30K
1013 Kr

to the phonon cannot exceed the valig&k+k'), wherek 12:
=K(E) andk’=K(E’) are the moduli of the polariton wave ~ ~ 10 20K
vectors before and after scattering. The divergewdd » F
—E’, T=20K) for Xe is shown in Fig. 2. The higher wing ~ 10! i 10K

0K

l Ey

T T T

RESULTS OF A NUMERICAL CALCULATION OF THE 107
FUNCTION T'(E, T=const )

The polariton kinetic parameters and the shape of the E
luminescence line are determined by the energy distribution 10 '
function of the particles- (E). In turn,F(E) is the result of
a competition between polariton energy relaxation processes E,eV
with the probabilityW(E—E’,T) and polariton decay pro- _ _ _ _
cesses. The polariton lifetime(the radiative lifetime or the 'G; 3- Numerical calculation of the polariton dampifige, T=cons) ac-

e L. . . . . cording to formula(6) for I'(3/2) excitons in Xe(a), Kr (b), Ar (c) at
lifetime with respect to trapping by defects or impurities or yarious temperatures.

to self-trapping can vary in a crystal by orders of magnitude,

e.g., due to changes in the thickness, defect density, or im-

purity concentration. It is therefore important to know the (see Table ). Accordingly, an increase i’ (E,T) is ob-
exact behavior of'(E,T) in the low-energy part, on scales served on going from Xe to Afat equal temperaturesThis

of the possible variation of the polariton loss probability effect is analogous to that found earlier for the damping of
7~ 1. Since integral6) is nontrivial (the limits of integration  excitoné and is explained by the weak variation of the exci-
contain the inverse dispersion curk¢E)), we shall give a  ton component of the polaritonP(E)~1) in the energy
complete set of results of a numerical calculation of theregion under study for the given cryocrystals.

damping(6), where the functiong(E) andk(E) are found
by numerical methods directly from E(L). Figure 3 shows
the set of functiond™(E, T=const) in logarithmic scale for
the entire temperature region in which free excitons exist in  Here we investigate the functiof(E,T) analytically.
Xe, Kr, and Ar crystals. The exciton—phonon interaction in-First, to evaluate the integrdb) we must find analytical
creases in the sequence from heavy to light inert gases, coexpressions fok(E) andg(E). As we see from Eql), the
responding to the growth of the nonadiabaticity parameter function o, (k) has a complicated form, and therefore to

12.04 12.06 12.08

i t | | 1 !

ANALYTICAL DEPENDENCE OF TI'(E,T)
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We first consider the case wh@n=0 and the absolute
value term containing the exponential function in the de-
nominator of Eq.(6) is equal to unity. Furthermore, only
processes involving the emission of phonons are realized,
- i.e., in the integral6) only the half with the lower limit of
g integration remains. Introducing some notation, we let

- 2fisk(E)=46 (keeping in mind that 6=6(E)) and
g(E)/K(E)=f(E). Changing to the new variable of integra-
tion x=E—E’, we get

Xe

7 e )
106 2 T . _Q o,
835 840 845 HED={(E fOXf(E x)dx. (11)

E,eV The interval of the characteristic variation of the func-
. . . 73
FIG. 4. Comparison of th&(E) curves for Xe obtained from the exact tlonSg(E). andk(E) 'S. the quant'tyAwéf 10" “eV, and the
formula (1) of the theory(solid curve and from formula8) (dashed curnje  range of integration i$<10K~5Xx10 "eV (see Table)l
Since5<A, we can consider the functidi{E) in (11) to be

obtain an exact inverse dispersion relation would be an aw slowly varying and_ expand it in a power series in the neigh-
orhood of the poinE:

ward procedure. To simplify the calculations we use the fol-

lowing inequalities, which ordinarily hold for optically ob- df d2f )
servable excitonic transitions: HE=X)=f(B)= qgX+ ggzX + - (12
2
ET_‘zzx< f 5 <1. 7) Keeping the first two terms, we obtain
m e E
_ oo o Q &E) 3 __ df(E)
Making the corresponding approximations, we can reduce I'(E,0)=—=——F5—|f(E)— +d(E)—=1|. (13
. . X k(E) 3 4 dE
the dispersion relation to the form
12 Taking into account the form of the functiokéE) andg(E)
k(E)= (P) {[(E-Ep)2+A2)Y2+(E—Ep}Y2  (8) in Egs.(8) and(10), we arrive at the final expression
2 2 : ; Q(2hs)°
whereA?=E+f?/(mc®) determines the energy interval near I'(E,0)=*————g(E)K(E)
E+ in which the dispersion relation exhibits the characteristic 3
polariton variation. At energieE—E+>A and in the limit 3ms A2
f—0 (A—0), expression8) goes over to the usual square- { = ) (14)
root dependence typical of “mechanical” excitolgving a 2 h K(E)[(E—Eq)?+A?]

guadratic dispersion relatipnFigure 4 shows a comparison
of the k(E) curves for Xe, one of which was obtained from
formula (8) and the other by a numerical calculation using
the exact formula1l). We see that the curves differ in the
low-frequency region by-2—-5%. This is explained by the
absence of the dielectric constant in expres$®rafter con-
dition (7) was used. Nevertheless, in the region where polar

iton effects are actually manifested, néar, the agreement Let us now consider the temperature dependence of the

is good. damping. Transforming Eq8) in analogy with the previous

Let us now calculate the polariton density of states, tak'case, we obtain

ing into account the twofold degeneracy of the transverse

The function(14) in the limit f —0 goes over to the well-
known linear energy dependence for excitdndhe numeri-
cally calculated damping curves @t=0 K (Fig. 4) for the
crystals investigated here can be approximated by expression
(14) to one-percent accuracy. The second term is an appre-
ciable correction €10%) in a narrow energy region near
the resonance.

states with respect to polarization and the spherical symme- Q [ox%e/Tdx o
i i ion: I'(E,T)= f f(E—=x)+f(E+x)e ¥"].
try of the dispersion relation: (E,T) KE) Jo ™1 [F(E-x)+f(E+x)e "]
\Y dk (15
9(E)= k(B 45 © | _
™ We expand the function§(E—x) and F(E+x) as in
Using (8), we obtain the following expression: (12). The first term of this expansion gives
312 _FE.\24 pa2912 _ 312 f(E) [ocoshx/2T
g(E):ﬁ m\| "H{(E-Ep)?+ A%+ (E-Ep)} _ Fo(E,T)=Qk (E ) . i /2T)X2 . 19
272\ 72 [(E—ET)2+A2]1/2 (E) Jo sinh(x/2T)

(10 The integral in Eq(16) can be done exactly and is expressed
Relation(10) is plotted(with a 90 ° rotationin Fig. 1(b) for in the form of a series:
polaritons in Xe. In the limif —0 we again have the square- "
. 22nB 2(n+1)
root dependence for excitons. | = f y2 cothy dy= > £ Bopy
Let us now turn directly to an analysis B{E,T) in the n=o 2(n+1)(2n)!”’
form (6). 7

ly| <.
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where theB,, are the Bernoulli number8,=1, B,=1/6,
B,=—1/30,.... The first terms i{il7) can be written as

LYY

2 12 270

It is clear that because of the rapid decrease in the coeffi-
cients the series converges very well under the simple con-
dition y<<1/2. In our case/= 6/2T. We consider the situa-
tion T> &8, where we need to keep only the first two terms in
(17) to achieve an accuracy of 4% or better. As a result, we
get

[7isk(E)]?
6T?2

Next, the linear term in the expansion 6fE) in the
form (12) gives a temperature-independent contribution:

Q df (s
Fl(E,T)Z— @E,fo x3dx

I'o(E, T)=Q(24S)*Tg(E)| 1— . (18

B df [2Ask(E)]*
=-— — . (19
k(E) dE 4
Evaluating the derivative df(E) and taking into account the
relations for the functiong(E) andg(E) from (8) and(10),
we bring Eq.(19) to the form

rEm=-o ™ g A (20
B, 1)=— g .

2Vo (E—Eq)*+A 0 20 40 60
We have done these calculations with allowance for the T.K

quadratic ter_ms in the expaq3|on of the functigi) in the FIG. 5. Temperature dependence of the polariton dampitigy ,T) in Xe
form (12). Since the corrections for the cryocrystals underg) and Ar (b).

discussion were less than one percent, we will not write out
the rather awkward expressions for them. _ o
Summing the contribution18) and (20) for the case Values of the polariton group velocity, in cryocrystals of

T>2#sk, we obtain the final expression for the temperatureinert elements are rather large ,~10°cm/s) and satisfy
dependence of the damping: the criterionv >s~ 10° cm/s. We therefore have a linear

temperature dependence for polaritons, just as for excitons
— 2
I'(E,T)=Q(2h5)"Tg(E) with high velocities(meeting the above criterignThe posi-

[ (2fis)2 72 A2 tion of the minimum ofvy nearly coincides withE, and
— therefore, as we have said more than once, as the energy
2VoT  (E—Eq)?+A? increases in the region above the resonance there is a smooth
[hsk(E) 2 transition pf all the polariton properties, includid E, T),
+ _2_] ) (21)  to the exciton ones.
6T Substantial differences arise directly in the resonance re-

Figure 5 shows the temperature dependence of the p(gion and below. Figure 6 shows a comparison of the energy

lariton dampind’(E, T) in Xe, Kr, and Ar for fixed values of dependence of the damping for excitons and polaritons in Xe
the energy E=E;). We see that the functiod(T,E at T=0 (with a logarithmic scale along the ordinat&hen
= const) obtained numerically from the original formu® for excitons afT=0 the dependence has the simple form of

is linear over a wide temperature interval. This correspondé linéar fu'nctionl“ex(.E,T=0)=_)\(E— Er) (Refs. 4 and 18
to the first two terms in expressid@l). The deviation from and practically vanishes @&=E;. In perfect crystals of
the linear trend in the low-temperature region reflects a tranl'9€ Size,I'yo decreases by an order of magnitude in an

sition to the corresponding value of the constant contributiorﬁar_‘c‘jargy interval with a width equal to the luminescence band-

AE.®
I'(E,0). width AE. » . .

The observed position of the maximum of the lumines-
DISCUSSION OF THE RESULTS cence band at low temperatures is related to the total decay

The regularities found for the polariton damping have aprobability of the polaritons. At sufficiently low tempera-
certain analogy with previous calculations for the dampingtures only processes involving the emission of phonons can
of “pure” excitons with a quadratic dispersion relatidin ~ occur. Thus the functiot’,; shown in Fig. 6 describes the
both cases the damping depends on temperature through theobability of transition of polaritons down the dispersion
occupation numbersy(T) of phonon states. The minimum curve. The energy relaxation process can be stopped only by
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10°E
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~ :
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1010 =
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8.34 8.36 8.38 8.40 L
E , eV ! | 1 1 | i |
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FIG. 6. Single-phonon damping of polaritod,q(E) (solid curve and E.eV
excitonsI'(E) (dashed curvefor Xe at T=0. The dot-and-dash curve ’
corresponds to the dependerieek” from Ref. 17. FIG. 7. Integral characteristics of polariton scattering in Xe with phonon

emission('*, solid curve and absorptiofl’ ~, dashed curvesn single-
phonon processes &t=10 and 60 K.

the loss of the polariton: either it reaches the surface of the

crystal and is converted to radiation or it is trapped by an

impurity (or defect centgror is self-trapped. The maximum _scattenng otfhpo(ljarltq?s '? >t(e a= 1.0 £ahnd 60 K. The sha}rp
of the polariton energy distribution functigmear the maxi- increase in the density of staigéE) in the resonance region

mum of the luminescence banbr low temperatures is ap- compensates the asymmetry of the right and left wings of the

proximately the same as the energy at which the invers{:‘uncnoan(E_’E ,;I'). n tr.lf |r;tvtagral(6), tW ;'T;; liemptira-
lifetime of the polariton(its total decay probabilityis equal ures above a certain critical temperatufie~ in the

to the value of the single-phonon damping. The standar¢®s® of X@ _Iea_\ds toa do_minance of phonon absorption pro-
concept of “thermal equilibrium with the lattice” adopted cesses. This is responsible for the so-called thermal-barrier

for ordinary excitons is completely inapplicable for deter- effect for the relaxation of quasiparticles down the dispersion

17,19 i ian i idR—
mining the kinetic parameters of polaritons at low tempera-curve' At high temperatures the region in whidh

" o .
tures. One must first solve the problem of the formation of>r. has a width~2A wp> o. To overcome SUCh. a W'd.e.
the polariton energy distribution function with allowance for region in single-phonon scattering events with an inelasticity

the energy and temperature dependence of the polariton Iifeb: IS |mproba§ble,'and SO .the.relaxatm.n process SIOWS. down,
time, and then find the average velocity of the poIaritonsand an excitonlike distribution function with a maximum

their mean free path, diffusion coefficient, etc. aboveI_ET Is formed._ . :
For comparison, Fig. 6 shows the damping curve corre- This study of single-phonon damping of polaritons has

sponding to the dependence obtained in Ref. I{E,T laid the groundwork for a detailed study of the polariton

=0)=k*(E) (the dot-and-dash curyeThese results are in energy distribution function and the shape of the lumines-
fair agreement in a certain energy r.egiEﬁ: E, cence band and for determination of the kinetic parameters

Let us now discuss the influence of temperature on thé)]c polaritons in Xe, Kr, and Ar.
polariton energy relaxation process. The expression for the
total damping(6) can be written in the form of a sum of two “E-mail: tarasova@ilt kharkov.ua
integrals(for E' <E and forE' >E), i.e.,

I'(E,T)=I"(E,T)+I'"(E,T), 22 .
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It is shown that a pair of parallel planar defects in a crystal can act as a waveguide for a
guantum particle or wave having two branches of the dispersion relation. The en@ngies
frequenciesfor which the excitations are localized between the defects and propagate

freely along them are determined. In a two-dimensional system there exists a discrete set of
energies at which two-dimensional excitations can be “held in” between two parallel linear
defects. ©2000 American Institute of Physid$$1063-777X00)01306-4

There has been increasing interest of late in effects due T,
to the the interaction of freely propagating states of a particle €=&ot 2_mz(ky+ ky) + 2_m3(kx_ ko)?. 2
or wave and states of the same particle or wave localized at
defects. The nature of these effects is intimately connected In the case of an electrom, and m are its energy and
with the properties of quasilocal states of the contindum. effective mass, while for a phonao# is the square of the
The simplest of the effects of interest arises in the study ofrequency and b is the square of the phase velocitye
the motion of a particle along a channel, which leads to sizénave/ =1). Figure 1 shows a sketch, in arbitrary scale, of
quantization of its transverse energy. The presence of a poitite dispersion relation fdk, = const andk,= const.
defect in such a system will lead to an interaction of the In an ideal system the wave functiogis and ¢, corre-
states of the discrete and continuous spectra, and this giveponding to these branches of the dispersion relation are in-
rise to a number of resonance phenomena. The authors dependent states. In the presence of defects in the system the
Refs. 2 and 3 called attention to the resonance features iequation for the wave functions can be written in the form
transmission factor for electrons through a two-dimensional
(2D) channel containing an attractive impurity. Conductance L
resonances due to the interaction of particles corresponding 2m;
to different branches of the spectrum at impurities were ob-
served experimentally in Refs. 4 and 5. A detailed analysis 1 [ 3, i, 1[4
of the interaction with local defects for waves having several 2, 2 9z 2ms (5 B
branches of the dispersion relation was carried out in Refs. 6
and 7, and it was shown that for certain relations between the +(e—¢eq)y—Ux{thy, b5} =0, (4)
parameters of the system, both total reflection and total trans- - . .
mission of the wave through the defect are possible. In RefVhereU; and U, are terms describing the “two-channel
7 it was pointed out that a wave in a 2D quantum channelnteraction of the waves with the defect, and the notafida
can be blocked in by the two point defects at “critical” US€d for the Laplacian operator. _ o
values of the energy of the wave and the distance between SUPPOSe that a particle is propagating along two identi-
these impurities. cal parallel pIana.r defepts Iym_g parallel to thg symmetry
In this paper we discuss the waveguiding properties oPlane of the two dispersion relatiof®), (2) and a distancé
two parallel planar defects in a crystal in respect to a wav@Part. Then, if we assume that the defects are of a local
having a dispersion relation with two branches. character, thg interaction of two waves in the simplest case
We consider a system in which a quantum particle has ¥ill be described as follows:
dispersion relation with two branches:

Ayn+eyy—U{, 41 =0, (3

2
iko) o

h
z+ =

+0 >

5 h
=3

U= (a1 +Bis)

1 21,2, 1,2 h
8:2_ml(kx-‘_ky-‘_kz)' (1) Us=(aaihot Bif) z+ 5] )

1) h 1)
Z_E"-
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E, Ko K x

FIG. 1. Two branches of the dispersion relation for a particle with fiked
k,. Ex=(KZ+K2)/2my, E;=eq+ (Ki+k2)/2m,.

A. M. Kosevich and D. V. Matsokin

(in the linear approximationquadratic ing; and,, it fol-
lows from the Hermitianity of such a Hamiltonian that the
number of independent factors in the the aforementioned
quadratic form is three. Naturally, the values and signs of the
parametersa;, «,, and 8 depend on the type of planar
defect. In the case of electrons these defects could be inter-
calated planes of foreign atoms, and in the case of phonons
they could be intercalated planes, thin twin interlayers, or the
faces of a thick twin(in that case the difference between the
elastic properties of the parent and twinned crystals is ne-
glected.

All the lengths in the formulas will be measured in units
of the thickness, of the planar defediwhich is of the order
of an interatomic distange

Equations(3) and(4) are solved jointly with the bound-
“ary conditions on the planes= +h/2:

whereaq, a,, andB are parameters that determine the char
acter of the interaction of the given waves with an individual
defect. Since the interaction Hamiltonian for this is usually

( h

%( X,y,i§+0 = I/’S

h
XY, ii_ O) , s=1,2;

2my Jz Jz

1 ( 3Py, £h2+0)  dy(xy, +hi2— 0))

:all/ll(xiy!ih/2)+ﬂlﬁ2(xvyuih/2); (6)

L 2m, iz Jz

We will be interested in the energy region corresponding
to the freely propagating waves of the first kind of particle
and to localized states of the second kind of particle, i.e.,

KZ+ k5
e1= <e<egr=gpt
1

(kx_ko)2 k§
—+_
2m

2ms 2m,’

()

1. We seek a wave propagating along theplane and

having wave vectok=(k,,ky) (k,=kcose, k,=ksing)

and localized near a pair of defects. We take the solution in

the form of a symmetric function of:

Acogk,z)e' k) |zl <h/2,
o |z|>h/2;
D coshkz d®*tky) | z|<h/2,
o= Be <12 —-h2)gi(kx+kyy) IZ|>h/2, (8)

where

k2=2m.e—k?,

m
K2=2my(eo— &)+ k2 sin o+ m—z(kcos<p—k0)2. 9)
3

1 ( (XY, N2+0)  dyrp(x.y, =h/2— 0))

= ayihr(X,Y,=h/2) + Bip(X,y,=h/2).

a
ke=q(n)={-(1+2n), n=0,12,... (10
and we obtain the equations
T i ony-D ") n—o12
2m,h (1F2m=Dpcosh 7], n=0,12..
(11
h 2m2a/2
l+tanf k5 |=———. (12)
2 K

Equation(11) determines the coupling of the amplitudes
A and D, and the solutions of the transcendental equation
(12) can be used to find that value of the parameteor
which the system under study has waveguiding properties. It
is easily seen that a real solution of equatit8) is possible
only for a,<<0, in which case this solution exists for all
values of positivan, and negativer,. For kh<<1 we obtain
k~2|aym,, which is possible if|a,|mh<1. If kh>1
then k~|a,|m,, which is possible if a,|m,h>1. Thus we
always havex~|ay|m,.

The values found fok andk, determine, according to

Solution(8) describes a wave propagating along parallel deEgs. (9), a discrete setn=0,1,2,..) of possible values of
fects and “held in” between them, i.e., a pair of such defectsthe energy at a fixed direction of the wave vector, i.e., at a

acts like a planar waveguide.
Substituting(8) into the boundary condition®), we find
the possible discrete values lof:

fixed anglee. Otherwise, if the energy is specified and the
numbern fixed, we will find the direction of the wave vector
of those waves that can be confined between the two defects.



Low Temp. Phys. 26 (6), June 2000 A. M. Kosevich and D. V. Matsokin 451
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FIG. 2. Modulus of the wave vectde versus the angle for h=20, a, 2
=-1,£9=0.5,m,=1,n=0: m=2, mg=15(1); m=1.5 my;=0.5(2).
It is more convenient, however, to use the relation be-
tween the wave vectde and the angle. The dependence of 1
k on ¢ is given implicitly by the following algebraic equa-
tion:
k21— 21 co@ g 2o q| |22y ' : -
m, TC0% ¢l m, m, KKocose 0 01 02 03 04 05
P/
mz’ﬂ'

+2m280_ 0

m;h? 3 =-1,80=0.5,m,=1,n=0: m;=1.5, m3=2 (a), m;=0.75,m;=0.5 (b).
@* =arccofmy(my —my)/my(ms—my) ]2

2
m
(14+2n)%+ m—zkz— k>=0. (13 FIG. 3. Modulus of the wave vectde versus the angle for h=20, «,

We recall thatk,=q(n) is given by formula(10), while
«(h) is found as a solution of equatiqi2). The resulting
dependence is characterized by four parametgrsm,eg,
m,/m;, and m,/ms, the values of which are essentially For other relationships among the parameters, waveguid-
determined by the form of the functido=k(¢). ing properties will not arise in the system.

In discussing the above relations let us refine the units of 2. The other limiting case im,=mj3, ky#0. Then
measurement of the dimensional physical quantities appear-

ing in the formulas. As we have said, the lengths are mea- k(¢)= [ko cosp+ |k cog (p—(l— %)
sured in interatomic distancexg,. Consequently, the wave my—m; my
vectors are measured in units ohd/ The effective masses 112
of the electron are naturally measured in units of the electron X(2myeo— (M, /my)g?(n) +kG— «?) ] (15
massmg. Then the energy and the parameteks and 8 are
measured in units of Iif,a3), i.e., in atomic energy units & Let m;y=m,. Under this condition it follows directly
(recall that#=1). When one is talking about phonons from Eg.(13) that
(acoustical waves then 1m is measured in units of the 2 n— 2 2 2
. 2€Q q (n)+k0 K
squared phase velocities of sousd, and the square of the k(p)= (16)
frequencye is in units of (s/ay)?, i.e., in units of the square 2k cose
of the Debye frequency. Depending on the value af, formula (16) has meaning for
Let us analyze relatiofiL3) in some limiting cases: cose>0 if g2(n)+«k2<2myeq+ ké, and for cosp<<O if
1. Letko=0, my#ms. Then g2(n) + k?>2mye o+ kg.
K2+ (My IMy) 0(N) — 2M,e g b) For m;>m, it is necessary to satisfy the condition
k?>= 2. (14) m e
l—mzlml_(l—mz/mg)co (0] q2(n)>m_1 2m280+kg_K2_m _r?] ,
2 1 2

Here the following variables are possible:

a) For arbitrary ¢ the system will play the role of a and then there are two possible cases:
planar waveguide for waves with wave vectors lying in a 1) If g%(n)<(my/m,)(2m,eq+ ké—xz), then for any
certain interval(Fig. 2). This can occur if the numerator in cos¢>0 there exist two solutionk(¢), while for cose<0
(14) is positive and eithemz<m,<m,; or my<mz<m;,. If ~ there are no solutions.
the numerator if(14) is negative, then the necessary condi- 2) If g?(n)>(my/m,)(2myeq+ kg— x?), then for anyep
tion is satisfied form;<m,<<mgz or m;<<mgz<<m,. there is one solutiol(¢).

b) For waves with arbitrary energies greater than a cer-  ¢) For m;<m, the conditiong?(n)<(m,/m,)[2m,e,
tain e*, there exists an angle such that waveguiding prop- +k§— Kz—mlkgl(ml—mz)], and again there are two pos-
erties will arise(Fig. 3. This will be for m,<m;<mz; and sible cases:
mz<m;<m,. The functione(¢) can be ascending or de- 1) If g?(n)<(my/m,)(2m,eo+k3— «?), then for anyp
scending, depending on the sign of the numeratdd.#). there is one solutiok(¢).
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2) If g?(n)>(my/my)(2m,so+k3—«?), then for any h 2m,a,
cose<0 there exist two solutionk(¢), while for cose>0 1+coth k5 )=———. (21)
there are no solutions.
Analysis of the cas@=0 is of special interest, since it Relations(19)—(21) are analogous in meaning to rela-
corresponds to treating the effect in a 2D system. tions (10—(12). Equation(21) has solutions for,<0 and
We rewrite(13) in the more convenient form for |a,|m,h>1. The rest of the analysis of the antisymmet-
me—mm m ric case is similar to that for the symmetric case.
k2———— — 2kky+ 28oMs— — g2(n) If €,<e; it is straightforward to consider the energy
my my regione,<e<eq, in which the waves of the first type are

Ms localized and the waves of the second type are freely propa-
- m—K2+ k3=0. (17  gating(e; can be greater thasy,, e.g., form;<<m,,ms). In
2 this energy interval two planar defects will also have
a If m;=mg, then there always existskasuch that Eq. waveguiding properties.

(17) will hold (from here on we are doing the analysis for  Thus we have shown that two parallel planar defects can

fixed n). have waveguiding properties in respect to a wave having a
b) For m;<m; and dispersion relation with two branches, if its energy corre-
2 Maem sponds to freely propagating states of one branch and local-
h?> hiz—(l+2n)2 > s 1 > ized states of the other branch. Depending on the orientation
M kot (mz—my)(2e0— «/my) of the wave vector of this wave with respect to the preferred
there are two solutions. i?><h?, then there are no solu- directions of the isoenergy surface, waves with energies ly-
tions. ing in a wide interval will be confined between the defects.
¢) The casan;>mg andm; —m3> kS/Zao. If In the two-dimensional case, waves with a discrete set of
5 energies, depending on the relationships among the param-
h2< hgzw_(1+2n)2 M~ Ms , eters of the dispersion relation, will be localized between the
m; 2(m;—mg)eq—k3 defects.

then there are two values &fthat satisfy Eq(17).

If h?>h2, then for smalla,| there are no solutions.

d) For m;>m; and ml_m3<kg/280 there are always *g-mail: kosevich@ilt.kharkov.ua
two solutions.

2. Let us now consider the solution that is antisymmetric

in z:
H i(k k.
A sin(k,z)e' ket kyy) |z <h/2, LA. M. Kosevich and S. E. Savotchenko, Fiz. Nizk. Teri, 737 (1999
= 0 I2|>h/2; [Low Temp. Phys25, 550 (1999)].
! 2C. S. Chu and R. S. Sorbello, Phys. Rev4® 5941(1989.

B e K(z=h2)gilkxtky) 7~ h/2, 32&.92.])Levinson, M. I. Lubin, and E. V. Sukhorukov, JETP Léi4, 401
=14 D sinhxz dx+ky) |z]<h/2, (18)  *C.T.Liang, I M. Castelton, J. E. F. Frost, C. H. W. Barnes, C. G. Smith,

) C.J. B. Ford, D. A. Ritchie, and M. Pepper, Phys. Re636723(1997).

+h/2 Ky X+k

—B ez M2elkxrky) - 7 —h/2, 5M. W. Dellow, P. H. Beton, C. J. G. M. Langerak, T. J. Foster, P. C.

- ; i ; Main, L. Eaves, M. Henini, S. P. Beaumont, and C. D. W. Wilkinson,
Substituting(18) into the boundary condition®), we obtain Phys. Rev. Lett68, 1754(1992.

_ 2mn 6A. M. Kosevich, Zh. Ksp. Teor. Fiz.115 306 (1999 [JETP 88, 168
kz=q(n)E—h , h=0,1,2,... (19 (1999]. )
“Ch. S. Kim and A. M. Satanin, Zh.KSp. Teor. Fiz.115 211 (1999

(—1)"1zn _ h [JETP88, 118(1999].
—————=Dgsinh « 5
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The features of dynamic solitons in nonlinear systems described by differential equations with
fourth-order spatial derivatives are discussed for systems of different dimensionalities.

The existence conditions for a nonradiative soliton are formulated for the case when the internal
frequency of the soliton lies in the continuous spectrum of harmonic oscillations of the

system under study. These conditions are determined by the form of the dispersion relation of
the linear oscillations. The use of the stated conditions for determining the parameters of
two-dimensional solitons is demonstrated. 2000 American Institute of Physics.
[S1063-777X00)01406-7

INTRODUCTION 1. ONE-DIMENSIONAL NONLINEAR SYSTEMS

We shall discuss the properties of dynamic solitons in L&t us restriclt diSCU_SSiOH toa simple nonlinegr model
certain nonlinear systems from the standpoint of the lineathich takes the higher dispersion into account and is capable
dynamics of these systems. By dynamic soliton we mean of dgscrlbmg the diverse situations that arise in soliton dy-
nonlinear spatially localized disturbance whose stability is"@mICs:
ensured by the presence of simple additive integrals_ of the oy Py Py
motion. Examples of such solitons are the nonlinear Schro IE+ W+ WJF F($)=0,
dinger equatior{NSE) soliton and the magnetic solitdn.

A dynamic soliton is ordinarily characterized by an in-
ternal frequency, the value of which is one of the main pa-  F(#)=|#?¢+ v
rameters of the soliton. Traditionally dynamic solitons in
condensed-matter physics have been studied on the basis of We will be interested only in the stationary states
nonlinear differential equations with spatial derivatives of ¥(x,t)(x)e'*", i.e., the properties of the nonlinear equation
the second order. In the case of a scalar field the dynamical 0= @t Ot F (@) ©
operator has local-state frequencies that must necessarily lie X oo '
outside the continuous spectrum. Therefore the eigenfreFhe linearized equation obtained by dropping the t&ifp)
guency of a dynamic soliton of such a physical field, like thein (2) has the dispersion relatidsee Fig. 1
frequency of any localized excitation, must lie outside the o4
spectrum(in the case of an NSE or magnetic soliton, they lie w=—k+k )
below the continuum At the point wherek?®= k,2n= 1/2, the frequencw reaches its

The situation is different if one is studying the dynamicslowest valuew,,= —1/4. Consequently, we have a continu-
of a discrete system or the dynamics of a continuous systemus spectrum of eigenfrequencies of harmonic oscillations
described by differential equations of highghen second w,<w<w.
order in the spatial derivativésin that case it can happen For the linearized equation it is easy to calculate the
that the soliton frequency lie in the continuous spectrum ofGreen function corresponding to stationary oscillations at a
harmonic oscillations, and there arises the problem of thelefinite frequencyw and describing a wave that is outgoing
existence of a soliton in the presence of radiation of lineait infinity. In the frequency interval @ w<<cc it has the form
waves and the problem of the radiational interaction of soli- _
tons(see, e.g., Refs. 3 and.4n Ref. 5 such solitons were (x)= 1 '_e_ik\x\Jr Ee‘K"" (4)
constructed in model 1D systems and their properties were @ 4Jw— o, K K '
discussed. We wish to show that the majority of the effects
that arise here are connected with the properties of the lin/here
earized equations describing the harmonic oscillations of the 1 1
system under study—in particular, the dispersion relation for k2=§( Vitdw+1), KZZE(\/1+4(D—1). (5)
small oscillations. These equations determine the asymptotic
behavior of the field at large distances from the soliton and In the frequency interval of the continuous spectrum,
contain rich information about the possible soliton solutionsw,,< <0, the Green function does not have exponentially
of nonlinear equations. decaying terms:

Y

2 (92{/,
x| VT rdvlP oz vty @
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O linearized equation excited by a distributed forf¢e) con-
centrated in a small interval of aroundx= 0. Suppose that
f(x) falls off with distance faster than exp/x|). Then the
solution outside the region of the applied force is

e(X)= f G(x—x")f(x")dx’

=
3
¥ x

| 1 . s B
=———(iQ(kie MM+ p()e ), (10

O 2T+ 4o

where

FIG. 1. A sketch of the dispersion relation of the linearized equafien _ ikx _ "
quencyw versus wave numbe). kQ(k)=| f(x)e"™dx, «P(x)= [ f(x)edx. (11

If the Fourier component of the distributed force vanishes at
some valuek=kg (Q(kg)=0), then the forced oscillations

1 e ikilxl  a=ikalx| with frequencyw = w(ky) will not excite radiation at infinity.
G,(X)= + ) (6)  There is completely quenching of the linear oscillations far
@ Jo— k k )
No=on ! 2 from the source on account of wave interference. In the case

where of a symmetric force distributionf(x)—f(—x)) the indi-

1 1 cated solution has the form
k§=§(1+\/1+4w), k2=§(1—\/1+4w). )

Finally, if the frequency lies below the continuunw (
< —1/4), then the Green function takes a different form: and for an antisymmetric distributiorf (— x) = —f(x))

f f(x)coskx dx=0, (12

1
Gw(x)zme*"x sin(kx+ ¢), (8) f f(x)sinkx dx=0. (13
where It should be noted, however, that since the frequencies of
2 2 _ such an oscillation lie in the quasicontinuous spectrum, its
K*=x"=1, 2ck=Vonto. ©) weight in the linear dynamics is very small, of the order of

Analysis of the form of the Green functio4), (6), and(8), 1/N, whereN is the number of atoms in the 1D chain under
independently of the structure of the nonlinear term in Eqgstudy. It is known, however, that in nonlinear dynamics the
(1), allows one to draw the following obvious conclusions weight of such preferred stationary states can turn out to be
about the possible soliton solutions of this equation and othaltogether different.
ers like it. The obvious mathematical conditiofi2) or (13) for

1. Dynamic solitons with frequencies< w,, have expo- solvability of the inhomogeneous differential equation lets
nentially decaying oscillatory “tails,” and if they are exact one obtain the parameters of the stationary dynamic solitons
solutions of equatioil), then they can radiate linear waves. which are unaccompanied by radiation.
The presence of nonmonotonically decaying “tails” has im-  Analyzing the structure of Eq2), one expects that it has
portant significance for the study of the interaction of soli-a soliton solution of the form
tons and was apparently first discussed in Refs. 6 and 7. A

2. Frequenciesw,,<w<0 cannot in principle corre- o(X)= ————,
spond to soliton solutions, since there are no decaying coshiex

asymptotic solutions for the corresponding stationary statesyhere« is related to the frequency by expression(s).

3. Atypical linear stationary state in the frequency inter-  sybstituting solutior{14) into the nonlinear term of Eq.
val >0 is a quasilocalized oscillation, with one of its com- (1) we can treat it as an external foréex)=f(—x). Ac-
ponents localized in space and the other being a standingrding to(12), the soliton(14) will be unaccompanied by
wave of constant amplitude. The features of the scatteringgdiation under the condition
processes in the presence of such states are discussed in Ref.

8. . L F(@s(x))coskx dx=0. (15
The presence of the asymptotic behavior indicated

means that the possible soliton solutions of equatiomith 14 gliminate awkward manipulations, let us do the calcula-

frequenciesw>0, as a rule, are accompanied by the radiasjon separately for several casés) y,#0, y,= y5=0, (2)
tion of harmonic waves. There have been various explana;,_ . ., —..-0 and(3 0 vi=v.=0

. . 9 270, y1=v¥3=0, and(3) y3#0, y;=y,=0.

tions as to the physical reasons and necessary conditions for |, ihe first case it follows froni5) and (15) that

the existence of nonradiative solitons in this frequency inter-

val. , 3y1—12 , V1742

To elucidate the necessary conditions under which radia- 2y K 2y,
tion will be absent, let us consider the forced solution of the (16)

w=const, (14
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We see that fory, > 12 there always exists a single soliton of b a
type (14) which does not radiate linear waves. All the am-
plitude parameters of this soliton except the amplitddean E +4+E
be obtained from an analysis of the linearized equation. It is \
easy to see that the exact solution of equati@n corre- E
sponds to l 1
f
24 12(y,—12 l |
p2o2t o 12712 A « |
Y1 Y1 :K ' 2 1 ! k=
o k(B = E, K(E;)
In the second caseyf{=y;=0) we have N 2 1
K2=13 Y2—4 2= ¥2—12
T 2y, 2y, FIG. 2. Dispersion of the enerdy of elementary excitations for a real wave
vector K) (a) and for a purely imaginary wave vectok=i«) (b).
3 (y2=4)(y2— 12
0= ——. a7
4 %

as much by the properties of the dispersion relation of the
It follows from Eq. (2) that the amplitude obeys linearized equation as by the form of the nonlinear terms in
the dynamical equations.

, 242
A= = —(y.—12.
Y2 Y2 2. TWO-DIMENSIONAL NONLINEAR EQUATIONS
Thus soliton(14) exists in a system withy,>12. Turning now to an analysis of the 2D situation, let us
Finally, in the casey;#0, y;=17,=0 it follows from  alter the relationship between the signs in front of the second
(5) and (15) that and fourth spatial derivatives to point up how the general
conclusions are independent of this relationship. Working
2o s ,_3(4—373) from the nonlinear Schrbnger equation, we denote the en-
2(6—5y3)’ 2(6—5y3)’ ergy eigenvalue by the lettét:
oo a7 37s) 19 W= SAW- LA AV=F(W), (21)
4(6—57s)° 22

whereA is the 2D Laplacian operator,
9? . 19 . 1 4°
a2 roor r2 %0

The soliton amplitude is obtained frofg):

2442 12

A? = .
Y3 6—5y3

andF{W} is a regular function oft’ and the spatial deriva-
Interestingly, the soliton can exist only for<Oy;<<6/5 tives AW, of the form

=1.2.
— 2 2
Let us apply these findings to the analysis of the more F(W)=a| W[+ 5| V[ + ... (22)
complicated soliton solution of a simplified equatit®) for The linearized equation describes the elementary excita-
y1="7v2=7v3=0. In this case one should expect a soliton oftions of the systemW¥ =exp(kx—iEt), with the dispersion
the type relation (E>0)
sinhkx 1 1
—A— E=-k2+ = Bk4, 23
P)=A o x (19 2 2P 23
Sinceg(—X) = — ¢(x) in this case, one should use condition & graph of WhiCh. is sketched in Fig(a&. The linearized
(13): equation for positive values d& also has another type of
solutions: W (x) =exp(x«X), which correspond to purely
sinhkx dx|3 _ imaginaryk=i«. The “dispersion relation” of these local-
cos x| X dx=0. (200 jzed solutions has the form
The requirement20) yields the relatiork?=k3=11«?. Us- E— EBKA._ }Kz 24)
ing Eq.(5), we find that?=0.1 andw=0.11. These param- 2 2"

eters correspond to the only solution of the ty@d®) that .4 4 graph is sketched in Figlh2
does not give radiation. In the exact solution, which is pre- g tions of the linearized equation that depend expo-
sented in Ref. 9, one has= J6/5. nentially (and monotonically on the distance also exist in

Itis clear that the stated conditions for the existence of gne interval E,,<E<0, where there are two values of the
nonradiative dynamic soliton and their demonstration in SP€harameterc:

cific cases do not constitute constructive recommendations
for seeking an analytical soliton solution. However, they do 2 _i — AaleT
show that the structure of the dynamic soliton is determined 2 2/8(1_ 1-8ED. 25
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Following the scheme proposed in Sec. 1, we construct th€learly condition(32) can be satisfied only for a certain dis-
Green functions of the linearized equation tr0: crete set ok (or E).
Let us now assume that the initial nonlinear equation

G(r)=imHg"(kr) = 2Ko(xT), (26) (21) admits a soliton solution
whereHE)(kr), Ko(xr) are the standard Hankel functions =g (p)eEt, 33)
of real and imaginary argument, and the parameéteand « i o ) ) ]
are determined by relations analogougn fpr which E Illes in the continuum but which does not radiate
linear outgoing waves.
1 We substitute(33) into the right-hand side of Eq21).
2 _— ] —
K _zﬁ( 1+8E-1), Then at large distancex(>1) we can write the following
representation with the aid of the Green function:
1
k?=——(J1+8E+1). 2
25( ) @) q>s(r):f G(r—p cosh)F{d(p)}pdpdé. (34)

The gsymptouc fO”T‘ of th? Gr_een function at large d|stan_ce1<,t is now obvious that the radiation field far from the soliton
describes an outgoing cylindrical wave and an exponent|aII)$/anishes if

damped amplitude of the localized component. This sort o
asymptotic behavior of the Green function means that the f
soliton of the nonlinear equation witB>0, as a rule, is
accompanied by radiation. It is only f&<0 that the soliton
solutions, if they exist, do not generate radiation. For ex
ample, in the intervak,,<E<O0 the Green function has the
form

L F{®(p) o(xp)pdp=0. (35
Relation(35), as in the 1D case, can be satisfied only for a
discrete set of possible or E.

Unfortunately, we know of no exact analytical solution
for a soliton in any 2D model described by an equation of the
G(r)=Ko(kir)—Ko(xar), (28)  type(21), and we therefore cannot illustrate the use of rela-

where the definition of the parametets and «, is obvious tion (35) as we did for the 1D case in Sec. 1.

(see Fig. 2 Consequently, a soliton with such valuestofs
stable against its radiative process.

However, forE>0 there can also exist stable solitons at  After the discussion of the 2D situation the analysis of
discrete values oE determined by special equations of the the 3D case is obvious. Let us therefore draw some conclu-
type discussed in Sec. 1 in connection with the 1D case. sions as to the possible existence of a nonradiative dynamic

It is helpful to follow the derivation of these special soliton of an equation of the typ@1), whereA is the 3D
conditions in the 2D case. Let us consider the forced solutiohaplacian.
of the linearized equation under the influence of a cylindri-  The dispersion relation for linear oscillations is given as
cally symmetric external oscillatory fordép)e '®! concen-  before by formula23), and the Green function correspond-
trated near the origin of coordinates in a small region ofing to positive energies§>0) is obvious(it is given in the
radiusr ~ po= 1/x(E), under the condition thd lies in the  Appendix of Ref. 2

3. THREE-DIMENSIONAL NONLINEAR EQUATIONS

continuous spectrumE>0): 1 elkr_gxr
L O™ 4mp 0 0
E\II+EA\If—§/3AA\P=f(p). (29

where the parametels and « are specified by expressions
Having the Green functiofi26), we can immediately write (27).

the oscillatory part of the forced solution: We assume that Eq21) has a soliton solution of the
form (E>0)
Vo | HEIK(r = p cosh)1f(p)pdpd. (30 We—dgreE 37

which is localized in a volume with a radius of the order of
1/k(E). Then at large distancesc(>1) we have a repre-
sentation analogous 1&4), viz.,

The asymptotic form of30) at large distancesr «(E)>1)
has the form

eikr
Wosc™ 2_\/FJ f(p)exp(—ikp cosd)pdpdd d)s(r):f G(r—p cos)F{d(p)}sinddadep?dp.
T
. (39)
iKr o
= e_J f(p)Jo(p)pdp, (3D Keeping only the oscillatory part of the Green function, we
rJo obtain the conditions for the absence of a radiation field far

whereJy(kp) is the zero-order Bessel function. from the soliton:

It is obvious that the oscillations vanish under the con- o sinkp)
dition f F{®y(p)} — —p°dp=0. (39
0 p
J f(p)do(kp)pdp=0. (32) Relation(39) can hold only for a select discrete set of values
0 of the modulus of the wave vectéor values ofE).
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In closing let us emphasize once again that the dynami€e-mail: kosevich@ilt.kharkov.ua
solitons with frequenciegor energiesE) lying in the con-
tinuous spectrum of elementary excitations of a system can
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